]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/raid5.c
md/raid1,5,10: Disable WRITE SAME until a recovery strategy is in place
[mirror_ubuntu-jammy-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <trace/events/block.h>
57
58 #include "md.h"
59 #include "raid5.h"
60 #include "raid0.h"
61 #include "bitmap.h"
62
63 /*
64 * Stripe cache
65 */
66
67 #define NR_STRIPES 256
68 #define STRIPE_SIZE PAGE_SIZE
69 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
70 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
71 #define IO_THRESHOLD 1
72 #define BYPASS_THRESHOLD 1
73 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
74 #define HASH_MASK (NR_HASH - 1)
75
76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 {
78 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79 return &conf->stripe_hashtbl[hash];
80 }
81
82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
83 * order without overlap. There may be several bio's per stripe+device, and
84 * a bio could span several devices.
85 * When walking this list for a particular stripe+device, we must never proceed
86 * beyond a bio that extends past this device, as the next bio might no longer
87 * be valid.
88 * This function is used to determine the 'next' bio in the list, given the sector
89 * of the current stripe+device
90 */
91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
92 {
93 int sectors = bio->bi_size >> 9;
94 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
95 return bio->bi_next;
96 else
97 return NULL;
98 }
99
100 /*
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 */
104 static inline int raid5_bi_processed_stripes(struct bio *bio)
105 {
106 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
107 return (atomic_read(segments) >> 16) & 0xffff;
108 }
109
110 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
111 {
112 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113 return atomic_sub_return(1, segments) & 0xffff;
114 }
115
116 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
117 {
118 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119 atomic_inc(segments);
120 }
121
122 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
123 unsigned int cnt)
124 {
125 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
126 int old, new;
127
128 do {
129 old = atomic_read(segments);
130 new = (old & 0xffff) | (cnt << 16);
131 } while (atomic_cmpxchg(segments, old, new) != old);
132 }
133
134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
135 {
136 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
137 atomic_set(segments, cnt);
138 }
139
140 /* Find first data disk in a raid6 stripe */
141 static inline int raid6_d0(struct stripe_head *sh)
142 {
143 if (sh->ddf_layout)
144 /* ddf always start from first device */
145 return 0;
146 /* md starts just after Q block */
147 if (sh->qd_idx == sh->disks - 1)
148 return 0;
149 else
150 return sh->qd_idx + 1;
151 }
152 static inline int raid6_next_disk(int disk, int raid_disks)
153 {
154 disk++;
155 return (disk < raid_disks) ? disk : 0;
156 }
157
158 /* When walking through the disks in a raid5, starting at raid6_d0,
159 * We need to map each disk to a 'slot', where the data disks are slot
160 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
161 * is raid_disks-1. This help does that mapping.
162 */
163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
164 int *count, int syndrome_disks)
165 {
166 int slot = *count;
167
168 if (sh->ddf_layout)
169 (*count)++;
170 if (idx == sh->pd_idx)
171 return syndrome_disks;
172 if (idx == sh->qd_idx)
173 return syndrome_disks + 1;
174 if (!sh->ddf_layout)
175 (*count)++;
176 return slot;
177 }
178
179 static void return_io(struct bio *return_bi)
180 {
181 struct bio *bi = return_bi;
182 while (bi) {
183
184 return_bi = bi->bi_next;
185 bi->bi_next = NULL;
186 bi->bi_size = 0;
187 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
188 bi, 0);
189 bio_endio(bi, 0);
190 bi = return_bi;
191 }
192 }
193
194 static void print_raid5_conf (struct r5conf *conf);
195
196 static int stripe_operations_active(struct stripe_head *sh)
197 {
198 return sh->check_state || sh->reconstruct_state ||
199 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
200 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
201 }
202
203 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
204 {
205 BUG_ON(!list_empty(&sh->lru));
206 BUG_ON(atomic_read(&conf->active_stripes)==0);
207 if (test_bit(STRIPE_HANDLE, &sh->state)) {
208 if (test_bit(STRIPE_DELAYED, &sh->state) &&
209 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
210 list_add_tail(&sh->lru, &conf->delayed_list);
211 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
212 sh->bm_seq - conf->seq_write > 0)
213 list_add_tail(&sh->lru, &conf->bitmap_list);
214 else {
215 clear_bit(STRIPE_DELAYED, &sh->state);
216 clear_bit(STRIPE_BIT_DELAY, &sh->state);
217 list_add_tail(&sh->lru, &conf->handle_list);
218 }
219 md_wakeup_thread(conf->mddev->thread);
220 } else {
221 BUG_ON(stripe_operations_active(sh));
222 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
223 if (atomic_dec_return(&conf->preread_active_stripes)
224 < IO_THRESHOLD)
225 md_wakeup_thread(conf->mddev->thread);
226 atomic_dec(&conf->active_stripes);
227 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
228 list_add_tail(&sh->lru, &conf->inactive_list);
229 wake_up(&conf->wait_for_stripe);
230 if (conf->retry_read_aligned)
231 md_wakeup_thread(conf->mddev->thread);
232 }
233 }
234 }
235
236 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
237 {
238 if (atomic_dec_and_test(&sh->count))
239 do_release_stripe(conf, sh);
240 }
241
242 static void release_stripe(struct stripe_head *sh)
243 {
244 struct r5conf *conf = sh->raid_conf;
245 unsigned long flags;
246
247 local_irq_save(flags);
248 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
249 do_release_stripe(conf, sh);
250 spin_unlock(&conf->device_lock);
251 }
252 local_irq_restore(flags);
253 }
254
255 static inline void remove_hash(struct stripe_head *sh)
256 {
257 pr_debug("remove_hash(), stripe %llu\n",
258 (unsigned long long)sh->sector);
259
260 hlist_del_init(&sh->hash);
261 }
262
263 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
264 {
265 struct hlist_head *hp = stripe_hash(conf, sh->sector);
266
267 pr_debug("insert_hash(), stripe %llu\n",
268 (unsigned long long)sh->sector);
269
270 hlist_add_head(&sh->hash, hp);
271 }
272
273
274 /* find an idle stripe, make sure it is unhashed, and return it. */
275 static struct stripe_head *get_free_stripe(struct r5conf *conf)
276 {
277 struct stripe_head *sh = NULL;
278 struct list_head *first;
279
280 if (list_empty(&conf->inactive_list))
281 goto out;
282 first = conf->inactive_list.next;
283 sh = list_entry(first, struct stripe_head, lru);
284 list_del_init(first);
285 remove_hash(sh);
286 atomic_inc(&conf->active_stripes);
287 out:
288 return sh;
289 }
290
291 static void shrink_buffers(struct stripe_head *sh)
292 {
293 struct page *p;
294 int i;
295 int num = sh->raid_conf->pool_size;
296
297 for (i = 0; i < num ; i++) {
298 p = sh->dev[i].page;
299 if (!p)
300 continue;
301 sh->dev[i].page = NULL;
302 put_page(p);
303 }
304 }
305
306 static int grow_buffers(struct stripe_head *sh)
307 {
308 int i;
309 int num = sh->raid_conf->pool_size;
310
311 for (i = 0; i < num; i++) {
312 struct page *page;
313
314 if (!(page = alloc_page(GFP_KERNEL))) {
315 return 1;
316 }
317 sh->dev[i].page = page;
318 }
319 return 0;
320 }
321
322 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
323 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
324 struct stripe_head *sh);
325
326 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
327 {
328 struct r5conf *conf = sh->raid_conf;
329 int i;
330
331 BUG_ON(atomic_read(&sh->count) != 0);
332 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
333 BUG_ON(stripe_operations_active(sh));
334
335 pr_debug("init_stripe called, stripe %llu\n",
336 (unsigned long long)sh->sector);
337
338 remove_hash(sh);
339
340 sh->generation = conf->generation - previous;
341 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
342 sh->sector = sector;
343 stripe_set_idx(sector, conf, previous, sh);
344 sh->state = 0;
345
346
347 for (i = sh->disks; i--; ) {
348 struct r5dev *dev = &sh->dev[i];
349
350 if (dev->toread || dev->read || dev->towrite || dev->written ||
351 test_bit(R5_LOCKED, &dev->flags)) {
352 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
353 (unsigned long long)sh->sector, i, dev->toread,
354 dev->read, dev->towrite, dev->written,
355 test_bit(R5_LOCKED, &dev->flags));
356 WARN_ON(1);
357 }
358 dev->flags = 0;
359 raid5_build_block(sh, i, previous);
360 }
361 insert_hash(conf, sh);
362 }
363
364 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
365 short generation)
366 {
367 struct stripe_head *sh;
368
369 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
370 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
371 if (sh->sector == sector && sh->generation == generation)
372 return sh;
373 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
374 return NULL;
375 }
376
377 /*
378 * Need to check if array has failed when deciding whether to:
379 * - start an array
380 * - remove non-faulty devices
381 * - add a spare
382 * - allow a reshape
383 * This determination is simple when no reshape is happening.
384 * However if there is a reshape, we need to carefully check
385 * both the before and after sections.
386 * This is because some failed devices may only affect one
387 * of the two sections, and some non-in_sync devices may
388 * be insync in the section most affected by failed devices.
389 */
390 static int calc_degraded(struct r5conf *conf)
391 {
392 int degraded, degraded2;
393 int i;
394
395 rcu_read_lock();
396 degraded = 0;
397 for (i = 0; i < conf->previous_raid_disks; i++) {
398 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
399 if (rdev && test_bit(Faulty, &rdev->flags))
400 rdev = rcu_dereference(conf->disks[i].replacement);
401 if (!rdev || test_bit(Faulty, &rdev->flags))
402 degraded++;
403 else if (test_bit(In_sync, &rdev->flags))
404 ;
405 else
406 /* not in-sync or faulty.
407 * If the reshape increases the number of devices,
408 * this is being recovered by the reshape, so
409 * this 'previous' section is not in_sync.
410 * If the number of devices is being reduced however,
411 * the device can only be part of the array if
412 * we are reverting a reshape, so this section will
413 * be in-sync.
414 */
415 if (conf->raid_disks >= conf->previous_raid_disks)
416 degraded++;
417 }
418 rcu_read_unlock();
419 if (conf->raid_disks == conf->previous_raid_disks)
420 return degraded;
421 rcu_read_lock();
422 degraded2 = 0;
423 for (i = 0; i < conf->raid_disks; i++) {
424 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
425 if (rdev && test_bit(Faulty, &rdev->flags))
426 rdev = rcu_dereference(conf->disks[i].replacement);
427 if (!rdev || test_bit(Faulty, &rdev->flags))
428 degraded2++;
429 else if (test_bit(In_sync, &rdev->flags))
430 ;
431 else
432 /* not in-sync or faulty.
433 * If reshape increases the number of devices, this
434 * section has already been recovered, else it
435 * almost certainly hasn't.
436 */
437 if (conf->raid_disks <= conf->previous_raid_disks)
438 degraded2++;
439 }
440 rcu_read_unlock();
441 if (degraded2 > degraded)
442 return degraded2;
443 return degraded;
444 }
445
446 static int has_failed(struct r5conf *conf)
447 {
448 int degraded;
449
450 if (conf->mddev->reshape_position == MaxSector)
451 return conf->mddev->degraded > conf->max_degraded;
452
453 degraded = calc_degraded(conf);
454 if (degraded > conf->max_degraded)
455 return 1;
456 return 0;
457 }
458
459 static struct stripe_head *
460 get_active_stripe(struct r5conf *conf, sector_t sector,
461 int previous, int noblock, int noquiesce)
462 {
463 struct stripe_head *sh;
464
465 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
466
467 spin_lock_irq(&conf->device_lock);
468
469 do {
470 wait_event_lock_irq(conf->wait_for_stripe,
471 conf->quiesce == 0 || noquiesce,
472 conf->device_lock);
473 sh = __find_stripe(conf, sector, conf->generation - previous);
474 if (!sh) {
475 if (!conf->inactive_blocked)
476 sh = get_free_stripe(conf);
477 if (noblock && sh == NULL)
478 break;
479 if (!sh) {
480 conf->inactive_blocked = 1;
481 wait_event_lock_irq(conf->wait_for_stripe,
482 !list_empty(&conf->inactive_list) &&
483 (atomic_read(&conf->active_stripes)
484 < (conf->max_nr_stripes *3/4)
485 || !conf->inactive_blocked),
486 conf->device_lock);
487 conf->inactive_blocked = 0;
488 } else
489 init_stripe(sh, sector, previous);
490 } else {
491 if (atomic_read(&sh->count)) {
492 BUG_ON(!list_empty(&sh->lru)
493 && !test_bit(STRIPE_EXPANDING, &sh->state)
494 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
495 } else {
496 if (!test_bit(STRIPE_HANDLE, &sh->state))
497 atomic_inc(&conf->active_stripes);
498 if (list_empty(&sh->lru) &&
499 !test_bit(STRIPE_EXPANDING, &sh->state))
500 BUG();
501 list_del_init(&sh->lru);
502 }
503 }
504 } while (sh == NULL);
505
506 if (sh)
507 atomic_inc(&sh->count);
508
509 spin_unlock_irq(&conf->device_lock);
510 return sh;
511 }
512
513 /* Determine if 'data_offset' or 'new_data_offset' should be used
514 * in this stripe_head.
515 */
516 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
517 {
518 sector_t progress = conf->reshape_progress;
519 /* Need a memory barrier to make sure we see the value
520 * of conf->generation, or ->data_offset that was set before
521 * reshape_progress was updated.
522 */
523 smp_rmb();
524 if (progress == MaxSector)
525 return 0;
526 if (sh->generation == conf->generation - 1)
527 return 0;
528 /* We are in a reshape, and this is a new-generation stripe,
529 * so use new_data_offset.
530 */
531 return 1;
532 }
533
534 static void
535 raid5_end_read_request(struct bio *bi, int error);
536 static void
537 raid5_end_write_request(struct bio *bi, int error);
538
539 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
540 {
541 struct r5conf *conf = sh->raid_conf;
542 int i, disks = sh->disks;
543
544 might_sleep();
545
546 for (i = disks; i--; ) {
547 int rw;
548 int replace_only = 0;
549 struct bio *bi, *rbi;
550 struct md_rdev *rdev, *rrdev = NULL;
551 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
552 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
553 rw = WRITE_FUA;
554 else
555 rw = WRITE;
556 if (test_bit(R5_Discard, &sh->dev[i].flags))
557 rw |= REQ_DISCARD;
558 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
559 rw = READ;
560 else if (test_and_clear_bit(R5_WantReplace,
561 &sh->dev[i].flags)) {
562 rw = WRITE;
563 replace_only = 1;
564 } else
565 continue;
566 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
567 rw |= REQ_SYNC;
568
569 bi = &sh->dev[i].req;
570 rbi = &sh->dev[i].rreq; /* For writing to replacement */
571
572 bi->bi_rw = rw;
573 rbi->bi_rw = rw;
574 if (rw & WRITE) {
575 bi->bi_end_io = raid5_end_write_request;
576 rbi->bi_end_io = raid5_end_write_request;
577 } else
578 bi->bi_end_io = raid5_end_read_request;
579
580 rcu_read_lock();
581 rrdev = rcu_dereference(conf->disks[i].replacement);
582 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
583 rdev = rcu_dereference(conf->disks[i].rdev);
584 if (!rdev) {
585 rdev = rrdev;
586 rrdev = NULL;
587 }
588 if (rw & WRITE) {
589 if (replace_only)
590 rdev = NULL;
591 if (rdev == rrdev)
592 /* We raced and saw duplicates */
593 rrdev = NULL;
594 } else {
595 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
596 rdev = rrdev;
597 rrdev = NULL;
598 }
599
600 if (rdev && test_bit(Faulty, &rdev->flags))
601 rdev = NULL;
602 if (rdev)
603 atomic_inc(&rdev->nr_pending);
604 if (rrdev && test_bit(Faulty, &rrdev->flags))
605 rrdev = NULL;
606 if (rrdev)
607 atomic_inc(&rrdev->nr_pending);
608 rcu_read_unlock();
609
610 /* We have already checked bad blocks for reads. Now
611 * need to check for writes. We never accept write errors
612 * on the replacement, so we don't to check rrdev.
613 */
614 while ((rw & WRITE) && rdev &&
615 test_bit(WriteErrorSeen, &rdev->flags)) {
616 sector_t first_bad;
617 int bad_sectors;
618 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
619 &first_bad, &bad_sectors);
620 if (!bad)
621 break;
622
623 if (bad < 0) {
624 set_bit(BlockedBadBlocks, &rdev->flags);
625 if (!conf->mddev->external &&
626 conf->mddev->flags) {
627 /* It is very unlikely, but we might
628 * still need to write out the
629 * bad block log - better give it
630 * a chance*/
631 md_check_recovery(conf->mddev);
632 }
633 /*
634 * Because md_wait_for_blocked_rdev
635 * will dec nr_pending, we must
636 * increment it first.
637 */
638 atomic_inc(&rdev->nr_pending);
639 md_wait_for_blocked_rdev(rdev, conf->mddev);
640 } else {
641 /* Acknowledged bad block - skip the write */
642 rdev_dec_pending(rdev, conf->mddev);
643 rdev = NULL;
644 }
645 }
646
647 if (rdev) {
648 if (s->syncing || s->expanding || s->expanded
649 || s->replacing)
650 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
651
652 set_bit(STRIPE_IO_STARTED, &sh->state);
653
654 bi->bi_bdev = rdev->bdev;
655 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
656 __func__, (unsigned long long)sh->sector,
657 bi->bi_rw, i);
658 atomic_inc(&sh->count);
659 if (use_new_offset(conf, sh))
660 bi->bi_sector = (sh->sector
661 + rdev->new_data_offset);
662 else
663 bi->bi_sector = (sh->sector
664 + rdev->data_offset);
665 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
666 bi->bi_rw |= REQ_FLUSH;
667
668 bi->bi_flags = 1 << BIO_UPTODATE;
669 bi->bi_idx = 0;
670 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
671 bi->bi_io_vec[0].bv_offset = 0;
672 bi->bi_size = STRIPE_SIZE;
673 bi->bi_next = NULL;
674 if (rrdev)
675 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
676
677 if (conf->mddev->gendisk)
678 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
679 bi, disk_devt(conf->mddev->gendisk),
680 sh->dev[i].sector);
681 generic_make_request(bi);
682 }
683 if (rrdev) {
684 if (s->syncing || s->expanding || s->expanded
685 || s->replacing)
686 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
687
688 set_bit(STRIPE_IO_STARTED, &sh->state);
689
690 rbi->bi_bdev = rrdev->bdev;
691 pr_debug("%s: for %llu schedule op %ld on "
692 "replacement disc %d\n",
693 __func__, (unsigned long long)sh->sector,
694 rbi->bi_rw, i);
695 atomic_inc(&sh->count);
696 if (use_new_offset(conf, sh))
697 rbi->bi_sector = (sh->sector
698 + rrdev->new_data_offset);
699 else
700 rbi->bi_sector = (sh->sector
701 + rrdev->data_offset);
702 rbi->bi_flags = 1 << BIO_UPTODATE;
703 rbi->bi_idx = 0;
704 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
705 rbi->bi_io_vec[0].bv_offset = 0;
706 rbi->bi_size = STRIPE_SIZE;
707 rbi->bi_next = NULL;
708 if (conf->mddev->gendisk)
709 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
710 rbi, disk_devt(conf->mddev->gendisk),
711 sh->dev[i].sector);
712 generic_make_request(rbi);
713 }
714 if (!rdev && !rrdev) {
715 if (rw & WRITE)
716 set_bit(STRIPE_DEGRADED, &sh->state);
717 pr_debug("skip op %ld on disc %d for sector %llu\n",
718 bi->bi_rw, i, (unsigned long long)sh->sector);
719 clear_bit(R5_LOCKED, &sh->dev[i].flags);
720 set_bit(STRIPE_HANDLE, &sh->state);
721 }
722 }
723 }
724
725 static struct dma_async_tx_descriptor *
726 async_copy_data(int frombio, struct bio *bio, struct page *page,
727 sector_t sector, struct dma_async_tx_descriptor *tx)
728 {
729 struct bio_vec *bvl;
730 struct page *bio_page;
731 int i;
732 int page_offset;
733 struct async_submit_ctl submit;
734 enum async_tx_flags flags = 0;
735
736 if (bio->bi_sector >= sector)
737 page_offset = (signed)(bio->bi_sector - sector) * 512;
738 else
739 page_offset = (signed)(sector - bio->bi_sector) * -512;
740
741 if (frombio)
742 flags |= ASYNC_TX_FENCE;
743 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
744
745 bio_for_each_segment(bvl, bio, i) {
746 int len = bvl->bv_len;
747 int clen;
748 int b_offset = 0;
749
750 if (page_offset < 0) {
751 b_offset = -page_offset;
752 page_offset += b_offset;
753 len -= b_offset;
754 }
755
756 if (len > 0 && page_offset + len > STRIPE_SIZE)
757 clen = STRIPE_SIZE - page_offset;
758 else
759 clen = len;
760
761 if (clen > 0) {
762 b_offset += bvl->bv_offset;
763 bio_page = bvl->bv_page;
764 if (frombio)
765 tx = async_memcpy(page, bio_page, page_offset,
766 b_offset, clen, &submit);
767 else
768 tx = async_memcpy(bio_page, page, b_offset,
769 page_offset, clen, &submit);
770 }
771 /* chain the operations */
772 submit.depend_tx = tx;
773
774 if (clen < len) /* hit end of page */
775 break;
776 page_offset += len;
777 }
778
779 return tx;
780 }
781
782 static void ops_complete_biofill(void *stripe_head_ref)
783 {
784 struct stripe_head *sh = stripe_head_ref;
785 struct bio *return_bi = NULL;
786 int i;
787
788 pr_debug("%s: stripe %llu\n", __func__,
789 (unsigned long long)sh->sector);
790
791 /* clear completed biofills */
792 for (i = sh->disks; i--; ) {
793 struct r5dev *dev = &sh->dev[i];
794
795 /* acknowledge completion of a biofill operation */
796 /* and check if we need to reply to a read request,
797 * new R5_Wantfill requests are held off until
798 * !STRIPE_BIOFILL_RUN
799 */
800 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
801 struct bio *rbi, *rbi2;
802
803 BUG_ON(!dev->read);
804 rbi = dev->read;
805 dev->read = NULL;
806 while (rbi && rbi->bi_sector <
807 dev->sector + STRIPE_SECTORS) {
808 rbi2 = r5_next_bio(rbi, dev->sector);
809 if (!raid5_dec_bi_active_stripes(rbi)) {
810 rbi->bi_next = return_bi;
811 return_bi = rbi;
812 }
813 rbi = rbi2;
814 }
815 }
816 }
817 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
818
819 return_io(return_bi);
820
821 set_bit(STRIPE_HANDLE, &sh->state);
822 release_stripe(sh);
823 }
824
825 static void ops_run_biofill(struct stripe_head *sh)
826 {
827 struct dma_async_tx_descriptor *tx = NULL;
828 struct async_submit_ctl submit;
829 int i;
830
831 pr_debug("%s: stripe %llu\n", __func__,
832 (unsigned long long)sh->sector);
833
834 for (i = sh->disks; i--; ) {
835 struct r5dev *dev = &sh->dev[i];
836 if (test_bit(R5_Wantfill, &dev->flags)) {
837 struct bio *rbi;
838 spin_lock_irq(&sh->stripe_lock);
839 dev->read = rbi = dev->toread;
840 dev->toread = NULL;
841 spin_unlock_irq(&sh->stripe_lock);
842 while (rbi && rbi->bi_sector <
843 dev->sector + STRIPE_SECTORS) {
844 tx = async_copy_data(0, rbi, dev->page,
845 dev->sector, tx);
846 rbi = r5_next_bio(rbi, dev->sector);
847 }
848 }
849 }
850
851 atomic_inc(&sh->count);
852 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
853 async_trigger_callback(&submit);
854 }
855
856 static void mark_target_uptodate(struct stripe_head *sh, int target)
857 {
858 struct r5dev *tgt;
859
860 if (target < 0)
861 return;
862
863 tgt = &sh->dev[target];
864 set_bit(R5_UPTODATE, &tgt->flags);
865 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
866 clear_bit(R5_Wantcompute, &tgt->flags);
867 }
868
869 static void ops_complete_compute(void *stripe_head_ref)
870 {
871 struct stripe_head *sh = stripe_head_ref;
872
873 pr_debug("%s: stripe %llu\n", __func__,
874 (unsigned long long)sh->sector);
875
876 /* mark the computed target(s) as uptodate */
877 mark_target_uptodate(sh, sh->ops.target);
878 mark_target_uptodate(sh, sh->ops.target2);
879
880 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
881 if (sh->check_state == check_state_compute_run)
882 sh->check_state = check_state_compute_result;
883 set_bit(STRIPE_HANDLE, &sh->state);
884 release_stripe(sh);
885 }
886
887 /* return a pointer to the address conversion region of the scribble buffer */
888 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
889 struct raid5_percpu *percpu)
890 {
891 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
892 }
893
894 static struct dma_async_tx_descriptor *
895 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
896 {
897 int disks = sh->disks;
898 struct page **xor_srcs = percpu->scribble;
899 int target = sh->ops.target;
900 struct r5dev *tgt = &sh->dev[target];
901 struct page *xor_dest = tgt->page;
902 int count = 0;
903 struct dma_async_tx_descriptor *tx;
904 struct async_submit_ctl submit;
905 int i;
906
907 pr_debug("%s: stripe %llu block: %d\n",
908 __func__, (unsigned long long)sh->sector, target);
909 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
910
911 for (i = disks; i--; )
912 if (i != target)
913 xor_srcs[count++] = sh->dev[i].page;
914
915 atomic_inc(&sh->count);
916
917 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
918 ops_complete_compute, sh, to_addr_conv(sh, percpu));
919 if (unlikely(count == 1))
920 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
921 else
922 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
923
924 return tx;
925 }
926
927 /* set_syndrome_sources - populate source buffers for gen_syndrome
928 * @srcs - (struct page *) array of size sh->disks
929 * @sh - stripe_head to parse
930 *
931 * Populates srcs in proper layout order for the stripe and returns the
932 * 'count' of sources to be used in a call to async_gen_syndrome. The P
933 * destination buffer is recorded in srcs[count] and the Q destination
934 * is recorded in srcs[count+1]].
