]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid5.c
Merge tag 'pinctrl-v4.10-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
66
67 #define cpu_to_group(cpu) cpu_to_node(cpu)
68 #define ANY_GROUP NUMA_NO_NODE
69
70 static bool devices_handle_discard_safely = false;
71 module_param(devices_handle_discard_safely, bool, 0644);
72 MODULE_PARM_DESC(devices_handle_discard_safely,
73 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
74 static struct workqueue_struct *raid5_wq;
75
76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 {
78 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79 return &conf->stripe_hashtbl[hash];
80 }
81
82 static inline int stripe_hash_locks_hash(sector_t sect)
83 {
84 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
85 }
86
87 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
88 {
89 spin_lock_irq(conf->hash_locks + hash);
90 spin_lock(&conf->device_lock);
91 }
92
93 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95 spin_unlock(&conf->device_lock);
96 spin_unlock_irq(conf->hash_locks + hash);
97 }
98
99 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
100 {
101 int i;
102 local_irq_disable();
103 spin_lock(conf->hash_locks);
104 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106 spin_lock(&conf->device_lock);
107 }
108
109 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
110 {
111 int i;
112 spin_unlock(&conf->device_lock);
113 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
114 spin_unlock(conf->hash_locks + i - 1);
115 local_irq_enable();
116 }
117
118 /* Find first data disk in a raid6 stripe */
119 static inline int raid6_d0(struct stripe_head *sh)
120 {
121 if (sh->ddf_layout)
122 /* ddf always start from first device */
123 return 0;
124 /* md starts just after Q block */
125 if (sh->qd_idx == sh->disks - 1)
126 return 0;
127 else
128 return sh->qd_idx + 1;
129 }
130 static inline int raid6_next_disk(int disk, int raid_disks)
131 {
132 disk++;
133 return (disk < raid_disks) ? disk : 0;
134 }
135
136 /* When walking through the disks in a raid5, starting at raid6_d0,
137 * We need to map each disk to a 'slot', where the data disks are slot
138 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
139 * is raid_disks-1. This help does that mapping.
140 */
141 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
142 int *count, int syndrome_disks)
143 {
144 int slot = *count;
145
146 if (sh->ddf_layout)
147 (*count)++;
148 if (idx == sh->pd_idx)
149 return syndrome_disks;
150 if (idx == sh->qd_idx)
151 return syndrome_disks + 1;
152 if (!sh->ddf_layout)
153 (*count)++;
154 return slot;
155 }
156
157 static void return_io(struct bio_list *return_bi)
158 {
159 struct bio *bi;
160 while ((bi = bio_list_pop(return_bi)) != NULL) {
161 bi->bi_iter.bi_size = 0;
162 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
163 bi, 0);
164 bio_endio(bi);
165 }
166 }
167
168 static void print_raid5_conf (struct r5conf *conf);
169
170 static int stripe_operations_active(struct stripe_head *sh)
171 {
172 return sh->check_state || sh->reconstruct_state ||
173 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
174 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
175 }
176
177 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
178 {
179 struct r5conf *conf = sh->raid_conf;
180 struct r5worker_group *group;
181 int thread_cnt;
182 int i, cpu = sh->cpu;
183
184 if (!cpu_online(cpu)) {
185 cpu = cpumask_any(cpu_online_mask);
186 sh->cpu = cpu;
187 }
188
189 if (list_empty(&sh->lru)) {
190 struct r5worker_group *group;
191 group = conf->worker_groups + cpu_to_group(cpu);
192 list_add_tail(&sh->lru, &group->handle_list);
193 group->stripes_cnt++;
194 sh->group = group;
195 }
196
197 if (conf->worker_cnt_per_group == 0) {
198 md_wakeup_thread(conf->mddev->thread);
199 return;
200 }
201
202 group = conf->worker_groups + cpu_to_group(sh->cpu);
203
204 group->workers[0].working = true;
205 /* at least one worker should run to avoid race */
206 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
207
208 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
209 /* wakeup more workers */
210 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
211 if (group->workers[i].working == false) {
212 group->workers[i].working = true;
213 queue_work_on(sh->cpu, raid5_wq,
214 &group->workers[i].work);
215 thread_cnt--;
216 }
217 }
218 }
219
220 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
221 struct list_head *temp_inactive_list)
222 {
223 int i;
224 int injournal = 0; /* number of date pages with R5_InJournal */
225
226 BUG_ON(!list_empty(&sh->lru));
227 BUG_ON(atomic_read(&conf->active_stripes)==0);
228
229 if (r5c_is_writeback(conf->log))
230 for (i = sh->disks; i--; )
231 if (test_bit(R5_InJournal, &sh->dev[i].flags))
232 injournal++;
233 /*
234 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
235 * data in journal, so they are not released to cached lists
236 */
237 if (conf->quiesce && r5c_is_writeback(conf->log) &&
238 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) {
239 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
240 r5c_make_stripe_write_out(sh);
241 set_bit(STRIPE_HANDLE, &sh->state);
242 }
243
244 if (test_bit(STRIPE_HANDLE, &sh->state)) {
245 if (test_bit(STRIPE_DELAYED, &sh->state) &&
246 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
247 list_add_tail(&sh->lru, &conf->delayed_list);
248 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
249 sh->bm_seq - conf->seq_write > 0)
250 list_add_tail(&sh->lru, &conf->bitmap_list);
251 else {
252 clear_bit(STRIPE_DELAYED, &sh->state);
253 clear_bit(STRIPE_BIT_DELAY, &sh->state);
254 if (conf->worker_cnt_per_group == 0) {
255 list_add_tail(&sh->lru, &conf->handle_list);
256 } else {
257 raid5_wakeup_stripe_thread(sh);
258 return;
259 }
260 }
261 md_wakeup_thread(conf->mddev->thread);
262 } else {
263 BUG_ON(stripe_operations_active(sh));
264 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
265 if (atomic_dec_return(&conf->preread_active_stripes)
266 < IO_THRESHOLD)
267 md_wakeup_thread(conf->mddev->thread);
268 atomic_dec(&conf->active_stripes);
269 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
270 if (!r5c_is_writeback(conf->log))
271 list_add_tail(&sh->lru, temp_inactive_list);
272 else {
273 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
274 if (injournal == 0)
275 list_add_tail(&sh->lru, temp_inactive_list);
276 else if (injournal == conf->raid_disks - conf->max_degraded) {
277 /* full stripe */
278 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
279 atomic_inc(&conf->r5c_cached_full_stripes);
280 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
281 atomic_dec(&conf->r5c_cached_partial_stripes);
282 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
283 r5c_check_cached_full_stripe(conf);
284 } else {
285 /* partial stripe */
286 if (!test_and_set_bit(STRIPE_R5C_PARTIAL_STRIPE,
287 &sh->state))
288 atomic_inc(&conf->r5c_cached_partial_stripes);
289 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
290 }
291 }
292 }
293 }
294 }
295
296 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
297 struct list_head *temp_inactive_list)
298 {
299 if (atomic_dec_and_test(&sh->count))
300 do_release_stripe(conf, sh, temp_inactive_list);
301 }
302
303 /*
304 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
305 *
306 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
307 * given time. Adding stripes only takes device lock, while deleting stripes
308 * only takes hash lock.
309 */
310 static void release_inactive_stripe_list(struct r5conf *conf,
311 struct list_head *temp_inactive_list,
312 int hash)
313 {
314 int size;
315 bool do_wakeup = false;
316 unsigned long flags;
317
318 if (hash == NR_STRIPE_HASH_LOCKS) {
319 size = NR_STRIPE_HASH_LOCKS;
320 hash = NR_STRIPE_HASH_LOCKS - 1;
321 } else
322 size = 1;
323 while (size) {
324 struct list_head *list = &temp_inactive_list[size - 1];
325
326 /*
327 * We don't hold any lock here yet, raid5_get_active_stripe() might
328 * remove stripes from the list
329 */
330 if (!list_empty_careful(list)) {
331 spin_lock_irqsave(conf->hash_locks + hash, flags);
332 if (list_empty(conf->inactive_list + hash) &&
333 !list_empty(list))
334 atomic_dec(&conf->empty_inactive_list_nr);
335 list_splice_tail_init(list, conf->inactive_list + hash);
336 do_wakeup = true;
337 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
338 }
339 size--;
340 hash--;
341 }
342
343 if (do_wakeup) {
344 wake_up(&conf->wait_for_stripe);
345 if (atomic_read(&conf->active_stripes) == 0)
346 wake_up(&conf->wait_for_quiescent);
347 if (conf->retry_read_aligned)
348 md_wakeup_thread(conf->mddev->thread);
349 }
350 }
351
352 /* should hold conf->device_lock already */
353 static int release_stripe_list(struct r5conf *conf,
354 struct list_head *temp_inactive_list)
355 {
356 struct stripe_head *sh;
357 int count = 0;
358 struct llist_node *head;
359
360 head = llist_del_all(&conf->released_stripes);
361 head = llist_reverse_order(head);
362 while (head) {
363 int hash;
364
365 sh = llist_entry(head, struct stripe_head, release_list);
366 head = llist_next(head);
367 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
368 smp_mb();
369 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
370 /*
371 * Don't worry the bit is set here, because if the bit is set
372 * again, the count is always > 1. This is true for
373 * STRIPE_ON_UNPLUG_LIST bit too.
374 */
375 hash = sh->hash_lock_index;
376 __release_stripe(conf, sh, &temp_inactive_list[hash]);
377 count++;
378 }
379
380 return count;
381 }
382
383 void raid5_release_stripe(struct stripe_head *sh)
384 {
385 struct r5conf *conf = sh->raid_conf;
386 unsigned long flags;
387 struct list_head list;
388 int hash;
389 bool wakeup;
390
391 /* Avoid release_list until the last reference.
392 */
393 if (atomic_add_unless(&sh->count, -1, 1))
394 return;
395
396 if (unlikely(!conf->mddev->thread) ||
397 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
398 goto slow_path;
399 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
400 if (wakeup)
401 md_wakeup_thread(conf->mddev->thread);
402 return;
403 slow_path:
404 local_irq_save(flags);
405 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
406 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
407 INIT_LIST_HEAD(&list);
408 hash = sh->hash_lock_index;
409 do_release_stripe(conf, sh, &list);
410 spin_unlock(&conf->device_lock);
411 release_inactive_stripe_list(conf, &list, hash);
412 }
413 local_irq_restore(flags);
414 }
415
416 static inline void remove_hash(struct stripe_head *sh)
417 {
418 pr_debug("remove_hash(), stripe %llu\n",
419 (unsigned long long)sh->sector);
420
421 hlist_del_init(&sh->hash);
422 }
423
424 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
425 {
426 struct hlist_head *hp = stripe_hash(conf, sh->sector);
427
428 pr_debug("insert_hash(), stripe %llu\n",
429 (unsigned long long)sh->sector);
430
431 hlist_add_head(&sh->hash, hp);
432 }
433
434 /* find an idle stripe, make sure it is unhashed, and return it. */
435 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
436 {
437 struct stripe_head *sh = NULL;
438 struct list_head *first;
439
440 if (list_empty(conf->inactive_list + hash))
441 goto out;
442 first = (conf->inactive_list + hash)->next;
443 sh = list_entry(first, struct stripe_head, lru);
444 list_del_init(first);
445 remove_hash(sh);
446 atomic_inc(&conf->active_stripes);
447 BUG_ON(hash != sh->hash_lock_index);
448 if (list_empty(conf->inactive_list + hash))
449 atomic_inc(&conf->empty_inactive_list_nr);
450 out:
451 return sh;
452 }
453
454 static void shrink_buffers(struct stripe_head *sh)
455 {
456 struct page *p;
457 int i;
458 int num = sh->raid_conf->pool_size;
459
460 for (i = 0; i < num ; i++) {
461 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
462 p = sh->dev[i].page;
463 if (!p)
464 continue;
465 sh->dev[i].page = NULL;
466 put_page(p);
467 }
468 }
469
470 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
471 {
472 int i;
473 int num = sh->raid_conf->pool_size;
474
475 for (i = 0; i < num; i++) {
476 struct page *page;
477
478 if (!(page = alloc_page(gfp))) {
479 return 1;
480 }
481 sh->dev[i].page = page;
482 sh->dev[i].orig_page = page;
483 }
484 return 0;
485 }
486
487 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
488 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
489 struct stripe_head *sh);
490
491 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
492 {
493 struct r5conf *conf = sh->raid_conf;
494 int i, seq;
495
496 BUG_ON(atomic_read(&sh->count) != 0);
497 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
498 BUG_ON(stripe_operations_active(sh));
499 BUG_ON(sh->batch_head);
500
501 pr_debug("init_stripe called, stripe %llu\n",
502 (unsigned long long)sector);
503 retry:
504 seq = read_seqcount_begin(&conf->gen_lock);
505 sh->generation = conf->generation - previous;
506 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
507 sh->sector = sector;
508 stripe_set_idx(sector, conf, previous, sh);
509 sh->state = 0;
510
511 for (i = sh->disks; i--; ) {
512 struct r5dev *dev = &sh->dev[i];
513
514 if (dev->toread || dev->read || dev->towrite || dev->written ||
515 test_bit(R5_LOCKED, &dev->flags)) {
516 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
517 (unsigned long long)sh->sector, i, dev->toread,
518 dev->read, dev->towrite, dev->written,
519 test_bit(R5_LOCKED, &dev->flags));
520 WARN_ON(1);
521 }
522 dev->flags = 0;
523 raid5_build_block(sh, i, previous);
524 }
525 if (read_seqcount_retry(&conf->gen_lock, seq))
526 goto retry;
527 sh->overwrite_disks = 0;
528 insert_hash(conf, sh);
529 sh->cpu = smp_processor_id();
530 set_bit(STRIPE_BATCH_READY, &sh->state);
531 }
532
533 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
534 short generation)
535 {
536 struct stripe_head *sh;
537
538 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
539 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
540 if (sh->sector == sector && sh->generation == generation)
541 return sh;
542 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
543 return NULL;
544 }
545
546 /*
547 * Need to check if array has failed when deciding whether to:
548 * - start an array
549 * - remove non-faulty devices
550 * - add a spare
551 * - allow a reshape
552 * This determination is simple when no reshape is happening.
553 * However if there is a reshape, we need to carefully check
554 * both the before and after sections.
555 * This is because some failed devices may only affect one
556 * of the two sections, and some non-in_sync devices may
557 * be insync in the section most affected by failed devices.
558 */
559 static int calc_degraded(struct r5conf *conf)
560 {
561 int degraded, degraded2;
562 int i;
563
564 rcu_read_lock();
565 degraded = 0;
566 for (i = 0; i < conf->previous_raid_disks; i++) {
567 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
568 if (rdev && test_bit(Faulty, &rdev->flags))
569 rdev = rcu_dereference(conf->disks[i].replacement);
570 if (!rdev || test_bit(Faulty, &rdev->flags))
571 degraded++;
572 else if (test_bit(In_sync, &rdev->flags))
573 ;
574 else
575 /* not in-sync or faulty.
576 * If the reshape increases the number of devices,
577 * this is being recovered by the reshape, so
578 * this 'previous' section is not in_sync.
579 * If the number of devices is being reduced however,
580 * the device can only be part of the array if
581 * we are reverting a reshape, so this section will
582 * be in-sync.
583 */
584 if (conf->raid_disks >= conf->previous_raid_disks)
585 degraded++;
586 }
587 rcu_read_unlock();
588 if (conf->raid_disks == conf->previous_raid_disks)
589 return degraded;
590 rcu_read_lock();
591 degraded2 = 0;
592 for (i = 0; i < conf->raid_disks; i++) {
593 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
594 if (rdev && test_bit(Faulty, &rdev->flags))
595 rdev = rcu_dereference(conf->disks[i].replacement);
596 if (!rdev || test_bit(Faulty, &rdev->flags))
597 degraded2++;
598 else if (test_bit(In_sync, &rdev->flags))
599 ;
600 else
601 /* not in-sync or faulty.
602 * If reshape increases the number of devices, this
603 * section has already been recovered, else it
604 * almost certainly hasn't.
605 */
606 if (conf->raid_disks <= conf->previous_raid_disks)
607 degraded2++;
608 }
609 rcu_read_unlock();
610 if (degraded2 > degraded)
611 return degraded2;
612 return degraded;
613 }
614
615 static int has_failed(struct r5conf *conf)
616 {
617 int degraded;
618
619 if (conf->mddev->reshape_position == MaxSector)
620 return conf->mddev->degraded > conf->max_degraded;
621
622 degraded = calc_degraded(conf);
623 if (degraded > conf->max_degraded)
624 return 1;
625 return 0;
626 }
627
628 struct stripe_head *
629 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
630 int previous, int noblock, int noquiesce)
631 {
632 struct stripe_head *sh;
633 int hash = stripe_hash_locks_hash(sector);
634 int inc_empty_inactive_list_flag;
635
636 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
637
638 spin_lock_irq(conf->hash_locks + hash);
639
640 do {
641 wait_event_lock_irq(conf->wait_for_quiescent,
642 conf->quiesce == 0 || noquiesce,
643 *(conf->hash_locks + hash));
644 sh = __find_stripe(conf, sector, conf->generation - previous);
645 if (!sh) {
646 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
647 sh = get_free_stripe(conf, hash);
648 if (!sh && !test_bit(R5_DID_ALLOC,
649 &conf->cache_state))
650 set_bit(R5_ALLOC_MORE,
651 &conf->cache_state);
652 }
653 if (noblock && sh == NULL)
654 break;
655
656 r5c_check_stripe_cache_usage(conf);
657 if (!sh) {
658 set_bit(R5_INACTIVE_BLOCKED,
659 &conf->cache_state);
660 r5l_wake_reclaim(conf->log, 0);
661 wait_event_lock_irq(
662 conf->wait_for_stripe,
663 !list_empty(conf->inactive_list + hash) &&
664 (atomic_read(&conf->active_stripes)
665 < (conf->max_nr_stripes * 3 / 4)
666 || !test_bit(R5_INACTIVE_BLOCKED,
667 &conf->cache_state)),
668 *(conf->hash_locks + hash));
669 clear_bit(R5_INACTIVE_BLOCKED,
670 &conf->cache_state);
671 } else {
672 init_stripe(sh, sector, previous);
673 atomic_inc(&sh->count);
674 }
675 } else if (!atomic_inc_not_zero(&sh->count)) {
676 spin_lock(&conf->device_lock);
677 if (!atomic_read(&sh->count)) {
678 if (!test_bit(STRIPE_HANDLE, &sh->state))
679 atomic_inc(&conf->active_stripes);
680 BUG_ON(list_empty(&sh->lru) &&
681 !test_bit(STRIPE_EXPANDING, &sh->state));
682 inc_empty_inactive_list_flag = 0;
683 if (!list_empty(conf->inactive_list + hash))
684 inc_empty_inactive_list_flag = 1;
685 list_del_init(&sh->lru);
686 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
687 atomic_inc(&conf->empty_inactive_list_nr);
688 if (sh->group) {
689 sh->group->stripes_cnt--;
690 sh->group = NULL;
691 }
692 }
693 atomic_inc(&sh->count);
694 spin_unlock(&conf->device_lock);
695 }
696 } while (sh == NULL);
697
698 spin_unlock_irq(conf->hash_locks + hash);
699 return sh;
700 }
701
702 static bool is_full_stripe_write(struct stripe_head *sh)
703 {
704 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
705 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
706 }
707
708 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
709 {
710 local_irq_disable();
711 if (sh1 > sh2) {
712 spin_lock(&sh2->stripe_lock);
713 spin_lock_nested(&sh1->stripe_lock, 1);
714 } else {
715 spin_lock(&sh1->stripe_lock);
716 spin_lock_nested(&sh2->stripe_lock, 1);
717 }
718 }
719
720 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
721 {
722 spin_unlock(&sh1->stripe_lock);
723 spin_unlock(&sh2->stripe_lock);
724 local_irq_enable();
725 }
726
727 /* Only freshly new full stripe normal write stripe can be added to a batch list */
728 static bool stripe_can_batch(struct stripe_head *sh)
729 {
730 struct r5conf *conf = sh->raid_conf;
731
732 if (conf->log)
733 return false;
734 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
735 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
736 is_full_stripe_write(sh);
737 }
738
739 /* we only do back search */
740 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
741 {
742 struct stripe_head *head;
743 sector_t head_sector, tmp_sec;
744 int hash;
745 int dd_idx;
746 int inc_empty_inactive_list_flag;
747
748 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
749 tmp_sec = sh->sector;
750 if (!sector_div(tmp_sec, conf->chunk_sectors))
751 return;
752 head_sector = sh->sector - STRIPE_SECTORS;
753
754 hash = stripe_hash_locks_hash(head_sector);
755 spin_lock_irq(conf->hash_locks + hash);
756 head = __find_stripe(conf, head_sector, conf->generation);
757 if (head && !atomic_inc_not_zero(&head->count)) {
758 spin_lock(&conf->device_lock);
759 if (!atomic_read(&head->count)) {
760 if (!test_bit(STRIPE_HANDLE, &head->state))
761 atomic_inc(&conf->active_stripes);
762 BUG_ON(list_empty(&head->lru) &&
763 !test_bit(STRIPE_EXPANDING, &head->state));
764 inc_empty_inactive_list_flag = 0;
765 if (!list_empty(conf->inactive_list + hash))
766 inc_empty_inactive_list_flag = 1;
767 list_del_init(&head->lru);
768 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
769 atomic_inc(&conf->empty_inactive_list_nr);
770 if (head->group) {
771 head->group->stripes_cnt--;
772 head->group = NULL;
773 }
774 }
775 atomic_inc(&head->count);
776 spin_unlock(&conf->device_lock);
777 }
778 spin_unlock_irq(conf->hash_locks + hash);
779
780 if (!head)
781 return;
782 if (!stripe_can_batch(head))
783 goto out;
784
785 lock_two_stripes(head, sh);
786 /* clear_batch_ready clear the flag */
787 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
788 goto unlock_out;
789
790 if (sh->batch_head)
791 goto unlock_out;
792
793 dd_idx = 0;
794 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
795 dd_idx++;
796 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
797 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
798 goto unlock_out;
799
800 if (head->batch_head) {
801 spin_lock(&head->batch_head->batch_lock);
802 /* This batch list is already running */
803 if (!stripe_can_batch(head)) {
804 spin_unlock(&head->batch_head->batch_lock);
805 goto unlock_out;
806 }
807
808 /*
809 * at this point, head's BATCH_READY could be cleared, but we
810 * can still add the stripe to batch list
811 */
812 list_add(&sh->batch_list, &head->batch_list);
813 spin_unlock(&head->batch_head->batch_lock);
814
815 sh->batch_head = head->batch_head;
816 } else {
817 head->batch_head = head;
818 sh->batch_head = head->batch_head;
819 spin_lock(&head->batch_lock);
820 list_add_tail(&sh->batch_list, &head->batch_list);
821 spin_unlock(&head->batch_lock);
822 }
823
824 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
825 if (atomic_dec_return(&conf->preread_active_stripes)
826 < IO_THRESHOLD)
827 md_wakeup_thread(conf->mddev->thread);
828
829 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
830 int seq = sh->bm_seq;
831 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
832 sh->batch_head->bm_seq > seq)
833 seq = sh->batch_head->bm_seq;
834 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
835 sh->batch_head->bm_seq = seq;
836 }
837
838 atomic_inc(&sh->count);
839 unlock_out:
840 unlock_two_stripes(head, sh);
841 out:
842 raid5_release_stripe(head);
843 }
844
845 /* Determine if 'data_offset' or 'new_data_offset' should be used
846 * in this stripe_head.
847 */
848 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
849 {
850 sector_t progress = conf->reshape_progress;
851 /* Need a memory barrier to make sure we see the value
852 * of conf->generation, or ->data_offset that was set before
853 * reshape_progress was updated.
854 */
855 smp_rmb();
856 if (progress == MaxSector)
857 return 0;
858 if (sh->generation == conf->generation - 1)
859 return 0;
860 /* We are in a reshape, and this is a new-generation stripe,
861 * so use new_data_offset.
862 */
863 return 1;
864 }
865
866 static void
867 raid5_end_read_request(struct bio *bi);
868 static void
869 raid5_end_write_request(struct bio *bi);
870
871 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
872 {
873 struct r5conf *conf = sh->raid_conf;
874 int i, disks = sh->disks;
875 struct stripe_head *head_sh = sh;
876
877 might_sleep();
878
879 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
880 /* writing out phase */
881 if (s->waiting_extra_page)
882 return;
883 if (r5l_write_stripe(conf->log, sh) == 0)
884 return;
885 } else { /* caching phase */
886 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) {
887 r5c_cache_data(conf->log, sh, s);
888 return;
889 }
890 }
891
892 for (i = disks; i--; ) {
893 int op, op_flags = 0;
894 int replace_only = 0;
895 struct bio *bi, *rbi;
896 struct md_rdev *rdev, *rrdev = NULL;
897
898 sh = head_sh;
899 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
900 op = REQ_OP_WRITE;
901 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
902 op_flags = REQ_FUA;
903 if (test_bit(R5_Discard, &sh->dev[i].flags))
904 op = REQ_OP_DISCARD;
905 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
906 op = REQ_OP_READ;
907 else if (test_and_clear_bit(R5_WantReplace,
908 &sh->dev[i].flags)) {
909 op = REQ_OP_WRITE;
910 replace_only = 1;
911 } else
912 continue;
913 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
914 op_flags |= REQ_SYNC;
915
916 again:
917 bi = &sh->dev[i].req;
918 rbi = &sh->dev[i].rreq; /* For writing to replacement */
919
920 rcu_read_lock();
921 rrdev = rcu_dereference(conf->disks[i].replacement);
922 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
923 rdev = rcu_dereference(conf->disks[i].rdev);
924 if (!rdev) {
925 rdev = rrdev;
926 rrdev = NULL;
927 }
928 if (op_is_write(op)) {
929 if (replace_only)
930 rdev = NULL;
931 if (rdev == rrdev)
932 /* We raced and saw duplicates */
933 rrdev = NULL;
934 } else {
935 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
936 rdev = rrdev;
937 rrdev = NULL;
938 }
939
940 if (rdev && test_bit(Faulty, &rdev->flags))
941 rdev = NULL;
942 if (rdev)
943 atomic_inc(&rdev->nr_pending);
944 if (rrdev && test_bit(Faulty, &rrdev->flags))
945 rrdev = NULL;
946 if (rrdev)
947 atomic_inc(&rrdev->nr_pending);
948 rcu_read_unlock();
949
950 /* We have already checked bad blocks for reads. Now
951 * need to check for writes. We never accept write errors
952 * on the replacement, so we don't to check rrdev.
953 */
954 while (op_is_write(op) && rdev &&
955 test_bit(WriteErrorSeen, &rdev->flags)) {
956 sector_t first_bad;
957 int bad_sectors;
958 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
959 &first_bad, &bad_sectors);
960 if (!bad)
961 break;
962
963 if (bad < 0) {
964 set_bit(BlockedBadBlocks, &rdev->flags);
965 if (!conf->mddev->external &&
966 conf->mddev->sb_flags) {
967 /* It is very unlikely, but we might
968 * still need to write out the
969 * bad block log - better give it
970 * a chance*/
971 md_check_recovery(conf->mddev);
972 }
973 /*
974 * Because md_wait_for_blocked_rdev
975 * will dec nr_pending, we must
976 * increment it first.
