]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/raid5.c
[BLOCK] Get rid of request_queue_t typedef
[mirror_ubuntu-zesty-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56
57 /*
58 * Stripe cache
59 */
60
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK (NR_HASH - 1)
68
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
76 * be valid.
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
79 */
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 /*
82 * The following can be used to debug the driver
83 */
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
90
91 #ifdef DEBUG
92 #define inline
93 #define __inline__
94 #endif
95
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
99 #endif
100
101 static inline int raid6_next_disk(int disk, int raid_disks)
102 {
103 disk++;
104 return (disk < raid_disks) ? disk : 0;
105 }
106
107 static void return_io(struct bio *return_bi)
108 {
109 struct bio *bi = return_bi;
110 while (bi) {
111 int bytes = bi->bi_size;
112
113 return_bi = bi->bi_next;
114 bi->bi_next = NULL;
115 bi->bi_size = 0;
116 bi->bi_end_io(bi, bytes,
117 test_bit(BIO_UPTODATE, &bi->bi_flags)
118 ? 0 : -EIO);
119 bi = return_bi;
120 }
121 }
122
123 static void print_raid5_conf (raid5_conf_t *conf);
124
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
126 {
127 if (atomic_dec_and_test(&sh->count)) {
128 BUG_ON(!list_empty(&sh->lru));
129 BUG_ON(atomic_read(&conf->active_stripes)==0);
130 if (test_bit(STRIPE_HANDLE, &sh->state)) {
131 if (test_bit(STRIPE_DELAYED, &sh->state)) {
132 list_add_tail(&sh->lru, &conf->delayed_list);
133 blk_plug_device(conf->mddev->queue);
134 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135 sh->bm_seq - conf->seq_write > 0) {
136 list_add_tail(&sh->lru, &conf->bitmap_list);
137 blk_plug_device(conf->mddev->queue);
138 } else {
139 clear_bit(STRIPE_BIT_DELAY, &sh->state);
140 list_add_tail(&sh->lru, &conf->handle_list);
141 }
142 md_wakeup_thread(conf->mddev->thread);
143 } else {
144 BUG_ON(sh->ops.pending);
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146 atomic_dec(&conf->preread_active_stripes);
147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148 md_wakeup_thread(conf->mddev->thread);
149 }
150 atomic_dec(&conf->active_stripes);
151 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152 list_add_tail(&sh->lru, &conf->inactive_list);
153 wake_up(&conf->wait_for_stripe);
154 if (conf->retry_read_aligned)
155 md_wakeup_thread(conf->mddev->thread);
156 }
157 }
158 }
159 }
160 static void release_stripe(struct stripe_head *sh)
161 {
162 raid5_conf_t *conf = sh->raid_conf;
163 unsigned long flags;
164
165 spin_lock_irqsave(&conf->device_lock, flags);
166 __release_stripe(conf, sh);
167 spin_unlock_irqrestore(&conf->device_lock, flags);
168 }
169
170 static inline void remove_hash(struct stripe_head *sh)
171 {
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh->sector);
174
175 hlist_del_init(&sh->hash);
176 }
177
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
179 {
180 struct hlist_head *hp = stripe_hash(conf, sh->sector);
181
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh->sector);
184
185 CHECK_DEVLOCK();
186 hlist_add_head(&sh->hash, hp);
187 }
188
189
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192 {
193 struct stripe_head *sh = NULL;
194 struct list_head *first;
195
196 CHECK_DEVLOCK();
197 if (list_empty(&conf->inactive_list))
198 goto out;
199 first = conf->inactive_list.next;
200 sh = list_entry(first, struct stripe_head, lru);
201 list_del_init(first);
202 remove_hash(sh);
203 atomic_inc(&conf->active_stripes);
204 out:
205 return sh;
206 }
207
208 static void shrink_buffers(struct stripe_head *sh, int num)
209 {
210 struct page *p;
211 int i;
212
213 for (i=0; i<num ; i++) {
214 p = sh->dev[i].page;
215 if (!p)
216 continue;
217 sh->dev[i].page = NULL;
218 put_page(p);
219 }
220 }
221
222 static int grow_buffers(struct stripe_head *sh, int num)
223 {
224 int i;
225
226 for (i=0; i<num; i++) {
227 struct page *page;
228
229 if (!(page = alloc_page(GFP_KERNEL))) {
230 return 1;
231 }
232 sh->dev[i].page = page;
233 }
234 return 0;
235 }
236
237 static void raid5_build_block (struct stripe_head *sh, int i);
238
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
240 {
241 raid5_conf_t *conf = sh->raid_conf;
242 int i;
243
244 BUG_ON(atomic_read(&sh->count) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247
248 CHECK_DEVLOCK();
249 pr_debug("init_stripe called, stripe %llu\n",
250 (unsigned long long)sh->sector);
251
252 remove_hash(sh);
253
254 sh->sector = sector;
255 sh->pd_idx = pd_idx;
256 sh->state = 0;
257
258 sh->disks = disks;
259
260 for (i = sh->disks; i--; ) {
261 struct r5dev *dev = &sh->dev[i];
262
263 if (dev->toread || dev->read || dev->towrite || dev->written ||
264 test_bit(R5_LOCKED, &dev->flags)) {
265 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266 (unsigned long long)sh->sector, i, dev->toread,
267 dev->read, dev->towrite, dev->written,
268 test_bit(R5_LOCKED, &dev->flags));
269 BUG();
270 }
271 dev->flags = 0;
272 raid5_build_block(sh, i);
273 }
274 insert_hash(conf, sh);
275 }
276
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
278 {
279 struct stripe_head *sh;
280 struct hlist_node *hn;
281
282 CHECK_DEVLOCK();
283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285 if (sh->sector == sector && sh->disks == disks)
286 return sh;
287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288 return NULL;
289 }
290
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(struct request_queue *q);
293
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295 int pd_idx, int noblock)
296 {
297 struct stripe_head *sh;
298
299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
300
301 spin_lock_irq(&conf->device_lock);
302
303 do {
304 wait_event_lock_irq(conf->wait_for_stripe,
305 conf->quiesce == 0,
306 conf->device_lock, /* nothing */);
307 sh = __find_stripe(conf, sector, disks);
308 if (!sh) {
309 if (!conf->inactive_blocked)
310 sh = get_free_stripe(conf);
311 if (noblock && sh == NULL)
312 break;
313 if (!sh) {
314 conf->inactive_blocked = 1;
315 wait_event_lock_irq(conf->wait_for_stripe,
316 !list_empty(&conf->inactive_list) &&
317 (atomic_read(&conf->active_stripes)
318 < (conf->max_nr_stripes *3/4)
319 || !conf->inactive_blocked),
320 conf->device_lock,
321 raid5_unplug_device(conf->mddev->queue)
322 );
323 conf->inactive_blocked = 0;
324 } else
325 init_stripe(sh, sector, pd_idx, disks);
326 } else {
327 if (atomic_read(&sh->count)) {
328 BUG_ON(!list_empty(&sh->lru));
329 } else {
330 if (!test_bit(STRIPE_HANDLE, &sh->state))
331 atomic_inc(&conf->active_stripes);
332 if (list_empty(&sh->lru) &&
333 !test_bit(STRIPE_EXPANDING, &sh->state))
334 BUG();
335 list_del_init(&sh->lru);
336 }
337 }
338 } while (sh == NULL);
339
340 if (sh)
341 atomic_inc(&sh->count);
342
343 spin_unlock_irq(&conf->device_lock);
344 return sh;
345 }
346
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do { \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
354 else \
355 ack++; \
356 } else \
357 clear_bit(op, &pend); \
358 } while (0)
359
360 /* find new work to run, do not resubmit work that is already
361 * in flight
362 */
363 static unsigned long get_stripe_work(struct stripe_head *sh)
364 {
365 unsigned long pending;
366 int ack = 0;
367
368 pending = sh->ops.pending;
369
370 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372 test_and_ack_op(STRIPE_OP_PREXOR, pending);
373 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375 test_and_ack_op(STRIPE_OP_CHECK, pending);
376 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
377 ack++;
378
379 sh->ops.count -= ack;
380 BUG_ON(sh->ops.count < 0);
381
382 return pending;
383 }
384
385 static int
386 raid5_end_read_request(struct bio *bi, unsigned int bytes_done, int error);
387 static int
388 raid5_end_write_request (struct bio *bi, unsigned int bytes_done, int error);
389
390 static void ops_run_io(struct stripe_head *sh)
391 {
392 raid5_conf_t *conf = sh->raid_conf;
393 int i, disks = sh->disks;
394
395 might_sleep();
396
397 for (i = disks; i--; ) {
398 int rw;
399 struct bio *bi;
400 mdk_rdev_t *rdev;
401 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
402 rw = WRITE;
403 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
404 rw = READ;
405 else
406 continue;
407
408 bi = &sh->dev[i].req;
409
410 bi->bi_rw = rw;
411 if (rw == WRITE)
412 bi->bi_end_io = raid5_end_write_request;
413 else
414 bi->bi_end_io = raid5_end_read_request;
415
416 rcu_read_lock();
417 rdev = rcu_dereference(conf->disks[i].rdev);
418 if (rdev && test_bit(Faulty, &rdev->flags))
419 rdev = NULL;
420 if (rdev)
421 atomic_inc(&rdev->nr_pending);
422 rcu_read_unlock();
423
424 if (rdev) {
425 if (test_bit(STRIPE_SYNCING, &sh->state) ||
426 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
427 test_bit(STRIPE_EXPAND_READY, &sh->state))
428 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
429
430 bi->bi_bdev = rdev->bdev;
431 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
432 __FUNCTION__, (unsigned long long)sh->sector,
433 bi->bi_rw, i);
434 atomic_inc(&sh->count);
435 bi->bi_sector = sh->sector + rdev->data_offset;
436 bi->bi_flags = 1 << BIO_UPTODATE;
437 bi->bi_vcnt = 1;
438 bi->bi_max_vecs = 1;
439 bi->bi_idx = 0;
440 bi->bi_io_vec = &sh->dev[i].vec;
441 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
442 bi->bi_io_vec[0].bv_offset = 0;
443 bi->bi_size = STRIPE_SIZE;
444 bi->bi_next = NULL;
445 if (rw == WRITE &&
446 test_bit(R5_ReWrite, &sh->dev[i].flags))
447 atomic_add(STRIPE_SECTORS,
448 &rdev->corrected_errors);
449 generic_make_request(bi);
450 } else {
451 if (rw == WRITE)
452 set_bit(STRIPE_DEGRADED, &sh->state);
453 pr_debug("skip op %ld on disc %d for sector %llu\n",
454 bi->bi_rw, i, (unsigned long long)sh->sector);
455 clear_bit(R5_LOCKED, &sh->dev[i].flags);
456 set_bit(STRIPE_HANDLE, &sh->state);
457 }
458 }
459 }
460
461 static struct dma_async_tx_descriptor *
462 async_copy_data(int frombio, struct bio *bio, struct page *page,
463 sector_t sector, struct dma_async_tx_descriptor *tx)
464 {
465 struct bio_vec *bvl;
466 struct page *bio_page;
467 int i;
468 int page_offset;
469
470 if (bio->bi_sector >= sector)
471 page_offset = (signed)(bio->bi_sector - sector) * 512;
472 else
473 page_offset = (signed)(sector - bio->bi_sector) * -512;
474 bio_for_each_segment(bvl, bio, i) {
475 int len = bio_iovec_idx(bio, i)->bv_len;
476 int clen;
477 int b_offset = 0;
478
479 if (page_offset < 0) {
480 b_offset = -page_offset;
481 page_offset += b_offset;
482 len -= b_offset;
483 }
484
485 if (len > 0 && page_offset + len > STRIPE_SIZE)
486 clen = STRIPE_SIZE - page_offset;
487 else
488 clen = len;
489
490 if (clen > 0) {
491 b_offset += bio_iovec_idx(bio, i)->bv_offset;
492 bio_page = bio_iovec_idx(bio, i)->bv_page;
493 if (frombio)
494 tx = async_memcpy(page, bio_page, page_offset,
495 b_offset, clen,
496 ASYNC_TX_DEP_ACK,
497 tx, NULL, NULL);
498 else
499 tx = async_memcpy(bio_page, page, b_offset,
500 page_offset, clen,
501 ASYNC_TX_DEP_ACK,
502 tx, NULL, NULL);
503 }
504 if (clen < len) /* hit end of page */
505 break;
506 page_offset += len;
507 }
508
509 return tx;
510 }
511
512 static void ops_complete_biofill(void *stripe_head_ref)
513 {
514 struct stripe_head *sh = stripe_head_ref;
515 struct bio *return_bi = NULL;
516 raid5_conf_t *conf = sh->raid_conf;
517 int i, more_to_read = 0;
518
519 pr_debug("%s: stripe %llu\n", __FUNCTION__,
520 (unsigned long long)sh->sector);
521
522 /* clear completed biofills */
523 for (i = sh->disks; i--; ) {
524 struct r5dev *dev = &sh->dev[i];
525 /* check if this stripe has new incoming reads */
526 if (dev->toread)
527 more_to_read++;
528
529 /* acknowledge completion of a biofill operation */
530 /* and check if we need to reply to a read request
531 */
532 if (test_bit(R5_Wantfill, &dev->flags) && !dev->toread) {
533 struct bio *rbi, *rbi2;
534 clear_bit(R5_Wantfill, &dev->flags);
535
536 /* The access to dev->read is outside of the
537 * spin_lock_irq(&conf->device_lock), but is protected
538 * by the STRIPE_OP_BIOFILL pending bit
539 */
540 BUG_ON(!dev->read);
541 rbi = dev->read;
542 dev->read = NULL;
543 while (rbi && rbi->bi_sector <
544 dev->sector + STRIPE_SECTORS) {
545 rbi2 = r5_next_bio(rbi, dev->sector);
546 spin_lock_irq(&conf->device_lock);
547 if (--rbi->bi_phys_segments == 0) {
548 rbi->bi_next = return_bi;
549 return_bi = rbi;
550 }
551 spin_unlock_irq(&conf->device_lock);
552 rbi = rbi2;
553 }
554 }
555 }
556 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
557 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
558
559 return_io(return_bi);
560
561 if (more_to_read)
562 set_bit(STRIPE_HANDLE, &sh->state);
563 release_stripe(sh);
564 }
565
566 static void ops_run_biofill(struct stripe_head *sh)
567 {
568 struct dma_async_tx_descriptor *tx = NULL;
569 raid5_conf_t *conf = sh->raid_conf;
570 int i;
571
572 pr_debug("%s: stripe %llu\n", __FUNCTION__,
573 (unsigned long long)sh->sector);
574
575 for (i = sh->disks; i--; ) {
576 struct r5dev *dev = &sh->dev[i];
577 if (test_bit(R5_Wantfill, &dev->flags)) {
578 struct bio *rbi;
579 spin_lock_irq(&conf->device_lock);
580 dev->read = rbi = dev->toread;
581 dev->toread = NULL;
582 spin_unlock_irq(&conf->device_lock);
583 while (rbi && rbi->bi_sector <
584 dev->sector + STRIPE_SECTORS) {
585 tx = async_copy_data(0, rbi, dev->page,
586 dev->sector, tx);
587 rbi = r5_next_bio(rbi, dev->sector);
588 }
589 }
590 }
591
592 atomic_inc(&sh->count);
593 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
594 ops_complete_biofill, sh);
595 }
596
597 static void ops_complete_compute5(void *stripe_head_ref)
598 {
599 struct stripe_head *sh = stripe_head_ref;
600 int target = sh->ops.target;
601 struct r5dev *tgt = &sh->dev[target];
602
603 pr_debug("%s: stripe %llu\n", __FUNCTION__,
604 (unsigned long long)sh->sector);
605
606 set_bit(R5_UPTODATE, &tgt->flags);
607 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
608 clear_bit(R5_Wantcompute, &tgt->flags);
609 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
610 set_bit(STRIPE_HANDLE, &sh->state);
611 release_stripe(sh);
612 }
613
614 static struct dma_async_tx_descriptor *
615 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
616 {
617 /* kernel stack size limits the total number of disks */
618 int disks = sh->disks;
619 struct page *xor_srcs[disks];
620 int target = sh->ops.target;
621 struct r5dev *tgt = &sh->dev[target];
622 struct page *xor_dest = tgt->page;
623 int count = 0;
624 struct dma_async_tx_descriptor *tx;
625 int i;
626
627 pr_debug("%s: stripe %llu block: %d\n",
628 __FUNCTION__, (unsigned long long)sh->sector, target);
629 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
630
631 for (i = disks; i--; )
632 if (i != target)
633 xor_srcs[count++] = sh->dev[i].page;
634
635 atomic_inc(&sh->count);
636
637 if (unlikely(count == 1))
638 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
639 0, NULL, ops_complete_compute5, sh);
640 else
641 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
642 ASYNC_TX_XOR_ZERO_DST, NULL,
643 ops_complete_compute5, sh);
644
645 /* ack now if postxor is not set to be run */
646 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
647 async_tx_ack(tx);
648
649 return tx;
650 }
651
652 static void ops_complete_prexor(void *stripe_head_ref)
653 {
654 struct stripe_head *sh = stripe_head_ref;
655
656 pr_debug("%s: stripe %llu\n", __FUNCTION__,
657 (unsigned long long)sh->sector);
658
659 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
660 }
661
662 static struct dma_async_tx_descriptor *
663 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
664 {
665 /* kernel stack size limits the total number of disks */
666 int disks = sh->disks;
667 struct page *xor_srcs[disks];
668 int count = 0, pd_idx = sh->pd_idx, i;
669
670 /* existing parity data subtracted */
671 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
672
673 pr_debug("%s: stripe %llu\n", __FUNCTION__,
674 (unsigned long long)sh->sector);
675
676 for (i = disks; i--; ) {
677 struct r5dev *dev = &sh->dev[i];
678 /* Only process blocks that are known to be uptodate */
679 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
680 xor_srcs[count++] = dev->page;
681 }
682
683 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
684 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
685 ops_complete_prexor, sh);
686
687 return tx;
688 }
689
690 static struct dma_async_tx_descriptor *
691 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
692 {
693 int disks = sh->disks;
694 int pd_idx = sh->pd_idx, i;
695
696 /* check if prexor is active which means only process blocks
697 * that are part of a read-modify-write (Wantprexor)
698 */
699 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
700
701 pr_debug("%s: stripe %llu\n", __FUNCTION__,
702 (unsigned long long)sh->sector);
703
704 for (i = disks; i--; ) {
705 struct r5dev *dev = &sh->dev[i];
706 struct bio *chosen;
707 int towrite;
708
709 towrite = 0;
710 if (prexor) { /* rmw */
711 if (dev->towrite &&
712 test_bit(R5_Wantprexor, &dev->flags))
713 towrite = 1;
714 } else { /* rcw */
715 if (i != pd_idx && dev->towrite &&
716 test_bit(R5_LOCKED, &dev->flags))
717 towrite = 1;
718 }
719
720 if (towrite) {
721 struct bio *wbi;
722
723 spin_lock(&sh->lock);
724 chosen = dev->towrite;
725 dev->towrite = NULL;
726 BUG_ON(dev->written);
727 wbi = dev->written = chosen;
728 spin_unlock(&sh->lock);
729
730 while (wbi && wbi->bi_sector <
731 dev->sector + STRIPE_SECTORS) {
732 tx = async_copy_data(1, wbi, dev->page,
733 dev->sector, tx);
734 wbi = r5_next_bio(wbi, dev->sector);
735 }
736 }
737 }
738
739 return tx;
740 }
741
742 static void ops_complete_postxor(void *stripe_head_ref)
743 {
744 struct stripe_head *sh = stripe_head_ref;
745
746 pr_debug("%s: stripe %llu\n", __FUNCTION__,
747 (unsigned long long)sh->sector);
748
749 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
750 set_bit(STRIPE_HANDLE, &sh->state);
751 release_stripe(sh);
752 }
753
754 static void ops_complete_write(void *stripe_head_ref)
755 {
756 struct stripe_head *sh = stripe_head_ref;
757 int disks = sh->disks, i, pd_idx = sh->pd_idx;
758
759 pr_debug("%s: stripe %llu\n", __FUNCTION__,
760 (unsigned long long)sh->sector);
761
762 for (i = disks; i--; ) {
763 struct r5dev *dev = &sh->dev[i];
764 if (dev->written || i == pd_idx)
765 set_bit(R5_UPTODATE, &dev->flags);
766 }
767
768 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
769 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
770
771 set_bit(STRIPE_HANDLE, &sh->state);
772 release_stripe(sh);
773 }
774
775 static void
776 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
777 {
778 /* kernel stack size limits the total number of disks */
779 int disks = sh->disks;
780 struct page *xor_srcs[disks];
781
782 int count = 0, pd_idx = sh->pd_idx, i;
783 struct page *xor_dest;
784 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
785 unsigned long flags;
786 dma_async_tx_callback callback;
787
788 pr_debug("%s: stripe %llu\n", __FUNCTION__,
789 (unsigned long long)sh->sector);
790
791 /* check if prexor is active which means only process blocks
792 * that are part of a read-modify-write (written)
793 */
794 if (prexor) {
795 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
796 for (i = disks; i--; ) {
797 struct r5dev *dev = &sh->dev[i];
798 if (dev->written)
799 xor_srcs[count++] = dev->page;
800 }
801 } else {
802 xor_dest = sh->dev[pd_idx].page;
803 for (i = disks; i--; ) {
804 struct r5dev *dev = &sh->dev[i];
805 if (i != pd_idx)
806 xor_srcs[count++] = dev->page;
807 }
808 }
809
810 /* check whether this postxor is part of a write */
811 callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ?
