]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid5.c
md/raid5: split bio for chunk_aligned_read
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74 * Stripe cache
75 */
76
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
137 */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 int sectors = bio_sectors(bio);
141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 return bio->bi_next;
143 else
144 return NULL;
145 }
146
147 /*
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150 */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
171 {
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
174
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
212 {
213 int slot = *count;
214
215 if (sh->ddf_layout)
216 (*count)++;
217 if (idx == sh->pd_idx)
218 return syndrome_disks;
219 if (idx == sh->qd_idx)
220 return syndrome_disks + 1;
221 if (!sh->ddf_layout)
222 (*count)++;
223 return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228 struct bio *bi = return_bi;
229 while (bi) {
230
231 return_bi = bi->bi_next;
232 bi->bi_next = NULL;
233 bi->bi_iter.bi_size = 0;
234 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 bi, 0);
236 bio_endio(bi);
237 bi = return_bi;
238 }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245 return sh->check_state || sh->reconstruct_state ||
246 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252 struct r5conf *conf = sh->raid_conf;
253 struct r5worker_group *group;
254 int thread_cnt;
255 int i, cpu = sh->cpu;
256
257 if (!cpu_online(cpu)) {
258 cpu = cpumask_any(cpu_online_mask);
259 sh->cpu = cpu;
260 }
261
262 if (list_empty(&sh->lru)) {
263 struct r5worker_group *group;
264 group = conf->worker_groups + cpu_to_group(cpu);
265 list_add_tail(&sh->lru, &group->handle_list);
266 group->stripes_cnt++;
267 sh->group = group;
268 }
269
270 if (conf->worker_cnt_per_group == 0) {
271 md_wakeup_thread(conf->mddev->thread);
272 return;
273 }
274
275 group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277 group->workers[0].working = true;
278 /* at least one worker should run to avoid race */
279 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 /* wakeup more workers */
283 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 if (group->workers[i].working == false) {
285 group->workers[i].working = true;
286 queue_work_on(sh->cpu, raid5_wq,
287 &group->workers[i].work);
288 thread_cnt--;
289 }
290 }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 struct list_head *temp_inactive_list)
295 {
296 BUG_ON(!list_empty(&sh->lru));
297 BUG_ON(atomic_read(&conf->active_stripes)==0);
298 if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301 list_add_tail(&sh->lru, &conf->delayed_list);
302 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303 sh->bm_seq - conf->seq_write > 0)
304 list_add_tail(&sh->lru, &conf->bitmap_list);
305 else {
306 clear_bit(STRIPE_DELAYED, &sh->state);
307 clear_bit(STRIPE_BIT_DELAY, &sh->state);
308 if (conf->worker_cnt_per_group == 0) {
309 list_add_tail(&sh->lru, &conf->handle_list);
310 } else {
311 raid5_wakeup_stripe_thread(sh);
312 return;
313 }
314 }
315 md_wakeup_thread(conf->mddev->thread);
316 } else {
317 BUG_ON(stripe_operations_active(sh));
318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 if (atomic_dec_return(&conf->preread_active_stripes)
320 < IO_THRESHOLD)
321 md_wakeup_thread(conf->mddev->thread);
322 atomic_dec(&conf->active_stripes);
323 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 list_add_tail(&sh->lru, temp_inactive_list);
325 }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 struct list_head *temp_inactive_list)
330 {
331 if (atomic_dec_and_test(&sh->count))
332 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337 *
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
341 */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343 struct list_head *temp_inactive_list,
344 int hash)
345 {
346 int size;
347 unsigned long do_wakeup = 0;
348 int i = 0;
349 unsigned long flags;
350
351 if (hash == NR_STRIPE_HASH_LOCKS) {
352 size = NR_STRIPE_HASH_LOCKS;
353 hash = NR_STRIPE_HASH_LOCKS - 1;
354 } else
355 size = 1;
356 while (size) {
357 struct list_head *list = &temp_inactive_list[size - 1];
358
359 /*
360 * We don't hold any lock here yet, get_active_stripe() might
361 * remove stripes from the list
362 */
363 if (!list_empty_careful(list)) {
364 spin_lock_irqsave(conf->hash_locks + hash, flags);
365 if (list_empty(conf->inactive_list + hash) &&
366 !list_empty(list))
367 atomic_dec(&conf->empty_inactive_list_nr);
368 list_splice_tail_init(list, conf->inactive_list + hash);
369 do_wakeup |= 1 << hash;
370 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
371 }
372 size--;
373 hash--;
374 }
375
376 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
377 if (do_wakeup & (1 << i))
378 wake_up(&conf->wait_for_stripe[i]);
379 }
380
381 if (do_wakeup) {
382 if (atomic_read(&conf->active_stripes) == 0)
383 wake_up(&conf->wait_for_quiescent);
384 if (conf->retry_read_aligned)
385 md_wakeup_thread(conf->mddev->thread);
386 }
387 }
388
389 /* should hold conf->device_lock already */
390 static int release_stripe_list(struct r5conf *conf,
391 struct list_head *temp_inactive_list)
392 {
393 struct stripe_head *sh;
394 int count = 0;
395 struct llist_node *head;
396
397 head = llist_del_all(&conf->released_stripes);
398 head = llist_reverse_order(head);
399 while (head) {
400 int hash;
401
402 sh = llist_entry(head, struct stripe_head, release_list);
403 head = llist_next(head);
404 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
405 smp_mb();
406 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
407 /*
408 * Don't worry the bit is set here, because if the bit is set
409 * again, the count is always > 1. This is true for
410 * STRIPE_ON_UNPLUG_LIST bit too.
411 */
412 hash = sh->hash_lock_index;
413 __release_stripe(conf, sh, &temp_inactive_list[hash]);
414 count++;
415 }
416
417 return count;
418 }
419
420 static void release_stripe(struct stripe_head *sh)
421 {
422 struct r5conf *conf = sh->raid_conf;
423 unsigned long flags;
424 struct list_head list;
425 int hash;
426 bool wakeup;
427
428 /* Avoid release_list until the last reference.
429 */
430 if (atomic_add_unless(&sh->count, -1, 1))
431 return;
432
433 if (unlikely(!conf->mddev->thread) ||
434 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
435 goto slow_path;
436 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
437 if (wakeup)
438 md_wakeup_thread(conf->mddev->thread);
439 return;
440 slow_path:
441 local_irq_save(flags);
442 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
443 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
444 INIT_LIST_HEAD(&list);
445 hash = sh->hash_lock_index;
446 do_release_stripe(conf, sh, &list);
447 spin_unlock(&conf->device_lock);
448 release_inactive_stripe_list(conf, &list, hash);
449 }
450 local_irq_restore(flags);
451 }
452
453 static inline void remove_hash(struct stripe_head *sh)
454 {
455 pr_debug("remove_hash(), stripe %llu\n",
456 (unsigned long long)sh->sector);
457
458 hlist_del_init(&sh->hash);
459 }
460
461 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
462 {
463 struct hlist_head *hp = stripe_hash(conf, sh->sector);
464
465 pr_debug("insert_hash(), stripe %llu\n",
466 (unsigned long long)sh->sector);
467
468 hlist_add_head(&sh->hash, hp);
469 }
470
471 /* find an idle stripe, make sure it is unhashed, and return it. */
472 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
473 {
474 struct stripe_head *sh = NULL;
475 struct list_head *first;
476
477 if (list_empty(conf->inactive_list + hash))
478 goto out;
479 first = (conf->inactive_list + hash)->next;
480 sh = list_entry(first, struct stripe_head, lru);
481 list_del_init(first);
482 remove_hash(sh);
483 atomic_inc(&conf->active_stripes);
484 BUG_ON(hash != sh->hash_lock_index);
485 if (list_empty(conf->inactive_list + hash))
486 atomic_inc(&conf->empty_inactive_list_nr);
487 out:
488 return sh;
489 }
490
491 static void shrink_buffers(struct stripe_head *sh)
492 {
493 struct page *p;
494 int i;
495 int num = sh->raid_conf->pool_size;
496
497 for (i = 0; i < num ; i++) {
498 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
499 p = sh->dev[i].page;
500 if (!p)
501 continue;
502 sh->dev[i].page = NULL;
503 put_page(p);
504 }
505 }
506
507 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
508 {
509 int i;
510 int num = sh->raid_conf->pool_size;
511
512 for (i = 0; i < num; i++) {
513 struct page *page;
514
515 if (!(page = alloc_page(gfp))) {
516 return 1;
517 }
518 sh->dev[i].page = page;
519 sh->dev[i].orig_page = page;
520 }
521 return 0;
522 }
523
524 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
525 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
526 struct stripe_head *sh);
527
528 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
529 {
530 struct r5conf *conf = sh->raid_conf;
531 int i, seq;
532
533 BUG_ON(atomic_read(&sh->count) != 0);
534 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
535 BUG_ON(stripe_operations_active(sh));
536 BUG_ON(sh->batch_head);
537
538 pr_debug("init_stripe called, stripe %llu\n",
539 (unsigned long long)sector);
540 retry:
541 seq = read_seqcount_begin(&conf->gen_lock);
542 sh->generation = conf->generation - previous;
543 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
544 sh->sector = sector;
545 stripe_set_idx(sector, conf, previous, sh);
546 sh->state = 0;
547
548 for (i = sh->disks; i--; ) {
549 struct r5dev *dev = &sh->dev[i];
550
551 if (dev->toread || dev->read || dev->towrite || dev->written ||
552 test_bit(R5_LOCKED, &dev->flags)) {
553 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
554 (unsigned long long)sh->sector, i, dev->toread,
555 dev->read, dev->towrite, dev->written,
556 test_bit(R5_LOCKED, &dev->flags));
557 WARN_ON(1);
558 }
559 dev->flags = 0;
560 raid5_build_block(sh, i, previous);
561 }
562 if (read_seqcount_retry(&conf->gen_lock, seq))
563 goto retry;
564 sh->overwrite_disks = 0;
565 insert_hash(conf, sh);
566 sh->cpu = smp_processor_id();
567 set_bit(STRIPE_BATCH_READY, &sh->state);
568 }
569
570 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
571 short generation)
572 {
573 struct stripe_head *sh;
574
575 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
576 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
577 if (sh->sector == sector && sh->generation == generation)
578 return sh;
579 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
580 return NULL;
581 }
582
583 /*
584 * Need to check if array has failed when deciding whether to:
585 * - start an array
586 * - remove non-faulty devices
587 * - add a spare
588 * - allow a reshape
589 * This determination is simple when no reshape is happening.
590 * However if there is a reshape, we need to carefully check
591 * both the before and after sections.
592 * This is because some failed devices may only affect one
593 * of the two sections, and some non-in_sync devices may
594 * be insync in the section most affected by failed devices.
595 */
596 static int calc_degraded(struct r5conf *conf)
597 {
598 int degraded, degraded2;
599 int i;
600
601 rcu_read_lock();
602 degraded = 0;
603 for (i = 0; i < conf->previous_raid_disks; i++) {
604 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
605 if (rdev && test_bit(Faulty, &rdev->flags))
606 rdev = rcu_dereference(conf->disks[i].replacement);
607 if (!rdev || test_bit(Faulty, &rdev->flags))
608 degraded++;
609 else if (test_bit(In_sync, &rdev->flags))
610 ;
611 else
612 /* not in-sync or faulty.
613 * If the reshape increases the number of devices,
614 * this is being recovered by the reshape, so
615 * this 'previous' section is not in_sync.
616 * If the number of devices is being reduced however,
617 * the device can only be part of the array if
618 * we are reverting a reshape, so this section will
619 * be in-sync.
620 */
621 if (conf->raid_disks >= conf->previous_raid_disks)
622 degraded++;
623 }
624 rcu_read_unlock();
625 if (conf->raid_disks == conf->previous_raid_disks)
626 return degraded;
627 rcu_read_lock();
628 degraded2 = 0;
629 for (i = 0; i < conf->raid_disks; i++) {
630 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
631 if (rdev && test_bit(Faulty, &rdev->flags))
632 rdev = rcu_dereference(conf->disks[i].replacement);
633 if (!rdev || test_bit(Faulty, &rdev->flags))
634 degraded2++;
635 else if (test_bit(In_sync, &rdev->flags))
636 ;
637 else
638 /* not in-sync or faulty.
639 * If reshape increases the number of devices, this
640 * section has already been recovered, else it
641 * almost certainly hasn't.
642 */
643 if (conf->raid_disks <= conf->previous_raid_disks)
644 degraded2++;
645 }
646 rcu_read_unlock();
647 if (degraded2 > degraded)
648 return degraded2;
649 return degraded;
650 }
651
652 static int has_failed(struct r5conf *conf)
653 {
654 int degraded;
655
656 if (conf->mddev->reshape_position == MaxSector)
657 return conf->mddev->degraded > conf->max_degraded;
658
659 degraded = calc_degraded(conf);
660 if (degraded > conf->max_degraded)
661 return 1;
662 return 0;
663 }
664
665 static struct stripe_head *
666 get_active_stripe(struct r5conf *conf, sector_t sector,
667 int previous, int noblock, int noquiesce)
668 {
669 struct stripe_head *sh;
670 int hash = stripe_hash_locks_hash(sector);
671
672 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
673
674 spin_lock_irq(conf->hash_locks + hash);
675
676 do {
677 wait_event_lock_irq(conf->wait_for_quiescent,
678 conf->quiesce == 0 || noquiesce,
679 *(conf->hash_locks + hash));
680 sh = __find_stripe(conf, sector, conf->generation - previous);
681 if (!sh) {
682 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
683 sh = get_free_stripe(conf, hash);
684 if (!sh && !test_bit(R5_DID_ALLOC,
685 &conf->cache_state))
686 set_bit(R5_ALLOC_MORE,
687 &conf->cache_state);
688 }
689 if (noblock && sh == NULL)
690 break;
691 if (!sh) {
692 set_bit(R5_INACTIVE_BLOCKED,
693 &conf->cache_state);
694 wait_event_exclusive_cmd(
695 conf->wait_for_stripe[hash],
696 !list_empty(conf->inactive_list + hash) &&
697 (atomic_read(&conf->active_stripes)
698 < (conf->max_nr_stripes * 3 / 4)
699 || !test_bit(R5_INACTIVE_BLOCKED,
700 &conf->cache_state)),
701 spin_unlock_irq(conf->hash_locks + hash),
702 spin_lock_irq(conf->hash_locks + hash));
703 clear_bit(R5_INACTIVE_BLOCKED,
704 &conf->cache_state);
705 } else {
706 init_stripe(sh, sector, previous);
707 atomic_inc(&sh->count);
708 }
709 } else if (!atomic_inc_not_zero(&sh->count)) {
710 spin_lock(&conf->device_lock);
711 if (!atomic_read(&sh->count)) {
712 if (!test_bit(STRIPE_HANDLE, &sh->state))
713 atomic_inc(&conf->active_stripes);
714 BUG_ON(list_empty(&sh->lru) &&
715 !test_bit(STRIPE_EXPANDING, &sh->state));
716 list_del_init(&sh->lru);
717 if (sh->group) {
718 sh->group->stripes_cnt--;
719 sh->group = NULL;
720 }
721 }
722 atomic_inc(&sh->count);
723 spin_unlock(&conf->device_lock);
724 }
725 } while (sh == NULL);
726
727 if (!list_empty(conf->inactive_list + hash))
728 wake_up(&conf->wait_for_stripe[hash]);
729
730 spin_unlock_irq(conf->hash_locks + hash);
731 return sh;
732 }
733
734 static bool is_full_stripe_write(struct stripe_head *sh)
735 {
736 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
737 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
738 }
739
740 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
741 {
742 local_irq_disable();
743 if (sh1 > sh2) {
744 spin_lock(&sh2->stripe_lock);
745 spin_lock_nested(&sh1->stripe_lock, 1);
746 } else {
747 spin_lock(&sh1->stripe_lock);
748 spin_lock_nested(&sh2->stripe_lock, 1);
749 }
750 }
751
752 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
753 {
754 spin_unlock(&sh1->stripe_lock);
755 spin_unlock(&sh2->stripe_lock);
756 local_irq_enable();
757 }
758
759 /* Only freshly new full stripe normal write stripe can be added to a batch list */
760 static bool stripe_can_batch(struct stripe_head *sh)
761 {
762 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
763 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
764 is_full_stripe_write(sh);
765 }
766
767 /* we only do back search */
768 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769 {
770 struct stripe_head *head;
771 sector_t head_sector, tmp_sec;
772 int hash;
773 int dd_idx;
774
775 if (!stripe_can_batch(sh))
776 return;
777 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
778 tmp_sec = sh->sector;
779 if (!sector_div(tmp_sec, conf->chunk_sectors))
780 return;
781 head_sector = sh->sector - STRIPE_SECTORS;
782
783 hash = stripe_hash_locks_hash(head_sector);
784 spin_lock_irq(conf->hash_locks + hash);
785 head = __find_stripe(conf, head_sector, conf->generation);
786 if (head && !atomic_inc_not_zero(&head->count)) {
787 spin_lock(&conf->device_lock);
788 if (!atomic_read(&head->count)) {
789 if (!test_bit(STRIPE_HANDLE, &head->state))
790 atomic_inc(&conf->active_stripes);
791 BUG_ON(list_empty(&head->lru) &&
792 !test_bit(STRIPE_EXPANDING, &head->state));
793 list_del_init(&head->lru);
794 if (head->group) {
795 head->group->stripes_cnt--;
796 head->group = NULL;
797 }
798 }
799 atomic_inc(&head->count);
800 spin_unlock(&conf->device_lock);
801 }
802 spin_unlock_irq(conf->hash_locks + hash);
803
804 if (!head)
805 return;
806 if (!stripe_can_batch(head))
807 goto out;
808
809 lock_two_stripes(head, sh);
810 /* clear_batch_ready clear the flag */
811 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
812 goto unlock_out;
813
814 if (sh->batch_head)
815 goto unlock_out;
816
817 dd_idx = 0;
818 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
819 dd_idx++;
820 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
821 goto unlock_out;
822
823 if (head->batch_head) {
824 spin_lock(&head->batch_head->batch_lock);
825 /* This batch list is already running */
826 if (!stripe_can_batch(head)) {
827 spin_unlock(&head->batch_head->batch_lock);
828 goto unlock_out;
829 }
830
831 /*
832 * at this point, head's BATCH_READY could be cleared, but we
833 * can still add the stripe to batch list
834 */
835 list_add(&sh->batch_list, &head->batch_list);
836 spin_unlock(&head->batch_head->batch_lock);
837
838 sh->batch_head = head->batch_head;
839 } else {
840 head->batch_head = head;
841 sh->batch_head = head->batch_head;
842 spin_lock(&head->batch_lock);
843 list_add_tail(&sh->batch_list, &head->batch_list);
844 spin_unlock(&head->batch_lock);
845 }
846
847 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
848 if (atomic_dec_return(&conf->preread_active_stripes)
849 < IO_THRESHOLD)
850 md_wakeup_thread(conf->mddev->thread);
851
852 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
853 int seq = sh->bm_seq;
854 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
855 sh->batch_head->bm_seq > seq)
856 seq = sh->batch_head->bm_seq;
857 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
858 sh->batch_head->bm_seq = seq;
859 }
860
861 atomic_inc(&sh->count);
862 unlock_out:
863 unlock_two_stripes(head, sh);
864 out:
865 release_stripe(head);
866 }
867
868 /* Determine if 'data_offset' or 'new_data_offset' should be used
869 * in this stripe_head.
870 */
871 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
872 {
873 sector_t progress = conf->reshape_progress;
874 /* Need a memory barrier to make sure we see the value
875 * of conf->generation, or ->data_offset that was set before
876 * reshape_progress was updated.
877 */
878 smp_rmb();
879 if (progress == MaxSector)
880 return 0;
881 if (sh->generation == conf->generation - 1)
882 return 0;
883 /* We are in a reshape, and this is a new-generation stripe,
884 * so use new_data_offset.
885 */
886 return 1;
887 }
888
889 static void
890 raid5_end_read_request(struct bio *bi);
891 static void
892 raid5_end_write_request(struct bio *bi);
893
894 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
895 {
896 struct r5conf *conf = sh->raid_conf;
897 int i, disks = sh->disks;
898 struct stripe_head *head_sh = sh;
899
900 might_sleep();
901
902 for (i = disks; i--; ) {
903 int rw;
904 int replace_only = 0;
905 struct bio *bi, *rbi;
906 struct md_rdev *rdev, *rrdev = NULL;
907
908 sh = head_sh;
909 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
910 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
911 rw = WRITE_FUA;
912 else
913 rw = WRITE;
914 if (test_bit(R5_Discard, &sh->dev[i].flags))
915 rw |= REQ_DISCARD;
916 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
917 rw = READ;
918 else if (test_and_clear_bit(R5_WantReplace,
919 &sh->dev[i].flags)) {
920 rw = WRITE;
921 replace_only = 1;
922 } else
923 continue;
924 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
925 rw |= REQ_SYNC;
926
927 again:
928 bi = &sh->dev[i].req;
929 rbi = &sh->dev[i].rreq; /* For writing to replacement */
930
931 rcu_read_lock();
932 rrdev = rcu_dereference(conf->disks[i].replacement);
933 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
934 rdev = rcu_dereference(conf->disks[i].rdev);
935 if (!rdev) {
936 rdev = rrdev;
937 rrdev = NULL;
938 }
939 if (rw & WRITE) {
940 if (replace_only)
941 rdev = NULL;
942 if (rdev == rrdev)
943 /* We raced and saw duplicates */
944 rrdev = NULL;
945 } else {
946 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
947 rdev = rrdev;
948 rrdev = NULL;
949 }
950
951 if (rdev && test_bit(Faulty, &rdev->flags))
952 rdev = NULL;
953 if (rdev)
954 atomic_inc(&rdev->nr_pending);
955 if (rrdev && test_bit(Faulty, &rrdev->flags))
956 rrdev = NULL;
957 if (rrdev)
958 atomic_inc(&rrdev->nr_pending);
959 rcu_read_unlock();
960
961 /* We have already checked bad blocks for reads. Now
962 * need to check for writes. We never accept write errors
963 * on the replacement, so we don't to check rrdev.
964 */
965 while ((rw & WRITE) && rdev &&
966 test_bit(WriteErrorSeen, &rdev->flags)) {
967 sector_t first_bad;
968 int bad_sectors;
969 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
970 &first_bad, &bad_sectors);
971 if (!bad)
972 break;
973
974 if (bad < 0) {
975 set_bit(BlockedBadBlocks, &rdev->flags);
976 if (!conf->mddev->external &&
977 conf->mddev->flags) {
978 /* It is very unlikely, but we might
979 * still need to write out the
980 * bad block log - better give it
981 * a chance*/
982 md_check_recovery(conf->mddev);
983 }
984 /*
985 * Because md_wait_for_blocked_rdev
986 * will dec nr_pending, we must
987 * increment it first.
988 */
989 atomic_inc(&rdev->nr_pending);
990 md_wait_for_blocked_rdev(rdev, conf->mddev);
991 } else {
992 /* Acknowledged bad block - skip the write */
993 rdev_dec_pending(rdev, conf->mddev);
994 rdev = NULL;
995 }
996 }
997
998 if (rdev) {
999 if (s->syncing || s->expanding || s->expanded
1000 || s->replacing)
1001 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1002
1003 set_bit(STRIPE_IO_STARTED, &sh->state);
1004
1005 bio_reset(bi);
1006 bi->bi_bdev = rdev->bdev;
1007 bi->bi_rw = rw;
1008 bi->bi_end_io = (rw & WRITE)
1009 ? raid5_end_write_request
1010 : raid5_end_read_request;
1011 bi->bi_private = sh;
1012
1013 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1014 __func__, (unsigned long long)sh->sector,
1015 bi->bi_rw, i);
1016 atomic_inc(&sh->count);
1017 if (sh != head_sh)
1018 atomic_inc(&head_sh->count);
1019 if (use_new_offset(conf, sh))
1020 bi->bi_iter.bi_sector = (sh->sector
1021 + rdev->new_data_offset);
1022 else
1023 bi->bi_iter.bi_sector = (sh->sector
1024 + rdev->data_offset);
1025 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1026 bi->bi_rw |= REQ_NOMERGE;
1027
1028 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1029 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1030 sh->dev[i].vec.bv_page = sh->dev[i].page;
1031 bi->bi_vcnt = 1;
1032 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1033 bi->bi_io_vec[0].bv_offset = 0;
1034 bi->bi_iter.bi_size = STRIPE_SIZE;
1035 /*
1036 * If this is discard request, set bi_vcnt 0. We don't
1037 * want to confuse SCSI because SCSI will replace payload
1038 */
1039 if (rw & REQ_DISCARD)
1040 bi->bi_vcnt = 0;
1041 if (rrdev)
1042 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1043
1044 if (conf->mddev->gendisk)
1045 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1046 bi, disk_devt(conf->mddev->gendisk),
1047 sh->dev[i].sector);
1048 generic_make_request(bi);
1049 }
1050 if (rrdev) {
1051 if (s->syncing || s->expanding || s->expanded
1052 || s->replacing)
1053 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1054
1055 set_bit(STRIPE_IO_STARTED, &sh->state);
1056
1057 bio_reset(rbi);
1058 rbi->bi_bdev = rrdev->bdev;
1059 rbi->bi_rw = rw;
1060 BUG_ON(!(rw & WRITE));
1061 rbi->bi_end_io = raid5_end_write_request;
1062 rbi->bi_private = sh;
1063
1064 pr_debug("%s: for %llu schedule op %ld on "
1065 "replacement disc %d\n",
1066 __func__, (unsigned long long)sh->sector,
1067 rbi->bi_rw, i);
1068 atomic_inc(&sh->count);
1069 if (sh != head_sh)
1070 atomic_inc(&head_sh->count);
1071 if (use_new_offset(conf, sh))
1072 rbi->bi_iter.bi_sector = (sh->sector
1073 + rrdev->new_data_offset);
1074 else
1075 rbi->bi_iter.bi_sector = (sh->sector
1076 + rrdev->data_offset);
1077 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1078 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1079 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1080 rbi->bi_vcnt = 1;
1081 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1082 rbi->bi_io_vec[0].bv_offset = 0;
1083 rbi->bi_iter.bi_size = STRIPE_SIZE;
1084 /*
1085 * If this is discard request, set bi_vcnt 0. We don't
1086 * want to confuse SCSI because SCSI will replace payload
1087 */
1088 if (rw & REQ_DISCARD)
1089 rbi->bi_vcnt = 0;
1090 if (conf->mddev->gendisk)
1091 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1092 rbi, disk_devt(conf->mddev->gendisk),
1093 sh->dev[i].sector);
1094 generic_make_request(rbi);
1095 }
1096 if (!rdev && !rrdev) {
1097 if (rw & WRITE)
1098 set_bit(STRIPE_DEGRADED, &sh->state);
1099 pr_debug("skip op %ld on disc %d for sector %llu\n",
1100 bi->bi_rw, i, (unsigned long long)sh->sector);
1101 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1102 set_bit(STRIPE_HANDLE, &sh->state);
1103 }
1104
1105 if (!head_sh->batch_head)
1106 continue;
1107 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1108 batch_list);
1109 if (sh != head_sh)
1110 goto again;
1111 }
1112 }
1113
1114 static struct dma_async_tx_descriptor *
1115 async_copy_data(int frombio, struct bio *bio, struct page **page,
1116 sector_t sector, struct dma_async_tx_descriptor *tx,
1117 struct stripe_head *sh)
1118 {
1119 struct bio_vec bvl;
1120 struct bvec_iter iter;
1121 struct page *bio_page;
1122 int page_offset;
1123 struct async_submit_ctl submit;
1124 enum async_tx_flags flags = 0;
1125
1126 if (bio->bi_iter.bi_sector >= sector)
1127 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1128 else
1129 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1130
1131 if (frombio)
1132 flags |= ASYNC_TX_FENCE;
1133 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1134
1135 bio_for_each_segment(bvl, bio, iter) {
1136 int len = bvl.bv_len;
1137 int clen;
1138 int b_offset = 0;
1139
1140 if (page_offset < 0) {
1141 b_offset = -page_offset;
1142 page_offset += b_offset;
1143 len -= b_offset;
1144 }
1145
1146 if (len > 0 && page_offset + len > STRIPE_SIZE)
1147 clen = STRIPE_SIZE - page_offset;
1148 else
1149 clen = len;
1150
1151 if (clen > 0) {
1152 b_offset += bvl.bv_offset;
1153 bio_page = bvl.bv_page;
1154 if (frombio) {
1155 if (sh->raid_conf->skip_copy &&
1156 b_offset == 0 && page_offset == 0 &&
1157 clen == STRIPE_SIZE)
1158 *page = bio_page;
1159 else
1160 tx = async_memcpy(*page, bio_page, page_offset,
1161 b_offset, clen, &submit);
1162 } else
1163 tx = async_memcpy(bio_page, *page, b_offset,
1164 page_offset, clen, &submit);
1165 }
1166 /* chain the operations */
1167 submit.depend_tx = tx;
1168
1169 if (clen < len) /* hit end of page */
1170 break;
1171 page_offset += len;
1172 }
1173
1174 return tx;
1175 }
1176
1177 static void ops_complete_biofill(void *stripe_head_ref)
1178 {
1179 struct stripe_head *sh = stripe_head_ref;
1180 struct bio *return_bi = NULL;
1181 int i;
1182
1183 pr_debug("%s: stripe %llu\n", __func__,
1184 (unsigned long long)sh->sector);
1185
1186 /* clear completed biofills */
1187 for (i = sh->disks; i--; ) {
1188 struct r5dev *dev = &sh->dev[i];
1189
1190 /* acknowledge completion of a biofill operation */
1191 /* and check if we need to reply to a read request,
1192 * new R5_Wantfill requests are held off until
1193 * !STRIPE_BIOFILL_RUN
1194 */
1195 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1196 struct bio *rbi, *rbi2;
1197
1198 BUG_ON(!dev->read);
1199 rbi = dev->read;
1200 dev->read = NULL;
1201 while (rbi && rbi->bi_iter.bi_sector <
1202 dev->sector + STRIPE_SECTORS) {
1203 rbi2 = r5_next_bio(rbi, dev->sector);
1204 if (!raid5_dec_bi_active_stripes(rbi)) {
1205 rbi->bi_next = return_bi;
1206 return_bi = rbi;
1207 }
1208 rbi = rbi2;
1209 }
1210 }
1211 }
1212 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1213
1214 return_io(return_bi);
1215
1216 set_bit(STRIPE_HANDLE, &sh->state);
1217 release_stripe(sh);
1218 }
1219
1220 static void ops_run_biofill(struct stripe_head *sh)
1221 {
1222 struct dma_async_tx_descriptor *tx = NULL;
1223 struct async_submit_ctl submit;
1224 int i;
1225
1226 BUG_ON(sh->batch_head);
1227 pr_debug("%s: stripe %llu\n", __func__,
1228 (unsigned long long)sh->sector);
1229
1230 for (i = sh->disks; i--; ) {
1231 struct r5dev *dev = &sh->dev[i];
1232 if (test_bit(R5_Wantfill, &dev->flags)) {
1233 struct bio *rbi;
1234 spin_lock_irq(&sh->stripe_lock);
1235 dev->read = rbi = dev->toread;
1236 dev->toread = NULL;
1237 spin_unlock_irq(&sh->stripe_lock);
1238 while (rbi && rbi->bi_iter.bi_sector <
1239 dev->sector + STRIPE_SECTORS) {
1240 tx = async_copy_data(0, rbi, &dev->page,
1241 dev->sector, tx, sh);
1242 rbi = r5_next_bio(rbi, dev->sector);
1243 }
1244 }
1245 }
1246
1247 atomic_inc(&sh->count);
1248 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1249 async_trigger_callback(&submit);
1250 }
1251
1252 static void mark_target_uptodate(struct stripe_head *sh, int target)
1253 {
1254 struct r5dev *tgt;
1255
1256 if (target < 0)
1257 return;
1258
1259 tgt = &sh->dev[target];
1260 set_bit(R5_UPTODATE, &tgt->flags);
1261 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1262 clear_bit(R5_Wantcompute, &tgt->flags);
1263 }
1264
1265 static void ops_complete_compute(void *stripe_head_ref)
1266 {
1267 struct stripe_head *sh = stripe_head_ref;
1268
1269 pr_debug("%s: stripe %llu\n", __func__,
1270 (unsigned long long)sh->sector);
1271
1272 /* mark the computed target(s) as uptodate */
1273 mark_target_uptodate(sh, sh->ops.target);
1274 mark_target_uptodate(sh, sh->ops.target2);
1275
1276 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1277 if (sh->check_state == check_state_compute_run)
1278 sh->check_state = check_state_compute_result;
1279 set_bit(STRIPE_HANDLE, &sh->state);
1280 release_stripe(sh);
1281 }
1282
1283 /* return a pointer to the address conversion region of the scribble buffer */
1284 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1285 struct raid5_percpu *percpu, int i)
1286 {
1287 void *addr;
1288
1289 addr = flex_array_get(percpu->scribble, i);
1290 return addr + sizeof(struct page *) * (sh->disks + 2);
1291 }
1292
1293 /* return a pointer to the address conversion region of the scribble buffer */
1294 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1295 {
1296 void *addr;
1297
1298 addr = flex_array_get(percpu->scribble, i);
1299 return addr;
1300 }
1301
1302 static struct dma_async_tx_descriptor *
1303 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1304 {
1305 int disks = sh->disks;
1306 struct page **xor_srcs = to_addr_page(percpu, 0);
1307 int target = sh->ops.target;
1308 struct r5dev *tgt = &sh->dev[target];
1309 struct page *xor_dest = tgt->page;
1310 int count = 0;
1311 struct dma_async_tx_descriptor *tx;
1312 struct async_submit_ctl submit;
1313 int i;
1314
1315 BUG_ON(sh->batch_head);
1316
1317 pr_debug("%s: stripe %llu block: %d\n",
1318 __func__, (unsigned long long)sh->sector, target);
1319 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1320
1321 for (i = disks; i--; )
1322 if (i != target)
1323 xor_srcs[count++] = sh->dev[i].page;
1324
1325 atomic_inc(&sh->count);
1326
1327 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1328 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1329 if (unlikely(count == 1))
1330 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1331 else
1332 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1333
1334 return tx;
1335 }
1336
1337 /* set_syndrome_sources - populate source buffers for gen_syndrome
1338 * @srcs - (struct page *) array of size sh->disks
1339 * @sh - stripe_head to parse
1340 *
1341 * Populates srcs in proper layout order for the stripe and returns the
1342 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1343 * destination buffer is recorded in srcs[count] and the Q destination
1344 * is recorded in srcs[count+1]].