977 */
978 atomic_inc(&rdev->nr_pending);
979 md_wait_for_blocked_rdev(rdev, conf->mddev);
980 } else {
981 /* Acknowledged bad block - skip the write */
982 rdev_dec_pending(rdev, conf->mddev);
983 rdev = NULL;
984 }
985 }
986
987 if (rdev) {
988 if (s->syncing || s->expanding || s->expanded
989 || s->replacing)
990 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
991
992 set_bit(STRIPE_IO_STARTED, &sh->state);
993
994 bi->bi_bdev = rdev->bdev;
995 bio_set_op_attrs(bi, op, op_flags);
996 bi->bi_end_io = op_is_write(op)
997 ? raid5_end_write_request
998 : raid5_end_read_request;
999 bi->bi_private = sh;
1000
1001 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1002 __func__, (unsigned long long)sh->sector,
1003 bi->bi_opf, i);
1004 atomic_inc(&sh->count);
1005 if (sh != head_sh)
1006 atomic_inc(&head_sh->count);
1007 if (use_new_offset(conf, sh))
1008 bi->bi_iter.bi_sector = (sh->sector
1009 + rdev->new_data_offset);
1010 else
1011 bi->bi_iter.bi_sector = (sh->sector
1012 + rdev->data_offset);
1013 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1014 bi->bi_opf |= REQ_NOMERGE;
1015
1016 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1017 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1018 sh->dev[i].vec.bv_page = sh->dev[i].page;
1019 bi->bi_vcnt = 1;
1020 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1021 bi->bi_io_vec[0].bv_offset = 0;
1022 bi->bi_iter.bi_size = STRIPE_SIZE;
1023 /*
1024 * If this is discard request, set bi_vcnt 0. We don't
1025 * want to confuse SCSI because SCSI will replace payload
1026 */
1027 if (op == REQ_OP_DISCARD)
1028 bi->bi_vcnt = 0;
1029 if (rrdev)
1030 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1031
1032 if (conf->mddev->gendisk)
1033 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1034 bi, disk_devt(conf->mddev->gendisk),
1035 sh->dev[i].sector);
1036 generic_make_request(bi);
1037 }
1038 if (rrdev) {
1039 if (s->syncing || s->expanding || s->expanded
1040 || s->replacing)
1041 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1042
1043 set_bit(STRIPE_IO_STARTED, &sh->state);
1044
1045 rbi->bi_bdev = rrdev->bdev;
1046 bio_set_op_attrs(rbi, op, op_flags);
1047 BUG_ON(!op_is_write(op));
1048 rbi->bi_end_io = raid5_end_write_request;
1049 rbi->bi_private = sh;
1050
1051 pr_debug("%s: for %llu schedule op %d on "
1052 "replacement disc %d\n",
1053 __func__, (unsigned long long)sh->sector,
1054 rbi->bi_opf, i);
1055 atomic_inc(&sh->count);
1056 if (sh != head_sh)
1057 atomic_inc(&head_sh->count);
1058 if (use_new_offset(conf, sh))
1059 rbi->bi_iter.bi_sector = (sh->sector
1060 + rrdev->new_data_offset);
1061 else
1062 rbi->bi_iter.bi_sector = (sh->sector
1063 + rrdev->data_offset);
1064 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1065 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1066 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1067 rbi->bi_vcnt = 1;
1068 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1069 rbi->bi_io_vec[0].bv_offset = 0;
1070 rbi->bi_iter.bi_size = STRIPE_SIZE;
1071 /*
1072 * If this is discard request, set bi_vcnt 0. We don't
1073 * want to confuse SCSI because SCSI will replace payload
1074 */
1075 if (op == REQ_OP_DISCARD)
1076 rbi->bi_vcnt = 0;
1077 if (conf->mddev->gendisk)
1078 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1079 rbi, disk_devt(conf->mddev->gendisk),
1080 sh->dev[i].sector);
1081 generic_make_request(rbi);
1082 }
1083 if (!rdev && !rrdev) {
1084 if (op_is_write(op))
1085 set_bit(STRIPE_DEGRADED, &sh->state);
1086 pr_debug("skip op %d on disc %d for sector %llu\n",
1087 bi->bi_opf, i, (unsigned long long)sh->sector);
1088 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1089 set_bit(STRIPE_HANDLE, &sh->state);
1090 }
1091
1092 if (!head_sh->batch_head)
1093 continue;
1094 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1095 batch_list);
1096 if (sh != head_sh)
1097 goto again;
1098 }
1099 }
1100
1101 static struct dma_async_tx_descriptor *
1102 async_copy_data(int frombio, struct bio *bio, struct page **page,
1103 sector_t sector, struct dma_async_tx_descriptor *tx,
1104 struct stripe_head *sh, int no_skipcopy)
1105 {
1106 struct bio_vec bvl;
1107 struct bvec_iter iter;
1108 struct page *bio_page;
1109 int page_offset;
1110 struct async_submit_ctl submit;
1111 enum async_tx_flags flags = 0;
1112
1113 if (bio->bi_iter.bi_sector >= sector)
1114 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1115 else
1116 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1117
1118 if (frombio)
1119 flags |= ASYNC_TX_FENCE;
1120 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1121
1122 bio_for_each_segment(bvl, bio, iter) {
1123 int len = bvl.bv_len;
1124 int clen;
1125 int b_offset = 0;
1126
1127 if (page_offset < 0) {
1128 b_offset = -page_offset;
1129 page_offset += b_offset;
1130 len -= b_offset;
1131 }
1132
1133 if (len > 0 && page_offset + len > STRIPE_SIZE)
1134 clen = STRIPE_SIZE - page_offset;
1135 else
1136 clen = len;
1137
1138 if (clen > 0) {
1139 b_offset += bvl.bv_offset;
1140 bio_page = bvl.bv_page;
1141 if (frombio) {
1142 if (sh->raid_conf->skip_copy &&
1143 b_offset == 0 && page_offset == 0 &&
1144 clen == STRIPE_SIZE &&
1145 !no_skipcopy)
1146 *page = bio_page;
1147 else
1148 tx = async_memcpy(*page, bio_page, page_offset,
1149 b_offset, clen, &submit);
1150 } else
1151 tx = async_memcpy(bio_page, *page, b_offset,
1152 page_offset, clen, &submit);
1153 }
1154 /* chain the operations */
1155 submit.depend_tx = tx;
1156
1157 if (clen < len) /* hit end of page */
1158 break;
1159 page_offset += len;
1160 }
1161
1162 return tx;
1163 }
1164
1165 static void ops_complete_biofill(void *stripe_head_ref)
1166 {
1167 struct stripe_head *sh = stripe_head_ref;
1168 struct bio_list return_bi = BIO_EMPTY_LIST;
1169 int i;
1170
1171 pr_debug("%s: stripe %llu\n", __func__,
1172 (unsigned long long)sh->sector);
1173
1174 /* clear completed biofills */
1175 for (i = sh->disks; i--; ) {
1176 struct r5dev *dev = &sh->dev[i];
1177
1178 /* acknowledge completion of a biofill operation */
1179 /* and check if we need to reply to a read request,
1180 * new R5_Wantfill requests are held off until
1181 * !STRIPE_BIOFILL_RUN
1182 */
1183 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1184 struct bio *rbi, *rbi2;
1185
1186 BUG_ON(!dev->read);
1187 rbi = dev->read;
1188 dev->read = NULL;
1189 while (rbi && rbi->bi_iter.bi_sector <
1190 dev->sector + STRIPE_SECTORS) {
1191 rbi2 = r5_next_bio(rbi, dev->sector);
1192 if (!raid5_dec_bi_active_stripes(rbi))
1193 bio_list_add(&return_bi, rbi);
1194 rbi = rbi2;
1195 }
1196 }
1197 }
1198 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1199
1200 return_io(&return_bi);
1201
1202 set_bit(STRIPE_HANDLE, &sh->state);
1203 raid5_release_stripe(sh);
1204 }
1205
1206 static void ops_run_biofill(struct stripe_head *sh)
1207 {
1208 struct dma_async_tx_descriptor *tx = NULL;
1209 struct async_submit_ctl submit;
1210 int i;
1211
1212 BUG_ON(sh->batch_head);
1213 pr_debug("%s: stripe %llu\n", __func__,
1214 (unsigned long long)sh->sector);
1215
1216 for (i = sh->disks; i--; ) {
1217 struct r5dev *dev = &sh->dev[i];
1218 if (test_bit(R5_Wantfill, &dev->flags)) {
1219 struct bio *rbi;
1220 spin_lock_irq(&sh->stripe_lock);
1221 dev->read = rbi = dev->toread;
1222 dev->toread = NULL;
1223 spin_unlock_irq(&sh->stripe_lock);
1224 while (rbi && rbi->bi_iter.bi_sector <
1225 dev->sector + STRIPE_SECTORS) {
1226 tx = async_copy_data(0, rbi, &dev->page,
1227 dev->sector, tx, sh, 0);
1228 rbi = r5_next_bio(rbi, dev->sector);
1229 }
1230 }
1231 }
1232
1233 atomic_inc(&sh->count);
1234 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1235 async_trigger_callback(&submit);
1236 }
1237
1238 static void mark_target_uptodate(struct stripe_head *sh, int target)
1239 {
1240 struct r5dev *tgt;
1241
1242 if (target < 0)
1243 return;
1244
1245 tgt = &sh->dev[target];
1246 set_bit(R5_UPTODATE, &tgt->flags);
1247 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1248 clear_bit(R5_Wantcompute, &tgt->flags);
1249 }
1250
1251 static void ops_complete_compute(void *stripe_head_ref)
1252 {
1253 struct stripe_head *sh = stripe_head_ref;
1254
1255 pr_debug("%s: stripe %llu\n", __func__,
1256 (unsigned long long)sh->sector);
1257
1258 /* mark the computed target(s) as uptodate */
1259 mark_target_uptodate(sh, sh->ops.target);
1260 mark_target_uptodate(sh, sh->ops.target2);
1261
1262 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1263 if (sh->check_state == check_state_compute_run)
1264 sh->check_state = check_state_compute_result;
1265 set_bit(STRIPE_HANDLE, &sh->state);
1266 raid5_release_stripe(sh);
1267 }
1268
1269 /* return a pointer to the address conversion region of the scribble buffer */
1270 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1271 struct raid5_percpu *percpu, int i)
1272 {
1273 void *addr;
1274
1275 addr = flex_array_get(percpu->scribble, i);
1276 return addr + sizeof(struct page *) * (sh->disks + 2);
1277 }
1278
1279 /* return a pointer to the address conversion region of the scribble buffer */
1280 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1281 {
1282 void *addr;
1283
1284 addr = flex_array_get(percpu->scribble, i);
1285 return addr;
1286 }
1287
1288 static struct dma_async_tx_descriptor *
1289 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1290 {
1291 int disks = sh->disks;
1292 struct page **xor_srcs = to_addr_page(percpu, 0);
1293 int target = sh->ops.target;
1294 struct r5dev *tgt = &sh->dev[target];
1295 struct page *xor_dest = tgt->page;
1296 int count = 0;
1297 struct dma_async_tx_descriptor *tx;
1298 struct async_submit_ctl submit;
1299 int i;
1300
1301 BUG_ON(sh->batch_head);
1302
1303 pr_debug("%s: stripe %llu block: %d\n",
1304 __func__, (unsigned long long)sh->sector, target);
1305 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1306
1307 for (i = disks; i--; )
1308 if (i != target)
1309 xor_srcs[count++] = sh->dev[i].page;
1310
1311 atomic_inc(&sh->count);
1312
1313 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1314 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1315 if (unlikely(count == 1))
1316 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1317 else
1318 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1319
1320 return tx;
1321 }
1322
1323 /* set_syndrome_sources - populate source buffers for gen_syndrome
1324 * @srcs - (struct page *) array of size sh->disks
1325 * @sh - stripe_head to parse
1326 *
1327 * Populates srcs in proper layout order for the stripe and returns the
1328 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1329 * destination buffer is recorded in srcs[count] and the Q destination
1330 * is recorded in srcs[count+1]].
1331 */
1332 static int set_syndrome_sources(struct page **srcs,
1333 struct stripe_head *sh,
1334 int srctype)
1335 {
1336 int disks = sh->disks;
1337 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1338 int d0_idx = raid6_d0(sh);
1339 int count;
1340 int i;
1341
1342 for (i = 0; i < disks; i++)
1343 srcs[i] = NULL;
1344
1345 count = 0;
1346 i = d0_idx;
1347 do {
1348 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1349 struct r5dev *dev = &sh->dev[i];
1350
1351 if (i == sh->qd_idx || i == sh->pd_idx ||
1352 (srctype == SYNDROME_SRC_ALL) ||
1353 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1354 (test_bit(R5_Wantdrain, &dev->flags) ||
1355 test_bit(R5_InJournal, &dev->flags))) ||
1356 (srctype == SYNDROME_SRC_WRITTEN &&
1357 dev->written)) {
1358 if (test_bit(R5_InJournal, &dev->flags))
1359 srcs[slot] = sh->dev[i].orig_page;
1360 else
1361 srcs[slot] = sh->dev[i].page;
1362 }
1363 i = raid6_next_disk(i, disks);
1364 } while (i != d0_idx);
1365
1366 return syndrome_disks;
1367 }
1368
1369 static struct dma_async_tx_descriptor *
1370 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1371 {
1372 int disks = sh->disks;
1373 struct page **blocks = to_addr_page(percpu, 0);
1374 int target;
1375 int qd_idx = sh->qd_idx;
1376 struct dma_async_tx_descriptor *tx;
1377 struct async_submit_ctl submit;
1378 struct r5dev *tgt;
1379 struct page *dest;
1380 int i;
1381 int count;
1382
1383 BUG_ON(sh->batch_head);
1384 if (sh->ops.target < 0)
1385 target = sh->ops.target2;
1386 else if (sh->ops.target2 < 0)
1387 target = sh->ops.target;
1388 else
1389 /* we should only have one valid target */
1390 BUG();
1391 BUG_ON(target < 0);
1392 pr_debug("%s: stripe %llu block: %d\n",
1393 __func__, (unsigned long long)sh->sector, target);
1394
1395 tgt = &sh->dev[target];
1396 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1397 dest = tgt->page;
1398
1399 atomic_inc(&sh->count);
1400
1401 if (target == qd_idx) {
1402 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1403 blocks[count] = NULL; /* regenerating p is not necessary */
1404 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1405 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1406 ops_complete_compute, sh,
1407 to_addr_conv(sh, percpu, 0));
1408 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1409 } else {
1410 /* Compute any data- or p-drive using XOR */
1411 count = 0;
1412 for (i = disks; i-- ; ) {
1413 if (i == target || i == qd_idx)
1414 continue;
1415 blocks[count++] = sh->dev[i].page;
1416 }
1417
1418 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1419 NULL, ops_complete_compute, sh,
1420 to_addr_conv(sh, percpu, 0));
1421 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1422 }
1423
1424 return tx;
1425 }
1426
1427 static struct dma_async_tx_descriptor *
1428 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1429 {
1430 int i, count, disks = sh->disks;
1431 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1432 int d0_idx = raid6_d0(sh);
1433 int faila = -1, failb = -1;
1434 int target = sh->ops.target;
1435 int target2 = sh->ops.target2;
1436 struct r5dev *tgt = &sh->dev[target];
1437 struct r5dev *tgt2 = &sh->dev[target2];
1438 struct dma_async_tx_descriptor *tx;
1439 struct page **blocks = to_addr_page(percpu, 0);
1440 struct async_submit_ctl submit;
1441
1442 BUG_ON(sh->batch_head);
1443 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1444 __func__, (unsigned long long)sh->sector, target, target2);
1445 BUG_ON(target < 0 || target2 < 0);
1446 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1447 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1448
1449 /* we need to open-code set_syndrome_sources to handle the
1450 * slot number conversion for 'faila' and 'failb'
1451 */
1452 for (i = 0; i < disks ; i++)
1453 blocks[i] = NULL;
1454 count = 0;
1455 i = d0_idx;
1456 do {
1457 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1458
1459 blocks[slot] = sh->dev[i].page;
1460
1461 if (i == target)
1462 faila = slot;
1463 if (i == target2)
1464 failb = slot;
1465 i = raid6_next_disk(i, disks);
1466 } while (i != d0_idx);
1467
1468 BUG_ON(faila == failb);
1469 if (failb < faila)
1470 swap(faila, failb);
1471 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1472 __func__, (unsigned long long)sh->sector, faila, failb);
1473
1474 atomic_inc(&sh->count);
1475
1476 if (failb == syndrome_disks+1) {
1477 /* Q disk is one of the missing disks */
1478 if (faila == syndrome_disks) {
1479 /* Missing P+Q, just recompute */
1480 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1481 ops_complete_compute, sh,
1482 to_addr_conv(sh, percpu, 0));
1483 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1484 STRIPE_SIZE, &submit);
1485 } else {
1486 struct page *dest;
1487 int data_target;
1488 int qd_idx = sh->qd_idx;
1489
1490 /* Missing D+Q: recompute D from P, then recompute Q */
1491 if (target == qd_idx)
1492 data_target = target2;
1493 else
1494 data_target = target;
1495
1496 count = 0;
1497 for (i = disks; i-- ; ) {
1498 if (i == data_target || i == qd_idx)
1499 continue;
1500 blocks[count++] = sh->dev[i].page;
1501 }
1502 dest = sh->dev[data_target].page;
1503 init_async_submit(&submit,
1504 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1505 NULL, NULL, NULL,
1506 to_addr_conv(sh, percpu, 0));
1507 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1508 &submit);
1509
1510 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1511 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1512 ops_complete_compute, sh,
1513 to_addr_conv(sh, percpu, 0));
1514 return async_gen_syndrome(blocks, 0, count+2,
1515 STRIPE_SIZE, &submit);
1516 }
1517 } else {
1518 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1519 ops_complete_compute, sh,
1520 to_addr_conv(sh, percpu, 0));
1521 if (failb == syndrome_disks) {
1522 /* We're missing D+P. */
1523 return async_raid6_datap_recov(syndrome_disks+2,
1524 STRIPE_SIZE, faila,
1525 blocks, &submit);
1526 } else {
1527 /* We're missing D+D. */
1528 return async_raid6_2data_recov(syndrome_disks+2,
1529 STRIPE_SIZE, faila, failb,
1530 blocks, &submit);
1531 }
1532 }
1533 }
1534
1535 static void ops_complete_prexor(void *stripe_head_ref)
1536 {
1537 struct stripe_head *sh = stripe_head_ref;
1538
1539 pr_debug("%s: stripe %llu\n", __func__,
1540 (unsigned long long)sh->sector);
1541
1542 if (r5c_is_writeback(sh->raid_conf->log))
1543 /*
1544 * raid5-cache write back uses orig_page during prexor.
1545 * After prexor, it is time to free orig_page
1546 */
1547 r5c_release_extra_page(sh);
1548 }
1549
1550 static struct dma_async_tx_descriptor *
1551 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1552 struct dma_async_tx_descriptor *tx)
1553 {
1554 int disks = sh->disks;
1555 struct page **xor_srcs = to_addr_page(percpu, 0);
1556 int count = 0, pd_idx = sh->pd_idx, i;
1557 struct async_submit_ctl submit;
1558
1559 /* existing parity data subtracted */
1560 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1561
1562 BUG_ON(sh->batch_head);
1563 pr_debug("%s: stripe %llu\n", __func__,
1564 (unsigned long long)sh->sector);
1565
1566 for (i = disks; i--; ) {
1567 struct r5dev *dev = &sh->dev[i];
1568 /* Only process blocks that are known to be uptodate */
1569 if (test_bit(R5_InJournal, &dev->flags))
1570 xor_srcs[count++] = dev->orig_page;
1571 else if (test_bit(R5_Wantdrain, &dev->flags))
1572 xor_srcs[count++] = dev->page;
1573 }
1574
1575 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1576 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1577 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1578
1579 return tx;
1580 }
1581
1582 static struct dma_async_tx_descriptor *
1583 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1584 struct dma_async_tx_descriptor *tx)
1585 {
1586 struct page **blocks = to_addr_page(percpu, 0);
1587 int count;
1588 struct async_submit_ctl submit;
1589
1590 pr_debug("%s: stripe %llu\n", __func__,
1591 (unsigned long long)sh->sector);
1592
1593 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1594
1595 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1596 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1597 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1598
1599 return tx;
1600 }
1601
1602 static struct dma_async_tx_descriptor *
1603 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1604 {
1605 struct r5conf *conf = sh->raid_conf;
1606 int disks = sh->disks;
1607 int i;
1608 struct stripe_head *head_sh = sh;
1609
1610 pr_debug("%s: stripe %llu\n", __func__,
1611 (unsigned long long)sh->sector);
1612
1613 for (i = disks; i--; ) {
1614 struct r5dev *dev;
1615 struct bio *chosen;
1616
1617 sh = head_sh;
1618 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1619 struct bio *wbi;
1620
1621 again:
1622 dev = &sh->dev[i];
1623 /*
1624 * clear R5_InJournal, so when rewriting a page in
1625 * journal, it is not skipped by r5l_log_stripe()
1626 */
1627 clear_bit(R5_InJournal, &dev->flags);
1628 spin_lock_irq(&sh->stripe_lock);
1629 chosen = dev->towrite;
1630 dev->towrite = NULL;
1631 sh->overwrite_disks = 0;
1632 BUG_ON(dev->written);
1633 wbi = dev->written = chosen;
1634 spin_unlock_irq(&sh->stripe_lock);
1635 WARN_ON(dev->page != dev->orig_page);
1636
1637 while (wbi && wbi->bi_iter.bi_sector <
1638 dev->sector + STRIPE_SECTORS) {
1639 if (wbi->bi_opf & REQ_FUA)
1640 set_bit(R5_WantFUA, &dev->flags);
1641 if (wbi->bi_opf & REQ_SYNC)
1642 set_bit(R5_SyncIO, &dev->flags);
1643 if (bio_op(wbi) == REQ_OP_DISCARD)
1644 set_bit(R5_Discard, &dev->flags);
1645 else {
1646 tx = async_copy_data(1, wbi, &dev->page,
1647 dev->sector, tx, sh,
1648 r5c_is_writeback(conf->log));
1649 if (dev->page != dev->orig_page &&
1650 !r5c_is_writeback(conf->log)) {
1651 set_bit(R5_SkipCopy, &dev->flags);
1652 clear_bit(R5_UPTODATE, &dev->flags);
1653 clear_bit(R5_OVERWRITE, &dev->flags);
1654 }
1655 }
1656 wbi = r5_next_bio(wbi, dev->sector);
1657 }
1658
1659 if (head_sh->batch_head) {
1660 sh = list_first_entry(&sh->batch_list,
1661 struct stripe_head,
1662 batch_list);
1663 if (sh == head_sh)
1664 continue;
1665 goto again;
1666 }
1667 }
1668 }
1669
1670 return tx;
1671 }
1672
1673 static void ops_complete_reconstruct(void *stripe_head_ref)
1674 {
1675 struct stripe_head *sh = stripe_head_ref;
1676 int disks = sh->disks;
1677 int pd_idx = sh->pd_idx;
1678 int qd_idx = sh->qd_idx;
1679 int i;
1680 bool fua = false, sync = false, discard = false;
1681
1682 pr_debug("%s: stripe %llu\n", __func__,
1683 (unsigned long long)sh->sector);
1684
1685 for (i = disks; i--; ) {
1686 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1687 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1688 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1689 }
1690
1691 for (i = disks; i--; ) {
1692 struct r5dev *dev = &sh->dev[i];
1693
1694 if (dev->written || i == pd_idx || i == qd_idx) {
1695 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1696 set_bit(R5_UPTODATE, &dev->flags);
1697 if (fua)
1698 set_bit(R5_WantFUA, &dev->flags);
1699 if (sync)
1700 set_bit(R5_SyncIO, &dev->flags);
1701 }
1702 }
1703
1704 if (sh->reconstruct_state == reconstruct_state_drain_run)
1705 sh->reconstruct_state = reconstruct_state_drain_result;
1706 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1707 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1708 else {
1709 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1710 sh->reconstruct_state = reconstruct_state_result;
1711 }
1712
1713 set_bit(STRIPE_HANDLE, &sh->state);
1714 raid5_release_stripe(sh);
1715 }
1716
1717 static void
1718 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1719 struct dma_async_tx_descriptor *tx)
1720 {
1721 int disks = sh->disks;
1722 struct page **xor_srcs;
1723 struct async_submit_ctl submit;
1724 int count, pd_idx = sh->pd_idx, i;
1725 struct page *xor_dest;
1726 int prexor = 0;
1727 unsigned long flags;
1728 int j = 0;
1729 struct stripe_head *head_sh = sh;
1730 int last_stripe;
1731
1732 pr_debug("%s: stripe %llu\n", __func__,
1733 (unsigned long long)sh->sector);
1734
1735 for (i = 0; i < sh->disks; i++) {
1736 if (pd_idx == i)
1737 continue;
1738 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1739 break;
1740 }
1741 if (i >= sh->disks) {
1742 atomic_inc(&sh->count);
1743 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1744 ops_complete_reconstruct(sh);
1745 return;
1746 }
1747 again:
1748 count = 0;
1749 xor_srcs = to_addr_page(percpu, j);
1750 /* check if prexor is active which means only process blocks
1751 * that are part of a read-modify-write (written)
1752 */
1753 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1754 prexor = 1;
1755 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1756 for (i = disks; i--; ) {
1757 struct r5dev *dev = &sh->dev[i];
1758 if (head_sh->dev[i].written ||
1759 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1760 xor_srcs[count++] = dev->page;
1761 }
1762 } else {
1763 xor_dest = sh->dev[pd_idx].page;
1764 for (i = disks; i--; ) {
1765 struct r5dev *dev = &sh->dev[i];
1766 if (i != pd_idx)
1767 xor_srcs[count++] = dev->page;
1768 }
1769 }
1770
1771 /* 1/ if we prexor'd then the dest is reused as a source
1772 * 2/ if we did not prexor then we are redoing the parity
1773 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1774 * for the synchronous xor case
1775 */
1776 last_stripe = !head_sh->batch_head ||
1777 list_first_entry(&sh->batch_list,
1778 struct stripe_head, batch_list) == head_sh;
1779 if (last_stripe) {
1780 flags = ASYNC_TX_ACK |
1781 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1782
1783 atomic_inc(&head_sh->count);
1784 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1785 to_addr_conv(sh, percpu, j));
1786 } else {
1787 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1788 init_async_submit(&submit, flags, tx, NULL, NULL,
1789 to_addr_conv(sh, percpu, j));
1790 }
1791
1792 if (unlikely(count == 1))
1793 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1794 else
1795 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1796 if (!last_stripe) {
1797 j++;
1798 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1799 batch_list);
1800 goto again;
1801 }
1802 }
1803
1804 static void
1805 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1806 struct dma_async_tx_descriptor *tx)
1807 {
1808 struct async_submit_ctl submit;
1809 struct page **blocks;
1810 int count, i, j = 0;
1811 struct stripe_head *head_sh = sh;
1812 int last_stripe;
1813 int synflags;
1814 unsigned long txflags;
1815
1816 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1817
1818 for (i = 0; i < sh->disks; i++) {
1819 if (sh->pd_idx == i || sh->qd_idx == i)
1820 continue;
1821 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1822 break;
1823 }
1824 if (i >= sh->disks) {
1825 atomic_inc(&sh->count);
1826 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1827 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1828 ops_complete_reconstruct(sh);
1829 return;
1830 }
1831
1832 again:
1833 blocks = to_addr_page(percpu, j);
1834
1835 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1836 synflags = SYNDROME_SRC_WRITTEN;
1837 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1838 } else {
1839 synflags = SYNDROME_SRC_ALL;
1840 txflags = ASYNC_TX_ACK;
1841 }
1842
1843 count = set_syndrome_sources(blocks, sh, synflags);
1844 last_stripe = !head_sh->batch_head ||
1845 list_first_entry(&sh->batch_list,
1846 struct stripe_head, batch_list) == head_sh;
1847
1848 if (last_stripe) {
1849 atomic_inc(&head_sh->count);
1850 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1851 head_sh, to_addr_conv(sh, percpu, j));
1852 } else
1853 init_async_submit(&submit, 0, tx, NULL, NULL,
1854 to_addr_conv(sh, percpu, j));
1855 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1856 if (!last_stripe) {
1857 j++;
1858 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1859 batch_list);
1860 goto again;
1861 }
1862 }
1863
1864 static void ops_complete_check(void *stripe_head_ref)
1865 {
1866 struct stripe_head *sh = stripe_head_ref;
1867
1868 pr_debug("%s: stripe %llu\n", __func__,
1869 (unsigned long long)sh->sector);
1870
1871 sh->check_state = check_state_check_result;
1872 set_bit(STRIPE_HANDLE, &sh->state);
1873 raid5_release_stripe(sh);
1874 }
1875
1876 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1877 {
1878 int disks = sh->disks;
1879 int pd_idx = sh->pd_idx;
1880 int qd_idx = sh->qd_idx;
1881 struct page *xor_dest;
1882 struct page **xor_srcs = to_addr_page(percpu, 0);
1883 struct dma_async_tx_descriptor *tx;
1884 struct async_submit_ctl submit;
1885 int count;
1886 int i;
1887
1888 pr_debug("%s: stripe %llu\n", __func__,
1889 (unsigned long long)sh->sector);
1890
1891 BUG_ON(sh->batch_head);
1892 count = 0;
1893 xor_dest = sh->dev[pd_idx].page;
1894 xor_srcs[count++] = xor_dest;
1895 for (i = disks; i--; ) {
1896 if (i == pd_idx || i == qd_idx)
1897 continue;
1898 xor_srcs[count++] = sh->dev[i].page;
1899 }
1900
1901 init_async_submit(&submit, 0, NULL, NULL, NULL,
1902 to_addr_conv(sh, percpu, 0));
1903 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1904 &sh->ops.zero_sum_result, &submit);
1905
1906 atomic_inc(&sh->count);
1907 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1908 tx = async_trigger_callback(&submit);
1909 }
1910
1911 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1912 {
1913 struct page **srcs = to_addr_page(percpu, 0);
1914 struct async_submit_ctl submit;
1915 int count;
1916
1917 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1918 (unsigned long long)sh->sector, checkp);
1919
1920 BUG_ON(sh->batch_head);
1921 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1922 if (!checkp)
1923 srcs[count] = NULL;
1924
1925 atomic_inc(&sh->count);
1926 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1927 sh, to_addr_conv(sh, percpu, 0));
1928 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1929 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1930 }
1931
1932 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1933 {
1934 int overlap_clear = 0, i, disks = sh->disks;
1935 struct dma_async_tx_descriptor *tx = NULL;
1936 struct r5conf *conf = sh->raid_conf;
1937 int level = conf->level;
1938 struct raid5_percpu *percpu;
1939 unsigned long cpu;
1940
1941 cpu = get_cpu();
1942 percpu = per_cpu_ptr(conf->percpu, cpu);
1943 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1944 ops_run_biofill(sh);
1945 overlap_clear++;
1946 }
1947
1948 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1949 if (level < 6)
1950 tx = ops_run_compute5(sh, percpu);
1951 else {
1952 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1953 tx = ops_run_compute6_1(sh, percpu);
1954 else
1955 tx = ops_run_compute6_2(sh, percpu);
1956 }
1957 /* terminate the chain if reconstruct is not set to be run */
1958 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1959 async_tx_ack(tx);
1960 }
1961
1962 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1963 if (level < 6)
1964 tx = ops_run_prexor5(sh, percpu, tx);
1965 else
1966 tx = ops_run_prexor6(sh, percpu, tx);
1967 }
1968
1969 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1970 tx = ops_run_biodrain(sh, tx);
1971 overlap_clear++;
1972 }
1973
1974 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1975 if (level < 6)
1976 ops_run_reconstruct5(sh, percpu, tx);
1977 else
1978 ops_run_reconstruct6(sh, percpu, tx);
1979 }
1980
1981 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1982 if (sh->check_state == check_state_run)
1983 ops_run_check_p(sh, percpu);
1984 else if (sh->check_state == check_state_run_q)
1985 ops_run_check_pq(sh, percpu, 0);
1986 else if (sh->check_state == check_state_run_pq)
1987 ops_run_check_pq(sh, percpu, 1);
1988 else
1989 BUG();
1990 }
1991
1992 if (overlap_clear && !sh->batch_head)
1993 for (i = disks; i--; ) {
1994 struct r5dev *dev = &sh->dev[i];
1995 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1996 wake_up(&sh->raid_conf->wait_for_overlap);
1997 }
1998 put_cpu();
1999 }
2000
2001 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2002 int disks)
2003 {
2004 struct stripe_head *sh;
2005 int i;
2006
2007 sh = kmem_cache_zalloc(sc, gfp);
2008 if (sh) {
2009 spin_lock_init(&sh->stripe_lock);
2010 spin_lock_init(&sh->batch_lock);
2011 INIT_LIST_HEAD(&sh->batch_list);
2012 INIT_LIST_HEAD(&sh->lru);
2013 INIT_LIST_HEAD(&sh->r5c);
2014 INIT_LIST_HEAD(&sh->log_list);
2015 atomic_set(&sh->count, 1);
2016 sh->log_start = MaxSector;
2017 for (i = 0; i < disks; i++) {
2018 struct r5dev *dev = &sh->dev[i];
2019
2020 bio_init(&dev->req, &dev->vec, 1);
2021 bio_init(&dev->rreq, &dev->rvec, 1);
2022 }
2023 }
2024 return sh;
2025 }
2026 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2027 {
2028 struct stripe_head *sh;
2029
2030 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
2031 if (!sh)
2032 return 0;
2033
2034 sh->raid_conf = conf;
2035
2036 if (grow_buffers(sh, gfp)) {
2037 shrink_buffers(sh);
2038 kmem_cache_free(conf->slab_cache, sh);
2039 return 0;
2040 }
2041 sh->hash_lock_index =
2042 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2043 /* we just created an active stripe so... */
2044 atomic_inc(&conf->active_stripes);
2045
2046 raid5_release_stripe(sh);
2047 conf->max_nr_stripes++;
2048 return 1;
2049 }
2050
2051 static int grow_stripes(struct r5conf *conf, int num)
2052 {
2053 struct kmem_cache *sc;
2054 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2055
2056 if (conf->mddev->gendisk)
2057 sprintf(conf->cache_name[0],
2058 "raid%d-%s", conf->level, mdname(conf->mddev));
2059 else
2060 sprintf(conf->cache_name[0],
2061 "raid%d-%p", conf->level, conf->mddev);
2062 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2063
2064 conf->active_name = 0;
2065 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2066 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2067 0, 0, NULL);
2068 if (!sc)
2069 return 1;
2070 conf->slab_cache = sc;
2071 conf->pool_size = devs;
2072 while (num--)
2073 if (!grow_one_stripe(conf, GFP_KERNEL))
2074 return 1;
2075
2076 return 0;
2077 }
2078
2079 /**
2080 * scribble_len - return the required size of the scribble region
2081 * @num - total number of disks in the array
2082 *
2083 * The size must be enough to contain:
2084 * 1/ a struct page pointer for each device in the array +2
2085 * 2/ room to convert each entry in (1) to its corresponding dma
2086 * (dma_map_page()) or page (page_address()) address.
2087 *
2088 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2089 * calculate over all devices (not just the data blocks), using zeros in place
2090 * of the P and Q blocks.
2091 */
2092 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2093 {
2094 struct flex_array *ret;
2095 size_t len;
2096
2097 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2098 ret = flex_array_alloc(len, cnt, flags);
2099 if (!ret)
2100 return NULL;
2101 /* always prealloc all elements, so no locking is required */
2102 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2103 flex_array_free(ret);
2104 return NULL;
2105 }
2106 return ret;
2107 }
2108
2109 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2110 {
2111 unsigned long cpu;
2112 int err = 0;
2113
2114 /*
2115 * Never shrink. And mddev_suspend() could deadlock if this is called
2116 * from raid5d. In that case, scribble_disks and scribble_sectors
2117 * should equal to new_disks and new_sectors
2118 */
2119 if (conf->scribble_disks >= new_disks &&
2120 conf->scribble_sectors >= new_sectors)
2121 return 0;
2122 mddev_suspend(conf->mddev);
2123 get_online_cpus();
2124 for_each_present_cpu(cpu) {
2125 struct raid5_percpu *percpu;
2126 struct flex_array *scribble;
2127
2128 percpu = per_cpu_ptr(conf->percpu, cpu);
2129 scribble = scribble_alloc(new_disks,
2130 new_sectors / STRIPE_SECTORS,
2131 GFP_NOIO);
2132
2133 if (scribble) {
2134 flex_array_free(percpu->scribble);
2135 percpu->scribble = scribble;
2136 } else {
2137 err = -ENOMEM;
2138 break;
2139 }
2140 }
2141 put_online_cpus();
2142 mddev_resume(conf->mddev);
2143 if (!err) {
2144 conf->scribble_disks = new_disks;
2145 conf->scribble_sectors = new_sectors;
2146 }
2147 return err;
2148 }
2149
2150 static int resize_stripes(struct r5conf *conf, int newsize)
2151 {
2152 /* Make all the stripes able to hold 'newsize' devices.
2153 * New slots in each stripe get 'page' set to a new page.
2154 *
2155 * This happens in stages:
2156 * 1/ create a new kmem_cache and allocate the required number of
2157 * stripe_heads.
2158 * 2/ gather all the old stripe_heads and transfer the pages across
2159 * to the new stripe_heads. This will have the side effect of
2160 * freezing the array as once all stripe_heads have been collected,
2161 * no IO will be possible. Old stripe heads are freed once their
2162 * pages have been transferred over, and the old kmem_cache is
2163 * freed when all stripes are done.
2164 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2165 * we simple return a failre status - no need to clean anything up.
2166 * 4/ allocate new pages for the new slots in the new stripe_heads.
2167 * If this fails, we don't bother trying the shrink the
2168 * stripe_heads down again, we just leave them as they are.
2169 * As each stripe_head is processed the new one is released into
2170 * active service.
2171 *
2172 * Once step2 is started, we cannot afford to wait for a write,
2173 * so we use GFP_NOIO allocations.
