]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid5.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <linux/sched/signal.h>
59
60 #include <trace/events/block.h>
61 #include <linux/list_sort.h>
62
63 #include "md.h"
64 #include "raid5.h"
65 #include "raid0.h"
66 #include "bitmap.h"
67 #include "raid5-log.h"
68
69 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
70
71 #define cpu_to_group(cpu) cpu_to_node(cpu)
72 #define ANY_GROUP NUMA_NO_NODE
73
74 static bool devices_handle_discard_safely = false;
75 module_param(devices_handle_discard_safely, bool, 0644);
76 MODULE_PARM_DESC(devices_handle_discard_safely,
77 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
78 static struct workqueue_struct *raid5_wq;
79
80 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
81 {
82 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83 return &conf->stripe_hashtbl[hash];
84 }
85
86 static inline int stripe_hash_locks_hash(sector_t sect)
87 {
88 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
89 }
90
91 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92 {
93 spin_lock_irq(conf->hash_locks + hash);
94 spin_lock(&conf->device_lock);
95 }
96
97 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99 spin_unlock(&conf->device_lock);
100 spin_unlock_irq(conf->hash_locks + hash);
101 }
102
103 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104 {
105 int i;
106 spin_lock_irq(conf->hash_locks);
107 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
108 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
109 spin_lock(&conf->device_lock);
110 }
111
112 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
113 {
114 int i;
115 spin_unlock(&conf->device_lock);
116 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
117 spin_unlock(conf->hash_locks + i);
118 spin_unlock_irq(conf->hash_locks);
119 }
120
121 /* Find first data disk in a raid6 stripe */
122 static inline int raid6_d0(struct stripe_head *sh)
123 {
124 if (sh->ddf_layout)
125 /* ddf always start from first device */
126 return 0;
127 /* md starts just after Q block */
128 if (sh->qd_idx == sh->disks - 1)
129 return 0;
130 else
131 return sh->qd_idx + 1;
132 }
133 static inline int raid6_next_disk(int disk, int raid_disks)
134 {
135 disk++;
136 return (disk < raid_disks) ? disk : 0;
137 }
138
139 /* When walking through the disks in a raid5, starting at raid6_d0,
140 * We need to map each disk to a 'slot', where the data disks are slot
141 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
142 * is raid_disks-1. This help does that mapping.
143 */
144 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
145 int *count, int syndrome_disks)
146 {
147 int slot = *count;
148
149 if (sh->ddf_layout)
150 (*count)++;
151 if (idx == sh->pd_idx)
152 return syndrome_disks;
153 if (idx == sh->qd_idx)
154 return syndrome_disks + 1;
155 if (!sh->ddf_layout)
156 (*count)++;
157 return slot;
158 }
159
160 static void print_raid5_conf (struct r5conf *conf);
161
162 static int stripe_operations_active(struct stripe_head *sh)
163 {
164 return sh->check_state || sh->reconstruct_state ||
165 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
166 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
167 }
168
169 static bool stripe_is_lowprio(struct stripe_head *sh)
170 {
171 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
172 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
173 !test_bit(STRIPE_R5C_CACHING, &sh->state);
174 }
175
176 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
177 {
178 struct r5conf *conf = sh->raid_conf;
179 struct r5worker_group *group;
180 int thread_cnt;
181 int i, cpu = sh->cpu;
182
183 if (!cpu_online(cpu)) {
184 cpu = cpumask_any(cpu_online_mask);
185 sh->cpu = cpu;
186 }
187
188 if (list_empty(&sh->lru)) {
189 struct r5worker_group *group;
190 group = conf->worker_groups + cpu_to_group(cpu);
191 if (stripe_is_lowprio(sh))
192 list_add_tail(&sh->lru, &group->loprio_list);
193 else
194 list_add_tail(&sh->lru, &group->handle_list);
195 group->stripes_cnt++;
196 sh->group = group;
197 }
198
199 if (conf->worker_cnt_per_group == 0) {
200 md_wakeup_thread(conf->mddev->thread);
201 return;
202 }
203
204 group = conf->worker_groups + cpu_to_group(sh->cpu);
205
206 group->workers[0].working = true;
207 /* at least one worker should run to avoid race */
208 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209
210 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211 /* wakeup more workers */
212 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213 if (group->workers[i].working == false) {
214 group->workers[i].working = true;
215 queue_work_on(sh->cpu, raid5_wq,
216 &group->workers[i].work);
217 thread_cnt--;
218 }
219 }
220 }
221
222 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223 struct list_head *temp_inactive_list)
224 {
225 int i;
226 int injournal = 0; /* number of date pages with R5_InJournal */
227
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
230
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 injournal++;
235 /*
236 * In the following cases, the stripe cannot be released to cached
237 * lists. Therefore, we make the stripe write out and set
238 * STRIPE_HANDLE:
239 * 1. when quiesce in r5c write back;
240 * 2. when resync is requested fot the stripe.
241 */
242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 (conf->quiesce && r5c_is_writeback(conf->log) &&
244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 r5c_make_stripe_write_out(sh);
247 set_bit(STRIPE_HANDLE, &sh->state);
248 }
249
250 if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 list_add_tail(&sh->lru, &conf->delayed_list);
254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 sh->bm_seq - conf->seq_write > 0)
256 list_add_tail(&sh->lru, &conf->bitmap_list);
257 else {
258 clear_bit(STRIPE_DELAYED, &sh->state);
259 clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 if (conf->worker_cnt_per_group == 0) {
261 if (stripe_is_lowprio(sh))
262 list_add_tail(&sh->lru,
263 &conf->loprio_list);
264 else
265 list_add_tail(&sh->lru,
266 &conf->handle_list);
267 } else {
268 raid5_wakeup_stripe_thread(sh);
269 return;
270 }
271 }
272 md_wakeup_thread(conf->mddev->thread);
273 } else {
274 BUG_ON(stripe_operations_active(sh));
275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 if (atomic_dec_return(&conf->preread_active_stripes)
277 < IO_THRESHOLD)
278 md_wakeup_thread(conf->mddev->thread);
279 atomic_dec(&conf->active_stripes);
280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 if (!r5c_is_writeback(conf->log))
282 list_add_tail(&sh->lru, temp_inactive_list);
283 else {
284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 if (injournal == 0)
286 list_add_tail(&sh->lru, temp_inactive_list);
287 else if (injournal == conf->raid_disks - conf->max_degraded) {
288 /* full stripe */
289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 atomic_inc(&conf->r5c_cached_full_stripes);
291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 atomic_dec(&conf->r5c_cached_partial_stripes);
293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 r5c_check_cached_full_stripe(conf);
295 } else
296 /*
297 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 * r5c_try_caching_write(). No need to
299 * set it again.
300 */
301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302 }
303 }
304 }
305 }
306
307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 struct list_head *temp_inactive_list)
309 {
310 if (atomic_dec_and_test(&sh->count))
311 do_release_stripe(conf, sh, temp_inactive_list);
312 }
313
314 /*
315 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
316 *
317 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
318 * given time. Adding stripes only takes device lock, while deleting stripes
319 * only takes hash lock.
320 */
321 static void release_inactive_stripe_list(struct r5conf *conf,
322 struct list_head *temp_inactive_list,
323 int hash)
324 {
325 int size;
326 bool do_wakeup = false;
327 unsigned long flags;
328
329 if (hash == NR_STRIPE_HASH_LOCKS) {
330 size = NR_STRIPE_HASH_LOCKS;
331 hash = NR_STRIPE_HASH_LOCKS - 1;
332 } else
333 size = 1;
334 while (size) {
335 struct list_head *list = &temp_inactive_list[size - 1];
336
337 /*
338 * We don't hold any lock here yet, raid5_get_active_stripe() might
339 * remove stripes from the list
340 */
341 if (!list_empty_careful(list)) {
342 spin_lock_irqsave(conf->hash_locks + hash, flags);
343 if (list_empty(conf->inactive_list + hash) &&
344 !list_empty(list))
345 atomic_dec(&conf->empty_inactive_list_nr);
346 list_splice_tail_init(list, conf->inactive_list + hash);
347 do_wakeup = true;
348 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
349 }
350 size--;
351 hash--;
352 }
353
354 if (do_wakeup) {
355 wake_up(&conf->wait_for_stripe);
356 if (atomic_read(&conf->active_stripes) == 0)
357 wake_up(&conf->wait_for_quiescent);
358 if (conf->retry_read_aligned)
359 md_wakeup_thread(conf->mddev->thread);
360 }
361 }
362
363 /* should hold conf->device_lock already */
364 static int release_stripe_list(struct r5conf *conf,
365 struct list_head *temp_inactive_list)
366 {
367 struct stripe_head *sh, *t;
368 int count = 0;
369 struct llist_node *head;
370
371 head = llist_del_all(&conf->released_stripes);
372 head = llist_reverse_order(head);
373 llist_for_each_entry_safe(sh, t, head, release_list) {
374 int hash;
375
376 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
377 smp_mb();
378 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
379 /*
380 * Don't worry the bit is set here, because if the bit is set
381 * again, the count is always > 1. This is true for
382 * STRIPE_ON_UNPLUG_LIST bit too.
383 */
384 hash = sh->hash_lock_index;
385 __release_stripe(conf, sh, &temp_inactive_list[hash]);
386 count++;
387 }
388
389 return count;
390 }
391
392 void raid5_release_stripe(struct stripe_head *sh)
393 {
394 struct r5conf *conf = sh->raid_conf;
395 unsigned long flags;
396 struct list_head list;
397 int hash;
398 bool wakeup;
399
400 /* Avoid release_list until the last reference.
401 */
402 if (atomic_add_unless(&sh->count, -1, 1))
403 return;
404
405 if (unlikely(!conf->mddev->thread) ||
406 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
407 goto slow_path;
408 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
409 if (wakeup)
410 md_wakeup_thread(conf->mddev->thread);
411 return;
412 slow_path:
413 local_irq_save(flags);
414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
416 INIT_LIST_HEAD(&list);
417 hash = sh->hash_lock_index;
418 do_release_stripe(conf, sh, &list);
419 spin_unlock(&conf->device_lock);
420 release_inactive_stripe_list(conf, &list, hash);
421 }
422 local_irq_restore(flags);
423 }
424
425 static inline void remove_hash(struct stripe_head *sh)
426 {
427 pr_debug("remove_hash(), stripe %llu\n",
428 (unsigned long long)sh->sector);
429
430 hlist_del_init(&sh->hash);
431 }
432
433 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
434 {
435 struct hlist_head *hp = stripe_hash(conf, sh->sector);
436
437 pr_debug("insert_hash(), stripe %llu\n",
438 (unsigned long long)sh->sector);
439
440 hlist_add_head(&sh->hash, hp);
441 }
442
443 /* find an idle stripe, make sure it is unhashed, and return it. */
444 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
445 {
446 struct stripe_head *sh = NULL;
447 struct list_head *first;
448
449 if (list_empty(conf->inactive_list + hash))
450 goto out;
451 first = (conf->inactive_list + hash)->next;
452 sh = list_entry(first, struct stripe_head, lru);
453 list_del_init(first);
454 remove_hash(sh);
455 atomic_inc(&conf->active_stripes);
456 BUG_ON(hash != sh->hash_lock_index);
457 if (list_empty(conf->inactive_list + hash))
458 atomic_inc(&conf->empty_inactive_list_nr);
459 out:
460 return sh;
461 }
462
463 static void shrink_buffers(struct stripe_head *sh)
464 {
465 struct page *p;
466 int i;
467 int num = sh->raid_conf->pool_size;
468
469 for (i = 0; i < num ; i++) {
470 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
471 p = sh->dev[i].page;
472 if (!p)
473 continue;
474 sh->dev[i].page = NULL;
475 put_page(p);
476 }
477 }
478
479 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
480 {
481 int i;
482 int num = sh->raid_conf->pool_size;
483
484 for (i = 0; i < num; i++) {
485 struct page *page;
486
487 if (!(page = alloc_page(gfp))) {
488 return 1;
489 }
490 sh->dev[i].page = page;
491 sh->dev[i].orig_page = page;
492 }
493
494 return 0;
495 }
496
497 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
498 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
499 struct stripe_head *sh);
500
501 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
502 {
503 struct r5conf *conf = sh->raid_conf;
504 int i, seq;
505
506 BUG_ON(atomic_read(&sh->count) != 0);
507 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
508 BUG_ON(stripe_operations_active(sh));
509 BUG_ON(sh->batch_head);
510
511 pr_debug("init_stripe called, stripe %llu\n",
512 (unsigned long long)sector);
513 retry:
514 seq = read_seqcount_begin(&conf->gen_lock);
515 sh->generation = conf->generation - previous;
516 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
517 sh->sector = sector;
518 stripe_set_idx(sector, conf, previous, sh);
519 sh->state = 0;
520
521 for (i = sh->disks; i--; ) {
522 struct r5dev *dev = &sh->dev[i];
523
524 if (dev->toread || dev->read || dev->towrite || dev->written ||
525 test_bit(R5_LOCKED, &dev->flags)) {
526 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
527 (unsigned long long)sh->sector, i, dev->toread,
528 dev->read, dev->towrite, dev->written,
529 test_bit(R5_LOCKED, &dev->flags));
530 WARN_ON(1);
531 }
532 dev->flags = 0;
533 raid5_build_block(sh, i, previous);
534 }
535 if (read_seqcount_retry(&conf->gen_lock, seq))
536 goto retry;
537 sh->overwrite_disks = 0;
538 insert_hash(conf, sh);
539 sh->cpu = smp_processor_id();
540 set_bit(STRIPE_BATCH_READY, &sh->state);
541 }
542
543 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
544 short generation)
545 {
546 struct stripe_head *sh;
547
548 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
549 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
550 if (sh->sector == sector && sh->generation == generation)
551 return sh;
552 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
553 return NULL;
554 }
555
556 /*
557 * Need to check if array has failed when deciding whether to:
558 * - start an array
559 * - remove non-faulty devices
560 * - add a spare
561 * - allow a reshape
562 * This determination is simple when no reshape is happening.
563 * However if there is a reshape, we need to carefully check
564 * both the before and after sections.
565 * This is because some failed devices may only affect one
566 * of the two sections, and some non-in_sync devices may
567 * be insync in the section most affected by failed devices.
568 */
569 int raid5_calc_degraded(struct r5conf *conf)
570 {
571 int degraded, degraded2;
572 int i;
573
574 rcu_read_lock();
575 degraded = 0;
576 for (i = 0; i < conf->previous_raid_disks; i++) {
577 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
578 if (rdev && test_bit(Faulty, &rdev->flags))
579 rdev = rcu_dereference(conf->disks[i].replacement);
580 if (!rdev || test_bit(Faulty, &rdev->flags))
581 degraded++;
582 else if (test_bit(In_sync, &rdev->flags))
583 ;
584 else
585 /* not in-sync or faulty.
586 * If the reshape increases the number of devices,
587 * this is being recovered by the reshape, so
588 * this 'previous' section is not in_sync.
589 * If the number of devices is being reduced however,
590 * the device can only be part of the array if
591 * we are reverting a reshape, so this section will
592 * be in-sync.
593 */
594 if (conf->raid_disks >= conf->previous_raid_disks)
595 degraded++;
596 }
597 rcu_read_unlock();
598 if (conf->raid_disks == conf->previous_raid_disks)
599 return degraded;
600 rcu_read_lock();
601 degraded2 = 0;
602 for (i = 0; i < conf->raid_disks; i++) {
603 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
604 if (rdev && test_bit(Faulty, &rdev->flags))
605 rdev = rcu_dereference(conf->disks[i].replacement);
606 if (!rdev || test_bit(Faulty, &rdev->flags))
607 degraded2++;
608 else if (test_bit(In_sync, &rdev->flags))
609 ;
610 else
611 /* not in-sync or faulty.
612 * If reshape increases the number of devices, this
613 * section has already been recovered, else it
614 * almost certainly hasn't.
615 */
616 if (conf->raid_disks <= conf->previous_raid_disks)
617 degraded2++;
618 }
619 rcu_read_unlock();
620 if (degraded2 > degraded)
621 return degraded2;
622 return degraded;
623 }
624
625 static int has_failed(struct r5conf *conf)
626 {
627 int degraded;
628
629 if (conf->mddev->reshape_position == MaxSector)
630 return conf->mddev->degraded > conf->max_degraded;
631
632 degraded = raid5_calc_degraded(conf);
633 if (degraded > conf->max_degraded)
634 return 1;
635 return 0;
636 }
637
638 struct stripe_head *
639 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
640 int previous, int noblock, int noquiesce)
641 {
642 struct stripe_head *sh;
643 int hash = stripe_hash_locks_hash(sector);
644 int inc_empty_inactive_list_flag;
645
646 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
647
648 spin_lock_irq(conf->hash_locks + hash);
649
650 do {
651 wait_event_lock_irq(conf->wait_for_quiescent,
652 conf->quiesce == 0 || noquiesce,
653 *(conf->hash_locks + hash));
654 sh = __find_stripe(conf, sector, conf->generation - previous);
655 if (!sh) {
656 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
657 sh = get_free_stripe(conf, hash);
658 if (!sh && !test_bit(R5_DID_ALLOC,
659 &conf->cache_state))
660 set_bit(R5_ALLOC_MORE,
661 &conf->cache_state);
662 }
663 if (noblock && sh == NULL)
664 break;
665
666 r5c_check_stripe_cache_usage(conf);
667 if (!sh) {
668 set_bit(R5_INACTIVE_BLOCKED,
669 &conf->cache_state);
670 r5l_wake_reclaim(conf->log, 0);
671 wait_event_lock_irq(
672 conf->wait_for_stripe,
673 !list_empty(conf->inactive_list + hash) &&
674 (atomic_read(&conf->active_stripes)
675 < (conf->max_nr_stripes * 3 / 4)
676 || !test_bit(R5_INACTIVE_BLOCKED,
677 &conf->cache_state)),
678 *(conf->hash_locks + hash));
679 clear_bit(R5_INACTIVE_BLOCKED,
680 &conf->cache_state);
681 } else {
682 init_stripe(sh, sector, previous);
683 atomic_inc(&sh->count);
684 }
685 } else if (!atomic_inc_not_zero(&sh->count)) {
686 spin_lock(&conf->device_lock);
687 if (!atomic_read(&sh->count)) {
688 if (!test_bit(STRIPE_HANDLE, &sh->state))
689 atomic_inc(&conf->active_stripes);
690 BUG_ON(list_empty(&sh->lru) &&
691 !test_bit(STRIPE_EXPANDING, &sh->state));
692 inc_empty_inactive_list_flag = 0;
693 if (!list_empty(conf->inactive_list + hash))
694 inc_empty_inactive_list_flag = 1;
695 list_del_init(&sh->lru);
696 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
697 atomic_inc(&conf->empty_inactive_list_nr);
698 if (sh->group) {
699 sh->group->stripes_cnt--;
700 sh->group = NULL;
701 }
702 }
703 atomic_inc(&sh->count);
704 spin_unlock(&conf->device_lock);
705 }
706 } while (sh == NULL);
707
708 spin_unlock_irq(conf->hash_locks + hash);
709 return sh;
710 }
711
712 static bool is_full_stripe_write(struct stripe_head *sh)
713 {
714 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
715 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
716 }
717
718 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719 {
720 if (sh1 > sh2) {
721 spin_lock_irq(&sh2->stripe_lock);
722 spin_lock_nested(&sh1->stripe_lock, 1);
723 } else {
724 spin_lock_irq(&sh1->stripe_lock);
725 spin_lock_nested(&sh2->stripe_lock, 1);
726 }
727 }
728
729 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 {
731 spin_unlock(&sh1->stripe_lock);
732 spin_unlock_irq(&sh2->stripe_lock);
733 }
734
735 /* Only freshly new full stripe normal write stripe can be added to a batch list */
736 static bool stripe_can_batch(struct stripe_head *sh)
737 {
738 struct r5conf *conf = sh->raid_conf;
739
740 if (conf->log || raid5_has_ppl(conf))
741 return false;
742 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
743 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
744 is_full_stripe_write(sh);
745 }
746
747 /* we only do back search */
748 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
749 {
750 struct stripe_head *head;
751 sector_t head_sector, tmp_sec;
752 int hash;
753 int dd_idx;
754 int inc_empty_inactive_list_flag;
755
756 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
757 tmp_sec = sh->sector;
758 if (!sector_div(tmp_sec, conf->chunk_sectors))
759 return;
760 head_sector = sh->sector - STRIPE_SECTORS;
761
762 hash = stripe_hash_locks_hash(head_sector);
763 spin_lock_irq(conf->hash_locks + hash);
764 head = __find_stripe(conf, head_sector, conf->generation);
765 if (head && !atomic_inc_not_zero(&head->count)) {
766 spin_lock(&conf->device_lock);
767 if (!atomic_read(&head->count)) {
768 if (!test_bit(STRIPE_HANDLE, &head->state))
769 atomic_inc(&conf->active_stripes);
770 BUG_ON(list_empty(&head->lru) &&
771 !test_bit(STRIPE_EXPANDING, &head->state));
772 inc_empty_inactive_list_flag = 0;
773 if (!list_empty(conf->inactive_list + hash))
774 inc_empty_inactive_list_flag = 1;
775 list_del_init(&head->lru);
776 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
777 atomic_inc(&conf->empty_inactive_list_nr);
778 if (head->group) {
779 head->group->stripes_cnt--;
780 head->group = NULL;
781 }
782 }
783 atomic_inc(&head->count);
784 spin_unlock(&conf->device_lock);
785 }
786 spin_unlock_irq(conf->hash_locks + hash);
787
788 if (!head)
789 return;
790 if (!stripe_can_batch(head))
791 goto out;
792
793 lock_two_stripes(head, sh);
794 /* clear_batch_ready clear the flag */
795 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
796 goto unlock_out;
797
798 if (sh->batch_head)
799 goto unlock_out;
800
801 dd_idx = 0;
802 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
803 dd_idx++;
804 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
805 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
806 goto unlock_out;
807
808 if (head->batch_head) {
809 spin_lock(&head->batch_head->batch_lock);
810 /* This batch list is already running */
811 if (!stripe_can_batch(head)) {
812 spin_unlock(&head->batch_head->batch_lock);
813 goto unlock_out;
814 }
815
816 /*
817 * at this point, head's BATCH_READY could be cleared, but we
818 * can still add the stripe to batch list
819 */
820 list_add(&sh->batch_list, &head->batch_list);
821 spin_unlock(&head->batch_head->batch_lock);
822
823 sh->batch_head = head->batch_head;
824 } else {
825 head->batch_head = head;
826 sh->batch_head = head->batch_head;
827 spin_lock(&head->batch_lock);
828 list_add_tail(&sh->batch_list, &head->batch_list);
829 spin_unlock(&head->batch_lock);
830 }
831
832 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
833 if (atomic_dec_return(&conf->preread_active_stripes)
834 < IO_THRESHOLD)
835 md_wakeup_thread(conf->mddev->thread);
836
837 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
838 int seq = sh->bm_seq;
839 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
840 sh->batch_head->bm_seq > seq)
841 seq = sh->batch_head->bm_seq;
842 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
843 sh->batch_head->bm_seq = seq;
844 }
845
846 atomic_inc(&sh->count);
847 unlock_out:
848 unlock_two_stripes(head, sh);
849 out:
850 raid5_release_stripe(head);
851 }
852
853 /* Determine if 'data_offset' or 'new_data_offset' should be used
854 * in this stripe_head.
855 */
856 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
857 {
858 sector_t progress = conf->reshape_progress;
859 /* Need a memory barrier to make sure we see the value
860 * of conf->generation, or ->data_offset that was set before
861 * reshape_progress was updated.
862 */
863 smp_rmb();
864 if (progress == MaxSector)
865 return 0;
866 if (sh->generation == conf->generation - 1)
867 return 0;
868 /* We are in a reshape, and this is a new-generation stripe,
869 * so use new_data_offset.
870 */
871 return 1;
872 }
873
874 static void dispatch_bio_list(struct bio_list *tmp)
875 {
876 struct bio *bio;
877
878 while ((bio = bio_list_pop(tmp)))
879 generic_make_request(bio);
880 }
881
882 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
883 {
884 const struct r5pending_data *da = list_entry(a,
885 struct r5pending_data, sibling);
886 const struct r5pending_data *db = list_entry(b,
887 struct r5pending_data, sibling);
888 if (da->sector > db->sector)
889 return 1;
890 if (da->sector < db->sector)
891 return -1;
892 return 0;
893 }
894
895 static void dispatch_defer_bios(struct r5conf *conf, int target,
896 struct bio_list *list)
897 {
898 struct r5pending_data *data;
899 struct list_head *first, *next = NULL;
900 int cnt = 0;
901
902 if (conf->pending_data_cnt == 0)
903 return;
904
905 list_sort(NULL, &conf->pending_list, cmp_stripe);
906
907 first = conf->pending_list.next;
908
909 /* temporarily move the head */
910 if (conf->next_pending_data)
911 list_move_tail(&conf->pending_list,
912 &conf->next_pending_data->sibling);
913
914 while (!list_empty(&conf->pending_list)) {
915 data = list_first_entry(&conf->pending_list,
916 struct r5pending_data, sibling);
917 if (&data->sibling == first)
918 first = data->sibling.next;
919 next = data->sibling.next;
920
921 bio_list_merge(list, &data->bios);
922 list_move(&data->sibling, &conf->free_list);
923 cnt++;
924 if (cnt >= target)
925 break;
926 }
927 conf->pending_data_cnt -= cnt;
928 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
929
930 if (next != &conf->pending_list)
931 conf->next_pending_data = list_entry(next,
932 struct r5pending_data, sibling);
933 else
934 conf->next_pending_data = NULL;
935 /* list isn't empty */
936 if (first != &conf->pending_list)
937 list_move_tail(&conf->pending_list, first);
938 }
939
940 static void flush_deferred_bios(struct r5conf *conf)
941 {
942 struct bio_list tmp = BIO_EMPTY_LIST;
943
944 if (conf->pending_data_cnt == 0)
945 return;
946
947 spin_lock(&conf->pending_bios_lock);
948 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
949 BUG_ON(conf->pending_data_cnt != 0);
950 spin_unlock(&conf->pending_bios_lock);
951
952 dispatch_bio_list(&tmp);
953 }
954
955 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
956 struct bio_list *bios)
957 {
958 struct bio_list tmp = BIO_EMPTY_LIST;
959 struct r5pending_data *ent;
960
961 spin_lock(&conf->pending_bios_lock);
962 ent = list_first_entry(&conf->free_list, struct r5pending_data,
963 sibling);
964 list_move_tail(&ent->sibling, &conf->pending_list);
965 ent->sector = sector;
966 bio_list_init(&ent->bios);
967 bio_list_merge(&ent->bios, bios);
968 conf->pending_data_cnt++;
969 if (conf->pending_data_cnt >= PENDING_IO_MAX)
970 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
971
972 spin_unlock(&conf->pending_bios_lock);
973
974 dispatch_bio_list(&tmp);
975 }
976
977 static void
978 raid5_end_read_request(struct bio *bi);
979 static void
980 raid5_end_write_request(struct bio *bi);
981
982 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
983 {
984 struct r5conf *conf = sh->raid_conf;
985 int i, disks = sh->disks;
986 struct stripe_head *head_sh = sh;
987 struct bio_list pending_bios = BIO_EMPTY_LIST;
988 bool should_defer;
989
990 might_sleep();
991
992 if (log_stripe(sh, s) == 0)
993 return;
994
995 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
996
997 for (i = disks; i--; ) {
998 int op, op_flags = 0;
999 int replace_only = 0;
1000 struct bio *bi, *rbi;
1001 struct md_rdev *rdev, *rrdev = NULL;
1002
1003 sh = head_sh;
1004 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1005 op = REQ_OP_WRITE;
1006 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1007 op_flags = REQ_FUA;
1008 if (test_bit(R5_Discard, &sh->dev[i].flags))
1009 op = REQ_OP_DISCARD;
1010 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1011 op = REQ_OP_READ;
1012 else if (test_and_clear_bit(R5_WantReplace,
1013 &sh->dev[i].flags)) {
1014 op = REQ_OP_WRITE;
1015 replace_only = 1;
1016 } else
1017 continue;
1018 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1019 op_flags |= REQ_SYNC;
1020
1021 again:
1022 bi = &sh->dev[i].req;
1023 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1024
1025 rcu_read_lock();
1026 rrdev = rcu_dereference(conf->disks[i].replacement);
1027 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1028 rdev = rcu_dereference(conf->disks[i].rdev);
1029 if (!rdev) {
1030 rdev = rrdev;
1031 rrdev = NULL;
1032 }
1033 if (op_is_write(op)) {
1034 if (replace_only)
1035 rdev = NULL;
1036 if (rdev == rrdev)
1037 /* We raced and saw duplicates */
1038 rrdev = NULL;
1039 } else {
1040 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1041 rdev = rrdev;
1042 rrdev = NULL;
1043 }
1044
1045 if (rdev && test_bit(Faulty, &rdev->flags))
1046 rdev = NULL;
1047 if (rdev)
1048 atomic_inc(&rdev->nr_pending);
1049 if (rrdev && test_bit(Faulty, &rrdev->flags))
1050 rrdev = NULL;
1051 if (rrdev)
1052 atomic_inc(&rrdev->nr_pending);
1053 rcu_read_unlock();
1054
1055 /* We have already checked bad blocks for reads. Now
1056 * need to check for writes. We never accept write errors
1057 * on the replacement, so we don't to check rrdev.
1058 */
1059 while (op_is_write(op) && rdev &&
1060 test_bit(WriteErrorSeen, &rdev->flags)) {
1061 sector_t first_bad;
1062 int bad_sectors;
1063 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1064 &first_bad, &bad_sectors);
1065 if (!bad)
1066 break;
1067
1068 if (bad < 0) {
1069 set_bit(BlockedBadBlocks, &rdev->flags);
1070 if (!conf->mddev->external &&
1071 conf->mddev->sb_flags) {
1072 /* It is very unlikely, but we might
1073 * still need to write out the
1074 * bad block log - better give it
1075 * a chance*/
1076 md_check_recovery(conf->mddev);
1077 }
1078 /*
1079 * Because md_wait_for_blocked_rdev
1080 * will dec nr_pending, we must
1081 * increment it first.