812 ops_complete_write : ops_complete_postxor;
813
814 /* 1/ if we prexor'd then the dest is reused as a source
815 * 2/ if we did not prexor then we are redoing the parity
816 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
817 * for the synchronous xor case
818 */
819 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
820 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
821
822 atomic_inc(&sh->count);
823
824 if (unlikely(count == 1)) {
825 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
826 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
827 flags, tx, callback, sh);
828 } else
829 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
830 flags, tx, callback, sh);
831 }
832
833 static void ops_complete_check(void *stripe_head_ref)
834 {
835 struct stripe_head *sh = stripe_head_ref;
836 int pd_idx = sh->pd_idx;
837
838 pr_debug("%s: stripe %llu\n", __FUNCTION__,
839 (unsigned long long)sh->sector);
840
841 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
842 sh->ops.zero_sum_result == 0)
843 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
844
845 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
846 set_bit(STRIPE_HANDLE, &sh->state);
847 release_stripe(sh);
848 }
849
850 static void ops_run_check(struct stripe_head *sh)
851 {
852 /* kernel stack size limits the total number of disks */
853 int disks = sh->disks;
854 struct page *xor_srcs[disks];
855 struct dma_async_tx_descriptor *tx;
856
857 int count = 0, pd_idx = sh->pd_idx, i;
858 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
859
860 pr_debug("%s: stripe %llu\n", __FUNCTION__,
861 (unsigned long long)sh->sector);
862
863 for (i = disks; i--; ) {
864 struct r5dev *dev = &sh->dev[i];
865 if (i != pd_idx)
866 xor_srcs[count++] = dev->page;
867 }
868
869 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
870 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
871
872 if (tx)
873 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
874 else
875 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
876
877 atomic_inc(&sh->count);
878 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
879 ops_complete_check, sh);
880 }
881
882 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
883 {
884 int overlap_clear = 0, i, disks = sh->disks;
885 struct dma_async_tx_descriptor *tx = NULL;
886
887 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
888 ops_run_biofill(sh);
889 overlap_clear++;
890 }
891
892 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
893 tx = ops_run_compute5(sh, pending);
894
895 if (test_bit(STRIPE_OP_PREXOR, &pending))
896 tx = ops_run_prexor(sh, tx);
897
898 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
899 tx = ops_run_biodrain(sh, tx);
900 overlap_clear++;
901 }
902
903 if (test_bit(STRIPE_OP_POSTXOR, &pending))
904 ops_run_postxor(sh, tx);
905
906 if (test_bit(STRIPE_OP_CHECK, &pending))
907 ops_run_check(sh);
908
909 if (test_bit(STRIPE_OP_IO, &pending))
910 ops_run_io(sh);
911
912 if (overlap_clear)
913 for (i = disks; i--; ) {
914 struct r5dev *dev = &sh->dev[i];
915 if (test_and_clear_bit(R5_Overlap, &dev->flags))
916 wake_up(&sh->raid_conf->wait_for_overlap);
917 }
918 }
919
920 static int grow_one_stripe(raid5_conf_t *conf)
921 {
922 struct stripe_head *sh;
923 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
924 if (!sh)
925 return 0;
926 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
927 sh->raid_conf = conf;
928 spin_lock_init(&sh->lock);
929
930 if (grow_buffers(sh, conf->raid_disks)) {
931 shrink_buffers(sh, conf->raid_disks);
932 kmem_cache_free(conf->slab_cache, sh);
933 return 0;
934 }
935 sh->disks = conf->raid_disks;
936 /* we just created an active stripe so... */
937 atomic_set(&sh->count, 1);
938 atomic_inc(&conf->active_stripes);
939 INIT_LIST_HEAD(&sh->lru);
940 release_stripe(sh);
941 return 1;
942 }
943
944 static int grow_stripes(raid5_conf_t *conf, int num)
945 {
946 struct kmem_cache *sc;
947 int devs = conf->raid_disks;
948
949 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
950 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
951 conf->active_name = 0;
952 sc = kmem_cache_create(conf->cache_name[conf->active_name],
953 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
954 0, 0, NULL);
955 if (!sc)
956 return 1;
957 conf->slab_cache = sc;
958 conf->pool_size = devs;
959 while (num--)
960 if (!grow_one_stripe(conf))
961 return 1;
962 return 0;
963 }
964
965 #ifdef CONFIG_MD_RAID5_RESHAPE
966 static int resize_stripes(raid5_conf_t *conf, int newsize)
967 {
968 /* Make all the stripes able to hold 'newsize' devices.
969 * New slots in each stripe get 'page' set to a new page.
970 *
971 * This happens in stages:
972 * 1/ create a new kmem_cache and allocate the required number of
973 * stripe_heads.
974 * 2/ gather all the old stripe_heads and tranfer the pages across
975 * to the new stripe_heads. This will have the side effect of
976 * freezing the array as once all stripe_heads have been collected,
977 * no IO will be possible. Old stripe heads are freed once their
978 * pages have been transferred over, and the old kmem_cache is
979 * freed when all stripes are done.
980 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
981 * we simple return a failre status - no need to clean anything up.
982 * 4/ allocate new pages for the new slots in the new stripe_heads.
983 * If this fails, we don't bother trying the shrink the
984 * stripe_heads down again, we just leave them as they are.
985 * As each stripe_head is processed the new one is released into
986 * active service.
987 *
988 * Once step2 is started, we cannot afford to wait for a write,
989 * so we use GFP_NOIO allocations.
990 */
991 struct stripe_head *osh, *nsh;
992 LIST_HEAD(newstripes);
993 struct disk_info *ndisks;
994 int err = 0;
995 struct kmem_cache *sc;
996 int i;
997
998 if (newsize <= conf->pool_size)
999 return 0; /* never bother to shrink */
1000
1001 md_allow_write(conf->mddev);
1002
1003 /* Step 1 */
1004 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1005 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1006 0, 0, NULL);
1007 if (!sc)
1008 return -ENOMEM;
1009
1010 for (i = conf->max_nr_stripes; i; i--) {
1011 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1012 if (!nsh)
1013 break;
1014
1015 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1016
1017 nsh->raid_conf = conf;
1018 spin_lock_init(&nsh->lock);
1019
1020 list_add(&nsh->lru, &newstripes);
1021 }
1022 if (i) {
1023 /* didn't get enough, give up */
1024 while (!list_empty(&newstripes)) {
1025 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1026 list_del(&nsh->lru);
1027 kmem_cache_free(sc, nsh);
1028 }
1029 kmem_cache_destroy(sc);
1030 return -ENOMEM;
1031 }
1032 /* Step 2 - Must use GFP_NOIO now.
1033 * OK, we have enough stripes, start collecting inactive
1034 * stripes and copying them over
1035 */
1036 list_for_each_entry(nsh, &newstripes, lru) {
1037 spin_lock_irq(&conf->device_lock);
1038 wait_event_lock_irq(conf->wait_for_stripe,
1039 !list_empty(&conf->inactive_list),
1040 conf->device_lock,
1041 unplug_slaves(conf->mddev)
1042 );
1043 osh = get_free_stripe(conf);
1044 spin_unlock_irq(&conf->device_lock);
1045 atomic_set(&nsh->count, 1);
1046 for(i=0; i<conf->pool_size; i++)
1047 nsh->dev[i].page = osh->dev[i].page;
1048 for( ; i<newsize; i++)
1049 nsh->dev[i].page = NULL;
1050 kmem_cache_free(conf->slab_cache, osh);
1051 }
1052 kmem_cache_destroy(conf->slab_cache);
1053
1054 /* Step 3.
1055 * At this point, we are holding all the stripes so the array
1056 * is completely stalled, so now is a good time to resize
1057 * conf->disks.
1058 */
1059 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1060 if (ndisks) {
1061 for (i=0; i<conf->raid_disks; i++)
1062 ndisks[i] = conf->disks[i];
1063 kfree(conf->disks);
1064 conf->disks = ndisks;
1065 } else
1066 err = -ENOMEM;
1067
1068 /* Step 4, return new stripes to service */
1069 while(!list_empty(&newstripes)) {
1070 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1071 list_del_init(&nsh->lru);
1072 for (i=conf->raid_disks; i < newsize; i++)
1073 if (nsh->dev[i].page == NULL) {
1074 struct page *p = alloc_page(GFP_NOIO);
1075 nsh->dev[i].page = p;
1076 if (!p)
1077 err = -ENOMEM;
1078 }
1079 release_stripe(nsh);
1080 }
1081 /* critical section pass, GFP_NOIO no longer needed */
1082
1083 conf->slab_cache = sc;
1084 conf->active_name = 1-conf->active_name;
1085 conf->pool_size = newsize;
1086 return err;
1087 }
1088 #endif
1089
1090 static int drop_one_stripe(raid5_conf_t *conf)
1091 {
1092 struct stripe_head *sh;
1093
1094 spin_lock_irq(&conf->device_lock);
1095 sh = get_free_stripe(conf);
1096 spin_unlock_irq(&conf->device_lock);
1097 if (!sh)
1098 return 0;
1099 BUG_ON(atomic_read(&sh->count));
1100 shrink_buffers(sh, conf->pool_size);
1101 kmem_cache_free(conf->slab_cache, sh);
1102 atomic_dec(&conf->active_stripes);
1103 return 1;
1104 }
1105
1106 static void shrink_stripes(raid5_conf_t *conf)
1107 {
1108 while (drop_one_stripe(conf))
1109 ;
1110
1111 if (conf->slab_cache)
1112 kmem_cache_destroy(conf->slab_cache);
1113 conf->slab_cache = NULL;
1114 }
1115
1116 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
1117 int error)
1118 {
1119 struct stripe_head *sh = bi->bi_private;
1120 raid5_conf_t *conf = sh->raid_conf;
1121 int disks = sh->disks, i;
1122 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1123 char b[BDEVNAME_SIZE];
1124 mdk_rdev_t *rdev;
1125
1126 if (bi->bi_size)
1127 return 1;
1128
1129 for (i=0 ; i<disks; i++)
1130 if (bi == &sh->dev[i].req)
1131 break;
1132
1133 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1134 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1135 uptodate);
1136 if (i == disks) {
1137 BUG();
1138 return 0;
1139 }
1140
1141 if (uptodate) {
1142 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1143 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1144 rdev = conf->disks[i].rdev;
1145 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1146 mdname(conf->mddev), STRIPE_SECTORS,
1147 (unsigned long long)sh->sector + rdev->data_offset,
1148 bdevname(rdev->bdev, b));
1149 clear_bit(R5_ReadError, &sh->dev[i].flags);
1150 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1151 }
1152 if (atomic_read(&conf->disks[i].rdev->read_errors))
1153 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1154 } else {
1155 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1156 int retry = 0;
1157 rdev = conf->disks[i].rdev;
1158
1159 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1160 atomic_inc(&rdev->read_errors);
1161 if (conf->mddev->degraded)
1162 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1163 mdname(conf->mddev),
1164 (unsigned long long)sh->sector + rdev->data_offset,
1165 bdn);
1166 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1167 /* Oh, no!!! */
1168 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1169 mdname(conf->mddev),
1170 (unsigned long long)sh->sector + rdev->data_offset,
1171 bdn);
1172 else if (atomic_read(&rdev->read_errors)
1173 > conf->max_nr_stripes)
1174 printk(KERN_WARNING
1175 "raid5:%s: Too many read errors, failing device %s.\n",
1176 mdname(conf->mddev), bdn);
1177 else
1178 retry = 1;
1179 if (retry)
1180 set_bit(R5_ReadError, &sh->dev[i].flags);
1181 else {
1182 clear_bit(R5_ReadError, &sh->dev[i].flags);
1183 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1184 md_error(conf->mddev, rdev);
1185 }
1186 }
1187 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1188 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1189 set_bit(STRIPE_HANDLE, &sh->state);
1190 release_stripe(sh);
1191 return 0;
1192 }
1193
1194 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
1195 int error)
1196 {
1197 struct stripe_head *sh = bi->bi_private;
1198 raid5_conf_t *conf = sh->raid_conf;
1199 int disks = sh->disks, i;
1200 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1201
1202 if (bi->bi_size)
1203 return 1;
1204
1205 for (i=0 ; i<disks; i++)
1206 if (bi == &sh->dev[i].req)
1207 break;
1208
1209 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1210 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1211 uptodate);
1212 if (i == disks) {
1213 BUG();
1214 return 0;
1215 }
1216
1217 if (!uptodate)
1218 md_error(conf->mddev, conf->disks[i].rdev);
1219
1220 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1221
1222 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1223 set_bit(STRIPE_HANDLE, &sh->state);
1224 release_stripe(sh);
1225 return 0;
1226 }
1227
1228
1229 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1230
1231 static void raid5_build_block (struct stripe_head *sh, int i)
1232 {
1233 struct r5dev *dev = &sh->dev[i];
1234
1235 bio_init(&dev->req);
1236 dev->req.bi_io_vec = &dev->vec;
1237 dev->req.bi_vcnt++;
1238 dev->req.bi_max_vecs++;
1239 dev->vec.bv_page = dev->page;
1240 dev->vec.bv_len = STRIPE_SIZE;
1241 dev->vec.bv_offset = 0;
1242
1243 dev->req.bi_sector = sh->sector;
1244 dev->req.bi_private = sh;
1245
1246 dev->flags = 0;
1247 dev->sector = compute_blocknr(sh, i);
1248 }
1249
1250 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1251 {
1252 char b[BDEVNAME_SIZE];
1253 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1254 pr_debug("raid5: error called\n");
1255
1256 if (!test_bit(Faulty, &rdev->flags)) {
1257 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1258 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1259 unsigned long flags;
1260 spin_lock_irqsave(&conf->device_lock, flags);
1261 mddev->degraded++;
1262 spin_unlock_irqrestore(&conf->device_lock, flags);
1263 /*
1264 * if recovery was running, make sure it aborts.
1265 */
1266 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1267 }
1268 set_bit(Faulty, &rdev->flags);
1269 printk (KERN_ALERT
1270 "raid5: Disk failure on %s, disabling device."
1271 " Operation continuing on %d devices\n",
1272 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1273 }
1274 }
1275
1276 /*
1277 * Input: a 'big' sector number,
1278 * Output: index of the data and parity disk, and the sector # in them.
1279 */
1280 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1281 unsigned int data_disks, unsigned int * dd_idx,
1282 unsigned int * pd_idx, raid5_conf_t *conf)
1283 {
1284 long stripe;
1285 unsigned long chunk_number;
1286 unsigned int chunk_offset;
1287 sector_t new_sector;
1288 int sectors_per_chunk = conf->chunk_size >> 9;
1289
1290 /* First compute the information on this sector */
1291
1292 /*
1293 * Compute the chunk number and the sector offset inside the chunk
1294 */
1295 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1296 chunk_number = r_sector;
1297 BUG_ON(r_sector != chunk_number);
1298
1299 /*
1300 * Compute the stripe number
1301 */
1302 stripe = chunk_number / data_disks;
1303
1304 /*
1305 * Compute the data disk and parity disk indexes inside the stripe
1306 */
1307 *dd_idx = chunk_number % data_disks;
1308
1309 /*
1310 * Select the parity disk based on the user selected algorithm.
