]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid5.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <linux/sched/signal.h>
59
60 #include <trace/events/block.h>
61
62 #include "md.h"
63 #include "raid5.h"
64 #include "raid0.h"
65 #include "bitmap.h"
66
67 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
68
69 #define cpu_to_group(cpu) cpu_to_node(cpu)
70 #define ANY_GROUP NUMA_NO_NODE
71
72 static bool devices_handle_discard_safely = false;
73 module_param(devices_handle_discard_safely, bool, 0644);
74 MODULE_PARM_DESC(devices_handle_discard_safely,
75 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
76 static struct workqueue_struct *raid5_wq;
77
78 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
79 {
80 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
81 return &conf->stripe_hashtbl[hash];
82 }
83
84 static inline int stripe_hash_locks_hash(sector_t sect)
85 {
86 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
87 }
88
89 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
90 {
91 spin_lock_irq(conf->hash_locks + hash);
92 spin_lock(&conf->device_lock);
93 }
94
95 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
96 {
97 spin_unlock(&conf->device_lock);
98 spin_unlock_irq(conf->hash_locks + hash);
99 }
100
101 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
102 {
103 int i;
104 local_irq_disable();
105 spin_lock(conf->hash_locks);
106 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 spin_lock(&conf->device_lock);
109 }
110
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
112 {
113 int i;
114 spin_unlock(&conf->device_lock);
115 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
116 spin_unlock(conf->hash_locks + i - 1);
117 local_irq_enable();
118 }
119
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head *sh)
122 {
123 if (sh->ddf_layout)
124 /* ddf always start from first device */
125 return 0;
126 /* md starts just after Q block */
127 if (sh->qd_idx == sh->disks - 1)
128 return 0;
129 else
130 return sh->qd_idx + 1;
131 }
132 static inline int raid6_next_disk(int disk, int raid_disks)
133 {
134 disk++;
135 return (disk < raid_disks) ? disk : 0;
136 }
137
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139 * We need to map each disk to a 'slot', where the data disks are slot
140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141 * is raid_disks-1. This help does that mapping.
142 */
143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 int *count, int syndrome_disks)
145 {
146 int slot = *count;
147
148 if (sh->ddf_layout)
149 (*count)++;
150 if (idx == sh->pd_idx)
151 return syndrome_disks;
152 if (idx == sh->qd_idx)
153 return syndrome_disks + 1;
154 if (!sh->ddf_layout)
155 (*count)++;
156 return slot;
157 }
158
159 static void return_io(struct bio_list *return_bi)
160 {
161 struct bio *bi;
162 while ((bi = bio_list_pop(return_bi)) != NULL) {
163 bi->bi_iter.bi_size = 0;
164 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
165 bi, 0);
166 bio_endio(bi);
167 }
168 }
169
170 static void print_raid5_conf (struct r5conf *conf);
171
172 static int stripe_operations_active(struct stripe_head *sh)
173 {
174 return sh->check_state || sh->reconstruct_state ||
175 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
176 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
177 }
178
179 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
180 {
181 struct r5conf *conf = sh->raid_conf;
182 struct r5worker_group *group;
183 int thread_cnt;
184 int i, cpu = sh->cpu;
185
186 if (!cpu_online(cpu)) {
187 cpu = cpumask_any(cpu_online_mask);
188 sh->cpu = cpu;
189 }
190
191 if (list_empty(&sh->lru)) {
192 struct r5worker_group *group;
193 group = conf->worker_groups + cpu_to_group(cpu);
194 list_add_tail(&sh->lru, &group->handle_list);
195 group->stripes_cnt++;
196 sh->group = group;
197 }
198
199 if (conf->worker_cnt_per_group == 0) {
200 md_wakeup_thread(conf->mddev->thread);
201 return;
202 }
203
204 group = conf->worker_groups + cpu_to_group(sh->cpu);
205
206 group->workers[0].working = true;
207 /* at least one worker should run to avoid race */
208 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209
210 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211 /* wakeup more workers */
212 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213 if (group->workers[i].working == false) {
214 group->workers[i].working = true;
215 queue_work_on(sh->cpu, raid5_wq,
216 &group->workers[i].work);
217 thread_cnt--;
218 }
219 }
220 }
221
222 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223 struct list_head *temp_inactive_list)
224 {
225 int i;
226 int injournal = 0; /* number of date pages with R5_InJournal */
227
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
230
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 injournal++;
235 /*
236 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
237 * data in journal, so they are not released to cached lists
238 */
239 if (conf->quiesce && r5c_is_writeback(conf->log) &&
240 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) {
241 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
242 r5c_make_stripe_write_out(sh);
243 set_bit(STRIPE_HANDLE, &sh->state);
244 }
245
246 if (test_bit(STRIPE_HANDLE, &sh->state)) {
247 if (test_bit(STRIPE_DELAYED, &sh->state) &&
248 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
249 list_add_tail(&sh->lru, &conf->delayed_list);
250 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
251 sh->bm_seq - conf->seq_write > 0)
252 list_add_tail(&sh->lru, &conf->bitmap_list);
253 else {
254 clear_bit(STRIPE_DELAYED, &sh->state);
255 clear_bit(STRIPE_BIT_DELAY, &sh->state);
256 if (conf->worker_cnt_per_group == 0) {
257 list_add_tail(&sh->lru, &conf->handle_list);
258 } else {
259 raid5_wakeup_stripe_thread(sh);
260 return;
261 }
262 }
263 md_wakeup_thread(conf->mddev->thread);
264 } else {
265 BUG_ON(stripe_operations_active(sh));
266 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
267 if (atomic_dec_return(&conf->preread_active_stripes)
268 < IO_THRESHOLD)
269 md_wakeup_thread(conf->mddev->thread);
270 atomic_dec(&conf->active_stripes);
271 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
272 if (!r5c_is_writeback(conf->log))
273 list_add_tail(&sh->lru, temp_inactive_list);
274 else {
275 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
276 if (injournal == 0)
277 list_add_tail(&sh->lru, temp_inactive_list);
278 else if (injournal == conf->raid_disks - conf->max_degraded) {
279 /* full stripe */
280 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
281 atomic_inc(&conf->r5c_cached_full_stripes);
282 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
283 atomic_dec(&conf->r5c_cached_partial_stripes);
284 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
285 r5c_check_cached_full_stripe(conf);
286 } else
287 /*
288 * STRIPE_R5C_PARTIAL_STRIPE is set in
289 * r5c_try_caching_write(). No need to
290 * set it again.
291 */
292 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
293 }
294 }
295 }
296 }
297
298 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
299 struct list_head *temp_inactive_list)
300 {
301 if (atomic_dec_and_test(&sh->count))
302 do_release_stripe(conf, sh, temp_inactive_list);
303 }
304
305 /*
306 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
307 *
308 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
309 * given time. Adding stripes only takes device lock, while deleting stripes
310 * only takes hash lock.
311 */
312 static void release_inactive_stripe_list(struct r5conf *conf,
313 struct list_head *temp_inactive_list,
314 int hash)
315 {
316 int size;
317 bool do_wakeup = false;
318 unsigned long flags;
319
320 if (hash == NR_STRIPE_HASH_LOCKS) {
321 size = NR_STRIPE_HASH_LOCKS;
322 hash = NR_STRIPE_HASH_LOCKS - 1;
323 } else
324 size = 1;
325 while (size) {
326 struct list_head *list = &temp_inactive_list[size - 1];
327
328 /*
329 * We don't hold any lock here yet, raid5_get_active_stripe() might
330 * remove stripes from the list
331 */
332 if (!list_empty_careful(list)) {
333 spin_lock_irqsave(conf->hash_locks + hash, flags);
334 if (list_empty(conf->inactive_list + hash) &&
335 !list_empty(list))
336 atomic_dec(&conf->empty_inactive_list_nr);
337 list_splice_tail_init(list, conf->inactive_list + hash);
338 do_wakeup = true;
339 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
340 }
341 size--;
342 hash--;
343 }
344
345 if (do_wakeup) {
346 wake_up(&conf->wait_for_stripe);
347 if (atomic_read(&conf->active_stripes) == 0)
348 wake_up(&conf->wait_for_quiescent);
349 if (conf->retry_read_aligned)
350 md_wakeup_thread(conf->mddev->thread);
351 }
352 }
353
354 /* should hold conf->device_lock already */
355 static int release_stripe_list(struct r5conf *conf,
356 struct list_head *temp_inactive_list)
357 {
358 struct stripe_head *sh, *t;
359 int count = 0;
360 struct llist_node *head;
361
362 head = llist_del_all(&conf->released_stripes);
363 head = llist_reverse_order(head);
364 llist_for_each_entry_safe(sh, t, head, release_list) {
365 int hash;
366
367 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
368 smp_mb();
369 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
370 /*
371 * Don't worry the bit is set here, because if the bit is set
372 * again, the count is always > 1. This is true for
373 * STRIPE_ON_UNPLUG_LIST bit too.
374 */
375 hash = sh->hash_lock_index;
376 __release_stripe(conf, sh, &temp_inactive_list[hash]);
377 count++;
378 }
379
380 return count;
381 }
382
383 void raid5_release_stripe(struct stripe_head *sh)
384 {
385 struct r5conf *conf = sh->raid_conf;
386 unsigned long flags;
387 struct list_head list;
388 int hash;
389 bool wakeup;
390
391 /* Avoid release_list until the last reference.
392 */
393 if (atomic_add_unless(&sh->count, -1, 1))
394 return;
395
396 if (unlikely(!conf->mddev->thread) ||
397 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
398 goto slow_path;
399 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
400 if (wakeup)
401 md_wakeup_thread(conf->mddev->thread);
402 return;
403 slow_path:
404 local_irq_save(flags);
405 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
406 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
407 INIT_LIST_HEAD(&list);
408 hash = sh->hash_lock_index;
409 do_release_stripe(conf, sh, &list);
410 spin_unlock(&conf->device_lock);
411 release_inactive_stripe_list(conf, &list, hash);
412 }
413 local_irq_restore(flags);
414 }
415
416 static inline void remove_hash(struct stripe_head *sh)
417 {
418 pr_debug("remove_hash(), stripe %llu\n",
419 (unsigned long long)sh->sector);
420
421 hlist_del_init(&sh->hash);
422 }
423
424 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
425 {
426 struct hlist_head *hp = stripe_hash(conf, sh->sector);
427
428 pr_debug("insert_hash(), stripe %llu\n",
429 (unsigned long long)sh->sector);
430
431 hlist_add_head(&sh->hash, hp);
432 }
433
434 /* find an idle stripe, make sure it is unhashed, and return it. */
435 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
436 {
437 struct stripe_head *sh = NULL;
438 struct list_head *first;
439
440 if (list_empty(conf->inactive_list + hash))
441 goto out;
442 first = (conf->inactive_list + hash)->next;
443 sh = list_entry(first, struct stripe_head, lru);
444 list_del_init(first);
445 remove_hash(sh);
446 atomic_inc(&conf->active_stripes);
447 BUG_ON(hash != sh->hash_lock_index);
448 if (list_empty(conf->inactive_list + hash))
449 atomic_inc(&conf->empty_inactive_list_nr);
450 out:
451 return sh;
452 }
453
454 static void shrink_buffers(struct stripe_head *sh)
455 {
456 struct page *p;
457 int i;
458 int num = sh->raid_conf->pool_size;
459
460 for (i = 0; i < num ; i++) {
461 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
462 p = sh->dev[i].page;
463 if (!p)
464 continue;
465 sh->dev[i].page = NULL;
466 put_page(p);
467 }
468 }
469
470 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
471 {
472 int i;
473 int num = sh->raid_conf->pool_size;
474
475 for (i = 0; i < num; i++) {
476 struct page *page;
477
478 if (!(page = alloc_page(gfp))) {
479 return 1;
480 }
481 sh->dev[i].page = page;
482 sh->dev[i].orig_page = page;
483 }
484 return 0;
485 }
486
487 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
488 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
489 struct stripe_head *sh);
490
491 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
492 {
493 struct r5conf *conf = sh->raid_conf;
494 int i, seq;
495
496 BUG_ON(atomic_read(&sh->count) != 0);
497 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
498 BUG_ON(stripe_operations_active(sh));
499 BUG_ON(sh->batch_head);
500
501 pr_debug("init_stripe called, stripe %llu\n",
502 (unsigned long long)sector);
503 retry:
504 seq = read_seqcount_begin(&conf->gen_lock);
505 sh->generation = conf->generation - previous;
506 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
507 sh->sector = sector;
508 stripe_set_idx(sector, conf, previous, sh);
509 sh->state = 0;
510
511 for (i = sh->disks; i--; ) {
512 struct r5dev *dev = &sh->dev[i];
513
514 if (dev->toread || dev->read || dev->towrite || dev->written ||
515 test_bit(R5_LOCKED, &dev->flags)) {
516 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
517 (unsigned long long)sh->sector, i, dev->toread,
518 dev->read, dev->towrite, dev->written,
519 test_bit(R5_LOCKED, &dev->flags));
520 WARN_ON(1);
521 }
522 dev->flags = 0;
523 raid5_build_block(sh, i, previous);
524 }
525 if (read_seqcount_retry(&conf->gen_lock, seq))
526 goto retry;
527 sh->overwrite_disks = 0;
528 insert_hash(conf, sh);
529 sh->cpu = smp_processor_id();
530 set_bit(STRIPE_BATCH_READY, &sh->state);
531 }
532
533 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
534 short generation)
535 {
536 struct stripe_head *sh;
537
538 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
539 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
540 if (sh->sector == sector && sh->generation == generation)
541 return sh;
542 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
543 return NULL;
544 }
545
546 /*
547 * Need to check if array has failed when deciding whether to:
548 * - start an array
549 * - remove non-faulty devices
550 * - add a spare
551 * - allow a reshape
552 * This determination is simple when no reshape is happening.
553 * However if there is a reshape, we need to carefully check
554 * both the before and after sections.
555 * This is because some failed devices may only affect one
556 * of the two sections, and some non-in_sync devices may
557 * be insync in the section most affected by failed devices.
558 */
559 int raid5_calc_degraded(struct r5conf *conf)
560 {
561 int degraded, degraded2;
562 int i;
563
564 rcu_read_lock();
565 degraded = 0;
566 for (i = 0; i < conf->previous_raid_disks; i++) {
567 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
568 if (rdev && test_bit(Faulty, &rdev->flags))
569 rdev = rcu_dereference(conf->disks[i].replacement);
570 if (!rdev || test_bit(Faulty, &rdev->flags))
571 degraded++;
572 else if (test_bit(In_sync, &rdev->flags))
573 ;
574 else
575 /* not in-sync or faulty.
576 * If the reshape increases the number of devices,
577 * this is being recovered by the reshape, so
578 * this 'previous' section is not in_sync.
579 * If the number of devices is being reduced however,
580 * the device can only be part of the array if
581 * we are reverting a reshape, so this section will
582 * be in-sync.
583 */
584 if (conf->raid_disks >= conf->previous_raid_disks)
585 degraded++;
586 }
587 rcu_read_unlock();
588 if (conf->raid_disks == conf->previous_raid_disks)
589 return degraded;
590 rcu_read_lock();
591 degraded2 = 0;
592 for (i = 0; i < conf->raid_disks; i++) {
593 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
594 if (rdev && test_bit(Faulty, &rdev->flags))
595 rdev = rcu_dereference(conf->disks[i].replacement);
596 if (!rdev || test_bit(Faulty, &rdev->flags))
597 degraded2++;
598 else if (test_bit(In_sync, &rdev->flags))
599 ;
600 else
601 /* not in-sync or faulty.
602 * If reshape increases the number of devices, this
603 * section has already been recovered, else it
604 * almost certainly hasn't.
605 */
606 if (conf->raid_disks <= conf->previous_raid_disks)
607 degraded2++;
608 }
609 rcu_read_unlock();
610 if (degraded2 > degraded)
611 return degraded2;
612 return degraded;
613 }
614
615 static int has_failed(struct r5conf *conf)
616 {
617 int degraded;
618
619 if (conf->mddev->reshape_position == MaxSector)
620 return conf->mddev->degraded > conf->max_degraded;
621
622 degraded = raid5_calc_degraded(conf);
623 if (degraded > conf->max_degraded)
624 return 1;
625 return 0;
626 }
627
628 struct stripe_head *
629 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
630 int previous, int noblock, int noquiesce)
631 {
632 struct stripe_head *sh;
633 int hash = stripe_hash_locks_hash(sector);
634 int inc_empty_inactive_list_flag;
635
636 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
637
638 spin_lock_irq(conf->hash_locks + hash);
639
640 do {
641 wait_event_lock_irq(conf->wait_for_quiescent,
642 conf->quiesce == 0 || noquiesce,
643 *(conf->hash_locks + hash));
644 sh = __find_stripe(conf, sector, conf->generation - previous);
645 if (!sh) {
646 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
647 sh = get_free_stripe(conf, hash);
648 if (!sh && !test_bit(R5_DID_ALLOC,
649 &conf->cache_state))
650 set_bit(R5_ALLOC_MORE,
651 &conf->cache_state);
652 }
653 if (noblock && sh == NULL)
654 break;
655
656 r5c_check_stripe_cache_usage(conf);
657 if (!sh) {
658 set_bit(R5_INACTIVE_BLOCKED,
659 &conf->cache_state);
660 r5l_wake_reclaim(conf->log, 0);
661 wait_event_lock_irq(
662 conf->wait_for_stripe,
663 !list_empty(conf->inactive_list + hash) &&
664 (atomic_read(&conf->active_stripes)
665 < (conf->max_nr_stripes * 3 / 4)
666 || !test_bit(R5_INACTIVE_BLOCKED,
667 &conf->cache_state)),
668 *(conf->hash_locks + hash));
669 clear_bit(R5_INACTIVE_BLOCKED,
670 &conf->cache_state);
671 } else {
672 init_stripe(sh, sector, previous);
673 atomic_inc(&sh->count);
674 }
675 } else if (!atomic_inc_not_zero(&sh->count)) {
676 spin_lock(&conf->device_lock);
677 if (!atomic_read(&sh->count)) {
678 if (!test_bit(STRIPE_HANDLE, &sh->state))
679 atomic_inc(&conf->active_stripes);
680 BUG_ON(list_empty(&sh->lru) &&
681 !test_bit(STRIPE_EXPANDING, &sh->state));
682 inc_empty_inactive_list_flag = 0;
683 if (!list_empty(conf->inactive_list + hash))
684 inc_empty_inactive_list_flag = 1;
685 list_del_init(&sh->lru);
686 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
687 atomic_inc(&conf->empty_inactive_list_nr);
688 if (sh->group) {
689 sh->group->stripes_cnt--;
690 sh->group = NULL;
691 }
692 }
693 atomic_inc(&sh->count);
694 spin_unlock(&conf->device_lock);
695 }
696 } while (sh == NULL);
697
698 spin_unlock_irq(conf->hash_locks + hash);
699 return sh;
700 }
701
702 static bool is_full_stripe_write(struct stripe_head *sh)
703 {
704 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
705 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
706 }
707
708 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
709 {
710 local_irq_disable();
711 if (sh1 > sh2) {
712 spin_lock(&sh2->stripe_lock);
713 spin_lock_nested(&sh1->stripe_lock, 1);
714 } else {
715 spin_lock(&sh1->stripe_lock);
716 spin_lock_nested(&sh2->stripe_lock, 1);
717 }
718 }
719
720 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
721 {
722 spin_unlock(&sh1->stripe_lock);
723 spin_unlock(&sh2->stripe_lock);
724 local_irq_enable();
725 }
726
727 /* Only freshly new full stripe normal write stripe can be added to a batch list */
728 static bool stripe_can_batch(struct stripe_head *sh)
729 {
730 struct r5conf *conf = sh->raid_conf;
731
732 if (conf->log)
733 return false;
734 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
735 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
736 is_full_stripe_write(sh);
737 }
738
739 /* we only do back search */
740 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
741 {
742 struct stripe_head *head;
743 sector_t head_sector, tmp_sec;
744 int hash;
745 int dd_idx;
746 int inc_empty_inactive_list_flag;
747
748 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
749 tmp_sec = sh->sector;
750 if (!sector_div(tmp_sec, conf->chunk_sectors))
751 return;
752 head_sector = sh->sector - STRIPE_SECTORS;
753
754 hash = stripe_hash_locks_hash(head_sector);
755 spin_lock_irq(conf->hash_locks + hash);
756 head = __find_stripe(conf, head_sector, conf->generation);
757 if (head && !atomic_inc_not_zero(&head->count)) {
758 spin_lock(&conf->device_lock);
759 if (!atomic_read(&head->count)) {
760 if (!test_bit(STRIPE_HANDLE, &head->state))
761 atomic_inc(&conf->active_stripes);
762 BUG_ON(list_empty(&head->lru) &&
763 !test_bit(STRIPE_EXPANDING, &head->state));
764 inc_empty_inactive_list_flag = 0;
765 if (!list_empty(conf->inactive_list + hash))
766 inc_empty_inactive_list_flag = 1;
767 list_del_init(&head->lru);
768 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
769 atomic_inc(&conf->empty_inactive_list_nr);
770 if (head->group) {
771 head->group->stripes_cnt--;
772 head->group = NULL;
773 }
774 }
775 atomic_inc(&head->count);
776 spin_unlock(&conf->device_lock);
777 }
778 spin_unlock_irq(conf->hash_locks + hash);
779
780 if (!head)
781 return;
782 if (!stripe_can_batch(head))
783 goto out;
784
785 lock_two_stripes(head, sh);
786 /* clear_batch_ready clear the flag */
787 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
788 goto unlock_out;
789
790 if (sh->batch_head)
791 goto unlock_out;
792
793 dd_idx = 0;
794 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
795 dd_idx++;
796 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
797 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
798 goto unlock_out;
799
800 if (head->batch_head) {
801 spin_lock(&head->batch_head->batch_lock);
802 /* This batch list is already running */
803 if (!stripe_can_batch(head)) {
804 spin_unlock(&head->batch_head->batch_lock);
805 goto unlock_out;
806 }
807
808 /*
809 * at this point, head's BATCH_READY could be cleared, but we
810 * can still add the stripe to batch list
811 */
812 list_add(&sh->batch_list, &head->batch_list);
813 spin_unlock(&head->batch_head->batch_lock);
814
815 sh->batch_head = head->batch_head;
816 } else {
817 head->batch_head = head;
818 sh->batch_head = head->batch_head;
819 spin_lock(&head->batch_lock);
820 list_add_tail(&sh->batch_list, &head->batch_list);
821 spin_unlock(&head->batch_lock);
822 }
823
824 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
825 if (atomic_dec_return(&conf->preread_active_stripes)
826 < IO_THRESHOLD)
827 md_wakeup_thread(conf->mddev->thread);
828
829 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
830 int seq = sh->bm_seq;
831 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
832 sh->batch_head->bm_seq > seq)
833 seq = sh->batch_head->bm_seq;
834 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
835 sh->batch_head->bm_seq = seq;
836 }
837
838 atomic_inc(&sh->count);
839 unlock_out:
840 unlock_two_stripes(head, sh);
841 out:
842 raid5_release_stripe(head);
843 }
844
845 /* Determine if 'data_offset' or 'new_data_offset' should be used
846 * in this stripe_head.