935 */
936 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
937 {
938 int disks = sh->disks;
939 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
940 int d0_idx = raid6_d0(sh);
941 int count;
942 int i;
943
944 for (i = 0; i < disks; i++)
945 srcs[i] = NULL;
946
947 count = 0;
948 i = d0_idx;
949 do {
950 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
951
952 srcs[slot] = sh->dev[i].page;
953 i = raid6_next_disk(i, disks);
954 } while (i != d0_idx);
955
956 return syndrome_disks;
957 }
958
959 static struct dma_async_tx_descriptor *
960 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
961 {
962 int disks = sh->disks;
963 struct page **blocks = percpu->scribble;
964 int target;
965 int qd_idx = sh->qd_idx;
966 struct dma_async_tx_descriptor *tx;
967 struct async_submit_ctl submit;
968 struct r5dev *tgt;
969 struct page *dest;
970 int i;
971 int count;
972
973 if (sh->ops.target < 0)
974 target = sh->ops.target2;
975 else if (sh->ops.target2 < 0)
976 target = sh->ops.target;
977 else
978 /* we should only have one valid target */
979 BUG();
980 BUG_ON(target < 0);
981 pr_debug("%s: stripe %llu block: %d\n",
982 __func__, (unsigned long long)sh->sector, target);
983
984 tgt = &sh->dev[target];
985 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
986 dest = tgt->page;
987
988 atomic_inc(&sh->count);
989
990 if (target == qd_idx) {
991 count = set_syndrome_sources(blocks, sh);
992 blocks[count] = NULL; /* regenerating p is not necessary */
993 BUG_ON(blocks[count+1] != dest); /* q should already be set */
994 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
995 ops_complete_compute, sh,
996 to_addr_conv(sh, percpu));
997 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
998 } else {
999 /* Compute any data- or p-drive using XOR */
1000 count = 0;
1001 for (i = disks; i-- ; ) {
1002 if (i == target || i == qd_idx)
1003 continue;
1004 blocks[count++] = sh->dev[i].page;
1005 }
1006
1007 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1008 NULL, ops_complete_compute, sh,
1009 to_addr_conv(sh, percpu));
1010 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1011 }
1012
1013 return tx;
1014 }
1015
1016 static struct dma_async_tx_descriptor *
1017 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1018 {
1019 int i, count, disks = sh->disks;
1020 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1021 int d0_idx = raid6_d0(sh);
1022 int faila = -1, failb = -1;
1023 int target = sh->ops.target;
1024 int target2 = sh->ops.target2;
1025 struct r5dev *tgt = &sh->dev[target];
1026 struct r5dev *tgt2 = &sh->dev[target2];
1027 struct dma_async_tx_descriptor *tx;
1028 struct page **blocks = percpu->scribble;
1029 struct async_submit_ctl submit;
1030
1031 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1032 __func__, (unsigned long long)sh->sector, target, target2);
1033 BUG_ON(target < 0 || target2 < 0);
1034 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1035 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1036
1037 /* we need to open-code set_syndrome_sources to handle the
1038 * slot number conversion for 'faila' and 'failb'
1039 */
1040 for (i = 0; i < disks ; i++)
1041 blocks[i] = NULL;
1042 count = 0;
1043 i = d0_idx;
1044 do {
1045 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1046
1047 blocks[slot] = sh->dev[i].page;
1048
1049 if (i == target)
1050 faila = slot;
1051 if (i == target2)
1052 failb = slot;
1053 i = raid6_next_disk(i, disks);
1054 } while (i != d0_idx);
1055
1056 BUG_ON(faila == failb);
1057 if (failb < faila)
1058 swap(faila, failb);
1059 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1060 __func__, (unsigned long long)sh->sector, faila, failb);
1061
1062 atomic_inc(&sh->count);
1063
1064 if (failb == syndrome_disks+1) {
1065 /* Q disk is one of the missing disks */
1066 if (faila == syndrome_disks) {
1067 /* Missing P+Q, just recompute */
1068 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1069 ops_complete_compute, sh,
1070 to_addr_conv(sh, percpu));
1071 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1072 STRIPE_SIZE, &submit);
1073 } else {
1074 struct page *dest;
1075 int data_target;
1076 int qd_idx = sh->qd_idx;
1077
1078 /* Missing D+Q: recompute D from P, then recompute Q */
1079 if (target == qd_idx)
1080 data_target = target2;
1081 else
1082 data_target = target;
1083
1084 count = 0;
1085 for (i = disks; i-- ; ) {
1086 if (i == data_target || i == qd_idx)
1087 continue;
1088 blocks[count++] = sh->dev[i].page;
1089 }
1090 dest = sh->dev[data_target].page;
1091 init_async_submit(&submit,
1092 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1093 NULL, NULL, NULL,
1094 to_addr_conv(sh, percpu));
1095 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1096 &submit);
1097
1098 count = set_syndrome_sources(blocks, sh);
1099 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1100 ops_complete_compute, sh,
1101 to_addr_conv(sh, percpu));
1102 return async_gen_syndrome(blocks, 0, count+2,
1103 STRIPE_SIZE, &submit);
1104 }
1105 } else {
1106 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1107 ops_complete_compute, sh,
1108 to_addr_conv(sh, percpu));
1109 if (failb == syndrome_disks) {
1110 /* We're missing D+P. */
1111 return async_raid6_datap_recov(syndrome_disks+2,
1112 STRIPE_SIZE, faila,
1113 blocks, &submit);
1114 } else {
1115 /* We're missing D+D. */
1116 return async_raid6_2data_recov(syndrome_disks+2,
1117 STRIPE_SIZE, faila, failb,
1118 blocks, &submit);
1119 }
1120 }
1121 }
1122
1123
1124 static void ops_complete_prexor(void *stripe_head_ref)
1125 {
1126 struct stripe_head *sh = stripe_head_ref;
1127
1128 pr_debug("%s: stripe %llu\n", __func__,
1129 (unsigned long long)sh->sector);
1130 }
1131
1132 static struct dma_async_tx_descriptor *
1133 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1134 struct dma_async_tx_descriptor *tx)
1135 {
1136 int disks = sh->disks;
1137 struct page **xor_srcs = percpu->scribble;
1138 int count = 0, pd_idx = sh->pd_idx, i;
1139 struct async_submit_ctl submit;
1140
1141 /* existing parity data subtracted */
1142 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1143
1144 pr_debug("%s: stripe %llu\n", __func__,
1145 (unsigned long long)sh->sector);
1146
1147 for (i = disks; i--; ) {
1148 struct r5dev *dev = &sh->dev[i];
1149 /* Only process blocks that are known to be uptodate */
1150 if (test_bit(R5_Wantdrain, &dev->flags))
1151 xor_srcs[count++] = dev->page;
1152 }
1153
1154 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1155 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1156 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1157
1158 return tx;
1159 }
1160
1161 static struct dma_async_tx_descriptor *
1162 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1163 {
1164 int disks = sh->disks;
1165 int i;
1166
1167 pr_debug("%s: stripe %llu\n", __func__,
1168 (unsigned long long)sh->sector);
1169
1170 for (i = disks; i--; ) {
1171 struct r5dev *dev = &sh->dev[i];
1172 struct bio *chosen;
1173
1174 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1175 struct bio *wbi;
1176
1177 spin_lock_irq(&sh->stripe_lock);
1178 chosen = dev->towrite;
1179 dev->towrite = NULL;
1180 BUG_ON(dev->written);
1181 wbi = dev->written = chosen;
1182 spin_unlock_irq(&sh->stripe_lock);
1183
1184 while (wbi && wbi->bi_sector <
1185 dev->sector + STRIPE_SECTORS) {
1186 if (wbi->bi_rw & REQ_FUA)
1187 set_bit(R5_WantFUA, &dev->flags);
1188 if (wbi->bi_rw & REQ_SYNC)
1189 set_bit(R5_SyncIO, &dev->flags);
1190 if (wbi->bi_rw & REQ_DISCARD)
1191 set_bit(R5_Discard, &dev->flags);
1192 else
1193 tx = async_copy_data(1, wbi, dev->page,
1194 dev->sector, tx);
1195 wbi = r5_next_bio(wbi, dev->sector);
1196 }
1197 }
1198 }
1199
1200 return tx;
1201 }
1202
1203 static void ops_complete_reconstruct(void *stripe_head_ref)
1204 {
1205 struct stripe_head *sh = stripe_head_ref;
1206 int disks = sh->disks;
1207 int pd_idx = sh->pd_idx;
1208 int qd_idx = sh->qd_idx;
1209 int i;
1210 bool fua = false, sync = false, discard = false;
1211
1212 pr_debug("%s: stripe %llu\n", __func__,
1213 (unsigned long long)sh->sector);
1214
1215 for (i = disks; i--; ) {
1216 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1217 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1218 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1219 }
1220
1221 for (i = disks; i--; ) {
1222 struct r5dev *dev = &sh->dev[i];
1223
1224 if (dev->written || i == pd_idx || i == qd_idx) {
1225 if (!discard)
1226 set_bit(R5_UPTODATE, &dev->flags);
1227 if (fua)
1228 set_bit(R5_WantFUA, &dev->flags);
1229 if (sync)
1230 set_bit(R5_SyncIO, &dev->flags);
1231 }
1232 }
1233
1234 if (sh->reconstruct_state == reconstruct_state_drain_run)
1235 sh->reconstruct_state = reconstruct_state_drain_result;
1236 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1237 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1238 else {
1239 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1240 sh->reconstruct_state = reconstruct_state_result;
1241 }
1242
1243 set_bit(STRIPE_HANDLE, &sh->state);
1244 release_stripe(sh);
1245 }
1246
1247 static void
1248 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1249 struct dma_async_tx_descriptor *tx)
1250 {
1251 int disks = sh->disks;
1252 struct page **xor_srcs = percpu->scribble;
1253 struct async_submit_ctl submit;
1254 int count = 0, pd_idx = sh->pd_idx, i;
1255 struct page *xor_dest;
1256 int prexor = 0;
1257 unsigned long flags;
1258
1259 pr_debug("%s: stripe %llu\n", __func__,
1260 (unsigned long long)sh->sector);
1261
1262 for (i = 0; i < sh->disks; i++) {
1263 if (pd_idx == i)
1264 continue;
1265 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1266 break;
1267 }
1268 if (i >= sh->disks) {
1269 atomic_inc(&sh->count);
1270 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1271 ops_complete_reconstruct(sh);
1272 return;
1273 }
1274 /* check if prexor is active which means only process blocks
1275 * that are part of a read-modify-write (written)
1276 */
1277 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1278 prexor = 1;
1279 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1280 for (i = disks; i--; ) {
1281 struct r5dev *dev = &sh->dev[i];
1282 if (dev->written)
1283 xor_srcs[count++] = dev->page;
1284 }
1285 } else {
1286 xor_dest = sh->dev[pd_idx].page;
1287 for (i = disks; i--; ) {
1288 struct r5dev *dev = &sh->dev[i];
1289 if (i != pd_idx)
1290 xor_srcs[count++] = dev->page;
1291 }
1292 }
1293
1294 /* 1/ if we prexor'd then the dest is reused as a source
1295 * 2/ if we did not prexor then we are redoing the parity
1296 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1297 * for the synchronous xor case
1298 */
1299 flags = ASYNC_TX_ACK |
1300 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1301
1302 atomic_inc(&sh->count);
1303
1304 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1305 to_addr_conv(sh, percpu));
1306 if (unlikely(count == 1))
1307 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1308 else
1309 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1310 }
1311
1312 static void
1313 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1314 struct dma_async_tx_descriptor *tx)
1315 {
1316 struct async_submit_ctl submit;
1317 struct page **blocks = percpu->scribble;
1318 int count, i;
1319
1320 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1321
1322 for (i = 0; i < sh->disks; i++) {
1323 if (sh->pd_idx == i || sh->qd_idx == i)
1324 continue;
1325 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1326 break;
1327 }
1328 if (i >= sh->disks) {
1329 atomic_inc(&sh->count);
1330 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1331 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1332 ops_complete_reconstruct(sh);
1333 return;
1334 }
1335
1336 count = set_syndrome_sources(blocks, sh);
1337
1338 atomic_inc(&sh->count);
1339
1340 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1341 sh, to_addr_conv(sh, percpu));
1342 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1343 }
1344
1345 static void ops_complete_check(void *stripe_head_ref)
1346 {
1347 struct stripe_head *sh = stripe_head_ref;
1348
1349 pr_debug("%s: stripe %llu\n", __func__,
1350 (unsigned long long)sh->sector);
1351
1352 sh->check_state = check_state_check_result;
1353 set_bit(STRIPE_HANDLE, &sh->state);
1354 release_stripe(sh);
1355 }
1356
1357 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1358 {
1359 int disks = sh->disks;
1360 int pd_idx = sh->pd_idx;
1361 int qd_idx = sh->qd_idx;
1362 struct page *xor_dest;
1363 struct page **xor_srcs = percpu->scribble;
1364 struct dma_async_tx_descriptor *tx;
1365 struct async_submit_ctl submit;
1366 int count;
1367 int i;
1368
1369 pr_debug("%s: stripe %llu\n", __func__,
1370 (unsigned long long)sh->sector);
1371
1372 count = 0;
1373 xor_dest = sh->dev[pd_idx].page;
1374 xor_srcs[count++] = xor_dest;
1375 for (i = disks; i--; ) {
1376 if (i == pd_idx || i == qd_idx)
1377 continue;
1378 xor_srcs[count++] = sh->dev[i].page;
1379 }
1380
1381 init_async_submit(&submit, 0, NULL, NULL, NULL,
1382 to_addr_conv(sh, percpu));
1383 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1384 &sh->ops.zero_sum_result, &submit);
1385
1386 atomic_inc(&sh->count);
1387 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1388 tx = async_trigger_callback(&submit);
1389 }
1390
1391 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1392 {
1393 struct page **srcs = percpu->scribble;
1394 struct async_submit_ctl submit;
1395 int count;
1396
1397 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1398 (unsigned long long)sh->sector, checkp);
1399
1400 count = set_syndrome_sources(srcs, sh);
1401 if (!checkp)
1402 srcs[count] = NULL;
1403
1404 atomic_inc(&sh->count);
1405 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1406 sh, to_addr_conv(sh, percpu));
1407 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1408 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1409 }
1410
1411 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1412 {
1413 int overlap_clear = 0, i, disks = sh->disks;
1414 struct dma_async_tx_descriptor *tx = NULL;
1415 struct r5conf *conf = sh->raid_conf;
1416 int level = conf->level;
1417 struct raid5_percpu *percpu;
1418 unsigned long cpu;
1419
1420 cpu = get_cpu();
1421 percpu = per_cpu_ptr(conf->percpu, cpu);
1422 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1423 ops_run_biofill(sh);
1424 overlap_clear++;
1425 }
1426
1427 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1428 if (level < 6)
1429 tx = ops_run_compute5(sh, percpu);
1430 else {
1431 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1432 tx = ops_run_compute6_1(sh, percpu);
1433 else
1434 tx = ops_run_compute6_2(sh, percpu);
1435 }
1436 /* terminate the chain if reconstruct is not set to be run */
1437 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1438 async_tx_ack(tx);
1439 }
1440
1441 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1442 tx = ops_run_prexor(sh, percpu, tx);
1443
1444 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1445 tx = ops_run_biodrain(sh, tx);
1446 overlap_clear++;
1447 }
1448
1449 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1450 if (level < 6)
1451 ops_run_reconstruct5(sh, percpu, tx);
1452 else
1453 ops_run_reconstruct6(sh, percpu, tx);
1454 }
1455
1456 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1457 if (sh->check_state == check_state_run)
1458 ops_run_check_p(sh, percpu);
1459 else if (sh->check_state == check_state_run_q)
1460 ops_run_check_pq(sh, percpu, 0);
1461 else if (sh->check_state == check_state_run_pq)
1462 ops_run_check_pq(sh, percpu, 1);
1463 else
1464 BUG();
1465 }
1466
1467 if (overlap_clear)
1468 for (i = disks; i--; ) {
1469 struct r5dev *dev = &sh->dev[i];
1470 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1471 wake_up(&sh->raid_conf->wait_for_overlap);
1472 }
1473 put_cpu();
1474 }
1475
1476 static int grow_one_stripe(struct r5conf *conf)
1477 {
1478 struct stripe_head *sh;
1479 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1480 if (!sh)
1481 return 0;
1482
1483 sh->raid_conf = conf;
1484
1485 spin_lock_init(&sh->stripe_lock);
1486
1487 if (grow_buffers(sh)) {
1488 shrink_buffers(sh);
1489 kmem_cache_free(conf->slab_cache, sh);
1490 return 0;
1491 }
1492 /* we just created an active stripe so... */
1493 atomic_set(&sh->count, 1);
1494 atomic_inc(&conf->active_stripes);
1495 INIT_LIST_HEAD(&sh->lru);
1496 release_stripe(sh);
1497 return 1;
1498 }
1499
1500 static int grow_stripes(struct r5conf *conf, int num)
1501 {
1502 struct kmem_cache *sc;
1503 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1504
1505 if (conf->mddev->gendisk)
1506 sprintf(conf->cache_name[0],
1507 "raid%d-%s", conf->level, mdname(conf->mddev));
1508 else
1509 sprintf(conf->cache_name[0],
1510 "raid%d-%p", conf->level, conf->mddev);
1511 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1512
1513 conf->active_name = 0;
1514 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1515 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1516 0, 0, NULL);
1517 if (!sc)
1518 return 1;
1519 conf->slab_cache = sc;
1520 conf->pool_size = devs;
1521 while (num--)
1522 if (!grow_one_stripe(conf))
1523 return 1;
1524 return 0;
1525 }
1526
1527 /**
1528 * scribble_len - return the required size of the scribble region
1529 * @num - total number of disks in the array
1530 *
1531 * The size must be enough to contain:
1532 * 1/ a struct page pointer for each device in the array +2
1533 * 2/ room to convert each entry in (1) to its corresponding dma
1534 * (dma_map_page()) or page (page_address()) address.
1535 *
1536 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1537 * calculate over all devices (not just the data blocks), using zeros in place
1538 * of the P and Q blocks.
1539 */
1540 static size_t scribble_len(int num)
1541 {
1542 size_t len;
1543
1544 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1545
1546 return len;
1547 }
1548
1549 static int resize_stripes(struct r5conf *conf, int newsize)
1550 {
1551 /* Make all the stripes able to hold 'newsize' devices.
1552 * New slots in each stripe get 'page' set to a new page.
1553 *
1554 * This happens in stages:
1555 * 1/ create a new kmem_cache and allocate the required number of
1556 * stripe_heads.
1557 * 2/ gather all the old stripe_heads and transfer the pages across
1558 * to the new stripe_heads. This will have the side effect of
1559 * freezing the array as once all stripe_heads have been collected,
1560 * no IO will be possible. Old stripe heads are freed once their
1561 * pages have been transferred over, and the old kmem_cache is
1562 * freed when all stripes are done.
1563 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1564 * we simple return a failre status - no need to clean anything up.
1565 * 4/ allocate new pages for the new slots in the new stripe_heads.
1566 * If this fails, we don't bother trying the shrink the
1567 * stripe_heads down again, we just leave them as they are.
1568 * As each stripe_head is processed the new one is released into
1569 * active service.
1570 *
1571 * Once step2 is started, we cannot afford to wait for a write,
1572 * so we use GFP_NOIO allocations.
1573 */
1574 struct stripe_head *osh, *nsh;
1575 LIST_HEAD(newstripes);
1576 struct disk_info *ndisks;
1577 unsigned long cpu;
1578 int err;
1579 struct kmem_cache *sc;
1580 int i;
1581
1582 if (newsize <= conf->pool_size)
1583 return 0; /* never bother to shrink */
1584
1585 err = md_allow_write(conf->mddev);
1586 if (err)
1587 return err;
1588
1589 /* Step 1 */
1590 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1591 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1592 0, 0, NULL);
1593 if (!sc)
1594 return -ENOMEM;
1595
1596 for (i = conf->max_nr_stripes; i; i--) {
1597 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1598 if (!nsh)
1599 break;
1600
1601 nsh->raid_conf = conf;
1602 spin_lock_init(&nsh->stripe_lock);
1603
1604 list_add(&nsh->lru, &newstripes);
1605 }
1606 if (i) {
1607 /* didn't get enough, give up */
1608 while (!list_empty(&newstripes)) {
1609 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1610 list_del(&nsh->lru);
1611 kmem_cache_free(sc, nsh);
1612 }
1613 kmem_cache_destroy(sc);
1614 return -ENOMEM;
1615 }
1616 /* Step 2 - Must use GFP_NOIO now.
1617 * OK, we have enough stripes, start collecting inactive
1618 * stripes and copying them over
1619 */
1620 list_for_each_entry(nsh, &newstripes, lru) {
1621 spin_lock_irq(&conf->device_lock);
1622 wait_event_lock_irq(conf->wait_for_stripe,
1623 !list_empty(&conf->inactive_list),
1624 conf->device_lock);
1625 osh = get_free_stripe(conf);
1626 spin_unlock_irq(&conf->device_lock);
1627 atomic_set(&nsh->count, 1);
1628 for(i=0; i<conf->pool_size; i++)
1629 nsh->dev[i].page = osh->dev[i].page;
1630 for( ; i<newsize; i++)
1631 nsh->dev[i].page = NULL;
1632 kmem_cache_free(conf->slab_cache, osh);
1633 }
1634 kmem_cache_destroy(conf->slab_cache);
1635
1636 /* Step 3.
1637 * At this point, we are holding all the stripes so the array
1638 * is completely stalled, so now is a good time to resize
1639 * conf->disks and the scribble region
1640 */
1641 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1642 if (ndisks) {
1643 for (i=0; i<conf->raid_disks; i++)
1644 ndisks[i] = conf->disks[i];
1645 kfree(conf->disks);
1646 conf->disks = ndisks;
1647 } else
1648 err = -ENOMEM;
1649
1650 get_online_cpus();
1651 conf->scribble_len = scribble_len(newsize);
1652 for_each_present_cpu(cpu) {
1653 struct raid5_percpu *percpu;
1654 void *scribble;
1655
1656 percpu = per_cpu_ptr(conf->percpu, cpu);
1657 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1658
1659 if (scribble) {
1660 kfree(percpu->scribble);
1661 percpu->scribble = scribble;
1662 } else {
1663 err = -ENOMEM;
1664 break;
1665 }
1666 }
1667 put_online_cpus();
1668
1669 /* Step 4, return new stripes to service */
1670 while(!list_empty(&newstripes)) {
1671 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1672 list_del_init(&nsh->lru);
1673
1674 for (i=conf->raid_disks; i < newsize; i++)
1675 if (nsh->dev[i].page == NULL) {
1676 struct page *p = alloc_page(GFP_NOIO);
1677 nsh->dev[i].page = p;
1678 if (!p)
1679 err = -ENOMEM;
1680 }
1681 release_stripe(nsh);
1682 }
1683 /* critical section pass, GFP_NOIO no longer needed */
1684
1685 conf->slab_cache = sc;
1686 conf->active_name = 1-conf->active_name;
1687 conf->pool_size = newsize;
1688 return err;
1689 }
1690
1691 static int drop_one_stripe(struct r5conf *conf)
1692 {
1693 struct stripe_head *sh;
1694
1695 spin_lock_irq(&conf->device_lock);
1696 sh = get_free_stripe(conf);
1697 spin_unlock_irq(&conf->device_lock);
1698 if (!sh)
1699 return 0;
1700 BUG_ON(atomic_read(&sh->count));
1701 shrink_buffers(sh);
1702 kmem_cache_free(conf->slab_cache, sh);
1703 atomic_dec(&conf->active_stripes);
1704 return 1;
1705 }
1706
1707 static void shrink_stripes(struct r5conf *conf)
1708 {
1709 while (drop_one_stripe(conf))
1710 ;
1711
1712 if (conf->slab_cache)
1713 kmem_cache_destroy(conf->slab_cache);
1714 conf->slab_cache = NULL;
1715 }
1716
1717 static void raid5_end_read_request(struct bio * bi, int error)
1718 {
1719 struct stripe_head *sh = bi->bi_private;
1720 struct r5conf *conf = sh->raid_conf;
1721 int disks = sh->disks, i;
1722 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1723 char b[BDEVNAME_SIZE];
1724 struct md_rdev *rdev = NULL;
1725 sector_t s;
1726
1727 for (i=0 ; i<disks; i++)
1728 if (bi == &sh->dev[i].req)
1729 break;
1730
1731 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1732 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1733 uptodate);
1734 if (i == disks) {
1735 BUG();
1736 return;
1737 }
1738 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1739 /* If replacement finished while this request was outstanding,
1740 * 'replacement' might be NULL already.
1741 * In that case it moved down to 'rdev'.
1742 * rdev is not removed until all requests are finished.