1345 */
1346 static int set_syndrome_sources(struct page **srcs,
1347 struct stripe_head *sh,
1348 int srctype)
1349 {
1350 int disks = sh->disks;
1351 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1352 int d0_idx = raid6_d0(sh);
1353 int count;
1354 int i;
1355
1356 for (i = 0; i < disks; i++)
1357 srcs[i] = NULL;
1358
1359 count = 0;
1360 i = d0_idx;
1361 do {
1362 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1363 struct r5dev *dev = &sh->dev[i];
1364
1365 if (i == sh->qd_idx || i == sh->pd_idx ||
1366 (srctype == SYNDROME_SRC_ALL) ||
1367 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1368 test_bit(R5_Wantdrain, &dev->flags)) ||
1369 (srctype == SYNDROME_SRC_WRITTEN &&
1370 dev->written))
1371 srcs[slot] = sh->dev[i].page;
1372 i = raid6_next_disk(i, disks);
1373 } while (i != d0_idx);
1374
1375 return syndrome_disks;
1376 }
1377
1378 static struct dma_async_tx_descriptor *
1379 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1380 {
1381 int disks = sh->disks;
1382 struct page **blocks = to_addr_page(percpu, 0);
1383 int target;
1384 int qd_idx = sh->qd_idx;
1385 struct dma_async_tx_descriptor *tx;
1386 struct async_submit_ctl submit;
1387 struct r5dev *tgt;
1388 struct page *dest;
1389 int i;
1390 int count;
1391
1392 BUG_ON(sh->batch_head);
1393 if (sh->ops.target < 0)
1394 target = sh->ops.target2;
1395 else if (sh->ops.target2 < 0)
1396 target = sh->ops.target;
1397 else
1398 /* we should only have one valid target */
1399 BUG();
1400 BUG_ON(target < 0);
1401 pr_debug("%s: stripe %llu block: %d\n",
1402 __func__, (unsigned long long)sh->sector, target);
1403
1404 tgt = &sh->dev[target];
1405 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1406 dest = tgt->page;
1407
1408 atomic_inc(&sh->count);
1409
1410 if (target == qd_idx) {
1411 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1412 blocks[count] = NULL; /* regenerating p is not necessary */
1413 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1414 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1415 ops_complete_compute, sh,
1416 to_addr_conv(sh, percpu, 0));
1417 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1418 } else {
1419 /* Compute any data- or p-drive using XOR */
1420 count = 0;
1421 for (i = disks; i-- ; ) {
1422 if (i == target || i == qd_idx)
1423 continue;
1424 blocks[count++] = sh->dev[i].page;
1425 }
1426
1427 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1428 NULL, ops_complete_compute, sh,
1429 to_addr_conv(sh, percpu, 0));
1430 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1431 }
1432
1433 return tx;
1434 }
1435
1436 static struct dma_async_tx_descriptor *
1437 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1438 {
1439 int i, count, disks = sh->disks;
1440 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1441 int d0_idx = raid6_d0(sh);
1442 int faila = -1, failb = -1;
1443 int target = sh->ops.target;
1444 int target2 = sh->ops.target2;
1445 struct r5dev *tgt = &sh->dev[target];
1446 struct r5dev *tgt2 = &sh->dev[target2];
1447 struct dma_async_tx_descriptor *tx;
1448 struct page **blocks = to_addr_page(percpu, 0);
1449 struct async_submit_ctl submit;
1450
1451 BUG_ON(sh->batch_head);
1452 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1453 __func__, (unsigned long long)sh->sector, target, target2);
1454 BUG_ON(target < 0 || target2 < 0);
1455 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1456 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1457
1458 /* we need to open-code set_syndrome_sources to handle the
1459 * slot number conversion for 'faila' and 'failb'
1460 */
1461 for (i = 0; i < disks ; i++)
1462 blocks[i] = NULL;
1463 count = 0;
1464 i = d0_idx;
1465 do {
1466 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1467
1468 blocks[slot] = sh->dev[i].page;
1469
1470 if (i == target)
1471 faila = slot;
1472 if (i == target2)
1473 failb = slot;
1474 i = raid6_next_disk(i, disks);
1475 } while (i != d0_idx);
1476
1477 BUG_ON(faila == failb);
1478 if (failb < faila)
1479 swap(faila, failb);
1480 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1481 __func__, (unsigned long long)sh->sector, faila, failb);
1482
1483 atomic_inc(&sh->count);
1484
1485 if (failb == syndrome_disks+1) {
1486 /* Q disk is one of the missing disks */
1487 if (faila == syndrome_disks) {
1488 /* Missing P+Q, just recompute */
1489 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1490 ops_complete_compute, sh,
1491 to_addr_conv(sh, percpu, 0));
1492 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1493 STRIPE_SIZE, &submit);
1494 } else {
1495 struct page *dest;
1496 int data_target;
1497 int qd_idx = sh->qd_idx;
1498
1499 /* Missing D+Q: recompute D from P, then recompute Q */
1500 if (target == qd_idx)
1501 data_target = target2;
1502 else
1503 data_target = target;
1504
1505 count = 0;
1506 for (i = disks; i-- ; ) {
1507 if (i == data_target || i == qd_idx)
1508 continue;
1509 blocks[count++] = sh->dev[i].page;
1510 }
1511 dest = sh->dev[data_target].page;
1512 init_async_submit(&submit,
1513 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1514 NULL, NULL, NULL,
1515 to_addr_conv(sh, percpu, 0));
1516 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1517 &submit);
1518
1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1521 ops_complete_compute, sh,
1522 to_addr_conv(sh, percpu, 0));
1523 return async_gen_syndrome(blocks, 0, count+2,
1524 STRIPE_SIZE, &submit);
1525 }
1526 } else {
1527 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528 ops_complete_compute, sh,
1529 to_addr_conv(sh, percpu, 0));
1530 if (failb == syndrome_disks) {
1531 /* We're missing D+P. */
1532 return async_raid6_datap_recov(syndrome_disks+2,
1533 STRIPE_SIZE, faila,
1534 blocks, &submit);
1535 } else {
1536 /* We're missing D+D. */
1537 return async_raid6_2data_recov(syndrome_disks+2,
1538 STRIPE_SIZE, faila, failb,
1539 blocks, &submit);
1540 }
1541 }
1542 }
1543
1544 static void ops_complete_prexor(void *stripe_head_ref)
1545 {
1546 struct stripe_head *sh = stripe_head_ref;
1547
1548 pr_debug("%s: stripe %llu\n", __func__,
1549 (unsigned long long)sh->sector);
1550 }
1551
1552 static struct dma_async_tx_descriptor *
1553 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1554 struct dma_async_tx_descriptor *tx)
1555 {
1556 int disks = sh->disks;
1557 struct page **xor_srcs = to_addr_page(percpu, 0);
1558 int count = 0, pd_idx = sh->pd_idx, i;
1559 struct async_submit_ctl submit;
1560
1561 /* existing parity data subtracted */
1562 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1563
1564 BUG_ON(sh->batch_head);
1565 pr_debug("%s: stripe %llu\n", __func__,
1566 (unsigned long long)sh->sector);
1567
1568 for (i = disks; i--; ) {
1569 struct r5dev *dev = &sh->dev[i];
1570 /* Only process blocks that are known to be uptodate */
1571 if (test_bit(R5_Wantdrain, &dev->flags))
1572 xor_srcs[count++] = dev->page;
1573 }
1574
1575 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1576 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1577 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1578
1579 return tx;
1580 }
1581
1582 static struct dma_async_tx_descriptor *
1583 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1584 struct dma_async_tx_descriptor *tx)
1585 {
1586 struct page **blocks = to_addr_page(percpu, 0);
1587 int count;
1588 struct async_submit_ctl submit;
1589
1590 pr_debug("%s: stripe %llu\n", __func__,
1591 (unsigned long long)sh->sector);
1592
1593 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1594
1595 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1596 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1597 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1598
1599 return tx;
1600 }
1601
1602 static struct dma_async_tx_descriptor *
1603 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1604 {
1605 int disks = sh->disks;
1606 int i;
1607 struct stripe_head *head_sh = sh;
1608
1609 pr_debug("%s: stripe %llu\n", __func__,
1610 (unsigned long long)sh->sector);
1611
1612 for (i = disks; i--; ) {
1613 struct r5dev *dev;
1614 struct bio *chosen;
1615
1616 sh = head_sh;
1617 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1618 struct bio *wbi;
1619
1620 again:
1621 dev = &sh->dev[i];
1622 spin_lock_irq(&sh->stripe_lock);
1623 chosen = dev->towrite;
1624 dev->towrite = NULL;
1625 sh->overwrite_disks = 0;
1626 BUG_ON(dev->written);
1627 wbi = dev->written = chosen;
1628 spin_unlock_irq(&sh->stripe_lock);
1629 WARN_ON(dev->page != dev->orig_page);
1630
1631 while (wbi && wbi->bi_iter.bi_sector <
1632 dev->sector + STRIPE_SECTORS) {
1633 if (wbi->bi_rw & REQ_FUA)
1634 set_bit(R5_WantFUA, &dev->flags);
1635 if (wbi->bi_rw & REQ_SYNC)
1636 set_bit(R5_SyncIO, &dev->flags);
1637 if (wbi->bi_rw & REQ_DISCARD)
1638 set_bit(R5_Discard, &dev->flags);
1639 else {
1640 tx = async_copy_data(1, wbi, &dev->page,
1641 dev->sector, tx, sh);
1642 if (dev->page != dev->orig_page) {
1643 set_bit(R5_SkipCopy, &dev->flags);
1644 clear_bit(R5_UPTODATE, &dev->flags);
1645 clear_bit(R5_OVERWRITE, &dev->flags);
1646 }
1647 }
1648 wbi = r5_next_bio(wbi, dev->sector);
1649 }
1650
1651 if (head_sh->batch_head) {
1652 sh = list_first_entry(&sh->batch_list,
1653 struct stripe_head,
1654 batch_list);
1655 if (sh == head_sh)
1656 continue;
1657 goto again;
1658 }
1659 }
1660 }
1661
1662 return tx;
1663 }
1664
1665 static void ops_complete_reconstruct(void *stripe_head_ref)
1666 {
1667 struct stripe_head *sh = stripe_head_ref;
1668 int disks = sh->disks;
1669 int pd_idx = sh->pd_idx;
1670 int qd_idx = sh->qd_idx;
1671 int i;
1672 bool fua = false, sync = false, discard = false;
1673
1674 pr_debug("%s: stripe %llu\n", __func__,
1675 (unsigned long long)sh->sector);
1676
1677 for (i = disks; i--; ) {
1678 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1679 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1680 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1681 }
1682
1683 for (i = disks; i--; ) {
1684 struct r5dev *dev = &sh->dev[i];
1685
1686 if (dev->written || i == pd_idx || i == qd_idx) {
1687 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1688 set_bit(R5_UPTODATE, &dev->flags);
1689 if (fua)
1690 set_bit(R5_WantFUA, &dev->flags);
1691 if (sync)
1692 set_bit(R5_SyncIO, &dev->flags);
1693 }
1694 }
1695
1696 if (sh->reconstruct_state == reconstruct_state_drain_run)
1697 sh->reconstruct_state = reconstruct_state_drain_result;
1698 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1699 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1700 else {
1701 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1702 sh->reconstruct_state = reconstruct_state_result;
1703 }
1704
1705 set_bit(STRIPE_HANDLE, &sh->state);
1706 release_stripe(sh);
1707 }
1708
1709 static void
1710 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1711 struct dma_async_tx_descriptor *tx)
1712 {
1713 int disks = sh->disks;
1714 struct page **xor_srcs;
1715 struct async_submit_ctl submit;
1716 int count, pd_idx = sh->pd_idx, i;
1717 struct page *xor_dest;
1718 int prexor = 0;
1719 unsigned long flags;
1720 int j = 0;
1721 struct stripe_head *head_sh = sh;
1722 int last_stripe;
1723
1724 pr_debug("%s: stripe %llu\n", __func__,
1725 (unsigned long long)sh->sector);
1726
1727 for (i = 0; i < sh->disks; i++) {
1728 if (pd_idx == i)
1729 continue;
1730 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1731 break;
1732 }
1733 if (i >= sh->disks) {
1734 atomic_inc(&sh->count);
1735 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1736 ops_complete_reconstruct(sh);
1737 return;
1738 }
1739 again:
1740 count = 0;
1741 xor_srcs = to_addr_page(percpu, j);
1742 /* check if prexor is active which means only process blocks
1743 * that are part of a read-modify-write (written)
1744 */
1745 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1746 prexor = 1;
1747 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1748 for (i = disks; i--; ) {
1749 struct r5dev *dev = &sh->dev[i];
1750 if (head_sh->dev[i].written)
1751 xor_srcs[count++] = dev->page;
1752 }
1753 } else {
1754 xor_dest = sh->dev[pd_idx].page;
1755 for (i = disks; i--; ) {
1756 struct r5dev *dev = &sh->dev[i];
1757 if (i != pd_idx)
1758 xor_srcs[count++] = dev->page;
1759 }
1760 }
1761
1762 /* 1/ if we prexor'd then the dest is reused as a source
1763 * 2/ if we did not prexor then we are redoing the parity
1764 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1765 * for the synchronous xor case
1766 */
1767 last_stripe = !head_sh->batch_head ||
1768 list_first_entry(&sh->batch_list,
1769 struct stripe_head, batch_list) == head_sh;
1770 if (last_stripe) {
1771 flags = ASYNC_TX_ACK |
1772 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1773
1774 atomic_inc(&head_sh->count);
1775 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1776 to_addr_conv(sh, percpu, j));
1777 } else {
1778 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1779 init_async_submit(&submit, flags, tx, NULL, NULL,
1780 to_addr_conv(sh, percpu, j));
1781 }
1782
1783 if (unlikely(count == 1))
1784 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1785 else
1786 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1787 if (!last_stripe) {
1788 j++;
1789 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1790 batch_list);
1791 goto again;
1792 }
1793 }
1794
1795 static void
1796 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1797 struct dma_async_tx_descriptor *tx)
1798 {
1799 struct async_submit_ctl submit;
1800 struct page **blocks;
1801 int count, i, j = 0;
1802 struct stripe_head *head_sh = sh;
1803 int last_stripe;
1804 int synflags;
1805 unsigned long txflags;
1806
1807 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1808
1809 for (i = 0; i < sh->disks; i++) {
1810 if (sh->pd_idx == i || sh->qd_idx == i)
1811 continue;
1812 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1813 break;
1814 }
1815 if (i >= sh->disks) {
1816 atomic_inc(&sh->count);
1817 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1818 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1819 ops_complete_reconstruct(sh);
1820 return;
1821 }
1822
1823 again:
1824 blocks = to_addr_page(percpu, j);
1825
1826 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1827 synflags = SYNDROME_SRC_WRITTEN;
1828 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1829 } else {
1830 synflags = SYNDROME_SRC_ALL;
1831 txflags = ASYNC_TX_ACK;
1832 }
1833
1834 count = set_syndrome_sources(blocks, sh, synflags);
1835 last_stripe = !head_sh->batch_head ||
1836 list_first_entry(&sh->batch_list,
1837 struct stripe_head, batch_list) == head_sh;
1838
1839 if (last_stripe) {
1840 atomic_inc(&head_sh->count);
1841 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1842 head_sh, to_addr_conv(sh, percpu, j));
1843 } else
1844 init_async_submit(&submit, 0, tx, NULL, NULL,
1845 to_addr_conv(sh, percpu, j));
1846 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1847 if (!last_stripe) {
1848 j++;
1849 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1850 batch_list);
1851 goto again;
1852 }
1853 }
1854
1855 static void ops_complete_check(void *stripe_head_ref)
1856 {
1857 struct stripe_head *sh = stripe_head_ref;
1858
1859 pr_debug("%s: stripe %llu\n", __func__,
1860 (unsigned long long)sh->sector);
1861
1862 sh->check_state = check_state_check_result;
1863 set_bit(STRIPE_HANDLE, &sh->state);
1864 release_stripe(sh);
1865 }
1866
1867 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1868 {
1869 int disks = sh->disks;
1870 int pd_idx = sh->pd_idx;
1871 int qd_idx = sh->qd_idx;
1872 struct page *xor_dest;
1873 struct page **xor_srcs = to_addr_page(percpu, 0);
1874 struct dma_async_tx_descriptor *tx;
1875 struct async_submit_ctl submit;
1876 int count;
1877 int i;
1878
1879 pr_debug("%s: stripe %llu\n", __func__,
1880 (unsigned long long)sh->sector);
1881
1882 BUG_ON(sh->batch_head);
1883 count = 0;
1884 xor_dest = sh->dev[pd_idx].page;
1885 xor_srcs[count++] = xor_dest;
1886 for (i = disks; i--; ) {
1887 if (i == pd_idx || i == qd_idx)
1888 continue;
1889 xor_srcs[count++] = sh->dev[i].page;
1890 }
1891
1892 init_async_submit(&submit, 0, NULL, NULL, NULL,
1893 to_addr_conv(sh, percpu, 0));
1894 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1895 &sh->ops.zero_sum_result, &submit);
1896
1897 atomic_inc(&sh->count);
1898 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1899 tx = async_trigger_callback(&submit);
1900 }
1901
1902 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1903 {
1904 struct page **srcs = to_addr_page(percpu, 0);
1905 struct async_submit_ctl submit;
1906 int count;
1907
1908 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1909 (unsigned long long)sh->sector, checkp);
1910
1911 BUG_ON(sh->batch_head);
1912 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1913 if (!checkp)
1914 srcs[count] = NULL;
1915
1916 atomic_inc(&sh->count);
1917 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1918 sh, to_addr_conv(sh, percpu, 0));
1919 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1920 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1921 }
1922
1923 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1924 {
1925 int overlap_clear = 0, i, disks = sh->disks;
1926 struct dma_async_tx_descriptor *tx = NULL;
1927 struct r5conf *conf = sh->raid_conf;
1928 int level = conf->level;
1929 struct raid5_percpu *percpu;
1930 unsigned long cpu;
1931
1932 cpu = get_cpu();
1933 percpu = per_cpu_ptr(conf->percpu, cpu);
1934 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1935 ops_run_biofill(sh);
1936 overlap_clear++;
1937 }
1938
1939 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1940 if (level < 6)
1941 tx = ops_run_compute5(sh, percpu);
1942 else {
1943 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1944 tx = ops_run_compute6_1(sh, percpu);
1945 else
1946 tx = ops_run_compute6_2(sh, percpu);
1947 }
1948 /* terminate the chain if reconstruct is not set to be run */
1949 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1950 async_tx_ack(tx);
1951 }
1952
1953 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1954 if (level < 6)
1955 tx = ops_run_prexor5(sh, percpu, tx);
1956 else
1957 tx = ops_run_prexor6(sh, percpu, tx);
1958 }
1959
1960 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1961 tx = ops_run_biodrain(sh, tx);
1962 overlap_clear++;
1963 }
1964
1965 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1966 if (level < 6)
1967 ops_run_reconstruct5(sh, percpu, tx);
1968 else
1969 ops_run_reconstruct6(sh, percpu, tx);
1970 }
1971
1972 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1973 if (sh->check_state == check_state_run)
1974 ops_run_check_p(sh, percpu);
1975 else if (sh->check_state == check_state_run_q)
1976 ops_run_check_pq(sh, percpu, 0);
1977 else if (sh->check_state == check_state_run_pq)
1978 ops_run_check_pq(sh, percpu, 1);
1979 else
1980 BUG();
1981 }
1982
1983 if (overlap_clear && !sh->batch_head)
1984 for (i = disks; i--; ) {
1985 struct r5dev *dev = &sh->dev[i];
1986 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1987 wake_up(&sh->raid_conf->wait_for_overlap);
1988 }
1989 put_cpu();
1990 }
1991
1992 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1993 {
1994 struct stripe_head *sh;
1995
1996 sh = kmem_cache_zalloc(sc, gfp);
1997 if (sh) {
1998 spin_lock_init(&sh->stripe_lock);
1999 spin_lock_init(&sh->batch_lock);
2000 INIT_LIST_HEAD(&sh->batch_list);
2001 INIT_LIST_HEAD(&sh->lru);
2002 atomic_set(&sh->count, 1);
2003 }
2004 return sh;
2005 }
2006 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2007 {
2008 struct stripe_head *sh;
2009
2010 sh = alloc_stripe(conf->slab_cache, gfp);
2011 if (!sh)
2012 return 0;
2013
2014 sh->raid_conf = conf;
2015
2016 if (grow_buffers(sh, gfp)) {
2017 shrink_buffers(sh);
2018 kmem_cache_free(conf->slab_cache, sh);
2019 return 0;
2020 }
2021 sh->hash_lock_index =
2022 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2023 /* we just created an active stripe so... */
2024 atomic_inc(&conf->active_stripes);
2025
2026 release_stripe(sh);
2027 conf->max_nr_stripes++;
2028 return 1;
2029 }
2030
2031 static int grow_stripes(struct r5conf *conf, int num)
2032 {
2033 struct kmem_cache *sc;
2034 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2035
2036 if (conf->mddev->gendisk)
2037 sprintf(conf->cache_name[0],
2038 "raid%d-%s", conf->level, mdname(conf->mddev));
2039 else
2040 sprintf(conf->cache_name[0],
2041 "raid%d-%p", conf->level, conf->mddev);
2042 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2043
2044 conf->active_name = 0;
2045 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2046 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2047 0, 0, NULL);
2048 if (!sc)
2049 return 1;
2050 conf->slab_cache = sc;
2051 conf->pool_size = devs;
2052 while (num--)
2053 if (!grow_one_stripe(conf, GFP_KERNEL))
2054 return 1;
2055
2056 return 0;
2057 }
2058
2059 /**
2060 * scribble_len - return the required size of the scribble region
2061 * @num - total number of disks in the array
2062 *
2063 * The size must be enough to contain:
2064 * 1/ a struct page pointer for each device in the array +2
2065 * 2/ room to convert each entry in (1) to its corresponding dma
2066 * (dma_map_page()) or page (page_address()) address.
2067 *
2068 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2069 * calculate over all devices (not just the data blocks), using zeros in place
2070 * of the P and Q blocks.
2071 */
2072 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2073 {
2074 struct flex_array *ret;
2075 size_t len;
2076
2077 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2078 ret = flex_array_alloc(len, cnt, flags);
2079 if (!ret)
2080 return NULL;
2081 /* always prealloc all elements, so no locking is required */
2082 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2083 flex_array_free(ret);
2084 return NULL;
2085 }
2086 return ret;
2087 }
2088
2089 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2090 {
2091 unsigned long cpu;
2092 int err = 0;
2093
2094 mddev_suspend(conf->mddev);
2095 get_online_cpus();
2096 for_each_present_cpu(cpu) {
2097 struct raid5_percpu *percpu;
2098 struct flex_array *scribble;
2099
2100 percpu = per_cpu_ptr(conf->percpu, cpu);
2101 scribble = scribble_alloc(new_disks,
2102 new_sectors / STRIPE_SECTORS,
2103 GFP_NOIO);
2104
2105 if (scribble) {
2106 flex_array_free(percpu->scribble);
2107 percpu->scribble = scribble;
2108 } else {
2109 err = -ENOMEM;
2110 break;
2111 }
2112 }
2113 put_online_cpus();
2114 mddev_resume(conf->mddev);
2115 return err;
2116 }
2117
2118 static int resize_stripes(struct r5conf *conf, int newsize)
2119 {
2120 /* Make all the stripes able to hold 'newsize' devices.
2121 * New slots in each stripe get 'page' set to a new page.
2122 *
2123 * This happens in stages:
2124 * 1/ create a new kmem_cache and allocate the required number of
2125 * stripe_heads.
2126 * 2/ gather all the old stripe_heads and transfer the pages across
2127 * to the new stripe_heads. This will have the side effect of
2128 * freezing the array as once all stripe_heads have been collected,
2129 * no IO will be possible. Old stripe heads are freed once their
2130 * pages have been transferred over, and the old kmem_cache is
2131 * freed when all stripes are done.
2132 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2133 * we simple return a failre status - no need to clean anything up.
2134 * 4/ allocate new pages for the new slots in the new stripe_heads.
2135 * If this fails, we don't bother trying the shrink the
2136 * stripe_heads down again, we just leave them as they are.
2137 * As each stripe_head is processed the new one is released into
2138 * active service.
2139 *
2140 * Once step2 is started, we cannot afford to wait for a write,
2141 * so we use GFP_NOIO allocations.
2142 */
2143 struct stripe_head *osh, *nsh;
2144 LIST_HEAD(newstripes);
2145 struct disk_info *ndisks;
2146 int err;
2147 struct kmem_cache *sc;
2148 int i;
2149 int hash, cnt;
2150
2151 if (newsize <= conf->pool_size)
2152 return 0; /* never bother to shrink */
2153
2154 err = md_allow_write(conf->mddev);
2155 if (err)
2156 return err;
2157
2158 /* Step 1 */
2159 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2160 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2161 0, 0, NULL);
2162 if (!sc)
2163 return -ENOMEM;
2164
2165 for (i = conf->max_nr_stripes; i; i--) {
2166 nsh = alloc_stripe(sc, GFP_KERNEL);
2167 if (!nsh)
2168 break;
2169
2170 nsh->raid_conf = conf;
2171 list_add(&nsh->lru, &newstripes);
2172 }
2173 if (i) {
2174 /* didn't get enough, give up */
2175 while (!list_empty(&newstripes)) {
2176 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2177 list_del(&nsh->lru);
2178 kmem_cache_free(sc, nsh);
2179 }
2180 kmem_cache_destroy(sc);
2181 return -ENOMEM;
2182 }
2183 /* Step 2 - Must use GFP_NOIO now.
2184 * OK, we have enough stripes, start collecting inactive
2185 * stripes and copying them over
2186 */
2187 hash = 0;
2188 cnt = 0;
2189 list_for_each_entry(nsh, &newstripes, lru) {
2190 lock_device_hash_lock(conf, hash);
2191 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2192 !list_empty(conf->inactive_list + hash),
2193 unlock_device_hash_lock(conf, hash),
2194 lock_device_hash_lock(conf, hash));
2195 osh = get_free_stripe(conf, hash);
2196 unlock_device_hash_lock(conf, hash);
2197
2198 for(i=0; i<conf->pool_size; i++) {
2199 nsh->dev[i].page = osh->dev[i].page;
2200 nsh->dev[i].orig_page = osh->dev[i].page;
2201 }
2202 nsh->hash_lock_index = hash;
2203 kmem_cache_free(conf->slab_cache, osh);
2204 cnt++;
2205 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2206 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2207 hash++;
2208 cnt = 0;
2209 }
2210 }
2211 kmem_cache_destroy(conf->slab_cache);
2212
2213 /* Step 3.