1082 */
1083 atomic_inc(&rdev->nr_pending);
1084 md_wait_for_blocked_rdev(rdev, conf->mddev);
1085 } else {
1086 /* Acknowledged bad block - skip the write */
1087 rdev_dec_pending(rdev, conf->mddev);
1088 rdev = NULL;
1089 }
1090 }
1091
1092 if (rdev) {
1093 if (s->syncing || s->expanding || s->expanded
1094 || s->replacing)
1095 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1096
1097 set_bit(STRIPE_IO_STARTED, &sh->state);
1098
1099 bi->bi_bdev = rdev->bdev;
1100 bio_set_op_attrs(bi, op, op_flags);
1101 bi->bi_end_io = op_is_write(op)
1102 ? raid5_end_write_request
1103 : raid5_end_read_request;
1104 bi->bi_private = sh;
1105
1106 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1107 __func__, (unsigned long long)sh->sector,
1108 bi->bi_opf, i);
1109 atomic_inc(&sh->count);
1110 if (sh != head_sh)
1111 atomic_inc(&head_sh->count);
1112 if (use_new_offset(conf, sh))
1113 bi->bi_iter.bi_sector = (sh->sector
1114 + rdev->new_data_offset);
1115 else
1116 bi->bi_iter.bi_sector = (sh->sector
1117 + rdev->data_offset);
1118 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1119 bi->bi_opf |= REQ_NOMERGE;
1120
1121 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1122 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1123
1124 if (!op_is_write(op) &&
1125 test_bit(R5_InJournal, &sh->dev[i].flags))
1126 /*
1127 * issuing read for a page in journal, this
1128 * must be preparing for prexor in rmw; read
1129 * the data into orig_page
1130 */
1131 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1132 else
1133 sh->dev[i].vec.bv_page = sh->dev[i].page;
1134 bi->bi_vcnt = 1;
1135 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1136 bi->bi_io_vec[0].bv_offset = 0;
1137 bi->bi_iter.bi_size = STRIPE_SIZE;
1138 /*
1139 * If this is discard request, set bi_vcnt 0. We don't
1140 * want to confuse SCSI because SCSI will replace payload
1141 */
1142 if (op == REQ_OP_DISCARD)
1143 bi->bi_vcnt = 0;
1144 if (rrdev)
1145 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146
1147 if (conf->mddev->gendisk)
1148 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1149 bi, disk_devt(conf->mddev->gendisk),
1150 sh->dev[i].sector);
1151 if (should_defer && op_is_write(op))
1152 bio_list_add(&pending_bios, bi);
1153 else
1154 generic_make_request(bi);
1155 }
1156 if (rrdev) {
1157 if (s->syncing || s->expanding || s->expanded
1158 || s->replacing)
1159 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160
1161 set_bit(STRIPE_IO_STARTED, &sh->state);
1162
1163 rbi->bi_bdev = rrdev->bdev;
1164 bio_set_op_attrs(rbi, op, op_flags);
1165 BUG_ON(!op_is_write(op));
1166 rbi->bi_end_io = raid5_end_write_request;
1167 rbi->bi_private = sh;
1168
1169 pr_debug("%s: for %llu schedule op %d on "
1170 "replacement disc %d\n",
1171 __func__, (unsigned long long)sh->sector,
1172 rbi->bi_opf, i);
1173 atomic_inc(&sh->count);
1174 if (sh != head_sh)
1175 atomic_inc(&head_sh->count);
1176 if (use_new_offset(conf, sh))
1177 rbi->bi_iter.bi_sector = (sh->sector
1178 + rrdev->new_data_offset);
1179 else
1180 rbi->bi_iter.bi_sector = (sh->sector
1181 + rrdev->data_offset);
1182 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185 rbi->bi_vcnt = 1;
1186 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187 rbi->bi_io_vec[0].bv_offset = 0;
1188 rbi->bi_iter.bi_size = STRIPE_SIZE;
1189 /*
1190 * If this is discard request, set bi_vcnt 0. We don't
1191 * want to confuse SCSI because SCSI will replace payload
1192 */
1193 if (op == REQ_OP_DISCARD)
1194 rbi->bi_vcnt = 0;
1195 if (conf->mddev->gendisk)
1196 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1197 rbi, disk_devt(conf->mddev->gendisk),
1198 sh->dev[i].sector);
1199 if (should_defer && op_is_write(op))
1200 bio_list_add(&pending_bios, rbi);
1201 else
1202 generic_make_request(rbi);
1203 }
1204 if (!rdev && !rrdev) {
1205 if (op_is_write(op))
1206 set_bit(STRIPE_DEGRADED, &sh->state);
1207 pr_debug("skip op %d on disc %d for sector %llu\n",
1208 bi->bi_opf, i, (unsigned long long)sh->sector);
1209 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1210 set_bit(STRIPE_HANDLE, &sh->state);
1211 }
1212
1213 if (!head_sh->batch_head)
1214 continue;
1215 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1216 batch_list);
1217 if (sh != head_sh)
1218 goto again;
1219 }
1220
1221 if (should_defer && !bio_list_empty(&pending_bios))
1222 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1223 }
1224
1225 static struct dma_async_tx_descriptor *
1226 async_copy_data(int frombio, struct bio *bio, struct page **page,
1227 sector_t sector, struct dma_async_tx_descriptor *tx,
1228 struct stripe_head *sh, int no_skipcopy)
1229 {
1230 struct bio_vec bvl;
1231 struct bvec_iter iter;
1232 struct page *bio_page;
1233 int page_offset;
1234 struct async_submit_ctl submit;
1235 enum async_tx_flags flags = 0;
1236
1237 if (bio->bi_iter.bi_sector >= sector)
1238 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1239 else
1240 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1241
1242 if (frombio)
1243 flags |= ASYNC_TX_FENCE;
1244 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1245
1246 bio_for_each_segment(bvl, bio, iter) {
1247 int len = bvl.bv_len;
1248 int clen;
1249 int b_offset = 0;
1250
1251 if (page_offset < 0) {
1252 b_offset = -page_offset;
1253 page_offset += b_offset;
1254 len -= b_offset;
1255 }
1256
1257 if (len > 0 && page_offset + len > STRIPE_SIZE)
1258 clen = STRIPE_SIZE - page_offset;
1259 else
1260 clen = len;
1261
1262 if (clen > 0) {
1263 b_offset += bvl.bv_offset;
1264 bio_page = bvl.bv_page;
1265 if (frombio) {
1266 if (sh->raid_conf->skip_copy &&
1267 b_offset == 0 && page_offset == 0 &&
1268 clen == STRIPE_SIZE &&
1269 !no_skipcopy)
1270 *page = bio_page;
1271 else
1272 tx = async_memcpy(*page, bio_page, page_offset,
1273 b_offset, clen, &submit);
1274 } else
1275 tx = async_memcpy(bio_page, *page, b_offset,
1276 page_offset, clen, &submit);
1277 }
1278 /* chain the operations */
1279 submit.depend_tx = tx;
1280
1281 if (clen < len) /* hit end of page */
1282 break;
1283 page_offset += len;
1284 }
1285
1286 return tx;
1287 }
1288
1289 static void ops_complete_biofill(void *stripe_head_ref)
1290 {
1291 struct stripe_head *sh = stripe_head_ref;
1292 int i;
1293
1294 pr_debug("%s: stripe %llu\n", __func__,
1295 (unsigned long long)sh->sector);
1296
1297 /* clear completed biofills */
1298 for (i = sh->disks; i--; ) {
1299 struct r5dev *dev = &sh->dev[i];
1300
1301 /* acknowledge completion of a biofill operation */
1302 /* and check if we need to reply to a read request,
1303 * new R5_Wantfill requests are held off until
1304 * !STRIPE_BIOFILL_RUN
1305 */
1306 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1307 struct bio *rbi, *rbi2;
1308
1309 BUG_ON(!dev->read);
1310 rbi = dev->read;
1311 dev->read = NULL;
1312 while (rbi && rbi->bi_iter.bi_sector <
1313 dev->sector + STRIPE_SECTORS) {
1314 rbi2 = r5_next_bio(rbi, dev->sector);
1315 bio_endio(rbi);
1316 rbi = rbi2;
1317 }
1318 }
1319 }
1320 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1321
1322 set_bit(STRIPE_HANDLE, &sh->state);
1323 raid5_release_stripe(sh);
1324 }
1325
1326 static void ops_run_biofill(struct stripe_head *sh)
1327 {
1328 struct dma_async_tx_descriptor *tx = NULL;
1329 struct async_submit_ctl submit;
1330 int i;
1331
1332 BUG_ON(sh->batch_head);
1333 pr_debug("%s: stripe %llu\n", __func__,
1334 (unsigned long long)sh->sector);
1335
1336 for (i = sh->disks; i--; ) {
1337 struct r5dev *dev = &sh->dev[i];
1338 if (test_bit(R5_Wantfill, &dev->flags)) {
1339 struct bio *rbi;
1340 spin_lock_irq(&sh->stripe_lock);
1341 dev->read = rbi = dev->toread;
1342 dev->toread = NULL;
1343 spin_unlock_irq(&sh->stripe_lock);
1344 while (rbi && rbi->bi_iter.bi_sector <
1345 dev->sector + STRIPE_SECTORS) {
1346 tx = async_copy_data(0, rbi, &dev->page,
1347 dev->sector, tx, sh, 0);
1348 rbi = r5_next_bio(rbi, dev->sector);
1349 }
1350 }
1351 }
1352
1353 atomic_inc(&sh->count);
1354 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1355 async_trigger_callback(&submit);
1356 }
1357
1358 static void mark_target_uptodate(struct stripe_head *sh, int target)
1359 {
1360 struct r5dev *tgt;
1361
1362 if (target < 0)
1363 return;
1364
1365 tgt = &sh->dev[target];
1366 set_bit(R5_UPTODATE, &tgt->flags);
1367 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1368 clear_bit(R5_Wantcompute, &tgt->flags);
1369 }
1370
1371 static void ops_complete_compute(void *stripe_head_ref)
1372 {
1373 struct stripe_head *sh = stripe_head_ref;
1374
1375 pr_debug("%s: stripe %llu\n", __func__,
1376 (unsigned long long)sh->sector);
1377
1378 /* mark the computed target(s) as uptodate */
1379 mark_target_uptodate(sh, sh->ops.target);
1380 mark_target_uptodate(sh, sh->ops.target2);
1381
1382 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1383 if (sh->check_state == check_state_compute_run)
1384 sh->check_state = check_state_compute_result;
1385 set_bit(STRIPE_HANDLE, &sh->state);
1386 raid5_release_stripe(sh);
1387 }
1388
1389 /* return a pointer to the address conversion region of the scribble buffer */
1390 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1391 struct raid5_percpu *percpu, int i)
1392 {
1393 void *addr;
1394
1395 addr = flex_array_get(percpu->scribble, i);
1396 return addr + sizeof(struct page *) * (sh->disks + 2);
1397 }
1398
1399 /* return a pointer to the address conversion region of the scribble buffer */
1400 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1401 {
1402 void *addr;
1403
1404 addr = flex_array_get(percpu->scribble, i);
1405 return addr;
1406 }
1407
1408 static struct dma_async_tx_descriptor *
1409 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1410 {
1411 int disks = sh->disks;
1412 struct page **xor_srcs = to_addr_page(percpu, 0);
1413 int target = sh->ops.target;
1414 struct r5dev *tgt = &sh->dev[target];
1415 struct page *xor_dest = tgt->page;
1416 int count = 0;
1417 struct dma_async_tx_descriptor *tx;
1418 struct async_submit_ctl submit;
1419 int i;
1420
1421 BUG_ON(sh->batch_head);
1422
1423 pr_debug("%s: stripe %llu block: %d\n",
1424 __func__, (unsigned long long)sh->sector, target);
1425 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1426
1427 for (i = disks; i--; )
1428 if (i != target)
1429 xor_srcs[count++] = sh->dev[i].page;
1430
1431 atomic_inc(&sh->count);
1432
1433 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1434 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1435 if (unlikely(count == 1))
1436 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1437 else
1438 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1439
1440 return tx;
1441 }
1442
1443 /* set_syndrome_sources - populate source buffers for gen_syndrome
1444 * @srcs - (struct page *) array of size sh->disks
1445 * @sh - stripe_head to parse
1446 *
1447 * Populates srcs in proper layout order for the stripe and returns the
1448 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1449 * destination buffer is recorded in srcs[count] and the Q destination
1450 * is recorded in srcs[count+1]].
1451 */
1452 static int set_syndrome_sources(struct page **srcs,
1453 struct stripe_head *sh,
1454 int srctype)
1455 {
1456 int disks = sh->disks;
1457 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1458 int d0_idx = raid6_d0(sh);
1459 int count;
1460 int i;
1461
1462 for (i = 0; i < disks; i++)
1463 srcs[i] = NULL;
1464
1465 count = 0;
1466 i = d0_idx;
1467 do {
1468 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1469 struct r5dev *dev = &sh->dev[i];
1470
1471 if (i == sh->qd_idx || i == sh->pd_idx ||
1472 (srctype == SYNDROME_SRC_ALL) ||
1473 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1474 (test_bit(R5_Wantdrain, &dev->flags) ||
1475 test_bit(R5_InJournal, &dev->flags))) ||
1476 (srctype == SYNDROME_SRC_WRITTEN &&
1477 (dev->written ||
1478 test_bit(R5_InJournal, &dev->flags)))) {
1479 if (test_bit(R5_InJournal, &dev->flags))
1480 srcs[slot] = sh->dev[i].orig_page;
1481 else
1482 srcs[slot] = sh->dev[i].page;
1483 }
1484 i = raid6_next_disk(i, disks);
1485 } while (i != d0_idx);
1486
1487 return syndrome_disks;
1488 }
1489
1490 static struct dma_async_tx_descriptor *
1491 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1492 {
1493 int disks = sh->disks;
1494 struct page **blocks = to_addr_page(percpu, 0);
1495 int target;
1496 int qd_idx = sh->qd_idx;
1497 struct dma_async_tx_descriptor *tx;
1498 struct async_submit_ctl submit;
1499 struct r5dev *tgt;
1500 struct page *dest;
1501 int i;
1502 int count;
1503
1504 BUG_ON(sh->batch_head);
1505 if (sh->ops.target < 0)
1506 target = sh->ops.target2;
1507 else if (sh->ops.target2 < 0)
1508 target = sh->ops.target;
1509 else
1510 /* we should only have one valid target */
1511 BUG();
1512 BUG_ON(target < 0);
1513 pr_debug("%s: stripe %llu block: %d\n",
1514 __func__, (unsigned long long)sh->sector, target);
1515
1516 tgt = &sh->dev[target];
1517 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1518 dest = tgt->page;
1519
1520 atomic_inc(&sh->count);
1521
1522 if (target == qd_idx) {
1523 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1524 blocks[count] = NULL; /* regenerating p is not necessary */
1525 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1526 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1527 ops_complete_compute, sh,
1528 to_addr_conv(sh, percpu, 0));
1529 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1530 } else {
1531 /* Compute any data- or p-drive using XOR */
1532 count = 0;
1533 for (i = disks; i-- ; ) {
1534 if (i == target || i == qd_idx)
1535 continue;
1536 blocks[count++] = sh->dev[i].page;
1537 }
1538
1539 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1540 NULL, ops_complete_compute, sh,
1541 to_addr_conv(sh, percpu, 0));
1542 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1543 }
1544
1545 return tx;
1546 }
1547
1548 static struct dma_async_tx_descriptor *
1549 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1550 {
1551 int i, count, disks = sh->disks;
1552 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1553 int d0_idx = raid6_d0(sh);
1554 int faila = -1, failb = -1;
1555 int target = sh->ops.target;
1556 int target2 = sh->ops.target2;
1557 struct r5dev *tgt = &sh->dev[target];
1558 struct r5dev *tgt2 = &sh->dev[target2];
1559 struct dma_async_tx_descriptor *tx;
1560 struct page **blocks = to_addr_page(percpu, 0);
1561 struct async_submit_ctl submit;
1562
1563 BUG_ON(sh->batch_head);
1564 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1565 __func__, (unsigned long long)sh->sector, target, target2);
1566 BUG_ON(target < 0 || target2 < 0);
1567 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1568 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1569
1570 /* we need to open-code set_syndrome_sources to handle the
1571 * slot number conversion for 'faila' and 'failb'
1572 */
1573 for (i = 0; i < disks ; i++)
1574 blocks[i] = NULL;
1575 count = 0;
1576 i = d0_idx;
1577 do {
1578 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1579
1580 blocks[slot] = sh->dev[i].page;
1581
1582 if (i == target)
1583 faila = slot;
1584 if (i == target2)
1585 failb = slot;
1586 i = raid6_next_disk(i, disks);
1587 } while (i != d0_idx);
1588
1589 BUG_ON(faila == failb);
1590 if (failb < faila)
1591 swap(faila, failb);
1592 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1593 __func__, (unsigned long long)sh->sector, faila, failb);
1594
1595 atomic_inc(&sh->count);
1596
1597 if (failb == syndrome_disks+1) {
1598 /* Q disk is one of the missing disks */
1599 if (faila == syndrome_disks) {
1600 /* Missing P+Q, just recompute */
1601 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1602 ops_complete_compute, sh,
1603 to_addr_conv(sh, percpu, 0));
1604 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1605 STRIPE_SIZE, &submit);
1606 } else {
1607 struct page *dest;
1608 int data_target;
1609 int qd_idx = sh->qd_idx;
1610
1611 /* Missing D+Q: recompute D from P, then recompute Q */
1612 if (target == qd_idx)
1613 data_target = target2;
1614 else
1615 data_target = target;
1616
1617 count = 0;
1618 for (i = disks; i-- ; ) {
1619 if (i == data_target || i == qd_idx)
1620 continue;
1621 blocks[count++] = sh->dev[i].page;
1622 }
1623 dest = sh->dev[data_target].page;
1624 init_async_submit(&submit,
1625 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1626 NULL, NULL, NULL,
1627 to_addr_conv(sh, percpu, 0));
1628 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1629 &submit);
1630
1631 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1632 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1633 ops_complete_compute, sh,
1634 to_addr_conv(sh, percpu, 0));
1635 return async_gen_syndrome(blocks, 0, count+2,
1636 STRIPE_SIZE, &submit);
1637 }
1638 } else {
1639 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1640 ops_complete_compute, sh,
1641 to_addr_conv(sh, percpu, 0));
1642 if (failb == syndrome_disks) {
1643 /* We're missing D+P. */
1644 return async_raid6_datap_recov(syndrome_disks+2,
1645 STRIPE_SIZE, faila,
1646 blocks, &submit);
1647 } else {
1648 /* We're missing D+D. */
1649 return async_raid6_2data_recov(syndrome_disks+2,
1650 STRIPE_SIZE, faila, failb,
1651 blocks, &submit);
1652 }
1653 }
1654 }
1655
1656 static void ops_complete_prexor(void *stripe_head_ref)
1657 {
1658 struct stripe_head *sh = stripe_head_ref;
1659
1660 pr_debug("%s: stripe %llu\n", __func__,
1661 (unsigned long long)sh->sector);
1662
1663 if (r5c_is_writeback(sh->raid_conf->log))
1664 /*
1665 * raid5-cache write back uses orig_page during prexor.
1666 * After prexor, it is time to free orig_page
1667 */
1668 r5c_release_extra_page(sh);
1669 }
1670
1671 static struct dma_async_tx_descriptor *
1672 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1673 struct dma_async_tx_descriptor *tx)
1674 {
1675 int disks = sh->disks;
1676 struct page **xor_srcs = to_addr_page(percpu, 0);
1677 int count = 0, pd_idx = sh->pd_idx, i;
1678 struct async_submit_ctl submit;
1679
1680 /* existing parity data subtracted */
1681 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1682
1683 BUG_ON(sh->batch_head);
1684 pr_debug("%s: stripe %llu\n", __func__,
1685 (unsigned long long)sh->sector);
1686
1687 for (i = disks; i--; ) {
1688 struct r5dev *dev = &sh->dev[i];
1689 /* Only process blocks that are known to be uptodate */
1690 if (test_bit(R5_InJournal, &dev->flags))
1691 xor_srcs[count++] = dev->orig_page;
1692 else if (test_bit(R5_Wantdrain, &dev->flags))
1693 xor_srcs[count++] = dev->page;
1694 }
1695
1696 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1697 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1698 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1699
1700 return tx;
1701 }
1702
1703 static struct dma_async_tx_descriptor *
1704 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1705 struct dma_async_tx_descriptor *tx)
1706 {
1707 struct page **blocks = to_addr_page(percpu, 0);
1708 int count;
1709 struct async_submit_ctl submit;
1710
1711 pr_debug("%s: stripe %llu\n", __func__,
1712 (unsigned long long)sh->sector);
1713
1714 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1715
1716 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1717 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1718 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1719
1720 return tx;
1721 }
1722
1723 static struct dma_async_tx_descriptor *
1724 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1725 {
1726 struct r5conf *conf = sh->raid_conf;
1727 int disks = sh->disks;
1728 int i;
1729 struct stripe_head *head_sh = sh;
1730
1731 pr_debug("%s: stripe %llu\n", __func__,
1732 (unsigned long long)sh->sector);
1733
1734 for (i = disks; i--; ) {
1735 struct r5dev *dev;
1736 struct bio *chosen;
1737
1738 sh = head_sh;
1739 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1740 struct bio *wbi;
1741
1742 again:
1743 dev = &sh->dev[i];
1744 /*
1745 * clear R5_InJournal, so when rewriting a page in
1746 * journal, it is not skipped by r5l_log_stripe()
1747 */
1748 clear_bit(R5_InJournal, &dev->flags);
1749 spin_lock_irq(&sh->stripe_lock);
1750 chosen = dev->towrite;
1751 dev->towrite = NULL;
1752 sh->overwrite_disks = 0;
1753 BUG_ON(dev->written);
1754 wbi = dev->written = chosen;
1755 spin_unlock_irq(&sh->stripe_lock);
1756 WARN_ON(dev->page != dev->orig_page);
1757
1758 while (wbi && wbi->bi_iter.bi_sector <
1759 dev->sector + STRIPE_SECTORS) {
1760 if (wbi->bi_opf & REQ_FUA)
1761 set_bit(R5_WantFUA, &dev->flags);
1762 if (wbi->bi_opf & REQ_SYNC)
1763 set_bit(R5_SyncIO, &dev->flags);
1764 if (bio_op(wbi) == REQ_OP_DISCARD)
1765 set_bit(R5_Discard, &dev->flags);
1766 else {
1767 tx = async_copy_data(1, wbi, &dev->page,
1768 dev->sector, tx, sh,
1769 r5c_is_writeback(conf->log));
1770 if (dev->page != dev->orig_page &&
1771 !r5c_is_writeback(conf->log)) {
1772 set_bit(R5_SkipCopy, &dev->flags);
1773 clear_bit(R5_UPTODATE, &dev->flags);
1774 clear_bit(R5_OVERWRITE, &dev->flags);
1775 }
1776 }
1777 wbi = r5_next_bio(wbi, dev->sector);
1778 }
1779
1780 if (head_sh->batch_head) {
1781 sh = list_first_entry(&sh->batch_list,
1782 struct stripe_head,
1783 batch_list);
1784 if (sh == head_sh)
1785 continue;
1786 goto again;
1787 }
1788 }
1789 }
1790
1791 return tx;
1792 }
1793
1794 static void ops_complete_reconstruct(void *stripe_head_ref)
1795 {
1796 struct stripe_head *sh = stripe_head_ref;
1797 int disks = sh->disks;
1798 int pd_idx = sh->pd_idx;
1799 int qd_idx = sh->qd_idx;
1800 int i;
1801 bool fua = false, sync = false, discard = false;
1802
1803 pr_debug("%s: stripe %llu\n", __func__,
1804 (unsigned long long)sh->sector);
1805
1806 for (i = disks; i--; ) {
1807 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1808 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1809 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1810 }
1811
1812 for (i = disks; i--; ) {
1813 struct r5dev *dev = &sh->dev[i];
1814
1815 if (dev->written || i == pd_idx || i == qd_idx) {
1816 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1817 set_bit(R5_UPTODATE, &dev->flags);
1818 if (fua)
1819 set_bit(R5_WantFUA, &dev->flags);
1820 if (sync)
1821 set_bit(R5_SyncIO, &dev->flags);
1822 }
1823 }
1824
1825 if (sh->reconstruct_state == reconstruct_state_drain_run)
1826 sh->reconstruct_state = reconstruct_state_drain_result;
1827 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1828 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1829 else {
1830 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1831 sh->reconstruct_state = reconstruct_state_result;
1832 }
1833
1834 set_bit(STRIPE_HANDLE, &sh->state);
1835 raid5_release_stripe(sh);
1836 }
1837
1838 static void
1839 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1840 struct dma_async_tx_descriptor *tx)
1841 {
1842 int disks = sh->disks;
1843 struct page **xor_srcs;
1844 struct async_submit_ctl submit;
1845 int count, pd_idx = sh->pd_idx, i;
1846 struct page *xor_dest;
1847 int prexor = 0;
1848 unsigned long flags;
1849 int j = 0;
1850 struct stripe_head *head_sh = sh;
1851 int last_stripe;
1852
1853 pr_debug("%s: stripe %llu\n", __func__,
1854 (unsigned long long)sh->sector);
1855
1856 for (i = 0; i < sh->disks; i++) {
1857 if (pd_idx == i)
1858 continue;
1859 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1860 break;
1861 }
1862 if (i >= sh->disks) {
1863 atomic_inc(&sh->count);
1864 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1865 ops_complete_reconstruct(sh);
1866 return;
1867 }
1868 again:
1869 count = 0;
1870 xor_srcs = to_addr_page(percpu, j);
1871 /* check if prexor is active which means only process blocks
1872 * that are part of a read-modify-write (written)
1873 */
1874 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1875 prexor = 1;
1876 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1877 for (i = disks; i--; ) {
1878 struct r5dev *dev = &sh->dev[i];
1879 if (head_sh->dev[i].written ||
1880 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1881 xor_srcs[count++] = dev->page;
1882 }
1883 } else {
1884 xor_dest = sh->dev[pd_idx].page;
1885 for (i = disks; i--; ) {
1886 struct r5dev *dev = &sh->dev[i];
1887 if (i != pd_idx)
1888 xor_srcs[count++] = dev->page;
1889 }
1890 }
1891
1892 /* 1/ if we prexor'd then the dest is reused as a source
1893 * 2/ if we did not prexor then we are redoing the parity
1894 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1895 * for the synchronous xor case
1896 */
1897 last_stripe = !head_sh->batch_head ||
1898 list_first_entry(&sh->batch_list,
1899 struct stripe_head, batch_list) == head_sh;
1900 if (last_stripe) {
1901 flags = ASYNC_TX_ACK |
1902 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1903
1904 atomic_inc(&head_sh->count);
1905 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1906 to_addr_conv(sh, percpu, j));
1907 } else {
1908 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1909 init_async_submit(&submit, flags, tx, NULL, NULL,
1910 to_addr_conv(sh, percpu, j));
1911 }
1912
1913 if (unlikely(count == 1))
1914 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1915 else
1916 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1917 if (!last_stripe) {
1918 j++;
1919 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1920 batch_list);
1921 goto again;
1922 }
1923 }
1924
1925 static void
1926 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1927 struct dma_async_tx_descriptor *tx)
1928 {
1929 struct async_submit_ctl submit;
1930 struct page **blocks;
1931 int count, i, j = 0;
1932 struct stripe_head *head_sh = sh;
1933 int last_stripe;
1934 int synflags;
1935 unsigned long txflags;
1936
1937 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1938
1939 for (i = 0; i < sh->disks; i++) {
1940 if (sh->pd_idx == i || sh->qd_idx == i)
1941 continue;
1942 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1943 break;
1944 }
1945 if (i >= sh->disks) {
1946 atomic_inc(&sh->count);
1947 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1948 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1949 ops_complete_reconstruct(sh);
1950 return;
1951 }
1952
1953 again:
1954 blocks = to_addr_page(percpu, j);
1955
1956 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1957 synflags = SYNDROME_SRC_WRITTEN;
1958 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1959 } else {
1960 synflags = SYNDROME_SRC_ALL;
1961 txflags = ASYNC_TX_ACK;
1962 }
1963
1964 count = set_syndrome_sources(blocks, sh, synflags);
1965 last_stripe = !head_sh->batch_head ||
1966 list_first_entry(&sh->batch_list,
1967 struct stripe_head, batch_list) == head_sh;
1968
1969 if (last_stripe) {
1970 atomic_inc(&head_sh->count);
1971 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1972 head_sh, to_addr_conv(sh, percpu, j));
1973 } else
1974 init_async_submit(&submit, 0, tx, NULL, NULL,
1975 to_addr_conv(sh, percpu, j));
1976 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1977 if (!last_stripe) {
1978 j++;
1979 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1980 batch_list);
1981 goto again;
1982 }
1983 }
1984
1985 static void ops_complete_check(void *stripe_head_ref)
1986 {
1987 struct stripe_head *sh = stripe_head_ref;
1988
1989 pr_debug("%s: stripe %llu\n", __func__,
1990 (unsigned long long)sh->sector);
1991
1992 sh->check_state = check_state_check_result;
1993 set_bit(STRIPE_HANDLE, &sh->state);
1994 raid5_release_stripe(sh);
1995 }
1996
1997 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1998 {
1999 int disks = sh->disks;
2000 int pd_idx = sh->pd_idx;
2001 int qd_idx = sh->qd_idx;
2002 struct page *xor_dest;
2003 struct page **xor_srcs = to_addr_page(percpu, 0);
2004 struct dma_async_tx_descriptor *tx;
2005 struct async_submit_ctl submit;
2006 int count;
2007 int i;
2008
2009 pr_debug("%s: stripe %llu\n", __func__,
2010 (unsigned long long)sh->sector);
2011
2012 BUG_ON(sh->batch_head);
2013 count = 0;
2014 xor_dest = sh->dev[pd_idx].page;
2015 xor_srcs[count++] = xor_dest;
2016 for (i = disks; i--; ) {
2017 if (i == pd_idx || i == qd_idx)
2018 continue;
2019 xor_srcs[count++] = sh->dev[i].page;
2020 }
2021
2022 init_async_submit(&submit, 0, NULL, NULL, NULL,
2023 to_addr_conv(sh, percpu, 0));
2024 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2025 &sh->ops.zero_sum_result, &submit);
2026
2027 atomic_inc(&sh->count);
2028 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2029 tx = async_trigger_callback(&submit);
2030 }
2031
2032 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2033 {
2034 struct page **srcs = to_addr_page(percpu, 0);
2035 struct async_submit_ctl submit;
2036 int count;
2037
2038 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2039 (unsigned long long)sh->sector, checkp);
2040
2041 BUG_ON(sh->batch_head);
2042 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2043 if (!checkp)
2044 srcs[count] = NULL;
2045
2046 atomic_inc(&sh->count);
2047 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2048 sh, to_addr_conv(sh, percpu, 0));
2049 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2050 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2051 }
2052
2053 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2054 {
2055 int overlap_clear = 0, i, disks = sh->disks;
2056 struct dma_async_tx_descriptor *tx = NULL;
2057 struct r5conf *conf = sh->raid_conf;
2058 int level = conf->level;
2059 struct raid5_percpu *percpu;
2060 unsigned long cpu;
2061
2062 cpu = get_cpu();
2063 percpu = per_cpu_ptr(conf->percpu, cpu);
2064 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2065 ops_run_biofill(sh);
2066 overlap_clear++;
2067 }
2068
2069 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2070 if (level < 6)
2071 tx = ops_run_compute5(sh, percpu);
2072 else {
2073 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2074 tx = ops_run_compute6_1(sh, percpu);
2075 else
2076 tx = ops_run_compute6_2(sh, percpu);
2077 }
2078 /* terminate the chain if reconstruct is not set to be run */
2079 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2080 async_tx_ack(tx);
2081 }
2082
2083 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2084 if (level < 6)
2085 tx = ops_run_prexor5(sh, percpu, tx);
2086 else
2087 tx = ops_run_prexor6(sh, percpu, tx);
2088 }
2089
2090 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2091 tx = ops_run_partial_parity(sh, percpu, tx);
2092
2093 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2094 tx = ops_run_biodrain(sh, tx);
2095 overlap_clear++;
2096 }
2097
2098 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2099 if (level < 6)
2100 ops_run_reconstruct5(sh, percpu, tx);
2101 else
2102 ops_run_reconstruct6(sh, percpu, tx);
2103 }
2104
2105 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2106 if (sh->check_state == check_state_run)
2107 ops_run_check_p(sh, percpu);
2108 else if (sh->check_state == check_state_run_q)
2109 ops_run_check_pq(sh, percpu, 0);
2110 else if (sh->check_state == check_state_run_pq)
2111 ops_run_check_pq(sh, percpu, 1);
2112 else
2113 BUG();
2114 }
2115
2116 if (overlap_clear && !sh->batch_head)
2117 for (i = disks; i--; ) {
2118 struct r5dev *dev = &sh->dev[i];
2119 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2120 wake_up(&sh->raid_conf->wait_for_overlap);
2121 }
2122 put_cpu();
2123 }
2124
2125 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2126 {
2127 if (sh->ppl_page)
2128 __free_page(sh->ppl_page);
2129 kmem_cache_free(sc, sh);
2130 }
2131
2132 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2133 int disks, struct r5conf *conf)
2134 {
2135 struct stripe_head *sh;
2136 int i;
2137
2138 sh = kmem_cache_zalloc(sc, gfp);
2139 if (sh) {
2140 spin_lock_init(&sh->stripe_lock);
2141 spin_lock_init(&sh->batch_lock);
2142 INIT_LIST_HEAD(&sh->batch_list);
2143 INIT_LIST_HEAD(&sh->lru);
2144 INIT_LIST_HEAD(&sh->r5c);
2145 INIT_LIST_HEAD(&sh->log_list);
2146 atomic_set(&sh->count, 1);
2147 sh->raid_conf = conf;
2148 sh->log_start = MaxSector;
2149 for (i = 0; i < disks; i++) {
2150 struct r5dev *dev = &sh->dev[i];
2151
2152 bio_init(&dev->req, &dev->vec, 1);
2153 bio_init(&dev->rreq, &dev->rvec, 1);
2154 }
2155
2156 if (raid5_has_ppl(conf)) {
2157 sh->ppl_page = alloc_page(gfp);
2158 if (!sh->ppl_page) {
2159 free_stripe(sc, sh);
2160 sh = NULL;
2161 }
2162 }
2163 }
2164 return sh;
2165 }
2166 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2167 {
2168 struct stripe_head *sh;
2169
2170 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2171 if (!sh)
2172 return 0;
2173
2174 if (grow_buffers(sh, gfp)) {
2175 shrink_buffers(sh);
2176 free_stripe(conf->slab_cache, sh);
2177 return 0;
2178 }
2179 sh->hash_lock_index =
2180 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2181 /* we just created an active stripe so... */
2182 atomic_inc(&conf->active_stripes);
2183
2184 raid5_release_stripe(sh);
2185 conf->max_nr_stripes++;
2186 return 1;
2187 }
2188
2189 static int grow_stripes(struct r5conf *conf, int num)
2190 {
2191 struct kmem_cache *sc;
2192 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2193
2194 if (conf->mddev->gendisk)
2195 sprintf(conf->cache_name[0],
2196 "raid%d-%s", conf->level, mdname(conf->mddev));
2197 else
2198 sprintf(conf->cache_name[0],
2199 "raid%d-%p", conf->level, conf->mddev);
2200 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2201
2202 conf->active_name = 0;
2203 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2205 0, 0, NULL);
2206 if (!sc)
2207 return 1;
2208 conf->slab_cache = sc;
2209 conf->pool_size = devs;
2210 while (num--)
2211 if (!grow_one_stripe(conf, GFP_KERNEL))
2212 return 1;
2213
2214 return 0;
2215 }
2216
2217 /**
2218 * scribble_len - return the required size of the scribble region
2219 * @num - total number of disks in the array
2220 *
2221 * The size must be enough to contain:
2222 * 1/ a struct page pointer for each device in the array +2
2223 * 2/ room to convert each entry in (1) to its corresponding dma
2224 * (dma_map_page()) or page (page_address()) address.
2225 *
2226 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2227 * calculate over all devices (not just the data blocks), using zeros in place
2228 * of the P and Q blocks.
2229 */
2230 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2231 {
2232 struct flex_array *ret;
2233 size_t len;
2234
2235 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2236 ret = flex_array_alloc(len, cnt, flags);
2237 if (!ret)
2238 return NULL;
2239 /* always prealloc all elements, so no locking is required */
2240 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2241 flex_array_free(ret);
2242 return NULL;
2243 }
2244 return ret;
2245 }
2246
2247 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2248 {
2249 unsigned long cpu;
2250 int err = 0;
2251
2252 /*
2253 * Never shrink. And mddev_suspend() could deadlock if this is called
2254 * from raid5d. In that case, scribble_disks and scribble_sectors
2255 * should equal to new_disks and new_sectors
2256 */
2257 if (conf->scribble_disks >= new_disks &&
2258 conf->scribble_sectors >= new_sectors)
2259 return 0;
2260 mddev_suspend(conf->mddev);
2261 get_online_cpus();
2262 for_each_present_cpu(cpu) {
2263 struct raid5_percpu *percpu;
2264 struct flex_array *scribble;
2265
2266 percpu = per_cpu_ptr(conf->percpu, cpu);
2267 scribble = scribble_alloc(new_disks,
2268 new_sectors / STRIPE_SECTORS,
2269 GFP_NOIO);
2270
2271 if (scribble) {
2272 flex_array_free(percpu->scribble);
2273 percpu->scribble = scribble;
2274 } else {
2275 err = -ENOMEM;
2276 break;
2277 }
2278 }
2279 put_online_cpus();
2280 mddev_resume(conf->mddev);
2281 if (!err) {
2282 conf->scribble_disks = new_disks;
2283 conf->scribble_sectors = new_sectors;
2284 }
2285 return err;
2286 }
2287
2288 static int resize_stripes(struct r5conf *conf, int newsize)
2289 {
2290 /* Make all the stripes able to hold 'newsize' devices.