1743 */
1744 rdev = conf->disks[i].replacement;
1745 if (!rdev)
1746 rdev = conf->disks[i].rdev;
1747
1748 if (use_new_offset(conf, sh))
1749 s = sh->sector + rdev->new_data_offset;
1750 else
1751 s = sh->sector + rdev->data_offset;
1752 if (uptodate) {
1753 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1754 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1755 /* Note that this cannot happen on a
1756 * replacement device. We just fail those on
1757 * any error
1758 */
1759 printk_ratelimited(
1760 KERN_INFO
1761 "md/raid:%s: read error corrected"
1762 " (%lu sectors at %llu on %s)\n",
1763 mdname(conf->mddev), STRIPE_SECTORS,
1764 (unsigned long long)s,
1765 bdevname(rdev->bdev, b));
1766 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1767 clear_bit(R5_ReadError, &sh->dev[i].flags);
1768 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1769 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1770 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1771
1772 if (atomic_read(&rdev->read_errors))
1773 atomic_set(&rdev->read_errors, 0);
1774 } else {
1775 const char *bdn = bdevname(rdev->bdev, b);
1776 int retry = 0;
1777 int set_bad = 0;
1778
1779 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1780 atomic_inc(&rdev->read_errors);
1781 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1782 printk_ratelimited(
1783 KERN_WARNING
1784 "md/raid:%s: read error on replacement device "
1785 "(sector %llu on %s).\n",
1786 mdname(conf->mddev),
1787 (unsigned long long)s,
1788 bdn);
1789 else if (conf->mddev->degraded >= conf->max_degraded) {
1790 set_bad = 1;
1791 printk_ratelimited(
1792 KERN_WARNING
1793 "md/raid:%s: read error not correctable "
1794 "(sector %llu on %s).\n",
1795 mdname(conf->mddev),
1796 (unsigned long long)s,
1797 bdn);
1798 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1799 /* Oh, no!!! */
1800 set_bad = 1;
1801 printk_ratelimited(
1802 KERN_WARNING
1803 "md/raid:%s: read error NOT corrected!! "
1804 "(sector %llu on %s).\n",
1805 mdname(conf->mddev),
1806 (unsigned long long)s,
1807 bdn);
1808 } else if (atomic_read(&rdev->read_errors)
1809 > conf->max_nr_stripes)
1810 printk(KERN_WARNING
1811 "md/raid:%s: Too many read errors, failing device %s.\n",
1812 mdname(conf->mddev), bdn);
1813 else
1814 retry = 1;
1815 if (retry)
1816 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1817 set_bit(R5_ReadError, &sh->dev[i].flags);
1818 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1819 } else
1820 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1821 else {
1822 clear_bit(R5_ReadError, &sh->dev[i].flags);
1823 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1824 if (!(set_bad
1825 && test_bit(In_sync, &rdev->flags)
1826 && rdev_set_badblocks(
1827 rdev, sh->sector, STRIPE_SECTORS, 0)))
1828 md_error(conf->mddev, rdev);
1829 }
1830 }
1831 rdev_dec_pending(rdev, conf->mddev);
1832 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1833 set_bit(STRIPE_HANDLE, &sh->state);
1834 release_stripe(sh);
1835 }
1836
1837 static void raid5_end_write_request(struct bio *bi, int error)
1838 {
1839 struct stripe_head *sh = bi->bi_private;
1840 struct r5conf *conf = sh->raid_conf;
1841 int disks = sh->disks, i;
1842 struct md_rdev *uninitialized_var(rdev);
1843 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1844 sector_t first_bad;
1845 int bad_sectors;
1846 int replacement = 0;
1847
1848 for (i = 0 ; i < disks; i++) {
1849 if (bi == &sh->dev[i].req) {
1850 rdev = conf->disks[i].rdev;
1851 break;
1852 }
1853 if (bi == &sh->dev[i].rreq) {
1854 rdev = conf->disks[i].replacement;
1855 if (rdev)
1856 replacement = 1;
1857 else
1858 /* rdev was removed and 'replacement'
1859 * replaced it. rdev is not removed
1860 * until all requests are finished.
1861 */
1862 rdev = conf->disks[i].rdev;
1863 break;
1864 }
1865 }
1866 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1867 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1868 uptodate);
1869 if (i == disks) {
1870 BUG();
1871 return;
1872 }
1873
1874 if (replacement) {
1875 if (!uptodate)
1876 md_error(conf->mddev, rdev);
1877 else if (is_badblock(rdev, sh->sector,
1878 STRIPE_SECTORS,
1879 &first_bad, &bad_sectors))
1880 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1881 } else {
1882 if (!uptodate) {
1883 set_bit(WriteErrorSeen, &rdev->flags);
1884 set_bit(R5_WriteError, &sh->dev[i].flags);
1885 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1886 set_bit(MD_RECOVERY_NEEDED,
1887 &rdev->mddev->recovery);
1888 } else if (is_badblock(rdev, sh->sector,
1889 STRIPE_SECTORS,
1890 &first_bad, &bad_sectors)) {
1891 set_bit(R5_MadeGood, &sh->dev[i].flags);
1892 if (test_bit(R5_ReadError, &sh->dev[i].flags))
1893 /* That was a successful write so make
1894 * sure it looks like we already did
1895 * a re-write.
1896 */
1897 set_bit(R5_ReWrite, &sh->dev[i].flags);
1898 }
1899 }
1900 rdev_dec_pending(rdev, conf->mddev);
1901
1902 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1903 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1904 set_bit(STRIPE_HANDLE, &sh->state);
1905 release_stripe(sh);
1906 }
1907
1908 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1909
1910 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1911 {
1912 struct r5dev *dev = &sh->dev[i];
1913
1914 bio_init(&dev->req);
1915 dev->req.bi_io_vec = &dev->vec;
1916 dev->req.bi_vcnt++;
1917 dev->req.bi_max_vecs++;
1918 dev->req.bi_private = sh;
1919 dev->vec.bv_page = dev->page;
1920
1921 bio_init(&dev->rreq);
1922 dev->rreq.bi_io_vec = &dev->rvec;
1923 dev->rreq.bi_vcnt++;
1924 dev->rreq.bi_max_vecs++;
1925 dev->rreq.bi_private = sh;
1926 dev->rvec.bv_page = dev->page;
1927
1928 dev->flags = 0;
1929 dev->sector = compute_blocknr(sh, i, previous);
1930 }
1931
1932 static void error(struct mddev *mddev, struct md_rdev *rdev)
1933 {
1934 char b[BDEVNAME_SIZE];
1935 struct r5conf *conf = mddev->private;
1936 unsigned long flags;
1937 pr_debug("raid456: error called\n");
1938
1939 spin_lock_irqsave(&conf->device_lock, flags);
1940 clear_bit(In_sync, &rdev->flags);
1941 mddev->degraded = calc_degraded(conf);
1942 spin_unlock_irqrestore(&conf->device_lock, flags);
1943 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1944
1945 set_bit(Blocked, &rdev->flags);
1946 set_bit(Faulty, &rdev->flags);
1947 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1948 printk(KERN_ALERT
1949 "md/raid:%s: Disk failure on %s, disabling device.\n"
1950 "md/raid:%s: Operation continuing on %d devices.\n",
1951 mdname(mddev),
1952 bdevname(rdev->bdev, b),
1953 mdname(mddev),
1954 conf->raid_disks - mddev->degraded);
1955 }
1956
1957 /*
1958 * Input: a 'big' sector number,
1959 * Output: index of the data and parity disk, and the sector # in them.
1960 */
1961 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1962 int previous, int *dd_idx,
1963 struct stripe_head *sh)
1964 {
1965 sector_t stripe, stripe2;
1966 sector_t chunk_number;
1967 unsigned int chunk_offset;
1968 int pd_idx, qd_idx;
1969 int ddf_layout = 0;
1970 sector_t new_sector;
1971 int algorithm = previous ? conf->prev_algo
1972 : conf->algorithm;
1973 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1974 : conf->chunk_sectors;
1975 int raid_disks = previous ? conf->previous_raid_disks
1976 : conf->raid_disks;
1977 int data_disks = raid_disks - conf->max_degraded;
1978
1979 /* First compute the information on this sector */
1980
1981 /*
1982 * Compute the chunk number and the sector offset inside the chunk
1983 */
1984 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1985 chunk_number = r_sector;
1986
1987 /*
1988 * Compute the stripe number
1989 */
1990 stripe = chunk_number;
1991 *dd_idx = sector_div(stripe, data_disks);
1992 stripe2 = stripe;
1993 /*
1994 * Select the parity disk based on the user selected algorithm.
1995 */
1996 pd_idx = qd_idx = -1;
1997 switch(conf->level) {
1998 case 4:
1999 pd_idx = data_disks;
2000 break;
2001 case 5:
2002 switch (algorithm) {
2003 case ALGORITHM_LEFT_ASYMMETRIC:
2004 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2005 if (*dd_idx >= pd_idx)
2006 (*dd_idx)++;
2007 break;
2008 case ALGORITHM_RIGHT_ASYMMETRIC:
2009 pd_idx = sector_div(stripe2, raid_disks);
2010 if (*dd_idx >= pd_idx)
2011 (*dd_idx)++;
2012 break;
2013 case ALGORITHM_LEFT_SYMMETRIC:
2014 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2015 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2016 break;
2017 case ALGORITHM_RIGHT_SYMMETRIC:
2018 pd_idx = sector_div(stripe2, raid_disks);
2019 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2020 break;
2021 case ALGORITHM_PARITY_0:
2022 pd_idx = 0;
2023 (*dd_idx)++;
2024 break;
2025 case ALGORITHM_PARITY_N:
2026 pd_idx = data_disks;
2027 break;
2028 default:
2029 BUG();
2030 }
2031 break;
2032 case 6:
2033
2034 switch (algorithm) {
2035 case ALGORITHM_LEFT_ASYMMETRIC:
2036 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2037 qd_idx = pd_idx + 1;
2038 if (pd_idx == raid_disks-1) {
2039 (*dd_idx)++; /* Q D D D P */
2040 qd_idx = 0;
2041 } else if (*dd_idx >= pd_idx)
2042 (*dd_idx) += 2; /* D D P Q D */
2043 break;
2044 case ALGORITHM_RIGHT_ASYMMETRIC:
2045 pd_idx = sector_div(stripe2, raid_disks);
2046 qd_idx = pd_idx + 1;
2047 if (pd_idx == raid_disks-1) {
2048 (*dd_idx)++; /* Q D D D P */
2049 qd_idx = 0;
2050 } else if (*dd_idx >= pd_idx)
2051 (*dd_idx) += 2; /* D D P Q D */
2052 break;
2053 case ALGORITHM_LEFT_SYMMETRIC:
2054 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2055 qd_idx = (pd_idx + 1) % raid_disks;
2056 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2057 break;
2058 case ALGORITHM_RIGHT_SYMMETRIC:
2059 pd_idx = sector_div(stripe2, raid_disks);
2060 qd_idx = (pd_idx + 1) % raid_disks;
2061 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2062 break;
2063
2064 case ALGORITHM_PARITY_0:
2065 pd_idx = 0;
2066 qd_idx = 1;
2067 (*dd_idx) += 2;
2068 break;
2069 case ALGORITHM_PARITY_N:
2070 pd_idx = data_disks;
2071 qd_idx = data_disks + 1;
2072 break;
2073
2074 case ALGORITHM_ROTATING_ZERO_RESTART:
2075 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2076 * of blocks for computing Q is different.
2077 */
2078 pd_idx = sector_div(stripe2, raid_disks);
2079 qd_idx = pd_idx + 1;
2080 if (pd_idx == raid_disks-1) {
2081 (*dd_idx)++; /* Q D D D P */
2082 qd_idx = 0;
2083 } else if (*dd_idx >= pd_idx)
2084 (*dd_idx) += 2; /* D D P Q D */
2085 ddf_layout = 1;
2086 break;
2087
2088 case ALGORITHM_ROTATING_N_RESTART:
2089 /* Same a left_asymmetric, by first stripe is
2090 * D D D P Q rather than
2091 * Q D D D P
2092 */
2093 stripe2 += 1;
2094 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2095 qd_idx = pd_idx + 1;
2096 if (pd_idx == raid_disks-1) {
2097 (*dd_idx)++; /* Q D D D P */
2098 qd_idx = 0;
2099 } else if (*dd_idx >= pd_idx)
2100 (*dd_idx) += 2; /* D D P Q D */
2101 ddf_layout = 1;
2102 break;
2103
2104 case ALGORITHM_ROTATING_N_CONTINUE:
2105 /* Same as left_symmetric but Q is before P */
2106 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2107 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2108 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2109 ddf_layout = 1;
2110 break;
2111
2112 case ALGORITHM_LEFT_ASYMMETRIC_6:
2113 /* RAID5 left_asymmetric, with Q on last device */
2114 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2115 if (*dd_idx >= pd_idx)
2116 (*dd_idx)++;
2117 qd_idx = raid_disks - 1;
2118 break;
2119
2120 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2121 pd_idx = sector_div(stripe2, raid_disks-1);
2122 if (*dd_idx >= pd_idx)
2123 (*dd_idx)++;
2124 qd_idx = raid_disks - 1;
2125 break;
2126
2127 case ALGORITHM_LEFT_SYMMETRIC_6:
2128 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2129 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2130 qd_idx = raid_disks - 1;
2131 break;
2132
2133 case ALGORITHM_RIGHT_SYMMETRIC_6:
2134 pd_idx = sector_div(stripe2, raid_disks-1);
2135 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2136 qd_idx = raid_disks - 1;
2137 break;
2138
2139 case ALGORITHM_PARITY_0_6:
2140 pd_idx = 0;
2141 (*dd_idx)++;
2142 qd_idx = raid_disks - 1;
2143 break;
2144
2145 default:
2146 BUG();
2147 }
2148 break;
2149 }
2150
2151 if (sh) {
2152 sh->pd_idx = pd_idx;
2153 sh->qd_idx = qd_idx;
2154 sh->ddf_layout = ddf_layout;
2155 }
2156 /*
2157 * Finally, compute the new sector number
2158 */
2159 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2160 return new_sector;
2161 }
2162
2163
2164 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2165 {
2166 struct r5conf *conf = sh->raid_conf;
2167 int raid_disks = sh->disks;
2168 int data_disks = raid_disks - conf->max_degraded;
2169 sector_t new_sector = sh->sector, check;
2170 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2171 : conf->chunk_sectors;
2172 int algorithm = previous ? conf->prev_algo
2173 : conf->algorithm;
2174 sector_t stripe;
2175 int chunk_offset;
2176 sector_t chunk_number;
2177 int dummy1, dd_idx = i;
2178 sector_t r_sector;
2179 struct stripe_head sh2;
2180
2181
2182 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2183 stripe = new_sector;
2184
2185 if (i == sh->pd_idx)
2186 return 0;
2187 switch(conf->level) {
2188 case 4: break;
2189 case 5:
2190 switch (algorithm) {
2191 case ALGORITHM_LEFT_ASYMMETRIC:
2192 case ALGORITHM_RIGHT_ASYMMETRIC:
2193 if (i > sh->pd_idx)
2194 i--;
2195 break;
2196 case ALGORITHM_LEFT_SYMMETRIC:
2197 case ALGORITHM_RIGHT_SYMMETRIC:
2198 if (i < sh->pd_idx)
2199 i += raid_disks;
2200 i -= (sh->pd_idx + 1);
2201 break;
2202 case ALGORITHM_PARITY_0:
2203 i -= 1;
2204 break;
2205 case ALGORITHM_PARITY_N:
2206 break;
2207 default:
2208 BUG();
2209 }
2210 break;
2211 case 6:
2212 if (i == sh->qd_idx)
2213 return 0; /* It is the Q disk */
2214 switch (algorithm) {
2215 case ALGORITHM_LEFT_ASYMMETRIC:
2216 case ALGORITHM_RIGHT_ASYMMETRIC:
2217 case ALGORITHM_ROTATING_ZERO_RESTART:
2218 case ALGORITHM_ROTATING_N_RESTART:
2219 if (sh->pd_idx == raid_disks-1)
2220 i--; /* Q D D D P */
2221 else if (i > sh->pd_idx)
2222 i -= 2; /* D D P Q D */
2223 break;
2224 case ALGORITHM_LEFT_SYMMETRIC:
2225 case ALGORITHM_RIGHT_SYMMETRIC:
2226 if (sh->pd_idx == raid_disks-1)
2227 i--; /* Q D D D P */
2228 else {
2229 /* D D P Q D */
2230 if (i < sh->pd_idx)
2231 i += raid_disks;
2232 i -= (sh->pd_idx + 2);
2233 }
2234 break;
2235 case ALGORITHM_PARITY_0:
2236 i -= 2;
2237 break;
2238 case ALGORITHM_PARITY_N:
2239 break;
2240 case ALGORITHM_ROTATING_N_CONTINUE:
2241 /* Like left_symmetric, but P is before Q */
2242 if (sh->pd_idx == 0)
2243 i--; /* P D D D Q */
2244 else {
2245 /* D D Q P D */
2246 if (i < sh->pd_idx)
2247 i += raid_disks;
2248 i -= (sh->pd_idx + 1);
2249 }
2250 break;
2251 case ALGORITHM_LEFT_ASYMMETRIC_6:
2252 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2253 if (i > sh->pd_idx)
2254 i--;
2255 break;
2256 case ALGORITHM_LEFT_SYMMETRIC_6:
2257 case ALGORITHM_RIGHT_SYMMETRIC_6:
2258 if (i < sh->pd_idx)
2259 i += data_disks + 1;
2260 i -= (sh->pd_idx + 1);
2261 break;
2262 case ALGORITHM_PARITY_0_6:
2263 i -= 1;
2264 break;
2265 default:
2266 BUG();
2267 }
2268 break;
2269 }
2270
2271 chunk_number = stripe * data_disks + i;
2272 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2273
2274 check = raid5_compute_sector(conf, r_sector,
2275 previous, &dummy1, &sh2);
2276 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2277 || sh2.qd_idx != sh->qd_idx) {
2278 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2279 mdname(conf->mddev));
2280 return 0;
2281 }
2282 return r_sector;
2283 }
2284
2285
2286 static void
2287 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2288 int rcw, int expand)
2289 {
2290 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2291 struct r5conf *conf = sh->raid_conf;
2292 int level = conf->level;
2293
2294 if (rcw) {
2295
2296 for (i = disks; i--; ) {
2297 struct r5dev *dev = &sh->dev[i];
2298
2299 if (dev->towrite) {
2300 set_bit(R5_LOCKED, &dev->flags);
2301 set_bit(R5_Wantdrain, &dev->flags);
2302 if (!expand)
2303 clear_bit(R5_UPTODATE, &dev->flags);
2304 s->locked++;
2305 }
2306 }
2307 /* if we are not expanding this is a proper write request, and
2308 * there will be bios with new data to be drained into the
2309 * stripe cache
2310 */
2311 if (!expand) {
2312 if (!s->locked)
2313 /* False alarm, nothing to do */
2314 return;
2315 sh->reconstruct_state = reconstruct_state_drain_run;
2316 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2317 } else
2318 sh->reconstruct_state = reconstruct_state_run;
2319
2320 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2321
2322 if (s->locked + conf->max_degraded == disks)
2323 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2324 atomic_inc(&conf->pending_full_writes);
2325 } else {
2326 BUG_ON(level == 6);
2327 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2328 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2329
2330 for (i = disks; i--; ) {
2331 struct r5dev *dev = &sh->dev[i];
2332 if (i == pd_idx)
2333 continue;
2334
2335 if (dev->towrite &&
2336 (test_bit(R5_UPTODATE, &dev->flags) ||
2337 test_bit(R5_Wantcompute, &dev->flags))) {
2338 set_bit(R5_Wantdrain, &dev->flags);
2339 set_bit(R5_LOCKED, &dev->flags);
2340 clear_bit(R5_UPTODATE, &dev->flags);
2341 s->locked++;
2342 }
2343 }
2344 if (!s->locked)
2345 /* False alarm - nothing to do */
2346 return;
2347 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2348 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2349 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2350 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2351 }
2352
2353 /* keep the parity disk(s) locked while asynchronous operations
2354 * are in flight
2355 */
2356 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2357 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2358 s->locked++;
2359
2360 if (level == 6) {
2361 int qd_idx = sh->qd_idx;
2362 struct r5dev *dev = &sh->dev[qd_idx];
2363
2364 set_bit(R5_LOCKED, &dev->flags);
2365 clear_bit(R5_UPTODATE, &dev->flags);
2366 s->locked++;
2367 }
2368
2369 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2370 __func__, (unsigned long long)sh->sector,
2371 s->locked, s->ops_request);
2372 }
2373
2374 /*
2375 * Each stripe/dev can have one or more bion attached.
2376 * toread/towrite point to the first in a chain.
2377 * The bi_next chain must be in order.
2378 */
2379 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2380 {
2381 struct bio **bip;
2382 struct r5conf *conf = sh->raid_conf;
2383 int firstwrite=0;
2384
2385 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2386 (unsigned long long)bi->bi_sector,
2387 (unsigned long long)sh->sector);
2388
2389 /*
2390 * If several bio share a stripe. The bio bi_phys_segments acts as a
2391 * reference count to avoid race. The reference count should already be
2392 * increased before this function is called (for example, in
2393 * make_request()), so other bio sharing this stripe will not free the
2394 * stripe. If a stripe is owned by one stripe, the stripe lock will
2395 * protect it.
2396 */
2397 spin_lock_irq(&sh->stripe_lock);
2398 if (forwrite) {
2399 bip = &sh->dev[dd_idx].towrite;
2400 if (*bip == NULL)
2401 firstwrite = 1;
2402 } else
2403 bip = &sh->dev[dd_idx].toread;
2404 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2405 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2406 goto overlap;
2407 bip = & (*bip)->bi_next;
2408 }
2409 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2410 goto overlap;
2411
2412 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2413 if (*bip)
2414 bi->bi_next = *bip;
2415 *bip = bi;
2416 raid5_inc_bi_active_stripes(bi);
2417
2418 if (forwrite) {
2419 /* check if page is covered */
2420 sector_t sector = sh->dev[dd_idx].sector;
2421 for (bi=sh->dev[dd_idx].towrite;
2422 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2423 bi && bi->bi_sector <= sector;
2424 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2425 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2426 sector = bi->bi_sector + (bi->bi_size>>9);
2427 }
2428 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2429 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2430 }
2431
2432 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2433 (unsigned long long)(*bip)->bi_sector,
2434 (unsigned long long)sh->sector, dd_idx);
2435 spin_unlock_irq(&sh->stripe_lock);
2436
2437 if (conf->mddev->bitmap && firstwrite) {
2438 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2439 STRIPE_SECTORS, 0);
2440 sh->bm_seq = conf->seq_flush+1;
2441 set_bit(STRIPE_BIT_DELAY, &sh->state);
2442 }
2443 return 1;
2444
2445 overlap:
2446 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2447 spin_unlock_irq(&sh->stripe_lock);
2448 return 0;
2449 }
2450
2451 static void end_reshape(struct r5conf *conf);
2452
2453 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2454 struct stripe_head *sh)
2455 {
2456 int sectors_per_chunk =
2457 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2458 int dd_idx;
2459 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2460 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2461
2462 raid5_compute_sector(conf,
2463 stripe * (disks - conf->max_degraded)
2464 *sectors_per_chunk + chunk_offset,
2465 previous,
2466 &dd_idx, sh);
2467 }
2468
2469 static void
2470 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2471 struct stripe_head_state *s, int disks,
2472 struct bio **return_bi)
2473 {
2474 int i;
2475 for (i = disks; i--; ) {
2476 struct bio *bi;
2477 int bitmap_end = 0;
2478
2479 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2480 struct md_rdev *rdev;
2481 rcu_read_lock();
2482 rdev = rcu_dereference(conf->disks[i].rdev);
2483 if (rdev && test_bit(In_sync, &rdev->flags))
2484 atomic_inc(&rdev->nr_pending);
2485 else
2486 rdev = NULL;
2487 rcu_read_unlock();
2488 if (rdev) {
2489 if (!rdev_set_badblocks(
2490 rdev,
2491 sh->sector,
2492 STRIPE_SECTORS, 0))
2493 md_error(conf->mddev, rdev);
2494 rdev_dec_pending(rdev, conf->mddev);
2495 }
2496 }
2497 spin_lock_irq(&sh->stripe_lock);
2498 /* fail all writes first */
2499 bi = sh->dev[i].towrite;
2500 sh->dev[i].towrite = NULL;
2501 spin_unlock_irq(&sh->stripe_lock);
2502 if (bi)
2503 bitmap_end = 1;
2504
2505 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2506 wake_up(&conf->wait_for_overlap);
2507
2508 while (bi && bi->bi_sector <
2509 sh->dev[i].sector + STRIPE_SECTORS) {
2510 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2511 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2512 if (!raid5_dec_bi_active_stripes(bi)) {
2513 md_write_end(conf->mddev);
2514 bi->bi_next = *return_bi;
2515 *return_bi = bi;
2516 }
2517 bi = nextbi;
2518 }
2519 if (bitmap_end)
2520 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2521 STRIPE_SECTORS, 0, 0);
2522 bitmap_end = 0;
2523 /* and fail all 'written' */
2524 bi = sh->dev[i].written;
2525 sh->dev[i].written = NULL;
2526 if (bi) bitmap_end = 1;
2527 while (bi && bi->bi_sector <
2528 sh->dev[i].sector + STRIPE_SECTORS) {
2529 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2530 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2531 if (!raid5_dec_bi_active_stripes(bi)) {
2532 md_write_end(conf->mddev);
2533 bi->bi_next = *return_bi;
2534 *return_bi = bi;
2535 }
2536 bi = bi2;
2537 }
2538
2539 /* fail any reads if this device is non-operational and
2540 * the data has not reached the cache yet.
2541 */
2542 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2543 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2544 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2545 spin_lock_irq(&sh->stripe_lock);
2546 bi = sh->dev[i].toread;
2547 sh->dev[i].toread = NULL;
2548 spin_unlock_irq(&sh->stripe_lock);
2549 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2550 wake_up(&conf->wait_for_overlap);
2551 while (bi && bi->bi_sector <
2552 sh->dev[i].sector + STRIPE_SECTORS) {
2553 struct bio *nextbi =
2554 r5_next_bio(bi, sh->dev[i].sector);
2555 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2556 if (!raid5_dec_bi_active_stripes(bi)) {
2557 bi->bi_next = *return_bi;
2558 *return_bi = bi;
2559 }
2560 bi = nextbi;
2561 }
2562 }
2563 if (bitmap_end)
2564 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2565 STRIPE_SECTORS, 0, 0);
2566 /* If we were in the middle of a write the parity block might
2567 * still be locked - so just clear all R5_LOCKED flags
2568 */
2569 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2570 }
2571
2572 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2573 if (atomic_dec_and_test(&conf->pending_full_writes))
2574 md_wakeup_thread(conf->mddev->thread);
2575 }
2576
2577 static void
2578 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2579 struct stripe_head_state *s)
2580 {
2581 int abort = 0;
2582 int i;
2583
2584 clear_bit(STRIPE_SYNCING, &sh->state);
2585 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2586 wake_up(&conf->wait_for_overlap);
2587 s->syncing = 0;
2588 s->replacing = 0;
2589 /* There is nothing more to do for sync/check/repair.
2590 * Don't even need to abort as that is handled elsewhere
2591 * if needed, and not always wanted e.g. if there is a known
2592 * bad block here.