2214 * At this point, we are holding all the stripes so the array
2215 * is completely stalled, so now is a good time to resize
2216 * conf->disks and the scribble region
2217 */
2218 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2219 if (ndisks) {
2220 for (i=0; i<conf->raid_disks; i++)
2221 ndisks[i] = conf->disks[i];
2222 kfree(conf->disks);
2223 conf->disks = ndisks;
2224 } else
2225 err = -ENOMEM;
2226
2227 /* Step 4, return new stripes to service */
2228 while(!list_empty(&newstripes)) {
2229 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2230 list_del_init(&nsh->lru);
2231
2232 for (i=conf->raid_disks; i < newsize; i++)
2233 if (nsh->dev[i].page == NULL) {
2234 struct page *p = alloc_page(GFP_NOIO);
2235 nsh->dev[i].page = p;
2236 nsh->dev[i].orig_page = p;
2237 if (!p)
2238 err = -ENOMEM;
2239 }
2240 release_stripe(nsh);
2241 }
2242 /* critical section pass, GFP_NOIO no longer needed */
2243
2244 conf->slab_cache = sc;
2245 conf->active_name = 1-conf->active_name;
2246 if (!err)
2247 conf->pool_size = newsize;
2248 return err;
2249 }
2250
2251 static int drop_one_stripe(struct r5conf *conf)
2252 {
2253 struct stripe_head *sh;
2254 int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
2255
2256 spin_lock_irq(conf->hash_locks + hash);
2257 sh = get_free_stripe(conf, hash);
2258 spin_unlock_irq(conf->hash_locks + hash);
2259 if (!sh)
2260 return 0;
2261 BUG_ON(atomic_read(&sh->count));
2262 shrink_buffers(sh);
2263 kmem_cache_free(conf->slab_cache, sh);
2264 atomic_dec(&conf->active_stripes);
2265 conf->max_nr_stripes--;
2266 return 1;
2267 }
2268
2269 static void shrink_stripes(struct r5conf *conf)
2270 {
2271 while (conf->max_nr_stripes &&
2272 drop_one_stripe(conf))
2273 ;
2274
2275 if (conf->slab_cache)
2276 kmem_cache_destroy(conf->slab_cache);
2277 conf->slab_cache = NULL;
2278 }
2279
2280 static void raid5_end_read_request(struct bio * bi)
2281 {
2282 struct stripe_head *sh = bi->bi_private;
2283 struct r5conf *conf = sh->raid_conf;
2284 int disks = sh->disks, i;
2285 char b[BDEVNAME_SIZE];
2286 struct md_rdev *rdev = NULL;
2287 sector_t s;
2288
2289 for (i=0 ; i<disks; i++)
2290 if (bi == &sh->dev[i].req)
2291 break;
2292
2293 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2294 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2295 bi->bi_error);
2296 if (i == disks) {
2297 BUG();
2298 return;
2299 }
2300 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2301 /* If replacement finished while this request was outstanding,
2302 * 'replacement' might be NULL already.
2303 * In that case it moved down to 'rdev'.
2304 * rdev is not removed until all requests are finished.
2305 */
2306 rdev = conf->disks[i].replacement;
2307 if (!rdev)
2308 rdev = conf->disks[i].rdev;
2309
2310 if (use_new_offset(conf, sh))
2311 s = sh->sector + rdev->new_data_offset;
2312 else
2313 s = sh->sector + rdev->data_offset;
2314 if (!bi->bi_error) {
2315 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2316 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2317 /* Note that this cannot happen on a
2318 * replacement device. We just fail those on
2319 * any error
2320 */
2321 printk_ratelimited(
2322 KERN_INFO
2323 "md/raid:%s: read error corrected"
2324 " (%lu sectors at %llu on %s)\n",
2325 mdname(conf->mddev), STRIPE_SECTORS,
2326 (unsigned long long)s,
2327 bdevname(rdev->bdev, b));
2328 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2329 clear_bit(R5_ReadError, &sh->dev[i].flags);
2330 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2331 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2332 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2333
2334 if (atomic_read(&rdev->read_errors))
2335 atomic_set(&rdev->read_errors, 0);
2336 } else {
2337 const char *bdn = bdevname(rdev->bdev, b);
2338 int retry = 0;
2339 int set_bad = 0;
2340
2341 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2342 atomic_inc(&rdev->read_errors);
2343 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2344 printk_ratelimited(
2345 KERN_WARNING
2346 "md/raid:%s: read error on replacement device "
2347 "(sector %llu on %s).\n",
2348 mdname(conf->mddev),
2349 (unsigned long long)s,
2350 bdn);
2351 else if (conf->mddev->degraded >= conf->max_degraded) {
2352 set_bad = 1;
2353 printk_ratelimited(
2354 KERN_WARNING
2355 "md/raid:%s: read error not correctable "
2356 "(sector %llu on %s).\n",
2357 mdname(conf->mddev),
2358 (unsigned long long)s,
2359 bdn);
2360 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2361 /* Oh, no!!! */
2362 set_bad = 1;
2363 printk_ratelimited(
2364 KERN_WARNING
2365 "md/raid:%s: read error NOT corrected!! "
2366 "(sector %llu on %s).\n",
2367 mdname(conf->mddev),
2368 (unsigned long long)s,
2369 bdn);
2370 } else if (atomic_read(&rdev->read_errors)
2371 > conf->max_nr_stripes)
2372 printk(KERN_WARNING
2373 "md/raid:%s: Too many read errors, failing device %s.\n",
2374 mdname(conf->mddev), bdn);
2375 else
2376 retry = 1;
2377 if (set_bad && test_bit(In_sync, &rdev->flags)
2378 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2379 retry = 1;
2380 if (retry)
2381 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2382 set_bit(R5_ReadError, &sh->dev[i].flags);
2383 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2384 } else
2385 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2386 else {
2387 clear_bit(R5_ReadError, &sh->dev[i].flags);
2388 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2389 if (!(set_bad
2390 && test_bit(In_sync, &rdev->flags)
2391 && rdev_set_badblocks(
2392 rdev, sh->sector, STRIPE_SECTORS, 0)))
2393 md_error(conf->mddev, rdev);
2394 }
2395 }
2396 rdev_dec_pending(rdev, conf->mddev);
2397 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2398 set_bit(STRIPE_HANDLE, &sh->state);
2399 release_stripe(sh);
2400 }
2401
2402 static void raid5_end_write_request(struct bio *bi)
2403 {
2404 struct stripe_head *sh = bi->bi_private;
2405 struct r5conf *conf = sh->raid_conf;
2406 int disks = sh->disks, i;
2407 struct md_rdev *uninitialized_var(rdev);
2408 sector_t first_bad;
2409 int bad_sectors;
2410 int replacement = 0;
2411
2412 for (i = 0 ; i < disks; i++) {
2413 if (bi == &sh->dev[i].req) {
2414 rdev = conf->disks[i].rdev;
2415 break;
2416 }
2417 if (bi == &sh->dev[i].rreq) {
2418 rdev = conf->disks[i].replacement;
2419 if (rdev)
2420 replacement = 1;
2421 else
2422 /* rdev was removed and 'replacement'
2423 * replaced it. rdev is not removed
2424 * until all requests are finished.
2425 */
2426 rdev = conf->disks[i].rdev;
2427 break;
2428 }
2429 }
2430 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2431 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2432 bi->bi_error);
2433 if (i == disks) {
2434 BUG();
2435 return;
2436 }
2437
2438 if (replacement) {
2439 if (bi->bi_error)
2440 md_error(conf->mddev, rdev);
2441 else if (is_badblock(rdev, sh->sector,
2442 STRIPE_SECTORS,
2443 &first_bad, &bad_sectors))
2444 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2445 } else {
2446 if (bi->bi_error) {
2447 set_bit(STRIPE_DEGRADED, &sh->state);
2448 set_bit(WriteErrorSeen, &rdev->flags);
2449 set_bit(R5_WriteError, &sh->dev[i].flags);
2450 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2451 set_bit(MD_RECOVERY_NEEDED,
2452 &rdev->mddev->recovery);
2453 } else if (is_badblock(rdev, sh->sector,
2454 STRIPE_SECTORS,
2455 &first_bad, &bad_sectors)) {
2456 set_bit(R5_MadeGood, &sh->dev[i].flags);
2457 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2458 /* That was a successful write so make
2459 * sure it looks like we already did
2460 * a re-write.
2461 */
2462 set_bit(R5_ReWrite, &sh->dev[i].flags);
2463 }
2464 }
2465 rdev_dec_pending(rdev, conf->mddev);
2466
2467 if (sh->batch_head && bi->bi_error && !replacement)
2468 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2469
2470 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2471 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2472 set_bit(STRIPE_HANDLE, &sh->state);
2473 release_stripe(sh);
2474
2475 if (sh->batch_head && sh != sh->batch_head)
2476 release_stripe(sh->batch_head);
2477 }
2478
2479 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2480
2481 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2482 {
2483 struct r5dev *dev = &sh->dev[i];
2484
2485 bio_init(&dev->req);
2486 dev->req.bi_io_vec = &dev->vec;
2487 dev->req.bi_max_vecs = 1;
2488 dev->req.bi_private = sh;
2489
2490 bio_init(&dev->rreq);
2491 dev->rreq.bi_io_vec = &dev->rvec;
2492 dev->rreq.bi_max_vecs = 1;
2493 dev->rreq.bi_private = sh;
2494
2495 dev->flags = 0;
2496 dev->sector = compute_blocknr(sh, i, previous);
2497 }
2498
2499 static void error(struct mddev *mddev, struct md_rdev *rdev)
2500 {
2501 char b[BDEVNAME_SIZE];
2502 struct r5conf *conf = mddev->private;
2503 unsigned long flags;
2504 pr_debug("raid456: error called\n");
2505
2506 spin_lock_irqsave(&conf->device_lock, flags);
2507 clear_bit(In_sync, &rdev->flags);
2508 mddev->degraded = calc_degraded(conf);
2509 spin_unlock_irqrestore(&conf->device_lock, flags);
2510 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2511
2512 set_bit(Blocked, &rdev->flags);
2513 set_bit(Faulty, &rdev->flags);
2514 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2515 printk(KERN_ALERT
2516 "md/raid:%s: Disk failure on %s, disabling device.\n"
2517 "md/raid:%s: Operation continuing on %d devices.\n",
2518 mdname(mddev),
2519 bdevname(rdev->bdev, b),
2520 mdname(mddev),
2521 conf->raid_disks - mddev->degraded);
2522 }
2523
2524 /*
2525 * Input: a 'big' sector number,
2526 * Output: index of the data and parity disk, and the sector # in them.
2527 */
2528 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2529 int previous, int *dd_idx,
2530 struct stripe_head *sh)
2531 {
2532 sector_t stripe, stripe2;
2533 sector_t chunk_number;
2534 unsigned int chunk_offset;
2535 int pd_idx, qd_idx;
2536 int ddf_layout = 0;
2537 sector_t new_sector;
2538 int algorithm = previous ? conf->prev_algo
2539 : conf->algorithm;
2540 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2541 : conf->chunk_sectors;
2542 int raid_disks = previous ? conf->previous_raid_disks
2543 : conf->raid_disks;
2544 int data_disks = raid_disks - conf->max_degraded;
2545
2546 /* First compute the information on this sector */
2547
2548 /*
2549 * Compute the chunk number and the sector offset inside the chunk
2550 */
2551 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2552 chunk_number = r_sector;
2553
2554 /*
2555 * Compute the stripe number
2556 */
2557 stripe = chunk_number;
2558 *dd_idx = sector_div(stripe, data_disks);
2559 stripe2 = stripe;
2560 /*
2561 * Select the parity disk based on the user selected algorithm.
2562 */
2563 pd_idx = qd_idx = -1;
2564 switch(conf->level) {
2565 case 4:
2566 pd_idx = data_disks;
2567 break;
2568 case 5:
2569 switch (algorithm) {
2570 case ALGORITHM_LEFT_ASYMMETRIC:
2571 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2572 if (*dd_idx >= pd_idx)
2573 (*dd_idx)++;
2574 break;
2575 case ALGORITHM_RIGHT_ASYMMETRIC:
2576 pd_idx = sector_div(stripe2, raid_disks);
2577 if (*dd_idx >= pd_idx)
2578 (*dd_idx)++;
2579 break;
2580 case ALGORITHM_LEFT_SYMMETRIC:
2581 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2582 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2583 break;
2584 case ALGORITHM_RIGHT_SYMMETRIC:
2585 pd_idx = sector_div(stripe2, raid_disks);
2586 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2587 break;
2588 case ALGORITHM_PARITY_0:
2589 pd_idx = 0;
2590 (*dd_idx)++;
2591 break;
2592 case ALGORITHM_PARITY_N:
2593 pd_idx = data_disks;
2594 break;
2595 default:
2596 BUG();
2597 }
2598 break;
2599 case 6:
2600
2601 switch (algorithm) {
2602 case ALGORITHM_LEFT_ASYMMETRIC:
2603 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2604 qd_idx = pd_idx + 1;
2605 if (pd_idx == raid_disks-1) {
2606 (*dd_idx)++; /* Q D D D P */
2607 qd_idx = 0;
2608 } else if (*dd_idx >= pd_idx)
2609 (*dd_idx) += 2; /* D D P Q D */
2610 break;
2611 case ALGORITHM_RIGHT_ASYMMETRIC:
2612 pd_idx = sector_div(stripe2, raid_disks);
2613 qd_idx = pd_idx + 1;
2614 if (pd_idx == raid_disks-1) {
2615 (*dd_idx)++; /* Q D D D P */
2616 qd_idx = 0;
2617 } else if (*dd_idx >= pd_idx)
2618 (*dd_idx) += 2; /* D D P Q D */
2619 break;
2620 case ALGORITHM_LEFT_SYMMETRIC:
2621 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2622 qd_idx = (pd_idx + 1) % raid_disks;
2623 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2624 break;
2625 case ALGORITHM_RIGHT_SYMMETRIC:
2626 pd_idx = sector_div(stripe2, raid_disks);
2627 qd_idx = (pd_idx + 1) % raid_disks;
2628 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2629 break;
2630
2631 case ALGORITHM_PARITY_0:
2632 pd_idx = 0;
2633 qd_idx = 1;
2634 (*dd_idx) += 2;
2635 break;
2636 case ALGORITHM_PARITY_N:
2637 pd_idx = data_disks;
2638 qd_idx = data_disks + 1;
2639 break;
2640
2641 case ALGORITHM_ROTATING_ZERO_RESTART:
2642 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2643 * of blocks for computing Q is different.
2644 */
2645 pd_idx = sector_div(stripe2, raid_disks);
2646 qd_idx = pd_idx + 1;
2647 if (pd_idx == raid_disks-1) {
2648 (*dd_idx)++; /* Q D D D P */
2649 qd_idx = 0;
2650 } else if (*dd_idx >= pd_idx)
2651 (*dd_idx) += 2; /* D D P Q D */
2652 ddf_layout = 1;
2653 break;
2654
2655 case ALGORITHM_ROTATING_N_RESTART:
2656 /* Same a left_asymmetric, by first stripe is
2657 * D D D P Q rather than
2658 * Q D D D P
2659 */
2660 stripe2 += 1;
2661 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2662 qd_idx = pd_idx + 1;
2663 if (pd_idx == raid_disks-1) {
2664 (*dd_idx)++; /* Q D D D P */
2665 qd_idx = 0;
2666 } else if (*dd_idx >= pd_idx)
2667 (*dd_idx) += 2; /* D D P Q D */
2668 ddf_layout = 1;
2669 break;
2670
2671 case ALGORITHM_ROTATING_N_CONTINUE:
2672 /* Same as left_symmetric but Q is before P */
2673 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2674 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2675 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2676 ddf_layout = 1;
2677 break;
2678
2679 case ALGORITHM_LEFT_ASYMMETRIC_6:
2680 /* RAID5 left_asymmetric, with Q on last device */
2681 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2682 if (*dd_idx >= pd_idx)
2683 (*dd_idx)++;
2684 qd_idx = raid_disks - 1;
2685 break;
2686
2687 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2688 pd_idx = sector_div(stripe2, raid_disks-1);
2689 if (*dd_idx >= pd_idx)
2690 (*dd_idx)++;
2691 qd_idx = raid_disks - 1;
2692 break;
2693
2694 case ALGORITHM_LEFT_SYMMETRIC_6:
2695 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2696 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2697 qd_idx = raid_disks - 1;
2698 break;
2699
2700 case ALGORITHM_RIGHT_SYMMETRIC_6:
2701 pd_idx = sector_div(stripe2, raid_disks-1);
2702 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2703 qd_idx = raid_disks - 1;
2704 break;
2705
2706 case ALGORITHM_PARITY_0_6:
2707 pd_idx = 0;
2708 (*dd_idx)++;
2709 qd_idx = raid_disks - 1;
2710 break;
2711
2712 default:
2713 BUG();
2714 }
2715 break;
2716 }
2717
2718 if (sh) {
2719 sh->pd_idx = pd_idx;
2720 sh->qd_idx = qd_idx;
2721 sh->ddf_layout = ddf_layout;
2722 }
2723 /*
2724 * Finally, compute the new sector number
2725 */
2726 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2727 return new_sector;
2728 }
2729
2730 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2731 {
2732 struct r5conf *conf = sh->raid_conf;
2733 int raid_disks = sh->disks;
2734 int data_disks = raid_disks - conf->max_degraded;
2735 sector_t new_sector = sh->sector, check;
2736 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2737 : conf->chunk_sectors;
2738 int algorithm = previous ? conf->prev_algo
2739 : conf->algorithm;
2740 sector_t stripe;
2741 int chunk_offset;
2742 sector_t chunk_number;
2743 int dummy1, dd_idx = i;
2744 sector_t r_sector;
2745 struct stripe_head sh2;
2746
2747 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2748 stripe = new_sector;
2749
2750 if (i == sh->pd_idx)
2751 return 0;
2752 switch(conf->level) {
2753 case 4: break;
2754 case 5:
2755 switch (algorithm) {
2756 case ALGORITHM_LEFT_ASYMMETRIC:
2757 case ALGORITHM_RIGHT_ASYMMETRIC:
2758 if (i > sh->pd_idx)
2759 i--;
2760 break;
2761 case ALGORITHM_LEFT_SYMMETRIC:
2762 case ALGORITHM_RIGHT_SYMMETRIC:
2763 if (i < sh->pd_idx)
2764 i += raid_disks;
2765 i -= (sh->pd_idx + 1);
2766 break;
2767 case ALGORITHM_PARITY_0:
2768 i -= 1;
2769 break;
2770 case ALGORITHM_PARITY_N:
2771 break;
2772 default:
2773 BUG();
2774 }
2775 break;
2776 case 6:
2777 if (i == sh->qd_idx)
2778 return 0; /* It is the Q disk */
2779 switch (algorithm) {
2780 case ALGORITHM_LEFT_ASYMMETRIC:
2781 case ALGORITHM_RIGHT_ASYMMETRIC:
2782 case ALGORITHM_ROTATING_ZERO_RESTART:
2783 case ALGORITHM_ROTATING_N_RESTART:
2784 if (sh->pd_idx == raid_disks-1)
2785 i--; /* Q D D D P */
2786 else if (i > sh->pd_idx)
2787 i -= 2; /* D D P Q D */
2788 break;
2789 case ALGORITHM_LEFT_SYMMETRIC:
2790 case ALGORITHM_RIGHT_SYMMETRIC:
2791 if (sh->pd_idx == raid_disks-1)
2792 i--; /* Q D D D P */
2793 else {
2794 /* D D P Q D */
2795 if (i < sh->pd_idx)
2796 i += raid_disks;
2797 i -= (sh->pd_idx + 2);
2798 }
2799 break;
2800 case ALGORITHM_PARITY_0:
2801 i -= 2;
2802 break;
2803 case ALGORITHM_PARITY_N:
2804 break;
2805 case ALGORITHM_ROTATING_N_CONTINUE:
2806 /* Like left_symmetric, but P is before Q */
2807 if (sh->pd_idx == 0)
2808 i--; /* P D D D Q */
2809 else {
2810 /* D D Q P D */
2811 if (i < sh->pd_idx)
2812 i += raid_disks;
2813 i -= (sh->pd_idx + 1);
2814 }
2815 break;
2816 case ALGORITHM_LEFT_ASYMMETRIC_6:
2817 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2818 if (i > sh->pd_idx)
2819 i--;
2820 break;
2821 case ALGORITHM_LEFT_SYMMETRIC_6:
2822 case ALGORITHM_RIGHT_SYMMETRIC_6:
2823 if (i < sh->pd_idx)
2824 i += data_disks + 1;
2825 i -= (sh->pd_idx + 1);
2826 break;
2827 case ALGORITHM_PARITY_0_6:
2828 i -= 1;
2829 break;
2830 default:
2831 BUG();
2832 }
2833 break;
2834 }
2835
2836 chunk_number = stripe * data_disks + i;
2837 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2838
2839 check = raid5_compute_sector(conf, r_sector,
2840 previous, &dummy1, &sh2);
2841 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2842 || sh2.qd_idx != sh->qd_idx) {
2843 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2844 mdname(conf->mddev));
2845 return 0;
2846 }
2847 return r_sector;
2848 }
2849
2850 static void
2851 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2852 int rcw, int expand)
2853 {
2854 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2855 struct r5conf *conf = sh->raid_conf;
2856 int level = conf->level;
2857
2858 if (rcw) {
2859
2860 for (i = disks; i--; ) {
2861 struct r5dev *dev = &sh->dev[i];
2862
2863 if (dev->towrite) {
2864 set_bit(R5_LOCKED, &dev->flags);
2865 set_bit(R5_Wantdrain, &dev->flags);
2866 if (!expand)
2867 clear_bit(R5_UPTODATE, &dev->flags);
2868 s->locked++;
2869 }
2870 }
2871 /* if we are not expanding this is a proper write request, and
2872 * there will be bios with new data to be drained into the
2873 * stripe cache
2874 */
2875 if (!expand) {
2876 if (!s->locked)
2877 /* False alarm, nothing to do */
2878 return;
2879 sh->reconstruct_state = reconstruct_state_drain_run;
2880 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2881 } else
2882 sh->reconstruct_state = reconstruct_state_run;
2883
2884 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2885
2886 if (s->locked + conf->max_degraded == disks)
2887 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2888 atomic_inc(&conf->pending_full_writes);
2889 } else {
2890 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2891 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2892 BUG_ON(level == 6 &&
2893 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2894 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2895
2896 for (i = disks; i--; ) {
2897 struct r5dev *dev = &sh->dev[i];
2898 if (i == pd_idx || i == qd_idx)
2899 continue;
2900
2901 if (dev->towrite &&
2902 (test_bit(R5_UPTODATE, &dev->flags) ||
2903 test_bit(R5_Wantcompute, &dev->flags))) {
2904 set_bit(R5_Wantdrain, &dev->flags);
2905 set_bit(R5_LOCKED, &dev->flags);
2906 clear_bit(R5_UPTODATE, &dev->flags);
2907 s->locked++;
2908 }
2909 }
2910 if (!s->locked)
2911 /* False alarm - nothing to do */
2912 return;
2913 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2914 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2915 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2916 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2917 }
2918
2919 /* keep the parity disk(s) locked while asynchronous operations
2920 * are in flight
2921 */
2922 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2923 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2924 s->locked++;
2925
2926 if (level == 6) {
2927 int qd_idx = sh->qd_idx;
2928 struct r5dev *dev = &sh->dev[qd_idx];
2929
2930 set_bit(R5_LOCKED, &dev->flags);
2931 clear_bit(R5_UPTODATE, &dev->flags);
2932 s->locked++;
2933 }
2934
2935 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2936 __func__, (unsigned long long)sh->sector,
2937 s->locked, s->ops_request);
2938 }
2939
2940 /*
2941 * Each stripe/dev can have one or more bion attached.
2942 * toread/towrite point to the first in a chain.
2943 * The bi_next chain must be in order.
2944 */
2945 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2946 int forwrite, int previous)
2947 {
2948 struct bio **bip;
2949 struct r5conf *conf = sh->raid_conf;
2950 int firstwrite=0;
2951
2952 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2953 (unsigned long long)bi->bi_iter.bi_sector,
2954 (unsigned long long)sh->sector);
2955
2956 /*
2957 * If several bio share a stripe. The bio bi_phys_segments acts as a
2958 * reference count to avoid race. The reference count should already be
2959 * increased before this function is called (for example, in
2960 * make_request()), so other bio sharing this stripe will not free the
2961 * stripe. If a stripe is owned by one stripe, the stripe lock will
2962 * protect it.
2963 */
2964 spin_lock_irq(&sh->stripe_lock);
2965 /* Don't allow new IO added to stripes in batch list */
2966 if (sh->batch_head)
2967 goto overlap;
2968 if (forwrite) {
2969 bip = &sh->dev[dd_idx].towrite;
2970 if (*bip == NULL)
2971 firstwrite = 1;
2972 } else
2973 bip = &sh->dev[dd_idx].toread;
2974 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2975 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2976 goto overlap;
2977 bip = & (*bip)->bi_next;
2978 }
2979 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2980 goto overlap;
2981
2982 if (!forwrite || previous)
2983 clear_bit(STRIPE_BATCH_READY, &sh->state);
2984
2985 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2986 if (*bip)
2987 bi->bi_next = *bip;
2988 *bip = bi;
2989 raid5_inc_bi_active_stripes(bi);
2990
2991 if (forwrite) {
2992 /* check if page is covered */
2993 sector_t sector = sh->dev[dd_idx].sector;
2994 for (bi=sh->dev[dd_idx].towrite;
2995 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2996 bi && bi->bi_iter.bi_sector <= sector;
2997 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2998 if (bio_end_sector(bi) >= sector)
2999 sector = bio_end_sector(bi);
3000 }
3001 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3002 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3003 sh->overwrite_disks++;
3004 }
3005
3006 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3007 (unsigned long long)(*bip)->bi_iter.bi_sector,
3008 (unsigned long long)sh->sector, dd_idx);
3009
3010 if (conf->mddev->bitmap && firstwrite) {
3011 /* Cannot hold spinlock over bitmap_startwrite,
3012 * but must ensure this isn't added to a batch until
3013 * we have added to the bitmap and set bm_seq.
3014 * So set STRIPE_BITMAP_PENDING to prevent
3015 * batching.
3016 * If multiple add_stripe_bio() calls race here they
3017 * much all set STRIPE_BITMAP_PENDING. So only the first one
3018 * to complete "bitmap_startwrite" gets to set
3019 * STRIPE_BIT_DELAY. This is important as once a stripe
3020 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3021 * any more.
3022 */
3023 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3024 spin_unlock_irq(&sh->stripe_lock);
3025 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3026 STRIPE_SECTORS, 0);
3027 spin_lock_irq(&sh->stripe_lock);
3028 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3029 if (!sh->batch_head) {
3030 sh->bm_seq = conf->seq_flush+1;
3031 set_bit(STRIPE_BIT_DELAY, &sh->state);
3032 }
3033 }
3034 spin_unlock_irq(&sh->stripe_lock);
3035
3036 if (stripe_can_batch(sh))
3037 stripe_add_to_batch_list(conf, sh);
3038 return 1;
3039
3040 overlap:
3041 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3042 spin_unlock_irq(&sh->stripe_lock);
3043 return 0;
3044 }
3045
3046 static void end_reshape(struct r5conf *conf);
3047
3048 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3049 struct stripe_head *sh)
3050 {
3051 int sectors_per_chunk =
3052 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3053 int dd_idx;
3054 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3055 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3056
3057 raid5_compute_sector(conf,
3058 stripe * (disks - conf->max_degraded)
3059 *sectors_per_chunk + chunk_offset,
3060 previous,
3061 &dd_idx, sh);
3062 }
3063
3064 static void
3065 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3066 struct stripe_head_state *s, int disks,
3067 struct bio **return_bi)
3068 {
3069 int i;
3070 BUG_ON(sh->batch_head);
3071 for (i = disks; i--; ) {
3072 struct bio *bi;
3073 int bitmap_end = 0;
3074
3075 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3076 struct md_rdev *rdev;
3077 rcu_read_lock();
3078 rdev = rcu_dereference(conf->disks[i].rdev);
3079 if (rdev && test_bit(In_sync, &rdev->flags))
3080 atomic_inc(&rdev->nr_pending);
3081 else
3082 rdev = NULL;
3083 rcu_read_unlock();
3084 if (rdev) {
3085 if (!rdev_set_badblocks(
3086 rdev,
3087 sh->sector,
3088 STRIPE_SECTORS, 0))
3089 md_error(conf->mddev, rdev);
3090 rdev_dec_pending(rdev, conf->mddev);
3091 }
3092 }
3093 spin_lock_irq(&sh->stripe_lock);
3094 /* fail all writes first */
3095 bi = sh->dev[i].towrite;
3096 sh->dev[i].towrite = NULL;
3097 sh->overwrite_disks = 0;
3098 spin_unlock_irq(&sh->stripe_lock);
3099 if (bi)
3100 bitmap_end = 1;
3101
3102 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3103 wake_up(&conf->wait_for_overlap);
3104
3105 while (bi && bi->bi_iter.bi_sector <
3106 sh->dev[i].sector + STRIPE_SECTORS) {
3107 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3108
3109 bi->bi_error = -EIO;
3110 if (!raid5_dec_bi_active_stripes(bi)) {
3111 md_write_end(conf->mddev);
3112 bi->bi_next = *return_bi;
3113 *return_bi = bi;
3114 }
3115 bi = nextbi;
3116 }
3117 if (bitmap_end)
3118 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3119 STRIPE_SECTORS, 0, 0);
3120 bitmap_end = 0;
3121 /* and fail all 'written' */
3122 bi = sh->dev[i].written;
3123 sh->dev[i].written = NULL;
3124 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3125 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3126 sh->dev[i].page = sh->dev[i].orig_page;
3127 }
3128
3129 if (bi) bitmap_end = 1;
3130 while (bi && bi->bi_iter.bi_sector <
3131 sh->dev[i].sector + STRIPE_SECTORS) {
3132 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3133
3134 bi->bi_error = -EIO;
3135 if (!raid5_dec_bi_active_stripes(bi)) {
3136 md_write_end(conf->mddev);
3137 bi->bi_next = *return_bi;
3138 *return_bi = bi;
3139 }
3140 bi = bi2;
3141 }
3142
3143 /* fail any reads if this device is non-operational and
3144 * the data has not reached the cache yet.
3145 */
3146 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3147 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3148 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3149 spin_lock_irq(&sh->stripe_lock);
3150 bi = sh->dev[i].toread;
3151 sh->dev[i].toread = NULL;
3152 spin_unlock_irq(&sh->stripe_lock);
3153 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3154 wake_up(&conf->wait_for_overlap);
3155 while (bi && bi->bi_iter.bi_sector <
3156 sh->dev[i].sector + STRIPE_SECTORS) {
3157 struct bio *nextbi =
3158 r5_next_bio(bi, sh->dev[i].sector);
3159
3160 bi->bi_error = -EIO;
3161 if (!raid5_dec_bi_active_stripes(bi)) {
3162 bi->bi_next = *return_bi;
3163 *return_bi = bi;
3164 }
3165 bi = nextbi;
3166 }
3167 }
3168 if (bitmap_end)
3169 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3170 STRIPE_SECTORS, 0, 0);
3171 /* If we were in the middle of a write the parity block might
3172 * still be locked - so just clear all R5_LOCKED flags
3173 */
3174 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3175 }
3176
3177 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3178 if (atomic_dec_and_test(&conf->pending_full_writes))
3179 md_wakeup_thread(conf->mddev->thread);
3180 }
3181
3182 static void
3183 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3184 struct stripe_head_state *s)
3185 {
3186 int abort = 0;
3187 int i;
3188
3189 BUG_ON(sh->batch_head);
3190 clear_bit(STRIPE_SYNCING, &sh->state);
3191 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3192 wake_up(&conf->wait_for_overlap);
3193 s->syncing = 0;
3194 s->replacing = 0;
3195 /* There is nothing more to do for sync/check/repair.