2174 */
2175 struct stripe_head *osh, *nsh;
2176 LIST_HEAD(newstripes);
2177 struct disk_info *ndisks;
2178 int err;
2179 struct kmem_cache *sc;
2180 int i;
2181 int hash, cnt;
2182
2183 if (newsize <= conf->pool_size)
2184 return 0; /* never bother to shrink */
2185
2186 err = md_allow_write(conf->mddev);
2187 if (err)
2188 return err;
2189
2190 /* Step 1 */
2191 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2192 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2193 0, 0, NULL);
2194 if (!sc)
2195 return -ENOMEM;
2196
2197 /* Need to ensure auto-resizing doesn't interfere */
2198 mutex_lock(&conf->cache_size_mutex);
2199
2200 for (i = conf->max_nr_stripes; i; i--) {
2201 nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
2202 if (!nsh)
2203 break;
2204
2205 nsh->raid_conf = conf;
2206 list_add(&nsh->lru, &newstripes);
2207 }
2208 if (i) {
2209 /* didn't get enough, give up */
2210 while (!list_empty(&newstripes)) {
2211 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2212 list_del(&nsh->lru);
2213 kmem_cache_free(sc, nsh);
2214 }
2215 kmem_cache_destroy(sc);
2216 mutex_unlock(&conf->cache_size_mutex);
2217 return -ENOMEM;
2218 }
2219 /* Step 2 - Must use GFP_NOIO now.
2220 * OK, we have enough stripes, start collecting inactive
2221 * stripes and copying them over
2222 */
2223 hash = 0;
2224 cnt = 0;
2225 list_for_each_entry(nsh, &newstripes, lru) {
2226 lock_device_hash_lock(conf, hash);
2227 wait_event_cmd(conf->wait_for_stripe,
2228 !list_empty(conf->inactive_list + hash),
2229 unlock_device_hash_lock(conf, hash),
2230 lock_device_hash_lock(conf, hash));
2231 osh = get_free_stripe(conf, hash);
2232 unlock_device_hash_lock(conf, hash);
2233
2234 for(i=0; i<conf->pool_size; i++) {
2235 nsh->dev[i].page = osh->dev[i].page;
2236 nsh->dev[i].orig_page = osh->dev[i].page;
2237 }
2238 nsh->hash_lock_index = hash;
2239 kmem_cache_free(conf->slab_cache, osh);
2240 cnt++;
2241 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2242 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2243 hash++;
2244 cnt = 0;
2245 }
2246 }
2247 kmem_cache_destroy(conf->slab_cache);
2248
2249 /* Step 3.
2250 * At this point, we are holding all the stripes so the array
2251 * is completely stalled, so now is a good time to resize
2252 * conf->disks and the scribble region
2253 */
2254 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2255 if (ndisks) {
2256 for (i = 0; i < conf->pool_size; i++)
2257 ndisks[i] = conf->disks[i];
2258
2259 for (i = conf->pool_size; i < newsize; i++) {
2260 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2261 if (!ndisks[i].extra_page)
2262 err = -ENOMEM;
2263 }
2264
2265 if (err) {
2266 for (i = conf->pool_size; i < newsize; i++)
2267 if (ndisks[i].extra_page)
2268 put_page(ndisks[i].extra_page);
2269 kfree(ndisks);
2270 } else {
2271 kfree(conf->disks);
2272 conf->disks = ndisks;
2273 }
2274 } else
2275 err = -ENOMEM;
2276
2277 mutex_unlock(&conf->cache_size_mutex);
2278 /* Step 4, return new stripes to service */
2279 while(!list_empty(&newstripes)) {
2280 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2281 list_del_init(&nsh->lru);
2282
2283 for (i=conf->raid_disks; i < newsize; i++)
2284 if (nsh->dev[i].page == NULL) {
2285 struct page *p = alloc_page(GFP_NOIO);
2286 nsh->dev[i].page = p;
2287 nsh->dev[i].orig_page = p;
2288 if (!p)
2289 err = -ENOMEM;
2290 }
2291 raid5_release_stripe(nsh);
2292 }
2293 /* critical section pass, GFP_NOIO no longer needed */
2294
2295 conf->slab_cache = sc;
2296 conf->active_name = 1-conf->active_name;
2297 if (!err)
2298 conf->pool_size = newsize;
2299 return err;
2300 }
2301
2302 static int drop_one_stripe(struct r5conf *conf)
2303 {
2304 struct stripe_head *sh;
2305 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2306
2307 spin_lock_irq(conf->hash_locks + hash);
2308 sh = get_free_stripe(conf, hash);
2309 spin_unlock_irq(conf->hash_locks + hash);
2310 if (!sh)
2311 return 0;
2312 BUG_ON(atomic_read(&sh->count));
2313 shrink_buffers(sh);
2314 kmem_cache_free(conf->slab_cache, sh);
2315 atomic_dec(&conf->active_stripes);
2316 conf->max_nr_stripes--;
2317 return 1;
2318 }
2319
2320 static void shrink_stripes(struct r5conf *conf)
2321 {
2322 while (conf->max_nr_stripes &&
2323 drop_one_stripe(conf))
2324 ;
2325
2326 kmem_cache_destroy(conf->slab_cache);
2327 conf->slab_cache = NULL;
2328 }
2329
2330 static void raid5_end_read_request(struct bio * bi)
2331 {
2332 struct stripe_head *sh = bi->bi_private;
2333 struct r5conf *conf = sh->raid_conf;
2334 int disks = sh->disks, i;
2335 char b[BDEVNAME_SIZE];
2336 struct md_rdev *rdev = NULL;
2337 sector_t s;
2338
2339 for (i=0 ; i<disks; i++)
2340 if (bi == &sh->dev[i].req)
2341 break;
2342
2343 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2344 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2345 bi->bi_error);
2346 if (i == disks) {
2347 bio_reset(bi);
2348 BUG();
2349 return;
2350 }
2351 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2352 /* If replacement finished while this request was outstanding,
2353 * 'replacement' might be NULL already.
2354 * In that case it moved down to 'rdev'.
2355 * rdev is not removed until all requests are finished.
2356 */
2357 rdev = conf->disks[i].replacement;
2358 if (!rdev)
2359 rdev = conf->disks[i].rdev;
2360
2361 if (use_new_offset(conf, sh))
2362 s = sh->sector + rdev->new_data_offset;
2363 else
2364 s = sh->sector + rdev->data_offset;
2365 if (!bi->bi_error) {
2366 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2367 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2368 /* Note that this cannot happen on a
2369 * replacement device. We just fail those on
2370 * any error
2371 */
2372 pr_info_ratelimited(
2373 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2374 mdname(conf->mddev), STRIPE_SECTORS,
2375 (unsigned long long)s,
2376 bdevname(rdev->bdev, b));
2377 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2378 clear_bit(R5_ReadError, &sh->dev[i].flags);
2379 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2380 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2381 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2382
2383 if (atomic_read(&rdev->read_errors))
2384 atomic_set(&rdev->read_errors, 0);
2385 } else {
2386 const char *bdn = bdevname(rdev->bdev, b);
2387 int retry = 0;
2388 int set_bad = 0;
2389
2390 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2391 atomic_inc(&rdev->read_errors);
2392 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2393 pr_warn_ratelimited(
2394 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2395 mdname(conf->mddev),
2396 (unsigned long long)s,
2397 bdn);
2398 else if (conf->mddev->degraded >= conf->max_degraded) {
2399 set_bad = 1;
2400 pr_warn_ratelimited(
2401 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2402 mdname(conf->mddev),
2403 (unsigned long long)s,
2404 bdn);
2405 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2406 /* Oh, no!!! */
2407 set_bad = 1;
2408 pr_warn_ratelimited(
2409 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2410 mdname(conf->mddev),
2411 (unsigned long long)s,
2412 bdn);
2413 } else if (atomic_read(&rdev->read_errors)
2414 > conf->max_nr_stripes)
2415 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2416 mdname(conf->mddev), bdn);
2417 else
2418 retry = 1;
2419 if (set_bad && test_bit(In_sync, &rdev->flags)
2420 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2421 retry = 1;
2422 if (retry)
2423 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2424 set_bit(R5_ReadError, &sh->dev[i].flags);
2425 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2426 } else
2427 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2428 else {
2429 clear_bit(R5_ReadError, &sh->dev[i].flags);
2430 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2431 if (!(set_bad
2432 && test_bit(In_sync, &rdev->flags)
2433 && rdev_set_badblocks(
2434 rdev, sh->sector, STRIPE_SECTORS, 0)))
2435 md_error(conf->mddev, rdev);
2436 }
2437 }
2438 rdev_dec_pending(rdev, conf->mddev);
2439 bio_reset(bi);
2440 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2441 set_bit(STRIPE_HANDLE, &sh->state);
2442 raid5_release_stripe(sh);
2443 }
2444
2445 static void raid5_end_write_request(struct bio *bi)
2446 {
2447 struct stripe_head *sh = bi->bi_private;
2448 struct r5conf *conf = sh->raid_conf;
2449 int disks = sh->disks, i;
2450 struct md_rdev *uninitialized_var(rdev);
2451 sector_t first_bad;
2452 int bad_sectors;
2453 int replacement = 0;
2454
2455 for (i = 0 ; i < disks; i++) {
2456 if (bi == &sh->dev[i].req) {
2457 rdev = conf->disks[i].rdev;
2458 break;
2459 }
2460 if (bi == &sh->dev[i].rreq) {
2461 rdev = conf->disks[i].replacement;
2462 if (rdev)
2463 replacement = 1;
2464 else
2465 /* rdev was removed and 'replacement'
2466 * replaced it. rdev is not removed
2467 * until all requests are finished.
2468 */
2469 rdev = conf->disks[i].rdev;
2470 break;
2471 }
2472 }
2473 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2474 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2475 bi->bi_error);
2476 if (i == disks) {
2477 bio_reset(bi);
2478 BUG();
2479 return;
2480 }
2481
2482 if (replacement) {
2483 if (bi->bi_error)
2484 md_error(conf->mddev, rdev);
2485 else if (is_badblock(rdev, sh->sector,
2486 STRIPE_SECTORS,
2487 &first_bad, &bad_sectors))
2488 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2489 } else {
2490 if (bi->bi_error) {
2491 set_bit(STRIPE_DEGRADED, &sh->state);
2492 set_bit(WriteErrorSeen, &rdev->flags);
2493 set_bit(R5_WriteError, &sh->dev[i].flags);
2494 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2495 set_bit(MD_RECOVERY_NEEDED,
2496 &rdev->mddev->recovery);
2497 } else if (is_badblock(rdev, sh->sector,
2498 STRIPE_SECTORS,
2499 &first_bad, &bad_sectors)) {
2500 set_bit(R5_MadeGood, &sh->dev[i].flags);
2501 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2502 /* That was a successful write so make
2503 * sure it looks like we already did
2504 * a re-write.
2505 */
2506 set_bit(R5_ReWrite, &sh->dev[i].flags);
2507 }
2508 }
2509 rdev_dec_pending(rdev, conf->mddev);
2510
2511 if (sh->batch_head && bi->bi_error && !replacement)
2512 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2513
2514 bio_reset(bi);
2515 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2516 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2517 set_bit(STRIPE_HANDLE, &sh->state);
2518 raid5_release_stripe(sh);
2519
2520 if (sh->batch_head && sh != sh->batch_head)
2521 raid5_release_stripe(sh->batch_head);
2522 }
2523
2524 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2525 {
2526 struct r5dev *dev = &sh->dev[i];
2527
2528 dev->flags = 0;
2529 dev->sector = raid5_compute_blocknr(sh, i, previous);
2530 }
2531
2532 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2533 {
2534 char b[BDEVNAME_SIZE];
2535 struct r5conf *conf = mddev->private;
2536 unsigned long flags;
2537 pr_debug("raid456: error called\n");
2538
2539 spin_lock_irqsave(&conf->device_lock, flags);
2540 clear_bit(In_sync, &rdev->flags);
2541 mddev->degraded = calc_degraded(conf);
2542 spin_unlock_irqrestore(&conf->device_lock, flags);
2543 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2544
2545 set_bit(Blocked, &rdev->flags);
2546 set_bit(Faulty, &rdev->flags);
2547 set_mask_bits(&mddev->sb_flags, 0,
2548 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2549 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2550 "md/raid:%s: Operation continuing on %d devices.\n",
2551 mdname(mddev),
2552 bdevname(rdev->bdev, b),
2553 mdname(mddev),
2554 conf->raid_disks - mddev->degraded);
2555 }
2556
2557 /*
2558 * Input: a 'big' sector number,
2559 * Output: index of the data and parity disk, and the sector # in them.
2560 */
2561 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2562 int previous, int *dd_idx,
2563 struct stripe_head *sh)
2564 {
2565 sector_t stripe, stripe2;
2566 sector_t chunk_number;
2567 unsigned int chunk_offset;
2568 int pd_idx, qd_idx;
2569 int ddf_layout = 0;
2570 sector_t new_sector;
2571 int algorithm = previous ? conf->prev_algo
2572 : conf->algorithm;
2573 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2574 : conf->chunk_sectors;
2575 int raid_disks = previous ? conf->previous_raid_disks
2576 : conf->raid_disks;
2577 int data_disks = raid_disks - conf->max_degraded;
2578
2579 /* First compute the information on this sector */
2580
2581 /*
2582 * Compute the chunk number and the sector offset inside the chunk
2583 */
2584 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2585 chunk_number = r_sector;
2586
2587 /*
2588 * Compute the stripe number
2589 */
2590 stripe = chunk_number;
2591 *dd_idx = sector_div(stripe, data_disks);
2592 stripe2 = stripe;
2593 /*
2594 * Select the parity disk based on the user selected algorithm.
2595 */
2596 pd_idx = qd_idx = -1;
2597 switch(conf->level) {
2598 case 4:
2599 pd_idx = data_disks;
2600 break;
2601 case 5:
2602 switch (algorithm) {
2603 case ALGORITHM_LEFT_ASYMMETRIC:
2604 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2605 if (*dd_idx >= pd_idx)
2606 (*dd_idx)++;
2607 break;
2608 case ALGORITHM_RIGHT_ASYMMETRIC:
2609 pd_idx = sector_div(stripe2, raid_disks);
2610 if (*dd_idx >= pd_idx)
2611 (*dd_idx)++;
2612 break;
2613 case ALGORITHM_LEFT_SYMMETRIC:
2614 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2615 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2616 break;
2617 case ALGORITHM_RIGHT_SYMMETRIC:
2618 pd_idx = sector_div(stripe2, raid_disks);
2619 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2620 break;
2621 case ALGORITHM_PARITY_0:
2622 pd_idx = 0;
2623 (*dd_idx)++;
2624 break;
2625 case ALGORITHM_PARITY_N:
2626 pd_idx = data_disks;
2627 break;
2628 default:
2629 BUG();
2630 }
2631 break;
2632 case 6:
2633
2634 switch (algorithm) {
2635 case ALGORITHM_LEFT_ASYMMETRIC:
2636 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2637 qd_idx = pd_idx + 1;
2638 if (pd_idx == raid_disks-1) {
2639 (*dd_idx)++; /* Q D D D P */
2640 qd_idx = 0;
2641 } else if (*dd_idx >= pd_idx)
2642 (*dd_idx) += 2; /* D D P Q D */
2643 break;
2644 case ALGORITHM_RIGHT_ASYMMETRIC:
2645 pd_idx = sector_div(stripe2, raid_disks);
2646 qd_idx = pd_idx + 1;
2647 if (pd_idx == raid_disks-1) {
2648 (*dd_idx)++; /* Q D D D P */
2649 qd_idx = 0;
2650 } else if (*dd_idx >= pd_idx)
2651 (*dd_idx) += 2; /* D D P Q D */
2652 break;
2653 case ALGORITHM_LEFT_SYMMETRIC:
2654 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2655 qd_idx = (pd_idx + 1) % raid_disks;
2656 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2657 break;
2658 case ALGORITHM_RIGHT_SYMMETRIC:
2659 pd_idx = sector_div(stripe2, raid_disks);
2660 qd_idx = (pd_idx + 1) % raid_disks;
2661 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2662 break;
2663
2664 case ALGORITHM_PARITY_0:
2665 pd_idx = 0;
2666 qd_idx = 1;
2667 (*dd_idx) += 2;
2668 break;
2669 case ALGORITHM_PARITY_N:
2670 pd_idx = data_disks;
2671 qd_idx = data_disks + 1;
2672 break;
2673
2674 case ALGORITHM_ROTATING_ZERO_RESTART:
2675 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2676 * of blocks for computing Q is different.
2677 */
2678 pd_idx = sector_div(stripe2, raid_disks);
2679 qd_idx = pd_idx + 1;
2680 if (pd_idx == raid_disks-1) {
2681 (*dd_idx)++; /* Q D D D P */
2682 qd_idx = 0;
2683 } else if (*dd_idx >= pd_idx)
2684 (*dd_idx) += 2; /* D D P Q D */
2685 ddf_layout = 1;
2686 break;
2687
2688 case ALGORITHM_ROTATING_N_RESTART:
2689 /* Same a left_asymmetric, by first stripe is
2690 * D D D P Q rather than
2691 * Q D D D P
2692 */
2693 stripe2 += 1;
2694 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2695 qd_idx = pd_idx + 1;
2696 if (pd_idx == raid_disks-1) {
2697 (*dd_idx)++; /* Q D D D P */
2698 qd_idx = 0;
2699 } else if (*dd_idx >= pd_idx)
2700 (*dd_idx) += 2; /* D D P Q D */
2701 ddf_layout = 1;
2702 break;
2703
2704 case ALGORITHM_ROTATING_N_CONTINUE:
2705 /* Same as left_symmetric but Q is before P */
2706 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2707 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2708 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2709 ddf_layout = 1;
2710 break;
2711
2712 case ALGORITHM_LEFT_ASYMMETRIC_6:
2713 /* RAID5 left_asymmetric, with Q on last device */
2714 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2715 if (*dd_idx >= pd_idx)
2716 (*dd_idx)++;
2717 qd_idx = raid_disks - 1;
2718 break;
2719
2720 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2721 pd_idx = sector_div(stripe2, raid_disks-1);
2722 if (*dd_idx >= pd_idx)
2723 (*dd_idx)++;
2724 qd_idx = raid_disks - 1;
2725 break;
2726
2727 case ALGORITHM_LEFT_SYMMETRIC_6:
2728 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2729 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2730 qd_idx = raid_disks - 1;
2731 break;
2732
2733 case ALGORITHM_RIGHT_SYMMETRIC_6:
2734 pd_idx = sector_div(stripe2, raid_disks-1);
2735 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2736 qd_idx = raid_disks - 1;
2737 break;
2738
2739 case ALGORITHM_PARITY_0_6:
2740 pd_idx = 0;
2741 (*dd_idx)++;
2742 qd_idx = raid_disks - 1;
2743 break;
2744
2745 default:
2746 BUG();
2747 }
2748 break;
2749 }
2750
2751 if (sh) {
2752 sh->pd_idx = pd_idx;
2753 sh->qd_idx = qd_idx;
2754 sh->ddf_layout = ddf_layout;
2755 }
2756 /*
2757 * Finally, compute the new sector number
2758 */
2759 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2760 return new_sector;
2761 }
2762
2763 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2764 {
2765 struct r5conf *conf = sh->raid_conf;
2766 int raid_disks = sh->disks;
2767 int data_disks = raid_disks - conf->max_degraded;
2768 sector_t new_sector = sh->sector, check;
2769 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2770 : conf->chunk_sectors;
2771 int algorithm = previous ? conf->prev_algo
2772 : conf->algorithm;
2773 sector_t stripe;
2774 int chunk_offset;
2775 sector_t chunk_number;
2776 int dummy1, dd_idx = i;
2777 sector_t r_sector;
2778 struct stripe_head sh2;
2779
2780 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2781 stripe = new_sector;
2782
2783 if (i == sh->pd_idx)
2784 return 0;
2785 switch(conf->level) {
2786 case 4: break;
2787 case 5:
2788 switch (algorithm) {
2789 case ALGORITHM_LEFT_ASYMMETRIC:
2790 case ALGORITHM_RIGHT_ASYMMETRIC:
2791 if (i > sh->pd_idx)
2792 i--;
2793 break;
2794 case ALGORITHM_LEFT_SYMMETRIC:
2795 case ALGORITHM_RIGHT_SYMMETRIC:
2796 if (i < sh->pd_idx)
2797 i += raid_disks;
2798 i -= (sh->pd_idx + 1);
2799 break;
2800 case ALGORITHM_PARITY_0:
2801 i -= 1;
2802 break;
2803 case ALGORITHM_PARITY_N:
2804 break;
2805 default:
2806 BUG();
2807 }
2808 break;
2809 case 6:
2810 if (i == sh->qd_idx)
2811 return 0; /* It is the Q disk */
2812 switch (algorithm) {
2813 case ALGORITHM_LEFT_ASYMMETRIC:
2814 case ALGORITHM_RIGHT_ASYMMETRIC:
2815 case ALGORITHM_ROTATING_ZERO_RESTART:
2816 case ALGORITHM_ROTATING_N_RESTART:
2817 if (sh->pd_idx == raid_disks-1)
2818 i--; /* Q D D D P */
2819 else if (i > sh->pd_idx)
2820 i -= 2; /* D D P Q D */
2821 break;
2822 case ALGORITHM_LEFT_SYMMETRIC:
2823 case ALGORITHM_RIGHT_SYMMETRIC:
2824 if (sh->pd_idx == raid_disks-1)
2825 i--; /* Q D D D P */
2826 else {
2827 /* D D P Q D */
2828 if (i < sh->pd_idx)
2829 i += raid_disks;
2830 i -= (sh->pd_idx + 2);
2831 }
2832 break;
2833 case ALGORITHM_PARITY_0:
2834 i -= 2;
2835 break;
2836 case ALGORITHM_PARITY_N:
2837 break;
2838 case ALGORITHM_ROTATING_N_CONTINUE:
2839 /* Like left_symmetric, but P is before Q */
2840 if (sh->pd_idx == 0)
2841 i--; /* P D D D Q */
2842 else {
2843 /* D D Q P D */
2844 if (i < sh->pd_idx)
2845 i += raid_disks;
2846 i -= (sh->pd_idx + 1);
2847 }
2848 break;
2849 case ALGORITHM_LEFT_ASYMMETRIC_6:
2850 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2851 if (i > sh->pd_idx)
2852 i--;
2853 break;
2854 case ALGORITHM_LEFT_SYMMETRIC_6:
2855 case ALGORITHM_RIGHT_SYMMETRIC_6:
2856 if (i < sh->pd_idx)
2857 i += data_disks + 1;
2858 i -= (sh->pd_idx + 1);
2859 break;
2860 case ALGORITHM_PARITY_0_6:
2861 i -= 1;
2862 break;
2863 default:
2864 BUG();
2865 }
2866 break;
2867 }
2868
2869 chunk_number = stripe * data_disks + i;
2870 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2871
2872 check = raid5_compute_sector(conf, r_sector,
2873 previous, &dummy1, &sh2);
2874 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2875 || sh2.qd_idx != sh->qd_idx) {
2876 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
2877 mdname(conf->mddev));
2878 return 0;
2879 }
2880 return r_sector;
2881 }
2882
2883 static void
2884 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2885 int rcw, int expand)
2886 {
2887 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2888 struct r5conf *conf = sh->raid_conf;
2889 int level = conf->level;
2890
2891 if (rcw) {
2892 /*
2893 * In some cases, handle_stripe_dirtying initially decided to
2894 * run rmw and allocates extra page for prexor. However, rcw is
2895 * cheaper later on. We need to free the extra page now,
2896 * because we won't be able to do that in ops_complete_prexor().
2897 */
2898 r5c_release_extra_page(sh);
2899
2900 for (i = disks; i--; ) {
2901 struct r5dev *dev = &sh->dev[i];
2902
2903 if (dev->towrite) {
2904 set_bit(R5_LOCKED, &dev->flags);
2905 set_bit(R5_Wantdrain, &dev->flags);
2906 if (!expand)
2907 clear_bit(R5_UPTODATE, &dev->flags);
2908 s->locked++;
2909 } else if (test_bit(R5_InJournal, &dev->flags)) {
2910 set_bit(R5_LOCKED, &dev->flags);
2911 s->locked++;
2912 }
2913 }
2914 /* if we are not expanding this is a proper write request, and
2915 * there will be bios with new data to be drained into the
2916 * stripe cache
2917 */
2918 if (!expand) {
2919 if (!s->locked)
2920 /* False alarm, nothing to do */
2921 return;
2922 sh->reconstruct_state = reconstruct_state_drain_run;
2923 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2924 } else
2925 sh->reconstruct_state = reconstruct_state_run;
2926
2927 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2928
2929 if (s->locked + conf->max_degraded == disks)
2930 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2931 atomic_inc(&conf->pending_full_writes);
2932 } else {
2933 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2934 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2935 BUG_ON(level == 6 &&
2936 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2937 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2938
2939 for (i = disks; i--; ) {
2940 struct r5dev *dev = &sh->dev[i];
2941 if (i == pd_idx || i == qd_idx)
2942 continue;
2943
2944 if (dev->towrite &&
2945 (test_bit(R5_UPTODATE, &dev->flags) ||
2946 test_bit(R5_Wantcompute, &dev->flags))) {
2947 set_bit(R5_Wantdrain, &dev->flags);
2948 set_bit(R5_LOCKED, &dev->flags);
2949 clear_bit(R5_UPTODATE, &dev->flags);
2950 s->locked++;
2951 } else if (test_bit(R5_InJournal, &dev->flags)) {
2952 set_bit(R5_LOCKED, &dev->flags);
2953 s->locked++;
2954 }
2955 }
2956 if (!s->locked)
2957 /* False alarm - nothing to do */
2958 return;
2959 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2960 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2961 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2962 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2963 }
2964
2965 /* keep the parity disk(s) locked while asynchronous operations
2966 * are in flight
2967 */
2968 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2969 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2970 s->locked++;
2971
2972 if (level == 6) {
2973 int qd_idx = sh->qd_idx;
2974 struct r5dev *dev = &sh->dev[qd_idx];
2975
2976 set_bit(R5_LOCKED, &dev->flags);
2977 clear_bit(R5_UPTODATE, &dev->flags);
2978 s->locked++;
2979 }
2980
2981 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2982 __func__, (unsigned long long)sh->sector,
2983 s->locked, s->ops_request);
2984 }
2985
2986 /*
2987 * Each stripe/dev can have one or more bion attached.
2988 * toread/towrite point to the first in a chain.
2989 * The bi_next chain must be in order.
2990 */
2991 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2992 int forwrite, int previous)
2993 {
2994 struct bio **bip;
2995 struct r5conf *conf = sh->raid_conf;
2996 int firstwrite=0;
2997
2998 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2999 (unsigned long long)bi->bi_iter.bi_sector,
3000 (unsigned long long)sh->sector);
3001
3002 /*
3003 * If several bio share a stripe. The bio bi_phys_segments acts as a
3004 * reference count to avoid race. The reference count should already be
3005 * increased before this function is called (for example, in
3006 * raid5_make_request()), so other bio sharing this stripe will not free the
3007 * stripe. If a stripe is owned by one stripe, the stripe lock will
3008 * protect it.
3009 */
3010 spin_lock_irq(&sh->stripe_lock);
3011 /* Don't allow new IO added to stripes in batch list */
3012 if (sh->batch_head)
3013 goto overlap;
3014 if (forwrite) {
3015 bip = &sh->dev[dd_idx].towrite;
3016 if (*bip == NULL)
3017 firstwrite = 1;
3018 } else
3019 bip = &sh->dev[dd_idx].toread;
3020 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3021 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3022 goto overlap;
3023 bip = & (*bip)->bi_next;
3024 }
3025 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3026 goto overlap;
3027
3028 if (!forwrite || previous)
3029 clear_bit(STRIPE_BATCH_READY, &sh->state);
3030
3031 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3032 if (*bip)
3033 bi->bi_next = *bip;
3034 *bip = bi;
3035 raid5_inc_bi_active_stripes(bi);
3036
3037 if (forwrite) {
3038 /* check if page is covered */
3039 sector_t sector = sh->dev[dd_idx].sector;
3040 for (bi=sh->dev[dd_idx].towrite;
3041 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3042 bi && bi->bi_iter.bi_sector <= sector;
3043 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3044 if (bio_end_sector(bi) >= sector)
3045 sector = bio_end_sector(bi);
3046 }
3047 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3048 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3049 sh->overwrite_disks++;
3050 }
3051
3052 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3053 (unsigned long long)(*bip)->bi_iter.bi_sector,
3054 (unsigned long long)sh->sector, dd_idx);
3055
3056 if (conf->mddev->bitmap && firstwrite) {
3057 /* Cannot hold spinlock over bitmap_startwrite,
3058 * but must ensure this isn't added to a batch until
3059 * we have added to the bitmap and set bm_seq.
3060 * So set STRIPE_BITMAP_PENDING to prevent
3061 * batching.
3062 * If multiple add_stripe_bio() calls race here they
3063 * much all set STRIPE_BITMAP_PENDING. So only the first one
3064 * to complete "bitmap_startwrite" gets to set
3065 * STRIPE_BIT_DELAY. This is important as once a stripe
3066 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3067 * any more.
3068 */
3069 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3070 spin_unlock_irq(&sh->stripe_lock);
3071 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3072 STRIPE_SECTORS, 0);
3073 spin_lock_irq(&sh->stripe_lock);
3074 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3075 if (!sh->batch_head) {
3076 sh->bm_seq = conf->seq_flush+1;
3077 set_bit(STRIPE_BIT_DELAY, &sh->state);
3078 }
3079 }
3080 spin_unlock_irq(&sh->stripe_lock);
3081
3082 if (stripe_can_batch(sh))
3083 stripe_add_to_batch_list(conf, sh);
3084 return 1;
3085
3086 overlap:
3087 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3088 spin_unlock_irq(&sh->stripe_lock);
3089 return 0;
3090 }
3091
3092 static void end_reshape(struct r5conf *conf);
3093
3094 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3095 struct stripe_head *sh)
3096 {
3097 int sectors_per_chunk =
3098 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3099 int dd_idx;
3100 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3101 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3102
3103 raid5_compute_sector(conf,
3104 stripe * (disks - conf->max_degraded)
3105 *sectors_per_chunk + chunk_offset,
3106 previous,
3107 &dd_idx, sh);
3108 }
3109
3110 static void
3111 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3112 struct stripe_head_state *s, int disks,
3113 struct bio_list *return_bi)
3114 {
3115 int i;
3116 BUG_ON(sh->batch_head);
3117 for (i = disks; i--; ) {
3118 struct bio *bi;
3119 int bitmap_end = 0;
3120
3121 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3122 struct md_rdev *rdev;
3123 rcu_read_lock();
3124 rdev = rcu_dereference(conf->disks[i].rdev);
3125 if (rdev && test_bit(In_sync, &rdev->flags) &&
3126 !test_bit(Faulty, &rdev->flags))
3127 atomic_inc(&rdev->nr_pending);
3128 else
3129 rdev = NULL;
3130 rcu_read_unlock();
3131 if (rdev) {
3132 if (!rdev_set_badblocks(
3133 rdev,
3134 sh->sector,
3135 STRIPE_SECTORS, 0))
3136 md_error(conf->mddev, rdev);
3137 rdev_dec_pending(rdev, conf->mddev);
3138 }
3139 }
3140 spin_lock_irq(&sh->stripe_lock);
3141 /* fail all writes first */
3142 bi = sh->dev[i].towrite;
3143 sh->dev[i].towrite = NULL;
3144 sh->overwrite_disks = 0;
3145 spin_unlock_irq(&sh->stripe_lock);
3146 if (bi)
3147 bitmap_end = 1;
3148
3149 r5l_stripe_write_finished(sh);
3150
3151 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3152 wake_up(&conf->wait_for_overlap);
3153
3154 while (bi && bi->bi_iter.bi_sector <
3155 sh->dev[i].sector + STRIPE_SECTORS) {
3156 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3157
3158 bi->bi_error = -EIO;
3159 if (!raid5_dec_bi_active_stripes(bi)) {
3160 md_write_end(conf->mddev);
3161 bio_list_add(return_bi, bi);
3162 }
3163 bi = nextbi;
3164 }
3165 if (bitmap_end)
3166 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3167 STRIPE_SECTORS, 0, 0);
3168 bitmap_end = 0;
3169 /* and fail all 'written' */
3170 bi = sh->dev[i].written;
3171 sh->dev[i].written = NULL;
3172 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3173 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3174 sh->dev[i].page = sh->dev[i].orig_page;
3175 }
3176
3177 if (bi) bitmap_end = 1;
3178 while (bi && bi->bi_iter.bi_sector <
3179 sh->dev[i].sector + STRIPE_SECTORS) {
3180 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3181
3182 bi->bi_error = -EIO;
3183 if (!raid5_dec_bi_active_stripes(bi)) {
3184 md_write_end(conf->mddev);
3185 bio_list_add(return_bi, bi);
3186 }
3187 bi = bi2;
3188 }
3189
3190 /* fail any reads if this device is non-operational and
3191 * the data has not reached the cache yet.