2593 * For recover/replace we need to record a bad block on all
2594 * non-sync devices, or abort the recovery
2595 */
2596 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2597 /* During recovery devices cannot be removed, so
2598 * locking and refcounting of rdevs is not needed
2599 */
2600 for (i = 0; i < conf->raid_disks; i++) {
2601 struct md_rdev *rdev = conf->disks[i].rdev;
2602 if (rdev
2603 && !test_bit(Faulty, &rdev->flags)
2604 && !test_bit(In_sync, &rdev->flags)
2605 && !rdev_set_badblocks(rdev, sh->sector,
2606 STRIPE_SECTORS, 0))
2607 abort = 1;
2608 rdev = conf->disks[i].replacement;
2609 if (rdev
2610 && !test_bit(Faulty, &rdev->flags)
2611 && !test_bit(In_sync, &rdev->flags)
2612 && !rdev_set_badblocks(rdev, sh->sector,
2613 STRIPE_SECTORS, 0))
2614 abort = 1;
2615 }
2616 if (abort)
2617 conf->recovery_disabled =
2618 conf->mddev->recovery_disabled;
2619 }
2620 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2621 }
2622
2623 static int want_replace(struct stripe_head *sh, int disk_idx)
2624 {
2625 struct md_rdev *rdev;
2626 int rv = 0;
2627 /* Doing recovery so rcu locking not required */
2628 rdev = sh->raid_conf->disks[disk_idx].replacement;
2629 if (rdev
2630 && !test_bit(Faulty, &rdev->flags)
2631 && !test_bit(In_sync, &rdev->flags)
2632 && (rdev->recovery_offset <= sh->sector
2633 || rdev->mddev->recovery_cp <= sh->sector))
2634 rv = 1;
2635
2636 return rv;
2637 }
2638
2639 /* fetch_block - checks the given member device to see if its data needs
2640 * to be read or computed to satisfy a request.
2641 *
2642 * Returns 1 when no more member devices need to be checked, otherwise returns
2643 * 0 to tell the loop in handle_stripe_fill to continue
2644 */
2645 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2646 int disk_idx, int disks)
2647 {
2648 struct r5dev *dev = &sh->dev[disk_idx];
2649 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2650 &sh->dev[s->failed_num[1]] };
2651
2652 /* is the data in this block needed, and can we get it? */
2653 if (!test_bit(R5_LOCKED, &dev->flags) &&
2654 !test_bit(R5_UPTODATE, &dev->flags) &&
2655 (dev->toread ||
2656 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2657 s->syncing || s->expanding ||
2658 (s->replacing && want_replace(sh, disk_idx)) ||
2659 (s->failed >= 1 && fdev[0]->toread) ||
2660 (s->failed >= 2 && fdev[1]->toread) ||
2661 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2662 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2663 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2664 /* we would like to get this block, possibly by computing it,
2665 * otherwise read it if the backing disk is insync
2666 */
2667 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2668 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2669 if ((s->uptodate == disks - 1) &&
2670 (s->failed && (disk_idx == s->failed_num[0] ||
2671 disk_idx == s->failed_num[1]))) {
2672 /* have disk failed, and we're requested to fetch it;
2673 * do compute it
2674 */
2675 pr_debug("Computing stripe %llu block %d\n",
2676 (unsigned long long)sh->sector, disk_idx);
2677 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2678 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2679 set_bit(R5_Wantcompute, &dev->flags);
2680 sh->ops.target = disk_idx;
2681 sh->ops.target2 = -1; /* no 2nd target */
2682 s->req_compute = 1;
2683 /* Careful: from this point on 'uptodate' is in the eye
2684 * of raid_run_ops which services 'compute' operations
2685 * before writes. R5_Wantcompute flags a block that will
2686 * be R5_UPTODATE by the time it is needed for a
2687 * subsequent operation.
2688 */
2689 s->uptodate++;
2690 return 1;
2691 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2692 /* Computing 2-failure is *very* expensive; only
2693 * do it if failed >= 2
2694 */
2695 int other;
2696 for (other = disks; other--; ) {
2697 if (other == disk_idx)
2698 continue;
2699 if (!test_bit(R5_UPTODATE,
2700 &sh->dev[other].flags))
2701 break;
2702 }
2703 BUG_ON(other < 0);
2704 pr_debug("Computing stripe %llu blocks %d,%d\n",
2705 (unsigned long long)sh->sector,
2706 disk_idx, other);
2707 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2708 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2709 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2710 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2711 sh->ops.target = disk_idx;
2712 sh->ops.target2 = other;
2713 s->uptodate += 2;
2714 s->req_compute = 1;
2715 return 1;
2716 } else if (test_bit(R5_Insync, &dev->flags)) {
2717 set_bit(R5_LOCKED, &dev->flags);
2718 set_bit(R5_Wantread, &dev->flags);
2719 s->locked++;
2720 pr_debug("Reading block %d (sync=%d)\n",
2721 disk_idx, s->syncing);
2722 }
2723 }
2724
2725 return 0;
2726 }
2727
2728 /**
2729 * handle_stripe_fill - read or compute data to satisfy pending requests.
2730 */
2731 static void handle_stripe_fill(struct stripe_head *sh,
2732 struct stripe_head_state *s,
2733 int disks)
2734 {
2735 int i;
2736
2737 /* look for blocks to read/compute, skip this if a compute
2738 * is already in flight, or if the stripe contents are in the
2739 * midst of changing due to a write
2740 */
2741 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2742 !sh->reconstruct_state)
2743 for (i = disks; i--; )
2744 if (fetch_block(sh, s, i, disks))
2745 break;
2746 set_bit(STRIPE_HANDLE, &sh->state);
2747 }
2748
2749
2750 /* handle_stripe_clean_event
2751 * any written block on an uptodate or failed drive can be returned.
2752 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2753 * never LOCKED, so we don't need to test 'failed' directly.
2754 */
2755 static void handle_stripe_clean_event(struct r5conf *conf,
2756 struct stripe_head *sh, int disks, struct bio **return_bi)
2757 {
2758 int i;
2759 struct r5dev *dev;
2760 int discard_pending = 0;
2761
2762 for (i = disks; i--; )
2763 if (sh->dev[i].written) {
2764 dev = &sh->dev[i];
2765 if (!test_bit(R5_LOCKED, &dev->flags) &&
2766 (test_bit(R5_UPTODATE, &dev->flags) ||
2767 test_bit(R5_Discard, &dev->flags))) {
2768 /* We can return any write requests */
2769 struct bio *wbi, *wbi2;
2770 pr_debug("Return write for disc %d\n", i);
2771 if (test_and_clear_bit(R5_Discard, &dev->flags))
2772 clear_bit(R5_UPTODATE, &dev->flags);
2773 wbi = dev->written;
2774 dev->written = NULL;
2775 while (wbi && wbi->bi_sector <
2776 dev->sector + STRIPE_SECTORS) {
2777 wbi2 = r5_next_bio(wbi, dev->sector);
2778 if (!raid5_dec_bi_active_stripes(wbi)) {
2779 md_write_end(conf->mddev);
2780 wbi->bi_next = *return_bi;
2781 *return_bi = wbi;
2782 }
2783 wbi = wbi2;
2784 }
2785 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2786 STRIPE_SECTORS,
2787 !test_bit(STRIPE_DEGRADED, &sh->state),
2788 0);
2789 } else if (test_bit(R5_Discard, &dev->flags))
2790 discard_pending = 1;
2791 }
2792 if (!discard_pending &&
2793 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
2794 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2795 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2796 if (sh->qd_idx >= 0) {
2797 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2798 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
2799 }
2800 /* now that discard is done we can proceed with any sync */
2801 clear_bit(STRIPE_DISCARD, &sh->state);
2802 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2803 set_bit(STRIPE_HANDLE, &sh->state);
2804
2805 }
2806
2807 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2808 if (atomic_dec_and_test(&conf->pending_full_writes))
2809 md_wakeup_thread(conf->mddev->thread);
2810 }
2811
2812 static void handle_stripe_dirtying(struct r5conf *conf,
2813 struct stripe_head *sh,
2814 struct stripe_head_state *s,
2815 int disks)
2816 {
2817 int rmw = 0, rcw = 0, i;
2818 sector_t recovery_cp = conf->mddev->recovery_cp;
2819
2820 /* RAID6 requires 'rcw' in current implementation.
2821 * Otherwise, check whether resync is now happening or should start.
2822 * If yes, then the array is dirty (after unclean shutdown or
2823 * initial creation), so parity in some stripes might be inconsistent.
2824 * In this case, we need to always do reconstruct-write, to ensure
2825 * that in case of drive failure or read-error correction, we
2826 * generate correct data from the parity.
2827 */
2828 if (conf->max_degraded == 2 ||
2829 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2830 /* Calculate the real rcw later - for now make it
2831 * look like rcw is cheaper
2832 */
2833 rcw = 1; rmw = 2;
2834 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2835 conf->max_degraded, (unsigned long long)recovery_cp,
2836 (unsigned long long)sh->sector);
2837 } else for (i = disks; i--; ) {
2838 /* would I have to read this buffer for read_modify_write */
2839 struct r5dev *dev = &sh->dev[i];
2840 if ((dev->towrite || i == sh->pd_idx) &&
2841 !test_bit(R5_LOCKED, &dev->flags) &&
2842 !(test_bit(R5_UPTODATE, &dev->flags) ||
2843 test_bit(R5_Wantcompute, &dev->flags))) {
2844 if (test_bit(R5_Insync, &dev->flags))
2845 rmw++;
2846 else
2847 rmw += 2*disks; /* cannot read it */
2848 }
2849 /* Would I have to read this buffer for reconstruct_write */
2850 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2851 !test_bit(R5_LOCKED, &dev->flags) &&
2852 !(test_bit(R5_UPTODATE, &dev->flags) ||
2853 test_bit(R5_Wantcompute, &dev->flags))) {
2854 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2855 else
2856 rcw += 2*disks;
2857 }
2858 }
2859 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2860 (unsigned long long)sh->sector, rmw, rcw);
2861 set_bit(STRIPE_HANDLE, &sh->state);
2862 if (rmw < rcw && rmw > 0) {
2863 /* prefer read-modify-write, but need to get some data */
2864 if (conf->mddev->queue)
2865 blk_add_trace_msg(conf->mddev->queue,
2866 "raid5 rmw %llu %d",
2867 (unsigned long long)sh->sector, rmw);
2868 for (i = disks; i--; ) {
2869 struct r5dev *dev = &sh->dev[i];
2870 if ((dev->towrite || i == sh->pd_idx) &&
2871 !test_bit(R5_LOCKED, &dev->flags) &&
2872 !(test_bit(R5_UPTODATE, &dev->flags) ||
2873 test_bit(R5_Wantcompute, &dev->flags)) &&
2874 test_bit(R5_Insync, &dev->flags)) {
2875 if (
2876 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2877 pr_debug("Read_old block "
2878 "%d for r-m-w\n", i);
2879 set_bit(R5_LOCKED, &dev->flags);
2880 set_bit(R5_Wantread, &dev->flags);
2881 s->locked++;
2882 } else {
2883 set_bit(STRIPE_DELAYED, &sh->state);
2884 set_bit(STRIPE_HANDLE, &sh->state);
2885 }
2886 }
2887 }
2888 }
2889 if (rcw <= rmw && rcw > 0) {
2890 /* want reconstruct write, but need to get some data */
2891 int qread =0;
2892 rcw = 0;
2893 for (i = disks; i--; ) {
2894 struct r5dev *dev = &sh->dev[i];
2895 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2896 i != sh->pd_idx && i != sh->qd_idx &&
2897 !test_bit(R5_LOCKED, &dev->flags) &&
2898 !(test_bit(R5_UPTODATE, &dev->flags) ||
2899 test_bit(R5_Wantcompute, &dev->flags))) {
2900 rcw++;
2901 if (!test_bit(R5_Insync, &dev->flags))
2902 continue; /* it's a failed drive */
2903 if (
2904 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2905 pr_debug("Read_old block "
2906 "%d for Reconstruct\n", i);
2907 set_bit(R5_LOCKED, &dev->flags);
2908 set_bit(R5_Wantread, &dev->flags);
2909 s->locked++;
2910 qread++;
2911 } else {
2912 set_bit(STRIPE_DELAYED, &sh->state);
2913 set_bit(STRIPE_HANDLE, &sh->state);
2914 }
2915 }
2916 }
2917 if (rcw && conf->mddev->queue)
2918 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2919 (unsigned long long)sh->sector,
2920 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2921 }
2922 /* now if nothing is locked, and if we have enough data,
2923 * we can start a write request
2924 */
2925 /* since handle_stripe can be called at any time we need to handle the
2926 * case where a compute block operation has been submitted and then a
2927 * subsequent call wants to start a write request. raid_run_ops only
2928 * handles the case where compute block and reconstruct are requested
2929 * simultaneously. If this is not the case then new writes need to be
2930 * held off until the compute completes.
2931 */
2932 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2933 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2934 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2935 schedule_reconstruction(sh, s, rcw == 0, 0);
2936 }
2937
2938 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2939 struct stripe_head_state *s, int disks)
2940 {
2941 struct r5dev *dev = NULL;
2942
2943 set_bit(STRIPE_HANDLE, &sh->state);
2944
2945 switch (sh->check_state) {
2946 case check_state_idle:
2947 /* start a new check operation if there are no failures */
2948 if (s->failed == 0) {
2949 BUG_ON(s->uptodate != disks);
2950 sh->check_state = check_state_run;
2951 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2952 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2953 s->uptodate--;
2954 break;
2955 }
2956 dev = &sh->dev[s->failed_num[0]];
2957 /* fall through */
2958 case check_state_compute_result:
2959 sh->check_state = check_state_idle;
2960 if (!dev)
2961 dev = &sh->dev[sh->pd_idx];
2962
2963 /* check that a write has not made the stripe insync */
2964 if (test_bit(STRIPE_INSYNC, &sh->state))
2965 break;
2966
2967 /* either failed parity check, or recovery is happening */
2968 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2969 BUG_ON(s->uptodate != disks);
2970
2971 set_bit(R5_LOCKED, &dev->flags);
2972 s->locked++;
2973 set_bit(R5_Wantwrite, &dev->flags);
2974
2975 clear_bit(STRIPE_DEGRADED, &sh->state);
2976 set_bit(STRIPE_INSYNC, &sh->state);
2977 break;
2978 case check_state_run:
2979 break; /* we will be called again upon completion */
2980 case check_state_check_result:
2981 sh->check_state = check_state_idle;
2982
2983 /* if a failure occurred during the check operation, leave
2984 * STRIPE_INSYNC not set and let the stripe be handled again
2985 */
2986 if (s->failed)
2987 break;
2988
2989 /* handle a successful check operation, if parity is correct
2990 * we are done. Otherwise update the mismatch count and repair
2991 * parity if !MD_RECOVERY_CHECK
2992 */
2993 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2994 /* parity is correct (on disc,
2995 * not in buffer any more)
2996 */
2997 set_bit(STRIPE_INSYNC, &sh->state);
2998 else {
2999 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3000 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3001 /* don't try to repair!! */
3002 set_bit(STRIPE_INSYNC, &sh->state);
3003 else {
3004 sh->check_state = check_state_compute_run;
3005 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3006 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3007 set_bit(R5_Wantcompute,
3008 &sh->dev[sh->pd_idx].flags);
3009 sh->ops.target = sh->pd_idx;
3010 sh->ops.target2 = -1;
3011 s->uptodate++;
3012 }
3013 }
3014 break;
3015 case check_state_compute_run:
3016 break;
3017 default:
3018 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3019 __func__, sh->check_state,
3020 (unsigned long long) sh->sector);
3021 BUG();
3022 }
3023 }
3024
3025
3026 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3027 struct stripe_head_state *s,
3028 int disks)
3029 {
3030 int pd_idx = sh->pd_idx;
3031 int qd_idx = sh->qd_idx;
3032 struct r5dev *dev;
3033
3034 set_bit(STRIPE_HANDLE, &sh->state);
3035
3036 BUG_ON(s->failed > 2);
3037
3038 /* Want to check and possibly repair P and Q.
3039 * However there could be one 'failed' device, in which
3040 * case we can only check one of them, possibly using the
3041 * other to generate missing data
3042 */
3043
3044 switch (sh->check_state) {
3045 case check_state_idle:
3046 /* start a new check operation if there are < 2 failures */
3047 if (s->failed == s->q_failed) {
3048 /* The only possible failed device holds Q, so it
3049 * makes sense to check P (If anything else were failed,
3050 * we would have used P to recreate it).
3051 */
3052 sh->check_state = check_state_run;
3053 }
3054 if (!s->q_failed && s->failed < 2) {
3055 /* Q is not failed, and we didn't use it to generate
3056 * anything, so it makes sense to check it
3057 */
3058 if (sh->check_state == check_state_run)
3059 sh->check_state = check_state_run_pq;
3060 else
3061 sh->check_state = check_state_run_q;
3062 }
3063
3064 /* discard potentially stale zero_sum_result */
3065 sh->ops.zero_sum_result = 0;
3066
3067 if (sh->check_state == check_state_run) {
3068 /* async_xor_zero_sum destroys the contents of P */
3069 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3070 s->uptodate--;
3071 }
3072 if (sh->check_state >= check_state_run &&
3073 sh->check_state <= check_state_run_pq) {
3074 /* async_syndrome_zero_sum preserves P and Q, so
3075 * no need to mark them !uptodate here
3076 */
3077 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3078 break;
3079 }
3080
3081 /* we have 2-disk failure */
3082 BUG_ON(s->failed != 2);
3083 /* fall through */
3084 case check_state_compute_result:
3085 sh->check_state = check_state_idle;
3086
3087 /* check that a write has not made the stripe insync */
3088 if (test_bit(STRIPE_INSYNC, &sh->state))
3089 break;
3090
3091 /* now write out any block on a failed drive,
3092 * or P or Q if they were recomputed
3093 */
3094 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3095 if (s->failed == 2) {
3096 dev = &sh->dev[s->failed_num[1]];
3097 s->locked++;
3098 set_bit(R5_LOCKED, &dev->flags);
3099 set_bit(R5_Wantwrite, &dev->flags);
3100 }
3101 if (s->failed >= 1) {
3102 dev = &sh->dev[s->failed_num[0]];
3103 s->locked++;
3104 set_bit(R5_LOCKED, &dev->flags);
3105 set_bit(R5_Wantwrite, &dev->flags);
3106 }
3107 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3108 dev = &sh->dev[pd_idx];
3109 s->locked++;
3110 set_bit(R5_LOCKED, &dev->flags);
3111 set_bit(R5_Wantwrite, &dev->flags);
3112 }
3113 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3114 dev = &sh->dev[qd_idx];
3115 s->locked++;
3116 set_bit(R5_LOCKED, &dev->flags);
3117 set_bit(R5_Wantwrite, &dev->flags);
3118 }
3119 clear_bit(STRIPE_DEGRADED, &sh->state);
3120
3121 set_bit(STRIPE_INSYNC, &sh->state);
3122 break;
3123 case check_state_run:
3124 case check_state_run_q:
3125 case check_state_run_pq:
3126 break; /* we will be called again upon completion */
3127 case check_state_check_result:
3128 sh->check_state = check_state_idle;
3129
3130 /* handle a successful check operation, if parity is correct
3131 * we are done. Otherwise update the mismatch count and repair
3132 * parity if !MD_RECOVERY_CHECK
3133 */
3134 if (sh->ops.zero_sum_result == 0) {
3135 /* both parities are correct */
3136 if (!s->failed)
3137 set_bit(STRIPE_INSYNC, &sh->state);
3138 else {
3139 /* in contrast to the raid5 case we can validate
3140 * parity, but still have a failure to write
3141 * back
3142 */
3143 sh->check_state = check_state_compute_result;
3144 /* Returning at this point means that we may go
3145 * off and bring p and/or q uptodate again so
3146 * we make sure to check zero_sum_result again
3147 * to verify if p or q need writeback
3148 */
3149 }
3150 } else {
3151 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3152 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3153 /* don't try to repair!! */
3154 set_bit(STRIPE_INSYNC, &sh->state);
3155 else {
3156 int *target = &sh->ops.target;
3157
3158 sh->ops.target = -1;
3159 sh->ops.target2 = -1;
3160 sh->check_state = check_state_compute_run;
3161 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3162 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3163 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3164 set_bit(R5_Wantcompute,
3165 &sh->dev[pd_idx].flags);
3166 *target = pd_idx;
3167 target = &sh->ops.target2;
3168 s->uptodate++;
3169 }
3170 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3171 set_bit(R5_Wantcompute,
3172 &sh->dev[qd_idx].flags);
3173 *target = qd_idx;
3174 s->uptodate++;
3175 }
3176 }
3177 }
3178 break;
3179 case check_state_compute_run:
3180 break;
3181 default:
3182 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3183 __func__, sh->check_state,
3184 (unsigned long long) sh->sector);
3185 BUG();
3186 }
3187 }
3188
3189 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3190 {
3191 int i;
3192
3193 /* We have read all the blocks in this stripe and now we need to
3194 * copy some of them into a target stripe for expand.
3195 */
3196 struct dma_async_tx_descriptor *tx = NULL;
3197 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3198 for (i = 0; i < sh->disks; i++)
3199 if (i != sh->pd_idx && i != sh->qd_idx) {
3200 int dd_idx, j;
3201 struct stripe_head *sh2;
3202 struct async_submit_ctl submit;
3203
3204 sector_t bn = compute_blocknr(sh, i, 1);
3205 sector_t s = raid5_compute_sector(conf, bn, 0,
3206 &dd_idx, NULL);
3207 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3208 if (sh2 == NULL)
3209 /* so far only the early blocks of this stripe
3210 * have been requested. When later blocks
3211 * get requested, we will try again
3212 */
3213 continue;
3214 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3215 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3216 /* must have already done this block */
3217 release_stripe(sh2);
3218 continue;
3219 }
3220
3221 /* place all the copies on one channel */
3222 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3223 tx = async_memcpy(sh2->dev[dd_idx].page,
3224 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3225 &submit);
3226
3227 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3228 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3229 for (j = 0; j < conf->raid_disks; j++)
3230 if (j != sh2->pd_idx &&
3231 j != sh2->qd_idx &&
3232 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3233 break;
3234 if (j == conf->raid_disks) {
3235 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3236 set_bit(STRIPE_HANDLE, &sh2->state);
3237 }
3238 release_stripe(sh2);
3239
3240 }
3241 /* done submitting copies, wait for them to complete */
3242 async_tx_quiesce(&tx);
3243 }
3244
3245 /*
3246 * handle_stripe - do things to a stripe.
3247 *
3248 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3249 * state of various bits to see what needs to be done.
3250 * Possible results:
3251 * return some read requests which now have data
3252 * return some write requests which are safely on storage
3253 * schedule a read on some buffers
3254 * schedule a write of some buffers
3255 * return confirmation of parity correctness
3256 *
3257 */
3258
3259 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3260 {
3261 struct r5conf *conf = sh->raid_conf;
3262 int disks = sh->disks;
3263 struct r5dev *dev;
3264 int i;
3265 int do_recovery = 0;
3266
3267 memset(s, 0, sizeof(*s));
3268
3269 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3270 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3271 s->failed_num[0] = -1;
3272 s->failed_num[1] = -1;
3273
3274 /* Now to look around and see what can be done */
3275 rcu_read_lock();
3276 for (i=disks; i--; ) {
3277 struct md_rdev *rdev;
3278 sector_t first_bad;
3279 int bad_sectors;
3280 int is_bad = 0;
3281
3282 dev = &sh->dev[i];
3283
3284 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3285 i, dev->flags,
3286 dev->toread, dev->towrite, dev->written);
3287 /* maybe we can reply to a read
3288 *
3289 * new wantfill requests are only permitted while
3290 * ops_complete_biofill is guaranteed to be inactive
3291 */
3292 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3293 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3294 set_bit(R5_Wantfill, &dev->flags);
3295
3296 /* now count some things */
3297 if (test_bit(R5_LOCKED, &dev->flags))
3298 s->locked++;
3299 if (test_bit(R5_UPTODATE, &dev->flags))
3300 s->uptodate++;
3301 if (test_bit(R5_Wantcompute, &dev->flags)) {
3302 s->compute++;
3303 BUG_ON(s->compute > 2);
3304 }
3305
3306 if (test_bit(R5_Wantfill, &dev->flags))
3307 s->to_fill++;
3308 else if (dev->toread)
3309 s->to_read++;
3310 if (dev->towrite) {
3311 s->to_write++;
3312 if (!test_bit(R5_OVERWRITE, &dev->flags))
3313 s->non_overwrite++;
3314 }
3315 if (dev->written)
3316 s->written++;
3317 /* Prefer to use the replacement for reads, but only
3318 * if it is recovered enough and has no bad blocks.
3319 */
3320 rdev = rcu_dereference(conf->disks[i].replacement);
3321 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3322 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3323 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3324 &first_bad, &bad_sectors))
3325 set_bit(R5_ReadRepl, &dev->flags);
3326 else {
3327 if (rdev)
3328 set_bit(R5_NeedReplace, &dev->flags);
3329 rdev = rcu_dereference(conf->disks[i].rdev);
3330 clear_bit(R5_ReadRepl, &dev->flags);
3331 }
3332 if (rdev && test_bit(Faulty, &rdev->flags))
3333 rdev = NULL;
3334 if (rdev) {
3335 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3336 &first_bad, &bad_sectors);
3337 if (s->blocked_rdev == NULL
3338 && (test_bit(Blocked, &rdev->flags)
3339 || is_bad < 0)) {
3340 if (is_bad < 0)
3341 set_bit(BlockedBadBlocks,
3342 &rdev->flags);
3343 s->blocked_rdev = rdev;
3344 atomic_inc(&rdev->nr_pending);
3345 }
3346 }
3347 clear_bit(R5_Insync, &dev->flags);
3348 if (!rdev)
3349 /* Not in-sync */;
3350 else if (is_bad) {
3351 /* also not in-sync */
3352 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3353 test_bit(R5_UPTODATE, &dev->flags)) {
3354 /* treat as in-sync, but with a read error
3355 * which we can now try to correct
3356 */
3357 set_bit(R5_Insync, &dev->flags);
3358 set_bit(R5_ReadError, &dev->flags);
3359 }
3360 } else if (test_bit(In_sync, &rdev->flags))
3361 set_bit(R5_Insync, &dev->flags);
3362 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3363 /* in sync if before recovery_offset */
3364 set_bit(R5_Insync, &dev->flags);
3365 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3366 test_bit(R5_Expanded, &dev->flags))
3367 /* If we've reshaped into here, we assume it is Insync.
