]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid5.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <linux/sched/signal.h>
59
60 #include <trace/events/block.h>
61 #include <linux/list_sort.h>
62
63 #include "md.h"
64 #include "raid5.h"
65 #include "raid0.h"
66 #include "bitmap.h"
67 #include "raid5-log.h"
68
69 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
70
71 #define cpu_to_group(cpu) cpu_to_node(cpu)
72 #define ANY_GROUP NUMA_NO_NODE
73
74 static bool devices_handle_discard_safely = false;
75 module_param(devices_handle_discard_safely, bool, 0644);
76 MODULE_PARM_DESC(devices_handle_discard_safely,
77 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
78 static struct workqueue_struct *raid5_wq;
79
80 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
81 {
82 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83 return &conf->stripe_hashtbl[hash];
84 }
85
86 static inline int stripe_hash_locks_hash(sector_t sect)
87 {
88 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
89 }
90
91 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92 {
93 spin_lock_irq(conf->hash_locks + hash);
94 spin_lock(&conf->device_lock);
95 }
96
97 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99 spin_unlock(&conf->device_lock);
100 spin_unlock_irq(conf->hash_locks + hash);
101 }
102
103 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104 {
105 int i;
106 local_irq_disable();
107 spin_lock(conf->hash_locks);
108 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
109 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
110 spin_lock(&conf->device_lock);
111 }
112
113 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
114 {
115 int i;
116 spin_unlock(&conf->device_lock);
117 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
118 spin_unlock(conf->hash_locks + i - 1);
119 local_irq_enable();
120 }
121
122 /* Find first data disk in a raid6 stripe */
123 static inline int raid6_d0(struct stripe_head *sh)
124 {
125 if (sh->ddf_layout)
126 /* ddf always start from first device */
127 return 0;
128 /* md starts just after Q block */
129 if (sh->qd_idx == sh->disks - 1)
130 return 0;
131 else
132 return sh->qd_idx + 1;
133 }
134 static inline int raid6_next_disk(int disk, int raid_disks)
135 {
136 disk++;
137 return (disk < raid_disks) ? disk : 0;
138 }
139
140 /* When walking through the disks in a raid5, starting at raid6_d0,
141 * We need to map each disk to a 'slot', where the data disks are slot
142 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
143 * is raid_disks-1. This help does that mapping.
144 */
145 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
146 int *count, int syndrome_disks)
147 {
148 int slot = *count;
149
150 if (sh->ddf_layout)
151 (*count)++;
152 if (idx == sh->pd_idx)
153 return syndrome_disks;
154 if (idx == sh->qd_idx)
155 return syndrome_disks + 1;
156 if (!sh->ddf_layout)
157 (*count)++;
158 return slot;
159 }
160
161 static void print_raid5_conf (struct r5conf *conf);
162
163 static int stripe_operations_active(struct stripe_head *sh)
164 {
165 return sh->check_state || sh->reconstruct_state ||
166 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
167 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
168 }
169
170 static bool stripe_is_lowprio(struct stripe_head *sh)
171 {
172 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
173 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
174 !test_bit(STRIPE_R5C_CACHING, &sh->state);
175 }
176
177 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
178 {
179 struct r5conf *conf = sh->raid_conf;
180 struct r5worker_group *group;
181 int thread_cnt;
182 int i, cpu = sh->cpu;
183
184 if (!cpu_online(cpu)) {
185 cpu = cpumask_any(cpu_online_mask);
186 sh->cpu = cpu;
187 }
188
189 if (list_empty(&sh->lru)) {
190 struct r5worker_group *group;
191 group = conf->worker_groups + cpu_to_group(cpu);
192 if (stripe_is_lowprio(sh))
193 list_add_tail(&sh->lru, &group->loprio_list);
194 else
195 list_add_tail(&sh->lru, &group->handle_list);
196 group->stripes_cnt++;
197 sh->group = group;
198 }
199
200 if (conf->worker_cnt_per_group == 0) {
201 md_wakeup_thread(conf->mddev->thread);
202 return;
203 }
204
205 group = conf->worker_groups + cpu_to_group(sh->cpu);
206
207 group->workers[0].working = true;
208 /* at least one worker should run to avoid race */
209 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
210
211 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
212 /* wakeup more workers */
213 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
214 if (group->workers[i].working == false) {
215 group->workers[i].working = true;
216 queue_work_on(sh->cpu, raid5_wq,
217 &group->workers[i].work);
218 thread_cnt--;
219 }
220 }
221 }
222
223 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
224 struct list_head *temp_inactive_list)
225 {
226 int i;
227 int injournal = 0; /* number of date pages with R5_InJournal */
228
229 BUG_ON(!list_empty(&sh->lru));
230 BUG_ON(atomic_read(&conf->active_stripes)==0);
231
232 if (r5c_is_writeback(conf->log))
233 for (i = sh->disks; i--; )
234 if (test_bit(R5_InJournal, &sh->dev[i].flags))
235 injournal++;
236 /*
237 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
238 * data in journal, so they are not released to cached lists
239 */
240 if (conf->quiesce && r5c_is_writeback(conf->log) &&
241 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) {
242 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
243 r5c_make_stripe_write_out(sh);
244 set_bit(STRIPE_HANDLE, &sh->state);
245 }
246
247 if (test_bit(STRIPE_HANDLE, &sh->state)) {
248 if (test_bit(STRIPE_DELAYED, &sh->state) &&
249 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
250 list_add_tail(&sh->lru, &conf->delayed_list);
251 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
252 sh->bm_seq - conf->seq_write > 0)
253 list_add_tail(&sh->lru, &conf->bitmap_list);
254 else {
255 clear_bit(STRIPE_DELAYED, &sh->state);
256 clear_bit(STRIPE_BIT_DELAY, &sh->state);
257 if (conf->worker_cnt_per_group == 0) {
258 if (stripe_is_lowprio(sh))
259 list_add_tail(&sh->lru,
260 &conf->loprio_list);
261 else
262 list_add_tail(&sh->lru,
263 &conf->handle_list);
264 } else {
265 raid5_wakeup_stripe_thread(sh);
266 return;
267 }
268 }
269 md_wakeup_thread(conf->mddev->thread);
270 } else {
271 BUG_ON(stripe_operations_active(sh));
272 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
273 if (atomic_dec_return(&conf->preread_active_stripes)
274 < IO_THRESHOLD)
275 md_wakeup_thread(conf->mddev->thread);
276 atomic_dec(&conf->active_stripes);
277 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
278 if (!r5c_is_writeback(conf->log))
279 list_add_tail(&sh->lru, temp_inactive_list);
280 else {
281 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
282 if (injournal == 0)
283 list_add_tail(&sh->lru, temp_inactive_list);
284 else if (injournal == conf->raid_disks - conf->max_degraded) {
285 /* full stripe */
286 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
287 atomic_inc(&conf->r5c_cached_full_stripes);
288 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
289 atomic_dec(&conf->r5c_cached_partial_stripes);
290 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
291 r5c_check_cached_full_stripe(conf);
292 } else
293 /*
294 * STRIPE_R5C_PARTIAL_STRIPE is set in
295 * r5c_try_caching_write(). No need to
296 * set it again.
297 */
298 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
299 }
300 }
301 }
302 }
303
304 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
305 struct list_head *temp_inactive_list)
306 {
307 if (atomic_dec_and_test(&sh->count))
308 do_release_stripe(conf, sh, temp_inactive_list);
309 }
310
311 /*
312 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
313 *
314 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
315 * given time. Adding stripes only takes device lock, while deleting stripes
316 * only takes hash lock.
317 */
318 static void release_inactive_stripe_list(struct r5conf *conf,
319 struct list_head *temp_inactive_list,
320 int hash)
321 {
322 int size;
323 bool do_wakeup = false;
324 unsigned long flags;
325
326 if (hash == NR_STRIPE_HASH_LOCKS) {
327 size = NR_STRIPE_HASH_LOCKS;
328 hash = NR_STRIPE_HASH_LOCKS - 1;
329 } else
330 size = 1;
331 while (size) {
332 struct list_head *list = &temp_inactive_list[size - 1];
333
334 /*
335 * We don't hold any lock here yet, raid5_get_active_stripe() might
336 * remove stripes from the list
337 */
338 if (!list_empty_careful(list)) {
339 spin_lock_irqsave(conf->hash_locks + hash, flags);
340 if (list_empty(conf->inactive_list + hash) &&
341 !list_empty(list))
342 atomic_dec(&conf->empty_inactive_list_nr);
343 list_splice_tail_init(list, conf->inactive_list + hash);
344 do_wakeup = true;
345 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
346 }
347 size--;
348 hash--;
349 }
350
351 if (do_wakeup) {
352 wake_up(&conf->wait_for_stripe);
353 if (atomic_read(&conf->active_stripes) == 0)
354 wake_up(&conf->wait_for_quiescent);
355 if (conf->retry_read_aligned)
356 md_wakeup_thread(conf->mddev->thread);
357 }
358 }
359
360 /* should hold conf->device_lock already */
361 static int release_stripe_list(struct r5conf *conf,
362 struct list_head *temp_inactive_list)
363 {
364 struct stripe_head *sh, *t;
365 int count = 0;
366 struct llist_node *head;
367
368 head = llist_del_all(&conf->released_stripes);
369 head = llist_reverse_order(head);
370 llist_for_each_entry_safe(sh, t, head, release_list) {
371 int hash;
372
373 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
374 smp_mb();
375 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
376 /*
377 * Don't worry the bit is set here, because if the bit is set
378 * again, the count is always > 1. This is true for
379 * STRIPE_ON_UNPLUG_LIST bit too.
380 */
381 hash = sh->hash_lock_index;
382 __release_stripe(conf, sh, &temp_inactive_list[hash]);
383 count++;
384 }
385
386 return count;
387 }
388
389 void raid5_release_stripe(struct stripe_head *sh)
390 {
391 struct r5conf *conf = sh->raid_conf;
392 unsigned long flags;
393 struct list_head list;
394 int hash;
395 bool wakeup;
396
397 /* Avoid release_list until the last reference.
398 */
399 if (atomic_add_unless(&sh->count, -1, 1))
400 return;
401
402 if (unlikely(!conf->mddev->thread) ||
403 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
404 goto slow_path;
405 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
406 if (wakeup)
407 md_wakeup_thread(conf->mddev->thread);
408 return;
409 slow_path:
410 local_irq_save(flags);
411 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
412 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
413 INIT_LIST_HEAD(&list);
414 hash = sh->hash_lock_index;
415 do_release_stripe(conf, sh, &list);
416 spin_unlock(&conf->device_lock);
417 release_inactive_stripe_list(conf, &list, hash);
418 }
419 local_irq_restore(flags);
420 }
421
422 static inline void remove_hash(struct stripe_head *sh)
423 {
424 pr_debug("remove_hash(), stripe %llu\n",
425 (unsigned long long)sh->sector);
426
427 hlist_del_init(&sh->hash);
428 }
429
430 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
431 {
432 struct hlist_head *hp = stripe_hash(conf, sh->sector);
433
434 pr_debug("insert_hash(), stripe %llu\n",
435 (unsigned long long)sh->sector);
436
437 hlist_add_head(&sh->hash, hp);
438 }
439
440 /* find an idle stripe, make sure it is unhashed, and return it. */
441 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
442 {
443 struct stripe_head *sh = NULL;
444 struct list_head *first;
445
446 if (list_empty(conf->inactive_list + hash))
447 goto out;
448 first = (conf->inactive_list + hash)->next;
449 sh = list_entry(first, struct stripe_head, lru);
450 list_del_init(first);
451 remove_hash(sh);
452 atomic_inc(&conf->active_stripes);
453 BUG_ON(hash != sh->hash_lock_index);
454 if (list_empty(conf->inactive_list + hash))
455 atomic_inc(&conf->empty_inactive_list_nr);
456 out:
457 return sh;
458 }
459
460 static void shrink_buffers(struct stripe_head *sh)
461 {
462 struct page *p;
463 int i;
464 int num = sh->raid_conf->pool_size;
465
466 for (i = 0; i < num ; i++) {
467 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
468 p = sh->dev[i].page;
469 if (!p)
470 continue;
471 sh->dev[i].page = NULL;
472 put_page(p);
473 }
474 }
475
476 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
477 {
478 int i;
479 int num = sh->raid_conf->pool_size;
480
481 for (i = 0; i < num; i++) {
482 struct page *page;
483
484 if (!(page = alloc_page(gfp))) {
485 return 1;
486 }
487 sh->dev[i].page = page;
488 sh->dev[i].orig_page = page;
489 }
490
491 return 0;
492 }
493
494 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
495 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
496 struct stripe_head *sh);
497
498 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
499 {
500 struct r5conf *conf = sh->raid_conf;
501 int i, seq;
502
503 BUG_ON(atomic_read(&sh->count) != 0);
504 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
505 BUG_ON(stripe_operations_active(sh));
506 BUG_ON(sh->batch_head);
507
508 pr_debug("init_stripe called, stripe %llu\n",
509 (unsigned long long)sector);
510 retry:
511 seq = read_seqcount_begin(&conf->gen_lock);
512 sh->generation = conf->generation - previous;
513 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
514 sh->sector = sector;
515 stripe_set_idx(sector, conf, previous, sh);
516 sh->state = 0;
517
518 for (i = sh->disks; i--; ) {
519 struct r5dev *dev = &sh->dev[i];
520
521 if (dev->toread || dev->read || dev->towrite || dev->written ||
522 test_bit(R5_LOCKED, &dev->flags)) {
523 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
524 (unsigned long long)sh->sector, i, dev->toread,
525 dev->read, dev->towrite, dev->written,
526 test_bit(R5_LOCKED, &dev->flags));
527 WARN_ON(1);
528 }
529 dev->flags = 0;
530 raid5_build_block(sh, i, previous);
531 }
532 if (read_seqcount_retry(&conf->gen_lock, seq))
533 goto retry;
534 sh->overwrite_disks = 0;
535 insert_hash(conf, sh);
536 sh->cpu = smp_processor_id();
537 set_bit(STRIPE_BATCH_READY, &sh->state);
538 }
539
540 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
541 short generation)
542 {
543 struct stripe_head *sh;
544
545 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
546 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
547 if (sh->sector == sector && sh->generation == generation)
548 return sh;
549 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
550 return NULL;
551 }
552
553 /*
554 * Need to check if array has failed when deciding whether to:
555 * - start an array
556 * - remove non-faulty devices
557 * - add a spare
558 * - allow a reshape
559 * This determination is simple when no reshape is happening.
560 * However if there is a reshape, we need to carefully check
561 * both the before and after sections.
562 * This is because some failed devices may only affect one
563 * of the two sections, and some non-in_sync devices may
564 * be insync in the section most affected by failed devices.
565 */
566 int raid5_calc_degraded(struct r5conf *conf)
567 {
568 int degraded, degraded2;
569 int i;
570
571 rcu_read_lock();
572 degraded = 0;
573 for (i = 0; i < conf->previous_raid_disks; i++) {
574 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
575 if (rdev && test_bit(Faulty, &rdev->flags))
576 rdev = rcu_dereference(conf->disks[i].replacement);
577 if (!rdev || test_bit(Faulty, &rdev->flags))
578 degraded++;
579 else if (test_bit(In_sync, &rdev->flags))
580 ;
581 else
582 /* not in-sync or faulty.
583 * If the reshape increases the number of devices,
584 * this is being recovered by the reshape, so
585 * this 'previous' section is not in_sync.
586 * If the number of devices is being reduced however,
587 * the device can only be part of the array if
588 * we are reverting a reshape, so this section will
589 * be in-sync.
590 */
591 if (conf->raid_disks >= conf->previous_raid_disks)
592 degraded++;
593 }
594 rcu_read_unlock();
595 if (conf->raid_disks == conf->previous_raid_disks)
596 return degraded;
597 rcu_read_lock();
598 degraded2 = 0;
599 for (i = 0; i < conf->raid_disks; i++) {
600 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601 if (rdev && test_bit(Faulty, &rdev->flags))
602 rdev = rcu_dereference(conf->disks[i].replacement);
603 if (!rdev || test_bit(Faulty, &rdev->flags))
604 degraded2++;
605 else if (test_bit(In_sync, &rdev->flags))
606 ;
607 else
608 /* not in-sync or faulty.
609 * If reshape increases the number of devices, this
610 * section has already been recovered, else it
611 * almost certainly hasn't.
612 */
613 if (conf->raid_disks <= conf->previous_raid_disks)
614 degraded2++;
615 }
616 rcu_read_unlock();
617 if (degraded2 > degraded)
618 return degraded2;
619 return degraded;
620 }
621
622 static int has_failed(struct r5conf *conf)
623 {
624 int degraded;
625
626 if (conf->mddev->reshape_position == MaxSector)
627 return conf->mddev->degraded > conf->max_degraded;
628
629 degraded = raid5_calc_degraded(conf);
630 if (degraded > conf->max_degraded)
631 return 1;
632 return 0;
633 }
634
635 struct stripe_head *
636 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
637 int previous, int noblock, int noquiesce)
638 {
639 struct stripe_head *sh;
640 int hash = stripe_hash_locks_hash(sector);
641 int inc_empty_inactive_list_flag;
642
643 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
644
645 spin_lock_irq(conf->hash_locks + hash);
646
647 do {
648 wait_event_lock_irq(conf->wait_for_quiescent,
649 conf->quiesce == 0 || noquiesce,
650 *(conf->hash_locks + hash));
651 sh = __find_stripe(conf, sector, conf->generation - previous);
652 if (!sh) {
653 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
654 sh = get_free_stripe(conf, hash);
655 if (!sh && !test_bit(R5_DID_ALLOC,
656 &conf->cache_state))
657 set_bit(R5_ALLOC_MORE,
658 &conf->cache_state);
659 }
660 if (noblock && sh == NULL)
661 break;
662
663 r5c_check_stripe_cache_usage(conf);
664 if (!sh) {
665 set_bit(R5_INACTIVE_BLOCKED,
666 &conf->cache_state);
667 r5l_wake_reclaim(conf->log, 0);
668 wait_event_lock_irq(
669 conf->wait_for_stripe,
670 !list_empty(conf->inactive_list + hash) &&
671 (atomic_read(&conf->active_stripes)
672 < (conf->max_nr_stripes * 3 / 4)
673 || !test_bit(R5_INACTIVE_BLOCKED,
674 &conf->cache_state)),
675 *(conf->hash_locks + hash));
676 clear_bit(R5_INACTIVE_BLOCKED,
677 &conf->cache_state);
678 } else {
679 init_stripe(sh, sector, previous);
680 atomic_inc(&sh->count);
681 }
682 } else if (!atomic_inc_not_zero(&sh->count)) {
683 spin_lock(&conf->device_lock);
684 if (!atomic_read(&sh->count)) {
685 if (!test_bit(STRIPE_HANDLE, &sh->state))
686 atomic_inc(&conf->active_stripes);
687 BUG_ON(list_empty(&sh->lru) &&
688 !test_bit(STRIPE_EXPANDING, &sh->state));
689 inc_empty_inactive_list_flag = 0;
690 if (!list_empty(conf->inactive_list + hash))
691 inc_empty_inactive_list_flag = 1;
692 list_del_init(&sh->lru);
693 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
694 atomic_inc(&conf->empty_inactive_list_nr);
695 if (sh->group) {
696 sh->group->stripes_cnt--;
697 sh->group = NULL;
698 }
699 }
700 atomic_inc(&sh->count);
701 spin_unlock(&conf->device_lock);
702 }
703 } while (sh == NULL);
704
705 spin_unlock_irq(conf->hash_locks + hash);
706 return sh;
707 }
708
709 static bool is_full_stripe_write(struct stripe_head *sh)
710 {
711 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
712 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
713 }
714
715 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
716 {
717 local_irq_disable();
718 if (sh1 > sh2) {
719 spin_lock(&sh2->stripe_lock);
720 spin_lock_nested(&sh1->stripe_lock, 1);
721 } else {
722 spin_lock(&sh1->stripe_lock);
723 spin_lock_nested(&sh2->stripe_lock, 1);
724 }
725 }
726
727 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728 {
729 spin_unlock(&sh1->stripe_lock);
730 spin_unlock(&sh2->stripe_lock);
731 local_irq_enable();
732 }
733
734 /* Only freshly new full stripe normal write stripe can be added to a batch list */
735 static bool stripe_can_batch(struct stripe_head *sh)
736 {
737 struct r5conf *conf = sh->raid_conf;
738
739 if (conf->log || raid5_has_ppl(conf))
740 return false;
741 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
742 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
743 is_full_stripe_write(sh);
744 }
745
746 /* we only do back search */
747 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
748 {
749 struct stripe_head *head;
750 sector_t head_sector, tmp_sec;
751 int hash;
752 int dd_idx;
753 int inc_empty_inactive_list_flag;
754
755 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
756 tmp_sec = sh->sector;
757 if (!sector_div(tmp_sec, conf->chunk_sectors))
758 return;
759 head_sector = sh->sector - STRIPE_SECTORS;
760
761 hash = stripe_hash_locks_hash(head_sector);
762 spin_lock_irq(conf->hash_locks + hash);
763 head = __find_stripe(conf, head_sector, conf->generation);
764 if (head && !atomic_inc_not_zero(&head->count)) {
765 spin_lock(&conf->device_lock);
766 if (!atomic_read(&head->count)) {
767 if (!test_bit(STRIPE_HANDLE, &head->state))
768 atomic_inc(&conf->active_stripes);
769 BUG_ON(list_empty(&head->lru) &&
770 !test_bit(STRIPE_EXPANDING, &head->state));
771 inc_empty_inactive_list_flag = 0;
772 if (!list_empty(conf->inactive_list + hash))
773 inc_empty_inactive_list_flag = 1;
774 list_del_init(&head->lru);
775 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
776 atomic_inc(&conf->empty_inactive_list_nr);
777 if (head->group) {
778 head->group->stripes_cnt--;
779 head->group = NULL;
780 }
781 }
782 atomic_inc(&head->count);
783 spin_unlock(&conf->device_lock);
784 }
785 spin_unlock_irq(conf->hash_locks + hash);
786
787 if (!head)
788 return;
789 if (!stripe_can_batch(head))
790 goto out;
791
792 lock_two_stripes(head, sh);
793 /* clear_batch_ready clear the flag */
794 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
795 goto unlock_out;
796
797 if (sh->batch_head)
798 goto unlock_out;
799
800 dd_idx = 0;
801 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
802 dd_idx++;
803 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
804 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
805 goto unlock_out;
806
807 if (head->batch_head) {
808 spin_lock(&head->batch_head->batch_lock);
809 /* This batch list is already running */
810 if (!stripe_can_batch(head)) {
811 spin_unlock(&head->batch_head->batch_lock);
812 goto unlock_out;
813 }
814
815 /*
816 * at this point, head's BATCH_READY could be cleared, but we
817 * can still add the stripe to batch list
818 */
819 list_add(&sh->batch_list, &head->batch_list);
820 spin_unlock(&head->batch_head->batch_lock);
821
822 sh->batch_head = head->batch_head;
823 } else {
824 head->batch_head = head;
825 sh->batch_head = head->batch_head;
826 spin_lock(&head->batch_lock);
827 list_add_tail(&sh->batch_list, &head->batch_list);
828 spin_unlock(&head->batch_lock);
829 }
830
831 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
832 if (atomic_dec_return(&conf->preread_active_stripes)
833 < IO_THRESHOLD)
834 md_wakeup_thread(conf->mddev->thread);
835
836 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
837 int seq = sh->bm_seq;
838 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
839 sh->batch_head->bm_seq > seq)
840 seq = sh->batch_head->bm_seq;
841 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
842 sh->batch_head->bm_seq = seq;
843 }
844
845 atomic_inc(&sh->count);
846 unlock_out:
847 unlock_two_stripes(head, sh);
848 out:
849 raid5_release_stripe(head);
850 }
851
852 /* Determine if 'data_offset' or 'new_data_offset' should be used
853 * in this stripe_head.
854 */
855 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
856 {
857 sector_t progress = conf->reshape_progress;
858 /* Need a memory barrier to make sure we see the value
859 * of conf->generation, or ->data_offset that was set before
860 * reshape_progress was updated.
861 */
862 smp_rmb();
863 if (progress == MaxSector)
864 return 0;
865 if (sh->generation == conf->generation - 1)
866 return 0;
867 /* We are in a reshape, and this is a new-generation stripe,
868 * so use new_data_offset.
869 */
870 return 1;
871 }
872
873 static void dispatch_bio_list(struct bio_list *tmp)
874 {
875 struct bio *bio;
876
877 while ((bio = bio_list_pop(tmp)))
878 generic_make_request(bio);
879 }
880
881 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
882 {
883 const struct r5pending_data *da = list_entry(a,
884 struct r5pending_data, sibling);
885 const struct r5pending_data *db = list_entry(b,
886 struct r5pending_data, sibling);
887 if (da->sector > db->sector)
888 return 1;
889 if (da->sector < db->sector)
890 return -1;
891 return 0;
892 }
893
894 static void dispatch_defer_bios(struct r5conf *conf, int target,
895 struct bio_list *list)
896 {
897 struct r5pending_data *data;
898 struct list_head *first, *next = NULL;
899 int cnt = 0;
900
901 if (conf->pending_data_cnt == 0)
902 return;
903
904 list_sort(NULL, &conf->pending_list, cmp_stripe);
905
906 first = conf->pending_list.next;
907
908 /* temporarily move the head */
909 if (conf->next_pending_data)
910 list_move_tail(&conf->pending_list,
911 &conf->next_pending_data->sibling);
912
913 while (!list_empty(&conf->pending_list)) {
914 data = list_first_entry(&conf->pending_list,
915 struct r5pending_data, sibling);
916 if (&data->sibling == first)
917 first = data->sibling.next;
918 next = data->sibling.next;
919
920 bio_list_merge(list, &data->bios);
921 list_move(&data->sibling, &conf->free_list);
922 cnt++;
923 if (cnt >= target)
924 break;
925 }
926 conf->pending_data_cnt -= cnt;
927 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
928
929 if (next != &conf->pending_list)
930 conf->next_pending_data = list_entry(next,
931 struct r5pending_data, sibling);
932 else
933 conf->next_pending_data = NULL;
934 /* list isn't empty */
935 if (first != &conf->pending_list)
936 list_move_tail(&conf->pending_list, first);
937 }
938
939 static void flush_deferred_bios(struct r5conf *conf)
940 {
941 struct bio_list tmp = BIO_EMPTY_LIST;
942
943 if (conf->pending_data_cnt == 0)
944 return;
945
946 spin_lock(&conf->pending_bios_lock);
947 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
948 BUG_ON(conf->pending_data_cnt != 0);
949 spin_unlock(&conf->pending_bios_lock);
950
951 dispatch_bio_list(&tmp);
952 }
953
954 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
955 struct bio_list *bios)
956 {
957 struct bio_list tmp = BIO_EMPTY_LIST;
958 struct r5pending_data *ent;
959
960 spin_lock(&conf->pending_bios_lock);
961 ent = list_first_entry(&conf->free_list, struct r5pending_data,
962 sibling);
963 list_move_tail(&ent->sibling, &conf->pending_list);
964 ent->sector = sector;
965 bio_list_init(&ent->bios);
966 bio_list_merge(&ent->bios, bios);
967 conf->pending_data_cnt++;
968 if (conf->pending_data_cnt >= PENDING_IO_MAX)
969 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
970
971 spin_unlock(&conf->pending_bios_lock);
972
973 dispatch_bio_list(&tmp);
974 }
975
976 static void
977 raid5_end_read_request(struct bio *bi);
978 static void
979 raid5_end_write_request(struct bio *bi);
980
981 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
982 {
983 struct r5conf *conf = sh->raid_conf;
984 int i, disks = sh->disks;
985 struct stripe_head *head_sh = sh;
986 struct bio_list pending_bios = BIO_EMPTY_LIST;
987 bool should_defer;
988
989 might_sleep();
990
991 if (log_stripe(sh, s) == 0)
992 return;
993
994 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
995
996 for (i = disks; i--; ) {
997 int op, op_flags = 0;
998 int replace_only = 0;
999 struct bio *bi, *rbi;
1000 struct md_rdev *rdev, *rrdev = NULL;
1001
1002 sh = head_sh;
1003 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1004 op = REQ_OP_WRITE;
1005 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1006 op_flags = REQ_FUA;
1007 if (test_bit(R5_Discard, &sh->dev[i].flags))
1008 op = REQ_OP_DISCARD;
1009 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1010 op = REQ_OP_READ;
1011 else if (test_and_clear_bit(R5_WantReplace,
1012 &sh->dev[i].flags)) {
1013 op = REQ_OP_WRITE;
1014 replace_only = 1;
1015 } else
1016 continue;
1017 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1018 op_flags |= REQ_SYNC;
1019
1020 again:
1021 bi = &sh->dev[i].req;
1022 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1023
1024 rcu_read_lock();
1025 rrdev = rcu_dereference(conf->disks[i].replacement);
1026 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1027 rdev = rcu_dereference(conf->disks[i].rdev);
1028 if (!rdev) {
1029 rdev = rrdev;
1030 rrdev = NULL;
1031 }
1032 if (op_is_write(op)) {
1033 if (replace_only)
1034 rdev = NULL;
1035 if (rdev == rrdev)
1036 /* We raced and saw duplicates */
1037 rrdev = NULL;
1038 } else {
1039 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1040 rdev = rrdev;
1041 rrdev = NULL;
1042 }
1043
1044 if (rdev && test_bit(Faulty, &rdev->flags))
1045 rdev = NULL;
1046 if (rdev)
1047 atomic_inc(&rdev->nr_pending);
1048 if (rrdev && test_bit(Faulty, &rrdev->flags))
1049 rrdev = NULL;
1050 if (rrdev)
1051 atomic_inc(&rrdev->nr_pending);
1052 rcu_read_unlock();
1053
1054 /* We have already checked bad blocks for reads. Now
1055 * need to check for writes. We never accept write errors
1056 * on the replacement, so we don't to check rrdev.
1057 */
1058 while (op_is_write(op) && rdev &&
1059 test_bit(WriteErrorSeen, &rdev->flags)) {
1060 sector_t first_bad;
1061 int bad_sectors;
1062 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1063 &first_bad, &bad_sectors);
1064 if (!bad)
1065 break;
1066
1067 if (bad < 0) {
1068 set_bit(BlockedBadBlocks, &rdev->flags);
1069 if (!conf->mddev->external &&
1070 conf->mddev->sb_flags) {
1071 /* It is very unlikely, but we might
1072 * still need to write out the
1073 * bad block log - better give it
1074 * a chance*/
1075 md_check_recovery(conf->mddev);
1076 }
1077 /*
1078 * Because md_wait_for_blocked_rdev
1079 * will dec nr_pending, we must
1080 * increment it first.