3192 */
3193 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3194 s->failed > conf->max_degraded &&
3195 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3196 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3197 spin_lock_irq(&sh->stripe_lock);
3198 bi = sh->dev[i].toread;
3199 sh->dev[i].toread = NULL;
3200 spin_unlock_irq(&sh->stripe_lock);
3201 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3202 wake_up(&conf->wait_for_overlap);
3203 if (bi)
3204 s->to_read--;
3205 while (bi && bi->bi_iter.bi_sector <
3206 sh->dev[i].sector + STRIPE_SECTORS) {
3207 struct bio *nextbi =
3208 r5_next_bio(bi, sh->dev[i].sector);
3209
3210 bi->bi_error = -EIO;
3211 if (!raid5_dec_bi_active_stripes(bi))
3212 bio_list_add(return_bi, bi);
3213 bi = nextbi;
3214 }
3215 }
3216 if (bitmap_end)
3217 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3218 STRIPE_SECTORS, 0, 0);
3219 /* If we were in the middle of a write the parity block might
3220 * still be locked - so just clear all R5_LOCKED flags
3221 */
3222 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3223 }
3224 s->to_write = 0;
3225 s->written = 0;
3226
3227 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3228 if (atomic_dec_and_test(&conf->pending_full_writes))
3229 md_wakeup_thread(conf->mddev->thread);
3230 }
3231
3232 static void
3233 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3234 struct stripe_head_state *s)
3235 {
3236 int abort = 0;
3237 int i;
3238
3239 BUG_ON(sh->batch_head);
3240 clear_bit(STRIPE_SYNCING, &sh->state);
3241 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3242 wake_up(&conf->wait_for_overlap);
3243 s->syncing = 0;
3244 s->replacing = 0;
3245 /* There is nothing more to do for sync/check/repair.
3246 * Don't even need to abort as that is handled elsewhere
3247 * if needed, and not always wanted e.g. if there is a known
3248 * bad block here.
3249 * For recover/replace we need to record a bad block on all
3250 * non-sync devices, or abort the recovery
3251 */
3252 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3253 /* During recovery devices cannot be removed, so
3254 * locking and refcounting of rdevs is not needed
3255 */
3256 rcu_read_lock();
3257 for (i = 0; i < conf->raid_disks; i++) {
3258 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3259 if (rdev
3260 && !test_bit(Faulty, &rdev->flags)
3261 && !test_bit(In_sync, &rdev->flags)
3262 && !rdev_set_badblocks(rdev, sh->sector,
3263 STRIPE_SECTORS, 0))
3264 abort = 1;
3265 rdev = rcu_dereference(conf->disks[i].replacement);
3266 if (rdev
3267 && !test_bit(Faulty, &rdev->flags)
3268 && !test_bit(In_sync, &rdev->flags)
3269 && !rdev_set_badblocks(rdev, sh->sector,
3270 STRIPE_SECTORS, 0))
3271 abort = 1;
3272 }
3273 rcu_read_unlock();
3274 if (abort)
3275 conf->recovery_disabled =
3276 conf->mddev->recovery_disabled;
3277 }
3278 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3279 }
3280
3281 static int want_replace(struct stripe_head *sh, int disk_idx)
3282 {
3283 struct md_rdev *rdev;
3284 int rv = 0;
3285
3286 rcu_read_lock();
3287 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3288 if (rdev
3289 && !test_bit(Faulty, &rdev->flags)
3290 && !test_bit(In_sync, &rdev->flags)
3291 && (rdev->recovery_offset <= sh->sector
3292 || rdev->mddev->recovery_cp <= sh->sector))
3293 rv = 1;
3294 rcu_read_unlock();
3295 return rv;
3296 }
3297
3298 /* fetch_block - checks the given member device to see if its data needs
3299 * to be read or computed to satisfy a request.
3300 *
3301 * Returns 1 when no more member devices need to be checked, otherwise returns
3302 * 0 to tell the loop in handle_stripe_fill to continue
3303 */
3304
3305 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3306 int disk_idx, int disks)
3307 {
3308 struct r5dev *dev = &sh->dev[disk_idx];
3309 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3310 &sh->dev[s->failed_num[1]] };
3311 int i;
3312
3313
3314 if (test_bit(R5_LOCKED, &dev->flags) ||
3315 test_bit(R5_UPTODATE, &dev->flags))
3316 /* No point reading this as we already have it or have
3317 * decided to get it.
3318 */
3319 return 0;
3320
3321 if (dev->toread ||
3322 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3323 /* We need this block to directly satisfy a request */
3324 return 1;
3325
3326 if (s->syncing || s->expanding ||
3327 (s->replacing && want_replace(sh, disk_idx)))
3328 /* When syncing, or expanding we read everything.
3329 * When replacing, we need the replaced block.
3330 */
3331 return 1;
3332
3333 if ((s->failed >= 1 && fdev[0]->toread) ||
3334 (s->failed >= 2 && fdev[1]->toread))
3335 /* If we want to read from a failed device, then
3336 * we need to actually read every other device.
3337 */
3338 return 1;
3339
3340 /* Sometimes neither read-modify-write nor reconstruct-write
3341 * cycles can work. In those cases we read every block we
3342 * can. Then the parity-update is certain to have enough to
3343 * work with.
3344 * This can only be a problem when we need to write something,
3345 * and some device has failed. If either of those tests
3346 * fail we need look no further.
3347 */
3348 if (!s->failed || !s->to_write)
3349 return 0;
3350
3351 if (test_bit(R5_Insync, &dev->flags) &&
3352 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3353 /* Pre-reads at not permitted until after short delay
3354 * to gather multiple requests. However if this
3355 * device is no Insync, the block could only be be computed
3356 * and there is no need to delay that.
3357 */
3358 return 0;
3359
3360 for (i = 0; i < s->failed && i < 2; i++) {
3361 if (fdev[i]->towrite &&
3362 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3363 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3364 /* If we have a partial write to a failed
3365 * device, then we will need to reconstruct
3366 * the content of that device, so all other
3367 * devices must be read.
3368 */
3369 return 1;
3370 }
3371
3372 /* If we are forced to do a reconstruct-write, either because
3373 * the current RAID6 implementation only supports that, or
3374 * or because parity cannot be trusted and we are currently
3375 * recovering it, there is extra need to be careful.
3376 * If one of the devices that we would need to read, because
3377 * it is not being overwritten (and maybe not written at all)
3378 * is missing/faulty, then we need to read everything we can.
3379 */
3380 if (sh->raid_conf->level != 6 &&
3381 sh->sector < sh->raid_conf->mddev->recovery_cp)
3382 /* reconstruct-write isn't being forced */
3383 return 0;
3384 for (i = 0; i < s->failed && i < 2; i++) {
3385 if (s->failed_num[i] != sh->pd_idx &&
3386 s->failed_num[i] != sh->qd_idx &&
3387 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3388 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3389 return 1;
3390 }
3391
3392 return 0;
3393 }
3394
3395 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3396 int disk_idx, int disks)
3397 {
3398 struct r5dev *dev = &sh->dev[disk_idx];
3399
3400 /* is the data in this block needed, and can we get it? */
3401 if (need_this_block(sh, s, disk_idx, disks)) {
3402 /* we would like to get this block, possibly by computing it,
3403 * otherwise read it if the backing disk is insync
3404 */
3405 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3406 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3407 BUG_ON(sh->batch_head);
3408 if ((s->uptodate == disks - 1) &&
3409 (s->failed && (disk_idx == s->failed_num[0] ||
3410 disk_idx == s->failed_num[1]))) {
3411 /* have disk failed, and we're requested to fetch it;
3412 * do compute it
3413 */
3414 pr_debug("Computing stripe %llu block %d\n",
3415 (unsigned long long)sh->sector, disk_idx);
3416 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3417 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3418 set_bit(R5_Wantcompute, &dev->flags);
3419 sh->ops.target = disk_idx;
3420 sh->ops.target2 = -1; /* no 2nd target */
3421 s->req_compute = 1;
3422 /* Careful: from this point on 'uptodate' is in the eye
3423 * of raid_run_ops which services 'compute' operations
3424 * before writes. R5_Wantcompute flags a block that will
3425 * be R5_UPTODATE by the time it is needed for a
3426 * subsequent operation.
3427 */
3428 s->uptodate++;
3429 return 1;
3430 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3431 /* Computing 2-failure is *very* expensive; only
3432 * do it if failed >= 2
3433 */
3434 int other;
3435 for (other = disks; other--; ) {
3436 if (other == disk_idx)
3437 continue;
3438 if (!test_bit(R5_UPTODATE,
3439 &sh->dev[other].flags))
3440 break;
3441 }
3442 BUG_ON(other < 0);
3443 pr_debug("Computing stripe %llu blocks %d,%d\n",
3444 (unsigned long long)sh->sector,
3445 disk_idx, other);
3446 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3447 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3448 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3449 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3450 sh->ops.target = disk_idx;
3451 sh->ops.target2 = other;
3452 s->uptodate += 2;
3453 s->req_compute = 1;
3454 return 1;
3455 } else if (test_bit(R5_Insync, &dev->flags)) {
3456 set_bit(R5_LOCKED, &dev->flags);
3457 set_bit(R5_Wantread, &dev->flags);
3458 s->locked++;
3459 pr_debug("Reading block %d (sync=%d)\n",
3460 disk_idx, s->syncing);
3461 }
3462 }
3463
3464 return 0;
3465 }
3466
3467 /**
3468 * handle_stripe_fill - read or compute data to satisfy pending requests.
3469 */
3470 static void handle_stripe_fill(struct stripe_head *sh,
3471 struct stripe_head_state *s,
3472 int disks)
3473 {
3474 int i;
3475
3476 /* look for blocks to read/compute, skip this if a compute
3477 * is already in flight, or if the stripe contents are in the
3478 * midst of changing due to a write
3479 */
3480 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3481 !sh->reconstruct_state)
3482 for (i = disks; i--; )
3483 if (fetch_block(sh, s, i, disks))
3484 break;
3485 set_bit(STRIPE_HANDLE, &sh->state);
3486 }
3487
3488 static void break_stripe_batch_list(struct stripe_head *head_sh,
3489 unsigned long handle_flags);
3490 /* handle_stripe_clean_event
3491 * any written block on an uptodate or failed drive can be returned.
3492 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3493 * never LOCKED, so we don't need to test 'failed' directly.
3494 */
3495 static void handle_stripe_clean_event(struct r5conf *conf,
3496 struct stripe_head *sh, int disks, struct bio_list *return_bi)
3497 {
3498 int i;
3499 struct r5dev *dev;
3500 int discard_pending = 0;
3501 struct stripe_head *head_sh = sh;
3502 bool do_endio = false;
3503
3504 for (i = disks; i--; )
3505 if (sh->dev[i].written) {
3506 dev = &sh->dev[i];
3507 if (!test_bit(R5_LOCKED, &dev->flags) &&
3508 (test_bit(R5_UPTODATE, &dev->flags) ||
3509 test_bit(R5_Discard, &dev->flags) ||
3510 test_bit(R5_SkipCopy, &dev->flags))) {
3511 /* We can return any write requests */
3512 struct bio *wbi, *wbi2;
3513 pr_debug("Return write for disc %d\n", i);
3514 if (test_and_clear_bit(R5_Discard, &dev->flags))
3515 clear_bit(R5_UPTODATE, &dev->flags);
3516 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3517 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3518 }
3519 do_endio = true;
3520
3521 returnbi:
3522 dev->page = dev->orig_page;
3523 wbi = dev->written;
3524 dev->written = NULL;
3525 while (wbi && wbi->bi_iter.bi_sector <
3526 dev->sector + STRIPE_SECTORS) {
3527 wbi2 = r5_next_bio(wbi, dev->sector);
3528 if (!raid5_dec_bi_active_stripes(wbi)) {
3529 md_write_end(conf->mddev);
3530 bio_list_add(return_bi, wbi);
3531 }
3532 wbi = wbi2;
3533 }
3534 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3535 STRIPE_SECTORS,
3536 !test_bit(STRIPE_DEGRADED, &sh->state),
3537 0);
3538 if (head_sh->batch_head) {
3539 sh = list_first_entry(&sh->batch_list,
3540 struct stripe_head,
3541 batch_list);
3542 if (sh != head_sh) {
3543 dev = &sh->dev[i];
3544 goto returnbi;
3545 }
3546 }
3547 sh = head_sh;
3548 dev = &sh->dev[i];
3549 } else if (test_bit(R5_Discard, &dev->flags))
3550 discard_pending = 1;
3551 }
3552
3553 r5l_stripe_write_finished(sh);
3554
3555 if (!discard_pending &&
3556 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3557 int hash;
3558 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3559 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3560 if (sh->qd_idx >= 0) {
3561 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3562 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3563 }
3564 /* now that discard is done we can proceed with any sync */
3565 clear_bit(STRIPE_DISCARD, &sh->state);
3566 /*
3567 * SCSI discard will change some bio fields and the stripe has
3568 * no updated data, so remove it from hash list and the stripe
3569 * will be reinitialized
3570 */
3571 unhash:
3572 hash = sh->hash_lock_index;
3573 spin_lock_irq(conf->hash_locks + hash);
3574 remove_hash(sh);
3575 spin_unlock_irq(conf->hash_locks + hash);
3576 if (head_sh->batch_head) {
3577 sh = list_first_entry(&sh->batch_list,
3578 struct stripe_head, batch_list);
3579 if (sh != head_sh)
3580 goto unhash;
3581 }
3582 sh = head_sh;
3583
3584 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3585 set_bit(STRIPE_HANDLE, &sh->state);
3586
3587 }
3588
3589 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3590 if (atomic_dec_and_test(&conf->pending_full_writes))
3591 md_wakeup_thread(conf->mddev->thread);
3592
3593 if (head_sh->batch_head && do_endio)
3594 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3595 }
3596
3597 static int handle_stripe_dirtying(struct r5conf *conf,
3598 struct stripe_head *sh,
3599 struct stripe_head_state *s,
3600 int disks)
3601 {
3602 int rmw = 0, rcw = 0, i;
3603 sector_t recovery_cp = conf->mddev->recovery_cp;
3604
3605 /* Check whether resync is now happening or should start.
3606 * If yes, then the array is dirty (after unclean shutdown or
3607 * initial creation), so parity in some stripes might be inconsistent.
3608 * In this case, we need to always do reconstruct-write, to ensure
3609 * that in case of drive failure or read-error correction, we
3610 * generate correct data from the parity.
3611 */
3612 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3613 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3614 s->failed == 0)) {
3615 /* Calculate the real rcw later - for now make it
3616 * look like rcw is cheaper
3617 */
3618 rcw = 1; rmw = 2;
3619 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3620 conf->rmw_level, (unsigned long long)recovery_cp,
3621 (unsigned long long)sh->sector);
3622 } else for (i = disks; i--; ) {
3623 /* would I have to read this buffer for read_modify_write */
3624 struct r5dev *dev = &sh->dev[i];
3625 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx ||
3626 test_bit(R5_InJournal, &dev->flags)) &&
3627 !test_bit(R5_LOCKED, &dev->flags) &&
3628 !((test_bit(R5_UPTODATE, &dev->flags) &&
3629 (!test_bit(R5_InJournal, &dev->flags) ||
3630 dev->page != dev->orig_page)) ||
3631 test_bit(R5_Wantcompute, &dev->flags))) {
3632 if (test_bit(R5_Insync, &dev->flags))
3633 rmw++;
3634 else
3635 rmw += 2*disks; /* cannot read it */
3636 }
3637 /* Would I have to read this buffer for reconstruct_write */
3638 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3639 i != sh->pd_idx && i != sh->qd_idx &&
3640 !test_bit(R5_LOCKED, &dev->flags) &&
3641 !(test_bit(R5_UPTODATE, &dev->flags) ||
3642 test_bit(R5_InJournal, &dev->flags) ||
3643 test_bit(R5_Wantcompute, &dev->flags))) {
3644 if (test_bit(R5_Insync, &dev->flags))
3645 rcw++;
3646 else
3647 rcw += 2*disks;
3648 }
3649 }
3650
3651 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3652 (unsigned long long)sh->sector, rmw, rcw);
3653 set_bit(STRIPE_HANDLE, &sh->state);
3654 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3655 /* prefer read-modify-write, but need to get some data */
3656 if (conf->mddev->queue)
3657 blk_add_trace_msg(conf->mddev->queue,
3658 "raid5 rmw %llu %d",
3659 (unsigned long long)sh->sector, rmw);
3660 for (i = disks; i--; ) {
3661 struct r5dev *dev = &sh->dev[i];
3662 if (test_bit(R5_InJournal, &dev->flags) &&
3663 dev->page == dev->orig_page &&
3664 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3665 /* alloc page for prexor */
3666 struct page *p = alloc_page(GFP_NOIO);
3667
3668 if (p) {
3669 dev->orig_page = p;
3670 continue;
3671 }
3672
3673 /*
3674 * alloc_page() failed, try use
3675 * disk_info->extra_page
3676 */
3677 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3678 &conf->cache_state)) {
3679 r5c_use_extra_page(sh);
3680 break;
3681 }
3682
3683 /* extra_page in use, add to delayed_list */
3684 set_bit(STRIPE_DELAYED, &sh->state);
3685 s->waiting_extra_page = 1;
3686 return -EAGAIN;
3687 }
3688 }
3689
3690 for (i = disks; i--; ) {
3691 struct r5dev *dev = &sh->dev[i];
3692 if ((dev->towrite ||
3693 i == sh->pd_idx || i == sh->qd_idx ||
3694 test_bit(R5_InJournal, &dev->flags)) &&
3695 !test_bit(R5_LOCKED, &dev->flags) &&
3696 !((test_bit(R5_UPTODATE, &dev->flags) &&
3697 (!test_bit(R5_InJournal, &dev->flags) ||
3698 dev->page != dev->orig_page)) ||
3699 test_bit(R5_Wantcompute, &dev->flags)) &&
3700 test_bit(R5_Insync, &dev->flags)) {
3701 if (test_bit(STRIPE_PREREAD_ACTIVE,
3702 &sh->state)) {
3703 pr_debug("Read_old block %d for r-m-w\n",
3704 i);
3705 set_bit(R5_LOCKED, &dev->flags);
3706 set_bit(R5_Wantread, &dev->flags);
3707 s->locked++;
3708 } else {
3709 set_bit(STRIPE_DELAYED, &sh->state);
3710 set_bit(STRIPE_HANDLE, &sh->state);
3711 }
3712 }
3713 }
3714 }
3715 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3716 /* want reconstruct write, but need to get some data */
3717 int qread =0;
3718 rcw = 0;
3719 for (i = disks; i--; ) {
3720 struct r5dev *dev = &sh->dev[i];
3721 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3722 i != sh->pd_idx && i != sh->qd_idx &&
3723 !test_bit(R5_LOCKED, &dev->flags) &&
3724 !(test_bit(R5_UPTODATE, &dev->flags) ||
3725 test_bit(R5_InJournal, &dev->flags) ||
3726 test_bit(R5_Wantcompute, &dev->flags))) {
3727 rcw++;
3728 if (test_bit(R5_Insync, &dev->flags) &&
3729 test_bit(STRIPE_PREREAD_ACTIVE,
3730 &sh->state)) {
3731 pr_debug("Read_old block "
3732 "%d for Reconstruct\n", i);
3733 set_bit(R5_LOCKED, &dev->flags);
3734 set_bit(R5_Wantread, &dev->flags);
3735 s->locked++;
3736 qread++;
3737 } else {
3738 set_bit(STRIPE_DELAYED, &sh->state);
3739 set_bit(STRIPE_HANDLE, &sh->state);
3740 }
3741 }
3742 }
3743 if (rcw && conf->mddev->queue)
3744 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3745 (unsigned long long)sh->sector,
3746 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3747 }
3748
3749 if (rcw > disks && rmw > disks &&
3750 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3751 set_bit(STRIPE_DELAYED, &sh->state);
3752
3753 /* now if nothing is locked, and if we have enough data,
3754 * we can start a write request
3755 */
3756 /* since handle_stripe can be called at any time we need to handle the
3757 * case where a compute block operation has been submitted and then a
3758 * subsequent call wants to start a write request. raid_run_ops only
3759 * handles the case where compute block and reconstruct are requested
3760 * simultaneously. If this is not the case then new writes need to be
3761 * held off until the compute completes.
3762 */
3763 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3764 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3765 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3766 schedule_reconstruction(sh, s, rcw == 0, 0);
3767 return 0;
3768 }
3769
3770 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3771 struct stripe_head_state *s, int disks)
3772 {
3773 struct r5dev *dev = NULL;
3774
3775 BUG_ON(sh->batch_head);
3776 set_bit(STRIPE_HANDLE, &sh->state);
3777
3778 switch (sh->check_state) {
3779 case check_state_idle:
3780 /* start a new check operation if there are no failures */
3781 if (s->failed == 0) {
3782 BUG_ON(s->uptodate != disks);
3783 sh->check_state = check_state_run;
3784 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3785 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3786 s->uptodate--;
3787 break;
3788 }
3789 dev = &sh->dev[s->failed_num[0]];
3790 /* fall through */
3791 case check_state_compute_result:
3792 sh->check_state = check_state_idle;
3793 if (!dev)
3794 dev = &sh->dev[sh->pd_idx];
3795
3796 /* check that a write has not made the stripe insync */
3797 if (test_bit(STRIPE_INSYNC, &sh->state))
3798 break;
3799
3800 /* either failed parity check, or recovery is happening */
3801 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3802 BUG_ON(s->uptodate != disks);
3803
3804 set_bit(R5_LOCKED, &dev->flags);
3805 s->locked++;
3806 set_bit(R5_Wantwrite, &dev->flags);
3807
3808 clear_bit(STRIPE_DEGRADED, &sh->state);
3809 set_bit(STRIPE_INSYNC, &sh->state);
3810 break;
3811 case check_state_run:
3812 break; /* we will be called again upon completion */
3813 case check_state_check_result:
3814 sh->check_state = check_state_idle;
3815
3816 /* if a failure occurred during the check operation, leave
3817 * STRIPE_INSYNC not set and let the stripe be handled again
3818 */
3819 if (s->failed)
3820 break;
3821
3822 /* handle a successful check operation, if parity is correct
3823 * we are done. Otherwise update the mismatch count and repair
3824 * parity if !MD_RECOVERY_CHECK
3825 */
3826 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3827 /* parity is correct (on disc,
3828 * not in buffer any more)
3829 */
3830 set_bit(STRIPE_INSYNC, &sh->state);
3831 else {
3832 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3833 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3834 /* don't try to repair!! */
3835 set_bit(STRIPE_INSYNC, &sh->state);
3836 else {
3837 sh->check_state = check_state_compute_run;
3838 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3839 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3840 set_bit(R5_Wantcompute,
3841 &sh->dev[sh->pd_idx].flags);
3842 sh->ops.target = sh->pd_idx;
3843 sh->ops.target2 = -1;
3844 s->uptodate++;
3845 }
3846 }
3847 break;
3848 case check_state_compute_run:
3849 break;
3850 default:
3851 pr_err("%s: unknown check_state: %d sector: %llu\n",
3852 __func__, sh->check_state,
3853 (unsigned long long) sh->sector);
3854 BUG();
3855 }
3856 }
3857
3858 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3859 struct stripe_head_state *s,
3860 int disks)
3861 {
3862 int pd_idx = sh->pd_idx;
3863 int qd_idx = sh->qd_idx;
3864 struct r5dev *dev;
3865
3866 BUG_ON(sh->batch_head);
3867 set_bit(STRIPE_HANDLE, &sh->state);
3868
3869 BUG_ON(s->failed > 2);
3870
3871 /* Want to check and possibly repair P and Q.
3872 * However there could be one 'failed' device, in which
3873 * case we can only check one of them, possibly using the
3874 * other to generate missing data
3875 */
3876
3877 switch (sh->check_state) {
3878 case check_state_idle:
3879 /* start a new check operation if there are < 2 failures */
3880 if (s->failed == s->q_failed) {
3881 /* The only possible failed device holds Q, so it
3882 * makes sense to check P (If anything else were failed,
3883 * we would have used P to recreate it).
3884 */
3885 sh->check_state = check_state_run;
3886 }
3887 if (!s->q_failed && s->failed < 2) {
3888 /* Q is not failed, and we didn't use it to generate
3889 * anything, so it makes sense to check it
3890 */
3891 if (sh->check_state == check_state_run)
3892 sh->check_state = check_state_run_pq;
3893 else
3894 sh->check_state = check_state_run_q;
3895 }
3896
3897 /* discard potentially stale zero_sum_result */
3898 sh->ops.zero_sum_result = 0;
3899
3900 if (sh->check_state == check_state_run) {
3901 /* async_xor_zero_sum destroys the contents of P */
3902 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3903 s->uptodate--;
3904 }
3905 if (sh->check_state >= check_state_run &&
3906 sh->check_state <= check_state_run_pq) {
3907 /* async_syndrome_zero_sum preserves P and Q, so
3908 * no need to mark them !uptodate here
3909 */
3910 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3911 break;
3912 }
3913
3914 /* we have 2-disk failure */
3915 BUG_ON(s->failed != 2);
3916 /* fall through */
3917 case check_state_compute_result:
3918 sh->check_state = check_state_idle;
3919
3920 /* check that a write has not made the stripe insync */
3921 if (test_bit(STRIPE_INSYNC, &sh->state))
3922 break;
3923
3924 /* now write out any block on a failed drive,
3925 * or P or Q if they were recomputed
3926 */
3927 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3928 if (s->failed == 2) {
3929 dev = &sh->dev[s->failed_num[1]];
3930 s->locked++;
3931 set_bit(R5_LOCKED, &dev->flags);
3932 set_bit(R5_Wantwrite, &dev->flags);
3933 }
3934 if (s->failed >= 1) {
3935 dev = &sh->dev[s->failed_num[0]];
3936 s->locked++;
3937 set_bit(R5_LOCKED, &dev->flags);
3938 set_bit(R5_Wantwrite, &dev->flags);
3939 }
3940 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3941 dev = &sh->dev[pd_idx];
3942 s->locked++;
3943 set_bit(R5_LOCKED, &dev->flags);
3944 set_bit(R5_Wantwrite, &dev->flags);
3945 }
3946 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3947 dev = &sh->dev[qd_idx];
3948 s->locked++;
3949 set_bit(R5_LOCKED, &dev->flags);
3950 set_bit(R5_Wantwrite, &dev->flags);
3951 }
3952 clear_bit(STRIPE_DEGRADED, &sh->state);
3953
3954 set_bit(STRIPE_INSYNC, &sh->state);
3955 break;
3956 case check_state_run:
3957 case check_state_run_q:
3958 case check_state_run_pq:
3959 break; /* we will be called again upon completion */
3960 case check_state_check_result:
3961 sh->check_state = check_state_idle;
3962
3963 /* handle a successful check operation, if parity is correct
3964 * we are done. Otherwise update the mismatch count and repair
3965 * parity if !MD_RECOVERY_CHECK
3966 */
3967 if (sh->ops.zero_sum_result == 0) {
3968 /* both parities are correct */
3969 if (!s->failed)
3970 set_bit(STRIPE_INSYNC, &sh->state);
3971 else {
3972 /* in contrast to the raid5 case we can validate
3973 * parity, but still have a failure to write
3974 * back
3975 */
3976 sh->check_state = check_state_compute_result;
3977 /* Returning at this point means that we may go
3978 * off and bring p and/or q uptodate again so
3979 * we make sure to check zero_sum_result again
3980 * to verify if p or q need writeback
3981 */
3982 }
3983 } else {
3984 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3985 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3986 /* don't try to repair!! */
3987 set_bit(STRIPE_INSYNC, &sh->state);
3988 else {
3989 int *target = &sh->ops.target;
3990
3991 sh->ops.target = -1;
3992 sh->ops.target2 = -1;
3993 sh->check_state = check_state_compute_run;
3994 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3995 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3996 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3997 set_bit(R5_Wantcompute,
3998 &sh->dev[pd_idx].flags);
3999 *target = pd_idx;
4000 target = &sh->ops.target2;
4001 s->uptodate++;
4002 }
4003 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4004 set_bit(R5_Wantcompute,
4005 &sh->dev[qd_idx].flags);
4006 *target = qd_idx;
4007 s->uptodate++;
4008 }
4009 }
4010 }
4011 break;
4012 case check_state_compute_run:
4013 break;
4014 default:
4015 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4016 __func__, sh->check_state,
4017 (unsigned long long) sh->sector);
4018 BUG();
4019 }
4020 }
4021
4022 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4023 {
4024 int i;
4025
4026 /* We have read all the blocks in this stripe and now we need to
4027 * copy some of them into a target stripe for expand.
4028 */
4029 struct dma_async_tx_descriptor *tx = NULL;
4030 BUG_ON(sh->batch_head);
4031 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4032 for (i = 0; i < sh->disks; i++)
4033 if (i != sh->pd_idx && i != sh->qd_idx) {
4034 int dd_idx, j;
4035 struct stripe_head *sh2;
4036 struct async_submit_ctl submit;
4037
4038 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4039 sector_t s = raid5_compute_sector(conf, bn, 0,
4040 &dd_idx, NULL);
4041 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4042 if (sh2 == NULL)
4043 /* so far only the early blocks of this stripe
4044 * have been requested. When later blocks
4045 * get requested, we will try again
4046 */
4047 continue;
4048 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4049 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4050 /* must have already done this block */
4051 raid5_release_stripe(sh2);
4052 continue;
4053 }
4054
4055 /* place all the copies on one channel */
4056 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4057 tx = async_memcpy(sh2->dev[dd_idx].page,
4058 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4059 &submit);
4060
4061 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4062 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4063 for (j = 0; j < conf->raid_disks; j++)
4064 if (j != sh2->pd_idx &&
4065 j != sh2->qd_idx &&
4066 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4067 break;
4068 if (j == conf->raid_disks) {
4069 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4070 set_bit(STRIPE_HANDLE, &sh2->state);
4071 }
4072 raid5_release_stripe(sh2);
4073
4074 }
4075 /* done submitting copies, wait for them to complete */
4076 async_tx_quiesce(&tx);
4077 }
4078
4079 /*
4080 * handle_stripe - do things to a stripe.
4081 *
4082 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4083 * state of various bits to see what needs to be done.
4084 * Possible results:
4085 * return some read requests which now have data
4086 * return some write requests which are safely on storage
4087 * schedule a read on some buffers
4088 * schedule a write of some buffers
4089 * return confirmation of parity correctness
4090 *
4091 */
4092
4093 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4094 {
4095 struct r5conf *conf = sh->raid_conf;
4096 int disks = sh->disks;
4097 struct r5dev *dev;
4098 int i;
4099 int do_recovery = 0;
4100
4101 memset(s, 0, sizeof(*s));
4102
4103 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4104 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4105 s->failed_num[0] = -1;
4106 s->failed_num[1] = -1;
4107 s->log_failed = r5l_log_disk_error(conf);
4108
4109 /* Now to look around and see what can be done */
4110 rcu_read_lock();
4111 for (i=disks; i--; ) {
4112 struct md_rdev *rdev;
4113 sector_t first_bad;
4114 int bad_sectors;
4115 int is_bad = 0;
4116
4117 dev = &sh->dev[i];
4118
4119 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4120 i, dev->flags,
4121 dev->toread, dev->towrite, dev->written);
4122 /* maybe we can reply to a read
4123 *
4124 * new wantfill requests are only permitted while
4125 * ops_complete_biofill is guaranteed to be inactive
4126 */
4127 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4128 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4129 set_bit(R5_Wantfill, &dev->flags);
4130
4131 /* now count some things */
4132 if (test_bit(R5_LOCKED, &dev->flags))
4133 s->locked++;
4134 if (test_bit(R5_UPTODATE, &dev->flags))
4135 s->uptodate++;
4136 if (test_bit(R5_Wantcompute, &dev->flags)) {
4137 s->compute++;
4138 BUG_ON(s->compute > 2);
4139 }
4140
4141 if (test_bit(R5_Wantfill, &dev->flags))
4142 s->to_fill++;
4143 else if (dev->toread)
4144 s->to_read++;
4145 if (dev->towrite) {
4146 s->to_write++;
4147 if (!test_bit(R5_OVERWRITE, &dev->flags))
4148 s->non_overwrite++;
4149 }
4150 if (dev->written)
4151 s->written++;
4152 /* Prefer to use the replacement for reads, but only
4153 * if it is recovered enough and has no bad blocks.