847 */
848 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
849 {
850 sector_t progress = conf->reshape_progress;
851 /* Need a memory barrier to make sure we see the value
852 * of conf->generation, or ->data_offset that was set before
853 * reshape_progress was updated.
854 */
855 smp_rmb();
856 if (progress == MaxSector)
857 return 0;
858 if (sh->generation == conf->generation - 1)
859 return 0;
860 /* We are in a reshape, and this is a new-generation stripe,
861 * so use new_data_offset.
862 */
863 return 1;
864 }
865
866 static void flush_deferred_bios(struct r5conf *conf)
867 {
868 struct bio_list tmp;
869 struct bio *bio;
870
871 if (!conf->batch_bio_dispatch || !conf->group_cnt)
872 return;
873
874 bio_list_init(&tmp);
875 spin_lock(&conf->pending_bios_lock);
876 bio_list_merge(&tmp, &conf->pending_bios);
877 bio_list_init(&conf->pending_bios);
878 spin_unlock(&conf->pending_bios_lock);
879
880 while ((bio = bio_list_pop(&tmp)))
881 generic_make_request(bio);
882 }
883
884 static void defer_bio_issue(struct r5conf *conf, struct bio *bio)
885 {
886 /*
887 * change group_cnt will drain all bios, so this is safe
888 *
889 * A read generally means a read-modify-write, which usually means a
890 * randwrite, so we don't delay it
891 */
892 if (!conf->batch_bio_dispatch || !conf->group_cnt ||
893 bio_op(bio) == REQ_OP_READ) {
894 generic_make_request(bio);
895 return;
896 }
897 spin_lock(&conf->pending_bios_lock);
898 bio_list_add(&conf->pending_bios, bio);
899 spin_unlock(&conf->pending_bios_lock);
900 md_wakeup_thread(conf->mddev->thread);
901 }
902
903 static void
904 raid5_end_read_request(struct bio *bi);
905 static void
906 raid5_end_write_request(struct bio *bi);
907
908 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
909 {
910 struct r5conf *conf = sh->raid_conf;
911 int i, disks = sh->disks;
912 struct stripe_head *head_sh = sh;
913
914 might_sleep();
915
916 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
917 /* writing out phase */
918 if (s->waiting_extra_page)
919 return;
920 if (r5l_write_stripe(conf->log, sh) == 0)
921 return;
922 } else { /* caching phase */
923 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) {
924 r5c_cache_data(conf->log, sh, s);
925 return;
926 }
927 }
928
929 for (i = disks; i--; ) {
930 int op, op_flags = 0;
931 int replace_only = 0;
932 struct bio *bi, *rbi;
933 struct md_rdev *rdev, *rrdev = NULL;
934
935 sh = head_sh;
936 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
937 op = REQ_OP_WRITE;
938 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
939 op_flags = REQ_FUA;
940 if (test_bit(R5_Discard, &sh->dev[i].flags))
941 op = REQ_OP_DISCARD;
942 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
943 op = REQ_OP_READ;
944 else if (test_and_clear_bit(R5_WantReplace,
945 &sh->dev[i].flags)) {
946 op = REQ_OP_WRITE;
947 replace_only = 1;
948 } else
949 continue;
950 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
951 op_flags |= REQ_SYNC;
952
953 again:
954 bi = &sh->dev[i].req;
955 rbi = &sh->dev[i].rreq; /* For writing to replacement */
956
957 rcu_read_lock();
958 rrdev = rcu_dereference(conf->disks[i].replacement);
959 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
960 rdev = rcu_dereference(conf->disks[i].rdev);
961 if (!rdev) {
962 rdev = rrdev;
963 rrdev = NULL;
964 }
965 if (op_is_write(op)) {
966 if (replace_only)
967 rdev = NULL;
968 if (rdev == rrdev)
969 /* We raced and saw duplicates */
970 rrdev = NULL;
971 } else {
972 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
973 rdev = rrdev;
974 rrdev = NULL;
975 }
976
977 if (rdev && test_bit(Faulty, &rdev->flags))
978 rdev = NULL;
979 if (rdev)
980 atomic_inc(&rdev->nr_pending);
981 if (rrdev && test_bit(Faulty, &rrdev->flags))
982 rrdev = NULL;
983 if (rrdev)
984 atomic_inc(&rrdev->nr_pending);
985 rcu_read_unlock();
986
987 /* We have already checked bad blocks for reads. Now
988 * need to check for writes. We never accept write errors
989 * on the replacement, so we don't to check rrdev.
990 */
991 while (op_is_write(op) && rdev &&
992 test_bit(WriteErrorSeen, &rdev->flags)) {
993 sector_t first_bad;
994 int bad_sectors;
995 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
996 &first_bad, &bad_sectors);
997 if (!bad)
998 break;
999
1000 if (bad < 0) {
1001 set_bit(BlockedBadBlocks, &rdev->flags);
1002 if (!conf->mddev->external &&
1003 conf->mddev->sb_flags) {
1004 /* It is very unlikely, but we might
1005 * still need to write out the
1006 * bad block log - better give it
1007 * a chance*/
1008 md_check_recovery(conf->mddev);
1009 }
1010 /*
1011 * Because md_wait_for_blocked_rdev
1012 * will dec nr_pending, we must
1013 * increment it first.
1014 */
1015 atomic_inc(&rdev->nr_pending);
1016 md_wait_for_blocked_rdev(rdev, conf->mddev);
1017 } else {
1018 /* Acknowledged bad block - skip the write */
1019 rdev_dec_pending(rdev, conf->mddev);
1020 rdev = NULL;
1021 }
1022 }
1023
1024 if (rdev) {
1025 if (s->syncing || s->expanding || s->expanded
1026 || s->replacing)
1027 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1028
1029 set_bit(STRIPE_IO_STARTED, &sh->state);
1030
1031 bi->bi_bdev = rdev->bdev;
1032 bio_set_op_attrs(bi, op, op_flags);
1033 bi->bi_end_io = op_is_write(op)
1034 ? raid5_end_write_request
1035 : raid5_end_read_request;
1036 bi->bi_private = sh;
1037
1038 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1039 __func__, (unsigned long long)sh->sector,
1040 bi->bi_opf, i);
1041 atomic_inc(&sh->count);
1042 if (sh != head_sh)
1043 atomic_inc(&head_sh->count);
1044 if (use_new_offset(conf, sh))
1045 bi->bi_iter.bi_sector = (sh->sector
1046 + rdev->new_data_offset);
1047 else
1048 bi->bi_iter.bi_sector = (sh->sector
1049 + rdev->data_offset);
1050 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1051 bi->bi_opf |= REQ_NOMERGE;
1052
1053 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1054 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1055
1056 if (!op_is_write(op) &&
1057 test_bit(R5_InJournal, &sh->dev[i].flags))
1058 /*
1059 * issuing read for a page in journal, this
1060 * must be preparing for prexor in rmw; read
1061 * the data into orig_page
1062 */
1063 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1064 else
1065 sh->dev[i].vec.bv_page = sh->dev[i].page;
1066 bi->bi_vcnt = 1;
1067 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1068 bi->bi_io_vec[0].bv_offset = 0;
1069 bi->bi_iter.bi_size = STRIPE_SIZE;
1070 /*
1071 * If this is discard request, set bi_vcnt 0. We don't
1072 * want to confuse SCSI because SCSI will replace payload
1073 */
1074 if (op == REQ_OP_DISCARD)
1075 bi->bi_vcnt = 0;
1076 if (rrdev)
1077 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1078
1079 if (conf->mddev->gendisk)
1080 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1081 bi, disk_devt(conf->mddev->gendisk),
1082 sh->dev[i].sector);
1083 defer_bio_issue(conf, bi);
1084 }
1085 if (rrdev) {
1086 if (s->syncing || s->expanding || s->expanded
1087 || s->replacing)
1088 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1089
1090 set_bit(STRIPE_IO_STARTED, &sh->state);
1091
1092 rbi->bi_bdev = rrdev->bdev;
1093 bio_set_op_attrs(rbi, op, op_flags);
1094 BUG_ON(!op_is_write(op));
1095 rbi->bi_end_io = raid5_end_write_request;
1096 rbi->bi_private = sh;
1097
1098 pr_debug("%s: for %llu schedule op %d on "
1099 "replacement disc %d\n",
1100 __func__, (unsigned long long)sh->sector,
1101 rbi->bi_opf, i);
1102 atomic_inc(&sh->count);
1103 if (sh != head_sh)
1104 atomic_inc(&head_sh->count);
1105 if (use_new_offset(conf, sh))
1106 rbi->bi_iter.bi_sector = (sh->sector
1107 + rrdev->new_data_offset);
1108 else
1109 rbi->bi_iter.bi_sector = (sh->sector
1110 + rrdev->data_offset);
1111 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1112 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1113 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1114 rbi->bi_vcnt = 1;
1115 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1116 rbi->bi_io_vec[0].bv_offset = 0;
1117 rbi->bi_iter.bi_size = STRIPE_SIZE;
1118 /*
1119 * If this is discard request, set bi_vcnt 0. We don't
1120 * want to confuse SCSI because SCSI will replace payload
1121 */
1122 if (op == REQ_OP_DISCARD)
1123 rbi->bi_vcnt = 0;
1124 if (conf->mddev->gendisk)
1125 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1126 rbi, disk_devt(conf->mddev->gendisk),
1127 sh->dev[i].sector);
1128 defer_bio_issue(conf, rbi);
1129 }
1130 if (!rdev && !rrdev) {
1131 if (op_is_write(op))
1132 set_bit(STRIPE_DEGRADED, &sh->state);
1133 pr_debug("skip op %d on disc %d for sector %llu\n",
1134 bi->bi_opf, i, (unsigned long long)sh->sector);
1135 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1136 set_bit(STRIPE_HANDLE, &sh->state);
1137 }
1138
1139 if (!head_sh->batch_head)
1140 continue;
1141 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1142 batch_list);
1143 if (sh != head_sh)
1144 goto again;
1145 }
1146 }
1147
1148 static struct dma_async_tx_descriptor *
1149 async_copy_data(int frombio, struct bio *bio, struct page **page,
1150 sector_t sector, struct dma_async_tx_descriptor *tx,
1151 struct stripe_head *sh, int no_skipcopy)
1152 {
1153 struct bio_vec bvl;
1154 struct bvec_iter iter;
1155 struct page *bio_page;
1156 int page_offset;
1157 struct async_submit_ctl submit;
1158 enum async_tx_flags flags = 0;
1159
1160 if (bio->bi_iter.bi_sector >= sector)
1161 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1162 else
1163 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1164
1165 if (frombio)
1166 flags |= ASYNC_TX_FENCE;
1167 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1168
1169 bio_for_each_segment(bvl, bio, iter) {
1170 int len = bvl.bv_len;
1171 int clen;
1172 int b_offset = 0;
1173
1174 if (page_offset < 0) {
1175 b_offset = -page_offset;
1176 page_offset += b_offset;
1177 len -= b_offset;
1178 }
1179
1180 if (len > 0 && page_offset + len > STRIPE_SIZE)
1181 clen = STRIPE_SIZE - page_offset;
1182 else
1183 clen = len;
1184
1185 if (clen > 0) {
1186 b_offset += bvl.bv_offset;
1187 bio_page = bvl.bv_page;
1188 if (frombio) {
1189 if (sh->raid_conf->skip_copy &&
1190 b_offset == 0 && page_offset == 0 &&
1191 clen == STRIPE_SIZE &&
1192 !no_skipcopy)
1193 *page = bio_page;
1194 else
1195 tx = async_memcpy(*page, bio_page, page_offset,
1196 b_offset, clen, &submit);
1197 } else
1198 tx = async_memcpy(bio_page, *page, b_offset,
1199 page_offset, clen, &submit);
1200 }
1201 /* chain the operations */
1202 submit.depend_tx = tx;
1203
1204 if (clen < len) /* hit end of page */
1205 break;
1206 page_offset += len;
1207 }
1208
1209 return tx;
1210 }
1211
1212 static void ops_complete_biofill(void *stripe_head_ref)
1213 {
1214 struct stripe_head *sh = stripe_head_ref;
1215 struct bio_list return_bi = BIO_EMPTY_LIST;
1216 int i;
1217
1218 pr_debug("%s: stripe %llu\n", __func__,
1219 (unsigned long long)sh->sector);
1220
1221 /* clear completed biofills */
1222 for (i = sh->disks; i--; ) {
1223 struct r5dev *dev = &sh->dev[i];
1224
1225 /* acknowledge completion of a biofill operation */
1226 /* and check if we need to reply to a read request,
1227 * new R5_Wantfill requests are held off until
1228 * !STRIPE_BIOFILL_RUN
1229 */
1230 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1231 struct bio *rbi, *rbi2;
1232
1233 BUG_ON(!dev->read);
1234 rbi = dev->read;
1235 dev->read = NULL;
1236 while (rbi && rbi->bi_iter.bi_sector <
1237 dev->sector + STRIPE_SECTORS) {
1238 rbi2 = r5_next_bio(rbi, dev->sector);
1239 if (!raid5_dec_bi_active_stripes(rbi))
1240 bio_list_add(&return_bi, rbi);
1241 rbi = rbi2;
1242 }
1243 }
1244 }
1245 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1246
1247 return_io(&return_bi);
1248
1249 set_bit(STRIPE_HANDLE, &sh->state);
1250 raid5_release_stripe(sh);
1251 }
1252
1253 static void ops_run_biofill(struct stripe_head *sh)
1254 {
1255 struct dma_async_tx_descriptor *tx = NULL;
1256 struct async_submit_ctl submit;
1257 int i;
1258
1259 BUG_ON(sh->batch_head);
1260 pr_debug("%s: stripe %llu\n", __func__,
1261 (unsigned long long)sh->sector);
1262
1263 for (i = sh->disks; i--; ) {
1264 struct r5dev *dev = &sh->dev[i];
1265 if (test_bit(R5_Wantfill, &dev->flags)) {
1266 struct bio *rbi;
1267 spin_lock_irq(&sh->stripe_lock);
1268 dev->read = rbi = dev->toread;
1269 dev->toread = NULL;
1270 spin_unlock_irq(&sh->stripe_lock);
1271 while (rbi && rbi->bi_iter.bi_sector <
1272 dev->sector + STRIPE_SECTORS) {
1273 tx = async_copy_data(0, rbi, &dev->page,
1274 dev->sector, tx, sh, 0);
1275 rbi = r5_next_bio(rbi, dev->sector);
1276 }
1277 }
1278 }
1279
1280 atomic_inc(&sh->count);
1281 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1282 async_trigger_callback(&submit);
1283 }
1284
1285 static void mark_target_uptodate(struct stripe_head *sh, int target)
1286 {
1287 struct r5dev *tgt;
1288
1289 if (target < 0)
1290 return;
1291
1292 tgt = &sh->dev[target];
1293 set_bit(R5_UPTODATE, &tgt->flags);
1294 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1295 clear_bit(R5_Wantcompute, &tgt->flags);
1296 }
1297
1298 static void ops_complete_compute(void *stripe_head_ref)
1299 {
1300 struct stripe_head *sh = stripe_head_ref;
1301
1302 pr_debug("%s: stripe %llu\n", __func__,
1303 (unsigned long long)sh->sector);
1304
1305 /* mark the computed target(s) as uptodate */
1306 mark_target_uptodate(sh, sh->ops.target);
1307 mark_target_uptodate(sh, sh->ops.target2);
1308
1309 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1310 if (sh->check_state == check_state_compute_run)
1311 sh->check_state = check_state_compute_result;
1312 set_bit(STRIPE_HANDLE, &sh->state);
1313 raid5_release_stripe(sh);
1314 }
1315
1316 /* return a pointer to the address conversion region of the scribble buffer */
1317 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1318 struct raid5_percpu *percpu, int i)
1319 {
1320 void *addr;
1321
1322 addr = flex_array_get(percpu->scribble, i);
1323 return addr + sizeof(struct page *) * (sh->disks + 2);
1324 }
1325
1326 /* return a pointer to the address conversion region of the scribble buffer */
1327 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1328 {
1329 void *addr;
1330
1331 addr = flex_array_get(percpu->scribble, i);
1332 return addr;
1333 }
1334
1335 static struct dma_async_tx_descriptor *
1336 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1337 {
1338 int disks = sh->disks;
1339 struct page **xor_srcs = to_addr_page(percpu, 0);
1340 int target = sh->ops.target;
1341 struct r5dev *tgt = &sh->dev[target];
1342 struct page *xor_dest = tgt->page;
1343 int count = 0;
1344 struct dma_async_tx_descriptor *tx;
1345 struct async_submit_ctl submit;
1346 int i;
1347
1348 BUG_ON(sh->batch_head);
1349
1350 pr_debug("%s: stripe %llu block: %d\n",
1351 __func__, (unsigned long long)sh->sector, target);
1352 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1353
1354 for (i = disks; i--; )
1355 if (i != target)
1356 xor_srcs[count++] = sh->dev[i].page;
1357
1358 atomic_inc(&sh->count);
1359
1360 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1361 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1362 if (unlikely(count == 1))
1363 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1364 else
1365 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1366
1367 return tx;
1368 }
1369
1370 /* set_syndrome_sources - populate source buffers for gen_syndrome
1371 * @srcs - (struct page *) array of size sh->disks
1372 * @sh - stripe_head to parse
1373 *
1374 * Populates srcs in proper layout order for the stripe and returns the
1375 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1376 * destination buffer is recorded in srcs[count] and the Q destination
1377 * is recorded in srcs[count+1]].