3368 * We will shortly update recovery_offset to make
3369 * it official.
3370 */
3371 set_bit(R5_Insync, &dev->flags);
3372
3373 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3374 /* This flag does not apply to '.replacement'
3375 * only to .rdev, so make sure to check that*/
3376 struct md_rdev *rdev2 = rcu_dereference(
3377 conf->disks[i].rdev);
3378 if (rdev2 == rdev)
3379 clear_bit(R5_Insync, &dev->flags);
3380 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3381 s->handle_bad_blocks = 1;
3382 atomic_inc(&rdev2->nr_pending);
3383 } else
3384 clear_bit(R5_WriteError, &dev->flags);
3385 }
3386 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3387 /* This flag does not apply to '.replacement'
3388 * only to .rdev, so make sure to check that*/
3389 struct md_rdev *rdev2 = rcu_dereference(
3390 conf->disks[i].rdev);
3391 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3392 s->handle_bad_blocks = 1;
3393 atomic_inc(&rdev2->nr_pending);
3394 } else
3395 clear_bit(R5_MadeGood, &dev->flags);
3396 }
3397 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3398 struct md_rdev *rdev2 = rcu_dereference(
3399 conf->disks[i].replacement);
3400 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3401 s->handle_bad_blocks = 1;
3402 atomic_inc(&rdev2->nr_pending);
3403 } else
3404 clear_bit(R5_MadeGoodRepl, &dev->flags);
3405 }
3406 if (!test_bit(R5_Insync, &dev->flags)) {
3407 /* The ReadError flag will just be confusing now */
3408 clear_bit(R5_ReadError, &dev->flags);
3409 clear_bit(R5_ReWrite, &dev->flags);
3410 }
3411 if (test_bit(R5_ReadError, &dev->flags))
3412 clear_bit(R5_Insync, &dev->flags);
3413 if (!test_bit(R5_Insync, &dev->flags)) {
3414 if (s->failed < 2)
3415 s->failed_num[s->failed] = i;
3416 s->failed++;
3417 if (rdev && !test_bit(Faulty, &rdev->flags))
3418 do_recovery = 1;
3419 }
3420 }
3421 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3422 /* If there is a failed device being replaced,
3423 * we must be recovering.
3424 * else if we are after recovery_cp, we must be syncing
3425 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3426 * else we can only be replacing
3427 * sync and recovery both need to read all devices, and so
3428 * use the same flag.
3429 */
3430 if (do_recovery ||
3431 sh->sector >= conf->mddev->recovery_cp ||
3432 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3433 s->syncing = 1;
3434 else
3435 s->replacing = 1;
3436 }
3437 rcu_read_unlock();
3438 }
3439
3440 static void handle_stripe(struct stripe_head *sh)
3441 {
3442 struct stripe_head_state s;
3443 struct r5conf *conf = sh->raid_conf;
3444 int i;
3445 int prexor;
3446 int disks = sh->disks;
3447 struct r5dev *pdev, *qdev;
3448
3449 clear_bit(STRIPE_HANDLE, &sh->state);
3450 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3451 /* already being handled, ensure it gets handled
3452 * again when current action finishes */
3453 set_bit(STRIPE_HANDLE, &sh->state);
3454 return;
3455 }
3456
3457 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3458 spin_lock(&sh->stripe_lock);
3459 /* Cannot process 'sync' concurrently with 'discard' */
3460 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3461 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3462 set_bit(STRIPE_SYNCING, &sh->state);
3463 clear_bit(STRIPE_INSYNC, &sh->state);
3464 }
3465 spin_unlock(&sh->stripe_lock);
3466 }
3467 clear_bit(STRIPE_DELAYED, &sh->state);
3468
3469 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3470 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3471 (unsigned long long)sh->sector, sh->state,
3472 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3473 sh->check_state, sh->reconstruct_state);
3474
3475 analyse_stripe(sh, &s);
3476
3477 if (s.handle_bad_blocks) {
3478 set_bit(STRIPE_HANDLE, &sh->state);
3479 goto finish;
3480 }
3481
3482 if (unlikely(s.blocked_rdev)) {
3483 if (s.syncing || s.expanding || s.expanded ||
3484 s.replacing || s.to_write || s.written) {
3485 set_bit(STRIPE_HANDLE, &sh->state);
3486 goto finish;
3487 }
3488 /* There is nothing for the blocked_rdev to block */
3489 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3490 s.blocked_rdev = NULL;
3491 }
3492
3493 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3494 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3495 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3496 }
3497
3498 pr_debug("locked=%d uptodate=%d to_read=%d"
3499 " to_write=%d failed=%d failed_num=%d,%d\n",
3500 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3501 s.failed_num[0], s.failed_num[1]);
3502 /* check if the array has lost more than max_degraded devices and,
3503 * if so, some requests might need to be failed.
3504 */
3505 if (s.failed > conf->max_degraded) {
3506 sh->check_state = 0;
3507 sh->reconstruct_state = 0;
3508 if (s.to_read+s.to_write+s.written)
3509 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3510 if (s.syncing + s.replacing)
3511 handle_failed_sync(conf, sh, &s);
3512 }
3513
3514 /* Now we check to see if any write operations have recently
3515 * completed
3516 */
3517 prexor = 0;
3518 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3519 prexor = 1;
3520 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3521 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3522 sh->reconstruct_state = reconstruct_state_idle;
3523
3524 /* All the 'written' buffers and the parity block are ready to
3525 * be written back to disk
3526 */
3527 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3528 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3529 BUG_ON(sh->qd_idx >= 0 &&
3530 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3531 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3532 for (i = disks; i--; ) {
3533 struct r5dev *dev = &sh->dev[i];
3534 if (test_bit(R5_LOCKED, &dev->flags) &&
3535 (i == sh->pd_idx || i == sh->qd_idx ||
3536 dev->written)) {
3537 pr_debug("Writing block %d\n", i);
3538 set_bit(R5_Wantwrite, &dev->flags);
3539 if (prexor)
3540 continue;
3541 if (!test_bit(R5_Insync, &dev->flags) ||
3542 ((i == sh->pd_idx || i == sh->qd_idx) &&
3543 s.failed == 0))
3544 set_bit(STRIPE_INSYNC, &sh->state);
3545 }
3546 }
3547 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3548 s.dec_preread_active = 1;
3549 }
3550
3551 /*
3552 * might be able to return some write requests if the parity blocks
3553 * are safe, or on a failed drive
3554 */
3555 pdev = &sh->dev[sh->pd_idx];
3556 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3557 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3558 qdev = &sh->dev[sh->qd_idx];
3559 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3560 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3561 || conf->level < 6;
3562
3563 if (s.written &&
3564 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3565 && !test_bit(R5_LOCKED, &pdev->flags)
3566 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3567 test_bit(R5_Discard, &pdev->flags))))) &&
3568 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3569 && !test_bit(R5_LOCKED, &qdev->flags)
3570 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3571 test_bit(R5_Discard, &qdev->flags))))))
3572 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3573
3574 /* Now we might consider reading some blocks, either to check/generate
3575 * parity, or to satisfy requests
3576 * or to load a block that is being partially written.
3577 */
3578 if (s.to_read || s.non_overwrite
3579 || (conf->level == 6 && s.to_write && s.failed)
3580 || (s.syncing && (s.uptodate + s.compute < disks))
3581 || s.replacing
3582 || s.expanding)
3583 handle_stripe_fill(sh, &s, disks);
3584
3585 /* Now to consider new write requests and what else, if anything
3586 * should be read. We do not handle new writes when:
3587 * 1/ A 'write' operation (copy+xor) is already in flight.
3588 * 2/ A 'check' operation is in flight, as it may clobber the parity
3589 * block.
3590 */
3591 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3592 handle_stripe_dirtying(conf, sh, &s, disks);
3593
3594 /* maybe we need to check and possibly fix the parity for this stripe
3595 * Any reads will already have been scheduled, so we just see if enough
3596 * data is available. The parity check is held off while parity
3597 * dependent operations are in flight.
3598 */
3599 if (sh->check_state ||
3600 (s.syncing && s.locked == 0 &&
3601 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3602 !test_bit(STRIPE_INSYNC, &sh->state))) {
3603 if (conf->level == 6)
3604 handle_parity_checks6(conf, sh, &s, disks);
3605 else
3606 handle_parity_checks5(conf, sh, &s, disks);
3607 }
3608
3609 if (s.replacing && s.locked == 0
3610 && !test_bit(STRIPE_INSYNC, &sh->state)) {
3611 /* Write out to replacement devices where possible */
3612 for (i = 0; i < conf->raid_disks; i++)
3613 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3614 test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3615 set_bit(R5_WantReplace, &sh->dev[i].flags);
3616 set_bit(R5_LOCKED, &sh->dev[i].flags);
3617 s.locked++;
3618 }
3619 set_bit(STRIPE_INSYNC, &sh->state);
3620 }
3621 if ((s.syncing || s.replacing) && s.locked == 0 &&
3622 test_bit(STRIPE_INSYNC, &sh->state)) {
3623 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3624 clear_bit(STRIPE_SYNCING, &sh->state);
3625 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3626 wake_up(&conf->wait_for_overlap);
3627 }
3628
3629 /* If the failed drives are just a ReadError, then we might need
3630 * to progress the repair/check process
3631 */
3632 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3633 for (i = 0; i < s.failed; i++) {
3634 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3635 if (test_bit(R5_ReadError, &dev->flags)
3636 && !test_bit(R5_LOCKED, &dev->flags)
3637 && test_bit(R5_UPTODATE, &dev->flags)
3638 ) {
3639 if (!test_bit(R5_ReWrite, &dev->flags)) {
3640 set_bit(R5_Wantwrite, &dev->flags);
3641 set_bit(R5_ReWrite, &dev->flags);
3642 set_bit(R5_LOCKED, &dev->flags);
3643 s.locked++;
3644 } else {
3645 /* let's read it back */
3646 set_bit(R5_Wantread, &dev->flags);
3647 set_bit(R5_LOCKED, &dev->flags);
3648 s.locked++;
3649 }
3650 }
3651 }
3652
3653
3654 /* Finish reconstruct operations initiated by the expansion process */
3655 if (sh->reconstruct_state == reconstruct_state_result) {
3656 struct stripe_head *sh_src
3657 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3658 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3659 /* sh cannot be written until sh_src has been read.
3660 * so arrange for sh to be delayed a little
3661 */
3662 set_bit(STRIPE_DELAYED, &sh->state);
3663 set_bit(STRIPE_HANDLE, &sh->state);
3664 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3665 &sh_src->state))
3666 atomic_inc(&conf->preread_active_stripes);
3667 release_stripe(sh_src);
3668 goto finish;
3669 }
3670 if (sh_src)
3671 release_stripe(sh_src);
3672
3673 sh->reconstruct_state = reconstruct_state_idle;
3674 clear_bit(STRIPE_EXPANDING, &sh->state);
3675 for (i = conf->raid_disks; i--; ) {
3676 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3677 set_bit(R5_LOCKED, &sh->dev[i].flags);
3678 s.locked++;
3679 }
3680 }
3681
3682 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3683 !sh->reconstruct_state) {
3684 /* Need to write out all blocks after computing parity */
3685 sh->disks = conf->raid_disks;
3686 stripe_set_idx(sh->sector, conf, 0, sh);
3687 schedule_reconstruction(sh, &s, 1, 1);
3688 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3689 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3690 atomic_dec(&conf->reshape_stripes);
3691 wake_up(&conf->wait_for_overlap);
3692 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3693 }
3694
3695 if (s.expanding && s.locked == 0 &&
3696 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3697 handle_stripe_expansion(conf, sh);
3698
3699 finish:
3700 /* wait for this device to become unblocked */
3701 if (unlikely(s.blocked_rdev)) {
3702 if (conf->mddev->external)
3703 md_wait_for_blocked_rdev(s.blocked_rdev,
3704 conf->mddev);
3705 else
3706 /* Internal metadata will immediately
3707 * be written by raid5d, so we don't
3708 * need to wait here.
3709 */
3710 rdev_dec_pending(s.blocked_rdev,
3711 conf->mddev);
3712 }
3713
3714 if (s.handle_bad_blocks)
3715 for (i = disks; i--; ) {
3716 struct md_rdev *rdev;
3717 struct r5dev *dev = &sh->dev[i];
3718 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3719 /* We own a safe reference to the rdev */
3720 rdev = conf->disks[i].rdev;
3721 if (!rdev_set_badblocks(rdev, sh->sector,
3722 STRIPE_SECTORS, 0))
3723 md_error(conf->mddev, rdev);
3724 rdev_dec_pending(rdev, conf->mddev);
3725 }
3726 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3727 rdev = conf->disks[i].rdev;
3728 rdev_clear_badblocks(rdev, sh->sector,
3729 STRIPE_SECTORS, 0);
3730 rdev_dec_pending(rdev, conf->mddev);
3731 }
3732 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3733 rdev = conf->disks[i].replacement;
3734 if (!rdev)
3735 /* rdev have been moved down */
3736 rdev = conf->disks[i].rdev;
3737 rdev_clear_badblocks(rdev, sh->sector,
3738 STRIPE_SECTORS, 0);
3739 rdev_dec_pending(rdev, conf->mddev);
3740 }
3741 }
3742
3743 if (s.ops_request)
3744 raid_run_ops(sh, s.ops_request);
3745
3746 ops_run_io(sh, &s);
3747
3748 if (s.dec_preread_active) {
3749 /* We delay this until after ops_run_io so that if make_request
3750 * is waiting on a flush, it won't continue until the writes
3751 * have actually been submitted.
3752 */
3753 atomic_dec(&conf->preread_active_stripes);
3754 if (atomic_read(&conf->preread_active_stripes) <
3755 IO_THRESHOLD)
3756 md_wakeup_thread(conf->mddev->thread);
3757 }
3758
3759 return_io(s.return_bi);
3760
3761 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3762 }
3763
3764 static void raid5_activate_delayed(struct r5conf *conf)
3765 {
3766 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3767 while (!list_empty(&conf->delayed_list)) {
3768 struct list_head *l = conf->delayed_list.next;
3769 struct stripe_head *sh;
3770 sh = list_entry(l, struct stripe_head, lru);
3771 list_del_init(l);
3772 clear_bit(STRIPE_DELAYED, &sh->state);
3773 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3774 atomic_inc(&conf->preread_active_stripes);
3775 list_add_tail(&sh->lru, &conf->hold_list);
3776 }
3777 }
3778 }
3779
3780 static void activate_bit_delay(struct r5conf *conf)
3781 {
3782 /* device_lock is held */
3783 struct list_head head;
3784 list_add(&head, &conf->bitmap_list);
3785 list_del_init(&conf->bitmap_list);
3786 while (!list_empty(&head)) {
3787 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3788 list_del_init(&sh->lru);
3789 atomic_inc(&sh->count);
3790 __release_stripe(conf, sh);
3791 }
3792 }
3793
3794 int md_raid5_congested(struct mddev *mddev, int bits)
3795 {
3796 struct r5conf *conf = mddev->private;
3797
3798 /* No difference between reads and writes. Just check
3799 * how busy the stripe_cache is
3800 */
3801
3802 if (conf->inactive_blocked)
3803 return 1;
3804 if (conf->quiesce)
3805 return 1;
3806 if (list_empty_careful(&conf->inactive_list))
3807 return 1;
3808
3809 return 0;
3810 }
3811 EXPORT_SYMBOL_GPL(md_raid5_congested);
3812
3813 static int raid5_congested(void *data, int bits)
3814 {
3815 struct mddev *mddev = data;
3816
3817 return mddev_congested(mddev, bits) ||
3818 md_raid5_congested(mddev, bits);
3819 }
3820
3821 /* We want read requests to align with chunks where possible,
3822 * but write requests don't need to.
3823 */
3824 static int raid5_mergeable_bvec(struct request_queue *q,
3825 struct bvec_merge_data *bvm,
3826 struct bio_vec *biovec)
3827 {
3828 struct mddev *mddev = q->queuedata;
3829 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3830 int max;
3831 unsigned int chunk_sectors = mddev->chunk_sectors;
3832 unsigned int bio_sectors = bvm->bi_size >> 9;
3833
3834 if ((bvm->bi_rw & 1) == WRITE)
3835 return biovec->bv_len; /* always allow writes to be mergeable */
3836
3837 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3838 chunk_sectors = mddev->new_chunk_sectors;
3839 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3840 if (max < 0) max = 0;
3841 if (max <= biovec->bv_len && bio_sectors == 0)
3842 return biovec->bv_len;
3843 else
3844 return max;
3845 }
3846
3847
3848 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3849 {
3850 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3851 unsigned int chunk_sectors = mddev->chunk_sectors;
3852 unsigned int bio_sectors = bio->bi_size >> 9;
3853
3854 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3855 chunk_sectors = mddev->new_chunk_sectors;
3856 return chunk_sectors >=
3857 ((sector & (chunk_sectors - 1)) + bio_sectors);
3858 }
3859
3860 /*
3861 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3862 * later sampled by raid5d.
3863 */
3864 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3865 {
3866 unsigned long flags;
3867
3868 spin_lock_irqsave(&conf->device_lock, flags);
3869
3870 bi->bi_next = conf->retry_read_aligned_list;
3871 conf->retry_read_aligned_list = bi;
3872
3873 spin_unlock_irqrestore(&conf->device_lock, flags);
3874 md_wakeup_thread(conf->mddev->thread);
3875 }
3876
3877
3878 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3879 {
3880 struct bio *bi;
3881
3882 bi = conf->retry_read_aligned;
3883 if (bi) {
3884 conf->retry_read_aligned = NULL;
3885 return bi;
3886 }
3887 bi = conf->retry_read_aligned_list;
3888 if(bi) {
3889 conf->retry_read_aligned_list = bi->bi_next;
3890 bi->bi_next = NULL;
3891 /*
3892 * this sets the active strip count to 1 and the processed
3893 * strip count to zero (upper 8 bits)
3894 */
3895 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3896 }
3897
3898 return bi;
3899 }
3900
3901
3902 /*
3903 * The "raid5_align_endio" should check if the read succeeded and if it
3904 * did, call bio_endio on the original bio (having bio_put the new bio
3905 * first).
3906 * If the read failed..
3907 */
3908 static void raid5_align_endio(struct bio *bi, int error)
3909 {
3910 struct bio* raid_bi = bi->bi_private;
3911 struct mddev *mddev;
3912 struct r5conf *conf;
3913 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3914 struct md_rdev *rdev;
3915
3916 bio_put(bi);
3917
3918 rdev = (void*)raid_bi->bi_next;
3919 raid_bi->bi_next = NULL;
3920 mddev = rdev->mddev;
3921 conf = mddev->private;
3922
3923 rdev_dec_pending(rdev, conf->mddev);
3924
3925 if (!error && uptodate) {
3926 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
3927 raid_bi, 0);
3928 bio_endio(raid_bi, 0);
3929 if (atomic_dec_and_test(&conf->active_aligned_reads))
3930 wake_up(&conf->wait_for_stripe);
3931 return;
3932 }
3933
3934
3935 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3936
3937 add_bio_to_retry(raid_bi, conf);
3938 }
3939
3940 static int bio_fits_rdev(struct bio *bi)
3941 {
3942 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3943
3944 if ((bi->bi_size>>9) > queue_max_sectors(q))
3945 return 0;
3946 blk_recount_segments(q, bi);
3947 if (bi->bi_phys_segments > queue_max_segments(q))
3948 return 0;
3949
3950 if (q->merge_bvec_fn)
3951 /* it's too hard to apply the merge_bvec_fn at this stage,
3952 * just just give up
3953 */
3954 return 0;
3955
3956 return 1;
3957 }
3958
3959
3960 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3961 {
3962 struct r5conf *conf = mddev->private;
3963 int dd_idx;
3964 struct bio* align_bi;
3965 struct md_rdev *rdev;
3966 sector_t end_sector;
3967
3968 if (!in_chunk_boundary(mddev, raid_bio)) {
3969 pr_debug("chunk_aligned_read : non aligned\n");
3970 return 0;
3971 }
3972 /*
3973 * use bio_clone_mddev to make a copy of the bio
3974 */
3975 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3976 if (!align_bi)
3977 return 0;
3978 /*
3979 * set bi_end_io to a new function, and set bi_private to the
3980 * original bio.
3981 */
3982 align_bi->bi_end_io = raid5_align_endio;
3983 align_bi->bi_private = raid_bio;
3984 /*
3985 * compute position
3986 */
3987 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3988 0,
3989 &dd_idx, NULL);
3990
3991 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3992 rcu_read_lock();
3993 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3994 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3995 rdev->recovery_offset < end_sector) {
3996 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3997 if (rdev &&
3998 (test_bit(Faulty, &rdev->flags) ||
3999 !(test_bit(In_sync, &rdev->flags) ||
4000 rdev->recovery_offset >= end_sector)))
4001 rdev = NULL;
4002 }
4003 if (rdev) {
4004 sector_t first_bad;
4005 int bad_sectors;
4006
4007 atomic_inc(&rdev->nr_pending);
4008 rcu_read_unlock();
4009 raid_bio->bi_next = (void*)rdev;
4010 align_bi->bi_bdev = rdev->bdev;
4011 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4012
4013 if (!bio_fits_rdev(align_bi) ||
4014 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
4015 &first_bad, &bad_sectors)) {
4016 /* too big in some way, or has a known bad block */
4017 bio_put(align_bi);
4018 rdev_dec_pending(rdev, mddev);
4019 return 0;
4020 }
4021
4022 /* No reshape active, so we can trust rdev->data_offset */
4023 align_bi->bi_sector += rdev->data_offset;
4024
4025 spin_lock_irq(&conf->device_lock);
4026 wait_event_lock_irq(conf->wait_for_stripe,
4027 conf->quiesce == 0,
4028 conf->device_lock);
4029 atomic_inc(&conf->active_aligned_reads);
4030 spin_unlock_irq(&conf->device_lock);
4031
4032 if (mddev->gendisk)
4033 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4034 align_bi, disk_devt(mddev->gendisk),
4035 raid_bio->bi_sector);
4036 generic_make_request(align_bi);
4037 return 1;
4038 } else {
4039 rcu_read_unlock();
4040 bio_put(align_bi);
4041 return 0;
4042 }
4043 }
4044
4045 /* __get_priority_stripe - get the next stripe to process
4046 *
4047 * Full stripe writes are allowed to pass preread active stripes up until
4048 * the bypass_threshold is exceeded. In general the bypass_count
4049 * increments when the handle_list is handled before the hold_list; however, it
4050 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4051 * stripe with in flight i/o. The bypass_count will be reset when the
4052 * head of the hold_list has changed, i.e. the head was promoted to the
4053 * handle_list.