2291 * New slots in each stripe get 'page' set to a new page.
2292 *
2293 * This happens in stages:
2294 * 1/ create a new kmem_cache and allocate the required number of
2295 * stripe_heads.
2296 * 2/ gather all the old stripe_heads and transfer the pages across
2297 * to the new stripe_heads. This will have the side effect of
2298 * freezing the array as once all stripe_heads have been collected,
2299 * no IO will be possible. Old stripe heads are freed once their
2300 * pages have been transferred over, and the old kmem_cache is
2301 * freed when all stripes are done.
2302 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2303 * we simple return a failure status - no need to clean anything up.
2304 * 4/ allocate new pages for the new slots in the new stripe_heads.
2305 * If this fails, we don't bother trying the shrink the
2306 * stripe_heads down again, we just leave them as they are.
2307 * As each stripe_head is processed the new one is released into
2308 * active service.
2309 *
2310 * Once step2 is started, we cannot afford to wait for a write,
2311 * so we use GFP_NOIO allocations.
2312 */
2313 struct stripe_head *osh, *nsh;
2314 LIST_HEAD(newstripes);
2315 struct disk_info *ndisks;
2316 int err = 0;
2317 struct kmem_cache *sc;
2318 int i;
2319 int hash, cnt;
2320
2321 md_allow_write(conf->mddev);
2322
2323 /* Step 1 */
2324 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2325 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2326 0, 0, NULL);
2327 if (!sc)
2328 return -ENOMEM;
2329
2330 /* Need to ensure auto-resizing doesn't interfere */
2331 mutex_lock(&conf->cache_size_mutex);
2332
2333 for (i = conf->max_nr_stripes; i; i--) {
2334 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2335 if (!nsh)
2336 break;
2337
2338 list_add(&nsh->lru, &newstripes);
2339 }
2340 if (i) {
2341 /* didn't get enough, give up */
2342 while (!list_empty(&newstripes)) {
2343 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2344 list_del(&nsh->lru);
2345 free_stripe(sc, nsh);
2346 }
2347 kmem_cache_destroy(sc);
2348 mutex_unlock(&conf->cache_size_mutex);
2349 return -ENOMEM;
2350 }
2351 /* Step 2 - Must use GFP_NOIO now.
2352 * OK, we have enough stripes, start collecting inactive
2353 * stripes and copying them over
2354 */
2355 hash = 0;
2356 cnt = 0;
2357 list_for_each_entry(nsh, &newstripes, lru) {
2358 lock_device_hash_lock(conf, hash);
2359 wait_event_cmd(conf->wait_for_stripe,
2360 !list_empty(conf->inactive_list + hash),
2361 unlock_device_hash_lock(conf, hash),
2362 lock_device_hash_lock(conf, hash));
2363 osh = get_free_stripe(conf, hash);
2364 unlock_device_hash_lock(conf, hash);
2365
2366 for(i=0; i<conf->pool_size; i++) {
2367 nsh->dev[i].page = osh->dev[i].page;
2368 nsh->dev[i].orig_page = osh->dev[i].page;
2369 }
2370 nsh->hash_lock_index = hash;
2371 free_stripe(conf->slab_cache, osh);
2372 cnt++;
2373 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2374 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2375 hash++;
2376 cnt = 0;
2377 }
2378 }
2379 kmem_cache_destroy(conf->slab_cache);
2380
2381 /* Step 3.
2382 * At this point, we are holding all the stripes so the array
2383 * is completely stalled, so now is a good time to resize
2384 * conf->disks and the scribble region
2385 */
2386 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2387 if (ndisks) {
2388 for (i = 0; i < conf->pool_size; i++)
2389 ndisks[i] = conf->disks[i];
2390
2391 for (i = conf->pool_size; i < newsize; i++) {
2392 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2393 if (!ndisks[i].extra_page)
2394 err = -ENOMEM;
2395 }
2396
2397 if (err) {
2398 for (i = conf->pool_size; i < newsize; i++)
2399 if (ndisks[i].extra_page)
2400 put_page(ndisks[i].extra_page);
2401 kfree(ndisks);
2402 } else {
2403 kfree(conf->disks);
2404 conf->disks = ndisks;
2405 }
2406 } else
2407 err = -ENOMEM;
2408
2409 mutex_unlock(&conf->cache_size_mutex);
2410
2411 conf->slab_cache = sc;
2412 conf->active_name = 1-conf->active_name;
2413
2414 /* Step 4, return new stripes to service */
2415 while(!list_empty(&newstripes)) {
2416 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2417 list_del_init(&nsh->lru);
2418
2419 for (i=conf->raid_disks; i < newsize; i++)
2420 if (nsh->dev[i].page == NULL) {
2421 struct page *p = alloc_page(GFP_NOIO);
2422 nsh->dev[i].page = p;
2423 nsh->dev[i].orig_page = p;
2424 if (!p)
2425 err = -ENOMEM;
2426 }
2427 raid5_release_stripe(nsh);
2428 }
2429 /* critical section pass, GFP_NOIO no longer needed */
2430
2431 if (!err)
2432 conf->pool_size = newsize;
2433 return err;
2434 }
2435
2436 static int drop_one_stripe(struct r5conf *conf)
2437 {
2438 struct stripe_head *sh;
2439 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2440
2441 spin_lock_irq(conf->hash_locks + hash);
2442 sh = get_free_stripe(conf, hash);
2443 spin_unlock_irq(conf->hash_locks + hash);
2444 if (!sh)
2445 return 0;
2446 BUG_ON(atomic_read(&sh->count));
2447 shrink_buffers(sh);
2448 free_stripe(conf->slab_cache, sh);
2449 atomic_dec(&conf->active_stripes);
2450 conf->max_nr_stripes--;
2451 return 1;
2452 }
2453
2454 static void shrink_stripes(struct r5conf *conf)
2455 {
2456 while (conf->max_nr_stripes &&
2457 drop_one_stripe(conf))
2458 ;
2459
2460 kmem_cache_destroy(conf->slab_cache);
2461 conf->slab_cache = NULL;
2462 }
2463
2464 static void raid5_end_read_request(struct bio * bi)
2465 {
2466 struct stripe_head *sh = bi->bi_private;
2467 struct r5conf *conf = sh->raid_conf;
2468 int disks = sh->disks, i;
2469 char b[BDEVNAME_SIZE];
2470 struct md_rdev *rdev = NULL;
2471 sector_t s;
2472
2473 for (i=0 ; i<disks; i++)
2474 if (bi == &sh->dev[i].req)
2475 break;
2476
2477 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2478 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2479 bi->bi_status);
2480 if (i == disks) {
2481 bio_reset(bi);
2482 BUG();
2483 return;
2484 }
2485 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2486 /* If replacement finished while this request was outstanding,
2487 * 'replacement' might be NULL already.
2488 * In that case it moved down to 'rdev'.
2489 * rdev is not removed until all requests are finished.
2490 */
2491 rdev = conf->disks[i].replacement;
2492 if (!rdev)
2493 rdev = conf->disks[i].rdev;
2494
2495 if (use_new_offset(conf, sh))
2496 s = sh->sector + rdev->new_data_offset;
2497 else
2498 s = sh->sector + rdev->data_offset;
2499 if (!bi->bi_status) {
2500 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2501 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2502 /* Note that this cannot happen on a
2503 * replacement device. We just fail those on
2504 * any error
2505 */
2506 pr_info_ratelimited(
2507 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2508 mdname(conf->mddev), STRIPE_SECTORS,
2509 (unsigned long long)s,
2510 bdevname(rdev->bdev, b));
2511 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2512 clear_bit(R5_ReadError, &sh->dev[i].flags);
2513 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2514 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2515 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2516
2517 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2518 /*
2519 * end read for a page in journal, this
2520 * must be preparing for prexor in rmw
2521 */
2522 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2523
2524 if (atomic_read(&rdev->read_errors))
2525 atomic_set(&rdev->read_errors, 0);
2526 } else {
2527 const char *bdn = bdevname(rdev->bdev, b);
2528 int retry = 0;
2529 int set_bad = 0;
2530
2531 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2532 atomic_inc(&rdev->read_errors);
2533 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2534 pr_warn_ratelimited(
2535 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2536 mdname(conf->mddev),
2537 (unsigned long long)s,
2538 bdn);
2539 else if (conf->mddev->degraded >= conf->max_degraded) {
2540 set_bad = 1;
2541 pr_warn_ratelimited(
2542 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2543 mdname(conf->mddev),
2544 (unsigned long long)s,
2545 bdn);
2546 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2547 /* Oh, no!!! */
2548 set_bad = 1;
2549 pr_warn_ratelimited(
2550 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2551 mdname(conf->mddev),
2552 (unsigned long long)s,
2553 bdn);
2554 } else if (atomic_read(&rdev->read_errors)
2555 > conf->max_nr_stripes)
2556 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2557 mdname(conf->mddev), bdn);
2558 else
2559 retry = 1;
2560 if (set_bad && test_bit(In_sync, &rdev->flags)
2561 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2562 retry = 1;
2563 if (retry)
2564 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2565 set_bit(R5_ReadError, &sh->dev[i].flags);
2566 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2567 } else
2568 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2569 else {
2570 clear_bit(R5_ReadError, &sh->dev[i].flags);
2571 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2572 if (!(set_bad
2573 && test_bit(In_sync, &rdev->flags)
2574 && rdev_set_badblocks(
2575 rdev, sh->sector, STRIPE_SECTORS, 0)))
2576 md_error(conf->mddev, rdev);
2577 }
2578 }
2579 rdev_dec_pending(rdev, conf->mddev);
2580 bio_reset(bi);
2581 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2582 set_bit(STRIPE_HANDLE, &sh->state);
2583 raid5_release_stripe(sh);
2584 }
2585
2586 static void raid5_end_write_request(struct bio *bi)
2587 {
2588 struct stripe_head *sh = bi->bi_private;
2589 struct r5conf *conf = sh->raid_conf;
2590 int disks = sh->disks, i;
2591 struct md_rdev *uninitialized_var(rdev);
2592 sector_t first_bad;
2593 int bad_sectors;
2594 int replacement = 0;
2595
2596 for (i = 0 ; i < disks; i++) {
2597 if (bi == &sh->dev[i].req) {
2598 rdev = conf->disks[i].rdev;
2599 break;
2600 }
2601 if (bi == &sh->dev[i].rreq) {
2602 rdev = conf->disks[i].replacement;
2603 if (rdev)
2604 replacement = 1;
2605 else
2606 /* rdev was removed and 'replacement'
2607 * replaced it. rdev is not removed
2608 * until all requests are finished.
2609 */
2610 rdev = conf->disks[i].rdev;
2611 break;
2612 }
2613 }
2614 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2615 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2616 bi->bi_status);
2617 if (i == disks) {
2618 bio_reset(bi);
2619 BUG();
2620 return;
2621 }
2622
2623 if (replacement) {
2624 if (bi->bi_status)
2625 md_error(conf->mddev, rdev);
2626 else if (is_badblock(rdev, sh->sector,
2627 STRIPE_SECTORS,
2628 &first_bad, &bad_sectors))
2629 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2630 } else {
2631 if (bi->bi_status) {
2632 set_bit(STRIPE_DEGRADED, &sh->state);
2633 set_bit(WriteErrorSeen, &rdev->flags);
2634 set_bit(R5_WriteError, &sh->dev[i].flags);
2635 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2636 set_bit(MD_RECOVERY_NEEDED,
2637 &rdev->mddev->recovery);
2638 } else if (is_badblock(rdev, sh->sector,
2639 STRIPE_SECTORS,
2640 &first_bad, &bad_sectors)) {
2641 set_bit(R5_MadeGood, &sh->dev[i].flags);
2642 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2643 /* That was a successful write so make
2644 * sure it looks like we already did
2645 * a re-write.
2646 */
2647 set_bit(R5_ReWrite, &sh->dev[i].flags);
2648 }
2649 }
2650 rdev_dec_pending(rdev, conf->mddev);
2651
2652 if (sh->batch_head && bi->bi_status && !replacement)
2653 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2654
2655 bio_reset(bi);
2656 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2657 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2658 set_bit(STRIPE_HANDLE, &sh->state);
2659 raid5_release_stripe(sh);
2660
2661 if (sh->batch_head && sh != sh->batch_head)
2662 raid5_release_stripe(sh->batch_head);
2663 }
2664
2665 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2666 {
2667 struct r5dev *dev = &sh->dev[i];
2668
2669 dev->flags = 0;
2670 dev->sector = raid5_compute_blocknr(sh, i, previous);
2671 }
2672
2673 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2674 {
2675 char b[BDEVNAME_SIZE];
2676 struct r5conf *conf = mddev->private;
2677 unsigned long flags;
2678 pr_debug("raid456: error called\n");
2679
2680 spin_lock_irqsave(&conf->device_lock, flags);
2681 clear_bit(In_sync, &rdev->flags);
2682 mddev->degraded = raid5_calc_degraded(conf);
2683 spin_unlock_irqrestore(&conf->device_lock, flags);
2684 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2685
2686 set_bit(Blocked, &rdev->flags);
2687 set_bit(Faulty, &rdev->flags);
2688 set_mask_bits(&mddev->sb_flags, 0,
2689 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2690 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2691 "md/raid:%s: Operation continuing on %d devices.\n",
2692 mdname(mddev),
2693 bdevname(rdev->bdev, b),
2694 mdname(mddev),
2695 conf->raid_disks - mddev->degraded);
2696 r5c_update_on_rdev_error(mddev, rdev);
2697 }
2698
2699 /*
2700 * Input: a 'big' sector number,
2701 * Output: index of the data and parity disk, and the sector # in them.
2702 */
2703 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2704 int previous, int *dd_idx,
2705 struct stripe_head *sh)
2706 {
2707 sector_t stripe, stripe2;
2708 sector_t chunk_number;
2709 unsigned int chunk_offset;
2710 int pd_idx, qd_idx;
2711 int ddf_layout = 0;
2712 sector_t new_sector;
2713 int algorithm = previous ? conf->prev_algo
2714 : conf->algorithm;
2715 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2716 : conf->chunk_sectors;
2717 int raid_disks = previous ? conf->previous_raid_disks
2718 : conf->raid_disks;
2719 int data_disks = raid_disks - conf->max_degraded;
2720
2721 /* First compute the information on this sector */
2722
2723 /*
2724 * Compute the chunk number and the sector offset inside the chunk
2725 */
2726 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2727 chunk_number = r_sector;
2728
2729 /*
2730 * Compute the stripe number
2731 */
2732 stripe = chunk_number;
2733 *dd_idx = sector_div(stripe, data_disks);
2734 stripe2 = stripe;
2735 /*
2736 * Select the parity disk based on the user selected algorithm.
2737 */
2738 pd_idx = qd_idx = -1;
2739 switch(conf->level) {
2740 case 4:
2741 pd_idx = data_disks;
2742 break;
2743 case 5:
2744 switch (algorithm) {
2745 case ALGORITHM_LEFT_ASYMMETRIC:
2746 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2747 if (*dd_idx >= pd_idx)
2748 (*dd_idx)++;
2749 break;
2750 case ALGORITHM_RIGHT_ASYMMETRIC:
2751 pd_idx = sector_div(stripe2, raid_disks);
2752 if (*dd_idx >= pd_idx)
2753 (*dd_idx)++;
2754 break;
2755 case ALGORITHM_LEFT_SYMMETRIC:
2756 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2757 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2758 break;
2759 case ALGORITHM_RIGHT_SYMMETRIC:
2760 pd_idx = sector_div(stripe2, raid_disks);
2761 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2762 break;
2763 case ALGORITHM_PARITY_0:
2764 pd_idx = 0;
2765 (*dd_idx)++;
2766 break;
2767 case ALGORITHM_PARITY_N:
2768 pd_idx = data_disks;
2769 break;
2770 default:
2771 BUG();
2772 }
2773 break;
2774 case 6:
2775
2776 switch (algorithm) {
2777 case ALGORITHM_LEFT_ASYMMETRIC:
2778 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2779 qd_idx = pd_idx + 1;
2780 if (pd_idx == raid_disks-1) {
2781 (*dd_idx)++; /* Q D D D P */
2782 qd_idx = 0;
2783 } else if (*dd_idx >= pd_idx)
2784 (*dd_idx) += 2; /* D D P Q D */
2785 break;
2786 case ALGORITHM_RIGHT_ASYMMETRIC:
2787 pd_idx = sector_div(stripe2, raid_disks);
2788 qd_idx = pd_idx + 1;
2789 if (pd_idx == raid_disks-1) {
2790 (*dd_idx)++; /* Q D D D P */
2791 qd_idx = 0;
2792 } else if (*dd_idx >= pd_idx)
2793 (*dd_idx) += 2; /* D D P Q D */
2794 break;
2795 case ALGORITHM_LEFT_SYMMETRIC:
2796 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2797 qd_idx = (pd_idx + 1) % raid_disks;
2798 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2799 break;
2800 case ALGORITHM_RIGHT_SYMMETRIC:
2801 pd_idx = sector_div(stripe2, raid_disks);
2802 qd_idx = (pd_idx + 1) % raid_disks;
2803 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2804 break;
2805
2806 case ALGORITHM_PARITY_0:
2807 pd_idx = 0;
2808 qd_idx = 1;
2809 (*dd_idx) += 2;
2810 break;
2811 case ALGORITHM_PARITY_N:
2812 pd_idx = data_disks;
2813 qd_idx = data_disks + 1;
2814 break;
2815
2816 case ALGORITHM_ROTATING_ZERO_RESTART:
2817 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2818 * of blocks for computing Q is different.
2819 */
2820 pd_idx = sector_div(stripe2, raid_disks);
2821 qd_idx = pd_idx + 1;
2822 if (pd_idx == raid_disks-1) {
2823 (*dd_idx)++; /* Q D D D P */
2824 qd_idx = 0;
2825 } else if (*dd_idx >= pd_idx)
2826 (*dd_idx) += 2; /* D D P Q D */
2827 ddf_layout = 1;
2828 break;
2829
2830 case ALGORITHM_ROTATING_N_RESTART:
2831 /* Same a left_asymmetric, by first stripe is
2832 * D D D P Q rather than
2833 * Q D D D P
2834 */
2835 stripe2 += 1;
2836 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2837 qd_idx = pd_idx + 1;
2838 if (pd_idx == raid_disks-1) {
2839 (*dd_idx)++; /* Q D D D P */
2840 qd_idx = 0;
2841 } else if (*dd_idx >= pd_idx)
2842 (*dd_idx) += 2; /* D D P Q D */
2843 ddf_layout = 1;
2844 break;
2845
2846 case ALGORITHM_ROTATING_N_CONTINUE:
2847 /* Same as left_symmetric but Q is before P */
2848 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2849 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2850 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2851 ddf_layout = 1;
2852 break;
2853
2854 case ALGORITHM_LEFT_ASYMMETRIC_6:
2855 /* RAID5 left_asymmetric, with Q on last device */
2856 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2857 if (*dd_idx >= pd_idx)
2858 (*dd_idx)++;
2859 qd_idx = raid_disks - 1;
2860 break;
2861
2862 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2863 pd_idx = sector_div(stripe2, raid_disks-1);
2864 if (*dd_idx >= pd_idx)
2865 (*dd_idx)++;
2866 qd_idx = raid_disks - 1;
2867 break;
2868
2869 case ALGORITHM_LEFT_SYMMETRIC_6:
2870 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2871 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2872 qd_idx = raid_disks - 1;
2873 break;
2874
2875 case ALGORITHM_RIGHT_SYMMETRIC_6:
2876 pd_idx = sector_div(stripe2, raid_disks-1);
2877 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2878 qd_idx = raid_disks - 1;
2879 break;
2880
2881 case ALGORITHM_PARITY_0_6:
2882 pd_idx = 0;
2883 (*dd_idx)++;
2884 qd_idx = raid_disks - 1;
2885 break;
2886
2887 default:
2888 BUG();
2889 }
2890 break;
2891 }
2892
2893 if (sh) {
2894 sh->pd_idx = pd_idx;
2895 sh->qd_idx = qd_idx;
2896 sh->ddf_layout = ddf_layout;
2897 }
2898 /*
2899 * Finally, compute the new sector number
2900 */
2901 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2902 return new_sector;
2903 }
2904
2905 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2906 {
2907 struct r5conf *conf = sh->raid_conf;
2908 int raid_disks = sh->disks;
2909 int data_disks = raid_disks - conf->max_degraded;
2910 sector_t new_sector = sh->sector, check;
2911 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2912 : conf->chunk_sectors;
2913 int algorithm = previous ? conf->prev_algo
2914 : conf->algorithm;
2915 sector_t stripe;
2916 int chunk_offset;
2917 sector_t chunk_number;
2918 int dummy1, dd_idx = i;
2919 sector_t r_sector;
2920 struct stripe_head sh2;
2921
2922 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2923 stripe = new_sector;
2924
2925 if (i == sh->pd_idx)
2926 return 0;
2927 switch(conf->level) {
2928 case 4: break;
2929 case 5:
2930 switch (algorithm) {
2931 case ALGORITHM_LEFT_ASYMMETRIC:
2932 case ALGORITHM_RIGHT_ASYMMETRIC:
2933 if (i > sh->pd_idx)
2934 i--;
2935 break;
2936 case ALGORITHM_LEFT_SYMMETRIC:
2937 case ALGORITHM_RIGHT_SYMMETRIC:
2938 if (i < sh->pd_idx)
2939 i += raid_disks;
2940 i -= (sh->pd_idx + 1);
2941 break;
2942 case ALGORITHM_PARITY_0:
2943 i -= 1;
2944 break;
2945 case ALGORITHM_PARITY_N:
2946 break;
2947 default:
2948 BUG();
2949 }
2950 break;
2951 case 6:
2952 if (i == sh->qd_idx)
2953 return 0; /* It is the Q disk */
2954 switch (algorithm) {
2955 case ALGORITHM_LEFT_ASYMMETRIC:
2956 case ALGORITHM_RIGHT_ASYMMETRIC:
2957 case ALGORITHM_ROTATING_ZERO_RESTART:
2958 case ALGORITHM_ROTATING_N_RESTART:
2959 if (sh->pd_idx == raid_disks-1)
2960 i--; /* Q D D D P */
2961 else if (i > sh->pd_idx)
2962 i -= 2; /* D D P Q D */
2963 break;
2964 case ALGORITHM_LEFT_SYMMETRIC:
2965 case ALGORITHM_RIGHT_SYMMETRIC:
2966 if (sh->pd_idx == raid_disks-1)
2967 i--; /* Q D D D P */
2968 else {
2969 /* D D P Q D */
2970 if (i < sh->pd_idx)
2971 i += raid_disks;
2972 i -= (sh->pd_idx + 2);
2973 }
2974 break;
2975 case ALGORITHM_PARITY_0:
2976 i -= 2;
2977 break;
2978 case ALGORITHM_PARITY_N:
2979 break;
2980 case ALGORITHM_ROTATING_N_CONTINUE:
2981 /* Like left_symmetric, but P is before Q */
2982 if (sh->pd_idx == 0)
2983 i--; /* P D D D Q */
2984 else {
2985 /* D D Q P D */
2986 if (i < sh->pd_idx)
2987 i += raid_disks;
2988 i -= (sh->pd_idx + 1);
2989 }
2990 break;
2991 case ALGORITHM_LEFT_ASYMMETRIC_6:
2992 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2993 if (i > sh->pd_idx)
2994 i--;
2995 break;
2996 case ALGORITHM_LEFT_SYMMETRIC_6:
2997 case ALGORITHM_RIGHT_SYMMETRIC_6:
2998 if (i < sh->pd_idx)
2999 i += data_disks + 1;
3000 i -= (sh->pd_idx + 1);
3001 break;
3002 case ALGORITHM_PARITY_0_6:
3003 i -= 1;
3004 break;
3005 default:
3006 BUG();
3007 }
3008 break;
3009 }
3010
3011 chunk_number = stripe * data_disks + i;
3012 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3013
3014 check = raid5_compute_sector(conf, r_sector,
3015 previous, &dummy1, &sh2);
3016 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3017 || sh2.qd_idx != sh->qd_idx) {
3018 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3019 mdname(conf->mddev));
3020 return 0;
3021 }
3022 return r_sector;
3023 }
3024
3025 /*
3026 * There are cases where we want handle_stripe_dirtying() and
3027 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3028 *
3029 * This function checks whether we want to delay the towrite. Specifically,
3030 * we delay the towrite when:
3031 *
3032 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3033 * stripe has data in journal (for other devices).
3034 *
3035 * In this case, when reading data for the non-overwrite dev, it is
3036 * necessary to handle complex rmw of write back cache (prexor with
3037 * orig_page, and xor with page). To keep read path simple, we would
3038 * like to flush data in journal to RAID disks first, so complex rmw
3039 * is handled in the write patch (handle_stripe_dirtying).
3040 *
3041 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3042 *
3043 * It is important to be able to flush all stripes in raid5-cache.
3044 * Therefore, we need reserve some space on the journal device for
3045 * these flushes. If flush operation includes pending writes to the
3046 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3047 * for the flush out. If we exclude these pending writes from flush
3048 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3049 * Therefore, excluding pending writes in these cases enables more
3050 * efficient use of the journal device.
3051 *
3052 * Note: To make sure the stripe makes progress, we only delay
3053 * towrite for stripes with data already in journal (injournal > 0).
3054 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3055 * no_space_stripes list.
3056 *
3057 * 3. during journal failure
3058 * In journal failure, we try to flush all cached data to raid disks
3059 * based on data in stripe cache. The array is read-only to upper
3060 * layers, so we would skip all pending writes.
3061 *
3062 */
3063 static inline bool delay_towrite(struct r5conf *conf,
3064 struct r5dev *dev,
3065 struct stripe_head_state *s)
3066 {
3067 /* case 1 above */
3068 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3069 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3070 return true;
3071 /* case 2 above */
3072 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3073 s->injournal > 0)
3074 return true;
3075 /* case 3 above */
3076 if (s->log_failed && s->injournal)
3077 return true;
3078 return false;
3079 }
3080
3081 static void
3082 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3083 int rcw, int expand)
3084 {
3085 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3086 struct r5conf *conf = sh->raid_conf;
3087 int level = conf->level;
3088
3089 if (rcw) {
3090 /*
3091 * In some cases, handle_stripe_dirtying initially decided to
3092 * run rmw and allocates extra page for prexor. However, rcw is
3093 * cheaper later on. We need to free the extra page now,
3094 * because we won't be able to do that in ops_complete_prexor().
3095 */
3096 r5c_release_extra_page(sh);
3097
3098 for (i = disks; i--; ) {
3099 struct r5dev *dev = &sh->dev[i];
3100
3101 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3102 set_bit(R5_LOCKED, &dev->flags);
3103 set_bit(R5_Wantdrain, &dev->flags);
3104 if (!expand)
3105 clear_bit(R5_UPTODATE, &dev->flags);
3106 s->locked++;
3107 } else if (test_bit(R5_InJournal, &dev->flags)) {
3108 set_bit(R5_LOCKED, &dev->flags);
3109 s->locked++;
3110 }
3111 }
3112 /* if we are not expanding this is a proper write request, and
3113 * there will be bios with new data to be drained into the
3114 * stripe cache
3115 */
3116 if (!expand) {
3117 if (!s->locked)
3118 /* False alarm, nothing to do */
3119 return;
3120 sh->reconstruct_state = reconstruct_state_drain_run;
3121 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3122 } else
3123 sh->reconstruct_state = reconstruct_state_run;
3124
3125 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3126
3127 if (s->locked + conf->max_degraded == disks)
3128 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3129 atomic_inc(&conf->pending_full_writes);
3130 } else {
3131 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3132 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3133 BUG_ON(level == 6 &&
3134 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3135 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3136
3137 for (i = disks; i--; ) {
3138 struct r5dev *dev = &sh->dev[i];
3139 if (i == pd_idx || i == qd_idx)
3140 continue;
3141
3142 if (dev->towrite &&
3143 (test_bit(R5_UPTODATE, &dev->flags) ||
3144 test_bit(R5_Wantcompute, &dev->flags))) {
3145 set_bit(R5_Wantdrain, &dev->flags);
3146 set_bit(R5_LOCKED, &dev->flags);
3147 clear_bit(R5_UPTODATE, &dev->flags);
3148 s->locked++;
3149 } else if (test_bit(R5_InJournal, &dev->flags)) {
3150 set_bit(R5_LOCKED, &dev->flags);
3151 s->locked++;
3152 }
3153 }
3154 if (!s->locked)
3155 /* False alarm - nothing to do */
3156 return;
3157 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3158 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3159 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3160 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3161 }
3162
3163 /* keep the parity disk(s) locked while asynchronous operations
3164 * are in flight
3165 */
3166 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3167 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3168 s->locked++;
3169
3170 if (level == 6) {
3171 int qd_idx = sh->qd_idx;
3172 struct r5dev *dev = &sh->dev[qd_idx];
3173
3174 set_bit(R5_LOCKED, &dev->flags);
3175 clear_bit(R5_UPTODATE, &dev->flags);
3176 s->locked++;
3177 }
3178
3179 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3180 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3181 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3182 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3183 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3184
3185 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3186 __func__, (unsigned long long)sh->sector,
3187 s->locked, s->ops_request);
3188 }
3189
3190 /*
3191 * Each stripe/dev can have one or more bion attached.
3192 * toread/towrite point to the first in a chain.
3193 * The bi_next chain must be in order.
3194 */
3195 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3196 int forwrite, int previous)
3197 {
3198 struct bio **bip;
3199 struct r5conf *conf = sh->raid_conf;
3200 int firstwrite=0;
3201
3202 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3203 (unsigned long long)bi->bi_iter.bi_sector,
3204 (unsigned long long)sh->sector);
3205
3206 spin_lock_irq(&sh->stripe_lock);
3207 /* Don't allow new IO added to stripes in batch list */
3208 if (sh->batch_head)
3209 goto overlap;
3210 if (forwrite) {
3211 bip = &sh->dev[dd_idx].towrite;
3212 if (*bip == NULL)
3213 firstwrite = 1;
3214 } else
3215 bip = &sh->dev[dd_idx].toread;
3216 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3217 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3218 goto overlap;
3219 bip = & (*bip)->bi_next;
3220 }
3221 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3222 goto overlap;
3223
3224 if (forwrite && raid5_has_ppl(conf)) {
3225 /*
3226 * With PPL only writes to consecutive data chunks within a
3227 * stripe are allowed because for a single stripe_head we can
3228 * only have one PPL entry at a time, which describes one data
3229 * range. Not really an overlap, but wait_for_overlap can be
3230 * used to handle this.
3231 */
3232 sector_t sector;
3233 sector_t first = 0;
3234 sector_t last = 0;
3235 int count = 0;
3236 int i;
3237
3238 for (i = 0; i < sh->disks; i++) {
3239 if (i != sh->pd_idx &&
3240 (i == dd_idx || sh->dev[i].towrite)) {
3241 sector = sh->dev[i].sector;
3242 if (count == 0 || sector < first)
3243 first = sector;
3244 if (sector > last)
3245 last = sector;
3246 count++;
3247 }
3248 }
3249
3250 if (first + conf->chunk_sectors * (count - 1) != last)
3251 goto overlap;
3252 }
3253
3254 if (!forwrite || previous)
3255 clear_bit(STRIPE_BATCH_READY, &sh->state);
3256
3257 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3258 if (*bip)
3259 bi->bi_next = *bip;
3260 *bip = bi;
3261 bio_inc_remaining(bi);
3262 md_write_inc(conf->mddev, bi);
3263
3264 if (forwrite) {
3265 /* check if page is covered */
3266 sector_t sector = sh->dev[dd_idx].sector;
3267 for (bi=sh->dev[dd_idx].towrite;
3268 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3269 bi && bi->bi_iter.bi_sector <= sector;
3270 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3271 if (bio_end_sector(bi) >= sector)
3272 sector = bio_end_sector(bi);
3273 }
3274 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3275 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3276 sh->overwrite_disks++;
3277 }
3278
3279 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3280 (unsigned long long)(*bip)->bi_iter.bi_sector,
3281 (unsigned long long)sh->sector, dd_idx);
3282
3283 if (conf->mddev->bitmap && firstwrite) {
3284 /* Cannot hold spinlock over bitmap_startwrite,
3285 * but must ensure this isn't added to a batch until
3286 * we have added to the bitmap and set bm_seq.
3287 * So set STRIPE_BITMAP_PENDING to prevent
3288 * batching.
3289 * If multiple add_stripe_bio() calls race here they
3290 * much all set STRIPE_BITMAP_PENDING. So only the first one
3291 * to complete "bitmap_startwrite" gets to set
3292 * STRIPE_BIT_DELAY. This is important as once a stripe
3293 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3294 * any more.