4154 */
4155 rdev = rcu_dereference(conf->disks[i].replacement);
4156 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4157 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4158 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4159 &first_bad, &bad_sectors))
4160 set_bit(R5_ReadRepl, &dev->flags);
4161 else {
4162 if (rdev && !test_bit(Faulty, &rdev->flags))
4163 set_bit(R5_NeedReplace, &dev->flags);
4164 else
4165 clear_bit(R5_NeedReplace, &dev->flags);
4166 rdev = rcu_dereference(conf->disks[i].rdev);
4167 clear_bit(R5_ReadRepl, &dev->flags);
4168 }
4169 if (rdev && test_bit(Faulty, &rdev->flags))
4170 rdev = NULL;
4171 if (rdev) {
4172 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4173 &first_bad, &bad_sectors);
4174 if (s->blocked_rdev == NULL
4175 && (test_bit(Blocked, &rdev->flags)
4176 || is_bad < 0)) {
4177 if (is_bad < 0)
4178 set_bit(BlockedBadBlocks,
4179 &rdev->flags);
4180 s->blocked_rdev = rdev;
4181 atomic_inc(&rdev->nr_pending);
4182 }
4183 }
4184 clear_bit(R5_Insync, &dev->flags);
4185 if (!rdev)
4186 /* Not in-sync */;
4187 else if (is_bad) {
4188 /* also not in-sync */
4189 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4190 test_bit(R5_UPTODATE, &dev->flags)) {
4191 /* treat as in-sync, but with a read error
4192 * which we can now try to correct
4193 */
4194 set_bit(R5_Insync, &dev->flags);
4195 set_bit(R5_ReadError, &dev->flags);
4196 }
4197 } else if (test_bit(In_sync, &rdev->flags))
4198 set_bit(R5_Insync, &dev->flags);
4199 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4200 /* in sync if before recovery_offset */
4201 set_bit(R5_Insync, &dev->flags);
4202 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4203 test_bit(R5_Expanded, &dev->flags))
4204 /* If we've reshaped into here, we assume it is Insync.
4205 * We will shortly update recovery_offset to make
4206 * it official.
4207 */
4208 set_bit(R5_Insync, &dev->flags);
4209
4210 if (test_bit(R5_WriteError, &dev->flags)) {
4211 /* This flag does not apply to '.replacement'
4212 * only to .rdev, so make sure to check that*/
4213 struct md_rdev *rdev2 = rcu_dereference(
4214 conf->disks[i].rdev);
4215 if (rdev2 == rdev)
4216 clear_bit(R5_Insync, &dev->flags);
4217 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4218 s->handle_bad_blocks = 1;
4219 atomic_inc(&rdev2->nr_pending);
4220 } else
4221 clear_bit(R5_WriteError, &dev->flags);
4222 }
4223 if (test_bit(R5_MadeGood, &dev->flags)) {
4224 /* This flag does not apply to '.replacement'
4225 * only to .rdev, so make sure to check that*/
4226 struct md_rdev *rdev2 = rcu_dereference(
4227 conf->disks[i].rdev);
4228 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4229 s->handle_bad_blocks = 1;
4230 atomic_inc(&rdev2->nr_pending);
4231 } else
4232 clear_bit(R5_MadeGood, &dev->flags);
4233 }
4234 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4235 struct md_rdev *rdev2 = rcu_dereference(
4236 conf->disks[i].replacement);
4237 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4238 s->handle_bad_blocks = 1;
4239 atomic_inc(&rdev2->nr_pending);
4240 } else
4241 clear_bit(R5_MadeGoodRepl, &dev->flags);
4242 }
4243 if (!test_bit(R5_Insync, &dev->flags)) {
4244 /* The ReadError flag will just be confusing now */
4245 clear_bit(R5_ReadError, &dev->flags);
4246 clear_bit(R5_ReWrite, &dev->flags);
4247 }
4248 if (test_bit(R5_ReadError, &dev->flags))
4249 clear_bit(R5_Insync, &dev->flags);
4250 if (!test_bit(R5_Insync, &dev->flags)) {
4251 if (s->failed < 2)
4252 s->failed_num[s->failed] = i;
4253 s->failed++;
4254 if (rdev && !test_bit(Faulty, &rdev->flags))
4255 do_recovery = 1;
4256 }
4257
4258 if (test_bit(R5_InJournal, &dev->flags))
4259 s->injournal++;
4260 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4261 s->just_cached++;
4262 }
4263 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4264 /* If there is a failed device being replaced,
4265 * we must be recovering.
4266 * else if we are after recovery_cp, we must be syncing
4267 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4268 * else we can only be replacing
4269 * sync and recovery both need to read all devices, and so
4270 * use the same flag.
4271 */
4272 if (do_recovery ||
4273 sh->sector >= conf->mddev->recovery_cp ||
4274 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4275 s->syncing = 1;
4276 else
4277 s->replacing = 1;
4278 }
4279 rcu_read_unlock();
4280 }
4281
4282 static int clear_batch_ready(struct stripe_head *sh)
4283 {
4284 /* Return '1' if this is a member of batch, or
4285 * '0' if it is a lone stripe or a head which can now be
4286 * handled.
4287 */
4288 struct stripe_head *tmp;
4289 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4290 return (sh->batch_head && sh->batch_head != sh);
4291 spin_lock(&sh->stripe_lock);
4292 if (!sh->batch_head) {
4293 spin_unlock(&sh->stripe_lock);
4294 return 0;
4295 }
4296
4297 /*
4298 * this stripe could be added to a batch list before we check
4299 * BATCH_READY, skips it
4300 */
4301 if (sh->batch_head != sh) {
4302 spin_unlock(&sh->stripe_lock);
4303 return 1;
4304 }
4305 spin_lock(&sh->batch_lock);
4306 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4307 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4308 spin_unlock(&sh->batch_lock);
4309 spin_unlock(&sh->stripe_lock);
4310
4311 /*
4312 * BATCH_READY is cleared, no new stripes can be added.
4313 * batch_list can be accessed without lock
4314 */
4315 return 0;
4316 }
4317
4318 static void break_stripe_batch_list(struct stripe_head *head_sh,
4319 unsigned long handle_flags)
4320 {
4321 struct stripe_head *sh, *next;
4322 int i;
4323 int do_wakeup = 0;
4324
4325 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4326
4327 list_del_init(&sh->batch_list);
4328
4329 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4330 (1 << STRIPE_SYNCING) |
4331 (1 << STRIPE_REPLACED) |
4332 (1 << STRIPE_DELAYED) |
4333 (1 << STRIPE_BIT_DELAY) |
4334 (1 << STRIPE_FULL_WRITE) |
4335 (1 << STRIPE_BIOFILL_RUN) |
4336 (1 << STRIPE_COMPUTE_RUN) |
4337 (1 << STRIPE_OPS_REQ_PENDING) |
4338 (1 << STRIPE_DISCARD) |
4339 (1 << STRIPE_BATCH_READY) |
4340 (1 << STRIPE_BATCH_ERR) |
4341 (1 << STRIPE_BITMAP_PENDING)),
4342 "stripe state: %lx\n", sh->state);
4343 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4344 (1 << STRIPE_REPLACED)),
4345 "head stripe state: %lx\n", head_sh->state);
4346
4347 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4348 (1 << STRIPE_PREREAD_ACTIVE) |
4349 (1 << STRIPE_DEGRADED)),
4350 head_sh->state & (1 << STRIPE_INSYNC));
4351
4352 sh->check_state = head_sh->check_state;
4353 sh->reconstruct_state = head_sh->reconstruct_state;
4354 for (i = 0; i < sh->disks; i++) {
4355 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4356 do_wakeup = 1;
4357 sh->dev[i].flags = head_sh->dev[i].flags &
4358 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4359 }
4360 spin_lock_irq(&sh->stripe_lock);
4361 sh->batch_head = NULL;
4362 spin_unlock_irq(&sh->stripe_lock);
4363 if (handle_flags == 0 ||
4364 sh->state & handle_flags)
4365 set_bit(STRIPE_HANDLE, &sh->state);
4366 raid5_release_stripe(sh);
4367 }
4368 spin_lock_irq(&head_sh->stripe_lock);
4369 head_sh->batch_head = NULL;
4370 spin_unlock_irq(&head_sh->stripe_lock);
4371 for (i = 0; i < head_sh->disks; i++)
4372 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4373 do_wakeup = 1;
4374 if (head_sh->state & handle_flags)
4375 set_bit(STRIPE_HANDLE, &head_sh->state);
4376
4377 if (do_wakeup)
4378 wake_up(&head_sh->raid_conf->wait_for_overlap);
4379 }
4380
4381 static void handle_stripe(struct stripe_head *sh)
4382 {
4383 struct stripe_head_state s;
4384 struct r5conf *conf = sh->raid_conf;
4385 int i;
4386 int prexor;
4387 int disks = sh->disks;
4388 struct r5dev *pdev, *qdev;
4389
4390 clear_bit(STRIPE_HANDLE, &sh->state);
4391 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4392 /* already being handled, ensure it gets handled
4393 * again when current action finishes */
4394 set_bit(STRIPE_HANDLE, &sh->state);
4395 return;
4396 }
4397
4398 if (clear_batch_ready(sh) ) {
4399 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4400 return;
4401 }
4402
4403 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4404 break_stripe_batch_list(sh, 0);
4405
4406 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4407 spin_lock(&sh->stripe_lock);
4408 /* Cannot process 'sync' concurrently with 'discard' */
4409 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4410 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4411 set_bit(STRIPE_SYNCING, &sh->state);
4412 clear_bit(STRIPE_INSYNC, &sh->state);
4413 clear_bit(STRIPE_REPLACED, &sh->state);
4414 }
4415 spin_unlock(&sh->stripe_lock);
4416 }
4417 clear_bit(STRIPE_DELAYED, &sh->state);
4418
4419 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4420 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4421 (unsigned long long)sh->sector, sh->state,
4422 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4423 sh->check_state, sh->reconstruct_state);
4424
4425 analyse_stripe(sh, &s);
4426
4427 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4428 goto finish;
4429
4430 if (s.handle_bad_blocks) {
4431 set_bit(STRIPE_HANDLE, &sh->state);
4432 goto finish;
4433 }
4434
4435 if (unlikely(s.blocked_rdev)) {
4436 if (s.syncing || s.expanding || s.expanded ||
4437 s.replacing || s.to_write || s.written) {
4438 set_bit(STRIPE_HANDLE, &sh->state);
4439 goto finish;
4440 }
4441 /* There is nothing for the blocked_rdev to block */
4442 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4443 s.blocked_rdev = NULL;
4444 }
4445
4446 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4447 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4448 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4449 }
4450
4451 pr_debug("locked=%d uptodate=%d to_read=%d"
4452 " to_write=%d failed=%d failed_num=%d,%d\n",
4453 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4454 s.failed_num[0], s.failed_num[1]);
4455 /* check if the array has lost more than max_degraded devices and,
4456 * if so, some requests might need to be failed.
4457 */
4458 if (s.failed > conf->max_degraded || s.log_failed) {
4459 sh->check_state = 0;
4460 sh->reconstruct_state = 0;
4461 break_stripe_batch_list(sh, 0);
4462 if (s.to_read+s.to_write+s.written)
4463 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4464 if (s.syncing + s.replacing)
4465 handle_failed_sync(conf, sh, &s);
4466 }
4467
4468 /* Now we check to see if any write operations have recently
4469 * completed
4470 */
4471 prexor = 0;
4472 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4473 prexor = 1;
4474 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4475 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4476 sh->reconstruct_state = reconstruct_state_idle;
4477
4478 /* All the 'written' buffers and the parity block are ready to
4479 * be written back to disk
4480 */
4481 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4482 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4483 BUG_ON(sh->qd_idx >= 0 &&
4484 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4485 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4486 for (i = disks; i--; ) {
4487 struct r5dev *dev = &sh->dev[i];
4488 if (test_bit(R5_LOCKED, &dev->flags) &&
4489 (i == sh->pd_idx || i == sh->qd_idx ||
4490 dev->written || test_bit(R5_InJournal,
4491 &dev->flags))) {
4492 pr_debug("Writing block %d\n", i);
4493 set_bit(R5_Wantwrite, &dev->flags);
4494 if (prexor)
4495 continue;
4496 if (s.failed > 1)
4497 continue;
4498 if (!test_bit(R5_Insync, &dev->flags) ||
4499 ((i == sh->pd_idx || i == sh->qd_idx) &&
4500 s.failed == 0))
4501 set_bit(STRIPE_INSYNC, &sh->state);
4502 }
4503 }
4504 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4505 s.dec_preread_active = 1;
4506 }
4507
4508 /*
4509 * might be able to return some write requests if the parity blocks
4510 * are safe, or on a failed drive
4511 */
4512 pdev = &sh->dev[sh->pd_idx];
4513 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4514 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4515 qdev = &sh->dev[sh->qd_idx];
4516 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4517 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4518 || conf->level < 6;
4519
4520 if (s.written &&
4521 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4522 && !test_bit(R5_LOCKED, &pdev->flags)
4523 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4524 test_bit(R5_Discard, &pdev->flags))))) &&
4525 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4526 && !test_bit(R5_LOCKED, &qdev->flags)
4527 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4528 test_bit(R5_Discard, &qdev->flags))))))
4529 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4530
4531 if (s.just_cached)
4532 r5c_handle_cached_data_endio(conf, sh, disks, &s.return_bi);
4533 r5l_stripe_write_finished(sh);
4534
4535 /* Now we might consider reading some blocks, either to check/generate
4536 * parity, or to satisfy requests
4537 * or to load a block that is being partially written.
4538 */
4539 if (s.to_read || s.non_overwrite
4540 || (conf->level == 6 && s.to_write && s.failed)
4541 || (s.syncing && (s.uptodate + s.compute < disks))
4542 || s.replacing
4543 || s.expanding)
4544 handle_stripe_fill(sh, &s, disks);
4545
4546 /*
4547 * When the stripe finishes full journal write cycle (write to journal
4548 * and raid disk), this is the clean up procedure so it is ready for
4549 * next operation.
4550 */
4551 r5c_finish_stripe_write_out(conf, sh, &s);
4552
4553 /*
4554 * Now to consider new write requests, cache write back and what else,
4555 * if anything should be read. We do not handle new writes when:
4556 * 1/ A 'write' operation (copy+xor) is already in flight.
4557 * 2/ A 'check' operation is in flight, as it may clobber the parity
4558 * block.
4559 * 3/ A r5c cache log write is in flight.
4560 */
4561
4562 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4563 if (!r5c_is_writeback(conf->log)) {
4564 if (s.to_write)
4565 handle_stripe_dirtying(conf, sh, &s, disks);
4566 } else { /* write back cache */
4567 int ret = 0;
4568
4569 /* First, try handle writes in caching phase */
4570 if (s.to_write)
4571 ret = r5c_try_caching_write(conf, sh, &s,
4572 disks);
4573 /*
4574 * If caching phase failed: ret == -EAGAIN
4575 * OR
4576 * stripe under reclaim: !caching && injournal
4577 *
4578 * fall back to handle_stripe_dirtying()
4579 */
4580 if (ret == -EAGAIN ||
4581 /* stripe under reclaim: !caching && injournal */
4582 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4583 s.injournal > 0)) {
4584 ret = handle_stripe_dirtying(conf, sh, &s,
4585 disks);
4586 if (ret == -EAGAIN)
4587 goto finish;
4588 }
4589 }
4590 }
4591
4592 /* maybe we need to check and possibly fix the parity for this stripe
4593 * Any reads will already have been scheduled, so we just see if enough
4594 * data is available. The parity check is held off while parity
4595 * dependent operations are in flight.
4596 */
4597 if (sh->check_state ||
4598 (s.syncing && s.locked == 0 &&
4599 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4600 !test_bit(STRIPE_INSYNC, &sh->state))) {
4601 if (conf->level == 6)
4602 handle_parity_checks6(conf, sh, &s, disks);
4603 else
4604 handle_parity_checks5(conf, sh, &s, disks);
4605 }
4606
4607 if ((s.replacing || s.syncing) && s.locked == 0
4608 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4609 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4610 /* Write out to replacement devices where possible */
4611 for (i = 0; i < conf->raid_disks; i++)
4612 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4613 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4614 set_bit(R5_WantReplace, &sh->dev[i].flags);
4615 set_bit(R5_LOCKED, &sh->dev[i].flags);
4616 s.locked++;
4617 }
4618 if (s.replacing)
4619 set_bit(STRIPE_INSYNC, &sh->state);
4620 set_bit(STRIPE_REPLACED, &sh->state);
4621 }
4622 if ((s.syncing || s.replacing) && s.locked == 0 &&
4623 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4624 test_bit(STRIPE_INSYNC, &sh->state)) {
4625 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4626 clear_bit(STRIPE_SYNCING, &sh->state);
4627 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4628 wake_up(&conf->wait_for_overlap);
4629 }
4630
4631 /* If the failed drives are just a ReadError, then we might need
4632 * to progress the repair/check process
4633 */
4634 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4635 for (i = 0; i < s.failed; i++) {
4636 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4637 if (test_bit(R5_ReadError, &dev->flags)
4638 && !test_bit(R5_LOCKED, &dev->flags)
4639 && test_bit(R5_UPTODATE, &dev->flags)
4640 ) {
4641 if (!test_bit(R5_ReWrite, &dev->flags)) {
4642 set_bit(R5_Wantwrite, &dev->flags);
4643 set_bit(R5_ReWrite, &dev->flags);
4644 set_bit(R5_LOCKED, &dev->flags);
4645 s.locked++;
4646 } else {
4647 /* let's read it back */
4648 set_bit(R5_Wantread, &dev->flags);
4649 set_bit(R5_LOCKED, &dev->flags);
4650 s.locked++;
4651 }
4652 }
4653 }
4654
4655 /* Finish reconstruct operations initiated by the expansion process */
4656 if (sh->reconstruct_state == reconstruct_state_result) {
4657 struct stripe_head *sh_src
4658 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4659 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4660 /* sh cannot be written until sh_src has been read.
4661 * so arrange for sh to be delayed a little
4662 */
4663 set_bit(STRIPE_DELAYED, &sh->state);
4664 set_bit(STRIPE_HANDLE, &sh->state);
4665 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4666 &sh_src->state))
4667 atomic_inc(&conf->preread_active_stripes);
4668 raid5_release_stripe(sh_src);
4669 goto finish;
4670 }
4671 if (sh_src)
4672 raid5_release_stripe(sh_src);
4673
4674 sh->reconstruct_state = reconstruct_state_idle;
4675 clear_bit(STRIPE_EXPANDING, &sh->state);
4676 for (i = conf->raid_disks; i--; ) {
4677 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4678 set_bit(R5_LOCKED, &sh->dev[i].flags);
4679 s.locked++;
4680 }
4681 }
4682
4683 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4684 !sh->reconstruct_state) {
4685 /* Need to write out all blocks after computing parity */
4686 sh->disks = conf->raid_disks;
4687 stripe_set_idx(sh->sector, conf, 0, sh);
4688 schedule_reconstruction(sh, &s, 1, 1);
4689 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4690 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4691 atomic_dec(&conf->reshape_stripes);
4692 wake_up(&conf->wait_for_overlap);
4693 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4694 }
4695
4696 if (s.expanding && s.locked == 0 &&
4697 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4698 handle_stripe_expansion(conf, sh);
4699
4700 finish:
4701 /* wait for this device to become unblocked */
4702 if (unlikely(s.blocked_rdev)) {
4703 if (conf->mddev->external)
4704 md_wait_for_blocked_rdev(s.blocked_rdev,
4705 conf->mddev);
4706 else
4707 /* Internal metadata will immediately
4708 * be written by raid5d, so we don't
4709 * need to wait here.
4710 */
4711 rdev_dec_pending(s.blocked_rdev,
4712 conf->mddev);
4713 }
4714
4715 if (s.handle_bad_blocks)
4716 for (i = disks; i--; ) {
4717 struct md_rdev *rdev;
4718 struct r5dev *dev = &sh->dev[i];
4719 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4720 /* We own a safe reference to the rdev */
4721 rdev = conf->disks[i].rdev;
4722 if (!rdev_set_badblocks(rdev, sh->sector,
4723 STRIPE_SECTORS, 0))
4724 md_error(conf->mddev, rdev);
4725 rdev_dec_pending(rdev, conf->mddev);
4726 }
4727 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4728 rdev = conf->disks[i].rdev;
4729 rdev_clear_badblocks(rdev, sh->sector,
4730 STRIPE_SECTORS, 0);
4731 rdev_dec_pending(rdev, conf->mddev);
4732 }
4733 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4734 rdev = conf->disks[i].replacement;
4735 if (!rdev)
4736 /* rdev have been moved down */
4737 rdev = conf->disks[i].rdev;
4738 rdev_clear_badblocks(rdev, sh->sector,
4739 STRIPE_SECTORS, 0);
4740 rdev_dec_pending(rdev, conf->mddev);
4741 }
4742 }
4743
4744 if (s.ops_request)
4745 raid_run_ops(sh, s.ops_request);
4746
4747 ops_run_io(sh, &s);
4748
4749 if (s.dec_preread_active) {
4750 /* We delay this until after ops_run_io so that if make_request
4751 * is waiting on a flush, it won't continue until the writes
4752 * have actually been submitted.
4753 */
4754 atomic_dec(&conf->preread_active_stripes);
4755 if (atomic_read(&conf->preread_active_stripes) <
4756 IO_THRESHOLD)
4757 md_wakeup_thread(conf->mddev->thread);
4758 }
4759
4760 if (!bio_list_empty(&s.return_bi)) {
4761 if (test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4762 spin_lock_irq(&conf->device_lock);
4763 bio_list_merge(&conf->return_bi, &s.return_bi);
4764 spin_unlock_irq(&conf->device_lock);
4765 md_wakeup_thread(conf->mddev->thread);
4766 } else
4767 return_io(&s.return_bi);
4768 }
4769
4770 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4771 }
4772
4773 static void raid5_activate_delayed(struct r5conf *conf)
4774 {
4775 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4776 while (!list_empty(&conf->delayed_list)) {
4777 struct list_head *l = conf->delayed_list.next;
4778 struct stripe_head *sh;
4779 sh = list_entry(l, struct stripe_head, lru);
4780 list_del_init(l);
4781 clear_bit(STRIPE_DELAYED, &sh->state);
4782 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4783 atomic_inc(&conf->preread_active_stripes);
4784 list_add_tail(&sh->lru, &conf->hold_list);
4785 raid5_wakeup_stripe_thread(sh);
4786 }
4787 }
4788 }
4789
4790 static void activate_bit_delay(struct r5conf *conf,
4791 struct list_head *temp_inactive_list)
4792 {
4793 /* device_lock is held */
4794 struct list_head head;
4795 list_add(&head, &conf->bitmap_list);
4796 list_del_init(&conf->bitmap_list);
4797 while (!list_empty(&head)) {
4798 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4799 int hash;
4800 list_del_init(&sh->lru);
4801 atomic_inc(&sh->count);
4802 hash = sh->hash_lock_index;
4803 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4804 }
4805 }
4806
4807 static int raid5_congested(struct mddev *mddev, int bits)
4808 {
4809 struct r5conf *conf = mddev->private;
4810
4811 /* No difference between reads and writes. Just check
4812 * how busy the stripe_cache is
4813 */
4814
4815 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4816 return 1;
4817
4818 /* Also checks whether there is pressure on r5cache log space */
4819 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
4820 return 1;
4821 if (conf->quiesce)
4822 return 1;
4823 if (atomic_read(&conf->empty_inactive_list_nr))
4824 return 1;
4825
4826 return 0;
4827 }
4828
4829 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4830 {
4831 struct r5conf *conf = mddev->private;
4832 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4833 unsigned int chunk_sectors;
4834 unsigned int bio_sectors = bio_sectors(bio);
4835
4836 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4837 return chunk_sectors >=
4838 ((sector & (chunk_sectors - 1)) + bio_sectors);
4839 }
4840
4841 /*
4842 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4843 * later sampled by raid5d.
4844 */
4845 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4846 {
4847 unsigned long flags;
4848
4849 spin_lock_irqsave(&conf->device_lock, flags);
4850
4851 bi->bi_next = conf->retry_read_aligned_list;
4852 conf->retry_read_aligned_list = bi;
4853
4854 spin_unlock_irqrestore(&conf->device_lock, flags);
4855 md_wakeup_thread(conf->mddev->thread);
4856 }
4857
4858 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4859 {
4860 struct bio *bi;
4861
4862 bi = conf->retry_read_aligned;
4863 if (bi) {
4864 conf->retry_read_aligned = NULL;
4865 return bi;
4866 }
4867 bi = conf->retry_read_aligned_list;
4868 if(bi) {
4869 conf->retry_read_aligned_list = bi->bi_next;
4870 bi->bi_next = NULL;
4871 /*
4872 * this sets the active strip count to 1 and the processed
4873 * strip count to zero (upper 8 bits)
4874 */
4875 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4876 }
4877
4878 return bi;
4879 }
4880
4881 /*
4882 * The "raid5_align_endio" should check if the read succeeded and if it
4883 * did, call bio_endio on the original bio (having bio_put the new bio
4884 * first).
4885 * If the read failed..
4886 */
4887 static void raid5_align_endio(struct bio *bi)
4888 {
4889 struct bio* raid_bi = bi->bi_private;
4890 struct mddev *mddev;
4891 struct r5conf *conf;
4892 struct md_rdev *rdev;
4893 int error = bi->bi_error;
4894
4895 bio_put(bi);
4896
4897 rdev = (void*)raid_bi->bi_next;
4898 raid_bi->bi_next = NULL;
4899 mddev = rdev->mddev;
4900 conf = mddev->private;
4901
4902 rdev_dec_pending(rdev, conf->mddev);
4903
4904 if (!error) {
4905 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4906 raid_bi, 0);
4907 bio_endio(raid_bi);
4908 if (atomic_dec_and_test(&conf->active_aligned_reads))
4909 wake_up(&conf->wait_for_quiescent);
4910 return;
4911 }
4912
4913 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4914
4915 add_bio_to_retry(raid_bi, conf);
4916 }
4917
4918 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4919 {
4920 struct r5conf *conf = mddev->private;
4921 int dd_idx;
4922 struct bio* align_bi;
4923 struct md_rdev *rdev;
4924 sector_t end_sector;
4925
4926 if (!in_chunk_boundary(mddev, raid_bio)) {
4927 pr_debug("%s: non aligned\n", __func__);
4928 return 0;
4929 }
4930 /*
4931 * use bio_clone_mddev to make a copy of the bio
4932 */
4933 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4934 if (!align_bi)
4935 return 0;
4936 /*
4937 * set bi_end_io to a new function, and set bi_private to the
4938 * original bio.
4939 */
4940 align_bi->bi_end_io = raid5_align_endio;
4941 align_bi->bi_private = raid_bio;
4942 /*
4943 * compute position
4944 */
4945 align_bi->bi_iter.bi_sector =
4946 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4947 0, &dd_idx, NULL);
4948
4949 end_sector = bio_end_sector(align_bi);
4950 rcu_read_lock();
4951 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4952 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4953 rdev->recovery_offset < end_sector) {
4954 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4955 if (rdev &&
4956 (test_bit(Faulty, &rdev->flags) ||
4957 !(test_bit(In_sync, &rdev->flags) ||
4958 rdev->recovery_offset >= end_sector)))
4959 rdev = NULL;
4960 }
4961 if (rdev) {
4962 sector_t first_bad;
4963 int bad_sectors;
4964
4965 atomic_inc(&rdev->nr_pending);
4966 rcu_read_unlock();
4967 raid_bio->bi_next = (void*)rdev;
4968 align_bi->bi_bdev = rdev->bdev;
4969 bio_clear_flag(align_bi, BIO_SEG_VALID);
4970
4971 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4972 bio_sectors(align_bi),
4973 &first_bad, &bad_sectors)) {
4974 bio_put(align_bi);
4975 rdev_dec_pending(rdev, mddev);
4976 return 0;
4977 }
4978
4979 /* No reshape active, so we can trust rdev->data_offset */
4980 align_bi->bi_iter.bi_sector += rdev->data_offset;
4981
4982 spin_lock_irq(&conf->device_lock);
4983 wait_event_lock_irq(conf->wait_for_quiescent,
4984 conf->quiesce == 0,
4985 conf->device_lock);
4986 atomic_inc(&conf->active_aligned_reads);
4987 spin_unlock_irq(&conf->device_lock);
4988
4989 if (mddev->gendisk)
4990 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4991 align_bi, disk_devt(mddev->gendisk),
4992 raid_bio->bi_iter.bi_sector);
4993 generic_make_request(align_bi);
4994 return 1;
4995 } else {
4996 rcu_read_unlock();
4997 bio_put(align_bi);
4998 return 0;
4999 }
5000 }
5001
5002 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5003 {
5004 struct bio *split;
5005
5006 do {
5007 sector_t sector = raid_bio->bi_iter.bi_sector;
5008 unsigned chunk_sects = mddev->chunk_sectors;
5009 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5010
5011 if (sectors < bio_sectors(raid_bio)) {
5012 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
5013 bio_chain(split, raid_bio);
5014 } else
5015 split = raid_bio;
5016
5017 if (!raid5_read_one_chunk(mddev, split)) {
5018 if (split != raid_bio)
5019 generic_make_request(raid_bio);
5020 return split;
5021 }
5022 } while (split != raid_bio);
5023
5024 return NULL;
5025 }
5026
5027 /* __get_priority_stripe - get the next stripe to process
5028 *
5029 * Full stripe writes are allowed to pass preread active stripes up until
5030 * the bypass_threshold is exceeded. In general the bypass_count
5031 * increments when the handle_list is handled before the hold_list; however, it
5032 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5033 * stripe with in flight i/o. The bypass_count will be reset when the
5034 * head of the hold_list has changed, i.e. the head was promoted to the
5035 * handle_list.