3196 * Don't even need to abort as that is handled elsewhere
3197 * if needed, and not always wanted e.g. if there is a known
3198 * bad block here.
3199 * For recover/replace we need to record a bad block on all
3200 * non-sync devices, or abort the recovery
3201 */
3202 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3203 /* During recovery devices cannot be removed, so
3204 * locking and refcounting of rdevs is not needed
3205 */
3206 for (i = 0; i < conf->raid_disks; i++) {
3207 struct md_rdev *rdev = conf->disks[i].rdev;
3208 if (rdev
3209 && !test_bit(Faulty, &rdev->flags)
3210 && !test_bit(In_sync, &rdev->flags)
3211 && !rdev_set_badblocks(rdev, sh->sector,
3212 STRIPE_SECTORS, 0))
3213 abort = 1;
3214 rdev = conf->disks[i].replacement;
3215 if (rdev
3216 && !test_bit(Faulty, &rdev->flags)
3217 && !test_bit(In_sync, &rdev->flags)
3218 && !rdev_set_badblocks(rdev, sh->sector,
3219 STRIPE_SECTORS, 0))
3220 abort = 1;
3221 }
3222 if (abort)
3223 conf->recovery_disabled =
3224 conf->mddev->recovery_disabled;
3225 }
3226 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3227 }
3228
3229 static int want_replace(struct stripe_head *sh, int disk_idx)
3230 {
3231 struct md_rdev *rdev;
3232 int rv = 0;
3233 /* Doing recovery so rcu locking not required */
3234 rdev = sh->raid_conf->disks[disk_idx].replacement;
3235 if (rdev
3236 && !test_bit(Faulty, &rdev->flags)
3237 && !test_bit(In_sync, &rdev->flags)
3238 && (rdev->recovery_offset <= sh->sector
3239 || rdev->mddev->recovery_cp <= sh->sector))
3240 rv = 1;
3241
3242 return rv;
3243 }
3244
3245 /* fetch_block - checks the given member device to see if its data needs
3246 * to be read or computed to satisfy a request.
3247 *
3248 * Returns 1 when no more member devices need to be checked, otherwise returns
3249 * 0 to tell the loop in handle_stripe_fill to continue
3250 */
3251
3252 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3253 int disk_idx, int disks)
3254 {
3255 struct r5dev *dev = &sh->dev[disk_idx];
3256 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3257 &sh->dev[s->failed_num[1]] };
3258 int i;
3259
3260
3261 if (test_bit(R5_LOCKED, &dev->flags) ||
3262 test_bit(R5_UPTODATE, &dev->flags))
3263 /* No point reading this as we already have it or have
3264 * decided to get it.
3265 */
3266 return 0;
3267
3268 if (dev->toread ||
3269 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3270 /* We need this block to directly satisfy a request */
3271 return 1;
3272
3273 if (s->syncing || s->expanding ||
3274 (s->replacing && want_replace(sh, disk_idx)))
3275 /* When syncing, or expanding we read everything.
3276 * When replacing, we need the replaced block.
3277 */
3278 return 1;
3279
3280 if ((s->failed >= 1 && fdev[0]->toread) ||
3281 (s->failed >= 2 && fdev[1]->toread))
3282 /* If we want to read from a failed device, then
3283 * we need to actually read every other device.
3284 */
3285 return 1;
3286
3287 /* Sometimes neither read-modify-write nor reconstruct-write
3288 * cycles can work. In those cases we read every block we
3289 * can. Then the parity-update is certain to have enough to
3290 * work with.
3291 * This can only be a problem when we need to write something,
3292 * and some device has failed. If either of those tests
3293 * fail we need look no further.
3294 */
3295 if (!s->failed || !s->to_write)
3296 return 0;
3297
3298 if (test_bit(R5_Insync, &dev->flags) &&
3299 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3300 /* Pre-reads at not permitted until after short delay
3301 * to gather multiple requests. However if this
3302 * device is no Insync, the block could only be be computed
3303 * and there is no need to delay that.
3304 */
3305 return 0;
3306
3307 for (i = 0; i < s->failed; i++) {
3308 if (fdev[i]->towrite &&
3309 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3310 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3311 /* If we have a partial write to a failed
3312 * device, then we will need to reconstruct
3313 * the content of that device, so all other
3314 * devices must be read.
3315 */
3316 return 1;
3317 }
3318
3319 /* If we are forced to do a reconstruct-write, either because
3320 * the current RAID6 implementation only supports that, or
3321 * or because parity cannot be trusted and we are currently
3322 * recovering it, there is extra need to be careful.
3323 * If one of the devices that we would need to read, because
3324 * it is not being overwritten (and maybe not written at all)
3325 * is missing/faulty, then we need to read everything we can.
3326 */
3327 if (sh->raid_conf->level != 6 &&
3328 sh->sector < sh->raid_conf->mddev->recovery_cp)
3329 /* reconstruct-write isn't being forced */
3330 return 0;
3331 for (i = 0; i < s->failed; i++) {
3332 if (s->failed_num[i] != sh->pd_idx &&
3333 s->failed_num[i] != sh->qd_idx &&
3334 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3335 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3336 return 1;
3337 }
3338
3339 return 0;
3340 }
3341
3342 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3343 int disk_idx, int disks)
3344 {
3345 struct r5dev *dev = &sh->dev[disk_idx];
3346
3347 /* is the data in this block needed, and can we get it? */
3348 if (need_this_block(sh, s, disk_idx, disks)) {
3349 /* we would like to get this block, possibly by computing it,
3350 * otherwise read it if the backing disk is insync
3351 */
3352 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3353 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3354 BUG_ON(sh->batch_head);
3355 if ((s->uptodate == disks - 1) &&
3356 (s->failed && (disk_idx == s->failed_num[0] ||
3357 disk_idx == s->failed_num[1]))) {
3358 /* have disk failed, and we're requested to fetch it;
3359 * do compute it
3360 */
3361 pr_debug("Computing stripe %llu block %d\n",
3362 (unsigned long long)sh->sector, disk_idx);
3363 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3364 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3365 set_bit(R5_Wantcompute, &dev->flags);
3366 sh->ops.target = disk_idx;
3367 sh->ops.target2 = -1; /* no 2nd target */
3368 s->req_compute = 1;
3369 /* Careful: from this point on 'uptodate' is in the eye
3370 * of raid_run_ops which services 'compute' operations
3371 * before writes. R5_Wantcompute flags a block that will
3372 * be R5_UPTODATE by the time it is needed for a
3373 * subsequent operation.
3374 */
3375 s->uptodate++;
3376 return 1;
3377 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3378 /* Computing 2-failure is *very* expensive; only
3379 * do it if failed >= 2
3380 */
3381 int other;
3382 for (other = disks; other--; ) {
3383 if (other == disk_idx)
3384 continue;
3385 if (!test_bit(R5_UPTODATE,
3386 &sh->dev[other].flags))
3387 break;
3388 }
3389 BUG_ON(other < 0);
3390 pr_debug("Computing stripe %llu blocks %d,%d\n",
3391 (unsigned long long)sh->sector,
3392 disk_idx, other);
3393 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3394 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3395 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3396 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3397 sh->ops.target = disk_idx;
3398 sh->ops.target2 = other;
3399 s->uptodate += 2;
3400 s->req_compute = 1;
3401 return 1;
3402 } else if (test_bit(R5_Insync, &dev->flags)) {
3403 set_bit(R5_LOCKED, &dev->flags);
3404 set_bit(R5_Wantread, &dev->flags);
3405 s->locked++;
3406 pr_debug("Reading block %d (sync=%d)\n",
3407 disk_idx, s->syncing);
3408 }
3409 }
3410
3411 return 0;
3412 }
3413
3414 /**
3415 * handle_stripe_fill - read or compute data to satisfy pending requests.
3416 */
3417 static void handle_stripe_fill(struct stripe_head *sh,
3418 struct stripe_head_state *s,
3419 int disks)
3420 {
3421 int i;
3422
3423 /* look for blocks to read/compute, skip this if a compute
3424 * is already in flight, or if the stripe contents are in the
3425 * midst of changing due to a write
3426 */
3427 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3428 !sh->reconstruct_state)
3429 for (i = disks; i--; )
3430 if (fetch_block(sh, s, i, disks))
3431 break;
3432 set_bit(STRIPE_HANDLE, &sh->state);
3433 }
3434
3435 static void break_stripe_batch_list(struct stripe_head *head_sh,
3436 unsigned long handle_flags);
3437 /* handle_stripe_clean_event
3438 * any written block on an uptodate or failed drive can be returned.
3439 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3440 * never LOCKED, so we don't need to test 'failed' directly.
3441 */
3442 static void handle_stripe_clean_event(struct r5conf *conf,
3443 struct stripe_head *sh, int disks, struct bio **return_bi)
3444 {
3445 int i;
3446 struct r5dev *dev;
3447 int discard_pending = 0;
3448 struct stripe_head *head_sh = sh;
3449 bool do_endio = false;
3450
3451 for (i = disks; i--; )
3452 if (sh->dev[i].written) {
3453 dev = &sh->dev[i];
3454 if (!test_bit(R5_LOCKED, &dev->flags) &&
3455 (test_bit(R5_UPTODATE, &dev->flags) ||
3456 test_bit(R5_Discard, &dev->flags) ||
3457 test_bit(R5_SkipCopy, &dev->flags))) {
3458 /* We can return any write requests */
3459 struct bio *wbi, *wbi2;
3460 pr_debug("Return write for disc %d\n", i);
3461 if (test_and_clear_bit(R5_Discard, &dev->flags))
3462 clear_bit(R5_UPTODATE, &dev->flags);
3463 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3464 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3465 }
3466 do_endio = true;
3467
3468 returnbi:
3469 dev->page = dev->orig_page;
3470 wbi = dev->written;
3471 dev->written = NULL;
3472 while (wbi && wbi->bi_iter.bi_sector <
3473 dev->sector + STRIPE_SECTORS) {
3474 wbi2 = r5_next_bio(wbi, dev->sector);
3475 if (!raid5_dec_bi_active_stripes(wbi)) {
3476 md_write_end(conf->mddev);
3477 wbi->bi_next = *return_bi;
3478 *return_bi = wbi;
3479 }
3480 wbi = wbi2;
3481 }
3482 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3483 STRIPE_SECTORS,
3484 !test_bit(STRIPE_DEGRADED, &sh->state),
3485 0);
3486 if (head_sh->batch_head) {
3487 sh = list_first_entry(&sh->batch_list,
3488 struct stripe_head,
3489 batch_list);
3490 if (sh != head_sh) {
3491 dev = &sh->dev[i];
3492 goto returnbi;
3493 }
3494 }
3495 sh = head_sh;
3496 dev = &sh->dev[i];
3497 } else if (test_bit(R5_Discard, &dev->flags))
3498 discard_pending = 1;
3499 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3500 WARN_ON(dev->page != dev->orig_page);
3501 }
3502 if (!discard_pending &&
3503 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3504 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3505 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3506 if (sh->qd_idx >= 0) {
3507 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3508 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3509 }
3510 /* now that discard is done we can proceed with any sync */
3511 clear_bit(STRIPE_DISCARD, &sh->state);
3512 /*
3513 * SCSI discard will change some bio fields and the stripe has
3514 * no updated data, so remove it from hash list and the stripe
3515 * will be reinitialized
3516 */
3517 spin_lock_irq(&conf->device_lock);
3518 unhash:
3519 remove_hash(sh);
3520 if (head_sh->batch_head) {
3521 sh = list_first_entry(&sh->batch_list,
3522 struct stripe_head, batch_list);
3523 if (sh != head_sh)
3524 goto unhash;
3525 }
3526 spin_unlock_irq(&conf->device_lock);
3527 sh = head_sh;
3528
3529 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3530 set_bit(STRIPE_HANDLE, &sh->state);
3531
3532 }
3533
3534 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3535 if (atomic_dec_and_test(&conf->pending_full_writes))
3536 md_wakeup_thread(conf->mddev->thread);
3537
3538 if (head_sh->batch_head && do_endio)
3539 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3540 }
3541
3542 static void handle_stripe_dirtying(struct r5conf *conf,
3543 struct stripe_head *sh,
3544 struct stripe_head_state *s,
3545 int disks)
3546 {
3547 int rmw = 0, rcw = 0, i;
3548 sector_t recovery_cp = conf->mddev->recovery_cp;
3549
3550 /* Check whether resync is now happening or should start.
3551 * If yes, then the array is dirty (after unclean shutdown or
3552 * initial creation), so parity in some stripes might be inconsistent.
3553 * In this case, we need to always do reconstruct-write, to ensure
3554 * that in case of drive failure or read-error correction, we
3555 * generate correct data from the parity.
3556 */
3557 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3558 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3559 s->failed == 0)) {
3560 /* Calculate the real rcw later - for now make it
3561 * look like rcw is cheaper
3562 */
3563 rcw = 1; rmw = 2;
3564 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3565 conf->rmw_level, (unsigned long long)recovery_cp,
3566 (unsigned long long)sh->sector);
3567 } else for (i = disks; i--; ) {
3568 /* would I have to read this buffer for read_modify_write */
3569 struct r5dev *dev = &sh->dev[i];
3570 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3571 !test_bit(R5_LOCKED, &dev->flags) &&
3572 !(test_bit(R5_UPTODATE, &dev->flags) ||
3573 test_bit(R5_Wantcompute, &dev->flags))) {
3574 if (test_bit(R5_Insync, &dev->flags))
3575 rmw++;
3576 else
3577 rmw += 2*disks; /* cannot read it */
3578 }
3579 /* Would I have to read this buffer for reconstruct_write */
3580 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3581 i != sh->pd_idx && i != sh->qd_idx &&
3582 !test_bit(R5_LOCKED, &dev->flags) &&
3583 !(test_bit(R5_UPTODATE, &dev->flags) ||
3584 test_bit(R5_Wantcompute, &dev->flags))) {
3585 if (test_bit(R5_Insync, &dev->flags))
3586 rcw++;
3587 else
3588 rcw += 2*disks;
3589 }
3590 }
3591 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3592 (unsigned long long)sh->sector, rmw, rcw);
3593 set_bit(STRIPE_HANDLE, &sh->state);
3594 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3595 /* prefer read-modify-write, but need to get some data */
3596 if (conf->mddev->queue)
3597 blk_add_trace_msg(conf->mddev->queue,
3598 "raid5 rmw %llu %d",
3599 (unsigned long long)sh->sector, rmw);
3600 for (i = disks; i--; ) {
3601 struct r5dev *dev = &sh->dev[i];
3602 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3603 !test_bit(R5_LOCKED, &dev->flags) &&
3604 !(test_bit(R5_UPTODATE, &dev->flags) ||
3605 test_bit(R5_Wantcompute, &dev->flags)) &&
3606 test_bit(R5_Insync, &dev->flags)) {
3607 if (test_bit(STRIPE_PREREAD_ACTIVE,
3608 &sh->state)) {
3609 pr_debug("Read_old block %d for r-m-w\n",
3610 i);
3611 set_bit(R5_LOCKED, &dev->flags);
3612 set_bit(R5_Wantread, &dev->flags);
3613 s->locked++;
3614 } else {
3615 set_bit(STRIPE_DELAYED, &sh->state);
3616 set_bit(STRIPE_HANDLE, &sh->state);
3617 }
3618 }
3619 }
3620 }
3621 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3622 /* want reconstruct write, but need to get some data */
3623 int qread =0;
3624 rcw = 0;
3625 for (i = disks; i--; ) {
3626 struct r5dev *dev = &sh->dev[i];
3627 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3628 i != sh->pd_idx && i != sh->qd_idx &&
3629 !test_bit(R5_LOCKED, &dev->flags) &&
3630 !(test_bit(R5_UPTODATE, &dev->flags) ||
3631 test_bit(R5_Wantcompute, &dev->flags))) {
3632 rcw++;
3633 if (test_bit(R5_Insync, &dev->flags) &&
3634 test_bit(STRIPE_PREREAD_ACTIVE,
3635 &sh->state)) {
3636 pr_debug("Read_old block "
3637 "%d for Reconstruct\n", i);
3638 set_bit(R5_LOCKED, &dev->flags);
3639 set_bit(R5_Wantread, &dev->flags);
3640 s->locked++;
3641 qread++;
3642 } else {
3643 set_bit(STRIPE_DELAYED, &sh->state);
3644 set_bit(STRIPE_HANDLE, &sh->state);
3645 }
3646 }
3647 }
3648 if (rcw && conf->mddev->queue)
3649 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3650 (unsigned long long)sh->sector,
3651 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3652 }
3653
3654 if (rcw > disks && rmw > disks &&
3655 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3656 set_bit(STRIPE_DELAYED, &sh->state);
3657
3658 /* now if nothing is locked, and if we have enough data,
3659 * we can start a write request
3660 */
3661 /* since handle_stripe can be called at any time we need to handle the
3662 * case where a compute block operation has been submitted and then a
3663 * subsequent call wants to start a write request. raid_run_ops only
3664 * handles the case where compute block and reconstruct are requested
3665 * simultaneously. If this is not the case then new writes need to be
3666 * held off until the compute completes.
3667 */
3668 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3669 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3670 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3671 schedule_reconstruction(sh, s, rcw == 0, 0);
3672 }
3673
3674 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3675 struct stripe_head_state *s, int disks)
3676 {
3677 struct r5dev *dev = NULL;
3678
3679 BUG_ON(sh->batch_head);
3680 set_bit(STRIPE_HANDLE, &sh->state);
3681
3682 switch (sh->check_state) {
3683 case check_state_idle:
3684 /* start a new check operation if there are no failures */
3685 if (s->failed == 0) {
3686 BUG_ON(s->uptodate != disks);
3687 sh->check_state = check_state_run;
3688 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3689 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3690 s->uptodate--;
3691 break;
3692 }
3693 dev = &sh->dev[s->failed_num[0]];
3694 /* fall through */
3695 case check_state_compute_result:
3696 sh->check_state = check_state_idle;
3697 if (!dev)
3698 dev = &sh->dev[sh->pd_idx];
3699
3700 /* check that a write has not made the stripe insync */
3701 if (test_bit(STRIPE_INSYNC, &sh->state))
3702 break;
3703
3704 /* either failed parity check, or recovery is happening */
3705 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3706 BUG_ON(s->uptodate != disks);
3707
3708 set_bit(R5_LOCKED, &dev->flags);
3709 s->locked++;
3710 set_bit(R5_Wantwrite, &dev->flags);
3711
3712 clear_bit(STRIPE_DEGRADED, &sh->state);
3713 set_bit(STRIPE_INSYNC, &sh->state);
3714 break;
3715 case check_state_run:
3716 break; /* we will be called again upon completion */
3717 case check_state_check_result:
3718 sh->check_state = check_state_idle;
3719
3720 /* if a failure occurred during the check operation, leave
3721 * STRIPE_INSYNC not set and let the stripe be handled again
3722 */
3723 if (s->failed)
3724 break;
3725
3726 /* handle a successful check operation, if parity is correct
3727 * we are done. Otherwise update the mismatch count and repair
3728 * parity if !MD_RECOVERY_CHECK
3729 */
3730 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3731 /* parity is correct (on disc,
3732 * not in buffer any more)
3733 */
3734 set_bit(STRIPE_INSYNC, &sh->state);
3735 else {
3736 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3737 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3738 /* don't try to repair!! */
3739 set_bit(STRIPE_INSYNC, &sh->state);
3740 else {
3741 sh->check_state = check_state_compute_run;
3742 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3743 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3744 set_bit(R5_Wantcompute,
3745 &sh->dev[sh->pd_idx].flags);
3746 sh->ops.target = sh->pd_idx;
3747 sh->ops.target2 = -1;
3748 s->uptodate++;
3749 }
3750 }
3751 break;
3752 case check_state_compute_run:
3753 break;
3754 default:
3755 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3756 __func__, sh->check_state,
3757 (unsigned long long) sh->sector);
3758 BUG();
3759 }
3760 }
3761
3762 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3763 struct stripe_head_state *s,
3764 int disks)
3765 {
3766 int pd_idx = sh->pd_idx;
3767 int qd_idx = sh->qd_idx;
3768 struct r5dev *dev;
3769
3770 BUG_ON(sh->batch_head);
3771 set_bit(STRIPE_HANDLE, &sh->state);
3772
3773 BUG_ON(s->failed > 2);
3774
3775 /* Want to check and possibly repair P and Q.
3776 * However there could be one 'failed' device, in which
3777 * case we can only check one of them, possibly using the
3778 * other to generate missing data
3779 */
3780
3781 switch (sh->check_state) {
3782 case check_state_idle:
3783 /* start a new check operation if there are < 2 failures */
3784 if (s->failed == s->q_failed) {
3785 /* The only possible failed device holds Q, so it
3786 * makes sense to check P (If anything else were failed,
3787 * we would have used P to recreate it).
3788 */
3789 sh->check_state = check_state_run;
3790 }
3791 if (!s->q_failed && s->failed < 2) {
3792 /* Q is not failed, and we didn't use it to generate
3793 * anything, so it makes sense to check it
3794 */
3795 if (sh->check_state == check_state_run)
3796 sh->check_state = check_state_run_pq;
3797 else
3798 sh->check_state = check_state_run_q;
3799 }
3800
3801 /* discard potentially stale zero_sum_result */
3802 sh->ops.zero_sum_result = 0;
3803
3804 if (sh->check_state == check_state_run) {
3805 /* async_xor_zero_sum destroys the contents of P */
3806 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3807 s->uptodate--;
3808 }
3809 if (sh->check_state >= check_state_run &&
3810 sh->check_state <= check_state_run_pq) {
3811 /* async_syndrome_zero_sum preserves P and Q, so
3812 * no need to mark them !uptodate here
3813 */
3814 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3815 break;
3816 }
3817
3818 /* we have 2-disk failure */
3819 BUG_ON(s->failed != 2);
3820 /* fall through */
3821 case check_state_compute_result:
3822 sh->check_state = check_state_idle;
3823
3824 /* check that a write has not made the stripe insync */
3825 if (test_bit(STRIPE_INSYNC, &sh->state))
3826 break;
3827
3828 /* now write out any block on a failed drive,
3829 * or P or Q if they were recomputed
3830 */
3831 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3832 if (s->failed == 2) {
3833 dev = &sh->dev[s->failed_num[1]];
3834 s->locked++;
3835 set_bit(R5_LOCKED, &dev->flags);
3836 set_bit(R5_Wantwrite, &dev->flags);
3837 }
3838 if (s->failed >= 1) {
3839 dev = &sh->dev[s->failed_num[0]];
3840 s->locked++;
3841 set_bit(R5_LOCKED, &dev->flags);
3842 set_bit(R5_Wantwrite, &dev->flags);
3843 }
3844 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3845 dev = &sh->dev[pd_idx];
3846 s->locked++;
3847 set_bit(R5_LOCKED, &dev->flags);
3848 set_bit(R5_Wantwrite, &dev->flags);
3849 }
3850 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3851 dev = &sh->dev[qd_idx];
3852 s->locked++;
3853 set_bit(R5_LOCKED, &dev->flags);
3854 set_bit(R5_Wantwrite, &dev->flags);
3855 }
3856 clear_bit(STRIPE_DEGRADED, &sh->state);
3857
3858 set_bit(STRIPE_INSYNC, &sh->state);
3859 break;
3860 case check_state_run:
3861 case check_state_run_q:
3862 case check_state_run_pq:
3863 break; /* we will be called again upon completion */
3864 case check_state_check_result:
3865 sh->check_state = check_state_idle;
3866
3867 /* handle a successful check operation, if parity is correct
3868 * we are done. Otherwise update the mismatch count and repair
3869 * parity if !MD_RECOVERY_CHECK
3870 */
3871 if (sh->ops.zero_sum_result == 0) {
3872 /* both parities are correct */
3873 if (!s->failed)
3874 set_bit(STRIPE_INSYNC, &sh->state);
3875 else {
3876 /* in contrast to the raid5 case we can validate
3877 * parity, but still have a failure to write
3878 * back
3879 */
3880 sh->check_state = check_state_compute_result;
3881 /* Returning at this point means that we may go
3882 * off and bring p and/or q uptodate again so
3883 * we make sure to check zero_sum_result again
3884 * to verify if p or q need writeback
3885 */
3886 }
3887 } else {
3888 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3889 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3890 /* don't try to repair!! */
3891 set_bit(STRIPE_INSYNC, &sh->state);
3892 else {
3893 int *target = &sh->ops.target;
3894
3895 sh->ops.target = -1;
3896 sh->ops.target2 = -1;
3897 sh->check_state = check_state_compute_run;
3898 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3899 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3900 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3901 set_bit(R5_Wantcompute,
3902 &sh->dev[pd_idx].flags);
3903 *target = pd_idx;
3904 target = &sh->ops.target2;
3905 s->uptodate++;
3906 }
3907 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3908 set_bit(R5_Wantcompute,
3909 &sh->dev[qd_idx].flags);
3910 *target = qd_idx;
3911 s->uptodate++;
3912 }
3913 }
3914 }
3915 break;
3916 case check_state_compute_run:
3917 break;
3918 default:
3919 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3920 __func__, sh->check_state,
3921 (unsigned long long) sh->sector);
3922 BUG();
3923 }
3924 }
3925
3926 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3927 {
3928 int i;
3929
3930 /* We have read all the blocks in this stripe and now we need to
3931 * copy some of them into a target stripe for expand.
3932 */
3933 struct dma_async_tx_descriptor *tx = NULL;
3934 BUG_ON(sh->batch_head);
3935 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3936 for (i = 0; i < sh->disks; i++)
3937 if (i != sh->pd_idx && i != sh->qd_idx) {
3938 int dd_idx, j;
3939 struct stripe_head *sh2;
3940 struct async_submit_ctl submit;
3941
3942 sector_t bn = compute_blocknr(sh, i, 1);
3943 sector_t s = raid5_compute_sector(conf, bn, 0,
3944 &dd_idx, NULL);
3945 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3946 if (sh2 == NULL)
3947 /* so far only the early blocks of this stripe
3948 * have been requested. When later blocks
3949 * get requested, we will try again
3950 */
3951 continue;
3952 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3953 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3954 /* must have already done this block */
3955 release_stripe(sh2);
3956 continue;
3957 }
3958
3959 /* place all the copies on one channel */
3960 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3961 tx = async_memcpy(sh2->dev[dd_idx].page,
3962 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3963 &submit);
3964
3965 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3966 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3967 for (j = 0; j < conf->raid_disks; j++)
3968 if (j != sh2->pd_idx &&
3969 j != sh2->qd_idx &&
3970 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3971 break;
3972 if (j == conf->raid_disks) {
3973 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3974 set_bit(STRIPE_HANDLE, &sh2->state);
3975 }
3976 release_stripe(sh2);
3977
3978 }
3979 /* done submitting copies, wait for them to complete */
3980 async_tx_quiesce(&tx);
3981 }
3982
3983 /*
3984 * handle_stripe - do things to a stripe.
3985 *
3986 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3987 * state of various bits to see what needs to be done.
3988 * Possible results:
3989 * return some read requests which now have data
3990 * return some write requests which are safely on storage
3991 * schedule a read on some buffers
3992 * schedule a write of some buffers
3993 * return confirmation of parity correctness
3994 *
3995 */
3996
3997 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3998 {
3999 struct r5conf *conf = sh->raid_conf;
4000 int disks = sh->disks;
4001 struct r5dev *dev;
4002 int i;
4003 int do_recovery = 0;
4004
4005 memset(s, 0, sizeof(*s));
4006
4007 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4008 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4009 s->failed_num[0] = -1;
4010 s->failed_num[1] = -1;
4011
4012 /* Now to look around and see what can be done */
4013 rcu_read_lock();
4014 for (i=disks; i--; ) {
4015 struct md_rdev *rdev;
4016 sector_t first_bad;
4017 int bad_sectors;
4018 int is_bad = 0;
4019
4020 dev = &sh->dev[i];
4021
4022 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4023 i, dev->flags,
4024 dev->toread, dev->towrite, dev->written);
4025 /* maybe we can reply to a read
4026 *
4027 * new wantfill requests are only permitted while
4028 * ops_complete_biofill is guaranteed to be inactive
4029 */
4030 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4031 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4032 set_bit(R5_Wantfill, &dev->flags);
4033
4034 /* now count some things */
4035 if (test_bit(R5_LOCKED, &dev->flags))
4036 s->locked++;
4037 if (test_bit(R5_UPTODATE, &dev->flags))
4038 s->uptodate++;
4039 if (test_bit(R5_Wantcompute, &dev->flags)) {
4040 s->compute++;
4041 BUG_ON(s->compute > 2);
4042 }
4043
4044 if (test_bit(R5_Wantfill, &dev->flags))
4045 s->to_fill++;
4046 else if (dev->toread)
4047 s->to_read++;
4048 if (dev->towrite) {
4049 s->to_write++;
4050 if (!test_bit(R5_OVERWRITE, &dev->flags))
4051 s->non_overwrite++;
4052 }
4053 if (dev->written)
4054 s->written++;
4055 /* Prefer to use the replacement for reads, but only
4056 * if it is recovered enough and has no bad blocks.
4057 */
4058 rdev = rcu_dereference(conf->disks[i].replacement);
4059 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4060 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4061 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4062 &first_bad, &bad_sectors))
4063 set_bit(R5_ReadRepl, &dev->flags);
4064 else {
4065 if (rdev)
4066 set_bit(R5_NeedReplace, &dev->flags);
4067 rdev = rcu_dereference(conf->disks[i].rdev);
4068 clear_bit(R5_ReadRepl, &dev->flags);
4069 }
4070 if (rdev && test_bit(Faulty, &rdev->flags))
4071 rdev = NULL;
4072 if (rdev) {
4073 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4074 &first_bad, &bad_sectors);
4075 if (s->blocked_rdev == NULL
4076 && (test_bit(Blocked, &rdev->flags)
4077 || is_bad < 0)) {
4078 if (is_bad < 0)
4079 set_bit(BlockedBadBlocks,
4080 &rdev->flags);
4081 s->blocked_rdev = rdev;
4082 atomic_inc(&rdev->nr_pending);
4083 }
4084 }
4085 clear_bit(R5_Insync, &dev->flags);
4086 if (!rdev)
4087 /* Not in-sync */;
4088 else if (is_bad) {
4089 /* also not in-sync */
4090 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4091 test_bit(R5_UPTODATE, &dev->flags)) {
4092 /* treat as in-sync, but with a read error
4093 * which we can now try to correct
4094 */
4095 set_bit(R5_Insync, &dev->flags);
4096 set_bit(R5_ReadError, &dev->flags);
4097 }
4098 } else if (test_bit(In_sync, &rdev->flags))
4099 set_bit(R5_Insync, &dev->flags);
4100 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4101 /* in sync if before recovery_offset */
4102 set_bit(R5_Insync, &dev->flags);
4103 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4104 test_bit(R5_Expanded, &dev->flags))
4105 /* If we've reshaped into here, we assume it is Insync.
4106 * We will shortly update recovery_offset to make
4107 * it official.