1378 */
1379 static int set_syndrome_sources(struct page **srcs,
1380 struct stripe_head *sh,
1381 int srctype)
1382 {
1383 int disks = sh->disks;
1384 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1385 int d0_idx = raid6_d0(sh);
1386 int count;
1387 int i;
1388
1389 for (i = 0; i < disks; i++)
1390 srcs[i] = NULL;
1391
1392 count = 0;
1393 i = d0_idx;
1394 do {
1395 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1396 struct r5dev *dev = &sh->dev[i];
1397
1398 if (i == sh->qd_idx || i == sh->pd_idx ||
1399 (srctype == SYNDROME_SRC_ALL) ||
1400 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1401 (test_bit(R5_Wantdrain, &dev->flags) ||
1402 test_bit(R5_InJournal, &dev->flags))) ||
1403 (srctype == SYNDROME_SRC_WRITTEN &&
1404 dev->written)) {
1405 if (test_bit(R5_InJournal, &dev->flags))
1406 srcs[slot] = sh->dev[i].orig_page;
1407 else
1408 srcs[slot] = sh->dev[i].page;
1409 }
1410 i = raid6_next_disk(i, disks);
1411 } while (i != d0_idx);
1412
1413 return syndrome_disks;
1414 }
1415
1416 static struct dma_async_tx_descriptor *
1417 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1418 {
1419 int disks = sh->disks;
1420 struct page **blocks = to_addr_page(percpu, 0);
1421 int target;
1422 int qd_idx = sh->qd_idx;
1423 struct dma_async_tx_descriptor *tx;
1424 struct async_submit_ctl submit;
1425 struct r5dev *tgt;
1426 struct page *dest;
1427 int i;
1428 int count;
1429
1430 BUG_ON(sh->batch_head);
1431 if (sh->ops.target < 0)
1432 target = sh->ops.target2;
1433 else if (sh->ops.target2 < 0)
1434 target = sh->ops.target;
1435 else
1436 /* we should only have one valid target */
1437 BUG();
1438 BUG_ON(target < 0);
1439 pr_debug("%s: stripe %llu block: %d\n",
1440 __func__, (unsigned long long)sh->sector, target);
1441
1442 tgt = &sh->dev[target];
1443 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1444 dest = tgt->page;
1445
1446 atomic_inc(&sh->count);
1447
1448 if (target == qd_idx) {
1449 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1450 blocks[count] = NULL; /* regenerating p is not necessary */
1451 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1452 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1453 ops_complete_compute, sh,
1454 to_addr_conv(sh, percpu, 0));
1455 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1456 } else {
1457 /* Compute any data- or p-drive using XOR */
1458 count = 0;
1459 for (i = disks; i-- ; ) {
1460 if (i == target || i == qd_idx)
1461 continue;
1462 blocks[count++] = sh->dev[i].page;
1463 }
1464
1465 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1466 NULL, ops_complete_compute, sh,
1467 to_addr_conv(sh, percpu, 0));
1468 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1469 }
1470
1471 return tx;
1472 }
1473
1474 static struct dma_async_tx_descriptor *
1475 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1476 {
1477 int i, count, disks = sh->disks;
1478 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1479 int d0_idx = raid6_d0(sh);
1480 int faila = -1, failb = -1;
1481 int target = sh->ops.target;
1482 int target2 = sh->ops.target2;
1483 struct r5dev *tgt = &sh->dev[target];
1484 struct r5dev *tgt2 = &sh->dev[target2];
1485 struct dma_async_tx_descriptor *tx;
1486 struct page **blocks = to_addr_page(percpu, 0);
1487 struct async_submit_ctl submit;
1488
1489 BUG_ON(sh->batch_head);
1490 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1491 __func__, (unsigned long long)sh->sector, target, target2);
1492 BUG_ON(target < 0 || target2 < 0);
1493 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1494 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1495
1496 /* we need to open-code set_syndrome_sources to handle the
1497 * slot number conversion for 'faila' and 'failb'
1498 */
1499 for (i = 0; i < disks ; i++)
1500 blocks[i] = NULL;
1501 count = 0;
1502 i = d0_idx;
1503 do {
1504 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1505
1506 blocks[slot] = sh->dev[i].page;
1507
1508 if (i == target)
1509 faila = slot;
1510 if (i == target2)
1511 failb = slot;
1512 i = raid6_next_disk(i, disks);
1513 } while (i != d0_idx);
1514
1515 BUG_ON(faila == failb);
1516 if (failb < faila)
1517 swap(faila, failb);
1518 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1519 __func__, (unsigned long long)sh->sector, faila, failb);
1520
1521 atomic_inc(&sh->count);
1522
1523 if (failb == syndrome_disks+1) {
1524 /* Q disk is one of the missing disks */
1525 if (faila == syndrome_disks) {
1526 /* Missing P+Q, just recompute */
1527 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528 ops_complete_compute, sh,
1529 to_addr_conv(sh, percpu, 0));
1530 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1531 STRIPE_SIZE, &submit);
1532 } else {
1533 struct page *dest;
1534 int data_target;
1535 int qd_idx = sh->qd_idx;
1536
1537 /* Missing D+Q: recompute D from P, then recompute Q */
1538 if (target == qd_idx)
1539 data_target = target2;
1540 else
1541 data_target = target;
1542
1543 count = 0;
1544 for (i = disks; i-- ; ) {
1545 if (i == data_target || i == qd_idx)
1546 continue;
1547 blocks[count++] = sh->dev[i].page;
1548 }
1549 dest = sh->dev[data_target].page;
1550 init_async_submit(&submit,
1551 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1552 NULL, NULL, NULL,
1553 to_addr_conv(sh, percpu, 0));
1554 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1555 &submit);
1556
1557 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1558 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1559 ops_complete_compute, sh,
1560 to_addr_conv(sh, percpu, 0));
1561 return async_gen_syndrome(blocks, 0, count+2,
1562 STRIPE_SIZE, &submit);
1563 }
1564 } else {
1565 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1566 ops_complete_compute, sh,
1567 to_addr_conv(sh, percpu, 0));
1568 if (failb == syndrome_disks) {
1569 /* We're missing D+P. */
1570 return async_raid6_datap_recov(syndrome_disks+2,
1571 STRIPE_SIZE, faila,
1572 blocks, &submit);
1573 } else {
1574 /* We're missing D+D. */
1575 return async_raid6_2data_recov(syndrome_disks+2,
1576 STRIPE_SIZE, faila, failb,
1577 blocks, &submit);
1578 }
1579 }
1580 }
1581
1582 static void ops_complete_prexor(void *stripe_head_ref)
1583 {
1584 struct stripe_head *sh = stripe_head_ref;
1585
1586 pr_debug("%s: stripe %llu\n", __func__,
1587 (unsigned long long)sh->sector);
1588
1589 if (r5c_is_writeback(sh->raid_conf->log))
1590 /*
1591 * raid5-cache write back uses orig_page during prexor.
1592 * After prexor, it is time to free orig_page
1593 */
1594 r5c_release_extra_page(sh);
1595 }
1596
1597 static struct dma_async_tx_descriptor *
1598 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1599 struct dma_async_tx_descriptor *tx)
1600 {
1601 int disks = sh->disks;
1602 struct page **xor_srcs = to_addr_page(percpu, 0);
1603 int count = 0, pd_idx = sh->pd_idx, i;
1604 struct async_submit_ctl submit;
1605
1606 /* existing parity data subtracted */
1607 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1608
1609 BUG_ON(sh->batch_head);
1610 pr_debug("%s: stripe %llu\n", __func__,
1611 (unsigned long long)sh->sector);
1612
1613 for (i = disks; i--; ) {
1614 struct r5dev *dev = &sh->dev[i];
1615 /* Only process blocks that are known to be uptodate */
1616 if (test_bit(R5_InJournal, &dev->flags))
1617 xor_srcs[count++] = dev->orig_page;
1618 else if (test_bit(R5_Wantdrain, &dev->flags))
1619 xor_srcs[count++] = dev->page;
1620 }
1621
1622 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1623 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1624 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1625
1626 return tx;
1627 }
1628
1629 static struct dma_async_tx_descriptor *
1630 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1631 struct dma_async_tx_descriptor *tx)
1632 {
1633 struct page **blocks = to_addr_page(percpu, 0);
1634 int count;
1635 struct async_submit_ctl submit;
1636
1637 pr_debug("%s: stripe %llu\n", __func__,
1638 (unsigned long long)sh->sector);
1639
1640 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1641
1642 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1643 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1644 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1645
1646 return tx;
1647 }
1648
1649 static struct dma_async_tx_descriptor *
1650 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1651 {
1652 struct r5conf *conf = sh->raid_conf;
1653 int disks = sh->disks;
1654 int i;
1655 struct stripe_head *head_sh = sh;
1656
1657 pr_debug("%s: stripe %llu\n", __func__,
1658 (unsigned long long)sh->sector);
1659
1660 for (i = disks; i--; ) {
1661 struct r5dev *dev;
1662 struct bio *chosen;
1663
1664 sh = head_sh;
1665 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1666 struct bio *wbi;
1667
1668 again:
1669 dev = &sh->dev[i];
1670 /*
1671 * clear R5_InJournal, so when rewriting a page in
1672 * journal, it is not skipped by r5l_log_stripe()
1673 */
1674 clear_bit(R5_InJournal, &dev->flags);
1675 spin_lock_irq(&sh->stripe_lock);
1676 chosen = dev->towrite;
1677 dev->towrite = NULL;
1678 sh->overwrite_disks = 0;
1679 BUG_ON(dev->written);
1680 wbi = dev->written = chosen;
1681 spin_unlock_irq(&sh->stripe_lock);
1682 WARN_ON(dev->page != dev->orig_page);
1683
1684 while (wbi && wbi->bi_iter.bi_sector <
1685 dev->sector + STRIPE_SECTORS) {
1686 if (wbi->bi_opf & REQ_FUA)
1687 set_bit(R5_WantFUA, &dev->flags);
1688 if (wbi->bi_opf & REQ_SYNC)
1689 set_bit(R5_SyncIO, &dev->flags);
1690 if (bio_op(wbi) == REQ_OP_DISCARD)
1691 set_bit(R5_Discard, &dev->flags);
1692 else {
1693 tx = async_copy_data(1, wbi, &dev->page,
1694 dev->sector, tx, sh,
1695 r5c_is_writeback(conf->log));
1696 if (dev->page != dev->orig_page &&
1697 !r5c_is_writeback(conf->log)) {
1698 set_bit(R5_SkipCopy, &dev->flags);
1699 clear_bit(R5_UPTODATE, &dev->flags);
1700 clear_bit(R5_OVERWRITE, &dev->flags);
1701 }
1702 }
1703 wbi = r5_next_bio(wbi, dev->sector);
1704 }
1705
1706 if (head_sh->batch_head) {
1707 sh = list_first_entry(&sh->batch_list,
1708 struct stripe_head,
1709 batch_list);
1710 if (sh == head_sh)
1711 continue;
1712 goto again;
1713 }
1714 }
1715 }
1716
1717 return tx;
1718 }
1719
1720 static void ops_complete_reconstruct(void *stripe_head_ref)
1721 {
1722 struct stripe_head *sh = stripe_head_ref;
1723 int disks = sh->disks;
1724 int pd_idx = sh->pd_idx;
1725 int qd_idx = sh->qd_idx;
1726 int i;
1727 bool fua = false, sync = false, discard = false;
1728
1729 pr_debug("%s: stripe %llu\n", __func__,
1730 (unsigned long long)sh->sector);
1731
1732 for (i = disks; i--; ) {
1733 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1734 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1735 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1736 }
1737
1738 for (i = disks; i--; ) {
1739 struct r5dev *dev = &sh->dev[i];
1740
1741 if (dev->written || i == pd_idx || i == qd_idx) {
1742 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1743 set_bit(R5_UPTODATE, &dev->flags);
1744 if (fua)
1745 set_bit(R5_WantFUA, &dev->flags);
1746 if (sync)
1747 set_bit(R5_SyncIO, &dev->flags);
1748 }
1749 }
1750
1751 if (sh->reconstruct_state == reconstruct_state_drain_run)
1752 sh->reconstruct_state = reconstruct_state_drain_result;
1753 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1754 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1755 else {
1756 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1757 sh->reconstruct_state = reconstruct_state_result;
1758 }
1759
1760 set_bit(STRIPE_HANDLE, &sh->state);
1761 raid5_release_stripe(sh);
1762 }
1763
1764 static void
1765 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1766 struct dma_async_tx_descriptor *tx)
1767 {
1768 int disks = sh->disks;
1769 struct page **xor_srcs;
1770 struct async_submit_ctl submit;
1771 int count, pd_idx = sh->pd_idx, i;
1772 struct page *xor_dest;
1773 int prexor = 0;
1774 unsigned long flags;
1775 int j = 0;
1776 struct stripe_head *head_sh = sh;
1777 int last_stripe;
1778
1779 pr_debug("%s: stripe %llu\n", __func__,
1780 (unsigned long long)sh->sector);
1781
1782 for (i = 0; i < sh->disks; i++) {
1783 if (pd_idx == i)
1784 continue;
1785 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1786 break;
1787 }
1788 if (i >= sh->disks) {
1789 atomic_inc(&sh->count);
1790 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1791 ops_complete_reconstruct(sh);
1792 return;
1793 }
1794 again:
1795 count = 0;
1796 xor_srcs = to_addr_page(percpu, j);
1797 /* check if prexor is active which means only process blocks
1798 * that are part of a read-modify-write (written)
1799 */
1800 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1801 prexor = 1;
1802 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1803 for (i = disks; i--; ) {
1804 struct r5dev *dev = &sh->dev[i];
1805 if (head_sh->dev[i].written ||
1806 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1807 xor_srcs[count++] = dev->page;
1808 }
1809 } else {
1810 xor_dest = sh->dev[pd_idx].page;
1811 for (i = disks; i--; ) {
1812 struct r5dev *dev = &sh->dev[i];
1813 if (i != pd_idx)
1814 xor_srcs[count++] = dev->page;
1815 }
1816 }
1817
1818 /* 1/ if we prexor'd then the dest is reused as a source
1819 * 2/ if we did not prexor then we are redoing the parity
1820 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1821 * for the synchronous xor case
1822 */
1823 last_stripe = !head_sh->batch_head ||
1824 list_first_entry(&sh->batch_list,
1825 struct stripe_head, batch_list) == head_sh;
1826 if (last_stripe) {
1827 flags = ASYNC_TX_ACK |
1828 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1829
1830 atomic_inc(&head_sh->count);
1831 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1832 to_addr_conv(sh, percpu, j));
1833 } else {
1834 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1835 init_async_submit(&submit, flags, tx, NULL, NULL,
1836 to_addr_conv(sh, percpu, j));
1837 }
1838
1839 if (unlikely(count == 1))
1840 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1841 else
1842 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1843 if (!last_stripe) {
1844 j++;
1845 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1846 batch_list);
1847 goto again;
1848 }
1849 }
1850
1851 static void
1852 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1853 struct dma_async_tx_descriptor *tx)
1854 {
1855 struct async_submit_ctl submit;
1856 struct page **blocks;
1857 int count, i, j = 0;
1858 struct stripe_head *head_sh = sh;
1859 int last_stripe;
1860 int synflags;
1861 unsigned long txflags;
1862
1863 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1864
1865 for (i = 0; i < sh->disks; i++) {
1866 if (sh->pd_idx == i || sh->qd_idx == i)
1867 continue;
1868 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1869 break;
1870 }
1871 if (i >= sh->disks) {
1872 atomic_inc(&sh->count);
1873 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1874 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1875 ops_complete_reconstruct(sh);
1876 return;
1877 }
1878
1879 again:
1880 blocks = to_addr_page(percpu, j);
1881
1882 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1883 synflags = SYNDROME_SRC_WRITTEN;
1884 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1885 } else {
1886 synflags = SYNDROME_SRC_ALL;
1887 txflags = ASYNC_TX_ACK;
1888 }
1889
1890 count = set_syndrome_sources(blocks, sh, synflags);
1891 last_stripe = !head_sh->batch_head ||
1892 list_first_entry(&sh->batch_list,
1893 struct stripe_head, batch_list) == head_sh;
1894
1895 if (last_stripe) {
1896 atomic_inc(&head_sh->count);
1897 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1898 head_sh, to_addr_conv(sh, percpu, j));
1899 } else
1900 init_async_submit(&submit, 0, tx, NULL, NULL,
1901 to_addr_conv(sh, percpu, j));
1902 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1903 if (!last_stripe) {
1904 j++;
1905 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1906 batch_list);
1907 goto again;
1908 }
1909 }
1910
1911 static void ops_complete_check(void *stripe_head_ref)
1912 {
1913 struct stripe_head *sh = stripe_head_ref;
1914
1915 pr_debug("%s: stripe %llu\n", __func__,
1916 (unsigned long long)sh->sector);
1917
1918 sh->check_state = check_state_check_result;
1919 set_bit(STRIPE_HANDLE, &sh->state);
1920 raid5_release_stripe(sh);
1921 }
1922
1923 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1924 {
1925 int disks = sh->disks;
1926 int pd_idx = sh->pd_idx;
1927 int qd_idx = sh->qd_idx;
1928 struct page *xor_dest;
1929 struct page **xor_srcs = to_addr_page(percpu, 0);
1930 struct dma_async_tx_descriptor *tx;
1931 struct async_submit_ctl submit;
1932 int count;
1933 int i;
1934
1935 pr_debug("%s: stripe %llu\n", __func__,
1936 (unsigned long long)sh->sector);
1937
1938 BUG_ON(sh->batch_head);
1939 count = 0;
1940 xor_dest = sh->dev[pd_idx].page;
1941 xor_srcs[count++] = xor_dest;
1942 for (i = disks; i--; ) {
1943 if (i == pd_idx || i == qd_idx)
1944 continue;
1945 xor_srcs[count++] = sh->dev[i].page;
1946 }
1947
1948 init_async_submit(&submit, 0, NULL, NULL, NULL,
1949 to_addr_conv(sh, percpu, 0));
1950 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1951 &sh->ops.zero_sum_result, &submit);
1952
1953 atomic_inc(&sh->count);
1954 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1955 tx = async_trigger_callback(&submit);
1956 }
1957
1958 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1959 {
1960 struct page **srcs = to_addr_page(percpu, 0);
1961 struct async_submit_ctl submit;
1962 int count;
1963
1964 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1965 (unsigned long long)sh->sector, checkp);
1966
1967 BUG_ON(sh->batch_head);
1968 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1969 if (!checkp)
1970 srcs[count] = NULL;
1971
1972 atomic_inc(&sh->count);
1973 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1974 sh, to_addr_conv(sh, percpu, 0));
1975 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1976 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1977 }
1978
1979 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1980 {
1981 int overlap_clear = 0, i, disks = sh->disks;
1982 struct dma_async_tx_descriptor *tx = NULL;
1983 struct r5conf *conf = sh->raid_conf;
1984 int level = conf->level;
1985 struct raid5_percpu *percpu;
1986 unsigned long cpu;
1987
1988 cpu = get_cpu();
1989 percpu = per_cpu_ptr(conf->percpu, cpu);
1990 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1991 ops_run_biofill(sh);
1992 overlap_clear++;
1993 }
1994
1995 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1996 if (level < 6)
1997 tx = ops_run_compute5(sh, percpu);
1998 else {
1999 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2000 tx = ops_run_compute6_1(sh, percpu);
2001 else
2002 tx = ops_run_compute6_2(sh, percpu);
2003 }
2004 /* terminate the chain if reconstruct is not set to be run */
2005 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2006 async_tx_ack(tx);
2007 }
2008
2009 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2010 if (level < 6)
2011 tx = ops_run_prexor5(sh, percpu, tx);
2012 else
2013 tx = ops_run_prexor6(sh, percpu, tx);
2014 }
2015
2016 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2017 tx = ops_run_biodrain(sh, tx);
2018 overlap_clear++;
2019 }
2020
2021 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2022 if (level < 6)
2023 ops_run_reconstruct5(sh, percpu, tx);
2024 else
2025 ops_run_reconstruct6(sh, percpu, tx);
2026 }
2027
2028 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2029 if (sh->check_state == check_state_run)
2030 ops_run_check_p(sh, percpu);
2031 else if (sh->check_state == check_state_run_q)
2032 ops_run_check_pq(sh, percpu, 0);
2033 else if (sh->check_state == check_state_run_pq)
2034 ops_run_check_pq(sh, percpu, 1);
2035 else
2036 BUG();
2037 }
2038
2039 if (overlap_clear && !sh->batch_head)
2040 for (i = disks; i--; ) {
2041 struct r5dev *dev = &sh->dev[i];
2042 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2043 wake_up(&sh->raid_conf->wait_for_overlap);
2044 }
2045 put_cpu();
2046 }
2047
2048 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2049 int disks)
2050 {
2051 struct stripe_head *sh;
2052 int i;
2053
2054 sh = kmem_cache_zalloc(sc, gfp);
2055 if (sh) {
2056 spin_lock_init(&sh->stripe_lock);
2057 spin_lock_init(&sh->batch_lock);
2058 INIT_LIST_HEAD(&sh->batch_list);
2059 INIT_LIST_HEAD(&sh->lru);
2060 INIT_LIST_HEAD(&sh->r5c);
2061 INIT_LIST_HEAD(&sh->log_list);
2062 atomic_set(&sh->count, 1);
2063 sh->log_start = MaxSector;
2064 for (i = 0; i < disks; i++) {
2065 struct r5dev *dev = &sh->dev[i];
2066
2067 bio_init(&dev->req, &dev->vec, 1);
2068 bio_init(&dev->rreq, &dev->rvec, 1);
2069 }
2070 }
2071 return sh;
2072 }
2073 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2074 {
2075 struct stripe_head *sh;
2076
2077 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
2078 if (!sh)
2079 return 0;
2080
2081 sh->raid_conf = conf;
2082
2083 if (grow_buffers(sh, gfp)) {
2084 shrink_buffers(sh);
2085 kmem_cache_free(conf->slab_cache, sh);
2086 return 0;
2087 }
2088 sh->hash_lock_index =
2089 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2090 /* we just created an active stripe so... */
2091 atomic_inc(&conf->active_stripes);
2092
2093 raid5_release_stripe(sh);
2094 conf->max_nr_stripes++;
2095 return 1;
2096 }
2097
2098 static int grow_stripes(struct r5conf *conf, int num)
2099 {
2100 struct kmem_cache *sc;
2101 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2102
2103 if (conf->mddev->gendisk)
2104 sprintf(conf->cache_name[0],
2105 "raid%d-%s", conf->level, mdname(conf->mddev));
2106 else
2107 sprintf(conf->cache_name[0],
2108 "raid%d-%p", conf->level, conf->mddev);
2109 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2110
2111 conf->active_name = 0;
2112 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2113 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2114 0, 0, NULL);
2115 if (!sc)
2116 return 1;
2117 conf->slab_cache = sc;
2118 conf->pool_size = devs;
2119 while (num--)
2120 if (!grow_one_stripe(conf, GFP_KERNEL))
2121 return 1;
2122
2123 return 0;
2124 }
2125
2126 /**
2127 * scribble_len - return the required size of the scribble region
2128 * @num - total number of disks in the array
2129 *
2130 * The size must be enough to contain:
2131 * 1/ a struct page pointer for each device in the array +2
2132 * 2/ room to convert each entry in (1) to its corresponding dma
2133 * (dma_map_page()) or page (page_address()) address.
2134 *
2135 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2136 * calculate over all devices (not just the data blocks), using zeros in place
2137 * of the P and Q blocks.
2138 */
2139 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2140 {
2141 struct flex_array *ret;
2142 size_t len;
2143
2144 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2145 ret = flex_array_alloc(len, cnt, flags);
2146 if (!ret)
2147 return NULL;
2148 /* always prealloc all elements, so no locking is required */
2149 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2150 flex_array_free(ret);
2151 return NULL;
2152 }
2153 return ret;
2154 }
2155
2156 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2157 {
2158 unsigned long cpu;
2159 int err = 0;
2160
2161 /*
2162 * Never shrink. And mddev_suspend() could deadlock if this is called
2163 * from raid5d. In that case, scribble_disks and scribble_sectors
2164 * should equal to new_disks and new_sectors
2165 */
2166 if (conf->scribble_disks >= new_disks &&
2167 conf->scribble_sectors >= new_sectors)
2168 return 0;
2169 mddev_suspend(conf->mddev);
2170 get_online_cpus();
2171 for_each_present_cpu(cpu) {
2172 struct raid5_percpu *percpu;
2173 struct flex_array *scribble;
2174
2175 percpu = per_cpu_ptr(conf->percpu, cpu);
2176 scribble = scribble_alloc(new_disks,
2177 new_sectors / STRIPE_SECTORS,
2178 GFP_NOIO);
2179
2180 if (scribble) {
2181 flex_array_free(percpu->scribble);
2182 percpu->scribble = scribble;
2183 } else {
2184 err = -ENOMEM;
2185 break;
2186 }
2187 }
2188 put_online_cpus();
2189 mddev_resume(conf->mddev);
2190 if (!err) {
2191 conf->scribble_disks = new_disks;
2192 conf->scribble_sectors = new_sectors;
2193 }
2194 return err;
2195 }
2196
2197 static int resize_stripes(struct r5conf *conf, int newsize)
2198 {
2199 /* Make all the stripes able to hold 'newsize' devices.