5036 */
5037 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5038 {
5039 struct stripe_head *sh = NULL, *tmp;
5040 struct list_head *handle_list = NULL;
5041 struct r5worker_group *wg = NULL;
5042
5043 if (conf->worker_cnt_per_group == 0) {
5044 handle_list = &conf->handle_list;
5045 } else if (group != ANY_GROUP) {
5046 handle_list = &conf->worker_groups[group].handle_list;
5047 wg = &conf->worker_groups[group];
5048 } else {
5049 int i;
5050 for (i = 0; i < conf->group_cnt; i++) {
5051 handle_list = &conf->worker_groups[i].handle_list;
5052 wg = &conf->worker_groups[i];
5053 if (!list_empty(handle_list))
5054 break;
5055 }
5056 }
5057
5058 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5059 __func__,
5060 list_empty(handle_list) ? "empty" : "busy",
5061 list_empty(&conf->hold_list) ? "empty" : "busy",
5062 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5063
5064 if (!list_empty(handle_list)) {
5065 sh = list_entry(handle_list->next, typeof(*sh), lru);
5066
5067 if (list_empty(&conf->hold_list))
5068 conf->bypass_count = 0;
5069 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5070 if (conf->hold_list.next == conf->last_hold)
5071 conf->bypass_count++;
5072 else {
5073 conf->last_hold = conf->hold_list.next;
5074 conf->bypass_count -= conf->bypass_threshold;
5075 if (conf->bypass_count < 0)
5076 conf->bypass_count = 0;
5077 }
5078 }
5079 } else if (!list_empty(&conf->hold_list) &&
5080 ((conf->bypass_threshold &&
5081 conf->bypass_count > conf->bypass_threshold) ||
5082 atomic_read(&conf->pending_full_writes) == 0)) {
5083
5084 list_for_each_entry(tmp, &conf->hold_list, lru) {
5085 if (conf->worker_cnt_per_group == 0 ||
5086 group == ANY_GROUP ||
5087 !cpu_online(tmp->cpu) ||
5088 cpu_to_group(tmp->cpu) == group) {
5089 sh = tmp;
5090 break;
5091 }
5092 }
5093
5094 if (sh) {
5095 conf->bypass_count -= conf->bypass_threshold;
5096 if (conf->bypass_count < 0)
5097 conf->bypass_count = 0;
5098 }
5099 wg = NULL;
5100 }
5101
5102 if (!sh)
5103 return NULL;
5104
5105 if (wg) {
5106 wg->stripes_cnt--;
5107 sh->group = NULL;
5108 }
5109 list_del_init(&sh->lru);
5110 BUG_ON(atomic_inc_return(&sh->count) != 1);
5111 return sh;
5112 }
5113
5114 struct raid5_plug_cb {
5115 struct blk_plug_cb cb;
5116 struct list_head list;
5117 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5118 };
5119
5120 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5121 {
5122 struct raid5_plug_cb *cb = container_of(
5123 blk_cb, struct raid5_plug_cb, cb);
5124 struct stripe_head *sh;
5125 struct mddev *mddev = cb->cb.data;
5126 struct r5conf *conf = mddev->private;
5127 int cnt = 0;
5128 int hash;
5129
5130 if (cb->list.next && !list_empty(&cb->list)) {
5131 spin_lock_irq(&conf->device_lock);
5132 while (!list_empty(&cb->list)) {
5133 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5134 list_del_init(&sh->lru);
5135 /*
5136 * avoid race release_stripe_plug() sees
5137 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5138 * is still in our list
5139 */
5140 smp_mb__before_atomic();
5141 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5142 /*
5143 * STRIPE_ON_RELEASE_LIST could be set here. In that
5144 * case, the count is always > 1 here
5145 */
5146 hash = sh->hash_lock_index;
5147 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5148 cnt++;
5149 }
5150 spin_unlock_irq(&conf->device_lock);
5151 }
5152 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5153 NR_STRIPE_HASH_LOCKS);
5154 if (mddev->queue)
5155 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5156 kfree(cb);
5157 }
5158
5159 static void release_stripe_plug(struct mddev *mddev,
5160 struct stripe_head *sh)
5161 {
5162 struct blk_plug_cb *blk_cb = blk_check_plugged(
5163 raid5_unplug, mddev,
5164 sizeof(struct raid5_plug_cb));
5165 struct raid5_plug_cb *cb;
5166
5167 if (!blk_cb) {
5168 raid5_release_stripe(sh);
5169 return;
5170 }
5171
5172 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5173
5174 if (cb->list.next == NULL) {
5175 int i;
5176 INIT_LIST_HEAD(&cb->list);
5177 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5178 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5179 }
5180
5181 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5182 list_add_tail(&sh->lru, &cb->list);
5183 else
5184 raid5_release_stripe(sh);
5185 }
5186
5187 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5188 {
5189 struct r5conf *conf = mddev->private;
5190 sector_t logical_sector, last_sector;
5191 struct stripe_head *sh;
5192 int remaining;
5193 int stripe_sectors;
5194
5195 if (mddev->reshape_position != MaxSector)
5196 /* Skip discard while reshape is happening */
5197 return;
5198
5199 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5200 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5201
5202 bi->bi_next = NULL;
5203 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5204
5205 stripe_sectors = conf->chunk_sectors *
5206 (conf->raid_disks - conf->max_degraded);
5207 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5208 stripe_sectors);
5209 sector_div(last_sector, stripe_sectors);
5210
5211 logical_sector *= conf->chunk_sectors;
5212 last_sector *= conf->chunk_sectors;
5213
5214 for (; logical_sector < last_sector;
5215 logical_sector += STRIPE_SECTORS) {
5216 DEFINE_WAIT(w);
5217 int d;
5218 again:
5219 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5220 prepare_to_wait(&conf->wait_for_overlap, &w,
5221 TASK_UNINTERRUPTIBLE);
5222 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5223 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5224 raid5_release_stripe(sh);
5225 schedule();
5226 goto again;
5227 }
5228 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5229 spin_lock_irq(&sh->stripe_lock);
5230 for (d = 0; d < conf->raid_disks; d++) {
5231 if (d == sh->pd_idx || d == sh->qd_idx)
5232 continue;
5233 if (sh->dev[d].towrite || sh->dev[d].toread) {
5234 set_bit(R5_Overlap, &sh->dev[d].flags);
5235 spin_unlock_irq(&sh->stripe_lock);
5236 raid5_release_stripe(sh);
5237 schedule();
5238 goto again;
5239 }
5240 }
5241 set_bit(STRIPE_DISCARD, &sh->state);
5242 finish_wait(&conf->wait_for_overlap, &w);
5243 sh->overwrite_disks = 0;
5244 for (d = 0; d < conf->raid_disks; d++) {
5245 if (d == sh->pd_idx || d == sh->qd_idx)
5246 continue;
5247 sh->dev[d].towrite = bi;
5248 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5249 raid5_inc_bi_active_stripes(bi);
5250 sh->overwrite_disks++;
5251 }
5252 spin_unlock_irq(&sh->stripe_lock);
5253 if (conf->mddev->bitmap) {
5254 for (d = 0;
5255 d < conf->raid_disks - conf->max_degraded;
5256 d++)
5257 bitmap_startwrite(mddev->bitmap,
5258 sh->sector,
5259 STRIPE_SECTORS,
5260 0);
5261 sh->bm_seq = conf->seq_flush + 1;
5262 set_bit(STRIPE_BIT_DELAY, &sh->state);
5263 }
5264
5265 set_bit(STRIPE_HANDLE, &sh->state);
5266 clear_bit(STRIPE_DELAYED, &sh->state);
5267 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5268 atomic_inc(&conf->preread_active_stripes);
5269 release_stripe_plug(mddev, sh);
5270 }
5271
5272 remaining = raid5_dec_bi_active_stripes(bi);
5273 if (remaining == 0) {
5274 md_write_end(mddev);
5275 bio_endio(bi);
5276 }
5277 }
5278
5279 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5280 {
5281 struct r5conf *conf = mddev->private;
5282 int dd_idx;
5283 sector_t new_sector;
5284 sector_t logical_sector, last_sector;
5285 struct stripe_head *sh;
5286 const int rw = bio_data_dir(bi);
5287 int remaining;
5288 DEFINE_WAIT(w);
5289 bool do_prepare;
5290 bool do_flush = false;
5291
5292 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5293 int ret = r5l_handle_flush_request(conf->log, bi);
5294
5295 if (ret == 0)
5296 return;
5297 if (ret == -ENODEV) {
5298 md_flush_request(mddev, bi);
5299 return;
5300 }
5301 /* ret == -EAGAIN, fallback */
5302 /*
5303 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5304 * we need to flush journal device
5305 */
5306 do_flush = bi->bi_opf & REQ_PREFLUSH;
5307 }
5308
5309 md_write_start(mddev, bi);
5310
5311 /*
5312 * If array is degraded, better not do chunk aligned read because
5313 * later we might have to read it again in order to reconstruct
5314 * data on failed drives.
5315 */
5316 if (rw == READ && mddev->degraded == 0 &&
5317 !r5c_is_writeback(conf->log) &&
5318 mddev->reshape_position == MaxSector) {
5319 bi = chunk_aligned_read(mddev, bi);
5320 if (!bi)
5321 return;
5322 }
5323
5324 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5325 make_discard_request(mddev, bi);
5326 return;
5327 }
5328
5329 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5330 last_sector = bio_end_sector(bi);
5331 bi->bi_next = NULL;
5332 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5333
5334 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5335 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5336 int previous;
5337 int seq;
5338
5339 do_prepare = false;
5340 retry:
5341 seq = read_seqcount_begin(&conf->gen_lock);
5342 previous = 0;
5343 if (do_prepare)
5344 prepare_to_wait(&conf->wait_for_overlap, &w,
5345 TASK_UNINTERRUPTIBLE);
5346 if (unlikely(conf->reshape_progress != MaxSector)) {
5347 /* spinlock is needed as reshape_progress may be
5348 * 64bit on a 32bit platform, and so it might be
5349 * possible to see a half-updated value
5350 * Of course reshape_progress could change after
5351 * the lock is dropped, so once we get a reference
5352 * to the stripe that we think it is, we will have
5353 * to check again.
5354 */
5355 spin_lock_irq(&conf->device_lock);
5356 if (mddev->reshape_backwards
5357 ? logical_sector < conf->reshape_progress
5358 : logical_sector >= conf->reshape_progress) {
5359 previous = 1;
5360 } else {
5361 if (mddev->reshape_backwards
5362 ? logical_sector < conf->reshape_safe
5363 : logical_sector >= conf->reshape_safe) {
5364 spin_unlock_irq(&conf->device_lock);
5365 schedule();
5366 do_prepare = true;
5367 goto retry;
5368 }
5369 }
5370 spin_unlock_irq(&conf->device_lock);
5371 }
5372
5373 new_sector = raid5_compute_sector(conf, logical_sector,
5374 previous,
5375 &dd_idx, NULL);
5376 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5377 (unsigned long long)new_sector,
5378 (unsigned long long)logical_sector);
5379
5380 sh = raid5_get_active_stripe(conf, new_sector, previous,
5381 (bi->bi_opf & REQ_RAHEAD), 0);
5382 if (sh) {
5383 if (unlikely(previous)) {
5384 /* expansion might have moved on while waiting for a
5385 * stripe, so we must do the range check again.
5386 * Expansion could still move past after this
5387 * test, but as we are holding a reference to
5388 * 'sh', we know that if that happens,
5389 * STRIPE_EXPANDING will get set and the expansion
5390 * won't proceed until we finish with the stripe.
5391 */
5392 int must_retry = 0;
5393 spin_lock_irq(&conf->device_lock);
5394 if (mddev->reshape_backwards
5395 ? logical_sector >= conf->reshape_progress
5396 : logical_sector < conf->reshape_progress)
5397 /* mismatch, need to try again */
5398 must_retry = 1;
5399 spin_unlock_irq(&conf->device_lock);
5400 if (must_retry) {
5401 raid5_release_stripe(sh);
5402 schedule();
5403 do_prepare = true;
5404 goto retry;
5405 }
5406 }
5407 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5408 /* Might have got the wrong stripe_head
5409 * by accident
5410 */
5411 raid5_release_stripe(sh);
5412 goto retry;
5413 }
5414
5415 if (rw == WRITE &&
5416 logical_sector >= mddev->suspend_lo &&
5417 logical_sector < mddev->suspend_hi) {
5418 raid5_release_stripe(sh);
5419 /* As the suspend_* range is controlled by
5420 * userspace, we want an interruptible
5421 * wait.
5422 */
5423 flush_signals(current);
5424 prepare_to_wait(&conf->wait_for_overlap,
5425 &w, TASK_INTERRUPTIBLE);
5426 if (logical_sector >= mddev->suspend_lo &&
5427 logical_sector < mddev->suspend_hi) {
5428 schedule();
5429 do_prepare = true;
5430 }
5431 goto retry;
5432 }
5433
5434 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5435 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5436 /* Stripe is busy expanding or
5437 * add failed due to overlap. Flush everything
5438 * and wait a while
5439 */
5440 md_wakeup_thread(mddev->thread);
5441 raid5_release_stripe(sh);
5442 schedule();
5443 do_prepare = true;
5444 goto retry;
5445 }
5446 if (do_flush) {
5447 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5448 /* we only need flush for one stripe */
5449 do_flush = false;
5450 }
5451
5452 set_bit(STRIPE_HANDLE, &sh->state);
5453 clear_bit(STRIPE_DELAYED, &sh->state);
5454 if ((!sh->batch_head || sh == sh->batch_head) &&
5455 (bi->bi_opf & REQ_SYNC) &&
5456 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5457 atomic_inc(&conf->preread_active_stripes);
5458 release_stripe_plug(mddev, sh);
5459 } else {
5460 /* cannot get stripe for read-ahead, just give-up */
5461 bi->bi_error = -EIO;
5462 break;
5463 }
5464 }
5465 finish_wait(&conf->wait_for_overlap, &w);
5466
5467 remaining = raid5_dec_bi_active_stripes(bi);
5468 if (remaining == 0) {
5469
5470 if ( rw == WRITE )
5471 md_write_end(mddev);
5472
5473 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5474 bi, 0);
5475 bio_endio(bi);
5476 }
5477 }
5478
5479 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5480
5481 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5482 {
5483 /* reshaping is quite different to recovery/resync so it is
5484 * handled quite separately ... here.
5485 *
5486 * On each call to sync_request, we gather one chunk worth of
5487 * destination stripes and flag them as expanding.
5488 * Then we find all the source stripes and request reads.
5489 * As the reads complete, handle_stripe will copy the data
5490 * into the destination stripe and release that stripe.
5491 */
5492 struct r5conf *conf = mddev->private;
5493 struct stripe_head *sh;
5494 sector_t first_sector, last_sector;
5495 int raid_disks = conf->previous_raid_disks;
5496 int data_disks = raid_disks - conf->max_degraded;
5497 int new_data_disks = conf->raid_disks - conf->max_degraded;
5498 int i;
5499 int dd_idx;
5500 sector_t writepos, readpos, safepos;
5501 sector_t stripe_addr;
5502 int reshape_sectors;
5503 struct list_head stripes;
5504 sector_t retn;
5505
5506 if (sector_nr == 0) {
5507 /* If restarting in the middle, skip the initial sectors */
5508 if (mddev->reshape_backwards &&
5509 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5510 sector_nr = raid5_size(mddev, 0, 0)
5511 - conf->reshape_progress;
5512 } else if (mddev->reshape_backwards &&
5513 conf->reshape_progress == MaxSector) {
5514 /* shouldn't happen, but just in case, finish up.*/
5515 sector_nr = MaxSector;
5516 } else if (!mddev->reshape_backwards &&
5517 conf->reshape_progress > 0)
5518 sector_nr = conf->reshape_progress;
5519 sector_div(sector_nr, new_data_disks);
5520 if (sector_nr) {
5521 mddev->curr_resync_completed = sector_nr;
5522 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5523 *skipped = 1;
5524 retn = sector_nr;
5525 goto finish;
5526 }
5527 }
5528
5529 /* We need to process a full chunk at a time.
5530 * If old and new chunk sizes differ, we need to process the
5531 * largest of these
5532 */
5533
5534 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5535
5536 /* We update the metadata at least every 10 seconds, or when
5537 * the data about to be copied would over-write the source of
5538 * the data at the front of the range. i.e. one new_stripe
5539 * along from reshape_progress new_maps to after where
5540 * reshape_safe old_maps to
5541 */
5542 writepos = conf->reshape_progress;
5543 sector_div(writepos, new_data_disks);
5544 readpos = conf->reshape_progress;
5545 sector_div(readpos, data_disks);
5546 safepos = conf->reshape_safe;
5547 sector_div(safepos, data_disks);
5548 if (mddev->reshape_backwards) {
5549 BUG_ON(writepos < reshape_sectors);
5550 writepos -= reshape_sectors;
5551 readpos += reshape_sectors;
5552 safepos += reshape_sectors;
5553 } else {
5554 writepos += reshape_sectors;
5555 /* readpos and safepos are worst-case calculations.
5556 * A negative number is overly pessimistic, and causes
5557 * obvious problems for unsigned storage. So clip to 0.
5558 */
5559 readpos -= min_t(sector_t, reshape_sectors, readpos);
5560 safepos -= min_t(sector_t, reshape_sectors, safepos);
5561 }
5562
5563 /* Having calculated the 'writepos' possibly use it
5564 * to set 'stripe_addr' which is where we will write to.
5565 */
5566 if (mddev->reshape_backwards) {
5567 BUG_ON(conf->reshape_progress == 0);
5568 stripe_addr = writepos;
5569 BUG_ON((mddev->dev_sectors &
5570 ~((sector_t)reshape_sectors - 1))
5571 - reshape_sectors - stripe_addr
5572 != sector_nr);
5573 } else {
5574 BUG_ON(writepos != sector_nr + reshape_sectors);
5575 stripe_addr = sector_nr;
5576 }
5577
5578 /* 'writepos' is the most advanced device address we might write.
5579 * 'readpos' is the least advanced device address we might read.
5580 * 'safepos' is the least address recorded in the metadata as having
5581 * been reshaped.
5582 * If there is a min_offset_diff, these are adjusted either by
5583 * increasing the safepos/readpos if diff is negative, or
5584 * increasing writepos if diff is positive.
5585 * If 'readpos' is then behind 'writepos', there is no way that we can
5586 * ensure safety in the face of a crash - that must be done by userspace
5587 * making a backup of the data. So in that case there is no particular
5588 * rush to update metadata.
5589 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5590 * update the metadata to advance 'safepos' to match 'readpos' so that
5591 * we can be safe in the event of a crash.
5592 * So we insist on updating metadata if safepos is behind writepos and
5593 * readpos is beyond writepos.
5594 * In any case, update the metadata every 10 seconds.
5595 * Maybe that number should be configurable, but I'm not sure it is
5596 * worth it.... maybe it could be a multiple of safemode_delay???
5597 */
5598 if (conf->min_offset_diff < 0) {
5599 safepos += -conf->min_offset_diff;
5600 readpos += -conf->min_offset_diff;
5601 } else
5602 writepos += conf->min_offset_diff;
5603
5604 if ((mddev->reshape_backwards
5605 ? (safepos > writepos && readpos < writepos)
5606 : (safepos < writepos && readpos > writepos)) ||
5607 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5608 /* Cannot proceed until we've updated the superblock... */
5609 wait_event(conf->wait_for_overlap,
5610 atomic_read(&conf->reshape_stripes)==0
5611 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5612 if (atomic_read(&conf->reshape_stripes) != 0)
5613 return 0;
5614 mddev->reshape_position = conf->reshape_progress;
5615 mddev->curr_resync_completed = sector_nr;
5616 conf->reshape_checkpoint = jiffies;
5617 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5618 md_wakeup_thread(mddev->thread);
5619 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5620 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5621 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5622 return 0;
5623 spin_lock_irq(&conf->device_lock);
5624 conf->reshape_safe = mddev->reshape_position;
5625 spin_unlock_irq(&conf->device_lock);
5626 wake_up(&conf->wait_for_overlap);
5627 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5628 }
5629
5630 INIT_LIST_HEAD(&stripes);
5631 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5632 int j;
5633 int skipped_disk = 0;
5634 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5635 set_bit(STRIPE_EXPANDING, &sh->state);
5636 atomic_inc(&conf->reshape_stripes);
5637 /* If any of this stripe is beyond the end of the old
5638 * array, then we need to zero those blocks
5639 */
5640 for (j=sh->disks; j--;) {
5641 sector_t s;
5642 if (j == sh->pd_idx)
5643 continue;
5644 if (conf->level == 6 &&
5645 j == sh->qd_idx)
5646 continue;
5647 s = raid5_compute_blocknr(sh, j, 0);
5648 if (s < raid5_size(mddev, 0, 0)) {
5649 skipped_disk = 1;
5650 continue;
5651 }
5652 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5653 set_bit(R5_Expanded, &sh->dev[j].flags);
5654 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5655 }
5656 if (!skipped_disk) {
5657 set_bit(STRIPE_EXPAND_READY, &sh->state);
5658 set_bit(STRIPE_HANDLE, &sh->state);
5659 }
5660 list_add(&sh->lru, &stripes);
5661 }
5662 spin_lock_irq(&conf->device_lock);
5663 if (mddev->reshape_backwards)
5664 conf->reshape_progress -= reshape_sectors * new_data_disks;
5665 else
5666 conf->reshape_progress += reshape_sectors * new_data_disks;
5667 spin_unlock_irq(&conf->device_lock);
5668 /* Ok, those stripe are ready. We can start scheduling
5669 * reads on the source stripes.
5670 * The source stripes are determined by mapping the first and last
5671 * block on the destination stripes.
5672 */
5673 first_sector =
5674 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5675 1, &dd_idx, NULL);
5676 last_sector =
5677 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5678 * new_data_disks - 1),
5679 1, &dd_idx, NULL);
5680 if (last_sector >= mddev->dev_sectors)
5681 last_sector = mddev->dev_sectors - 1;
5682 while (first_sector <= last_sector) {
5683 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5684 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5685 set_bit(STRIPE_HANDLE, &sh->state);
5686 raid5_release_stripe(sh);
5687 first_sector += STRIPE_SECTORS;
5688 }
5689 /* Now that the sources are clearly marked, we can release
5690 * the destination stripes
5691 */
5692 while (!list_empty(&stripes)) {
5693 sh = list_entry(stripes.next, struct stripe_head, lru);
5694 list_del_init(&sh->lru);
5695 raid5_release_stripe(sh);
5696 }
5697 /* If this takes us to the resync_max point where we have to pause,
5698 * then we need to write out the superblock.
5699 */
5700 sector_nr += reshape_sectors;
5701 retn = reshape_sectors;
5702 finish:
5703 if (mddev->curr_resync_completed > mddev->resync_max ||
5704 (sector_nr - mddev->curr_resync_completed) * 2
5705 >= mddev->resync_max - mddev->curr_resync_completed) {
5706 /* Cannot proceed until we've updated the superblock... */
5707 wait_event(conf->wait_for_overlap,
5708 atomic_read(&conf->reshape_stripes) == 0
5709 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5710 if (atomic_read(&conf->reshape_stripes) != 0)
5711 goto ret;
5712 mddev->reshape_position = conf->reshape_progress;
5713 mddev->curr_resync_completed = sector_nr;
5714 conf->reshape_checkpoint = jiffies;
5715 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5716 md_wakeup_thread(mddev->thread);
5717 wait_event(mddev->sb_wait,
5718 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5719 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5720 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5721 goto ret;
5722 spin_lock_irq(&conf->device_lock);
5723 conf->reshape_safe = mddev->reshape_position;
5724 spin_unlock_irq(&conf->device_lock);
5725 wake_up(&conf->wait_for_overlap);
5726 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5727 }
5728 ret:
5729 return retn;
5730 }
5731
5732 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5733 int *skipped)
5734 {
5735 struct r5conf *conf = mddev->private;
5736 struct stripe_head *sh;
5737 sector_t max_sector = mddev->dev_sectors;
5738 sector_t sync_blocks;
5739 int still_degraded = 0;
5740 int i;
5741
5742 if (sector_nr >= max_sector) {
5743 /* just being told to finish up .. nothing much to do */
5744
5745 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5746 end_reshape(conf);
5747 return 0;
5748 }
5749
5750 if (mddev->curr_resync < max_sector) /* aborted */
5751 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5752 &sync_blocks, 1);
5753 else /* completed sync */
5754 conf->fullsync = 0;
5755 bitmap_close_sync(mddev->bitmap);
5756
5757 return 0;
5758 }
5759
5760 /* Allow raid5_quiesce to complete */
5761 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5762
5763 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5764 return reshape_request(mddev, sector_nr, skipped);
5765
5766 /* No need to check resync_max as we never do more than one
5767 * stripe, and as resync_max will always be on a chunk boundary,
5768 * if the check in md_do_sync didn't fire, there is no chance
5769 * of overstepping resync_max here
5770 */
5771
5772 /* if there is too many failed drives and we are trying
5773 * to resync, then assert that we are finished, because there is
5774 * nothing we can do.
5775 */
5776 if (mddev->degraded >= conf->max_degraded &&
5777 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5778 sector_t rv = mddev->dev_sectors - sector_nr;
5779 *skipped = 1;
5780 return rv;
5781 }
5782 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5783 !conf->fullsync &&
5784 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5785 sync_blocks >= STRIPE_SECTORS) {
5786 /* we can skip this block, and probably more */
5787 sync_blocks /= STRIPE_SECTORS;
5788 *skipped = 1;
5789 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5790 }
5791
5792 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5793
5794 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5795 if (sh == NULL) {
5796 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5797 /* make sure we don't swamp the stripe cache if someone else
5798 * is trying to get access
5799 */
5800 schedule_timeout_uninterruptible(1);
5801 }
5802 /* Need to check if array will still be degraded after recovery/resync
5803 * Note in case of > 1 drive failures it's possible we're rebuilding
5804 * one drive while leaving another faulty drive in array.
5805 */
5806 rcu_read_lock();
5807 for (i = 0; i < conf->raid_disks; i++) {
5808 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5809
5810 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5811 still_degraded = 1;
5812 }
5813 rcu_read_unlock();
5814
5815 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5816
5817 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5818 set_bit(STRIPE_HANDLE, &sh->state);
5819
5820 raid5_release_stripe(sh);
5821
5822 return STRIPE_SECTORS;
5823 }
5824
5825 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5826 {
5827 /* We may not be able to submit a whole bio at once as there
5828 * may not be enough stripe_heads available.
5829 * We cannot pre-allocate enough stripe_heads as we may need
5830 * more than exist in the cache (if we allow ever large chunks).
5831 * So we do one stripe head at a time and record in
5832 * ->bi_hw_segments how many have been done.
5833 *
5834 * We *know* that this entire raid_bio is in one chunk, so
5835 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5836 */
5837 struct stripe_head *sh;
5838 int dd_idx;
5839 sector_t sector, logical_sector, last_sector;
5840 int scnt = 0;
5841 int remaining;
5842 int handled = 0;
5843
5844 logical_sector = raid_bio->bi_iter.bi_sector &
5845 ~((sector_t)STRIPE_SECTORS-1);
5846 sector = raid5_compute_sector(conf, logical_sector,
5847 0, &dd_idx, NULL);
5848 last_sector = bio_end_sector(raid_bio);
5849
5850 for (; logical_sector < last_sector;
5851 logical_sector += STRIPE_SECTORS,
5852 sector += STRIPE_SECTORS,
5853 scnt++) {
5854
5855 if (scnt < raid5_bi_processed_stripes(raid_bio))
5856 /* already done this stripe */
5857 continue;
5858
5859 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5860
5861 if (!sh) {
5862 /* failed to get a stripe - must wait */
5863 raid5_set_bi_processed_stripes(raid_bio, scnt);
5864 conf->retry_read_aligned = raid_bio;
5865 return handled;
5866 }
5867
5868 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5869 raid5_release_stripe(sh);
5870 raid5_set_bi_processed_stripes(raid_bio, scnt);
5871 conf->retry_read_aligned = raid_bio;
5872 return handled;
5873 }
5874
5875 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5876 handle_stripe(sh);
5877 raid5_release_stripe(sh);
5878 handled++;
5879 }
5880 remaining = raid5_dec_bi_active_stripes(raid_bio);
5881 if (remaining == 0) {
5882 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5883 raid_bio, 0);
5884 bio_endio(raid_bio);
5885 }
5886 if (atomic_dec_and_test(&conf->active_aligned_reads))
5887 wake_up(&conf->wait_for_quiescent);
5888 return handled;
5889 }
5890
5891 static int handle_active_stripes(struct r5conf *conf, int group,
5892 struct r5worker *worker,
5893 struct list_head *temp_inactive_list)
5894 {
5895 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5896 int i, batch_size = 0, hash;
5897 bool release_inactive = false;
5898
5899 while (batch_size < MAX_STRIPE_BATCH &&
5900 (sh = __get_priority_stripe(conf, group)) != NULL)
5901 batch[batch_size++] = sh;
5902
5903 if (batch_size == 0) {
5904 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5905 if (!list_empty(temp_inactive_list + i))
5906 break;
5907 if (i == NR_STRIPE_HASH_LOCKS) {
5908 spin_unlock_irq(&conf->device_lock);
5909 r5l_flush_stripe_to_raid(conf->log);
5910 spin_lock_irq(&conf->device_lock);
5911 return batch_size;
5912 }
5913 release_inactive = true;
5914 }
5915 spin_unlock_irq(&conf->device_lock);
5916
5917 release_inactive_stripe_list(conf, temp_inactive_list,
5918 NR_STRIPE_HASH_LOCKS);
5919
5920 r5l_flush_stripe_to_raid(conf->log);
5921 if (release_inactive) {
5922 spin_lock_irq(&conf->device_lock);
5923 return 0;
5924 }
5925
5926 for (i = 0; i < batch_size; i++)
5927 handle_stripe(batch[i]);
5928 r5l_write_stripe_run(conf->log);
5929
5930 cond_resched();
5931
5932 spin_lock_irq(&conf->device_lock);
5933 for (i = 0; i < batch_size; i++) {
5934 hash = batch[i]->hash_lock_index;
5935 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5936 }
5937 return batch_size;
5938 }
5939
5940 static void raid5_do_work(struct work_struct *work)
5941 {
5942 struct r5worker *worker = container_of(work, struct r5worker, work);
5943 struct r5worker_group *group = worker->group;
5944 struct r5conf *conf = group->conf;
5945 int group_id = group - conf->worker_groups;
5946 int handled;
5947 struct blk_plug plug;
5948
5949 pr_debug("+++ raid5worker active\n");
5950
5951 blk_start_plug(&plug);
5952 handled = 0;
5953 spin_lock_irq(&conf->device_lock);
5954 while (1) {
5955 int batch_size, released;
5956
5957 released = release_stripe_list(conf, worker->temp_inactive_list);
5958
5959 batch_size = handle_active_stripes(conf, group_id, worker,
5960 worker->temp_inactive_list);
5961 worker->working = false;
5962 if (!batch_size && !released)
5963 break;
5964 handled += batch_size;
5965 }
5966 pr_debug("%d stripes handled\n", handled);
5967
5968 spin_unlock_irq(&conf->device_lock);
5969 blk_finish_plug(&plug);
5970
5971 pr_debug("--- raid5worker inactive\n");
5972 }
5973
5974 /*
5975 * This is our raid5 kernel thread.
5976 *
5977 * We scan the hash table for stripes which can be handled now.
5978 * During the scan, completed stripes are saved for us by the interrupt
5979 * handler, so that they will not have to wait for our next wakeup.