1311 */
1312 switch(conf->level) {
1313 case 4:
1314 *pd_idx = data_disks;
1315 break;
1316 case 5:
1317 switch (conf->algorithm) {
1318 case ALGORITHM_LEFT_ASYMMETRIC:
1319 *pd_idx = data_disks - stripe % raid_disks;
1320 if (*dd_idx >= *pd_idx)
1321 (*dd_idx)++;
1322 break;
1323 case ALGORITHM_RIGHT_ASYMMETRIC:
1324 *pd_idx = stripe % raid_disks;
1325 if (*dd_idx >= *pd_idx)
1326 (*dd_idx)++;
1327 break;
1328 case ALGORITHM_LEFT_SYMMETRIC:
1329 *pd_idx = data_disks - stripe % raid_disks;
1330 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1331 break;
1332 case ALGORITHM_RIGHT_SYMMETRIC:
1333 *pd_idx = stripe % raid_disks;
1334 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1335 break;
1336 default:
1337 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1338 conf->algorithm);
1339 }
1340 break;
1341 case 6:
1342
1343 /**** FIX THIS ****/
1344 switch (conf->algorithm) {
1345 case ALGORITHM_LEFT_ASYMMETRIC:
1346 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1347 if (*pd_idx == raid_disks-1)
1348 (*dd_idx)++; /* Q D D D P */
1349 else if (*dd_idx >= *pd_idx)
1350 (*dd_idx) += 2; /* D D P Q D */
1351 break;
1352 case ALGORITHM_RIGHT_ASYMMETRIC:
1353 *pd_idx = stripe % raid_disks;
1354 if (*pd_idx == raid_disks-1)
1355 (*dd_idx)++; /* Q D D D P */
1356 else if (*dd_idx >= *pd_idx)
1357 (*dd_idx) += 2; /* D D P Q D */
1358 break;
1359 case ALGORITHM_LEFT_SYMMETRIC:
1360 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1361 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1362 break;
1363 case ALGORITHM_RIGHT_SYMMETRIC:
1364 *pd_idx = stripe % raid_disks;
1365 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1366 break;
1367 default:
1368 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1369 conf->algorithm);
1370 }
1371 break;
1372 }
1373
1374 /*
1375 * Finally, compute the new sector number
1376 */
1377 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1378 return new_sector;
1379 }
1380
1381
1382 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1383 {
1384 raid5_conf_t *conf = sh->raid_conf;
1385 int raid_disks = sh->disks;
1386 int data_disks = raid_disks - conf->max_degraded;
1387 sector_t new_sector = sh->sector, check;
1388 int sectors_per_chunk = conf->chunk_size >> 9;
1389 sector_t stripe;
1390 int chunk_offset;
1391 int chunk_number, dummy1, dummy2, dd_idx = i;
1392 sector_t r_sector;
1393
1394
1395 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1396 stripe = new_sector;
1397 BUG_ON(new_sector != stripe);
1398
1399 if (i == sh->pd_idx)
1400 return 0;
1401 switch(conf->level) {
1402 case 4: break;
1403 case 5:
1404 switch (conf->algorithm) {
1405 case ALGORITHM_LEFT_ASYMMETRIC:
1406 case ALGORITHM_RIGHT_ASYMMETRIC:
1407 if (i > sh->pd_idx)
1408 i--;
1409 break;
1410 case ALGORITHM_LEFT_SYMMETRIC:
1411 case ALGORITHM_RIGHT_SYMMETRIC:
1412 if (i < sh->pd_idx)
1413 i += raid_disks;
1414 i -= (sh->pd_idx + 1);
1415 break;
1416 default:
1417 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1418 conf->algorithm);
1419 }
1420 break;
1421 case 6:
1422 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1423 return 0; /* It is the Q disk */
1424 switch (conf->algorithm) {
1425 case ALGORITHM_LEFT_ASYMMETRIC:
1426 case ALGORITHM_RIGHT_ASYMMETRIC:
1427 if (sh->pd_idx == raid_disks-1)
1428 i--; /* Q D D D P */
1429 else if (i > sh->pd_idx)
1430 i -= 2; /* D D P Q D */
1431 break;
1432 case ALGORITHM_LEFT_SYMMETRIC:
1433 case ALGORITHM_RIGHT_SYMMETRIC:
1434 if (sh->pd_idx == raid_disks-1)
1435 i--; /* Q D D D P */
1436 else {
1437 /* D D P Q D */
1438 if (i < sh->pd_idx)
1439 i += raid_disks;
1440 i -= (sh->pd_idx + 2);
1441 }
1442 break;
1443 default:
1444 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1445 conf->algorithm);
1446 }
1447 break;
1448 }
1449
1450 chunk_number = stripe * data_disks + i;
1451 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1452
1453 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1454 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1455 printk(KERN_ERR "compute_blocknr: map not correct\n");
1456 return 0;
1457 }
1458 return r_sector;
1459 }
1460
1461
1462
1463 /*
1464 * Copy data between a page in the stripe cache, and one or more bion
1465 * The page could align with the middle of the bio, or there could be
1466 * several bion, each with several bio_vecs, which cover part of the page
1467 * Multiple bion are linked together on bi_next. There may be extras
1468 * at the end of this list. We ignore them.
1469 */
1470 static void copy_data(int frombio, struct bio *bio,
1471 struct page *page,
1472 sector_t sector)
1473 {
1474 char *pa = page_address(page);
1475 struct bio_vec *bvl;
1476 int i;
1477 int page_offset;
1478
1479 if (bio->bi_sector >= sector)
1480 page_offset = (signed)(bio->bi_sector - sector) * 512;
1481 else
1482 page_offset = (signed)(sector - bio->bi_sector) * -512;
1483 bio_for_each_segment(bvl, bio, i) {
1484 int len = bio_iovec_idx(bio,i)->bv_len;
1485 int clen;
1486 int b_offset = 0;
1487
1488 if (page_offset < 0) {
1489 b_offset = -page_offset;
1490 page_offset += b_offset;
1491 len -= b_offset;
1492 }
1493
1494 if (len > 0 && page_offset + len > STRIPE_SIZE)
1495 clen = STRIPE_SIZE - page_offset;
1496 else clen = len;
1497
1498 if (clen > 0) {
1499 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1500 if (frombio)
1501 memcpy(pa+page_offset, ba+b_offset, clen);
1502 else
1503 memcpy(ba+b_offset, pa+page_offset, clen);
1504 __bio_kunmap_atomic(ba, KM_USER0);
1505 }
1506 if (clen < len) /* hit end of page */
1507 break;
1508 page_offset += len;
1509 }
1510 }
1511
1512 #define check_xor() do { \
1513 if (count == MAX_XOR_BLOCKS) { \
1514 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1515 count = 0; \
1516 } \
1517 } while(0)
1518
1519 static void compute_parity6(struct stripe_head *sh, int method)
1520 {
1521 raid6_conf_t *conf = sh->raid_conf;
1522 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1523 struct bio *chosen;
1524 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1525 void *ptrs[disks];
1526
1527 qd_idx = raid6_next_disk(pd_idx, disks);
1528 d0_idx = raid6_next_disk(qd_idx, disks);
1529
1530 pr_debug("compute_parity, stripe %llu, method %d\n",
1531 (unsigned long long)sh->sector, method);
1532
1533 switch(method) {
1534 case READ_MODIFY_WRITE:
1535 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1536 case RECONSTRUCT_WRITE:
1537 for (i= disks; i-- ;)
1538 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1539 chosen = sh->dev[i].towrite;
1540 sh->dev[i].towrite = NULL;
1541
1542 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1543 wake_up(&conf->wait_for_overlap);
1544
1545 BUG_ON(sh->dev[i].written);
1546 sh->dev[i].written = chosen;
1547 }
1548 break;
1549 case CHECK_PARITY:
1550 BUG(); /* Not implemented yet */
1551 }
1552
1553 for (i = disks; i--;)
1554 if (sh->dev[i].written) {
1555 sector_t sector = sh->dev[i].sector;
1556 struct bio *wbi = sh->dev[i].written;
1557 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1558 copy_data(1, wbi, sh->dev[i].page, sector);
1559 wbi = r5_next_bio(wbi, sector);
1560 }
1561
1562 set_bit(R5_LOCKED, &sh->dev[i].flags);
1563 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1564 }
1565
1566 // switch(method) {
1567 // case RECONSTRUCT_WRITE:
1568 // case CHECK_PARITY:
1569 // case UPDATE_PARITY:
1570 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1571 /* FIX: Is this ordering of drives even remotely optimal? */
1572 count = 0;
1573 i = d0_idx;
1574 do {
1575 ptrs[count++] = page_address(sh->dev[i].page);
1576 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1577 printk("block %d/%d not uptodate on parity calc\n", i,count);
1578 i = raid6_next_disk(i, disks);
1579 } while ( i != d0_idx );
1580 // break;
1581 // }
1582
1583 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1584
1585 switch(method) {
1586 case RECONSTRUCT_WRITE:
1587 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1588 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1589 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1590 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1591 break;
1592 case UPDATE_PARITY:
1593 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1594 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1595 break;
1596 }
1597 }
1598
1599
1600 /* Compute one missing block */
1601 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1602 {
1603 int i, count, disks = sh->disks;
1604 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1605 int pd_idx = sh->pd_idx;
1606 int qd_idx = raid6_next_disk(pd_idx, disks);
1607
1608 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1609 (unsigned long long)sh->sector, dd_idx);
1610
1611 if ( dd_idx == qd_idx ) {
1612 /* We're actually computing the Q drive */
1613 compute_parity6(sh, UPDATE_PARITY);
1614 } else {
1615 dest = page_address(sh->dev[dd_idx].page);
1616 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1617 count = 0;
1618 for (i = disks ; i--; ) {
1619 if (i == dd_idx || i == qd_idx)
1620 continue;
1621 p = page_address(sh->dev[i].page);
1622 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1623 ptr[count++] = p;
1624 else
1625 printk("compute_block() %d, stripe %llu, %d"
1626 " not present\n", dd_idx,
1627 (unsigned long long)sh->sector, i);
1628
1629 check_xor();
1630 }
1631 if (count)
1632 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1633 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1634 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1635 }
1636 }
1637
1638 /* Compute two missing blocks */
1639 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1640 {
1641 int i, count, disks = sh->disks;
1642 int pd_idx = sh->pd_idx;
1643 int qd_idx = raid6_next_disk(pd_idx, disks);
1644 int d0_idx = raid6_next_disk(qd_idx, disks);
1645 int faila, failb;
1646
1647 /* faila and failb are disk numbers relative to d0_idx */
1648 /* pd_idx become disks-2 and qd_idx become disks-1 */
1649 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1650 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1651
1652 BUG_ON(faila == failb);
1653 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1654
1655 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1656 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1657
1658 if ( failb == disks-1 ) {
1659 /* Q disk is one of the missing disks */
1660 if ( faila == disks-2 ) {
1661 /* Missing P+Q, just recompute */
1662 compute_parity6(sh, UPDATE_PARITY);
1663 return;
1664 } else {
1665 /* We're missing D+Q; recompute D from P */
1666 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1667 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1668 return;
1669 }
1670 }
1671
1672 /* We're missing D+P or D+D; build pointer table */
1673 {
1674 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1675 void *ptrs[disks];
1676
1677 count = 0;
1678 i = d0_idx;
1679 do {
1680 ptrs[count++] = page_address(sh->dev[i].page);
1681 i = raid6_next_disk(i, disks);
1682 if (i != dd_idx1 && i != dd_idx2 &&
1683 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1684 printk("compute_2 with missing block %d/%d\n", count, i);
1685 } while ( i != d0_idx );
1686
1687 if ( failb == disks-2 ) {
1688 /* We're missing D+P. */
1689 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1690 } else {
1691 /* We're missing D+D. */
1692 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1693 }
1694
1695 /* Both the above update both missing blocks */
1696 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1697 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1698 }
1699 }
1700
1701 static int
1702 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1703 {
1704 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1705 int locked = 0;
1706
1707 if (rcw) {
1708 /* if we are not expanding this is a proper write request, and
1709 * there will be bios with new data to be drained into the
1710 * stripe cache
1711 */
1712 if (!expand) {
1713 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1714 sh->ops.count++;
1715 }
1716
1717 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1718 sh->ops.count++;
1719
1720 for (i = disks; i--; ) {
1721 struct r5dev *dev = &sh->dev[i];
1722
1723 if (dev->towrite) {
1724 set_bit(R5_LOCKED, &dev->flags);
1725 if (!expand)
1726 clear_bit(R5_UPTODATE, &dev->flags);
1727 locked++;
1728 }
1729 }
1730 } else {
1731 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1732 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1733
1734 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1735 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1736 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1737
1738 sh->ops.count += 3;
1739
1740 for (i = disks; i--; ) {
1741 struct r5dev *dev = &sh->dev[i];
1742 if (i == pd_idx)
1743 continue;
1744
1745 /* For a read-modify write there may be blocks that are
1746 * locked for reading while others are ready to be
1747 * written so we distinguish these blocks by the
1748 * R5_Wantprexor bit
1749 */
1750 if (dev->towrite &&
1751 (test_bit(R5_UPTODATE, &dev->flags) ||
1752 test_bit(R5_Wantcompute, &dev->flags))) {
1753 set_bit(R5_Wantprexor, &dev->flags);
1754 set_bit(R5_LOCKED, &dev->flags);
1755 clear_bit(R5_UPTODATE, &dev->flags);
1756 locked++;
1757 }
1758 }
1759 }
1760
1761 /* keep the parity disk locked while asynchronous operations
1762 * are in flight
1763 */
1764 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1765 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1766 locked++;
1767
1768 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1769 __FUNCTION__, (unsigned long long)sh->sector,
1770 locked, sh->ops.pending);
1771
1772 return locked;
1773 }
1774
1775 /*
1776 * Each stripe/dev can have one or more bion attached.
1777 * toread/towrite point to the first in a chain.
1778 * The bi_next chain must be in order.
1779 */
1780 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1781 {
1782 struct bio **bip;
1783 raid5_conf_t *conf = sh->raid_conf;
1784 int firstwrite=0;
1785
1786 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1787 (unsigned long long)bi->bi_sector,
1788 (unsigned long long)sh->sector);
1789
1790
1791 spin_lock(&sh->lock);
1792 spin_lock_irq(&conf->device_lock);
1793 if (forwrite) {
1794 bip = &sh->dev[dd_idx].towrite;
1795 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1796 firstwrite = 1;
1797 } else
1798 bip = &sh->dev[dd_idx].toread;
1799 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1800 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1801 goto overlap;
1802 bip = & (*bip)->bi_next;
1803 }
1804 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1805 goto overlap;
1806
1807 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1808 if (*bip)
1809 bi->bi_next = *bip;
1810 *bip = bi;
1811 bi->bi_phys_segments ++;
1812 spin_unlock_irq(&conf->device_lock);
1813 spin_unlock(&sh->lock);
1814
1815 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1816 (unsigned long long)bi->bi_sector,
1817 (unsigned long long)sh->sector, dd_idx);
1818
1819 if (conf->mddev->bitmap && firstwrite) {
1820 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1821 STRIPE_SECTORS, 0);
1822 sh->bm_seq = conf->seq_flush+1;
1823 set_bit(STRIPE_BIT_DELAY, &sh->state);
1824 }
1825
1826 if (forwrite) {
1827 /* check if page is covered */
1828 sector_t sector = sh->dev[dd_idx].sector;
1829 for (bi=sh->dev[dd_idx].towrite;
1830 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1831 bi && bi->bi_sector <= sector;
1832 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1833 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1834 sector = bi->bi_sector + (bi->bi_size>>9);
1835 }
1836 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1837 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1838 }
1839 return 1;
1840
1841 overlap:
1842 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1843 spin_unlock_irq(&conf->device_lock);
1844 spin_unlock(&sh->lock);
1845 return 0;
1846 }
1847
1848 static void end_reshape(raid5_conf_t *conf);
1849
1850 static int page_is_zero(struct page *p)
1851 {
1852 char *a = page_address(p);
1853 return ((*(u32*)a) == 0 &&
1854 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1855 }
1856
1857 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1858 {
1859 int sectors_per_chunk = conf->chunk_size >> 9;
1860 int pd_idx, dd_idx;
1861 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1862
1863 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1864 *sectors_per_chunk + chunk_offset,
1865 disks, disks - conf->max_degraded,
1866 &dd_idx, &pd_idx, conf);
1867 return pd_idx;
1868 }
1869
1870 static void
1871 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1872 struct stripe_head_state *s, int disks,
1873 struct bio **return_bi)
1874 {
1875 int i;
1876 for (i = disks; i--; ) {
1877 struct bio *bi;
1878 int bitmap_end = 0;
1879
1880 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1881 mdk_rdev_t *rdev;
1882 rcu_read_lock();
1883 rdev = rcu_dereference(conf->disks[i].rdev);
1884 if (rdev && test_bit(In_sync, &rdev->flags))
1885 /* multiple read failures in one stripe */
1886 md_error(conf->mddev, rdev);
1887 rcu_read_unlock();
1888 }
1889 spin_lock_irq(&conf->device_lock);
1890 /* fail all writes first */
1891 bi = sh->dev[i].towrite;
1892 sh->dev[i].towrite = NULL;
1893 if (bi) {
1894 s->to_write--;
1895 bitmap_end = 1;
1896 }
1897
1898 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1899 wake_up(&conf->wait_for_overlap);
1900
1901 while (bi && bi->bi_sector <
1902 sh->dev[i].sector + STRIPE_SECTORS) {
1903 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1904 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1905 if (--bi->bi_phys_segments == 0) {
1906 md_write_end(conf->mddev);
1907 bi->bi_next = *return_bi;
1908 *return_bi = bi;
1909 }
1910 bi = nextbi;
1911 }
1912 /* and fail all 'written' */
1913 bi = sh->dev[i].written;
1914 sh->dev[i].written = NULL;
1915 if (bi) bitmap_end = 1;
1916 while (bi && bi->bi_sector <
1917 sh->dev[i].sector + STRIPE_SECTORS) {
1918 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1919 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1920 if (--bi->bi_phys_segments == 0) {
1921 md_write_end(conf->mddev);
1922 bi->bi_next = *return_bi;
1923 *return_bi = bi;
1924 }
1925 bi = bi2;
1926 }
1927
1928 /* fail any reads if this device is non-operational and
1929 * the data has not reached the cache yet.