4054 */
4055 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4056 {
4057 struct stripe_head *sh;
4058
4059 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4060 __func__,
4061 list_empty(&conf->handle_list) ? "empty" : "busy",
4062 list_empty(&conf->hold_list) ? "empty" : "busy",
4063 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4064
4065 if (!list_empty(&conf->handle_list)) {
4066 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4067
4068 if (list_empty(&conf->hold_list))
4069 conf->bypass_count = 0;
4070 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4071 if (conf->hold_list.next == conf->last_hold)
4072 conf->bypass_count++;
4073 else {
4074 conf->last_hold = conf->hold_list.next;
4075 conf->bypass_count -= conf->bypass_threshold;
4076 if (conf->bypass_count < 0)
4077 conf->bypass_count = 0;
4078 }
4079 }
4080 } else if (!list_empty(&conf->hold_list) &&
4081 ((conf->bypass_threshold &&
4082 conf->bypass_count > conf->bypass_threshold) ||
4083 atomic_read(&conf->pending_full_writes) == 0)) {
4084 sh = list_entry(conf->hold_list.next,
4085 typeof(*sh), lru);
4086 conf->bypass_count -= conf->bypass_threshold;
4087 if (conf->bypass_count < 0)
4088 conf->bypass_count = 0;
4089 } else
4090 return NULL;
4091
4092 list_del_init(&sh->lru);
4093 atomic_inc(&sh->count);
4094 BUG_ON(atomic_read(&sh->count) != 1);
4095 return sh;
4096 }
4097
4098 struct raid5_plug_cb {
4099 struct blk_plug_cb cb;
4100 struct list_head list;
4101 };
4102
4103 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4104 {
4105 struct raid5_plug_cb *cb = container_of(
4106 blk_cb, struct raid5_plug_cb, cb);
4107 struct stripe_head *sh;
4108 struct mddev *mddev = cb->cb.data;
4109 struct r5conf *conf = mddev->private;
4110 int cnt = 0;
4111
4112 if (cb->list.next && !list_empty(&cb->list)) {
4113 spin_lock_irq(&conf->device_lock);
4114 while (!list_empty(&cb->list)) {
4115 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4116 list_del_init(&sh->lru);
4117 /*
4118 * avoid race release_stripe_plug() sees
4119 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4120 * is still in our list
4121 */
4122 smp_mb__before_clear_bit();
4123 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4124 __release_stripe(conf, sh);
4125 cnt++;
4126 }
4127 spin_unlock_irq(&conf->device_lock);
4128 }
4129 if (mddev->queue)
4130 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4131 kfree(cb);
4132 }
4133
4134 static void release_stripe_plug(struct mddev *mddev,
4135 struct stripe_head *sh)
4136 {
4137 struct blk_plug_cb *blk_cb = blk_check_plugged(
4138 raid5_unplug, mddev,
4139 sizeof(struct raid5_plug_cb));
4140 struct raid5_plug_cb *cb;
4141
4142 if (!blk_cb) {
4143 release_stripe(sh);
4144 return;
4145 }
4146
4147 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4148
4149 if (cb->list.next == NULL)
4150 INIT_LIST_HEAD(&cb->list);
4151
4152 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4153 list_add_tail(&sh->lru, &cb->list);
4154 else
4155 release_stripe(sh);
4156 }
4157
4158 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4159 {
4160 struct r5conf *conf = mddev->private;
4161 sector_t logical_sector, last_sector;
4162 struct stripe_head *sh;
4163 int remaining;
4164 int stripe_sectors;
4165
4166 if (mddev->reshape_position != MaxSector)
4167 /* Skip discard while reshape is happening */
4168 return;
4169
4170 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4171 last_sector = bi->bi_sector + (bi->bi_size>>9);
4172
4173 bi->bi_next = NULL;
4174 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4175
4176 stripe_sectors = conf->chunk_sectors *
4177 (conf->raid_disks - conf->max_degraded);
4178 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4179 stripe_sectors);
4180 sector_div(last_sector, stripe_sectors);
4181
4182 logical_sector *= conf->chunk_sectors;
4183 last_sector *= conf->chunk_sectors;
4184
4185 for (; logical_sector < last_sector;
4186 logical_sector += STRIPE_SECTORS) {
4187 DEFINE_WAIT(w);
4188 int d;
4189 again:
4190 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4191 prepare_to_wait(&conf->wait_for_overlap, &w,
4192 TASK_UNINTERRUPTIBLE);
4193 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4194 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4195 release_stripe(sh);
4196 schedule();
4197 goto again;
4198 }
4199 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4200 spin_lock_irq(&sh->stripe_lock);
4201 for (d = 0; d < conf->raid_disks; d++) {
4202 if (d == sh->pd_idx || d == sh->qd_idx)
4203 continue;
4204 if (sh->dev[d].towrite || sh->dev[d].toread) {
4205 set_bit(R5_Overlap, &sh->dev[d].flags);
4206 spin_unlock_irq(&sh->stripe_lock);
4207 release_stripe(sh);
4208 schedule();
4209 goto again;
4210 }
4211 }
4212 set_bit(STRIPE_DISCARD, &sh->state);
4213 finish_wait(&conf->wait_for_overlap, &w);
4214 for (d = 0; d < conf->raid_disks; d++) {
4215 if (d == sh->pd_idx || d == sh->qd_idx)
4216 continue;
4217 sh->dev[d].towrite = bi;
4218 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4219 raid5_inc_bi_active_stripes(bi);
4220 }
4221 spin_unlock_irq(&sh->stripe_lock);
4222 if (conf->mddev->bitmap) {
4223 for (d = 0;
4224 d < conf->raid_disks - conf->max_degraded;
4225 d++)
4226 bitmap_startwrite(mddev->bitmap,
4227 sh->sector,
4228 STRIPE_SECTORS,
4229 0);
4230 sh->bm_seq = conf->seq_flush + 1;
4231 set_bit(STRIPE_BIT_DELAY, &sh->state);
4232 }
4233
4234 set_bit(STRIPE_HANDLE, &sh->state);
4235 clear_bit(STRIPE_DELAYED, &sh->state);
4236 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4237 atomic_inc(&conf->preread_active_stripes);
4238 release_stripe_plug(mddev, sh);
4239 }
4240
4241 remaining = raid5_dec_bi_active_stripes(bi);
4242 if (remaining == 0) {
4243 md_write_end(mddev);
4244 bio_endio(bi, 0);
4245 }
4246 }
4247
4248 static void make_request(struct mddev *mddev, struct bio * bi)
4249 {
4250 struct r5conf *conf = mddev->private;
4251 int dd_idx;
4252 sector_t new_sector;
4253 sector_t logical_sector, last_sector;
4254 struct stripe_head *sh;
4255 const int rw = bio_data_dir(bi);
4256 int remaining;
4257
4258 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4259 md_flush_request(mddev, bi);
4260 return;
4261 }
4262
4263 md_write_start(mddev, bi);
4264
4265 if (rw == READ &&
4266 mddev->reshape_position == MaxSector &&
4267 chunk_aligned_read(mddev,bi))
4268 return;
4269
4270 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4271 make_discard_request(mddev, bi);
4272 return;
4273 }
4274
4275 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4276 last_sector = bi->bi_sector + (bi->bi_size>>9);
4277 bi->bi_next = NULL;
4278 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4279
4280 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4281 DEFINE_WAIT(w);
4282 int previous;
4283
4284 retry:
4285 previous = 0;
4286 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4287 if (unlikely(conf->reshape_progress != MaxSector)) {
4288 /* spinlock is needed as reshape_progress may be
4289 * 64bit on a 32bit platform, and so it might be
4290 * possible to see a half-updated value
4291 * Of course reshape_progress could change after
4292 * the lock is dropped, so once we get a reference
4293 * to the stripe that we think it is, we will have
4294 * to check again.
4295 */
4296 spin_lock_irq(&conf->device_lock);
4297 if (mddev->reshape_backwards
4298 ? logical_sector < conf->reshape_progress
4299 : logical_sector >= conf->reshape_progress) {
4300 previous = 1;
4301 } else {
4302 if (mddev->reshape_backwards
4303 ? logical_sector < conf->reshape_safe
4304 : logical_sector >= conf->reshape_safe) {
4305 spin_unlock_irq(&conf->device_lock);
4306 schedule();
4307 goto retry;
4308 }
4309 }
4310 spin_unlock_irq(&conf->device_lock);
4311 }
4312
4313 new_sector = raid5_compute_sector(conf, logical_sector,
4314 previous,
4315 &dd_idx, NULL);
4316 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4317 (unsigned long long)new_sector,
4318 (unsigned long long)logical_sector);
4319
4320 sh = get_active_stripe(conf, new_sector, previous,
4321 (bi->bi_rw&RWA_MASK), 0);
4322 if (sh) {
4323 if (unlikely(previous)) {
4324 /* expansion might have moved on while waiting for a
4325 * stripe, so we must do the range check again.
4326 * Expansion could still move past after this
4327 * test, but as we are holding a reference to
4328 * 'sh', we know that if that happens,
4329 * STRIPE_EXPANDING will get set and the expansion
4330 * won't proceed until we finish with the stripe.
4331 */
4332 int must_retry = 0;
4333 spin_lock_irq(&conf->device_lock);
4334 if (mddev->reshape_backwards
4335 ? logical_sector >= conf->reshape_progress
4336 : logical_sector < conf->reshape_progress)
4337 /* mismatch, need to try again */
4338 must_retry = 1;
4339 spin_unlock_irq(&conf->device_lock);
4340 if (must_retry) {
4341 release_stripe(sh);
4342 schedule();
4343 goto retry;
4344 }
4345 }
4346
4347 if (rw == WRITE &&
4348 logical_sector >= mddev->suspend_lo &&
4349 logical_sector < mddev->suspend_hi) {
4350 release_stripe(sh);
4351 /* As the suspend_* range is controlled by
4352 * userspace, we want an interruptible
4353 * wait.
4354 */
4355 flush_signals(current);
4356 prepare_to_wait(&conf->wait_for_overlap,
4357 &w, TASK_INTERRUPTIBLE);
4358 if (logical_sector >= mddev->suspend_lo &&
4359 logical_sector < mddev->suspend_hi)
4360 schedule();
4361 goto retry;
4362 }
4363
4364 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4365 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4366 /* Stripe is busy expanding or
4367 * add failed due to overlap. Flush everything
4368 * and wait a while
4369 */
4370 md_wakeup_thread(mddev->thread);
4371 release_stripe(sh);
4372 schedule();
4373 goto retry;
4374 }
4375 finish_wait(&conf->wait_for_overlap, &w);
4376 set_bit(STRIPE_HANDLE, &sh->state);
4377 clear_bit(STRIPE_DELAYED, &sh->state);
4378 if ((bi->bi_rw & REQ_SYNC) &&
4379 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4380 atomic_inc(&conf->preread_active_stripes);
4381 release_stripe_plug(mddev, sh);
4382 } else {
4383 /* cannot get stripe for read-ahead, just give-up */
4384 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4385 finish_wait(&conf->wait_for_overlap, &w);
4386 break;
4387 }
4388 }
4389
4390 remaining = raid5_dec_bi_active_stripes(bi);
4391 if (remaining == 0) {
4392
4393 if ( rw == WRITE )
4394 md_write_end(mddev);
4395
4396 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4397 bi, 0);
4398 bio_endio(bi, 0);
4399 }
4400 }
4401
4402 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4403
4404 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4405 {
4406 /* reshaping is quite different to recovery/resync so it is
4407 * handled quite separately ... here.
4408 *
4409 * On each call to sync_request, we gather one chunk worth of
4410 * destination stripes and flag them as expanding.
4411 * Then we find all the source stripes and request reads.
4412 * As the reads complete, handle_stripe will copy the data
4413 * into the destination stripe and release that stripe.
4414 */
4415 struct r5conf *conf = mddev->private;
4416 struct stripe_head *sh;
4417 sector_t first_sector, last_sector;
4418 int raid_disks = conf->previous_raid_disks;
4419 int data_disks = raid_disks - conf->max_degraded;
4420 int new_data_disks = conf->raid_disks - conf->max_degraded;
4421 int i;
4422 int dd_idx;
4423 sector_t writepos, readpos, safepos;
4424 sector_t stripe_addr;
4425 int reshape_sectors;
4426 struct list_head stripes;
4427
4428 if (sector_nr == 0) {
4429 /* If restarting in the middle, skip the initial sectors */
4430 if (mddev->reshape_backwards &&
4431 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4432 sector_nr = raid5_size(mddev, 0, 0)
4433 - conf->reshape_progress;
4434 } else if (!mddev->reshape_backwards &&
4435 conf->reshape_progress > 0)
4436 sector_nr = conf->reshape_progress;
4437 sector_div(sector_nr, new_data_disks);
4438 if (sector_nr) {
4439 mddev->curr_resync_completed = sector_nr;
4440 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4441 *skipped = 1;
4442 return sector_nr;
4443 }
4444 }
4445
4446 /* We need to process a full chunk at a time.
4447 * If old and new chunk sizes differ, we need to process the
4448 * largest of these
4449 */
4450 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4451 reshape_sectors = mddev->new_chunk_sectors;
4452 else
4453 reshape_sectors = mddev->chunk_sectors;
4454
4455 /* We update the metadata at least every 10 seconds, or when
4456 * the data about to be copied would over-write the source of
4457 * the data at the front of the range. i.e. one new_stripe
4458 * along from reshape_progress new_maps to after where
4459 * reshape_safe old_maps to
4460 */
4461 writepos = conf->reshape_progress;
4462 sector_div(writepos, new_data_disks);
4463 readpos = conf->reshape_progress;
4464 sector_div(readpos, data_disks);
4465 safepos = conf->reshape_safe;
4466 sector_div(safepos, data_disks);
4467 if (mddev->reshape_backwards) {
4468 writepos -= min_t(sector_t, reshape_sectors, writepos);
4469 readpos += reshape_sectors;
4470 safepos += reshape_sectors;
4471 } else {
4472 writepos += reshape_sectors;
4473 readpos -= min_t(sector_t, reshape_sectors, readpos);
4474 safepos -= min_t(sector_t, reshape_sectors, safepos);
4475 }
4476
4477 /* Having calculated the 'writepos' possibly use it
4478 * to set 'stripe_addr' which is where we will write to.
4479 */
4480 if (mddev->reshape_backwards) {
4481 BUG_ON(conf->reshape_progress == 0);
4482 stripe_addr = writepos;
4483 BUG_ON((mddev->dev_sectors &
4484 ~((sector_t)reshape_sectors - 1))
4485 - reshape_sectors - stripe_addr
4486 != sector_nr);
4487 } else {
4488 BUG_ON(writepos != sector_nr + reshape_sectors);
4489 stripe_addr = sector_nr;
4490 }
4491
4492 /* 'writepos' is the most advanced device address we might write.
4493 * 'readpos' is the least advanced device address we might read.
4494 * 'safepos' is the least address recorded in the metadata as having
4495 * been reshaped.
4496 * If there is a min_offset_diff, these are adjusted either by
4497 * increasing the safepos/readpos if diff is negative, or
4498 * increasing writepos if diff is positive.
4499 * If 'readpos' is then behind 'writepos', there is no way that we can
4500 * ensure safety in the face of a crash - that must be done by userspace
4501 * making a backup of the data. So in that case there is no particular
4502 * rush to update metadata.
4503 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4504 * update the metadata to advance 'safepos' to match 'readpos' so that
4505 * we can be safe in the event of a crash.
4506 * So we insist on updating metadata if safepos is behind writepos and
4507 * readpos is beyond writepos.
4508 * In any case, update the metadata every 10 seconds.
4509 * Maybe that number should be configurable, but I'm not sure it is
4510 * worth it.... maybe it could be a multiple of safemode_delay???
4511 */
4512 if (conf->min_offset_diff < 0) {
4513 safepos += -conf->min_offset_diff;
4514 readpos += -conf->min_offset_diff;
4515 } else
4516 writepos += conf->min_offset_diff;
4517
4518 if ((mddev->reshape_backwards
4519 ? (safepos > writepos && readpos < writepos)
4520 : (safepos < writepos && readpos > writepos)) ||
4521 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4522 /* Cannot proceed until we've updated the superblock... */
4523 wait_event(conf->wait_for_overlap,
4524 atomic_read(&conf->reshape_stripes)==0);
4525 mddev->reshape_position = conf->reshape_progress;
4526 mddev->curr_resync_completed = sector_nr;
4527 conf->reshape_checkpoint = jiffies;
4528 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4529 md_wakeup_thread(mddev->thread);
4530 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4531 kthread_should_stop());
4532 spin_lock_irq(&conf->device_lock);
4533 conf->reshape_safe = mddev->reshape_position;
4534 spin_unlock_irq(&conf->device_lock);
4535 wake_up(&conf->wait_for_overlap);
4536 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4537 }
4538
4539 INIT_LIST_HEAD(&stripes);
4540 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4541 int j;
4542 int skipped_disk = 0;
4543 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4544 set_bit(STRIPE_EXPANDING, &sh->state);
4545 atomic_inc(&conf->reshape_stripes);
4546 /* If any of this stripe is beyond the end of the old
4547 * array, then we need to zero those blocks
4548 */
4549 for (j=sh->disks; j--;) {
4550 sector_t s;
4551 if (j == sh->pd_idx)
4552 continue;
4553 if (conf->level == 6 &&
4554 j == sh->qd_idx)
4555 continue;
4556 s = compute_blocknr(sh, j, 0);
4557 if (s < raid5_size(mddev, 0, 0)) {
4558 skipped_disk = 1;
4559 continue;
4560 }
4561 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4562 set_bit(R5_Expanded, &sh->dev[j].flags);
4563 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4564 }
4565 if (!skipped_disk) {
4566 set_bit(STRIPE_EXPAND_READY, &sh->state);
4567 set_bit(STRIPE_HANDLE, &sh->state);
4568 }
4569 list_add(&sh->lru, &stripes);
4570 }
4571 spin_lock_irq(&conf->device_lock);
4572 if (mddev->reshape_backwards)
4573 conf->reshape_progress -= reshape_sectors * new_data_disks;
4574 else
4575 conf->reshape_progress += reshape_sectors * new_data_disks;
4576 spin_unlock_irq(&conf->device_lock);
4577 /* Ok, those stripe are ready. We can start scheduling
4578 * reads on the source stripes.
4579 * The source stripes are determined by mapping the first and last
4580 * block on the destination stripes.
4581 */
4582 first_sector =
4583 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4584 1, &dd_idx, NULL);
4585 last_sector =
4586 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4587 * new_data_disks - 1),
4588 1, &dd_idx, NULL);
4589 if (last_sector >= mddev->dev_sectors)
4590 last_sector = mddev->dev_sectors - 1;
4591 while (first_sector <= last_sector) {
4592 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4593 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4594 set_bit(STRIPE_HANDLE, &sh->state);
4595 release_stripe(sh);
4596 first_sector += STRIPE_SECTORS;
4597 }
4598 /* Now that the sources are clearly marked, we can release
4599 * the destination stripes
4600 */
4601 while (!list_empty(&stripes)) {
4602 sh = list_entry(stripes.next, struct stripe_head, lru);
4603 list_del_init(&sh->lru);
4604 release_stripe(sh);
4605 }
4606 /* If this takes us to the resync_max point where we have to pause,
4607 * then we need to write out the superblock.
4608 */
4609 sector_nr += reshape_sectors;
4610 if ((sector_nr - mddev->curr_resync_completed) * 2
4611 >= mddev->resync_max - mddev->curr_resync_completed) {
4612 /* Cannot proceed until we've updated the superblock... */
4613 wait_event(conf->wait_for_overlap,
4614 atomic_read(&conf->reshape_stripes) == 0);
4615 mddev->reshape_position = conf->reshape_progress;
4616 mddev->curr_resync_completed = sector_nr;
4617 conf->reshape_checkpoint = jiffies;
4618 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4619 md_wakeup_thread(mddev->thread);
4620 wait_event(mddev->sb_wait,
4621 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4622 || kthread_should_stop());
4623 spin_lock_irq(&conf->device_lock);
4624 conf->reshape_safe = mddev->reshape_position;
4625 spin_unlock_irq(&conf->device_lock);
4626 wake_up(&conf->wait_for_overlap);
4627 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4628 }
4629 return reshape_sectors;
4630 }
4631
4632 /* FIXME go_faster isn't used */
4633 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4634 {
4635 struct r5conf *conf = mddev->private;
4636 struct stripe_head *sh;
4637 sector_t max_sector = mddev->dev_sectors;
4638 sector_t sync_blocks;
4639 int still_degraded = 0;
4640 int i;
4641
4642 if (sector_nr >= max_sector) {
4643 /* just being told to finish up .. nothing much to do */
4644
4645 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4646 end_reshape(conf);
4647 return 0;
4648 }
4649
4650 if (mddev->curr_resync < max_sector) /* aborted */
4651 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4652 &sync_blocks, 1);
4653 else /* completed sync */
4654 conf->fullsync = 0;
4655 bitmap_close_sync(mddev->bitmap);
4656
4657 return 0;
4658 }
4659
4660 /* Allow raid5_quiesce to complete */
4661 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4662
4663 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4664 return reshape_request(mddev, sector_nr, skipped);
4665
4666 /* No need to check resync_max as we never do more than one
4667 * stripe, and as resync_max will always be on a chunk boundary,
4668 * if the check in md_do_sync didn't fire, there is no chance
4669 * of overstepping resync_max here
4670 */
4671
4672 /* if there is too many failed drives and we are trying
4673 * to resync, then assert that we are finished, because there is
4674 * nothing we can do.
4675 */
4676 if (mddev->degraded >= conf->max_degraded &&
4677 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4678 sector_t rv = mddev->dev_sectors - sector_nr;
4679 *skipped = 1;
4680 return rv;
4681 }
4682 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4683 !conf->fullsync &&
4684 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4685 sync_blocks >= STRIPE_SECTORS) {
4686 /* we can skip this block, and probably more */
4687 sync_blocks /= STRIPE_SECTORS;
4688 *skipped = 1;
4689 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4690 }
4691
4692 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4693
4694 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4695 if (sh == NULL) {
4696 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4697 /* make sure we don't swamp the stripe cache if someone else
4698 * is trying to get access
4699 */
4700 schedule_timeout_uninterruptible(1);
4701 }
4702 /* Need to check if array will still be degraded after recovery/resync
4703 * We don't need to check the 'failed' flag as when that gets set,
4704 * recovery aborts.
4705 */
4706 for (i = 0; i < conf->raid_disks; i++)
4707 if (conf->disks[i].rdev == NULL)
4708 still_degraded = 1;
4709
4710 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4711
4712 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4713
4714 handle_stripe(sh);
4715 release_stripe(sh);
4716
4717 return STRIPE_SECTORS;
4718 }
4719
4720 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4721 {
4722 /* We may not be able to submit a whole bio at once as there
4723 * may not be enough stripe_heads available.
4724 * We cannot pre-allocate enough stripe_heads as we may need
4725 * more than exist in the cache (if we allow ever large chunks).
4726 * So we do one stripe head at a time and record in
4727 * ->bi_hw_segments how many have been done.
4728 *
4729 * We *know* that this entire raid_bio is in one chunk, so
4730 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4731 */
4732 struct stripe_head *sh;
4733 int dd_idx;
4734 sector_t sector, logical_sector, last_sector;
4735 int scnt = 0;
4736 int remaining;
4737 int handled = 0;
4738
4739 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4740 sector = raid5_compute_sector(conf, logical_sector,
4741 0, &dd_idx, NULL);
4742 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4743
4744 for (; logical_sector < last_sector;
4745 logical_sector += STRIPE_SECTORS,
4746 sector += STRIPE_SECTORS,
4747 scnt++) {
4748
4749 if (scnt < raid5_bi_processed_stripes(raid_bio))
4750 /* already done this stripe */
4751 continue;
4752
4753 sh = get_active_stripe(conf, sector, 0, 1, 0);
4754
4755 if (!sh) {
4756 /* failed to get a stripe - must wait */
4757 raid5_set_bi_processed_stripes(raid_bio, scnt);
4758 conf->retry_read_aligned = raid_bio;
4759 return handled;
4760 }
4761
4762 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4763 release_stripe(sh);
4764 raid5_set_bi_processed_stripes(raid_bio, scnt);
4765 conf->retry_read_aligned = raid_bio;
4766 return handled;
4767 }
4768
4769 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4770 handle_stripe(sh);
4771 release_stripe(sh);
4772 handled++;
4773 }
4774 remaining = raid5_dec_bi_active_stripes(raid_bio);
4775 if (remaining == 0) {
4776 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4777 raid_bio, 0);
4778 bio_endio(raid_bio, 0);
4779 }
4780 if (atomic_dec_and_test(&conf->active_aligned_reads))
4781 wake_up(&conf->wait_for_stripe);
4782 return handled;
4783 }
4784
4785 #define MAX_STRIPE_BATCH 8
4786 static int handle_active_stripes(struct r5conf *conf)
4787 {
4788 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4789 int i, batch_size = 0;
4790
4791 while (batch_size < MAX_STRIPE_BATCH &&
4792 (sh = __get_priority_stripe(conf)) != NULL)
4793 batch[batch_size++] = sh;
4794
4795 if (batch_size == 0)
4796 return batch_size;
4797 spin_unlock_irq(&conf->device_lock);
4798
4799 for (i = 0; i < batch_size; i++)
4800 handle_stripe(batch[i]);
4801
4802 cond_resched();
4803
4804 spin_lock_irq(&conf->device_lock);
4805 for (i = 0; i < batch_size; i++)
4806 __release_stripe(conf, batch[i]);
4807 return batch_size;
4808 }
4809
4810 /*
4811 * This is our raid5 kernel thread.
4812 *
4813 * We scan the hash table for stripes which can be handled now.
4814 * During the scan, completed stripes are saved for us by the interrupt
4815 * handler, so that they will not have to wait for our next wakeup.