5980 */
5981 static void raid5d(struct md_thread *thread)
5982 {
5983 struct mddev *mddev = thread->mddev;
5984 struct r5conf *conf = mddev->private;
5985 int handled;
5986 struct blk_plug plug;
5987
5988 pr_debug("+++ raid5d active\n");
5989
5990 md_check_recovery(mddev);
5991
5992 if (!bio_list_empty(&conf->return_bi) &&
5993 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
5994 struct bio_list tmp = BIO_EMPTY_LIST;
5995 spin_lock_irq(&conf->device_lock);
5996 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
5997 bio_list_merge(&tmp, &conf->return_bi);
5998 bio_list_init(&conf->return_bi);
5999 }
6000 spin_unlock_irq(&conf->device_lock);
6001 return_io(&tmp);
6002 }
6003
6004 blk_start_plug(&plug);
6005 handled = 0;
6006 spin_lock_irq(&conf->device_lock);
6007 while (1) {
6008 struct bio *bio;
6009 int batch_size, released;
6010
6011 released = release_stripe_list(conf, conf->temp_inactive_list);
6012 if (released)
6013 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6014
6015 if (
6016 !list_empty(&conf->bitmap_list)) {
6017 /* Now is a good time to flush some bitmap updates */
6018 conf->seq_flush++;
6019 spin_unlock_irq(&conf->device_lock);
6020 bitmap_unplug(mddev->bitmap);
6021 spin_lock_irq(&conf->device_lock);
6022 conf->seq_write = conf->seq_flush;
6023 activate_bit_delay(conf, conf->temp_inactive_list);
6024 }
6025 raid5_activate_delayed(conf);
6026
6027 while ((bio = remove_bio_from_retry(conf))) {
6028 int ok;
6029 spin_unlock_irq(&conf->device_lock);
6030 ok = retry_aligned_read(conf, bio);
6031 spin_lock_irq(&conf->device_lock);
6032 if (!ok)
6033 break;
6034 handled++;
6035 }
6036
6037 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6038 conf->temp_inactive_list);
6039 if (!batch_size && !released)
6040 break;
6041 handled += batch_size;
6042
6043 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6044 spin_unlock_irq(&conf->device_lock);
6045 md_check_recovery(mddev);
6046 spin_lock_irq(&conf->device_lock);
6047 }
6048 }
6049 pr_debug("%d stripes handled\n", handled);
6050
6051 spin_unlock_irq(&conf->device_lock);
6052 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6053 mutex_trylock(&conf->cache_size_mutex)) {
6054 grow_one_stripe(conf, __GFP_NOWARN);
6055 /* Set flag even if allocation failed. This helps
6056 * slow down allocation requests when mem is short
6057 */
6058 set_bit(R5_DID_ALLOC, &conf->cache_state);
6059 mutex_unlock(&conf->cache_size_mutex);
6060 }
6061
6062 r5l_flush_stripe_to_raid(conf->log);
6063
6064 async_tx_issue_pending_all();
6065 blk_finish_plug(&plug);
6066
6067 pr_debug("--- raid5d inactive\n");
6068 }
6069
6070 static ssize_t
6071 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6072 {
6073 struct r5conf *conf;
6074 int ret = 0;
6075 spin_lock(&mddev->lock);
6076 conf = mddev->private;
6077 if (conf)
6078 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6079 spin_unlock(&mddev->lock);
6080 return ret;
6081 }
6082
6083 int
6084 raid5_set_cache_size(struct mddev *mddev, int size)
6085 {
6086 struct r5conf *conf = mddev->private;
6087 int err;
6088
6089 if (size <= 16 || size > 32768)
6090 return -EINVAL;
6091
6092 conf->min_nr_stripes = size;
6093 mutex_lock(&conf->cache_size_mutex);
6094 while (size < conf->max_nr_stripes &&
6095 drop_one_stripe(conf))
6096 ;
6097 mutex_unlock(&conf->cache_size_mutex);
6098
6099
6100 err = md_allow_write(mddev);
6101 if (err)
6102 return err;
6103
6104 mutex_lock(&conf->cache_size_mutex);
6105 while (size > conf->max_nr_stripes)
6106 if (!grow_one_stripe(conf, GFP_KERNEL))
6107 break;
6108 mutex_unlock(&conf->cache_size_mutex);
6109
6110 return 0;
6111 }
6112 EXPORT_SYMBOL(raid5_set_cache_size);
6113
6114 static ssize_t
6115 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6116 {
6117 struct r5conf *conf;
6118 unsigned long new;
6119 int err;
6120
6121 if (len >= PAGE_SIZE)
6122 return -EINVAL;
6123 if (kstrtoul(page, 10, &new))
6124 return -EINVAL;
6125 err = mddev_lock(mddev);
6126 if (err)
6127 return err;
6128 conf = mddev->private;
6129 if (!conf)
6130 err = -ENODEV;
6131 else
6132 err = raid5_set_cache_size(mddev, new);
6133 mddev_unlock(mddev);
6134
6135 return err ?: len;
6136 }
6137
6138 static struct md_sysfs_entry
6139 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6140 raid5_show_stripe_cache_size,
6141 raid5_store_stripe_cache_size);
6142
6143 static ssize_t
6144 raid5_show_rmw_level(struct mddev *mddev, char *page)
6145 {
6146 struct r5conf *conf = mddev->private;
6147 if (conf)
6148 return sprintf(page, "%d\n", conf->rmw_level);
6149 else
6150 return 0;
6151 }
6152
6153 static ssize_t
6154 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6155 {
6156 struct r5conf *conf = mddev->private;
6157 unsigned long new;
6158
6159 if (!conf)
6160 return -ENODEV;
6161
6162 if (len >= PAGE_SIZE)
6163 return -EINVAL;
6164
6165 if (kstrtoul(page, 10, &new))
6166 return -EINVAL;
6167
6168 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6169 return -EINVAL;
6170
6171 if (new != PARITY_DISABLE_RMW &&
6172 new != PARITY_ENABLE_RMW &&
6173 new != PARITY_PREFER_RMW)
6174 return -EINVAL;
6175
6176 conf->rmw_level = new;
6177 return len;
6178 }
6179
6180 static struct md_sysfs_entry
6181 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6182 raid5_show_rmw_level,
6183 raid5_store_rmw_level);
6184
6185
6186 static ssize_t
6187 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6188 {
6189 struct r5conf *conf;
6190 int ret = 0;
6191 spin_lock(&mddev->lock);
6192 conf = mddev->private;
6193 if (conf)
6194 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6195 spin_unlock(&mddev->lock);
6196 return ret;
6197 }
6198
6199 static ssize_t
6200 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6201 {
6202 struct r5conf *conf;
6203 unsigned long new;
6204 int err;
6205
6206 if (len >= PAGE_SIZE)
6207 return -EINVAL;
6208 if (kstrtoul(page, 10, &new))
6209 return -EINVAL;
6210
6211 err = mddev_lock(mddev);
6212 if (err)
6213 return err;
6214 conf = mddev->private;
6215 if (!conf)
6216 err = -ENODEV;
6217 else if (new > conf->min_nr_stripes)
6218 err = -EINVAL;
6219 else
6220 conf->bypass_threshold = new;
6221 mddev_unlock(mddev);
6222 return err ?: len;
6223 }
6224
6225 static struct md_sysfs_entry
6226 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6227 S_IRUGO | S_IWUSR,
6228 raid5_show_preread_threshold,
6229 raid5_store_preread_threshold);
6230
6231 static ssize_t
6232 raid5_show_skip_copy(struct mddev *mddev, char *page)
6233 {
6234 struct r5conf *conf;
6235 int ret = 0;
6236 spin_lock(&mddev->lock);
6237 conf = mddev->private;
6238 if (conf)
6239 ret = sprintf(page, "%d\n", conf->skip_copy);
6240 spin_unlock(&mddev->lock);
6241 return ret;
6242 }
6243
6244 static ssize_t
6245 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6246 {
6247 struct r5conf *conf;
6248 unsigned long new;
6249 int err;
6250
6251 if (len >= PAGE_SIZE)
6252 return -EINVAL;
6253 if (kstrtoul(page, 10, &new))
6254 return -EINVAL;
6255 new = !!new;
6256
6257 err = mddev_lock(mddev);
6258 if (err)
6259 return err;
6260 conf = mddev->private;
6261 if (!conf)
6262 err = -ENODEV;
6263 else if (new != conf->skip_copy) {
6264 mddev_suspend(mddev);
6265 conf->skip_copy = new;
6266 if (new)
6267 mddev->queue->backing_dev_info.capabilities |=
6268 BDI_CAP_STABLE_WRITES;
6269 else
6270 mddev->queue->backing_dev_info.capabilities &=
6271 ~BDI_CAP_STABLE_WRITES;
6272 mddev_resume(mddev);
6273 }
6274 mddev_unlock(mddev);
6275 return err ?: len;
6276 }
6277
6278 static struct md_sysfs_entry
6279 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6280 raid5_show_skip_copy,
6281 raid5_store_skip_copy);
6282
6283 static ssize_t
6284 stripe_cache_active_show(struct mddev *mddev, char *page)
6285 {
6286 struct r5conf *conf = mddev->private;
6287 if (conf)
6288 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6289 else
6290 return 0;
6291 }
6292
6293 static struct md_sysfs_entry
6294 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6295
6296 static ssize_t
6297 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6298 {
6299 struct r5conf *conf;
6300 int ret = 0;
6301 spin_lock(&mddev->lock);
6302 conf = mddev->private;
6303 if (conf)
6304 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6305 spin_unlock(&mddev->lock);
6306 return ret;
6307 }
6308
6309 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6310 int *group_cnt,
6311 int *worker_cnt_per_group,
6312 struct r5worker_group **worker_groups);
6313 static ssize_t
6314 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6315 {
6316 struct r5conf *conf;
6317 unsigned long new;
6318 int err;
6319 struct r5worker_group *new_groups, *old_groups;
6320 int group_cnt, worker_cnt_per_group;
6321
6322 if (len >= PAGE_SIZE)
6323 return -EINVAL;
6324 if (kstrtoul(page, 10, &new))
6325 return -EINVAL;
6326
6327 err = mddev_lock(mddev);
6328 if (err)
6329 return err;
6330 conf = mddev->private;
6331 if (!conf)
6332 err = -ENODEV;
6333 else if (new != conf->worker_cnt_per_group) {
6334 mddev_suspend(mddev);
6335
6336 old_groups = conf->worker_groups;
6337 if (old_groups)
6338 flush_workqueue(raid5_wq);
6339
6340 err = alloc_thread_groups(conf, new,
6341 &group_cnt, &worker_cnt_per_group,
6342 &new_groups);
6343 if (!err) {
6344 spin_lock_irq(&conf->device_lock);
6345 conf->group_cnt = group_cnt;
6346 conf->worker_cnt_per_group = worker_cnt_per_group;
6347 conf->worker_groups = new_groups;
6348 spin_unlock_irq(&conf->device_lock);
6349
6350 if (old_groups)
6351 kfree(old_groups[0].workers);
6352 kfree(old_groups);
6353 }
6354 mddev_resume(mddev);
6355 }
6356 mddev_unlock(mddev);
6357
6358 return err ?: len;
6359 }
6360
6361 static struct md_sysfs_entry
6362 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6363 raid5_show_group_thread_cnt,
6364 raid5_store_group_thread_cnt);
6365
6366 static struct attribute *raid5_attrs[] = {
6367 &raid5_stripecache_size.attr,
6368 &raid5_stripecache_active.attr,
6369 &raid5_preread_bypass_threshold.attr,
6370 &raid5_group_thread_cnt.attr,
6371 &raid5_skip_copy.attr,
6372 &raid5_rmw_level.attr,
6373 &r5c_journal_mode.attr,
6374 NULL,
6375 };
6376 static struct attribute_group raid5_attrs_group = {
6377 .name = NULL,
6378 .attrs = raid5_attrs,
6379 };
6380
6381 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6382 int *group_cnt,
6383 int *worker_cnt_per_group,
6384 struct r5worker_group **worker_groups)
6385 {
6386 int i, j, k;
6387 ssize_t size;
6388 struct r5worker *workers;
6389
6390 *worker_cnt_per_group = cnt;
6391 if (cnt == 0) {
6392 *group_cnt = 0;
6393 *worker_groups = NULL;
6394 return 0;
6395 }
6396 *group_cnt = num_possible_nodes();
6397 size = sizeof(struct r5worker) * cnt;
6398 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6399 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6400 *group_cnt, GFP_NOIO);
6401 if (!*worker_groups || !workers) {
6402 kfree(workers);
6403 kfree(*worker_groups);
6404 return -ENOMEM;
6405 }
6406
6407 for (i = 0; i < *group_cnt; i++) {
6408 struct r5worker_group *group;
6409
6410 group = &(*worker_groups)[i];
6411 INIT_LIST_HEAD(&group->handle_list);
6412 group->conf = conf;
6413 group->workers = workers + i * cnt;
6414
6415 for (j = 0; j < cnt; j++) {
6416 struct r5worker *worker = group->workers + j;
6417 worker->group = group;
6418 INIT_WORK(&worker->work, raid5_do_work);
6419
6420 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6421 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6422 }
6423 }
6424
6425 return 0;
6426 }
6427
6428 static void free_thread_groups(struct r5conf *conf)
6429 {
6430 if (conf->worker_groups)
6431 kfree(conf->worker_groups[0].workers);
6432 kfree(conf->worker_groups);
6433 conf->worker_groups = NULL;
6434 }
6435
6436 static sector_t
6437 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6438 {
6439 struct r5conf *conf = mddev->private;
6440
6441 if (!sectors)
6442 sectors = mddev->dev_sectors;
6443 if (!raid_disks)
6444 /* size is defined by the smallest of previous and new size */
6445 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6446
6447 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6448 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6449 return sectors * (raid_disks - conf->max_degraded);
6450 }
6451
6452 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6453 {
6454 safe_put_page(percpu->spare_page);
6455 if (percpu->scribble)
6456 flex_array_free(percpu->scribble);
6457 percpu->spare_page = NULL;
6458 percpu->scribble = NULL;
6459 }
6460
6461 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6462 {
6463 if (conf->level == 6 && !percpu->spare_page)
6464 percpu->spare_page = alloc_page(GFP_KERNEL);
6465 if (!percpu->scribble)
6466 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6467 conf->previous_raid_disks),
6468 max(conf->chunk_sectors,
6469 conf->prev_chunk_sectors)
6470 / STRIPE_SECTORS,
6471 GFP_KERNEL);
6472
6473 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6474 free_scratch_buffer(conf, percpu);
6475 return -ENOMEM;
6476 }
6477
6478 return 0;
6479 }
6480
6481 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6482 {
6483 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6484
6485 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6486 return 0;
6487 }
6488
6489 static void raid5_free_percpu(struct r5conf *conf)
6490 {
6491 if (!conf->percpu)
6492 return;
6493
6494 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6495 free_percpu(conf->percpu);
6496 }
6497
6498 static void free_conf(struct r5conf *conf)
6499 {
6500 int i;
6501
6502 if (conf->log)
6503 r5l_exit_log(conf->log);
6504 if (conf->shrinker.nr_deferred)
6505 unregister_shrinker(&conf->shrinker);
6506
6507 free_thread_groups(conf);
6508 shrink_stripes(conf);
6509 raid5_free_percpu(conf);
6510 for (i = 0; i < conf->pool_size; i++)
6511 if (conf->disks[i].extra_page)
6512 put_page(conf->disks[i].extra_page);
6513 kfree(conf->disks);
6514 kfree(conf->stripe_hashtbl);
6515 kfree(conf);
6516 }
6517
6518 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6519 {
6520 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6521 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6522
6523 if (alloc_scratch_buffer(conf, percpu)) {
6524 pr_warn("%s: failed memory allocation for cpu%u\n",
6525 __func__, cpu);
6526 return -ENOMEM;
6527 }
6528 return 0;
6529 }
6530
6531 static int raid5_alloc_percpu(struct r5conf *conf)
6532 {
6533 int err = 0;
6534
6535 conf->percpu = alloc_percpu(struct raid5_percpu);
6536 if (!conf->percpu)
6537 return -ENOMEM;
6538
6539 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6540 if (!err) {
6541 conf->scribble_disks = max(conf->raid_disks,
6542 conf->previous_raid_disks);
6543 conf->scribble_sectors = max(conf->chunk_sectors,
6544 conf->prev_chunk_sectors);
6545 }
6546 return err;
6547 }
6548
6549 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6550 struct shrink_control *sc)
6551 {
6552 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6553 unsigned long ret = SHRINK_STOP;
6554
6555 if (mutex_trylock(&conf->cache_size_mutex)) {
6556 ret= 0;
6557 while (ret < sc->nr_to_scan &&
6558 conf->max_nr_stripes > conf->min_nr_stripes) {
6559 if (drop_one_stripe(conf) == 0) {
6560 ret = SHRINK_STOP;
6561 break;
6562 }
6563 ret++;
6564 }
6565 mutex_unlock(&conf->cache_size_mutex);
6566 }
6567 return ret;
6568 }
6569
6570 static unsigned long raid5_cache_count(struct shrinker *shrink,
6571 struct shrink_control *sc)
6572 {
6573 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6574
6575 if (conf->max_nr_stripes < conf->min_nr_stripes)
6576 /* unlikely, but not impossible */
6577 return 0;
6578 return conf->max_nr_stripes - conf->min_nr_stripes;
6579 }
6580
6581 static struct r5conf *setup_conf(struct mddev *mddev)
6582 {
6583 struct r5conf *conf;
6584 int raid_disk, memory, max_disks;
6585 struct md_rdev *rdev;
6586 struct disk_info *disk;
6587 char pers_name[6];
6588 int i;
6589 int group_cnt, worker_cnt_per_group;
6590 struct r5worker_group *new_group;
6591
6592 if (mddev->new_level != 5
6593 && mddev->new_level != 4
6594 && mddev->new_level != 6) {
6595 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6596 mdname(mddev), mddev->new_level);
6597 return ERR_PTR(-EIO);
6598 }
6599 if ((mddev->new_level == 5
6600 && !algorithm_valid_raid5(mddev->new_layout)) ||
6601 (mddev->new_level == 6
6602 && !algorithm_valid_raid6(mddev->new_layout))) {
6603 pr_warn("md/raid:%s: layout %d not supported\n",
6604 mdname(mddev), mddev->new_layout);
6605 return ERR_PTR(-EIO);
6606 }
6607 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6608 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6609 mdname(mddev), mddev->raid_disks);
6610 return ERR_PTR(-EINVAL);
6611 }
6612
6613 if (!mddev->new_chunk_sectors ||
6614 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6615 !is_power_of_2(mddev->new_chunk_sectors)) {
6616 pr_warn("md/raid:%s: invalid chunk size %d\n",
6617 mdname(mddev), mddev->new_chunk_sectors << 9);
6618 return ERR_PTR(-EINVAL);
6619 }
6620
6621 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6622 if (conf == NULL)
6623 goto abort;
6624 /* Don't enable multi-threading by default*/
6625 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6626 &new_group)) {
6627 conf->group_cnt = group_cnt;
6628 conf->worker_cnt_per_group = worker_cnt_per_group;
6629 conf->worker_groups = new_group;
6630 } else
6631 goto abort;
6632 spin_lock_init(&conf->device_lock);
6633 seqcount_init(&conf->gen_lock);
6634 mutex_init(&conf->cache_size_mutex);
6635 init_waitqueue_head(&conf->wait_for_quiescent);
6636 init_waitqueue_head(&conf->wait_for_stripe);
6637 init_waitqueue_head(&conf->wait_for_overlap);
6638 INIT_LIST_HEAD(&conf->handle_list);
6639 INIT_LIST_HEAD(&conf->hold_list);
6640 INIT_LIST_HEAD(&conf->delayed_list);
6641 INIT_LIST_HEAD(&conf->bitmap_list);
6642 bio_list_init(&conf->return_bi);
6643 init_llist_head(&conf->released_stripes);
6644 atomic_set(&conf->active_stripes, 0);
6645 atomic_set(&conf->preread_active_stripes, 0);
6646 atomic_set(&conf->active_aligned_reads, 0);
6647 conf->bypass_threshold = BYPASS_THRESHOLD;
6648 conf->recovery_disabled = mddev->recovery_disabled - 1;
6649
6650 conf->raid_disks = mddev->raid_disks;
6651 if (mddev->reshape_position == MaxSector)
6652 conf->previous_raid_disks = mddev->raid_disks;
6653 else
6654 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6655 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6656
6657 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6658 GFP_KERNEL);
6659
6660 if (!conf->disks)
6661 goto abort;
6662
6663 for (i = 0; i < max_disks; i++) {
6664 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6665 if (!conf->disks[i].extra_page)
6666 goto abort;
6667 }
6668
6669 conf->mddev = mddev;
6670
6671 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6672 goto abort;
6673
6674 /* We init hash_locks[0] separately to that it can be used
6675 * as the reference lock in the spin_lock_nest_lock() call
6676 * in lock_all_device_hash_locks_irq in order to convince
6677 * lockdep that we know what we are doing.
6678 */
6679 spin_lock_init(conf->hash_locks);
6680 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6681 spin_lock_init(conf->hash_locks + i);
6682
6683 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6684 INIT_LIST_HEAD(conf->inactive_list + i);
6685
6686 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6687 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6688
6689 atomic_set(&conf->r5c_cached_full_stripes, 0);
6690 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6691 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6692 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6693
6694 conf->level = mddev->new_level;
6695 conf->chunk_sectors = mddev->new_chunk_sectors;
6696 if (raid5_alloc_percpu(conf) != 0)
6697 goto abort;
6698
6699 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6700
6701 rdev_for_each(rdev, mddev) {
6702 raid_disk = rdev->raid_disk;
6703 if (raid_disk >= max_disks
6704 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6705 continue;
6706 disk = conf->disks + raid_disk;
6707
6708 if (test_bit(Replacement, &rdev->flags)) {
6709 if (disk->replacement)
6710 goto abort;
6711 disk->replacement = rdev;
6712 } else {
6713 if (disk->rdev)
6714 goto abort;
6715 disk->rdev = rdev;
6716 }
6717
6718 if (test_bit(In_sync, &rdev->flags)) {
6719 char b[BDEVNAME_SIZE];
6720 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6721 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6722 } else if (rdev->saved_raid_disk != raid_disk)
6723 /* Cannot rely on bitmap to complete recovery */
6724 conf->fullsync = 1;
6725 }
6726
6727 conf->level = mddev->new_level;
6728 if (conf->level == 6) {
6729 conf->max_degraded = 2;
6730 if (raid6_call.xor_syndrome)
6731 conf->rmw_level = PARITY_ENABLE_RMW;
6732 else
6733 conf->rmw_level = PARITY_DISABLE_RMW;
6734 } else {
6735 conf->max_degraded = 1;
6736 conf->rmw_level = PARITY_ENABLE_RMW;
6737 }
6738 conf->algorithm = mddev->new_layout;
6739 conf->reshape_progress = mddev->reshape_position;
6740 if (conf->reshape_progress != MaxSector) {
6741 conf->prev_chunk_sectors = mddev->chunk_sectors;
6742 conf->prev_algo = mddev->layout;
6743 } else {
6744 conf->prev_chunk_sectors = conf->chunk_sectors;
6745 conf->prev_algo = conf->algorithm;
6746 }
6747
6748 conf->min_nr_stripes = NR_STRIPES;
6749 if (mddev->reshape_position != MaxSector) {
6750 int stripes = max_t(int,
6751 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
6752 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
6753 conf->min_nr_stripes = max(NR_STRIPES, stripes);
6754 if (conf->min_nr_stripes != NR_STRIPES)
6755 pr_info("md/raid:%s: force stripe size %d for reshape\n",
6756 mdname(mddev), conf->min_nr_stripes);
6757 }
6758 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6759 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6760 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6761 if (grow_stripes(conf, conf->min_nr_stripes)) {
6762 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
6763 mdname(mddev), memory);
6764 goto abort;
6765 } else
6766 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
6767 /*
6768 * Losing a stripe head costs more than the time to refill it,
6769 * it reduces the queue depth and so can hurt throughput.
6770 * So set it rather large, scaled by number of devices.
6771 */
6772 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6773 conf->shrinker.scan_objects = raid5_cache_scan;
6774 conf->shrinker.count_objects = raid5_cache_count;
6775 conf->shrinker.batch = 128;
6776 conf->shrinker.flags = 0;
6777 if (register_shrinker(&conf->shrinker)) {
6778 pr_warn("md/raid:%s: couldn't register shrinker.\n",
6779 mdname(mddev));
6780 goto abort;
6781 }
6782
6783 sprintf(pers_name, "raid%d", mddev->new_level);
6784 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6785 if (!conf->thread) {
6786 pr_warn("md/raid:%s: couldn't allocate thread.\n",
6787 mdname(mddev));
6788 goto abort;
6789 }
6790
6791 return conf;
6792
6793 abort:
6794 if (conf) {
6795 free_conf(conf);
6796 return ERR_PTR(-EIO);
6797 } else
6798 return ERR_PTR(-ENOMEM);
6799 }
6800
6801 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6802 {
6803 switch (algo) {
6804 case ALGORITHM_PARITY_0:
6805 if (raid_disk < max_degraded)
6806 return 1;
6807 break;
6808 case ALGORITHM_PARITY_N:
6809 if (raid_disk >= raid_disks - max_degraded)
6810 return 1;
6811 break;
6812 case ALGORITHM_PARITY_0_6:
6813 if (raid_disk == 0 ||
6814 raid_disk == raid_disks - 1)
6815 return 1;
6816 break;
6817 case ALGORITHM_LEFT_ASYMMETRIC_6:
6818 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6819 case ALGORITHM_LEFT_SYMMETRIC_6:
6820 case ALGORITHM_RIGHT_SYMMETRIC_6:
6821 if (raid_disk == raid_disks - 1)
6822 return 1;
6823 }
6824 return 0;
6825 }
6826
6827 static int raid5_run(struct mddev *mddev)
6828 {
6829 struct r5conf *conf;
6830 int working_disks = 0;
6831 int dirty_parity_disks = 0;
6832 struct md_rdev *rdev;
6833 struct md_rdev *journal_dev = NULL;
6834 sector_t reshape_offset = 0;
6835 int i;
6836 long long min_offset_diff = 0;
6837 int first = 1;
6838
6839 if (mddev->recovery_cp != MaxSector)
6840 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
6841 mdname(mddev));
6842
6843 rdev_for_each(rdev, mddev) {
6844 long long diff;
6845
6846 if (test_bit(Journal, &rdev->flags)) {
6847 journal_dev = rdev;
6848 continue;
6849 }
6850 if (rdev->raid_disk < 0)
6851 continue;
6852 diff = (rdev->new_data_offset - rdev->data_offset);
6853 if (first) {
6854 min_offset_diff = diff;
6855 first = 0;
6856 } else if (mddev->reshape_backwards &&
6857 diff < min_offset_diff)
6858 min_offset_diff = diff;
6859 else if (!mddev->reshape_backwards &&
6860 diff > min_offset_diff)
6861 min_offset_diff = diff;
6862 }
6863
6864 if (mddev->reshape_position != MaxSector) {
6865 /* Check that we can continue the reshape.
6866 * Difficulties arise if the stripe we would write to
6867 * next is at or after the stripe we would read from next.
6868 * For a reshape that changes the number of devices, this
6869 * is only possible for a very short time, and mdadm makes
6870 * sure that time appears to have past before assembling
6871 * the array. So we fail if that time hasn't passed.
6872 * For a reshape that keeps the number of devices the same
6873 * mdadm must be monitoring the reshape can keeping the
6874 * critical areas read-only and backed up. It will start
6875 * the array in read-only mode, so we check for that.
6876 */
6877 sector_t here_new, here_old;
6878 int old_disks;
6879 int max_degraded = (mddev->level == 6 ? 2 : 1);
6880 int chunk_sectors;
6881 int new_data_disks;
6882
6883 if (journal_dev) {
6884 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
6885 mdname(mddev));
6886 return -EINVAL;
6887 }
6888
6889 if (mddev->new_level != mddev->level) {
6890 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
6891 mdname(mddev));
6892 return -EINVAL;
6893 }
6894 old_disks = mddev->raid_disks - mddev->delta_disks;
6895 /* reshape_position must be on a new-stripe boundary, and one
6896 * further up in new geometry must map after here in old
6897 * geometry.
6898 * If the chunk sizes are different, then as we perform reshape
6899 * in units of the largest of the two, reshape_position needs
6900 * be a multiple of the largest chunk size times new data disks.
6901 */
6902 here_new = mddev->reshape_position;
6903 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6904 new_data_disks = mddev->raid_disks - max_degraded;
6905 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6906 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
6907 mdname(mddev));
6908 return -EINVAL;
6909 }
6910 reshape_offset = here_new * chunk_sectors;
6911 /* here_new is the stripe we will write to */
6912 here_old = mddev->reshape_position;
6913 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6914 /* here_old is the first stripe that we might need to read
6915 * from */
6916 if (mddev->delta_disks == 0) {
6917 /* We cannot be sure it is safe to start an in-place
6918 * reshape. It is only safe if user-space is monitoring
6919 * and taking constant backups.
6920 * mdadm always starts a situation like this in
6921 * readonly mode so it can take control before
6922 * allowing any writes. So just check for that.
6923 */
6924 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6925 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6926 /* not really in-place - so OK */;
6927 else if (mddev->ro == 0) {
6928 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
6929 mdname(mddev));
6930 return -EINVAL;
6931 }
6932 } else if (mddev->reshape_backwards
6933 ? (here_new * chunk_sectors + min_offset_diff <=
6934 here_old * chunk_sectors)
6935 : (here_new * chunk_sectors >=
6936 here_old * chunk_sectors + (-min_offset_diff))) {
6937 /* Reading from the same stripe as writing to - bad */
6938 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
6939 mdname(mddev));
6940 return -EINVAL;
6941 }
6942 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
6943 /* OK, we should be able to continue; */
6944 } else {
6945 BUG_ON(mddev->level != mddev->new_level);
6946 BUG_ON(mddev->layout != mddev->new_layout);
6947 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6948 BUG_ON(mddev->delta_disks != 0);
6949 }
6950
6951 if (mddev->private == NULL)
6952 conf = setup_conf(mddev);
6953 else
6954 conf = mddev->private;
6955
6956 if (IS_ERR(conf))
6957 return PTR_ERR(conf);
6958
6959 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
6960 if (!journal_dev) {
6961 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
6962 mdname(mddev));
6963 mddev->ro = 1;
6964 set_disk_ro(mddev->gendisk, 1);
6965 } else if (mddev->recovery_cp == MaxSector)
6966 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
6967 }
6968
6969 conf->min_offset_diff = min_offset_diff;
6970 mddev->thread = conf->thread;
6971 conf->thread = NULL;
6972 mddev->private = conf;
6973
6974 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6975 i++) {
6976 rdev = conf->disks[i].rdev;
6977 if (!rdev && conf->disks[i].replacement) {
6978 /* The replacement is all we have yet */
6979 rdev = conf->disks[i].replacement;
6980 conf->disks[i].replacement = NULL;
6981 clear_bit(Replacement, &rdev->flags);
6982 conf->disks[i].rdev = rdev;
6983 }
6984 if (!rdev)
6985 continue;
6986 if (conf->disks[i].replacement &&
6987 conf->reshape_progress != MaxSector) {
6988 /* replacements and reshape simply do not mix. */
6989 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
6990 goto abort;
6991 }
6992 if (test_bit(In_sync, &rdev->flags)) {
6993 working_disks++;
6994 continue;
6995 }
6996 /* This disc is not fully in-sync. However if it
6997 * just stored parity (beyond the recovery_offset),
6998 * when we don't need to be concerned about the
6999 * array being dirty.
7000 * When reshape goes 'backwards', we never have
7001 * partially completed devices, so we only need
7002 * to worry about reshape going forwards.
7003 */
7004 /* Hack because v0.91 doesn't store recovery_offset properly. */
7005 if (mddev->major_version == 0 &&
7006 mddev->minor_version > 90)
7007 rdev->recovery_offset = reshape_offset;
7008
7009 if (rdev->recovery_offset < reshape_offset) {
7010 /* We need to check old and new layout */
7011 if (!only_parity(rdev->raid_disk,
7012 conf->algorithm,
7013 conf->raid_disks,
7014 conf->max_degraded))
7015 continue;
7016 }
7017 if (!only_parity(rdev->raid_disk,
7018 conf->prev_algo,
7019 conf->previous_raid_disks,
7020 conf->max_degraded))
7021 continue;
7022 dirty_parity_disks++;
7023 }
7024
7025 /*
7026 * 0 for a fully functional array, 1 or 2 for a degraded array.
7027 */
7028 mddev->degraded = calc_degraded(conf);
7029
7030 if (has_failed(conf)) {
7031 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7032 mdname(mddev), mddev->degraded, conf->raid_disks);
7033 goto abort;
7034 }
7035
7036 /* device size must be a multiple of chunk size */
7037 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7038 mddev->resync_max_sectors = mddev->dev_sectors;
7039
7040 if (mddev->degraded > dirty_parity_disks &&
7041 mddev->recovery_cp != MaxSector) {
7042 if (mddev->ok_start_degraded)
7043 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7044 mdname(mddev));
7045 else {
7046 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7047 mdname(mddev));
7048 goto abort;
7049 }
7050 }
7051
7052 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7053 mdname(mddev), conf->level,
7054 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7055 mddev->new_layout);
7056
7057 print_raid5_conf(conf);
7058
7059 if (conf->reshape_progress != MaxSector) {
7060 conf->reshape_safe = conf->reshape_progress;
7061 atomic_set(&conf->reshape_stripes, 0);
7062 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7063 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7064 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7065 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7066 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7067 "reshape");
7068 }
7069
7070 /* Ok, everything is just fine now */
7071 if (mddev->to_remove == &raid5_attrs_group)
7072 mddev->to_remove = NULL;
7073 else if (mddev->kobj.sd &&
7074 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7075 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7076 mdname(mddev));
7077 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7078
7079 if (mddev->queue) {
7080 int chunk_size;
7081 bool discard_supported = true;
7082 /* read-ahead size must cover two whole stripes, which
7083 * is 2 * (datadisks) * chunksize where 'n' is the
7084 * number of raid devices
7085 */
7086 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7087 int stripe = data_disks *
7088 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7089 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7090 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7091
7092 chunk_size = mddev->chunk_sectors << 9;
7093 blk_queue_io_min(mddev->queue, chunk_size);
7094 blk_queue_io_opt(mddev->queue, chunk_size *
7095 (conf->raid_disks - conf->max_degraded));
7096 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7097 /*
7098 * We can only discard a whole stripe. It doesn't make sense to
7099 * discard data disk but write parity disk
7100 */
7101 stripe = stripe * PAGE_SIZE;
7102 /* Round up to power of 2, as discard handling
7103 * currently assumes that */
7104 while ((stripe-1) & stripe)
7105 stripe = (stripe | (stripe-1)) + 1;
7106 mddev->queue->limits.discard_alignment = stripe;
7107 mddev->queue->limits.discard_granularity = stripe;
7108
7109 /*
7110 * We use 16-bit counter of active stripes in bi_phys_segments
7111 * (minus one for over-loaded initialization)
7112 */
7113 blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS);
7114 blk_queue_max_discard_sectors(mddev->queue,
7115 0xfffe * STRIPE_SECTORS);
7116
7117 /*
7118 * unaligned part of discard request will be ignored, so can't
7119 * guarantee discard_zeroes_data
7120 */
7121 mddev->queue->limits.discard_zeroes_data = 0;
7122
7123 blk_queue_max_write_same_sectors(mddev->queue, 0);
7124
7125 rdev_for_each(rdev, mddev) {
7126 disk_stack_limits(mddev->gendisk, rdev->bdev,
7127 rdev->data_offset << 9);
7128 disk_stack_limits(mddev->gendisk, rdev->bdev,
7129 rdev->new_data_offset << 9);
7130 /*
7131 * discard_zeroes_data is required, otherwise data
7132 * could be lost. Consider a scenario: discard a stripe
7133 * (the stripe could be inconsistent if
7134 * discard_zeroes_data is 0); write one disk of the
7135 * stripe (the stripe could be inconsistent again
7136 * depending on which disks are used to calculate
7137 * parity); the disk is broken; The stripe data of this
7138 * disk is lost.
7139 */
7140 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7141 !bdev_get_queue(rdev->bdev)->
7142 limits.discard_zeroes_data)
7143 discard_supported = false;
7144 /* Unfortunately, discard_zeroes_data is not currently
7145 * a guarantee - just a hint. So we only allow DISCARD
7146 * if the sysadmin has confirmed that only safe devices
7147 * are in use by setting a module parameter.