1930 */
1931 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1932 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1933 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1934 bi = sh->dev[i].toread;
1935 sh->dev[i].toread = NULL;
1936 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1937 wake_up(&conf->wait_for_overlap);
1938 if (bi) s->to_read--;
1939 while (bi && bi->bi_sector <
1940 sh->dev[i].sector + STRIPE_SECTORS) {
1941 struct bio *nextbi =
1942 r5_next_bio(bi, sh->dev[i].sector);
1943 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1944 if (--bi->bi_phys_segments == 0) {
1945 bi->bi_next = *return_bi;
1946 *return_bi = bi;
1947 }
1948 bi = nextbi;
1949 }
1950 }
1951 spin_unlock_irq(&conf->device_lock);
1952 if (bitmap_end)
1953 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1954 STRIPE_SECTORS, 0, 0);
1955 }
1956
1957 }
1958
1959 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1960 * to process
1961 */
1962 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1963 struct stripe_head_state *s, int disk_idx, int disks)
1964 {
1965 struct r5dev *dev = &sh->dev[disk_idx];
1966 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1967
1968 /* don't schedule compute operations or reads on the parity block while
1969 * a check is in flight
1970 */
1971 if ((disk_idx == sh->pd_idx) &&
1972 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1973 return ~0;
1974
1975 /* is the data in this block needed, and can we get it? */
1976 if (!test_bit(R5_LOCKED, &dev->flags) &&
1977 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1978 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1979 s->syncing || s->expanding || (s->failed &&
1980 (failed_dev->toread || (failed_dev->towrite &&
1981 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1982 ))))) {
1983 /* 1/ We would like to get this block, possibly by computing it,
1984 * but we might not be able to.
1985 *
1986 * 2/ Since parity check operations potentially make the parity
1987 * block !uptodate it will need to be refreshed before any
1988 * compute operations on data disks are scheduled.
1989 *
1990 * 3/ We hold off parity block re-reads until check operations
1991 * have quiesced.
1992 */
1993 if ((s->uptodate == disks - 1) &&
1994 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1995 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1996 set_bit(R5_Wantcompute, &dev->flags);
1997 sh->ops.target = disk_idx;
1998 s->req_compute = 1;
1999 sh->ops.count++;
2000 /* Careful: from this point on 'uptodate' is in the eye
2001 * of raid5_run_ops which services 'compute' operations
2002 * before writes. R5_Wantcompute flags a block that will
2003 * be R5_UPTODATE by the time it is needed for a
2004 * subsequent operation.
2005 */
2006 s->uptodate++;
2007 return 0; /* uptodate + compute == disks */
2008 } else if ((s->uptodate < disks - 1) &&
2009 test_bit(R5_Insync, &dev->flags)) {
2010 /* Note: we hold off compute operations while checks are
2011 * in flight, but we still prefer 'compute' over 'read'
2012 * hence we only read if (uptodate < * disks-1)
2013 */
2014 set_bit(R5_LOCKED, &dev->flags);
2015 set_bit(R5_Wantread, &dev->flags);
2016 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2017 sh->ops.count++;
2018 s->locked++;
2019 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2020 s->syncing);
2021 }
2022 }
2023
2024 return ~0;
2025 }
2026
2027 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2028 struct stripe_head_state *s, int disks)
2029 {
2030 int i;
2031
2032 /* Clear completed compute operations. Parity recovery
2033 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2034 * later on in this routine
2035 */
2036 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2037 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2038 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2039 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2040 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2041 }
2042
2043 /* look for blocks to read/compute, skip this if a compute
2044 * is already in flight, or if the stripe contents are in the
2045 * midst of changing due to a write
2046 */
2047 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2048 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2049 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2050 for (i = disks; i--; )
2051 if (__handle_issuing_new_read_requests5(
2052 sh, s, i, disks) == 0)
2053 break;
2054 }
2055 set_bit(STRIPE_HANDLE, &sh->state);
2056 }
2057
2058 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2059 struct stripe_head_state *s, struct r6_state *r6s,
2060 int disks)
2061 {
2062 int i;
2063 for (i = disks; i--; ) {
2064 struct r5dev *dev = &sh->dev[i];
2065 if (!test_bit(R5_LOCKED, &dev->flags) &&
2066 !test_bit(R5_UPTODATE, &dev->flags) &&
2067 (dev->toread || (dev->towrite &&
2068 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2069 s->syncing || s->expanding ||
2070 (s->failed >= 1 &&
2071 (sh->dev[r6s->failed_num[0]].toread ||
2072 s->to_write)) ||
2073 (s->failed >= 2 &&
2074 (sh->dev[r6s->failed_num[1]].toread ||
2075 s->to_write)))) {
2076 /* we would like to get this block, possibly
2077 * by computing it, but we might not be able to
2078 */
2079 if (s->uptodate == disks-1) {
2080 pr_debug("Computing stripe %llu block %d\n",
2081 (unsigned long long)sh->sector, i);
2082 compute_block_1(sh, i, 0);
2083 s->uptodate++;
2084 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2085 /* Computing 2-failure is *very* expensive; only
2086 * do it if failed >= 2
2087 */
2088 int other;
2089 for (other = disks; other--; ) {
2090 if (other == i)
2091 continue;
2092 if (!test_bit(R5_UPTODATE,
2093 &sh->dev[other].flags))
2094 break;
2095 }
2096 BUG_ON(other < 0);
2097 pr_debug("Computing stripe %llu blocks %d,%d\n",
2098 (unsigned long long)sh->sector,
2099 i, other);
2100 compute_block_2(sh, i, other);
2101 s->uptodate += 2;
2102 } else if (test_bit(R5_Insync, &dev->flags)) {
2103 set_bit(R5_LOCKED, &dev->flags);
2104 set_bit(R5_Wantread, &dev->flags);
2105 s->locked++;
2106 pr_debug("Reading block %d (sync=%d)\n",
2107 i, s->syncing);
2108 }
2109 }
2110 }
2111 set_bit(STRIPE_HANDLE, &sh->state);
2112 }
2113
2114
2115 /* handle_completed_write_requests
2116 * any written block on an uptodate or failed drive can be returned.
2117 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2118 * never LOCKED, so we don't need to test 'failed' directly.
2119 */
2120 static void handle_completed_write_requests(raid5_conf_t *conf,
2121 struct stripe_head *sh, int disks, struct bio **return_bi)
2122 {
2123 int i;
2124 struct r5dev *dev;
2125
2126 for (i = disks; i--; )
2127 if (sh->dev[i].written) {
2128 dev = &sh->dev[i];
2129 if (!test_bit(R5_LOCKED, &dev->flags) &&
2130 test_bit(R5_UPTODATE, &dev->flags)) {
2131 /* We can return any write requests */
2132 struct bio *wbi, *wbi2;
2133 int bitmap_end = 0;
2134 pr_debug("Return write for disc %d\n", i);
2135 spin_lock_irq(&conf->device_lock);
2136 wbi = dev->written;
2137 dev->written = NULL;
2138 while (wbi && wbi->bi_sector <
2139 dev->sector + STRIPE_SECTORS) {
2140 wbi2 = r5_next_bio(wbi, dev->sector);
2141 if (--wbi->bi_phys_segments == 0) {
2142 md_write_end(conf->mddev);
2143 wbi->bi_next = *return_bi;
2144 *return_bi = wbi;
2145 }
2146 wbi = wbi2;
2147 }
2148 if (dev->towrite == NULL)
2149 bitmap_end = 1;
2150 spin_unlock_irq(&conf->device_lock);
2151 if (bitmap_end)
2152 bitmap_endwrite(conf->mddev->bitmap,
2153 sh->sector,
2154 STRIPE_SECTORS,
2155 !test_bit(STRIPE_DEGRADED, &sh->state),
2156 0);
2157 }
2158 }
2159 }
2160
2161 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2162 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2163 {
2164 int rmw = 0, rcw = 0, i;
2165 for (i = disks; i--; ) {
2166 /* would I have to read this buffer for read_modify_write */
2167 struct r5dev *dev = &sh->dev[i];
2168 if ((dev->towrite || i == sh->pd_idx) &&
2169 !test_bit(R5_LOCKED, &dev->flags) &&
2170 !(test_bit(R5_UPTODATE, &dev->flags) ||
2171 test_bit(R5_Wantcompute, &dev->flags))) {
2172 if (test_bit(R5_Insync, &dev->flags))
2173 rmw++;
2174 else
2175 rmw += 2*disks; /* cannot read it */
2176 }
2177 /* Would I have to read this buffer for reconstruct_write */
2178 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2179 !test_bit(R5_LOCKED, &dev->flags) &&
2180 !(test_bit(R5_UPTODATE, &dev->flags) ||
2181 test_bit(R5_Wantcompute, &dev->flags))) {
2182 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2183 else
2184 rcw += 2*disks;
2185 }
2186 }
2187 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2188 (unsigned long long)sh->sector, rmw, rcw);
2189 set_bit(STRIPE_HANDLE, &sh->state);
2190 if (rmw < rcw && rmw > 0)
2191 /* prefer read-modify-write, but need to get some data */
2192 for (i = disks; i--; ) {
2193 struct r5dev *dev = &sh->dev[i];
2194 if ((dev->towrite || i == sh->pd_idx) &&
2195 !test_bit(R5_LOCKED, &dev->flags) &&
2196 !(test_bit(R5_UPTODATE, &dev->flags) ||
2197 test_bit(R5_Wantcompute, &dev->flags)) &&
2198 test_bit(R5_Insync, &dev->flags)) {
2199 if (
2200 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2201 pr_debug("Read_old block "
2202 "%d for r-m-w\n", i);
2203 set_bit(R5_LOCKED, &dev->flags);
2204 set_bit(R5_Wantread, &dev->flags);
2205 if (!test_and_set_bit(
2206 STRIPE_OP_IO, &sh->ops.pending))
2207 sh->ops.count++;
2208 s->locked++;
2209 } else {
2210 set_bit(STRIPE_DELAYED, &sh->state);
2211 set_bit(STRIPE_HANDLE, &sh->state);
2212 }
2213 }
2214 }
2215 if (rcw <= rmw && rcw > 0)
2216 /* want reconstruct write, but need to get some data */
2217 for (i = disks; i--; ) {
2218 struct r5dev *dev = &sh->dev[i];
2219 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2220 i != sh->pd_idx &&
2221 !test_bit(R5_LOCKED, &dev->flags) &&
2222 !(test_bit(R5_UPTODATE, &dev->flags) ||
2223 test_bit(R5_Wantcompute, &dev->flags)) &&
2224 test_bit(R5_Insync, &dev->flags)) {
2225 if (
2226 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2227 pr_debug("Read_old block "
2228 "%d for Reconstruct\n", i);
2229 set_bit(R5_LOCKED, &dev->flags);
2230 set_bit(R5_Wantread, &dev->flags);
2231 if (!test_and_set_bit(
2232 STRIPE_OP_IO, &sh->ops.pending))
2233 sh->ops.count++;
2234 s->locked++;
2235 } else {
2236 set_bit(STRIPE_DELAYED, &sh->state);
2237 set_bit(STRIPE_HANDLE, &sh->state);
2238 }
2239 }
2240 }
2241 /* now if nothing is locked, and if we have enough data,
2242 * we can start a write request
2243 */
2244 /* since handle_stripe can be called at any time we need to handle the
2245 * case where a compute block operation has been submitted and then a
2246 * subsequent call wants to start a write request. raid5_run_ops only
2247 * handles the case where compute block and postxor are requested
2248 * simultaneously. If this is not the case then new writes need to be
2249 * held off until the compute completes.
2250 */
2251 if ((s->req_compute ||
2252 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2253 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2254 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2255 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2256 }
2257
2258 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2259 struct stripe_head *sh, struct stripe_head_state *s,
2260 struct r6_state *r6s, int disks)
2261 {
2262 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2263 int qd_idx = r6s->qd_idx;
2264 for (i = disks; i--; ) {
2265 struct r5dev *dev = &sh->dev[i];
2266 /* Would I have to read this buffer for reconstruct_write */
2267 if (!test_bit(R5_OVERWRITE, &dev->flags)
2268 && i != pd_idx && i != qd_idx
2269 && (!test_bit(R5_LOCKED, &dev->flags)
2270 ) &&
2271 !test_bit(R5_UPTODATE, &dev->flags)) {
2272 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2273 else {
2274 pr_debug("raid6: must_compute: "
2275 "disk %d flags=%#lx\n", i, dev->flags);
2276 must_compute++;
2277 }
2278 }
2279 }
2280 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2281 (unsigned long long)sh->sector, rcw, must_compute);
2282 set_bit(STRIPE_HANDLE, &sh->state);
2283
2284 if (rcw > 0)
2285 /* want reconstruct write, but need to get some data */
2286 for (i = disks; i--; ) {
2287 struct r5dev *dev = &sh->dev[i];
2288 if (!test_bit(R5_OVERWRITE, &dev->flags)
2289 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2290 && !test_bit(R5_LOCKED, &dev->flags) &&
2291 !test_bit(R5_UPTODATE, &dev->flags) &&
2292 test_bit(R5_Insync, &dev->flags)) {
2293 if (
2294 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2295 pr_debug("Read_old stripe %llu "
2296 "block %d for Reconstruct\n",
2297 (unsigned long long)sh->sector, i);
2298 set_bit(R5_LOCKED, &dev->flags);
2299 set_bit(R5_Wantread, &dev->flags);
2300 s->locked++;
2301 } else {
2302 pr_debug("Request delayed stripe %llu "
2303 "block %d for Reconstruct\n",
2304 (unsigned long long)sh->sector, i);
2305 set_bit(STRIPE_DELAYED, &sh->state);
2306 set_bit(STRIPE_HANDLE, &sh->state);
2307 }
2308 }
2309 }
2310 /* now if nothing is locked, and if we have enough data, we can start a
2311 * write request
2312 */
2313 if (s->locked == 0 && rcw == 0 &&
2314 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2315 if (must_compute > 0) {
2316 /* We have failed blocks and need to compute them */
2317 switch (s->failed) {
2318 case 0:
2319 BUG();
2320 case 1:
2321 compute_block_1(sh, r6s->failed_num[0], 0);
2322 break;
2323 case 2:
2324 compute_block_2(sh, r6s->failed_num[0],
2325 r6s->failed_num[1]);
2326 break;
2327 default: /* This request should have been failed? */
2328 BUG();
2329 }
2330 }
2331
2332 pr_debug("Computing parity for stripe %llu\n",
2333 (unsigned long long)sh->sector);
2334 compute_parity6(sh, RECONSTRUCT_WRITE);
2335 /* now every locked buffer is ready to be written */
2336 for (i = disks; i--; )
2337 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2338 pr_debug("Writing stripe %llu block %d\n",
2339 (unsigned long long)sh->sector, i);
2340 s->locked++;
2341 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2342 }
2343 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2344 set_bit(STRIPE_INSYNC, &sh->state);
2345
2346 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2347 atomic_dec(&conf->preread_active_stripes);
2348 if (atomic_read(&conf->preread_active_stripes) <
2349 IO_THRESHOLD)
2350 md_wakeup_thread(conf->mddev->thread);
2351 }
2352 }
2353 }
2354
2355 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2356 struct stripe_head_state *s, int disks)
2357 {
2358 set_bit(STRIPE_HANDLE, &sh->state);
2359 /* Take one of the following actions:
2360 * 1/ start a check parity operation if (uptodate == disks)
2361 * 2/ finish a check parity operation and act on the result
2362 * 3/ skip to the writeback section if we previously
2363 * initiated a recovery operation
2364 */
2365 if (s->failed == 0 &&
2366 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2367 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2368 BUG_ON(s->uptodate != disks);
2369 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2370 sh->ops.count++;
2371 s->uptodate--;
2372 } else if (
2373 test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2374 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2375 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2376
2377 if (sh->ops.zero_sum_result == 0)
2378 /* parity is correct (on disc,
2379 * not in buffer any more)
2380 */
2381 set_bit(STRIPE_INSYNC, &sh->state);
2382 else {
2383 conf->mddev->resync_mismatches +=
2384 STRIPE_SECTORS;
2385 if (test_bit(
2386 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2387 /* don't try to repair!! */
2388 set_bit(STRIPE_INSYNC, &sh->state);
2389 else {
2390 set_bit(STRIPE_OP_COMPUTE_BLK,
2391 &sh->ops.pending);
2392 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2393 &sh->ops.pending);
2394 set_bit(R5_Wantcompute,
2395 &sh->dev[sh->pd_idx].flags);
2396 sh->ops.target = sh->pd_idx;
2397 sh->ops.count++;
2398 s->uptodate++;
2399 }
2400 }
2401 }
2402 }
2403
2404 /* check if we can clear a parity disk reconstruct */
2405 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2406 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2407
2408 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2409 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2410 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2411 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2412 }
2413
2414 /* Wait for check parity and compute block operations to complete
2415 * before write-back
2416 */
2417 if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2418 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2419 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2420 struct r5dev *dev;
2421 /* either failed parity check, or recovery is happening */
2422 if (s->failed == 0)
2423 s->failed_num = sh->pd_idx;
2424 dev = &sh->dev[s->failed_num];
2425 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2426 BUG_ON(s->uptodate != disks);
2427
2428 set_bit(R5_LOCKED, &dev->flags);
2429 set_bit(R5_Wantwrite, &dev->flags);
2430 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2431 sh->ops.count++;
2432
2433 clear_bit(STRIPE_DEGRADED, &sh->state);
2434 s->locked++;
2435 set_bit(STRIPE_INSYNC, &sh->state);
2436 }
2437 }
2438
2439
2440 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2441 struct stripe_head_state *s,
2442 struct r6_state *r6s, struct page *tmp_page,
2443 int disks)
2444 {
2445 int update_p = 0, update_q = 0;
2446 struct r5dev *dev;
2447 int pd_idx = sh->pd_idx;
2448 int qd_idx = r6s->qd_idx;
2449
2450 set_bit(STRIPE_HANDLE, &sh->state);
2451
2452 BUG_ON(s->failed > 2);
2453 BUG_ON(s->uptodate < disks);
2454 /* Want to check and possibly repair P and Q.
2455 * However there could be one 'failed' device, in which
2456 * case we can only check one of them, possibly using the
2457 * other to generate missing data
2458 */
2459
2460 /* If !tmp_page, we cannot do the calculations,
2461 * but as we have set STRIPE_HANDLE, we will soon be called
2462 * by stripe_handle with a tmp_page - just wait until then.
2463 */
2464 if (tmp_page) {
2465 if (s->failed == r6s->q_failed) {
2466 /* The only possible failed device holds 'Q', so it
2467 * makes sense to check P (If anything else were failed,
2468 * we would have used P to recreate it).