1081 */
1082 atomic_inc(&rdev->nr_pending);
1083 md_wait_for_blocked_rdev(rdev, conf->mddev);
1084 } else {
1085 /* Acknowledged bad block - skip the write */
1086 rdev_dec_pending(rdev, conf->mddev);
1087 rdev = NULL;
1088 }
1089 }
1090
1091 if (rdev) {
1092 if (s->syncing || s->expanding || s->expanded
1093 || s->replacing)
1094 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1095
1096 set_bit(STRIPE_IO_STARTED, &sh->state);
1097
1098 bi->bi_bdev = rdev->bdev;
1099 bio_set_op_attrs(bi, op, op_flags);
1100 bi->bi_end_io = op_is_write(op)
1101 ? raid5_end_write_request
1102 : raid5_end_read_request;
1103 bi->bi_private = sh;
1104
1105 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1106 __func__, (unsigned long long)sh->sector,
1107 bi->bi_opf, i);
1108 atomic_inc(&sh->count);
1109 if (sh != head_sh)
1110 atomic_inc(&head_sh->count);
1111 if (use_new_offset(conf, sh))
1112 bi->bi_iter.bi_sector = (sh->sector
1113 + rdev->new_data_offset);
1114 else
1115 bi->bi_iter.bi_sector = (sh->sector
1116 + rdev->data_offset);
1117 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1118 bi->bi_opf |= REQ_NOMERGE;
1119
1120 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1121 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1122
1123 if (!op_is_write(op) &&
1124 test_bit(R5_InJournal, &sh->dev[i].flags))
1125 /*
1126 * issuing read for a page in journal, this
1127 * must be preparing for prexor in rmw; read
1128 * the data into orig_page
1129 */
1130 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1131 else
1132 sh->dev[i].vec.bv_page = sh->dev[i].page;
1133 bi->bi_vcnt = 1;
1134 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1135 bi->bi_io_vec[0].bv_offset = 0;
1136 bi->bi_iter.bi_size = STRIPE_SIZE;
1137 /*
1138 * If this is discard request, set bi_vcnt 0. We don't
1139 * want to confuse SCSI because SCSI will replace payload
1140 */
1141 if (op == REQ_OP_DISCARD)
1142 bi->bi_vcnt = 0;
1143 if (rrdev)
1144 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1145
1146 if (conf->mddev->gendisk)
1147 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1148 bi, disk_devt(conf->mddev->gendisk),
1149 sh->dev[i].sector);
1150 if (should_defer && op_is_write(op))
1151 bio_list_add(&pending_bios, bi);
1152 else
1153 generic_make_request(bi);
1154 }
1155 if (rrdev) {
1156 if (s->syncing || s->expanding || s->expanded
1157 || s->replacing)
1158 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1159
1160 set_bit(STRIPE_IO_STARTED, &sh->state);
1161
1162 rbi->bi_bdev = rrdev->bdev;
1163 bio_set_op_attrs(rbi, op, op_flags);
1164 BUG_ON(!op_is_write(op));
1165 rbi->bi_end_io = raid5_end_write_request;
1166 rbi->bi_private = sh;
1167
1168 pr_debug("%s: for %llu schedule op %d on "
1169 "replacement disc %d\n",
1170 __func__, (unsigned long long)sh->sector,
1171 rbi->bi_opf, i);
1172 atomic_inc(&sh->count);
1173 if (sh != head_sh)
1174 atomic_inc(&head_sh->count);
1175 if (use_new_offset(conf, sh))
1176 rbi->bi_iter.bi_sector = (sh->sector
1177 + rrdev->new_data_offset);
1178 else
1179 rbi->bi_iter.bi_sector = (sh->sector
1180 + rrdev->data_offset);
1181 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1182 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1183 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1184 rbi->bi_vcnt = 1;
1185 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1186 rbi->bi_io_vec[0].bv_offset = 0;
1187 rbi->bi_iter.bi_size = STRIPE_SIZE;
1188 /*
1189 * If this is discard request, set bi_vcnt 0. We don't
1190 * want to confuse SCSI because SCSI will replace payload
1191 */
1192 if (op == REQ_OP_DISCARD)
1193 rbi->bi_vcnt = 0;
1194 if (conf->mddev->gendisk)
1195 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1196 rbi, disk_devt(conf->mddev->gendisk),
1197 sh->dev[i].sector);
1198 if (should_defer && op_is_write(op))
1199 bio_list_add(&pending_bios, rbi);
1200 else
1201 generic_make_request(rbi);
1202 }
1203 if (!rdev && !rrdev) {
1204 if (op_is_write(op))
1205 set_bit(STRIPE_DEGRADED, &sh->state);
1206 pr_debug("skip op %d on disc %d for sector %llu\n",
1207 bi->bi_opf, i, (unsigned long long)sh->sector);
1208 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1209 set_bit(STRIPE_HANDLE, &sh->state);
1210 }
1211
1212 if (!head_sh->batch_head)
1213 continue;
1214 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1215 batch_list);
1216 if (sh != head_sh)
1217 goto again;
1218 }
1219
1220 if (should_defer && !bio_list_empty(&pending_bios))
1221 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1222 }
1223
1224 static struct dma_async_tx_descriptor *
1225 async_copy_data(int frombio, struct bio *bio, struct page **page,
1226 sector_t sector, struct dma_async_tx_descriptor *tx,
1227 struct stripe_head *sh, int no_skipcopy)
1228 {
1229 struct bio_vec bvl;
1230 struct bvec_iter iter;
1231 struct page *bio_page;
1232 int page_offset;
1233 struct async_submit_ctl submit;
1234 enum async_tx_flags flags = 0;
1235
1236 if (bio->bi_iter.bi_sector >= sector)
1237 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1238 else
1239 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1240
1241 if (frombio)
1242 flags |= ASYNC_TX_FENCE;
1243 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1244
1245 bio_for_each_segment(bvl, bio, iter) {
1246 int len = bvl.bv_len;
1247 int clen;
1248 int b_offset = 0;
1249
1250 if (page_offset < 0) {
1251 b_offset = -page_offset;
1252 page_offset += b_offset;
1253 len -= b_offset;
1254 }
1255
1256 if (len > 0 && page_offset + len > STRIPE_SIZE)
1257 clen = STRIPE_SIZE - page_offset;
1258 else
1259 clen = len;
1260
1261 if (clen > 0) {
1262 b_offset += bvl.bv_offset;
1263 bio_page = bvl.bv_page;
1264 if (frombio) {
1265 if (sh->raid_conf->skip_copy &&
1266 b_offset == 0 && page_offset == 0 &&
1267 clen == STRIPE_SIZE &&
1268 !no_skipcopy)
1269 *page = bio_page;
1270 else
1271 tx = async_memcpy(*page, bio_page, page_offset,
1272 b_offset, clen, &submit);
1273 } else
1274 tx = async_memcpy(bio_page, *page, b_offset,
1275 page_offset, clen, &submit);
1276 }
1277 /* chain the operations */
1278 submit.depend_tx = tx;
1279
1280 if (clen < len) /* hit end of page */
1281 break;
1282 page_offset += len;
1283 }
1284
1285 return tx;
1286 }
1287
1288 static void ops_complete_biofill(void *stripe_head_ref)
1289 {
1290 struct stripe_head *sh = stripe_head_ref;
1291 int i;
1292
1293 pr_debug("%s: stripe %llu\n", __func__,
1294 (unsigned long long)sh->sector);
1295
1296 /* clear completed biofills */
1297 for (i = sh->disks; i--; ) {
1298 struct r5dev *dev = &sh->dev[i];
1299
1300 /* acknowledge completion of a biofill operation */
1301 /* and check if we need to reply to a read request,
1302 * new R5_Wantfill requests are held off until
1303 * !STRIPE_BIOFILL_RUN
1304 */
1305 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1306 struct bio *rbi, *rbi2;
1307
1308 BUG_ON(!dev->read);
1309 rbi = dev->read;
1310 dev->read = NULL;
1311 while (rbi && rbi->bi_iter.bi_sector <
1312 dev->sector + STRIPE_SECTORS) {
1313 rbi2 = r5_next_bio(rbi, dev->sector);
1314 bio_endio(rbi);
1315 rbi = rbi2;
1316 }
1317 }
1318 }
1319 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1320
1321 set_bit(STRIPE_HANDLE, &sh->state);
1322 raid5_release_stripe(sh);
1323 }
1324
1325 static void ops_run_biofill(struct stripe_head *sh)
1326 {
1327 struct dma_async_tx_descriptor *tx = NULL;
1328 struct async_submit_ctl submit;
1329 int i;
1330
1331 BUG_ON(sh->batch_head);
1332 pr_debug("%s: stripe %llu\n", __func__,
1333 (unsigned long long)sh->sector);
1334
1335 for (i = sh->disks; i--; ) {
1336 struct r5dev *dev = &sh->dev[i];
1337 if (test_bit(R5_Wantfill, &dev->flags)) {
1338 struct bio *rbi;
1339 spin_lock_irq(&sh->stripe_lock);
1340 dev->read = rbi = dev->toread;
1341 dev->toread = NULL;
1342 spin_unlock_irq(&sh->stripe_lock);
1343 while (rbi && rbi->bi_iter.bi_sector <
1344 dev->sector + STRIPE_SECTORS) {
1345 tx = async_copy_data(0, rbi, &dev->page,
1346 dev->sector, tx, sh, 0);
1347 rbi = r5_next_bio(rbi, dev->sector);
1348 }
1349 }
1350 }
1351
1352 atomic_inc(&sh->count);
1353 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1354 async_trigger_callback(&submit);
1355 }
1356
1357 static void mark_target_uptodate(struct stripe_head *sh, int target)
1358 {
1359 struct r5dev *tgt;
1360
1361 if (target < 0)
1362 return;
1363
1364 tgt = &sh->dev[target];
1365 set_bit(R5_UPTODATE, &tgt->flags);
1366 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1367 clear_bit(R5_Wantcompute, &tgt->flags);
1368 }
1369
1370 static void ops_complete_compute(void *stripe_head_ref)
1371 {
1372 struct stripe_head *sh = stripe_head_ref;
1373
1374 pr_debug("%s: stripe %llu\n", __func__,
1375 (unsigned long long)sh->sector);
1376
1377 /* mark the computed target(s) as uptodate */
1378 mark_target_uptodate(sh, sh->ops.target);
1379 mark_target_uptodate(sh, sh->ops.target2);
1380
1381 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1382 if (sh->check_state == check_state_compute_run)
1383 sh->check_state = check_state_compute_result;
1384 set_bit(STRIPE_HANDLE, &sh->state);
1385 raid5_release_stripe(sh);
1386 }
1387
1388 /* return a pointer to the address conversion region of the scribble buffer */
1389 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1390 struct raid5_percpu *percpu, int i)
1391 {
1392 void *addr;
1393
1394 addr = flex_array_get(percpu->scribble, i);
1395 return addr + sizeof(struct page *) * (sh->disks + 2);
1396 }
1397
1398 /* return a pointer to the address conversion region of the scribble buffer */
1399 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1400 {
1401 void *addr;
1402
1403 addr = flex_array_get(percpu->scribble, i);
1404 return addr;
1405 }
1406
1407 static struct dma_async_tx_descriptor *
1408 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1409 {
1410 int disks = sh->disks;
1411 struct page **xor_srcs = to_addr_page(percpu, 0);
1412 int target = sh->ops.target;
1413 struct r5dev *tgt = &sh->dev[target];
1414 struct page *xor_dest = tgt->page;
1415 int count = 0;
1416 struct dma_async_tx_descriptor *tx;
1417 struct async_submit_ctl submit;
1418 int i;
1419
1420 BUG_ON(sh->batch_head);
1421
1422 pr_debug("%s: stripe %llu block: %d\n",
1423 __func__, (unsigned long long)sh->sector, target);
1424 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1425
1426 for (i = disks; i--; )
1427 if (i != target)
1428 xor_srcs[count++] = sh->dev[i].page;
1429
1430 atomic_inc(&sh->count);
1431
1432 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1433 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1434 if (unlikely(count == 1))
1435 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1436 else
1437 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1438
1439 return tx;
1440 }
1441
1442 /* set_syndrome_sources - populate source buffers for gen_syndrome
1443 * @srcs - (struct page *) array of size sh->disks
1444 * @sh - stripe_head to parse
1445 *
1446 * Populates srcs in proper layout order for the stripe and returns the
1447 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1448 * destination buffer is recorded in srcs[count] and the Q destination
1449 * is recorded in srcs[count+1]].
1450 */
1451 static int set_syndrome_sources(struct page **srcs,
1452 struct stripe_head *sh,
1453 int srctype)
1454 {
1455 int disks = sh->disks;
1456 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1457 int d0_idx = raid6_d0(sh);
1458 int count;
1459 int i;
1460
1461 for (i = 0; i < disks; i++)
1462 srcs[i] = NULL;
1463
1464 count = 0;
1465 i = d0_idx;
1466 do {
1467 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1468 struct r5dev *dev = &sh->dev[i];
1469
1470 if (i == sh->qd_idx || i == sh->pd_idx ||
1471 (srctype == SYNDROME_SRC_ALL) ||
1472 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1473 (test_bit(R5_Wantdrain, &dev->flags) ||
1474 test_bit(R5_InJournal, &dev->flags))) ||
1475 (srctype == SYNDROME_SRC_WRITTEN &&
1476 (dev->written ||
1477 test_bit(R5_InJournal, &dev->flags)))) {
1478 if (test_bit(R5_InJournal, &dev->flags))
1479 srcs[slot] = sh->dev[i].orig_page;
1480 else
1481 srcs[slot] = sh->dev[i].page;
1482 }
1483 i = raid6_next_disk(i, disks);
1484 } while (i != d0_idx);
1485
1486 return syndrome_disks;
1487 }
1488
1489 static struct dma_async_tx_descriptor *
1490 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1491 {
1492 int disks = sh->disks;
1493 struct page **blocks = to_addr_page(percpu, 0);
1494 int target;
1495 int qd_idx = sh->qd_idx;
1496 struct dma_async_tx_descriptor *tx;
1497 struct async_submit_ctl submit;
1498 struct r5dev *tgt;
1499 struct page *dest;
1500 int i;
1501 int count;
1502
1503 BUG_ON(sh->batch_head);
1504 if (sh->ops.target < 0)
1505 target = sh->ops.target2;
1506 else if (sh->ops.target2 < 0)
1507 target = sh->ops.target;
1508 else
1509 /* we should only have one valid target */
1510 BUG();
1511 BUG_ON(target < 0);
1512 pr_debug("%s: stripe %llu block: %d\n",
1513 __func__, (unsigned long long)sh->sector, target);
1514
1515 tgt = &sh->dev[target];
1516 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1517 dest = tgt->page;
1518
1519 atomic_inc(&sh->count);
1520
1521 if (target == qd_idx) {
1522 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1523 blocks[count] = NULL; /* regenerating p is not necessary */
1524 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1525 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1526 ops_complete_compute, sh,
1527 to_addr_conv(sh, percpu, 0));
1528 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1529 } else {
1530 /* Compute any data- or p-drive using XOR */
1531 count = 0;
1532 for (i = disks; i-- ; ) {
1533 if (i == target || i == qd_idx)
1534 continue;
1535 blocks[count++] = sh->dev[i].page;
1536 }
1537
1538 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1539 NULL, ops_complete_compute, sh,
1540 to_addr_conv(sh, percpu, 0));
1541 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1542 }
1543
1544 return tx;
1545 }
1546
1547 static struct dma_async_tx_descriptor *
1548 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1549 {
1550 int i, count, disks = sh->disks;
1551 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1552 int d0_idx = raid6_d0(sh);
1553 int faila = -1, failb = -1;
1554 int target = sh->ops.target;
1555 int target2 = sh->ops.target2;
1556 struct r5dev *tgt = &sh->dev[target];
1557 struct r5dev *tgt2 = &sh->dev[target2];
1558 struct dma_async_tx_descriptor *tx;
1559 struct page **blocks = to_addr_page(percpu, 0);
1560 struct async_submit_ctl submit;
1561
1562 BUG_ON(sh->batch_head);
1563 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1564 __func__, (unsigned long long)sh->sector, target, target2);
1565 BUG_ON(target < 0 || target2 < 0);
1566 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1567 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1568
1569 /* we need to open-code set_syndrome_sources to handle the
1570 * slot number conversion for 'faila' and 'failb'
1571 */
1572 for (i = 0; i < disks ; i++)
1573 blocks[i] = NULL;
1574 count = 0;
1575 i = d0_idx;
1576 do {
1577 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1578
1579 blocks[slot] = sh->dev[i].page;
1580
1581 if (i == target)
1582 faila = slot;
1583 if (i == target2)
1584 failb = slot;
1585 i = raid6_next_disk(i, disks);
1586 } while (i != d0_idx);
1587
1588 BUG_ON(faila == failb);
1589 if (failb < faila)
1590 swap(faila, failb);
1591 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1592 __func__, (unsigned long long)sh->sector, faila, failb);
1593
1594 atomic_inc(&sh->count);
1595
1596 if (failb == syndrome_disks+1) {
1597 /* Q disk is one of the missing disks */
1598 if (faila == syndrome_disks) {
1599 /* Missing P+Q, just recompute */
1600 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1601 ops_complete_compute, sh,
1602 to_addr_conv(sh, percpu, 0));
1603 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1604 STRIPE_SIZE, &submit);
1605 } else {
1606 struct page *dest;
1607 int data_target;
1608 int qd_idx = sh->qd_idx;
1609
1610 /* Missing D+Q: recompute D from P, then recompute Q */
1611 if (target == qd_idx)
1612 data_target = target2;
1613 else
1614 data_target = target;
1615
1616 count = 0;
1617 for (i = disks; i-- ; ) {
1618 if (i == data_target || i == qd_idx)
1619 continue;
1620 blocks[count++] = sh->dev[i].page;
1621 }
1622 dest = sh->dev[data_target].page;
1623 init_async_submit(&submit,
1624 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1625 NULL, NULL, NULL,
1626 to_addr_conv(sh, percpu, 0));
1627 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1628 &submit);
1629
1630 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1631 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1632 ops_complete_compute, sh,
1633 to_addr_conv(sh, percpu, 0));
1634 return async_gen_syndrome(blocks, 0, count+2,
1635 STRIPE_SIZE, &submit);
1636 }
1637 } else {
1638 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1639 ops_complete_compute, sh,
1640 to_addr_conv(sh, percpu, 0));
1641 if (failb == syndrome_disks) {
1642 /* We're missing D+P. */
1643 return async_raid6_datap_recov(syndrome_disks+2,
1644 STRIPE_SIZE, faila,
1645 blocks, &submit);
1646 } else {
1647 /* We're missing D+D. */
1648 return async_raid6_2data_recov(syndrome_disks+2,
1649 STRIPE_SIZE, faila, failb,
1650 blocks, &submit);
1651 }
1652 }
1653 }
1654
1655 static void ops_complete_prexor(void *stripe_head_ref)
1656 {
1657 struct stripe_head *sh = stripe_head_ref;
1658
1659 pr_debug("%s: stripe %llu\n", __func__,
1660 (unsigned long long)sh->sector);
1661
1662 if (r5c_is_writeback(sh->raid_conf->log))
1663 /*
1664 * raid5-cache write back uses orig_page during prexor.
1665 * After prexor, it is time to free orig_page
1666 */
1667 r5c_release_extra_page(sh);
1668 }
1669
1670 static struct dma_async_tx_descriptor *
1671 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1672 struct dma_async_tx_descriptor *tx)
1673 {
1674 int disks = sh->disks;
1675 struct page **xor_srcs = to_addr_page(percpu, 0);
1676 int count = 0, pd_idx = sh->pd_idx, i;
1677 struct async_submit_ctl submit;
1678
1679 /* existing parity data subtracted */
1680 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1681
1682 BUG_ON(sh->batch_head);
1683 pr_debug("%s: stripe %llu\n", __func__,
1684 (unsigned long long)sh->sector);
1685
1686 for (i = disks; i--; ) {
1687 struct r5dev *dev = &sh->dev[i];
1688 /* Only process blocks that are known to be uptodate */
1689 if (test_bit(R5_InJournal, &dev->flags))
1690 xor_srcs[count++] = dev->orig_page;
1691 else if (test_bit(R5_Wantdrain, &dev->flags))
1692 xor_srcs[count++] = dev->page;
1693 }
1694
1695 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1696 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1697 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1698
1699 return tx;
1700 }
1701
1702 static struct dma_async_tx_descriptor *
1703 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1704 struct dma_async_tx_descriptor *tx)
1705 {
1706 struct page **blocks = to_addr_page(percpu, 0);
1707 int count;
1708 struct async_submit_ctl submit;
1709
1710 pr_debug("%s: stripe %llu\n", __func__,
1711 (unsigned long long)sh->sector);
1712
1713 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1714
1715 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1716 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1717 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1718
1719 return tx;
1720 }
1721
1722 static struct dma_async_tx_descriptor *
1723 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1724 {
1725 struct r5conf *conf = sh->raid_conf;
1726 int disks = sh->disks;
1727 int i;
1728 struct stripe_head *head_sh = sh;
1729
1730 pr_debug("%s: stripe %llu\n", __func__,
1731 (unsigned long long)sh->sector);
1732
1733 for (i = disks; i--; ) {
1734 struct r5dev *dev;
1735 struct bio *chosen;
1736
1737 sh = head_sh;
1738 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1739 struct bio *wbi;
1740
1741 again:
1742 dev = &sh->dev[i];
1743 /*
1744 * clear R5_InJournal, so when rewriting a page in
1745 * journal, it is not skipped by r5l_log_stripe()
1746 */
1747 clear_bit(R5_InJournal, &dev->flags);
1748 spin_lock_irq(&sh->stripe_lock);
1749 chosen = dev->towrite;
1750 dev->towrite = NULL;
1751 sh->overwrite_disks = 0;
1752 BUG_ON(dev->written);
1753 wbi = dev->written = chosen;
1754 spin_unlock_irq(&sh->stripe_lock);
1755 WARN_ON(dev->page != dev->orig_page);
1756
1757 while (wbi && wbi->bi_iter.bi_sector <
1758 dev->sector + STRIPE_SECTORS) {
1759 if (wbi->bi_opf & REQ_FUA)
1760 set_bit(R5_WantFUA, &dev->flags);
1761 if (wbi->bi_opf & REQ_SYNC)
1762 set_bit(R5_SyncIO, &dev->flags);
1763 if (bio_op(wbi) == REQ_OP_DISCARD)
1764 set_bit(R5_Discard, &dev->flags);
1765 else {
1766 tx = async_copy_data(1, wbi, &dev->page,
1767 dev->sector, tx, sh,
1768 r5c_is_writeback(conf->log));
1769 if (dev->page != dev->orig_page &&
1770 !r5c_is_writeback(conf->log)) {
1771 set_bit(R5_SkipCopy, &dev->flags);
1772 clear_bit(R5_UPTODATE, &dev->flags);
1773 clear_bit(R5_OVERWRITE, &dev->flags);
1774 }
1775 }
1776 wbi = r5_next_bio(wbi, dev->sector);
1777 }
1778
1779 if (head_sh->batch_head) {
1780 sh = list_first_entry(&sh->batch_list,
1781 struct stripe_head,
1782 batch_list);
1783 if (sh == head_sh)
1784 continue;
1785 goto again;
1786 }
1787 }
1788 }
1789
1790 return tx;
1791 }
1792
1793 static void ops_complete_reconstruct(void *stripe_head_ref)
1794 {
1795 struct stripe_head *sh = stripe_head_ref;
1796 int disks = sh->disks;
1797 int pd_idx = sh->pd_idx;
1798 int qd_idx = sh->qd_idx;
1799 int i;
1800 bool fua = false, sync = false, discard = false;
1801
1802 pr_debug("%s: stripe %llu\n", __func__,
1803 (unsigned long long)sh->sector);
1804
1805 for (i = disks; i--; ) {
1806 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1807 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1808 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1809 }
1810
1811 for (i = disks; i--; ) {
1812 struct r5dev *dev = &sh->dev[i];
1813
1814 if (dev->written || i == pd_idx || i == qd_idx) {
1815 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1816 set_bit(R5_UPTODATE, &dev->flags);
1817 if (fua)
1818 set_bit(R5_WantFUA, &dev->flags);
1819 if (sync)
1820 set_bit(R5_SyncIO, &dev->flags);
1821 }
1822 }
1823
1824 if (sh->reconstruct_state == reconstruct_state_drain_run)
1825 sh->reconstruct_state = reconstruct_state_drain_result;
1826 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1827 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1828 else {
1829 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1830 sh->reconstruct_state = reconstruct_state_result;
1831 }
1832
1833 set_bit(STRIPE_HANDLE, &sh->state);
1834 raid5_release_stripe(sh);
1835 }
1836
1837 static void
1838 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1839 struct dma_async_tx_descriptor *tx)
1840 {
1841 int disks = sh->disks;
1842 struct page **xor_srcs;
1843 struct async_submit_ctl submit;
1844 int count, pd_idx = sh->pd_idx, i;
1845 struct page *xor_dest;
1846 int prexor = 0;
1847 unsigned long flags;
1848 int j = 0;
1849 struct stripe_head *head_sh = sh;
1850 int last_stripe;
1851
1852 pr_debug("%s: stripe %llu\n", __func__,
1853 (unsigned long long)sh->sector);
1854
1855 for (i = 0; i < sh->disks; i++) {
1856 if (pd_idx == i)
1857 continue;
1858 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1859 break;
1860 }
1861 if (i >= sh->disks) {
1862 atomic_inc(&sh->count);
1863 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1864 ops_complete_reconstruct(sh);
1865 return;
1866 }
1867 again:
1868 count = 0;
1869 xor_srcs = to_addr_page(percpu, j);
1870 /* check if prexor is active which means only process blocks
1871 * that are part of a read-modify-write (written)
1872 */
1873 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1874 prexor = 1;
1875 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1876 for (i = disks; i--; ) {
1877 struct r5dev *dev = &sh->dev[i];
1878 if (head_sh->dev[i].written ||
1879 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1880 xor_srcs[count++] = dev->page;
1881 }
1882 } else {
1883 xor_dest = sh->dev[pd_idx].page;
1884 for (i = disks; i--; ) {
1885 struct r5dev *dev = &sh->dev[i];
1886 if (i != pd_idx)
1887 xor_srcs[count++] = dev->page;
1888 }
1889 }
1890
1891 /* 1/ if we prexor'd then the dest is reused as a source
1892 * 2/ if we did not prexor then we are redoing the parity
1893 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1894 * for the synchronous xor case
1895 */
1896 last_stripe = !head_sh->batch_head ||
1897 list_first_entry(&sh->batch_list,
1898 struct stripe_head, batch_list) == head_sh;
1899 if (last_stripe) {
1900 flags = ASYNC_TX_ACK |
1901 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1902
1903 atomic_inc(&head_sh->count);
1904 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1905 to_addr_conv(sh, percpu, j));
1906 } else {
1907 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1908 init_async_submit(&submit, flags, tx, NULL, NULL,
1909 to_addr_conv(sh, percpu, j));
1910 }
1911
1912 if (unlikely(count == 1))
1913 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1914 else
1915 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1916 if (!last_stripe) {
1917 j++;
1918 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1919 batch_list);
1920 goto again;
1921 }
1922 }
1923
1924 static void
1925 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1926 struct dma_async_tx_descriptor *tx)
1927 {
1928 struct async_submit_ctl submit;
1929 struct page **blocks;
1930 int count, i, j = 0;
1931 struct stripe_head *head_sh = sh;
1932 int last_stripe;
1933 int synflags;
1934 unsigned long txflags;
1935
1936 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1937
1938 for (i = 0; i < sh->disks; i++) {
1939 if (sh->pd_idx == i || sh->qd_idx == i)
1940 continue;
1941 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1942 break;
1943 }
1944 if (i >= sh->disks) {
1945 atomic_inc(&sh->count);
1946 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1947 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1948 ops_complete_reconstruct(sh);
1949 return;
1950 }
1951
1952 again:
1953 blocks = to_addr_page(percpu, j);
1954
1955 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1956 synflags = SYNDROME_SRC_WRITTEN;
1957 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1958 } else {
1959 synflags = SYNDROME_SRC_ALL;
1960 txflags = ASYNC_TX_ACK;
1961 }
1962
1963 count = set_syndrome_sources(blocks, sh, synflags);
1964 last_stripe = !head_sh->batch_head ||
1965 list_first_entry(&sh->batch_list,
1966 struct stripe_head, batch_list) == head_sh;
1967
1968 if (last_stripe) {
1969 atomic_inc(&head_sh->count);
1970 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1971 head_sh, to_addr_conv(sh, percpu, j));
1972 } else
1973 init_async_submit(&submit, 0, tx, NULL, NULL,
1974 to_addr_conv(sh, percpu, j));
1975 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1976 if (!last_stripe) {
1977 j++;
1978 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1979 batch_list);
1980 goto again;
1981 }
1982 }
1983
1984 static void ops_complete_check(void *stripe_head_ref)
1985 {
1986 struct stripe_head *sh = stripe_head_ref;
1987
1988 pr_debug("%s: stripe %llu\n", __func__,
1989 (unsigned long long)sh->sector);
1990
1991 sh->check_state = check_state_check_result;
1992 set_bit(STRIPE_HANDLE, &sh->state);
1993 raid5_release_stripe(sh);
1994 }
1995
1996 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1997 {
1998 int disks = sh->disks;
1999 int pd_idx = sh->pd_idx;
2000 int qd_idx = sh->qd_idx;
2001 struct page *xor_dest;
2002 struct page **xor_srcs = to_addr_page(percpu, 0);
2003 struct dma_async_tx_descriptor *tx;
2004 struct async_submit_ctl submit;
2005 int count;
2006 int i;
2007
2008 pr_debug("%s: stripe %llu\n", __func__,
2009 (unsigned long long)sh->sector);
2010
2011 BUG_ON(sh->batch_head);
2012 count = 0;
2013 xor_dest = sh->dev[pd_idx].page;
2014 xor_srcs[count++] = xor_dest;
2015 for (i = disks; i--; ) {
2016 if (i == pd_idx || i == qd_idx)
2017 continue;
2018 xor_srcs[count++] = sh->dev[i].page;
2019 }
2020
2021 init_async_submit(&submit, 0, NULL, NULL, NULL,
2022 to_addr_conv(sh, percpu, 0));
2023 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2024 &sh->ops.zero_sum_result, &submit);
2025
2026 atomic_inc(&sh->count);
2027 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2028 tx = async_trigger_callback(&submit);
2029 }
2030
2031 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2032 {
2033 struct page **srcs = to_addr_page(percpu, 0);
2034 struct async_submit_ctl submit;
2035 int count;
2036
2037 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2038 (unsigned long long)sh->sector, checkp);
2039
2040 BUG_ON(sh->batch_head);
2041 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2042 if (!checkp)
2043 srcs[count] = NULL;
2044
2045 atomic_inc(&sh->count);
2046 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2047 sh, to_addr_conv(sh, percpu, 0));
2048 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2049 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2050 }
2051
2052 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2053 {
2054 int overlap_clear = 0, i, disks = sh->disks;
2055 struct dma_async_tx_descriptor *tx = NULL;
2056 struct r5conf *conf = sh->raid_conf;
2057 int level = conf->level;
2058 struct raid5_percpu *percpu;
2059 unsigned long cpu;
2060
2061 cpu = get_cpu();
2062 percpu = per_cpu_ptr(conf->percpu, cpu);
2063 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2064 ops_run_biofill(sh);
2065 overlap_clear++;
2066 }
2067
2068 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2069 if (level < 6)
2070 tx = ops_run_compute5(sh, percpu);
2071 else {
2072 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2073 tx = ops_run_compute6_1(sh, percpu);
2074 else
2075 tx = ops_run_compute6_2(sh, percpu);
2076 }
2077 /* terminate the chain if reconstruct is not set to be run */
2078 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2079 async_tx_ack(tx);
2080 }
2081
2082 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2083 if (level < 6)
2084 tx = ops_run_prexor5(sh, percpu, tx);
2085 else
2086 tx = ops_run_prexor6(sh, percpu, tx);
2087 }
2088
2089 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2090 tx = ops_run_partial_parity(sh, percpu, tx);
2091
2092 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2093 tx = ops_run_biodrain(sh, tx);
2094 overlap_clear++;
2095 }
2096
2097 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2098 if (level < 6)
2099 ops_run_reconstruct5(sh, percpu, tx);
2100 else
2101 ops_run_reconstruct6(sh, percpu, tx);
2102 }
2103
2104 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2105 if (sh->check_state == check_state_run)
2106 ops_run_check_p(sh, percpu);
2107 else if (sh->check_state == check_state_run_q)
2108 ops_run_check_pq(sh, percpu, 0);
2109 else if (sh->check_state == check_state_run_pq)
2110 ops_run_check_pq(sh, percpu, 1);
2111 else
2112 BUG();
2113 }
2114
2115 if (overlap_clear && !sh->batch_head)
2116 for (i = disks; i--; ) {
2117 struct r5dev *dev = &sh->dev[i];
2118 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2119 wake_up(&sh->raid_conf->wait_for_overlap);
2120 }
2121 put_cpu();
2122 }
2123
2124 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2125 {
2126 if (sh->ppl_page)
2127 __free_page(sh->ppl_page);
2128 kmem_cache_free(sc, sh);
2129 }
2130
2131 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2132 int disks, struct r5conf *conf)
2133 {
2134 struct stripe_head *sh;
2135 int i;
2136
2137 sh = kmem_cache_zalloc(sc, gfp);
2138 if (sh) {
2139 spin_lock_init(&sh->stripe_lock);
2140 spin_lock_init(&sh->batch_lock);
2141 INIT_LIST_HEAD(&sh->batch_list);
2142 INIT_LIST_HEAD(&sh->lru);
2143 INIT_LIST_HEAD(&sh->r5c);
2144 INIT_LIST_HEAD(&sh->log_list);
2145 atomic_set(&sh->count, 1);
2146 sh->raid_conf = conf;
2147 sh->log_start = MaxSector;
2148 for (i = 0; i < disks; i++) {
2149 struct r5dev *dev = &sh->dev[i];
2150
2151 bio_init(&dev->req, &dev->vec, 1);
2152 bio_init(&dev->rreq, &dev->rvec, 1);
2153 }
2154
2155 if (raid5_has_ppl(conf)) {
2156 sh->ppl_page = alloc_page(gfp);
2157 if (!sh->ppl_page) {
2158 free_stripe(sc, sh);
2159 sh = NULL;
2160 }
2161 }
2162 }
2163 return sh;
2164 }
2165 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2166 {
2167 struct stripe_head *sh;
2168
2169 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2170 if (!sh)
2171 return 0;
2172
2173 if (grow_buffers(sh, gfp)) {
2174 shrink_buffers(sh);
2175 free_stripe(conf->slab_cache, sh);
2176 return 0;
2177 }
2178 sh->hash_lock_index =
2179 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2180 /* we just created an active stripe so... */
2181 atomic_inc(&conf->active_stripes);
2182
2183 raid5_release_stripe(sh);
2184 conf->max_nr_stripes++;
2185 return 1;
2186 }
2187
2188 static int grow_stripes(struct r5conf *conf, int num)
2189 {
2190 struct kmem_cache *sc;
2191 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2192
2193 if (conf->mddev->gendisk)
2194 sprintf(conf->cache_name[0],
2195 "raid%d-%s", conf->level, mdname(conf->mddev));
2196 else
2197 sprintf(conf->cache_name[0],
2198 "raid%d-%p", conf->level, conf->mddev);
2199 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2200
2201 conf->active_name = 0;
2202 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2203 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2204 0, 0, NULL);
2205 if (!sc)
2206 return 1;
2207 conf->slab_cache = sc;
2208 conf->pool_size = devs;
2209 while (num--)
2210 if (!grow_one_stripe(conf, GFP_KERNEL))
2211 return 1;
2212
2213 return 0;
2214 }
2215
2216 /**
2217 * scribble_len - return the required size of the scribble region
2218 * @num - total number of disks in the array
2219 *
2220 * The size must be enough to contain:
2221 * 1/ a struct page pointer for each device in the array +2
2222 * 2/ room to convert each entry in (1) to its corresponding dma
2223 * (dma_map_page()) or page (page_address()) address.
2224 *
2225 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2226 * calculate over all devices (not just the data blocks), using zeros in place
2227 * of the P and Q blocks.