4108 */
4109 set_bit(R5_Insync, &dev->flags);
4110
4111 if (test_bit(R5_WriteError, &dev->flags)) {
4112 /* This flag does not apply to '.replacement'
4113 * only to .rdev, so make sure to check that*/
4114 struct md_rdev *rdev2 = rcu_dereference(
4115 conf->disks[i].rdev);
4116 if (rdev2 == rdev)
4117 clear_bit(R5_Insync, &dev->flags);
4118 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4119 s->handle_bad_blocks = 1;
4120 atomic_inc(&rdev2->nr_pending);
4121 } else
4122 clear_bit(R5_WriteError, &dev->flags);
4123 }
4124 if (test_bit(R5_MadeGood, &dev->flags)) {
4125 /* This flag does not apply to '.replacement'
4126 * only to .rdev, so make sure to check that*/
4127 struct md_rdev *rdev2 = rcu_dereference(
4128 conf->disks[i].rdev);
4129 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4130 s->handle_bad_blocks = 1;
4131 atomic_inc(&rdev2->nr_pending);
4132 } else
4133 clear_bit(R5_MadeGood, &dev->flags);
4134 }
4135 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4136 struct md_rdev *rdev2 = rcu_dereference(
4137 conf->disks[i].replacement);
4138 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4139 s->handle_bad_blocks = 1;
4140 atomic_inc(&rdev2->nr_pending);
4141 } else
4142 clear_bit(R5_MadeGoodRepl, &dev->flags);
4143 }
4144 if (!test_bit(R5_Insync, &dev->flags)) {
4145 /* The ReadError flag will just be confusing now */
4146 clear_bit(R5_ReadError, &dev->flags);
4147 clear_bit(R5_ReWrite, &dev->flags);
4148 }
4149 if (test_bit(R5_ReadError, &dev->flags))
4150 clear_bit(R5_Insync, &dev->flags);
4151 if (!test_bit(R5_Insync, &dev->flags)) {
4152 if (s->failed < 2)
4153 s->failed_num[s->failed] = i;
4154 s->failed++;
4155 if (rdev && !test_bit(Faulty, &rdev->flags))
4156 do_recovery = 1;
4157 }
4158 }
4159 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4160 /* If there is a failed device being replaced,
4161 * we must be recovering.
4162 * else if we are after recovery_cp, we must be syncing
4163 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4164 * else we can only be replacing
4165 * sync and recovery both need to read all devices, and so
4166 * use the same flag.
4167 */
4168 if (do_recovery ||
4169 sh->sector >= conf->mddev->recovery_cp ||
4170 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4171 s->syncing = 1;
4172 else
4173 s->replacing = 1;
4174 }
4175 rcu_read_unlock();
4176 }
4177
4178 static int clear_batch_ready(struct stripe_head *sh)
4179 {
4180 /* Return '1' if this is a member of batch, or
4181 * '0' if it is a lone stripe or a head which can now be
4182 * handled.
4183 */
4184 struct stripe_head *tmp;
4185 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4186 return (sh->batch_head && sh->batch_head != sh);
4187 spin_lock(&sh->stripe_lock);
4188 if (!sh->batch_head) {
4189 spin_unlock(&sh->stripe_lock);
4190 return 0;
4191 }
4192
4193 /*
4194 * this stripe could be added to a batch list before we check
4195 * BATCH_READY, skips it
4196 */
4197 if (sh->batch_head != sh) {
4198 spin_unlock(&sh->stripe_lock);
4199 return 1;
4200 }
4201 spin_lock(&sh->batch_lock);
4202 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4203 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4204 spin_unlock(&sh->batch_lock);
4205 spin_unlock(&sh->stripe_lock);
4206
4207 /*
4208 * BATCH_READY is cleared, no new stripes can be added.
4209 * batch_list can be accessed without lock
4210 */
4211 return 0;
4212 }
4213
4214 static void break_stripe_batch_list(struct stripe_head *head_sh,
4215 unsigned long handle_flags)
4216 {
4217 struct stripe_head *sh, *next;
4218 int i;
4219 int do_wakeup = 0;
4220
4221 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4222
4223 list_del_init(&sh->batch_list);
4224
4225 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4226 (1 << STRIPE_SYNCING) |
4227 (1 << STRIPE_REPLACED) |
4228 (1 << STRIPE_PREREAD_ACTIVE) |
4229 (1 << STRIPE_DELAYED) |
4230 (1 << STRIPE_BIT_DELAY) |
4231 (1 << STRIPE_FULL_WRITE) |
4232 (1 << STRIPE_BIOFILL_RUN) |
4233 (1 << STRIPE_COMPUTE_RUN) |
4234 (1 << STRIPE_OPS_REQ_PENDING) |
4235 (1 << STRIPE_DISCARD) |
4236 (1 << STRIPE_BATCH_READY) |
4237 (1 << STRIPE_BATCH_ERR) |
4238 (1 << STRIPE_BITMAP_PENDING)));
4239 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4240 (1 << STRIPE_REPLACED)));
4241
4242 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4243 (1 << STRIPE_DEGRADED)),
4244 head_sh->state & (1 << STRIPE_INSYNC));
4245
4246 sh->check_state = head_sh->check_state;
4247 sh->reconstruct_state = head_sh->reconstruct_state;
4248 for (i = 0; i < sh->disks; i++) {
4249 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4250 do_wakeup = 1;
4251 sh->dev[i].flags = head_sh->dev[i].flags &
4252 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4253 }
4254 spin_lock_irq(&sh->stripe_lock);
4255 sh->batch_head = NULL;
4256 spin_unlock_irq(&sh->stripe_lock);
4257 if (handle_flags == 0 ||
4258 sh->state & handle_flags)
4259 set_bit(STRIPE_HANDLE, &sh->state);
4260 release_stripe(sh);
4261 }
4262 spin_lock_irq(&head_sh->stripe_lock);
4263 head_sh->batch_head = NULL;
4264 spin_unlock_irq(&head_sh->stripe_lock);
4265 for (i = 0; i < head_sh->disks; i++)
4266 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4267 do_wakeup = 1;
4268 if (head_sh->state & handle_flags)
4269 set_bit(STRIPE_HANDLE, &head_sh->state);
4270
4271 if (do_wakeup)
4272 wake_up(&head_sh->raid_conf->wait_for_overlap);
4273 }
4274
4275 static void handle_stripe(struct stripe_head *sh)
4276 {
4277 struct stripe_head_state s;
4278 struct r5conf *conf = sh->raid_conf;
4279 int i;
4280 int prexor;
4281 int disks = sh->disks;
4282 struct r5dev *pdev, *qdev;
4283
4284 clear_bit(STRIPE_HANDLE, &sh->state);
4285 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4286 /* already being handled, ensure it gets handled
4287 * again when current action finishes */
4288 set_bit(STRIPE_HANDLE, &sh->state);
4289 return;
4290 }
4291
4292 if (clear_batch_ready(sh) ) {
4293 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4294 return;
4295 }
4296
4297 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4298 break_stripe_batch_list(sh, 0);
4299
4300 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4301 spin_lock(&sh->stripe_lock);
4302 /* Cannot process 'sync' concurrently with 'discard' */
4303 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4304 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4305 set_bit(STRIPE_SYNCING, &sh->state);
4306 clear_bit(STRIPE_INSYNC, &sh->state);
4307 clear_bit(STRIPE_REPLACED, &sh->state);
4308 }
4309 spin_unlock(&sh->stripe_lock);
4310 }
4311 clear_bit(STRIPE_DELAYED, &sh->state);
4312
4313 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4314 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4315 (unsigned long long)sh->sector, sh->state,
4316 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4317 sh->check_state, sh->reconstruct_state);
4318
4319 analyse_stripe(sh, &s);
4320
4321 if (s.handle_bad_blocks) {
4322 set_bit(STRIPE_HANDLE, &sh->state);
4323 goto finish;
4324 }
4325
4326 if (unlikely(s.blocked_rdev)) {
4327 if (s.syncing || s.expanding || s.expanded ||
4328 s.replacing || s.to_write || s.written) {
4329 set_bit(STRIPE_HANDLE, &sh->state);
4330 goto finish;
4331 }
4332 /* There is nothing for the blocked_rdev to block */
4333 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4334 s.blocked_rdev = NULL;
4335 }
4336
4337 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4338 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4339 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4340 }
4341
4342 pr_debug("locked=%d uptodate=%d to_read=%d"
4343 " to_write=%d failed=%d failed_num=%d,%d\n",
4344 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4345 s.failed_num[0], s.failed_num[1]);
4346 /* check if the array has lost more than max_degraded devices and,
4347 * if so, some requests might need to be failed.
4348 */
4349 if (s.failed > conf->max_degraded) {
4350 sh->check_state = 0;
4351 sh->reconstruct_state = 0;
4352 break_stripe_batch_list(sh, 0);
4353 if (s.to_read+s.to_write+s.written)
4354 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4355 if (s.syncing + s.replacing)
4356 handle_failed_sync(conf, sh, &s);
4357 }
4358
4359 /* Now we check to see if any write operations have recently
4360 * completed
4361 */
4362 prexor = 0;
4363 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4364 prexor = 1;
4365 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4366 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4367 sh->reconstruct_state = reconstruct_state_idle;
4368
4369 /* All the 'written' buffers and the parity block are ready to
4370 * be written back to disk
4371 */
4372 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4373 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4374 BUG_ON(sh->qd_idx >= 0 &&
4375 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4376 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4377 for (i = disks; i--; ) {
4378 struct r5dev *dev = &sh->dev[i];
4379 if (test_bit(R5_LOCKED, &dev->flags) &&
4380 (i == sh->pd_idx || i == sh->qd_idx ||
4381 dev->written)) {
4382 pr_debug("Writing block %d\n", i);
4383 set_bit(R5_Wantwrite, &dev->flags);
4384 if (prexor)
4385 continue;
4386 if (s.failed > 1)
4387 continue;
4388 if (!test_bit(R5_Insync, &dev->flags) ||
4389 ((i == sh->pd_idx || i == sh->qd_idx) &&
4390 s.failed == 0))
4391 set_bit(STRIPE_INSYNC, &sh->state);
4392 }
4393 }
4394 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4395 s.dec_preread_active = 1;
4396 }
4397
4398 /*
4399 * might be able to return some write requests if the parity blocks
4400 * are safe, or on a failed drive
4401 */
4402 pdev = &sh->dev[sh->pd_idx];
4403 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4404 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4405 qdev = &sh->dev[sh->qd_idx];
4406 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4407 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4408 || conf->level < 6;
4409
4410 if (s.written &&
4411 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4412 && !test_bit(R5_LOCKED, &pdev->flags)
4413 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4414 test_bit(R5_Discard, &pdev->flags))))) &&
4415 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4416 && !test_bit(R5_LOCKED, &qdev->flags)
4417 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4418 test_bit(R5_Discard, &qdev->flags))))))
4419 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4420
4421 /* Now we might consider reading some blocks, either to check/generate
4422 * parity, or to satisfy requests
4423 * or to load a block that is being partially written.
4424 */
4425 if (s.to_read || s.non_overwrite
4426 || (conf->level == 6 && s.to_write && s.failed)
4427 || (s.syncing && (s.uptodate + s.compute < disks))
4428 || s.replacing
4429 || s.expanding)
4430 handle_stripe_fill(sh, &s, disks);
4431
4432 /* Now to consider new write requests and what else, if anything
4433 * should be read. We do not handle new writes when:
4434 * 1/ A 'write' operation (copy+xor) is already in flight.
4435 * 2/ A 'check' operation is in flight, as it may clobber the parity
4436 * block.
4437 */
4438 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4439 handle_stripe_dirtying(conf, sh, &s, disks);
4440
4441 /* maybe we need to check and possibly fix the parity for this stripe
4442 * Any reads will already have been scheduled, so we just see if enough
4443 * data is available. The parity check is held off while parity
4444 * dependent operations are in flight.
4445 */
4446 if (sh->check_state ||
4447 (s.syncing && s.locked == 0 &&
4448 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4449 !test_bit(STRIPE_INSYNC, &sh->state))) {
4450 if (conf->level == 6)
4451 handle_parity_checks6(conf, sh, &s, disks);
4452 else
4453 handle_parity_checks5(conf, sh, &s, disks);
4454 }
4455
4456 if ((s.replacing || s.syncing) && s.locked == 0
4457 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4458 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4459 /* Write out to replacement devices where possible */
4460 for (i = 0; i < conf->raid_disks; i++)
4461 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4462 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4463 set_bit(R5_WantReplace, &sh->dev[i].flags);
4464 set_bit(R5_LOCKED, &sh->dev[i].flags);
4465 s.locked++;
4466 }
4467 if (s.replacing)
4468 set_bit(STRIPE_INSYNC, &sh->state);
4469 set_bit(STRIPE_REPLACED, &sh->state);
4470 }
4471 if ((s.syncing || s.replacing) && s.locked == 0 &&
4472 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4473 test_bit(STRIPE_INSYNC, &sh->state)) {
4474 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4475 clear_bit(STRIPE_SYNCING, &sh->state);
4476 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4477 wake_up(&conf->wait_for_overlap);
4478 }
4479
4480 /* If the failed drives are just a ReadError, then we might need
4481 * to progress the repair/check process
4482 */
4483 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4484 for (i = 0; i < s.failed; i++) {
4485 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4486 if (test_bit(R5_ReadError, &dev->flags)
4487 && !test_bit(R5_LOCKED, &dev->flags)
4488 && test_bit(R5_UPTODATE, &dev->flags)
4489 ) {
4490 if (!test_bit(R5_ReWrite, &dev->flags)) {
4491 set_bit(R5_Wantwrite, &dev->flags);
4492 set_bit(R5_ReWrite, &dev->flags);
4493 set_bit(R5_LOCKED, &dev->flags);
4494 s.locked++;
4495 } else {
4496 /* let's read it back */
4497 set_bit(R5_Wantread, &dev->flags);
4498 set_bit(R5_LOCKED, &dev->flags);
4499 s.locked++;
4500 }
4501 }
4502 }
4503
4504 /* Finish reconstruct operations initiated by the expansion process */
4505 if (sh->reconstruct_state == reconstruct_state_result) {
4506 struct stripe_head *sh_src
4507 = get_active_stripe(conf, sh->sector, 1, 1, 1);
4508 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4509 /* sh cannot be written until sh_src has been read.
4510 * so arrange for sh to be delayed a little
4511 */
4512 set_bit(STRIPE_DELAYED, &sh->state);
4513 set_bit(STRIPE_HANDLE, &sh->state);
4514 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4515 &sh_src->state))
4516 atomic_inc(&conf->preread_active_stripes);
4517 release_stripe(sh_src);
4518 goto finish;
4519 }
4520 if (sh_src)
4521 release_stripe(sh_src);
4522
4523 sh->reconstruct_state = reconstruct_state_idle;
4524 clear_bit(STRIPE_EXPANDING, &sh->state);
4525 for (i = conf->raid_disks; i--; ) {
4526 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4527 set_bit(R5_LOCKED, &sh->dev[i].flags);
4528 s.locked++;
4529 }
4530 }
4531
4532 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4533 !sh->reconstruct_state) {
4534 /* Need to write out all blocks after computing parity */
4535 sh->disks = conf->raid_disks;
4536 stripe_set_idx(sh->sector, conf, 0, sh);
4537 schedule_reconstruction(sh, &s, 1, 1);
4538 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4539 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4540 atomic_dec(&conf->reshape_stripes);
4541 wake_up(&conf->wait_for_overlap);
4542 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4543 }
4544
4545 if (s.expanding && s.locked == 0 &&
4546 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4547 handle_stripe_expansion(conf, sh);
4548
4549 finish:
4550 /* wait for this device to become unblocked */
4551 if (unlikely(s.blocked_rdev)) {
4552 if (conf->mddev->external)
4553 md_wait_for_blocked_rdev(s.blocked_rdev,
4554 conf->mddev);
4555 else
4556 /* Internal metadata will immediately
4557 * be written by raid5d, so we don't
4558 * need to wait here.
4559 */
4560 rdev_dec_pending(s.blocked_rdev,
4561 conf->mddev);
4562 }
4563
4564 if (s.handle_bad_blocks)
4565 for (i = disks; i--; ) {
4566 struct md_rdev *rdev;
4567 struct r5dev *dev = &sh->dev[i];
4568 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4569 /* We own a safe reference to the rdev */
4570 rdev = conf->disks[i].rdev;
4571 if (!rdev_set_badblocks(rdev, sh->sector,
4572 STRIPE_SECTORS, 0))
4573 md_error(conf->mddev, rdev);
4574 rdev_dec_pending(rdev, conf->mddev);
4575 }
4576 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4577 rdev = conf->disks[i].rdev;
4578 rdev_clear_badblocks(rdev, sh->sector,
4579 STRIPE_SECTORS, 0);
4580 rdev_dec_pending(rdev, conf->mddev);
4581 }
4582 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4583 rdev = conf->disks[i].replacement;
4584 if (!rdev)
4585 /* rdev have been moved down */
4586 rdev = conf->disks[i].rdev;
4587 rdev_clear_badblocks(rdev, sh->sector,
4588 STRIPE_SECTORS, 0);
4589 rdev_dec_pending(rdev, conf->mddev);
4590 }
4591 }
4592
4593 if (s.ops_request)
4594 raid_run_ops(sh, s.ops_request);
4595
4596 ops_run_io(sh, &s);
4597
4598 if (s.dec_preread_active) {
4599 /* We delay this until after ops_run_io so that if make_request
4600 * is waiting on a flush, it won't continue until the writes
4601 * have actually been submitted.
4602 */
4603 atomic_dec(&conf->preread_active_stripes);
4604 if (atomic_read(&conf->preread_active_stripes) <
4605 IO_THRESHOLD)
4606 md_wakeup_thread(conf->mddev->thread);
4607 }
4608
4609 return_io(s.return_bi);
4610
4611 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4612 }
4613
4614 static void raid5_activate_delayed(struct r5conf *conf)
4615 {
4616 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4617 while (!list_empty(&conf->delayed_list)) {
4618 struct list_head *l = conf->delayed_list.next;
4619 struct stripe_head *sh;
4620 sh = list_entry(l, struct stripe_head, lru);
4621 list_del_init(l);
4622 clear_bit(STRIPE_DELAYED, &sh->state);
4623 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4624 atomic_inc(&conf->preread_active_stripes);
4625 list_add_tail(&sh->lru, &conf->hold_list);
4626 raid5_wakeup_stripe_thread(sh);
4627 }
4628 }
4629 }
4630
4631 static void activate_bit_delay(struct r5conf *conf,
4632 struct list_head *temp_inactive_list)
4633 {
4634 /* device_lock is held */
4635 struct list_head head;
4636 list_add(&head, &conf->bitmap_list);
4637 list_del_init(&conf->bitmap_list);
4638 while (!list_empty(&head)) {
4639 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4640 int hash;
4641 list_del_init(&sh->lru);
4642 atomic_inc(&sh->count);
4643 hash = sh->hash_lock_index;
4644 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4645 }
4646 }
4647
4648 static int raid5_congested(struct mddev *mddev, int bits)
4649 {
4650 struct r5conf *conf = mddev->private;
4651
4652 /* No difference between reads and writes. Just check
4653 * how busy the stripe_cache is
4654 */
4655
4656 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4657 return 1;
4658 if (conf->quiesce)
4659 return 1;
4660 if (atomic_read(&conf->empty_inactive_list_nr))
4661 return 1;
4662
4663 return 0;
4664 }
4665
4666 /* We want read requests to align with chunks where possible,
4667 * but write requests don't need to.
4668 */
4669 static int raid5_mergeable_bvec(struct mddev *mddev,
4670 struct bvec_merge_data *bvm,
4671 struct bio_vec *biovec)
4672 {
4673 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4674 int max;
4675 unsigned int chunk_sectors = mddev->chunk_sectors;
4676 unsigned int bio_sectors = bvm->bi_size >> 9;
4677
4678 /*
4679 * always allow writes to be mergeable, read as well if array
4680 * is degraded as we'll go through stripe cache anyway.
4681 */
4682 if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4683 return biovec->bv_len;
4684
4685 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4686 chunk_sectors = mddev->new_chunk_sectors;
4687 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4688 if (max < 0) max = 0;
4689 if (max <= biovec->bv_len && bio_sectors == 0)
4690 return biovec->bv_len;
4691 else
4692 return max;
4693 }
4694
4695 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4696 {
4697 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4698 unsigned int chunk_sectors = mddev->chunk_sectors;
4699 unsigned int bio_sectors = bio_sectors(bio);
4700
4701 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4702 chunk_sectors = mddev->new_chunk_sectors;
4703 return chunk_sectors >=
4704 ((sector & (chunk_sectors - 1)) + bio_sectors);
4705 }
4706
4707 /*
4708 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4709 * later sampled by raid5d.
4710 */
4711 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4712 {
4713 unsigned long flags;
4714
4715 spin_lock_irqsave(&conf->device_lock, flags);
4716
4717 bi->bi_next = conf->retry_read_aligned_list;
4718 conf->retry_read_aligned_list = bi;
4719
4720 spin_unlock_irqrestore(&conf->device_lock, flags);
4721 md_wakeup_thread(conf->mddev->thread);
4722 }
4723
4724 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4725 {
4726 struct bio *bi;
4727
4728 bi = conf->retry_read_aligned;
4729 if (bi) {
4730 conf->retry_read_aligned = NULL;
4731 return bi;
4732 }
4733 bi = conf->retry_read_aligned_list;
4734 if(bi) {
4735 conf->retry_read_aligned_list = bi->bi_next;
4736 bi->bi_next = NULL;
4737 /*
4738 * this sets the active strip count to 1 and the processed
4739 * strip count to zero (upper 8 bits)
4740 */
4741 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4742 }
4743
4744 return bi;
4745 }
4746
4747 /*
4748 * The "raid5_align_endio" should check if the read succeeded and if it
4749 * did, call bio_endio on the original bio (having bio_put the new bio
4750 * first).
4751 * If the read failed..
4752 */
4753 static void raid5_align_endio(struct bio *bi)
4754 {
4755 struct bio* raid_bi = bi->bi_private;
4756 struct mddev *mddev;
4757 struct r5conf *conf;
4758 struct md_rdev *rdev;
4759 int error = bi->bi_error;
4760
4761 bio_put(bi);
4762
4763 rdev = (void*)raid_bi->bi_next;
4764 raid_bi->bi_next = NULL;
4765 mddev = rdev->mddev;
4766 conf = mddev->private;
4767
4768 rdev_dec_pending(rdev, conf->mddev);
4769
4770 if (!error) {
4771 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4772 raid_bi, 0);
4773 bio_endio(raid_bi);
4774 if (atomic_dec_and_test(&conf->active_aligned_reads))
4775 wake_up(&conf->wait_for_quiescent);
4776 return;
4777 }
4778
4779 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4780
4781 add_bio_to_retry(raid_bi, conf);
4782 }
4783
4784 static int bio_fits_rdev(struct bio *bi)
4785 {
4786 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4787
4788 if (bio_sectors(bi) > queue_max_sectors(q))
4789 return 0;
4790 blk_recount_segments(q, bi);
4791 if (bi->bi_phys_segments > queue_max_segments(q))
4792 return 0;
4793
4794 if (q->merge_bvec_fn)
4795 /* it's too hard to apply the merge_bvec_fn at this stage,
4796 * just just give up
4797 */
4798 return 0;
4799
4800 return 1;
4801 }
4802
4803 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4804 {
4805 struct r5conf *conf = mddev->private;
4806 int dd_idx;
4807 struct bio* align_bi;
4808 struct md_rdev *rdev;
4809 sector_t end_sector;
4810
4811 if (!in_chunk_boundary(mddev, raid_bio)) {
4812 pr_debug("%s: non aligned\n", __func__);
4813 return 0;
4814 }
4815 /*
4816 * use bio_clone_mddev to make a copy of the bio
4817 */
4818 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4819 if (!align_bi)
4820 return 0;
4821 /*
4822 * set bi_end_io to a new function, and set bi_private to the
4823 * original bio.
4824 */
4825 align_bi->bi_end_io = raid5_align_endio;
4826 align_bi->bi_private = raid_bio;
4827 /*
4828 * compute position
4829 */
4830 align_bi->bi_iter.bi_sector =
4831 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4832 0, &dd_idx, NULL);
4833
4834 end_sector = bio_end_sector(align_bi);
4835 rcu_read_lock();
4836 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4837 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4838 rdev->recovery_offset < end_sector) {
4839 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4840 if (rdev &&
4841 (test_bit(Faulty, &rdev->flags) ||
4842 !(test_bit(In_sync, &rdev->flags) ||
4843 rdev->recovery_offset >= end_sector)))
4844 rdev = NULL;
4845 }
4846 if (rdev) {
4847 sector_t first_bad;
4848 int bad_sectors;
4849
4850 atomic_inc(&rdev->nr_pending);
4851 rcu_read_unlock();
4852 raid_bio->bi_next = (void*)rdev;
4853 align_bi->bi_bdev = rdev->bdev;
4854 bio_clear_flag(align_bi, BIO_SEG_VALID);
4855
4856 if (!bio_fits_rdev(align_bi) ||
4857 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4858 bio_sectors(align_bi),
4859 &first_bad, &bad_sectors)) {
4860 /* too big in some way, or has a known bad block */
4861 bio_put(align_bi);
4862 rdev_dec_pending(rdev, mddev);
4863 return 0;
4864 }
4865
4866 /* No reshape active, so we can trust rdev->data_offset */
4867 align_bi->bi_iter.bi_sector += rdev->data_offset;
4868
4869 spin_lock_irq(&conf->device_lock);
4870 wait_event_lock_irq(conf->wait_for_quiescent,
4871 conf->quiesce == 0,
4872 conf->device_lock);
4873 atomic_inc(&conf->active_aligned_reads);
4874 spin_unlock_irq(&conf->device_lock);
4875
4876 if (mddev->gendisk)
4877 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4878 align_bi, disk_devt(mddev->gendisk),
4879 raid_bio->bi_iter.bi_sector);
4880 generic_make_request(align_bi);
4881 return 1;
4882 } else {
4883 rcu_read_unlock();
4884 bio_put(align_bi);
4885 return 0;
4886 }
4887 }
4888
4889 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4890 {
4891 struct bio *split;
4892
4893 do {
4894 sector_t sector = raid_bio->bi_iter.bi_sector;
4895 unsigned chunk_sects = mddev->chunk_sectors;
4896 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4897
4898 if (sectors < bio_sectors(raid_bio)) {
4899 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4900 bio_chain(split, raid_bio);
4901 } else
4902 split = raid_bio;
4903
4904 if (!raid5_read_one_chunk(mddev, split)) {
4905 if (split != raid_bio)
4906 generic_make_request(raid_bio);
4907 return split;
4908 }
4909 } while (split != raid_bio);
4910
4911 return NULL;
4912 }
4913
4914 /* __get_priority_stripe - get the next stripe to process
4915 *
4916 * Full stripe writes are allowed to pass preread active stripes up until
4917 * the bypass_threshold is exceeded. In general the bypass_count
4918 * increments when the handle_list is handled before the hold_list; however, it
4919 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4920 * stripe with in flight i/o. The bypass_count will be reset when the
4921 * head of the hold_list has changed, i.e. the head was promoted to the
4922 * handle_list.