3295 */
3296 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3297 spin_unlock_irq(&sh->stripe_lock);
3298 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3299 STRIPE_SECTORS, 0);
3300 spin_lock_irq(&sh->stripe_lock);
3301 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3302 if (!sh->batch_head) {
3303 sh->bm_seq = conf->seq_flush+1;
3304 set_bit(STRIPE_BIT_DELAY, &sh->state);
3305 }
3306 }
3307 spin_unlock_irq(&sh->stripe_lock);
3308
3309 if (stripe_can_batch(sh))
3310 stripe_add_to_batch_list(conf, sh);
3311 return 1;
3312
3313 overlap:
3314 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3315 spin_unlock_irq(&sh->stripe_lock);
3316 return 0;
3317 }
3318
3319 static void end_reshape(struct r5conf *conf);
3320
3321 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3322 struct stripe_head *sh)
3323 {
3324 int sectors_per_chunk =
3325 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3326 int dd_idx;
3327 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3328 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3329
3330 raid5_compute_sector(conf,
3331 stripe * (disks - conf->max_degraded)
3332 *sectors_per_chunk + chunk_offset,
3333 previous,
3334 &dd_idx, sh);
3335 }
3336
3337 static void
3338 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3339 struct stripe_head_state *s, int disks)
3340 {
3341 int i;
3342 BUG_ON(sh->batch_head);
3343 for (i = disks; i--; ) {
3344 struct bio *bi;
3345 int bitmap_end = 0;
3346
3347 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3348 struct md_rdev *rdev;
3349 rcu_read_lock();
3350 rdev = rcu_dereference(conf->disks[i].rdev);
3351 if (rdev && test_bit(In_sync, &rdev->flags) &&
3352 !test_bit(Faulty, &rdev->flags))
3353 atomic_inc(&rdev->nr_pending);
3354 else
3355 rdev = NULL;
3356 rcu_read_unlock();
3357 if (rdev) {
3358 if (!rdev_set_badblocks(
3359 rdev,
3360 sh->sector,
3361 STRIPE_SECTORS, 0))
3362 md_error(conf->mddev, rdev);
3363 rdev_dec_pending(rdev, conf->mddev);
3364 }
3365 }
3366 spin_lock_irq(&sh->stripe_lock);
3367 /* fail all writes first */
3368 bi = sh->dev[i].towrite;
3369 sh->dev[i].towrite = NULL;
3370 sh->overwrite_disks = 0;
3371 spin_unlock_irq(&sh->stripe_lock);
3372 if (bi)
3373 bitmap_end = 1;
3374
3375 log_stripe_write_finished(sh);
3376
3377 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3378 wake_up(&conf->wait_for_overlap);
3379
3380 while (bi && bi->bi_iter.bi_sector <
3381 sh->dev[i].sector + STRIPE_SECTORS) {
3382 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3383
3384 bi->bi_status = BLK_STS_IOERR;
3385 md_write_end(conf->mddev);
3386 bio_endio(bi);
3387 bi = nextbi;
3388 }
3389 if (bitmap_end)
3390 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3391 STRIPE_SECTORS, 0, 0);
3392 bitmap_end = 0;
3393 /* and fail all 'written' */
3394 bi = sh->dev[i].written;
3395 sh->dev[i].written = NULL;
3396 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3397 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3398 sh->dev[i].page = sh->dev[i].orig_page;
3399 }
3400
3401 if (bi) bitmap_end = 1;
3402 while (bi && bi->bi_iter.bi_sector <
3403 sh->dev[i].sector + STRIPE_SECTORS) {
3404 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3405
3406 bi->bi_status = BLK_STS_IOERR;
3407 md_write_end(conf->mddev);
3408 bio_endio(bi);
3409 bi = bi2;
3410 }
3411
3412 /* fail any reads if this device is non-operational and
3413 * the data has not reached the cache yet.
3414 */
3415 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3416 s->failed > conf->max_degraded &&
3417 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3418 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3419 spin_lock_irq(&sh->stripe_lock);
3420 bi = sh->dev[i].toread;
3421 sh->dev[i].toread = NULL;
3422 spin_unlock_irq(&sh->stripe_lock);
3423 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3424 wake_up(&conf->wait_for_overlap);
3425 if (bi)
3426 s->to_read--;
3427 while (bi && bi->bi_iter.bi_sector <
3428 sh->dev[i].sector + STRIPE_SECTORS) {
3429 struct bio *nextbi =
3430 r5_next_bio(bi, sh->dev[i].sector);
3431
3432 bi->bi_status = BLK_STS_IOERR;
3433 bio_endio(bi);
3434 bi = nextbi;
3435 }
3436 }
3437 if (bitmap_end)
3438 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3439 STRIPE_SECTORS, 0, 0);
3440 /* If we were in the middle of a write the parity block might
3441 * still be locked - so just clear all R5_LOCKED flags
3442 */
3443 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3444 }
3445 s->to_write = 0;
3446 s->written = 0;
3447
3448 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3449 if (atomic_dec_and_test(&conf->pending_full_writes))
3450 md_wakeup_thread(conf->mddev->thread);
3451 }
3452
3453 static void
3454 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3455 struct stripe_head_state *s)
3456 {
3457 int abort = 0;
3458 int i;
3459
3460 BUG_ON(sh->batch_head);
3461 clear_bit(STRIPE_SYNCING, &sh->state);
3462 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3463 wake_up(&conf->wait_for_overlap);
3464 s->syncing = 0;
3465 s->replacing = 0;
3466 /* There is nothing more to do for sync/check/repair.
3467 * Don't even need to abort as that is handled elsewhere
3468 * if needed, and not always wanted e.g. if there is a known
3469 * bad block here.
3470 * For recover/replace we need to record a bad block on all
3471 * non-sync devices, or abort the recovery
3472 */
3473 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3474 /* During recovery devices cannot be removed, so
3475 * locking and refcounting of rdevs is not needed
3476 */
3477 rcu_read_lock();
3478 for (i = 0; i < conf->raid_disks; i++) {
3479 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3480 if (rdev
3481 && !test_bit(Faulty, &rdev->flags)
3482 && !test_bit(In_sync, &rdev->flags)
3483 && !rdev_set_badblocks(rdev, sh->sector,
3484 STRIPE_SECTORS, 0))
3485 abort = 1;
3486 rdev = rcu_dereference(conf->disks[i].replacement);
3487 if (rdev
3488 && !test_bit(Faulty, &rdev->flags)
3489 && !test_bit(In_sync, &rdev->flags)
3490 && !rdev_set_badblocks(rdev, sh->sector,
3491 STRIPE_SECTORS, 0))
3492 abort = 1;
3493 }
3494 rcu_read_unlock();
3495 if (abort)
3496 conf->recovery_disabled =
3497 conf->mddev->recovery_disabled;
3498 }
3499 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3500 }
3501
3502 static int want_replace(struct stripe_head *sh, int disk_idx)
3503 {
3504 struct md_rdev *rdev;
3505 int rv = 0;
3506
3507 rcu_read_lock();
3508 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3509 if (rdev
3510 && !test_bit(Faulty, &rdev->flags)
3511 && !test_bit(In_sync, &rdev->flags)
3512 && (rdev->recovery_offset <= sh->sector
3513 || rdev->mddev->recovery_cp <= sh->sector))
3514 rv = 1;
3515 rcu_read_unlock();
3516 return rv;
3517 }
3518
3519 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3520 int disk_idx, int disks)
3521 {
3522 struct r5dev *dev = &sh->dev[disk_idx];
3523 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3524 &sh->dev[s->failed_num[1]] };
3525 int i;
3526
3527
3528 if (test_bit(R5_LOCKED, &dev->flags) ||
3529 test_bit(R5_UPTODATE, &dev->flags))
3530 /* No point reading this as we already have it or have
3531 * decided to get it.
3532 */
3533 return 0;
3534
3535 if (dev->toread ||
3536 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3537 /* We need this block to directly satisfy a request */
3538 return 1;
3539
3540 if (s->syncing || s->expanding ||
3541 (s->replacing && want_replace(sh, disk_idx)))
3542 /* When syncing, or expanding we read everything.
3543 * When replacing, we need the replaced block.
3544 */
3545 return 1;
3546
3547 if ((s->failed >= 1 && fdev[0]->toread) ||
3548 (s->failed >= 2 && fdev[1]->toread))
3549 /* If we want to read from a failed device, then
3550 * we need to actually read every other device.
3551 */
3552 return 1;
3553
3554 /* Sometimes neither read-modify-write nor reconstruct-write
3555 * cycles can work. In those cases we read every block we
3556 * can. Then the parity-update is certain to have enough to
3557 * work with.
3558 * This can only be a problem when we need to write something,
3559 * and some device has failed. If either of those tests
3560 * fail we need look no further.
3561 */
3562 if (!s->failed || !s->to_write)
3563 return 0;
3564
3565 if (test_bit(R5_Insync, &dev->flags) &&
3566 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3567 /* Pre-reads at not permitted until after short delay
3568 * to gather multiple requests. However if this
3569 * device is no Insync, the block could only be computed
3570 * and there is no need to delay that.
3571 */
3572 return 0;
3573
3574 for (i = 0; i < s->failed && i < 2; i++) {
3575 if (fdev[i]->towrite &&
3576 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3577 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3578 /* If we have a partial write to a failed
3579 * device, then we will need to reconstruct
3580 * the content of that device, so all other
3581 * devices must be read.
3582 */
3583 return 1;
3584 }
3585
3586 /* If we are forced to do a reconstruct-write, either because
3587 * the current RAID6 implementation only supports that, or
3588 * because parity cannot be trusted and we are currently
3589 * recovering it, there is extra need to be careful.
3590 * If one of the devices that we would need to read, because
3591 * it is not being overwritten (and maybe not written at all)
3592 * is missing/faulty, then we need to read everything we can.
3593 */
3594 if (sh->raid_conf->level != 6 &&
3595 sh->sector < sh->raid_conf->mddev->recovery_cp)
3596 /* reconstruct-write isn't being forced */
3597 return 0;
3598 for (i = 0; i < s->failed && i < 2; i++) {
3599 if (s->failed_num[i] != sh->pd_idx &&
3600 s->failed_num[i] != sh->qd_idx &&
3601 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3602 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3603 return 1;
3604 }
3605
3606 return 0;
3607 }
3608
3609 /* fetch_block - checks the given member device to see if its data needs
3610 * to be read or computed to satisfy a request.
3611 *
3612 * Returns 1 when no more member devices need to be checked, otherwise returns
3613 * 0 to tell the loop in handle_stripe_fill to continue
3614 */
3615 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3616 int disk_idx, int disks)
3617 {
3618 struct r5dev *dev = &sh->dev[disk_idx];
3619
3620 /* is the data in this block needed, and can we get it? */
3621 if (need_this_block(sh, s, disk_idx, disks)) {
3622 /* we would like to get this block, possibly by computing it,
3623 * otherwise read it if the backing disk is insync
3624 */
3625 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3626 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3627 BUG_ON(sh->batch_head);
3628
3629 /*
3630 * In the raid6 case if the only non-uptodate disk is P
3631 * then we already trusted P to compute the other failed
3632 * drives. It is safe to compute rather than re-read P.
3633 * In other cases we only compute blocks from failed
3634 * devices, otherwise check/repair might fail to detect
3635 * a real inconsistency.
3636 */
3637
3638 if ((s->uptodate == disks - 1) &&
3639 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3640 (s->failed && (disk_idx == s->failed_num[0] ||
3641 disk_idx == s->failed_num[1])))) {
3642 /* have disk failed, and we're requested to fetch it;
3643 * do compute it
3644 */
3645 pr_debug("Computing stripe %llu block %d\n",
3646 (unsigned long long)sh->sector, disk_idx);
3647 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3648 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3649 set_bit(R5_Wantcompute, &dev->flags);
3650 sh->ops.target = disk_idx;
3651 sh->ops.target2 = -1; /* no 2nd target */
3652 s->req_compute = 1;
3653 /* Careful: from this point on 'uptodate' is in the eye
3654 * of raid_run_ops which services 'compute' operations
3655 * before writes. R5_Wantcompute flags a block that will
3656 * be R5_UPTODATE by the time it is needed for a
3657 * subsequent operation.
3658 */
3659 s->uptodate++;
3660 return 1;
3661 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3662 /* Computing 2-failure is *very* expensive; only
3663 * do it if failed >= 2
3664 */
3665 int other;
3666 for (other = disks; other--; ) {
3667 if (other == disk_idx)
3668 continue;
3669 if (!test_bit(R5_UPTODATE,
3670 &sh->dev[other].flags))
3671 break;
3672 }
3673 BUG_ON(other < 0);
3674 pr_debug("Computing stripe %llu blocks %d,%d\n",
3675 (unsigned long long)sh->sector,
3676 disk_idx, other);
3677 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3678 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3679 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3680 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3681 sh->ops.target = disk_idx;
3682 sh->ops.target2 = other;
3683 s->uptodate += 2;
3684 s->req_compute = 1;
3685 return 1;
3686 } else if (test_bit(R5_Insync, &dev->flags)) {
3687 set_bit(R5_LOCKED, &dev->flags);
3688 set_bit(R5_Wantread, &dev->flags);
3689 s->locked++;
3690 pr_debug("Reading block %d (sync=%d)\n",
3691 disk_idx, s->syncing);
3692 }
3693 }
3694
3695 return 0;
3696 }
3697
3698 /**
3699 * handle_stripe_fill - read or compute data to satisfy pending requests.
3700 */
3701 static void handle_stripe_fill(struct stripe_head *sh,
3702 struct stripe_head_state *s,
3703 int disks)
3704 {
3705 int i;
3706
3707 /* look for blocks to read/compute, skip this if a compute
3708 * is already in flight, or if the stripe contents are in the
3709 * midst of changing due to a write
3710 */
3711 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3712 !sh->reconstruct_state) {
3713
3714 /*
3715 * For degraded stripe with data in journal, do not handle
3716 * read requests yet, instead, flush the stripe to raid
3717 * disks first, this avoids handling complex rmw of write
3718 * back cache (prexor with orig_page, and then xor with
3719 * page) in the read path
3720 */
3721 if (s->injournal && s->failed) {
3722 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3723 r5c_make_stripe_write_out(sh);
3724 goto out;
3725 }
3726
3727 for (i = disks; i--; )
3728 if (fetch_block(sh, s, i, disks))
3729 break;
3730 }
3731 out:
3732 set_bit(STRIPE_HANDLE, &sh->state);
3733 }
3734
3735 static void break_stripe_batch_list(struct stripe_head *head_sh,
3736 unsigned long handle_flags);
3737 /* handle_stripe_clean_event
3738 * any written block on an uptodate or failed drive can be returned.
3739 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3740 * never LOCKED, so we don't need to test 'failed' directly.
3741 */
3742 static void handle_stripe_clean_event(struct r5conf *conf,
3743 struct stripe_head *sh, int disks)
3744 {
3745 int i;
3746 struct r5dev *dev;
3747 int discard_pending = 0;
3748 struct stripe_head *head_sh = sh;
3749 bool do_endio = false;
3750
3751 for (i = disks; i--; )
3752 if (sh->dev[i].written) {
3753 dev = &sh->dev[i];
3754 if (!test_bit(R5_LOCKED, &dev->flags) &&
3755 (test_bit(R5_UPTODATE, &dev->flags) ||
3756 test_bit(R5_Discard, &dev->flags) ||
3757 test_bit(R5_SkipCopy, &dev->flags))) {
3758 /* We can return any write requests */
3759 struct bio *wbi, *wbi2;
3760 pr_debug("Return write for disc %d\n", i);
3761 if (test_and_clear_bit(R5_Discard, &dev->flags))
3762 clear_bit(R5_UPTODATE, &dev->flags);
3763 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3764 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3765 }
3766 do_endio = true;
3767
3768 returnbi:
3769 dev->page = dev->orig_page;
3770 wbi = dev->written;
3771 dev->written = NULL;
3772 while (wbi && wbi->bi_iter.bi_sector <
3773 dev->sector + STRIPE_SECTORS) {
3774 wbi2 = r5_next_bio(wbi, dev->sector);
3775 md_write_end(conf->mddev);
3776 bio_endio(wbi);
3777 wbi = wbi2;
3778 }
3779 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3780 STRIPE_SECTORS,
3781 !test_bit(STRIPE_DEGRADED, &sh->state),
3782 0);
3783 if (head_sh->batch_head) {
3784 sh = list_first_entry(&sh->batch_list,
3785 struct stripe_head,
3786 batch_list);
3787 if (sh != head_sh) {
3788 dev = &sh->dev[i];
3789 goto returnbi;
3790 }
3791 }
3792 sh = head_sh;
3793 dev = &sh->dev[i];
3794 } else if (test_bit(R5_Discard, &dev->flags))
3795 discard_pending = 1;
3796 }
3797
3798 log_stripe_write_finished(sh);
3799
3800 if (!discard_pending &&
3801 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3802 int hash;
3803 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3804 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3805 if (sh->qd_idx >= 0) {
3806 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3807 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3808 }
3809 /* now that discard is done we can proceed with any sync */
3810 clear_bit(STRIPE_DISCARD, &sh->state);
3811 /*
3812 * SCSI discard will change some bio fields and the stripe has
3813 * no updated data, so remove it from hash list and the stripe
3814 * will be reinitialized
3815 */
3816 unhash:
3817 hash = sh->hash_lock_index;
3818 spin_lock_irq(conf->hash_locks + hash);
3819 remove_hash(sh);
3820 spin_unlock_irq(conf->hash_locks + hash);
3821 if (head_sh->batch_head) {
3822 sh = list_first_entry(&sh->batch_list,
3823 struct stripe_head, batch_list);
3824 if (sh != head_sh)
3825 goto unhash;
3826 }
3827 sh = head_sh;
3828
3829 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3830 set_bit(STRIPE_HANDLE, &sh->state);
3831
3832 }
3833
3834 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3835 if (atomic_dec_and_test(&conf->pending_full_writes))
3836 md_wakeup_thread(conf->mddev->thread);
3837
3838 if (head_sh->batch_head && do_endio)
3839 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3840 }
3841
3842 /*
3843 * For RMW in write back cache, we need extra page in prexor to store the
3844 * old data. This page is stored in dev->orig_page.
3845 *
3846 * This function checks whether we have data for prexor. The exact logic
3847 * is:
3848 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3849 */
3850 static inline bool uptodate_for_rmw(struct r5dev *dev)
3851 {
3852 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3853 (!test_bit(R5_InJournal, &dev->flags) ||
3854 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3855 }
3856
3857 static int handle_stripe_dirtying(struct r5conf *conf,
3858 struct stripe_head *sh,
3859 struct stripe_head_state *s,
3860 int disks)
3861 {
3862 int rmw = 0, rcw = 0, i;
3863 sector_t recovery_cp = conf->mddev->recovery_cp;
3864
3865 /* Check whether resync is now happening or should start.
3866 * If yes, then the array is dirty (after unclean shutdown or
3867 * initial creation), so parity in some stripes might be inconsistent.
3868 * In this case, we need to always do reconstruct-write, to ensure
3869 * that in case of drive failure or read-error correction, we
3870 * generate correct data from the parity.
3871 */
3872 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3873 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3874 s->failed == 0)) {
3875 /* Calculate the real rcw later - for now make it
3876 * look like rcw is cheaper
3877 */
3878 rcw = 1; rmw = 2;
3879 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3880 conf->rmw_level, (unsigned long long)recovery_cp,
3881 (unsigned long long)sh->sector);
3882 } else for (i = disks; i--; ) {
3883 /* would I have to read this buffer for read_modify_write */
3884 struct r5dev *dev = &sh->dev[i];
3885 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3886 i == sh->pd_idx || i == sh->qd_idx ||
3887 test_bit(R5_InJournal, &dev->flags)) &&
3888 !test_bit(R5_LOCKED, &dev->flags) &&
3889 !(uptodate_for_rmw(dev) ||
3890 test_bit(R5_Wantcompute, &dev->flags))) {
3891 if (test_bit(R5_Insync, &dev->flags))
3892 rmw++;
3893 else
3894 rmw += 2*disks; /* cannot read it */
3895 }
3896 /* Would I have to read this buffer for reconstruct_write */
3897 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3898 i != sh->pd_idx && i != sh->qd_idx &&
3899 !test_bit(R5_LOCKED, &dev->flags) &&
3900 !(test_bit(R5_UPTODATE, &dev->flags) ||
3901 test_bit(R5_Wantcompute, &dev->flags))) {
3902 if (test_bit(R5_Insync, &dev->flags))
3903 rcw++;
3904 else
3905 rcw += 2*disks;
3906 }
3907 }
3908
3909 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3910 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3911 set_bit(STRIPE_HANDLE, &sh->state);
3912 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3913 /* prefer read-modify-write, but need to get some data */
3914 if (conf->mddev->queue)
3915 blk_add_trace_msg(conf->mddev->queue,
3916 "raid5 rmw %llu %d",
3917 (unsigned long long)sh->sector, rmw);
3918 for (i = disks; i--; ) {
3919 struct r5dev *dev = &sh->dev[i];
3920 if (test_bit(R5_InJournal, &dev->flags) &&
3921 dev->page == dev->orig_page &&
3922 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3923 /* alloc page for prexor */
3924 struct page *p = alloc_page(GFP_NOIO);
3925
3926 if (p) {
3927 dev->orig_page = p;
3928 continue;
3929 }
3930
3931 /*
3932 * alloc_page() failed, try use
3933 * disk_info->extra_page
3934 */
3935 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3936 &conf->cache_state)) {
3937 r5c_use_extra_page(sh);
3938 break;
3939 }
3940
3941 /* extra_page in use, add to delayed_list */
3942 set_bit(STRIPE_DELAYED, &sh->state);
3943 s->waiting_extra_page = 1;
3944 return -EAGAIN;
3945 }
3946 }
3947
3948 for (i = disks; i--; ) {
3949 struct r5dev *dev = &sh->dev[i];
3950 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3951 i == sh->pd_idx || i == sh->qd_idx ||
3952 test_bit(R5_InJournal, &dev->flags)) &&
3953 !test_bit(R5_LOCKED, &dev->flags) &&
3954 !(uptodate_for_rmw(dev) ||
3955 test_bit(R5_Wantcompute, &dev->flags)) &&
3956 test_bit(R5_Insync, &dev->flags)) {
3957 if (test_bit(STRIPE_PREREAD_ACTIVE,
3958 &sh->state)) {
3959 pr_debug("Read_old block %d for r-m-w\n",
3960 i);
3961 set_bit(R5_LOCKED, &dev->flags);
3962 set_bit(R5_Wantread, &dev->flags);
3963 s->locked++;
3964 } else {
3965 set_bit(STRIPE_DELAYED, &sh->state);
3966 set_bit(STRIPE_HANDLE, &sh->state);
3967 }
3968 }
3969 }
3970 }
3971 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3972 /* want reconstruct write, but need to get some data */
3973 int qread =0;
3974 rcw = 0;
3975 for (i = disks; i--; ) {
3976 struct r5dev *dev = &sh->dev[i];
3977 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3978 i != sh->pd_idx && i != sh->qd_idx &&
3979 !test_bit(R5_LOCKED, &dev->flags) &&
3980 !(test_bit(R5_UPTODATE, &dev->flags) ||
3981 test_bit(R5_Wantcompute, &dev->flags))) {
3982 rcw++;
3983 if (test_bit(R5_Insync, &dev->flags) &&
3984 test_bit(STRIPE_PREREAD_ACTIVE,
3985 &sh->state)) {
3986 pr_debug("Read_old block "
3987 "%d for Reconstruct\n", i);
3988 set_bit(R5_LOCKED, &dev->flags);
3989 set_bit(R5_Wantread, &dev->flags);
3990 s->locked++;
3991 qread++;
3992 } else {
3993 set_bit(STRIPE_DELAYED, &sh->state);
3994 set_bit(STRIPE_HANDLE, &sh->state);
3995 }
3996 }
3997 }
3998 if (rcw && conf->mddev->queue)
3999 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4000 (unsigned long long)sh->sector,
4001 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4002 }
4003
4004 if (rcw > disks && rmw > disks &&
4005 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4006 set_bit(STRIPE_DELAYED, &sh->state);
4007
4008 /* now if nothing is locked, and if we have enough data,
4009 * we can start a write request
4010 */
4011 /* since handle_stripe can be called at any time we need to handle the
4012 * case where a compute block operation has been submitted and then a
4013 * subsequent call wants to start a write request. raid_run_ops only
4014 * handles the case where compute block and reconstruct are requested
4015 * simultaneously. If this is not the case then new writes need to be
4016 * held off until the compute completes.
4017 */
4018 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4019 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4020 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4021 schedule_reconstruction(sh, s, rcw == 0, 0);
4022 return 0;
4023 }
4024
4025 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4026 struct stripe_head_state *s, int disks)
4027 {
4028 struct r5dev *dev = NULL;
4029
4030 BUG_ON(sh->batch_head);
4031 set_bit(STRIPE_HANDLE, &sh->state);
4032
4033 switch (sh->check_state) {
4034 case check_state_idle:
4035 /* start a new check operation if there are no failures */
4036 if (s->failed == 0) {
4037 BUG_ON(s->uptodate != disks);
4038 sh->check_state = check_state_run;
4039 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4040 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4041 s->uptodate--;
4042 break;
4043 }
4044 dev = &sh->dev[s->failed_num[0]];
4045 /* fall through */
4046 case check_state_compute_result:
4047 sh->check_state = check_state_idle;
4048 if (!dev)
4049 dev = &sh->dev[sh->pd_idx];
4050
4051 /* check that a write has not made the stripe insync */
4052 if (test_bit(STRIPE_INSYNC, &sh->state))
4053 break;
4054
4055 /* either failed parity check, or recovery is happening */
4056 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4057 BUG_ON(s->uptodate != disks);
4058
4059 set_bit(R5_LOCKED, &dev->flags);
4060 s->locked++;
4061 set_bit(R5_Wantwrite, &dev->flags);
4062
4063 clear_bit(STRIPE_DEGRADED, &sh->state);
4064 set_bit(STRIPE_INSYNC, &sh->state);
4065 break;
4066 case check_state_run:
4067 break; /* we will be called again upon completion */
4068 case check_state_check_result:
4069 sh->check_state = check_state_idle;
4070
4071 /* if a failure occurred during the check operation, leave
4072 * STRIPE_INSYNC not set and let the stripe be handled again
4073 */
4074 if (s->failed)
4075 break;
4076
4077 /* handle a successful check operation, if parity is correct
4078 * we are done. Otherwise update the mismatch count and repair
4079 * parity if !MD_RECOVERY_CHECK
4080 */
4081 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4082 /* parity is correct (on disc,
4083 * not in buffer any more)
4084 */
4085 set_bit(STRIPE_INSYNC, &sh->state);
4086 else {
4087 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4088 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4089 /* don't try to repair!! */
4090 set_bit(STRIPE_INSYNC, &sh->state);
4091 pr_warn_ratelimited("%s: mismatch sector in range "
4092 "%llu-%llu\n", mdname(conf->mddev),
4093 (unsigned long long) sh->sector,
4094 (unsigned long long) sh->sector +
4095 STRIPE_SECTORS);
4096 } else {
4097 sh->check_state = check_state_compute_run;
4098 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4099 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4100 set_bit(R5_Wantcompute,
4101 &sh->dev[sh->pd_idx].flags);
4102 sh->ops.target = sh->pd_idx;
4103 sh->ops.target2 = -1;
4104 s->uptodate++;
4105 }
4106 }
4107 break;
4108 case check_state_compute_run:
4109 break;
4110 default:
4111 pr_err("%s: unknown check_state: %d sector: %llu\n",
4112 __func__, sh->check_state,
4113 (unsigned long long) sh->sector);
4114 BUG();
4115 }
4116 }
4117
4118 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4119 struct stripe_head_state *s,
4120 int disks)
4121 {
4122 int pd_idx = sh->pd_idx;
4123 int qd_idx = sh->qd_idx;
4124 struct r5dev *dev;
4125
4126 BUG_ON(sh->batch_head);
4127 set_bit(STRIPE_HANDLE, &sh->state);
4128
4129 BUG_ON(s->failed > 2);
4130
4131 /* Want to check and possibly repair P and Q.
4132 * However there could be one 'failed' device, in which
4133 * case we can only check one of them, possibly using the
4134 * other to generate missing data
4135 */
4136
4137 switch (sh->check_state) {
4138 case check_state_idle:
4139 /* start a new check operation if there are < 2 failures */
4140 if (s->failed == s->q_failed) {
4141 /* The only possible failed device holds Q, so it
4142 * makes sense to check P (If anything else were failed,
4143 * we would have used P to recreate it).
4144 */
4145 sh->check_state = check_state_run;
4146 }
4147 if (!s->q_failed && s->failed < 2) {
4148 /* Q is not failed, and we didn't use it to generate
4149 * anything, so it makes sense to check it
4150 */
4151 if (sh->check_state == check_state_run)
4152 sh->check_state = check_state_run_pq;
4153 else
4154 sh->check_state = check_state_run_q;
4155 }
4156
4157 /* discard potentially stale zero_sum_result */
4158 sh->ops.zero_sum_result = 0;
4159
4160 if (sh->check_state == check_state_run) {
4161 /* async_xor_zero_sum destroys the contents of P */
4162 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4163 s->uptodate--;
4164 }
4165 if (sh->check_state >= check_state_run &&
4166 sh->check_state <= check_state_run_pq) {
4167 /* async_syndrome_zero_sum preserves P and Q, so
4168 * no need to mark them !uptodate here
4169 */
4170 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4171 break;
4172 }
4173
4174 /* we have 2-disk failure */
4175 BUG_ON(s->failed != 2);
4176 /* fall through */
4177 case check_state_compute_result:
4178 sh->check_state = check_state_idle;
4179
4180 /* check that a write has not made the stripe insync */
4181 if (test_bit(STRIPE_INSYNC, &sh->state))
4182 break;
4183
4184 /* now write out any block on a failed drive,
4185 * or P or Q if they were recomputed
4186 */
4187 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4188 if (s->failed == 2) {
4189 dev = &sh->dev[s->failed_num[1]];
4190 s->locked++;
4191 set_bit(R5_LOCKED, &dev->flags);
4192 set_bit(R5_Wantwrite, &dev->flags);
4193 }
4194 if (s->failed >= 1) {
4195 dev = &sh->dev[s->failed_num[0]];
4196 s->locked++;
4197 set_bit(R5_LOCKED, &dev->flags);
4198 set_bit(R5_Wantwrite, &dev->flags);
4199 }
4200 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4201 dev = &sh->dev[pd_idx];
4202 s->locked++;
4203 set_bit(R5_LOCKED, &dev->flags);
4204 set_bit(R5_Wantwrite, &dev->flags);
4205 }
4206 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4207 dev = &sh->dev[qd_idx];
4208 s->locked++;
4209 set_bit(R5_LOCKED, &dev->flags);
4210 set_bit(R5_Wantwrite, &dev->flags);
4211 }
4212 clear_bit(STRIPE_DEGRADED, &sh->state);
4213
4214 set_bit(STRIPE_INSYNC, &sh->state);
4215 break;
4216 case check_state_run:
4217 case check_state_run_q:
4218 case check_state_run_pq:
4219 break; /* we will be called again upon completion */
4220 case check_state_check_result:
4221 sh->check_state = check_state_idle;
4222
4223 /* handle a successful check operation, if parity is correct
4224 * we are done. Otherwise update the mismatch count and repair
4225 * parity if !MD_RECOVERY_CHECK
4226 */
4227 if (sh->ops.zero_sum_result == 0) {
4228 /* both parities are correct */
4229 if (!s->failed)
4230 set_bit(STRIPE_INSYNC, &sh->state);
4231 else {
4232 /* in contrast to the raid5 case we can validate
4233 * parity, but still have a failure to write
4234 * back
4235 */
4236 sh->check_state = check_state_compute_result;
4237 /* Returning at this point means that we may go
4238 * off and bring p and/or q uptodate again so
4239 * we make sure to check zero_sum_result again
4240 * to verify if p or q need writeback
4241 */
4242 }
4243 } else {
4244 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4245 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4246 /* don't try to repair!! */
4247 set_bit(STRIPE_INSYNC, &sh->state);
4248 pr_warn_ratelimited("%s: mismatch sector in range "
4249 "%llu-%llu\n", mdname(conf->mddev),
4250 (unsigned long long) sh->sector,
4251 (unsigned long long) sh->sector +
4252 STRIPE_SECTORS);
4253 } else {
4254 int *target = &sh->ops.target;
4255
4256 sh->ops.target = -1;
4257 sh->ops.target2 = -1;
4258 sh->check_state = check_state_compute_run;
4259 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4260 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4261 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4262 set_bit(R5_Wantcompute,
4263 &sh->dev[pd_idx].flags);
4264 *target = pd_idx;
4265 target = &sh->ops.target2;
4266 s->uptodate++;
4267 }
4268 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4269 set_bit(R5_Wantcompute,
4270 &sh->dev[qd_idx].flags);
4271 *target = qd_idx;
4272 s->uptodate++;
4273 }
4274 }
4275 }
4276 break;
4277 case check_state_compute_run:
4278 break;
4279 default:
4280 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4281 __func__, sh->check_state,
4282 (unsigned long long) sh->sector);
4283 BUG();
4284 }
4285 }
4286
4287 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4288 {
4289 int i;
4290
4291 /* We have read all the blocks in this stripe and now we need to
4292 * copy some of them into a target stripe for expand.
4293 */
4294 struct dma_async_tx_descriptor *tx = NULL;
4295 BUG_ON(sh->batch_head);
4296 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4297 for (i = 0; i < sh->disks; i++)
4298 if (i != sh->pd_idx && i != sh->qd_idx) {
4299 int dd_idx, j;
4300 struct stripe_head *sh2;
4301 struct async_submit_ctl submit;
4302
4303 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4304 sector_t s = raid5_compute_sector(conf, bn, 0,
4305 &dd_idx, NULL);
4306 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4307 if (sh2 == NULL)
4308 /* so far only the early blocks of this stripe
4309 * have been requested. When later blocks
4310 * get requested, we will try again
4311 */
4312 continue;
4313 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4314 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4315 /* must have already done this block */
4316 raid5_release_stripe(sh2);
4317 continue;
4318 }
4319
4320 /* place all the copies on one channel */
4321 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4322 tx = async_memcpy(sh2->dev[dd_idx].page,
4323 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4324 &submit);
4325
4326 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4327 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4328 for (j = 0; j < conf->raid_disks; j++)
4329 if (j != sh2->pd_idx &&
4330 j != sh2->qd_idx &&
4331 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4332 break;
4333 if (j == conf->raid_disks) {
4334 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4335 set_bit(STRIPE_HANDLE, &sh2->state);
4336 }
4337 raid5_release_stripe(sh2);
4338
4339 }
4340 /* done submitting copies, wait for them to complete */
4341 async_tx_quiesce(&tx);
4342 }
4343
4344 /*
4345 * handle_stripe - do things to a stripe.