2228 */
2229 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2230 {
2231 struct flex_array *ret;
2232 size_t len;
2233
2234 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2235 ret = flex_array_alloc(len, cnt, flags);
2236 if (!ret)
2237 return NULL;
2238 /* always prealloc all elements, so no locking is required */
2239 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2240 flex_array_free(ret);
2241 return NULL;
2242 }
2243 return ret;
2244 }
2245
2246 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2247 {
2248 unsigned long cpu;
2249 int err = 0;
2250
2251 /*
2252 * Never shrink. And mddev_suspend() could deadlock if this is called
2253 * from raid5d. In that case, scribble_disks and scribble_sectors
2254 * should equal to new_disks and new_sectors
2255 */
2256 if (conf->scribble_disks >= new_disks &&
2257 conf->scribble_sectors >= new_sectors)
2258 return 0;
2259 mddev_suspend(conf->mddev);
2260 get_online_cpus();
2261 for_each_present_cpu(cpu) {
2262 struct raid5_percpu *percpu;
2263 struct flex_array *scribble;
2264
2265 percpu = per_cpu_ptr(conf->percpu, cpu);
2266 scribble = scribble_alloc(new_disks,
2267 new_sectors / STRIPE_SECTORS,
2268 GFP_NOIO);
2269
2270 if (scribble) {
2271 flex_array_free(percpu->scribble);
2272 percpu->scribble = scribble;
2273 } else {
2274 err = -ENOMEM;
2275 break;
2276 }
2277 }
2278 put_online_cpus();
2279 mddev_resume(conf->mddev);
2280 if (!err) {
2281 conf->scribble_disks = new_disks;
2282 conf->scribble_sectors = new_sectors;
2283 }
2284 return err;
2285 }
2286
2287 static int resize_stripes(struct r5conf *conf, int newsize)
2288 {
2289 /* Make all the stripes able to hold 'newsize' devices.
2290 * New slots in each stripe get 'page' set to a new page.
2291 *
2292 * This happens in stages:
2293 * 1/ create a new kmem_cache and allocate the required number of
2294 * stripe_heads.
2295 * 2/ gather all the old stripe_heads and transfer the pages across
2296 * to the new stripe_heads. This will have the side effect of
2297 * freezing the array as once all stripe_heads have been collected,
2298 * no IO will be possible. Old stripe heads are freed once their
2299 * pages have been transferred over, and the old kmem_cache is
2300 * freed when all stripes are done.
2301 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2302 * we simple return a failure status - no need to clean anything up.
2303 * 4/ allocate new pages for the new slots in the new stripe_heads.
2304 * If this fails, we don't bother trying the shrink the
2305 * stripe_heads down again, we just leave them as they are.
2306 * As each stripe_head is processed the new one is released into
2307 * active service.
2308 *
2309 * Once step2 is started, we cannot afford to wait for a write,
2310 * so we use GFP_NOIO allocations.
2311 */
2312 struct stripe_head *osh, *nsh;
2313 LIST_HEAD(newstripes);
2314 struct disk_info *ndisks;
2315 int err;
2316 struct kmem_cache *sc;
2317 int i;
2318 int hash, cnt;
2319
2320 err = md_allow_write(conf->mddev);
2321 if (err)
2322 return err;
2323
2324 /* Step 1 */
2325 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2326 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2327 0, 0, NULL);
2328 if (!sc)
2329 return -ENOMEM;
2330
2331 /* Need to ensure auto-resizing doesn't interfere */
2332 mutex_lock(&conf->cache_size_mutex);
2333
2334 for (i = conf->max_nr_stripes; i; i--) {
2335 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2336 if (!nsh)
2337 break;
2338
2339 list_add(&nsh->lru, &newstripes);
2340 }
2341 if (i) {
2342 /* didn't get enough, give up */
2343 while (!list_empty(&newstripes)) {
2344 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2345 list_del(&nsh->lru);
2346 free_stripe(sc, nsh);
2347 }
2348 kmem_cache_destroy(sc);
2349 mutex_unlock(&conf->cache_size_mutex);
2350 return -ENOMEM;
2351 }
2352 /* Step 2 - Must use GFP_NOIO now.
2353 * OK, we have enough stripes, start collecting inactive
2354 * stripes and copying them over
2355 */
2356 hash = 0;
2357 cnt = 0;
2358 list_for_each_entry(nsh, &newstripes, lru) {
2359 lock_device_hash_lock(conf, hash);
2360 wait_event_cmd(conf->wait_for_stripe,
2361 !list_empty(conf->inactive_list + hash),
2362 unlock_device_hash_lock(conf, hash),
2363 lock_device_hash_lock(conf, hash));
2364 osh = get_free_stripe(conf, hash);
2365 unlock_device_hash_lock(conf, hash);
2366
2367 for(i=0; i<conf->pool_size; i++) {
2368 nsh->dev[i].page = osh->dev[i].page;
2369 nsh->dev[i].orig_page = osh->dev[i].page;
2370 }
2371 nsh->hash_lock_index = hash;
2372 free_stripe(conf->slab_cache, osh);
2373 cnt++;
2374 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2375 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2376 hash++;
2377 cnt = 0;
2378 }
2379 }
2380 kmem_cache_destroy(conf->slab_cache);
2381
2382 /* Step 3.
2383 * At this point, we are holding all the stripes so the array
2384 * is completely stalled, so now is a good time to resize
2385 * conf->disks and the scribble region
2386 */
2387 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2388 if (ndisks) {
2389 for (i = 0; i < conf->pool_size; i++)
2390 ndisks[i] = conf->disks[i];
2391
2392 for (i = conf->pool_size; i < newsize; i++) {
2393 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2394 if (!ndisks[i].extra_page)
2395 err = -ENOMEM;
2396 }
2397
2398 if (err) {
2399 for (i = conf->pool_size; i < newsize; i++)
2400 if (ndisks[i].extra_page)
2401 put_page(ndisks[i].extra_page);
2402 kfree(ndisks);
2403 } else {
2404 kfree(conf->disks);
2405 conf->disks = ndisks;
2406 }
2407 } else
2408 err = -ENOMEM;
2409
2410 mutex_unlock(&conf->cache_size_mutex);
2411
2412 conf->slab_cache = sc;
2413 conf->active_name = 1-conf->active_name;
2414
2415 /* Step 4, return new stripes to service */
2416 while(!list_empty(&newstripes)) {
2417 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2418 list_del_init(&nsh->lru);
2419
2420 for (i=conf->raid_disks; i < newsize; i++)
2421 if (nsh->dev[i].page == NULL) {
2422 struct page *p = alloc_page(GFP_NOIO);
2423 nsh->dev[i].page = p;
2424 nsh->dev[i].orig_page = p;
2425 if (!p)
2426 err = -ENOMEM;
2427 }
2428 raid5_release_stripe(nsh);
2429 }
2430 /* critical section pass, GFP_NOIO no longer needed */
2431
2432 if (!err)
2433 conf->pool_size = newsize;
2434 return err;
2435 }
2436
2437 static int drop_one_stripe(struct r5conf *conf)
2438 {
2439 struct stripe_head *sh;
2440 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2441
2442 spin_lock_irq(conf->hash_locks + hash);
2443 sh = get_free_stripe(conf, hash);
2444 spin_unlock_irq(conf->hash_locks + hash);
2445 if (!sh)
2446 return 0;
2447 BUG_ON(atomic_read(&sh->count));
2448 shrink_buffers(sh);
2449 free_stripe(conf->slab_cache, sh);
2450 atomic_dec(&conf->active_stripes);
2451 conf->max_nr_stripes--;
2452 return 1;
2453 }
2454
2455 static void shrink_stripes(struct r5conf *conf)
2456 {
2457 while (conf->max_nr_stripes &&
2458 drop_one_stripe(conf))
2459 ;
2460
2461 kmem_cache_destroy(conf->slab_cache);
2462 conf->slab_cache = NULL;
2463 }
2464
2465 static void raid5_end_read_request(struct bio * bi)
2466 {
2467 struct stripe_head *sh = bi->bi_private;
2468 struct r5conf *conf = sh->raid_conf;
2469 int disks = sh->disks, i;
2470 char b[BDEVNAME_SIZE];
2471 struct md_rdev *rdev = NULL;
2472 sector_t s;
2473
2474 for (i=0 ; i<disks; i++)
2475 if (bi == &sh->dev[i].req)
2476 break;
2477
2478 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2479 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2480 bi->bi_error);
2481 if (i == disks) {
2482 bio_reset(bi);
2483 BUG();
2484 return;
2485 }
2486 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2487 /* If replacement finished while this request was outstanding,
2488 * 'replacement' might be NULL already.
2489 * In that case it moved down to 'rdev'.
2490 * rdev is not removed until all requests are finished.
2491 */
2492 rdev = conf->disks[i].replacement;
2493 if (!rdev)
2494 rdev = conf->disks[i].rdev;
2495
2496 if (use_new_offset(conf, sh))
2497 s = sh->sector + rdev->new_data_offset;
2498 else
2499 s = sh->sector + rdev->data_offset;
2500 if (!bi->bi_error) {
2501 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2502 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2503 /* Note that this cannot happen on a
2504 * replacement device. We just fail those on
2505 * any error
2506 */
2507 pr_info_ratelimited(
2508 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2509 mdname(conf->mddev), STRIPE_SECTORS,
2510 (unsigned long long)s,
2511 bdevname(rdev->bdev, b));
2512 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2513 clear_bit(R5_ReadError, &sh->dev[i].flags);
2514 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2515 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2516 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2517
2518 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2519 /*
2520 * end read for a page in journal, this
2521 * must be preparing for prexor in rmw
2522 */
2523 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2524
2525 if (atomic_read(&rdev->read_errors))
2526 atomic_set(&rdev->read_errors, 0);
2527 } else {
2528 const char *bdn = bdevname(rdev->bdev, b);
2529 int retry = 0;
2530 int set_bad = 0;
2531
2532 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2533 atomic_inc(&rdev->read_errors);
2534 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2535 pr_warn_ratelimited(
2536 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2537 mdname(conf->mddev),
2538 (unsigned long long)s,
2539 bdn);
2540 else if (conf->mddev->degraded >= conf->max_degraded) {
2541 set_bad = 1;
2542 pr_warn_ratelimited(
2543 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2544 mdname(conf->mddev),
2545 (unsigned long long)s,
2546 bdn);
2547 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2548 /* Oh, no!!! */
2549 set_bad = 1;
2550 pr_warn_ratelimited(
2551 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2552 mdname(conf->mddev),
2553 (unsigned long long)s,
2554 bdn);
2555 } else if (atomic_read(&rdev->read_errors)
2556 > conf->max_nr_stripes)
2557 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2558 mdname(conf->mddev), bdn);
2559 else
2560 retry = 1;
2561 if (set_bad && test_bit(In_sync, &rdev->flags)
2562 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2563 retry = 1;
2564 if (retry)
2565 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2566 set_bit(R5_ReadError, &sh->dev[i].flags);
2567 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2568 } else
2569 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2570 else {
2571 clear_bit(R5_ReadError, &sh->dev[i].flags);
2572 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2573 if (!(set_bad
2574 && test_bit(In_sync, &rdev->flags)
2575 && rdev_set_badblocks(
2576 rdev, sh->sector, STRIPE_SECTORS, 0)))
2577 md_error(conf->mddev, rdev);
2578 }
2579 }
2580 rdev_dec_pending(rdev, conf->mddev);
2581 bio_reset(bi);
2582 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2583 set_bit(STRIPE_HANDLE, &sh->state);
2584 raid5_release_stripe(sh);
2585 }
2586
2587 static void raid5_end_write_request(struct bio *bi)
2588 {
2589 struct stripe_head *sh = bi->bi_private;
2590 struct r5conf *conf = sh->raid_conf;
2591 int disks = sh->disks, i;
2592 struct md_rdev *uninitialized_var(rdev);
2593 sector_t first_bad;
2594 int bad_sectors;
2595 int replacement = 0;
2596
2597 for (i = 0 ; i < disks; i++) {
2598 if (bi == &sh->dev[i].req) {
2599 rdev = conf->disks[i].rdev;
2600 break;
2601 }
2602 if (bi == &sh->dev[i].rreq) {
2603 rdev = conf->disks[i].replacement;
2604 if (rdev)
2605 replacement = 1;
2606 else
2607 /* rdev was removed and 'replacement'
2608 * replaced it. rdev is not removed
2609 * until all requests are finished.
2610 */
2611 rdev = conf->disks[i].rdev;
2612 break;
2613 }
2614 }
2615 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2616 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2617 bi->bi_error);
2618 if (i == disks) {
2619 bio_reset(bi);
2620 BUG();
2621 return;
2622 }
2623
2624 if (replacement) {
2625 if (bi->bi_error)
2626 md_error(conf->mddev, rdev);
2627 else if (is_badblock(rdev, sh->sector,
2628 STRIPE_SECTORS,
2629 &first_bad, &bad_sectors))
2630 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2631 } else {
2632 if (bi->bi_error) {
2633 set_bit(STRIPE_DEGRADED, &sh->state);
2634 set_bit(WriteErrorSeen, &rdev->flags);
2635 set_bit(R5_WriteError, &sh->dev[i].flags);
2636 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2637 set_bit(MD_RECOVERY_NEEDED,
2638 &rdev->mddev->recovery);
2639 } else if (is_badblock(rdev, sh->sector,
2640 STRIPE_SECTORS,
2641 &first_bad, &bad_sectors)) {
2642 set_bit(R5_MadeGood, &sh->dev[i].flags);
2643 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2644 /* That was a successful write so make
2645 * sure it looks like we already did
2646 * a re-write.
2647 */
2648 set_bit(R5_ReWrite, &sh->dev[i].flags);
2649 }
2650 }
2651 rdev_dec_pending(rdev, conf->mddev);
2652
2653 if (sh->batch_head && bi->bi_error && !replacement)
2654 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2655
2656 bio_reset(bi);
2657 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2658 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2659 set_bit(STRIPE_HANDLE, &sh->state);
2660 raid5_release_stripe(sh);
2661
2662 if (sh->batch_head && sh != sh->batch_head)
2663 raid5_release_stripe(sh->batch_head);
2664 }
2665
2666 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2667 {
2668 struct r5dev *dev = &sh->dev[i];
2669
2670 dev->flags = 0;
2671 dev->sector = raid5_compute_blocknr(sh, i, previous);
2672 }
2673
2674 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2675 {
2676 char b[BDEVNAME_SIZE];
2677 struct r5conf *conf = mddev->private;
2678 unsigned long flags;
2679 pr_debug("raid456: error called\n");
2680
2681 spin_lock_irqsave(&conf->device_lock, flags);
2682 clear_bit(In_sync, &rdev->flags);
2683 mddev->degraded = raid5_calc_degraded(conf);
2684 spin_unlock_irqrestore(&conf->device_lock, flags);
2685 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2686
2687 set_bit(Blocked, &rdev->flags);
2688 set_bit(Faulty, &rdev->flags);
2689 set_mask_bits(&mddev->sb_flags, 0,
2690 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2691 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2692 "md/raid:%s: Operation continuing on %d devices.\n",
2693 mdname(mddev),
2694 bdevname(rdev->bdev, b),
2695 mdname(mddev),
2696 conf->raid_disks - mddev->degraded);
2697 r5c_update_on_rdev_error(mddev);
2698 }
2699
2700 /*
2701 * Input: a 'big' sector number,
2702 * Output: index of the data and parity disk, and the sector # in them.
2703 */
2704 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2705 int previous, int *dd_idx,
2706 struct stripe_head *sh)
2707 {
2708 sector_t stripe, stripe2;
2709 sector_t chunk_number;
2710 unsigned int chunk_offset;
2711 int pd_idx, qd_idx;
2712 int ddf_layout = 0;
2713 sector_t new_sector;
2714 int algorithm = previous ? conf->prev_algo
2715 : conf->algorithm;
2716 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2717 : conf->chunk_sectors;
2718 int raid_disks = previous ? conf->previous_raid_disks
2719 : conf->raid_disks;
2720 int data_disks = raid_disks - conf->max_degraded;
2721
2722 /* First compute the information on this sector */
2723
2724 /*
2725 * Compute the chunk number and the sector offset inside the chunk
2726 */
2727 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2728 chunk_number = r_sector;
2729
2730 /*
2731 * Compute the stripe number
2732 */
2733 stripe = chunk_number;
2734 *dd_idx = sector_div(stripe, data_disks);
2735 stripe2 = stripe;
2736 /*
2737 * Select the parity disk based on the user selected algorithm.
2738 */
2739 pd_idx = qd_idx = -1;
2740 switch(conf->level) {
2741 case 4:
2742 pd_idx = data_disks;
2743 break;
2744 case 5:
2745 switch (algorithm) {
2746 case ALGORITHM_LEFT_ASYMMETRIC:
2747 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2748 if (*dd_idx >= pd_idx)
2749 (*dd_idx)++;
2750 break;
2751 case ALGORITHM_RIGHT_ASYMMETRIC:
2752 pd_idx = sector_div(stripe2, raid_disks);
2753 if (*dd_idx >= pd_idx)
2754 (*dd_idx)++;
2755 break;
2756 case ALGORITHM_LEFT_SYMMETRIC:
2757 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2758 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2759 break;
2760 case ALGORITHM_RIGHT_SYMMETRIC:
2761 pd_idx = sector_div(stripe2, raid_disks);
2762 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2763 break;
2764 case ALGORITHM_PARITY_0:
2765 pd_idx = 0;
2766 (*dd_idx)++;
2767 break;
2768 case ALGORITHM_PARITY_N:
2769 pd_idx = data_disks;
2770 break;
2771 default:
2772 BUG();
2773 }
2774 break;
2775 case 6:
2776
2777 switch (algorithm) {
2778 case ALGORITHM_LEFT_ASYMMETRIC:
2779 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2780 qd_idx = pd_idx + 1;
2781 if (pd_idx == raid_disks-1) {
2782 (*dd_idx)++; /* Q D D D P */
2783 qd_idx = 0;
2784 } else if (*dd_idx >= pd_idx)
2785 (*dd_idx) += 2; /* D D P Q D */
2786 break;
2787 case ALGORITHM_RIGHT_ASYMMETRIC:
2788 pd_idx = sector_div(stripe2, raid_disks);
2789 qd_idx = pd_idx + 1;
2790 if (pd_idx == raid_disks-1) {
2791 (*dd_idx)++; /* Q D D D P */
2792 qd_idx = 0;
2793 } else if (*dd_idx >= pd_idx)
2794 (*dd_idx) += 2; /* D D P Q D */
2795 break;
2796 case ALGORITHM_LEFT_SYMMETRIC:
2797 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2798 qd_idx = (pd_idx + 1) % raid_disks;
2799 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2800 break;
2801 case ALGORITHM_RIGHT_SYMMETRIC:
2802 pd_idx = sector_div(stripe2, raid_disks);
2803 qd_idx = (pd_idx + 1) % raid_disks;
2804 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2805 break;
2806
2807 case ALGORITHM_PARITY_0:
2808 pd_idx = 0;
2809 qd_idx = 1;
2810 (*dd_idx) += 2;
2811 break;
2812 case ALGORITHM_PARITY_N:
2813 pd_idx = data_disks;
2814 qd_idx = data_disks + 1;
2815 break;
2816
2817 case ALGORITHM_ROTATING_ZERO_RESTART:
2818 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2819 * of blocks for computing Q is different.
2820 */
2821 pd_idx = sector_div(stripe2, raid_disks);
2822 qd_idx = pd_idx + 1;
2823 if (pd_idx == raid_disks-1) {
2824 (*dd_idx)++; /* Q D D D P */
2825 qd_idx = 0;
2826 } else if (*dd_idx >= pd_idx)
2827 (*dd_idx) += 2; /* D D P Q D */
2828 ddf_layout = 1;
2829 break;
2830
2831 case ALGORITHM_ROTATING_N_RESTART:
2832 /* Same a left_asymmetric, by first stripe is
2833 * D D D P Q rather than
2834 * Q D D D P
2835 */
2836 stripe2 += 1;
2837 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2838 qd_idx = pd_idx + 1;
2839 if (pd_idx == raid_disks-1) {
2840 (*dd_idx)++; /* Q D D D P */
2841 qd_idx = 0;
2842 } else if (*dd_idx >= pd_idx)
2843 (*dd_idx) += 2; /* D D P Q D */
2844 ddf_layout = 1;
2845 break;
2846
2847 case ALGORITHM_ROTATING_N_CONTINUE:
2848 /* Same as left_symmetric but Q is before P */
2849 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2850 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2851 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2852 ddf_layout = 1;
2853 break;
2854
2855 case ALGORITHM_LEFT_ASYMMETRIC_6:
2856 /* RAID5 left_asymmetric, with Q on last device */
2857 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2858 if (*dd_idx >= pd_idx)
2859 (*dd_idx)++;
2860 qd_idx = raid_disks - 1;
2861 break;
2862
2863 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2864 pd_idx = sector_div(stripe2, raid_disks-1);
2865 if (*dd_idx >= pd_idx)
2866 (*dd_idx)++;
2867 qd_idx = raid_disks - 1;
2868 break;
2869
2870 case ALGORITHM_LEFT_SYMMETRIC_6:
2871 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2872 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2873 qd_idx = raid_disks - 1;
2874 break;
2875
2876 case ALGORITHM_RIGHT_SYMMETRIC_6:
2877 pd_idx = sector_div(stripe2, raid_disks-1);
2878 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2879 qd_idx = raid_disks - 1;
2880 break;
2881
2882 case ALGORITHM_PARITY_0_6:
2883 pd_idx = 0;
2884 (*dd_idx)++;
2885 qd_idx = raid_disks - 1;
2886 break;
2887
2888 default:
2889 BUG();
2890 }
2891 break;
2892 }
2893
2894 if (sh) {
2895 sh->pd_idx = pd_idx;
2896 sh->qd_idx = qd_idx;
2897 sh->ddf_layout = ddf_layout;
2898 }
2899 /*
2900 * Finally, compute the new sector number
2901 */
2902 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2903 return new_sector;
2904 }
2905
2906 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2907 {
2908 struct r5conf *conf = sh->raid_conf;
2909 int raid_disks = sh->disks;
2910 int data_disks = raid_disks - conf->max_degraded;
2911 sector_t new_sector = sh->sector, check;
2912 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2913 : conf->chunk_sectors;
2914 int algorithm = previous ? conf->prev_algo
2915 : conf->algorithm;
2916 sector_t stripe;
2917 int chunk_offset;
2918 sector_t chunk_number;
2919 int dummy1, dd_idx = i;
2920 sector_t r_sector;
2921 struct stripe_head sh2;
2922
2923 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2924 stripe = new_sector;
2925
2926 if (i == sh->pd_idx)
2927 return 0;
2928 switch(conf->level) {
2929 case 4: break;
2930 case 5:
2931 switch (algorithm) {
2932 case ALGORITHM_LEFT_ASYMMETRIC:
2933 case ALGORITHM_RIGHT_ASYMMETRIC:
2934 if (i > sh->pd_idx)
2935 i--;
2936 break;
2937 case ALGORITHM_LEFT_SYMMETRIC:
2938 case ALGORITHM_RIGHT_SYMMETRIC:
2939 if (i < sh->pd_idx)
2940 i += raid_disks;
2941 i -= (sh->pd_idx + 1);
2942 break;
2943 case ALGORITHM_PARITY_0:
2944 i -= 1;
2945 break;
2946 case ALGORITHM_PARITY_N:
2947 break;
2948 default:
2949 BUG();
2950 }
2951 break;
2952 case 6:
2953 if (i == sh->qd_idx)
2954 return 0; /* It is the Q disk */
2955 switch (algorithm) {
2956 case ALGORITHM_LEFT_ASYMMETRIC:
2957 case ALGORITHM_RIGHT_ASYMMETRIC:
2958 case ALGORITHM_ROTATING_ZERO_RESTART:
2959 case ALGORITHM_ROTATING_N_RESTART:
2960 if (sh->pd_idx == raid_disks-1)
2961 i--; /* Q D D D P */
2962 else if (i > sh->pd_idx)
2963 i -= 2; /* D D P Q D */
2964 break;
2965 case ALGORITHM_LEFT_SYMMETRIC:
2966 case ALGORITHM_RIGHT_SYMMETRIC:
2967 if (sh->pd_idx == raid_disks-1)
2968 i--; /* Q D D D P */
2969 else {
2970 /* D D P Q D */
2971 if (i < sh->pd_idx)
2972 i += raid_disks;
2973 i -= (sh->pd_idx + 2);
2974 }
2975 break;
2976 case ALGORITHM_PARITY_0:
2977 i -= 2;
2978 break;
2979 case ALGORITHM_PARITY_N:
2980 break;
2981 case ALGORITHM_ROTATING_N_CONTINUE:
2982 /* Like left_symmetric, but P is before Q */
2983 if (sh->pd_idx == 0)
2984 i--; /* P D D D Q */
2985 else {
2986 /* D D Q P D */
2987 if (i < sh->pd_idx)
2988 i += raid_disks;
2989 i -= (sh->pd_idx + 1);
2990 }
2991 break;
2992 case ALGORITHM_LEFT_ASYMMETRIC_6:
2993 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2994 if (i > sh->pd_idx)
2995 i--;
2996 break;
2997 case ALGORITHM_LEFT_SYMMETRIC_6:
2998 case ALGORITHM_RIGHT_SYMMETRIC_6:
2999 if (i < sh->pd_idx)
3000 i += data_disks + 1;
3001 i -= (sh->pd_idx + 1);
3002 break;
3003 case ALGORITHM_PARITY_0_6:
3004 i -= 1;
3005 break;
3006 default:
3007 BUG();
3008 }
3009 break;
3010 }
3011
3012 chunk_number = stripe * data_disks + i;
3013 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3014
3015 check = raid5_compute_sector(conf, r_sector,
3016 previous, &dummy1, &sh2);
3017 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3018 || sh2.qd_idx != sh->qd_idx) {
3019 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3020 mdname(conf->mddev));
3021 return 0;
3022 }
3023 return r_sector;
3024 }
3025
3026 /*
3027 * There are cases where we want handle_stripe_dirtying() and
3028 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3029 *
3030 * This function checks whether we want to delay the towrite. Specifically,
3031 * we delay the towrite when:
3032 *
3033 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3034 * stripe has data in journal (for other devices).
3035 *
3036 * In this case, when reading data for the non-overwrite dev, it is
3037 * necessary to handle complex rmw of write back cache (prexor with
3038 * orig_page, and xor with page). To keep read path simple, we would
3039 * like to flush data in journal to RAID disks first, so complex rmw
3040 * is handled in the write patch (handle_stripe_dirtying).
3041 *
3042 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3043 *
3044 * It is important to be able to flush all stripes in raid5-cache.
3045 * Therefore, we need reserve some space on the journal device for
3046 * these flushes. If flush operation includes pending writes to the
3047 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3048 * for the flush out. If we exclude these pending writes from flush
3049 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3050 * Therefore, excluding pending writes in these cases enables more
3051 * efficient use of the journal device.
3052 *
3053 * Note: To make sure the stripe makes progress, we only delay
3054 * towrite for stripes with data already in journal (injournal > 0).
3055 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3056 * no_space_stripes list.
3057 *
3058 */
3059 static inline bool delay_towrite(struct r5conf *conf,
3060 struct r5dev *dev,
3061 struct stripe_head_state *s)
3062 {
3063 /* case 1 above */
3064 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3065 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3066 return true;
3067 /* case 2 above */
3068 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3069 s->injournal > 0)
3070 return true;
3071 return false;
3072 }
3073
3074 static void
3075 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3076 int rcw, int expand)
3077 {
3078 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3079 struct r5conf *conf = sh->raid_conf;
3080 int level = conf->level;
3081
3082 if (rcw) {
3083 /*
3084 * In some cases, handle_stripe_dirtying initially decided to
3085 * run rmw and allocates extra page for prexor. However, rcw is
3086 * cheaper later on. We need to free the extra page now,
3087 * because we won't be able to do that in ops_complete_prexor().
3088 */
3089 r5c_release_extra_page(sh);
3090
3091 for (i = disks; i--; ) {
3092 struct r5dev *dev = &sh->dev[i];
3093
3094 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3095 set_bit(R5_LOCKED, &dev->flags);
3096 set_bit(R5_Wantdrain, &dev->flags);
3097 if (!expand)
3098 clear_bit(R5_UPTODATE, &dev->flags);
3099 s->locked++;
3100 } else if (test_bit(R5_InJournal, &dev->flags)) {
3101 set_bit(R5_LOCKED, &dev->flags);
3102 s->locked++;
3103 }
3104 }
3105 /* if we are not expanding this is a proper write request, and
3106 * there will be bios with new data to be drained into the
3107 * stripe cache
3108 */
3109 if (!expand) {
3110 if (!s->locked)
3111 /* False alarm, nothing to do */
3112 return;
3113 sh->reconstruct_state = reconstruct_state_drain_run;
3114 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3115 } else
3116 sh->reconstruct_state = reconstruct_state_run;
3117
3118 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3119
3120 if (s->locked + conf->max_degraded == disks)
3121 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3122 atomic_inc(&conf->pending_full_writes);
3123 } else {
3124 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3125 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3126 BUG_ON(level == 6 &&
3127 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3128 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3129
3130 for (i = disks; i--; ) {
3131 struct r5dev *dev = &sh->dev[i];
3132 if (i == pd_idx || i == qd_idx)
3133 continue;
3134
3135 if (dev->towrite &&
3136 (test_bit(R5_UPTODATE, &dev->flags) ||
3137 test_bit(R5_Wantcompute, &dev->flags))) {
3138 set_bit(R5_Wantdrain, &dev->flags);
3139 set_bit(R5_LOCKED, &dev->flags);
3140 clear_bit(R5_UPTODATE, &dev->flags);
3141 s->locked++;
3142 } else if (test_bit(R5_InJournal, &dev->flags)) {
3143 set_bit(R5_LOCKED, &dev->flags);
3144 s->locked++;
3145 }
3146 }
3147 if (!s->locked)
3148 /* False alarm - nothing to do */
3149 return;
3150 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3151 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3152 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3153 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3154 }
3155
3156 /* keep the parity disk(s) locked while asynchronous operations
3157 * are in flight
3158 */
3159 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3160 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3161 s->locked++;
3162
3163 if (level == 6) {
3164 int qd_idx = sh->qd_idx;
3165 struct r5dev *dev = &sh->dev[qd_idx];
3166
3167 set_bit(R5_LOCKED, &dev->flags);
3168 clear_bit(R5_UPTODATE, &dev->flags);
3169 s->locked++;
3170 }
3171
3172 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3173 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3174 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3175 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3176 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3177
3178 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3179 __func__, (unsigned long long)sh->sector,
3180 s->locked, s->ops_request);
3181 }
3182
3183 /*
3184 * Each stripe/dev can have one or more bion attached.
3185 * toread/towrite point to the first in a chain.
3186 * The bi_next chain must be in order.
3187 */
3188 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3189 int forwrite, int previous)
3190 {
3191 struct bio **bip;
3192 struct r5conf *conf = sh->raid_conf;
3193 int firstwrite=0;
3194
3195 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3196 (unsigned long long)bi->bi_iter.bi_sector,
3197 (unsigned long long)sh->sector);
3198
3199 spin_lock_irq(&sh->stripe_lock);
3200 /* Don't allow new IO added to stripes in batch list */
3201 if (sh->batch_head)
3202 goto overlap;
3203 if (forwrite) {
3204 bip = &sh->dev[dd_idx].towrite;
3205 if (*bip == NULL)
3206 firstwrite = 1;
3207 } else
3208 bip = &sh->dev[dd_idx].toread;
3209 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3210 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3211 goto overlap;
3212 bip = & (*bip)->bi_next;
3213 }
3214 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3215 goto overlap;
3216
3217 if (forwrite && raid5_has_ppl(conf)) {
3218 /*
3219 * With PPL only writes to consecutive data chunks within a
3220 * stripe are allowed because for a single stripe_head we can
3221 * only have one PPL entry at a time, which describes one data
3222 * range. Not really an overlap, but wait_for_overlap can be
3223 * used to handle this.
3224 */
3225 sector_t sector;
3226 sector_t first = 0;
3227 sector_t last = 0;
3228 int count = 0;
3229 int i;
3230
3231 for (i = 0; i < sh->disks; i++) {
3232 if (i != sh->pd_idx &&
3233 (i == dd_idx || sh->dev[i].towrite)) {
3234 sector = sh->dev[i].sector;
3235 if (count == 0 || sector < first)
3236 first = sector;
3237 if (sector > last)
3238 last = sector;
3239 count++;
3240 }
3241 }
3242
3243 if (first + conf->chunk_sectors * (count - 1) != last)
3244 goto overlap;
3245 }
3246
3247 if (!forwrite || previous)
3248 clear_bit(STRIPE_BATCH_READY, &sh->state);
3249
3250 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3251 if (*bip)
3252 bi->bi_next = *bip;
3253 *bip = bi;
3254 bio_inc_remaining(bi);
3255 md_write_inc(conf->mddev, bi);
3256
3257 if (forwrite) {
3258 /* check if page is covered */
3259 sector_t sector = sh->dev[dd_idx].sector;
3260 for (bi=sh->dev[dd_idx].towrite;
3261 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3262 bi && bi->bi_iter.bi_sector <= sector;
3263 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3264 if (bio_end_sector(bi) >= sector)
3265 sector = bio_end_sector(bi);
3266 }
3267 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3268 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3269 sh->overwrite_disks++;
3270 }
3271
3272 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3273 (unsigned long long)(*bip)->bi_iter.bi_sector,
3274 (unsigned long long)sh->sector, dd_idx);
3275
3276 if (conf->mddev->bitmap && firstwrite) {
3277 /* Cannot hold spinlock over bitmap_startwrite,
3278 * but must ensure this isn't added to a batch until
3279 * we have added to the bitmap and set bm_seq.
3280 * So set STRIPE_BITMAP_PENDING to prevent
3281 * batching.
3282 * If multiple add_stripe_bio() calls race here they
3283 * much all set STRIPE_BITMAP_PENDING. So only the first one
3284 * to complete "bitmap_startwrite" gets to set
3285 * STRIPE_BIT_DELAY. This is important as once a stripe
3286 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3287 * any more.