2200 * New slots in each stripe get 'page' set to a new page.
2201 *
2202 * This happens in stages:
2203 * 1/ create a new kmem_cache and allocate the required number of
2204 * stripe_heads.
2205 * 2/ gather all the old stripe_heads and transfer the pages across
2206 * to the new stripe_heads. This will have the side effect of
2207 * freezing the array as once all stripe_heads have been collected,
2208 * no IO will be possible. Old stripe heads are freed once their
2209 * pages have been transferred over, and the old kmem_cache is
2210 * freed when all stripes are done.
2211 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2212 * we simple return a failre status - no need to clean anything up.
2213 * 4/ allocate new pages for the new slots in the new stripe_heads.
2214 * If this fails, we don't bother trying the shrink the
2215 * stripe_heads down again, we just leave them as they are.
2216 * As each stripe_head is processed the new one is released into
2217 * active service.
2218 *
2219 * Once step2 is started, we cannot afford to wait for a write,
2220 * so we use GFP_NOIO allocations.
2221 */
2222 struct stripe_head *osh, *nsh;
2223 LIST_HEAD(newstripes);
2224 struct disk_info *ndisks;
2225 int err;
2226 struct kmem_cache *sc;
2227 int i;
2228 int hash, cnt;
2229
2230 if (newsize <= conf->pool_size)
2231 return 0; /* never bother to shrink */
2232
2233 err = md_allow_write(conf->mddev);
2234 if (err)
2235 return err;
2236
2237 /* Step 1 */
2238 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2239 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2240 0, 0, NULL);
2241 if (!sc)
2242 return -ENOMEM;
2243
2244 /* Need to ensure auto-resizing doesn't interfere */
2245 mutex_lock(&conf->cache_size_mutex);
2246
2247 for (i = conf->max_nr_stripes; i; i--) {
2248 nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
2249 if (!nsh)
2250 break;
2251
2252 nsh->raid_conf = conf;
2253 list_add(&nsh->lru, &newstripes);
2254 }
2255 if (i) {
2256 /* didn't get enough, give up */
2257 while (!list_empty(&newstripes)) {
2258 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2259 list_del(&nsh->lru);
2260 kmem_cache_free(sc, nsh);
2261 }
2262 kmem_cache_destroy(sc);
2263 mutex_unlock(&conf->cache_size_mutex);
2264 return -ENOMEM;
2265 }
2266 /* Step 2 - Must use GFP_NOIO now.
2267 * OK, we have enough stripes, start collecting inactive
2268 * stripes and copying them over
2269 */
2270 hash = 0;
2271 cnt = 0;
2272 list_for_each_entry(nsh, &newstripes, lru) {
2273 lock_device_hash_lock(conf, hash);
2274 wait_event_cmd(conf->wait_for_stripe,
2275 !list_empty(conf->inactive_list + hash),
2276 unlock_device_hash_lock(conf, hash),
2277 lock_device_hash_lock(conf, hash));
2278 osh = get_free_stripe(conf, hash);
2279 unlock_device_hash_lock(conf, hash);
2280
2281 for(i=0; i<conf->pool_size; i++) {
2282 nsh->dev[i].page = osh->dev[i].page;
2283 nsh->dev[i].orig_page = osh->dev[i].page;
2284 }
2285 nsh->hash_lock_index = hash;
2286 kmem_cache_free(conf->slab_cache, osh);
2287 cnt++;
2288 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2289 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2290 hash++;
2291 cnt = 0;
2292 }
2293 }
2294 kmem_cache_destroy(conf->slab_cache);
2295
2296 /* Step 3.
2297 * At this point, we are holding all the stripes so the array
2298 * is completely stalled, so now is a good time to resize
2299 * conf->disks and the scribble region
2300 */
2301 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2302 if (ndisks) {
2303 for (i = 0; i < conf->pool_size; i++)
2304 ndisks[i] = conf->disks[i];
2305
2306 for (i = conf->pool_size; i < newsize; i++) {
2307 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2308 if (!ndisks[i].extra_page)
2309 err = -ENOMEM;
2310 }
2311
2312 if (err) {
2313 for (i = conf->pool_size; i < newsize; i++)
2314 if (ndisks[i].extra_page)
2315 put_page(ndisks[i].extra_page);
2316 kfree(ndisks);
2317 } else {
2318 kfree(conf->disks);
2319 conf->disks = ndisks;
2320 }
2321 } else
2322 err = -ENOMEM;
2323
2324 mutex_unlock(&conf->cache_size_mutex);
2325 /* Step 4, return new stripes to service */
2326 while(!list_empty(&newstripes)) {
2327 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2328 list_del_init(&nsh->lru);
2329
2330 for (i=conf->raid_disks; i < newsize; i++)
2331 if (nsh->dev[i].page == NULL) {
2332 struct page *p = alloc_page(GFP_NOIO);
2333 nsh->dev[i].page = p;
2334 nsh->dev[i].orig_page = p;
2335 if (!p)
2336 err = -ENOMEM;
2337 }
2338 raid5_release_stripe(nsh);
2339 }
2340 /* critical section pass, GFP_NOIO no longer needed */
2341
2342 conf->slab_cache = sc;
2343 conf->active_name = 1-conf->active_name;
2344 if (!err)
2345 conf->pool_size = newsize;
2346 return err;
2347 }
2348
2349 static int drop_one_stripe(struct r5conf *conf)
2350 {
2351 struct stripe_head *sh;
2352 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2353
2354 spin_lock_irq(conf->hash_locks + hash);
2355 sh = get_free_stripe(conf, hash);
2356 spin_unlock_irq(conf->hash_locks + hash);
2357 if (!sh)
2358 return 0;
2359 BUG_ON(atomic_read(&sh->count));
2360 shrink_buffers(sh);
2361 kmem_cache_free(conf->slab_cache, sh);
2362 atomic_dec(&conf->active_stripes);
2363 conf->max_nr_stripes--;
2364 return 1;
2365 }
2366
2367 static void shrink_stripes(struct r5conf *conf)
2368 {
2369 while (conf->max_nr_stripes &&
2370 drop_one_stripe(conf))
2371 ;
2372
2373 kmem_cache_destroy(conf->slab_cache);
2374 conf->slab_cache = NULL;
2375 }
2376
2377 static void raid5_end_read_request(struct bio * bi)
2378 {
2379 struct stripe_head *sh = bi->bi_private;
2380 struct r5conf *conf = sh->raid_conf;
2381 int disks = sh->disks, i;
2382 char b[BDEVNAME_SIZE];
2383 struct md_rdev *rdev = NULL;
2384 sector_t s;
2385
2386 for (i=0 ; i<disks; i++)
2387 if (bi == &sh->dev[i].req)
2388 break;
2389
2390 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2391 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2392 bi->bi_error);
2393 if (i == disks) {
2394 bio_reset(bi);
2395 BUG();
2396 return;
2397 }
2398 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2399 /* If replacement finished while this request was outstanding,
2400 * 'replacement' might be NULL already.
2401 * In that case it moved down to 'rdev'.
2402 * rdev is not removed until all requests are finished.
2403 */
2404 rdev = conf->disks[i].replacement;
2405 if (!rdev)
2406 rdev = conf->disks[i].rdev;
2407
2408 if (use_new_offset(conf, sh))
2409 s = sh->sector + rdev->new_data_offset;
2410 else
2411 s = sh->sector + rdev->data_offset;
2412 if (!bi->bi_error) {
2413 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2414 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2415 /* Note that this cannot happen on a
2416 * replacement device. We just fail those on
2417 * any error
2418 */
2419 pr_info_ratelimited(
2420 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2421 mdname(conf->mddev), STRIPE_SECTORS,
2422 (unsigned long long)s,
2423 bdevname(rdev->bdev, b));
2424 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2425 clear_bit(R5_ReadError, &sh->dev[i].flags);
2426 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2427 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2428 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2429
2430 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2431 /*
2432 * end read for a page in journal, this
2433 * must be preparing for prexor in rmw
2434 */
2435 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2436
2437 if (atomic_read(&rdev->read_errors))
2438 atomic_set(&rdev->read_errors, 0);
2439 } else {
2440 const char *bdn = bdevname(rdev->bdev, b);
2441 int retry = 0;
2442 int set_bad = 0;
2443
2444 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2445 atomic_inc(&rdev->read_errors);
2446 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2447 pr_warn_ratelimited(
2448 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2449 mdname(conf->mddev),
2450 (unsigned long long)s,
2451 bdn);
2452 else if (conf->mddev->degraded >= conf->max_degraded) {
2453 set_bad = 1;
2454 pr_warn_ratelimited(
2455 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2456 mdname(conf->mddev),
2457 (unsigned long long)s,
2458 bdn);
2459 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2460 /* Oh, no!!! */
2461 set_bad = 1;
2462 pr_warn_ratelimited(
2463 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2464 mdname(conf->mddev),
2465 (unsigned long long)s,
2466 bdn);
2467 } else if (atomic_read(&rdev->read_errors)
2468 > conf->max_nr_stripes)
2469 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2470 mdname(conf->mddev), bdn);
2471 else
2472 retry = 1;
2473 if (set_bad && test_bit(In_sync, &rdev->flags)
2474 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2475 retry = 1;
2476 if (retry)
2477 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2478 set_bit(R5_ReadError, &sh->dev[i].flags);
2479 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2480 } else
2481 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2482 else {
2483 clear_bit(R5_ReadError, &sh->dev[i].flags);
2484 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2485 if (!(set_bad
2486 && test_bit(In_sync, &rdev->flags)
2487 && rdev_set_badblocks(
2488 rdev, sh->sector, STRIPE_SECTORS, 0)))
2489 md_error(conf->mddev, rdev);
2490 }
2491 }
2492 rdev_dec_pending(rdev, conf->mddev);
2493 bio_reset(bi);
2494 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2495 set_bit(STRIPE_HANDLE, &sh->state);
2496 raid5_release_stripe(sh);
2497 }
2498
2499 static void raid5_end_write_request(struct bio *bi)
2500 {
2501 struct stripe_head *sh = bi->bi_private;
2502 struct r5conf *conf = sh->raid_conf;
2503 int disks = sh->disks, i;
2504 struct md_rdev *uninitialized_var(rdev);
2505 sector_t first_bad;
2506 int bad_sectors;
2507 int replacement = 0;
2508
2509 for (i = 0 ; i < disks; i++) {
2510 if (bi == &sh->dev[i].req) {
2511 rdev = conf->disks[i].rdev;
2512 break;
2513 }
2514 if (bi == &sh->dev[i].rreq) {
2515 rdev = conf->disks[i].replacement;
2516 if (rdev)
2517 replacement = 1;
2518 else
2519 /* rdev was removed and 'replacement'
2520 * replaced it. rdev is not removed
2521 * until all requests are finished.
2522 */
2523 rdev = conf->disks[i].rdev;
2524 break;
2525 }
2526 }
2527 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2528 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2529 bi->bi_error);
2530 if (i == disks) {
2531 bio_reset(bi);
2532 BUG();
2533 return;
2534 }
2535
2536 if (replacement) {
2537 if (bi->bi_error)
2538 md_error(conf->mddev, rdev);
2539 else if (is_badblock(rdev, sh->sector,
2540 STRIPE_SECTORS,
2541 &first_bad, &bad_sectors))
2542 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2543 } else {
2544 if (bi->bi_error) {
2545 set_bit(STRIPE_DEGRADED, &sh->state);
2546 set_bit(WriteErrorSeen, &rdev->flags);
2547 set_bit(R5_WriteError, &sh->dev[i].flags);
2548 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2549 set_bit(MD_RECOVERY_NEEDED,
2550 &rdev->mddev->recovery);
2551 } else if (is_badblock(rdev, sh->sector,
2552 STRIPE_SECTORS,
2553 &first_bad, &bad_sectors)) {
2554 set_bit(R5_MadeGood, &sh->dev[i].flags);
2555 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2556 /* That was a successful write so make
2557 * sure it looks like we already did
2558 * a re-write.
2559 */
2560 set_bit(R5_ReWrite, &sh->dev[i].flags);
2561 }
2562 }
2563 rdev_dec_pending(rdev, conf->mddev);
2564
2565 if (sh->batch_head && bi->bi_error && !replacement)
2566 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2567
2568 bio_reset(bi);
2569 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2570 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2571 set_bit(STRIPE_HANDLE, &sh->state);
2572 raid5_release_stripe(sh);
2573
2574 if (sh->batch_head && sh != sh->batch_head)
2575 raid5_release_stripe(sh->batch_head);
2576 }
2577
2578 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2579 {
2580 struct r5dev *dev = &sh->dev[i];
2581
2582 dev->flags = 0;
2583 dev->sector = raid5_compute_blocknr(sh, i, previous);
2584 }
2585
2586 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2587 {
2588 char b[BDEVNAME_SIZE];
2589 struct r5conf *conf = mddev->private;
2590 unsigned long flags;
2591 pr_debug("raid456: error called\n");
2592
2593 spin_lock_irqsave(&conf->device_lock, flags);
2594 clear_bit(In_sync, &rdev->flags);
2595 mddev->degraded = raid5_calc_degraded(conf);
2596 spin_unlock_irqrestore(&conf->device_lock, flags);
2597 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2598
2599 set_bit(Blocked, &rdev->flags);
2600 set_bit(Faulty, &rdev->flags);
2601 set_mask_bits(&mddev->sb_flags, 0,
2602 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2603 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2604 "md/raid:%s: Operation continuing on %d devices.\n",
2605 mdname(mddev),
2606 bdevname(rdev->bdev, b),
2607 mdname(mddev),
2608 conf->raid_disks - mddev->degraded);
2609 r5c_update_on_rdev_error(mddev);
2610 }
2611
2612 /*
2613 * Input: a 'big' sector number,
2614 * Output: index of the data and parity disk, and the sector # in them.
2615 */
2616 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2617 int previous, int *dd_idx,
2618 struct stripe_head *sh)
2619 {
2620 sector_t stripe, stripe2;
2621 sector_t chunk_number;
2622 unsigned int chunk_offset;
2623 int pd_idx, qd_idx;
2624 int ddf_layout = 0;
2625 sector_t new_sector;
2626 int algorithm = previous ? conf->prev_algo
2627 : conf->algorithm;
2628 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2629 : conf->chunk_sectors;
2630 int raid_disks = previous ? conf->previous_raid_disks
2631 : conf->raid_disks;
2632 int data_disks = raid_disks - conf->max_degraded;
2633
2634 /* First compute the information on this sector */
2635
2636 /*
2637 * Compute the chunk number and the sector offset inside the chunk
2638 */
2639 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2640 chunk_number = r_sector;
2641
2642 /*
2643 * Compute the stripe number
2644 */
2645 stripe = chunk_number;
2646 *dd_idx = sector_div(stripe, data_disks);
2647 stripe2 = stripe;
2648 /*
2649 * Select the parity disk based on the user selected algorithm.
2650 */
2651 pd_idx = qd_idx = -1;
2652 switch(conf->level) {
2653 case 4:
2654 pd_idx = data_disks;
2655 break;
2656 case 5:
2657 switch (algorithm) {
2658 case ALGORITHM_LEFT_ASYMMETRIC:
2659 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2660 if (*dd_idx >= pd_idx)
2661 (*dd_idx)++;
2662 break;
2663 case ALGORITHM_RIGHT_ASYMMETRIC:
2664 pd_idx = sector_div(stripe2, raid_disks);
2665 if (*dd_idx >= pd_idx)
2666 (*dd_idx)++;
2667 break;
2668 case ALGORITHM_LEFT_SYMMETRIC:
2669 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2670 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2671 break;
2672 case ALGORITHM_RIGHT_SYMMETRIC:
2673 pd_idx = sector_div(stripe2, raid_disks);
2674 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2675 break;
2676 case ALGORITHM_PARITY_0:
2677 pd_idx = 0;
2678 (*dd_idx)++;
2679 break;
2680 case ALGORITHM_PARITY_N:
2681 pd_idx = data_disks;
2682 break;
2683 default:
2684 BUG();
2685 }
2686 break;
2687 case 6:
2688
2689 switch (algorithm) {
2690 case ALGORITHM_LEFT_ASYMMETRIC:
2691 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2692 qd_idx = pd_idx + 1;
2693 if (pd_idx == raid_disks-1) {
2694 (*dd_idx)++; /* Q D D D P */
2695 qd_idx = 0;
2696 } else if (*dd_idx >= pd_idx)
2697 (*dd_idx) += 2; /* D D P Q D */
2698 break;
2699 case ALGORITHM_RIGHT_ASYMMETRIC:
2700 pd_idx = sector_div(stripe2, raid_disks);
2701 qd_idx = pd_idx + 1;
2702 if (pd_idx == raid_disks-1) {
2703 (*dd_idx)++; /* Q D D D P */
2704 qd_idx = 0;
2705 } else if (*dd_idx >= pd_idx)
2706 (*dd_idx) += 2; /* D D P Q D */
2707 break;
2708 case ALGORITHM_LEFT_SYMMETRIC:
2709 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2710 qd_idx = (pd_idx + 1) % raid_disks;
2711 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2712 break;
2713 case ALGORITHM_RIGHT_SYMMETRIC:
2714 pd_idx = sector_div(stripe2, raid_disks);
2715 qd_idx = (pd_idx + 1) % raid_disks;
2716 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2717 break;
2718
2719 case ALGORITHM_PARITY_0:
2720 pd_idx = 0;
2721 qd_idx = 1;
2722 (*dd_idx) += 2;
2723 break;
2724 case ALGORITHM_PARITY_N:
2725 pd_idx = data_disks;
2726 qd_idx = data_disks + 1;
2727 break;
2728
2729 case ALGORITHM_ROTATING_ZERO_RESTART:
2730 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2731 * of blocks for computing Q is different.
2732 */
2733 pd_idx = sector_div(stripe2, raid_disks);
2734 qd_idx = pd_idx + 1;
2735 if (pd_idx == raid_disks-1) {
2736 (*dd_idx)++; /* Q D D D P */
2737 qd_idx = 0;
2738 } else if (*dd_idx >= pd_idx)
2739 (*dd_idx) += 2; /* D D P Q D */
2740 ddf_layout = 1;
2741 break;
2742
2743 case ALGORITHM_ROTATING_N_RESTART:
2744 /* Same a left_asymmetric, by first stripe is
2745 * D D D P Q rather than
2746 * Q D D D P
2747 */
2748 stripe2 += 1;
2749 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2750 qd_idx = pd_idx + 1;
2751 if (pd_idx == raid_disks-1) {
2752 (*dd_idx)++; /* Q D D D P */
2753 qd_idx = 0;
2754 } else if (*dd_idx >= pd_idx)
2755 (*dd_idx) += 2; /* D D P Q D */
2756 ddf_layout = 1;
2757 break;
2758
2759 case ALGORITHM_ROTATING_N_CONTINUE:
2760 /* Same as left_symmetric but Q is before P */
2761 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2762 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2763 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2764 ddf_layout = 1;
2765 break;
2766
2767 case ALGORITHM_LEFT_ASYMMETRIC_6:
2768 /* RAID5 left_asymmetric, with Q on last device */
2769 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2770 if (*dd_idx >= pd_idx)
2771 (*dd_idx)++;
2772 qd_idx = raid_disks - 1;
2773 break;
2774
2775 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2776 pd_idx = sector_div(stripe2, raid_disks-1);
2777 if (*dd_idx >= pd_idx)
2778 (*dd_idx)++;
2779 qd_idx = raid_disks - 1;
2780 break;
2781
2782 case ALGORITHM_LEFT_SYMMETRIC_6:
2783 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2784 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2785 qd_idx = raid_disks - 1;
2786 break;
2787
2788 case ALGORITHM_RIGHT_SYMMETRIC_6:
2789 pd_idx = sector_div(stripe2, raid_disks-1);
2790 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2791 qd_idx = raid_disks - 1;
2792 break;
2793
2794 case ALGORITHM_PARITY_0_6:
2795 pd_idx = 0;
2796 (*dd_idx)++;
2797 qd_idx = raid_disks - 1;
2798 break;
2799
2800 default:
2801 BUG();
2802 }
2803 break;
2804 }
2805
2806 if (sh) {
2807 sh->pd_idx = pd_idx;
2808 sh->qd_idx = qd_idx;
2809 sh->ddf_layout = ddf_layout;
2810 }
2811 /*
2812 * Finally, compute the new sector number
2813 */
2814 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2815 return new_sector;
2816 }
2817
2818 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2819 {
2820 struct r5conf *conf = sh->raid_conf;
2821 int raid_disks = sh->disks;
2822 int data_disks = raid_disks - conf->max_degraded;
2823 sector_t new_sector = sh->sector, check;
2824 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2825 : conf->chunk_sectors;
2826 int algorithm = previous ? conf->prev_algo
2827 : conf->algorithm;
2828 sector_t stripe;
2829 int chunk_offset;
2830 sector_t chunk_number;
2831 int dummy1, dd_idx = i;
2832 sector_t r_sector;
2833 struct stripe_head sh2;
2834
2835 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2836 stripe = new_sector;
2837
2838 if (i == sh->pd_idx)
2839 return 0;
2840 switch(conf->level) {
2841 case 4: break;
2842 case 5:
2843 switch (algorithm) {
2844 case ALGORITHM_LEFT_ASYMMETRIC:
2845 case ALGORITHM_RIGHT_ASYMMETRIC:
2846 if (i > sh->pd_idx)
2847 i--;
2848 break;
2849 case ALGORITHM_LEFT_SYMMETRIC:
2850 case ALGORITHM_RIGHT_SYMMETRIC:
2851 if (i < sh->pd_idx)
2852 i += raid_disks;
2853 i -= (sh->pd_idx + 1);
2854 break;
2855 case ALGORITHM_PARITY_0:
2856 i -= 1;
2857 break;
2858 case ALGORITHM_PARITY_N:
2859 break;
2860 default:
2861 BUG();
2862 }
2863 break;
2864 case 6:
2865 if (i == sh->qd_idx)
2866 return 0; /* It is the Q disk */
2867 switch (algorithm) {
2868 case ALGORITHM_LEFT_ASYMMETRIC:
2869 case ALGORITHM_RIGHT_ASYMMETRIC:
2870 case ALGORITHM_ROTATING_ZERO_RESTART:
2871 case ALGORITHM_ROTATING_N_RESTART:
2872 if (sh->pd_idx == raid_disks-1)
2873 i--; /* Q D D D P */
2874 else if (i > sh->pd_idx)
2875 i -= 2; /* D D P Q D */
2876 break;
2877 case ALGORITHM_LEFT_SYMMETRIC:
2878 case ALGORITHM_RIGHT_SYMMETRIC:
2879 if (sh->pd_idx == raid_disks-1)
2880 i--; /* Q D D D P */
2881 else {
2882 /* D D P Q D */
2883 if (i < sh->pd_idx)
2884 i += raid_disks;
2885 i -= (sh->pd_idx + 2);
2886 }
2887 break;
2888 case ALGORITHM_PARITY_0:
2889 i -= 2;
2890 break;
2891 case ALGORITHM_PARITY_N:
2892 break;
2893 case ALGORITHM_ROTATING_N_CONTINUE:
2894 /* Like left_symmetric, but P is before Q */
2895 if (sh->pd_idx == 0)
2896 i--; /* P D D D Q */
2897 else {
2898 /* D D Q P D */
2899 if (i < sh->pd_idx)
2900 i += raid_disks;
2901 i -= (sh->pd_idx + 1);
2902 }
2903 break;
2904 case ALGORITHM_LEFT_ASYMMETRIC_6:
2905 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2906 if (i > sh->pd_idx)
2907 i--;
2908 break;
2909 case ALGORITHM_LEFT_SYMMETRIC_6:
2910 case ALGORITHM_RIGHT_SYMMETRIC_6:
2911 if (i < sh->pd_idx)
2912 i += data_disks + 1;
2913 i -= (sh->pd_idx + 1);
2914 break;
2915 case ALGORITHM_PARITY_0_6:
2916 i -= 1;
2917 break;
2918 default:
2919 BUG();
2920 }
2921 break;
2922 }
2923
2924 chunk_number = stripe * data_disks + i;
2925 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2926
2927 check = raid5_compute_sector(conf, r_sector,
2928 previous, &dummy1, &sh2);
2929 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2930 || sh2.qd_idx != sh->qd_idx) {
2931 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
2932 mdname(conf->mddev));
2933 return 0;
2934 }
2935 return r_sector;
2936 }
2937
2938 /*
2939 * There are cases where we want handle_stripe_dirtying() and
2940 * schedule_reconstruction() to delay towrite to some dev of a stripe.