2469 */
2470 compute_block_1(sh, pd_idx, 1);
2471 if (!page_is_zero(sh->dev[pd_idx].page)) {
2472 compute_block_1(sh, pd_idx, 0);
2473 update_p = 1;
2474 }
2475 }
2476 if (!r6s->q_failed && s->failed < 2) {
2477 /* q is not failed, and we didn't use it to generate
2478 * anything, so it makes sense to check it
2479 */
2480 memcpy(page_address(tmp_page),
2481 page_address(sh->dev[qd_idx].page),
2482 STRIPE_SIZE);
2483 compute_parity6(sh, UPDATE_PARITY);
2484 if (memcmp(page_address(tmp_page),
2485 page_address(sh->dev[qd_idx].page),
2486 STRIPE_SIZE) != 0) {
2487 clear_bit(STRIPE_INSYNC, &sh->state);
2488 update_q = 1;
2489 }
2490 }
2491 if (update_p || update_q) {
2492 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2493 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2494 /* don't try to repair!! */
2495 update_p = update_q = 0;
2496 }
2497
2498 /* now write out any block on a failed drive,
2499 * or P or Q if they need it
2500 */
2501
2502 if (s->failed == 2) {
2503 dev = &sh->dev[r6s->failed_num[1]];
2504 s->locked++;
2505 set_bit(R5_LOCKED, &dev->flags);
2506 set_bit(R5_Wantwrite, &dev->flags);
2507 }
2508 if (s->failed >= 1) {
2509 dev = &sh->dev[r6s->failed_num[0]];
2510 s->locked++;
2511 set_bit(R5_LOCKED, &dev->flags);
2512 set_bit(R5_Wantwrite, &dev->flags);
2513 }
2514
2515 if (update_p) {
2516 dev = &sh->dev[pd_idx];
2517 s->locked++;
2518 set_bit(R5_LOCKED, &dev->flags);
2519 set_bit(R5_Wantwrite, &dev->flags);
2520 }
2521 if (update_q) {
2522 dev = &sh->dev[qd_idx];
2523 s->locked++;
2524 set_bit(R5_LOCKED, &dev->flags);
2525 set_bit(R5_Wantwrite, &dev->flags);
2526 }
2527 clear_bit(STRIPE_DEGRADED, &sh->state);
2528
2529 set_bit(STRIPE_INSYNC, &sh->state);
2530 }
2531 }
2532
2533 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2534 struct r6_state *r6s)
2535 {
2536 int i;
2537
2538 /* We have read all the blocks in this stripe and now we need to
2539 * copy some of them into a target stripe for expand.
2540 */
2541 struct dma_async_tx_descriptor *tx = NULL;
2542 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2543 for (i = 0; i < sh->disks; i++)
2544 if (i != sh->pd_idx && (r6s && i != r6s->qd_idx)) {
2545 int dd_idx, pd_idx, j;
2546 struct stripe_head *sh2;
2547
2548 sector_t bn = compute_blocknr(sh, i);
2549 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2550 conf->raid_disks -
2551 conf->max_degraded, &dd_idx,
2552 &pd_idx, conf);
2553 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2554 pd_idx, 1);
2555 if (sh2 == NULL)
2556 /* so far only the early blocks of this stripe
2557 * have been requested. When later blocks
2558 * get requested, we will try again
2559 */
2560 continue;
2561 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2562 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2563 /* must have already done this block */
2564 release_stripe(sh2);
2565 continue;
2566 }
2567
2568 /* place all the copies on one channel */
2569 tx = async_memcpy(sh2->dev[dd_idx].page,
2570 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2571 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2572
2573 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2574 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2575 for (j = 0; j < conf->raid_disks; j++)
2576 if (j != sh2->pd_idx &&
2577 (r6s && j != r6s->qd_idx) &&
2578 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2579 break;
2580 if (j == conf->raid_disks) {
2581 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2582 set_bit(STRIPE_HANDLE, &sh2->state);
2583 }
2584 release_stripe(sh2);
2585
2586 /* done submitting copies, wait for them to complete */
2587 if (i + 1 >= sh->disks) {
2588 async_tx_ack(tx);
2589 dma_wait_for_async_tx(tx);
2590 }
2591 }
2592 }
2593
2594 /*
2595 * handle_stripe - do things to a stripe.
2596 *
2597 * We lock the stripe and then examine the state of various bits
2598 * to see what needs to be done.
2599 * Possible results:
2600 * return some read request which now have data
2601 * return some write requests which are safely on disc
2602 * schedule a read on some buffers
2603 * schedule a write of some buffers
2604 * return confirmation of parity correctness
2605 *
2606 * buffers are taken off read_list or write_list, and bh_cache buffers
2607 * get BH_Lock set before the stripe lock is released.
2608 *
2609 */
2610
2611 static void handle_stripe5(struct stripe_head *sh)
2612 {
2613 raid5_conf_t *conf = sh->raid_conf;
2614 int disks = sh->disks, i;
2615 struct bio *return_bi = NULL;
2616 struct stripe_head_state s;
2617 struct r5dev *dev;
2618 unsigned long pending = 0;
2619
2620 memset(&s, 0, sizeof(s));
2621 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2622 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2623 atomic_read(&sh->count), sh->pd_idx,
2624 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2625
2626 spin_lock(&sh->lock);
2627 clear_bit(STRIPE_HANDLE, &sh->state);
2628 clear_bit(STRIPE_DELAYED, &sh->state);
2629
2630 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2631 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2632 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2633 /* Now to look around and see what can be done */
2634
2635 rcu_read_lock();
2636 for (i=disks; i--; ) {
2637 mdk_rdev_t *rdev;
2638 struct r5dev *dev = &sh->dev[i];
2639 clear_bit(R5_Insync, &dev->flags);
2640
2641 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2642 "written %p\n", i, dev->flags, dev->toread, dev->read,
2643 dev->towrite, dev->written);
2644
2645 /* maybe we can request a biofill operation
2646 *
2647 * new wantfill requests are only permitted while
2648 * STRIPE_OP_BIOFILL is clear
2649 */
2650 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2651 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2652 set_bit(R5_Wantfill, &dev->flags);
2653
2654 /* now count some things */
2655 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2656 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2657 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2658
2659 if (test_bit(R5_Wantfill, &dev->flags))
2660 s.to_fill++;
2661 else if (dev->toread)
2662 s.to_read++;
2663 if (dev->towrite) {
2664 s.to_write++;
2665 if (!test_bit(R5_OVERWRITE, &dev->flags))
2666 s.non_overwrite++;
2667 }
2668 if (dev->written)
2669 s.written++;
2670 rdev = rcu_dereference(conf->disks[i].rdev);
2671 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2672 /* The ReadError flag will just be confusing now */
2673 clear_bit(R5_ReadError, &dev->flags);
2674 clear_bit(R5_ReWrite, &dev->flags);
2675 }
2676 if (!rdev || !test_bit(In_sync, &rdev->flags)
2677 || test_bit(R5_ReadError, &dev->flags)) {
2678 s.failed++;
2679 s.failed_num = i;
2680 } else
2681 set_bit(R5_Insync, &dev->flags);
2682 }
2683 rcu_read_unlock();
2684
2685 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2686 sh->ops.count++;
2687
2688 pr_debug("locked=%d uptodate=%d to_read=%d"
2689 " to_write=%d failed=%d failed_num=%d\n",
2690 s.locked, s.uptodate, s.to_read, s.to_write,
2691 s.failed, s.failed_num);
2692 /* check if the array has lost two devices and, if so, some requests might
2693 * need to be failed
2694 */
2695 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2696 handle_requests_to_failed_array(conf, sh, &s, disks,
2697 &return_bi);
2698 if (s.failed > 1 && s.syncing) {
2699 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2700 clear_bit(STRIPE_SYNCING, &sh->state);
2701 s.syncing = 0;
2702 }
2703
2704 /* might be able to return some write requests if the parity block
2705 * is safe, or on a failed drive
2706 */
2707 dev = &sh->dev[sh->pd_idx];
2708 if ( s.written &&
2709 ((test_bit(R5_Insync, &dev->flags) &&
2710 !test_bit(R5_LOCKED, &dev->flags) &&
2711 test_bit(R5_UPTODATE, &dev->flags)) ||
2712 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2713 handle_completed_write_requests(conf, sh, disks, &return_bi);
2714
2715 /* Now we might consider reading some blocks, either to check/generate
2716 * parity, or to satisfy requests
2717 * or to load a block that is being partially written.
2718 */
2719 if (s.to_read || s.non_overwrite ||
2720 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2721 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2722 handle_issuing_new_read_requests5(sh, &s, disks);
2723
2724 /* Now we check to see if any write operations have recently
2725 * completed
2726 */
2727
2728 /* leave prexor set until postxor is done, allows us to distinguish
2729 * a rmw from a rcw during biodrain
2730 */
2731 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2732 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2733
2734 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2735 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2736 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2737
2738 for (i = disks; i--; )
2739 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2740 }
2741
2742 /* if only POSTXOR is set then this is an 'expand' postxor */
2743 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2744 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2745
2746 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2747 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2748 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2749
2750 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2751 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2752 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2753
2754 /* All the 'written' buffers and the parity block are ready to
2755 * be written back to disk
2756 */
2757 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2758 for (i = disks; i--; ) {
2759 dev = &sh->dev[i];
2760 if (test_bit(R5_LOCKED, &dev->flags) &&
2761 (i == sh->pd_idx || dev->written)) {
2762 pr_debug("Writing block %d\n", i);
2763 set_bit(R5_Wantwrite, &dev->flags);
2764 if (!test_and_set_bit(
2765 STRIPE_OP_IO, &sh->ops.pending))
2766 sh->ops.count++;
2767 if (!test_bit(R5_Insync, &dev->flags) ||
2768 (i == sh->pd_idx && s.failed == 0))
2769 set_bit(STRIPE_INSYNC, &sh->state);
2770 }
2771 }
2772 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2773 atomic_dec(&conf->preread_active_stripes);
2774 if (atomic_read(&conf->preread_active_stripes) <
2775 IO_THRESHOLD)
2776 md_wakeup_thread(conf->mddev->thread);
2777 }
2778 }
2779
2780 /* Now to consider new write requests and what else, if anything
2781 * should be read. We do not handle new writes when:
2782 * 1/ A 'write' operation (copy+xor) is already in flight.
2783 * 2/ A 'check' operation is in flight, as it may clobber the parity
2784 * block.
2785 */
2786 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2787 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2788 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2789
2790 /* maybe we need to check and possibly fix the parity for this stripe
2791 * Any reads will already have been scheduled, so we just see if enough
2792 * data is available. The parity check is held off while parity
2793 * dependent operations are in flight.
2794 */
2795 if ((s.syncing && s.locked == 0 &&
2796 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2797 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2798 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2799 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2800 handle_parity_checks5(conf, sh, &s, disks);
2801
2802 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2803 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2804 clear_bit(STRIPE_SYNCING, &sh->state);
2805 }
2806
2807 /* If the failed drive is just a ReadError, then we might need to progress
2808 * the repair/check process
2809 */
2810 if (s.failed == 1 && !conf->mddev->ro &&
2811 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2812 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2813 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2814 ) {
2815 dev = &sh->dev[s.failed_num];
2816 if (!test_bit(R5_ReWrite, &dev->flags)) {
2817 set_bit(R5_Wantwrite, &dev->flags);
2818 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2819 sh->ops.count++;
2820 set_bit(R5_ReWrite, &dev->flags);
2821 set_bit(R5_LOCKED, &dev->flags);
2822 s.locked++;
2823 } else {
2824 /* let's read it back */
2825 set_bit(R5_Wantread, &dev->flags);
2826 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2827 sh->ops.count++;
2828 set_bit(R5_LOCKED, &dev->flags);
2829 s.locked++;
2830 }
2831 }
2832
2833 /* Finish postxor operations initiated by the expansion
2834 * process
2835 */
2836 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2837 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2838
2839 clear_bit(STRIPE_EXPANDING, &sh->state);
2840
2841 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2842 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2843 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2844
2845 for (i = conf->raid_disks; i--; ) {
2846 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2847 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2848 sh->ops.count++;
2849 }
2850 }
2851
2852 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2853 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2854 /* Need to write out all blocks after computing parity */
2855 sh->disks = conf->raid_disks;
2856 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2857 conf->raid_disks);
2858 s.locked += handle_write_operations5(sh, 0, 1);
2859 } else if (s.expanded &&
2860 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2861 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2862 atomic_dec(&conf->reshape_stripes);
2863 wake_up(&conf->wait_for_overlap);
2864 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2865 }
2866
2867 if (s.expanding && s.locked == 0)
2868 handle_stripe_expansion(conf, sh, NULL);
2869
2870 if (sh->ops.count)
2871 pending = get_stripe_work(sh);
2872
2873 spin_unlock(&sh->lock);
2874
2875 if (pending)
2876 raid5_run_ops(sh, pending);
2877
2878 return_io(return_bi);
2879
2880 }
2881
2882 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2883 {
2884 raid6_conf_t *conf = sh->raid_conf;
2885 int disks = sh->disks;
2886 struct bio *return_bi = NULL;
2887 int i, pd_idx = sh->pd_idx;
2888 struct stripe_head_state s;
2889 struct r6_state r6s;
2890 struct r5dev *dev, *pdev, *qdev;
2891
2892 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2893 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2894 "pd_idx=%d, qd_idx=%d\n",
2895 (unsigned long long)sh->sector, sh->state,
2896 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2897 memset(&s, 0, sizeof(s));
2898
2899 spin_lock(&sh->lock);
2900 clear_bit(STRIPE_HANDLE, &sh->state);
2901 clear_bit(STRIPE_DELAYED, &sh->state);
2902
2903 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2904 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2905 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2906 /* Now to look around and see what can be done */
2907
2908 rcu_read_lock();
2909 for (i=disks; i--; ) {
2910 mdk_rdev_t *rdev;
2911 dev = &sh->dev[i];
2912 clear_bit(R5_Insync, &dev->flags);
2913
2914 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2915 i, dev->flags, dev->toread, dev->towrite, dev->written);
2916 /* maybe we can reply to a read */
2917 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2918 struct bio *rbi, *rbi2;
2919 pr_debug("Return read for disc %d\n", i);
2920 spin_lock_irq(&conf->device_lock);
2921 rbi = dev->toread;
2922 dev->toread = NULL;
2923 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2924 wake_up(&conf->wait_for_overlap);
2925 spin_unlock_irq(&conf->device_lock);
2926 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2927 copy_data(0, rbi, dev->page, dev->sector);
2928 rbi2 = r5_next_bio(rbi, dev->sector);
2929 spin_lock_irq(&conf->device_lock);
2930 if (--rbi->bi_phys_segments == 0) {
2931 rbi->bi_next = return_bi;
2932 return_bi = rbi;
2933 }
2934 spin_unlock_irq(&conf->device_lock);
2935 rbi = rbi2;
2936 }
2937 }
2938
2939 /* now count some things */
2940 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2941 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2942
2943
2944 if (dev->toread)
2945 s.to_read++;
2946 if (dev->towrite) {
2947 s.to_write++;
2948 if (!test_bit(R5_OVERWRITE, &dev->flags))
2949 s.non_overwrite++;
2950 }
2951 if (dev->written)
2952 s.written++;
2953 rdev = rcu_dereference(conf->disks[i].rdev);
2954 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2955 /* The ReadError flag will just be confusing now */
2956 clear_bit(R5_ReadError, &dev->flags);
2957 clear_bit(R5_ReWrite, &dev->flags);
2958 }
2959 if (!rdev || !test_bit(In_sync, &rdev->flags)
2960 || test_bit(R5_ReadError, &dev->flags)) {
2961 if (s.failed < 2)
2962 r6s.failed_num[s.failed] = i;
2963 s.failed++;
2964 } else
2965 set_bit(R5_Insync, &dev->flags);
2966 }
2967 rcu_read_unlock();
2968 pr_debug("locked=%d uptodate=%d to_read=%d"
2969 " to_write=%d failed=%d failed_num=%d,%d\n",
2970 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2971 r6s.failed_num[0], r6s.failed_num[1]);
2972 /* check if the array has lost >2 devices and, if so, some requests
2973 * might need to be failed
2974 */
2975 if (s.failed > 2 && s.to_read+s.to_write+s.written)
2976 handle_requests_to_failed_array(conf, sh, &s, disks,
2977 &return_bi);
2978 if (s.failed > 2 && s.syncing) {
2979 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2980 clear_bit(STRIPE_SYNCING, &sh->state);
2981 s.syncing = 0;
2982 }
2983
2984 /*
2985 * might be able to return some write requests if the parity blocks
2986 * are safe, or on a failed drive
2987 */
2988 pdev = &sh->dev[pd_idx];
2989 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2990 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2991 qdev = &sh->dev[r6s.qd_idx];
2992 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2993 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2994
2995 if ( s.written &&
2996 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2997 && !test_bit(R5_LOCKED, &pdev->flags)
2998 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2999 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3000 && !test_bit(R5_LOCKED, &qdev->flags)
3001 && test_bit(R5_UPTODATE, &qdev->flags)))))
3002 handle_completed_write_requests(conf, sh, disks, &return_bi);
3003
3004 /* Now we might consider reading some blocks, either to check/generate
3005 * parity, or to satisfy requests
3006 * or to load a block that is being partially written.