4816 */
4817 static void raid5d(struct md_thread *thread)
4818 {
4819 struct mddev *mddev = thread->mddev;
4820 struct r5conf *conf = mddev->private;
4821 int handled;
4822 struct blk_plug plug;
4823
4824 pr_debug("+++ raid5d active\n");
4825
4826 md_check_recovery(mddev);
4827
4828 blk_start_plug(&plug);
4829 handled = 0;
4830 spin_lock_irq(&conf->device_lock);
4831 while (1) {
4832 struct bio *bio;
4833 int batch_size;
4834
4835 if (
4836 !list_empty(&conf->bitmap_list)) {
4837 /* Now is a good time to flush some bitmap updates */
4838 conf->seq_flush++;
4839 spin_unlock_irq(&conf->device_lock);
4840 bitmap_unplug(mddev->bitmap);
4841 spin_lock_irq(&conf->device_lock);
4842 conf->seq_write = conf->seq_flush;
4843 activate_bit_delay(conf);
4844 }
4845 raid5_activate_delayed(conf);
4846
4847 while ((bio = remove_bio_from_retry(conf))) {
4848 int ok;
4849 spin_unlock_irq(&conf->device_lock);
4850 ok = retry_aligned_read(conf, bio);
4851 spin_lock_irq(&conf->device_lock);
4852 if (!ok)
4853 break;
4854 handled++;
4855 }
4856
4857 batch_size = handle_active_stripes(conf);
4858 if (!batch_size)
4859 break;
4860 handled += batch_size;
4861
4862 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4863 spin_unlock_irq(&conf->device_lock);
4864 md_check_recovery(mddev);
4865 spin_lock_irq(&conf->device_lock);
4866 }
4867 }
4868 pr_debug("%d stripes handled\n", handled);
4869
4870 spin_unlock_irq(&conf->device_lock);
4871
4872 async_tx_issue_pending_all();
4873 blk_finish_plug(&plug);
4874
4875 pr_debug("--- raid5d inactive\n");
4876 }
4877
4878 static ssize_t
4879 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4880 {
4881 struct r5conf *conf = mddev->private;
4882 if (conf)
4883 return sprintf(page, "%d\n", conf->max_nr_stripes);
4884 else
4885 return 0;
4886 }
4887
4888 int
4889 raid5_set_cache_size(struct mddev *mddev, int size)
4890 {
4891 struct r5conf *conf = mddev->private;
4892 int err;
4893
4894 if (size <= 16 || size > 32768)
4895 return -EINVAL;
4896 while (size < conf->max_nr_stripes) {
4897 if (drop_one_stripe(conf))
4898 conf->max_nr_stripes--;
4899 else
4900 break;
4901 }
4902 err = md_allow_write(mddev);
4903 if (err)
4904 return err;
4905 while (size > conf->max_nr_stripes) {
4906 if (grow_one_stripe(conf))
4907 conf->max_nr_stripes++;
4908 else break;
4909 }
4910 return 0;
4911 }
4912 EXPORT_SYMBOL(raid5_set_cache_size);
4913
4914 static ssize_t
4915 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4916 {
4917 struct r5conf *conf = mddev->private;
4918 unsigned long new;
4919 int err;
4920
4921 if (len >= PAGE_SIZE)
4922 return -EINVAL;
4923 if (!conf)
4924 return -ENODEV;
4925
4926 if (strict_strtoul(page, 10, &new))
4927 return -EINVAL;
4928 err = raid5_set_cache_size(mddev, new);
4929 if (err)
4930 return err;
4931 return len;
4932 }
4933
4934 static struct md_sysfs_entry
4935 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4936 raid5_show_stripe_cache_size,
4937 raid5_store_stripe_cache_size);
4938
4939 static ssize_t
4940 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4941 {
4942 struct r5conf *conf = mddev->private;
4943 if (conf)
4944 return sprintf(page, "%d\n", conf->bypass_threshold);
4945 else
4946 return 0;
4947 }
4948
4949 static ssize_t
4950 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4951 {
4952 struct r5conf *conf = mddev->private;
4953 unsigned long new;
4954 if (len >= PAGE_SIZE)
4955 return -EINVAL;
4956 if (!conf)
4957 return -ENODEV;
4958
4959 if (strict_strtoul(page, 10, &new))
4960 return -EINVAL;
4961 if (new > conf->max_nr_stripes)
4962 return -EINVAL;
4963 conf->bypass_threshold = new;
4964 return len;
4965 }
4966
4967 static struct md_sysfs_entry
4968 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4969 S_IRUGO | S_IWUSR,
4970 raid5_show_preread_threshold,
4971 raid5_store_preread_threshold);
4972
4973 static ssize_t
4974 stripe_cache_active_show(struct mddev *mddev, char *page)
4975 {
4976 struct r5conf *conf = mddev->private;
4977 if (conf)
4978 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4979 else
4980 return 0;
4981 }
4982
4983 static struct md_sysfs_entry
4984 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4985
4986 static struct attribute *raid5_attrs[] = {
4987 &raid5_stripecache_size.attr,
4988 &raid5_stripecache_active.attr,
4989 &raid5_preread_bypass_threshold.attr,
4990 NULL,
4991 };
4992 static struct attribute_group raid5_attrs_group = {
4993 .name = NULL,
4994 .attrs = raid5_attrs,
4995 };
4996
4997 static sector_t
4998 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4999 {
5000 struct r5conf *conf = mddev->private;
5001
5002 if (!sectors)
5003 sectors = mddev->dev_sectors;
5004 if (!raid_disks)
5005 /* size is defined by the smallest of previous and new size */
5006 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5007
5008 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5009 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5010 return sectors * (raid_disks - conf->max_degraded);
5011 }
5012
5013 static void raid5_free_percpu(struct r5conf *conf)
5014 {
5015 struct raid5_percpu *percpu;
5016 unsigned long cpu;
5017
5018 if (!conf->percpu)
5019 return;
5020
5021 get_online_cpus();
5022 for_each_possible_cpu(cpu) {
5023 percpu = per_cpu_ptr(conf->percpu, cpu);
5024 safe_put_page(percpu->spare_page);
5025 kfree(percpu->scribble);
5026 }
5027 #ifdef CONFIG_HOTPLUG_CPU
5028 unregister_cpu_notifier(&conf->cpu_notify);
5029 #endif
5030 put_online_cpus();
5031
5032 free_percpu(conf->percpu);
5033 }
5034
5035 static void free_conf(struct r5conf *conf)
5036 {
5037 shrink_stripes(conf);
5038 raid5_free_percpu(conf);
5039 kfree(conf->disks);
5040 kfree(conf->stripe_hashtbl);
5041 kfree(conf);
5042 }
5043
5044 #ifdef CONFIG_HOTPLUG_CPU
5045 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5046 void *hcpu)
5047 {
5048 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5049 long cpu = (long)hcpu;
5050 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5051
5052 switch (action) {
5053 case CPU_UP_PREPARE:
5054 case CPU_UP_PREPARE_FROZEN:
5055 if (conf->level == 6 && !percpu->spare_page)
5056 percpu->spare_page = alloc_page(GFP_KERNEL);
5057 if (!percpu->scribble)
5058 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5059
5060 if (!percpu->scribble ||
5061 (conf->level == 6 && !percpu->spare_page)) {
5062 safe_put_page(percpu->spare_page);
5063 kfree(percpu->scribble);
5064 pr_err("%s: failed memory allocation for cpu%ld\n",
5065 __func__, cpu);
5066 return notifier_from_errno(-ENOMEM);
5067 }
5068 break;
5069 case CPU_DEAD:
5070 case CPU_DEAD_FROZEN:
5071 safe_put_page(percpu->spare_page);
5072 kfree(percpu->scribble);
5073 percpu->spare_page = NULL;
5074 percpu->scribble = NULL;
5075 break;
5076 default:
5077 break;
5078 }
5079 return NOTIFY_OK;
5080 }
5081 #endif
5082
5083 static int raid5_alloc_percpu(struct r5conf *conf)
5084 {
5085 unsigned long cpu;
5086 struct page *spare_page;
5087 struct raid5_percpu __percpu *allcpus;
5088 void *scribble;
5089 int err;
5090
5091 allcpus = alloc_percpu(struct raid5_percpu);
5092 if (!allcpus)
5093 return -ENOMEM;
5094 conf->percpu = allcpus;
5095
5096 get_online_cpus();
5097 err = 0;
5098 for_each_present_cpu(cpu) {
5099 if (conf->level == 6) {
5100 spare_page = alloc_page(GFP_KERNEL);
5101 if (!spare_page) {
5102 err = -ENOMEM;
5103 break;
5104 }
5105 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5106 }
5107 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5108 if (!scribble) {
5109 err = -ENOMEM;
5110 break;
5111 }
5112 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5113 }
5114 #ifdef CONFIG_HOTPLUG_CPU
5115 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5116 conf->cpu_notify.priority = 0;
5117 if (err == 0)
5118 err = register_cpu_notifier(&conf->cpu_notify);
5119 #endif
5120 put_online_cpus();
5121
5122 return err;
5123 }
5124
5125 static struct r5conf *setup_conf(struct mddev *mddev)
5126 {
5127 struct r5conf *conf;
5128 int raid_disk, memory, max_disks;
5129 struct md_rdev *rdev;
5130 struct disk_info *disk;
5131 char pers_name[6];
5132
5133 if (mddev->new_level != 5
5134 && mddev->new_level != 4
5135 && mddev->new_level != 6) {
5136 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5137 mdname(mddev), mddev->new_level);
5138 return ERR_PTR(-EIO);
5139 }
5140 if ((mddev->new_level == 5
5141 && !algorithm_valid_raid5(mddev->new_layout)) ||
5142 (mddev->new_level == 6
5143 && !algorithm_valid_raid6(mddev->new_layout))) {
5144 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5145 mdname(mddev), mddev->new_layout);
5146 return ERR_PTR(-EIO);
5147 }
5148 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5149 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5150 mdname(mddev), mddev->raid_disks);
5151 return ERR_PTR(-EINVAL);
5152 }
5153
5154 if (!mddev->new_chunk_sectors ||
5155 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5156 !is_power_of_2(mddev->new_chunk_sectors)) {
5157 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5158 mdname(mddev), mddev->new_chunk_sectors << 9);
5159 return ERR_PTR(-EINVAL);
5160 }
5161
5162 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5163 if (conf == NULL)
5164 goto abort;
5165 spin_lock_init(&conf->device_lock);
5166 init_waitqueue_head(&conf->wait_for_stripe);
5167 init_waitqueue_head(&conf->wait_for_overlap);
5168 INIT_LIST_HEAD(&conf->handle_list);
5169 INIT_LIST_HEAD(&conf->hold_list);
5170 INIT_LIST_HEAD(&conf->delayed_list);
5171 INIT_LIST_HEAD(&conf->bitmap_list);
5172 INIT_LIST_HEAD(&conf->inactive_list);
5173 atomic_set(&conf->active_stripes, 0);
5174 atomic_set(&conf->preread_active_stripes, 0);
5175 atomic_set(&conf->active_aligned_reads, 0);
5176 conf->bypass_threshold = BYPASS_THRESHOLD;
5177 conf->recovery_disabled = mddev->recovery_disabled - 1;
5178
5179 conf->raid_disks = mddev->raid_disks;
5180 if (mddev->reshape_position == MaxSector)
5181 conf->previous_raid_disks = mddev->raid_disks;
5182 else
5183 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5184 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5185 conf->scribble_len = scribble_len(max_disks);
5186
5187 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5188 GFP_KERNEL);
5189 if (!conf->disks)
5190 goto abort;
5191
5192 conf->mddev = mddev;
5193
5194 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5195 goto abort;
5196
5197 conf->level = mddev->new_level;
5198 if (raid5_alloc_percpu(conf) != 0)
5199 goto abort;
5200
5201 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5202
5203 rdev_for_each(rdev, mddev) {
5204 raid_disk = rdev->raid_disk;
5205 if (raid_disk >= max_disks
5206 || raid_disk < 0)
5207 continue;
5208 disk = conf->disks + raid_disk;
5209
5210 if (test_bit(Replacement, &rdev->flags)) {
5211 if (disk->replacement)
5212 goto abort;
5213 disk->replacement = rdev;
5214 } else {
5215 if (disk->rdev)
5216 goto abort;
5217 disk->rdev = rdev;
5218 }
5219
5220 if (test_bit(In_sync, &rdev->flags)) {
5221 char b[BDEVNAME_SIZE];
5222 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5223 " disk %d\n",
5224 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5225 } else if (rdev->saved_raid_disk != raid_disk)
5226 /* Cannot rely on bitmap to complete recovery */
5227 conf->fullsync = 1;
5228 }
5229
5230 conf->chunk_sectors = mddev->new_chunk_sectors;
5231 conf->level = mddev->new_level;
5232 if (conf->level == 6)
5233 conf->max_degraded = 2;
5234 else
5235 conf->max_degraded = 1;
5236 conf->algorithm = mddev->new_layout;
5237 conf->max_nr_stripes = NR_STRIPES;
5238 conf->reshape_progress = mddev->reshape_position;
5239 if (conf->reshape_progress != MaxSector) {
5240 conf->prev_chunk_sectors = mddev->chunk_sectors;
5241 conf->prev_algo = mddev->layout;
5242 }
5243
5244 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5245 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5246 if (grow_stripes(conf, conf->max_nr_stripes)) {
5247 printk(KERN_ERR
5248 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5249 mdname(mddev), memory);
5250 goto abort;
5251 } else
5252 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5253 mdname(mddev), memory);
5254
5255 sprintf(pers_name, "raid%d", mddev->new_level);
5256 conf->thread = md_register_thread(raid5d, mddev, pers_name);
5257 if (!conf->thread) {
5258 printk(KERN_ERR
5259 "md/raid:%s: couldn't allocate thread.\n",
5260 mdname(mddev));
5261 goto abort;
5262 }
5263
5264 return conf;
5265
5266 abort:
5267 if (conf) {
5268 free_conf(conf);
5269 return ERR_PTR(-EIO);
5270 } else
5271 return ERR_PTR(-ENOMEM);
5272 }
5273
5274
5275 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5276 {
5277 switch (algo) {
5278 case ALGORITHM_PARITY_0:
5279 if (raid_disk < max_degraded)
5280 return 1;
5281 break;
5282 case ALGORITHM_PARITY_N:
5283 if (raid_disk >= raid_disks - max_degraded)
5284 return 1;
5285 break;
5286 case ALGORITHM_PARITY_0_6:
5287 if (raid_disk == 0 ||
5288 raid_disk == raid_disks - 1)
5289 return 1;
5290 break;
5291 case ALGORITHM_LEFT_ASYMMETRIC_6:
5292 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5293 case ALGORITHM_LEFT_SYMMETRIC_6:
5294 case ALGORITHM_RIGHT_SYMMETRIC_6:
5295 if (raid_disk == raid_disks - 1)
5296 return 1;
5297 }
5298 return 0;
5299 }
5300
5301 static int run(struct mddev *mddev)
5302 {
5303 struct r5conf *conf;
5304 int working_disks = 0;
5305 int dirty_parity_disks = 0;
5306 struct md_rdev *rdev;
5307 sector_t reshape_offset = 0;
5308 int i;
5309 long long min_offset_diff = 0;
5310 int first = 1;
5311
5312 if (mddev->recovery_cp != MaxSector)
5313 printk(KERN_NOTICE "md/raid:%s: not clean"
5314 " -- starting background reconstruction\n",
5315 mdname(mddev));
5316
5317 rdev_for_each(rdev, mddev) {
5318 long long diff;
5319 if (rdev->raid_disk < 0)
5320 continue;
5321 diff = (rdev->new_data_offset - rdev->data_offset);
5322 if (first) {
5323 min_offset_diff = diff;
5324 first = 0;
5325 } else if (mddev->reshape_backwards &&
5326 diff < min_offset_diff)
5327 min_offset_diff = diff;
5328 else if (!mddev->reshape_backwards &&
5329 diff > min_offset_diff)
5330 min_offset_diff = diff;
5331 }
5332
5333 if (mddev->reshape_position != MaxSector) {
5334 /* Check that we can continue the reshape.
5335 * Difficulties arise if the stripe we would write to
5336 * next is at or after the stripe we would read from next.
5337 * For a reshape that changes the number of devices, this
5338 * is only possible for a very short time, and mdadm makes
5339 * sure that time appears to have past before assembling
5340 * the array. So we fail if that time hasn't passed.
5341 * For a reshape that keeps the number of devices the same
5342 * mdadm must be monitoring the reshape can keeping the
5343 * critical areas read-only and backed up. It will start
5344 * the array in read-only mode, so we check for that.
5345 */
5346 sector_t here_new, here_old;
5347 int old_disks;
5348 int max_degraded = (mddev->level == 6 ? 2 : 1);
5349
5350 if (mddev->new_level != mddev->level) {
5351 printk(KERN_ERR "md/raid:%s: unsupported reshape "
5352 "required - aborting.\n",
5353 mdname(mddev));
5354 return -EINVAL;
5355 }
5356 old_disks = mddev->raid_disks - mddev->delta_disks;
5357 /* reshape_position must be on a new-stripe boundary, and one
5358 * further up in new geometry must map after here in old
5359 * geometry.
5360 */
5361 here_new = mddev->reshape_position;
5362 if (sector_div(here_new, mddev->new_chunk_sectors *
5363 (mddev->raid_disks - max_degraded))) {
5364 printk(KERN_ERR "md/raid:%s: reshape_position not "
5365 "on a stripe boundary\n", mdname(mddev));
5366 return -EINVAL;
5367 }
5368 reshape_offset = here_new * mddev->new_chunk_sectors;
5369 /* here_new is the stripe we will write to */
5370 here_old = mddev->reshape_position;
5371 sector_div(here_old, mddev->chunk_sectors *
5372 (old_disks-max_degraded));
5373 /* here_old is the first stripe that we might need to read
5374 * from */
5375 if (mddev->delta_disks == 0) {
5376 if ((here_new * mddev->new_chunk_sectors !=
5377 here_old * mddev->chunk_sectors)) {
5378 printk(KERN_ERR "md/raid:%s: reshape position is"
5379 " confused - aborting\n", mdname(mddev));
5380 return -EINVAL;
5381 }
5382 /* We cannot be sure it is safe to start an in-place
5383 * reshape. It is only safe if user-space is monitoring
5384 * and taking constant backups.
5385 * mdadm always starts a situation like this in
5386 * readonly mode so it can take control before
5387 * allowing any writes. So just check for that.
5388 */
5389 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5390 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5391 /* not really in-place - so OK */;
5392 else if (mddev->ro == 0) {
5393 printk(KERN_ERR "md/raid:%s: in-place reshape "
5394 "must be started in read-only mode "
5395 "- aborting\n",
5396 mdname(mddev));
5397 return -EINVAL;
5398 }
5399 } else if (mddev->reshape_backwards
5400 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5401 here_old * mddev->chunk_sectors)
5402 : (here_new * mddev->new_chunk_sectors >=
5403 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5404 /* Reading from the same stripe as writing to - bad */
5405 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5406 "auto-recovery - aborting.\n",
5407 mdname(mddev));
5408 return -EINVAL;
5409 }
5410 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5411 mdname(mddev));
5412 /* OK, we should be able to continue; */
5413 } else {
5414 BUG_ON(mddev->level != mddev->new_level);
5415 BUG_ON(mddev->layout != mddev->new_layout);
5416 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5417 BUG_ON(mddev->delta_disks != 0);
5418 }
5419
5420 if (mddev->private == NULL)
5421 conf = setup_conf(mddev);
5422 else
5423 conf = mddev->private;
5424
5425 if (IS_ERR(conf))
5426 return PTR_ERR(conf);
5427
5428 conf->min_offset_diff = min_offset_diff;
5429 mddev->thread = conf->thread;
5430 conf->thread = NULL;
5431 mddev->private = conf;
5432
5433 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5434 i++) {
5435 rdev = conf->disks[i].rdev;
5436 if (!rdev && conf->disks[i].replacement) {
5437 /* The replacement is all we have yet */
5438 rdev = conf->disks[i].replacement;
5439 conf->disks[i].replacement = NULL;
5440 clear_bit(Replacement, &rdev->flags);
5441 conf->disks[i].rdev = rdev;
5442 }
5443 if (!rdev)
5444 continue;
5445 if (conf->disks[i].replacement &&
5446 conf->reshape_progress != MaxSector) {
5447 /* replacements and reshape simply do not mix. */
5448 printk(KERN_ERR "md: cannot handle concurrent "
5449 "replacement and reshape.\n");
5450 goto abort;
5451 }
5452 if (test_bit(In_sync, &rdev->flags)) {
5453 working_disks++;
5454 continue;
5455 }
5456 /* This disc is not fully in-sync. However if it
5457 * just stored parity (beyond the recovery_offset),
5458 * when we don't need to be concerned about the
5459 * array being dirty.
5460 * When reshape goes 'backwards', we never have
5461 * partially completed devices, so we only need
5462 * to worry about reshape going forwards.
5463 */
5464 /* Hack because v0.91 doesn't store recovery_offset properly. */
5465 if (mddev->major_version == 0 &&
5466 mddev->minor_version > 90)
5467 rdev->recovery_offset = reshape_offset;
5468
5469 if (rdev->recovery_offset < reshape_offset) {
5470 /* We need to check old and new layout */
5471 if (!only_parity(rdev->raid_disk,
5472 conf->algorithm,
5473 conf->raid_disks,
5474 conf->max_degraded))
5475 continue;
5476 }
5477 if (!only_parity(rdev->raid_disk,
5478 conf->prev_algo,
5479 conf->previous_raid_disks,
5480 conf->max_degraded))
5481 continue;
5482 dirty_parity_disks++;
5483 }
5484
5485 /*
5486 * 0 for a fully functional array, 1 or 2 for a degraded array.
5487 */
5488 mddev->degraded = calc_degraded(conf);
5489
5490 if (has_failed(conf)) {
5491 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5492 " (%d/%d failed)\n",
5493 mdname(mddev), mddev->degraded, conf->raid_disks);
5494 goto abort;
5495 }
5496
5497 /* device size must be a multiple of chunk size */
5498 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5499 mddev->resync_max_sectors = mddev->dev_sectors;
5500
5501 if (mddev->degraded > dirty_parity_disks &&
5502 mddev->recovery_cp != MaxSector) {
5503 if (mddev->ok_start_degraded)
5504 printk(KERN_WARNING
5505 "md/raid:%s: starting dirty degraded array"
5506 " - data corruption possible.\n",
5507 mdname(mddev));
5508 else {
5509 printk(KERN_ERR
5510 "md/raid:%s: cannot start dirty degraded array.\n",
5511 mdname(mddev));
5512 goto abort;
5513 }
5514 }
5515
5516 if (mddev->degraded == 0)
5517 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5518 " devices, algorithm %d\n", mdname(mddev), conf->level,
5519 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5520 mddev->new_layout);
5521 else
5522 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5523 " out of %d devices, algorithm %d\n",
5524 mdname(mddev), conf->level,
5525 mddev->raid_disks - mddev->degraded,
5526 mddev->raid_disks, mddev->new_layout);
5527
5528 print_raid5_conf(conf);
5529
5530 if (conf->reshape_progress != MaxSector) {
5531 conf->reshape_safe = conf->reshape_progress;
5532 atomic_set(&conf->reshape_stripes, 0);
5533 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5534 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5535 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5536 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5537 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5538 "reshape");
5539 }
5540
5541
5542 /* Ok, everything is just fine now */
5543 if (mddev->to_remove == &raid5_attrs_group)
5544 mddev->to_remove = NULL;
5545 else if (mddev->kobj.sd &&
5546 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5547 printk(KERN_WARNING
5548 "raid5: failed to create sysfs attributes for %s\n",
5549 mdname(mddev));
5550 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5551
5552 if (mddev->queue) {
5553 int chunk_size;
5554 bool discard_supported = true;
5555 /* read-ahead size must cover two whole stripes, which
5556 * is 2 * (datadisks) * chunksize where 'n' is the
5557 * number of raid devices
5558 */
5559 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5560 int stripe = data_disks *
5561 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5562 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5563 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5564
5565 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5566
5567 mddev->queue->backing_dev_info.congested_data = mddev;
5568 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5569
5570 chunk_size = mddev->chunk_sectors << 9;
5571 blk_queue_io_min(mddev->queue, chunk_size);
5572 blk_queue_io_opt(mddev->queue, chunk_size *
5573 (conf->raid_disks - conf->max_degraded));
5574 /*
5575 * We can only discard a whole stripe. It doesn't make sense to
5576 * discard data disk but write parity disk
5577 */
5578 stripe = stripe * PAGE_SIZE;
5579 /* Round up to power of 2, as discard handling
5580 * currently assumes that */
5581 while ((stripe-1) & stripe)
5582 stripe = (stripe | (stripe-1)) + 1;
5583 mddev->queue->limits.discard_alignment = stripe;
5584 mddev->queue->limits.discard_granularity = stripe;
5585 /*
5586 * unaligned part of discard request will be ignored, so can't
5587 * guarantee discard_zerors_data
5588 */
5589 mddev->queue->limits.discard_zeroes_data = 0;
5590
5591 blk_queue_max_write_same_sectors(mddev->queue, 0);
5592
5593 rdev_for_each(rdev, mddev) {
5594 disk_stack_limits(mddev->gendisk, rdev->bdev,
5595 rdev->data_offset << 9);
5596 disk_stack_limits(mddev->gendisk, rdev->bdev,
5597 rdev->new_data_offset << 9);
5598 /*
5599 * discard_zeroes_data is required, otherwise data
5600 * could be lost. Consider a scenario: discard a stripe
5601 * (the stripe could be inconsistent if
5602 * discard_zeroes_data is 0); write one disk of the
5603 * stripe (the stripe could be inconsistent again
5604 * depending on which disks are used to calculate
5605 * parity); the disk is broken; The stripe data of this
5606 * disk is lost.
5607 */
5608 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5609 !bdev_get_queue(rdev->bdev)->
5610 limits.discard_zeroes_data)
5611 discard_supported = false;
5612 }
5613
5614 if (discard_supported &&
5615 mddev->queue->limits.max_discard_sectors >= stripe &&
5616 mddev->queue->limits.discard_granularity >= stripe)
5617 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5618 mddev->queue);
5619 else
5620 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5621 mddev->queue);
5622 }
5623
5624 return 0;
5625 abort:
5626 md_unregister_thread(&mddev->thread);
5627 print_raid5_conf(conf);
5628 free_conf(conf);
5629 mddev->private = NULL;
5630 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5631 return -EIO;
5632 }
5633
5634 static int stop(struct mddev *mddev)
5635 {
5636 struct r5conf *conf = mddev->private;
5637
5638 md_unregister_thread(&mddev->thread);
5639 if (mddev->queue)
5640 mddev->queue->backing_dev_info.congested_fn = NULL;
5641 free_conf(conf);
5642 mddev->private = NULL;
5643 mddev->to_remove = &raid5_attrs_group;
5644 return 0;
5645 }
5646
5647 static void status(struct seq_file *seq, struct mddev *mddev)
5648 {
5649 struct r5conf *conf = mddev->private;
5650 int i;
5651
5652 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5653 mddev->chunk_sectors / 2, mddev->layout);
5654 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5655 for (i = 0; i < conf->raid_disks; i++)
5656 seq_printf (seq, "%s",
5657 conf->disks[i].rdev &&
5658 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5659 seq_printf (seq, "]");
5660 }
5661
5662 static void print_raid5_conf (struct r5conf *conf)
5663 {
5664 int i;
5665 struct disk_info *tmp;
5666
5667 printk(KERN_DEBUG "RAID conf printout:\n");
5668 if (!conf) {
5669 printk("(conf==NULL)\n");
5670 return;
5671 }
5672 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5673 conf->raid_disks,
5674 conf->raid_disks - conf->mddev->degraded);
5675
5676 for (i = 0; i < conf->raid_disks; i++) {
5677 char b[BDEVNAME_SIZE];
5678 tmp = conf->disks + i;
5679 if (tmp->rdev)
5680 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5681 i, !test_bit(Faulty, &tmp->rdev->flags),
5682 bdevname(tmp->rdev->bdev, b));
5683 }
5684 }
5685
5686 static int raid5_spare_active(struct mddev *mddev)
5687 {
5688 int i;
5689 struct r5conf *conf = mddev->private;
5690 struct disk_info *tmp;
5691 int count = 0;
5692 unsigned long flags;
5693
5694 for (i = 0; i < conf->raid_disks; i++) {
5695 tmp = conf->disks + i;
5696 if (tmp->replacement
5697 && tmp->replacement->recovery_offset == MaxSector
5698 && !test_bit(Faulty, &tmp->replacement->flags)
5699 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5700 /* Replacement has just become active. */
5701 if (!tmp->rdev
5702 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5703 count++;
5704 if (tmp->rdev) {
5705 /* Replaced device not technically faulty,
5706 * but we need to be sure it gets removed
5707 * and never re-added.