4923 */
4924 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4925 {
4926 struct stripe_head *sh = NULL, *tmp;
4927 struct list_head *handle_list = NULL;
4928 struct r5worker_group *wg = NULL;
4929
4930 if (conf->worker_cnt_per_group == 0) {
4931 handle_list = &conf->handle_list;
4932 } else if (group != ANY_GROUP) {
4933 handle_list = &conf->worker_groups[group].handle_list;
4934 wg = &conf->worker_groups[group];
4935 } else {
4936 int i;
4937 for (i = 0; i < conf->group_cnt; i++) {
4938 handle_list = &conf->worker_groups[i].handle_list;
4939 wg = &conf->worker_groups[i];
4940 if (!list_empty(handle_list))
4941 break;
4942 }
4943 }
4944
4945 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4946 __func__,
4947 list_empty(handle_list) ? "empty" : "busy",
4948 list_empty(&conf->hold_list) ? "empty" : "busy",
4949 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4950
4951 if (!list_empty(handle_list)) {
4952 sh = list_entry(handle_list->next, typeof(*sh), lru);
4953
4954 if (list_empty(&conf->hold_list))
4955 conf->bypass_count = 0;
4956 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4957 if (conf->hold_list.next == conf->last_hold)
4958 conf->bypass_count++;
4959 else {
4960 conf->last_hold = conf->hold_list.next;
4961 conf->bypass_count -= conf->bypass_threshold;
4962 if (conf->bypass_count < 0)
4963 conf->bypass_count = 0;
4964 }
4965 }
4966 } else if (!list_empty(&conf->hold_list) &&
4967 ((conf->bypass_threshold &&
4968 conf->bypass_count > conf->bypass_threshold) ||
4969 atomic_read(&conf->pending_full_writes) == 0)) {
4970
4971 list_for_each_entry(tmp, &conf->hold_list, lru) {
4972 if (conf->worker_cnt_per_group == 0 ||
4973 group == ANY_GROUP ||
4974 !cpu_online(tmp->cpu) ||
4975 cpu_to_group(tmp->cpu) == group) {
4976 sh = tmp;
4977 break;
4978 }
4979 }
4980
4981 if (sh) {
4982 conf->bypass_count -= conf->bypass_threshold;
4983 if (conf->bypass_count < 0)
4984 conf->bypass_count = 0;
4985 }
4986 wg = NULL;
4987 }
4988
4989 if (!sh)
4990 return NULL;
4991
4992 if (wg) {
4993 wg->stripes_cnt--;
4994 sh->group = NULL;
4995 }
4996 list_del_init(&sh->lru);
4997 BUG_ON(atomic_inc_return(&sh->count) != 1);
4998 return sh;
4999 }
5000
5001 struct raid5_plug_cb {
5002 struct blk_plug_cb cb;
5003 struct list_head list;
5004 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5005 };
5006
5007 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5008 {
5009 struct raid5_plug_cb *cb = container_of(
5010 blk_cb, struct raid5_plug_cb, cb);
5011 struct stripe_head *sh;
5012 struct mddev *mddev = cb->cb.data;
5013 struct r5conf *conf = mddev->private;
5014 int cnt = 0;
5015 int hash;
5016
5017 if (cb->list.next && !list_empty(&cb->list)) {
5018 spin_lock_irq(&conf->device_lock);
5019 while (!list_empty(&cb->list)) {
5020 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5021 list_del_init(&sh->lru);
5022 /*
5023 * avoid race release_stripe_plug() sees
5024 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5025 * is still in our list
5026 */
5027 smp_mb__before_atomic();
5028 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5029 /*
5030 * STRIPE_ON_RELEASE_LIST could be set here. In that
5031 * case, the count is always > 1 here
5032 */
5033 hash = sh->hash_lock_index;
5034 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5035 cnt++;
5036 }
5037 spin_unlock_irq(&conf->device_lock);
5038 }
5039 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5040 NR_STRIPE_HASH_LOCKS);
5041 if (mddev->queue)
5042 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5043 kfree(cb);
5044 }
5045
5046 static void release_stripe_plug(struct mddev *mddev,
5047 struct stripe_head *sh)
5048 {
5049 struct blk_plug_cb *blk_cb = blk_check_plugged(
5050 raid5_unplug, mddev,
5051 sizeof(struct raid5_plug_cb));
5052 struct raid5_plug_cb *cb;
5053
5054 if (!blk_cb) {
5055 release_stripe(sh);
5056 return;
5057 }
5058
5059 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5060
5061 if (cb->list.next == NULL) {
5062 int i;
5063 INIT_LIST_HEAD(&cb->list);
5064 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5065 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5066 }
5067
5068 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5069 list_add_tail(&sh->lru, &cb->list);
5070 else
5071 release_stripe(sh);
5072 }
5073
5074 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5075 {
5076 struct r5conf *conf = mddev->private;
5077 sector_t logical_sector, last_sector;
5078 struct stripe_head *sh;
5079 int remaining;
5080 int stripe_sectors;
5081
5082 if (mddev->reshape_position != MaxSector)
5083 /* Skip discard while reshape is happening */
5084 return;
5085
5086 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5087 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5088
5089 bi->bi_next = NULL;
5090 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5091
5092 stripe_sectors = conf->chunk_sectors *
5093 (conf->raid_disks - conf->max_degraded);
5094 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5095 stripe_sectors);
5096 sector_div(last_sector, stripe_sectors);
5097
5098 logical_sector *= conf->chunk_sectors;
5099 last_sector *= conf->chunk_sectors;
5100
5101 for (; logical_sector < last_sector;
5102 logical_sector += STRIPE_SECTORS) {
5103 DEFINE_WAIT(w);
5104 int d;
5105 again:
5106 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5107 prepare_to_wait(&conf->wait_for_overlap, &w,
5108 TASK_UNINTERRUPTIBLE);
5109 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5110 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5111 release_stripe(sh);
5112 schedule();
5113 goto again;
5114 }
5115 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5116 spin_lock_irq(&sh->stripe_lock);
5117 for (d = 0; d < conf->raid_disks; d++) {
5118 if (d == sh->pd_idx || d == sh->qd_idx)
5119 continue;
5120 if (sh->dev[d].towrite || sh->dev[d].toread) {
5121 set_bit(R5_Overlap, &sh->dev[d].flags);
5122 spin_unlock_irq(&sh->stripe_lock);
5123 release_stripe(sh);
5124 schedule();
5125 goto again;
5126 }
5127 }
5128 set_bit(STRIPE_DISCARD, &sh->state);
5129 finish_wait(&conf->wait_for_overlap, &w);
5130 sh->overwrite_disks = 0;
5131 for (d = 0; d < conf->raid_disks; d++) {
5132 if (d == sh->pd_idx || d == sh->qd_idx)
5133 continue;
5134 sh->dev[d].towrite = bi;
5135 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5136 raid5_inc_bi_active_stripes(bi);
5137 sh->overwrite_disks++;
5138 }
5139 spin_unlock_irq(&sh->stripe_lock);
5140 if (conf->mddev->bitmap) {
5141 for (d = 0;
5142 d < conf->raid_disks - conf->max_degraded;
5143 d++)
5144 bitmap_startwrite(mddev->bitmap,
5145 sh->sector,
5146 STRIPE_SECTORS,
5147 0);
5148 sh->bm_seq = conf->seq_flush + 1;
5149 set_bit(STRIPE_BIT_DELAY, &sh->state);
5150 }
5151
5152 set_bit(STRIPE_HANDLE, &sh->state);
5153 clear_bit(STRIPE_DELAYED, &sh->state);
5154 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5155 atomic_inc(&conf->preread_active_stripes);
5156 release_stripe_plug(mddev, sh);
5157 }
5158
5159 remaining = raid5_dec_bi_active_stripes(bi);
5160 if (remaining == 0) {
5161 md_write_end(mddev);
5162 bio_endio(bi);
5163 }
5164 }
5165
5166 static void make_request(struct mddev *mddev, struct bio * bi)
5167 {
5168 struct r5conf *conf = mddev->private;
5169 int dd_idx;
5170 sector_t new_sector;
5171 sector_t logical_sector, last_sector;
5172 struct stripe_head *sh;
5173 const int rw = bio_data_dir(bi);
5174 int remaining;
5175 DEFINE_WAIT(w);
5176 bool do_prepare;
5177
5178 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5179 md_flush_request(mddev, bi);
5180 return;
5181 }
5182
5183 md_write_start(mddev, bi);
5184
5185 /*
5186 * If array is degraded, better not do chunk aligned read because
5187 * later we might have to read it again in order to reconstruct
5188 * data on failed drives.
5189 */
5190 if (rw == READ && mddev->degraded == 0 &&
5191 mddev->reshape_position == MaxSector) {
5192 bi = chunk_aligned_read(mddev, bi);
5193 if (!bi)
5194 return;
5195 }
5196
5197 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5198 make_discard_request(mddev, bi);
5199 return;
5200 }
5201
5202 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5203 last_sector = bio_end_sector(bi);
5204 bi->bi_next = NULL;
5205 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5206
5207 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5208 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5209 int previous;
5210 int seq;
5211
5212 do_prepare = false;
5213 retry:
5214 seq = read_seqcount_begin(&conf->gen_lock);
5215 previous = 0;
5216 if (do_prepare)
5217 prepare_to_wait(&conf->wait_for_overlap, &w,
5218 TASK_UNINTERRUPTIBLE);
5219 if (unlikely(conf->reshape_progress != MaxSector)) {
5220 /* spinlock is needed as reshape_progress may be
5221 * 64bit on a 32bit platform, and so it might be
5222 * possible to see a half-updated value
5223 * Of course reshape_progress could change after
5224 * the lock is dropped, so once we get a reference
5225 * to the stripe that we think it is, we will have
5226 * to check again.
5227 */
5228 spin_lock_irq(&conf->device_lock);
5229 if (mddev->reshape_backwards
5230 ? logical_sector < conf->reshape_progress
5231 : logical_sector >= conf->reshape_progress) {
5232 previous = 1;
5233 } else {
5234 if (mddev->reshape_backwards
5235 ? logical_sector < conf->reshape_safe
5236 : logical_sector >= conf->reshape_safe) {
5237 spin_unlock_irq(&conf->device_lock);
5238 schedule();
5239 do_prepare = true;
5240 goto retry;
5241 }
5242 }
5243 spin_unlock_irq(&conf->device_lock);
5244 }
5245
5246 new_sector = raid5_compute_sector(conf, logical_sector,
5247 previous,
5248 &dd_idx, NULL);
5249 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5250 (unsigned long long)new_sector,
5251 (unsigned long long)logical_sector);
5252
5253 sh = get_active_stripe(conf, new_sector, previous,
5254 (bi->bi_rw&RWA_MASK), 0);
5255 if (sh) {
5256 if (unlikely(previous)) {
5257 /* expansion might have moved on while waiting for a
5258 * stripe, so we must do the range check again.
5259 * Expansion could still move past after this
5260 * test, but as we are holding a reference to
5261 * 'sh', we know that if that happens,
5262 * STRIPE_EXPANDING will get set and the expansion
5263 * won't proceed until we finish with the stripe.
5264 */
5265 int must_retry = 0;
5266 spin_lock_irq(&conf->device_lock);
5267 if (mddev->reshape_backwards
5268 ? logical_sector >= conf->reshape_progress
5269 : logical_sector < conf->reshape_progress)
5270 /* mismatch, need to try again */
5271 must_retry = 1;
5272 spin_unlock_irq(&conf->device_lock);
5273 if (must_retry) {
5274 release_stripe(sh);
5275 schedule();
5276 do_prepare = true;
5277 goto retry;
5278 }
5279 }
5280 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5281 /* Might have got the wrong stripe_head
5282 * by accident
5283 */
5284 release_stripe(sh);
5285 goto retry;
5286 }
5287
5288 if (rw == WRITE &&
5289 logical_sector >= mddev->suspend_lo &&
5290 logical_sector < mddev->suspend_hi) {
5291 release_stripe(sh);
5292 /* As the suspend_* range is controlled by
5293 * userspace, we want an interruptible
5294 * wait.
5295 */
5296 flush_signals(current);
5297 prepare_to_wait(&conf->wait_for_overlap,
5298 &w, TASK_INTERRUPTIBLE);
5299 if (logical_sector >= mddev->suspend_lo &&
5300 logical_sector < mddev->suspend_hi) {
5301 schedule();
5302 do_prepare = true;
5303 }
5304 goto retry;
5305 }
5306
5307 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5308 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5309 /* Stripe is busy expanding or
5310 * add failed due to overlap. Flush everything
5311 * and wait a while
5312 */
5313 md_wakeup_thread(mddev->thread);
5314 release_stripe(sh);
5315 schedule();
5316 do_prepare = true;
5317 goto retry;
5318 }
5319 set_bit(STRIPE_HANDLE, &sh->state);
5320 clear_bit(STRIPE_DELAYED, &sh->state);
5321 if ((!sh->batch_head || sh == sh->batch_head) &&
5322 (bi->bi_rw & REQ_SYNC) &&
5323 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5324 atomic_inc(&conf->preread_active_stripes);
5325 release_stripe_plug(mddev, sh);
5326 } else {
5327 /* cannot get stripe for read-ahead, just give-up */
5328 bi->bi_error = -EIO;
5329 break;
5330 }
5331 }
5332 finish_wait(&conf->wait_for_overlap, &w);
5333
5334 remaining = raid5_dec_bi_active_stripes(bi);
5335 if (remaining == 0) {
5336
5337 if ( rw == WRITE )
5338 md_write_end(mddev);
5339
5340 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5341 bi, 0);
5342 bio_endio(bi);
5343 }
5344 }
5345
5346 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5347
5348 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5349 {
5350 /* reshaping is quite different to recovery/resync so it is
5351 * handled quite separately ... here.
5352 *
5353 * On each call to sync_request, we gather one chunk worth of
5354 * destination stripes and flag them as expanding.
5355 * Then we find all the source stripes and request reads.
5356 * As the reads complete, handle_stripe will copy the data
5357 * into the destination stripe and release that stripe.
5358 */
5359 struct r5conf *conf = mddev->private;
5360 struct stripe_head *sh;
5361 sector_t first_sector, last_sector;
5362 int raid_disks = conf->previous_raid_disks;
5363 int data_disks = raid_disks - conf->max_degraded;
5364 int new_data_disks = conf->raid_disks - conf->max_degraded;
5365 int i;
5366 int dd_idx;
5367 sector_t writepos, readpos, safepos;
5368 sector_t stripe_addr;
5369 int reshape_sectors;
5370 struct list_head stripes;
5371
5372 if (sector_nr == 0) {
5373 /* If restarting in the middle, skip the initial sectors */
5374 if (mddev->reshape_backwards &&
5375 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5376 sector_nr = raid5_size(mddev, 0, 0)
5377 - conf->reshape_progress;
5378 } else if (!mddev->reshape_backwards &&
5379 conf->reshape_progress > 0)
5380 sector_nr = conf->reshape_progress;
5381 sector_div(sector_nr, new_data_disks);
5382 if (sector_nr) {
5383 mddev->curr_resync_completed = sector_nr;
5384 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5385 *skipped = 1;
5386 return sector_nr;
5387 }
5388 }
5389
5390 /* We need to process a full chunk at a time.
5391 * If old and new chunk sizes differ, we need to process the
5392 * largest of these
5393 */
5394 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5395 reshape_sectors = mddev->new_chunk_sectors;
5396 else
5397 reshape_sectors = mddev->chunk_sectors;
5398
5399 /* We update the metadata at least every 10 seconds, or when
5400 * the data about to be copied would over-write the source of
5401 * the data at the front of the range. i.e. one new_stripe
5402 * along from reshape_progress new_maps to after where
5403 * reshape_safe old_maps to
5404 */
5405 writepos = conf->reshape_progress;
5406 sector_div(writepos, new_data_disks);
5407 readpos = conf->reshape_progress;
5408 sector_div(readpos, data_disks);
5409 safepos = conf->reshape_safe;
5410 sector_div(safepos, data_disks);
5411 if (mddev->reshape_backwards) {
5412 writepos -= min_t(sector_t, reshape_sectors, writepos);
5413 readpos += reshape_sectors;
5414 safepos += reshape_sectors;
5415 } else {
5416 writepos += reshape_sectors;
5417 readpos -= min_t(sector_t, reshape_sectors, readpos);
5418 safepos -= min_t(sector_t, reshape_sectors, safepos);
5419 }
5420
5421 /* Having calculated the 'writepos' possibly use it
5422 * to set 'stripe_addr' which is where we will write to.
5423 */
5424 if (mddev->reshape_backwards) {
5425 BUG_ON(conf->reshape_progress == 0);
5426 stripe_addr = writepos;
5427 BUG_ON((mddev->dev_sectors &
5428 ~((sector_t)reshape_sectors - 1))
5429 - reshape_sectors - stripe_addr
5430 != sector_nr);
5431 } else {
5432 BUG_ON(writepos != sector_nr + reshape_sectors);
5433 stripe_addr = sector_nr;
5434 }
5435
5436 /* 'writepos' is the most advanced device address we might write.
5437 * 'readpos' is the least advanced device address we might read.
5438 * 'safepos' is the least address recorded in the metadata as having
5439 * been reshaped.
5440 * If there is a min_offset_diff, these are adjusted either by
5441 * increasing the safepos/readpos if diff is negative, or
5442 * increasing writepos if diff is positive.
5443 * If 'readpos' is then behind 'writepos', there is no way that we can
5444 * ensure safety in the face of a crash - that must be done by userspace
5445 * making a backup of the data. So in that case there is no particular
5446 * rush to update metadata.
5447 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5448 * update the metadata to advance 'safepos' to match 'readpos' so that
5449 * we can be safe in the event of a crash.
5450 * So we insist on updating metadata if safepos is behind writepos and
5451 * readpos is beyond writepos.
5452 * In any case, update the metadata every 10 seconds.
5453 * Maybe that number should be configurable, but I'm not sure it is
5454 * worth it.... maybe it could be a multiple of safemode_delay???
5455 */
5456 if (conf->min_offset_diff < 0) {
5457 safepos += -conf->min_offset_diff;
5458 readpos += -conf->min_offset_diff;
5459 } else
5460 writepos += conf->min_offset_diff;
5461
5462 if ((mddev->reshape_backwards
5463 ? (safepos > writepos && readpos < writepos)
5464 : (safepos < writepos && readpos > writepos)) ||
5465 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5466 /* Cannot proceed until we've updated the superblock... */
5467 wait_event(conf->wait_for_overlap,
5468 atomic_read(&conf->reshape_stripes)==0
5469 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5470 if (atomic_read(&conf->reshape_stripes) != 0)
5471 return 0;
5472 mddev->reshape_position = conf->reshape_progress;
5473 mddev->curr_resync_completed = sector_nr;
5474 conf->reshape_checkpoint = jiffies;
5475 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5476 md_wakeup_thread(mddev->thread);
5477 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5478 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5479 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5480 return 0;
5481 spin_lock_irq(&conf->device_lock);
5482 conf->reshape_safe = mddev->reshape_position;
5483 spin_unlock_irq(&conf->device_lock);
5484 wake_up(&conf->wait_for_overlap);
5485 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5486 }
5487
5488 INIT_LIST_HEAD(&stripes);
5489 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5490 int j;
5491 int skipped_disk = 0;
5492 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5493 set_bit(STRIPE_EXPANDING, &sh->state);
5494 atomic_inc(&conf->reshape_stripes);
5495 /* If any of this stripe is beyond the end of the old
5496 * array, then we need to zero those blocks
5497 */
5498 for (j=sh->disks; j--;) {
5499 sector_t s;
5500 if (j == sh->pd_idx)
5501 continue;
5502 if (conf->level == 6 &&
5503 j == sh->qd_idx)
5504 continue;
5505 s = compute_blocknr(sh, j, 0);
5506 if (s < raid5_size(mddev, 0, 0)) {
5507 skipped_disk = 1;
5508 continue;
5509 }
5510 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5511 set_bit(R5_Expanded, &sh->dev[j].flags);
5512 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5513 }
5514 if (!skipped_disk) {
5515 set_bit(STRIPE_EXPAND_READY, &sh->state);
5516 set_bit(STRIPE_HANDLE, &sh->state);
5517 }
5518 list_add(&sh->lru, &stripes);
5519 }
5520 spin_lock_irq(&conf->device_lock);
5521 if (mddev->reshape_backwards)
5522 conf->reshape_progress -= reshape_sectors * new_data_disks;
5523 else
5524 conf->reshape_progress += reshape_sectors * new_data_disks;
5525 spin_unlock_irq(&conf->device_lock);
5526 /* Ok, those stripe are ready. We can start scheduling
5527 * reads on the source stripes.
5528 * The source stripes are determined by mapping the first and last
5529 * block on the destination stripes.
5530 */
5531 first_sector =
5532 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5533 1, &dd_idx, NULL);
5534 last_sector =
5535 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5536 * new_data_disks - 1),
5537 1, &dd_idx, NULL);
5538 if (last_sector >= mddev->dev_sectors)
5539 last_sector = mddev->dev_sectors - 1;
5540 while (first_sector <= last_sector) {
5541 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5542 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5543 set_bit(STRIPE_HANDLE, &sh->state);
5544 release_stripe(sh);
5545 first_sector += STRIPE_SECTORS;
5546 }
5547 /* Now that the sources are clearly marked, we can release
5548 * the destination stripes
5549 */
5550 while (!list_empty(&stripes)) {
5551 sh = list_entry(stripes.next, struct stripe_head, lru);
5552 list_del_init(&sh->lru);
5553 release_stripe(sh);
5554 }
5555 /* If this takes us to the resync_max point where we have to pause,
5556 * then we need to write out the superblock.
5557 */
5558 sector_nr += reshape_sectors;
5559 if ((sector_nr - mddev->curr_resync_completed) * 2
5560 >= mddev->resync_max - mddev->curr_resync_completed) {
5561 /* Cannot proceed until we've updated the superblock... */
5562 wait_event(conf->wait_for_overlap,
5563 atomic_read(&conf->reshape_stripes) == 0
5564 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5565 if (atomic_read(&conf->reshape_stripes) != 0)
5566 goto ret;
5567 mddev->reshape_position = conf->reshape_progress;
5568 mddev->curr_resync_completed = sector_nr;
5569 conf->reshape_checkpoint = jiffies;
5570 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5571 md_wakeup_thread(mddev->thread);
5572 wait_event(mddev->sb_wait,
5573 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5574 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5575 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5576 goto ret;
5577 spin_lock_irq(&conf->device_lock);
5578 conf->reshape_safe = mddev->reshape_position;
5579 spin_unlock_irq(&conf->device_lock);
5580 wake_up(&conf->wait_for_overlap);
5581 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5582 }
5583 ret:
5584 return reshape_sectors;
5585 }
5586
5587 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5588 {
5589 struct r5conf *conf = mddev->private;
5590 struct stripe_head *sh;
5591 sector_t max_sector = mddev->dev_sectors;
5592 sector_t sync_blocks;
5593 int still_degraded = 0;
5594 int i;
5595
5596 if (sector_nr >= max_sector) {
5597 /* just being told to finish up .. nothing much to do */
5598
5599 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5600 end_reshape(conf);
5601 return 0;
5602 }
5603
5604 if (mddev->curr_resync < max_sector) /* aborted */
5605 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5606 &sync_blocks, 1);
5607 else /* completed sync */
5608 conf->fullsync = 0;
5609 bitmap_close_sync(mddev->bitmap);
5610
5611 return 0;
5612 }
5613
5614 /* Allow raid5_quiesce to complete */
5615 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5616
5617 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5618 return reshape_request(mddev, sector_nr, skipped);
5619
5620 /* No need to check resync_max as we never do more than one
5621 * stripe, and as resync_max will always be on a chunk boundary,
5622 * if the check in md_do_sync didn't fire, there is no chance
5623 * of overstepping resync_max here
5624 */
5625
5626 /* if there is too many failed drives and we are trying
5627 * to resync, then assert that we are finished, because there is
5628 * nothing we can do.
5629 */
5630 if (mddev->degraded >= conf->max_degraded &&
5631 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5632 sector_t rv = mddev->dev_sectors - sector_nr;
5633 *skipped = 1;
5634 return rv;
5635 }
5636 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5637 !conf->fullsync &&
5638 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5639 sync_blocks >= STRIPE_SECTORS) {
5640 /* we can skip this block, and probably more */
5641 sync_blocks /= STRIPE_SECTORS;
5642 *skipped = 1;
5643 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5644 }
5645
5646 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5647
5648 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5649 if (sh == NULL) {
5650 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5651 /* make sure we don't swamp the stripe cache if someone else
5652 * is trying to get access
5653 */
5654 schedule_timeout_uninterruptible(1);
5655 }
5656 /* Need to check if array will still be degraded after recovery/resync
5657 * Note in case of > 1 drive failures it's possible we're rebuilding
5658 * one drive while leaving another faulty drive in array.
5659 */
5660 rcu_read_lock();
5661 for (i = 0; i < conf->raid_disks; i++) {
5662 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5663
5664 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5665 still_degraded = 1;
5666 }
5667 rcu_read_unlock();
5668
5669 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5670
5671 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5672 set_bit(STRIPE_HANDLE, &sh->state);
5673
5674 release_stripe(sh);
5675
5676 return STRIPE_SECTORS;
5677 }
5678
5679 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5680 {
5681 /* We may not be able to submit a whole bio at once as there
5682 * may not be enough stripe_heads available.
5683 * We cannot pre-allocate enough stripe_heads as we may need
5684 * more than exist in the cache (if we allow ever large chunks).
5685 * So we do one stripe head at a time and record in
5686 * ->bi_hw_segments how many have been done.
5687 *
5688 * We *know* that this entire raid_bio is in one chunk, so
5689 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5690 */
5691 struct stripe_head *sh;
5692 int dd_idx;
5693 sector_t sector, logical_sector, last_sector;
5694 int scnt = 0;
5695 int remaining;
5696 int handled = 0;
5697
5698 logical_sector = raid_bio->bi_iter.bi_sector &
5699 ~((sector_t)STRIPE_SECTORS-1);
5700 sector = raid5_compute_sector(conf, logical_sector,
5701 0, &dd_idx, NULL);
5702 last_sector = bio_end_sector(raid_bio);
5703
5704 for (; logical_sector < last_sector;
5705 logical_sector += STRIPE_SECTORS,
5706 sector += STRIPE_SECTORS,
5707 scnt++) {
5708
5709 if (scnt < raid5_bi_processed_stripes(raid_bio))
5710 /* already done this stripe */
5711 continue;
5712
5713 sh = get_active_stripe(conf, sector, 0, 1, 1);
5714
5715 if (!sh) {
5716 /* failed to get a stripe - must wait */
5717 raid5_set_bi_processed_stripes(raid_bio, scnt);
5718 conf->retry_read_aligned = raid_bio;
5719 return handled;
5720 }
5721
5722 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5723 release_stripe(sh);
5724 raid5_set_bi_processed_stripes(raid_bio, scnt);
5725 conf->retry_read_aligned = raid_bio;
5726 return handled;
5727 }
5728
5729 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5730 handle_stripe(sh);
5731 release_stripe(sh);
5732 handled++;
5733 }
5734 remaining = raid5_dec_bi_active_stripes(raid_bio);
5735 if (remaining == 0) {
5736 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5737 raid_bio, 0);
5738 bio_endio(raid_bio);
5739 }
5740 if (atomic_dec_and_test(&conf->active_aligned_reads))
5741 wake_up(&conf->wait_for_quiescent);
5742 return handled;
5743 }
5744
5745 static int handle_active_stripes(struct r5conf *conf, int group,
5746 struct r5worker *worker,
5747 struct list_head *temp_inactive_list)
5748 {
5749 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5750 int i, batch_size = 0, hash;
5751 bool release_inactive = false;
5752
5753 while (batch_size < MAX_STRIPE_BATCH &&
5754 (sh = __get_priority_stripe(conf, group)) != NULL)
5755 batch[batch_size++] = sh;
5756
5757 if (batch_size == 0) {
5758 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5759 if (!list_empty(temp_inactive_list + i))
5760 break;
5761 if (i == NR_STRIPE_HASH_LOCKS)
5762 return batch_size;
5763 release_inactive = true;
5764 }
5765 spin_unlock_irq(&conf->device_lock);
5766
5767 release_inactive_stripe_list(conf, temp_inactive_list,
5768 NR_STRIPE_HASH_LOCKS);
5769
5770 if (release_inactive) {
5771 spin_lock_irq(&conf->device_lock);
5772 return 0;
5773 }
5774
5775 for (i = 0; i < batch_size; i++)
5776 handle_stripe(batch[i]);
5777
5778 cond_resched();
5779
5780 spin_lock_irq(&conf->device_lock);
5781 for (i = 0; i < batch_size; i++) {
5782 hash = batch[i]->hash_lock_index;
5783 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5784 }
5785 return batch_size;
5786 }
5787
5788 static void raid5_do_work(struct work_struct *work)
5789 {
5790 struct r5worker *worker = container_of(work, struct r5worker, work);
5791 struct r5worker_group *group = worker->group;
5792 struct r5conf *conf = group->conf;
5793 int group_id = group - conf->worker_groups;
5794 int handled;
5795 struct blk_plug plug;
5796
5797 pr_debug("+++ raid5worker active\n");
5798
5799 blk_start_plug(&plug);
5800 handled = 0;
5801 spin_lock_irq(&conf->device_lock);
5802 while (1) {
5803 int batch_size, released;
5804
5805 released = release_stripe_list(conf, worker->temp_inactive_list);
5806
5807 batch_size = handle_active_stripes(conf, group_id, worker,
5808 worker->temp_inactive_list);
5809 worker->working = false;
5810 if (!batch_size && !released)
5811 break;
5812 handled += batch_size;
5813 }
5814 pr_debug("%d stripes handled\n", handled);
5815
5816 spin_unlock_irq(&conf->device_lock);
5817 blk_finish_plug(&plug);
5818
5819 pr_debug("--- raid5worker inactive\n");
5820 }
5821
5822 /*
5823 * This is our raid5 kernel thread.
5824 *
5825 * We scan the hash table for stripes which can be handled now.
5826 * During the scan, completed stripes are saved for us by the interrupt
5827 * handler, so that they will not have to wait for our next wakeup.