3007 */
3008 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3009 (s.syncing && (s.uptodate < disks)) || s.expanding)
3010 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3011
3012 /* now to consider writing and what else, if anything should be read */
3013 if (s.to_write)
3014 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3015
3016 /* maybe we need to check and possibly fix the parity for this stripe
3017 * Any reads will already have been scheduled, so we just see if enough
3018 * data is available
3019 */
3020 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3021 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3022
3023 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3024 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3025 clear_bit(STRIPE_SYNCING, &sh->state);
3026 }
3027
3028 /* If the failed drives are just a ReadError, then we might need
3029 * to progress the repair/check process
3030 */
3031 if (s.failed <= 2 && !conf->mddev->ro)
3032 for (i = 0; i < s.failed; i++) {
3033 dev = &sh->dev[r6s.failed_num[i]];
3034 if (test_bit(R5_ReadError, &dev->flags)
3035 && !test_bit(R5_LOCKED, &dev->flags)
3036 && test_bit(R5_UPTODATE, &dev->flags)
3037 ) {
3038 if (!test_bit(R5_ReWrite, &dev->flags)) {
3039 set_bit(R5_Wantwrite, &dev->flags);
3040 set_bit(R5_ReWrite, &dev->flags);
3041 set_bit(R5_LOCKED, &dev->flags);
3042 } else {
3043 /* let's read it back */
3044 set_bit(R5_Wantread, &dev->flags);
3045 set_bit(R5_LOCKED, &dev->flags);
3046 }
3047 }
3048 }
3049
3050 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3051 /* Need to write out all blocks after computing P&Q */
3052 sh->disks = conf->raid_disks;
3053 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3054 conf->raid_disks);
3055 compute_parity6(sh, RECONSTRUCT_WRITE);
3056 for (i = conf->raid_disks ; i-- ; ) {
3057 set_bit(R5_LOCKED, &sh->dev[i].flags);
3058 s.locked++;
3059 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3060 }
3061 clear_bit(STRIPE_EXPANDING, &sh->state);
3062 } else if (s.expanded) {
3063 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3064 atomic_dec(&conf->reshape_stripes);
3065 wake_up(&conf->wait_for_overlap);
3066 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3067 }
3068
3069 if (s.expanding && s.locked == 0)
3070 handle_stripe_expansion(conf, sh, &r6s);
3071
3072 spin_unlock(&sh->lock);
3073
3074 return_io(return_bi);
3075
3076 for (i=disks; i-- ;) {
3077 int rw;
3078 struct bio *bi;
3079 mdk_rdev_t *rdev;
3080 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3081 rw = WRITE;
3082 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3083 rw = READ;
3084 else
3085 continue;
3086
3087 bi = &sh->dev[i].req;
3088
3089 bi->bi_rw = rw;
3090 if (rw == WRITE)
3091 bi->bi_end_io = raid5_end_write_request;
3092 else
3093 bi->bi_end_io = raid5_end_read_request;
3094
3095 rcu_read_lock();
3096 rdev = rcu_dereference(conf->disks[i].rdev);
3097 if (rdev && test_bit(Faulty, &rdev->flags))
3098 rdev = NULL;
3099 if (rdev)
3100 atomic_inc(&rdev->nr_pending);
3101 rcu_read_unlock();
3102
3103 if (rdev) {
3104 if (s.syncing || s.expanding || s.expanded)
3105 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3106
3107 bi->bi_bdev = rdev->bdev;
3108 pr_debug("for %llu schedule op %ld on disc %d\n",
3109 (unsigned long long)sh->sector, bi->bi_rw, i);
3110 atomic_inc(&sh->count);
3111 bi->bi_sector = sh->sector + rdev->data_offset;
3112 bi->bi_flags = 1 << BIO_UPTODATE;
3113 bi->bi_vcnt = 1;
3114 bi->bi_max_vecs = 1;
3115 bi->bi_idx = 0;
3116 bi->bi_io_vec = &sh->dev[i].vec;
3117 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3118 bi->bi_io_vec[0].bv_offset = 0;
3119 bi->bi_size = STRIPE_SIZE;
3120 bi->bi_next = NULL;
3121 if (rw == WRITE &&
3122 test_bit(R5_ReWrite, &sh->dev[i].flags))
3123 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3124 generic_make_request(bi);
3125 } else {
3126 if (rw == WRITE)
3127 set_bit(STRIPE_DEGRADED, &sh->state);
3128 pr_debug("skip op %ld on disc %d for sector %llu\n",
3129 bi->bi_rw, i, (unsigned long long)sh->sector);
3130 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3131 set_bit(STRIPE_HANDLE, &sh->state);
3132 }
3133 }
3134 }
3135
3136 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3137 {
3138 if (sh->raid_conf->level == 6)
3139 handle_stripe6(sh, tmp_page);
3140 else
3141 handle_stripe5(sh);
3142 }
3143
3144
3145
3146 static void raid5_activate_delayed(raid5_conf_t *conf)
3147 {
3148 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3149 while (!list_empty(&conf->delayed_list)) {
3150 struct list_head *l = conf->delayed_list.next;
3151 struct stripe_head *sh;
3152 sh = list_entry(l, struct stripe_head, lru);
3153 list_del_init(l);
3154 clear_bit(STRIPE_DELAYED, &sh->state);
3155 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3156 atomic_inc(&conf->preread_active_stripes);
3157 list_add_tail(&sh->lru, &conf->handle_list);
3158 }
3159 }
3160 }
3161
3162 static void activate_bit_delay(raid5_conf_t *conf)
3163 {
3164 /* device_lock is held */
3165 struct list_head head;
3166 list_add(&head, &conf->bitmap_list);
3167 list_del_init(&conf->bitmap_list);
3168 while (!list_empty(&head)) {
3169 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3170 list_del_init(&sh->lru);
3171 atomic_inc(&sh->count);
3172 __release_stripe(conf, sh);
3173 }
3174 }
3175
3176 static void unplug_slaves(mddev_t *mddev)
3177 {
3178 raid5_conf_t *conf = mddev_to_conf(mddev);
3179 int i;
3180
3181 rcu_read_lock();
3182 for (i=0; i<mddev->raid_disks; i++) {
3183 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3184 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3185 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3186
3187 atomic_inc(&rdev->nr_pending);
3188 rcu_read_unlock();
3189
3190 if (r_queue->unplug_fn)
3191 r_queue->unplug_fn(r_queue);
3192
3193 rdev_dec_pending(rdev, mddev);
3194 rcu_read_lock();
3195 }
3196 }
3197 rcu_read_unlock();
3198 }
3199
3200 static void raid5_unplug_device(struct request_queue *q)
3201 {
3202 mddev_t *mddev = q->queuedata;
3203 raid5_conf_t *conf = mddev_to_conf(mddev);
3204 unsigned long flags;
3205
3206 spin_lock_irqsave(&conf->device_lock, flags);
3207
3208 if (blk_remove_plug(q)) {
3209 conf->seq_flush++;
3210 raid5_activate_delayed(conf);
3211 }
3212 md_wakeup_thread(mddev->thread);
3213
3214 spin_unlock_irqrestore(&conf->device_lock, flags);
3215
3216 unplug_slaves(mddev);
3217 }
3218
3219 static int raid5_issue_flush(struct request_queue *q, struct gendisk *disk,
3220 sector_t *error_sector)
3221 {
3222 mddev_t *mddev = q->queuedata;
3223 raid5_conf_t *conf = mddev_to_conf(mddev);
3224 int i, ret = 0;
3225
3226 rcu_read_lock();
3227 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
3228 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3229 if (rdev && !test_bit(Faulty, &rdev->flags)) {
3230 struct block_device *bdev = rdev->bdev;
3231 struct request_queue *r_queue = bdev_get_queue(bdev);
3232
3233 if (!r_queue->issue_flush_fn)
3234 ret = -EOPNOTSUPP;
3235 else {
3236 atomic_inc(&rdev->nr_pending);
3237 rcu_read_unlock();
3238 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
3239 error_sector);
3240 rdev_dec_pending(rdev, mddev);
3241 rcu_read_lock();
3242 }
3243 }
3244 }
3245 rcu_read_unlock();
3246 return ret;
3247 }
3248
3249 static int raid5_congested(void *data, int bits)
3250 {
3251 mddev_t *mddev = data;
3252 raid5_conf_t *conf = mddev_to_conf(mddev);
3253
3254 /* No difference between reads and writes. Just check
3255 * how busy the stripe_cache is
3256 */
3257 if (conf->inactive_blocked)
3258 return 1;
3259 if (conf->quiesce)
3260 return 1;
3261 if (list_empty_careful(&conf->inactive_list))
3262 return 1;
3263
3264 return 0;
3265 }
3266
3267 /* We want read requests to align with chunks where possible,
3268 * but write requests don't need to.
3269 */
3270 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3271 {
3272 mddev_t *mddev = q->queuedata;
3273 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3274 int max;
3275 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3276 unsigned int bio_sectors = bio->bi_size >> 9;
3277
3278 if (bio_data_dir(bio) == WRITE)
3279 return biovec->bv_len; /* always allow writes to be mergeable */
3280
3281 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3282 if (max < 0) max = 0;
3283 if (max <= biovec->bv_len && bio_sectors == 0)
3284 return biovec->bv_len;
3285 else
3286 return max;
3287 }
3288
3289
3290 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3291 {
3292 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3293 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3294 unsigned int bio_sectors = bio->bi_size >> 9;
3295
3296 return chunk_sectors >=
3297 ((sector & (chunk_sectors - 1)) + bio_sectors);
3298 }
3299
3300 /*
3301 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3302 * later sampled by raid5d.
3303 */
3304 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3305 {
3306 unsigned long flags;
3307
3308 spin_lock_irqsave(&conf->device_lock, flags);
3309
3310 bi->bi_next = conf->retry_read_aligned_list;
3311 conf->retry_read_aligned_list = bi;
3312
3313 spin_unlock_irqrestore(&conf->device_lock, flags);
3314 md_wakeup_thread(conf->mddev->thread);
3315 }
3316
3317
3318 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3319 {
3320 struct bio *bi;
3321
3322 bi = conf->retry_read_aligned;
3323 if (bi) {
3324 conf->retry_read_aligned = NULL;
3325 return bi;
3326 }
3327 bi = conf->retry_read_aligned_list;
3328 if(bi) {
3329 conf->retry_read_aligned_list = bi->bi_next;
3330 bi->bi_next = NULL;
3331 bi->bi_phys_segments = 1; /* biased count of active stripes */
3332 bi->bi_hw_segments = 0; /* count of processed stripes */
3333 }
3334
3335 return bi;
3336 }
3337
3338
3339 /*
3340 * The "raid5_align_endio" should check if the read succeeded and if it
3341 * did, call bio_endio on the original bio (having bio_put the new bio
3342 * first).
3343 * If the read failed..
3344 */
3345 static int raid5_align_endio(struct bio *bi, unsigned int bytes, int error)
3346 {
3347 struct bio* raid_bi = bi->bi_private;
3348 mddev_t *mddev;
3349 raid5_conf_t *conf;
3350 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3351 mdk_rdev_t *rdev;
3352
3353 if (bi->bi_size)
3354 return 1;
3355 bio_put(bi);
3356
3357 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3358 conf = mddev_to_conf(mddev);
3359 rdev = (void*)raid_bi->bi_next;
3360 raid_bi->bi_next = NULL;
3361
3362 rdev_dec_pending(rdev, conf->mddev);
3363
3364 if (!error && uptodate) {
3365 bio_endio(raid_bi, bytes, 0);
3366 if (atomic_dec_and_test(&conf->active_aligned_reads))
3367 wake_up(&conf->wait_for_stripe);
3368 return 0;
3369 }
3370
3371
3372 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3373
3374 add_bio_to_retry(raid_bi, conf);
3375 return 0;
3376 }
3377
3378 static int bio_fits_rdev(struct bio *bi)
3379 {
3380 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3381
3382 if ((bi->bi_size>>9) > q->max_sectors)
3383 return 0;
3384 blk_recount_segments(q, bi);
3385 if (bi->bi_phys_segments > q->max_phys_segments ||
3386 bi->bi_hw_segments > q->max_hw_segments)
3387 return 0;
3388
3389 if (q->merge_bvec_fn)
3390 /* it's too hard to apply the merge_bvec_fn at this stage,
3391 * just just give up
3392 */
3393 return 0;
3394
3395 return 1;
3396 }
3397
3398
3399 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3400 {
3401 mddev_t *mddev = q->queuedata;
3402 raid5_conf_t *conf = mddev_to_conf(mddev);
3403 const unsigned int raid_disks = conf->raid_disks;
3404 const unsigned int data_disks = raid_disks - conf->max_degraded;
3405 unsigned int dd_idx, pd_idx;
3406 struct bio* align_bi;
3407 mdk_rdev_t *rdev;
3408
3409 if (!in_chunk_boundary(mddev, raid_bio)) {
3410 pr_debug("chunk_aligned_read : non aligned\n");
3411 return 0;
3412 }
3413 /*
3414 * use bio_clone to make a copy of the bio
3415 */
3416 align_bi = bio_clone(raid_bio, GFP_NOIO);
3417 if (!align_bi)
3418 return 0;
3419 /*
3420 * set bi_end_io to a new function, and set bi_private to the
3421 * original bio.
3422 */
3423 align_bi->bi_end_io = raid5_align_endio;
3424 align_bi->bi_private = raid_bio;
3425 /*
3426 * compute position
3427 */
3428 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3429 raid_disks,
3430 data_disks,
3431 &dd_idx,
3432 &pd_idx,
3433 conf);
3434
3435 rcu_read_lock();
3436 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3437 if (rdev && test_bit(In_sync, &rdev->flags)) {
3438 atomic_inc(&rdev->nr_pending);
3439 rcu_read_unlock();
3440 raid_bio->bi_next = (void*)rdev;
3441 align_bi->bi_bdev = rdev->bdev;
3442 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3443 align_bi->bi_sector += rdev->data_offset;
3444
3445 if (!bio_fits_rdev(align_bi)) {
3446 /* too big in some way */
3447 bio_put(align_bi);
3448 rdev_dec_pending(rdev, mddev);
3449 return 0;
3450 }
3451
3452 spin_lock_irq(&conf->device_lock);
3453 wait_event_lock_irq(conf->wait_for_stripe,
3454 conf->quiesce == 0,
3455 conf->device_lock, /* nothing */);
3456 atomic_inc(&conf->active_aligned_reads);
3457 spin_unlock_irq(&conf->device_lock);
3458
3459 generic_make_request(align_bi);
3460 return 1;
3461 } else {
3462 rcu_read_unlock();
3463 bio_put(align_bi);
3464 return 0;
3465 }
3466 }
3467
3468
3469 static int make_request(struct request_queue *q, struct bio * bi)
3470 {
3471 mddev_t *mddev = q->queuedata;
3472 raid5_conf_t *conf = mddev_to_conf(mddev);
3473 unsigned int dd_idx, pd_idx;
3474 sector_t new_sector;
3475 sector_t logical_sector, last_sector;
3476 struct stripe_head *sh;
3477 const int rw = bio_data_dir(bi);
3478 int remaining;
3479
3480 if (unlikely(bio_barrier(bi))) {
3481 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
3482 return 0;
3483 }
3484
3485 md_write_start(mddev, bi);
3486
3487 disk_stat_inc(mddev->gendisk, ios[rw]);
3488 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3489
3490 if (rw == READ &&
3491 mddev->reshape_position == MaxSector &&
3492 chunk_aligned_read(q,bi))
3493 return 0;
3494
3495 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3496 last_sector = bi->bi_sector + (bi->bi_size>>9);
3497 bi->bi_next = NULL;
3498 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3499
3500 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3501 DEFINE_WAIT(w);
3502 int disks, data_disks;
3503
3504 retry:
3505 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3506 if (likely(conf->expand_progress == MaxSector))
3507 disks = conf->raid_disks;
3508 else {
3509 /* spinlock is needed as expand_progress may be
3510 * 64bit on a 32bit platform, and so it might be
3511 * possible to see a half-updated value
3512 * Ofcourse expand_progress could change after
3513 * the lock is dropped, so once we get a reference
3514 * to the stripe that we think it is, we will have
3515 * to check again.
3516 */
3517 spin_lock_irq(&conf->device_lock);
3518 disks = conf->raid_disks;
3519 if (logical_sector >= conf->expand_progress)
3520 disks = conf->previous_raid_disks;
3521 else {
3522 if (logical_sector >= conf->expand_lo) {
3523 spin_unlock_irq(&conf->device_lock);
3524 schedule();
3525 goto retry;
3526 }
3527 }
3528 spin_unlock_irq(&conf->device_lock);
3529 }
3530 data_disks = disks - conf->max_degraded;
3531
3532 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3533 &dd_idx, &pd_idx, conf);
3534 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3535 (unsigned long long)new_sector,
3536 (unsigned long long)logical_sector);
3537
3538 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3539 if (sh) {
3540 if (unlikely(conf->expand_progress != MaxSector)) {
3541 /* expansion might have moved on while waiting for a
3542 * stripe, so we must do the range check again.
3543 * Expansion could still move past after this
3544 * test, but as we are holding a reference to
3545 * 'sh', we know that if that happens,
3546 * STRIPE_EXPANDING will get set and the expansion
3547 * won't proceed until we finish with the stripe.
3548 */
3549 int must_retry = 0;
3550 spin_lock_irq(&conf->device_lock);
3551 if (logical_sector < conf->expand_progress &&
3552 disks == conf->previous_raid_disks)
3553 /* mismatch, need to try again */
3554 must_retry = 1;
3555 spin_unlock_irq(&conf->device_lock);
3556 if (must_retry) {
3557 release_stripe(sh);
3558 goto retry;
3559 }
3560 }
3561 /* FIXME what if we get a false positive because these
3562 * are being updated.
3563 */
3564 if (logical_sector >= mddev->suspend_lo &&
3565 logical_sector < mddev->suspend_hi) {
3566 release_stripe(sh);
3567 schedule();
3568 goto retry;
3569 }
3570
3571 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3572 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3573 /* Stripe is busy expanding or
3574 * add failed due to overlap. Flush everything
3575 * and wait a while
3576 */
3577 raid5_unplug_device(mddev->queue);
3578 release_stripe(sh);
3579 schedule();
3580 goto retry;
3581 }
3582 finish_wait(&conf->wait_for_overlap, &w);
3583 handle_stripe(sh, NULL);
3584 release_stripe(sh);
3585 } else {
3586 /* cannot get stripe for read-ahead, just give-up */
3587 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3588 finish_wait(&conf->wait_for_overlap, &w);
3589 break;
3590 }
3591
3592 }
3593 spin_lock_irq(&conf->device_lock);
3594 remaining = --bi->bi_phys_segments;
3595 spin_unlock_irq(&conf->device_lock);
3596 if (remaining == 0) {
3597 int bytes = bi->bi_size;
3598
3599 if ( rw == WRITE )
3600 md_write_end(mddev);
3601 bi->bi_size = 0;
3602 bi->bi_end_io(bi, bytes,
3603 test_bit(BIO_UPTODATE, &bi->bi_flags)
3604 ? 0 : -EIO);
3605 }
3606 return 0;
3607 }
3608
3609 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3610 {
3611 /* reshaping is quite different to recovery/resync so it is
3612 * handled quite separately ... here.
3613 *
3614 * On each call to sync_request, we gather one chunk worth of
3615 * destination stripes and flag them as expanding.
3616 * Then we find all the source stripes and request reads.
3617 * As the reads complete, handle_stripe will copy the data
3618 * into the destination stripe and release that stripe.
3619 */
3620 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3621 struct stripe_head *sh;
3622 int pd_idx;
3623 sector_t first_sector, last_sector;
3624 int raid_disks = conf->previous_raid_disks;
3625 int data_disks = raid_disks - conf->max_degraded;
3626 int new_data_disks = conf->raid_disks - conf->max_degraded;
3627 int i;
3628 int dd_idx;
3629 sector_t writepos, safepos, gap;
3630
3631 if (sector_nr == 0 &&
3632 conf->expand_progress != 0) {
3633 /* restarting in the middle, skip the initial sectors */
3634 sector_nr = conf->expand_progress;
3635 sector_div(sector_nr, new_data_disks);
3636 *skipped = 1;
3637 return sector_nr;
3638 }
3639
3640 /* we update the metadata when there is more than 3Meg
3641 * in the block range (that is rather arbitrary, should
3642 * probably be time based) or when the data about to be
3643 * copied would over-write the source of the data at
3644 * the front of the range.