5708 */
5709 set_bit(Faulty, &tmp->rdev->flags);
5710 sysfs_notify_dirent_safe(
5711 tmp->rdev->sysfs_state);
5712 }
5713 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5714 } else if (tmp->rdev
5715 && tmp->rdev->recovery_offset == MaxSector
5716 && !test_bit(Faulty, &tmp->rdev->flags)
5717 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5718 count++;
5719 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5720 }
5721 }
5722 spin_lock_irqsave(&conf->device_lock, flags);
5723 mddev->degraded = calc_degraded(conf);
5724 spin_unlock_irqrestore(&conf->device_lock, flags);
5725 print_raid5_conf(conf);
5726 return count;
5727 }
5728
5729 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5730 {
5731 struct r5conf *conf = mddev->private;
5732 int err = 0;
5733 int number = rdev->raid_disk;
5734 struct md_rdev **rdevp;
5735 struct disk_info *p = conf->disks + number;
5736
5737 print_raid5_conf(conf);
5738 if (rdev == p->rdev)
5739 rdevp = &p->rdev;
5740 else if (rdev == p->replacement)
5741 rdevp = &p->replacement;
5742 else
5743 return 0;
5744
5745 if (number >= conf->raid_disks &&
5746 conf->reshape_progress == MaxSector)
5747 clear_bit(In_sync, &rdev->flags);
5748
5749 if (test_bit(In_sync, &rdev->flags) ||
5750 atomic_read(&rdev->nr_pending)) {
5751 err = -EBUSY;
5752 goto abort;
5753 }
5754 /* Only remove non-faulty devices if recovery
5755 * isn't possible.
5756 */
5757 if (!test_bit(Faulty, &rdev->flags) &&
5758 mddev->recovery_disabled != conf->recovery_disabled &&
5759 !has_failed(conf) &&
5760 (!p->replacement || p->replacement == rdev) &&
5761 number < conf->raid_disks) {
5762 err = -EBUSY;
5763 goto abort;
5764 }
5765 *rdevp = NULL;
5766 synchronize_rcu();
5767 if (atomic_read(&rdev->nr_pending)) {
5768 /* lost the race, try later */
5769 err = -EBUSY;
5770 *rdevp = rdev;
5771 } else if (p->replacement) {
5772 /* We must have just cleared 'rdev' */
5773 p->rdev = p->replacement;
5774 clear_bit(Replacement, &p->replacement->flags);
5775 smp_mb(); /* Make sure other CPUs may see both as identical
5776 * but will never see neither - if they are careful
5777 */
5778 p->replacement = NULL;
5779 clear_bit(WantReplacement, &rdev->flags);
5780 } else
5781 /* We might have just removed the Replacement as faulty-
5782 * clear the bit just in case
5783 */
5784 clear_bit(WantReplacement, &rdev->flags);
5785 abort:
5786
5787 print_raid5_conf(conf);
5788 return err;
5789 }
5790
5791 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5792 {
5793 struct r5conf *conf = mddev->private;
5794 int err = -EEXIST;
5795 int disk;
5796 struct disk_info *p;
5797 int first = 0;
5798 int last = conf->raid_disks - 1;
5799
5800 if (mddev->recovery_disabled == conf->recovery_disabled)
5801 return -EBUSY;
5802
5803 if (rdev->saved_raid_disk < 0 && has_failed(conf))
5804 /* no point adding a device */
5805 return -EINVAL;
5806
5807 if (rdev->raid_disk >= 0)
5808 first = last = rdev->raid_disk;
5809
5810 /*
5811 * find the disk ... but prefer rdev->saved_raid_disk
5812 * if possible.
5813 */
5814 if (rdev->saved_raid_disk >= 0 &&
5815 rdev->saved_raid_disk >= first &&
5816 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5817 first = rdev->saved_raid_disk;
5818
5819 for (disk = first; disk <= last; disk++) {
5820 p = conf->disks + disk;
5821 if (p->rdev == NULL) {
5822 clear_bit(In_sync, &rdev->flags);
5823 rdev->raid_disk = disk;
5824 err = 0;
5825 if (rdev->saved_raid_disk != disk)
5826 conf->fullsync = 1;
5827 rcu_assign_pointer(p->rdev, rdev);
5828 goto out;
5829 }
5830 }
5831 for (disk = first; disk <= last; disk++) {
5832 p = conf->disks + disk;
5833 if (test_bit(WantReplacement, &p->rdev->flags) &&
5834 p->replacement == NULL) {
5835 clear_bit(In_sync, &rdev->flags);
5836 set_bit(Replacement, &rdev->flags);
5837 rdev->raid_disk = disk;
5838 err = 0;
5839 conf->fullsync = 1;
5840 rcu_assign_pointer(p->replacement, rdev);
5841 break;
5842 }
5843 }
5844 out:
5845 print_raid5_conf(conf);
5846 return err;
5847 }
5848
5849 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5850 {
5851 /* no resync is happening, and there is enough space
5852 * on all devices, so we can resize.
5853 * We need to make sure resync covers any new space.
5854 * If the array is shrinking we should possibly wait until
5855 * any io in the removed space completes, but it hardly seems
5856 * worth it.
5857 */
5858 sector_t newsize;
5859 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5860 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5861 if (mddev->external_size &&
5862 mddev->array_sectors > newsize)
5863 return -EINVAL;
5864 if (mddev->bitmap) {
5865 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5866 if (ret)
5867 return ret;
5868 }
5869 md_set_array_sectors(mddev, newsize);
5870 set_capacity(mddev->gendisk, mddev->array_sectors);
5871 revalidate_disk(mddev->gendisk);
5872 if (sectors > mddev->dev_sectors &&
5873 mddev->recovery_cp > mddev->dev_sectors) {
5874 mddev->recovery_cp = mddev->dev_sectors;
5875 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5876 }
5877 mddev->dev_sectors = sectors;
5878 mddev->resync_max_sectors = sectors;
5879 return 0;
5880 }
5881
5882 static int check_stripe_cache(struct mddev *mddev)
5883 {
5884 /* Can only proceed if there are plenty of stripe_heads.
5885 * We need a minimum of one full stripe,, and for sensible progress
5886 * it is best to have about 4 times that.
5887 * If we require 4 times, then the default 256 4K stripe_heads will
5888 * allow for chunk sizes up to 256K, which is probably OK.
5889 * If the chunk size is greater, user-space should request more
5890 * stripe_heads first.
5891 */
5892 struct r5conf *conf = mddev->private;
5893 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5894 > conf->max_nr_stripes ||
5895 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5896 > conf->max_nr_stripes) {
5897 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5898 mdname(mddev),
5899 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5900 / STRIPE_SIZE)*4);
5901 return 0;
5902 }
5903 return 1;
5904 }
5905
5906 static int check_reshape(struct mddev *mddev)
5907 {
5908 struct r5conf *conf = mddev->private;
5909
5910 if (mddev->delta_disks == 0 &&
5911 mddev->new_layout == mddev->layout &&
5912 mddev->new_chunk_sectors == mddev->chunk_sectors)
5913 return 0; /* nothing to do */
5914 if (has_failed(conf))
5915 return -EINVAL;
5916 if (mddev->delta_disks < 0) {
5917 /* We might be able to shrink, but the devices must
5918 * be made bigger first.
5919 * For raid6, 4 is the minimum size.
5920 * Otherwise 2 is the minimum
5921 */
5922 int min = 2;
5923 if (mddev->level == 6)
5924 min = 4;
5925 if (mddev->raid_disks + mddev->delta_disks < min)
5926 return -EINVAL;
5927 }
5928
5929 if (!check_stripe_cache(mddev))
5930 return -ENOSPC;
5931
5932 return resize_stripes(conf, (conf->previous_raid_disks
5933 + mddev->delta_disks));
5934 }
5935
5936 static int raid5_start_reshape(struct mddev *mddev)
5937 {
5938 struct r5conf *conf = mddev->private;
5939 struct md_rdev *rdev;
5940 int spares = 0;
5941 unsigned long flags;
5942
5943 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5944 return -EBUSY;
5945
5946 if (!check_stripe_cache(mddev))
5947 return -ENOSPC;
5948
5949 if (has_failed(conf))
5950 return -EINVAL;
5951
5952 rdev_for_each(rdev, mddev) {
5953 if (!test_bit(In_sync, &rdev->flags)
5954 && !test_bit(Faulty, &rdev->flags))
5955 spares++;
5956 }
5957
5958 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5959 /* Not enough devices even to make a degraded array
5960 * of that size
5961 */
5962 return -EINVAL;
5963
5964 /* Refuse to reduce size of the array. Any reductions in
5965 * array size must be through explicit setting of array_size
5966 * attribute.
5967 */
5968 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5969 < mddev->array_sectors) {
5970 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5971 "before number of disks\n", mdname(mddev));
5972 return -EINVAL;
5973 }
5974
5975 atomic_set(&conf->reshape_stripes, 0);
5976 spin_lock_irq(&conf->device_lock);
5977 conf->previous_raid_disks = conf->raid_disks;
5978 conf->raid_disks += mddev->delta_disks;
5979 conf->prev_chunk_sectors = conf->chunk_sectors;
5980 conf->chunk_sectors = mddev->new_chunk_sectors;
5981 conf->prev_algo = conf->algorithm;
5982 conf->algorithm = mddev->new_layout;
5983 conf->generation++;
5984 /* Code that selects data_offset needs to see the generation update
5985 * if reshape_progress has been set - so a memory barrier needed.
5986 */
5987 smp_mb();
5988 if (mddev->reshape_backwards)
5989 conf->reshape_progress = raid5_size(mddev, 0, 0);
5990 else
5991 conf->reshape_progress = 0;
5992 conf->reshape_safe = conf->reshape_progress;
5993 spin_unlock_irq(&conf->device_lock);
5994
5995 /* Add some new drives, as many as will fit.
5996 * We know there are enough to make the newly sized array work.
5997 * Don't add devices if we are reducing the number of
5998 * devices in the array. This is because it is not possible
5999 * to correctly record the "partially reconstructed" state of
6000 * such devices during the reshape and confusion could result.
6001 */
6002 if (mddev->delta_disks >= 0) {
6003 rdev_for_each(rdev, mddev)
6004 if (rdev->raid_disk < 0 &&
6005 !test_bit(Faulty, &rdev->flags)) {
6006 if (raid5_add_disk(mddev, rdev) == 0) {
6007 if (rdev->raid_disk
6008 >= conf->previous_raid_disks)
6009 set_bit(In_sync, &rdev->flags);
6010 else
6011 rdev->recovery_offset = 0;
6012
6013 if (sysfs_link_rdev(mddev, rdev))
6014 /* Failure here is OK */;
6015 }
6016 } else if (rdev->raid_disk >= conf->previous_raid_disks
6017 && !test_bit(Faulty, &rdev->flags)) {
6018 /* This is a spare that was manually added */
6019 set_bit(In_sync, &rdev->flags);
6020 }
6021
6022 /* When a reshape changes the number of devices,
6023 * ->degraded is measured against the larger of the
6024 * pre and post number of devices.
6025 */
6026 spin_lock_irqsave(&conf->device_lock, flags);
6027 mddev->degraded = calc_degraded(conf);
6028 spin_unlock_irqrestore(&conf->device_lock, flags);
6029 }
6030 mddev->raid_disks = conf->raid_disks;
6031 mddev->reshape_position = conf->reshape_progress;
6032 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6033
6034 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6035 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6036 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6037 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6038 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6039 "reshape");
6040 if (!mddev->sync_thread) {
6041 mddev->recovery = 0;
6042 spin_lock_irq(&conf->device_lock);
6043 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6044 rdev_for_each(rdev, mddev)
6045 rdev->new_data_offset = rdev->data_offset;
6046 smp_wmb();
6047 conf->reshape_progress = MaxSector;
6048 mddev->reshape_position = MaxSector;
6049 spin_unlock_irq(&conf->device_lock);
6050 return -EAGAIN;
6051 }
6052 conf->reshape_checkpoint = jiffies;
6053 md_wakeup_thread(mddev->sync_thread);
6054 md_new_event(mddev);
6055 return 0;
6056 }
6057
6058 /* This is called from the reshape thread and should make any
6059 * changes needed in 'conf'
6060 */
6061 static void end_reshape(struct r5conf *conf)
6062 {
6063
6064 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6065 struct md_rdev *rdev;
6066
6067 spin_lock_irq(&conf->device_lock);
6068 conf->previous_raid_disks = conf->raid_disks;
6069 rdev_for_each(rdev, conf->mddev)
6070 rdev->data_offset = rdev->new_data_offset;
6071 smp_wmb();
6072 conf->reshape_progress = MaxSector;
6073 spin_unlock_irq(&conf->device_lock);
6074 wake_up(&conf->wait_for_overlap);
6075
6076 /* read-ahead size must cover two whole stripes, which is
6077 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6078 */
6079 if (conf->mddev->queue) {
6080 int data_disks = conf->raid_disks - conf->max_degraded;
6081 int stripe = data_disks * ((conf->chunk_sectors << 9)
6082 / PAGE_SIZE);
6083 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6084 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6085 }
6086 }
6087 }
6088
6089 /* This is called from the raid5d thread with mddev_lock held.
6090 * It makes config changes to the device.
6091 */
6092 static void raid5_finish_reshape(struct mddev *mddev)
6093 {
6094 struct r5conf *conf = mddev->private;
6095
6096 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6097
6098 if (mddev->delta_disks > 0) {
6099 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6100 set_capacity(mddev->gendisk, mddev->array_sectors);
6101 revalidate_disk(mddev->gendisk);
6102 } else {
6103 int d;
6104 spin_lock_irq(&conf->device_lock);
6105 mddev->degraded = calc_degraded(conf);
6106 spin_unlock_irq(&conf->device_lock);
6107 for (d = conf->raid_disks ;
6108 d < conf->raid_disks - mddev->delta_disks;
6109 d++) {
6110 struct md_rdev *rdev = conf->disks[d].rdev;
6111 if (rdev)
6112 clear_bit(In_sync, &rdev->flags);
6113 rdev = conf->disks[d].replacement;
6114 if (rdev)
6115 clear_bit(In_sync, &rdev->flags);
6116 }
6117 }
6118 mddev->layout = conf->algorithm;
6119 mddev->chunk_sectors = conf->chunk_sectors;
6120 mddev->reshape_position = MaxSector;
6121 mddev->delta_disks = 0;
6122 mddev->reshape_backwards = 0;
6123 }
6124 }
6125
6126 static void raid5_quiesce(struct mddev *mddev, int state)
6127 {
6128 struct r5conf *conf = mddev->private;
6129
6130 switch(state) {
6131 case 2: /* resume for a suspend */
6132 wake_up(&conf->wait_for_overlap);
6133 break;
6134
6135 case 1: /* stop all writes */
6136 spin_lock_irq(&conf->device_lock);
6137 /* '2' tells resync/reshape to pause so that all
6138 * active stripes can drain
6139 */
6140 conf->quiesce = 2;
6141 wait_event_lock_irq(conf->wait_for_stripe,
6142 atomic_read(&conf->active_stripes) == 0 &&
6143 atomic_read(&conf->active_aligned_reads) == 0,
6144 conf->device_lock);
6145 conf->quiesce = 1;
6146 spin_unlock_irq(&conf->device_lock);
6147 /* allow reshape to continue */
6148 wake_up(&conf->wait_for_overlap);
6149 break;
6150
6151 case 0: /* re-enable writes */
6152 spin_lock_irq(&conf->device_lock);
6153 conf->quiesce = 0;
6154 wake_up(&conf->wait_for_stripe);
6155 wake_up(&conf->wait_for_overlap);
6156 spin_unlock_irq(&conf->device_lock);
6157 break;
6158 }
6159 }
6160
6161
6162 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6163 {
6164 struct r0conf *raid0_conf = mddev->private;
6165 sector_t sectors;
6166
6167 /* for raid0 takeover only one zone is supported */
6168 if (raid0_conf->nr_strip_zones > 1) {
6169 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6170 mdname(mddev));
6171 return ERR_PTR(-EINVAL);
6172 }
6173
6174 sectors = raid0_conf->strip_zone[0].zone_end;
6175 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6176 mddev->dev_sectors = sectors;
6177 mddev->new_level = level;
6178 mddev->new_layout = ALGORITHM_PARITY_N;
6179 mddev->new_chunk_sectors = mddev->chunk_sectors;
6180 mddev->raid_disks += 1;
6181 mddev->delta_disks = 1;
6182 /* make sure it will be not marked as dirty */
6183 mddev->recovery_cp = MaxSector;
6184
6185 return setup_conf(mddev);
6186 }
6187
6188
6189 static void *raid5_takeover_raid1(struct mddev *mddev)
6190 {
6191 int chunksect;
6192
6193 if (mddev->raid_disks != 2 ||
6194 mddev->degraded > 1)
6195 return ERR_PTR(-EINVAL);
6196
6197 /* Should check if there are write-behind devices? */
6198
6199 chunksect = 64*2; /* 64K by default */
6200
6201 /* The array must be an exact multiple of chunksize */
6202 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6203 chunksect >>= 1;
6204
6205 if ((chunksect<<9) < STRIPE_SIZE)
6206 /* array size does not allow a suitable chunk size */
6207 return ERR_PTR(-EINVAL);
6208
6209 mddev->new_level = 5;
6210 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6211 mddev->new_chunk_sectors = chunksect;
6212
6213 return setup_conf(mddev);
6214 }
6215
6216 static void *raid5_takeover_raid6(struct mddev *mddev)
6217 {
6218 int new_layout;
6219
6220 switch (mddev->layout) {
6221 case ALGORITHM_LEFT_ASYMMETRIC_6:
6222 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6223 break;
6224 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6225 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6226 break;
6227 case ALGORITHM_LEFT_SYMMETRIC_6:
6228 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6229 break;
6230 case ALGORITHM_RIGHT_SYMMETRIC_6:
6231 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6232 break;
6233 case ALGORITHM_PARITY_0_6:
6234 new_layout = ALGORITHM_PARITY_0;
6235 break;
6236 case ALGORITHM_PARITY_N:
6237 new_layout = ALGORITHM_PARITY_N;
6238 break;
6239 default:
6240 return ERR_PTR(-EINVAL);
6241 }
6242 mddev->new_level = 5;
6243 mddev->new_layout = new_layout;
6244 mddev->delta_disks = -1;
6245 mddev->raid_disks -= 1;
6246 return setup_conf(mddev);
6247 }
6248
6249
6250 static int raid5_check_reshape(struct mddev *mddev)
6251 {
6252 /* For a 2-drive array, the layout and chunk size can be changed
6253 * immediately as not restriping is needed.
6254 * For larger arrays we record the new value - after validation
6255 * to be used by a reshape pass.
6256 */
6257 struct r5conf *conf = mddev->private;
6258 int new_chunk = mddev->new_chunk_sectors;
6259
6260 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6261 return -EINVAL;
6262 if (new_chunk > 0) {
6263 if (!is_power_of_2(new_chunk))
6264 return -EINVAL;
6265 if (new_chunk < (PAGE_SIZE>>9))
6266 return -EINVAL;
6267 if (mddev->array_sectors & (new_chunk-1))
6268 /* not factor of array size */
6269 return -EINVAL;
6270 }
6271
6272 /* They look valid */
6273
6274 if (mddev->raid_disks == 2) {
6275 /* can make the change immediately */
6276 if (mddev->new_layout >= 0) {
6277 conf->algorithm = mddev->new_layout;
6278 mddev->layout = mddev->new_layout;
6279 }
6280 if (new_chunk > 0) {
6281 conf->chunk_sectors = new_chunk ;
6282 mddev->chunk_sectors = new_chunk;
6283 }
6284 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6285 md_wakeup_thread(mddev->thread);
6286 }
6287 return check_reshape(mddev);
6288 }
6289
6290 static int raid6_check_reshape(struct mddev *mddev)
6291 {
6292 int new_chunk = mddev->new_chunk_sectors;
6293
6294 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6295 return -EINVAL;
6296 if (new_chunk > 0) {
6297 if (!is_power_of_2(new_chunk))
6298 return -EINVAL;
6299 if (new_chunk < (PAGE_SIZE >> 9))
6300 return -EINVAL;
6301 if (mddev->array_sectors & (new_chunk-1))
6302 /* not factor of array size */
6303 return -EINVAL;
6304 }
6305
6306 /* They look valid */
6307 return check_reshape(mddev);
6308 }
6309
6310 static void *raid5_takeover(struct mddev *mddev)
6311 {
6312 /* raid5 can take over:
6313 * raid0 - if there is only one strip zone - make it a raid4 layout
6314 * raid1 - if there are two drives. We need to know the chunk size
6315 * raid4 - trivial - just use a raid4 layout.
6316 * raid6 - Providing it is a *_6 layout
6317 */
6318 if (mddev->level == 0)
6319 return raid45_takeover_raid0(mddev, 5);
6320 if (mddev->level == 1)
6321 return raid5_takeover_raid1(mddev);
6322 if (mddev->level == 4) {
6323 mddev->new_layout = ALGORITHM_PARITY_N;
6324 mddev->new_level = 5;
6325 return setup_conf(mddev);
6326 }
6327 if (mddev->level == 6)
6328 return raid5_takeover_raid6(mddev);
6329
6330 return ERR_PTR(-EINVAL);
6331 }
6332
6333 static void *raid4_takeover(struct mddev *mddev)
6334 {
6335 /* raid4 can take over:
6336 * raid0 - if there is only one strip zone
6337 * raid5 - if layout is right
6338 */
6339 if (mddev->level == 0)
6340 return raid45_takeover_raid0(mddev, 4);
6341 if (mddev->level == 5 &&
6342 mddev->layout == ALGORITHM_PARITY_N) {
6343 mddev->new_layout = 0;
6344 mddev->new_level = 4;
6345 return setup_conf(mddev);
6346 }
6347 return ERR_PTR(-EINVAL);
6348 }
6349
6350 static struct md_personality raid5_personality;
6351
6352 static void *raid6_takeover(struct mddev *mddev)
6353 {
6354 /* Currently can only take over a raid5. We map the
6355 * personality to an equivalent raid6 personality
6356 * with the Q block at the end.
6357 */
6358 int new_layout;
6359
6360 if (mddev->pers != &raid5_personality)
6361 return ERR_PTR(-EINVAL);
6362 if (mddev->degraded > 1)
6363 return ERR_PTR(-EINVAL);
6364 if (mddev->raid_disks > 253)
6365 return ERR_PTR(-EINVAL);
6366 if (mddev->raid_disks < 3)
6367 return ERR_PTR(-EINVAL);
6368
6369 switch (mddev->layout) {
6370 case ALGORITHM_LEFT_ASYMMETRIC:
6371 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6372 break;
6373 case ALGORITHM_RIGHT_ASYMMETRIC:
6374 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6375 break;
6376 case ALGORITHM_LEFT_SYMMETRIC:
6377 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6378 break;
6379 case ALGORITHM_RIGHT_SYMMETRIC:
6380 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6381 break;
6382 case ALGORITHM_PARITY_0:
6383 new_layout = ALGORITHM_PARITY_0_6;
6384 break;
6385 case ALGORITHM_PARITY_N:
6386 new_layout = ALGORITHM_PARITY_N;
6387 break;
6388 default:
6389 return ERR_PTR(-EINVAL);
6390 }
6391 mddev->new_level = 6;
6392 mddev->new_layout = new_layout;
6393 mddev->delta_disks = 1;
6394 mddev->raid_disks += 1;
6395 return setup_conf(mddev);
6396 }
6397
6398
6399 static struct md_personality raid6_personality =
6400 {
6401 .name = "raid6",
6402 .level = 6,
6403 .owner = THIS_MODULE,
6404 .make_request = make_request,
6405 .run = run,
6406 .stop = stop,
6407 .status = status,
6408 .error_handler = error,
6409 .hot_add_disk = raid5_add_disk,
6410 .hot_remove_disk= raid5_remove_disk,
6411 .spare_active = raid5_spare_active,
6412 .sync_request = sync_request,
6413 .resize = raid5_resize,
6414 .size = raid5_size,
6415 .check_reshape = raid6_check_reshape,
6416 .start_reshape = raid5_start_reshape,
6417 .finish_reshape = raid5_finish_reshape,
6418 .quiesce = raid5_quiesce,
6419 .takeover = raid6_takeover,
6420 };
6421 static struct md_personality raid5_personality =
6422 {
6423 .name = "raid5",
6424 .level = 5,
6425 .owner = THIS_MODULE,
6426 .make_request = make_request,
6427 .run = run,
6428 .stop = stop,
6429 .status = status,
6430 .error_handler = error,
6431 .hot_add_disk = raid5_add_disk,
6432 .hot_remove_disk= raid5_remove_disk,
6433 .spare_active = raid5_spare_active,
6434 .sync_request = sync_request,
6435 .resize = raid5_resize,
6436 .size = raid5_size,
6437 .check_reshape = raid5_check_reshape,
6438 .start_reshape = raid5_start_reshape,
6439 .finish_reshape = raid5_finish_reshape,
6440 .quiesce = raid5_quiesce,
6441 .takeover = raid5_takeover,
6442 };
6443
6444 static struct md_personality raid4_personality =
6445 {
6446 .name = "raid4",
6447 .level = 4,
6448 .owner = THIS_MODULE,
6449 .make_request = make_request,
6450 .run = run,
6451 .stop = stop,
6452 .status = status,
6453 .error_handler = error,
6454 .hot_add_disk = raid5_add_disk,
6455 .hot_remove_disk= raid5_remove_disk,
6456 .spare_active = raid5_spare_active,
6457 .sync_request = sync_request,
6458 .resize = raid5_resize,
6459 .size = raid5_size,
6460 .check_reshape = raid5_check_reshape,
6461 .start_reshape = raid5_start_reshape,
6462 .finish_reshape = raid5_finish_reshape,
6463 .quiesce = raid5_quiesce,
6464 .takeover = raid4_takeover,
6465 };
6466
6467 static int __init raid5_init(void)
6468 {
6469 register_md_personality(&raid6_personality);
6470 register_md_personality(&raid5_personality);
6471 register_md_personality(&raid4_personality);
6472 return 0;
6473 }
6474
6475 static void raid5_exit(void)
6476 {
6477 unregister_md_personality(&raid6_personality);
6478 unregister_md_personality(&raid5_personality);
6479 unregister_md_personality(&raid4_personality);
6480 }
6481
6482 module_init(raid5_init);
6483 module_exit(raid5_exit);
6484 MODULE_LICENSE("GPL");
6485 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6486 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6487 MODULE_ALIAS("md-raid5");
6488 MODULE_ALIAS("md-raid4");
6489 MODULE_ALIAS("md-level-5");
6490 MODULE_ALIAS("md-level-4");
6491 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6492 MODULE_ALIAS("md-raid6");
6493 MODULE_ALIAS("md-level-6");
6494
6495 /* This used to be two separate modules, they were: */
6496 MODULE_ALIAS("raid5");
6497 MODULE_ALIAS("raid6");