4346 *
4347 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4348 * state of various bits to see what needs to be done.
4349 * Possible results:
4350 * return some read requests which now have data
4351 * return some write requests which are safely on storage
4352 * schedule a read on some buffers
4353 * schedule a write of some buffers
4354 * return confirmation of parity correctness
4355 *
4356 */
4357
4358 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4359 {
4360 struct r5conf *conf = sh->raid_conf;
4361 int disks = sh->disks;
4362 struct r5dev *dev;
4363 int i;
4364 int do_recovery = 0;
4365
4366 memset(s, 0, sizeof(*s));
4367
4368 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4369 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4370 s->failed_num[0] = -1;
4371 s->failed_num[1] = -1;
4372 s->log_failed = r5l_log_disk_error(conf);
4373
4374 /* Now to look around and see what can be done */
4375 rcu_read_lock();
4376 for (i=disks; i--; ) {
4377 struct md_rdev *rdev;
4378 sector_t first_bad;
4379 int bad_sectors;
4380 int is_bad = 0;
4381
4382 dev = &sh->dev[i];
4383
4384 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4385 i, dev->flags,
4386 dev->toread, dev->towrite, dev->written);
4387 /* maybe we can reply to a read
4388 *
4389 * new wantfill requests are only permitted while
4390 * ops_complete_biofill is guaranteed to be inactive
4391 */
4392 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4393 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4394 set_bit(R5_Wantfill, &dev->flags);
4395
4396 /* now count some things */
4397 if (test_bit(R5_LOCKED, &dev->flags))
4398 s->locked++;
4399 if (test_bit(R5_UPTODATE, &dev->flags))
4400 s->uptodate++;
4401 if (test_bit(R5_Wantcompute, &dev->flags)) {
4402 s->compute++;
4403 BUG_ON(s->compute > 2);
4404 }
4405
4406 if (test_bit(R5_Wantfill, &dev->flags))
4407 s->to_fill++;
4408 else if (dev->toread)
4409 s->to_read++;
4410 if (dev->towrite) {
4411 s->to_write++;
4412 if (!test_bit(R5_OVERWRITE, &dev->flags))
4413 s->non_overwrite++;
4414 }
4415 if (dev->written)
4416 s->written++;
4417 /* Prefer to use the replacement for reads, but only
4418 * if it is recovered enough and has no bad blocks.
4419 */
4420 rdev = rcu_dereference(conf->disks[i].replacement);
4421 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4422 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4423 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4424 &first_bad, &bad_sectors))
4425 set_bit(R5_ReadRepl, &dev->flags);
4426 else {
4427 if (rdev && !test_bit(Faulty, &rdev->flags))
4428 set_bit(R5_NeedReplace, &dev->flags);
4429 else
4430 clear_bit(R5_NeedReplace, &dev->flags);
4431 rdev = rcu_dereference(conf->disks[i].rdev);
4432 clear_bit(R5_ReadRepl, &dev->flags);
4433 }
4434 if (rdev && test_bit(Faulty, &rdev->flags))
4435 rdev = NULL;
4436 if (rdev) {
4437 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4438 &first_bad, &bad_sectors);
4439 if (s->blocked_rdev == NULL
4440 && (test_bit(Blocked, &rdev->flags)
4441 || is_bad < 0)) {
4442 if (is_bad < 0)
4443 set_bit(BlockedBadBlocks,
4444 &rdev->flags);
4445 s->blocked_rdev = rdev;
4446 atomic_inc(&rdev->nr_pending);
4447 }
4448 }
4449 clear_bit(R5_Insync, &dev->flags);
4450 if (!rdev)
4451 /* Not in-sync */;
4452 else if (is_bad) {
4453 /* also not in-sync */
4454 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4455 test_bit(R5_UPTODATE, &dev->flags)) {
4456 /* treat as in-sync, but with a read error
4457 * which we can now try to correct
4458 */
4459 set_bit(R5_Insync, &dev->flags);
4460 set_bit(R5_ReadError, &dev->flags);
4461 }
4462 } else if (test_bit(In_sync, &rdev->flags))
4463 set_bit(R5_Insync, &dev->flags);
4464 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4465 /* in sync if before recovery_offset */
4466 set_bit(R5_Insync, &dev->flags);
4467 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4468 test_bit(R5_Expanded, &dev->flags))
4469 /* If we've reshaped into here, we assume it is Insync.
4470 * We will shortly update recovery_offset to make
4471 * it official.
4472 */
4473 set_bit(R5_Insync, &dev->flags);
4474
4475 if (test_bit(R5_WriteError, &dev->flags)) {
4476 /* This flag does not apply to '.replacement'
4477 * only to .rdev, so make sure to check that*/
4478 struct md_rdev *rdev2 = rcu_dereference(
4479 conf->disks[i].rdev);
4480 if (rdev2 == rdev)
4481 clear_bit(R5_Insync, &dev->flags);
4482 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4483 s->handle_bad_blocks = 1;
4484 atomic_inc(&rdev2->nr_pending);
4485 } else
4486 clear_bit(R5_WriteError, &dev->flags);
4487 }
4488 if (test_bit(R5_MadeGood, &dev->flags)) {
4489 /* This flag does not apply to '.replacement'
4490 * only to .rdev, so make sure to check that*/
4491 struct md_rdev *rdev2 = rcu_dereference(
4492 conf->disks[i].rdev);
4493 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4494 s->handle_bad_blocks = 1;
4495 atomic_inc(&rdev2->nr_pending);
4496 } else
4497 clear_bit(R5_MadeGood, &dev->flags);
4498 }
4499 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4500 struct md_rdev *rdev2 = rcu_dereference(
4501 conf->disks[i].replacement);
4502 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4503 s->handle_bad_blocks = 1;
4504 atomic_inc(&rdev2->nr_pending);
4505 } else
4506 clear_bit(R5_MadeGoodRepl, &dev->flags);
4507 }
4508 if (!test_bit(R5_Insync, &dev->flags)) {
4509 /* The ReadError flag will just be confusing now */
4510 clear_bit(R5_ReadError, &dev->flags);
4511 clear_bit(R5_ReWrite, &dev->flags);
4512 }
4513 if (test_bit(R5_ReadError, &dev->flags))
4514 clear_bit(R5_Insync, &dev->flags);
4515 if (!test_bit(R5_Insync, &dev->flags)) {
4516 if (s->failed < 2)
4517 s->failed_num[s->failed] = i;
4518 s->failed++;
4519 if (rdev && !test_bit(Faulty, &rdev->flags))
4520 do_recovery = 1;
4521 }
4522
4523 if (test_bit(R5_InJournal, &dev->flags))
4524 s->injournal++;
4525 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4526 s->just_cached++;
4527 }
4528 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4529 /* If there is a failed device being replaced,
4530 * we must be recovering.
4531 * else if we are after recovery_cp, we must be syncing
4532 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4533 * else we can only be replacing
4534 * sync and recovery both need to read all devices, and so
4535 * use the same flag.
4536 */
4537 if (do_recovery ||
4538 sh->sector >= conf->mddev->recovery_cp ||
4539 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4540 s->syncing = 1;
4541 else
4542 s->replacing = 1;
4543 }
4544 rcu_read_unlock();
4545 }
4546
4547 static int clear_batch_ready(struct stripe_head *sh)
4548 {
4549 /* Return '1' if this is a member of batch, or
4550 * '0' if it is a lone stripe or a head which can now be
4551 * handled.
4552 */
4553 struct stripe_head *tmp;
4554 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4555 return (sh->batch_head && sh->batch_head != sh);
4556 spin_lock(&sh->stripe_lock);
4557 if (!sh->batch_head) {
4558 spin_unlock(&sh->stripe_lock);
4559 return 0;
4560 }
4561
4562 /*
4563 * this stripe could be added to a batch list before we check
4564 * BATCH_READY, skips it
4565 */
4566 if (sh->batch_head != sh) {
4567 spin_unlock(&sh->stripe_lock);
4568 return 1;
4569 }
4570 spin_lock(&sh->batch_lock);
4571 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4572 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4573 spin_unlock(&sh->batch_lock);
4574 spin_unlock(&sh->stripe_lock);
4575
4576 /*
4577 * BATCH_READY is cleared, no new stripes can be added.
4578 * batch_list can be accessed without lock
4579 */
4580 return 0;
4581 }
4582
4583 static void break_stripe_batch_list(struct stripe_head *head_sh,
4584 unsigned long handle_flags)
4585 {
4586 struct stripe_head *sh, *next;
4587 int i;
4588 int do_wakeup = 0;
4589
4590 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4591
4592 list_del_init(&sh->batch_list);
4593
4594 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4595 (1 << STRIPE_SYNCING) |
4596 (1 << STRIPE_REPLACED) |
4597 (1 << STRIPE_DELAYED) |
4598 (1 << STRIPE_BIT_DELAY) |
4599 (1 << STRIPE_FULL_WRITE) |
4600 (1 << STRIPE_BIOFILL_RUN) |
4601 (1 << STRIPE_COMPUTE_RUN) |
4602 (1 << STRIPE_OPS_REQ_PENDING) |
4603 (1 << STRIPE_DISCARD) |
4604 (1 << STRIPE_BATCH_READY) |
4605 (1 << STRIPE_BATCH_ERR) |
4606 (1 << STRIPE_BITMAP_PENDING)),
4607 "stripe state: %lx\n", sh->state);
4608 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4609 (1 << STRIPE_REPLACED)),
4610 "head stripe state: %lx\n", head_sh->state);
4611
4612 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4613 (1 << STRIPE_PREREAD_ACTIVE) |
4614 (1 << STRIPE_DEGRADED)),
4615 head_sh->state & (1 << STRIPE_INSYNC));
4616
4617 sh->check_state = head_sh->check_state;
4618 sh->reconstruct_state = head_sh->reconstruct_state;
4619 for (i = 0; i < sh->disks; i++) {
4620 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4621 do_wakeup = 1;
4622 sh->dev[i].flags = head_sh->dev[i].flags &
4623 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4624 }
4625 spin_lock_irq(&sh->stripe_lock);
4626 sh->batch_head = NULL;
4627 spin_unlock_irq(&sh->stripe_lock);
4628 if (handle_flags == 0 ||
4629 sh->state & handle_flags)
4630 set_bit(STRIPE_HANDLE, &sh->state);
4631 raid5_release_stripe(sh);
4632 }
4633 spin_lock_irq(&head_sh->stripe_lock);
4634 head_sh->batch_head = NULL;
4635 spin_unlock_irq(&head_sh->stripe_lock);
4636 for (i = 0; i < head_sh->disks; i++)
4637 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4638 do_wakeup = 1;
4639 if (head_sh->state & handle_flags)
4640 set_bit(STRIPE_HANDLE, &head_sh->state);
4641
4642 if (do_wakeup)
4643 wake_up(&head_sh->raid_conf->wait_for_overlap);
4644 }
4645
4646 static void handle_stripe(struct stripe_head *sh)
4647 {
4648 struct stripe_head_state s;
4649 struct r5conf *conf = sh->raid_conf;
4650 int i;
4651 int prexor;
4652 int disks = sh->disks;
4653 struct r5dev *pdev, *qdev;
4654
4655 clear_bit(STRIPE_HANDLE, &sh->state);
4656 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4657 /* already being handled, ensure it gets handled
4658 * again when current action finishes */
4659 set_bit(STRIPE_HANDLE, &sh->state);
4660 return;
4661 }
4662
4663 if (clear_batch_ready(sh) ) {
4664 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4665 return;
4666 }
4667
4668 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4669 break_stripe_batch_list(sh, 0);
4670
4671 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4672 spin_lock(&sh->stripe_lock);
4673 /*
4674 * Cannot process 'sync' concurrently with 'discard'.
4675 * Flush data in r5cache before 'sync'.
4676 */
4677 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4678 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4679 !test_bit(STRIPE_DISCARD, &sh->state) &&
4680 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4681 set_bit(STRIPE_SYNCING, &sh->state);
4682 clear_bit(STRIPE_INSYNC, &sh->state);
4683 clear_bit(STRIPE_REPLACED, &sh->state);
4684 }
4685 spin_unlock(&sh->stripe_lock);
4686 }
4687 clear_bit(STRIPE_DELAYED, &sh->state);
4688
4689 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4690 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4691 (unsigned long long)sh->sector, sh->state,
4692 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4693 sh->check_state, sh->reconstruct_state);
4694
4695 analyse_stripe(sh, &s);
4696
4697 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4698 goto finish;
4699
4700 if (s.handle_bad_blocks ||
4701 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4702 set_bit(STRIPE_HANDLE, &sh->state);
4703 goto finish;
4704 }
4705
4706 if (unlikely(s.blocked_rdev)) {
4707 if (s.syncing || s.expanding || s.expanded ||
4708 s.replacing || s.to_write || s.written) {
4709 set_bit(STRIPE_HANDLE, &sh->state);
4710 goto finish;
4711 }
4712 /* There is nothing for the blocked_rdev to block */
4713 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4714 s.blocked_rdev = NULL;
4715 }
4716
4717 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4718 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4719 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4720 }
4721
4722 pr_debug("locked=%d uptodate=%d to_read=%d"
4723 " to_write=%d failed=%d failed_num=%d,%d\n",
4724 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4725 s.failed_num[0], s.failed_num[1]);
4726 /*
4727 * check if the array has lost more than max_degraded devices and,
4728 * if so, some requests might need to be failed.
4729 *
4730 * When journal device failed (log_failed), we will only process
4731 * the stripe if there is data need write to raid disks
4732 */
4733 if (s.failed > conf->max_degraded ||
4734 (s.log_failed && s.injournal == 0)) {
4735 sh->check_state = 0;
4736 sh->reconstruct_state = 0;
4737 break_stripe_batch_list(sh, 0);
4738 if (s.to_read+s.to_write+s.written)
4739 handle_failed_stripe(conf, sh, &s, disks);
4740 if (s.syncing + s.replacing)
4741 handle_failed_sync(conf, sh, &s);
4742 }
4743
4744 /* Now we check to see if any write operations have recently
4745 * completed
4746 */
4747 prexor = 0;
4748 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4749 prexor = 1;
4750 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4751 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4752 sh->reconstruct_state = reconstruct_state_idle;
4753
4754 /* All the 'written' buffers and the parity block are ready to
4755 * be written back to disk
4756 */
4757 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4758 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4759 BUG_ON(sh->qd_idx >= 0 &&
4760 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4761 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4762 for (i = disks; i--; ) {
4763 struct r5dev *dev = &sh->dev[i];
4764 if (test_bit(R5_LOCKED, &dev->flags) &&
4765 (i == sh->pd_idx || i == sh->qd_idx ||
4766 dev->written || test_bit(R5_InJournal,
4767 &dev->flags))) {
4768 pr_debug("Writing block %d\n", i);
4769 set_bit(R5_Wantwrite, &dev->flags);
4770 if (prexor)
4771 continue;
4772 if (s.failed > 1)
4773 continue;
4774 if (!test_bit(R5_Insync, &dev->flags) ||
4775 ((i == sh->pd_idx || i == sh->qd_idx) &&
4776 s.failed == 0))
4777 set_bit(STRIPE_INSYNC, &sh->state);
4778 }
4779 }
4780 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4781 s.dec_preread_active = 1;
4782 }
4783
4784 /*
4785 * might be able to return some write requests if the parity blocks
4786 * are safe, or on a failed drive
4787 */
4788 pdev = &sh->dev[sh->pd_idx];
4789 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4790 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4791 qdev = &sh->dev[sh->qd_idx];
4792 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4793 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4794 || conf->level < 6;
4795
4796 if (s.written &&
4797 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4798 && !test_bit(R5_LOCKED, &pdev->flags)
4799 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4800 test_bit(R5_Discard, &pdev->flags))))) &&
4801 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4802 && !test_bit(R5_LOCKED, &qdev->flags)
4803 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4804 test_bit(R5_Discard, &qdev->flags))))))
4805 handle_stripe_clean_event(conf, sh, disks);
4806
4807 if (s.just_cached)
4808 r5c_handle_cached_data_endio(conf, sh, disks);
4809 log_stripe_write_finished(sh);
4810
4811 /* Now we might consider reading some blocks, either to check/generate
4812 * parity, or to satisfy requests
4813 * or to load a block that is being partially written.
4814 */
4815 if (s.to_read || s.non_overwrite
4816 || (conf->level == 6 && s.to_write && s.failed)
4817 || (s.syncing && (s.uptodate + s.compute < disks))
4818 || s.replacing
4819 || s.expanding)
4820 handle_stripe_fill(sh, &s, disks);
4821
4822 /*
4823 * When the stripe finishes full journal write cycle (write to journal
4824 * and raid disk), this is the clean up procedure so it is ready for
4825 * next operation.
4826 */
4827 r5c_finish_stripe_write_out(conf, sh, &s);
4828
4829 /*
4830 * Now to consider new write requests, cache write back and what else,
4831 * if anything should be read. We do not handle new writes when:
4832 * 1/ A 'write' operation (copy+xor) is already in flight.
4833 * 2/ A 'check' operation is in flight, as it may clobber the parity
4834 * block.
4835 * 3/ A r5c cache log write is in flight.
4836 */
4837
4838 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4839 if (!r5c_is_writeback(conf->log)) {
4840 if (s.to_write)
4841 handle_stripe_dirtying(conf, sh, &s, disks);
4842 } else { /* write back cache */
4843 int ret = 0;
4844
4845 /* First, try handle writes in caching phase */
4846 if (s.to_write)
4847 ret = r5c_try_caching_write(conf, sh, &s,
4848 disks);
4849 /*
4850 * If caching phase failed: ret == -EAGAIN
4851 * OR
4852 * stripe under reclaim: !caching && injournal
4853 *
4854 * fall back to handle_stripe_dirtying()
4855 */
4856 if (ret == -EAGAIN ||
4857 /* stripe under reclaim: !caching && injournal */
4858 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4859 s.injournal > 0)) {
4860 ret = handle_stripe_dirtying(conf, sh, &s,
4861 disks);
4862 if (ret == -EAGAIN)
4863 goto finish;
4864 }
4865 }
4866 }
4867
4868 /* maybe we need to check and possibly fix the parity for this stripe
4869 * Any reads will already have been scheduled, so we just see if enough
4870 * data is available. The parity check is held off while parity
4871 * dependent operations are in flight.
4872 */
4873 if (sh->check_state ||
4874 (s.syncing && s.locked == 0 &&
4875 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4876 !test_bit(STRIPE_INSYNC, &sh->state))) {
4877 if (conf->level == 6)
4878 handle_parity_checks6(conf, sh, &s, disks);
4879 else
4880 handle_parity_checks5(conf, sh, &s, disks);
4881 }
4882
4883 if ((s.replacing || s.syncing) && s.locked == 0
4884 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4885 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4886 /* Write out to replacement devices where possible */
4887 for (i = 0; i < conf->raid_disks; i++)
4888 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4889 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4890 set_bit(R5_WantReplace, &sh->dev[i].flags);
4891 set_bit(R5_LOCKED, &sh->dev[i].flags);
4892 s.locked++;
4893 }
4894 if (s.replacing)
4895 set_bit(STRIPE_INSYNC, &sh->state);
4896 set_bit(STRIPE_REPLACED, &sh->state);
4897 }
4898 if ((s.syncing || s.replacing) && s.locked == 0 &&
4899 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4900 test_bit(STRIPE_INSYNC, &sh->state)) {
4901 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4902 clear_bit(STRIPE_SYNCING, &sh->state);
4903 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4904 wake_up(&conf->wait_for_overlap);
4905 }
4906
4907 /* If the failed drives are just a ReadError, then we might need
4908 * to progress the repair/check process
4909 */
4910 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4911 for (i = 0; i < s.failed; i++) {
4912 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4913 if (test_bit(R5_ReadError, &dev->flags)
4914 && !test_bit(R5_LOCKED, &dev->flags)
4915 && test_bit(R5_UPTODATE, &dev->flags)
4916 ) {
4917 if (!test_bit(R5_ReWrite, &dev->flags)) {
4918 set_bit(R5_Wantwrite, &dev->flags);
4919 set_bit(R5_ReWrite, &dev->flags);
4920 set_bit(R5_LOCKED, &dev->flags);
4921 s.locked++;
4922 } else {
4923 /* let's read it back */
4924 set_bit(R5_Wantread, &dev->flags);
4925 set_bit(R5_LOCKED, &dev->flags);
4926 s.locked++;
4927 }
4928 }
4929 }
4930
4931 /* Finish reconstruct operations initiated by the expansion process */
4932 if (sh->reconstruct_state == reconstruct_state_result) {
4933 struct stripe_head *sh_src
4934 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4935 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4936 /* sh cannot be written until sh_src has been read.
4937 * so arrange for sh to be delayed a little
4938 */
4939 set_bit(STRIPE_DELAYED, &sh->state);
4940 set_bit(STRIPE_HANDLE, &sh->state);
4941 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4942 &sh_src->state))
4943 atomic_inc(&conf->preread_active_stripes);
4944 raid5_release_stripe(sh_src);
4945 goto finish;
4946 }
4947 if (sh_src)
4948 raid5_release_stripe(sh_src);
4949
4950 sh->reconstruct_state = reconstruct_state_idle;
4951 clear_bit(STRIPE_EXPANDING, &sh->state);
4952 for (i = conf->raid_disks; i--; ) {
4953 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4954 set_bit(R5_LOCKED, &sh->dev[i].flags);
4955 s.locked++;
4956 }
4957 }
4958
4959 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4960 !sh->reconstruct_state) {
4961 /* Need to write out all blocks after computing parity */
4962 sh->disks = conf->raid_disks;
4963 stripe_set_idx(sh->sector, conf, 0, sh);
4964 schedule_reconstruction(sh, &s, 1, 1);
4965 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4966 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4967 atomic_dec(&conf->reshape_stripes);
4968 wake_up(&conf->wait_for_overlap);
4969 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4970 }
4971
4972 if (s.expanding && s.locked == 0 &&
4973 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4974 handle_stripe_expansion(conf, sh);
4975
4976 finish:
4977 /* wait for this device to become unblocked */
4978 if (unlikely(s.blocked_rdev)) {
4979 if (conf->mddev->external)
4980 md_wait_for_blocked_rdev(s.blocked_rdev,
4981 conf->mddev);
4982 else
4983 /* Internal metadata will immediately
4984 * be written by raid5d, so we don't
4985 * need to wait here.
4986 */
4987 rdev_dec_pending(s.blocked_rdev,
4988 conf->mddev);
4989 }
4990
4991 if (s.handle_bad_blocks)
4992 for (i = disks; i--; ) {
4993 struct md_rdev *rdev;
4994 struct r5dev *dev = &sh->dev[i];
4995 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4996 /* We own a safe reference to the rdev */
4997 rdev = conf->disks[i].rdev;
4998 if (!rdev_set_badblocks(rdev, sh->sector,
4999 STRIPE_SECTORS, 0))
5000 md_error(conf->mddev, rdev);
5001 rdev_dec_pending(rdev, conf->mddev);
5002 }
5003 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5004 rdev = conf->disks[i].rdev;
5005 rdev_clear_badblocks(rdev, sh->sector,
5006 STRIPE_SECTORS, 0);
5007 rdev_dec_pending(rdev, conf->mddev);
5008 }
5009 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5010 rdev = conf->disks[i].replacement;
5011 if (!rdev)
5012 /* rdev have been moved down */
5013 rdev = conf->disks[i].rdev;
5014 rdev_clear_badblocks(rdev, sh->sector,
5015 STRIPE_SECTORS, 0);
5016 rdev_dec_pending(rdev, conf->mddev);
5017 }
5018 }
5019
5020 if (s.ops_request)
5021 raid_run_ops(sh, s.ops_request);
5022
5023 ops_run_io(sh, &s);
5024
5025 if (s.dec_preread_active) {
5026 /* We delay this until after ops_run_io so that if make_request
5027 * is waiting on a flush, it won't continue until the writes
5028 * have actually been submitted.
5029 */
5030 atomic_dec(&conf->preread_active_stripes);
5031 if (atomic_read(&conf->preread_active_stripes) <
5032 IO_THRESHOLD)
5033 md_wakeup_thread(conf->mddev->thread);
5034 }
5035
5036 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5037 }
5038
5039 static void raid5_activate_delayed(struct r5conf *conf)
5040 {
5041 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5042 while (!list_empty(&conf->delayed_list)) {
5043 struct list_head *l = conf->delayed_list.next;
5044 struct stripe_head *sh;
5045 sh = list_entry(l, struct stripe_head, lru);
5046 list_del_init(l);
5047 clear_bit(STRIPE_DELAYED, &sh->state);
5048 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5049 atomic_inc(&conf->preread_active_stripes);
5050 list_add_tail(&sh->lru, &conf->hold_list);
5051 raid5_wakeup_stripe_thread(sh);
5052 }
5053 }
5054 }
5055
5056 static void activate_bit_delay(struct r5conf *conf,
5057 struct list_head *temp_inactive_list)
5058 {
5059 /* device_lock is held */
5060 struct list_head head;
5061 list_add(&head, &conf->bitmap_list);
5062 list_del_init(&conf->bitmap_list);
5063 while (!list_empty(&head)) {
5064 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5065 int hash;
5066 list_del_init(&sh->lru);
5067 atomic_inc(&sh->count);
5068 hash = sh->hash_lock_index;
5069 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5070 }
5071 }
5072
5073 static int raid5_congested(struct mddev *mddev, int bits)
5074 {
5075 struct r5conf *conf = mddev->private;
5076
5077 /* No difference between reads and writes. Just check
5078 * how busy the stripe_cache is
5079 */
5080
5081 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5082 return 1;
5083
5084 /* Also checks whether there is pressure on r5cache log space */
5085 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5086 return 1;
5087 if (conf->quiesce)
5088 return 1;
5089 if (atomic_read(&conf->empty_inactive_list_nr))
5090 return 1;
5091
5092 return 0;
5093 }
5094
5095 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5096 {
5097 struct r5conf *conf = mddev->private;
5098 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
5099 unsigned int chunk_sectors;
5100 unsigned int bio_sectors = bio_sectors(bio);
5101
5102 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5103 return chunk_sectors >=
5104 ((sector & (chunk_sectors - 1)) + bio_sectors);
5105 }
5106
5107 /*
5108 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5109 * later sampled by raid5d.
5110 */
5111 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5112 {
5113 unsigned long flags;
5114
5115 spin_lock_irqsave(&conf->device_lock, flags);
5116
5117 bi->bi_next = conf->retry_read_aligned_list;
5118 conf->retry_read_aligned_list = bi;
5119
5120 spin_unlock_irqrestore(&conf->device_lock, flags);
5121 md_wakeup_thread(conf->mddev->thread);
5122 }
5123
5124 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5125 unsigned int *offset)
5126 {
5127 struct bio *bi;
5128
5129 bi = conf->retry_read_aligned;
5130 if (bi) {
5131 *offset = conf->retry_read_offset;
5132 conf->retry_read_aligned = NULL;
5133 return bi;
5134 }
5135 bi = conf->retry_read_aligned_list;
5136 if(bi) {
5137 conf->retry_read_aligned_list = bi->bi_next;
5138 bi->bi_next = NULL;
5139 *offset = 0;
5140 }
5141
5142 return bi;
5143 }
5144
5145 /*
5146 * The "raid5_align_endio" should check if the read succeeded and if it
5147 * did, call bio_endio on the original bio (having bio_put the new bio
5148 * first).
5149 * If the read failed..
5150 */
5151 static void raid5_align_endio(struct bio *bi)
5152 {
5153 struct bio* raid_bi = bi->bi_private;
5154 struct mddev *mddev;
5155 struct r5conf *conf;
5156 struct md_rdev *rdev;
5157 blk_status_t error = bi->bi_status;
5158
5159 bio_put(bi);
5160
5161 rdev = (void*)raid_bi->bi_next;
5162 raid_bi->bi_next = NULL;
5163 mddev = rdev->mddev;
5164 conf = mddev->private;
5165
5166 rdev_dec_pending(rdev, conf->mddev);
5167
5168 if (!error) {
5169 bio_endio(raid_bi);
5170 if (atomic_dec_and_test(&conf->active_aligned_reads))
5171 wake_up(&conf->wait_for_quiescent);
5172 return;
5173 }
5174
5175 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5176
5177 add_bio_to_retry(raid_bi, conf);
5178 }
5179
5180 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5181 {
5182 struct r5conf *conf = mddev->private;
5183 int dd_idx;
5184 struct bio* align_bi;
5185 struct md_rdev *rdev;
5186 sector_t end_sector;
5187
5188 if (!in_chunk_boundary(mddev, raid_bio)) {
5189 pr_debug("%s: non aligned\n", __func__);
5190 return 0;
5191 }
5192 /*
5193 * use bio_clone_fast to make a copy of the bio
5194 */
5195 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5196 if (!align_bi)
5197 return 0;
5198 /*
5199 * set bi_end_io to a new function, and set bi_private to the
5200 * original bio.
5201 */
5202 align_bi->bi_end_io = raid5_align_endio;
5203 align_bi->bi_private = raid_bio;
5204 /*
5205 * compute position
5206 */
5207 align_bi->bi_iter.bi_sector =
5208 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5209 0, &dd_idx, NULL);
5210
5211 end_sector = bio_end_sector(align_bi);
5212 rcu_read_lock();
5213 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5214 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5215 rdev->recovery_offset < end_sector) {
5216 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5217 if (rdev &&
5218 (test_bit(Faulty, &rdev->flags) ||
5219 !(test_bit(In_sync, &rdev->flags) ||
5220 rdev->recovery_offset >= end_sector)))
5221 rdev = NULL;
5222 }
5223
5224 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5225 rcu_read_unlock();
5226 bio_put(align_bi);
5227 return 0;
5228 }
5229
5230 if (rdev) {
5231 sector_t first_bad;
5232 int bad_sectors;
5233
5234 atomic_inc(&rdev->nr_pending);
5235 rcu_read_unlock();
5236 raid_bio->bi_next = (void*)rdev;
5237 align_bi->bi_bdev = rdev->bdev;
5238 bio_clear_flag(align_bi, BIO_SEG_VALID);
5239
5240 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5241 bio_sectors(align_bi),
5242 &first_bad, &bad_sectors)) {
5243 bio_put(align_bi);
5244 rdev_dec_pending(rdev, mddev);
5245 return 0;
5246 }
5247
5248 /* No reshape active, so we can trust rdev->data_offset */
5249 align_bi->bi_iter.bi_sector += rdev->data_offset;
5250
5251 spin_lock_irq(&conf->device_lock);
5252 wait_event_lock_irq(conf->wait_for_quiescent,
5253 conf->quiesce == 0,
5254 conf->device_lock);
5255 atomic_inc(&conf->active_aligned_reads);
5256 spin_unlock_irq(&conf->device_lock);
5257
5258 if (mddev->gendisk)
5259 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5260 align_bi, disk_devt(mddev->gendisk),
5261 raid_bio->bi_iter.bi_sector);
5262 generic_make_request(align_bi);
5263 return 1;
5264 } else {
5265 rcu_read_unlock();
5266 bio_put(align_bi);
5267 return 0;
5268 }
5269 }
5270
5271 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5272 {
5273 struct bio *split;
5274 sector_t sector = raid_bio->bi_iter.bi_sector;
5275 unsigned chunk_sects = mddev->chunk_sectors;
5276 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5277
5278 if (sectors < bio_sectors(raid_bio)) {
5279 struct r5conf *conf = mddev->private;
5280 split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5281 bio_chain(split, raid_bio);
5282 generic_make_request(raid_bio);
5283 raid_bio = split;
5284 }
5285
5286 if (!raid5_read_one_chunk(mddev, raid_bio))
5287 return raid_bio;
5288
5289 return NULL;
5290 }
5291
5292 /* __get_priority_stripe - get the next stripe to process
5293 *
5294 * Full stripe writes are allowed to pass preread active stripes up until
5295 * the bypass_threshold is exceeded. In general the bypass_count
5296 * increments when the handle_list is handled before the hold_list; however, it
5297 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5298 * stripe with in flight i/o. The bypass_count will be reset when the
5299 * head of the hold_list has changed, i.e. the head was promoted to the
5300 * handle_list.