2941 *
2942 * This function checks whether we want to delay the towrite. Specifically,
2943 * we delay the towrite when:
2944 *
2945 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
2946 * stripe has data in journal (for other devices).
2947 *
2948 * In this case, when reading data for the non-overwrite dev, it is
2949 * necessary to handle complex rmw of write back cache (prexor with
2950 * orig_page, and xor with page). To keep read path simple, we would
2951 * like to flush data in journal to RAID disks first, so complex rmw
2952 * is handled in the write patch (handle_stripe_dirtying).
2953 *
2954 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
2955 *
2956 * It is important to be able to flush all stripes in raid5-cache.
2957 * Therefore, we need reserve some space on the journal device for
2958 * these flushes. If flush operation includes pending writes to the
2959 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
2960 * for the flush out. If we exclude these pending writes from flush
2961 * operation, we only need (conf->max_degraded + 1) pages per stripe.
2962 * Therefore, excluding pending writes in these cases enables more
2963 * efficient use of the journal device.
2964 *
2965 * Note: To make sure the stripe makes progress, we only delay
2966 * towrite for stripes with data already in journal (injournal > 0).
2967 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
2968 * no_space_stripes list.
2969 *
2970 */
2971 static inline bool delay_towrite(struct r5conf *conf,
2972 struct r5dev *dev,
2973 struct stripe_head_state *s)
2974 {
2975 /* case 1 above */
2976 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2977 !test_bit(R5_Insync, &dev->flags) && s->injournal)
2978 return true;
2979 /* case 2 above */
2980 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2981 s->injournal > 0)
2982 return true;
2983 return false;
2984 }
2985
2986 static void
2987 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2988 int rcw, int expand)
2989 {
2990 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2991 struct r5conf *conf = sh->raid_conf;
2992 int level = conf->level;
2993
2994 if (rcw) {
2995 /*
2996 * In some cases, handle_stripe_dirtying initially decided to
2997 * run rmw and allocates extra page for prexor. However, rcw is
2998 * cheaper later on. We need to free the extra page now,
2999 * because we won't be able to do that in ops_complete_prexor().
3000 */
3001 r5c_release_extra_page(sh);
3002
3003 for (i = disks; i--; ) {
3004 struct r5dev *dev = &sh->dev[i];
3005
3006 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3007 set_bit(R5_LOCKED, &dev->flags);
3008 set_bit(R5_Wantdrain, &dev->flags);
3009 if (!expand)
3010 clear_bit(R5_UPTODATE, &dev->flags);
3011 s->locked++;
3012 } else if (test_bit(R5_InJournal, &dev->flags)) {
3013 set_bit(R5_LOCKED, &dev->flags);
3014 s->locked++;
3015 }
3016 }
3017 /* if we are not expanding this is a proper write request, and
3018 * there will be bios with new data to be drained into the
3019 * stripe cache
3020 */
3021 if (!expand) {
3022 if (!s->locked)
3023 /* False alarm, nothing to do */
3024 return;
3025 sh->reconstruct_state = reconstruct_state_drain_run;
3026 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3027 } else
3028 sh->reconstruct_state = reconstruct_state_run;
3029
3030 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3031
3032 if (s->locked + conf->max_degraded == disks)
3033 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3034 atomic_inc(&conf->pending_full_writes);
3035 } else {
3036 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3037 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3038 BUG_ON(level == 6 &&
3039 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3040 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3041
3042 for (i = disks; i--; ) {
3043 struct r5dev *dev = &sh->dev[i];
3044 if (i == pd_idx || i == qd_idx)
3045 continue;
3046
3047 if (dev->towrite &&
3048 (test_bit(R5_UPTODATE, &dev->flags) ||
3049 test_bit(R5_Wantcompute, &dev->flags))) {
3050 set_bit(R5_Wantdrain, &dev->flags);
3051 set_bit(R5_LOCKED, &dev->flags);
3052 clear_bit(R5_UPTODATE, &dev->flags);
3053 s->locked++;
3054 } else if (test_bit(R5_InJournal, &dev->flags)) {
3055 set_bit(R5_LOCKED, &dev->flags);
3056 s->locked++;
3057 }
3058 }
3059 if (!s->locked)
3060 /* False alarm - nothing to do */
3061 return;
3062 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3063 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3064 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3065 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3066 }
3067
3068 /* keep the parity disk(s) locked while asynchronous operations
3069 * are in flight
3070 */
3071 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3072 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3073 s->locked++;
3074
3075 if (level == 6) {
3076 int qd_idx = sh->qd_idx;
3077 struct r5dev *dev = &sh->dev[qd_idx];
3078
3079 set_bit(R5_LOCKED, &dev->flags);
3080 clear_bit(R5_UPTODATE, &dev->flags);
3081 s->locked++;
3082 }
3083
3084 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3085 __func__, (unsigned long long)sh->sector,
3086 s->locked, s->ops_request);
3087 }
3088
3089 /*
3090 * Each stripe/dev can have one or more bion attached.
3091 * toread/towrite point to the first in a chain.
3092 * The bi_next chain must be in order.
3093 */
3094 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3095 int forwrite, int previous)
3096 {
3097 struct bio **bip;
3098 struct r5conf *conf = sh->raid_conf;
3099 int firstwrite=0;
3100
3101 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3102 (unsigned long long)bi->bi_iter.bi_sector,
3103 (unsigned long long)sh->sector);
3104
3105 /*
3106 * If several bio share a stripe. The bio bi_phys_segments acts as a
3107 * reference count to avoid race. The reference count should already be
3108 * increased before this function is called (for example, in
3109 * raid5_make_request()), so other bio sharing this stripe will not free the
3110 * stripe. If a stripe is owned by one stripe, the stripe lock will
3111 * protect it.
3112 */
3113 spin_lock_irq(&sh->stripe_lock);
3114 /* Don't allow new IO added to stripes in batch list */
3115 if (sh->batch_head)
3116 goto overlap;
3117 if (forwrite) {
3118 bip = &sh->dev[dd_idx].towrite;
3119 if (*bip == NULL)
3120 firstwrite = 1;
3121 } else
3122 bip = &sh->dev[dd_idx].toread;
3123 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3124 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3125 goto overlap;
3126 bip = & (*bip)->bi_next;
3127 }
3128 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3129 goto overlap;
3130
3131 if (!forwrite || previous)
3132 clear_bit(STRIPE_BATCH_READY, &sh->state);
3133
3134 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3135 if (*bip)
3136 bi->bi_next = *bip;
3137 *bip = bi;
3138 raid5_inc_bi_active_stripes(bi);
3139
3140 if (forwrite) {
3141 /* check if page is covered */
3142 sector_t sector = sh->dev[dd_idx].sector;
3143 for (bi=sh->dev[dd_idx].towrite;
3144 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3145 bi && bi->bi_iter.bi_sector <= sector;
3146 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3147 if (bio_end_sector(bi) >= sector)
3148 sector = bio_end_sector(bi);
3149 }
3150 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3151 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3152 sh->overwrite_disks++;
3153 }
3154
3155 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3156 (unsigned long long)(*bip)->bi_iter.bi_sector,
3157 (unsigned long long)sh->sector, dd_idx);
3158
3159 if (conf->mddev->bitmap && firstwrite) {
3160 /* Cannot hold spinlock over bitmap_startwrite,
3161 * but must ensure this isn't added to a batch until
3162 * we have added to the bitmap and set bm_seq.
3163 * So set STRIPE_BITMAP_PENDING to prevent
3164 * batching.
3165 * If multiple add_stripe_bio() calls race here they
3166 * much all set STRIPE_BITMAP_PENDING. So only the first one
3167 * to complete "bitmap_startwrite" gets to set
3168 * STRIPE_BIT_DELAY. This is important as once a stripe
3169 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3170 * any more.
3171 */
3172 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3173 spin_unlock_irq(&sh->stripe_lock);
3174 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3175 STRIPE_SECTORS, 0);
3176 spin_lock_irq(&sh->stripe_lock);
3177 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3178 if (!sh->batch_head) {
3179 sh->bm_seq = conf->seq_flush+1;
3180 set_bit(STRIPE_BIT_DELAY, &sh->state);
3181 }
3182 }
3183 spin_unlock_irq(&sh->stripe_lock);
3184
3185 if (stripe_can_batch(sh))
3186 stripe_add_to_batch_list(conf, sh);
3187 return 1;
3188
3189 overlap:
3190 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3191 spin_unlock_irq(&sh->stripe_lock);
3192 return 0;
3193 }
3194
3195 static void end_reshape(struct r5conf *conf);
3196
3197 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3198 struct stripe_head *sh)
3199 {
3200 int sectors_per_chunk =
3201 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3202 int dd_idx;
3203 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3204 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3205
3206 raid5_compute_sector(conf,
3207 stripe * (disks - conf->max_degraded)
3208 *sectors_per_chunk + chunk_offset,
3209 previous,
3210 &dd_idx, sh);
3211 }
3212
3213 static void
3214 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3215 struct stripe_head_state *s, int disks,
3216 struct bio_list *return_bi)
3217 {
3218 int i;
3219 BUG_ON(sh->batch_head);
3220 for (i = disks; i--; ) {
3221 struct bio *bi;
3222 int bitmap_end = 0;
3223
3224 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3225 struct md_rdev *rdev;
3226 rcu_read_lock();
3227 rdev = rcu_dereference(conf->disks[i].rdev);
3228 if (rdev && test_bit(In_sync, &rdev->flags) &&
3229 !test_bit(Faulty, &rdev->flags))
3230 atomic_inc(&rdev->nr_pending);
3231 else
3232 rdev = NULL;
3233 rcu_read_unlock();
3234 if (rdev) {
3235 if (!rdev_set_badblocks(
3236 rdev,
3237 sh->sector,
3238 STRIPE_SECTORS, 0))
3239 md_error(conf->mddev, rdev);
3240 rdev_dec_pending(rdev, conf->mddev);
3241 }
3242 }
3243 spin_lock_irq(&sh->stripe_lock);
3244 /* fail all writes first */
3245 bi = sh->dev[i].towrite;
3246 sh->dev[i].towrite = NULL;
3247 sh->overwrite_disks = 0;
3248 spin_unlock_irq(&sh->stripe_lock);
3249 if (bi)
3250 bitmap_end = 1;
3251
3252 r5l_stripe_write_finished(sh);
3253
3254 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3255 wake_up(&conf->wait_for_overlap);
3256
3257 while (bi && bi->bi_iter.bi_sector <
3258 sh->dev[i].sector + STRIPE_SECTORS) {
3259 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3260
3261 bi->bi_error = -EIO;
3262 if (!raid5_dec_bi_active_stripes(bi)) {
3263 md_write_end(conf->mddev);
3264 bio_list_add(return_bi, bi);
3265 }
3266 bi = nextbi;
3267 }
3268 if (bitmap_end)
3269 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3270 STRIPE_SECTORS, 0, 0);
3271 bitmap_end = 0;
3272 /* and fail all 'written' */
3273 bi = sh->dev[i].written;
3274 sh->dev[i].written = NULL;
3275 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3276 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3277 sh->dev[i].page = sh->dev[i].orig_page;
3278 }
3279
3280 if (bi) bitmap_end = 1;
3281 while (bi && bi->bi_iter.bi_sector <
3282 sh->dev[i].sector + STRIPE_SECTORS) {
3283 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3284
3285 bi->bi_error = -EIO;
3286 if (!raid5_dec_bi_active_stripes(bi)) {
3287 md_write_end(conf->mddev);
3288 bio_list_add(return_bi, bi);
3289 }
3290 bi = bi2;
3291 }
3292
3293 /* fail any reads if this device is non-operational and
3294 * the data has not reached the cache yet.
3295 */
3296 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3297 s->failed > conf->max_degraded &&
3298 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3299 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3300 spin_lock_irq(&sh->stripe_lock);
3301 bi = sh->dev[i].toread;
3302 sh->dev[i].toread = NULL;
3303 spin_unlock_irq(&sh->stripe_lock);
3304 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3305 wake_up(&conf->wait_for_overlap);
3306 if (bi)
3307 s->to_read--;
3308 while (bi && bi->bi_iter.bi_sector <
3309 sh->dev[i].sector + STRIPE_SECTORS) {
3310 struct bio *nextbi =
3311 r5_next_bio(bi, sh->dev[i].sector);
3312
3313 bi->bi_error = -EIO;
3314 if (!raid5_dec_bi_active_stripes(bi))
3315 bio_list_add(return_bi, bi);
3316 bi = nextbi;
3317 }
3318 }
3319 if (bitmap_end)
3320 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3321 STRIPE_SECTORS, 0, 0);
3322 /* If we were in the middle of a write the parity block might
3323 * still be locked - so just clear all R5_LOCKED flags
3324 */
3325 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3326 }
3327 s->to_write = 0;
3328 s->written = 0;
3329
3330 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3331 if (atomic_dec_and_test(&conf->pending_full_writes))
3332 md_wakeup_thread(conf->mddev->thread);
3333 }
3334
3335 static void
3336 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3337 struct stripe_head_state *s)
3338 {
3339 int abort = 0;
3340 int i;
3341
3342 BUG_ON(sh->batch_head);
3343 clear_bit(STRIPE_SYNCING, &sh->state);
3344 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3345 wake_up(&conf->wait_for_overlap);
3346 s->syncing = 0;
3347 s->replacing = 0;
3348 /* There is nothing more to do for sync/check/repair.
3349 * Don't even need to abort as that is handled elsewhere
3350 * if needed, and not always wanted e.g. if there is a known
3351 * bad block here.
3352 * For recover/replace we need to record a bad block on all
3353 * non-sync devices, or abort the recovery
3354 */
3355 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3356 /* During recovery devices cannot be removed, so
3357 * locking and refcounting of rdevs is not needed
3358 */
3359 rcu_read_lock();
3360 for (i = 0; i < conf->raid_disks; i++) {
3361 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3362 if (rdev
3363 && !test_bit(Faulty, &rdev->flags)
3364 && !test_bit(In_sync, &rdev->flags)
3365 && !rdev_set_badblocks(rdev, sh->sector,
3366 STRIPE_SECTORS, 0))
3367 abort = 1;
3368 rdev = rcu_dereference(conf->disks[i].replacement);
3369 if (rdev
3370 && !test_bit(Faulty, &rdev->flags)
3371 && !test_bit(In_sync, &rdev->flags)
3372 && !rdev_set_badblocks(rdev, sh->sector,
3373 STRIPE_SECTORS, 0))
3374 abort = 1;
3375 }
3376 rcu_read_unlock();
3377 if (abort)
3378 conf->recovery_disabled =
3379 conf->mddev->recovery_disabled;
3380 }
3381 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3382 }
3383
3384 static int want_replace(struct stripe_head *sh, int disk_idx)
3385 {
3386 struct md_rdev *rdev;
3387 int rv = 0;
3388
3389 rcu_read_lock();
3390 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3391 if (rdev
3392 && !test_bit(Faulty, &rdev->flags)
3393 && !test_bit(In_sync, &rdev->flags)
3394 && (rdev->recovery_offset <= sh->sector
3395 || rdev->mddev->recovery_cp <= sh->sector))
3396 rv = 1;
3397 rcu_read_unlock();
3398 return rv;
3399 }
3400
3401 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3402 int disk_idx, int disks)
3403 {
3404 struct r5dev *dev = &sh->dev[disk_idx];
3405 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3406 &sh->dev[s->failed_num[1]] };
3407 int i;
3408
3409
3410 if (test_bit(R5_LOCKED, &dev->flags) ||
3411 test_bit(R5_UPTODATE, &dev->flags))
3412 /* No point reading this as we already have it or have
3413 * decided to get it.
3414 */
3415 return 0;
3416
3417 if (dev->toread ||
3418 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3419 /* We need this block to directly satisfy a request */
3420 return 1;
3421
3422 if (s->syncing || s->expanding ||
3423 (s->replacing && want_replace(sh, disk_idx)))
3424 /* When syncing, or expanding we read everything.
3425 * When replacing, we need the replaced block.
3426 */
3427 return 1;
3428
3429 if ((s->failed >= 1 && fdev[0]->toread) ||
3430 (s->failed >= 2 && fdev[1]->toread))
3431 /* If we want to read from a failed device, then
3432 * we need to actually read every other device.
3433 */
3434 return 1;
3435
3436 /* Sometimes neither read-modify-write nor reconstruct-write
3437 * cycles can work. In those cases we read every block we
3438 * can. Then the parity-update is certain to have enough to
3439 * work with.
3440 * This can only be a problem when we need to write something,
3441 * and some device has failed. If either of those tests
3442 * fail we need look no further.
3443 */
3444 if (!s->failed || !s->to_write)
3445 return 0;
3446
3447 if (test_bit(R5_Insync, &dev->flags) &&
3448 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3449 /* Pre-reads at not permitted until after short delay
3450 * to gather multiple requests. However if this
3451 * device is no Insync, the block could only be be computed
3452 * and there is no need to delay that.
3453 */
3454 return 0;
3455
3456 for (i = 0; i < s->failed && i < 2; i++) {
3457 if (fdev[i]->towrite &&
3458 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3459 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3460 /* If we have a partial write to a failed
3461 * device, then we will need to reconstruct
3462 * the content of that device, so all other
3463 * devices must be read.
3464 */
3465 return 1;
3466 }
3467
3468 /* If we are forced to do a reconstruct-write, either because
3469 * the current RAID6 implementation only supports that, or
3470 * or because parity cannot be trusted and we are currently
3471 * recovering it, there is extra need to be careful.
3472 * If one of the devices that we would need to read, because
3473 * it is not being overwritten (and maybe not written at all)
3474 * is missing/faulty, then we need to read everything we can.
3475 */
3476 if (sh->raid_conf->level != 6 &&
3477 sh->sector < sh->raid_conf->mddev->recovery_cp)
3478 /* reconstruct-write isn't being forced */
3479 return 0;
3480 for (i = 0; i < s->failed && i < 2; i++) {
3481 if (s->failed_num[i] != sh->pd_idx &&
3482 s->failed_num[i] != sh->qd_idx &&
3483 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3484 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3485 return 1;
3486 }
3487
3488 return 0;
3489 }
3490
3491 /* fetch_block - checks the given member device to see if its data needs
3492 * to be read or computed to satisfy a request.