3288 */
3289 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3290 spin_unlock_irq(&sh->stripe_lock);
3291 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3292 STRIPE_SECTORS, 0);
3293 spin_lock_irq(&sh->stripe_lock);
3294 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3295 if (!sh->batch_head) {
3296 sh->bm_seq = conf->seq_flush+1;
3297 set_bit(STRIPE_BIT_DELAY, &sh->state);
3298 }
3299 }
3300 spin_unlock_irq(&sh->stripe_lock);
3301
3302 if (stripe_can_batch(sh))
3303 stripe_add_to_batch_list(conf, sh);
3304 return 1;
3305
3306 overlap:
3307 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3308 spin_unlock_irq(&sh->stripe_lock);
3309 return 0;
3310 }
3311
3312 static void end_reshape(struct r5conf *conf);
3313
3314 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3315 struct stripe_head *sh)
3316 {
3317 int sectors_per_chunk =
3318 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3319 int dd_idx;
3320 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3321 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3322
3323 raid5_compute_sector(conf,
3324 stripe * (disks - conf->max_degraded)
3325 *sectors_per_chunk + chunk_offset,
3326 previous,
3327 &dd_idx, sh);
3328 }
3329
3330 static void
3331 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3332 struct stripe_head_state *s, int disks)
3333 {
3334 int i;
3335 BUG_ON(sh->batch_head);
3336 for (i = disks; i--; ) {
3337 struct bio *bi;
3338 int bitmap_end = 0;
3339
3340 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3341 struct md_rdev *rdev;
3342 rcu_read_lock();
3343 rdev = rcu_dereference(conf->disks[i].rdev);
3344 if (rdev && test_bit(In_sync, &rdev->flags) &&
3345 !test_bit(Faulty, &rdev->flags))
3346 atomic_inc(&rdev->nr_pending);
3347 else
3348 rdev = NULL;
3349 rcu_read_unlock();
3350 if (rdev) {
3351 if (!rdev_set_badblocks(
3352 rdev,
3353 sh->sector,
3354 STRIPE_SECTORS, 0))
3355 md_error(conf->mddev, rdev);
3356 rdev_dec_pending(rdev, conf->mddev);
3357 }
3358 }
3359 spin_lock_irq(&sh->stripe_lock);
3360 /* fail all writes first */
3361 bi = sh->dev[i].towrite;
3362 sh->dev[i].towrite = NULL;
3363 sh->overwrite_disks = 0;
3364 spin_unlock_irq(&sh->stripe_lock);
3365 if (bi)
3366 bitmap_end = 1;
3367
3368 log_stripe_write_finished(sh);
3369
3370 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3371 wake_up(&conf->wait_for_overlap);
3372
3373 while (bi && bi->bi_iter.bi_sector <
3374 sh->dev[i].sector + STRIPE_SECTORS) {
3375 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3376
3377 bi->bi_error = -EIO;
3378 md_write_end(conf->mddev);
3379 bio_endio(bi);
3380 bi = nextbi;
3381 }
3382 if (bitmap_end)
3383 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3384 STRIPE_SECTORS, 0, 0);
3385 bitmap_end = 0;
3386 /* and fail all 'written' */
3387 bi = sh->dev[i].written;
3388 sh->dev[i].written = NULL;
3389 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3390 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3391 sh->dev[i].page = sh->dev[i].orig_page;
3392 }
3393
3394 if (bi) bitmap_end = 1;
3395 while (bi && bi->bi_iter.bi_sector <
3396 sh->dev[i].sector + STRIPE_SECTORS) {
3397 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3398
3399 bi->bi_error = -EIO;
3400 md_write_end(conf->mddev);
3401 bio_endio(bi);
3402 bi = bi2;
3403 }
3404
3405 /* fail any reads if this device is non-operational and
3406 * the data has not reached the cache yet.
3407 */
3408 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3409 s->failed > conf->max_degraded &&
3410 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3411 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3412 spin_lock_irq(&sh->stripe_lock);
3413 bi = sh->dev[i].toread;
3414 sh->dev[i].toread = NULL;
3415 spin_unlock_irq(&sh->stripe_lock);
3416 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3417 wake_up(&conf->wait_for_overlap);
3418 if (bi)
3419 s->to_read--;
3420 while (bi && bi->bi_iter.bi_sector <
3421 sh->dev[i].sector + STRIPE_SECTORS) {
3422 struct bio *nextbi =
3423 r5_next_bio(bi, sh->dev[i].sector);
3424
3425 bi->bi_error = -EIO;
3426 bio_endio(bi);
3427 bi = nextbi;
3428 }
3429 }
3430 if (bitmap_end)
3431 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3432 STRIPE_SECTORS, 0, 0);
3433 /* If we were in the middle of a write the parity block might
3434 * still be locked - so just clear all R5_LOCKED flags
3435 */
3436 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3437 }
3438 s->to_write = 0;
3439 s->written = 0;
3440
3441 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3442 if (atomic_dec_and_test(&conf->pending_full_writes))
3443 md_wakeup_thread(conf->mddev->thread);
3444 }
3445
3446 static void
3447 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3448 struct stripe_head_state *s)
3449 {
3450 int abort = 0;
3451 int i;
3452
3453 BUG_ON(sh->batch_head);
3454 clear_bit(STRIPE_SYNCING, &sh->state);
3455 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3456 wake_up(&conf->wait_for_overlap);
3457 s->syncing = 0;
3458 s->replacing = 0;
3459 /* There is nothing more to do for sync/check/repair.
3460 * Don't even need to abort as that is handled elsewhere
3461 * if needed, and not always wanted e.g. if there is a known
3462 * bad block here.
3463 * For recover/replace we need to record a bad block on all
3464 * non-sync devices, or abort the recovery
3465 */
3466 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3467 /* During recovery devices cannot be removed, so
3468 * locking and refcounting of rdevs is not needed
3469 */
3470 rcu_read_lock();
3471 for (i = 0; i < conf->raid_disks; i++) {
3472 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3473 if (rdev
3474 && !test_bit(Faulty, &rdev->flags)
3475 && !test_bit(In_sync, &rdev->flags)
3476 && !rdev_set_badblocks(rdev, sh->sector,
3477 STRIPE_SECTORS, 0))
3478 abort = 1;
3479 rdev = rcu_dereference(conf->disks[i].replacement);
3480 if (rdev
3481 && !test_bit(Faulty, &rdev->flags)
3482 && !test_bit(In_sync, &rdev->flags)
3483 && !rdev_set_badblocks(rdev, sh->sector,
3484 STRIPE_SECTORS, 0))
3485 abort = 1;
3486 }
3487 rcu_read_unlock();
3488 if (abort)
3489 conf->recovery_disabled =
3490 conf->mddev->recovery_disabled;
3491 }
3492 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3493 }
3494
3495 static int want_replace(struct stripe_head *sh, int disk_idx)
3496 {
3497 struct md_rdev *rdev;
3498 int rv = 0;
3499
3500 rcu_read_lock();
3501 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3502 if (rdev
3503 && !test_bit(Faulty, &rdev->flags)
3504 && !test_bit(In_sync, &rdev->flags)
3505 && (rdev->recovery_offset <= sh->sector
3506 || rdev->mddev->recovery_cp <= sh->sector))
3507 rv = 1;
3508 rcu_read_unlock();
3509 return rv;
3510 }
3511
3512 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3513 int disk_idx, int disks)
3514 {
3515 struct r5dev *dev = &sh->dev[disk_idx];
3516 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3517 &sh->dev[s->failed_num[1]] };
3518 int i;
3519
3520
3521 if (test_bit(R5_LOCKED, &dev->flags) ||
3522 test_bit(R5_UPTODATE, &dev->flags))
3523 /* No point reading this as we already have it or have
3524 * decided to get it.
3525 */
3526 return 0;
3527
3528 if (dev->toread ||
3529 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3530 /* We need this block to directly satisfy a request */
3531 return 1;
3532
3533 if (s->syncing || s->expanding ||
3534 (s->replacing && want_replace(sh, disk_idx)))
3535 /* When syncing, or expanding we read everything.
3536 * When replacing, we need the replaced block.
3537 */
3538 return 1;
3539
3540 if ((s->failed >= 1 && fdev[0]->toread) ||
3541 (s->failed >= 2 && fdev[1]->toread))
3542 /* If we want to read from a failed device, then
3543 * we need to actually read every other device.
3544 */
3545 return 1;
3546
3547 /* Sometimes neither read-modify-write nor reconstruct-write
3548 * cycles can work. In those cases we read every block we
3549 * can. Then the parity-update is certain to have enough to
3550 * work with.
3551 * This can only be a problem when we need to write something,
3552 * and some device has failed. If either of those tests
3553 * fail we need look no further.
3554 */
3555 if (!s->failed || !s->to_write)
3556 return 0;
3557
3558 if (test_bit(R5_Insync, &dev->flags) &&
3559 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3560 /* Pre-reads at not permitted until after short delay
3561 * to gather multiple requests. However if this
3562 * device is no Insync, the block could only be computed
3563 * and there is no need to delay that.
3564 */
3565 return 0;
3566
3567 for (i = 0; i < s->failed && i < 2; i++) {
3568 if (fdev[i]->towrite &&
3569 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3570 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3571 /* If we have a partial write to a failed
3572 * device, then we will need to reconstruct
3573 * the content of that device, so all other
3574 * devices must be read.
3575 */
3576 return 1;
3577 }
3578
3579 /* If we are forced to do a reconstruct-write, either because
3580 * the current RAID6 implementation only supports that, or
3581 * because parity cannot be trusted and we are currently
3582 * recovering it, there is extra need to be careful.
3583 * If one of the devices that we would need to read, because
3584 * it is not being overwritten (and maybe not written at all)
3585 * is missing/faulty, then we need to read everything we can.
3586 */
3587 if (sh->raid_conf->level != 6 &&
3588 sh->sector < sh->raid_conf->mddev->recovery_cp)
3589 /* reconstruct-write isn't being forced */
3590 return 0;
3591 for (i = 0; i < s->failed && i < 2; i++) {
3592 if (s->failed_num[i] != sh->pd_idx &&
3593 s->failed_num[i] != sh->qd_idx &&
3594 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3595 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3596 return 1;
3597 }
3598
3599 return 0;
3600 }
3601
3602 /* fetch_block - checks the given member device to see if its data needs
3603 * to be read or computed to satisfy a request.
3604 *
3605 * Returns 1 when no more member devices need to be checked, otherwise returns
3606 * 0 to tell the loop in handle_stripe_fill to continue
3607 */
3608 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3609 int disk_idx, int disks)
3610 {
3611 struct r5dev *dev = &sh->dev[disk_idx];
3612
3613 /* is the data in this block needed, and can we get it? */
3614 if (need_this_block(sh, s, disk_idx, disks)) {
3615 /* we would like to get this block, possibly by computing it,
3616 * otherwise read it if the backing disk is insync
3617 */
3618 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3619 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3620 BUG_ON(sh->batch_head);
3621
3622 /*
3623 * In the raid6 case if the only non-uptodate disk is P
3624 * then we already trusted P to compute the other failed
3625 * drives. It is safe to compute rather than re-read P.
3626 * In other cases we only compute blocks from failed
3627 * devices, otherwise check/repair might fail to detect
3628 * a real inconsistency.
3629 */
3630
3631 if ((s->uptodate == disks - 1) &&
3632 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3633 (s->failed && (disk_idx == s->failed_num[0] ||
3634 disk_idx == s->failed_num[1])))) {
3635 /* have disk failed, and we're requested to fetch it;
3636 * do compute it
3637 */
3638 pr_debug("Computing stripe %llu block %d\n",
3639 (unsigned long long)sh->sector, disk_idx);
3640 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3641 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3642 set_bit(R5_Wantcompute, &dev->flags);
3643 sh->ops.target = disk_idx;
3644 sh->ops.target2 = -1; /* no 2nd target */
3645 s->req_compute = 1;
3646 /* Careful: from this point on 'uptodate' is in the eye
3647 * of raid_run_ops which services 'compute' operations
3648 * before writes. R5_Wantcompute flags a block that will
3649 * be R5_UPTODATE by the time it is needed for a
3650 * subsequent operation.
3651 */
3652 s->uptodate++;
3653 return 1;
3654 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3655 /* Computing 2-failure is *very* expensive; only
3656 * do it if failed >= 2
3657 */
3658 int other;
3659 for (other = disks; other--; ) {
3660 if (other == disk_idx)
3661 continue;
3662 if (!test_bit(R5_UPTODATE,
3663 &sh->dev[other].flags))
3664 break;
3665 }
3666 BUG_ON(other < 0);
3667 pr_debug("Computing stripe %llu blocks %d,%d\n",
3668 (unsigned long long)sh->sector,
3669 disk_idx, other);
3670 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3671 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3672 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3673 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3674 sh->ops.target = disk_idx;
3675 sh->ops.target2 = other;
3676 s->uptodate += 2;
3677 s->req_compute = 1;
3678 return 1;
3679 } else if (test_bit(R5_Insync, &dev->flags)) {
3680 set_bit(R5_LOCKED, &dev->flags);
3681 set_bit(R5_Wantread, &dev->flags);
3682 s->locked++;
3683 pr_debug("Reading block %d (sync=%d)\n",
3684 disk_idx, s->syncing);
3685 }
3686 }
3687
3688 return 0;
3689 }
3690
3691 /**
3692 * handle_stripe_fill - read or compute data to satisfy pending requests.
3693 */
3694 static void handle_stripe_fill(struct stripe_head *sh,
3695 struct stripe_head_state *s,
3696 int disks)
3697 {
3698 int i;
3699
3700 /* look for blocks to read/compute, skip this if a compute
3701 * is already in flight, or if the stripe contents are in the
3702 * midst of changing due to a write
3703 */
3704 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3705 !sh->reconstruct_state) {
3706
3707 /*
3708 * For degraded stripe with data in journal, do not handle
3709 * read requests yet, instead, flush the stripe to raid
3710 * disks first, this avoids handling complex rmw of write
3711 * back cache (prexor with orig_page, and then xor with
3712 * page) in the read path
3713 */
3714 if (s->injournal && s->failed) {
3715 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3716 r5c_make_stripe_write_out(sh);
3717 goto out;
3718 }
3719
3720 for (i = disks; i--; )
3721 if (fetch_block(sh, s, i, disks))
3722 break;
3723 }
3724 out:
3725 set_bit(STRIPE_HANDLE, &sh->state);
3726 }
3727
3728 static void break_stripe_batch_list(struct stripe_head *head_sh,
3729 unsigned long handle_flags);
3730 /* handle_stripe_clean_event
3731 * any written block on an uptodate or failed drive can be returned.
3732 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3733 * never LOCKED, so we don't need to test 'failed' directly.
3734 */
3735 static void handle_stripe_clean_event(struct r5conf *conf,
3736 struct stripe_head *sh, int disks)
3737 {
3738 int i;
3739 struct r5dev *dev;
3740 int discard_pending = 0;
3741 struct stripe_head *head_sh = sh;
3742 bool do_endio = false;
3743
3744 for (i = disks; i--; )
3745 if (sh->dev[i].written) {
3746 dev = &sh->dev[i];
3747 if (!test_bit(R5_LOCKED, &dev->flags) &&
3748 (test_bit(R5_UPTODATE, &dev->flags) ||
3749 test_bit(R5_Discard, &dev->flags) ||
3750 test_bit(R5_SkipCopy, &dev->flags))) {
3751 /* We can return any write requests */
3752 struct bio *wbi, *wbi2;
3753 pr_debug("Return write for disc %d\n", i);
3754 if (test_and_clear_bit(R5_Discard, &dev->flags))
3755 clear_bit(R5_UPTODATE, &dev->flags);
3756 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3757 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3758 }
3759 do_endio = true;
3760
3761 returnbi:
3762 dev->page = dev->orig_page;
3763 wbi = dev->written;
3764 dev->written = NULL;
3765 while (wbi && wbi->bi_iter.bi_sector <
3766 dev->sector + STRIPE_SECTORS) {
3767 wbi2 = r5_next_bio(wbi, dev->sector);
3768 md_write_end(conf->mddev);
3769 bio_endio(wbi);
3770 wbi = wbi2;
3771 }
3772 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3773 STRIPE_SECTORS,
3774 !test_bit(STRIPE_DEGRADED, &sh->state),
3775 0);
3776 if (head_sh->batch_head) {
3777 sh = list_first_entry(&sh->batch_list,
3778 struct stripe_head,
3779 batch_list);
3780 if (sh != head_sh) {
3781 dev = &sh->dev[i];
3782 goto returnbi;
3783 }
3784 }
3785 sh = head_sh;
3786 dev = &sh->dev[i];
3787 } else if (test_bit(R5_Discard, &dev->flags))
3788 discard_pending = 1;
3789 }
3790
3791 log_stripe_write_finished(sh);
3792
3793 if (!discard_pending &&
3794 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3795 int hash;
3796 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3797 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3798 if (sh->qd_idx >= 0) {
3799 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3800 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3801 }
3802 /* now that discard is done we can proceed with any sync */
3803 clear_bit(STRIPE_DISCARD, &sh->state);
3804 /*
3805 * SCSI discard will change some bio fields and the stripe has
3806 * no updated data, so remove it from hash list and the stripe
3807 * will be reinitialized
3808 */
3809 unhash:
3810 hash = sh->hash_lock_index;
3811 spin_lock_irq(conf->hash_locks + hash);
3812 remove_hash(sh);
3813 spin_unlock_irq(conf->hash_locks + hash);
3814 if (head_sh->batch_head) {
3815 sh = list_first_entry(&sh->batch_list,
3816 struct stripe_head, batch_list);
3817 if (sh != head_sh)
3818 goto unhash;
3819 }
3820 sh = head_sh;
3821
3822 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3823 set_bit(STRIPE_HANDLE, &sh->state);
3824
3825 }
3826
3827 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3828 if (atomic_dec_and_test(&conf->pending_full_writes))
3829 md_wakeup_thread(conf->mddev->thread);
3830
3831 if (head_sh->batch_head && do_endio)
3832 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3833 }
3834
3835 /*
3836 * For RMW in write back cache, we need extra page in prexor to store the
3837 * old data. This page is stored in dev->orig_page.
3838 *
3839 * This function checks whether we have data for prexor. The exact logic
3840 * is:
3841 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3842 */
3843 static inline bool uptodate_for_rmw(struct r5dev *dev)
3844 {
3845 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3846 (!test_bit(R5_InJournal, &dev->flags) ||
3847 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3848 }
3849
3850 static int handle_stripe_dirtying(struct r5conf *conf,
3851 struct stripe_head *sh,
3852 struct stripe_head_state *s,
3853 int disks)
3854 {
3855 int rmw = 0, rcw = 0, i;
3856 sector_t recovery_cp = conf->mddev->recovery_cp;
3857
3858 /* Check whether resync is now happening or should start.
3859 * If yes, then the array is dirty (after unclean shutdown or
3860 * initial creation), so parity in some stripes might be inconsistent.
3861 * In this case, we need to always do reconstruct-write, to ensure
3862 * that in case of drive failure or read-error correction, we
3863 * generate correct data from the parity.
3864 */
3865 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3866 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3867 s->failed == 0)) {
3868 /* Calculate the real rcw later - for now make it
3869 * look like rcw is cheaper
3870 */
3871 rcw = 1; rmw = 2;
3872 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3873 conf->rmw_level, (unsigned long long)recovery_cp,
3874 (unsigned long long)sh->sector);
3875 } else for (i = disks; i--; ) {
3876 /* would I have to read this buffer for read_modify_write */
3877 struct r5dev *dev = &sh->dev[i];
3878 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3879 i == sh->pd_idx || i == sh->qd_idx ||
3880 test_bit(R5_InJournal, &dev->flags)) &&
3881 !test_bit(R5_LOCKED, &dev->flags) &&
3882 !(uptodate_for_rmw(dev) ||
3883 test_bit(R5_Wantcompute, &dev->flags))) {
3884 if (test_bit(R5_Insync, &dev->flags))
3885 rmw++;
3886 else
3887 rmw += 2*disks; /* cannot read it */
3888 }
3889 /* Would I have to read this buffer for reconstruct_write */
3890 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3891 i != sh->pd_idx && i != sh->qd_idx &&
3892 !test_bit(R5_LOCKED, &dev->flags) &&
3893 !(test_bit(R5_UPTODATE, &dev->flags) ||
3894 test_bit(R5_Wantcompute, &dev->flags))) {
3895 if (test_bit(R5_Insync, &dev->flags))
3896 rcw++;
3897 else
3898 rcw += 2*disks;
3899 }
3900 }
3901
3902 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3903 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3904 set_bit(STRIPE_HANDLE, &sh->state);
3905 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3906 /* prefer read-modify-write, but need to get some data */
3907 if (conf->mddev->queue)
3908 blk_add_trace_msg(conf->mddev->queue,
3909 "raid5 rmw %llu %d",
3910 (unsigned long long)sh->sector, rmw);
3911 for (i = disks; i--; ) {
3912 struct r5dev *dev = &sh->dev[i];
3913 if (test_bit(R5_InJournal, &dev->flags) &&
3914 dev->page == dev->orig_page &&
3915 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3916 /* alloc page for prexor */
3917 struct page *p = alloc_page(GFP_NOIO);
3918
3919 if (p) {
3920 dev->orig_page = p;
3921 continue;
3922 }
3923
3924 /*
3925 * alloc_page() failed, try use
3926 * disk_info->extra_page
3927 */
3928 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3929 &conf->cache_state)) {
3930 r5c_use_extra_page(sh);
3931 break;
3932 }
3933
3934 /* extra_page in use, add to delayed_list */
3935 set_bit(STRIPE_DELAYED, &sh->state);
3936 s->waiting_extra_page = 1;
3937 return -EAGAIN;
3938 }
3939 }
3940
3941 for (i = disks; i--; ) {
3942 struct r5dev *dev = &sh->dev[i];
3943 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3944 i == sh->pd_idx || i == sh->qd_idx ||
3945 test_bit(R5_InJournal, &dev->flags)) &&
3946 !test_bit(R5_LOCKED, &dev->flags) &&
3947 !(uptodate_for_rmw(dev) ||
3948 test_bit(R5_Wantcompute, &dev->flags)) &&
3949 test_bit(R5_Insync, &dev->flags)) {
3950 if (test_bit(STRIPE_PREREAD_ACTIVE,
3951 &sh->state)) {
3952 pr_debug("Read_old block %d for r-m-w\n",
3953 i);
3954 set_bit(R5_LOCKED, &dev->flags);
3955 set_bit(R5_Wantread, &dev->flags);
3956 s->locked++;
3957 } else {
3958 set_bit(STRIPE_DELAYED, &sh->state);
3959 set_bit(STRIPE_HANDLE, &sh->state);
3960 }
3961 }
3962 }
3963 }
3964 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3965 /* want reconstruct write, but need to get some data */
3966 int qread =0;
3967 rcw = 0;
3968 for (i = disks; i--; ) {
3969 struct r5dev *dev = &sh->dev[i];
3970 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3971 i != sh->pd_idx && i != sh->qd_idx &&
3972 !test_bit(R5_LOCKED, &dev->flags) &&
3973 !(test_bit(R5_UPTODATE, &dev->flags) ||
3974 test_bit(R5_Wantcompute, &dev->flags))) {
3975 rcw++;
3976 if (test_bit(R5_Insync, &dev->flags) &&
3977 test_bit(STRIPE_PREREAD_ACTIVE,
3978 &sh->state)) {
3979 pr_debug("Read_old block "
3980 "%d for Reconstruct\n", i);
3981 set_bit(R5_LOCKED, &dev->flags);
3982 set_bit(R5_Wantread, &dev->flags);
3983 s->locked++;
3984 qread++;
3985 } else {
3986 set_bit(STRIPE_DELAYED, &sh->state);
3987 set_bit(STRIPE_HANDLE, &sh->state);
3988 }
3989 }
3990 }
3991 if (rcw && conf->mddev->queue)
3992 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3993 (unsigned long long)sh->sector,
3994 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3995 }
3996
3997 if (rcw > disks && rmw > disks &&
3998 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3999 set_bit(STRIPE_DELAYED, &sh->state);
4000
4001 /* now if nothing is locked, and if we have enough data,
4002 * we can start a write request
4003 */
4004 /* since handle_stripe can be called at any time we need to handle the
4005 * case where a compute block operation has been submitted and then a
4006 * subsequent call wants to start a write request. raid_run_ops only
4007 * handles the case where compute block and reconstruct are requested
4008 * simultaneously. If this is not the case then new writes need to be
4009 * held off until the compute completes.
4010 */
4011 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4012 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4013 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4014 schedule_reconstruction(sh, s, rcw == 0, 0);
4015 return 0;
4016 }
4017
4018 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4019 struct stripe_head_state *s, int disks)
4020 {
4021 struct r5dev *dev = NULL;
4022
4023 BUG_ON(sh->batch_head);
4024 set_bit(STRIPE_HANDLE, &sh->state);
4025
4026 switch (sh->check_state) {
4027 case check_state_idle:
4028 /* start a new check operation if there are no failures */
4029 if (s->failed == 0) {
4030 BUG_ON(s->uptodate != disks);
4031 sh->check_state = check_state_run;
4032 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4033 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4034 s->uptodate--;
4035 break;
4036 }
4037 dev = &sh->dev[s->failed_num[0]];
4038 /* fall through */
4039 case check_state_compute_result:
4040 sh->check_state = check_state_idle;
4041 if (!dev)
4042 dev = &sh->dev[sh->pd_idx];
4043
4044 /* check that a write has not made the stripe insync */
4045 if (test_bit(STRIPE_INSYNC, &sh->state))
4046 break;
4047
4048 /* either failed parity check, or recovery is happening */
4049 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4050 BUG_ON(s->uptodate != disks);
4051
4052 set_bit(R5_LOCKED, &dev->flags);
4053 s->locked++;
4054 set_bit(R5_Wantwrite, &dev->flags);
4055
4056 clear_bit(STRIPE_DEGRADED, &sh->state);
4057 set_bit(STRIPE_INSYNC, &sh->state);
4058 break;
4059 case check_state_run:
4060 break; /* we will be called again upon completion */
4061 case check_state_check_result:
4062 sh->check_state = check_state_idle;
4063
4064 /* if a failure occurred during the check operation, leave
4065 * STRIPE_INSYNC not set and let the stripe be handled again
4066 */
4067 if (s->failed)
4068 break;
4069
4070 /* handle a successful check operation, if parity is correct
4071 * we are done. Otherwise update the mismatch count and repair
4072 * parity if !MD_RECOVERY_CHECK
4073 */
4074 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4075 /* parity is correct (on disc,
4076 * not in buffer any more)
4077 */
4078 set_bit(STRIPE_INSYNC, &sh->state);
4079 else {
4080 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4081 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4082 /* don't try to repair!! */
4083 set_bit(STRIPE_INSYNC, &sh->state);
4084 else {
4085 sh->check_state = check_state_compute_run;
4086 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4087 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4088 set_bit(R5_Wantcompute,
4089 &sh->dev[sh->pd_idx].flags);
4090 sh->ops.target = sh->pd_idx;
4091 sh->ops.target2 = -1;
4092 s->uptodate++;
4093 }
4094 }
4095 break;
4096 case check_state_compute_run:
4097 break;
4098 default:
4099 pr_err("%s: unknown check_state: %d sector: %llu\n",
4100 __func__, sh->check_state,
4101 (unsigned long long) sh->sector);
4102 BUG();
4103 }
4104 }
4105
4106 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4107 struct stripe_head_state *s,
4108 int disks)
4109 {
4110 int pd_idx = sh->pd_idx;
4111 int qd_idx = sh->qd_idx;
4112 struct r5dev *dev;
4113
4114 BUG_ON(sh->batch_head);
4115 set_bit(STRIPE_HANDLE, &sh->state);
4116
4117 BUG_ON(s->failed > 2);
4118
4119 /* Want to check and possibly repair P and Q.
4120 * However there could be one 'failed' device, in which
4121 * case we can only check one of them, possibly using the
4122 * other to generate missing data
4123 */
4124
4125 switch (sh->check_state) {
4126 case check_state_idle:
4127 /* start a new check operation if there are < 2 failures */
4128 if (s->failed == s->q_failed) {
4129 /* The only possible failed device holds Q, so it
4130 * makes sense to check P (If anything else were failed,
4131 * we would have used P to recreate it).
4132 */
4133 sh->check_state = check_state_run;
4134 }
4135 if (!s->q_failed && s->failed < 2) {
4136 /* Q is not failed, and we didn't use it to generate
4137 * anything, so it makes sense to check it
4138 */
4139 if (sh->check_state == check_state_run)
4140 sh->check_state = check_state_run_pq;
4141 else
4142 sh->check_state = check_state_run_q;
4143 }
4144
4145 /* discard potentially stale zero_sum_result */
4146 sh->ops.zero_sum_result = 0;
4147
4148 if (sh->check_state == check_state_run) {
4149 /* async_xor_zero_sum destroys the contents of P */
4150 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4151 s->uptodate--;
4152 }
4153 if (sh->check_state >= check_state_run &&
4154 sh->check_state <= check_state_run_pq) {
4155 /* async_syndrome_zero_sum preserves P and Q, so
4156 * no need to mark them !uptodate here
4157 */
4158 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4159 break;
4160 }
4161
4162 /* we have 2-disk failure */
4163 BUG_ON(s->failed != 2);
4164 /* fall through */
4165 case check_state_compute_result:
4166 sh->check_state = check_state_idle;
4167
4168 /* check that a write has not made the stripe insync */
4169 if (test_bit(STRIPE_INSYNC, &sh->state))
4170 break;
4171
4172 /* now write out any block on a failed drive,
4173 * or P or Q if they were recomputed
4174 */
4175 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4176 if (s->failed == 2) {
4177 dev = &sh->dev[s->failed_num[1]];
4178 s->locked++;
4179 set_bit(R5_LOCKED, &dev->flags);
4180 set_bit(R5_Wantwrite, &dev->flags);
4181 }
4182 if (s->failed >= 1) {
4183 dev = &sh->dev[s->failed_num[0]];
4184 s->locked++;
4185 set_bit(R5_LOCKED, &dev->flags);
4186 set_bit(R5_Wantwrite, &dev->flags);
4187 }
4188 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4189 dev = &sh->dev[pd_idx];
4190 s->locked++;
4191 set_bit(R5_LOCKED, &dev->flags);
4192 set_bit(R5_Wantwrite, &dev->flags);
4193 }
4194 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4195 dev = &sh->dev[qd_idx];
4196 s->locked++;
4197 set_bit(R5_LOCKED, &dev->flags);
4198 set_bit(R5_Wantwrite, &dev->flags);
4199 }
4200 clear_bit(STRIPE_DEGRADED, &sh->state);
4201
4202 set_bit(STRIPE_INSYNC, &sh->state);
4203 break;
4204 case check_state_run:
4205 case check_state_run_q:
4206 case check_state_run_pq:
4207 break; /* we will be called again upon completion */
4208 case check_state_check_result:
4209 sh->check_state = check_state_idle;
4210
4211 /* handle a successful check operation, if parity is correct
4212 * we are done. Otherwise update the mismatch count and repair
4213 * parity if !MD_RECOVERY_CHECK
4214 */
4215 if (sh->ops.zero_sum_result == 0) {
4216 /* both parities are correct */
4217 if (!s->failed)
4218 set_bit(STRIPE_INSYNC, &sh->state);
4219 else {
4220 /* in contrast to the raid5 case we can validate
4221 * parity, but still have a failure to write
4222 * back
4223 */
4224 sh->check_state = check_state_compute_result;
4225 /* Returning at this point means that we may go
4226 * off and bring p and/or q uptodate again so
4227 * we make sure to check zero_sum_result again
4228 * to verify if p or q need writeback
4229 */
4230 }
4231 } else {
4232 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4233 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4234 /* don't try to repair!! */
4235 set_bit(STRIPE_INSYNC, &sh->state);
4236 else {
4237 int *target = &sh->ops.target;
4238
4239 sh->ops.target = -1;
4240 sh->ops.target2 = -1;
4241 sh->check_state = check_state_compute_run;
4242 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4243 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4244 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4245 set_bit(R5_Wantcompute,
4246 &sh->dev[pd_idx].flags);
4247 *target = pd_idx;
4248 target = &sh->ops.target2;
4249 s->uptodate++;
4250 }
4251 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4252 set_bit(R5_Wantcompute,
4253 &sh->dev[qd_idx].flags);
4254 *target = qd_idx;
4255 s->uptodate++;
4256 }
4257 }
4258 }
4259 break;
4260 case check_state_compute_run:
4261 break;
4262 default:
4263 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4264 __func__, sh->check_state,
4265 (unsigned long long) sh->sector);
4266 BUG();
4267 }
4268 }
4269
4270 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4271 {
4272 int i;
4273
4274 /* We have read all the blocks in this stripe and now we need to
4275 * copy some of them into a target stripe for expand.
4276 */
4277 struct dma_async_tx_descriptor *tx = NULL;
4278 BUG_ON(sh->batch_head);
4279 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4280 for (i = 0; i < sh->disks; i++)
4281 if (i != sh->pd_idx && i != sh->qd_idx) {
4282 int dd_idx, j;
4283 struct stripe_head *sh2;
4284 struct async_submit_ctl submit;
4285
4286 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4287 sector_t s = raid5_compute_sector(conf, bn, 0,
4288 &dd_idx, NULL);
4289 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4290 if (sh2 == NULL)
4291 /* so far only the early blocks of this stripe
4292 * have been requested. When later blocks
4293 * get requested, we will try again
4294 */
4295 continue;
4296 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4297 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4298 /* must have already done this block */
4299 raid5_release_stripe(sh2);
4300 continue;
4301 }
4302
4303 /* place all the copies on one channel */
4304 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4305 tx = async_memcpy(sh2->dev[dd_idx].page,
4306 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4307 &submit);
4308
4309 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4310 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4311 for (j = 0; j < conf->raid_disks; j++)
4312 if (j != sh2->pd_idx &&
4313 j != sh2->qd_idx &&
4314 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4315 break;
4316 if (j == conf->raid_disks) {
4317 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4318 set_bit(STRIPE_HANDLE, &sh2->state);
4319 }
4320 raid5_release_stripe(sh2);
4321
4322 }
4323 /* done submitting copies, wait for them to complete */
4324 async_tx_quiesce(&tx);
4325 }
4326
4327 /*
4328 * handle_stripe - do things to a stripe.