5828 */
5829 static void raid5d(struct md_thread *thread)
5830 {
5831 struct mddev *mddev = thread->mddev;
5832 struct r5conf *conf = mddev->private;
5833 int handled;
5834 struct blk_plug plug;
5835
5836 pr_debug("+++ raid5d active\n");
5837
5838 md_check_recovery(mddev);
5839
5840 blk_start_plug(&plug);
5841 handled = 0;
5842 spin_lock_irq(&conf->device_lock);
5843 while (1) {
5844 struct bio *bio;
5845 int batch_size, released;
5846
5847 released = release_stripe_list(conf, conf->temp_inactive_list);
5848 if (released)
5849 clear_bit(R5_DID_ALLOC, &conf->cache_state);
5850
5851 if (
5852 !list_empty(&conf->bitmap_list)) {
5853 /* Now is a good time to flush some bitmap updates */
5854 conf->seq_flush++;
5855 spin_unlock_irq(&conf->device_lock);
5856 bitmap_unplug(mddev->bitmap);
5857 spin_lock_irq(&conf->device_lock);
5858 conf->seq_write = conf->seq_flush;
5859 activate_bit_delay(conf, conf->temp_inactive_list);
5860 }
5861 raid5_activate_delayed(conf);
5862
5863 while ((bio = remove_bio_from_retry(conf))) {
5864 int ok;
5865 spin_unlock_irq(&conf->device_lock);
5866 ok = retry_aligned_read(conf, bio);
5867 spin_lock_irq(&conf->device_lock);
5868 if (!ok)
5869 break;
5870 handled++;
5871 }
5872
5873 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5874 conf->temp_inactive_list);
5875 if (!batch_size && !released)
5876 break;
5877 handled += batch_size;
5878
5879 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5880 spin_unlock_irq(&conf->device_lock);
5881 md_check_recovery(mddev);
5882 spin_lock_irq(&conf->device_lock);
5883 }
5884 }
5885 pr_debug("%d stripes handled\n", handled);
5886
5887 spin_unlock_irq(&conf->device_lock);
5888 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5889 grow_one_stripe(conf, __GFP_NOWARN);
5890 /* Set flag even if allocation failed. This helps
5891 * slow down allocation requests when mem is short
5892 */
5893 set_bit(R5_DID_ALLOC, &conf->cache_state);
5894 }
5895
5896 async_tx_issue_pending_all();
5897 blk_finish_plug(&plug);
5898
5899 pr_debug("--- raid5d inactive\n");
5900 }
5901
5902 static ssize_t
5903 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5904 {
5905 struct r5conf *conf;
5906 int ret = 0;
5907 spin_lock(&mddev->lock);
5908 conf = mddev->private;
5909 if (conf)
5910 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5911 spin_unlock(&mddev->lock);
5912 return ret;
5913 }
5914
5915 int
5916 raid5_set_cache_size(struct mddev *mddev, int size)
5917 {
5918 struct r5conf *conf = mddev->private;
5919 int err;
5920
5921 if (size <= 16 || size > 32768)
5922 return -EINVAL;
5923
5924 conf->min_nr_stripes = size;
5925 while (size < conf->max_nr_stripes &&
5926 drop_one_stripe(conf))
5927 ;
5928
5929
5930 err = md_allow_write(mddev);
5931 if (err)
5932 return err;
5933
5934 while (size > conf->max_nr_stripes)
5935 if (!grow_one_stripe(conf, GFP_KERNEL))
5936 break;
5937
5938 return 0;
5939 }
5940 EXPORT_SYMBOL(raid5_set_cache_size);
5941
5942 static ssize_t
5943 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5944 {
5945 struct r5conf *conf;
5946 unsigned long new;
5947 int err;
5948
5949 if (len >= PAGE_SIZE)
5950 return -EINVAL;
5951 if (kstrtoul(page, 10, &new))
5952 return -EINVAL;
5953 err = mddev_lock(mddev);
5954 if (err)
5955 return err;
5956 conf = mddev->private;
5957 if (!conf)
5958 err = -ENODEV;
5959 else
5960 err = raid5_set_cache_size(mddev, new);
5961 mddev_unlock(mddev);
5962
5963 return err ?: len;
5964 }
5965
5966 static struct md_sysfs_entry
5967 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5968 raid5_show_stripe_cache_size,
5969 raid5_store_stripe_cache_size);
5970
5971 static ssize_t
5972 raid5_show_rmw_level(struct mddev *mddev, char *page)
5973 {
5974 struct r5conf *conf = mddev->private;
5975 if (conf)
5976 return sprintf(page, "%d\n", conf->rmw_level);
5977 else
5978 return 0;
5979 }
5980
5981 static ssize_t
5982 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
5983 {
5984 struct r5conf *conf = mddev->private;
5985 unsigned long new;
5986
5987 if (!conf)
5988 return -ENODEV;
5989
5990 if (len >= PAGE_SIZE)
5991 return -EINVAL;
5992
5993 if (kstrtoul(page, 10, &new))
5994 return -EINVAL;
5995
5996 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5997 return -EINVAL;
5998
5999 if (new != PARITY_DISABLE_RMW &&
6000 new != PARITY_ENABLE_RMW &&
6001 new != PARITY_PREFER_RMW)
6002 return -EINVAL;
6003
6004 conf->rmw_level = new;
6005 return len;
6006 }
6007
6008 static struct md_sysfs_entry
6009 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6010 raid5_show_rmw_level,
6011 raid5_store_rmw_level);
6012
6013
6014 static ssize_t
6015 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6016 {
6017 struct r5conf *conf;
6018 int ret = 0;
6019 spin_lock(&mddev->lock);
6020 conf = mddev->private;
6021 if (conf)
6022 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6023 spin_unlock(&mddev->lock);
6024 return ret;
6025 }
6026
6027 static ssize_t
6028 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6029 {
6030 struct r5conf *conf;
6031 unsigned long new;
6032 int err;
6033
6034 if (len >= PAGE_SIZE)
6035 return -EINVAL;
6036 if (kstrtoul(page, 10, &new))
6037 return -EINVAL;
6038
6039 err = mddev_lock(mddev);
6040 if (err)
6041 return err;
6042 conf = mddev->private;
6043 if (!conf)
6044 err = -ENODEV;
6045 else if (new > conf->min_nr_stripes)
6046 err = -EINVAL;
6047 else
6048 conf->bypass_threshold = new;
6049 mddev_unlock(mddev);
6050 return err ?: len;
6051 }
6052
6053 static struct md_sysfs_entry
6054 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6055 S_IRUGO | S_IWUSR,
6056 raid5_show_preread_threshold,
6057 raid5_store_preread_threshold);
6058
6059 static ssize_t
6060 raid5_show_skip_copy(struct mddev *mddev, char *page)
6061 {
6062 struct r5conf *conf;
6063 int ret = 0;
6064 spin_lock(&mddev->lock);
6065 conf = mddev->private;
6066 if (conf)
6067 ret = sprintf(page, "%d\n", conf->skip_copy);
6068 spin_unlock(&mddev->lock);
6069 return ret;
6070 }
6071
6072 static ssize_t
6073 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6074 {
6075 struct r5conf *conf;
6076 unsigned long new;
6077 int err;
6078
6079 if (len >= PAGE_SIZE)
6080 return -EINVAL;
6081 if (kstrtoul(page, 10, &new))
6082 return -EINVAL;
6083 new = !!new;
6084
6085 err = mddev_lock(mddev);
6086 if (err)
6087 return err;
6088 conf = mddev->private;
6089 if (!conf)
6090 err = -ENODEV;
6091 else if (new != conf->skip_copy) {
6092 mddev_suspend(mddev);
6093 conf->skip_copy = new;
6094 if (new)
6095 mddev->queue->backing_dev_info.capabilities |=
6096 BDI_CAP_STABLE_WRITES;
6097 else
6098 mddev->queue->backing_dev_info.capabilities &=
6099 ~BDI_CAP_STABLE_WRITES;
6100 mddev_resume(mddev);
6101 }
6102 mddev_unlock(mddev);
6103 return err ?: len;
6104 }
6105
6106 static struct md_sysfs_entry
6107 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6108 raid5_show_skip_copy,
6109 raid5_store_skip_copy);
6110
6111 static ssize_t
6112 stripe_cache_active_show(struct mddev *mddev, char *page)
6113 {
6114 struct r5conf *conf = mddev->private;
6115 if (conf)
6116 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6117 else
6118 return 0;
6119 }
6120
6121 static struct md_sysfs_entry
6122 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6123
6124 static ssize_t
6125 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6126 {
6127 struct r5conf *conf;
6128 int ret = 0;
6129 spin_lock(&mddev->lock);
6130 conf = mddev->private;
6131 if (conf)
6132 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6133 spin_unlock(&mddev->lock);
6134 return ret;
6135 }
6136
6137 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6138 int *group_cnt,
6139 int *worker_cnt_per_group,
6140 struct r5worker_group **worker_groups);
6141 static ssize_t
6142 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6143 {
6144 struct r5conf *conf;
6145 unsigned long new;
6146 int err;
6147 struct r5worker_group *new_groups, *old_groups;
6148 int group_cnt, worker_cnt_per_group;
6149
6150 if (len >= PAGE_SIZE)
6151 return -EINVAL;
6152 if (kstrtoul(page, 10, &new))
6153 return -EINVAL;
6154
6155 err = mddev_lock(mddev);
6156 if (err)
6157 return err;
6158 conf = mddev->private;
6159 if (!conf)
6160 err = -ENODEV;
6161 else if (new != conf->worker_cnt_per_group) {
6162 mddev_suspend(mddev);
6163
6164 old_groups = conf->worker_groups;
6165 if (old_groups)
6166 flush_workqueue(raid5_wq);
6167
6168 err = alloc_thread_groups(conf, new,
6169 &group_cnt, &worker_cnt_per_group,
6170 &new_groups);
6171 if (!err) {
6172 spin_lock_irq(&conf->device_lock);
6173 conf->group_cnt = group_cnt;
6174 conf->worker_cnt_per_group = worker_cnt_per_group;
6175 conf->worker_groups = new_groups;
6176 spin_unlock_irq(&conf->device_lock);
6177
6178 if (old_groups)
6179 kfree(old_groups[0].workers);
6180 kfree(old_groups);
6181 }
6182 mddev_resume(mddev);
6183 }
6184 mddev_unlock(mddev);
6185
6186 return err ?: len;
6187 }
6188
6189 static struct md_sysfs_entry
6190 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6191 raid5_show_group_thread_cnt,
6192 raid5_store_group_thread_cnt);
6193
6194 static struct attribute *raid5_attrs[] = {
6195 &raid5_stripecache_size.attr,
6196 &raid5_stripecache_active.attr,
6197 &raid5_preread_bypass_threshold.attr,
6198 &raid5_group_thread_cnt.attr,
6199 &raid5_skip_copy.attr,
6200 &raid5_rmw_level.attr,
6201 NULL,
6202 };
6203 static struct attribute_group raid5_attrs_group = {
6204 .name = NULL,
6205 .attrs = raid5_attrs,
6206 };
6207
6208 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6209 int *group_cnt,
6210 int *worker_cnt_per_group,
6211 struct r5worker_group **worker_groups)
6212 {
6213 int i, j, k;
6214 ssize_t size;
6215 struct r5worker *workers;
6216
6217 *worker_cnt_per_group = cnt;
6218 if (cnt == 0) {
6219 *group_cnt = 0;
6220 *worker_groups = NULL;
6221 return 0;
6222 }
6223 *group_cnt = num_possible_nodes();
6224 size = sizeof(struct r5worker) * cnt;
6225 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6226 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6227 *group_cnt, GFP_NOIO);
6228 if (!*worker_groups || !workers) {
6229 kfree(workers);
6230 kfree(*worker_groups);
6231 return -ENOMEM;
6232 }
6233
6234 for (i = 0; i < *group_cnt; i++) {
6235 struct r5worker_group *group;
6236
6237 group = &(*worker_groups)[i];
6238 INIT_LIST_HEAD(&group->handle_list);
6239 group->conf = conf;
6240 group->workers = workers + i * cnt;
6241
6242 for (j = 0; j < cnt; j++) {
6243 struct r5worker *worker = group->workers + j;
6244 worker->group = group;
6245 INIT_WORK(&worker->work, raid5_do_work);
6246
6247 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6248 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6249 }
6250 }
6251
6252 return 0;
6253 }
6254
6255 static void free_thread_groups(struct r5conf *conf)
6256 {
6257 if (conf->worker_groups)
6258 kfree(conf->worker_groups[0].workers);
6259 kfree(conf->worker_groups);
6260 conf->worker_groups = NULL;
6261 }
6262
6263 static sector_t
6264 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6265 {
6266 struct r5conf *conf = mddev->private;
6267
6268 if (!sectors)
6269 sectors = mddev->dev_sectors;
6270 if (!raid_disks)
6271 /* size is defined by the smallest of previous and new size */
6272 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6273
6274 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6275 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6276 return sectors * (raid_disks - conf->max_degraded);
6277 }
6278
6279 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6280 {
6281 safe_put_page(percpu->spare_page);
6282 if (percpu->scribble)
6283 flex_array_free(percpu->scribble);
6284 percpu->spare_page = NULL;
6285 percpu->scribble = NULL;
6286 }
6287
6288 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6289 {
6290 if (conf->level == 6 && !percpu->spare_page)
6291 percpu->spare_page = alloc_page(GFP_KERNEL);
6292 if (!percpu->scribble)
6293 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6294 conf->previous_raid_disks),
6295 max(conf->chunk_sectors,
6296 conf->prev_chunk_sectors)
6297 / STRIPE_SECTORS,
6298 GFP_KERNEL);
6299
6300 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6301 free_scratch_buffer(conf, percpu);
6302 return -ENOMEM;
6303 }
6304
6305 return 0;
6306 }
6307
6308 static void raid5_free_percpu(struct r5conf *conf)
6309 {
6310 unsigned long cpu;
6311
6312 if (!conf->percpu)
6313 return;
6314
6315 #ifdef CONFIG_HOTPLUG_CPU
6316 unregister_cpu_notifier(&conf->cpu_notify);
6317 #endif
6318
6319 get_online_cpus();
6320 for_each_possible_cpu(cpu)
6321 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6322 put_online_cpus();
6323
6324 free_percpu(conf->percpu);
6325 }
6326
6327 static void free_conf(struct r5conf *conf)
6328 {
6329 if (conf->shrinker.seeks)
6330 unregister_shrinker(&conf->shrinker);
6331 free_thread_groups(conf);
6332 shrink_stripes(conf);
6333 raid5_free_percpu(conf);
6334 kfree(conf->disks);
6335 kfree(conf->stripe_hashtbl);
6336 kfree(conf);
6337 }
6338
6339 #ifdef CONFIG_HOTPLUG_CPU
6340 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6341 void *hcpu)
6342 {
6343 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6344 long cpu = (long)hcpu;
6345 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6346
6347 switch (action) {
6348 case CPU_UP_PREPARE:
6349 case CPU_UP_PREPARE_FROZEN:
6350 if (alloc_scratch_buffer(conf, percpu)) {
6351 pr_err("%s: failed memory allocation for cpu%ld\n",
6352 __func__, cpu);
6353 return notifier_from_errno(-ENOMEM);
6354 }
6355 break;
6356 case CPU_DEAD:
6357 case CPU_DEAD_FROZEN:
6358 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6359 break;
6360 default:
6361 break;
6362 }
6363 return NOTIFY_OK;
6364 }
6365 #endif
6366
6367 static int raid5_alloc_percpu(struct r5conf *conf)
6368 {
6369 unsigned long cpu;
6370 int err = 0;
6371
6372 conf->percpu = alloc_percpu(struct raid5_percpu);
6373 if (!conf->percpu)
6374 return -ENOMEM;
6375
6376 #ifdef CONFIG_HOTPLUG_CPU
6377 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6378 conf->cpu_notify.priority = 0;
6379 err = register_cpu_notifier(&conf->cpu_notify);
6380 if (err)
6381 return err;
6382 #endif
6383
6384 get_online_cpus();
6385 for_each_present_cpu(cpu) {
6386 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6387 if (err) {
6388 pr_err("%s: failed memory allocation for cpu%ld\n",
6389 __func__, cpu);
6390 break;
6391 }
6392 }
6393 put_online_cpus();
6394
6395 return err;
6396 }
6397
6398 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6399 struct shrink_control *sc)
6400 {
6401 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6402 int ret = 0;
6403 while (ret < sc->nr_to_scan) {
6404 if (drop_one_stripe(conf) == 0)
6405 return SHRINK_STOP;
6406 ret++;
6407 }
6408 return ret;
6409 }
6410
6411 static unsigned long raid5_cache_count(struct shrinker *shrink,
6412 struct shrink_control *sc)
6413 {
6414 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6415
6416 if (conf->max_nr_stripes < conf->min_nr_stripes)
6417 /* unlikely, but not impossible */
6418 return 0;
6419 return conf->max_nr_stripes - conf->min_nr_stripes;
6420 }
6421
6422 static struct r5conf *setup_conf(struct mddev *mddev)
6423 {
6424 struct r5conf *conf;
6425 int raid_disk, memory, max_disks;
6426 struct md_rdev *rdev;
6427 struct disk_info *disk;
6428 char pers_name[6];
6429 int i;
6430 int group_cnt, worker_cnt_per_group;
6431 struct r5worker_group *new_group;
6432
6433 if (mddev->new_level != 5
6434 && mddev->new_level != 4
6435 && mddev->new_level != 6) {
6436 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6437 mdname(mddev), mddev->new_level);
6438 return ERR_PTR(-EIO);
6439 }
6440 if ((mddev->new_level == 5
6441 && !algorithm_valid_raid5(mddev->new_layout)) ||
6442 (mddev->new_level == 6
6443 && !algorithm_valid_raid6(mddev->new_layout))) {
6444 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6445 mdname(mddev), mddev->new_layout);
6446 return ERR_PTR(-EIO);
6447 }
6448 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6449 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6450 mdname(mddev), mddev->raid_disks);
6451 return ERR_PTR(-EINVAL);
6452 }
6453
6454 if (!mddev->new_chunk_sectors ||
6455 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6456 !is_power_of_2(mddev->new_chunk_sectors)) {
6457 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6458 mdname(mddev), mddev->new_chunk_sectors << 9);
6459 return ERR_PTR(-EINVAL);
6460 }
6461
6462 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6463 if (conf == NULL)
6464 goto abort;
6465 /* Don't enable multi-threading by default*/
6466 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6467 &new_group)) {
6468 conf->group_cnt = group_cnt;
6469 conf->worker_cnt_per_group = worker_cnt_per_group;
6470 conf->worker_groups = new_group;
6471 } else
6472 goto abort;
6473 spin_lock_init(&conf->device_lock);
6474 seqcount_init(&conf->gen_lock);
6475 init_waitqueue_head(&conf->wait_for_quiescent);
6476 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6477 init_waitqueue_head(&conf->wait_for_stripe[i]);
6478 }
6479 init_waitqueue_head(&conf->wait_for_overlap);
6480 INIT_LIST_HEAD(&conf->handle_list);
6481 INIT_LIST_HEAD(&conf->hold_list);
6482 INIT_LIST_HEAD(&conf->delayed_list);
6483 INIT_LIST_HEAD(&conf->bitmap_list);
6484 init_llist_head(&conf->released_stripes);
6485 atomic_set(&conf->active_stripes, 0);
6486 atomic_set(&conf->preread_active_stripes, 0);
6487 atomic_set(&conf->active_aligned_reads, 0);
6488 conf->bypass_threshold = BYPASS_THRESHOLD;
6489 conf->recovery_disabled = mddev->recovery_disabled - 1;
6490
6491 conf->raid_disks = mddev->raid_disks;
6492 if (mddev->reshape_position == MaxSector)
6493 conf->previous_raid_disks = mddev->raid_disks;
6494 else
6495 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6496 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6497
6498 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6499 GFP_KERNEL);
6500 if (!conf->disks)
6501 goto abort;
6502
6503 conf->mddev = mddev;
6504
6505 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6506 goto abort;
6507
6508 /* We init hash_locks[0] separately to that it can be used
6509 * as the reference lock in the spin_lock_nest_lock() call
6510 * in lock_all_device_hash_locks_irq in order to convince
6511 * lockdep that we know what we are doing.
6512 */
6513 spin_lock_init(conf->hash_locks);
6514 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6515 spin_lock_init(conf->hash_locks + i);
6516
6517 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6518 INIT_LIST_HEAD(conf->inactive_list + i);
6519
6520 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6521 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6522
6523 conf->level = mddev->new_level;
6524 conf->chunk_sectors = mddev->new_chunk_sectors;
6525 if (raid5_alloc_percpu(conf) != 0)
6526 goto abort;
6527
6528 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6529
6530 rdev_for_each(rdev, mddev) {
6531 raid_disk = rdev->raid_disk;
6532 if (raid_disk >= max_disks
6533 || raid_disk < 0)
6534 continue;
6535 disk = conf->disks + raid_disk;
6536
6537 if (test_bit(Replacement, &rdev->flags)) {
6538 if (disk->replacement)
6539 goto abort;
6540 disk->replacement = rdev;
6541 } else {
6542 if (disk->rdev)
6543 goto abort;
6544 disk->rdev = rdev;
6545 }
6546
6547 if (test_bit(In_sync, &rdev->flags)) {
6548 char b[BDEVNAME_SIZE];
6549 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6550 " disk %d\n",
6551 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6552 } else if (rdev->saved_raid_disk != raid_disk)
6553 /* Cannot rely on bitmap to complete recovery */
6554 conf->fullsync = 1;
6555 }
6556
6557 conf->level = mddev->new_level;
6558 if (conf->level == 6) {
6559 conf->max_degraded = 2;
6560 if (raid6_call.xor_syndrome)
6561 conf->rmw_level = PARITY_ENABLE_RMW;
6562 else
6563 conf->rmw_level = PARITY_DISABLE_RMW;
6564 } else {
6565 conf->max_degraded = 1;
6566 conf->rmw_level = PARITY_ENABLE_RMW;
6567 }
6568 conf->algorithm = mddev->new_layout;
6569 conf->reshape_progress = mddev->reshape_position;
6570 if (conf->reshape_progress != MaxSector) {
6571 conf->prev_chunk_sectors = mddev->chunk_sectors;
6572 conf->prev_algo = mddev->layout;
6573 }
6574
6575 conf->min_nr_stripes = NR_STRIPES;
6576 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6577 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6578 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6579 if (grow_stripes(conf, conf->min_nr_stripes)) {
6580 printk(KERN_ERR
6581 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6582 mdname(mddev), memory);
6583 goto abort;
6584 } else
6585 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6586 mdname(mddev), memory);
6587 /*
6588 * Losing a stripe head costs more than the time to refill it,
6589 * it reduces the queue depth and so can hurt throughput.
6590 * So set it rather large, scaled by number of devices.
6591 */
6592 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6593 conf->shrinker.scan_objects = raid5_cache_scan;
6594 conf->shrinker.count_objects = raid5_cache_count;
6595 conf->shrinker.batch = 128;
6596 conf->shrinker.flags = 0;
6597 register_shrinker(&conf->shrinker);
6598
6599 sprintf(pers_name, "raid%d", mddev->new_level);
6600 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6601 if (!conf->thread) {
6602 printk(KERN_ERR
6603 "md/raid:%s: couldn't allocate thread.\n",
6604 mdname(mddev));
6605 goto abort;
6606 }
6607
6608 return conf;
6609
6610 abort:
6611 if (conf) {
6612 free_conf(conf);
6613 return ERR_PTR(-EIO);
6614 } else
6615 return ERR_PTR(-ENOMEM);
6616 }
6617
6618 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6619 {
6620 switch (algo) {
6621 case ALGORITHM_PARITY_0:
6622 if (raid_disk < max_degraded)
6623 return 1;
6624 break;
6625 case ALGORITHM_PARITY_N:
6626 if (raid_disk >= raid_disks - max_degraded)
6627 return 1;
6628 break;
6629 case ALGORITHM_PARITY_0_6:
6630 if (raid_disk == 0 ||
6631 raid_disk == raid_disks - 1)
6632 return 1;
6633 break;
6634 case ALGORITHM_LEFT_ASYMMETRIC_6:
6635 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6636 case ALGORITHM_LEFT_SYMMETRIC_6:
6637 case ALGORITHM_RIGHT_SYMMETRIC_6:
6638 if (raid_disk == raid_disks - 1)
6639 return 1;
6640 }
6641 return 0;
6642 }
6643
6644 static int run(struct mddev *mddev)
6645 {
6646 struct r5conf *conf;
6647 int working_disks = 0;
6648 int dirty_parity_disks = 0;
6649 struct md_rdev *rdev;
6650 sector_t reshape_offset = 0;
6651 int i;
6652 long long min_offset_diff = 0;
6653 int first = 1;
6654
6655 if (mddev->recovery_cp != MaxSector)
6656 printk(KERN_NOTICE "md/raid:%s: not clean"
6657 " -- starting background reconstruction\n",
6658 mdname(mddev));
6659
6660 rdev_for_each(rdev, mddev) {
6661 long long diff;
6662 if (rdev->raid_disk < 0)
6663 continue;
6664 diff = (rdev->new_data_offset - rdev->data_offset);
6665 if (first) {
6666 min_offset_diff = diff;
6667 first = 0;
6668 } else if (mddev->reshape_backwards &&
6669 diff < min_offset_diff)
6670 min_offset_diff = diff;
6671 else if (!mddev->reshape_backwards &&
6672 diff > min_offset_diff)
6673 min_offset_diff = diff;
6674 }
6675
6676 if (mddev->reshape_position != MaxSector) {
6677 /* Check that we can continue the reshape.
6678 * Difficulties arise if the stripe we would write to
6679 * next is at or after the stripe we would read from next.
6680 * For a reshape that changes the number of devices, this
6681 * is only possible for a very short time, and mdadm makes
6682 * sure that time appears to have past before assembling
6683 * the array. So we fail if that time hasn't passed.
6684 * For a reshape that keeps the number of devices the same
6685 * mdadm must be monitoring the reshape can keeping the
6686 * critical areas read-only and backed up. It will start
6687 * the array in read-only mode, so we check for that.
6688 */
6689 sector_t here_new, here_old;
6690 int old_disks;
6691 int max_degraded = (mddev->level == 6 ? 2 : 1);
6692
6693 if (mddev->new_level != mddev->level) {
6694 printk(KERN_ERR "md/raid:%s: unsupported reshape "
6695 "required - aborting.\n",
6696 mdname(mddev));
6697 return -EINVAL;
6698 }
6699 old_disks = mddev->raid_disks - mddev->delta_disks;
6700 /* reshape_position must be on a new-stripe boundary, and one
6701 * further up in new geometry must map after here in old
6702 * geometry.
6703 */
6704 here_new = mddev->reshape_position;
6705 if (sector_div(here_new, mddev->new_chunk_sectors *
6706 (mddev->raid_disks - max_degraded))) {
6707 printk(KERN_ERR "md/raid:%s: reshape_position not "
6708 "on a stripe boundary\n", mdname(mddev));
6709 return -EINVAL;
6710 }
6711 reshape_offset = here_new * mddev->new_chunk_sectors;
6712 /* here_new is the stripe we will write to */
6713 here_old = mddev->reshape_position;
6714 sector_div(here_old, mddev->chunk_sectors *
6715 (old_disks-max_degraded));
6716 /* here_old is the first stripe that we might need to read
6717 * from */
6718 if (mddev->delta_disks == 0) {
6719 if ((here_new * mddev->new_chunk_sectors !=
6720 here_old * mddev->chunk_sectors)) {
6721 printk(KERN_ERR "md/raid:%s: reshape position is"
6722 " confused - aborting\n", mdname(mddev));
6723 return -EINVAL;
6724 }
6725 /* We cannot be sure it is safe to start an in-place
6726 * reshape. It is only safe if user-space is monitoring
6727 * and taking constant backups.
6728 * mdadm always starts a situation like this in
6729 * readonly mode so it can take control before
6730 * allowing any writes. So just check for that.
6731 */
6732 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6733 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6734 /* not really in-place - so OK */;
6735 else if (mddev->ro == 0) {
6736 printk(KERN_ERR "md/raid:%s: in-place reshape "
6737 "must be started in read-only mode "
6738 "- aborting\n",
6739 mdname(mddev));
6740 return -EINVAL;
6741 }
6742 } else if (mddev->reshape_backwards
6743 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6744 here_old * mddev->chunk_sectors)
6745 : (here_new * mddev->new_chunk_sectors >=
6746 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6747 /* Reading from the same stripe as writing to - bad */
6748 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6749 "auto-recovery - aborting.\n",
6750 mdname(mddev));
6751 return -EINVAL;
6752 }
6753 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6754 mdname(mddev));
6755 /* OK, we should be able to continue; */
6756 } else {
6757 BUG_ON(mddev->level != mddev->new_level);
6758 BUG_ON(mddev->layout != mddev->new_layout);
6759 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6760 BUG_ON(mddev->delta_disks != 0);
6761 }
6762
6763 if (mddev->private == NULL)
6764 conf = setup_conf(mddev);
6765 else
6766 conf = mddev->private;
6767
6768 if (IS_ERR(conf))
6769 return PTR_ERR(conf);
6770
6771 conf->min_offset_diff = min_offset_diff;
6772 mddev->thread = conf->thread;
6773 conf->thread = NULL;
6774 mddev->private = conf;
6775
6776 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6777 i++) {
6778 rdev = conf->disks[i].rdev;
6779 if (!rdev && conf->disks[i].replacement) {
6780 /* The replacement is all we have yet */
6781 rdev = conf->disks[i].replacement;
6782 conf->disks[i].replacement = NULL;
6783 clear_bit(Replacement, &rdev->flags);
6784 conf->disks[i].rdev = rdev;
6785 }
6786 if (!rdev)
6787 continue;
6788 if (conf->disks[i].replacement &&
6789 conf->reshape_progress != MaxSector) {
6790 /* replacements and reshape simply do not mix. */
6791 printk(KERN_ERR "md: cannot handle concurrent "
6792 "replacement and reshape.\n");
6793 goto abort;
6794 }
6795 if (test_bit(In_sync, &rdev->flags)) {
6796 working_disks++;
6797 continue;
6798 }
6799 /* This disc is not fully in-sync. However if it
6800 * just stored parity (beyond the recovery_offset),
6801 * when we don't need to be concerned about the
6802 * array being dirty.
6803 * When reshape goes 'backwards', we never have
6804 * partially completed devices, so we only need
6805 * to worry about reshape going forwards.
6806 */
6807 /* Hack because v0.91 doesn't store recovery_offset properly. */
6808 if (mddev->major_version == 0 &&
6809 mddev->minor_version > 90)
6810 rdev->recovery_offset = reshape_offset;
6811
6812 if (rdev->recovery_offset < reshape_offset) {
6813 /* We need to check old and new layout */
6814 if (!only_parity(rdev->raid_disk,
6815 conf->algorithm,
6816 conf->raid_disks,
6817 conf->max_degraded))
6818 continue;
6819 }
6820 if (!only_parity(rdev->raid_disk,
6821 conf->prev_algo,
6822 conf->previous_raid_disks,
6823 conf->max_degraded))
6824 continue;
6825 dirty_parity_disks++;
6826 }
6827
6828 /*
6829 * 0 for a fully functional array, 1 or 2 for a degraded array.
6830 */
6831 mddev->degraded = calc_degraded(conf);
6832
6833 if (has_failed(conf)) {
6834 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6835 " (%d/%d failed)\n",
6836 mdname(mddev), mddev->degraded, conf->raid_disks);
6837 goto abort;
6838 }
6839
6840 /* device size must be a multiple of chunk size */
6841 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6842 mddev->resync_max_sectors = mddev->dev_sectors;
6843
6844 if (mddev->degraded > dirty_parity_disks &&
6845 mddev->recovery_cp != MaxSector) {
6846 if (mddev->ok_start_degraded)
6847 printk(KERN_WARNING
6848 "md/raid:%s: starting dirty degraded array"
6849 " - data corruption possible.\n",
6850 mdname(mddev));
6851 else {
6852 printk(KERN_ERR
6853 "md/raid:%s: cannot start dirty degraded array.\n",
6854 mdname(mddev));
6855 goto abort;
6856 }
6857 }
6858
6859 if (mddev->degraded == 0)
6860 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6861 " devices, algorithm %d\n", mdname(mddev), conf->level,
6862 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6863 mddev->new_layout);
6864 else
6865 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6866 " out of %d devices, algorithm %d\n",
6867 mdname(mddev), conf->level,
6868 mddev->raid_disks - mddev->degraded,
6869 mddev->raid_disks, mddev->new_layout);
6870
6871 print_raid5_conf(conf);
6872
6873 if (conf->reshape_progress != MaxSector) {
6874 conf->reshape_safe = conf->reshape_progress;
6875 atomic_set(&conf->reshape_stripes, 0);
6876 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6877 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6878 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6879 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6880 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6881 "reshape");
6882 }
6883
6884 /* Ok, everything is just fine now */
6885 if (mddev->to_remove == &raid5_attrs_group)
6886 mddev->to_remove = NULL;
6887 else if (mddev->kobj.sd &&
6888 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6889 printk(KERN_WARNING
6890 "raid5: failed to create sysfs attributes for %s\n",
6891 mdname(mddev));
6892 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6893
6894 if (mddev->queue) {
6895 int chunk_size;
6896 bool discard_supported = true;
6897 /* read-ahead size must cover two whole stripes, which
6898 * is 2 * (datadisks) * chunksize where 'n' is the
6899 * number of raid devices
6900 */
6901 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6902 int stripe = data_disks *
6903 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6904 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6905 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6906
6907 chunk_size = mddev->chunk_sectors << 9;
6908 blk_queue_io_min(mddev->queue, chunk_size);
6909 blk_queue_io_opt(mddev->queue, chunk_size *
6910 (conf->raid_disks - conf->max_degraded));
6911 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6912 /*
6913 * We can only discard a whole stripe. It doesn't make sense to
6914 * discard data disk but write parity disk
6915 */
6916 stripe = stripe * PAGE_SIZE;
6917 /* Round up to power of 2, as discard handling
6918 * currently assumes that */
6919 while ((stripe-1) & stripe)
6920 stripe = (stripe | (stripe-1)) + 1;
6921 mddev->queue->limits.discard_alignment = stripe;
6922 mddev->queue->limits.discard_granularity = stripe;
6923 /*
6924 * unaligned part of discard request will be ignored, so can't
6925 * guarantee discard_zeroes_data
6926 */
6927 mddev->queue->limits.discard_zeroes_data = 0;
6928
6929 blk_queue_max_write_same_sectors(mddev->queue, 0);
6930
6931 rdev_for_each(rdev, mddev) {
6932 disk_stack_limits(mddev->gendisk, rdev->bdev,
6933 rdev->data_offset << 9);
6934 disk_stack_limits(mddev->gendisk, rdev->bdev,
6935 rdev->new_data_offset << 9);
6936 /*
6937 * discard_zeroes_data is required, otherwise data
6938 * could be lost. Consider a scenario: discard a stripe
6939 * (the stripe could be inconsistent if
6940 * discard_zeroes_data is 0); write one disk of the
6941 * stripe (the stripe could be inconsistent again
6942 * depending on which disks are used to calculate
6943 * parity); the disk is broken; The stripe data of this
6944 * disk is lost.
6945 */
6946 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6947 !bdev_get_queue(rdev->bdev)->
6948 limits.discard_zeroes_data)
6949 discard_supported = false;
6950 /* Unfortunately, discard_zeroes_data is not currently
6951 * a guarantee - just a hint. So we only allow DISCARD
6952 * if the sysadmin has confirmed that only safe devices
6953 * are in use by setting a module parameter.