5301 */
5302 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5303 {
5304 struct stripe_head *sh, *tmp;
5305 struct list_head *handle_list = NULL;
5306 struct r5worker_group *wg;
5307 bool second_try = !r5c_is_writeback(conf->log) &&
5308 !r5l_log_disk_error(conf);
5309 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5310 r5l_log_disk_error(conf);
5311
5312 again:
5313 wg = NULL;
5314 sh = NULL;
5315 if (conf->worker_cnt_per_group == 0) {
5316 handle_list = try_loprio ? &conf->loprio_list :
5317 &conf->handle_list;
5318 } else if (group != ANY_GROUP) {
5319 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5320 &conf->worker_groups[group].handle_list;
5321 wg = &conf->worker_groups[group];
5322 } else {
5323 int i;
5324 for (i = 0; i < conf->group_cnt; i++) {
5325 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5326 &conf->worker_groups[i].handle_list;
5327 wg = &conf->worker_groups[i];
5328 if (!list_empty(handle_list))
5329 break;
5330 }
5331 }
5332
5333 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5334 __func__,
5335 list_empty(handle_list) ? "empty" : "busy",
5336 list_empty(&conf->hold_list) ? "empty" : "busy",
5337 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5338
5339 if (!list_empty(handle_list)) {
5340 sh = list_entry(handle_list->next, typeof(*sh), lru);
5341
5342 if (list_empty(&conf->hold_list))
5343 conf->bypass_count = 0;
5344 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5345 if (conf->hold_list.next == conf->last_hold)
5346 conf->bypass_count++;
5347 else {
5348 conf->last_hold = conf->hold_list.next;
5349 conf->bypass_count -= conf->bypass_threshold;
5350 if (conf->bypass_count < 0)
5351 conf->bypass_count = 0;
5352 }
5353 }
5354 } else if (!list_empty(&conf->hold_list) &&
5355 ((conf->bypass_threshold &&
5356 conf->bypass_count > conf->bypass_threshold) ||
5357 atomic_read(&conf->pending_full_writes) == 0)) {
5358
5359 list_for_each_entry(tmp, &conf->hold_list, lru) {
5360 if (conf->worker_cnt_per_group == 0 ||
5361 group == ANY_GROUP ||
5362 !cpu_online(tmp->cpu) ||
5363 cpu_to_group(tmp->cpu) == group) {
5364 sh = tmp;
5365 break;
5366 }
5367 }
5368
5369 if (sh) {
5370 conf->bypass_count -= conf->bypass_threshold;
5371 if (conf->bypass_count < 0)
5372 conf->bypass_count = 0;
5373 }
5374 wg = NULL;
5375 }
5376
5377 if (!sh) {
5378 if (second_try)
5379 return NULL;
5380 second_try = true;
5381 try_loprio = !try_loprio;
5382 goto again;
5383 }
5384
5385 if (wg) {
5386 wg->stripes_cnt--;
5387 sh->group = NULL;
5388 }
5389 list_del_init(&sh->lru);
5390 BUG_ON(atomic_inc_return(&sh->count) != 1);
5391 return sh;
5392 }
5393
5394 struct raid5_plug_cb {
5395 struct blk_plug_cb cb;
5396 struct list_head list;
5397 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5398 };
5399
5400 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5401 {
5402 struct raid5_plug_cb *cb = container_of(
5403 blk_cb, struct raid5_plug_cb, cb);
5404 struct stripe_head *sh;
5405 struct mddev *mddev = cb->cb.data;
5406 struct r5conf *conf = mddev->private;
5407 int cnt = 0;
5408 int hash;
5409
5410 if (cb->list.next && !list_empty(&cb->list)) {
5411 spin_lock_irq(&conf->device_lock);
5412 while (!list_empty(&cb->list)) {
5413 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5414 list_del_init(&sh->lru);
5415 /*
5416 * avoid race release_stripe_plug() sees
5417 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5418 * is still in our list
5419 */
5420 smp_mb__before_atomic();
5421 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5422 /*
5423 * STRIPE_ON_RELEASE_LIST could be set here. In that
5424 * case, the count is always > 1 here
5425 */
5426 hash = sh->hash_lock_index;
5427 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5428 cnt++;
5429 }
5430 spin_unlock_irq(&conf->device_lock);
5431 }
5432 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5433 NR_STRIPE_HASH_LOCKS);
5434 if (mddev->queue)
5435 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5436 kfree(cb);
5437 }
5438
5439 static void release_stripe_plug(struct mddev *mddev,
5440 struct stripe_head *sh)
5441 {
5442 struct blk_plug_cb *blk_cb = blk_check_plugged(
5443 raid5_unplug, mddev,
5444 sizeof(struct raid5_plug_cb));
5445 struct raid5_plug_cb *cb;
5446
5447 if (!blk_cb) {
5448 raid5_release_stripe(sh);
5449 return;
5450 }
5451
5452 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5453
5454 if (cb->list.next == NULL) {
5455 int i;
5456 INIT_LIST_HEAD(&cb->list);
5457 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5458 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5459 }
5460
5461 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5462 list_add_tail(&sh->lru, &cb->list);
5463 else
5464 raid5_release_stripe(sh);
5465 }
5466
5467 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5468 {
5469 struct r5conf *conf = mddev->private;
5470 sector_t logical_sector, last_sector;
5471 struct stripe_head *sh;
5472 int stripe_sectors;
5473
5474 if (mddev->reshape_position != MaxSector)
5475 /* Skip discard while reshape is happening */
5476 return;
5477
5478 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5479 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5480
5481 bi->bi_next = NULL;
5482
5483 stripe_sectors = conf->chunk_sectors *
5484 (conf->raid_disks - conf->max_degraded);
5485 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5486 stripe_sectors);
5487 sector_div(last_sector, stripe_sectors);
5488
5489 logical_sector *= conf->chunk_sectors;
5490 last_sector *= conf->chunk_sectors;
5491
5492 for (; logical_sector < last_sector;
5493 logical_sector += STRIPE_SECTORS) {
5494 DEFINE_WAIT(w);
5495 int d;
5496 again:
5497 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5498 prepare_to_wait(&conf->wait_for_overlap, &w,
5499 TASK_UNINTERRUPTIBLE);
5500 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5501 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5502 raid5_release_stripe(sh);
5503 schedule();
5504 goto again;
5505 }
5506 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5507 spin_lock_irq(&sh->stripe_lock);
5508 for (d = 0; d < conf->raid_disks; d++) {
5509 if (d == sh->pd_idx || d == sh->qd_idx)
5510 continue;
5511 if (sh->dev[d].towrite || sh->dev[d].toread) {
5512 set_bit(R5_Overlap, &sh->dev[d].flags);
5513 spin_unlock_irq(&sh->stripe_lock);
5514 raid5_release_stripe(sh);
5515 schedule();
5516 goto again;
5517 }
5518 }
5519 set_bit(STRIPE_DISCARD, &sh->state);
5520 finish_wait(&conf->wait_for_overlap, &w);
5521 sh->overwrite_disks = 0;
5522 for (d = 0; d < conf->raid_disks; d++) {
5523 if (d == sh->pd_idx || d == sh->qd_idx)
5524 continue;
5525 sh->dev[d].towrite = bi;
5526 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5527 bio_inc_remaining(bi);
5528 md_write_inc(mddev, bi);
5529 sh->overwrite_disks++;
5530 }
5531 spin_unlock_irq(&sh->stripe_lock);
5532 if (conf->mddev->bitmap) {
5533 for (d = 0;
5534 d < conf->raid_disks - conf->max_degraded;
5535 d++)
5536 bitmap_startwrite(mddev->bitmap,
5537 sh->sector,
5538 STRIPE_SECTORS,
5539 0);
5540 sh->bm_seq = conf->seq_flush + 1;
5541 set_bit(STRIPE_BIT_DELAY, &sh->state);
5542 }
5543
5544 set_bit(STRIPE_HANDLE, &sh->state);
5545 clear_bit(STRIPE_DELAYED, &sh->state);
5546 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5547 atomic_inc(&conf->preread_active_stripes);
5548 release_stripe_plug(mddev, sh);
5549 }
5550
5551 bio_endio(bi);
5552 }
5553
5554 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5555 {
5556 struct r5conf *conf = mddev->private;
5557 int dd_idx;
5558 sector_t new_sector;
5559 sector_t logical_sector, last_sector;
5560 struct stripe_head *sh;
5561 const int rw = bio_data_dir(bi);
5562 DEFINE_WAIT(w);
5563 bool do_prepare;
5564 bool do_flush = false;
5565
5566 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5567 int ret = r5l_handle_flush_request(conf->log, bi);
5568
5569 if (ret == 0)
5570 return true;
5571 if (ret == -ENODEV) {
5572 md_flush_request(mddev, bi);
5573 return true;
5574 }
5575 /* ret == -EAGAIN, fallback */
5576 /*
5577 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5578 * we need to flush journal device
5579 */
5580 do_flush = bi->bi_opf & REQ_PREFLUSH;
5581 }
5582
5583 if (!md_write_start(mddev, bi))
5584 return false;
5585 /*
5586 * If array is degraded, better not do chunk aligned read because
5587 * later we might have to read it again in order to reconstruct
5588 * data on failed drives.
5589 */
5590 if (rw == READ && mddev->degraded == 0 &&
5591 mddev->reshape_position == MaxSector) {
5592 bi = chunk_aligned_read(mddev, bi);
5593 if (!bi)
5594 return true;
5595 }
5596
5597 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5598 make_discard_request(mddev, bi);
5599 md_write_end(mddev);
5600 return true;
5601 }
5602
5603 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5604 last_sector = bio_end_sector(bi);
5605 bi->bi_next = NULL;
5606
5607 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5608 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5609 int previous;
5610 int seq;
5611
5612 do_prepare = false;
5613 retry:
5614 seq = read_seqcount_begin(&conf->gen_lock);
5615 previous = 0;
5616 if (do_prepare)
5617 prepare_to_wait(&conf->wait_for_overlap, &w,
5618 TASK_UNINTERRUPTIBLE);
5619 if (unlikely(conf->reshape_progress != MaxSector)) {
5620 /* spinlock is needed as reshape_progress may be
5621 * 64bit on a 32bit platform, and so it might be
5622 * possible to see a half-updated value
5623 * Of course reshape_progress could change after
5624 * the lock is dropped, so once we get a reference
5625 * to the stripe that we think it is, we will have
5626 * to check again.
5627 */
5628 spin_lock_irq(&conf->device_lock);
5629 if (mddev->reshape_backwards
5630 ? logical_sector < conf->reshape_progress
5631 : logical_sector >= conf->reshape_progress) {
5632 previous = 1;
5633 } else {
5634 if (mddev->reshape_backwards
5635 ? logical_sector < conf->reshape_safe
5636 : logical_sector >= conf->reshape_safe) {
5637 spin_unlock_irq(&conf->device_lock);
5638 schedule();
5639 do_prepare = true;
5640 goto retry;
5641 }
5642 }
5643 spin_unlock_irq(&conf->device_lock);
5644 }
5645
5646 new_sector = raid5_compute_sector(conf, logical_sector,
5647 previous,
5648 &dd_idx, NULL);
5649 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5650 (unsigned long long)new_sector,
5651 (unsigned long long)logical_sector);
5652
5653 sh = raid5_get_active_stripe(conf, new_sector, previous,
5654 (bi->bi_opf & REQ_RAHEAD), 0);
5655 if (sh) {
5656 if (unlikely(previous)) {
5657 /* expansion might have moved on while waiting for a
5658 * stripe, so we must do the range check again.
5659 * Expansion could still move past after this
5660 * test, but as we are holding a reference to
5661 * 'sh', we know that if that happens,
5662 * STRIPE_EXPANDING will get set and the expansion
5663 * won't proceed until we finish with the stripe.
5664 */
5665 int must_retry = 0;
5666 spin_lock_irq(&conf->device_lock);
5667 if (mddev->reshape_backwards
5668 ? logical_sector >= conf->reshape_progress
5669 : logical_sector < conf->reshape_progress)
5670 /* mismatch, need to try again */
5671 must_retry = 1;
5672 spin_unlock_irq(&conf->device_lock);
5673 if (must_retry) {
5674 raid5_release_stripe(sh);
5675 schedule();
5676 do_prepare = true;
5677 goto retry;
5678 }
5679 }
5680 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5681 /* Might have got the wrong stripe_head
5682 * by accident
5683 */
5684 raid5_release_stripe(sh);
5685 goto retry;
5686 }
5687
5688 if (rw == WRITE &&
5689 logical_sector >= mddev->suspend_lo &&
5690 logical_sector < mddev->suspend_hi) {
5691 raid5_release_stripe(sh);
5692 /* As the suspend_* range is controlled by
5693 * userspace, we want an interruptible
5694 * wait.
5695 */
5696 prepare_to_wait(&conf->wait_for_overlap,
5697 &w, TASK_INTERRUPTIBLE);
5698 if (logical_sector >= mddev->suspend_lo &&
5699 logical_sector < mddev->suspend_hi) {
5700 sigset_t full, old;
5701 sigfillset(&full);
5702 sigprocmask(SIG_BLOCK, &full, &old);
5703 schedule();
5704 sigprocmask(SIG_SETMASK, &old, NULL);
5705 do_prepare = true;
5706 }
5707 goto retry;
5708 }
5709
5710 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5711 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5712 /* Stripe is busy expanding or
5713 * add failed due to overlap. Flush everything
5714 * and wait a while
5715 */
5716 md_wakeup_thread(mddev->thread);
5717 raid5_release_stripe(sh);
5718 schedule();
5719 do_prepare = true;
5720 goto retry;
5721 }
5722 if (do_flush) {
5723 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5724 /* we only need flush for one stripe */
5725 do_flush = false;
5726 }
5727
5728 set_bit(STRIPE_HANDLE, &sh->state);
5729 clear_bit(STRIPE_DELAYED, &sh->state);
5730 if ((!sh->batch_head || sh == sh->batch_head) &&
5731 (bi->bi_opf & REQ_SYNC) &&
5732 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5733 atomic_inc(&conf->preread_active_stripes);
5734 release_stripe_plug(mddev, sh);
5735 } else {
5736 /* cannot get stripe for read-ahead, just give-up */
5737 bi->bi_status = BLK_STS_IOERR;
5738 break;
5739 }
5740 }
5741 finish_wait(&conf->wait_for_overlap, &w);
5742
5743 if (rw == WRITE)
5744 md_write_end(mddev);
5745 bio_endio(bi);
5746 return true;
5747 }
5748
5749 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5750
5751 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5752 {
5753 /* reshaping is quite different to recovery/resync so it is
5754 * handled quite separately ... here.
5755 *
5756 * On each call to sync_request, we gather one chunk worth of
5757 * destination stripes and flag them as expanding.
5758 * Then we find all the source stripes and request reads.
5759 * As the reads complete, handle_stripe will copy the data
5760 * into the destination stripe and release that stripe.
5761 */
5762 struct r5conf *conf = mddev->private;
5763 struct stripe_head *sh;
5764 sector_t first_sector, last_sector;
5765 int raid_disks = conf->previous_raid_disks;
5766 int data_disks = raid_disks - conf->max_degraded;
5767 int new_data_disks = conf->raid_disks - conf->max_degraded;
5768 int i;
5769 int dd_idx;
5770 sector_t writepos, readpos, safepos;
5771 sector_t stripe_addr;
5772 int reshape_sectors;
5773 struct list_head stripes;
5774 sector_t retn;
5775
5776 if (sector_nr == 0) {
5777 /* If restarting in the middle, skip the initial sectors */
5778 if (mddev->reshape_backwards &&
5779 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5780 sector_nr = raid5_size(mddev, 0, 0)
5781 - conf->reshape_progress;
5782 } else if (mddev->reshape_backwards &&
5783 conf->reshape_progress == MaxSector) {
5784 /* shouldn't happen, but just in case, finish up.*/
5785 sector_nr = MaxSector;
5786 } else if (!mddev->reshape_backwards &&
5787 conf->reshape_progress > 0)
5788 sector_nr = conf->reshape_progress;
5789 sector_div(sector_nr, new_data_disks);
5790 if (sector_nr) {
5791 mddev->curr_resync_completed = sector_nr;
5792 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5793 *skipped = 1;
5794 retn = sector_nr;
5795 goto finish;
5796 }
5797 }
5798
5799 /* We need to process a full chunk at a time.
5800 * If old and new chunk sizes differ, we need to process the
5801 * largest of these
5802 */
5803
5804 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5805
5806 /* We update the metadata at least every 10 seconds, or when
5807 * the data about to be copied would over-write the source of
5808 * the data at the front of the range. i.e. one new_stripe
5809 * along from reshape_progress new_maps to after where
5810 * reshape_safe old_maps to
5811 */
5812 writepos = conf->reshape_progress;
5813 sector_div(writepos, new_data_disks);
5814 readpos = conf->reshape_progress;
5815 sector_div(readpos, data_disks);
5816 safepos = conf->reshape_safe;
5817 sector_div(safepos, data_disks);
5818 if (mddev->reshape_backwards) {
5819 BUG_ON(writepos < reshape_sectors);
5820 writepos -= reshape_sectors;
5821 readpos += reshape_sectors;
5822 safepos += reshape_sectors;
5823 } else {
5824 writepos += reshape_sectors;
5825 /* readpos and safepos are worst-case calculations.
5826 * A negative number is overly pessimistic, and causes
5827 * obvious problems for unsigned storage. So clip to 0.
5828 */
5829 readpos -= min_t(sector_t, reshape_sectors, readpos);
5830 safepos -= min_t(sector_t, reshape_sectors, safepos);
5831 }
5832
5833 /* Having calculated the 'writepos' possibly use it
5834 * to set 'stripe_addr' which is where we will write to.
5835 */
5836 if (mddev->reshape_backwards) {
5837 BUG_ON(conf->reshape_progress == 0);
5838 stripe_addr = writepos;
5839 BUG_ON((mddev->dev_sectors &
5840 ~((sector_t)reshape_sectors - 1))
5841 - reshape_sectors - stripe_addr
5842 != sector_nr);
5843 } else {
5844 BUG_ON(writepos != sector_nr + reshape_sectors);
5845 stripe_addr = sector_nr;
5846 }
5847
5848 /* 'writepos' is the most advanced device address we might write.
5849 * 'readpos' is the least advanced device address we might read.
5850 * 'safepos' is the least address recorded in the metadata as having
5851 * been reshaped.
5852 * If there is a min_offset_diff, these are adjusted either by
5853 * increasing the safepos/readpos if diff is negative, or
5854 * increasing writepos if diff is positive.
5855 * If 'readpos' is then behind 'writepos', there is no way that we can
5856 * ensure safety in the face of a crash - that must be done by userspace
5857 * making a backup of the data. So in that case there is no particular
5858 * rush to update metadata.
5859 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5860 * update the metadata to advance 'safepos' to match 'readpos' so that
5861 * we can be safe in the event of a crash.
5862 * So we insist on updating metadata if safepos is behind writepos and
5863 * readpos is beyond writepos.
5864 * In any case, update the metadata every 10 seconds.
5865 * Maybe that number should be configurable, but I'm not sure it is
5866 * worth it.... maybe it could be a multiple of safemode_delay???
5867 */
5868 if (conf->min_offset_diff < 0) {
5869 safepos += -conf->min_offset_diff;
5870 readpos += -conf->min_offset_diff;
5871 } else
5872 writepos += conf->min_offset_diff;
5873
5874 if ((mddev->reshape_backwards
5875 ? (safepos > writepos && readpos < writepos)
5876 : (safepos < writepos && readpos > writepos)) ||
5877 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5878 /* Cannot proceed until we've updated the superblock... */
5879 wait_event(conf->wait_for_overlap,
5880 atomic_read(&conf->reshape_stripes)==0
5881 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5882 if (atomic_read(&conf->reshape_stripes) != 0)
5883 return 0;
5884 mddev->reshape_position = conf->reshape_progress;
5885 mddev->curr_resync_completed = sector_nr;
5886 conf->reshape_checkpoint = jiffies;
5887 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5888 md_wakeup_thread(mddev->thread);
5889 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5890 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5891 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5892 return 0;
5893 spin_lock_irq(&conf->device_lock);
5894 conf->reshape_safe = mddev->reshape_position;
5895 spin_unlock_irq(&conf->device_lock);
5896 wake_up(&conf->wait_for_overlap);
5897 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5898 }
5899
5900 INIT_LIST_HEAD(&stripes);
5901 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5902 int j;
5903 int skipped_disk = 0;
5904 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5905 set_bit(STRIPE_EXPANDING, &sh->state);
5906 atomic_inc(&conf->reshape_stripes);
5907 /* If any of this stripe is beyond the end of the old
5908 * array, then we need to zero those blocks
5909 */
5910 for (j=sh->disks; j--;) {
5911 sector_t s;
5912 if (j == sh->pd_idx)
5913 continue;
5914 if (conf->level == 6 &&
5915 j == sh->qd_idx)
5916 continue;
5917 s = raid5_compute_blocknr(sh, j, 0);
5918 if (s < raid5_size(mddev, 0, 0)) {
5919 skipped_disk = 1;
5920 continue;
5921 }
5922 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5923 set_bit(R5_Expanded, &sh->dev[j].flags);
5924 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5925 }
5926 if (!skipped_disk) {
5927 set_bit(STRIPE_EXPAND_READY, &sh->state);
5928 set_bit(STRIPE_HANDLE, &sh->state);
5929 }
5930 list_add(&sh->lru, &stripes);
5931 }
5932 spin_lock_irq(&conf->device_lock);
5933 if (mddev->reshape_backwards)
5934 conf->reshape_progress -= reshape_sectors * new_data_disks;
5935 else
5936 conf->reshape_progress += reshape_sectors * new_data_disks;
5937 spin_unlock_irq(&conf->device_lock);
5938 /* Ok, those stripe are ready. We can start scheduling
5939 * reads on the source stripes.
5940 * The source stripes are determined by mapping the first and last
5941 * block on the destination stripes.
5942 */
5943 first_sector =
5944 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5945 1, &dd_idx, NULL);
5946 last_sector =
5947 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5948 * new_data_disks - 1),
5949 1, &dd_idx, NULL);
5950 if (last_sector >= mddev->dev_sectors)
5951 last_sector = mddev->dev_sectors - 1;
5952 while (first_sector <= last_sector) {
5953 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5954 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5955 set_bit(STRIPE_HANDLE, &sh->state);
5956 raid5_release_stripe(sh);
5957 first_sector += STRIPE_SECTORS;
5958 }
5959 /* Now that the sources are clearly marked, we can release
5960 * the destination stripes
5961 */
5962 while (!list_empty(&stripes)) {
5963 sh = list_entry(stripes.next, struct stripe_head, lru);
5964 list_del_init(&sh->lru);
5965 raid5_release_stripe(sh);
5966 }
5967 /* If this takes us to the resync_max point where we have to pause,
5968 * then we need to write out the superblock.
5969 */
5970 sector_nr += reshape_sectors;
5971 retn = reshape_sectors;
5972 finish:
5973 if (mddev->curr_resync_completed > mddev->resync_max ||
5974 (sector_nr - mddev->curr_resync_completed) * 2
5975 >= mddev->resync_max - mddev->curr_resync_completed) {
5976 /* Cannot proceed until we've updated the superblock... */
5977 wait_event(conf->wait_for_overlap,
5978 atomic_read(&conf->reshape_stripes) == 0
5979 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5980 if (atomic_read(&conf->reshape_stripes) != 0)
5981 goto ret;
5982 mddev->reshape_position = conf->reshape_progress;
5983 mddev->curr_resync_completed = sector_nr;
5984 conf->reshape_checkpoint = jiffies;
5985 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5986 md_wakeup_thread(mddev->thread);
5987 wait_event(mddev->sb_wait,
5988 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5989 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5990 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5991 goto ret;
5992 spin_lock_irq(&conf->device_lock);
5993 conf->reshape_safe = mddev->reshape_position;
5994 spin_unlock_irq(&conf->device_lock);
5995 wake_up(&conf->wait_for_overlap);
5996 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5997 }
5998 ret:
5999 return retn;
6000 }
6001
6002 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6003 int *skipped)
6004 {
6005 struct r5conf *conf = mddev->private;
6006 struct stripe_head *sh;
6007 sector_t max_sector = mddev->dev_sectors;
6008 sector_t sync_blocks;
6009 int still_degraded = 0;
6010 int i;
6011
6012 if (sector_nr >= max_sector) {
6013 /* just being told to finish up .. nothing much to do */
6014
6015 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6016 end_reshape(conf);
6017 return 0;
6018 }
6019
6020 if (mddev->curr_resync < max_sector) /* aborted */
6021 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6022 &sync_blocks, 1);
6023 else /* completed sync */
6024 conf->fullsync = 0;
6025 bitmap_close_sync(mddev->bitmap);
6026
6027 return 0;
6028 }
6029
6030 /* Allow raid5_quiesce to complete */
6031 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6032
6033 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6034 return reshape_request(mddev, sector_nr, skipped);
6035
6036 /* No need to check resync_max as we never do more than one
6037 * stripe, and as resync_max will always be on a chunk boundary,
6038 * if the check in md_do_sync didn't fire, there is no chance
6039 * of overstepping resync_max here
6040 */
6041
6042 /* if there is too many failed drives and we are trying
6043 * to resync, then assert that we are finished, because there is
6044 * nothing we can do.
6045 */
6046 if (mddev->degraded >= conf->max_degraded &&
6047 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6048 sector_t rv = mddev->dev_sectors - sector_nr;
6049 *skipped = 1;
6050 return rv;
6051 }
6052 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6053 !conf->fullsync &&
6054 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6055 sync_blocks >= STRIPE_SECTORS) {
6056 /* we can skip this block, and probably more */
6057 sync_blocks /= STRIPE_SECTORS;
6058 *skipped = 1;
6059 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6060 }
6061
6062 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6063
6064 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6065 if (sh == NULL) {
6066 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6067 /* make sure we don't swamp the stripe cache if someone else
6068 * is trying to get access
6069 */
6070 schedule_timeout_uninterruptible(1);
6071 }
6072 /* Need to check if array will still be degraded after recovery/resync
6073 * Note in case of > 1 drive failures it's possible we're rebuilding
6074 * one drive while leaving another faulty drive in array.
6075 */
6076 rcu_read_lock();
6077 for (i = 0; i < conf->raid_disks; i++) {
6078 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6079
6080 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6081 still_degraded = 1;
6082 }
6083 rcu_read_unlock();
6084
6085 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6086
6087 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6088 set_bit(STRIPE_HANDLE, &sh->state);
6089
6090 raid5_release_stripe(sh);
6091
6092 return STRIPE_SECTORS;
6093 }
6094
6095 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6096 unsigned int offset)
6097 {
6098 /* We may not be able to submit a whole bio at once as there
6099 * may not be enough stripe_heads available.
6100 * We cannot pre-allocate enough stripe_heads as we may need
6101 * more than exist in the cache (if we allow ever large chunks).
6102 * So we do one stripe head at a time and record in
6103 * ->bi_hw_segments how many have been done.
6104 *
6105 * We *know* that this entire raid_bio is in one chunk, so
6106 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6107 */
6108 struct stripe_head *sh;
6109 int dd_idx;
6110 sector_t sector, logical_sector, last_sector;
6111 int scnt = 0;
6112 int handled = 0;
6113
6114 logical_sector = raid_bio->bi_iter.bi_sector &
6115 ~((sector_t)STRIPE_SECTORS-1);
6116 sector = raid5_compute_sector(conf, logical_sector,
6117 0, &dd_idx, NULL);
6118 last_sector = bio_end_sector(raid_bio);
6119
6120 for (; logical_sector < last_sector;
6121 logical_sector += STRIPE_SECTORS,
6122 sector += STRIPE_SECTORS,
6123 scnt++) {
6124
6125 if (scnt < offset)
6126 /* already done this stripe */
6127 continue;
6128
6129 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6130
6131 if (!sh) {
6132 /* failed to get a stripe - must wait */
6133 conf->retry_read_aligned = raid_bio;
6134 conf->retry_read_offset = scnt;
6135 return handled;
6136 }
6137
6138 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6139 raid5_release_stripe(sh);
6140 conf->retry_read_aligned = raid_bio;
6141 conf->retry_read_offset = scnt;
6142 return handled;
6143 }
6144
6145 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6146 handle_stripe(sh);
6147 raid5_release_stripe(sh);
6148 handled++;
6149 }
6150
6151 bio_endio(raid_bio);
6152
6153 if (atomic_dec_and_test(&conf->active_aligned_reads))
6154 wake_up(&conf->wait_for_quiescent);
6155 return handled;
6156 }
6157
6158 static int handle_active_stripes(struct r5conf *conf, int group,
6159 struct r5worker *worker,
6160 struct list_head *temp_inactive_list)
6161 {
6162 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6163 int i, batch_size = 0, hash;
6164 bool release_inactive = false;
6165
6166 while (batch_size < MAX_STRIPE_BATCH &&
6167 (sh = __get_priority_stripe(conf, group)) != NULL)
6168 batch[batch_size++] = sh;
6169
6170 if (batch_size == 0) {
6171 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6172 if (!list_empty(temp_inactive_list + i))
6173 break;
6174 if (i == NR_STRIPE_HASH_LOCKS) {
6175 spin_unlock_irq(&conf->device_lock);
6176 r5l_flush_stripe_to_raid(conf->log);
6177 spin_lock_irq(&conf->device_lock);
6178 return batch_size;
6179 }
6180 release_inactive = true;
6181 }
6182 spin_unlock_irq(&conf->device_lock);
6183
6184 release_inactive_stripe_list(conf, temp_inactive_list,
6185 NR_STRIPE_HASH_LOCKS);
6186
6187 r5l_flush_stripe_to_raid(conf->log);
6188 if (release_inactive) {
6189 spin_lock_irq(&conf->device_lock);
6190 return 0;
6191 }
6192
6193 for (i = 0; i < batch_size; i++)
6194 handle_stripe(batch[i]);
6195 log_write_stripe_run(conf);
6196
6197 cond_resched();
6198
6199 spin_lock_irq(&conf->device_lock);
6200 for (i = 0; i < batch_size; i++) {
6201 hash = batch[i]->hash_lock_index;
6202 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6203 }
6204 return batch_size;
6205 }
6206
6207 static void raid5_do_work(struct work_struct *work)
6208 {
6209 struct r5worker *worker = container_of(work, struct r5worker, work);
6210 struct r5worker_group *group = worker->group;
6211 struct r5conf *conf = group->conf;
6212 struct mddev *mddev = conf->mddev;
6213 int group_id = group - conf->worker_groups;
6214 int handled;
6215 struct blk_plug plug;
6216
6217 pr_debug("+++ raid5worker active\n");
6218
6219 blk_start_plug(&plug);
6220 handled = 0;
6221 spin_lock_irq(&conf->device_lock);
6222 while (1) {
6223 int batch_size, released;
6224
6225 released = release_stripe_list(conf, worker->temp_inactive_list);
6226
6227 batch_size = handle_active_stripes(conf, group_id, worker,
6228 worker->temp_inactive_list);
6229 worker->working = false;
6230 if (!batch_size && !released)
6231 break;
6232 handled += batch_size;
6233 wait_event_lock_irq(mddev->sb_wait,
6234 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6235 conf->device_lock);
6236 }
6237 pr_debug("%d stripes handled\n", handled);
6238
6239 spin_unlock_irq(&conf->device_lock);
6240 blk_finish_plug(&plug);
6241
6242 pr_debug("--- raid5worker inactive\n");
6243 }
6244
6245 /*
6246 * This is our raid5 kernel thread.
6247 *
6248 * We scan the hash table for stripes which can be handled now.
6249 * During the scan, completed stripes are saved for us by the interrupt
6250 * handler, so that they will not have to wait for our next wakeup.