4329 *
4330 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4331 * state of various bits to see what needs to be done.
4332 * Possible results:
4333 * return some read requests which now have data
4334 * return some write requests which are safely on storage
4335 * schedule a read on some buffers
4336 * schedule a write of some buffers
4337 * return confirmation of parity correctness
4338 *
4339 */
4340
4341 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4342 {
4343 struct r5conf *conf = sh->raid_conf;
4344 int disks = sh->disks;
4345 struct r5dev *dev;
4346 int i;
4347 int do_recovery = 0;
4348
4349 memset(s, 0, sizeof(*s));
4350
4351 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4352 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4353 s->failed_num[0] = -1;
4354 s->failed_num[1] = -1;
4355 s->log_failed = r5l_log_disk_error(conf);
4356
4357 /* Now to look around and see what can be done */
4358 rcu_read_lock();
4359 for (i=disks; i--; ) {
4360 struct md_rdev *rdev;
4361 sector_t first_bad;
4362 int bad_sectors;
4363 int is_bad = 0;
4364
4365 dev = &sh->dev[i];
4366
4367 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4368 i, dev->flags,
4369 dev->toread, dev->towrite, dev->written);
4370 /* maybe we can reply to a read
4371 *
4372 * new wantfill requests are only permitted while
4373 * ops_complete_biofill is guaranteed to be inactive
4374 */
4375 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4376 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4377 set_bit(R5_Wantfill, &dev->flags);
4378
4379 /* now count some things */
4380 if (test_bit(R5_LOCKED, &dev->flags))
4381 s->locked++;
4382 if (test_bit(R5_UPTODATE, &dev->flags))
4383 s->uptodate++;
4384 if (test_bit(R5_Wantcompute, &dev->flags)) {
4385 s->compute++;
4386 BUG_ON(s->compute > 2);
4387 }
4388
4389 if (test_bit(R5_Wantfill, &dev->flags))
4390 s->to_fill++;
4391 else if (dev->toread)
4392 s->to_read++;
4393 if (dev->towrite) {
4394 s->to_write++;
4395 if (!test_bit(R5_OVERWRITE, &dev->flags))
4396 s->non_overwrite++;
4397 }
4398 if (dev->written)
4399 s->written++;
4400 /* Prefer to use the replacement for reads, but only
4401 * if it is recovered enough and has no bad blocks.
4402 */
4403 rdev = rcu_dereference(conf->disks[i].replacement);
4404 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4405 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4406 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4407 &first_bad, &bad_sectors))
4408 set_bit(R5_ReadRepl, &dev->flags);
4409 else {
4410 if (rdev && !test_bit(Faulty, &rdev->flags))
4411 set_bit(R5_NeedReplace, &dev->flags);
4412 else
4413 clear_bit(R5_NeedReplace, &dev->flags);
4414 rdev = rcu_dereference(conf->disks[i].rdev);
4415 clear_bit(R5_ReadRepl, &dev->flags);
4416 }
4417 if (rdev && test_bit(Faulty, &rdev->flags))
4418 rdev = NULL;
4419 if (rdev) {
4420 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4421 &first_bad, &bad_sectors);
4422 if (s->blocked_rdev == NULL
4423 && (test_bit(Blocked, &rdev->flags)
4424 || is_bad < 0)) {
4425 if (is_bad < 0)
4426 set_bit(BlockedBadBlocks,
4427 &rdev->flags);
4428 s->blocked_rdev = rdev;
4429 atomic_inc(&rdev->nr_pending);
4430 }
4431 }
4432 clear_bit(R5_Insync, &dev->flags);
4433 if (!rdev)
4434 /* Not in-sync */;
4435 else if (is_bad) {
4436 /* also not in-sync */
4437 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4438 test_bit(R5_UPTODATE, &dev->flags)) {
4439 /* treat as in-sync, but with a read error
4440 * which we can now try to correct
4441 */
4442 set_bit(R5_Insync, &dev->flags);
4443 set_bit(R5_ReadError, &dev->flags);
4444 }
4445 } else if (test_bit(In_sync, &rdev->flags))
4446 set_bit(R5_Insync, &dev->flags);
4447 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4448 /* in sync if before recovery_offset */
4449 set_bit(R5_Insync, &dev->flags);
4450 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4451 test_bit(R5_Expanded, &dev->flags))
4452 /* If we've reshaped into here, we assume it is Insync.
4453 * We will shortly update recovery_offset to make
4454 * it official.
4455 */
4456 set_bit(R5_Insync, &dev->flags);
4457
4458 if (test_bit(R5_WriteError, &dev->flags)) {
4459 /* This flag does not apply to '.replacement'
4460 * only to .rdev, so make sure to check that*/
4461 struct md_rdev *rdev2 = rcu_dereference(
4462 conf->disks[i].rdev);
4463 if (rdev2 == rdev)
4464 clear_bit(R5_Insync, &dev->flags);
4465 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4466 s->handle_bad_blocks = 1;
4467 atomic_inc(&rdev2->nr_pending);
4468 } else
4469 clear_bit(R5_WriteError, &dev->flags);
4470 }
4471 if (test_bit(R5_MadeGood, &dev->flags)) {
4472 /* This flag does not apply to '.replacement'
4473 * only to .rdev, so make sure to check that*/
4474 struct md_rdev *rdev2 = rcu_dereference(
4475 conf->disks[i].rdev);
4476 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4477 s->handle_bad_blocks = 1;
4478 atomic_inc(&rdev2->nr_pending);
4479 } else
4480 clear_bit(R5_MadeGood, &dev->flags);
4481 }
4482 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4483 struct md_rdev *rdev2 = rcu_dereference(
4484 conf->disks[i].replacement);
4485 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4486 s->handle_bad_blocks = 1;
4487 atomic_inc(&rdev2->nr_pending);
4488 } else
4489 clear_bit(R5_MadeGoodRepl, &dev->flags);
4490 }
4491 if (!test_bit(R5_Insync, &dev->flags)) {
4492 /* The ReadError flag will just be confusing now */
4493 clear_bit(R5_ReadError, &dev->flags);
4494 clear_bit(R5_ReWrite, &dev->flags);
4495 }
4496 if (test_bit(R5_ReadError, &dev->flags))
4497 clear_bit(R5_Insync, &dev->flags);
4498 if (!test_bit(R5_Insync, &dev->flags)) {
4499 if (s->failed < 2)
4500 s->failed_num[s->failed] = i;
4501 s->failed++;
4502 if (rdev && !test_bit(Faulty, &rdev->flags))
4503 do_recovery = 1;
4504 }
4505
4506 if (test_bit(R5_InJournal, &dev->flags))
4507 s->injournal++;
4508 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4509 s->just_cached++;
4510 }
4511 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4512 /* If there is a failed device being replaced,
4513 * we must be recovering.
4514 * else if we are after recovery_cp, we must be syncing
4515 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4516 * else we can only be replacing
4517 * sync and recovery both need to read all devices, and so
4518 * use the same flag.
4519 */
4520 if (do_recovery ||
4521 sh->sector >= conf->mddev->recovery_cp ||
4522 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4523 s->syncing = 1;
4524 else
4525 s->replacing = 1;
4526 }
4527 rcu_read_unlock();
4528 }
4529
4530 static int clear_batch_ready(struct stripe_head *sh)
4531 {
4532 /* Return '1' if this is a member of batch, or
4533 * '0' if it is a lone stripe or a head which can now be
4534 * handled.
4535 */
4536 struct stripe_head *tmp;
4537 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4538 return (sh->batch_head && sh->batch_head != sh);
4539 spin_lock(&sh->stripe_lock);
4540 if (!sh->batch_head) {
4541 spin_unlock(&sh->stripe_lock);
4542 return 0;
4543 }
4544
4545 /*
4546 * this stripe could be added to a batch list before we check
4547 * BATCH_READY, skips it
4548 */
4549 if (sh->batch_head != sh) {
4550 spin_unlock(&sh->stripe_lock);
4551 return 1;
4552 }
4553 spin_lock(&sh->batch_lock);
4554 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4555 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4556 spin_unlock(&sh->batch_lock);
4557 spin_unlock(&sh->stripe_lock);
4558
4559 /*
4560 * BATCH_READY is cleared, no new stripes can be added.
4561 * batch_list can be accessed without lock
4562 */
4563 return 0;
4564 }
4565
4566 static void break_stripe_batch_list(struct stripe_head *head_sh,
4567 unsigned long handle_flags)
4568 {
4569 struct stripe_head *sh, *next;
4570 int i;
4571 int do_wakeup = 0;
4572
4573 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4574
4575 list_del_init(&sh->batch_list);
4576
4577 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4578 (1 << STRIPE_SYNCING) |
4579 (1 << STRIPE_REPLACED) |
4580 (1 << STRIPE_DELAYED) |
4581 (1 << STRIPE_BIT_DELAY) |
4582 (1 << STRIPE_FULL_WRITE) |
4583 (1 << STRIPE_BIOFILL_RUN) |
4584 (1 << STRIPE_COMPUTE_RUN) |
4585 (1 << STRIPE_OPS_REQ_PENDING) |
4586 (1 << STRIPE_DISCARD) |
4587 (1 << STRIPE_BATCH_READY) |
4588 (1 << STRIPE_BATCH_ERR) |
4589 (1 << STRIPE_BITMAP_PENDING)),
4590 "stripe state: %lx\n", sh->state);
4591 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4592 (1 << STRIPE_REPLACED)),
4593 "head stripe state: %lx\n", head_sh->state);
4594
4595 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4596 (1 << STRIPE_PREREAD_ACTIVE) |
4597 (1 << STRIPE_DEGRADED)),
4598 head_sh->state & (1 << STRIPE_INSYNC));
4599
4600 sh->check_state = head_sh->check_state;
4601 sh->reconstruct_state = head_sh->reconstruct_state;
4602 for (i = 0; i < sh->disks; i++) {
4603 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4604 do_wakeup = 1;
4605 sh->dev[i].flags = head_sh->dev[i].flags &
4606 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4607 }
4608 spin_lock_irq(&sh->stripe_lock);
4609 sh->batch_head = NULL;
4610 spin_unlock_irq(&sh->stripe_lock);
4611 if (handle_flags == 0 ||
4612 sh->state & handle_flags)
4613 set_bit(STRIPE_HANDLE, &sh->state);
4614 raid5_release_stripe(sh);
4615 }
4616 spin_lock_irq(&head_sh->stripe_lock);
4617 head_sh->batch_head = NULL;
4618 spin_unlock_irq(&head_sh->stripe_lock);
4619 for (i = 0; i < head_sh->disks; i++)
4620 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4621 do_wakeup = 1;
4622 if (head_sh->state & handle_flags)
4623 set_bit(STRIPE_HANDLE, &head_sh->state);
4624
4625 if (do_wakeup)
4626 wake_up(&head_sh->raid_conf->wait_for_overlap);
4627 }
4628
4629 static void handle_stripe(struct stripe_head *sh)
4630 {
4631 struct stripe_head_state s;
4632 struct r5conf *conf = sh->raid_conf;
4633 int i;
4634 int prexor;
4635 int disks = sh->disks;
4636 struct r5dev *pdev, *qdev;
4637
4638 clear_bit(STRIPE_HANDLE, &sh->state);
4639 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4640 /* already being handled, ensure it gets handled
4641 * again when current action finishes */
4642 set_bit(STRIPE_HANDLE, &sh->state);
4643 return;
4644 }
4645
4646 if (clear_batch_ready(sh) ) {
4647 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4648 return;
4649 }
4650
4651 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4652 break_stripe_batch_list(sh, 0);
4653
4654 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4655 spin_lock(&sh->stripe_lock);
4656 /* Cannot process 'sync' concurrently with 'discard' */
4657 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4658 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4659 set_bit(STRIPE_SYNCING, &sh->state);
4660 clear_bit(STRIPE_INSYNC, &sh->state);
4661 clear_bit(STRIPE_REPLACED, &sh->state);
4662 }
4663 spin_unlock(&sh->stripe_lock);
4664 }
4665 clear_bit(STRIPE_DELAYED, &sh->state);
4666
4667 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4668 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4669 (unsigned long long)sh->sector, sh->state,
4670 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4671 sh->check_state, sh->reconstruct_state);
4672
4673 analyse_stripe(sh, &s);
4674
4675 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4676 goto finish;
4677
4678 if (s.handle_bad_blocks ||
4679 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4680 set_bit(STRIPE_HANDLE, &sh->state);
4681 goto finish;
4682 }
4683
4684 if (unlikely(s.blocked_rdev)) {
4685 if (s.syncing || s.expanding || s.expanded ||
4686 s.replacing || s.to_write || s.written) {
4687 set_bit(STRIPE_HANDLE, &sh->state);
4688 goto finish;
4689 }
4690 /* There is nothing for the blocked_rdev to block */
4691 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4692 s.blocked_rdev = NULL;
4693 }
4694
4695 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4696 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4697 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4698 }
4699
4700 pr_debug("locked=%d uptodate=%d to_read=%d"
4701 " to_write=%d failed=%d failed_num=%d,%d\n",
4702 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4703 s.failed_num[0], s.failed_num[1]);
4704 /* check if the array has lost more than max_degraded devices and,
4705 * if so, some requests might need to be failed.
4706 */
4707 if (s.failed > conf->max_degraded || s.log_failed) {
4708 sh->check_state = 0;
4709 sh->reconstruct_state = 0;
4710 break_stripe_batch_list(sh, 0);
4711 if (s.to_read+s.to_write+s.written)
4712 handle_failed_stripe(conf, sh, &s, disks);
4713 if (s.syncing + s.replacing)
4714 handle_failed_sync(conf, sh, &s);
4715 }
4716
4717 /* Now we check to see if any write operations have recently
4718 * completed
4719 */
4720 prexor = 0;
4721 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4722 prexor = 1;
4723 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4724 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4725 sh->reconstruct_state = reconstruct_state_idle;
4726
4727 /* All the 'written' buffers and the parity block are ready to
4728 * be written back to disk
4729 */
4730 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4731 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4732 BUG_ON(sh->qd_idx >= 0 &&
4733 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4734 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4735 for (i = disks; i--; ) {
4736 struct r5dev *dev = &sh->dev[i];
4737 if (test_bit(R5_LOCKED, &dev->flags) &&
4738 (i == sh->pd_idx || i == sh->qd_idx ||
4739 dev->written || test_bit(R5_InJournal,
4740 &dev->flags))) {
4741 pr_debug("Writing block %d\n", i);
4742 set_bit(R5_Wantwrite, &dev->flags);
4743 if (prexor)
4744 continue;
4745 if (s.failed > 1)
4746 continue;
4747 if (!test_bit(R5_Insync, &dev->flags) ||
4748 ((i == sh->pd_idx || i == sh->qd_idx) &&
4749 s.failed == 0))
4750 set_bit(STRIPE_INSYNC, &sh->state);
4751 }
4752 }
4753 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4754 s.dec_preread_active = 1;
4755 }
4756
4757 /*
4758 * might be able to return some write requests if the parity blocks
4759 * are safe, or on a failed drive
4760 */
4761 pdev = &sh->dev[sh->pd_idx];
4762 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4763 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4764 qdev = &sh->dev[sh->qd_idx];
4765 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4766 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4767 || conf->level < 6;
4768
4769 if (s.written &&
4770 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4771 && !test_bit(R5_LOCKED, &pdev->flags)
4772 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4773 test_bit(R5_Discard, &pdev->flags))))) &&
4774 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4775 && !test_bit(R5_LOCKED, &qdev->flags)
4776 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4777 test_bit(R5_Discard, &qdev->flags))))))
4778 handle_stripe_clean_event(conf, sh, disks);
4779
4780 if (s.just_cached)
4781 r5c_handle_cached_data_endio(conf, sh, disks);
4782 log_stripe_write_finished(sh);
4783
4784 /* Now we might consider reading some blocks, either to check/generate
4785 * parity, or to satisfy requests
4786 * or to load a block that is being partially written.
4787 */
4788 if (s.to_read || s.non_overwrite
4789 || (conf->level == 6 && s.to_write && s.failed)
4790 || (s.syncing && (s.uptodate + s.compute < disks))
4791 || s.replacing
4792 || s.expanding)
4793 handle_stripe_fill(sh, &s, disks);
4794
4795 /*
4796 * When the stripe finishes full journal write cycle (write to journal
4797 * and raid disk), this is the clean up procedure so it is ready for
4798 * next operation.
4799 */
4800 r5c_finish_stripe_write_out(conf, sh, &s);
4801
4802 /*
4803 * Now to consider new write requests, cache write back and what else,
4804 * if anything should be read. We do not handle new writes when:
4805 * 1/ A 'write' operation (copy+xor) is already in flight.
4806 * 2/ A 'check' operation is in flight, as it may clobber the parity
4807 * block.
4808 * 3/ A r5c cache log write is in flight.
4809 */
4810
4811 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4812 if (!r5c_is_writeback(conf->log)) {
4813 if (s.to_write)
4814 handle_stripe_dirtying(conf, sh, &s, disks);
4815 } else { /* write back cache */
4816 int ret = 0;
4817
4818 /* First, try handle writes in caching phase */
4819 if (s.to_write)
4820 ret = r5c_try_caching_write(conf, sh, &s,
4821 disks);
4822 /*
4823 * If caching phase failed: ret == -EAGAIN
4824 * OR
4825 * stripe under reclaim: !caching && injournal
4826 *
4827 * fall back to handle_stripe_dirtying()
4828 */
4829 if (ret == -EAGAIN ||
4830 /* stripe under reclaim: !caching && injournal */
4831 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4832 s.injournal > 0)) {
4833 ret = handle_stripe_dirtying(conf, sh, &s,
4834 disks);
4835 if (ret == -EAGAIN)
4836 goto finish;
4837 }
4838 }
4839 }
4840
4841 /* maybe we need to check and possibly fix the parity for this stripe
4842 * Any reads will already have been scheduled, so we just see if enough
4843 * data is available. The parity check is held off while parity
4844 * dependent operations are in flight.
4845 */
4846 if (sh->check_state ||
4847 (s.syncing && s.locked == 0 &&
4848 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4849 !test_bit(STRIPE_INSYNC, &sh->state))) {
4850 if (conf->level == 6)
4851 handle_parity_checks6(conf, sh, &s, disks);
4852 else
4853 handle_parity_checks5(conf, sh, &s, disks);
4854 }
4855
4856 if ((s.replacing || s.syncing) && s.locked == 0
4857 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4858 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4859 /* Write out to replacement devices where possible */
4860 for (i = 0; i < conf->raid_disks; i++)
4861 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4862 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4863 set_bit(R5_WantReplace, &sh->dev[i].flags);
4864 set_bit(R5_LOCKED, &sh->dev[i].flags);
4865 s.locked++;
4866 }
4867 if (s.replacing)
4868 set_bit(STRIPE_INSYNC, &sh->state);
4869 set_bit(STRIPE_REPLACED, &sh->state);
4870 }
4871 if ((s.syncing || s.replacing) && s.locked == 0 &&
4872 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4873 test_bit(STRIPE_INSYNC, &sh->state)) {
4874 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4875 clear_bit(STRIPE_SYNCING, &sh->state);
4876 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4877 wake_up(&conf->wait_for_overlap);
4878 }
4879
4880 /* If the failed drives are just a ReadError, then we might need
4881 * to progress the repair/check process
4882 */
4883 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4884 for (i = 0; i < s.failed; i++) {
4885 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4886 if (test_bit(R5_ReadError, &dev->flags)
4887 && !test_bit(R5_LOCKED, &dev->flags)
4888 && test_bit(R5_UPTODATE, &dev->flags)
4889 ) {
4890 if (!test_bit(R5_ReWrite, &dev->flags)) {
4891 set_bit(R5_Wantwrite, &dev->flags);
4892 set_bit(R5_ReWrite, &dev->flags);
4893 set_bit(R5_LOCKED, &dev->flags);
4894 s.locked++;
4895 } else {
4896 /* let's read it back */
4897 set_bit(R5_Wantread, &dev->flags);
4898 set_bit(R5_LOCKED, &dev->flags);
4899 s.locked++;
4900 }
4901 }
4902 }
4903
4904 /* Finish reconstruct operations initiated by the expansion process */
4905 if (sh->reconstruct_state == reconstruct_state_result) {
4906 struct stripe_head *sh_src
4907 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4908 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4909 /* sh cannot be written until sh_src has been read.
4910 * so arrange for sh to be delayed a little
4911 */
4912 set_bit(STRIPE_DELAYED, &sh->state);
4913 set_bit(STRIPE_HANDLE, &sh->state);
4914 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4915 &sh_src->state))
4916 atomic_inc(&conf->preread_active_stripes);
4917 raid5_release_stripe(sh_src);
4918 goto finish;
4919 }
4920 if (sh_src)
4921 raid5_release_stripe(sh_src);
4922
4923 sh->reconstruct_state = reconstruct_state_idle;
4924 clear_bit(STRIPE_EXPANDING, &sh->state);
4925 for (i = conf->raid_disks; i--; ) {
4926 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4927 set_bit(R5_LOCKED, &sh->dev[i].flags);
4928 s.locked++;
4929 }
4930 }
4931
4932 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4933 !sh->reconstruct_state) {
4934 /* Need to write out all blocks after computing parity */
4935 sh->disks = conf->raid_disks;
4936 stripe_set_idx(sh->sector, conf, 0, sh);
4937 schedule_reconstruction(sh, &s, 1, 1);
4938 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4939 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4940 atomic_dec(&conf->reshape_stripes);
4941 wake_up(&conf->wait_for_overlap);
4942 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4943 }
4944
4945 if (s.expanding && s.locked == 0 &&
4946 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4947 handle_stripe_expansion(conf, sh);
4948
4949 finish:
4950 /* wait for this device to become unblocked */
4951 if (unlikely(s.blocked_rdev)) {
4952 if (conf->mddev->external)
4953 md_wait_for_blocked_rdev(s.blocked_rdev,
4954 conf->mddev);
4955 else
4956 /* Internal metadata will immediately
4957 * be written by raid5d, so we don't
4958 * need to wait here.
4959 */
4960 rdev_dec_pending(s.blocked_rdev,
4961 conf->mddev);
4962 }
4963
4964 if (s.handle_bad_blocks)
4965 for (i = disks; i--; ) {
4966 struct md_rdev *rdev;
4967 struct r5dev *dev = &sh->dev[i];
4968 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4969 /* We own a safe reference to the rdev */
4970 rdev = conf->disks[i].rdev;
4971 if (!rdev_set_badblocks(rdev, sh->sector,
4972 STRIPE_SECTORS, 0))
4973 md_error(conf->mddev, rdev);
4974 rdev_dec_pending(rdev, conf->mddev);
4975 }
4976 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4977 rdev = conf->disks[i].rdev;
4978 rdev_clear_badblocks(rdev, sh->sector,
4979 STRIPE_SECTORS, 0);
4980 rdev_dec_pending(rdev, conf->mddev);
4981 }
4982 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4983 rdev = conf->disks[i].replacement;
4984 if (!rdev)
4985 /* rdev have been moved down */
4986 rdev = conf->disks[i].rdev;
4987 rdev_clear_badblocks(rdev, sh->sector,
4988 STRIPE_SECTORS, 0);
4989 rdev_dec_pending(rdev, conf->mddev);
4990 }
4991 }
4992
4993 if (s.ops_request)
4994 raid_run_ops(sh, s.ops_request);
4995
4996 ops_run_io(sh, &s);
4997
4998 if (s.dec_preread_active) {
4999 /* We delay this until after ops_run_io so that if make_request
5000 * is waiting on a flush, it won't continue until the writes
5001 * have actually been submitted.
5002 */
5003 atomic_dec(&conf->preread_active_stripes);
5004 if (atomic_read(&conf->preread_active_stripes) <
5005 IO_THRESHOLD)
5006 md_wakeup_thread(conf->mddev->thread);
5007 }
5008
5009 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5010 }
5011
5012 static void raid5_activate_delayed(struct r5conf *conf)
5013 {
5014 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5015 while (!list_empty(&conf->delayed_list)) {
5016 struct list_head *l = conf->delayed_list.next;
5017 struct stripe_head *sh;
5018 sh = list_entry(l, struct stripe_head, lru);
5019 list_del_init(l);
5020 clear_bit(STRIPE_DELAYED, &sh->state);
5021 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5022 atomic_inc(&conf->preread_active_stripes);
5023 list_add_tail(&sh->lru, &conf->hold_list);
5024 raid5_wakeup_stripe_thread(sh);
5025 }
5026 }
5027 }
5028
5029 static void activate_bit_delay(struct r5conf *conf,
5030 struct list_head *temp_inactive_list)
5031 {
5032 /* device_lock is held */
5033 struct list_head head;
5034 list_add(&head, &conf->bitmap_list);
5035 list_del_init(&conf->bitmap_list);
5036 while (!list_empty(&head)) {
5037 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5038 int hash;
5039 list_del_init(&sh->lru);
5040 atomic_inc(&sh->count);
5041 hash = sh->hash_lock_index;
5042 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5043 }
5044 }
5045
5046 static int raid5_congested(struct mddev *mddev, int bits)
5047 {
5048 struct r5conf *conf = mddev->private;
5049
5050 /* No difference between reads and writes. Just check
5051 * how busy the stripe_cache is
5052 */
5053
5054 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5055 return 1;
5056
5057 /* Also checks whether there is pressure on r5cache log space */
5058 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5059 return 1;
5060 if (conf->quiesce)
5061 return 1;
5062 if (atomic_read(&conf->empty_inactive_list_nr))
5063 return 1;
5064
5065 return 0;
5066 }
5067
5068 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5069 {
5070 struct r5conf *conf = mddev->private;
5071 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
5072 unsigned int chunk_sectors;
5073 unsigned int bio_sectors = bio_sectors(bio);
5074
5075 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5076 return chunk_sectors >=
5077 ((sector & (chunk_sectors - 1)) + bio_sectors);
5078 }
5079
5080 /*
5081 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5082 * later sampled by raid5d.
5083 */
5084 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5085 {
5086 unsigned long flags;
5087
5088 spin_lock_irqsave(&conf->device_lock, flags);
5089
5090 bi->bi_next = conf->retry_read_aligned_list;
5091 conf->retry_read_aligned_list = bi;
5092
5093 spin_unlock_irqrestore(&conf->device_lock, flags);
5094 md_wakeup_thread(conf->mddev->thread);
5095 }
5096
5097 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5098 unsigned int *offset)
5099 {
5100 struct bio *bi;
5101
5102 bi = conf->retry_read_aligned;
5103 if (bi) {
5104 *offset = conf->retry_read_offset;
5105 conf->retry_read_aligned = NULL;
5106 return bi;
5107 }
5108 bi = conf->retry_read_aligned_list;
5109 if(bi) {
5110 conf->retry_read_aligned_list = bi->bi_next;
5111 bi->bi_next = NULL;
5112 *offset = 0;
5113 }
5114
5115 return bi;
5116 }
5117
5118 /*
5119 * The "raid5_align_endio" should check if the read succeeded and if it
5120 * did, call bio_endio on the original bio (having bio_put the new bio
5121 * first).
5122 * If the read failed..
5123 */
5124 static void raid5_align_endio(struct bio *bi)
5125 {
5126 struct bio* raid_bi = bi->bi_private;
5127 struct mddev *mddev;
5128 struct r5conf *conf;
5129 struct md_rdev *rdev;
5130 int error = bi->bi_error;
5131
5132 bio_put(bi);
5133
5134 rdev = (void*)raid_bi->bi_next;
5135 raid_bi->bi_next = NULL;
5136 mddev = rdev->mddev;
5137 conf = mddev->private;
5138
5139 rdev_dec_pending(rdev, conf->mddev);
5140
5141 if (!error) {
5142 bio_endio(raid_bi);
5143 if (atomic_dec_and_test(&conf->active_aligned_reads))
5144 wake_up(&conf->wait_for_quiescent);
5145 return;
5146 }
5147
5148 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5149
5150 add_bio_to_retry(raid_bi, conf);
5151 }
5152
5153 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5154 {
5155 struct r5conf *conf = mddev->private;
5156 int dd_idx;
5157 struct bio* align_bi;
5158 struct md_rdev *rdev;
5159 sector_t end_sector;
5160
5161 if (!in_chunk_boundary(mddev, raid_bio)) {
5162 pr_debug("%s: non aligned\n", __func__);
5163 return 0;
5164 }
5165 /*
5166 * use bio_clone_fast to make a copy of the bio
5167 */
5168 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5169 if (!align_bi)
5170 return 0;
5171 /*
5172 * set bi_end_io to a new function, and set bi_private to the
5173 * original bio.
5174 */
5175 align_bi->bi_end_io = raid5_align_endio;
5176 align_bi->bi_private = raid_bio;
5177 /*
5178 * compute position
5179 */
5180 align_bi->bi_iter.bi_sector =
5181 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5182 0, &dd_idx, NULL);
5183
5184 end_sector = bio_end_sector(align_bi);
5185 rcu_read_lock();
5186 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5187 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5188 rdev->recovery_offset < end_sector) {
5189 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5190 if (rdev &&
5191 (test_bit(Faulty, &rdev->flags) ||
5192 !(test_bit(In_sync, &rdev->flags) ||
5193 rdev->recovery_offset >= end_sector)))
5194 rdev = NULL;
5195 }
5196
5197 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5198 rcu_read_unlock();
5199 bio_put(align_bi);
5200 return 0;
5201 }
5202
5203 if (rdev) {
5204 sector_t first_bad;
5205 int bad_sectors;
5206
5207 atomic_inc(&rdev->nr_pending);
5208 rcu_read_unlock();
5209 raid_bio->bi_next = (void*)rdev;
5210 align_bi->bi_bdev = rdev->bdev;
5211 bio_clear_flag(align_bi, BIO_SEG_VALID);
5212
5213 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5214 bio_sectors(align_bi),
5215 &first_bad, &bad_sectors)) {
5216 bio_put(align_bi);
5217 rdev_dec_pending(rdev, mddev);
5218 return 0;
5219 }
5220
5221 /* No reshape active, so we can trust rdev->data_offset */
5222 align_bi->bi_iter.bi_sector += rdev->data_offset;
5223
5224 spin_lock_irq(&conf->device_lock);
5225 wait_event_lock_irq(conf->wait_for_quiescent,
5226 conf->quiesce == 0,
5227 conf->device_lock);
5228 atomic_inc(&conf->active_aligned_reads);
5229 spin_unlock_irq(&conf->device_lock);
5230
5231 if (mddev->gendisk)
5232 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5233 align_bi, disk_devt(mddev->gendisk),
5234 raid_bio->bi_iter.bi_sector);
5235 generic_make_request(align_bi);
5236 return 1;
5237 } else {
5238 rcu_read_unlock();
5239 bio_put(align_bi);
5240 return 0;
5241 }
5242 }
5243
5244 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5245 {
5246 struct bio *split;
5247 sector_t sector = raid_bio->bi_iter.bi_sector;
5248 unsigned chunk_sects = mddev->chunk_sectors;
5249 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5250
5251 if (sectors < bio_sectors(raid_bio)) {
5252 struct r5conf *conf = mddev->private;
5253 split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5254 bio_chain(split, raid_bio);
5255 generic_make_request(raid_bio);
5256 raid_bio = split;
5257 }
5258
5259 if (!raid5_read_one_chunk(mddev, raid_bio))
5260 return raid_bio;
5261
5262 return NULL;
5263 }
5264
5265 /* __get_priority_stripe - get the next stripe to process
5266 *
5267 * Full stripe writes are allowed to pass preread active stripes up until
5268 * the bypass_threshold is exceeded. In general the bypass_count
5269 * increments when the handle_list is handled before the hold_list; however, it
5270 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5271 * stripe with in flight i/o. The bypass_count will be reset when the
5272 * head of the hold_list has changed, i.e. the head was promoted to the
5273 * handle_list.