6954 */
6955 if (!devices_handle_discard_safely) {
6956 if (discard_supported) {
6957 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6958 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6959 }
6960 discard_supported = false;
6961 }
6962 }
6963
6964 if (discard_supported &&
6965 mddev->queue->limits.max_discard_sectors >= stripe &&
6966 mddev->queue->limits.discard_granularity >= stripe)
6967 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6968 mddev->queue);
6969 else
6970 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6971 mddev->queue);
6972 }
6973
6974 return 0;
6975 abort:
6976 md_unregister_thread(&mddev->thread);
6977 print_raid5_conf(conf);
6978 free_conf(conf);
6979 mddev->private = NULL;
6980 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6981 return -EIO;
6982 }
6983
6984 static void raid5_free(struct mddev *mddev, void *priv)
6985 {
6986 struct r5conf *conf = priv;
6987
6988 free_conf(conf);
6989 mddev->to_remove = &raid5_attrs_group;
6990 }
6991
6992 static void status(struct seq_file *seq, struct mddev *mddev)
6993 {
6994 struct r5conf *conf = mddev->private;
6995 int i;
6996
6997 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6998 mddev->chunk_sectors / 2, mddev->layout);
6999 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7000 for (i = 0; i < conf->raid_disks; i++)
7001 seq_printf (seq, "%s",
7002 conf->disks[i].rdev &&
7003 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7004 seq_printf (seq, "]");
7005 }
7006
7007 static void print_raid5_conf (struct r5conf *conf)
7008 {
7009 int i;
7010 struct disk_info *tmp;
7011
7012 printk(KERN_DEBUG "RAID conf printout:\n");
7013 if (!conf) {
7014 printk("(conf==NULL)\n");
7015 return;
7016 }
7017 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7018 conf->raid_disks,
7019 conf->raid_disks - conf->mddev->degraded);
7020
7021 for (i = 0; i < conf->raid_disks; i++) {
7022 char b[BDEVNAME_SIZE];
7023 tmp = conf->disks + i;
7024 if (tmp->rdev)
7025 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7026 i, !test_bit(Faulty, &tmp->rdev->flags),
7027 bdevname(tmp->rdev->bdev, b));
7028 }
7029 }
7030
7031 static int raid5_spare_active(struct mddev *mddev)
7032 {
7033 int i;
7034 struct r5conf *conf = mddev->private;
7035 struct disk_info *tmp;
7036 int count = 0;
7037 unsigned long flags;
7038
7039 for (i = 0; i < conf->raid_disks; i++) {
7040 tmp = conf->disks + i;
7041 if (tmp->replacement
7042 && tmp->replacement->recovery_offset == MaxSector
7043 && !test_bit(Faulty, &tmp->replacement->flags)
7044 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7045 /* Replacement has just become active. */
7046 if (!tmp->rdev
7047 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7048 count++;
7049 if (tmp->rdev) {
7050 /* Replaced device not technically faulty,
7051 * but we need to be sure it gets removed
7052 * and never re-added.
7053 */
7054 set_bit(Faulty, &tmp->rdev->flags);
7055 sysfs_notify_dirent_safe(
7056 tmp->rdev->sysfs_state);
7057 }
7058 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7059 } else if (tmp->rdev
7060 && tmp->rdev->recovery_offset == MaxSector
7061 && !test_bit(Faulty, &tmp->rdev->flags)
7062 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7063 count++;
7064 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7065 }
7066 }
7067 spin_lock_irqsave(&conf->device_lock, flags);
7068 mddev->degraded = calc_degraded(conf);
7069 spin_unlock_irqrestore(&conf->device_lock, flags);
7070 print_raid5_conf(conf);
7071 return count;
7072 }
7073
7074 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7075 {
7076 struct r5conf *conf = mddev->private;
7077 int err = 0;
7078 int number = rdev->raid_disk;
7079 struct md_rdev **rdevp;
7080 struct disk_info *p = conf->disks + number;
7081
7082 print_raid5_conf(conf);
7083 if (rdev == p->rdev)
7084 rdevp = &p->rdev;
7085 else if (rdev == p->replacement)
7086 rdevp = &p->replacement;
7087 else
7088 return 0;
7089
7090 if (number >= conf->raid_disks &&
7091 conf->reshape_progress == MaxSector)
7092 clear_bit(In_sync, &rdev->flags);
7093
7094 if (test_bit(In_sync, &rdev->flags) ||
7095 atomic_read(&rdev->nr_pending)) {
7096 err = -EBUSY;
7097 goto abort;
7098 }
7099 /* Only remove non-faulty devices if recovery
7100 * isn't possible.
7101 */
7102 if (!test_bit(Faulty, &rdev->flags) &&
7103 mddev->recovery_disabled != conf->recovery_disabled &&
7104 !has_failed(conf) &&
7105 (!p->replacement || p->replacement == rdev) &&
7106 number < conf->raid_disks) {
7107 err = -EBUSY;
7108 goto abort;
7109 }
7110 *rdevp = NULL;
7111 synchronize_rcu();
7112 if (atomic_read(&rdev->nr_pending)) {
7113 /* lost the race, try later */
7114 err = -EBUSY;
7115 *rdevp = rdev;
7116 } else if (p->replacement) {
7117 /* We must have just cleared 'rdev' */
7118 p->rdev = p->replacement;
7119 clear_bit(Replacement, &p->replacement->flags);
7120 smp_mb(); /* Make sure other CPUs may see both as identical
7121 * but will never see neither - if they are careful
7122 */
7123 p->replacement = NULL;
7124 clear_bit(WantReplacement, &rdev->flags);
7125 } else
7126 /* We might have just removed the Replacement as faulty-
7127 * clear the bit just in case
7128 */
7129 clear_bit(WantReplacement, &rdev->flags);
7130 abort:
7131
7132 print_raid5_conf(conf);
7133 return err;
7134 }
7135
7136 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7137 {
7138 struct r5conf *conf = mddev->private;
7139 int err = -EEXIST;
7140 int disk;
7141 struct disk_info *p;
7142 int first = 0;
7143 int last = conf->raid_disks - 1;
7144
7145 if (mddev->recovery_disabled == conf->recovery_disabled)
7146 return -EBUSY;
7147
7148 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7149 /* no point adding a device */
7150 return -EINVAL;
7151
7152 if (rdev->raid_disk >= 0)
7153 first = last = rdev->raid_disk;
7154
7155 /*
7156 * find the disk ... but prefer rdev->saved_raid_disk
7157 * if possible.
7158 */
7159 if (rdev->saved_raid_disk >= 0 &&
7160 rdev->saved_raid_disk >= first &&
7161 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7162 first = rdev->saved_raid_disk;
7163
7164 for (disk = first; disk <= last; disk++) {
7165 p = conf->disks + disk;
7166 if (p->rdev == NULL) {
7167 clear_bit(In_sync, &rdev->flags);
7168 rdev->raid_disk = disk;
7169 err = 0;
7170 if (rdev->saved_raid_disk != disk)
7171 conf->fullsync = 1;
7172 rcu_assign_pointer(p->rdev, rdev);
7173 goto out;
7174 }
7175 }
7176 for (disk = first; disk <= last; disk++) {
7177 p = conf->disks + disk;
7178 if (test_bit(WantReplacement, &p->rdev->flags) &&
7179 p->replacement == NULL) {
7180 clear_bit(In_sync, &rdev->flags);
7181 set_bit(Replacement, &rdev->flags);
7182 rdev->raid_disk = disk;
7183 err = 0;
7184 conf->fullsync = 1;
7185 rcu_assign_pointer(p->replacement, rdev);
7186 break;
7187 }
7188 }
7189 out:
7190 print_raid5_conf(conf);
7191 return err;
7192 }
7193
7194 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7195 {
7196 /* no resync is happening, and there is enough space
7197 * on all devices, so we can resize.
7198 * We need to make sure resync covers any new space.
7199 * If the array is shrinking we should possibly wait until
7200 * any io in the removed space completes, but it hardly seems
7201 * worth it.
7202 */
7203 sector_t newsize;
7204 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7205 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7206 if (mddev->external_size &&
7207 mddev->array_sectors > newsize)
7208 return -EINVAL;
7209 if (mddev->bitmap) {
7210 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7211 if (ret)
7212 return ret;
7213 }
7214 md_set_array_sectors(mddev, newsize);
7215 set_capacity(mddev->gendisk, mddev->array_sectors);
7216 revalidate_disk(mddev->gendisk);
7217 if (sectors > mddev->dev_sectors &&
7218 mddev->recovery_cp > mddev->dev_sectors) {
7219 mddev->recovery_cp = mddev->dev_sectors;
7220 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7221 }
7222 mddev->dev_sectors = sectors;
7223 mddev->resync_max_sectors = sectors;
7224 return 0;
7225 }
7226
7227 static int check_stripe_cache(struct mddev *mddev)
7228 {
7229 /* Can only proceed if there are plenty of stripe_heads.
7230 * We need a minimum of one full stripe,, and for sensible progress
7231 * it is best to have about 4 times that.
7232 * If we require 4 times, then the default 256 4K stripe_heads will
7233 * allow for chunk sizes up to 256K, which is probably OK.
7234 * If the chunk size is greater, user-space should request more
7235 * stripe_heads first.
7236 */
7237 struct r5conf *conf = mddev->private;
7238 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7239 > conf->min_nr_stripes ||
7240 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7241 > conf->min_nr_stripes) {
7242 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7243 mdname(mddev),
7244 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7245 / STRIPE_SIZE)*4);
7246 return 0;
7247 }
7248 return 1;
7249 }
7250
7251 static int check_reshape(struct mddev *mddev)
7252 {
7253 struct r5conf *conf = mddev->private;
7254
7255 if (mddev->delta_disks == 0 &&
7256 mddev->new_layout == mddev->layout &&
7257 mddev->new_chunk_sectors == mddev->chunk_sectors)
7258 return 0; /* nothing to do */
7259 if (has_failed(conf))
7260 return -EINVAL;
7261 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7262 /* We might be able to shrink, but the devices must
7263 * be made bigger first.
7264 * For raid6, 4 is the minimum size.
7265 * Otherwise 2 is the minimum
7266 */
7267 int min = 2;
7268 if (mddev->level == 6)
7269 min = 4;
7270 if (mddev->raid_disks + mddev->delta_disks < min)
7271 return -EINVAL;
7272 }
7273
7274 if (!check_stripe_cache(mddev))
7275 return -ENOSPC;
7276
7277 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7278 mddev->delta_disks > 0)
7279 if (resize_chunks(conf,
7280 conf->previous_raid_disks
7281 + max(0, mddev->delta_disks),
7282 max(mddev->new_chunk_sectors,
7283 mddev->chunk_sectors)
7284 ) < 0)
7285 return -ENOMEM;
7286 return resize_stripes(conf, (conf->previous_raid_disks
7287 + mddev->delta_disks));
7288 }
7289
7290 static int raid5_start_reshape(struct mddev *mddev)
7291 {
7292 struct r5conf *conf = mddev->private;
7293 struct md_rdev *rdev;
7294 int spares = 0;
7295 unsigned long flags;
7296
7297 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7298 return -EBUSY;
7299
7300 if (!check_stripe_cache(mddev))
7301 return -ENOSPC;
7302
7303 if (has_failed(conf))
7304 return -EINVAL;
7305
7306 rdev_for_each(rdev, mddev) {
7307 if (!test_bit(In_sync, &rdev->flags)
7308 && !test_bit(Faulty, &rdev->flags))
7309 spares++;
7310 }
7311
7312 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7313 /* Not enough devices even to make a degraded array
7314 * of that size
7315 */
7316 return -EINVAL;
7317
7318 /* Refuse to reduce size of the array. Any reductions in
7319 * array size must be through explicit setting of array_size
7320 * attribute.
7321 */
7322 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7323 < mddev->array_sectors) {
7324 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7325 "before number of disks\n", mdname(mddev));
7326 return -EINVAL;
7327 }
7328
7329 atomic_set(&conf->reshape_stripes, 0);
7330 spin_lock_irq(&conf->device_lock);
7331 write_seqcount_begin(&conf->gen_lock);
7332 conf->previous_raid_disks = conf->raid_disks;
7333 conf->raid_disks += mddev->delta_disks;
7334 conf->prev_chunk_sectors = conf->chunk_sectors;
7335 conf->chunk_sectors = mddev->new_chunk_sectors;
7336 conf->prev_algo = conf->algorithm;
7337 conf->algorithm = mddev->new_layout;
7338 conf->generation++;
7339 /* Code that selects data_offset needs to see the generation update
7340 * if reshape_progress has been set - so a memory barrier needed.
7341 */
7342 smp_mb();
7343 if (mddev->reshape_backwards)
7344 conf->reshape_progress = raid5_size(mddev, 0, 0);
7345 else
7346 conf->reshape_progress = 0;
7347 conf->reshape_safe = conf->reshape_progress;
7348 write_seqcount_end(&conf->gen_lock);
7349 spin_unlock_irq(&conf->device_lock);
7350
7351 /* Now make sure any requests that proceeded on the assumption
7352 * the reshape wasn't running - like Discard or Read - have
7353 * completed.
7354 */
7355 mddev_suspend(mddev);
7356 mddev_resume(mddev);
7357
7358 /* Add some new drives, as many as will fit.
7359 * We know there are enough to make the newly sized array work.
7360 * Don't add devices if we are reducing the number of
7361 * devices in the array. This is because it is not possible
7362 * to correctly record the "partially reconstructed" state of
7363 * such devices during the reshape and confusion could result.
7364 */
7365 if (mddev->delta_disks >= 0) {
7366 rdev_for_each(rdev, mddev)
7367 if (rdev->raid_disk < 0 &&
7368 !test_bit(Faulty, &rdev->flags)) {
7369 if (raid5_add_disk(mddev, rdev) == 0) {
7370 if (rdev->raid_disk
7371 >= conf->previous_raid_disks)
7372 set_bit(In_sync, &rdev->flags);
7373 else
7374 rdev->recovery_offset = 0;
7375
7376 if (sysfs_link_rdev(mddev, rdev))
7377 /* Failure here is OK */;
7378 }
7379 } else if (rdev->raid_disk >= conf->previous_raid_disks
7380 && !test_bit(Faulty, &rdev->flags)) {
7381 /* This is a spare that was manually added */
7382 set_bit(In_sync, &rdev->flags);
7383 }
7384
7385 /* When a reshape changes the number of devices,
7386 * ->degraded is measured against the larger of the
7387 * pre and post number of devices.
7388 */
7389 spin_lock_irqsave(&conf->device_lock, flags);
7390 mddev->degraded = calc_degraded(conf);
7391 spin_unlock_irqrestore(&conf->device_lock, flags);
7392 }
7393 mddev->raid_disks = conf->raid_disks;
7394 mddev->reshape_position = conf->reshape_progress;
7395 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7396
7397 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7398 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7399 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7400 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7401 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7402 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7403 "reshape");
7404 if (!mddev->sync_thread) {
7405 mddev->recovery = 0;
7406 spin_lock_irq(&conf->device_lock);
7407 write_seqcount_begin(&conf->gen_lock);
7408 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7409 mddev->new_chunk_sectors =
7410 conf->chunk_sectors = conf->prev_chunk_sectors;
7411 mddev->new_layout = conf->algorithm = conf->prev_algo;
7412 rdev_for_each(rdev, mddev)
7413 rdev->new_data_offset = rdev->data_offset;
7414 smp_wmb();
7415 conf->generation --;
7416 conf->reshape_progress = MaxSector;
7417 mddev->reshape_position = MaxSector;
7418 write_seqcount_end(&conf->gen_lock);
7419 spin_unlock_irq(&conf->device_lock);
7420 return -EAGAIN;
7421 }
7422 conf->reshape_checkpoint = jiffies;
7423 md_wakeup_thread(mddev->sync_thread);
7424 md_new_event(mddev);
7425 return 0;
7426 }
7427
7428 /* This is called from the reshape thread and should make any
7429 * changes needed in 'conf'
7430 */
7431 static void end_reshape(struct r5conf *conf)
7432 {
7433
7434 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7435 struct md_rdev *rdev;
7436
7437 spin_lock_irq(&conf->device_lock);
7438 conf->previous_raid_disks = conf->raid_disks;
7439 rdev_for_each(rdev, conf->mddev)
7440 rdev->data_offset = rdev->new_data_offset;
7441 smp_wmb();
7442 conf->reshape_progress = MaxSector;
7443 spin_unlock_irq(&conf->device_lock);
7444 wake_up(&conf->wait_for_overlap);
7445
7446 /* read-ahead size must cover two whole stripes, which is
7447 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7448 */
7449 if (conf->mddev->queue) {
7450 int data_disks = conf->raid_disks - conf->max_degraded;
7451 int stripe = data_disks * ((conf->chunk_sectors << 9)
7452 / PAGE_SIZE);
7453 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7454 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7455 }
7456 }
7457 }
7458
7459 /* This is called from the raid5d thread with mddev_lock held.
7460 * It makes config changes to the device.
7461 */
7462 static void raid5_finish_reshape(struct mddev *mddev)
7463 {
7464 struct r5conf *conf = mddev->private;
7465
7466 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7467
7468 if (mddev->delta_disks > 0) {
7469 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7470 set_capacity(mddev->gendisk, mddev->array_sectors);
7471 revalidate_disk(mddev->gendisk);
7472 } else {
7473 int d;
7474 spin_lock_irq(&conf->device_lock);
7475 mddev->degraded = calc_degraded(conf);
7476 spin_unlock_irq(&conf->device_lock);
7477 for (d = conf->raid_disks ;
7478 d < conf->raid_disks - mddev->delta_disks;
7479 d++) {
7480 struct md_rdev *rdev = conf->disks[d].rdev;
7481 if (rdev)
7482 clear_bit(In_sync, &rdev->flags);
7483 rdev = conf->disks[d].replacement;
7484 if (rdev)
7485 clear_bit(In_sync, &rdev->flags);
7486 }
7487 }
7488 mddev->layout = conf->algorithm;
7489 mddev->chunk_sectors = conf->chunk_sectors;
7490 mddev->reshape_position = MaxSector;
7491 mddev->delta_disks = 0;
7492 mddev->reshape_backwards = 0;
7493 }
7494 }
7495
7496 static void raid5_quiesce(struct mddev *mddev, int state)
7497 {
7498 struct r5conf *conf = mddev->private;
7499
7500 switch(state) {
7501 case 2: /* resume for a suspend */
7502 wake_up(&conf->wait_for_overlap);
7503 break;
7504
7505 case 1: /* stop all writes */
7506 lock_all_device_hash_locks_irq(conf);
7507 /* '2' tells resync/reshape to pause so that all
7508 * active stripes can drain
7509 */
7510 conf->quiesce = 2;
7511 wait_event_cmd(conf->wait_for_quiescent,
7512 atomic_read(&conf->active_stripes) == 0 &&
7513 atomic_read(&conf->active_aligned_reads) == 0,
7514 unlock_all_device_hash_locks_irq(conf),
7515 lock_all_device_hash_locks_irq(conf));
7516 conf->quiesce = 1;
7517 unlock_all_device_hash_locks_irq(conf);
7518 /* allow reshape to continue */
7519 wake_up(&conf->wait_for_overlap);
7520 break;
7521
7522 case 0: /* re-enable writes */
7523 lock_all_device_hash_locks_irq(conf);
7524 conf->quiesce = 0;
7525 wake_up(&conf->wait_for_quiescent);
7526 wake_up(&conf->wait_for_overlap);
7527 unlock_all_device_hash_locks_irq(conf);
7528 break;
7529 }
7530 }
7531
7532 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7533 {
7534 struct r0conf *raid0_conf = mddev->private;
7535 sector_t sectors;
7536
7537 /* for raid0 takeover only one zone is supported */
7538 if (raid0_conf->nr_strip_zones > 1) {
7539 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7540 mdname(mddev));
7541 return ERR_PTR(-EINVAL);
7542 }
7543
7544 sectors = raid0_conf->strip_zone[0].zone_end;
7545 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7546 mddev->dev_sectors = sectors;
7547 mddev->new_level = level;
7548 mddev->new_layout = ALGORITHM_PARITY_N;
7549 mddev->new_chunk_sectors = mddev->chunk_sectors;
7550 mddev->raid_disks += 1;
7551 mddev->delta_disks = 1;
7552 /* make sure it will be not marked as dirty */
7553 mddev->recovery_cp = MaxSector;
7554
7555 return setup_conf(mddev);
7556 }
7557
7558 static void *raid5_takeover_raid1(struct mddev *mddev)
7559 {
7560 int chunksect;
7561
7562 if (mddev->raid_disks != 2 ||
7563 mddev->degraded > 1)
7564 return ERR_PTR(-EINVAL);
7565
7566 /* Should check if there are write-behind devices? */
7567
7568 chunksect = 64*2; /* 64K by default */
7569
7570 /* The array must be an exact multiple of chunksize */
7571 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7572 chunksect >>= 1;
7573
7574 if ((chunksect<<9) < STRIPE_SIZE)
7575 /* array size does not allow a suitable chunk size */
7576 return ERR_PTR(-EINVAL);
7577
7578 mddev->new_level = 5;
7579 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7580 mddev->new_chunk_sectors = chunksect;
7581
7582 return setup_conf(mddev);
7583 }
7584
7585 static void *raid5_takeover_raid6(struct mddev *mddev)
7586 {
7587 int new_layout;
7588
7589 switch (mddev->layout) {
7590 case ALGORITHM_LEFT_ASYMMETRIC_6:
7591 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7592 break;
7593 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7594 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7595 break;
7596 case ALGORITHM_LEFT_SYMMETRIC_6:
7597 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7598 break;
7599 case ALGORITHM_RIGHT_SYMMETRIC_6:
7600 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7601 break;
7602 case ALGORITHM_PARITY_0_6:
7603 new_layout = ALGORITHM_PARITY_0;
7604 break;
7605 case ALGORITHM_PARITY_N:
7606 new_layout = ALGORITHM_PARITY_N;
7607 break;
7608 default:
7609 return ERR_PTR(-EINVAL);
7610 }
7611 mddev->new_level = 5;
7612 mddev->new_layout = new_layout;
7613 mddev->delta_disks = -1;
7614 mddev->raid_disks -= 1;
7615 return setup_conf(mddev);
7616 }
7617
7618 static int raid5_check_reshape(struct mddev *mddev)
7619 {
7620 /* For a 2-drive array, the layout and chunk size can be changed
7621 * immediately as not restriping is needed.
7622 * For larger arrays we record the new value - after validation
7623 * to be used by a reshape pass.
7624 */
7625 struct r5conf *conf = mddev->private;
7626 int new_chunk = mddev->new_chunk_sectors;
7627
7628 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7629 return -EINVAL;
7630 if (new_chunk > 0) {
7631 if (!is_power_of_2(new_chunk))
7632 return -EINVAL;
7633 if (new_chunk < (PAGE_SIZE>>9))
7634 return -EINVAL;
7635 if (mddev->array_sectors & (new_chunk-1))
7636 /* not factor of array size */
7637 return -EINVAL;
7638 }
7639
7640 /* They look valid */
7641
7642 if (mddev->raid_disks == 2) {
7643 /* can make the change immediately */
7644 if (mddev->new_layout >= 0) {
7645 conf->algorithm = mddev->new_layout;
7646 mddev->layout = mddev->new_layout;
7647 }
7648 if (new_chunk > 0) {
7649 conf->chunk_sectors = new_chunk ;
7650 mddev->chunk_sectors = new_chunk;
7651 }
7652 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7653 md_wakeup_thread(mddev->thread);
7654 }
7655 return check_reshape(mddev);
7656 }
7657
7658 static int raid6_check_reshape(struct mddev *mddev)
7659 {
7660 int new_chunk = mddev->new_chunk_sectors;
7661
7662 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7663 return -EINVAL;
7664 if (new_chunk > 0) {
7665 if (!is_power_of_2(new_chunk))
7666 return -EINVAL;
7667 if (new_chunk < (PAGE_SIZE >> 9))
7668 return -EINVAL;
7669 if (mddev->array_sectors & (new_chunk-1))
7670 /* not factor of array size */
7671 return -EINVAL;
7672 }
7673
7674 /* They look valid */
7675 return check_reshape(mddev);
7676 }
7677
7678 static void *raid5_takeover(struct mddev *mddev)
7679 {
7680 /* raid5 can take over:
7681 * raid0 - if there is only one strip zone - make it a raid4 layout
7682 * raid1 - if there are two drives. We need to know the chunk size
7683 * raid4 - trivial - just use a raid4 layout.
7684 * raid6 - Providing it is a *_6 layout
7685 */
7686 if (mddev->level == 0)
7687 return raid45_takeover_raid0(mddev, 5);
7688 if (mddev->level == 1)
7689 return raid5_takeover_raid1(mddev);
7690 if (mddev->level == 4) {
7691 mddev->new_layout = ALGORITHM_PARITY_N;
7692 mddev->new_level = 5;
7693 return setup_conf(mddev);
7694 }
7695 if (mddev->level == 6)
7696 return raid5_takeover_raid6(mddev);
7697
7698 return ERR_PTR(-EINVAL);
7699 }
7700
7701 static void *raid4_takeover(struct mddev *mddev)
7702 {
7703 /* raid4 can take over:
7704 * raid0 - if there is only one strip zone
7705 * raid5 - if layout is right
7706 */
7707 if (mddev->level == 0)
7708 return raid45_takeover_raid0(mddev, 4);
7709 if (mddev->level == 5 &&
7710 mddev->layout == ALGORITHM_PARITY_N) {
7711 mddev->new_layout = 0;
7712 mddev->new_level = 4;
7713 return setup_conf(mddev);
7714 }
7715 return ERR_PTR(-EINVAL);
7716 }
7717
7718 static struct md_personality raid5_personality;
7719
7720 static void *raid6_takeover(struct mddev *mddev)
7721 {
7722 /* Currently can only take over a raid5. We map the
7723 * personality to an equivalent raid6 personality
7724 * with the Q block at the end.
7725 */
7726 int new_layout;
7727
7728 if (mddev->pers != &raid5_personality)
7729 return ERR_PTR(-EINVAL);
7730 if (mddev->degraded > 1)
7731 return ERR_PTR(-EINVAL);
7732 if (mddev->raid_disks > 253)
7733 return ERR_PTR(-EINVAL);
7734 if (mddev->raid_disks < 3)
7735 return ERR_PTR(-EINVAL);
7736
7737 switch (mddev->layout) {
7738 case ALGORITHM_LEFT_ASYMMETRIC:
7739 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7740 break;
7741 case ALGORITHM_RIGHT_ASYMMETRIC:
7742 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7743 break;
7744 case ALGORITHM_LEFT_SYMMETRIC:
7745 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7746 break;
7747 case ALGORITHM_RIGHT_SYMMETRIC:
7748 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7749 break;
7750 case ALGORITHM_PARITY_0:
7751 new_layout = ALGORITHM_PARITY_0_6;
7752 break;
7753 case ALGORITHM_PARITY_N:
7754 new_layout = ALGORITHM_PARITY_N;
7755 break;
7756 default:
7757 return ERR_PTR(-EINVAL);
7758 }
7759 mddev->new_level = 6;
7760 mddev->new_layout = new_layout;
7761 mddev->delta_disks = 1;
7762 mddev->raid_disks += 1;
7763 return setup_conf(mddev);
7764 }
7765
7766 static struct md_personality raid6_personality =
7767 {
7768 .name = "raid6",
7769 .level = 6,
7770 .owner = THIS_MODULE,
7771 .make_request = make_request,
7772 .run = run,
7773 .free = raid5_free,
7774 .status = status,
7775 .error_handler = error,
7776 .hot_add_disk = raid5_add_disk,
7777 .hot_remove_disk= raid5_remove_disk,
7778 .spare_active = raid5_spare_active,
7779 .sync_request = sync_request,
7780 .resize = raid5_resize,
7781 .size = raid5_size,
7782 .check_reshape = raid6_check_reshape,
7783 .start_reshape = raid5_start_reshape,
7784 .finish_reshape = raid5_finish_reshape,
7785 .quiesce = raid5_quiesce,
7786 .takeover = raid6_takeover,
7787 .congested = raid5_congested,
7788 .mergeable_bvec = raid5_mergeable_bvec,
7789 };
7790 static struct md_personality raid5_personality =
7791 {
7792 .name = "raid5",
7793 .level = 5,
7794 .owner = THIS_MODULE,
7795 .make_request = make_request,
7796 .run = run,
7797 .free = raid5_free,
7798 .status = status,
7799 .error_handler = error,
7800 .hot_add_disk = raid5_add_disk,
7801 .hot_remove_disk= raid5_remove_disk,
7802 .spare_active = raid5_spare_active,
7803 .sync_request = sync_request,
7804 .resize = raid5_resize,
7805 .size = raid5_size,
7806 .check_reshape = raid5_check_reshape,
7807 .start_reshape = raid5_start_reshape,
7808 .finish_reshape = raid5_finish_reshape,
7809 .quiesce = raid5_quiesce,
7810 .takeover = raid5_takeover,
7811 .congested = raid5_congested,
7812 .mergeable_bvec = raid5_mergeable_bvec,
7813 };
7814
7815 static struct md_personality raid4_personality =
7816 {
7817 .name = "raid4",
7818 .level = 4,
7819 .owner = THIS_MODULE,
7820 .make_request = make_request,
7821 .run = run,
7822 .free = raid5_free,
7823 .status = status,
7824 .error_handler = error,
7825 .hot_add_disk = raid5_add_disk,
7826 .hot_remove_disk= raid5_remove_disk,
7827 .spare_active = raid5_spare_active,
7828 .sync_request = sync_request,
7829 .resize = raid5_resize,
7830 .size = raid5_size,
7831 .check_reshape = raid5_check_reshape,
7832 .start_reshape = raid5_start_reshape,
7833 .finish_reshape = raid5_finish_reshape,
7834 .quiesce = raid5_quiesce,
7835 .takeover = raid4_takeover,
7836 .congested = raid5_congested,
7837 .mergeable_bvec = raid5_mergeable_bvec,
7838 };
7839
7840 static int __init raid5_init(void)
7841 {
7842 raid5_wq = alloc_workqueue("raid5wq",
7843 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7844 if (!raid5_wq)
7845 return -ENOMEM;
7846 register_md_personality(&raid6_personality);
7847 register_md_personality(&raid5_personality);
7848 register_md_personality(&raid4_personality);
7849 return 0;
7850 }
7851
7852 static void raid5_exit(void)
7853 {
7854 unregister_md_personality(&raid6_personality);
7855 unregister_md_personality(&raid5_personality);
7856 unregister_md_personality(&raid4_personality);
7857 destroy_workqueue(raid5_wq);
7858 }
7859
7860 module_init(raid5_init);
7861 module_exit(raid5_exit);
7862 MODULE_LICENSE("GPL");
7863 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7864 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7865 MODULE_ALIAS("md-raid5");
7866 MODULE_ALIAS("md-raid4");
7867 MODULE_ALIAS("md-level-5");
7868 MODULE_ALIAS("md-level-4");
7869 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7870 MODULE_ALIAS("md-raid6");
7871 MODULE_ALIAS("md-level-6");
7872
7873 /* This used to be two separate modules, they were: */
7874 MODULE_ALIAS("raid5");
7875 MODULE_ALIAS("raid6");