6251 */
6252 static void raid5d(struct md_thread *thread)
6253 {
6254 struct mddev *mddev = thread->mddev;
6255 struct r5conf *conf = mddev->private;
6256 int handled;
6257 struct blk_plug plug;
6258
6259 pr_debug("+++ raid5d active\n");
6260
6261 md_check_recovery(mddev);
6262
6263 blk_start_plug(&plug);
6264 handled = 0;
6265 spin_lock_irq(&conf->device_lock);
6266 while (1) {
6267 struct bio *bio;
6268 int batch_size, released;
6269 unsigned int offset;
6270
6271 released = release_stripe_list(conf, conf->temp_inactive_list);
6272 if (released)
6273 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6274
6275 if (
6276 !list_empty(&conf->bitmap_list)) {
6277 /* Now is a good time to flush some bitmap updates */
6278 conf->seq_flush++;
6279 spin_unlock_irq(&conf->device_lock);
6280 bitmap_unplug(mddev->bitmap);
6281 spin_lock_irq(&conf->device_lock);
6282 conf->seq_write = conf->seq_flush;
6283 activate_bit_delay(conf, conf->temp_inactive_list);
6284 }
6285 raid5_activate_delayed(conf);
6286
6287 while ((bio = remove_bio_from_retry(conf, &offset))) {
6288 int ok;
6289 spin_unlock_irq(&conf->device_lock);
6290 ok = retry_aligned_read(conf, bio, offset);
6291 spin_lock_irq(&conf->device_lock);
6292 if (!ok)
6293 break;
6294 handled++;
6295 }
6296
6297 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6298 conf->temp_inactive_list);
6299 if (!batch_size && !released)
6300 break;
6301 handled += batch_size;
6302
6303 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6304 spin_unlock_irq(&conf->device_lock);
6305 md_check_recovery(mddev);
6306 spin_lock_irq(&conf->device_lock);
6307 }
6308 }
6309 pr_debug("%d stripes handled\n", handled);
6310
6311 spin_unlock_irq(&conf->device_lock);
6312 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6313 mutex_trylock(&conf->cache_size_mutex)) {
6314 grow_one_stripe(conf, __GFP_NOWARN);
6315 /* Set flag even if allocation failed. This helps
6316 * slow down allocation requests when mem is short
6317 */
6318 set_bit(R5_DID_ALLOC, &conf->cache_state);
6319 mutex_unlock(&conf->cache_size_mutex);
6320 }
6321
6322 flush_deferred_bios(conf);
6323
6324 r5l_flush_stripe_to_raid(conf->log);
6325
6326 async_tx_issue_pending_all();
6327 blk_finish_plug(&plug);
6328
6329 pr_debug("--- raid5d inactive\n");
6330 }
6331
6332 static ssize_t
6333 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6334 {
6335 struct r5conf *conf;
6336 int ret = 0;
6337 spin_lock(&mddev->lock);
6338 conf = mddev->private;
6339 if (conf)
6340 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6341 spin_unlock(&mddev->lock);
6342 return ret;
6343 }
6344
6345 int
6346 raid5_set_cache_size(struct mddev *mddev, int size)
6347 {
6348 struct r5conf *conf = mddev->private;
6349
6350 if (size <= 16 || size > 32768)
6351 return -EINVAL;
6352
6353 conf->min_nr_stripes = size;
6354 mutex_lock(&conf->cache_size_mutex);
6355 while (size < conf->max_nr_stripes &&
6356 drop_one_stripe(conf))
6357 ;
6358 mutex_unlock(&conf->cache_size_mutex);
6359
6360 md_allow_write(mddev);
6361
6362 mutex_lock(&conf->cache_size_mutex);
6363 while (size > conf->max_nr_stripes)
6364 if (!grow_one_stripe(conf, GFP_KERNEL))
6365 break;
6366 mutex_unlock(&conf->cache_size_mutex);
6367
6368 return 0;
6369 }
6370 EXPORT_SYMBOL(raid5_set_cache_size);
6371
6372 static ssize_t
6373 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6374 {
6375 struct r5conf *conf;
6376 unsigned long new;
6377 int err;
6378
6379 if (len >= PAGE_SIZE)
6380 return -EINVAL;
6381 if (kstrtoul(page, 10, &new))
6382 return -EINVAL;
6383 err = mddev_lock(mddev);
6384 if (err)
6385 return err;
6386 conf = mddev->private;
6387 if (!conf)
6388 err = -ENODEV;
6389 else
6390 err = raid5_set_cache_size(mddev, new);
6391 mddev_unlock(mddev);
6392
6393 return err ?: len;
6394 }
6395
6396 static struct md_sysfs_entry
6397 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6398 raid5_show_stripe_cache_size,
6399 raid5_store_stripe_cache_size);
6400
6401 static ssize_t
6402 raid5_show_rmw_level(struct mddev *mddev, char *page)
6403 {
6404 struct r5conf *conf = mddev->private;
6405 if (conf)
6406 return sprintf(page, "%d\n", conf->rmw_level);
6407 else
6408 return 0;
6409 }
6410
6411 static ssize_t
6412 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6413 {
6414 struct r5conf *conf = mddev->private;
6415 unsigned long new;
6416
6417 if (!conf)
6418 return -ENODEV;
6419
6420 if (len >= PAGE_SIZE)
6421 return -EINVAL;
6422
6423 if (kstrtoul(page, 10, &new))
6424 return -EINVAL;
6425
6426 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6427 return -EINVAL;
6428
6429 if (new != PARITY_DISABLE_RMW &&
6430 new != PARITY_ENABLE_RMW &&
6431 new != PARITY_PREFER_RMW)
6432 return -EINVAL;
6433
6434 conf->rmw_level = new;
6435 return len;
6436 }
6437
6438 static struct md_sysfs_entry
6439 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6440 raid5_show_rmw_level,
6441 raid5_store_rmw_level);
6442
6443
6444 static ssize_t
6445 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6446 {
6447 struct r5conf *conf;
6448 int ret = 0;
6449 spin_lock(&mddev->lock);
6450 conf = mddev->private;
6451 if (conf)
6452 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6453 spin_unlock(&mddev->lock);
6454 return ret;
6455 }
6456
6457 static ssize_t
6458 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6459 {
6460 struct r5conf *conf;
6461 unsigned long new;
6462 int err;
6463
6464 if (len >= PAGE_SIZE)
6465 return -EINVAL;
6466 if (kstrtoul(page, 10, &new))
6467 return -EINVAL;
6468
6469 err = mddev_lock(mddev);
6470 if (err)
6471 return err;
6472 conf = mddev->private;
6473 if (!conf)
6474 err = -ENODEV;
6475 else if (new > conf->min_nr_stripes)
6476 err = -EINVAL;
6477 else
6478 conf->bypass_threshold = new;
6479 mddev_unlock(mddev);
6480 return err ?: len;
6481 }
6482
6483 static struct md_sysfs_entry
6484 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6485 S_IRUGO | S_IWUSR,
6486 raid5_show_preread_threshold,
6487 raid5_store_preread_threshold);
6488
6489 static ssize_t
6490 raid5_show_skip_copy(struct mddev *mddev, char *page)
6491 {
6492 struct r5conf *conf;
6493 int ret = 0;
6494 spin_lock(&mddev->lock);
6495 conf = mddev->private;
6496 if (conf)
6497 ret = sprintf(page, "%d\n", conf->skip_copy);
6498 spin_unlock(&mddev->lock);
6499 return ret;
6500 }
6501
6502 static ssize_t
6503 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6504 {
6505 struct r5conf *conf;
6506 unsigned long new;
6507 int err;
6508
6509 if (len >= PAGE_SIZE)
6510 return -EINVAL;
6511 if (kstrtoul(page, 10, &new))
6512 return -EINVAL;
6513 new = !!new;
6514
6515 err = mddev_lock(mddev);
6516 if (err)
6517 return err;
6518 conf = mddev->private;
6519 if (!conf)
6520 err = -ENODEV;
6521 else if (new != conf->skip_copy) {
6522 mddev_suspend(mddev);
6523 conf->skip_copy = new;
6524 if (new)
6525 mddev->queue->backing_dev_info->capabilities |=
6526 BDI_CAP_STABLE_WRITES;
6527 else
6528 mddev->queue->backing_dev_info->capabilities &=
6529 ~BDI_CAP_STABLE_WRITES;
6530 mddev_resume(mddev);
6531 }
6532 mddev_unlock(mddev);
6533 return err ?: len;
6534 }
6535
6536 static struct md_sysfs_entry
6537 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6538 raid5_show_skip_copy,
6539 raid5_store_skip_copy);
6540
6541 static ssize_t
6542 stripe_cache_active_show(struct mddev *mddev, char *page)
6543 {
6544 struct r5conf *conf = mddev->private;
6545 if (conf)
6546 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6547 else
6548 return 0;
6549 }
6550
6551 static struct md_sysfs_entry
6552 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6553
6554 static ssize_t
6555 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6556 {
6557 struct r5conf *conf;
6558 int ret = 0;
6559 spin_lock(&mddev->lock);
6560 conf = mddev->private;
6561 if (conf)
6562 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6563 spin_unlock(&mddev->lock);
6564 return ret;
6565 }
6566
6567 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6568 int *group_cnt,
6569 int *worker_cnt_per_group,
6570 struct r5worker_group **worker_groups);
6571 static ssize_t
6572 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6573 {
6574 struct r5conf *conf;
6575 unsigned long new;
6576 int err;
6577 struct r5worker_group *new_groups, *old_groups;
6578 int group_cnt, worker_cnt_per_group;
6579
6580 if (len >= PAGE_SIZE)
6581 return -EINVAL;
6582 if (kstrtoul(page, 10, &new))
6583 return -EINVAL;
6584
6585 err = mddev_lock(mddev);
6586 if (err)
6587 return err;
6588 conf = mddev->private;
6589 if (!conf)
6590 err = -ENODEV;
6591 else if (new != conf->worker_cnt_per_group) {
6592 mddev_suspend(mddev);
6593
6594 old_groups = conf->worker_groups;
6595 if (old_groups)
6596 flush_workqueue(raid5_wq);
6597
6598 err = alloc_thread_groups(conf, new,
6599 &group_cnt, &worker_cnt_per_group,
6600 &new_groups);
6601 if (!err) {
6602 spin_lock_irq(&conf->device_lock);
6603 conf->group_cnt = group_cnt;
6604 conf->worker_cnt_per_group = worker_cnt_per_group;
6605 conf->worker_groups = new_groups;
6606 spin_unlock_irq(&conf->device_lock);
6607
6608 if (old_groups)
6609 kfree(old_groups[0].workers);
6610 kfree(old_groups);
6611 }
6612 mddev_resume(mddev);
6613 }
6614 mddev_unlock(mddev);
6615
6616 return err ?: len;
6617 }
6618
6619 static struct md_sysfs_entry
6620 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6621 raid5_show_group_thread_cnt,
6622 raid5_store_group_thread_cnt);
6623
6624 static struct attribute *raid5_attrs[] = {
6625 &raid5_stripecache_size.attr,
6626 &raid5_stripecache_active.attr,
6627 &raid5_preread_bypass_threshold.attr,
6628 &raid5_group_thread_cnt.attr,
6629 &raid5_skip_copy.attr,
6630 &raid5_rmw_level.attr,
6631 &r5c_journal_mode.attr,
6632 NULL,
6633 };
6634 static struct attribute_group raid5_attrs_group = {
6635 .name = NULL,
6636 .attrs = raid5_attrs,
6637 };
6638
6639 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6640 int *group_cnt,
6641 int *worker_cnt_per_group,
6642 struct r5worker_group **worker_groups)
6643 {
6644 int i, j, k;
6645 ssize_t size;
6646 struct r5worker *workers;
6647
6648 *worker_cnt_per_group = cnt;
6649 if (cnt == 0) {
6650 *group_cnt = 0;
6651 *worker_groups = NULL;
6652 return 0;
6653 }
6654 *group_cnt = num_possible_nodes();
6655 size = sizeof(struct r5worker) * cnt;
6656 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6657 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6658 *group_cnt, GFP_NOIO);
6659 if (!*worker_groups || !workers) {
6660 kfree(workers);
6661 kfree(*worker_groups);
6662 return -ENOMEM;
6663 }
6664
6665 for (i = 0; i < *group_cnt; i++) {
6666 struct r5worker_group *group;
6667
6668 group = &(*worker_groups)[i];
6669 INIT_LIST_HEAD(&group->handle_list);
6670 INIT_LIST_HEAD(&group->loprio_list);
6671 group->conf = conf;
6672 group->workers = workers + i * cnt;
6673
6674 for (j = 0; j < cnt; j++) {
6675 struct r5worker *worker = group->workers + j;
6676 worker->group = group;
6677 INIT_WORK(&worker->work, raid5_do_work);
6678
6679 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6680 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6681 }
6682 }
6683
6684 return 0;
6685 }
6686
6687 static void free_thread_groups(struct r5conf *conf)
6688 {
6689 if (conf->worker_groups)
6690 kfree(conf->worker_groups[0].workers);
6691 kfree(conf->worker_groups);
6692 conf->worker_groups = NULL;
6693 }
6694
6695 static sector_t
6696 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6697 {
6698 struct r5conf *conf = mddev->private;
6699
6700 if (!sectors)
6701 sectors = mddev->dev_sectors;
6702 if (!raid_disks)
6703 /* size is defined by the smallest of previous and new size */
6704 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6705
6706 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6707 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6708 return sectors * (raid_disks - conf->max_degraded);
6709 }
6710
6711 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6712 {
6713 safe_put_page(percpu->spare_page);
6714 if (percpu->scribble)
6715 flex_array_free(percpu->scribble);
6716 percpu->spare_page = NULL;
6717 percpu->scribble = NULL;
6718 }
6719
6720 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6721 {
6722 if (conf->level == 6 && !percpu->spare_page)
6723 percpu->spare_page = alloc_page(GFP_KERNEL);
6724 if (!percpu->scribble)
6725 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6726 conf->previous_raid_disks),
6727 max(conf->chunk_sectors,
6728 conf->prev_chunk_sectors)
6729 / STRIPE_SECTORS,
6730 GFP_KERNEL);
6731
6732 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6733 free_scratch_buffer(conf, percpu);
6734 return -ENOMEM;
6735 }
6736
6737 return 0;
6738 }
6739
6740 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6741 {
6742 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6743
6744 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6745 return 0;
6746 }
6747
6748 static void raid5_free_percpu(struct r5conf *conf)
6749 {
6750 if (!conf->percpu)
6751 return;
6752
6753 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6754 free_percpu(conf->percpu);
6755 }
6756
6757 static void free_conf(struct r5conf *conf)
6758 {
6759 int i;
6760
6761 log_exit(conf);
6762
6763 if (conf->shrinker.nr_deferred)
6764 unregister_shrinker(&conf->shrinker);
6765
6766 free_thread_groups(conf);
6767 shrink_stripes(conf);
6768 raid5_free_percpu(conf);
6769 for (i = 0; i < conf->pool_size; i++)
6770 if (conf->disks[i].extra_page)
6771 put_page(conf->disks[i].extra_page);
6772 kfree(conf->disks);
6773 if (conf->bio_split)
6774 bioset_free(conf->bio_split);
6775 kfree(conf->stripe_hashtbl);
6776 kfree(conf->pending_data);
6777 kfree(conf);
6778 }
6779
6780 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6781 {
6782 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6783 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6784
6785 if (alloc_scratch_buffer(conf, percpu)) {
6786 pr_warn("%s: failed memory allocation for cpu%u\n",
6787 __func__, cpu);
6788 return -ENOMEM;
6789 }
6790 return 0;
6791 }
6792
6793 static int raid5_alloc_percpu(struct r5conf *conf)
6794 {
6795 int err = 0;
6796
6797 conf->percpu = alloc_percpu(struct raid5_percpu);
6798 if (!conf->percpu)
6799 return -ENOMEM;
6800
6801 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6802 if (!err) {
6803 conf->scribble_disks = max(conf->raid_disks,
6804 conf->previous_raid_disks);
6805 conf->scribble_sectors = max(conf->chunk_sectors,
6806 conf->prev_chunk_sectors);
6807 }
6808 return err;
6809 }
6810
6811 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6812 struct shrink_control *sc)
6813 {
6814 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6815 unsigned long ret = SHRINK_STOP;
6816
6817 if (mutex_trylock(&conf->cache_size_mutex)) {
6818 ret= 0;
6819 while (ret < sc->nr_to_scan &&
6820 conf->max_nr_stripes > conf->min_nr_stripes) {
6821 if (drop_one_stripe(conf) == 0) {
6822 ret = SHRINK_STOP;
6823 break;
6824 }
6825 ret++;
6826 }
6827 mutex_unlock(&conf->cache_size_mutex);
6828 }
6829 return ret;
6830 }
6831
6832 static unsigned long raid5_cache_count(struct shrinker *shrink,
6833 struct shrink_control *sc)
6834 {
6835 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6836
6837 if (conf->max_nr_stripes < conf->min_nr_stripes)
6838 /* unlikely, but not impossible */
6839 return 0;
6840 return conf->max_nr_stripes - conf->min_nr_stripes;
6841 }
6842
6843 static struct r5conf *setup_conf(struct mddev *mddev)
6844 {
6845 struct r5conf *conf;
6846 int raid_disk, memory, max_disks;
6847 struct md_rdev *rdev;
6848 struct disk_info *disk;
6849 char pers_name[6];
6850 int i;
6851 int group_cnt, worker_cnt_per_group;
6852 struct r5worker_group *new_group;
6853
6854 if (mddev->new_level != 5
6855 && mddev->new_level != 4
6856 && mddev->new_level != 6) {
6857 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6858 mdname(mddev), mddev->new_level);
6859 return ERR_PTR(-EIO);
6860 }
6861 if ((mddev->new_level == 5
6862 && !algorithm_valid_raid5(mddev->new_layout)) ||
6863 (mddev->new_level == 6
6864 && !algorithm_valid_raid6(mddev->new_layout))) {
6865 pr_warn("md/raid:%s: layout %d not supported\n",
6866 mdname(mddev), mddev->new_layout);
6867 return ERR_PTR(-EIO);
6868 }
6869 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6870 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6871 mdname(mddev), mddev->raid_disks);
6872 return ERR_PTR(-EINVAL);
6873 }
6874
6875 if (!mddev->new_chunk_sectors ||
6876 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6877 !is_power_of_2(mddev->new_chunk_sectors)) {
6878 pr_warn("md/raid:%s: invalid chunk size %d\n",
6879 mdname(mddev), mddev->new_chunk_sectors << 9);
6880 return ERR_PTR(-EINVAL);
6881 }
6882
6883 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6884 if (conf == NULL)
6885 goto abort;
6886 INIT_LIST_HEAD(&conf->free_list);
6887 INIT_LIST_HEAD(&conf->pending_list);
6888 conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6889 PENDING_IO_MAX, GFP_KERNEL);
6890 if (!conf->pending_data)
6891 goto abort;
6892 for (i = 0; i < PENDING_IO_MAX; i++)
6893 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6894 /* Don't enable multi-threading by default*/
6895 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6896 &new_group)) {
6897 conf->group_cnt = group_cnt;
6898 conf->worker_cnt_per_group = worker_cnt_per_group;
6899 conf->worker_groups = new_group;
6900 } else
6901 goto abort;
6902 spin_lock_init(&conf->device_lock);
6903 seqcount_init(&conf->gen_lock);
6904 mutex_init(&conf->cache_size_mutex);
6905 init_waitqueue_head(&conf->wait_for_quiescent);
6906 init_waitqueue_head(&conf->wait_for_stripe);
6907 init_waitqueue_head(&conf->wait_for_overlap);
6908 INIT_LIST_HEAD(&conf->handle_list);
6909 INIT_LIST_HEAD(&conf->loprio_list);
6910 INIT_LIST_HEAD(&conf->hold_list);
6911 INIT_LIST_HEAD(&conf->delayed_list);
6912 INIT_LIST_HEAD(&conf->bitmap_list);
6913 init_llist_head(&conf->released_stripes);
6914 atomic_set(&conf->active_stripes, 0);
6915 atomic_set(&conf->preread_active_stripes, 0);
6916 atomic_set(&conf->active_aligned_reads, 0);
6917 spin_lock_init(&conf->pending_bios_lock);
6918 conf->batch_bio_dispatch = true;
6919 rdev_for_each(rdev, mddev) {
6920 if (test_bit(Journal, &rdev->flags))
6921 continue;
6922 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6923 conf->batch_bio_dispatch = false;
6924 break;
6925 }
6926 }
6927
6928 conf->bypass_threshold = BYPASS_THRESHOLD;
6929 conf->recovery_disabled = mddev->recovery_disabled - 1;
6930
6931 conf->raid_disks = mddev->raid_disks;
6932 if (mddev->reshape_position == MaxSector)
6933 conf->previous_raid_disks = mddev->raid_disks;
6934 else
6935 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6936 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6937
6938 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6939 GFP_KERNEL);
6940
6941 if (!conf->disks)
6942 goto abort;
6943
6944 for (i = 0; i < max_disks; i++) {
6945 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6946 if (!conf->disks[i].extra_page)
6947 goto abort;
6948 }
6949
6950 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
6951 if (!conf->bio_split)
6952 goto abort;
6953 conf->mddev = mddev;
6954
6955 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6956 goto abort;
6957
6958 /* We init hash_locks[0] separately to that it can be used
6959 * as the reference lock in the spin_lock_nest_lock() call
6960 * in lock_all_device_hash_locks_irq in order to convince
6961 * lockdep that we know what we are doing.
6962 */
6963 spin_lock_init(conf->hash_locks);
6964 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6965 spin_lock_init(conf->hash_locks + i);
6966
6967 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6968 INIT_LIST_HEAD(conf->inactive_list + i);
6969
6970 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6971 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6972
6973 atomic_set(&conf->r5c_cached_full_stripes, 0);
6974 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6975 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6976 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6977 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6978 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6979
6980 conf->level = mddev->new_level;
6981 conf->chunk_sectors = mddev->new_chunk_sectors;
6982 if (raid5_alloc_percpu(conf) != 0)
6983 goto abort;
6984
6985 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6986
6987 rdev_for_each(rdev, mddev) {
6988 raid_disk = rdev->raid_disk;
6989 if (raid_disk >= max_disks
6990 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6991 continue;
6992 disk = conf->disks + raid_disk;
6993
6994 if (test_bit(Replacement, &rdev->flags)) {
6995 if (disk->replacement)
6996 goto abort;
6997 disk->replacement = rdev;
6998 } else {
6999 if (disk->rdev)
7000 goto abort;
7001 disk->rdev = rdev;
7002 }
7003
7004 if (test_bit(In_sync, &rdev->flags)) {
7005 char b[BDEVNAME_SIZE];
7006 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7007 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7008 } else if (rdev->saved_raid_disk != raid_disk)
7009 /* Cannot rely on bitmap to complete recovery */
7010 conf->fullsync = 1;
7011 }
7012
7013 conf->level = mddev->new_level;
7014 if (conf->level == 6) {
7015 conf->max_degraded = 2;
7016 if (raid6_call.xor_syndrome)
7017 conf->rmw_level = PARITY_ENABLE_RMW;
7018 else
7019 conf->rmw_level = PARITY_DISABLE_RMW;
7020 } else {
7021 conf->max_degraded = 1;
7022 conf->rmw_level = PARITY_ENABLE_RMW;
7023 }
7024 conf->algorithm = mddev->new_layout;
7025 conf->reshape_progress = mddev->reshape_position;
7026 if (conf->reshape_progress != MaxSector) {
7027 conf->prev_chunk_sectors = mddev->chunk_sectors;
7028 conf->prev_algo = mddev->layout;
7029 } else {
7030 conf->prev_chunk_sectors = conf->chunk_sectors;
7031 conf->prev_algo = conf->algorithm;
7032 }
7033
7034 conf->min_nr_stripes = NR_STRIPES;
7035 if (mddev->reshape_position != MaxSector) {
7036 int stripes = max_t(int,
7037 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7038 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7039 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7040 if (conf->min_nr_stripes != NR_STRIPES)
7041 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7042 mdname(mddev), conf->min_nr_stripes);
7043 }
7044 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7045 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7046 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7047 if (grow_stripes(conf, conf->min_nr_stripes)) {
7048 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7049 mdname(mddev), memory);
7050 goto abort;
7051 } else
7052 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7053 /*
7054 * Losing a stripe head costs more than the time to refill it,
7055 * it reduces the queue depth and so can hurt throughput.
7056 * So set it rather large, scaled by number of devices.
7057 */
7058 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7059 conf->shrinker.scan_objects = raid5_cache_scan;
7060 conf->shrinker.count_objects = raid5_cache_count;
7061 conf->shrinker.batch = 128;
7062 conf->shrinker.flags = 0;
7063 if (register_shrinker(&conf->shrinker)) {
7064 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7065 mdname(mddev));
7066 goto abort;
7067 }
7068
7069 sprintf(pers_name, "raid%d", mddev->new_level);
7070 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7071 if (!conf->thread) {
7072 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7073 mdname(mddev));
7074 goto abort;
7075 }
7076
7077 return conf;
7078
7079 abort:
7080 if (conf) {
7081 free_conf(conf);
7082 return ERR_PTR(-EIO);
7083 } else
7084 return ERR_PTR(-ENOMEM);
7085 }
7086
7087 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7088 {
7089 switch (algo) {
7090 case ALGORITHM_PARITY_0:
7091 if (raid_disk < max_degraded)
7092 return 1;
7093 break;
7094 case ALGORITHM_PARITY_N:
7095 if (raid_disk >= raid_disks - max_degraded)
7096 return 1;
7097 break;
7098 case ALGORITHM_PARITY_0_6:
7099 if (raid_disk == 0 ||
7100 raid_disk == raid_disks - 1)
7101 return 1;
7102 break;
7103 case ALGORITHM_LEFT_ASYMMETRIC_6:
7104 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7105 case ALGORITHM_LEFT_SYMMETRIC_6:
7106 case ALGORITHM_RIGHT_SYMMETRIC_6:
7107 if (raid_disk == raid_disks - 1)
7108 return 1;
7109 }
7110 return 0;
7111 }
7112
7113 static int raid5_run(struct mddev *mddev)
7114 {
7115 struct r5conf *conf;
7116 int working_disks = 0;
7117 int dirty_parity_disks = 0;
7118 struct md_rdev *rdev;
7119 struct md_rdev *journal_dev = NULL;
7120 sector_t reshape_offset = 0;
7121 int i;
7122 long long min_offset_diff = 0;
7123 int first = 1;
7124
7125 if (mddev_init_writes_pending(mddev) < 0)
7126 return -ENOMEM;
7127
7128 if (mddev->recovery_cp != MaxSector)
7129 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7130 mdname(mddev));
7131
7132 rdev_for_each(rdev, mddev) {
7133 long long diff;
7134
7135 if (test_bit(Journal, &rdev->flags)) {
7136 journal_dev = rdev;
7137 continue;
7138 }
7139 if (rdev->raid_disk < 0)
7140 continue;
7141 diff = (rdev->new_data_offset - rdev->data_offset);
7142 if (first) {
7143 min_offset_diff = diff;
7144 first = 0;
7145 } else if (mddev->reshape_backwards &&
7146 diff < min_offset_diff)
7147 min_offset_diff = diff;
7148 else if (!mddev->reshape_backwards &&
7149 diff > min_offset_diff)
7150 min_offset_diff = diff;
7151 }
7152
7153 if (mddev->reshape_position != MaxSector) {
7154 /* Check that we can continue the reshape.
7155 * Difficulties arise if the stripe we would write to
7156 * next is at or after the stripe we would read from next.
7157 * For a reshape that changes the number of devices, this
7158 * is only possible for a very short time, and mdadm makes
7159 * sure that time appears to have past before assembling
7160 * the array. So we fail if that time hasn't passed.
7161 * For a reshape that keeps the number of devices the same
7162 * mdadm must be monitoring the reshape can keeping the
7163 * critical areas read-only and backed up. It will start
7164 * the array in read-only mode, so we check for that.
7165 */
7166 sector_t here_new, here_old;
7167 int old_disks;
7168 int max_degraded = (mddev->level == 6 ? 2 : 1);
7169 int chunk_sectors;
7170 int new_data_disks;
7171
7172 if (journal_dev) {
7173 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7174 mdname(mddev));
7175 return -EINVAL;
7176 }
7177
7178 if (mddev->new_level != mddev->level) {
7179 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7180 mdname(mddev));
7181 return -EINVAL;
7182 }
7183 old_disks = mddev->raid_disks - mddev->delta_disks;
7184 /* reshape_position must be on a new-stripe boundary, and one
7185 * further up in new geometry must map after here in old
7186 * geometry.
7187 * If the chunk sizes are different, then as we perform reshape
7188 * in units of the largest of the two, reshape_position needs
7189 * be a multiple of the largest chunk size times new data disks.
7190 */
7191 here_new = mddev->reshape_position;
7192 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7193 new_data_disks = mddev->raid_disks - max_degraded;
7194 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7195 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7196 mdname(mddev));
7197 return -EINVAL;
7198 }
7199 reshape_offset = here_new * chunk_sectors;
7200 /* here_new is the stripe we will write to */
7201 here_old = mddev->reshape_position;
7202 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7203 /* here_old is the first stripe that we might need to read
7204 * from */
7205 if (mddev->delta_disks == 0) {
7206 /* We cannot be sure it is safe to start an in-place
7207 * reshape. It is only safe if user-space is monitoring
7208 * and taking constant backups.
7209 * mdadm always starts a situation like this in
7210 * readonly mode so it can take control before
7211 * allowing any writes. So just check for that.
7212 */
7213 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7214 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7215 /* not really in-place - so OK */;
7216 else if (mddev->ro == 0) {
7217 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7218 mdname(mddev));
7219 return -EINVAL;
7220 }
7221 } else if (mddev->reshape_backwards
7222 ? (here_new * chunk_sectors + min_offset_diff <=
7223 here_old * chunk_sectors)
7224 : (here_new * chunk_sectors >=
7225 here_old * chunk_sectors + (-min_offset_diff))) {
7226 /* Reading from the same stripe as writing to - bad */
7227 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7228 mdname(mddev));
7229 return -EINVAL;
7230 }
7231 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7232 /* OK, we should be able to continue; */
7233 } else {
7234 BUG_ON(mddev->level != mddev->new_level);
7235 BUG_ON(mddev->layout != mddev->new_layout);
7236 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7237 BUG_ON(mddev->delta_disks != 0);
7238 }
7239
7240 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7241 test_bit(MD_HAS_PPL, &mddev->flags)) {
7242 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7243 mdname(mddev));
7244 clear_bit(MD_HAS_PPL, &mddev->flags);
7245 }
7246
7247 if (mddev->private == NULL)
7248 conf = setup_conf(mddev);
7249 else
7250 conf = mddev->private;
7251
7252 if (IS_ERR(conf))
7253 return PTR_ERR(conf);
7254
7255 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7256 if (!journal_dev) {
7257 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7258 mdname(mddev));
7259 mddev->ro = 1;
7260 set_disk_ro(mddev->gendisk, 1);
7261 } else if (mddev->recovery_cp == MaxSector)
7262 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7263 }
7264
7265 conf->min_offset_diff = min_offset_diff;
7266 mddev->thread = conf->thread;
7267 conf->thread = NULL;
7268 mddev->private = conf;
7269
7270 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7271 i++) {
7272 rdev = conf->disks[i].rdev;
7273 if (!rdev && conf->disks[i].replacement) {
7274 /* The replacement is all we have yet */
7275 rdev = conf->disks[i].replacement;
7276 conf->disks[i].replacement = NULL;
7277 clear_bit(Replacement, &rdev->flags);
7278 conf->disks[i].rdev = rdev;
7279 }
7280 if (!rdev)
7281 continue;
7282 if (conf->disks[i].replacement &&
7283 conf->reshape_progress != MaxSector) {
7284 /* replacements and reshape simply do not mix. */
7285 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7286 goto abort;
7287 }
7288 if (test_bit(In_sync, &rdev->flags)) {
7289 working_disks++;
7290 continue;
7291 }
7292 /* This disc is not fully in-sync. However if it
7293 * just stored parity (beyond the recovery_offset),
7294 * when we don't need to be concerned about the
7295 * array being dirty.
7296 * When reshape goes 'backwards', we never have
7297 * partially completed devices, so we only need
7298 * to worry about reshape going forwards.
7299 */
7300 /* Hack because v0.91 doesn't store recovery_offset properly. */
7301 if (mddev->major_version == 0 &&
7302 mddev->minor_version > 90)
7303 rdev->recovery_offset = reshape_offset;
7304
7305 if (rdev->recovery_offset < reshape_offset) {
7306 /* We need to check old and new layout */
7307 if (!only_parity(rdev->raid_disk,
7308 conf->algorithm,
7309 conf->raid_disks,
7310 conf->max_degraded))
7311 continue;
7312 }
7313 if (!only_parity(rdev->raid_disk,
7314 conf->prev_algo,
7315 conf->previous_raid_disks,
7316 conf->max_degraded))
7317 continue;
7318 dirty_parity_disks++;
7319 }
7320
7321 /*
7322 * 0 for a fully functional array, 1 or 2 for a degraded array.
7323 */
7324 mddev->degraded = raid5_calc_degraded(conf);
7325
7326 if (has_failed(conf)) {
7327 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7328 mdname(mddev), mddev->degraded, conf->raid_disks);
7329 goto abort;
7330 }
7331
7332 /* device size must be a multiple of chunk size */
7333 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7334 mddev->resync_max_sectors = mddev->dev_sectors;
7335
7336 if (mddev->degraded > dirty_parity_disks &&
7337 mddev->recovery_cp != MaxSector) {
7338 if (test_bit(MD_HAS_PPL, &mddev->flags))
7339 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7340 mdname(mddev));
7341 else if (mddev->ok_start_degraded)
7342 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7343 mdname(mddev));
7344 else {
7345 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7346 mdname(mddev));
7347 goto abort;
7348 }
7349 }
7350
7351 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7352 mdname(mddev), conf->level,
7353 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7354 mddev->new_layout);
7355
7356 print_raid5_conf(conf);
7357
7358 if (conf->reshape_progress != MaxSector) {
7359 conf->reshape_safe = conf->reshape_progress;
7360 atomic_set(&conf->reshape_stripes, 0);
7361 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7362 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7363 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7364 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7365 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7366 "reshape");
7367 }
7368
7369 /* Ok, everything is just fine now */
7370 if (mddev->to_remove == &raid5_attrs_group)
7371 mddev->to_remove = NULL;
7372 else if (mddev->kobj.sd &&
7373 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7374 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7375 mdname(mddev));
7376 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7377
7378 if (mddev->queue) {
7379 int chunk_size;
7380 /* read-ahead size must cover two whole stripes, which
7381 * is 2 * (datadisks) * chunksize where 'n' is the
7382 * number of raid devices
7383 */
7384 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7385 int stripe = data_disks *
7386 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7387 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7388 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7389
7390 chunk_size = mddev->chunk_sectors << 9;
7391 blk_queue_io_min(mddev->queue, chunk_size);
7392 blk_queue_io_opt(mddev->queue, chunk_size *
7393 (conf->raid_disks - conf->max_degraded));
7394 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7395 /*
7396 * We can only discard a whole stripe. It doesn't make sense to
7397 * discard data disk but write parity disk
7398 */
7399 stripe = stripe * PAGE_SIZE;
7400 /* Round up to power of 2, as discard handling
7401 * currently assumes that */
7402 while ((stripe-1) & stripe)
7403 stripe = (stripe | (stripe-1)) + 1;
7404 mddev->queue->limits.discard_alignment = stripe;
7405 mddev->queue->limits.discard_granularity = stripe;
7406
7407 blk_queue_max_write_same_sectors(mddev->queue, 0);
7408 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7409
7410 rdev_for_each(rdev, mddev) {
7411 disk_stack_limits(mddev->gendisk, rdev->bdev,
7412 rdev->data_offset << 9);
7413 disk_stack_limits(mddev->gendisk, rdev->bdev,
7414 rdev->new_data_offset << 9);
7415 }
7416
7417 /*
7418 * zeroing is required, otherwise data
7419 * could be lost. Consider a scenario: discard a stripe
7420 * (the stripe could be inconsistent if
7421 * discard_zeroes_data is 0); write one disk of the
7422 * stripe (the stripe could be inconsistent again
7423 * depending on which disks are used to calculate
7424 * parity); the disk is broken; The stripe data of this
7425 * disk is lost.
7426 *
7427 * We only allow DISCARD if the sysadmin has confirmed that
7428 * only safe devices are in use by setting a module parameter.
7429 * A better idea might be to turn DISCARD into WRITE_ZEROES
7430 * requests, as that is required to be safe.