5274 */
5275 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5276 {
5277 struct stripe_head *sh, *tmp;
5278 struct list_head *handle_list = NULL;
5279 struct r5worker_group *wg;
5280 bool second_try = !r5c_is_writeback(conf->log);
5281 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state);
5282
5283 again:
5284 wg = NULL;
5285 sh = NULL;
5286 if (conf->worker_cnt_per_group == 0) {
5287 handle_list = try_loprio ? &conf->loprio_list :
5288 &conf->handle_list;
5289 } else if (group != ANY_GROUP) {
5290 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5291 &conf->worker_groups[group].handle_list;
5292 wg = &conf->worker_groups[group];
5293 } else {
5294 int i;
5295 for (i = 0; i < conf->group_cnt; i++) {
5296 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5297 &conf->worker_groups[i].handle_list;
5298 wg = &conf->worker_groups[i];
5299 if (!list_empty(handle_list))
5300 break;
5301 }
5302 }
5303
5304 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5305 __func__,
5306 list_empty(handle_list) ? "empty" : "busy",
5307 list_empty(&conf->hold_list) ? "empty" : "busy",
5308 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5309
5310 if (!list_empty(handle_list)) {
5311 sh = list_entry(handle_list->next, typeof(*sh), lru);
5312
5313 if (list_empty(&conf->hold_list))
5314 conf->bypass_count = 0;
5315 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5316 if (conf->hold_list.next == conf->last_hold)
5317 conf->bypass_count++;
5318 else {
5319 conf->last_hold = conf->hold_list.next;
5320 conf->bypass_count -= conf->bypass_threshold;
5321 if (conf->bypass_count < 0)
5322 conf->bypass_count = 0;
5323 }
5324 }
5325 } else if (!list_empty(&conf->hold_list) &&
5326 ((conf->bypass_threshold &&
5327 conf->bypass_count > conf->bypass_threshold) ||
5328 atomic_read(&conf->pending_full_writes) == 0)) {
5329
5330 list_for_each_entry(tmp, &conf->hold_list, lru) {
5331 if (conf->worker_cnt_per_group == 0 ||
5332 group == ANY_GROUP ||
5333 !cpu_online(tmp->cpu) ||
5334 cpu_to_group(tmp->cpu) == group) {
5335 sh = tmp;
5336 break;
5337 }
5338 }
5339
5340 if (sh) {
5341 conf->bypass_count -= conf->bypass_threshold;
5342 if (conf->bypass_count < 0)
5343 conf->bypass_count = 0;
5344 }
5345 wg = NULL;
5346 }
5347
5348 if (!sh) {
5349 if (second_try)
5350 return NULL;
5351 second_try = true;
5352 try_loprio = !try_loprio;
5353 goto again;
5354 }
5355
5356 if (wg) {
5357 wg->stripes_cnt--;
5358 sh->group = NULL;
5359 }
5360 list_del_init(&sh->lru);
5361 BUG_ON(atomic_inc_return(&sh->count) != 1);
5362 return sh;
5363 }
5364
5365 struct raid5_plug_cb {
5366 struct blk_plug_cb cb;
5367 struct list_head list;
5368 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5369 };
5370
5371 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5372 {
5373 struct raid5_plug_cb *cb = container_of(
5374 blk_cb, struct raid5_plug_cb, cb);
5375 struct stripe_head *sh;
5376 struct mddev *mddev = cb->cb.data;
5377 struct r5conf *conf = mddev->private;
5378 int cnt = 0;
5379 int hash;
5380
5381 if (cb->list.next && !list_empty(&cb->list)) {
5382 spin_lock_irq(&conf->device_lock);
5383 while (!list_empty(&cb->list)) {
5384 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5385 list_del_init(&sh->lru);
5386 /*
5387 * avoid race release_stripe_plug() sees
5388 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5389 * is still in our list
5390 */
5391 smp_mb__before_atomic();
5392 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5393 /*
5394 * STRIPE_ON_RELEASE_LIST could be set here. In that
5395 * case, the count is always > 1 here
5396 */
5397 hash = sh->hash_lock_index;
5398 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5399 cnt++;
5400 }
5401 spin_unlock_irq(&conf->device_lock);
5402 }
5403 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5404 NR_STRIPE_HASH_LOCKS);
5405 if (mddev->queue)
5406 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5407 kfree(cb);
5408 }
5409
5410 static void release_stripe_plug(struct mddev *mddev,
5411 struct stripe_head *sh)
5412 {
5413 struct blk_plug_cb *blk_cb = blk_check_plugged(
5414 raid5_unplug, mddev,
5415 sizeof(struct raid5_plug_cb));
5416 struct raid5_plug_cb *cb;
5417
5418 if (!blk_cb) {
5419 raid5_release_stripe(sh);
5420 return;
5421 }
5422
5423 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5424
5425 if (cb->list.next == NULL) {
5426 int i;
5427 INIT_LIST_HEAD(&cb->list);
5428 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5429 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5430 }
5431
5432 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5433 list_add_tail(&sh->lru, &cb->list);
5434 else
5435 raid5_release_stripe(sh);
5436 }
5437
5438 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5439 {
5440 struct r5conf *conf = mddev->private;
5441 sector_t logical_sector, last_sector;
5442 struct stripe_head *sh;
5443 int stripe_sectors;
5444
5445 if (mddev->reshape_position != MaxSector)
5446 /* Skip discard while reshape is happening */
5447 return;
5448
5449 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5450 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5451
5452 bi->bi_next = NULL;
5453 md_write_start(mddev, bi);
5454
5455 stripe_sectors = conf->chunk_sectors *
5456 (conf->raid_disks - conf->max_degraded);
5457 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5458 stripe_sectors);
5459 sector_div(last_sector, stripe_sectors);
5460
5461 logical_sector *= conf->chunk_sectors;
5462 last_sector *= conf->chunk_sectors;
5463
5464 for (; logical_sector < last_sector;
5465 logical_sector += STRIPE_SECTORS) {
5466 DEFINE_WAIT(w);
5467 int d;
5468 again:
5469 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5470 prepare_to_wait(&conf->wait_for_overlap, &w,
5471 TASK_UNINTERRUPTIBLE);
5472 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5473 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5474 raid5_release_stripe(sh);
5475 schedule();
5476 goto again;
5477 }
5478 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5479 spin_lock_irq(&sh->stripe_lock);
5480 for (d = 0; d < conf->raid_disks; d++) {
5481 if (d == sh->pd_idx || d == sh->qd_idx)
5482 continue;
5483 if (sh->dev[d].towrite || sh->dev[d].toread) {
5484 set_bit(R5_Overlap, &sh->dev[d].flags);
5485 spin_unlock_irq(&sh->stripe_lock);
5486 raid5_release_stripe(sh);
5487 schedule();
5488 goto again;
5489 }
5490 }
5491 set_bit(STRIPE_DISCARD, &sh->state);
5492 finish_wait(&conf->wait_for_overlap, &w);
5493 sh->overwrite_disks = 0;
5494 for (d = 0; d < conf->raid_disks; d++) {
5495 if (d == sh->pd_idx || d == sh->qd_idx)
5496 continue;
5497 sh->dev[d].towrite = bi;
5498 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5499 bio_inc_remaining(bi);
5500 md_write_inc(mddev, bi);
5501 sh->overwrite_disks++;
5502 }
5503 spin_unlock_irq(&sh->stripe_lock);
5504 if (conf->mddev->bitmap) {
5505 for (d = 0;
5506 d < conf->raid_disks - conf->max_degraded;
5507 d++)
5508 bitmap_startwrite(mddev->bitmap,
5509 sh->sector,
5510 STRIPE_SECTORS,
5511 0);
5512 sh->bm_seq = conf->seq_flush + 1;
5513 set_bit(STRIPE_BIT_DELAY, &sh->state);
5514 }
5515
5516 set_bit(STRIPE_HANDLE, &sh->state);
5517 clear_bit(STRIPE_DELAYED, &sh->state);
5518 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5519 atomic_inc(&conf->preread_active_stripes);
5520 release_stripe_plug(mddev, sh);
5521 }
5522
5523 md_write_end(mddev);
5524 bio_endio(bi);
5525 }
5526
5527 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5528 {
5529 struct r5conf *conf = mddev->private;
5530 int dd_idx;
5531 sector_t new_sector;
5532 sector_t logical_sector, last_sector;
5533 struct stripe_head *sh;
5534 const int rw = bio_data_dir(bi);
5535 DEFINE_WAIT(w);
5536 bool do_prepare;
5537 bool do_flush = false;
5538
5539 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5540 int ret = r5l_handle_flush_request(conf->log, bi);
5541
5542 if (ret == 0)
5543 return;
5544 if (ret == -ENODEV) {
5545 md_flush_request(mddev, bi);
5546 return;
5547 }
5548 /* ret == -EAGAIN, fallback */
5549 /*
5550 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5551 * we need to flush journal device
5552 */
5553 do_flush = bi->bi_opf & REQ_PREFLUSH;
5554 }
5555
5556 /*
5557 * If array is degraded, better not do chunk aligned read because
5558 * later we might have to read it again in order to reconstruct
5559 * data on failed drives.
5560 */
5561 if (rw == READ && mddev->degraded == 0 &&
5562 mddev->reshape_position == MaxSector) {
5563 bi = chunk_aligned_read(mddev, bi);
5564 if (!bi)
5565 return;
5566 }
5567
5568 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5569 make_discard_request(mddev, bi);
5570 return;
5571 }
5572
5573 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5574 last_sector = bio_end_sector(bi);
5575 bi->bi_next = NULL;
5576 md_write_start(mddev, bi);
5577
5578 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5579 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5580 int previous;
5581 int seq;
5582
5583 do_prepare = false;
5584 retry:
5585 seq = read_seqcount_begin(&conf->gen_lock);
5586 previous = 0;
5587 if (do_prepare)
5588 prepare_to_wait(&conf->wait_for_overlap, &w,
5589 TASK_UNINTERRUPTIBLE);
5590 if (unlikely(conf->reshape_progress != MaxSector)) {
5591 /* spinlock is needed as reshape_progress may be
5592 * 64bit on a 32bit platform, and so it might be
5593 * possible to see a half-updated value
5594 * Of course reshape_progress could change after
5595 * the lock is dropped, so once we get a reference
5596 * to the stripe that we think it is, we will have
5597 * to check again.
5598 */
5599 spin_lock_irq(&conf->device_lock);
5600 if (mddev->reshape_backwards
5601 ? logical_sector < conf->reshape_progress
5602 : logical_sector >= conf->reshape_progress) {
5603 previous = 1;
5604 } else {
5605 if (mddev->reshape_backwards
5606 ? logical_sector < conf->reshape_safe
5607 : logical_sector >= conf->reshape_safe) {
5608 spin_unlock_irq(&conf->device_lock);
5609 schedule();
5610 do_prepare = true;
5611 goto retry;
5612 }
5613 }
5614 spin_unlock_irq(&conf->device_lock);
5615 }
5616
5617 new_sector = raid5_compute_sector(conf, logical_sector,
5618 previous,
5619 &dd_idx, NULL);
5620 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5621 (unsigned long long)new_sector,
5622 (unsigned long long)logical_sector);
5623
5624 sh = raid5_get_active_stripe(conf, new_sector, previous,
5625 (bi->bi_opf & REQ_RAHEAD), 0);
5626 if (sh) {
5627 if (unlikely(previous)) {
5628 /* expansion might have moved on while waiting for a
5629 * stripe, so we must do the range check again.
5630 * Expansion could still move past after this
5631 * test, but as we are holding a reference to
5632 * 'sh', we know that if that happens,
5633 * STRIPE_EXPANDING will get set and the expansion
5634 * won't proceed until we finish with the stripe.
5635 */
5636 int must_retry = 0;
5637 spin_lock_irq(&conf->device_lock);
5638 if (mddev->reshape_backwards
5639 ? logical_sector >= conf->reshape_progress
5640 : logical_sector < conf->reshape_progress)
5641 /* mismatch, need to try again */
5642 must_retry = 1;
5643 spin_unlock_irq(&conf->device_lock);
5644 if (must_retry) {
5645 raid5_release_stripe(sh);
5646 schedule();
5647 do_prepare = true;
5648 goto retry;
5649 }
5650 }
5651 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5652 /* Might have got the wrong stripe_head
5653 * by accident
5654 */
5655 raid5_release_stripe(sh);
5656 goto retry;
5657 }
5658
5659 if (rw == WRITE &&
5660 logical_sector >= mddev->suspend_lo &&
5661 logical_sector < mddev->suspend_hi) {
5662 raid5_release_stripe(sh);
5663 /* As the suspend_* range is controlled by
5664 * userspace, we want an interruptible
5665 * wait.
5666 */
5667 flush_signals(current);
5668 prepare_to_wait(&conf->wait_for_overlap,
5669 &w, TASK_INTERRUPTIBLE);
5670 if (logical_sector >= mddev->suspend_lo &&
5671 logical_sector < mddev->suspend_hi) {
5672 schedule();
5673 do_prepare = true;
5674 }
5675 goto retry;
5676 }
5677
5678 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5679 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5680 /* Stripe is busy expanding or
5681 * add failed due to overlap. Flush everything
5682 * and wait a while
5683 */
5684 md_wakeup_thread(mddev->thread);
5685 raid5_release_stripe(sh);
5686 schedule();
5687 do_prepare = true;
5688 goto retry;
5689 }
5690 if (do_flush) {
5691 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5692 /* we only need flush for one stripe */
5693 do_flush = false;
5694 }
5695
5696 set_bit(STRIPE_HANDLE, &sh->state);
5697 clear_bit(STRIPE_DELAYED, &sh->state);
5698 if ((!sh->batch_head || sh == sh->batch_head) &&
5699 (bi->bi_opf & REQ_SYNC) &&
5700 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5701 atomic_inc(&conf->preread_active_stripes);
5702 release_stripe_plug(mddev, sh);
5703 } else {
5704 /* cannot get stripe for read-ahead, just give-up */
5705 bi->bi_error = -EIO;
5706 break;
5707 }
5708 }
5709 finish_wait(&conf->wait_for_overlap, &w);
5710
5711 if (rw == WRITE)
5712 md_write_end(mddev);
5713 bio_endio(bi);
5714 }
5715
5716 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5717
5718 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5719 {
5720 /* reshaping is quite different to recovery/resync so it is
5721 * handled quite separately ... here.
5722 *
5723 * On each call to sync_request, we gather one chunk worth of
5724 * destination stripes and flag them as expanding.
5725 * Then we find all the source stripes and request reads.
5726 * As the reads complete, handle_stripe will copy the data
5727 * into the destination stripe and release that stripe.
5728 */
5729 struct r5conf *conf = mddev->private;
5730 struct stripe_head *sh;
5731 sector_t first_sector, last_sector;
5732 int raid_disks = conf->previous_raid_disks;
5733 int data_disks = raid_disks - conf->max_degraded;
5734 int new_data_disks = conf->raid_disks - conf->max_degraded;
5735 int i;
5736 int dd_idx;
5737 sector_t writepos, readpos, safepos;
5738 sector_t stripe_addr;
5739 int reshape_sectors;
5740 struct list_head stripes;
5741 sector_t retn;
5742
5743 if (sector_nr == 0) {
5744 /* If restarting in the middle, skip the initial sectors */
5745 if (mddev->reshape_backwards &&
5746 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5747 sector_nr = raid5_size(mddev, 0, 0)
5748 - conf->reshape_progress;
5749 } else if (mddev->reshape_backwards &&
5750 conf->reshape_progress == MaxSector) {
5751 /* shouldn't happen, but just in case, finish up.*/
5752 sector_nr = MaxSector;
5753 } else if (!mddev->reshape_backwards &&
5754 conf->reshape_progress > 0)
5755 sector_nr = conf->reshape_progress;
5756 sector_div(sector_nr, new_data_disks);
5757 if (sector_nr) {
5758 mddev->curr_resync_completed = sector_nr;
5759 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5760 *skipped = 1;
5761 retn = sector_nr;
5762 goto finish;
5763 }
5764 }
5765
5766 /* We need to process a full chunk at a time.
5767 * If old and new chunk sizes differ, we need to process the
5768 * largest of these
5769 */
5770
5771 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5772
5773 /* We update the metadata at least every 10 seconds, or when
5774 * the data about to be copied would over-write the source of
5775 * the data at the front of the range. i.e. one new_stripe
5776 * along from reshape_progress new_maps to after where
5777 * reshape_safe old_maps to
5778 */
5779 writepos = conf->reshape_progress;
5780 sector_div(writepos, new_data_disks);
5781 readpos = conf->reshape_progress;
5782 sector_div(readpos, data_disks);
5783 safepos = conf->reshape_safe;
5784 sector_div(safepos, data_disks);
5785 if (mddev->reshape_backwards) {
5786 BUG_ON(writepos < reshape_sectors);
5787 writepos -= reshape_sectors;
5788 readpos += reshape_sectors;
5789 safepos += reshape_sectors;
5790 } else {
5791 writepos += reshape_sectors;
5792 /* readpos and safepos are worst-case calculations.
5793 * A negative number is overly pessimistic, and causes
5794 * obvious problems for unsigned storage. So clip to 0.
5795 */
5796 readpos -= min_t(sector_t, reshape_sectors, readpos);
5797 safepos -= min_t(sector_t, reshape_sectors, safepos);
5798 }
5799
5800 /* Having calculated the 'writepos' possibly use it
5801 * to set 'stripe_addr' which is where we will write to.
5802 */
5803 if (mddev->reshape_backwards) {
5804 BUG_ON(conf->reshape_progress == 0);
5805 stripe_addr = writepos;
5806 BUG_ON((mddev->dev_sectors &
5807 ~((sector_t)reshape_sectors - 1))
5808 - reshape_sectors - stripe_addr
5809 != sector_nr);
5810 } else {
5811 BUG_ON(writepos != sector_nr + reshape_sectors);
5812 stripe_addr = sector_nr;
5813 }
5814
5815 /* 'writepos' is the most advanced device address we might write.
5816 * 'readpos' is the least advanced device address we might read.
5817 * 'safepos' is the least address recorded in the metadata as having
5818 * been reshaped.
5819 * If there is a min_offset_diff, these are adjusted either by
5820 * increasing the safepos/readpos if diff is negative, or
5821 * increasing writepos if diff is positive.
5822 * If 'readpos' is then behind 'writepos', there is no way that we can
5823 * ensure safety in the face of a crash - that must be done by userspace
5824 * making a backup of the data. So in that case there is no particular
5825 * rush to update metadata.
5826 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5827 * update the metadata to advance 'safepos' to match 'readpos' so that
5828 * we can be safe in the event of a crash.
5829 * So we insist on updating metadata if safepos is behind writepos and
5830 * readpos is beyond writepos.
5831 * In any case, update the metadata every 10 seconds.
5832 * Maybe that number should be configurable, but I'm not sure it is
5833 * worth it.... maybe it could be a multiple of safemode_delay???
5834 */
5835 if (conf->min_offset_diff < 0) {
5836 safepos += -conf->min_offset_diff;
5837 readpos += -conf->min_offset_diff;
5838 } else
5839 writepos += conf->min_offset_diff;
5840
5841 if ((mddev->reshape_backwards
5842 ? (safepos > writepos && readpos < writepos)
5843 : (safepos < writepos && readpos > writepos)) ||
5844 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5845 /* Cannot proceed until we've updated the superblock... */
5846 wait_event(conf->wait_for_overlap,
5847 atomic_read(&conf->reshape_stripes)==0
5848 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5849 if (atomic_read(&conf->reshape_stripes) != 0)
5850 return 0;
5851 mddev->reshape_position = conf->reshape_progress;
5852 mddev->curr_resync_completed = sector_nr;
5853 conf->reshape_checkpoint = jiffies;
5854 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5855 md_wakeup_thread(mddev->thread);
5856 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5857 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5858 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5859 return 0;
5860 spin_lock_irq(&conf->device_lock);
5861 conf->reshape_safe = mddev->reshape_position;
5862 spin_unlock_irq(&conf->device_lock);
5863 wake_up(&conf->wait_for_overlap);
5864 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5865 }
5866
5867 INIT_LIST_HEAD(&stripes);
5868 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5869 int j;
5870 int skipped_disk = 0;
5871 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5872 set_bit(STRIPE_EXPANDING, &sh->state);
5873 atomic_inc(&conf->reshape_stripes);
5874 /* If any of this stripe is beyond the end of the old
5875 * array, then we need to zero those blocks
5876 */
5877 for (j=sh->disks; j--;) {
5878 sector_t s;
5879 if (j == sh->pd_idx)
5880 continue;
5881 if (conf->level == 6 &&
5882 j == sh->qd_idx)
5883 continue;
5884 s = raid5_compute_blocknr(sh, j, 0);
5885 if (s < raid5_size(mddev, 0, 0)) {
5886 skipped_disk = 1;
5887 continue;
5888 }
5889 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5890 set_bit(R5_Expanded, &sh->dev[j].flags);
5891 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5892 }
5893 if (!skipped_disk) {
5894 set_bit(STRIPE_EXPAND_READY, &sh->state);
5895 set_bit(STRIPE_HANDLE, &sh->state);
5896 }
5897 list_add(&sh->lru, &stripes);
5898 }
5899 spin_lock_irq(&conf->device_lock);
5900 if (mddev->reshape_backwards)
5901 conf->reshape_progress -= reshape_sectors * new_data_disks;
5902 else
5903 conf->reshape_progress += reshape_sectors * new_data_disks;
5904 spin_unlock_irq(&conf->device_lock);
5905 /* Ok, those stripe are ready. We can start scheduling
5906 * reads on the source stripes.
5907 * The source stripes are determined by mapping the first and last
5908 * block on the destination stripes.
5909 */
5910 first_sector =
5911 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5912 1, &dd_idx, NULL);
5913 last_sector =
5914 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5915 * new_data_disks - 1),
5916 1, &dd_idx, NULL);
5917 if (last_sector >= mddev->dev_sectors)
5918 last_sector = mddev->dev_sectors - 1;
5919 while (first_sector <= last_sector) {
5920 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5921 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5922 set_bit(STRIPE_HANDLE, &sh->state);
5923 raid5_release_stripe(sh);
5924 first_sector += STRIPE_SECTORS;
5925 }
5926 /* Now that the sources are clearly marked, we can release
5927 * the destination stripes
5928 */
5929 while (!list_empty(&stripes)) {
5930 sh = list_entry(stripes.next, struct stripe_head, lru);
5931 list_del_init(&sh->lru);
5932 raid5_release_stripe(sh);
5933 }
5934 /* If this takes us to the resync_max point where we have to pause,
5935 * then we need to write out the superblock.
5936 */
5937 sector_nr += reshape_sectors;
5938 retn = reshape_sectors;
5939 finish:
5940 if (mddev->curr_resync_completed > mddev->resync_max ||
5941 (sector_nr - mddev->curr_resync_completed) * 2
5942 >= mddev->resync_max - mddev->curr_resync_completed) {
5943 /* Cannot proceed until we've updated the superblock... */
5944 wait_event(conf->wait_for_overlap,
5945 atomic_read(&conf->reshape_stripes) == 0
5946 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5947 if (atomic_read(&conf->reshape_stripes) != 0)
5948 goto ret;
5949 mddev->reshape_position = conf->reshape_progress;
5950 mddev->curr_resync_completed = sector_nr;
5951 conf->reshape_checkpoint = jiffies;
5952 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5953 md_wakeup_thread(mddev->thread);
5954 wait_event(mddev->sb_wait,
5955 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5956 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5957 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5958 goto ret;
5959 spin_lock_irq(&conf->device_lock);
5960 conf->reshape_safe = mddev->reshape_position;
5961 spin_unlock_irq(&conf->device_lock);
5962 wake_up(&conf->wait_for_overlap);
5963 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5964 }
5965 ret:
5966 return retn;
5967 }
5968
5969 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5970 int *skipped)
5971 {
5972 struct r5conf *conf = mddev->private;
5973 struct stripe_head *sh;
5974 sector_t max_sector = mddev->dev_sectors;
5975 sector_t sync_blocks;
5976 int still_degraded = 0;
5977 int i;
5978
5979 if (sector_nr >= max_sector) {
5980 /* just being told to finish up .. nothing much to do */
5981
5982 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5983 end_reshape(conf);
5984 return 0;
5985 }
5986
5987 if (mddev->curr_resync < max_sector) /* aborted */
5988 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5989 &sync_blocks, 1);
5990 else /* completed sync */
5991 conf->fullsync = 0;
5992 bitmap_close_sync(mddev->bitmap);
5993
5994 return 0;
5995 }
5996
5997 /* Allow raid5_quiesce to complete */
5998 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5999
6000 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6001 return reshape_request(mddev, sector_nr, skipped);
6002
6003 /* No need to check resync_max as we never do more than one
6004 * stripe, and as resync_max will always be on a chunk boundary,
6005 * if the check in md_do_sync didn't fire, there is no chance
6006 * of overstepping resync_max here
6007 */
6008
6009 /* if there is too many failed drives and we are trying
6010 * to resync, then assert that we are finished, because there is
6011 * nothing we can do.
6012 */
6013 if (mddev->degraded >= conf->max_degraded &&
6014 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6015 sector_t rv = mddev->dev_sectors - sector_nr;
6016 *skipped = 1;
6017 return rv;
6018 }
6019 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6020 !conf->fullsync &&
6021 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6022 sync_blocks >= STRIPE_SECTORS) {
6023 /* we can skip this block, and probably more */
6024 sync_blocks /= STRIPE_SECTORS;
6025 *skipped = 1;
6026 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6027 }
6028
6029 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6030
6031 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6032 if (sh == NULL) {
6033 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6034 /* make sure we don't swamp the stripe cache if someone else
6035 * is trying to get access
6036 */
6037 schedule_timeout_uninterruptible(1);
6038 }
6039 /* Need to check if array will still be degraded after recovery/resync
6040 * Note in case of > 1 drive failures it's possible we're rebuilding
6041 * one drive while leaving another faulty drive in array.
6042 */
6043 rcu_read_lock();
6044 for (i = 0; i < conf->raid_disks; i++) {
6045 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6046
6047 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6048 still_degraded = 1;
6049 }
6050 rcu_read_unlock();
6051
6052 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6053
6054 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6055 set_bit(STRIPE_HANDLE, &sh->state);
6056
6057 raid5_release_stripe(sh);
6058
6059 return STRIPE_SECTORS;
6060 }
6061
6062 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6063 unsigned int offset)
6064 {
6065 /* We may not be able to submit a whole bio at once as there
6066 * may not be enough stripe_heads available.
6067 * We cannot pre-allocate enough stripe_heads as we may need
6068 * more than exist in the cache (if we allow ever large chunks).
6069 * So we do one stripe head at a time and record in
6070 * ->bi_hw_segments how many have been done.
6071 *
6072 * We *know* that this entire raid_bio is in one chunk, so
6073 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6074 */
6075 struct stripe_head *sh;
6076 int dd_idx;
6077 sector_t sector, logical_sector, last_sector;
6078 int scnt = 0;
6079 int handled = 0;
6080
6081 logical_sector = raid_bio->bi_iter.bi_sector &
6082 ~((sector_t)STRIPE_SECTORS-1);
6083 sector = raid5_compute_sector(conf, logical_sector,
6084 0, &dd_idx, NULL);
6085 last_sector = bio_end_sector(raid_bio);
6086
6087 for (; logical_sector < last_sector;
6088 logical_sector += STRIPE_SECTORS,
6089 sector += STRIPE_SECTORS,
6090 scnt++) {
6091
6092 if (scnt < offset)
6093 /* already done this stripe */
6094 continue;
6095
6096 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6097
6098 if (!sh) {
6099 /* failed to get a stripe - must wait */
6100 conf->retry_read_aligned = raid_bio;
6101 conf->retry_read_offset = scnt;
6102 return handled;
6103 }
6104
6105 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6106 raid5_release_stripe(sh);
6107 conf->retry_read_aligned = raid_bio;
6108 conf->retry_read_offset = scnt;
6109 return handled;
6110 }
6111
6112 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6113 handle_stripe(sh);
6114 raid5_release_stripe(sh);
6115 handled++;
6116 }
6117
6118 bio_endio(raid_bio);
6119
6120 if (atomic_dec_and_test(&conf->active_aligned_reads))
6121 wake_up(&conf->wait_for_quiescent);
6122 return handled;
6123 }
6124
6125 static int handle_active_stripes(struct r5conf *conf, int group,
6126 struct r5worker *worker,
6127 struct list_head *temp_inactive_list)
6128 {
6129 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6130 int i, batch_size = 0, hash;
6131 bool release_inactive = false;
6132
6133 while (batch_size < MAX_STRIPE_BATCH &&
6134 (sh = __get_priority_stripe(conf, group)) != NULL)
6135 batch[batch_size++] = sh;
6136
6137 if (batch_size == 0) {
6138 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6139 if (!list_empty(temp_inactive_list + i))
6140 break;
6141 if (i == NR_STRIPE_HASH_LOCKS) {
6142 spin_unlock_irq(&conf->device_lock);
6143 r5l_flush_stripe_to_raid(conf->log);
6144 spin_lock_irq(&conf->device_lock);
6145 return batch_size;
6146 }
6147 release_inactive = true;
6148 }
6149 spin_unlock_irq(&conf->device_lock);
6150
6151 release_inactive_stripe_list(conf, temp_inactive_list,
6152 NR_STRIPE_HASH_LOCKS);
6153
6154 r5l_flush_stripe_to_raid(conf->log);
6155 if (release_inactive) {
6156 spin_lock_irq(&conf->device_lock);
6157 return 0;
6158 }
6159
6160 for (i = 0; i < batch_size; i++)
6161 handle_stripe(batch[i]);
6162 log_write_stripe_run(conf);
6163
6164 cond_resched();
6165
6166 spin_lock_irq(&conf->device_lock);
6167 for (i = 0; i < batch_size; i++) {
6168 hash = batch[i]->hash_lock_index;
6169 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6170 }
6171 return batch_size;
6172 }
6173
6174 static void raid5_do_work(struct work_struct *work)
6175 {
6176 struct r5worker *worker = container_of(work, struct r5worker, work);
6177 struct r5worker_group *group = worker->group;
6178 struct r5conf *conf = group->conf;
6179 struct mddev *mddev = conf->mddev;
6180 int group_id = group - conf->worker_groups;
6181 int handled;
6182 struct blk_plug plug;
6183
6184 pr_debug("+++ raid5worker active\n");
6185
6186 blk_start_plug(&plug);
6187 handled = 0;
6188 spin_lock_irq(&conf->device_lock);
6189 while (1) {
6190 int batch_size, released;
6191
6192 released = release_stripe_list(conf, worker->temp_inactive_list);
6193
6194 batch_size = handle_active_stripes(conf, group_id, worker,
6195 worker->temp_inactive_list);
6196 worker->working = false;
6197 if (!batch_size && !released)
6198 break;
6199 handled += batch_size;
6200 wait_event_lock_irq(mddev->sb_wait,
6201 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6202 conf->device_lock);
6203 }
6204 pr_debug("%d stripes handled\n", handled);
6205
6206 spin_unlock_irq(&conf->device_lock);
6207 blk_finish_plug(&plug);
6208
6209 pr_debug("--- raid5worker inactive\n");
6210 }
6211
6212 /*
6213 * This is our raid5 kernel thread.
6214 *
6215 * We scan the hash table for stripes which can be handled now.
6216 * During the scan, completed stripes are saved for us by the interrupt
6217 * handler, so that they will not have to wait for our next wakeup.