3493 *
3494 * Returns 1 when no more member devices need to be checked, otherwise returns
3495 * 0 to tell the loop in handle_stripe_fill to continue
3496 */
3497 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3498 int disk_idx, int disks)
3499 {
3500 struct r5dev *dev = &sh->dev[disk_idx];
3501
3502 /* is the data in this block needed, and can we get it? */
3503 if (need_this_block(sh, s, disk_idx, disks)) {
3504 /* we would like to get this block, possibly by computing it,
3505 * otherwise read it if the backing disk is insync
3506 */
3507 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3508 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3509 BUG_ON(sh->batch_head);
3510 if ((s->uptodate == disks - 1) &&
3511 (s->failed && (disk_idx == s->failed_num[0] ||
3512 disk_idx == s->failed_num[1]))) {
3513 /* have disk failed, and we're requested to fetch it;
3514 * do compute it
3515 */
3516 pr_debug("Computing stripe %llu block %d\n",
3517 (unsigned long long)sh->sector, disk_idx);
3518 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3519 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3520 set_bit(R5_Wantcompute, &dev->flags);
3521 sh->ops.target = disk_idx;
3522 sh->ops.target2 = -1; /* no 2nd target */
3523 s->req_compute = 1;
3524 /* Careful: from this point on 'uptodate' is in the eye
3525 * of raid_run_ops which services 'compute' operations
3526 * before writes. R5_Wantcompute flags a block that will
3527 * be R5_UPTODATE by the time it is needed for a
3528 * subsequent operation.
3529 */
3530 s->uptodate++;
3531 return 1;
3532 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3533 /* Computing 2-failure is *very* expensive; only
3534 * do it if failed >= 2
3535 */
3536 int other;
3537 for (other = disks; other--; ) {
3538 if (other == disk_idx)
3539 continue;
3540 if (!test_bit(R5_UPTODATE,
3541 &sh->dev[other].flags))
3542 break;
3543 }
3544 BUG_ON(other < 0);
3545 pr_debug("Computing stripe %llu blocks %d,%d\n",
3546 (unsigned long long)sh->sector,
3547 disk_idx, other);
3548 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3549 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3550 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3551 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3552 sh->ops.target = disk_idx;
3553 sh->ops.target2 = other;
3554 s->uptodate += 2;
3555 s->req_compute = 1;
3556 return 1;
3557 } else if (test_bit(R5_Insync, &dev->flags)) {
3558 set_bit(R5_LOCKED, &dev->flags);
3559 set_bit(R5_Wantread, &dev->flags);
3560 s->locked++;
3561 pr_debug("Reading block %d (sync=%d)\n",
3562 disk_idx, s->syncing);
3563 }
3564 }
3565
3566 return 0;
3567 }
3568
3569 /**
3570 * handle_stripe_fill - read or compute data to satisfy pending requests.
3571 */
3572 static void handle_stripe_fill(struct stripe_head *sh,
3573 struct stripe_head_state *s,
3574 int disks)
3575 {
3576 int i;
3577
3578 /* look for blocks to read/compute, skip this if a compute
3579 * is already in flight, or if the stripe contents are in the
3580 * midst of changing due to a write
3581 */
3582 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3583 !sh->reconstruct_state) {
3584
3585 /*
3586 * For degraded stripe with data in journal, do not handle
3587 * read requests yet, instead, flush the stripe to raid
3588 * disks first, this avoids handling complex rmw of write
3589 * back cache (prexor with orig_page, and then xor with
3590 * page) in the read path
3591 */
3592 if (s->injournal && s->failed) {
3593 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3594 r5c_make_stripe_write_out(sh);
3595 goto out;
3596 }
3597
3598 for (i = disks; i--; )
3599 if (fetch_block(sh, s, i, disks))
3600 break;
3601 }
3602 out:
3603 set_bit(STRIPE_HANDLE, &sh->state);
3604 }
3605
3606 static void break_stripe_batch_list(struct stripe_head *head_sh,
3607 unsigned long handle_flags);
3608 /* handle_stripe_clean_event
3609 * any written block on an uptodate or failed drive can be returned.
3610 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3611 * never LOCKED, so we don't need to test 'failed' directly.
3612 */
3613 static void handle_stripe_clean_event(struct r5conf *conf,
3614 struct stripe_head *sh, int disks, struct bio_list *return_bi)
3615 {
3616 int i;
3617 struct r5dev *dev;
3618 int discard_pending = 0;
3619 struct stripe_head *head_sh = sh;
3620 bool do_endio = false;
3621
3622 for (i = disks; i--; )
3623 if (sh->dev[i].written) {
3624 dev = &sh->dev[i];
3625 if (!test_bit(R5_LOCKED, &dev->flags) &&
3626 (test_bit(R5_UPTODATE, &dev->flags) ||
3627 test_bit(R5_Discard, &dev->flags) ||
3628 test_bit(R5_SkipCopy, &dev->flags))) {
3629 /* We can return any write requests */
3630 struct bio *wbi, *wbi2;
3631 pr_debug("Return write for disc %d\n", i);
3632 if (test_and_clear_bit(R5_Discard, &dev->flags))
3633 clear_bit(R5_UPTODATE, &dev->flags);
3634 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3635 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3636 }
3637 do_endio = true;
3638
3639 returnbi:
3640 dev->page = dev->orig_page;
3641 wbi = dev->written;
3642 dev->written = NULL;
3643 while (wbi && wbi->bi_iter.bi_sector <
3644 dev->sector + STRIPE_SECTORS) {
3645 wbi2 = r5_next_bio(wbi, dev->sector);
3646 if (!raid5_dec_bi_active_stripes(wbi)) {
3647 md_write_end(conf->mddev);
3648 bio_list_add(return_bi, wbi);
3649 }
3650 wbi = wbi2;
3651 }
3652 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3653 STRIPE_SECTORS,
3654 !test_bit(STRIPE_DEGRADED, &sh->state),
3655 0);
3656 if (head_sh->batch_head) {
3657 sh = list_first_entry(&sh->batch_list,
3658 struct stripe_head,
3659 batch_list);
3660 if (sh != head_sh) {
3661 dev = &sh->dev[i];
3662 goto returnbi;
3663 }
3664 }
3665 sh = head_sh;
3666 dev = &sh->dev[i];
3667 } else if (test_bit(R5_Discard, &dev->flags))
3668 discard_pending = 1;
3669 }
3670
3671 r5l_stripe_write_finished(sh);
3672
3673 if (!discard_pending &&
3674 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3675 int hash;
3676 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3677 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3678 if (sh->qd_idx >= 0) {
3679 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3680 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3681 }
3682 /* now that discard is done we can proceed with any sync */
3683 clear_bit(STRIPE_DISCARD, &sh->state);
3684 /*
3685 * SCSI discard will change some bio fields and the stripe has
3686 * no updated data, so remove it from hash list and the stripe
3687 * will be reinitialized
3688 */
3689 unhash:
3690 hash = sh->hash_lock_index;
3691 spin_lock_irq(conf->hash_locks + hash);
3692 remove_hash(sh);
3693 spin_unlock_irq(conf->hash_locks + hash);
3694 if (head_sh->batch_head) {
3695 sh = list_first_entry(&sh->batch_list,
3696 struct stripe_head, batch_list);
3697 if (sh != head_sh)
3698 goto unhash;
3699 }
3700 sh = head_sh;
3701
3702 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3703 set_bit(STRIPE_HANDLE, &sh->state);
3704
3705 }
3706
3707 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3708 if (atomic_dec_and_test(&conf->pending_full_writes))
3709 md_wakeup_thread(conf->mddev->thread);
3710
3711 if (head_sh->batch_head && do_endio)
3712 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3713 }
3714
3715 /*
3716 * For RMW in write back cache, we need extra page in prexor to store the
3717 * old data. This page is stored in dev->orig_page.
3718 *
3719 * This function checks whether we have data for prexor. The exact logic
3720 * is:
3721 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3722 */
3723 static inline bool uptodate_for_rmw(struct r5dev *dev)
3724 {
3725 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3726 (!test_bit(R5_InJournal, &dev->flags) ||
3727 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3728 }
3729
3730 static int handle_stripe_dirtying(struct r5conf *conf,
3731 struct stripe_head *sh,
3732 struct stripe_head_state *s,
3733 int disks)
3734 {
3735 int rmw = 0, rcw = 0, i;
3736 sector_t recovery_cp = conf->mddev->recovery_cp;
3737
3738 /* Check whether resync is now happening or should start.
3739 * If yes, then the array is dirty (after unclean shutdown or
3740 * initial creation), so parity in some stripes might be inconsistent.
3741 * In this case, we need to always do reconstruct-write, to ensure
3742 * that in case of drive failure or read-error correction, we
3743 * generate correct data from the parity.
3744 */
3745 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3746 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3747 s->failed == 0)) {
3748 /* Calculate the real rcw later - for now make it
3749 * look like rcw is cheaper
3750 */
3751 rcw = 1; rmw = 2;
3752 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3753 conf->rmw_level, (unsigned long long)recovery_cp,
3754 (unsigned long long)sh->sector);
3755 } else for (i = disks; i--; ) {
3756 /* would I have to read this buffer for read_modify_write */
3757 struct r5dev *dev = &sh->dev[i];
3758 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3759 i == sh->pd_idx || i == sh->qd_idx ||
3760 test_bit(R5_InJournal, &dev->flags)) &&
3761 !test_bit(R5_LOCKED, &dev->flags) &&
3762 !(uptodate_for_rmw(dev) ||
3763 test_bit(R5_Wantcompute, &dev->flags))) {
3764 if (test_bit(R5_Insync, &dev->flags))
3765 rmw++;
3766 else
3767 rmw += 2*disks; /* cannot read it */
3768 }
3769 /* Would I have to read this buffer for reconstruct_write */
3770 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3771 i != sh->pd_idx && i != sh->qd_idx &&
3772 !test_bit(R5_LOCKED, &dev->flags) &&
3773 !(test_bit(R5_UPTODATE, &dev->flags) ||
3774 test_bit(R5_Wantcompute, &dev->flags))) {
3775 if (test_bit(R5_Insync, &dev->flags))
3776 rcw++;
3777 else
3778 rcw += 2*disks;
3779 }
3780 }
3781
3782 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3783 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3784 set_bit(STRIPE_HANDLE, &sh->state);
3785 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3786 /* prefer read-modify-write, but need to get some data */
3787 if (conf->mddev->queue)
3788 blk_add_trace_msg(conf->mddev->queue,
3789 "raid5 rmw %llu %d",
3790 (unsigned long long)sh->sector, rmw);
3791 for (i = disks; i--; ) {
3792 struct r5dev *dev = &sh->dev[i];
3793 if (test_bit(R5_InJournal, &dev->flags) &&
3794 dev->page == dev->orig_page &&
3795 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3796 /* alloc page for prexor */
3797 struct page *p = alloc_page(GFP_NOIO);
3798
3799 if (p) {
3800 dev->orig_page = p;
3801 continue;
3802 }
3803
3804 /*
3805 * alloc_page() failed, try use
3806 * disk_info->extra_page
3807 */
3808 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3809 &conf->cache_state)) {
3810 r5c_use_extra_page(sh);
3811 break;
3812 }
3813
3814 /* extra_page in use, add to delayed_list */
3815 set_bit(STRIPE_DELAYED, &sh->state);
3816 s->waiting_extra_page = 1;
3817 return -EAGAIN;
3818 }
3819 }
3820
3821 for (i = disks; i--; ) {
3822 struct r5dev *dev = &sh->dev[i];
3823 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3824 i == sh->pd_idx || i == sh->qd_idx ||
3825 test_bit(R5_InJournal, &dev->flags)) &&
3826 !test_bit(R5_LOCKED, &dev->flags) &&
3827 !(uptodate_for_rmw(dev) ||
3828 test_bit(R5_Wantcompute, &dev->flags)) &&
3829 test_bit(R5_Insync, &dev->flags)) {
3830 if (test_bit(STRIPE_PREREAD_ACTIVE,
3831 &sh->state)) {
3832 pr_debug("Read_old block %d for r-m-w\n",
3833 i);
3834 set_bit(R5_LOCKED, &dev->flags);
3835 set_bit(R5_Wantread, &dev->flags);
3836 s->locked++;
3837 } else {
3838 set_bit(STRIPE_DELAYED, &sh->state);
3839 set_bit(STRIPE_HANDLE, &sh->state);
3840 }
3841 }
3842 }
3843 }
3844 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3845 /* want reconstruct write, but need to get some data */
3846 int qread =0;
3847 rcw = 0;
3848 for (i = disks; i--; ) {
3849 struct r5dev *dev = &sh->dev[i];
3850 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3851 i != sh->pd_idx && i != sh->qd_idx &&
3852 !test_bit(R5_LOCKED, &dev->flags) &&
3853 !(test_bit(R5_UPTODATE, &dev->flags) ||
3854 test_bit(R5_Wantcompute, &dev->flags))) {
3855 rcw++;
3856 if (test_bit(R5_Insync, &dev->flags) &&
3857 test_bit(STRIPE_PREREAD_ACTIVE,
3858 &sh->state)) {
3859 pr_debug("Read_old block "
3860 "%d for Reconstruct\n", i);
3861 set_bit(R5_LOCKED, &dev->flags);
3862 set_bit(R5_Wantread, &dev->flags);
3863 s->locked++;
3864 qread++;
3865 } else {
3866 set_bit(STRIPE_DELAYED, &sh->state);
3867 set_bit(STRIPE_HANDLE, &sh->state);
3868 }
3869 }
3870 }
3871 if (rcw && conf->mddev->queue)
3872 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3873 (unsigned long long)sh->sector,
3874 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3875 }
3876
3877 if (rcw > disks && rmw > disks &&
3878 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3879 set_bit(STRIPE_DELAYED, &sh->state);
3880
3881 /* now if nothing is locked, and if we have enough data,
3882 * we can start a write request
3883 */
3884 /* since handle_stripe can be called at any time we need to handle the
3885 * case where a compute block operation has been submitted and then a
3886 * subsequent call wants to start a write request. raid_run_ops only
3887 * handles the case where compute block and reconstruct are requested
3888 * simultaneously. If this is not the case then new writes need to be
3889 * held off until the compute completes.
3890 */
3891 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3892 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3893 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3894 schedule_reconstruction(sh, s, rcw == 0, 0);
3895 return 0;
3896 }
3897
3898 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3899 struct stripe_head_state *s, int disks)
3900 {
3901 struct r5dev *dev = NULL;
3902
3903 BUG_ON(sh->batch_head);
3904 set_bit(STRIPE_HANDLE, &sh->state);
3905
3906 switch (sh->check_state) {
3907 case check_state_idle:
3908 /* start a new check operation if there are no failures */
3909 if (s->failed == 0) {
3910 BUG_ON(s->uptodate != disks);
3911 sh->check_state = check_state_run;
3912 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3913 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3914 s->uptodate--;
3915 break;
3916 }
3917 dev = &sh->dev[s->failed_num[0]];
3918 /* fall through */
3919 case check_state_compute_result:
3920 sh->check_state = check_state_idle;
3921 if (!dev)
3922 dev = &sh->dev[sh->pd_idx];
3923
3924 /* check that a write has not made the stripe insync */
3925 if (test_bit(STRIPE_INSYNC, &sh->state))
3926 break;
3927
3928 /* either failed parity check, or recovery is happening */
3929 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3930 BUG_ON(s->uptodate != disks);
3931
3932 set_bit(R5_LOCKED, &dev->flags);
3933 s->locked++;
3934 set_bit(R5_Wantwrite, &dev->flags);
3935
3936 clear_bit(STRIPE_DEGRADED, &sh->state);
3937 set_bit(STRIPE_INSYNC, &sh->state);
3938 break;
3939 case check_state_run:
3940 break; /* we will be called again upon completion */
3941 case check_state_check_result:
3942 sh->check_state = check_state_idle;
3943
3944 /* if a failure occurred during the check operation, leave
3945 * STRIPE_INSYNC not set and let the stripe be handled again
3946 */
3947 if (s->failed)
3948 break;
3949
3950 /* handle a successful check operation, if parity is correct
3951 * we are done. Otherwise update the mismatch count and repair
3952 * parity if !MD_RECOVERY_CHECK
3953 */
3954 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3955 /* parity is correct (on disc,
3956 * not in buffer any more)
3957 */
3958 set_bit(STRIPE_INSYNC, &sh->state);
3959 else {
3960 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3961 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3962 /* don't try to repair!! */
3963 set_bit(STRIPE_INSYNC, &sh->state);
3964 else {
3965 sh->check_state = check_state_compute_run;
3966 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3967 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3968 set_bit(R5_Wantcompute,
3969 &sh->dev[sh->pd_idx].flags);
3970 sh->ops.target = sh->pd_idx;
3971 sh->ops.target2 = -1;
3972 s->uptodate++;
3973 }
3974 }
3975 break;
3976 case check_state_compute_run:
3977 break;
3978 default:
3979 pr_err("%s: unknown check_state: %d sector: %llu\n",
3980 __func__, sh->check_state,
3981 (unsigned long long) sh->sector);
3982 BUG();
3983 }
3984 }
3985
3986 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3987 struct stripe_head_state *s,
3988 int disks)
3989 {
3990 int pd_idx = sh->pd_idx;
3991 int qd_idx = sh->qd_idx;
3992 struct r5dev *dev;
3993
3994 BUG_ON(sh->batch_head);
3995 set_bit(STRIPE_HANDLE, &sh->state);
3996
3997 BUG_ON(s->failed > 2);
3998
3999 /* Want to check and possibly repair P and Q.
4000 * However there could be one 'failed' device, in which
4001 * case we can only check one of them, possibly using the
4002 * other to generate missing data
4003 */
4004
4005 switch (sh->check_state) {
4006 case check_state_idle:
4007 /* start a new check operation if there are < 2 failures */
4008 if (s->failed == s->q_failed) {
4009 /* The only possible failed device holds Q, so it
4010 * makes sense to check P (If anything else were failed,
4011 * we would have used P to recreate it).
4012 */
4013 sh->check_state = check_state_run;
4014 }
4015 if (!s->q_failed && s->failed < 2) {
4016 /* Q is not failed, and we didn't use it to generate
4017 * anything, so it makes sense to check it
4018 */
4019 if (sh->check_state == check_state_run)
4020 sh->check_state = check_state_run_pq;
4021 else
4022 sh->check_state = check_state_run_q;
4023 }
4024
4025 /* discard potentially stale zero_sum_result */
4026 sh->ops.zero_sum_result = 0;
4027
4028 if (sh->check_state == check_state_run) {
4029 /* async_xor_zero_sum destroys the contents of P */
4030 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4031 s->uptodate--;
4032 }
4033 if (sh->check_state >= check_state_run &&
4034 sh->check_state <= check_state_run_pq) {
4035 /* async_syndrome_zero_sum preserves P and Q, so
4036 * no need to mark them !uptodate here
4037 */
4038 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4039 break;
4040 }
4041
4042 /* we have 2-disk failure */
4043 BUG_ON(s->failed != 2);
4044 /* fall through */
4045 case check_state_compute_result:
4046 sh->check_state = check_state_idle;
4047
4048 /* check that a write has not made the stripe insync */
4049 if (test_bit(STRIPE_INSYNC, &sh->state))
4050 break;
4051
4052 /* now write out any block on a failed drive,
4053 * or P or Q if they were recomputed
4054 */
4055 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4056 if (s->failed == 2) {
4057 dev = &sh->dev[s->failed_num[1]];
4058 s->locked++;
4059 set_bit(R5_LOCKED, &dev->flags);
4060 set_bit(R5_Wantwrite, &dev->flags);
4061 }
4062 if (s->failed >= 1) {
4063 dev = &sh->dev[s->failed_num[0]];
4064 s->locked++;
4065 set_bit(R5_LOCKED, &dev->flags);
4066 set_bit(R5_Wantwrite, &dev->flags);
4067 }
4068 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4069 dev = &sh->dev[pd_idx];
4070 s->locked++;
4071 set_bit(R5_LOCKED, &dev->flags);
4072 set_bit(R5_Wantwrite, &dev->flags);
4073 }
4074 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4075 dev = &sh->dev[qd_idx];
4076 s->locked++;
4077 set_bit(R5_LOCKED, &dev->flags);
4078 set_bit(R5_Wantwrite, &dev->flags);
4079 }
4080 clear_bit(STRIPE_DEGRADED, &sh->state);
4081
4082 set_bit(STRIPE_INSYNC, &sh->state);
4083 break;
4084 case check_state_run:
4085 case check_state_run_q:
4086 case check_state_run_pq:
4087 break; /* we will be called again upon completion */
4088 case check_state_check_result:
4089 sh->check_state = check_state_idle;
4090
4091 /* handle a successful check operation, if parity is correct
4092 * we are done. Otherwise update the mismatch count and repair
4093 * parity if !MD_RECOVERY_CHECK
4094 */
4095 if (sh->ops.zero_sum_result == 0) {
4096 /* both parities are correct */
4097 if (!s->failed)
4098 set_bit(STRIPE_INSYNC, &sh->state);
4099 else {
4100 /* in contrast to the raid5 case we can validate
4101 * parity, but still have a failure to write
4102 * back
4103 */
4104 sh->check_state = check_state_compute_result;
4105 /* Returning at this point means that we may go
4106 * off and bring p and/or q uptodate again so
4107 * we make sure to check zero_sum_result again
4108 * to verify if p or q need writeback
4109 */
4110 }
4111 } else {
4112 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4113 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4114 /* don't try to repair!! */
4115 set_bit(STRIPE_INSYNC, &sh->state);
4116 else {
4117 int *target = &sh->ops.target;
4118
4119 sh->ops.target = -1;
4120 sh->ops.target2 = -1;
4121 sh->check_state = check_state_compute_run;
4122 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4123 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4124 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4125 set_bit(R5_Wantcompute,
4126 &sh->dev[pd_idx].flags);
4127 *target = pd_idx;
4128 target = &sh->ops.target2;
4129 s->uptodate++;
4130 }
4131 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4132 set_bit(R5_Wantcompute,
4133 &sh->dev[qd_idx].flags);
4134 *target = qd_idx;
4135 s->uptodate++;
4136 }
4137 }
4138 }
4139 break;
4140 case check_state_compute_run:
4141 break;
4142 default:
4143 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4144 __func__, sh->check_state,
4145 (unsigned long long) sh->sector);
4146 BUG();
4147 }
4148 }
4149
4150 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4151 {
4152 int i;
4153
4154 /* We have read all the blocks in this stripe and now we need to
4155 * copy some of them into a target stripe for expand.