7431 */
7432 if (devices_handle_discard_safely &&
7433 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7434 mddev->queue->limits.discard_granularity >= stripe)
7435 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7436 mddev->queue);
7437 else
7438 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7439 mddev->queue);
7440
7441 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7442 }
7443
7444 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7445 goto abort;
7446
7447 return 0;
7448 abort:
7449 md_unregister_thread(&mddev->thread);
7450 print_raid5_conf(conf);
7451 free_conf(conf);
7452 mddev->private = NULL;
7453 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7454 return -EIO;
7455 }
7456
7457 static void raid5_free(struct mddev *mddev, void *priv)
7458 {
7459 struct r5conf *conf = priv;
7460
7461 free_conf(conf);
7462 mddev->to_remove = &raid5_attrs_group;
7463 }
7464
7465 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7466 {
7467 struct r5conf *conf = mddev->private;
7468 int i;
7469
7470 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7471 conf->chunk_sectors / 2, mddev->layout);
7472 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7473 rcu_read_lock();
7474 for (i = 0; i < conf->raid_disks; i++) {
7475 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7476 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7477 }
7478 rcu_read_unlock();
7479 seq_printf (seq, "]");
7480 }
7481
7482 static void print_raid5_conf (struct r5conf *conf)
7483 {
7484 int i;
7485 struct disk_info *tmp;
7486
7487 pr_debug("RAID conf printout:\n");
7488 if (!conf) {
7489 pr_debug("(conf==NULL)\n");
7490 return;
7491 }
7492 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7493 conf->raid_disks,
7494 conf->raid_disks - conf->mddev->degraded);
7495
7496 for (i = 0; i < conf->raid_disks; i++) {
7497 char b[BDEVNAME_SIZE];
7498 tmp = conf->disks + i;
7499 if (tmp->rdev)
7500 pr_debug(" disk %d, o:%d, dev:%s\n",
7501 i, !test_bit(Faulty, &tmp->rdev->flags),
7502 bdevname(tmp->rdev->bdev, b));
7503 }
7504 }
7505
7506 static int raid5_spare_active(struct mddev *mddev)
7507 {
7508 int i;
7509 struct r5conf *conf = mddev->private;
7510 struct disk_info *tmp;
7511 int count = 0;
7512 unsigned long flags;
7513
7514 for (i = 0; i < conf->raid_disks; i++) {
7515 tmp = conf->disks + i;
7516 if (tmp->replacement
7517 && tmp->replacement->recovery_offset == MaxSector
7518 && !test_bit(Faulty, &tmp->replacement->flags)
7519 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7520 /* Replacement has just become active. */
7521 if (!tmp->rdev
7522 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7523 count++;
7524 if (tmp->rdev) {
7525 /* Replaced device not technically faulty,
7526 * but we need to be sure it gets removed
7527 * and never re-added.
7528 */
7529 set_bit(Faulty, &tmp->rdev->flags);
7530 sysfs_notify_dirent_safe(
7531 tmp->rdev->sysfs_state);
7532 }
7533 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7534 } else if (tmp->rdev
7535 && tmp->rdev->recovery_offset == MaxSector
7536 && !test_bit(Faulty, &tmp->rdev->flags)
7537 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7538 count++;
7539 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7540 }
7541 }
7542 spin_lock_irqsave(&conf->device_lock, flags);
7543 mddev->degraded = raid5_calc_degraded(conf);
7544 spin_unlock_irqrestore(&conf->device_lock, flags);
7545 print_raid5_conf(conf);
7546 return count;
7547 }
7548
7549 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7550 {
7551 struct r5conf *conf = mddev->private;
7552 int err = 0;
7553 int number = rdev->raid_disk;
7554 struct md_rdev **rdevp;
7555 struct disk_info *p = conf->disks + number;
7556
7557 print_raid5_conf(conf);
7558 if (test_bit(Journal, &rdev->flags) && conf->log) {
7559 /*
7560 * we can't wait pending write here, as this is called in
7561 * raid5d, wait will deadlock.
7562 * neilb: there is no locking about new writes here,
7563 * so this cannot be safe.
7564 */
7565 if (atomic_read(&conf->active_stripes) ||
7566 atomic_read(&conf->r5c_cached_full_stripes) ||
7567 atomic_read(&conf->r5c_cached_partial_stripes)) {
7568 return -EBUSY;
7569 }
7570 log_exit(conf);
7571 return 0;
7572 }
7573 if (rdev == p->rdev)
7574 rdevp = &p->rdev;
7575 else if (rdev == p->replacement)
7576 rdevp = &p->replacement;
7577 else
7578 return 0;
7579
7580 if (number >= conf->raid_disks &&
7581 conf->reshape_progress == MaxSector)
7582 clear_bit(In_sync, &rdev->flags);
7583
7584 if (test_bit(In_sync, &rdev->flags) ||
7585 atomic_read(&rdev->nr_pending)) {
7586 err = -EBUSY;
7587 goto abort;
7588 }
7589 /* Only remove non-faulty devices if recovery
7590 * isn't possible.
7591 */
7592 if (!test_bit(Faulty, &rdev->flags) &&
7593 mddev->recovery_disabled != conf->recovery_disabled &&
7594 !has_failed(conf) &&
7595 (!p->replacement || p->replacement == rdev) &&
7596 number < conf->raid_disks) {
7597 err = -EBUSY;
7598 goto abort;
7599 }
7600 *rdevp = NULL;
7601 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7602 synchronize_rcu();
7603 if (atomic_read(&rdev->nr_pending)) {
7604 /* lost the race, try later */
7605 err = -EBUSY;
7606 *rdevp = rdev;
7607 }
7608 }
7609 if (!err) {
7610 err = log_modify(conf, rdev, false);
7611 if (err)
7612 goto abort;
7613 }
7614 if (p->replacement) {
7615 /* We must have just cleared 'rdev' */
7616 p->rdev = p->replacement;
7617 clear_bit(Replacement, &p->replacement->flags);
7618 smp_mb(); /* Make sure other CPUs may see both as identical
7619 * but will never see neither - if they are careful
7620 */
7621 p->replacement = NULL;
7622
7623 if (!err)
7624 err = log_modify(conf, p->rdev, true);
7625 }
7626
7627 clear_bit(WantReplacement, &rdev->flags);
7628 abort:
7629
7630 print_raid5_conf(conf);
7631 return err;
7632 }
7633
7634 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7635 {
7636 struct r5conf *conf = mddev->private;
7637 int err = -EEXIST;
7638 int disk;
7639 struct disk_info *p;
7640 int first = 0;
7641 int last = conf->raid_disks - 1;
7642
7643 if (test_bit(Journal, &rdev->flags)) {
7644 if (conf->log)
7645 return -EBUSY;
7646
7647 rdev->raid_disk = 0;
7648 /*
7649 * The array is in readonly mode if journal is missing, so no
7650 * write requests running. We should be safe
7651 */
7652 log_init(conf, rdev, false);
7653 return 0;
7654 }
7655 if (mddev->recovery_disabled == conf->recovery_disabled)
7656 return -EBUSY;
7657
7658 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7659 /* no point adding a device */
7660 return -EINVAL;
7661
7662 if (rdev->raid_disk >= 0)
7663 first = last = rdev->raid_disk;
7664
7665 /*
7666 * find the disk ... but prefer rdev->saved_raid_disk
7667 * if possible.
7668 */
7669 if (rdev->saved_raid_disk >= 0 &&
7670 rdev->saved_raid_disk >= first &&
7671 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7672 first = rdev->saved_raid_disk;
7673
7674 for (disk = first; disk <= last; disk++) {
7675 p = conf->disks + disk;
7676 if (p->rdev == NULL) {
7677 clear_bit(In_sync, &rdev->flags);
7678 rdev->raid_disk = disk;
7679 if (rdev->saved_raid_disk != disk)
7680 conf->fullsync = 1;
7681 rcu_assign_pointer(p->rdev, rdev);
7682
7683 err = log_modify(conf, rdev, true);
7684
7685 goto out;
7686 }
7687 }
7688 for (disk = first; disk <= last; disk++) {
7689 p = conf->disks + disk;
7690 if (test_bit(WantReplacement, &p->rdev->flags) &&
7691 p->replacement == NULL) {
7692 clear_bit(In_sync, &rdev->flags);
7693 set_bit(Replacement, &rdev->flags);
7694 rdev->raid_disk = disk;
7695 err = 0;
7696 conf->fullsync = 1;
7697 rcu_assign_pointer(p->replacement, rdev);
7698 break;
7699 }
7700 }
7701 out:
7702 print_raid5_conf(conf);
7703 return err;
7704 }
7705
7706 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7707 {
7708 /* no resync is happening, and there is enough space
7709 * on all devices, so we can resize.
7710 * We need to make sure resync covers any new space.
7711 * If the array is shrinking we should possibly wait until
7712 * any io in the removed space completes, but it hardly seems
7713 * worth it.
7714 */
7715 sector_t newsize;
7716 struct r5conf *conf = mddev->private;
7717
7718 if (conf->log || raid5_has_ppl(conf))
7719 return -EINVAL;
7720 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7721 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7722 if (mddev->external_size &&
7723 mddev->array_sectors > newsize)
7724 return -EINVAL;
7725 if (mddev->bitmap) {
7726 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7727 if (ret)
7728 return ret;
7729 }
7730 md_set_array_sectors(mddev, newsize);
7731 if (sectors > mddev->dev_sectors &&
7732 mddev->recovery_cp > mddev->dev_sectors) {
7733 mddev->recovery_cp = mddev->dev_sectors;
7734 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7735 }
7736 mddev->dev_sectors = sectors;
7737 mddev->resync_max_sectors = sectors;
7738 return 0;
7739 }
7740
7741 static int check_stripe_cache(struct mddev *mddev)
7742 {
7743 /* Can only proceed if there are plenty of stripe_heads.
7744 * We need a minimum of one full stripe,, and for sensible progress
7745 * it is best to have about 4 times that.
7746 * If we require 4 times, then the default 256 4K stripe_heads will
7747 * allow for chunk sizes up to 256K, which is probably OK.
7748 * If the chunk size is greater, user-space should request more
7749 * stripe_heads first.
7750 */
7751 struct r5conf *conf = mddev->private;
7752 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7753 > conf->min_nr_stripes ||
7754 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7755 > conf->min_nr_stripes) {
7756 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7757 mdname(mddev),
7758 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7759 / STRIPE_SIZE)*4);
7760 return 0;
7761 }
7762 return 1;
7763 }
7764
7765 static int check_reshape(struct mddev *mddev)
7766 {
7767 struct r5conf *conf = mddev->private;
7768
7769 if (conf->log || raid5_has_ppl(conf))
7770 return -EINVAL;
7771 if (mddev->delta_disks == 0 &&
7772 mddev->new_layout == mddev->layout &&
7773 mddev->new_chunk_sectors == mddev->chunk_sectors)
7774 return 0; /* nothing to do */
7775 if (has_failed(conf))
7776 return -EINVAL;
7777 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7778 /* We might be able to shrink, but the devices must
7779 * be made bigger first.
7780 * For raid6, 4 is the minimum size.
7781 * Otherwise 2 is the minimum
7782 */
7783 int min = 2;
7784 if (mddev->level == 6)
7785 min = 4;
7786 if (mddev->raid_disks + mddev->delta_disks < min)
7787 return -EINVAL;
7788 }
7789
7790 if (!check_stripe_cache(mddev))
7791 return -ENOSPC;
7792
7793 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7794 mddev->delta_disks > 0)
7795 if (resize_chunks(conf,
7796 conf->previous_raid_disks
7797 + max(0, mddev->delta_disks),
7798 max(mddev->new_chunk_sectors,
7799 mddev->chunk_sectors)
7800 ) < 0)
7801 return -ENOMEM;
7802
7803 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7804 return 0; /* never bother to shrink */
7805 return resize_stripes(conf, (conf->previous_raid_disks
7806 + mddev->delta_disks));
7807 }
7808
7809 static int raid5_start_reshape(struct mddev *mddev)
7810 {
7811 struct r5conf *conf = mddev->private;
7812 struct md_rdev *rdev;
7813 int spares = 0;
7814 unsigned long flags;
7815
7816 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7817 return -EBUSY;
7818
7819 if (!check_stripe_cache(mddev))
7820 return -ENOSPC;
7821
7822 if (has_failed(conf))
7823 return -EINVAL;
7824
7825 rdev_for_each(rdev, mddev) {
7826 if (!test_bit(In_sync, &rdev->flags)
7827 && !test_bit(Faulty, &rdev->flags))
7828 spares++;
7829 }
7830
7831 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7832 /* Not enough devices even to make a degraded array
7833 * of that size
7834 */
7835 return -EINVAL;
7836
7837 /* Refuse to reduce size of the array. Any reductions in
7838 * array size must be through explicit setting of array_size
7839 * attribute.
7840 */
7841 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7842 < mddev->array_sectors) {
7843 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7844 mdname(mddev));
7845 return -EINVAL;
7846 }
7847
7848 atomic_set(&conf->reshape_stripes, 0);
7849 spin_lock_irq(&conf->device_lock);
7850 write_seqcount_begin(&conf->gen_lock);
7851 conf->previous_raid_disks = conf->raid_disks;
7852 conf->raid_disks += mddev->delta_disks;
7853 conf->prev_chunk_sectors = conf->chunk_sectors;
7854 conf->chunk_sectors = mddev->new_chunk_sectors;
7855 conf->prev_algo = conf->algorithm;
7856 conf->algorithm = mddev->new_layout;
7857 conf->generation++;
7858 /* Code that selects data_offset needs to see the generation update
7859 * if reshape_progress has been set - so a memory barrier needed.
7860 */
7861 smp_mb();
7862 if (mddev->reshape_backwards)
7863 conf->reshape_progress = raid5_size(mddev, 0, 0);
7864 else
7865 conf->reshape_progress = 0;
7866 conf->reshape_safe = conf->reshape_progress;
7867 write_seqcount_end(&conf->gen_lock);
7868 spin_unlock_irq(&conf->device_lock);
7869
7870 /* Now make sure any requests that proceeded on the assumption
7871 * the reshape wasn't running - like Discard or Read - have
7872 * completed.
7873 */
7874 mddev_suspend(mddev);
7875 mddev_resume(mddev);
7876
7877 /* Add some new drives, as many as will fit.
7878 * We know there are enough to make the newly sized array work.
7879 * Don't add devices if we are reducing the number of
7880 * devices in the array. This is because it is not possible
7881 * to correctly record the "partially reconstructed" state of
7882 * such devices during the reshape and confusion could result.
7883 */
7884 if (mddev->delta_disks >= 0) {
7885 rdev_for_each(rdev, mddev)
7886 if (rdev->raid_disk < 0 &&
7887 !test_bit(Faulty, &rdev->flags)) {
7888 if (raid5_add_disk(mddev, rdev) == 0) {
7889 if (rdev->raid_disk
7890 >= conf->previous_raid_disks)
7891 set_bit(In_sync, &rdev->flags);
7892 else
7893 rdev->recovery_offset = 0;
7894
7895 if (sysfs_link_rdev(mddev, rdev))
7896 /* Failure here is OK */;
7897 }
7898 } else if (rdev->raid_disk >= conf->previous_raid_disks
7899 && !test_bit(Faulty, &rdev->flags)) {
7900 /* This is a spare that was manually added */
7901 set_bit(In_sync, &rdev->flags);
7902 }
7903
7904 /* When a reshape changes the number of devices,
7905 * ->degraded is measured against the larger of the
7906 * pre and post number of devices.
7907 */
7908 spin_lock_irqsave(&conf->device_lock, flags);
7909 mddev->degraded = raid5_calc_degraded(conf);
7910 spin_unlock_irqrestore(&conf->device_lock, flags);
7911 }
7912 mddev->raid_disks = conf->raid_disks;
7913 mddev->reshape_position = conf->reshape_progress;
7914 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7915
7916 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7917 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7918 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7919 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7920 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7921 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7922 "reshape");
7923 if (!mddev->sync_thread) {
7924 mddev->recovery = 0;
7925 spin_lock_irq(&conf->device_lock);
7926 write_seqcount_begin(&conf->gen_lock);
7927 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7928 mddev->new_chunk_sectors =
7929 conf->chunk_sectors = conf->prev_chunk_sectors;
7930 mddev->new_layout = conf->algorithm = conf->prev_algo;
7931 rdev_for_each(rdev, mddev)
7932 rdev->new_data_offset = rdev->data_offset;
7933 smp_wmb();
7934 conf->generation --;
7935 conf->reshape_progress = MaxSector;
7936 mddev->reshape_position = MaxSector;
7937 write_seqcount_end(&conf->gen_lock);
7938 spin_unlock_irq(&conf->device_lock);
7939 return -EAGAIN;
7940 }
7941 conf->reshape_checkpoint = jiffies;
7942 md_wakeup_thread(mddev->sync_thread);
7943 md_new_event(mddev);
7944 return 0;
7945 }
7946
7947 /* This is called from the reshape thread and should make any
7948 * changes needed in 'conf'
7949 */
7950 static void end_reshape(struct r5conf *conf)
7951 {
7952
7953 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7954 struct md_rdev *rdev;
7955
7956 spin_lock_irq(&conf->device_lock);
7957 conf->previous_raid_disks = conf->raid_disks;
7958 rdev_for_each(rdev, conf->mddev)
7959 rdev->data_offset = rdev->new_data_offset;
7960 smp_wmb();
7961 conf->reshape_progress = MaxSector;
7962 conf->mddev->reshape_position = MaxSector;
7963 spin_unlock_irq(&conf->device_lock);
7964 wake_up(&conf->wait_for_overlap);
7965
7966 /* read-ahead size must cover two whole stripes, which is
7967 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7968 */
7969 if (conf->mddev->queue) {
7970 int data_disks = conf->raid_disks - conf->max_degraded;
7971 int stripe = data_disks * ((conf->chunk_sectors << 9)
7972 / PAGE_SIZE);
7973 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7974 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7975 }
7976 }
7977 }
7978
7979 /* This is called from the raid5d thread with mddev_lock held.
7980 * It makes config changes to the device.
7981 */
7982 static void raid5_finish_reshape(struct mddev *mddev)
7983 {
7984 struct r5conf *conf = mddev->private;
7985
7986 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7987
7988 if (mddev->delta_disks > 0) {
7989 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7990 if (mddev->queue) {
7991 set_capacity(mddev->gendisk, mddev->array_sectors);
7992 revalidate_disk(mddev->gendisk);
7993 }
7994 } else {
7995 int d;
7996 spin_lock_irq(&conf->device_lock);
7997 mddev->degraded = raid5_calc_degraded(conf);
7998 spin_unlock_irq(&conf->device_lock);
7999 for (d = conf->raid_disks ;
8000 d < conf->raid_disks - mddev->delta_disks;
8001 d++) {
8002 struct md_rdev *rdev = conf->disks[d].rdev;
8003 if (rdev)
8004 clear_bit(In_sync, &rdev->flags);
8005 rdev = conf->disks[d].replacement;
8006 if (rdev)
8007 clear_bit(In_sync, &rdev->flags);
8008 }
8009 }
8010 mddev->layout = conf->algorithm;
8011 mddev->chunk_sectors = conf->chunk_sectors;
8012 mddev->reshape_position = MaxSector;
8013 mddev->delta_disks = 0;
8014 mddev->reshape_backwards = 0;
8015 }
8016 }
8017
8018 static void raid5_quiesce(struct mddev *mddev, int state)
8019 {
8020 struct r5conf *conf = mddev->private;
8021
8022 switch(state) {
8023 case 2: /* resume for a suspend */
8024 wake_up(&conf->wait_for_overlap);
8025 break;
8026
8027 case 1: /* stop all writes */
8028 lock_all_device_hash_locks_irq(conf);
8029 /* '2' tells resync/reshape to pause so that all
8030 * active stripes can drain
8031 */
8032 r5c_flush_cache(conf, INT_MAX);
8033 conf->quiesce = 2;
8034 wait_event_cmd(conf->wait_for_quiescent,
8035 atomic_read(&conf->active_stripes) == 0 &&
8036 atomic_read(&conf->active_aligned_reads) == 0,
8037 unlock_all_device_hash_locks_irq(conf),
8038 lock_all_device_hash_locks_irq(conf));
8039 conf->quiesce = 1;
8040 unlock_all_device_hash_locks_irq(conf);
8041 /* allow reshape to continue */
8042 wake_up(&conf->wait_for_overlap);
8043 break;
8044
8045 case 0: /* re-enable writes */
8046 lock_all_device_hash_locks_irq(conf);
8047 conf->quiesce = 0;
8048 wake_up(&conf->wait_for_quiescent);
8049 wake_up(&conf->wait_for_overlap);
8050 unlock_all_device_hash_locks_irq(conf);
8051 break;
8052 }
8053 r5l_quiesce(conf->log, state);
8054 }
8055
8056 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8057 {
8058 struct r0conf *raid0_conf = mddev->private;
8059 sector_t sectors;
8060
8061 /* for raid0 takeover only one zone is supported */
8062 if (raid0_conf->nr_strip_zones > 1) {
8063 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8064 mdname(mddev));
8065 return ERR_PTR(-EINVAL);
8066 }
8067
8068 sectors = raid0_conf->strip_zone[0].zone_end;
8069 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8070 mddev->dev_sectors = sectors;
8071 mddev->new_level = level;
8072 mddev->new_layout = ALGORITHM_PARITY_N;
8073 mddev->new_chunk_sectors = mddev->chunk_sectors;
8074 mddev->raid_disks += 1;
8075 mddev->delta_disks = 1;
8076 /* make sure it will be not marked as dirty */
8077 mddev->recovery_cp = MaxSector;
8078
8079 return setup_conf(mddev);
8080 }
8081
8082 static void *raid5_takeover_raid1(struct mddev *mddev)
8083 {
8084 int chunksect;
8085 void *ret;
8086
8087 if (mddev->raid_disks != 2 ||
8088 mddev->degraded > 1)
8089 return ERR_PTR(-EINVAL);
8090
8091 /* Should check if there are write-behind devices? */
8092
8093 chunksect = 64*2; /* 64K by default */
8094
8095 /* The array must be an exact multiple of chunksize */
8096 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8097 chunksect >>= 1;
8098
8099 if ((chunksect<<9) < STRIPE_SIZE)
8100 /* array size does not allow a suitable chunk size */
8101 return ERR_PTR(-EINVAL);
8102
8103 mddev->new_level = 5;
8104 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8105 mddev->new_chunk_sectors = chunksect;
8106
8107 ret = setup_conf(mddev);
8108 if (!IS_ERR(ret))
8109 mddev_clear_unsupported_flags(mddev,
8110 UNSUPPORTED_MDDEV_FLAGS);
8111 return ret;
8112 }
8113
8114 static void *raid5_takeover_raid6(struct mddev *mddev)
8115 {
8116 int new_layout;
8117
8118 switch (mddev->layout) {
8119 case ALGORITHM_LEFT_ASYMMETRIC_6:
8120 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8121 break;
8122 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8123 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8124 break;
8125 case ALGORITHM_LEFT_SYMMETRIC_6:
8126 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8127 break;
8128 case ALGORITHM_RIGHT_SYMMETRIC_6:
8129 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8130 break;
8131 case ALGORITHM_PARITY_0_6:
8132 new_layout = ALGORITHM_PARITY_0;
8133 break;
8134 case ALGORITHM_PARITY_N:
8135 new_layout = ALGORITHM_PARITY_N;
8136 break;
8137 default:
8138 return ERR_PTR(-EINVAL);
8139 }
8140 mddev->new_level = 5;
8141 mddev->new_layout = new_layout;
8142 mddev->delta_disks = -1;
8143 mddev->raid_disks -= 1;
8144 return setup_conf(mddev);
8145 }
8146
8147 static int raid5_check_reshape(struct mddev *mddev)
8148 {
8149 /* For a 2-drive array, the layout and chunk size can be changed
8150 * immediately as not restriping is needed.
8151 * For larger arrays we record the new value - after validation
8152 * to be used by a reshape pass.
8153 */
8154 struct r5conf *conf = mddev->private;
8155 int new_chunk = mddev->new_chunk_sectors;
8156
8157 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8158 return -EINVAL;
8159 if (new_chunk > 0) {
8160 if (!is_power_of_2(new_chunk))
8161 return -EINVAL;
8162 if (new_chunk < (PAGE_SIZE>>9))
8163 return -EINVAL;
8164 if (mddev->array_sectors & (new_chunk-1))
8165 /* not factor of array size */
8166 return -EINVAL;
8167 }
8168
8169 /* They look valid */
8170
8171 if (mddev->raid_disks == 2) {
8172 /* can make the change immediately */
8173 if (mddev->new_layout >= 0) {
8174 conf->algorithm = mddev->new_layout;
8175 mddev->layout = mddev->new_layout;
8176 }
8177 if (new_chunk > 0) {
8178 conf->chunk_sectors = new_chunk ;
8179 mddev->chunk_sectors = new_chunk;
8180 }
8181 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8182 md_wakeup_thread(mddev->thread);
8183 }
8184 return check_reshape(mddev);
8185 }
8186
8187 static int raid6_check_reshape(struct mddev *mddev)
8188 {
8189 int new_chunk = mddev->new_chunk_sectors;
8190
8191 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8192 return -EINVAL;
8193 if (new_chunk > 0) {
8194 if (!is_power_of_2(new_chunk))
8195 return -EINVAL;
8196 if (new_chunk < (PAGE_SIZE >> 9))
8197 return -EINVAL;
8198 if (mddev->array_sectors & (new_chunk-1))
8199 /* not factor of array size */
8200 return -EINVAL;
8201 }
8202
8203 /* They look valid */
8204 return check_reshape(mddev);
8205 }
8206
8207 static void *raid5_takeover(struct mddev *mddev)
8208 {
8209 /* raid5 can take over:
8210 * raid0 - if there is only one strip zone - make it a raid4 layout
8211 * raid1 - if there are two drives. We need to know the chunk size
8212 * raid4 - trivial - just use a raid4 layout.
8213 * raid6 - Providing it is a *_6 layout
8214 */
8215 if (mddev->level == 0)
8216 return raid45_takeover_raid0(mddev, 5);
8217 if (mddev->level == 1)
8218 return raid5_takeover_raid1(mddev);
8219 if (mddev->level == 4) {
8220 mddev->new_layout = ALGORITHM_PARITY_N;
8221 mddev->new_level = 5;
8222 return setup_conf(mddev);
8223 }
8224 if (mddev->level == 6)
8225 return raid5_takeover_raid6(mddev);
8226
8227 return ERR_PTR(-EINVAL);
8228 }
8229
8230 static void *raid4_takeover(struct mddev *mddev)
8231 {
8232 /* raid4 can take over:
8233 * raid0 - if there is only one strip zone
8234 * raid5 - if layout is right
8235 */
8236 if (mddev->level == 0)
8237 return raid45_takeover_raid0(mddev, 4);
8238 if (mddev->level == 5 &&
8239 mddev->layout == ALGORITHM_PARITY_N) {
8240 mddev->new_layout = 0;
8241 mddev->new_level = 4;
8242 return setup_conf(mddev);
8243 }
8244 return ERR_PTR(-EINVAL);
8245 }
8246
8247 static struct md_personality raid5_personality;
8248
8249 static void *raid6_takeover(struct mddev *mddev)
8250 {
8251 /* Currently can only take over a raid5. We map the
8252 * personality to an equivalent raid6 personality
8253 * with the Q block at the end.
8254 */
8255 int new_layout;
8256
8257 if (mddev->pers != &raid5_personality)
8258 return ERR_PTR(-EINVAL);
8259 if (mddev->degraded > 1)
8260 return ERR_PTR(-EINVAL);
8261 if (mddev->raid_disks > 253)
8262 return ERR_PTR(-EINVAL);
8263 if (mddev->raid_disks < 3)
8264 return ERR_PTR(-EINVAL);
8265
8266 switch (mddev->layout) {
8267 case ALGORITHM_LEFT_ASYMMETRIC:
8268 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8269 break;
8270 case ALGORITHM_RIGHT_ASYMMETRIC:
8271 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8272 break;
8273 case ALGORITHM_LEFT_SYMMETRIC:
8274 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8275 break;
8276 case ALGORITHM_RIGHT_SYMMETRIC:
8277 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8278 break;
8279 case ALGORITHM_PARITY_0:
8280 new_layout = ALGORITHM_PARITY_0_6;
8281 break;
8282 case ALGORITHM_PARITY_N:
8283 new_layout = ALGORITHM_PARITY_N;
8284 break;
8285 default:
8286 return ERR_PTR(-EINVAL);
8287 }
8288 mddev->new_level = 6;
8289 mddev->new_layout = new_layout;
8290 mddev->delta_disks = 1;
8291 mddev->raid_disks += 1;
8292 return setup_conf(mddev);
8293 }
8294
8295 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8296 {
8297 struct r5conf *conf;
8298 int err;
8299
8300 err = mddev_lock(mddev);
8301 if (err)
8302 return err;
8303 conf = mddev->private;
8304 if (!conf) {
8305 mddev_unlock(mddev);
8306 return -ENODEV;
8307 }
8308
8309 if (strncmp(buf, "ppl", 3) == 0) {
8310 /* ppl only works with RAID 5 */
8311 if (!raid5_has_ppl(conf) && conf->level == 5) {
8312 err = log_init(conf, NULL, true);
8313 if (!err) {
8314 err = resize_stripes(conf, conf->pool_size);
8315 if (err)
8316 log_exit(conf);
8317 }
8318 } else
8319 err = -EINVAL;
8320 } else if (strncmp(buf, "resync", 6) == 0) {
8321 if (raid5_has_ppl(conf)) {
8322 mddev_suspend(mddev);
8323 log_exit(conf);
8324 mddev_resume(mddev);
8325 err = resize_stripes(conf, conf->pool_size);
8326 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8327 r5l_log_disk_error(conf)) {
8328 bool journal_dev_exists = false;
8329 struct md_rdev *rdev;
8330
8331 rdev_for_each(rdev, mddev)
8332 if (test_bit(Journal, &rdev->flags)) {
8333 journal_dev_exists = true;
8334 break;
8335 }
8336
8337 if (!journal_dev_exists) {
8338 mddev_suspend(mddev);
8339 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8340 mddev_resume(mddev);
8341 } else /* need remove journal device first */
8342 err = -EBUSY;
8343 } else
8344 err = -EINVAL;
8345 } else {
8346 err = -EINVAL;
8347 }
8348
8349 if (!err)
8350 md_update_sb(mddev, 1);
8351
8352 mddev_unlock(mddev);
8353
8354 return err;
8355 }
8356
8357 static struct md_personality raid6_personality =
8358 {
8359 .name = "raid6",
8360 .level = 6,
8361 .owner = THIS_MODULE,
8362 .make_request = raid5_make_request,
8363 .run = raid5_run,
8364 .free = raid5_free,
8365 .status = raid5_status,
8366 .error_handler = raid5_error,
8367 .hot_add_disk = raid5_add_disk,
8368 .hot_remove_disk= raid5_remove_disk,
8369 .spare_active = raid5_spare_active,
8370 .sync_request = raid5_sync_request,
8371 .resize = raid5_resize,
8372 .size = raid5_size,
8373 .check_reshape = raid6_check_reshape,
8374 .start_reshape = raid5_start_reshape,
8375 .finish_reshape = raid5_finish_reshape,
8376 .quiesce = raid5_quiesce,
8377 .takeover = raid6_takeover,
8378 .congested = raid5_congested,
8379 .change_consistency_policy = raid5_change_consistency_policy,
8380 };
8381 static struct md_personality raid5_personality =
8382 {
8383 .name = "raid5",
8384 .level = 5,
8385 .owner = THIS_MODULE,
8386 .make_request = raid5_make_request,
8387 .run = raid5_run,
8388 .free = raid5_free,
8389 .status = raid5_status,
8390 .error_handler = raid5_error,
8391 .hot_add_disk = raid5_add_disk,
8392 .hot_remove_disk= raid5_remove_disk,
8393 .spare_active = raid5_spare_active,
8394 .sync_request = raid5_sync_request,
8395 .resize = raid5_resize,
8396 .size = raid5_size,
8397 .check_reshape = raid5_check_reshape,
8398 .start_reshape = raid5_start_reshape,
8399 .finish_reshape = raid5_finish_reshape,
8400 .quiesce = raid5_quiesce,
8401 .takeover = raid5_takeover,
8402 .congested = raid5_congested,
8403 .change_consistency_policy = raid5_change_consistency_policy,
8404 };
8405
8406 static struct md_personality raid4_personality =
8407 {
8408 .name = "raid4",
8409 .level = 4,
8410 .owner = THIS_MODULE,
8411 .make_request = raid5_make_request,
8412 .run = raid5_run,
8413 .free = raid5_free,
8414 .status = raid5_status,
8415 .error_handler = raid5_error,
8416 .hot_add_disk = raid5_add_disk,
8417 .hot_remove_disk= raid5_remove_disk,
8418 .spare_active = raid5_spare_active,
8419 .sync_request = raid5_sync_request,
8420 .resize = raid5_resize,
8421 .size = raid5_size,
8422 .check_reshape = raid5_check_reshape,
8423 .start_reshape = raid5_start_reshape,
8424 .finish_reshape = raid5_finish_reshape,
8425 .quiesce = raid5_quiesce,
8426 .takeover = raid4_takeover,
8427 .congested = raid5_congested,
8428 .change_consistency_policy = raid5_change_consistency_policy,
8429 };
8430
8431 static int __init raid5_init(void)
8432 {
8433 int ret;
8434
8435 raid5_wq = alloc_workqueue("raid5wq",
8436 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8437 if (!raid5_wq)
8438 return -ENOMEM;
8439
8440 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8441 "md/raid5:prepare",
8442 raid456_cpu_up_prepare,
8443 raid456_cpu_dead);
8444 if (ret) {
8445 destroy_workqueue(raid5_wq);
8446 return ret;
8447 }
8448 register_md_personality(&raid6_personality);
8449 register_md_personality(&raid5_personality);
8450 register_md_personality(&raid4_personality);
8451 return 0;
8452 }
8453
8454 static void raid5_exit(void)
8455 {
8456 unregister_md_personality(&raid6_personality);
8457 unregister_md_personality(&raid5_personality);
8458 unregister_md_personality(&raid4_personality);
8459 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8460 destroy_workqueue(raid5_wq);
8461 }
8462
8463 module_init(raid5_init);
8464 module_exit(raid5_exit);
8465 MODULE_LICENSE("GPL");
8466 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8467 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8468 MODULE_ALIAS("md-raid5");
8469 MODULE_ALIAS("md-raid4");
8470 MODULE_ALIAS("md-level-5");
8471 MODULE_ALIAS("md-level-4");
8472 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8473 MODULE_ALIAS("md-raid6");
8474 MODULE_ALIAS("md-level-6");
8475
8476 /* This used to be two separate modules, they were: */
8477 MODULE_ALIAS("raid5");
8478 MODULE_ALIAS("raid6");