6218 */
6219 static void raid5d(struct md_thread *thread)
6220 {
6221 struct mddev *mddev = thread->mddev;
6222 struct r5conf *conf = mddev->private;
6223 int handled;
6224 struct blk_plug plug;
6225
6226 pr_debug("+++ raid5d active\n");
6227
6228 md_check_recovery(mddev);
6229
6230 blk_start_plug(&plug);
6231 handled = 0;
6232 spin_lock_irq(&conf->device_lock);
6233 while (1) {
6234 struct bio *bio;
6235 int batch_size, released;
6236 unsigned int offset;
6237
6238 released = release_stripe_list(conf, conf->temp_inactive_list);
6239 if (released)
6240 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6241
6242 if (
6243 !list_empty(&conf->bitmap_list)) {
6244 /* Now is a good time to flush some bitmap updates */
6245 conf->seq_flush++;
6246 spin_unlock_irq(&conf->device_lock);
6247 bitmap_unplug(mddev->bitmap);
6248 spin_lock_irq(&conf->device_lock);
6249 conf->seq_write = conf->seq_flush;
6250 activate_bit_delay(conf, conf->temp_inactive_list);
6251 }
6252 raid5_activate_delayed(conf);
6253
6254 while ((bio = remove_bio_from_retry(conf, &offset))) {
6255 int ok;
6256 spin_unlock_irq(&conf->device_lock);
6257 ok = retry_aligned_read(conf, bio, offset);
6258 spin_lock_irq(&conf->device_lock);
6259 if (!ok)
6260 break;
6261 handled++;
6262 }
6263
6264 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6265 conf->temp_inactive_list);
6266 if (!batch_size && !released)
6267 break;
6268 handled += batch_size;
6269
6270 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6271 spin_unlock_irq(&conf->device_lock);
6272 md_check_recovery(mddev);
6273 spin_lock_irq(&conf->device_lock);
6274 }
6275 }
6276 pr_debug("%d stripes handled\n", handled);
6277
6278 spin_unlock_irq(&conf->device_lock);
6279 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6280 mutex_trylock(&conf->cache_size_mutex)) {
6281 grow_one_stripe(conf, __GFP_NOWARN);
6282 /* Set flag even if allocation failed. This helps
6283 * slow down allocation requests when mem is short
6284 */
6285 set_bit(R5_DID_ALLOC, &conf->cache_state);
6286 mutex_unlock(&conf->cache_size_mutex);
6287 }
6288
6289 flush_deferred_bios(conf);
6290
6291 r5l_flush_stripe_to_raid(conf->log);
6292
6293 async_tx_issue_pending_all();
6294 blk_finish_plug(&plug);
6295
6296 pr_debug("--- raid5d inactive\n");
6297 }
6298
6299 static ssize_t
6300 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6301 {
6302 struct r5conf *conf;
6303 int ret = 0;
6304 spin_lock(&mddev->lock);
6305 conf = mddev->private;
6306 if (conf)
6307 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6308 spin_unlock(&mddev->lock);
6309 return ret;
6310 }
6311
6312 int
6313 raid5_set_cache_size(struct mddev *mddev, int size)
6314 {
6315 struct r5conf *conf = mddev->private;
6316 int err;
6317
6318 if (size <= 16 || size > 32768)
6319 return -EINVAL;
6320
6321 conf->min_nr_stripes = size;
6322 mutex_lock(&conf->cache_size_mutex);
6323 while (size < conf->max_nr_stripes &&
6324 drop_one_stripe(conf))
6325 ;
6326 mutex_unlock(&conf->cache_size_mutex);
6327
6328
6329 err = md_allow_write(mddev);
6330 if (err)
6331 return err;
6332
6333 mutex_lock(&conf->cache_size_mutex);
6334 while (size > conf->max_nr_stripes)
6335 if (!grow_one_stripe(conf, GFP_KERNEL))
6336 break;
6337 mutex_unlock(&conf->cache_size_mutex);
6338
6339 return 0;
6340 }
6341 EXPORT_SYMBOL(raid5_set_cache_size);
6342
6343 static ssize_t
6344 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6345 {
6346 struct r5conf *conf;
6347 unsigned long new;
6348 int err;
6349
6350 if (len >= PAGE_SIZE)
6351 return -EINVAL;
6352 if (kstrtoul(page, 10, &new))
6353 return -EINVAL;
6354 err = mddev_lock(mddev);
6355 if (err)
6356 return err;
6357 conf = mddev->private;
6358 if (!conf)
6359 err = -ENODEV;
6360 else
6361 err = raid5_set_cache_size(mddev, new);
6362 mddev_unlock(mddev);
6363
6364 return err ?: len;
6365 }
6366
6367 static struct md_sysfs_entry
6368 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6369 raid5_show_stripe_cache_size,
6370 raid5_store_stripe_cache_size);
6371
6372 static ssize_t
6373 raid5_show_rmw_level(struct mddev *mddev, char *page)
6374 {
6375 struct r5conf *conf = mddev->private;
6376 if (conf)
6377 return sprintf(page, "%d\n", conf->rmw_level);
6378 else
6379 return 0;
6380 }
6381
6382 static ssize_t
6383 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6384 {
6385 struct r5conf *conf = mddev->private;
6386 unsigned long new;
6387
6388 if (!conf)
6389 return -ENODEV;
6390
6391 if (len >= PAGE_SIZE)
6392 return -EINVAL;
6393
6394 if (kstrtoul(page, 10, &new))
6395 return -EINVAL;
6396
6397 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6398 return -EINVAL;
6399
6400 if (new != PARITY_DISABLE_RMW &&
6401 new != PARITY_ENABLE_RMW &&
6402 new != PARITY_PREFER_RMW)
6403 return -EINVAL;
6404
6405 conf->rmw_level = new;
6406 return len;
6407 }
6408
6409 static struct md_sysfs_entry
6410 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6411 raid5_show_rmw_level,
6412 raid5_store_rmw_level);
6413
6414
6415 static ssize_t
6416 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6417 {
6418 struct r5conf *conf;
6419 int ret = 0;
6420 spin_lock(&mddev->lock);
6421 conf = mddev->private;
6422 if (conf)
6423 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6424 spin_unlock(&mddev->lock);
6425 return ret;
6426 }
6427
6428 static ssize_t
6429 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6430 {
6431 struct r5conf *conf;
6432 unsigned long new;
6433 int err;
6434
6435 if (len >= PAGE_SIZE)
6436 return -EINVAL;
6437 if (kstrtoul(page, 10, &new))
6438 return -EINVAL;
6439
6440 err = mddev_lock(mddev);
6441 if (err)
6442 return err;
6443 conf = mddev->private;
6444 if (!conf)
6445 err = -ENODEV;
6446 else if (new > conf->min_nr_stripes)
6447 err = -EINVAL;
6448 else
6449 conf->bypass_threshold = new;
6450 mddev_unlock(mddev);
6451 return err ?: len;
6452 }
6453
6454 static struct md_sysfs_entry
6455 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6456 S_IRUGO | S_IWUSR,
6457 raid5_show_preread_threshold,
6458 raid5_store_preread_threshold);
6459
6460 static ssize_t
6461 raid5_show_skip_copy(struct mddev *mddev, char *page)
6462 {
6463 struct r5conf *conf;
6464 int ret = 0;
6465 spin_lock(&mddev->lock);
6466 conf = mddev->private;
6467 if (conf)
6468 ret = sprintf(page, "%d\n", conf->skip_copy);
6469 spin_unlock(&mddev->lock);
6470 return ret;
6471 }
6472
6473 static ssize_t
6474 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6475 {
6476 struct r5conf *conf;
6477 unsigned long new;
6478 int err;
6479
6480 if (len >= PAGE_SIZE)
6481 return -EINVAL;
6482 if (kstrtoul(page, 10, &new))
6483 return -EINVAL;
6484 new = !!new;
6485
6486 err = mddev_lock(mddev);
6487 if (err)
6488 return err;
6489 conf = mddev->private;
6490 if (!conf)
6491 err = -ENODEV;
6492 else if (new != conf->skip_copy) {
6493 mddev_suspend(mddev);
6494 conf->skip_copy = new;
6495 if (new)
6496 mddev->queue->backing_dev_info->capabilities |=
6497 BDI_CAP_STABLE_WRITES;
6498 else
6499 mddev->queue->backing_dev_info->capabilities &=
6500 ~BDI_CAP_STABLE_WRITES;
6501 mddev_resume(mddev);
6502 }
6503 mddev_unlock(mddev);
6504 return err ?: len;
6505 }
6506
6507 static struct md_sysfs_entry
6508 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6509 raid5_show_skip_copy,
6510 raid5_store_skip_copy);
6511
6512 static ssize_t
6513 stripe_cache_active_show(struct mddev *mddev, char *page)
6514 {
6515 struct r5conf *conf = mddev->private;
6516 if (conf)
6517 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6518 else
6519 return 0;
6520 }
6521
6522 static struct md_sysfs_entry
6523 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6524
6525 static ssize_t
6526 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6527 {
6528 struct r5conf *conf;
6529 int ret = 0;
6530 spin_lock(&mddev->lock);
6531 conf = mddev->private;
6532 if (conf)
6533 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6534 spin_unlock(&mddev->lock);
6535 return ret;
6536 }
6537
6538 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6539 int *group_cnt,
6540 int *worker_cnt_per_group,
6541 struct r5worker_group **worker_groups);
6542 static ssize_t
6543 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6544 {
6545 struct r5conf *conf;
6546 unsigned long new;
6547 int err;
6548 struct r5worker_group *new_groups, *old_groups;
6549 int group_cnt, worker_cnt_per_group;
6550
6551 if (len >= PAGE_SIZE)
6552 return -EINVAL;
6553 if (kstrtoul(page, 10, &new))
6554 return -EINVAL;
6555
6556 err = mddev_lock(mddev);
6557 if (err)
6558 return err;
6559 conf = mddev->private;
6560 if (!conf)
6561 err = -ENODEV;
6562 else if (new != conf->worker_cnt_per_group) {
6563 mddev_suspend(mddev);
6564
6565 old_groups = conf->worker_groups;
6566 if (old_groups)
6567 flush_workqueue(raid5_wq);
6568
6569 err = alloc_thread_groups(conf, new,
6570 &group_cnt, &worker_cnt_per_group,
6571 &new_groups);
6572 if (!err) {
6573 spin_lock_irq(&conf->device_lock);
6574 conf->group_cnt = group_cnt;
6575 conf->worker_cnt_per_group = worker_cnt_per_group;
6576 conf->worker_groups = new_groups;
6577 spin_unlock_irq(&conf->device_lock);
6578
6579 if (old_groups)
6580 kfree(old_groups[0].workers);
6581 kfree(old_groups);
6582 }
6583 mddev_resume(mddev);
6584 }
6585 mddev_unlock(mddev);
6586
6587 return err ?: len;
6588 }
6589
6590 static struct md_sysfs_entry
6591 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6592 raid5_show_group_thread_cnt,
6593 raid5_store_group_thread_cnt);
6594
6595 static struct attribute *raid5_attrs[] = {
6596 &raid5_stripecache_size.attr,
6597 &raid5_stripecache_active.attr,
6598 &raid5_preread_bypass_threshold.attr,
6599 &raid5_group_thread_cnt.attr,
6600 &raid5_skip_copy.attr,
6601 &raid5_rmw_level.attr,
6602 &r5c_journal_mode.attr,
6603 NULL,
6604 };
6605 static struct attribute_group raid5_attrs_group = {
6606 .name = NULL,
6607 .attrs = raid5_attrs,
6608 };
6609
6610 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6611 int *group_cnt,
6612 int *worker_cnt_per_group,
6613 struct r5worker_group **worker_groups)
6614 {
6615 int i, j, k;
6616 ssize_t size;
6617 struct r5worker *workers;
6618
6619 *worker_cnt_per_group = cnt;
6620 if (cnt == 0) {
6621 *group_cnt = 0;
6622 *worker_groups = NULL;
6623 return 0;
6624 }
6625 *group_cnt = num_possible_nodes();
6626 size = sizeof(struct r5worker) * cnt;
6627 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6628 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6629 *group_cnt, GFP_NOIO);
6630 if (!*worker_groups || !workers) {
6631 kfree(workers);
6632 kfree(*worker_groups);
6633 return -ENOMEM;
6634 }
6635
6636 for (i = 0; i < *group_cnt; i++) {
6637 struct r5worker_group *group;
6638
6639 group = &(*worker_groups)[i];
6640 INIT_LIST_HEAD(&group->handle_list);
6641 INIT_LIST_HEAD(&group->loprio_list);
6642 group->conf = conf;
6643 group->workers = workers + i * cnt;
6644
6645 for (j = 0; j < cnt; j++) {
6646 struct r5worker *worker = group->workers + j;
6647 worker->group = group;
6648 INIT_WORK(&worker->work, raid5_do_work);
6649
6650 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6651 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6652 }
6653 }
6654
6655 return 0;
6656 }
6657
6658 static void free_thread_groups(struct r5conf *conf)
6659 {
6660 if (conf->worker_groups)
6661 kfree(conf->worker_groups[0].workers);
6662 kfree(conf->worker_groups);
6663 conf->worker_groups = NULL;
6664 }
6665
6666 static sector_t
6667 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6668 {
6669 struct r5conf *conf = mddev->private;
6670
6671 if (!sectors)
6672 sectors = mddev->dev_sectors;
6673 if (!raid_disks)
6674 /* size is defined by the smallest of previous and new size */
6675 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6676
6677 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6678 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6679 return sectors * (raid_disks - conf->max_degraded);
6680 }
6681
6682 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6683 {
6684 safe_put_page(percpu->spare_page);
6685 if (percpu->scribble)
6686 flex_array_free(percpu->scribble);
6687 percpu->spare_page = NULL;
6688 percpu->scribble = NULL;
6689 }
6690
6691 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6692 {
6693 if (conf->level == 6 && !percpu->spare_page)
6694 percpu->spare_page = alloc_page(GFP_KERNEL);
6695 if (!percpu->scribble)
6696 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6697 conf->previous_raid_disks),
6698 max(conf->chunk_sectors,
6699 conf->prev_chunk_sectors)
6700 / STRIPE_SECTORS,
6701 GFP_KERNEL);
6702
6703 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6704 free_scratch_buffer(conf, percpu);
6705 return -ENOMEM;
6706 }
6707
6708 return 0;
6709 }
6710
6711 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6712 {
6713 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6714
6715 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6716 return 0;
6717 }
6718
6719 static void raid5_free_percpu(struct r5conf *conf)
6720 {
6721 if (!conf->percpu)
6722 return;
6723
6724 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6725 free_percpu(conf->percpu);
6726 }
6727
6728 static void free_conf(struct r5conf *conf)
6729 {
6730 int i;
6731
6732 log_exit(conf);
6733
6734 if (conf->shrinker.nr_deferred)
6735 unregister_shrinker(&conf->shrinker);
6736
6737 free_thread_groups(conf);
6738 shrink_stripes(conf);
6739 raid5_free_percpu(conf);
6740 for (i = 0; i < conf->pool_size; i++)
6741 if (conf->disks[i].extra_page)
6742 put_page(conf->disks[i].extra_page);
6743 kfree(conf->disks);
6744 if (conf->bio_split)
6745 bioset_free(conf->bio_split);
6746 kfree(conf->stripe_hashtbl);
6747 kfree(conf->pending_data);
6748 kfree(conf);
6749 }
6750
6751 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6752 {
6753 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6754 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6755
6756 if (alloc_scratch_buffer(conf, percpu)) {
6757 pr_warn("%s: failed memory allocation for cpu%u\n",
6758 __func__, cpu);
6759 return -ENOMEM;
6760 }
6761 return 0;
6762 }
6763
6764 static int raid5_alloc_percpu(struct r5conf *conf)
6765 {
6766 int err = 0;
6767
6768 conf->percpu = alloc_percpu(struct raid5_percpu);
6769 if (!conf->percpu)
6770 return -ENOMEM;
6771
6772 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6773 if (!err) {
6774 conf->scribble_disks = max(conf->raid_disks,
6775 conf->previous_raid_disks);
6776 conf->scribble_sectors = max(conf->chunk_sectors,
6777 conf->prev_chunk_sectors);
6778 }
6779 return err;
6780 }
6781
6782 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6783 struct shrink_control *sc)
6784 {
6785 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6786 unsigned long ret = SHRINK_STOP;
6787
6788 if (mutex_trylock(&conf->cache_size_mutex)) {
6789 ret= 0;
6790 while (ret < sc->nr_to_scan &&
6791 conf->max_nr_stripes > conf->min_nr_stripes) {
6792 if (drop_one_stripe(conf) == 0) {
6793 ret = SHRINK_STOP;
6794 break;
6795 }
6796 ret++;
6797 }
6798 mutex_unlock(&conf->cache_size_mutex);
6799 }
6800 return ret;
6801 }
6802
6803 static unsigned long raid5_cache_count(struct shrinker *shrink,
6804 struct shrink_control *sc)
6805 {
6806 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6807
6808 if (conf->max_nr_stripes < conf->min_nr_stripes)
6809 /* unlikely, but not impossible */
6810 return 0;
6811 return conf->max_nr_stripes - conf->min_nr_stripes;
6812 }
6813
6814 static struct r5conf *setup_conf(struct mddev *mddev)
6815 {
6816 struct r5conf *conf;
6817 int raid_disk, memory, max_disks;
6818 struct md_rdev *rdev;
6819 struct disk_info *disk;
6820 char pers_name[6];
6821 int i;
6822 int group_cnt, worker_cnt_per_group;
6823 struct r5worker_group *new_group;
6824
6825 if (mddev->new_level != 5
6826 && mddev->new_level != 4
6827 && mddev->new_level != 6) {
6828 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6829 mdname(mddev), mddev->new_level);
6830 return ERR_PTR(-EIO);
6831 }
6832 if ((mddev->new_level == 5
6833 && !algorithm_valid_raid5(mddev->new_layout)) ||
6834 (mddev->new_level == 6
6835 && !algorithm_valid_raid6(mddev->new_layout))) {
6836 pr_warn("md/raid:%s: layout %d not supported\n",
6837 mdname(mddev), mddev->new_layout);
6838 return ERR_PTR(-EIO);
6839 }
6840 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6841 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6842 mdname(mddev), mddev->raid_disks);
6843 return ERR_PTR(-EINVAL);
6844 }
6845
6846 if (!mddev->new_chunk_sectors ||
6847 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6848 !is_power_of_2(mddev->new_chunk_sectors)) {
6849 pr_warn("md/raid:%s: invalid chunk size %d\n",
6850 mdname(mddev), mddev->new_chunk_sectors << 9);
6851 return ERR_PTR(-EINVAL);
6852 }
6853
6854 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6855 if (conf == NULL)
6856 goto abort;
6857 INIT_LIST_HEAD(&conf->free_list);
6858 INIT_LIST_HEAD(&conf->pending_list);
6859 conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6860 PENDING_IO_MAX, GFP_KERNEL);
6861 if (!conf->pending_data)
6862 goto abort;
6863 for (i = 0; i < PENDING_IO_MAX; i++)
6864 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6865 /* Don't enable multi-threading by default*/
6866 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6867 &new_group)) {
6868 conf->group_cnt = group_cnt;
6869 conf->worker_cnt_per_group = worker_cnt_per_group;
6870 conf->worker_groups = new_group;
6871 } else
6872 goto abort;
6873 spin_lock_init(&conf->device_lock);
6874 seqcount_init(&conf->gen_lock);
6875 mutex_init(&conf->cache_size_mutex);
6876 init_waitqueue_head(&conf->wait_for_quiescent);
6877 init_waitqueue_head(&conf->wait_for_stripe);
6878 init_waitqueue_head(&conf->wait_for_overlap);
6879 INIT_LIST_HEAD(&conf->handle_list);
6880 INIT_LIST_HEAD(&conf->loprio_list);
6881 INIT_LIST_HEAD(&conf->hold_list);
6882 INIT_LIST_HEAD(&conf->delayed_list);
6883 INIT_LIST_HEAD(&conf->bitmap_list);
6884 init_llist_head(&conf->released_stripes);
6885 atomic_set(&conf->active_stripes, 0);
6886 atomic_set(&conf->preread_active_stripes, 0);
6887 atomic_set(&conf->active_aligned_reads, 0);
6888 spin_lock_init(&conf->pending_bios_lock);
6889 conf->batch_bio_dispatch = true;
6890 rdev_for_each(rdev, mddev) {
6891 if (test_bit(Journal, &rdev->flags))
6892 continue;
6893 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6894 conf->batch_bio_dispatch = false;
6895 break;
6896 }
6897 }
6898
6899 conf->bypass_threshold = BYPASS_THRESHOLD;
6900 conf->recovery_disabled = mddev->recovery_disabled - 1;
6901
6902 conf->raid_disks = mddev->raid_disks;
6903 if (mddev->reshape_position == MaxSector)
6904 conf->previous_raid_disks = mddev->raid_disks;
6905 else
6906 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6907 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6908
6909 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6910 GFP_KERNEL);
6911
6912 if (!conf->disks)
6913 goto abort;
6914
6915 for (i = 0; i < max_disks; i++) {
6916 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6917 if (!conf->disks[i].extra_page)
6918 goto abort;
6919 }
6920
6921 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
6922 if (!conf->bio_split)
6923 goto abort;
6924 conf->mddev = mddev;
6925
6926 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6927 goto abort;
6928
6929 /* We init hash_locks[0] separately to that it can be used
6930 * as the reference lock in the spin_lock_nest_lock() call
6931 * in lock_all_device_hash_locks_irq in order to convince
6932 * lockdep that we know what we are doing.
6933 */
6934 spin_lock_init(conf->hash_locks);
6935 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6936 spin_lock_init(conf->hash_locks + i);
6937
6938 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6939 INIT_LIST_HEAD(conf->inactive_list + i);
6940
6941 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6942 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6943
6944 atomic_set(&conf->r5c_cached_full_stripes, 0);
6945 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6946 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6947 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6948 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6949 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6950
6951 conf->level = mddev->new_level;
6952 conf->chunk_sectors = mddev->new_chunk_sectors;
6953 if (raid5_alloc_percpu(conf) != 0)
6954 goto abort;
6955
6956 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6957
6958 rdev_for_each(rdev, mddev) {
6959 raid_disk = rdev->raid_disk;
6960 if (raid_disk >= max_disks
6961 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6962 continue;
6963 disk = conf->disks + raid_disk;
6964
6965 if (test_bit(Replacement, &rdev->flags)) {
6966 if (disk->replacement)
6967 goto abort;
6968 disk->replacement = rdev;
6969 } else {
6970 if (disk->rdev)
6971 goto abort;
6972 disk->rdev = rdev;
6973 }
6974
6975 if (test_bit(In_sync, &rdev->flags)) {
6976 char b[BDEVNAME_SIZE];
6977 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6978 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6979 } else if (rdev->saved_raid_disk != raid_disk)
6980 /* Cannot rely on bitmap to complete recovery */
6981 conf->fullsync = 1;
6982 }
6983
6984 conf->level = mddev->new_level;
6985 if (conf->level == 6) {
6986 conf->max_degraded = 2;
6987 if (raid6_call.xor_syndrome)
6988 conf->rmw_level = PARITY_ENABLE_RMW;
6989 else
6990 conf->rmw_level = PARITY_DISABLE_RMW;
6991 } else {
6992 conf->max_degraded = 1;
6993 conf->rmw_level = PARITY_ENABLE_RMW;
6994 }
6995 conf->algorithm = mddev->new_layout;
6996 conf->reshape_progress = mddev->reshape_position;
6997 if (conf->reshape_progress != MaxSector) {
6998 conf->prev_chunk_sectors = mddev->chunk_sectors;
6999 conf->prev_algo = mddev->layout;
7000 } else {
7001 conf->prev_chunk_sectors = conf->chunk_sectors;
7002 conf->prev_algo = conf->algorithm;
7003 }
7004
7005 conf->min_nr_stripes = NR_STRIPES;
7006 if (mddev->reshape_position != MaxSector) {
7007 int stripes = max_t(int,
7008 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7009 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7010 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7011 if (conf->min_nr_stripes != NR_STRIPES)
7012 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7013 mdname(mddev), conf->min_nr_stripes);
7014 }
7015 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7016 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7017 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7018 if (grow_stripes(conf, conf->min_nr_stripes)) {
7019 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7020 mdname(mddev), memory);
7021 goto abort;
7022 } else
7023 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7024 /*
7025 * Losing a stripe head costs more than the time to refill it,
7026 * it reduces the queue depth and so can hurt throughput.
7027 * So set it rather large, scaled by number of devices.
7028 */
7029 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7030 conf->shrinker.scan_objects = raid5_cache_scan;
7031 conf->shrinker.count_objects = raid5_cache_count;
7032 conf->shrinker.batch = 128;
7033 conf->shrinker.flags = 0;
7034 if (register_shrinker(&conf->shrinker)) {
7035 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7036 mdname(mddev));
7037 goto abort;
7038 }
7039
7040 sprintf(pers_name, "raid%d", mddev->new_level);
7041 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7042 if (!conf->thread) {
7043 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7044 mdname(mddev));
7045 goto abort;
7046 }
7047
7048 return conf;
7049
7050 abort:
7051 if (conf) {
7052 free_conf(conf);
7053 return ERR_PTR(-EIO);
7054 } else
7055 return ERR_PTR(-ENOMEM);
7056 }
7057
7058 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7059 {
7060 switch (algo) {
7061 case ALGORITHM_PARITY_0:
7062 if (raid_disk < max_degraded)
7063 return 1;
7064 break;
7065 case ALGORITHM_PARITY_N:
7066 if (raid_disk >= raid_disks - max_degraded)
7067 return 1;
7068 break;
7069 case ALGORITHM_PARITY_0_6:
7070 if (raid_disk == 0 ||
7071 raid_disk == raid_disks - 1)
7072 return 1;
7073 break;
7074 case ALGORITHM_LEFT_ASYMMETRIC_6:
7075 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7076 case ALGORITHM_LEFT_SYMMETRIC_6:
7077 case ALGORITHM_RIGHT_SYMMETRIC_6:
7078 if (raid_disk == raid_disks - 1)
7079 return 1;
7080 }
7081 return 0;
7082 }
7083
7084 static int raid5_run(struct mddev *mddev)
7085 {
7086 struct r5conf *conf;
7087 int working_disks = 0;
7088 int dirty_parity_disks = 0;
7089 struct md_rdev *rdev;
7090 struct md_rdev *journal_dev = NULL;
7091 sector_t reshape_offset = 0;
7092 int i;
7093 long long min_offset_diff = 0;
7094 int first = 1;
7095
7096 if (mddev->recovery_cp != MaxSector)
7097 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7098 mdname(mddev));
7099
7100 rdev_for_each(rdev, mddev) {
7101 long long diff;
7102
7103 if (test_bit(Journal, &rdev->flags)) {
7104 journal_dev = rdev;
7105 continue;
7106 }
7107 if (rdev->raid_disk < 0)
7108 continue;
7109 diff = (rdev->new_data_offset - rdev->data_offset);
7110 if (first) {
7111 min_offset_diff = diff;
7112 first = 0;
7113 } else if (mddev->reshape_backwards &&
7114 diff < min_offset_diff)
7115 min_offset_diff = diff;
7116 else if (!mddev->reshape_backwards &&
7117 diff > min_offset_diff)
7118 min_offset_diff = diff;
7119 }
7120
7121 if (mddev->reshape_position != MaxSector) {
7122 /* Check that we can continue the reshape.
7123 * Difficulties arise if the stripe we would write to
7124 * next is at or after the stripe we would read from next.
7125 * For a reshape that changes the number of devices, this
7126 * is only possible for a very short time, and mdadm makes
7127 * sure that time appears to have past before assembling
7128 * the array. So we fail if that time hasn't passed.
7129 * For a reshape that keeps the number of devices the same
7130 * mdadm must be monitoring the reshape can keeping the
7131 * critical areas read-only and backed up. It will start
7132 * the array in read-only mode, so we check for that.
7133 */
7134 sector_t here_new, here_old;
7135 int old_disks;
7136 int max_degraded = (mddev->level == 6 ? 2 : 1);
7137 int chunk_sectors;
7138 int new_data_disks;
7139
7140 if (journal_dev) {
7141 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7142 mdname(mddev));
7143 return -EINVAL;
7144 }
7145
7146 if (mddev->new_level != mddev->level) {
7147 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7148 mdname(mddev));
7149 return -EINVAL;
7150 }
7151 old_disks = mddev->raid_disks - mddev->delta_disks;
7152 /* reshape_position must be on a new-stripe boundary, and one
7153 * further up in new geometry must map after here in old
7154 * geometry.
7155 * If the chunk sizes are different, then as we perform reshape
7156 * in units of the largest of the two, reshape_position needs
7157 * be a multiple of the largest chunk size times new data disks.
7158 */
7159 here_new = mddev->reshape_position;
7160 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7161 new_data_disks = mddev->raid_disks - max_degraded;
7162 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7163 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7164 mdname(mddev));
7165 return -EINVAL;
7166 }
7167 reshape_offset = here_new * chunk_sectors;
7168 /* here_new is the stripe we will write to */
7169 here_old = mddev->reshape_position;
7170 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7171 /* here_old is the first stripe that we might need to read
7172 * from */
7173 if (mddev->delta_disks == 0) {
7174 /* We cannot be sure it is safe to start an in-place
7175 * reshape. It is only safe if user-space is monitoring
7176 * and taking constant backups.
7177 * mdadm always starts a situation like this in
7178 * readonly mode so it can take control before
7179 * allowing any writes. So just check for that.
7180 */
7181 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7182 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7183 /* not really in-place - so OK */;
7184 else if (mddev->ro == 0) {
7185 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7186 mdname(mddev));
7187 return -EINVAL;
7188 }
7189 } else if (mddev->reshape_backwards
7190 ? (here_new * chunk_sectors + min_offset_diff <=
7191 here_old * chunk_sectors)
7192 : (here_new * chunk_sectors >=
7193 here_old * chunk_sectors + (-min_offset_diff))) {
7194 /* Reading from the same stripe as writing to - bad */
7195 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7196 mdname(mddev));
7197 return -EINVAL;
7198 }
7199 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7200 /* OK, we should be able to continue; */
7201 } else {
7202 BUG_ON(mddev->level != mddev->new_level);
7203 BUG_ON(mddev->layout != mddev->new_layout);
7204 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7205 BUG_ON(mddev->delta_disks != 0);
7206 }
7207
7208 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7209 test_bit(MD_HAS_PPL, &mddev->flags)) {
7210 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7211 mdname(mddev));
7212 clear_bit(MD_HAS_PPL, &mddev->flags);
7213 }
7214
7215 if (mddev->private == NULL)
7216 conf = setup_conf(mddev);
7217 else
7218 conf = mddev->private;
7219
7220 if (IS_ERR(conf))
7221 return PTR_ERR(conf);
7222
7223 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7224 if (!journal_dev) {
7225 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7226 mdname(mddev));
7227 mddev->ro = 1;
7228 set_disk_ro(mddev->gendisk, 1);
7229 } else if (mddev->recovery_cp == MaxSector)
7230 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7231 }
7232
7233 conf->min_offset_diff = min_offset_diff;
7234 mddev->thread = conf->thread;
7235 conf->thread = NULL;
7236 mddev->private = conf;
7237
7238 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7239 i++) {
7240 rdev = conf->disks[i].rdev;
7241 if (!rdev && conf->disks[i].replacement) {
7242 /* The replacement is all we have yet */
7243 rdev = conf->disks[i].replacement;
7244 conf->disks[i].replacement = NULL;
7245 clear_bit(Replacement, &rdev->flags);
7246 conf->disks[i].rdev = rdev;
7247 }
7248 if (!rdev)
7249 continue;
7250 if (conf->disks[i].replacement &&
7251 conf->reshape_progress != MaxSector) {
7252 /* replacements and reshape simply do not mix. */
7253 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7254 goto abort;
7255 }
7256 if (test_bit(In_sync, &rdev->flags)) {
7257 working_disks++;
7258 continue;
7259 }
7260 /* This disc is not fully in-sync. However if it
7261 * just stored parity (beyond the recovery_offset),
7262 * when we don't need to be concerned about the
7263 * array being dirty.
7264 * When reshape goes 'backwards', we never have
7265 * partially completed devices, so we only need
7266 * to worry about reshape going forwards.
7267 */
7268 /* Hack because v0.91 doesn't store recovery_offset properly. */
7269 if (mddev->major_version == 0 &&
7270 mddev->minor_version > 90)
7271 rdev->recovery_offset = reshape_offset;
7272
7273 if (rdev->recovery_offset < reshape_offset) {
7274 /* We need to check old and new layout */
7275 if (!only_parity(rdev->raid_disk,
7276 conf->algorithm,
7277 conf->raid_disks,
7278 conf->max_degraded))
7279 continue;
7280 }
7281 if (!only_parity(rdev->raid_disk,
7282 conf->prev_algo,
7283 conf->previous_raid_disks,
7284 conf->max_degraded))
7285 continue;
7286 dirty_parity_disks++;
7287 }
7288
7289 /*
7290 * 0 for a fully functional array, 1 or 2 for a degraded array.
7291 */
7292 mddev->degraded = raid5_calc_degraded(conf);
7293
7294 if (has_failed(conf)) {
7295 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7296 mdname(mddev), mddev->degraded, conf->raid_disks);
7297 goto abort;
7298 }
7299
7300 /* device size must be a multiple of chunk size */
7301 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7302 mddev->resync_max_sectors = mddev->dev_sectors;
7303
7304 if (mddev->degraded > dirty_parity_disks &&
7305 mddev->recovery_cp != MaxSector) {
7306 if (test_bit(MD_HAS_PPL, &mddev->flags))
7307 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7308 mdname(mddev));
7309 else if (mddev->ok_start_degraded)
7310 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7311 mdname(mddev));
7312 else {
7313 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7314 mdname(mddev));
7315 goto abort;
7316 }
7317 }
7318
7319 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7320 mdname(mddev), conf->level,
7321 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7322 mddev->new_layout);
7323
7324 print_raid5_conf(conf);
7325
7326 if (conf->reshape_progress != MaxSector) {
7327 conf->reshape_safe = conf->reshape_progress;
7328 atomic_set(&conf->reshape_stripes, 0);
7329 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7330 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7331 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7332 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7333 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7334 "reshape");
7335 }
7336
7337 /* Ok, everything is just fine now */
7338 if (mddev->to_remove == &raid5_attrs_group)
7339 mddev->to_remove = NULL;
7340 else if (mddev->kobj.sd &&
7341 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7342 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7343 mdname(mddev));
7344 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7345
7346 if (mddev->queue) {
7347 int chunk_size;
7348 /* read-ahead size must cover two whole stripes, which
7349 * is 2 * (datadisks) * chunksize where 'n' is the
7350 * number of raid devices
7351 */
7352 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7353 int stripe = data_disks *
7354 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7355 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7356 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7357
7358 chunk_size = mddev->chunk_sectors << 9;
7359 blk_queue_io_min(mddev->queue, chunk_size);
7360 blk_queue_io_opt(mddev->queue, chunk_size *
7361 (conf->raid_disks - conf->max_degraded));
7362 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7363 /*
7364 * We can only discard a whole stripe. It doesn't make sense to
7365 * discard data disk but write parity disk
7366 */
7367 stripe = stripe * PAGE_SIZE;
7368 /* Round up to power of 2, as discard handling
7369 * currently assumes that */
7370 while ((stripe-1) & stripe)
7371 stripe = (stripe | (stripe-1)) + 1;
7372 mddev->queue->limits.discard_alignment = stripe;
7373 mddev->queue->limits.discard_granularity = stripe;
7374
7375 blk_queue_max_write_same_sectors(mddev->queue, 0);
7376 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7377
7378 rdev_for_each(rdev, mddev) {
7379 disk_stack_limits(mddev->gendisk, rdev->bdev,
7380 rdev->data_offset << 9);
7381 disk_stack_limits(mddev->gendisk, rdev->bdev,
7382 rdev->new_data_offset << 9);
7383 }
7384
7385 /*
7386 * zeroing is required, otherwise data
7387 * could be lost. Consider a scenario: discard a stripe
7388 * (the stripe could be inconsistent if
7389 * discard_zeroes_data is 0); write one disk of the
7390 * stripe (the stripe could be inconsistent again
7391 * depending on which disks are used to calculate
7392 * parity); the disk is broken; The stripe data of this
7393 * disk is lost.
7394 *
7395 * We only allow DISCARD if the sysadmin has confirmed that
7396 * only safe devices are in use by setting a module parameter.
7397 * A better idea might be to turn DISCARD into WRITE_ZEROES
7398 * requests, as that is required to be safe.