7148 */
7149 if (!devices_handle_discard_safely) {
7150 if (discard_supported) {
7151 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7152 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7153 }
7154 discard_supported = false;
7155 }
7156 }
7157
7158 if (discard_supported &&
7159 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7160 mddev->queue->limits.discard_granularity >= stripe)
7161 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7162 mddev->queue);
7163 else
7164 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7165 mddev->queue);
7166
7167 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7168 }
7169
7170 if (journal_dev) {
7171 char b[BDEVNAME_SIZE];
7172
7173 pr_debug("md/raid:%s: using device %s as journal\n",
7174 mdname(mddev), bdevname(journal_dev->bdev, b));
7175 if (r5l_init_log(conf, journal_dev))
7176 goto abort;
7177 }
7178
7179 return 0;
7180 abort:
7181 md_unregister_thread(&mddev->thread);
7182 print_raid5_conf(conf);
7183 free_conf(conf);
7184 mddev->private = NULL;
7185 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7186 return -EIO;
7187 }
7188
7189 static void raid5_free(struct mddev *mddev, void *priv)
7190 {
7191 struct r5conf *conf = priv;
7192
7193 free_conf(conf);
7194 mddev->to_remove = &raid5_attrs_group;
7195 }
7196
7197 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7198 {
7199 struct r5conf *conf = mddev->private;
7200 int i;
7201
7202 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7203 conf->chunk_sectors / 2, mddev->layout);
7204 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7205 rcu_read_lock();
7206 for (i = 0; i < conf->raid_disks; i++) {
7207 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7208 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7209 }
7210 rcu_read_unlock();
7211 seq_printf (seq, "]");
7212 }
7213
7214 static void print_raid5_conf (struct r5conf *conf)
7215 {
7216 int i;
7217 struct disk_info *tmp;
7218
7219 pr_debug("RAID conf printout:\n");
7220 if (!conf) {
7221 pr_debug("(conf==NULL)\n");
7222 return;
7223 }
7224 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7225 conf->raid_disks,
7226 conf->raid_disks - conf->mddev->degraded);
7227
7228 for (i = 0; i < conf->raid_disks; i++) {
7229 char b[BDEVNAME_SIZE];
7230 tmp = conf->disks + i;
7231 if (tmp->rdev)
7232 pr_debug(" disk %d, o:%d, dev:%s\n",
7233 i, !test_bit(Faulty, &tmp->rdev->flags),
7234 bdevname(tmp->rdev->bdev, b));
7235 }
7236 }
7237
7238 static int raid5_spare_active(struct mddev *mddev)
7239 {
7240 int i;
7241 struct r5conf *conf = mddev->private;
7242 struct disk_info *tmp;
7243 int count = 0;
7244 unsigned long flags;
7245
7246 for (i = 0; i < conf->raid_disks; i++) {
7247 tmp = conf->disks + i;
7248 if (tmp->replacement
7249 && tmp->replacement->recovery_offset == MaxSector
7250 && !test_bit(Faulty, &tmp->replacement->flags)
7251 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7252 /* Replacement has just become active. */
7253 if (!tmp->rdev
7254 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7255 count++;
7256 if (tmp->rdev) {
7257 /* Replaced device not technically faulty,
7258 * but we need to be sure it gets removed
7259 * and never re-added.
7260 */
7261 set_bit(Faulty, &tmp->rdev->flags);
7262 sysfs_notify_dirent_safe(
7263 tmp->rdev->sysfs_state);
7264 }
7265 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7266 } else if (tmp->rdev
7267 && tmp->rdev->recovery_offset == MaxSector
7268 && !test_bit(Faulty, &tmp->rdev->flags)
7269 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7270 count++;
7271 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7272 }
7273 }
7274 spin_lock_irqsave(&conf->device_lock, flags);
7275 mddev->degraded = calc_degraded(conf);
7276 spin_unlock_irqrestore(&conf->device_lock, flags);
7277 print_raid5_conf(conf);
7278 return count;
7279 }
7280
7281 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7282 {
7283 struct r5conf *conf = mddev->private;
7284 int err = 0;
7285 int number = rdev->raid_disk;
7286 struct md_rdev **rdevp;
7287 struct disk_info *p = conf->disks + number;
7288
7289 print_raid5_conf(conf);
7290 if (test_bit(Journal, &rdev->flags) && conf->log) {
7291 struct r5l_log *log;
7292 /*
7293 * we can't wait pending write here, as this is called in
7294 * raid5d, wait will deadlock.
7295 */
7296 if (atomic_read(&mddev->writes_pending))
7297 return -EBUSY;
7298 log = conf->log;
7299 conf->log = NULL;
7300 synchronize_rcu();
7301 r5l_exit_log(log);
7302 return 0;
7303 }
7304 if (rdev == p->rdev)
7305 rdevp = &p->rdev;
7306 else if (rdev == p->replacement)
7307 rdevp = &p->replacement;
7308 else
7309 return 0;
7310
7311 if (number >= conf->raid_disks &&
7312 conf->reshape_progress == MaxSector)
7313 clear_bit(In_sync, &rdev->flags);
7314
7315 if (test_bit(In_sync, &rdev->flags) ||
7316 atomic_read(&rdev->nr_pending)) {
7317 err = -EBUSY;
7318 goto abort;
7319 }
7320 /* Only remove non-faulty devices if recovery
7321 * isn't possible.
7322 */
7323 if (!test_bit(Faulty, &rdev->flags) &&
7324 mddev->recovery_disabled != conf->recovery_disabled &&
7325 !has_failed(conf) &&
7326 (!p->replacement || p->replacement == rdev) &&
7327 number < conf->raid_disks) {
7328 err = -EBUSY;
7329 goto abort;
7330 }
7331 *rdevp = NULL;
7332 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7333 synchronize_rcu();
7334 if (atomic_read(&rdev->nr_pending)) {
7335 /* lost the race, try later */
7336 err = -EBUSY;
7337 *rdevp = rdev;
7338 }
7339 }
7340 if (p->replacement) {
7341 /* We must have just cleared 'rdev' */
7342 p->rdev = p->replacement;
7343 clear_bit(Replacement, &p->replacement->flags);
7344 smp_mb(); /* Make sure other CPUs may see both as identical
7345 * but will never see neither - if they are careful
7346 */
7347 p->replacement = NULL;
7348 clear_bit(WantReplacement, &rdev->flags);
7349 } else
7350 /* We might have just removed the Replacement as faulty-
7351 * clear the bit just in case
7352 */
7353 clear_bit(WantReplacement, &rdev->flags);
7354 abort:
7355
7356 print_raid5_conf(conf);
7357 return err;
7358 }
7359
7360 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7361 {
7362 struct r5conf *conf = mddev->private;
7363 int err = -EEXIST;
7364 int disk;
7365 struct disk_info *p;
7366 int first = 0;
7367 int last = conf->raid_disks - 1;
7368
7369 if (test_bit(Journal, &rdev->flags)) {
7370 char b[BDEVNAME_SIZE];
7371 if (conf->log)
7372 return -EBUSY;
7373
7374 rdev->raid_disk = 0;
7375 /*
7376 * The array is in readonly mode if journal is missing, so no
7377 * write requests running. We should be safe
7378 */
7379 r5l_init_log(conf, rdev);
7380 pr_debug("md/raid:%s: using device %s as journal\n",
7381 mdname(mddev), bdevname(rdev->bdev, b));
7382 return 0;
7383 }
7384 if (mddev->recovery_disabled == conf->recovery_disabled)
7385 return -EBUSY;
7386
7387 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7388 /* no point adding a device */
7389 return -EINVAL;
7390
7391 if (rdev->raid_disk >= 0)
7392 first = last = rdev->raid_disk;
7393
7394 /*
7395 * find the disk ... but prefer rdev->saved_raid_disk
7396 * if possible.
7397 */
7398 if (rdev->saved_raid_disk >= 0 &&
7399 rdev->saved_raid_disk >= first &&
7400 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7401 first = rdev->saved_raid_disk;
7402
7403 for (disk = first; disk <= last; disk++) {
7404 p = conf->disks + disk;
7405 if (p->rdev == NULL) {
7406 clear_bit(In_sync, &rdev->flags);
7407 rdev->raid_disk = disk;
7408 err = 0;
7409 if (rdev->saved_raid_disk != disk)
7410 conf->fullsync = 1;
7411 rcu_assign_pointer(p->rdev, rdev);
7412 goto out;
7413 }
7414 }
7415 for (disk = first; disk <= last; disk++) {
7416 p = conf->disks + disk;
7417 if (test_bit(WantReplacement, &p->rdev->flags) &&
7418 p->replacement == NULL) {
7419 clear_bit(In_sync, &rdev->flags);
7420 set_bit(Replacement, &rdev->flags);
7421 rdev->raid_disk = disk;
7422 err = 0;
7423 conf->fullsync = 1;
7424 rcu_assign_pointer(p->replacement, rdev);
7425 break;
7426 }
7427 }
7428 out:
7429 print_raid5_conf(conf);
7430 return err;
7431 }
7432
7433 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7434 {
7435 /* no resync is happening, and there is enough space
7436 * on all devices, so we can resize.
7437 * We need to make sure resync covers any new space.
7438 * If the array is shrinking we should possibly wait until
7439 * any io in the removed space completes, but it hardly seems
7440 * worth it.
7441 */
7442 sector_t newsize;
7443 struct r5conf *conf = mddev->private;
7444
7445 if (conf->log)
7446 return -EINVAL;
7447 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7448 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7449 if (mddev->external_size &&
7450 mddev->array_sectors > newsize)
7451 return -EINVAL;
7452 if (mddev->bitmap) {
7453 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7454 if (ret)
7455 return ret;
7456 }
7457 md_set_array_sectors(mddev, newsize);
7458 set_capacity(mddev->gendisk, mddev->array_sectors);
7459 revalidate_disk(mddev->gendisk);
7460 if (sectors > mddev->dev_sectors &&
7461 mddev->recovery_cp > mddev->dev_sectors) {
7462 mddev->recovery_cp = mddev->dev_sectors;
7463 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7464 }
7465 mddev->dev_sectors = sectors;
7466 mddev->resync_max_sectors = sectors;
7467 return 0;
7468 }
7469
7470 static int check_stripe_cache(struct mddev *mddev)
7471 {
7472 /* Can only proceed if there are plenty of stripe_heads.
7473 * We need a minimum of one full stripe,, and for sensible progress
7474 * it is best to have about 4 times that.
7475 * If we require 4 times, then the default 256 4K stripe_heads will
7476 * allow for chunk sizes up to 256K, which is probably OK.
7477 * If the chunk size is greater, user-space should request more
7478 * stripe_heads first.
7479 */
7480 struct r5conf *conf = mddev->private;
7481 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7482 > conf->min_nr_stripes ||
7483 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7484 > conf->min_nr_stripes) {
7485 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7486 mdname(mddev),
7487 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7488 / STRIPE_SIZE)*4);
7489 return 0;
7490 }
7491 return 1;
7492 }
7493
7494 static int check_reshape(struct mddev *mddev)
7495 {
7496 struct r5conf *conf = mddev->private;
7497
7498 if (conf->log)
7499 return -EINVAL;
7500 if (mddev->delta_disks == 0 &&
7501 mddev->new_layout == mddev->layout &&
7502 mddev->new_chunk_sectors == mddev->chunk_sectors)
7503 return 0; /* nothing to do */
7504 if (has_failed(conf))
7505 return -EINVAL;
7506 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7507 /* We might be able to shrink, but the devices must
7508 * be made bigger first.
7509 * For raid6, 4 is the minimum size.
7510 * Otherwise 2 is the minimum
7511 */
7512 int min = 2;
7513 if (mddev->level == 6)
7514 min = 4;
7515 if (mddev->raid_disks + mddev->delta_disks < min)
7516 return -EINVAL;
7517 }
7518
7519 if (!check_stripe_cache(mddev))
7520 return -ENOSPC;
7521
7522 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7523 mddev->delta_disks > 0)
7524 if (resize_chunks(conf,
7525 conf->previous_raid_disks
7526 + max(0, mddev->delta_disks),
7527 max(mddev->new_chunk_sectors,
7528 mddev->chunk_sectors)
7529 ) < 0)
7530 return -ENOMEM;
7531 return resize_stripes(conf, (conf->previous_raid_disks
7532 + mddev->delta_disks));
7533 }
7534
7535 static int raid5_start_reshape(struct mddev *mddev)
7536 {
7537 struct r5conf *conf = mddev->private;
7538 struct md_rdev *rdev;
7539 int spares = 0;
7540 unsigned long flags;
7541
7542 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7543 return -EBUSY;
7544
7545 if (!check_stripe_cache(mddev))
7546 return -ENOSPC;
7547
7548 if (has_failed(conf))
7549 return -EINVAL;
7550
7551 rdev_for_each(rdev, mddev) {
7552 if (!test_bit(In_sync, &rdev->flags)
7553 && !test_bit(Faulty, &rdev->flags))
7554 spares++;
7555 }
7556
7557 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7558 /* Not enough devices even to make a degraded array
7559 * of that size
7560 */
7561 return -EINVAL;
7562
7563 /* Refuse to reduce size of the array. Any reductions in
7564 * array size must be through explicit setting of array_size
7565 * attribute.
7566 */
7567 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7568 < mddev->array_sectors) {
7569 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7570 mdname(mddev));
7571 return -EINVAL;
7572 }
7573
7574 atomic_set(&conf->reshape_stripes, 0);
7575 spin_lock_irq(&conf->device_lock);
7576 write_seqcount_begin(&conf->gen_lock);
7577 conf->previous_raid_disks = conf->raid_disks;
7578 conf->raid_disks += mddev->delta_disks;
7579 conf->prev_chunk_sectors = conf->chunk_sectors;
7580 conf->chunk_sectors = mddev->new_chunk_sectors;
7581 conf->prev_algo = conf->algorithm;
7582 conf->algorithm = mddev->new_layout;
7583 conf->generation++;
7584 /* Code that selects data_offset needs to see the generation update
7585 * if reshape_progress has been set - so a memory barrier needed.
7586 */
7587 smp_mb();
7588 if (mddev->reshape_backwards)
7589 conf->reshape_progress = raid5_size(mddev, 0, 0);
7590 else
7591 conf->reshape_progress = 0;
7592 conf->reshape_safe = conf->reshape_progress;
7593 write_seqcount_end(&conf->gen_lock);
7594 spin_unlock_irq(&conf->device_lock);
7595
7596 /* Now make sure any requests that proceeded on the assumption
7597 * the reshape wasn't running - like Discard or Read - have
7598 * completed.
7599 */
7600 mddev_suspend(mddev);
7601 mddev_resume(mddev);
7602
7603 /* Add some new drives, as many as will fit.
7604 * We know there are enough to make the newly sized array work.
7605 * Don't add devices if we are reducing the number of
7606 * devices in the array. This is because it is not possible
7607 * to correctly record the "partially reconstructed" state of
7608 * such devices during the reshape and confusion could result.
7609 */
7610 if (mddev->delta_disks >= 0) {
7611 rdev_for_each(rdev, mddev)
7612 if (rdev->raid_disk < 0 &&
7613 !test_bit(Faulty, &rdev->flags)) {
7614 if (raid5_add_disk(mddev, rdev) == 0) {
7615 if (rdev->raid_disk
7616 >= conf->previous_raid_disks)
7617 set_bit(In_sync, &rdev->flags);
7618 else
7619 rdev->recovery_offset = 0;
7620
7621 if (sysfs_link_rdev(mddev, rdev))
7622 /* Failure here is OK */;
7623 }
7624 } else if (rdev->raid_disk >= conf->previous_raid_disks
7625 && !test_bit(Faulty, &rdev->flags)) {
7626 /* This is a spare that was manually added */
7627 set_bit(In_sync, &rdev->flags);
7628 }
7629
7630 /* When a reshape changes the number of devices,
7631 * ->degraded is measured against the larger of the
7632 * pre and post number of devices.
7633 */
7634 spin_lock_irqsave(&conf->device_lock, flags);
7635 mddev->degraded = calc_degraded(conf);
7636 spin_unlock_irqrestore(&conf->device_lock, flags);
7637 }
7638 mddev->raid_disks = conf->raid_disks;
7639 mddev->reshape_position = conf->reshape_progress;
7640 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7641
7642 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7643 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7644 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7645 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7646 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7647 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7648 "reshape");
7649 if (!mddev->sync_thread) {
7650 mddev->recovery = 0;
7651 spin_lock_irq(&conf->device_lock);
7652 write_seqcount_begin(&conf->gen_lock);
7653 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7654 mddev->new_chunk_sectors =
7655 conf->chunk_sectors = conf->prev_chunk_sectors;
7656 mddev->new_layout = conf->algorithm = conf->prev_algo;
7657 rdev_for_each(rdev, mddev)
7658 rdev->new_data_offset = rdev->data_offset;
7659 smp_wmb();
7660 conf->generation --;
7661 conf->reshape_progress = MaxSector;
7662 mddev->reshape_position = MaxSector;
7663 write_seqcount_end(&conf->gen_lock);
7664 spin_unlock_irq(&conf->device_lock);
7665 return -EAGAIN;
7666 }
7667 conf->reshape_checkpoint = jiffies;
7668 md_wakeup_thread(mddev->sync_thread);
7669 md_new_event(mddev);
7670 return 0;
7671 }
7672
7673 /* This is called from the reshape thread and should make any
7674 * changes needed in 'conf'
7675 */
7676 static void end_reshape(struct r5conf *conf)
7677 {
7678
7679 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7680 struct md_rdev *rdev;
7681
7682 spin_lock_irq(&conf->device_lock);
7683 conf->previous_raid_disks = conf->raid_disks;
7684 rdev_for_each(rdev, conf->mddev)
7685 rdev->data_offset = rdev->new_data_offset;
7686 smp_wmb();
7687 conf->reshape_progress = MaxSector;
7688 conf->mddev->reshape_position = MaxSector;
7689 spin_unlock_irq(&conf->device_lock);
7690 wake_up(&conf->wait_for_overlap);
7691
7692 /* read-ahead size must cover two whole stripes, which is
7693 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7694 */
7695 if (conf->mddev->queue) {
7696 int data_disks = conf->raid_disks - conf->max_degraded;
7697 int stripe = data_disks * ((conf->chunk_sectors << 9)
7698 / PAGE_SIZE);
7699 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7700 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7701 }
7702 }
7703 }
7704
7705 /* This is called from the raid5d thread with mddev_lock held.
7706 * It makes config changes to the device.
7707 */
7708 static void raid5_finish_reshape(struct mddev *mddev)
7709 {
7710 struct r5conf *conf = mddev->private;
7711
7712 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7713
7714 if (mddev->delta_disks > 0) {
7715 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7716 if (mddev->queue) {
7717 set_capacity(mddev->gendisk, mddev->array_sectors);
7718 revalidate_disk(mddev->gendisk);
7719 }
7720 } else {
7721 int d;
7722 spin_lock_irq(&conf->device_lock);
7723 mddev->degraded = calc_degraded(conf);
7724 spin_unlock_irq(&conf->device_lock);
7725 for (d = conf->raid_disks ;
7726 d < conf->raid_disks - mddev->delta_disks;
7727 d++) {
7728 struct md_rdev *rdev = conf->disks[d].rdev;
7729 if (rdev)
7730 clear_bit(In_sync, &rdev->flags);
7731 rdev = conf->disks[d].replacement;
7732 if (rdev)
7733 clear_bit(In_sync, &rdev->flags);
7734 }
7735 }
7736 mddev->layout = conf->algorithm;
7737 mddev->chunk_sectors = conf->chunk_sectors;
7738 mddev->reshape_position = MaxSector;
7739 mddev->delta_disks = 0;
7740 mddev->reshape_backwards = 0;
7741 }
7742 }
7743
7744 static void raid5_quiesce(struct mddev *mddev, int state)
7745 {
7746 struct r5conf *conf = mddev->private;
7747
7748 switch(state) {
7749 case 2: /* resume for a suspend */
7750 wake_up(&conf->wait_for_overlap);
7751 break;
7752
7753 case 1: /* stop all writes */
7754 lock_all_device_hash_locks_irq(conf);
7755 /* '2' tells resync/reshape to pause so that all
7756 * active stripes can drain
7757 */
7758 r5c_flush_cache(conf, INT_MAX);
7759 conf->quiesce = 2;
7760 wait_event_cmd(conf->wait_for_quiescent,
7761 atomic_read(&conf->active_stripes) == 0 &&
7762 atomic_read(&conf->active_aligned_reads) == 0,
7763 unlock_all_device_hash_locks_irq(conf),
7764 lock_all_device_hash_locks_irq(conf));
7765 conf->quiesce = 1;
7766 unlock_all_device_hash_locks_irq(conf);
7767 /* allow reshape to continue */
7768 wake_up(&conf->wait_for_overlap);
7769 break;
7770
7771 case 0: /* re-enable writes */
7772 lock_all_device_hash_locks_irq(conf);
7773 conf->quiesce = 0;
7774 wake_up(&conf->wait_for_quiescent);
7775 wake_up(&conf->wait_for_overlap);
7776 unlock_all_device_hash_locks_irq(conf);
7777 break;
7778 }
7779 r5l_quiesce(conf->log, state);
7780 }
7781
7782 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7783 {
7784 struct r0conf *raid0_conf = mddev->private;
7785 sector_t sectors;
7786
7787 /* for raid0 takeover only one zone is supported */
7788 if (raid0_conf->nr_strip_zones > 1) {
7789 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7790 mdname(mddev));
7791 return ERR_PTR(-EINVAL);
7792 }
7793
7794 sectors = raid0_conf->strip_zone[0].zone_end;
7795 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7796 mddev->dev_sectors = sectors;
7797 mddev->new_level = level;
7798 mddev->new_layout = ALGORITHM_PARITY_N;
7799 mddev->new_chunk_sectors = mddev->chunk_sectors;
7800 mddev->raid_disks += 1;
7801 mddev->delta_disks = 1;
7802 /* make sure it will be not marked as dirty */
7803 mddev->recovery_cp = MaxSector;
7804
7805 return setup_conf(mddev);
7806 }
7807
7808 static void *raid5_takeover_raid1(struct mddev *mddev)
7809 {
7810 int chunksect;
7811 void *ret;
7812
7813 if (mddev->raid_disks != 2 ||
7814 mddev->degraded > 1)
7815 return ERR_PTR(-EINVAL);
7816
7817 /* Should check if there are write-behind devices? */
7818
7819 chunksect = 64*2; /* 64K by default */
7820
7821 /* The array must be an exact multiple of chunksize */
7822 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7823 chunksect >>= 1;
7824
7825 if ((chunksect<<9) < STRIPE_SIZE)
7826 /* array size does not allow a suitable chunk size */
7827 return ERR_PTR(-EINVAL);
7828
7829 mddev->new_level = 5;
7830 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7831 mddev->new_chunk_sectors = chunksect;
7832
7833 ret = setup_conf(mddev);
7834 if (!IS_ERR(ret))
7835 mddev_clear_unsupported_flags(mddev,
7836 UNSUPPORTED_MDDEV_FLAGS);
7837 return ret;
7838 }
7839
7840 static void *raid5_takeover_raid6(struct mddev *mddev)
7841 {
7842 int new_layout;
7843
7844 switch (mddev->layout) {
7845 case ALGORITHM_LEFT_ASYMMETRIC_6:
7846 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7847 break;
7848 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7849 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7850 break;
7851 case ALGORITHM_LEFT_SYMMETRIC_6:
7852 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7853 break;
7854 case ALGORITHM_RIGHT_SYMMETRIC_6:
7855 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7856 break;
7857 case ALGORITHM_PARITY_0_6:
7858 new_layout = ALGORITHM_PARITY_0;
7859 break;
7860 case ALGORITHM_PARITY_N:
7861 new_layout = ALGORITHM_PARITY_N;
7862 break;
7863 default:
7864 return ERR_PTR(-EINVAL);
7865 }
7866 mddev->new_level = 5;
7867 mddev->new_layout = new_layout;
7868 mddev->delta_disks = -1;
7869 mddev->raid_disks -= 1;
7870 return setup_conf(mddev);
7871 }
7872
7873 static int raid5_check_reshape(struct mddev *mddev)
7874 {
7875 /* For a 2-drive array, the layout and chunk size can be changed
7876 * immediately as not restriping is needed.
7877 * For larger arrays we record the new value - after validation
7878 * to be used by a reshape pass.
7879 */
7880 struct r5conf *conf = mddev->private;
7881 int new_chunk = mddev->new_chunk_sectors;
7882
7883 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7884 return -EINVAL;
7885 if (new_chunk > 0) {
7886 if (!is_power_of_2(new_chunk))
7887 return -EINVAL;
7888 if (new_chunk < (PAGE_SIZE>>9))
7889 return -EINVAL;
7890 if (mddev->array_sectors & (new_chunk-1))
7891 /* not factor of array size */
7892 return -EINVAL;
7893 }
7894
7895 /* They look valid */
7896
7897 if (mddev->raid_disks == 2) {
7898 /* can make the change immediately */
7899 if (mddev->new_layout >= 0) {
7900 conf->algorithm = mddev->new_layout;
7901 mddev->layout = mddev->new_layout;
7902 }
7903 if (new_chunk > 0) {
7904 conf->chunk_sectors = new_chunk ;
7905 mddev->chunk_sectors = new_chunk;
7906 }
7907 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7908 md_wakeup_thread(mddev->thread);
7909 }
7910 return check_reshape(mddev);
7911 }
7912
7913 static int raid6_check_reshape(struct mddev *mddev)
7914 {
7915 int new_chunk = mddev->new_chunk_sectors;
7916
7917 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7918 return -EINVAL;
7919 if (new_chunk > 0) {
7920 if (!is_power_of_2(new_chunk))
7921 return -EINVAL;
7922 if (new_chunk < (PAGE_SIZE >> 9))
7923 return -EINVAL;
7924 if (mddev->array_sectors & (new_chunk-1))
7925 /* not factor of array size */
7926 return -EINVAL;
7927 }
7928
7929 /* They look valid */
7930 return check_reshape(mddev);
7931 }
7932
7933 static void *raid5_takeover(struct mddev *mddev)
7934 {
7935 /* raid5 can take over:
7936 * raid0 - if there is only one strip zone - make it a raid4 layout
7937 * raid1 - if there are two drives. We need to know the chunk size
7938 * raid4 - trivial - just use a raid4 layout.
7939 * raid6 - Providing it is a *_6 layout
7940 */
7941 if (mddev->level == 0)
7942 return raid45_takeover_raid0(mddev, 5);
7943 if (mddev->level == 1)
7944 return raid5_takeover_raid1(mddev);
7945 if (mddev->level == 4) {
7946 mddev->new_layout = ALGORITHM_PARITY_N;
7947 mddev->new_level = 5;
7948 return setup_conf(mddev);
7949 }
7950 if (mddev->level == 6)
7951 return raid5_takeover_raid6(mddev);
7952
7953 return ERR_PTR(-EINVAL);
7954 }
7955
7956 static void *raid4_takeover(struct mddev *mddev)
7957 {
7958 /* raid4 can take over:
7959 * raid0 - if there is only one strip zone
7960 * raid5 - if layout is right
7961 */
7962 if (mddev->level == 0)
7963 return raid45_takeover_raid0(mddev, 4);
7964 if (mddev->level == 5 &&
7965 mddev->layout == ALGORITHM_PARITY_N) {
7966 mddev->new_layout = 0;
7967 mddev->new_level = 4;
7968 return setup_conf(mddev);
7969 }
7970 return ERR_PTR(-EINVAL);
7971 }
7972
7973 static struct md_personality raid5_personality;
7974
7975 static void *raid6_takeover(struct mddev *mddev)
7976 {
7977 /* Currently can only take over a raid5. We map the
7978 * personality to an equivalent raid6 personality
7979 * with the Q block at the end.
7980 */
7981 int new_layout;
7982
7983 if (mddev->pers != &raid5_personality)
7984 return ERR_PTR(-EINVAL);
7985 if (mddev->degraded > 1)
7986 return ERR_PTR(-EINVAL);
7987 if (mddev->raid_disks > 253)
7988 return ERR_PTR(-EINVAL);
7989 if (mddev->raid_disks < 3)
7990 return ERR_PTR(-EINVAL);
7991
7992 switch (mddev->layout) {
7993 case ALGORITHM_LEFT_ASYMMETRIC:
7994 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7995 break;
7996 case ALGORITHM_RIGHT_ASYMMETRIC:
7997 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7998 break;
7999 case ALGORITHM_LEFT_SYMMETRIC:
8000 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8001 break;
8002 case ALGORITHM_RIGHT_SYMMETRIC:
8003 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8004 break;
8005 case ALGORITHM_PARITY_0:
8006 new_layout = ALGORITHM_PARITY_0_6;
8007 break;
8008 case ALGORITHM_PARITY_N:
8009 new_layout = ALGORITHM_PARITY_N;
8010 break;
8011 default:
8012 return ERR_PTR(-EINVAL);
8013 }
8014 mddev->new_level = 6;
8015 mddev->new_layout = new_layout;
8016 mddev->delta_disks = 1;
8017 mddev->raid_disks += 1;
8018 return setup_conf(mddev);
8019 }
8020
8021 static struct md_personality raid6_personality =
8022 {
8023 .name = "raid6",
8024 .level = 6,
8025 .owner = THIS_MODULE,
8026 .make_request = raid5_make_request,
8027 .run = raid5_run,
8028 .free = raid5_free,
8029 .status = raid5_status,
8030 .error_handler = raid5_error,
8031 .hot_add_disk = raid5_add_disk,
8032 .hot_remove_disk= raid5_remove_disk,
8033 .spare_active = raid5_spare_active,
8034 .sync_request = raid5_sync_request,
8035 .resize = raid5_resize,
8036 .size = raid5_size,
8037 .check_reshape = raid6_check_reshape,
8038 .start_reshape = raid5_start_reshape,
8039 .finish_reshape = raid5_finish_reshape,
8040 .quiesce = raid5_quiesce,
8041 .takeover = raid6_takeover,
8042 .congested = raid5_congested,
8043 };
8044 static struct md_personality raid5_personality =
8045 {
8046 .name = "raid5",
8047 .level = 5,
8048 .owner = THIS_MODULE,
8049 .make_request = raid5_make_request,
8050 .run = raid5_run,
8051 .free = raid5_free,
8052 .status = raid5_status,
8053 .error_handler = raid5_error,
8054 .hot_add_disk = raid5_add_disk,
8055 .hot_remove_disk= raid5_remove_disk,
8056 .spare_active = raid5_spare_active,
8057 .sync_request = raid5_sync_request,
8058 .resize = raid5_resize,
8059 .size = raid5_size,
8060 .check_reshape = raid5_check_reshape,
8061 .start_reshape = raid5_start_reshape,
8062 .finish_reshape = raid5_finish_reshape,
8063 .quiesce = raid5_quiesce,
8064 .takeover = raid5_takeover,
8065 .congested = raid5_congested,
8066 };
8067
8068 static struct md_personality raid4_personality =
8069 {
8070 .name = "raid4",
8071 .level = 4,
8072 .owner = THIS_MODULE,
8073 .make_request = raid5_make_request,
8074 .run = raid5_run,
8075 .free = raid5_free,
8076 .status = raid5_status,
8077 .error_handler = raid5_error,
8078 .hot_add_disk = raid5_add_disk,
8079 .hot_remove_disk= raid5_remove_disk,
8080 .spare_active = raid5_spare_active,
8081 .sync_request = raid5_sync_request,
8082 .resize = raid5_resize,
8083 .size = raid5_size,
8084 .check_reshape = raid5_check_reshape,
8085 .start_reshape = raid5_start_reshape,
8086 .finish_reshape = raid5_finish_reshape,
8087 .quiesce = raid5_quiesce,
8088 .takeover = raid4_takeover,
8089 .congested = raid5_congested,
8090 };
8091
8092 static int __init raid5_init(void)
8093 {
8094 int ret;
8095
8096 raid5_wq = alloc_workqueue("raid5wq",
8097 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8098 if (!raid5_wq)
8099 return -ENOMEM;
8100
8101 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8102 "md/raid5:prepare",
8103 raid456_cpu_up_prepare,
8104 raid456_cpu_dead);
8105 if (ret) {
8106 destroy_workqueue(raid5_wq);
8107 return ret;
8108 }
8109 register_md_personality(&raid6_personality);
8110 register_md_personality(&raid5_personality);
8111 register_md_personality(&raid4_personality);
8112 return 0;
8113 }
8114
8115 static void raid5_exit(void)
8116 {
8117 unregister_md_personality(&raid6_personality);
8118 unregister_md_personality(&raid5_personality);
8119 unregister_md_personality(&raid4_personality);
8120 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8121 destroy_workqueue(raid5_wq);
8122 }
8123
8124 module_init(raid5_init);
8125 module_exit(raid5_exit);
8126 MODULE_LICENSE("GPL");
8127 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8128 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8129 MODULE_ALIAS("md-raid5");
8130 MODULE_ALIAS("md-raid4");
8131 MODULE_ALIAS("md-level-5");
8132 MODULE_ALIAS("md-level-4");
8133 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8134 MODULE_ALIAS("md-raid6");
8135 MODULE_ALIAS("md-level-6");
8136
8137 /* This used to be two separate modules, they were: */
8138 MODULE_ALIAS("raid5");
8139 MODULE_ALIAS("raid6");