4156 */
4157 struct dma_async_tx_descriptor *tx = NULL;
4158 BUG_ON(sh->batch_head);
4159 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4160 for (i = 0; i < sh->disks; i++)
4161 if (i != sh->pd_idx && i != sh->qd_idx) {
4162 int dd_idx, j;
4163 struct stripe_head *sh2;
4164 struct async_submit_ctl submit;
4165
4166 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4167 sector_t s = raid5_compute_sector(conf, bn, 0,
4168 &dd_idx, NULL);
4169 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4170 if (sh2 == NULL)
4171 /* so far only the early blocks of this stripe
4172 * have been requested. When later blocks
4173 * get requested, we will try again
4174 */
4175 continue;
4176 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4177 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4178 /* must have already done this block */
4179 raid5_release_stripe(sh2);
4180 continue;
4181 }
4182
4183 /* place all the copies on one channel */
4184 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4185 tx = async_memcpy(sh2->dev[dd_idx].page,
4186 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4187 &submit);
4188
4189 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4190 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4191 for (j = 0; j < conf->raid_disks; j++)
4192 if (j != sh2->pd_idx &&
4193 j != sh2->qd_idx &&
4194 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4195 break;
4196 if (j == conf->raid_disks) {
4197 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4198 set_bit(STRIPE_HANDLE, &sh2->state);
4199 }
4200 raid5_release_stripe(sh2);
4201
4202 }
4203 /* done submitting copies, wait for them to complete */
4204 async_tx_quiesce(&tx);
4205 }
4206
4207 /*
4208 * handle_stripe - do things to a stripe.
4209 *
4210 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4211 * state of various bits to see what needs to be done.
4212 * Possible results:
4213 * return some read requests which now have data
4214 * return some write requests which are safely on storage
4215 * schedule a read on some buffers
4216 * schedule a write of some buffers
4217 * return confirmation of parity correctness
4218 *
4219 */
4220
4221 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4222 {
4223 struct r5conf *conf = sh->raid_conf;
4224 int disks = sh->disks;
4225 struct r5dev *dev;
4226 int i;
4227 int do_recovery = 0;
4228
4229 memset(s, 0, sizeof(*s));
4230
4231 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4232 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4233 s->failed_num[0] = -1;
4234 s->failed_num[1] = -1;
4235 s->log_failed = r5l_log_disk_error(conf);
4236
4237 /* Now to look around and see what can be done */
4238 rcu_read_lock();
4239 for (i=disks; i--; ) {
4240 struct md_rdev *rdev;
4241 sector_t first_bad;
4242 int bad_sectors;
4243 int is_bad = 0;
4244
4245 dev = &sh->dev[i];
4246
4247 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4248 i, dev->flags,
4249 dev->toread, dev->towrite, dev->written);
4250 /* maybe we can reply to a read
4251 *
4252 * new wantfill requests are only permitted while
4253 * ops_complete_biofill is guaranteed to be inactive
4254 */
4255 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4256 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4257 set_bit(R5_Wantfill, &dev->flags);
4258
4259 /* now count some things */
4260 if (test_bit(R5_LOCKED, &dev->flags))
4261 s->locked++;
4262 if (test_bit(R5_UPTODATE, &dev->flags))
4263 s->uptodate++;
4264 if (test_bit(R5_Wantcompute, &dev->flags)) {
4265 s->compute++;
4266 BUG_ON(s->compute > 2);
4267 }
4268
4269 if (test_bit(R5_Wantfill, &dev->flags))
4270 s->to_fill++;
4271 else if (dev->toread)
4272 s->to_read++;
4273 if (dev->towrite) {
4274 s->to_write++;
4275 if (!test_bit(R5_OVERWRITE, &dev->flags))
4276 s->non_overwrite++;
4277 }
4278 if (dev->written)
4279 s->written++;
4280 /* Prefer to use the replacement for reads, but only
4281 * if it is recovered enough and has no bad blocks.
4282 */
4283 rdev = rcu_dereference(conf->disks[i].replacement);
4284 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4285 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4286 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4287 &first_bad, &bad_sectors))
4288 set_bit(R5_ReadRepl, &dev->flags);
4289 else {
4290 if (rdev && !test_bit(Faulty, &rdev->flags))
4291 set_bit(R5_NeedReplace, &dev->flags);
4292 else
4293 clear_bit(R5_NeedReplace, &dev->flags);
4294 rdev = rcu_dereference(conf->disks[i].rdev);
4295 clear_bit(R5_ReadRepl, &dev->flags);
4296 }
4297 if (rdev && test_bit(Faulty, &rdev->flags))
4298 rdev = NULL;
4299 if (rdev) {
4300 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4301 &first_bad, &bad_sectors);
4302 if (s->blocked_rdev == NULL
4303 && (test_bit(Blocked, &rdev->flags)
4304 || is_bad < 0)) {
4305 if (is_bad < 0)
4306 set_bit(BlockedBadBlocks,
4307 &rdev->flags);
4308 s->blocked_rdev = rdev;
4309 atomic_inc(&rdev->nr_pending);
4310 }
4311 }
4312 clear_bit(R5_Insync, &dev->flags);
4313 if (!rdev)
4314 /* Not in-sync */;
4315 else if (is_bad) {
4316 /* also not in-sync */
4317 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4318 test_bit(R5_UPTODATE, &dev->flags)) {
4319 /* treat as in-sync, but with a read error
4320 * which we can now try to correct
4321 */
4322 set_bit(R5_Insync, &dev->flags);
4323 set_bit(R5_ReadError, &dev->flags);
4324 }
4325 } else if (test_bit(In_sync, &rdev->flags))
4326 set_bit(R5_Insync, &dev->flags);
4327 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4328 /* in sync if before recovery_offset */
4329 set_bit(R5_Insync, &dev->flags);
4330 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4331 test_bit(R5_Expanded, &dev->flags))
4332 /* If we've reshaped into here, we assume it is Insync.
4333 * We will shortly update recovery_offset to make
4334 * it official.
4335 */
4336 set_bit(R5_Insync, &dev->flags);
4337
4338 if (test_bit(R5_WriteError, &dev->flags)) {
4339 /* This flag does not apply to '.replacement'
4340 * only to .rdev, so make sure to check that*/
4341 struct md_rdev *rdev2 = rcu_dereference(
4342 conf->disks[i].rdev);
4343 if (rdev2 == rdev)
4344 clear_bit(R5_Insync, &dev->flags);
4345 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4346 s->handle_bad_blocks = 1;
4347 atomic_inc(&rdev2->nr_pending);
4348 } else
4349 clear_bit(R5_WriteError, &dev->flags);
4350 }
4351 if (test_bit(R5_MadeGood, &dev->flags)) {
4352 /* This flag does not apply to '.replacement'
4353 * only to .rdev, so make sure to check that*/
4354 struct md_rdev *rdev2 = rcu_dereference(
4355 conf->disks[i].rdev);
4356 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4357 s->handle_bad_blocks = 1;
4358 atomic_inc(&rdev2->nr_pending);
4359 } else
4360 clear_bit(R5_MadeGood, &dev->flags);
4361 }
4362 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4363 struct md_rdev *rdev2 = rcu_dereference(
4364 conf->disks[i].replacement);
4365 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4366 s->handle_bad_blocks = 1;
4367 atomic_inc(&rdev2->nr_pending);
4368 } else
4369 clear_bit(R5_MadeGoodRepl, &dev->flags);
4370 }
4371 if (!test_bit(R5_Insync, &dev->flags)) {
4372 /* The ReadError flag will just be confusing now */
4373 clear_bit(R5_ReadError, &dev->flags);
4374 clear_bit(R5_ReWrite, &dev->flags);
4375 }
4376 if (test_bit(R5_ReadError, &dev->flags))
4377 clear_bit(R5_Insync, &dev->flags);
4378 if (!test_bit(R5_Insync, &dev->flags)) {
4379 if (s->failed < 2)
4380 s->failed_num[s->failed] = i;
4381 s->failed++;
4382 if (rdev && !test_bit(Faulty, &rdev->flags))
4383 do_recovery = 1;
4384 }
4385
4386 if (test_bit(R5_InJournal, &dev->flags))
4387 s->injournal++;
4388 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4389 s->just_cached++;
4390 }
4391 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4392 /* If there is a failed device being replaced,
4393 * we must be recovering.
4394 * else if we are after recovery_cp, we must be syncing
4395 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4396 * else we can only be replacing
4397 * sync and recovery both need to read all devices, and so
4398 * use the same flag.
4399 */
4400 if (do_recovery ||
4401 sh->sector >= conf->mddev->recovery_cp ||
4402 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4403 s->syncing = 1;
4404 else
4405 s->replacing = 1;
4406 }
4407 rcu_read_unlock();
4408 }
4409
4410 static int clear_batch_ready(struct stripe_head *sh)
4411 {
4412 /* Return '1' if this is a member of batch, or
4413 * '0' if it is a lone stripe or a head which can now be
4414 * handled.
4415 */
4416 struct stripe_head *tmp;
4417 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4418 return (sh->batch_head && sh->batch_head != sh);
4419 spin_lock(&sh->stripe_lock);
4420 if (!sh->batch_head) {
4421 spin_unlock(&sh->stripe_lock);
4422 return 0;
4423 }
4424
4425 /*
4426 * this stripe could be added to a batch list before we check
4427 * BATCH_READY, skips it
4428 */
4429 if (sh->batch_head != sh) {
4430 spin_unlock(&sh->stripe_lock);
4431 return 1;
4432 }
4433 spin_lock(&sh->batch_lock);
4434 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4435 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4436 spin_unlock(&sh->batch_lock);
4437 spin_unlock(&sh->stripe_lock);
4438
4439 /*
4440 * BATCH_READY is cleared, no new stripes can be added.
4441 * batch_list can be accessed without lock
4442 */
4443 return 0;
4444 }
4445
4446 static void break_stripe_batch_list(struct stripe_head *head_sh,
4447 unsigned long handle_flags)
4448 {
4449 struct stripe_head *sh, *next;
4450 int i;
4451 int do_wakeup = 0;
4452
4453 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4454
4455 list_del_init(&sh->batch_list);
4456
4457 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4458 (1 << STRIPE_SYNCING) |
4459 (1 << STRIPE_REPLACED) |
4460 (1 << STRIPE_DELAYED) |
4461 (1 << STRIPE_BIT_DELAY) |
4462 (1 << STRIPE_FULL_WRITE) |
4463 (1 << STRIPE_BIOFILL_RUN) |
4464 (1 << STRIPE_COMPUTE_RUN) |
4465 (1 << STRIPE_OPS_REQ_PENDING) |
4466 (1 << STRIPE_DISCARD) |
4467 (1 << STRIPE_BATCH_READY) |
4468 (1 << STRIPE_BATCH_ERR) |
4469 (1 << STRIPE_BITMAP_PENDING)),
4470 "stripe state: %lx\n", sh->state);
4471 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4472 (1 << STRIPE_REPLACED)),
4473 "head stripe state: %lx\n", head_sh->state);
4474
4475 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4476 (1 << STRIPE_PREREAD_ACTIVE) |
4477 (1 << STRIPE_DEGRADED)),
4478 head_sh->state & (1 << STRIPE_INSYNC));
4479
4480 sh->check_state = head_sh->check_state;
4481 sh->reconstruct_state = head_sh->reconstruct_state;
4482 for (i = 0; i < sh->disks; i++) {
4483 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4484 do_wakeup = 1;
4485 sh->dev[i].flags = head_sh->dev[i].flags &
4486 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4487 }
4488 spin_lock_irq(&sh->stripe_lock);
4489 sh->batch_head = NULL;
4490 spin_unlock_irq(&sh->stripe_lock);
4491 if (handle_flags == 0 ||
4492 sh->state & handle_flags)
4493 set_bit(STRIPE_HANDLE, &sh->state);
4494 raid5_release_stripe(sh);
4495 }
4496 spin_lock_irq(&head_sh->stripe_lock);
4497 head_sh->batch_head = NULL;
4498 spin_unlock_irq(&head_sh->stripe_lock);
4499 for (i = 0; i < head_sh->disks; i++)
4500 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4501 do_wakeup = 1;
4502 if (head_sh->state & handle_flags)
4503 set_bit(STRIPE_HANDLE, &head_sh->state);
4504
4505 if (do_wakeup)
4506 wake_up(&head_sh->raid_conf->wait_for_overlap);
4507 }
4508
4509 static void handle_stripe(struct stripe_head *sh)
4510 {
4511 struct stripe_head_state s;
4512 struct r5conf *conf = sh->raid_conf;
4513 int i;
4514 int prexor;
4515 int disks = sh->disks;
4516 struct r5dev *pdev, *qdev;
4517
4518 clear_bit(STRIPE_HANDLE, &sh->state);
4519 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4520 /* already being handled, ensure it gets handled
4521 * again when current action finishes */
4522 set_bit(STRIPE_HANDLE, &sh->state);
4523 return;
4524 }
4525
4526 if (clear_batch_ready(sh) ) {
4527 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4528 return;
4529 }
4530
4531 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4532 break_stripe_batch_list(sh, 0);
4533
4534 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4535 spin_lock(&sh->stripe_lock);
4536 /* Cannot process 'sync' concurrently with 'discard' */
4537 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4538 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4539 set_bit(STRIPE_SYNCING, &sh->state);
4540 clear_bit(STRIPE_INSYNC, &sh->state);
4541 clear_bit(STRIPE_REPLACED, &sh->state);
4542 }
4543 spin_unlock(&sh->stripe_lock);
4544 }
4545 clear_bit(STRIPE_DELAYED, &sh->state);
4546
4547 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4548 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4549 (unsigned long long)sh->sector, sh->state,
4550 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4551 sh->check_state, sh->reconstruct_state);
4552
4553 analyse_stripe(sh, &s);
4554
4555 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4556 goto finish;
4557
4558 if (s.handle_bad_blocks) {
4559 set_bit(STRIPE_HANDLE, &sh->state);
4560 goto finish;
4561 }
4562
4563 if (unlikely(s.blocked_rdev)) {
4564 if (s.syncing || s.expanding || s.expanded ||
4565 s.replacing || s.to_write || s.written) {
4566 set_bit(STRIPE_HANDLE, &sh->state);
4567 goto finish;
4568 }
4569 /* There is nothing for the blocked_rdev to block */
4570 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4571 s.blocked_rdev = NULL;
4572 }
4573
4574 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4575 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4576 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4577 }
4578
4579 pr_debug("locked=%d uptodate=%d to_read=%d"
4580 " to_write=%d failed=%d failed_num=%d,%d\n",
4581 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4582 s.failed_num[0], s.failed_num[1]);
4583 /* check if the array has lost more than max_degraded devices and,
4584 * if so, some requests might need to be failed.
4585 */
4586 if (s.failed > conf->max_degraded || s.log_failed) {
4587 sh->check_state = 0;
4588 sh->reconstruct_state = 0;
4589 break_stripe_batch_list(sh, 0);
4590 if (s.to_read+s.to_write+s.written)
4591 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4592 if (s.syncing + s.replacing)
4593 handle_failed_sync(conf, sh, &s);
4594 }
4595
4596 /* Now we check to see if any write operations have recently
4597 * completed
4598 */
4599 prexor = 0;
4600 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4601 prexor = 1;
4602 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4603 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4604 sh->reconstruct_state = reconstruct_state_idle;
4605
4606 /* All the 'written' buffers and the parity block are ready to
4607 * be written back to disk
4608 */
4609 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4610 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4611 BUG_ON(sh->qd_idx >= 0 &&
4612 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4613 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4614 for (i = disks; i--; ) {
4615 struct r5dev *dev = &sh->dev[i];
4616 if (test_bit(R5_LOCKED, &dev->flags) &&
4617 (i == sh->pd_idx || i == sh->qd_idx ||
4618 dev->written || test_bit(R5_InJournal,
4619 &dev->flags))) {
4620 pr_debug("Writing block %d\n", i);
4621 set_bit(R5_Wantwrite, &dev->flags);
4622 if (prexor)
4623 continue;
4624 if (s.failed > 1)
4625 continue;
4626 if (!test_bit(R5_Insync, &dev->flags) ||
4627 ((i == sh->pd_idx || i == sh->qd_idx) &&
4628 s.failed == 0))
4629 set_bit(STRIPE_INSYNC, &sh->state);
4630 }
4631 }
4632 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4633 s.dec_preread_active = 1;
4634 }
4635
4636 /*
4637 * might be able to return some write requests if the parity blocks
4638 * are safe, or on a failed drive
4639 */
4640 pdev = &sh->dev[sh->pd_idx];
4641 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4642 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4643 qdev = &sh->dev[sh->qd_idx];
4644 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4645 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4646 || conf->level < 6;
4647
4648 if (s.written &&
4649 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4650 && !test_bit(R5_LOCKED, &pdev->flags)
4651 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4652 test_bit(R5_Discard, &pdev->flags))))) &&
4653 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4654 && !test_bit(R5_LOCKED, &qdev->flags)
4655 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4656 test_bit(R5_Discard, &qdev->flags))))))
4657 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4658
4659 if (s.just_cached)
4660 r5c_handle_cached_data_endio(conf, sh, disks, &s.return_bi);
4661 r5l_stripe_write_finished(sh);
4662
4663 /* Now we might consider reading some blocks, either to check/generate
4664 * parity, or to satisfy requests
4665 * or to load a block that is being partially written.
4666 */
4667 if (s.to_read || s.non_overwrite
4668 || (conf->level == 6 && s.to_write && s.failed)
4669 || (s.syncing && (s.uptodate + s.compute < disks))
4670 || s.replacing
4671 || s.expanding)
4672 handle_stripe_fill(sh, &s, disks);
4673
4674 /*
4675 * When the stripe finishes full journal write cycle (write to journal
4676 * and raid disk), this is the clean up procedure so it is ready for
4677 * next operation.
4678 */
4679 r5c_finish_stripe_write_out(conf, sh, &s);
4680
4681 /*
4682 * Now to consider new write requests, cache write back and what else,
4683 * if anything should be read. We do not handle new writes when:
4684 * 1/ A 'write' operation (copy+xor) is already in flight.
4685 * 2/ A 'check' operation is in flight, as it may clobber the parity
4686 * block.
4687 * 3/ A r5c cache log write is in flight.
4688 */
4689
4690 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4691 if (!r5c_is_writeback(conf->log)) {
4692 if (s.to_write)
4693 handle_stripe_dirtying(conf, sh, &s, disks);
4694 } else { /* write back cache */
4695 int ret = 0;
4696
4697 /* First, try handle writes in caching phase */
4698 if (s.to_write)
4699 ret = r5c_try_caching_write(conf, sh, &s,
4700 disks);
4701 /*
4702 * If caching phase failed: ret == -EAGAIN
4703 * OR
4704 * stripe under reclaim: !caching && injournal
4705 *
4706 * fall back to handle_stripe_dirtying()
4707 */
4708 if (ret == -EAGAIN ||
4709 /* stripe under reclaim: !caching && injournal */
4710 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4711 s.injournal > 0)) {
4712 ret = handle_stripe_dirtying(conf, sh, &s,
4713 disks);
4714 if (ret == -EAGAIN)
4715 goto finish;
4716 }
4717 }
4718 }
4719
4720 /* maybe we need to check and possibly fix the parity for this stripe
4721 * Any reads will already have been scheduled, so we just see if enough
4722 * data is available. The parity check is held off while parity
4723 * dependent operations are in flight.
4724 */
4725 if (sh->check_state ||
4726 (s.syncing && s.locked == 0 &&
4727 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4728 !test_bit(STRIPE_INSYNC, &sh->state))) {
4729 if (conf->level == 6)
4730 handle_parity_checks6(conf, sh, &s, disks);
4731 else
4732 handle_parity_checks5(conf, sh, &s, disks);
4733 }
4734
4735 if ((s.replacing || s.syncing) && s.locked == 0
4736 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4737 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4738 /* Write out to replacement devices where possible */
4739 for (i = 0; i < conf->raid_disks; i++)
4740 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4741 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4742 set_bit(R5_WantReplace, &sh->dev[i].flags);
4743 set_bit(R5_LOCKED, &sh->dev[i].flags);
4744 s.locked++;
4745 }
4746 if (s.replacing)
4747 set_bit(STRIPE_INSYNC, &sh->state);
4748 set_bit(STRIPE_REPLACED, &sh->state);
4749 }
4750 if ((s.syncing || s.replacing) && s.locked == 0 &&
4751 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4752 test_bit(STRIPE_INSYNC, &sh->state)) {
4753 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4754 clear_bit(STRIPE_SYNCING, &sh->state);
4755 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4756 wake_up(&conf->wait_for_overlap);
4757 }
4758
4759 /* If the failed drives are just a ReadError, then we might need
4760 * to progress the repair/check process
4761 */
4762 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4763 for (i = 0; i < s.failed; i++) {
4764 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4765 if (test_bit(R5_ReadError, &dev->flags)
4766 && !test_bit(R5_LOCKED, &dev->flags)
4767 && test_bit(R5_UPTODATE, &dev->flags)
4768 ) {
4769 if (!test_bit(R5_ReWrite, &dev->flags)) {
4770 set_bit(R5_Wantwrite, &dev->flags);
4771 set_bit(R5_ReWrite, &dev->flags);
4772 set_bit(R5_LOCKED, &dev->flags);
4773 s.locked++;
4774 } else {
4775 /* let's read it back */
4776 set_bit(R5_Wantread, &dev->flags);
4777 set_bit(R5_LOCKED, &dev->flags);
4778 s.locked++;
4779 }
4780 }
4781 }
4782
4783 /* Finish reconstruct operations initiated by the expansion process */
4784 if (sh->reconstruct_state == reconstruct_state_result) {
4785 struct stripe_head *sh_src
4786 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4787 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4788 /* sh cannot be written until sh_src has been read.