7399 */
7400 if (devices_handle_discard_safely &&
7401 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7402 mddev->queue->limits.discard_granularity >= stripe)
7403 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7404 mddev->queue);
7405 else
7406 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7407 mddev->queue);
7408
7409 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7410 }
7411
7412 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7413 goto abort;
7414
7415 return 0;
7416 abort:
7417 md_unregister_thread(&mddev->thread);
7418 print_raid5_conf(conf);
7419 free_conf(conf);
7420 mddev->private = NULL;
7421 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7422 return -EIO;
7423 }
7424
7425 static void raid5_free(struct mddev *mddev, void *priv)
7426 {
7427 struct r5conf *conf = priv;
7428
7429 free_conf(conf);
7430 mddev->to_remove = &raid5_attrs_group;
7431 }
7432
7433 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7434 {
7435 struct r5conf *conf = mddev->private;
7436 int i;
7437
7438 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7439 conf->chunk_sectors / 2, mddev->layout);
7440 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7441 rcu_read_lock();
7442 for (i = 0; i < conf->raid_disks; i++) {
7443 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7444 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7445 }
7446 rcu_read_unlock();
7447 seq_printf (seq, "]");
7448 }
7449
7450 static void print_raid5_conf (struct r5conf *conf)
7451 {
7452 int i;
7453 struct disk_info *tmp;
7454
7455 pr_debug("RAID conf printout:\n");
7456 if (!conf) {
7457 pr_debug("(conf==NULL)\n");
7458 return;
7459 }
7460 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7461 conf->raid_disks,
7462 conf->raid_disks - conf->mddev->degraded);
7463
7464 for (i = 0; i < conf->raid_disks; i++) {
7465 char b[BDEVNAME_SIZE];
7466 tmp = conf->disks + i;
7467 if (tmp->rdev)
7468 pr_debug(" disk %d, o:%d, dev:%s\n",
7469 i, !test_bit(Faulty, &tmp->rdev->flags),
7470 bdevname(tmp->rdev->bdev, b));
7471 }
7472 }
7473
7474 static int raid5_spare_active(struct mddev *mddev)
7475 {
7476 int i;
7477 struct r5conf *conf = mddev->private;
7478 struct disk_info *tmp;
7479 int count = 0;
7480 unsigned long flags;
7481
7482 for (i = 0; i < conf->raid_disks; i++) {
7483 tmp = conf->disks + i;
7484 if (tmp->replacement
7485 && tmp->replacement->recovery_offset == MaxSector
7486 && !test_bit(Faulty, &tmp->replacement->flags)
7487 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7488 /* Replacement has just become active. */
7489 if (!tmp->rdev
7490 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7491 count++;
7492 if (tmp->rdev) {
7493 /* Replaced device not technically faulty,
7494 * but we need to be sure it gets removed
7495 * and never re-added.
7496 */
7497 set_bit(Faulty, &tmp->rdev->flags);
7498 sysfs_notify_dirent_safe(
7499 tmp->rdev->sysfs_state);
7500 }
7501 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7502 } else if (tmp->rdev
7503 && tmp->rdev->recovery_offset == MaxSector
7504 && !test_bit(Faulty, &tmp->rdev->flags)
7505 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7506 count++;
7507 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7508 }
7509 }
7510 spin_lock_irqsave(&conf->device_lock, flags);
7511 mddev->degraded = raid5_calc_degraded(conf);
7512 spin_unlock_irqrestore(&conf->device_lock, flags);
7513 print_raid5_conf(conf);
7514 return count;
7515 }
7516
7517 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7518 {
7519 struct r5conf *conf = mddev->private;
7520 int err = 0;
7521 int number = rdev->raid_disk;
7522 struct md_rdev **rdevp;
7523 struct disk_info *p = conf->disks + number;
7524
7525 print_raid5_conf(conf);
7526 if (test_bit(Journal, &rdev->flags) && conf->log) {
7527 /*
7528 * we can't wait pending write here, as this is called in
7529 * raid5d, wait will deadlock.
7530 * neilb: there is no locking about new writes here,
7531 * so this cannot be safe.
7532 */
7533 if (atomic_read(&conf->active_stripes)) {
7534 return -EBUSY;
7535 }
7536 log_exit(conf);
7537 return 0;
7538 }
7539 if (rdev == p->rdev)
7540 rdevp = &p->rdev;
7541 else if (rdev == p->replacement)
7542 rdevp = &p->replacement;
7543 else
7544 return 0;
7545
7546 if (number >= conf->raid_disks &&
7547 conf->reshape_progress == MaxSector)
7548 clear_bit(In_sync, &rdev->flags);
7549
7550 if (test_bit(In_sync, &rdev->flags) ||
7551 atomic_read(&rdev->nr_pending)) {
7552 err = -EBUSY;
7553 goto abort;
7554 }
7555 /* Only remove non-faulty devices if recovery
7556 * isn't possible.
7557 */
7558 if (!test_bit(Faulty, &rdev->flags) &&
7559 mddev->recovery_disabled != conf->recovery_disabled &&
7560 !has_failed(conf) &&
7561 (!p->replacement || p->replacement == rdev) &&
7562 number < conf->raid_disks) {
7563 err = -EBUSY;
7564 goto abort;
7565 }
7566 *rdevp = NULL;
7567 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7568 synchronize_rcu();
7569 if (atomic_read(&rdev->nr_pending)) {
7570 /* lost the race, try later */
7571 err = -EBUSY;
7572 *rdevp = rdev;
7573 }
7574 }
7575 if (!err) {
7576 err = log_modify(conf, rdev, false);
7577 if (err)
7578 goto abort;
7579 }
7580 if (p->replacement) {
7581 /* We must have just cleared 'rdev' */
7582 p->rdev = p->replacement;
7583 clear_bit(Replacement, &p->replacement->flags);
7584 smp_mb(); /* Make sure other CPUs may see both as identical
7585 * but will never see neither - if they are careful
7586 */
7587 p->replacement = NULL;
7588
7589 if (!err)
7590 err = log_modify(conf, p->rdev, true);
7591 }
7592
7593 clear_bit(WantReplacement, &rdev->flags);
7594 abort:
7595
7596 print_raid5_conf(conf);
7597 return err;
7598 }
7599
7600 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7601 {
7602 struct r5conf *conf = mddev->private;
7603 int err = -EEXIST;
7604 int disk;
7605 struct disk_info *p;
7606 int first = 0;
7607 int last = conf->raid_disks - 1;
7608
7609 if (test_bit(Journal, &rdev->flags)) {
7610 if (conf->log)
7611 return -EBUSY;
7612
7613 rdev->raid_disk = 0;
7614 /*
7615 * The array is in readonly mode if journal is missing, so no
7616 * write requests running. We should be safe
7617 */
7618 log_init(conf, rdev, false);
7619 return 0;
7620 }
7621 if (mddev->recovery_disabled == conf->recovery_disabled)
7622 return -EBUSY;
7623
7624 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7625 /* no point adding a device */
7626 return -EINVAL;
7627
7628 if (rdev->raid_disk >= 0)
7629 first = last = rdev->raid_disk;
7630
7631 /*
7632 * find the disk ... but prefer rdev->saved_raid_disk
7633 * if possible.
7634 */
7635 if (rdev->saved_raid_disk >= 0 &&
7636 rdev->saved_raid_disk >= first &&
7637 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7638 first = rdev->saved_raid_disk;
7639
7640 for (disk = first; disk <= last; disk++) {
7641 p = conf->disks + disk;
7642 if (p->rdev == NULL) {
7643 clear_bit(In_sync, &rdev->flags);
7644 rdev->raid_disk = disk;
7645 if (rdev->saved_raid_disk != disk)
7646 conf->fullsync = 1;
7647 rcu_assign_pointer(p->rdev, rdev);
7648
7649 err = log_modify(conf, rdev, true);
7650
7651 goto out;
7652 }
7653 }
7654 for (disk = first; disk <= last; disk++) {
7655 p = conf->disks + disk;
7656 if (test_bit(WantReplacement, &p->rdev->flags) &&
7657 p->replacement == NULL) {
7658 clear_bit(In_sync, &rdev->flags);
7659 set_bit(Replacement, &rdev->flags);
7660 rdev->raid_disk = disk;
7661 err = 0;
7662 conf->fullsync = 1;
7663 rcu_assign_pointer(p->replacement, rdev);
7664 break;
7665 }
7666 }
7667 out:
7668 print_raid5_conf(conf);
7669 return err;
7670 }
7671
7672 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7673 {
7674 /* no resync is happening, and there is enough space
7675 * on all devices, so we can resize.
7676 * We need to make sure resync covers any new space.
7677 * If the array is shrinking we should possibly wait until
7678 * any io in the removed space completes, but it hardly seems
7679 * worth it.
7680 */
7681 sector_t newsize;
7682 struct r5conf *conf = mddev->private;
7683
7684 if (conf->log || raid5_has_ppl(conf))
7685 return -EINVAL;
7686 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7687 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7688 if (mddev->external_size &&
7689 mddev->array_sectors > newsize)
7690 return -EINVAL;
7691 if (mddev->bitmap) {
7692 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7693 if (ret)
7694 return ret;
7695 }
7696 md_set_array_sectors(mddev, newsize);
7697 if (sectors > mddev->dev_sectors &&
7698 mddev->recovery_cp > mddev->dev_sectors) {
7699 mddev->recovery_cp = mddev->dev_sectors;
7700 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7701 }
7702 mddev->dev_sectors = sectors;
7703 mddev->resync_max_sectors = sectors;
7704 return 0;
7705 }
7706
7707 static int check_stripe_cache(struct mddev *mddev)
7708 {
7709 /* Can only proceed if there are plenty of stripe_heads.
7710 * We need a minimum of one full stripe,, and for sensible progress
7711 * it is best to have about 4 times that.
7712 * If we require 4 times, then the default 256 4K stripe_heads will
7713 * allow for chunk sizes up to 256K, which is probably OK.
7714 * If the chunk size is greater, user-space should request more
7715 * stripe_heads first.
7716 */
7717 struct r5conf *conf = mddev->private;
7718 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7719 > conf->min_nr_stripes ||
7720 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7721 > conf->min_nr_stripes) {
7722 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7723 mdname(mddev),
7724 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7725 / STRIPE_SIZE)*4);
7726 return 0;
7727 }
7728 return 1;
7729 }
7730
7731 static int check_reshape(struct mddev *mddev)
7732 {
7733 struct r5conf *conf = mddev->private;
7734
7735 if (conf->log || raid5_has_ppl(conf))
7736 return -EINVAL;
7737 if (mddev->delta_disks == 0 &&
7738 mddev->new_layout == mddev->layout &&
7739 mddev->new_chunk_sectors == mddev->chunk_sectors)
7740 return 0; /* nothing to do */
7741 if (has_failed(conf))
7742 return -EINVAL;
7743 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7744 /* We might be able to shrink, but the devices must
7745 * be made bigger first.
7746 * For raid6, 4 is the minimum size.
7747 * Otherwise 2 is the minimum
7748 */
7749 int min = 2;
7750 if (mddev->level == 6)
7751 min = 4;
7752 if (mddev->raid_disks + mddev->delta_disks < min)
7753 return -EINVAL;
7754 }
7755
7756 if (!check_stripe_cache(mddev))
7757 return -ENOSPC;
7758
7759 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7760 mddev->delta_disks > 0)
7761 if (resize_chunks(conf,
7762 conf->previous_raid_disks
7763 + max(0, mddev->delta_disks),
7764 max(mddev->new_chunk_sectors,
7765 mddev->chunk_sectors)
7766 ) < 0)
7767 return -ENOMEM;
7768
7769 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7770 return 0; /* never bother to shrink */
7771 return resize_stripes(conf, (conf->previous_raid_disks
7772 + mddev->delta_disks));
7773 }
7774
7775 static int raid5_start_reshape(struct mddev *mddev)
7776 {
7777 struct r5conf *conf = mddev->private;
7778 struct md_rdev *rdev;
7779 int spares = 0;
7780 unsigned long flags;
7781
7782 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7783 return -EBUSY;
7784
7785 if (!check_stripe_cache(mddev))
7786 return -ENOSPC;
7787
7788 if (has_failed(conf))
7789 return -EINVAL;
7790
7791 rdev_for_each(rdev, mddev) {
7792 if (!test_bit(In_sync, &rdev->flags)
7793 && !test_bit(Faulty, &rdev->flags))
7794 spares++;
7795 }
7796
7797 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7798 /* Not enough devices even to make a degraded array
7799 * of that size
7800 */
7801 return -EINVAL;
7802
7803 /* Refuse to reduce size of the array. Any reductions in
7804 * array size must be through explicit setting of array_size
7805 * attribute.
7806 */
7807 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7808 < mddev->array_sectors) {
7809 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7810 mdname(mddev));
7811 return -EINVAL;
7812 }
7813
7814 atomic_set(&conf->reshape_stripes, 0);
7815 spin_lock_irq(&conf->device_lock);
7816 write_seqcount_begin(&conf->gen_lock);
7817 conf->previous_raid_disks = conf->raid_disks;
7818 conf->raid_disks += mddev->delta_disks;
7819 conf->prev_chunk_sectors = conf->chunk_sectors;
7820 conf->chunk_sectors = mddev->new_chunk_sectors;
7821 conf->prev_algo = conf->algorithm;
7822 conf->algorithm = mddev->new_layout;
7823 conf->generation++;
7824 /* Code that selects data_offset needs to see the generation update
7825 * if reshape_progress has been set - so a memory barrier needed.
7826 */
7827 smp_mb();
7828 if (mddev->reshape_backwards)
7829 conf->reshape_progress = raid5_size(mddev, 0, 0);
7830 else
7831 conf->reshape_progress = 0;
7832 conf->reshape_safe = conf->reshape_progress;
7833 write_seqcount_end(&conf->gen_lock);
7834 spin_unlock_irq(&conf->device_lock);
7835
7836 /* Now make sure any requests that proceeded on the assumption
7837 * the reshape wasn't running - like Discard or Read - have
7838 * completed.
7839 */
7840 mddev_suspend(mddev);
7841 mddev_resume(mddev);
7842
7843 /* Add some new drives, as many as will fit.
7844 * We know there are enough to make the newly sized array work.
7845 * Don't add devices if we are reducing the number of
7846 * devices in the array. This is because it is not possible
7847 * to correctly record the "partially reconstructed" state of
7848 * such devices during the reshape and confusion could result.
7849 */
7850 if (mddev->delta_disks >= 0) {
7851 rdev_for_each(rdev, mddev)
7852 if (rdev->raid_disk < 0 &&
7853 !test_bit(Faulty, &rdev->flags)) {
7854 if (raid5_add_disk(mddev, rdev) == 0) {
7855 if (rdev->raid_disk
7856 >= conf->previous_raid_disks)
7857 set_bit(In_sync, &rdev->flags);
7858 else
7859 rdev->recovery_offset = 0;
7860
7861 if (sysfs_link_rdev(mddev, rdev))
7862 /* Failure here is OK */;
7863 }
7864 } else if (rdev->raid_disk >= conf->previous_raid_disks
7865 && !test_bit(Faulty, &rdev->flags)) {
7866 /* This is a spare that was manually added */
7867 set_bit(In_sync, &rdev->flags);
7868 }
7869
7870 /* When a reshape changes the number of devices,
7871 * ->degraded is measured against the larger of the
7872 * pre and post number of devices.
7873 */
7874 spin_lock_irqsave(&conf->device_lock, flags);
7875 mddev->degraded = raid5_calc_degraded(conf);
7876 spin_unlock_irqrestore(&conf->device_lock, flags);
7877 }
7878 mddev->raid_disks = conf->raid_disks;
7879 mddev->reshape_position = conf->reshape_progress;
7880 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7881
7882 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7883 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7884 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7885 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7886 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7887 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7888 "reshape");
7889 if (!mddev->sync_thread) {
7890 mddev->recovery = 0;
7891 spin_lock_irq(&conf->device_lock);
7892 write_seqcount_begin(&conf->gen_lock);
7893 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7894 mddev->new_chunk_sectors =
7895 conf->chunk_sectors = conf->prev_chunk_sectors;
7896 mddev->new_layout = conf->algorithm = conf->prev_algo;
7897 rdev_for_each(rdev, mddev)
7898 rdev->new_data_offset = rdev->data_offset;
7899 smp_wmb();
7900 conf->generation --;
7901 conf->reshape_progress = MaxSector;
7902 mddev->reshape_position = MaxSector;
7903 write_seqcount_end(&conf->gen_lock);
7904 spin_unlock_irq(&conf->device_lock);
7905 return -EAGAIN;
7906 }
7907 conf->reshape_checkpoint = jiffies;
7908 md_wakeup_thread(mddev->sync_thread);
7909 md_new_event(mddev);
7910 return 0;
7911 }
7912
7913 /* This is called from the reshape thread and should make any
7914 * changes needed in 'conf'
7915 */
7916 static void end_reshape(struct r5conf *conf)
7917 {
7918
7919 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7920 struct md_rdev *rdev;
7921
7922 spin_lock_irq(&conf->device_lock);
7923 conf->previous_raid_disks = conf->raid_disks;
7924 rdev_for_each(rdev, conf->mddev)
7925 rdev->data_offset = rdev->new_data_offset;
7926 smp_wmb();
7927 conf->reshape_progress = MaxSector;
7928 conf->mddev->reshape_position = MaxSector;
7929 spin_unlock_irq(&conf->device_lock);
7930 wake_up(&conf->wait_for_overlap);
7931
7932 /* read-ahead size must cover two whole stripes, which is
7933 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7934 */
7935 if (conf->mddev->queue) {
7936 int data_disks = conf->raid_disks - conf->max_degraded;
7937 int stripe = data_disks * ((conf->chunk_sectors << 9)
7938 / PAGE_SIZE);
7939 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7940 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7941 }
7942 }
7943 }
7944
7945 /* This is called from the raid5d thread with mddev_lock held.
7946 * It makes config changes to the device.
7947 */
7948 static void raid5_finish_reshape(struct mddev *mddev)
7949 {
7950 struct r5conf *conf = mddev->private;
7951
7952 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7953
7954 if (mddev->delta_disks > 0) {
7955 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7956 if (mddev->queue) {
7957 set_capacity(mddev->gendisk, mddev->array_sectors);
7958 revalidate_disk(mddev->gendisk);
7959 }
7960 } else {
7961 int d;
7962 spin_lock_irq(&conf->device_lock);
7963 mddev->degraded = raid5_calc_degraded(conf);
7964 spin_unlock_irq(&conf->device_lock);
7965 for (d = conf->raid_disks ;
7966 d < conf->raid_disks - mddev->delta_disks;
7967 d++) {
7968 struct md_rdev *rdev = conf->disks[d].rdev;
7969 if (rdev)
7970 clear_bit(In_sync, &rdev->flags);
7971 rdev = conf->disks[d].replacement;
7972 if (rdev)
7973 clear_bit(In_sync, &rdev->flags);
7974 }
7975 }
7976 mddev->layout = conf->algorithm;
7977 mddev->chunk_sectors = conf->chunk_sectors;
7978 mddev->reshape_position = MaxSector;
7979 mddev->delta_disks = 0;
7980 mddev->reshape_backwards = 0;
7981 }
7982 }
7983
7984 static void raid5_quiesce(struct mddev *mddev, int state)
7985 {
7986 struct r5conf *conf = mddev->private;
7987
7988 switch(state) {
7989 case 2: /* resume for a suspend */
7990 wake_up(&conf->wait_for_overlap);
7991 break;
7992
7993 case 1: /* stop all writes */
7994 lock_all_device_hash_locks_irq(conf);
7995 /* '2' tells resync/reshape to pause so that all
7996 * active stripes can drain
7997 */
7998 r5c_flush_cache(conf, INT_MAX);
7999 conf->quiesce = 2;
8000 wait_event_cmd(conf->wait_for_quiescent,
8001 atomic_read(&conf->active_stripes) == 0 &&
8002 atomic_read(&conf->active_aligned_reads) == 0,
8003 unlock_all_device_hash_locks_irq(conf),
8004 lock_all_device_hash_locks_irq(conf));
8005 conf->quiesce = 1;
8006 unlock_all_device_hash_locks_irq(conf);
8007 /* allow reshape to continue */
8008 wake_up(&conf->wait_for_overlap);
8009 break;
8010
8011 case 0: /* re-enable writes */
8012 lock_all_device_hash_locks_irq(conf);
8013 conf->quiesce = 0;
8014 wake_up(&conf->wait_for_quiescent);
8015 wake_up(&conf->wait_for_overlap);
8016 unlock_all_device_hash_locks_irq(conf);
8017 break;
8018 }
8019 r5l_quiesce(conf->log, state);
8020 }
8021
8022 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8023 {
8024 struct r0conf *raid0_conf = mddev->private;
8025 sector_t sectors;
8026
8027 /* for raid0 takeover only one zone is supported */
8028 if (raid0_conf->nr_strip_zones > 1) {
8029 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8030 mdname(mddev));
8031 return ERR_PTR(-EINVAL);
8032 }
8033
8034 sectors = raid0_conf->strip_zone[0].zone_end;
8035 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8036 mddev->dev_sectors = sectors;
8037 mddev->new_level = level;
8038 mddev->new_layout = ALGORITHM_PARITY_N;
8039 mddev->new_chunk_sectors = mddev->chunk_sectors;
8040 mddev->raid_disks += 1;
8041 mddev->delta_disks = 1;
8042 /* make sure it will be not marked as dirty */
8043 mddev->recovery_cp = MaxSector;
8044
8045 return setup_conf(mddev);
8046 }
8047
8048 static void *raid5_takeover_raid1(struct mddev *mddev)
8049 {
8050 int chunksect;
8051 void *ret;
8052
8053 if (mddev->raid_disks != 2 ||
8054 mddev->degraded > 1)
8055 return ERR_PTR(-EINVAL);
8056
8057 /* Should check if there are write-behind devices? */
8058
8059 chunksect = 64*2; /* 64K by default */
8060
8061 /* The array must be an exact multiple of chunksize */
8062 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8063 chunksect >>= 1;
8064
8065 if ((chunksect<<9) < STRIPE_SIZE)
8066 /* array size does not allow a suitable chunk size */
8067 return ERR_PTR(-EINVAL);
8068
8069 mddev->new_level = 5;
8070 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8071 mddev->new_chunk_sectors = chunksect;
8072
8073 ret = setup_conf(mddev);
8074 if (!IS_ERR(ret))
8075 mddev_clear_unsupported_flags(mddev,
8076 UNSUPPORTED_MDDEV_FLAGS);
8077 return ret;
8078 }
8079
8080 static void *raid5_takeover_raid6(struct mddev *mddev)
8081 {
8082 int new_layout;
8083
8084 switch (mddev->layout) {
8085 case ALGORITHM_LEFT_ASYMMETRIC_6:
8086 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8087 break;
8088 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8089 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8090 break;
8091 case ALGORITHM_LEFT_SYMMETRIC_6:
8092 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8093 break;
8094 case ALGORITHM_RIGHT_SYMMETRIC_6:
8095 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8096 break;
8097 case ALGORITHM_PARITY_0_6:
8098 new_layout = ALGORITHM_PARITY_0;
8099 break;
8100 case ALGORITHM_PARITY_N:
8101 new_layout = ALGORITHM_PARITY_N;
8102 break;
8103 default:
8104 return ERR_PTR(-EINVAL);
8105 }
8106 mddev->new_level = 5;
8107 mddev->new_layout = new_layout;
8108 mddev->delta_disks = -1;
8109 mddev->raid_disks -= 1;
8110 return setup_conf(mddev);
8111 }
8112
8113 static int raid5_check_reshape(struct mddev *mddev)
8114 {
8115 /* For a 2-drive array, the layout and chunk size can be changed
8116 * immediately as not restriping is needed.
8117 * For larger arrays we record the new value - after validation
8118 * to be used by a reshape pass.
8119 */
8120 struct r5conf *conf = mddev->private;
8121 int new_chunk = mddev->new_chunk_sectors;
8122
8123 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8124 return -EINVAL;
8125 if (new_chunk > 0) {
8126 if (!is_power_of_2(new_chunk))
8127 return -EINVAL;
8128 if (new_chunk < (PAGE_SIZE>>9))
8129 return -EINVAL;
8130 if (mddev->array_sectors & (new_chunk-1))
8131 /* not factor of array size */
8132 return -EINVAL;
8133 }
8134
8135 /* They look valid */
8136
8137 if (mddev->raid_disks == 2) {
8138 /* can make the change immediately */
8139 if (mddev->new_layout >= 0) {
8140 conf->algorithm = mddev->new_layout;
8141 mddev->layout = mddev->new_layout;
8142 }
8143 if (new_chunk > 0) {
8144 conf->chunk_sectors = new_chunk ;
8145 mddev->chunk_sectors = new_chunk;
8146 }
8147 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8148 md_wakeup_thread(mddev->thread);
8149 }
8150 return check_reshape(mddev);
8151 }
8152
8153 static int raid6_check_reshape(struct mddev *mddev)
8154 {
8155 int new_chunk = mddev->new_chunk_sectors;
8156
8157 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8158 return -EINVAL;
8159 if (new_chunk > 0) {
8160 if (!is_power_of_2(new_chunk))
8161 return -EINVAL;
8162 if (new_chunk < (PAGE_SIZE >> 9))
8163 return -EINVAL;
8164 if (mddev->array_sectors & (new_chunk-1))
8165 /* not factor of array size */
8166 return -EINVAL;
8167 }
8168
8169 /* They look valid */
8170 return check_reshape(mddev);
8171 }
8172
8173 static void *raid5_takeover(struct mddev *mddev)
8174 {
8175 /* raid5 can take over:
8176 * raid0 - if there is only one strip zone - make it a raid4 layout
8177 * raid1 - if there are two drives. We need to know the chunk size
8178 * raid4 - trivial - just use a raid4 layout.
8179 * raid6 - Providing it is a *_6 layout
8180 */
8181 if (mddev->level == 0)
8182 return raid45_takeover_raid0(mddev, 5);
8183 if (mddev->level == 1)
8184 return raid5_takeover_raid1(mddev);
8185 if (mddev->level == 4) {
8186 mddev->new_layout = ALGORITHM_PARITY_N;
8187 mddev->new_level = 5;
8188 return setup_conf(mddev);
8189 }
8190 if (mddev->level == 6)
8191 return raid5_takeover_raid6(mddev);
8192
8193 return ERR_PTR(-EINVAL);
8194 }
8195
8196 static void *raid4_takeover(struct mddev *mddev)
8197 {
8198 /* raid4 can take over:
8199 * raid0 - if there is only one strip zone
8200 * raid5 - if layout is right
8201 */
8202 if (mddev->level == 0)
8203 return raid45_takeover_raid0(mddev, 4);
8204 if (mddev->level == 5 &&
8205 mddev->layout == ALGORITHM_PARITY_N) {
8206 mddev->new_layout = 0;
8207 mddev->new_level = 4;
8208 return setup_conf(mddev);
8209 }
8210 return ERR_PTR(-EINVAL);
8211 }
8212
8213 static struct md_personality raid5_personality;
8214
8215 static void *raid6_takeover(struct mddev *mddev)
8216 {
8217 /* Currently can only take over a raid5. We map the
8218 * personality to an equivalent raid6 personality
8219 * with the Q block at the end.
8220 */
8221 int new_layout;
8222
8223 if (mddev->pers != &raid5_personality)
8224 return ERR_PTR(-EINVAL);
8225 if (mddev->degraded > 1)
8226 return ERR_PTR(-EINVAL);
8227 if (mddev->raid_disks > 253)
8228 return ERR_PTR(-EINVAL);
8229 if (mddev->raid_disks < 3)
8230 return ERR_PTR(-EINVAL);
8231
8232 switch (mddev->layout) {
8233 case ALGORITHM_LEFT_ASYMMETRIC:
8234 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8235 break;
8236 case ALGORITHM_RIGHT_ASYMMETRIC:
8237 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8238 break;
8239 case ALGORITHM_LEFT_SYMMETRIC:
8240 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8241 break;
8242 case ALGORITHM_RIGHT_SYMMETRIC:
8243 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8244 break;
8245 case ALGORITHM_PARITY_0:
8246 new_layout = ALGORITHM_PARITY_0_6;
8247 break;
8248 case ALGORITHM_PARITY_N:
8249 new_layout = ALGORITHM_PARITY_N;
8250 break;
8251 default:
8252 return ERR_PTR(-EINVAL);
8253 }
8254 mddev->new_level = 6;
8255 mddev->new_layout = new_layout;
8256 mddev->delta_disks = 1;
8257 mddev->raid_disks += 1;
8258 return setup_conf(mddev);
8259 }
8260
8261 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8262 {
8263 struct r5conf *conf;
8264 int err;
8265
8266 err = mddev_lock(mddev);
8267 if (err)
8268 return err;
8269 conf = mddev->private;
8270 if (!conf) {
8271 mddev_unlock(mddev);
8272 return -ENODEV;
8273 }
8274
8275 if (strncmp(buf, "ppl", 3) == 0) {
8276 /* ppl only works with RAID 5 */
8277 if (!raid5_has_ppl(conf) && conf->level == 5) {
8278 err = log_init(conf, NULL, true);
8279 if (!err) {
8280 err = resize_stripes(conf, conf->pool_size);
8281 if (err)
8282 log_exit(conf);
8283 }
8284 } else
8285 err = -EINVAL;
8286 } else if (strncmp(buf, "resync", 6) == 0) {
8287 if (raid5_has_ppl(conf)) {
8288 mddev_suspend(mddev);
8289 log_exit(conf);
8290 mddev_resume(mddev);
8291 err = resize_stripes(conf, conf->pool_size);
8292 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8293 r5l_log_disk_error(conf)) {
8294 bool journal_dev_exists = false;
8295 struct md_rdev *rdev;
8296
8297 rdev_for_each(rdev, mddev)
8298 if (test_bit(Journal, &rdev->flags)) {
8299 journal_dev_exists = true;
8300 break;
8301 }
8302
8303 if (!journal_dev_exists) {
8304 mddev_suspend(mddev);
8305 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8306 mddev_resume(mddev);
8307 } else /* need remove journal device first */
8308 err = -EBUSY;
8309 } else
8310 err = -EINVAL;
8311 } else {
8312 err = -EINVAL;
8313 }
8314
8315 if (!err)
8316 md_update_sb(mddev, 1);
8317
8318 mddev_unlock(mddev);
8319
8320 return err;
8321 }
8322
8323 static struct md_personality raid6_personality =
8324 {
8325 .name = "raid6",
8326 .level = 6,
8327 .owner = THIS_MODULE,
8328 .make_request = raid5_make_request,
8329 .run = raid5_run,
8330 .free = raid5_free,
8331 .status = raid5_status,
8332 .error_handler = raid5_error,
8333 .hot_add_disk = raid5_add_disk,
8334 .hot_remove_disk= raid5_remove_disk,
8335 .spare_active = raid5_spare_active,
8336 .sync_request = raid5_sync_request,
8337 .resize = raid5_resize,
8338 .size = raid5_size,
8339 .check_reshape = raid6_check_reshape,
8340 .start_reshape = raid5_start_reshape,
8341 .finish_reshape = raid5_finish_reshape,
8342 .quiesce = raid5_quiesce,
8343 .takeover = raid6_takeover,
8344 .congested = raid5_congested,
8345 .change_consistency_policy = raid5_change_consistency_policy,
8346 };
8347 static struct md_personality raid5_personality =
8348 {
8349 .name = "raid5",
8350 .level = 5,
8351 .owner = THIS_MODULE,
8352 .make_request = raid5_make_request,
8353 .run = raid5_run,
8354 .free = raid5_free,
8355 .status = raid5_status,
8356 .error_handler = raid5_error,
8357 .hot_add_disk = raid5_add_disk,
8358 .hot_remove_disk= raid5_remove_disk,
8359 .spare_active = raid5_spare_active,
8360 .sync_request = raid5_sync_request,
8361 .resize = raid5_resize,
8362 .size = raid5_size,
8363 .check_reshape = raid5_check_reshape,
8364 .start_reshape = raid5_start_reshape,
8365 .finish_reshape = raid5_finish_reshape,
8366 .quiesce = raid5_quiesce,
8367 .takeover = raid5_takeover,
8368 .congested = raid5_congested,
8369 .change_consistency_policy = raid5_change_consistency_policy,
8370 };
8371
8372 static struct md_personality raid4_personality =
8373 {
8374 .name = "raid4",
8375 .level = 4,
8376 .owner = THIS_MODULE,
8377 .make_request = raid5_make_request,
8378 .run = raid5_run,
8379 .free = raid5_free,
8380 .status = raid5_status,
8381 .error_handler = raid5_error,
8382 .hot_add_disk = raid5_add_disk,
8383 .hot_remove_disk= raid5_remove_disk,
8384 .spare_active = raid5_spare_active,
8385 .sync_request = raid5_sync_request,
8386 .resize = raid5_resize,
8387 .size = raid5_size,
8388 .check_reshape = raid5_check_reshape,
8389 .start_reshape = raid5_start_reshape,
8390 .finish_reshape = raid5_finish_reshape,
8391 .quiesce = raid5_quiesce,
8392 .takeover = raid4_takeover,
8393 .congested = raid5_congested,
8394 .change_consistency_policy = raid5_change_consistency_policy,
8395 };
8396
8397 static int __init raid5_init(void)
8398 {
8399 int ret;
8400
8401 raid5_wq = alloc_workqueue("raid5wq",
8402 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8403 if (!raid5_wq)
8404 return -ENOMEM;
8405
8406 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8407 "md/raid5:prepare",
8408 raid456_cpu_up_prepare,
8409 raid456_cpu_dead);
8410 if (ret) {
8411 destroy_workqueue(raid5_wq);
8412 return ret;
8413 }
8414 register_md_personality(&raid6_personality);
8415 register_md_personality(&raid5_personality);
8416 register_md_personality(&raid4_personality);
8417 return 0;
8418 }
8419
8420 static void raid5_exit(void)
8421 {
8422 unregister_md_personality(&raid6_personality);
8423 unregister_md_personality(&raid5_personality);
8424 unregister_md_personality(&raid4_personality);
8425 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8426 destroy_workqueue(raid5_wq);
8427 }
8428
8429 module_init(raid5_init);
8430 module_exit(raid5_exit);
8431 MODULE_LICENSE("GPL");
8432 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8433 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8434 MODULE_ALIAS("md-raid5");
8435 MODULE_ALIAS("md-raid4");
8436 MODULE_ALIAS("md-level-5");
8437 MODULE_ALIAS("md-level-4");
8438 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8439 MODULE_ALIAS("md-raid6");
8440 MODULE_ALIAS("md-level-6");
8441
8442 /* This used to be two separate modules, they were: */
8443 MODULE_ALIAS("raid5");
8444 MODULE_ALIAS("raid6");