3645 * i.e. one new_stripe forward from expand_progress new_maps
3646 * to after where expand_lo old_maps to
3647 */
3648 writepos = conf->expand_progress +
3649 conf->chunk_size/512*(new_data_disks);
3650 sector_div(writepos, new_data_disks);
3651 safepos = conf->expand_lo;
3652 sector_div(safepos, data_disks);
3653 gap = conf->expand_progress - conf->expand_lo;
3654
3655 if (writepos >= safepos ||
3656 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3657 /* Cannot proceed until we've updated the superblock... */
3658 wait_event(conf->wait_for_overlap,
3659 atomic_read(&conf->reshape_stripes)==0);
3660 mddev->reshape_position = conf->expand_progress;
3661 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3662 md_wakeup_thread(mddev->thread);
3663 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3664 kthread_should_stop());
3665 spin_lock_irq(&conf->device_lock);
3666 conf->expand_lo = mddev->reshape_position;
3667 spin_unlock_irq(&conf->device_lock);
3668 wake_up(&conf->wait_for_overlap);
3669 }
3670
3671 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3672 int j;
3673 int skipped = 0;
3674 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3675 sh = get_active_stripe(conf, sector_nr+i,
3676 conf->raid_disks, pd_idx, 0);
3677 set_bit(STRIPE_EXPANDING, &sh->state);
3678 atomic_inc(&conf->reshape_stripes);
3679 /* If any of this stripe is beyond the end of the old
3680 * array, then we need to zero those blocks
3681 */
3682 for (j=sh->disks; j--;) {
3683 sector_t s;
3684 if (j == sh->pd_idx)
3685 continue;
3686 if (conf->level == 6 &&
3687 j == raid6_next_disk(sh->pd_idx, sh->disks))
3688 continue;
3689 s = compute_blocknr(sh, j);
3690 if (s < (mddev->array_size<<1)) {
3691 skipped = 1;
3692 continue;
3693 }
3694 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3695 set_bit(R5_Expanded, &sh->dev[j].flags);
3696 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3697 }
3698 if (!skipped) {
3699 set_bit(STRIPE_EXPAND_READY, &sh->state);
3700 set_bit(STRIPE_HANDLE, &sh->state);
3701 }
3702 release_stripe(sh);
3703 }
3704 spin_lock_irq(&conf->device_lock);
3705 conf->expand_progress = (sector_nr + i) * new_data_disks;
3706 spin_unlock_irq(&conf->device_lock);
3707 /* Ok, those stripe are ready. We can start scheduling
3708 * reads on the source stripes.
3709 * The source stripes are determined by mapping the first and last
3710 * block on the destination stripes.
3711 */
3712 first_sector =
3713 raid5_compute_sector(sector_nr*(new_data_disks),
3714 raid_disks, data_disks,
3715 &dd_idx, &pd_idx, conf);
3716 last_sector =
3717 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3718 *(new_data_disks) -1,
3719 raid_disks, data_disks,
3720 &dd_idx, &pd_idx, conf);
3721 if (last_sector >= (mddev->size<<1))
3722 last_sector = (mddev->size<<1)-1;
3723 while (first_sector <= last_sector) {
3724 pd_idx = stripe_to_pdidx(first_sector, conf,
3725 conf->previous_raid_disks);
3726 sh = get_active_stripe(conf, first_sector,
3727 conf->previous_raid_disks, pd_idx, 0);
3728 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3729 set_bit(STRIPE_HANDLE, &sh->state);
3730 release_stripe(sh);
3731 first_sector += STRIPE_SECTORS;
3732 }
3733 return conf->chunk_size>>9;
3734 }
3735
3736 /* FIXME go_faster isn't used */
3737 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3738 {
3739 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3740 struct stripe_head *sh;
3741 int pd_idx;
3742 int raid_disks = conf->raid_disks;
3743 sector_t max_sector = mddev->size << 1;
3744 int sync_blocks;
3745 int still_degraded = 0;
3746 int i;
3747
3748 if (sector_nr >= max_sector) {
3749 /* just being told to finish up .. nothing much to do */
3750 unplug_slaves(mddev);
3751 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3752 end_reshape(conf);
3753 return 0;
3754 }
3755
3756 if (mddev->curr_resync < max_sector) /* aborted */
3757 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3758 &sync_blocks, 1);
3759 else /* completed sync */
3760 conf->fullsync = 0;
3761 bitmap_close_sync(mddev->bitmap);
3762
3763 return 0;
3764 }
3765
3766 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3767 return reshape_request(mddev, sector_nr, skipped);
3768
3769 /* if there is too many failed drives and we are trying
3770 * to resync, then assert that we are finished, because there is
3771 * nothing we can do.
3772 */
3773 if (mddev->degraded >= conf->max_degraded &&
3774 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3775 sector_t rv = (mddev->size << 1) - sector_nr;
3776 *skipped = 1;
3777 return rv;
3778 }
3779 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3780 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3781 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3782 /* we can skip this block, and probably more */
3783 sync_blocks /= STRIPE_SECTORS;
3784 *skipped = 1;
3785 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3786 }
3787
3788 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3789 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3790 if (sh == NULL) {
3791 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3792 /* make sure we don't swamp the stripe cache if someone else
3793 * is trying to get access
3794 */
3795 schedule_timeout_uninterruptible(1);
3796 }
3797 /* Need to check if array will still be degraded after recovery/resync
3798 * We don't need to check the 'failed' flag as when that gets set,
3799 * recovery aborts.
3800 */
3801 for (i=0; i<mddev->raid_disks; i++)
3802 if (conf->disks[i].rdev == NULL)
3803 still_degraded = 1;
3804
3805 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3806
3807 spin_lock(&sh->lock);
3808 set_bit(STRIPE_SYNCING, &sh->state);
3809 clear_bit(STRIPE_INSYNC, &sh->state);
3810 spin_unlock(&sh->lock);
3811
3812 handle_stripe(sh, NULL);
3813 release_stripe(sh);
3814
3815 return STRIPE_SECTORS;
3816 }
3817
3818 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3819 {
3820 /* We may not be able to submit a whole bio at once as there
3821 * may not be enough stripe_heads available.
3822 * We cannot pre-allocate enough stripe_heads as we may need
3823 * more than exist in the cache (if we allow ever large chunks).
3824 * So we do one stripe head at a time and record in
3825 * ->bi_hw_segments how many have been done.
3826 *
3827 * We *know* that this entire raid_bio is in one chunk, so
3828 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3829 */
3830 struct stripe_head *sh;
3831 int dd_idx, pd_idx;
3832 sector_t sector, logical_sector, last_sector;
3833 int scnt = 0;
3834 int remaining;
3835 int handled = 0;
3836
3837 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3838 sector = raid5_compute_sector( logical_sector,
3839 conf->raid_disks,
3840 conf->raid_disks - conf->max_degraded,
3841 &dd_idx,
3842 &pd_idx,
3843 conf);
3844 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3845
3846 for (; logical_sector < last_sector;
3847 logical_sector += STRIPE_SECTORS,
3848 sector += STRIPE_SECTORS,
3849 scnt++) {
3850
3851 if (scnt < raid_bio->bi_hw_segments)
3852 /* already done this stripe */
3853 continue;
3854
3855 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3856
3857 if (!sh) {
3858 /* failed to get a stripe - must wait */
3859 raid_bio->bi_hw_segments = scnt;
3860 conf->retry_read_aligned = raid_bio;
3861 return handled;
3862 }
3863
3864 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3865 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3866 release_stripe(sh);
3867 raid_bio->bi_hw_segments = scnt;
3868 conf->retry_read_aligned = raid_bio;
3869 return handled;
3870 }
3871
3872 handle_stripe(sh, NULL);
3873 release_stripe(sh);
3874 handled++;
3875 }
3876 spin_lock_irq(&conf->device_lock);
3877 remaining = --raid_bio->bi_phys_segments;
3878 spin_unlock_irq(&conf->device_lock);
3879 if (remaining == 0) {
3880 int bytes = raid_bio->bi_size;
3881
3882 raid_bio->bi_size = 0;
3883 raid_bio->bi_end_io(raid_bio, bytes,
3884 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3885 ? 0 : -EIO);
3886 }
3887 if (atomic_dec_and_test(&conf->active_aligned_reads))
3888 wake_up(&conf->wait_for_stripe);
3889 return handled;
3890 }
3891
3892
3893
3894 /*
3895 * This is our raid5 kernel thread.
3896 *
3897 * We scan the hash table for stripes which can be handled now.
3898 * During the scan, completed stripes are saved for us by the interrupt
3899 * handler, so that they will not have to wait for our next wakeup.
3900 */
3901 static void raid5d (mddev_t *mddev)
3902 {
3903 struct stripe_head *sh;
3904 raid5_conf_t *conf = mddev_to_conf(mddev);
3905 int handled;
3906
3907 pr_debug("+++ raid5d active\n");
3908
3909 md_check_recovery(mddev);
3910
3911 handled = 0;
3912 spin_lock_irq(&conf->device_lock);
3913 while (1) {
3914 struct list_head *first;
3915 struct bio *bio;
3916
3917 if (conf->seq_flush != conf->seq_write) {
3918 int seq = conf->seq_flush;
3919 spin_unlock_irq(&conf->device_lock);
3920 bitmap_unplug(mddev->bitmap);
3921 spin_lock_irq(&conf->device_lock);
3922 conf->seq_write = seq;
3923 activate_bit_delay(conf);
3924 }
3925
3926 if (list_empty(&conf->handle_list) &&
3927 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3928 !blk_queue_plugged(mddev->queue) &&
3929 !list_empty(&conf->delayed_list))
3930 raid5_activate_delayed(conf);
3931
3932 while ((bio = remove_bio_from_retry(conf))) {
3933 int ok;
3934 spin_unlock_irq(&conf->device_lock);
3935 ok = retry_aligned_read(conf, bio);
3936 spin_lock_irq(&conf->device_lock);
3937 if (!ok)
3938 break;
3939 handled++;
3940 }
3941
3942 if (list_empty(&conf->handle_list)) {
3943 async_tx_issue_pending_all();
3944 break;
3945 }
3946
3947 first = conf->handle_list.next;
3948 sh = list_entry(first, struct stripe_head, lru);
3949
3950 list_del_init(first);
3951 atomic_inc(&sh->count);
3952 BUG_ON(atomic_read(&sh->count)!= 1);
3953 spin_unlock_irq(&conf->device_lock);
3954
3955 handled++;
3956 handle_stripe(sh, conf->spare_page);
3957 release_stripe(sh);
3958
3959 spin_lock_irq(&conf->device_lock);
3960 }
3961 pr_debug("%d stripes handled\n", handled);
3962
3963 spin_unlock_irq(&conf->device_lock);
3964
3965 unplug_slaves(mddev);
3966
3967 pr_debug("--- raid5d inactive\n");
3968 }
3969
3970 static ssize_t
3971 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3972 {
3973 raid5_conf_t *conf = mddev_to_conf(mddev);
3974 if (conf)
3975 return sprintf(page, "%d\n", conf->max_nr_stripes);
3976 else
3977 return 0;
3978 }
3979
3980 static ssize_t
3981 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3982 {
3983 raid5_conf_t *conf = mddev_to_conf(mddev);
3984 char *end;
3985 int new;
3986 if (len >= PAGE_SIZE)
3987 return -EINVAL;
3988 if (!conf)
3989 return -ENODEV;
3990
3991 new = simple_strtoul(page, &end, 10);
3992 if (!*page || (*end && *end != '\n') )
3993 return -EINVAL;
3994 if (new <= 16 || new > 32768)
3995 return -EINVAL;
3996 while (new < conf->max_nr_stripes) {
3997 if (drop_one_stripe(conf))
3998 conf->max_nr_stripes--;
3999 else
4000 break;
4001 }
4002 md_allow_write(mddev);
4003 while (new > conf->max_nr_stripes) {
4004 if (grow_one_stripe(conf))
4005 conf->max_nr_stripes++;
4006 else break;
4007 }
4008 return len;
4009 }
4010
4011 static struct md_sysfs_entry
4012 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4013 raid5_show_stripe_cache_size,
4014 raid5_store_stripe_cache_size);
4015
4016 static ssize_t
4017 stripe_cache_active_show(mddev_t *mddev, char *page)
4018 {
4019 raid5_conf_t *conf = mddev_to_conf(mddev);
4020 if (conf)
4021 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4022 else
4023 return 0;
4024 }
4025
4026 static struct md_sysfs_entry
4027 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4028
4029 static struct attribute *raid5_attrs[] = {
4030 &raid5_stripecache_size.attr,
4031 &raid5_stripecache_active.attr,
4032 NULL,
4033 };
4034 static struct attribute_group raid5_attrs_group = {
4035 .name = NULL,
4036 .attrs = raid5_attrs,
4037 };
4038
4039 static int run(mddev_t *mddev)
4040 {
4041 raid5_conf_t *conf;
4042 int raid_disk, memory;
4043 mdk_rdev_t *rdev;
4044 struct disk_info *disk;
4045 struct list_head *tmp;
4046 int working_disks = 0;
4047
4048 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4049 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4050 mdname(mddev), mddev->level);
4051 return -EIO;
4052 }
4053
4054 if (mddev->reshape_position != MaxSector) {
4055 /* Check that we can continue the reshape.
4056 * Currently only disks can change, it must
4057 * increase, and we must be past the point where
4058 * a stripe over-writes itself
4059 */
4060 sector_t here_new, here_old;
4061 int old_disks;
4062 int max_degraded = (mddev->level == 5 ? 1 : 2);
4063
4064 if (mddev->new_level != mddev->level ||
4065 mddev->new_layout != mddev->layout ||
4066 mddev->new_chunk != mddev->chunk_size) {
4067 printk(KERN_ERR "raid5: %s: unsupported reshape "
4068 "required - aborting.\n",
4069 mdname(mddev));
4070 return -EINVAL;
4071 }
4072 if (mddev->delta_disks <= 0) {
4073 printk(KERN_ERR "raid5: %s: unsupported reshape "
4074 "(reduce disks) required - aborting.\n",
4075 mdname(mddev));
4076 return -EINVAL;
4077 }
4078 old_disks = mddev->raid_disks - mddev->delta_disks;
4079 /* reshape_position must be on a new-stripe boundary, and one
4080 * further up in new geometry must map after here in old
4081 * geometry.
4082 */
4083 here_new = mddev->reshape_position;
4084 if (sector_div(here_new, (mddev->chunk_size>>9)*
4085 (mddev->raid_disks - max_degraded))) {
4086 printk(KERN_ERR "raid5: reshape_position not "
4087 "on a stripe boundary\n");
4088 return -EINVAL;
4089 }
4090 /* here_new is the stripe we will write to */
4091 here_old = mddev->reshape_position;
4092 sector_div(here_old, (mddev->chunk_size>>9)*
4093 (old_disks-max_degraded));
4094 /* here_old is the first stripe that we might need to read
4095 * from */
4096 if (here_new >= here_old) {
4097 /* Reading from the same stripe as writing to - bad */
4098 printk(KERN_ERR "raid5: reshape_position too early for "
4099 "auto-recovery - aborting.\n");
4100 return -EINVAL;
4101 }
4102 printk(KERN_INFO "raid5: reshape will continue\n");
4103 /* OK, we should be able to continue; */
4104 }
4105
4106
4107 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4108 if ((conf = mddev->private) == NULL)
4109 goto abort;
4110 if (mddev->reshape_position == MaxSector) {
4111 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4112 } else {
4113 conf->raid_disks = mddev->raid_disks;
4114 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4115 }
4116
4117 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4118 GFP_KERNEL);
4119 if (!conf->disks)
4120 goto abort;
4121
4122 conf->mddev = mddev;
4123
4124 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4125 goto abort;
4126
4127 if (mddev->level == 6) {
4128 conf->spare_page = alloc_page(GFP_KERNEL);
4129 if (!conf->spare_page)
4130 goto abort;
4131 }
4132 spin_lock_init(&conf->device_lock);
4133 init_waitqueue_head(&conf->wait_for_stripe);
4134 init_waitqueue_head(&conf->wait_for_overlap);
4135 INIT_LIST_HEAD(&conf->handle_list);
4136 INIT_LIST_HEAD(&conf->delayed_list);
4137 INIT_LIST_HEAD(&conf->bitmap_list);
4138 INIT_LIST_HEAD(&conf->inactive_list);
4139 atomic_set(&conf->active_stripes, 0);
4140 atomic_set(&conf->preread_active_stripes, 0);
4141 atomic_set(&conf->active_aligned_reads, 0);
4142
4143 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4144
4145 ITERATE_RDEV(mddev,rdev,tmp) {
4146 raid_disk = rdev->raid_disk;
4147 if (raid_disk >= conf->raid_disks
4148 || raid_disk < 0)
4149 continue;
4150 disk = conf->disks + raid_disk;
4151
4152 disk->rdev = rdev;
4153
4154 if (test_bit(In_sync, &rdev->flags)) {
4155 char b[BDEVNAME_SIZE];
4156 printk(KERN_INFO "raid5: device %s operational as raid"
4157 " disk %d\n", bdevname(rdev->bdev,b),
4158 raid_disk);
4159 working_disks++;
4160 }
4161 }
4162
4163 /*
4164 * 0 for a fully functional array, 1 or 2 for a degraded array.
4165 */
4166 mddev->degraded = conf->raid_disks - working_disks;
4167 conf->mddev = mddev;
4168 conf->chunk_size = mddev->chunk_size;
4169 conf->level = mddev->level;
4170 if (conf->level == 6)
4171 conf->max_degraded = 2;
4172 else
4173 conf->max_degraded = 1;
4174 conf->algorithm = mddev->layout;
4175 conf->max_nr_stripes = NR_STRIPES;
4176 conf->expand_progress = mddev->reshape_position;
4177
4178 /* device size must be a multiple of chunk size */
4179 mddev->size &= ~(mddev->chunk_size/1024 -1);
4180 mddev->resync_max_sectors = mddev->size << 1;
4181
4182 if (conf->level == 6 && conf->raid_disks < 4) {
4183 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4184 mdname(mddev), conf->raid_disks);
4185 goto abort;
4186 }
4187 if (!conf->chunk_size || conf->chunk_size % 4) {
4188 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4189 conf->chunk_size, mdname(mddev));
4190 goto abort;
4191 }
4192 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4193 printk(KERN_ERR
4194 "raid5: unsupported parity algorithm %d for %s\n",
4195 conf->algorithm, mdname(mddev));
4196 goto abort;
4197 }
4198 if (mddev->degraded > conf->max_degraded) {
4199 printk(KERN_ERR "raid5: not enough operational devices for %s"
4200 " (%d/%d failed)\n",
4201 mdname(mddev), mddev->degraded, conf->raid_disks);
4202 goto abort;
4203 }
4204
4205 if (mddev->degraded > 0 &&
4206 mddev->recovery_cp != MaxSector) {
4207 if (mddev->ok_start_degraded)
4208 printk(KERN_WARNING
4209 "raid5: starting dirty degraded array: %s"
4210 "- data corruption possible.\n",
4211 mdname(mddev));
4212 else {
4213 printk(KERN_ERR
4214 "raid5: cannot start dirty degraded array for %s\n",
4215 mdname(mddev));
4216 goto abort;
4217 }
4218 }
4219
4220 {
4221 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4222 if (!mddev->thread) {
4223 printk(KERN_ERR
4224 "raid5: couldn't allocate thread for %s\n",
4225 mdname(mddev));
4226 goto abort;
4227 }
4228 }
4229 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4230 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4231 if (grow_stripes(conf, conf->max_nr_stripes)) {
4232 printk(KERN_ERR
4233 "raid5: couldn't allocate %dkB for buffers\n", memory);
4234 shrink_stripes(conf);
4235 md_unregister_thread(mddev->thread);
4236 goto abort;
4237 } else
4238 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4239 memory, mdname(mddev));
4240
4241 if (mddev->degraded == 0)
4242 printk("raid5: raid level %d set %s active with %d out of %d"
4243 " devices, algorithm %d\n", conf->level, mdname(mddev),
4244 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4245 conf->algorithm);
4246 else
4247 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4248 " out of %d devices, algorithm %d\n", conf->level,
4249 mdname(mddev), mddev->raid_disks - mddev->degraded,
4250 mddev->raid_disks, conf->algorithm);
4251
4252 print_raid5_conf(conf);
4253
4254 if (conf->expand_progress != MaxSector) {
4255 printk("...ok start reshape thread\n");
4256 conf->expand_lo = conf->expand_progress;
4257 atomic_set(&conf->reshape_stripes, 0);
4258 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4259 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4260 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4261 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4262 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4263 "%s_reshape");
4264 }
4265
4266 /* read-ahead size must cover two whole stripes, which is
4267 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4268 */
4269 {
4270 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4271 int stripe = data_disks *
4272 (mddev->chunk_size / PAGE_SIZE);
4273 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4274 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4275 }
4276
4277 /* Ok, everything is just fine now */
4278 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4279 printk(KERN_WARNING
4280 "raid5: failed to create sysfs attributes for %s\n",
4281 mdname(mddev));
4282
4283 mddev->queue->unplug_fn = raid5_unplug_device;
4284 mddev->queue->issue_flush_fn = raid5_issue_flush;
4285 mddev->queue->backing_dev_info.congested_data = mddev;
4286 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4287
4288 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4289 conf->max_degraded);
4290
4291 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4292
4293 return 0;
4294 abort:
4295 if (conf) {
4296 print_raid5_conf(conf);
4297 safe_put_page(conf->spare_page);
4298 kfree(conf->disks);
4299 kfree(conf->stripe_hashtbl);
4300 kfree(conf);
4301 }
4302 mddev->private = NULL;
4303 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4304 return -EIO;
4305 }
4306
4307
4308
4309 static int stop(mddev_t *mddev)
4310 {
4311 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4312
4313 md_unregister_thread(mddev->thread);
4314 mddev->thread = NULL;
4315 shrink_stripes(conf);
4316 kfree(conf->stripe_hashtbl);
4317 mddev->queue->backing_dev_info.congested_fn = NULL;
4318 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4319 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4320 kfree(conf->disks);
4321 kfree(conf);
4322 mddev->private = NULL;
4323 return 0;
4324 }
4325
4326 #ifdef DEBUG
4327 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4328 {
4329 int i;
4330
4331 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4332 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4333 seq_printf(seq, "sh %llu, count %d.\n",
4334 (unsigned long long)sh->sector, atomic_read(&sh->count));
4335 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4336 for (i = 0; i < sh->disks; i++) {
4337 seq_printf(seq, "(cache%d: %p %ld) ",
4338 i, sh->dev[i].page, sh->dev[i].flags);
4339 }
4340 seq_printf(seq, "\n");
4341 }
4342
4343 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4344 {
4345 struct stripe_head *sh;
4346 struct hlist_node *hn;
4347 int i;
4348
4349 spin_lock_irq(&conf->device_lock);
4350 for (i = 0; i < NR_HASH; i++) {
4351 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4352 if (sh->raid_conf != conf)
4353 continue;
4354 print_sh(seq, sh);
4355 }
4356 }
4357 spin_unlock_irq(&conf->device_lock);
4358 }
4359 #endif
4360
4361 static void status (struct seq_file *seq, mddev_t *mddev)
4362 {
4363 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4364 int i;
4365
4366 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4367 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4368 for (i = 0; i < conf->raid_disks; i++)
4369 seq_printf (seq, "%s",
4370 conf->disks[i].rdev &&
4371 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4372 seq_printf (seq, "]");
4373 #ifdef DEBUG
4374 seq_printf (seq, "\n");
4375 printall(seq, conf);
4376 #endif
4377 }
4378
4379 static void print_raid5_conf (raid5_conf_t *conf)
4380 {
4381 int i;
4382 struct disk_info *tmp;
4383
4384 printk("RAID5 conf printout:\n");
4385 if (!conf) {
4386 printk("(conf==NULL)\n");
4387 return;
4388 }
4389 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4390 conf->raid_disks - conf->mddev->degraded);
4391
4392 for (i = 0; i < conf->raid_disks; i++) {
4393 char b[BDEVNAME_SIZE];
4394 tmp = conf->disks + i;
4395 if (tmp->rdev)
4396 printk(" disk %d, o:%d, dev:%s\n",
4397 i, !test_bit(Faulty, &tmp->rdev->flags),
4398 bdevname(tmp->rdev->bdev,b));
4399 }
4400 }
4401
4402 static int raid5_spare_active(mddev_t *mddev)
4403 {
4404 int i;
4405 raid5_conf_t *conf = mddev->private;
4406 struct disk_info *tmp;
4407
4408 for (i = 0; i < conf->raid_disks; i++) {
4409 tmp = conf->disks + i;
4410 if (tmp->rdev
4411 && !test_bit(Faulty, &tmp->rdev->flags)
4412 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4413 unsigned long flags;
4414 spin_lock_irqsave(&conf->device_lock, flags);
4415 mddev->degraded--;
4416 spin_unlock_irqrestore(&conf->device_lock, flags);
4417 }
4418 }
4419 print_raid5_conf(conf);
4420 return 0;
4421 }
4422
4423 static int raid5_remove_disk(mddev_t *mddev, int number)
4424 {
4425 raid5_conf_t *conf = mddev->private;
4426 int err = 0;
4427 mdk_rdev_t *rdev;
4428 struct disk_info *p = conf->disks + number;
4429
4430 print_raid5_conf(conf);
4431 rdev = p->rdev;
4432 if (rdev) {
4433 if (test_bit(In_sync, &rdev->flags) ||
4434 atomic_read(&rdev->nr_pending)) {
4435 err = -EBUSY;
4436 goto abort;
4437 }
4438 p->rdev = NULL;
4439 synchronize_rcu();
4440 if (atomic_read(&rdev->nr_pending)) {
4441 /* lost the race, try later */
4442 err = -EBUSY;
4443 p->rdev = rdev;
4444 }
4445 }
4446 abort:
4447
4448 print_raid5_conf(conf);
4449 return err;
4450 }
4451
4452 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4453 {
4454 raid5_conf_t *conf = mddev->private;
4455 int found = 0;
4456 int disk;
4457 struct disk_info *p;
4458
4459 if (mddev->degraded > conf->max_degraded)
4460 /* no point adding a device */
4461 return 0;
4462
4463 /*
4464 * find the disk ... but prefer rdev->saved_raid_disk
4465 * if possible.
4466 */
4467 if (rdev->saved_raid_disk >= 0 &&
4468 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4469 disk = rdev->saved_raid_disk;
4470 else
4471 disk = 0;
4472 for ( ; disk < conf->raid_disks; disk++)
4473 if ((p=conf->disks + disk)->rdev == NULL) {
4474 clear_bit(In_sync, &rdev->flags);
4475 rdev->raid_disk = disk;
4476 found = 1;
4477 if (rdev->saved_raid_disk != disk)
4478 conf->fullsync = 1;
4479 rcu_assign_pointer(p->rdev, rdev);
4480 break;
4481 }
4482 print_raid5_conf(conf);
4483 return found;
4484 }
4485
4486 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4487 {
4488 /* no resync is happening, and there is enough space
4489 * on all devices, so we can resize.
4490 * We need to make sure resync covers any new space.
4491 * If the array is shrinking we should possibly wait until
4492 * any io in the removed space completes, but it hardly seems
4493 * worth it.
4494 */
4495 raid5_conf_t *conf = mddev_to_conf(mddev);
4496
4497 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4498 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4499 set_capacity(mddev->gendisk, mddev->array_size << 1);
4500 mddev->changed = 1;
4501 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4502 mddev->recovery_cp = mddev->size << 1;
4503 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4504 }
4505 mddev->size = sectors /2;
4506 mddev->resync_max_sectors = sectors;
4507 return 0;
4508 }
4509
4510 #ifdef CONFIG_MD_RAID5_RESHAPE
4511 static int raid5_check_reshape(mddev_t *mddev)
4512 {
4513 raid5_conf_t *conf = mddev_to_conf(mddev);
4514 int err;
4515
4516 if (mddev->delta_disks < 0 ||
4517 mddev->new_level != mddev->level)
4518 return -EINVAL; /* Cannot shrink array or change level yet */
4519 if (mddev->delta_disks == 0)
4520 return 0; /* nothing to do */
4521
4522 /* Can only proceed if there are plenty of stripe_heads.
4523 * We need a minimum of one full stripe,, and for sensible progress
4524 * it is best to have about 4 times that.
4525 * If we require 4 times, then the default 256 4K stripe_heads will
4526 * allow for chunk sizes up to 256K, which is probably OK.
4527 * If the chunk size is greater, user-space should request more
4528 * stripe_heads first.
4529 */
4530 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4531 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4532 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4533 (mddev->chunk_size / STRIPE_SIZE)*4);
4534 return -ENOSPC;
4535 }
4536
4537 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4538 if (err)
4539 return err;
4540
4541 if (mddev->degraded > conf->max_degraded)
4542 return -EINVAL;
4543 /* looks like we might be able to manage this */
4544 return 0;
4545 }
4546
4547 static int raid5_start_reshape(mddev_t *mddev)
4548 {
4549 raid5_conf_t *conf = mddev_to_conf(mddev);
4550 mdk_rdev_t *rdev;
4551 struct list_head *rtmp;
4552 int spares = 0;
4553 int added_devices = 0;
4554 unsigned long flags;
4555
4556 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4557 return -EBUSY;
4558
4559 ITERATE_RDEV(mddev, rdev, rtmp)
4560 if (rdev->raid_disk < 0 &&
4561 !test_bit(Faulty, &rdev->flags))
4562 spares++;
4563
4564 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4565 /* Not enough devices even to make a degraded array
4566 * of that size
4567 */
4568 return -EINVAL;
4569
4570 atomic_set(&conf->reshape_stripes, 0);
4571 spin_lock_irq(&conf->device_lock);
4572 conf->previous_raid_disks = conf->raid_disks;
4573 conf->raid_disks += mddev->delta_disks;
4574 conf->expand_progress = 0;
4575 conf->expand_lo = 0;
4576 spin_unlock_irq(&conf->device_lock);
4577
4578 /* Add some new drives, as many as will fit.
4579 * We know there are enough to make the newly sized array work.
4580 */
4581 ITERATE_RDEV(mddev, rdev, rtmp)
4582 if (rdev->raid_disk < 0 &&
4583 !test_bit(Faulty, &rdev->flags)) {
4584 if (raid5_add_disk(mddev, rdev)) {
4585 char nm[20];
4586 set_bit(In_sync, &rdev->flags);
4587 added_devices++;
4588 rdev->recovery_offset = 0;
4589 sprintf(nm, "rd%d", rdev->raid_disk);
4590 if (sysfs_create_link(&mddev->kobj,
4591 &rdev->kobj, nm))
4592 printk(KERN_WARNING
4593 "raid5: failed to create "
4594 " link %s for %s\n",
4595 nm, mdname(mddev));
4596 } else
4597 break;
4598 }
4599
4600 spin_lock_irqsave(&conf->device_lock, flags);
4601 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4602 spin_unlock_irqrestore(&conf->device_lock, flags);
4603 mddev->raid_disks = conf->raid_disks;
4604 mddev->reshape_position = 0;
4605 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4606
4607 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4608 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4609 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4610 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4611 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4612 "%s_reshape");
4613 if (!mddev->sync_thread) {
4614 mddev->recovery = 0;
4615 spin_lock_irq(&conf->device_lock);
4616 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4617 conf->expand_progress = MaxSector;
4618 spin_unlock_irq(&conf->device_lock);
4619 return -EAGAIN;
4620 }
4621 md_wakeup_thread(mddev->sync_thread);
4622 md_new_event(mddev);
4623 return 0;
4624 }
4625 #endif
4626
4627 static void end_reshape(raid5_conf_t *conf)
4628 {
4629 struct block_device *bdev;
4630
4631 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4632 conf->mddev->array_size = conf->mddev->size *
4633 (conf->raid_disks - conf->max_degraded);
4634 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4635 conf->mddev->changed = 1;
4636
4637 bdev = bdget_disk(conf->mddev->gendisk, 0);
4638 if (bdev) {
4639 mutex_lock(&bdev->bd_inode->i_mutex);
4640 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4641 mutex_unlock(&bdev->bd_inode->i_mutex);
4642 bdput(bdev);
4643 }
4644 spin_lock_irq(&conf->device_lock);
4645 conf->expand_progress = MaxSector;
4646 spin_unlock_irq(&conf->device_lock);
4647 conf->mddev->reshape_position = MaxSector;
4648
4649 /* read-ahead size must cover two whole stripes, which is
4650 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4651 */
4652 {
4653 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4654 int stripe = data_disks *
4655 (conf->mddev->chunk_size / PAGE_SIZE);
4656 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4657 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4658 }
4659 }
4660 }
4661
4662 static void raid5_quiesce(mddev_t *mddev, int state)
4663 {
4664 raid5_conf_t *conf = mddev_to_conf(mddev);
4665
4666 switch(state) {
4667 case 2: /* resume for a suspend */
4668 wake_up(&conf->wait_for_overlap);
4669 break;
4670
4671 case 1: /* stop all writes */
4672 spin_lock_irq(&conf->device_lock);
4673 conf->quiesce = 1;
4674 wait_event_lock_irq(conf->wait_for_stripe,
4675 atomic_read(&conf->active_stripes) == 0 &&
4676 atomic_read(&conf->active_aligned_reads) == 0,
4677 conf->device_lock, /* nothing */);
4678 spin_unlock_irq(&conf->device_lock);
4679 break;
4680
4681 case 0: /* re-enable writes */
4682 spin_lock_irq(&conf->device_lock);
4683 conf->quiesce = 0;
4684 wake_up(&conf->wait_for_stripe);
4685 wake_up(&conf->wait_for_overlap);
4686 spin_unlock_irq(&conf->device_lock);
4687 break;
4688 }
4689 }
4690
4691 static struct mdk_personality raid6_personality =
4692 {
4693 .name = "raid6",
4694 .level = 6,
4695 .owner = THIS_MODULE,
4696 .make_request = make_request,
4697 .run = run,
4698 .stop = stop,
4699 .status = status,
4700 .error_handler = error,
4701 .hot_add_disk = raid5_add_disk,
4702 .hot_remove_disk= raid5_remove_disk,
4703 .spare_active = raid5_spare_active,
4704 .sync_request = sync_request,
4705 .resize = raid5_resize,
4706 #ifdef CONFIG_MD_RAID5_RESHAPE
4707 .check_reshape = raid5_check_reshape,
4708 .start_reshape = raid5_start_reshape,
4709 #endif
4710 .quiesce = raid5_quiesce,
4711 };
4712 static struct mdk_personality raid5_personality =
4713 {
4714 .name = "raid5",
4715 .level = 5,
4716 .owner = THIS_MODULE,
4717 .make_request = make_request,
4718 .run = run,
4719 .stop = stop,
4720 .status = status,
4721 .error_handler = error,
4722 .hot_add_disk = raid5_add_disk,
4723 .hot_remove_disk= raid5_remove_disk,
4724 .spare_active = raid5_spare_active,
4725 .sync_request = sync_request,
4726 .resize = raid5_resize,
4727 #ifdef CONFIG_MD_RAID5_RESHAPE
4728 .check_reshape = raid5_check_reshape,
4729 .start_reshape = raid5_start_reshape,
4730 #endif
4731 .quiesce = raid5_quiesce,
4732 };
4733
4734 static struct mdk_personality raid4_personality =
4735 {
4736 .name = "raid4",
4737 .level = 4,
4738 .owner = THIS_MODULE,
4739 .make_request = make_request,
4740 .run = run,
4741 .stop = stop,
4742 .status = status,
4743 .error_handler = error,
4744 .hot_add_disk = raid5_add_disk,
4745 .hot_remove_disk= raid5_remove_disk,
4746 .spare_active = raid5_spare_active,
4747 .sync_request = sync_request,
4748 .resize = raid5_resize,
4749 #ifdef CONFIG_MD_RAID5_RESHAPE
4750 .check_reshape = raid5_check_reshape,
4751 .start_reshape = raid5_start_reshape,
4752 #endif
4753 .quiesce = raid5_quiesce,
4754 };
4755
4756 static int __init raid5_init(void)
4757 {
4758 int e;
4759
4760 e = raid6_select_algo();
4761 if ( e )
4762 return e;
4763 register_md_personality(&raid6_personality);
4764 register_md_personality(&raid5_personality);
4765 register_md_personality(&raid4_personality);
4766 return 0;
4767 }
4768
4769 static void raid5_exit(void)
4770 {
4771 unregister_md_personality(&raid6_personality);
4772 unregister_md_personality(&raid5_personality);
4773 unregister_md_personality(&raid4_personality);
4774 }
4775
4776 module_init(raid5_init);
4777 module_exit(raid5_exit);
4778 MODULE_LICENSE("GPL");
4779 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4780 MODULE_ALIAS("md-raid5");
4781 MODULE_ALIAS("md-raid4");
4782 MODULE_ALIAS("md-level-5");
4783 MODULE_ALIAS("md-level-4");
4784 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4785 MODULE_ALIAS("md-raid6");
4786 MODULE_ALIAS("md-level-6");
4787
4788 /* This used to be two separate modules, they were: */
4789 MODULE_ALIAS("raid5");
4790 MODULE_ALIAS("raid6");