4789 * so arrange for sh to be delayed a little
4790 */
4791 set_bit(STRIPE_DELAYED, &sh->state);
4792 set_bit(STRIPE_HANDLE, &sh->state);
4793 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4794 &sh_src->state))
4795 atomic_inc(&conf->preread_active_stripes);
4796 raid5_release_stripe(sh_src);
4797 goto finish;
4798 }
4799 if (sh_src)
4800 raid5_release_stripe(sh_src);
4801
4802 sh->reconstruct_state = reconstruct_state_idle;
4803 clear_bit(STRIPE_EXPANDING, &sh->state);
4804 for (i = conf->raid_disks; i--; ) {
4805 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4806 set_bit(R5_LOCKED, &sh->dev[i].flags);
4807 s.locked++;
4808 }
4809 }
4810
4811 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4812 !sh->reconstruct_state) {
4813 /* Need to write out all blocks after computing parity */
4814 sh->disks = conf->raid_disks;
4815 stripe_set_idx(sh->sector, conf, 0, sh);
4816 schedule_reconstruction(sh, &s, 1, 1);
4817 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4818 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4819 atomic_dec(&conf->reshape_stripes);
4820 wake_up(&conf->wait_for_overlap);
4821 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4822 }
4823
4824 if (s.expanding && s.locked == 0 &&
4825 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4826 handle_stripe_expansion(conf, sh);
4827
4828 finish:
4829 /* wait for this device to become unblocked */
4830 if (unlikely(s.blocked_rdev)) {
4831 if (conf->mddev->external)
4832 md_wait_for_blocked_rdev(s.blocked_rdev,
4833 conf->mddev);
4834 else
4835 /* Internal metadata will immediately
4836 * be written by raid5d, so we don't
4837 * need to wait here.
4838 */
4839 rdev_dec_pending(s.blocked_rdev,
4840 conf->mddev);
4841 }
4842
4843 if (s.handle_bad_blocks)
4844 for (i = disks; i--; ) {
4845 struct md_rdev *rdev;
4846 struct r5dev *dev = &sh->dev[i];
4847 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4848 /* We own a safe reference to the rdev */
4849 rdev = conf->disks[i].rdev;
4850 if (!rdev_set_badblocks(rdev, sh->sector,
4851 STRIPE_SECTORS, 0))
4852 md_error(conf->mddev, rdev);
4853 rdev_dec_pending(rdev, conf->mddev);
4854 }
4855 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4856 rdev = conf->disks[i].rdev;
4857 rdev_clear_badblocks(rdev, sh->sector,
4858 STRIPE_SECTORS, 0);
4859 rdev_dec_pending(rdev, conf->mddev);
4860 }
4861 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4862 rdev = conf->disks[i].replacement;
4863 if (!rdev)
4864 /* rdev have been moved down */
4865 rdev = conf->disks[i].rdev;
4866 rdev_clear_badblocks(rdev, sh->sector,
4867 STRIPE_SECTORS, 0);
4868 rdev_dec_pending(rdev, conf->mddev);
4869 }
4870 }
4871
4872 if (s.ops_request)
4873 raid_run_ops(sh, s.ops_request);
4874
4875 ops_run_io(sh, &s);
4876
4877 if (s.dec_preread_active) {
4878 /* We delay this until after ops_run_io so that if make_request
4879 * is waiting on a flush, it won't continue until the writes
4880 * have actually been submitted.
4881 */
4882 atomic_dec(&conf->preread_active_stripes);
4883 if (atomic_read(&conf->preread_active_stripes) <
4884 IO_THRESHOLD)
4885 md_wakeup_thread(conf->mddev->thread);
4886 }
4887
4888 if (!bio_list_empty(&s.return_bi)) {
4889 if (test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4890 spin_lock_irq(&conf->device_lock);
4891 bio_list_merge(&conf->return_bi, &s.return_bi);
4892 spin_unlock_irq(&conf->device_lock);
4893 md_wakeup_thread(conf->mddev->thread);
4894 } else
4895 return_io(&s.return_bi);
4896 }
4897
4898 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4899 }
4900
4901 static void raid5_activate_delayed(struct r5conf *conf)
4902 {
4903 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4904 while (!list_empty(&conf->delayed_list)) {
4905 struct list_head *l = conf->delayed_list.next;
4906 struct stripe_head *sh;
4907 sh = list_entry(l, struct stripe_head, lru);
4908 list_del_init(l);
4909 clear_bit(STRIPE_DELAYED, &sh->state);
4910 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4911 atomic_inc(&conf->preread_active_stripes);
4912 list_add_tail(&sh->lru, &conf->hold_list);
4913 raid5_wakeup_stripe_thread(sh);
4914 }
4915 }
4916 }
4917
4918 static void activate_bit_delay(struct r5conf *conf,
4919 struct list_head *temp_inactive_list)
4920 {
4921 /* device_lock is held */
4922 struct list_head head;
4923 list_add(&head, &conf->bitmap_list);
4924 list_del_init(&conf->bitmap_list);
4925 while (!list_empty(&head)) {
4926 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4927 int hash;
4928 list_del_init(&sh->lru);
4929 atomic_inc(&sh->count);
4930 hash = sh->hash_lock_index;
4931 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4932 }
4933 }
4934
4935 static int raid5_congested(struct mddev *mddev, int bits)
4936 {
4937 struct r5conf *conf = mddev->private;
4938
4939 /* No difference between reads and writes. Just check
4940 * how busy the stripe_cache is
4941 */
4942
4943 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4944 return 1;
4945
4946 /* Also checks whether there is pressure on r5cache log space */
4947 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
4948 return 1;
4949 if (conf->quiesce)
4950 return 1;
4951 if (atomic_read(&conf->empty_inactive_list_nr))
4952 return 1;
4953
4954 return 0;
4955 }
4956
4957 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4958 {
4959 struct r5conf *conf = mddev->private;
4960 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4961 unsigned int chunk_sectors;
4962 unsigned int bio_sectors = bio_sectors(bio);
4963
4964 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4965 return chunk_sectors >=
4966 ((sector & (chunk_sectors - 1)) + bio_sectors);
4967 }
4968
4969 /*
4970 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4971 * later sampled by raid5d.
4972 */
4973 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4974 {
4975 unsigned long flags;
4976
4977 spin_lock_irqsave(&conf->device_lock, flags);
4978
4979 bi->bi_next = conf->retry_read_aligned_list;
4980 conf->retry_read_aligned_list = bi;
4981
4982 spin_unlock_irqrestore(&conf->device_lock, flags);
4983 md_wakeup_thread(conf->mddev->thread);
4984 }
4985
4986 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4987 {
4988 struct bio *bi;
4989
4990 bi = conf->retry_read_aligned;
4991 if (bi) {
4992 conf->retry_read_aligned = NULL;
4993 return bi;
4994 }
4995 bi = conf->retry_read_aligned_list;
4996 if(bi) {
4997 conf->retry_read_aligned_list = bi->bi_next;
4998 bi->bi_next = NULL;
4999 /*
5000 * this sets the active strip count to 1 and the processed
5001 * strip count to zero (upper 8 bits)
5002 */
5003 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
5004 }
5005
5006 return bi;
5007 }
5008
5009 /*
5010 * The "raid5_align_endio" should check if the read succeeded and if it
5011 * did, call bio_endio on the original bio (having bio_put the new bio
5012 * first).
5013 * If the read failed..
5014 */
5015 static void raid5_align_endio(struct bio *bi)
5016 {
5017 struct bio* raid_bi = bi->bi_private;
5018 struct mddev *mddev;
5019 struct r5conf *conf;
5020 struct md_rdev *rdev;
5021 int error = bi->bi_error;
5022
5023 bio_put(bi);
5024
5025 rdev = (void*)raid_bi->bi_next;
5026 raid_bi->bi_next = NULL;
5027 mddev = rdev->mddev;
5028 conf = mddev->private;
5029
5030 rdev_dec_pending(rdev, conf->mddev);
5031
5032 if (!error) {
5033 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
5034 raid_bi, 0);
5035 bio_endio(raid_bi);
5036 if (atomic_dec_and_test(&conf->active_aligned_reads))
5037 wake_up(&conf->wait_for_quiescent);
5038 return;
5039 }
5040
5041 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5042
5043 add_bio_to_retry(raid_bi, conf);
5044 }
5045
5046 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5047 {
5048 struct r5conf *conf = mddev->private;
5049 int dd_idx;
5050 struct bio* align_bi;
5051 struct md_rdev *rdev;
5052 sector_t end_sector;
5053
5054 if (!in_chunk_boundary(mddev, raid_bio)) {
5055 pr_debug("%s: non aligned\n", __func__);
5056 return 0;
5057 }
5058 /*
5059 * use bio_clone_fast to make a copy of the bio
5060 */
5061 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5062 if (!align_bi)
5063 return 0;
5064 /*
5065 * set bi_end_io to a new function, and set bi_private to the
5066 * original bio.
5067 */
5068 align_bi->bi_end_io = raid5_align_endio;
5069 align_bi->bi_private = raid_bio;
5070 /*
5071 * compute position
5072 */
5073 align_bi->bi_iter.bi_sector =
5074 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5075 0, &dd_idx, NULL);
5076
5077 end_sector = bio_end_sector(align_bi);
5078 rcu_read_lock();
5079 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5080 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5081 rdev->recovery_offset < end_sector) {
5082 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5083 if (rdev &&
5084 (test_bit(Faulty, &rdev->flags) ||
5085 !(test_bit(In_sync, &rdev->flags) ||
5086 rdev->recovery_offset >= end_sector)))
5087 rdev = NULL;
5088 }
5089
5090 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5091 rcu_read_unlock();
5092 bio_put(align_bi);
5093 return 0;
5094 }
5095
5096 if (rdev) {
5097 sector_t first_bad;
5098 int bad_sectors;
5099
5100 atomic_inc(&rdev->nr_pending);
5101 rcu_read_unlock();
5102 raid_bio->bi_next = (void*)rdev;
5103 align_bi->bi_bdev = rdev->bdev;
5104 bio_clear_flag(align_bi, BIO_SEG_VALID);
5105
5106 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5107 bio_sectors(align_bi),
5108 &first_bad, &bad_sectors)) {
5109 bio_put(align_bi);
5110 rdev_dec_pending(rdev, mddev);
5111 return 0;
5112 }
5113
5114 /* No reshape active, so we can trust rdev->data_offset */
5115 align_bi->bi_iter.bi_sector += rdev->data_offset;
5116
5117 spin_lock_irq(&conf->device_lock);
5118 wait_event_lock_irq(conf->wait_for_quiescent,
5119 conf->quiesce == 0,
5120 conf->device_lock);
5121 atomic_inc(&conf->active_aligned_reads);
5122 spin_unlock_irq(&conf->device_lock);
5123
5124 if (mddev->gendisk)
5125 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5126 align_bi, disk_devt(mddev->gendisk),
5127 raid_bio->bi_iter.bi_sector);
5128 generic_make_request(align_bi);
5129 return 1;
5130 } else {
5131 rcu_read_unlock();
5132 bio_put(align_bi);
5133 return 0;
5134 }
5135 }
5136
5137 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5138 {
5139 struct bio *split;
5140
5141 do {
5142 sector_t sector = raid_bio->bi_iter.bi_sector;
5143 unsigned chunk_sects = mddev->chunk_sectors;
5144 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5145
5146 if (sectors < bio_sectors(raid_bio)) {
5147 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
5148 bio_chain(split, raid_bio);
5149 } else
5150 split = raid_bio;
5151
5152 if (!raid5_read_one_chunk(mddev, split)) {
5153 if (split != raid_bio)
5154 generic_make_request(raid_bio);
5155 return split;
5156 }
5157 } while (split != raid_bio);
5158
5159 return NULL;
5160 }
5161
5162 /* __get_priority_stripe - get the next stripe to process
5163 *
5164 * Full stripe writes are allowed to pass preread active stripes up until
5165 * the bypass_threshold is exceeded. In general the bypass_count
5166 * increments when the handle_list is handled before the hold_list; however, it
5167 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5168 * stripe with in flight i/o. The bypass_count will be reset when the
5169 * head of the hold_list has changed, i.e. the head was promoted to the
5170 * handle_list.
5171 */
5172 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5173 {
5174 struct stripe_head *sh = NULL, *tmp;
5175 struct list_head *handle_list = NULL;
5176 struct r5worker_group *wg = NULL;
5177
5178 if (conf->worker_cnt_per_group == 0) {
5179 handle_list = &conf->handle_list;
5180 } else if (group != ANY_GROUP) {
5181 handle_list = &conf->worker_groups[group].handle_list;
5182 wg = &conf->worker_groups[group];
5183 } else {
5184 int i;
5185 for (i = 0; i < conf->group_cnt; i++) {
5186 handle_list = &conf->worker_groups[i].handle_list;
5187 wg = &conf->worker_groups[i];
5188 if (!list_empty(handle_list))
5189 break;
5190 }
5191 }
5192
5193 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5194 __func__,
5195 list_empty(handle_list) ? "empty" : "busy",
5196 list_empty(&conf->hold_list) ? "empty" : "busy",
5197 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5198
5199 if (!list_empty(handle_list)) {
5200 sh = list_entry(handle_list->next, typeof(*sh), lru);
5201
5202 if (list_empty(&conf->hold_list))
5203 conf->bypass_count = 0;
5204 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5205 if (conf->hold_list.next == conf->last_hold)
5206 conf->bypass_count++;
5207 else {
5208 conf->last_hold = conf->hold_list.next;
5209 conf->bypass_count -= conf->bypass_threshold;
5210 if (conf->bypass_count < 0)
5211 conf->bypass_count = 0;
5212 }
5213 }
5214 } else if (!list_empty(&conf->hold_list) &&
5215 ((conf->bypass_threshold &&
5216 conf->bypass_count > conf->bypass_threshold) ||
5217 atomic_read(&conf->pending_full_writes) == 0)) {
5218
5219 list_for_each_entry(tmp, &conf->hold_list, lru) {
5220 if (conf->worker_cnt_per_group == 0 ||
5221 group == ANY_GROUP ||
5222 !cpu_online(tmp->cpu) ||
5223 cpu_to_group(tmp->cpu) == group) {
5224 sh = tmp;
5225 break;
5226 }
5227 }
5228
5229 if (sh) {
5230 conf->bypass_count -= conf->bypass_threshold;
5231 if (conf->bypass_count < 0)
5232 conf->bypass_count = 0;
5233 }
5234 wg = NULL;
5235 }
5236
5237 if (!sh)
5238 return NULL;
5239
5240 if (wg) {
5241 wg->stripes_cnt--;
5242 sh->group = NULL;
5243 }
5244 list_del_init(&sh->lru);
5245 BUG_ON(atomic_inc_return(&sh->count) != 1);
5246 return sh;
5247 }
5248
5249 struct raid5_plug_cb {
5250 struct blk_plug_cb cb;
5251 struct list_head list;
5252 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5253 };
5254
5255 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5256 {
5257 struct raid5_plug_cb *cb = container_of(
5258 blk_cb, struct raid5_plug_cb, cb);
5259 struct stripe_head *sh;
5260 struct mddev *mddev = cb->cb.data;
5261 struct r5conf *conf = mddev->private;
5262 int cnt = 0;
5263 int hash;
5264
5265 if (cb->list.next && !list_empty(&cb->list)) {
5266 spin_lock_irq(&conf->device_lock);
5267 while (!list_empty(&cb->list)) {
5268 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5269 list_del_init(&sh->lru);
5270 /*
5271 * avoid race release_stripe_plug() sees
5272 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5273 * is still in our list
5274 */
5275 smp_mb__before_atomic();
5276 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5277 /*
5278 * STRIPE_ON_RELEASE_LIST could be set here. In that
5279 * case, the count is always > 1 here
5280 */
5281 hash = sh->hash_lock_index;
5282 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5283 cnt++;
5284 }
5285 spin_unlock_irq(&conf->device_lock);
5286 }
5287 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5288 NR_STRIPE_HASH_LOCKS);
5289 if (mddev->queue)
5290 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5291 kfree(cb);
5292 }
5293
5294 static void release_stripe_plug(struct mddev *mddev,
5295 struct stripe_head *sh)
5296 {
5297 struct blk_plug_cb *blk_cb = blk_check_plugged(
5298 raid5_unplug, mddev,
5299 sizeof(struct raid5_plug_cb));
5300 struct raid5_plug_cb *cb;
5301
5302 if (!blk_cb) {
5303 raid5_release_stripe(sh);
5304 return;
5305 }
5306
5307 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5308
5309 if (cb->list.next == NULL) {
5310 int i;
5311 INIT_LIST_HEAD(&cb->list);
5312 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5313 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5314 }
5315
5316 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5317 list_add_tail(&sh->lru, &cb->list);
5318 else
5319 raid5_release_stripe(sh);
5320 }
5321
5322 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5323 {
5324 struct r5conf *conf = mddev->private;
5325 sector_t logical_sector, last_sector;
5326 struct stripe_head *sh;
5327 int remaining;
5328 int stripe_sectors;
5329
5330 if (mddev->reshape_position != MaxSector)
5331 /* Skip discard while reshape is happening */
5332 return;
5333
5334 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5335 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5336
5337 bi->bi_next = NULL;
5338 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5339
5340 stripe_sectors = conf->chunk_sectors *
5341 (conf->raid_disks - conf->max_degraded);
5342 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5343 stripe_sectors);
5344 sector_div(last_sector, stripe_sectors);
5345
5346 logical_sector *= conf->chunk_sectors;
5347 last_sector *= conf->chunk_sectors;
5348
5349 for (; logical_sector < last_sector;
5350 logical_sector += STRIPE_SECTORS) {
5351 DEFINE_WAIT(w);
5352 int d;
5353 again:
5354 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5355 prepare_to_wait(&conf->wait_for_overlap, &w,
5356 TASK_UNINTERRUPTIBLE);
5357 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5358 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5359 raid5_release_stripe(sh);
5360 schedule();
5361 goto again;
5362 }
5363 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5364 spin_lock_irq(&sh->stripe_lock);
5365 for (d = 0; d < conf->raid_disks; d++) {
5366 if (d == sh->pd_idx || d == sh->qd_idx)
5367 continue;
5368 if (sh->dev[d].towrite || sh->dev[d].toread) {
5369 set_bit(R5_Overlap, &sh->dev[d].flags);
5370 spin_unlock_irq(&sh->stripe_lock);
5371 raid5_release_stripe(sh);
5372 schedule();
5373 goto again;
5374 }
5375 }
5376 set_bit(STRIPE_DISCARD, &sh->state);
5377 finish_wait(&conf->wait_for_overlap, &w);
5378 sh->overwrite_disks = 0;
5379 for (d = 0; d < conf->raid_disks; d++) {
5380 if (d == sh->pd_idx || d == sh->qd_idx)
5381 continue;
5382 sh->dev[d].towrite = bi;
5383 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5384 raid5_inc_bi_active_stripes(bi);
5385 sh->overwrite_disks++;
5386 }
5387 spin_unlock_irq(&sh->stripe_lock);
5388 if (conf->mddev->bitmap) {
5389 for (d = 0;
5390 d < conf->raid_disks - conf->max_degraded;
5391 d++)
5392 bitmap_startwrite(mddev->bitmap,
5393 sh->sector,
5394 STRIPE_SECTORS,
5395 0);
5396 sh->bm_seq = conf->seq_flush + 1;
5397 set_bit(STRIPE_BIT_DELAY, &sh->state);
5398 }
5399
5400 set_bit(STRIPE_HANDLE, &sh->state);
5401 clear_bit(STRIPE_DELAYED, &sh->state);
5402 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5403 atomic_inc(&conf->preread_active_stripes);
5404 release_stripe_plug(mddev, sh);
5405 }
5406
5407 remaining = raid5_dec_bi_active_stripes(bi);
5408 if (remaining == 0) {
5409 md_write_end(mddev);
5410 bio_endio(bi);
5411 }
5412 }
5413
5414 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5415 {
5416 struct r5conf *conf = mddev->private;
5417 int dd_idx;
5418 sector_t new_sector;
5419 sector_t logical_sector, last_sector;
5420 struct stripe_head *sh;
5421 const int rw = bio_data_dir(bi);
5422 int remaining;
5423 DEFINE_WAIT(w);
5424 bool do_prepare;
5425 bool do_flush = false;
5426
5427 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5428 int ret = r5l_handle_flush_request(conf->log, bi);
5429
5430 if (ret == 0)
5431 return;
5432 if (ret == -ENODEV) {
5433 md_flush_request(mddev, bi);
5434 return;
5435 }
5436 /* ret == -EAGAIN, fallback */
5437 /*
5438 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5439 * we need to flush journal device
5440 */
5441 do_flush = bi->bi_opf & REQ_PREFLUSH;
5442 }
5443
5444 md_write_start(mddev, bi);
5445
5446 /*
5447 * If array is degraded, better not do chunk aligned read because
5448 * later we might have to read it again in order to reconstruct
5449 * data on failed drives.
5450 */
5451 if (rw == READ && mddev->degraded == 0 &&
5452 mddev->reshape_position == MaxSector) {
5453 bi = chunk_aligned_read(mddev, bi);
5454 if (!bi)
5455 return;
5456 }
5457
5458 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5459 make_discard_request(mddev, bi);
5460 return;
5461 }
5462
5463 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5464 last_sector = bio_end_sector(bi);
5465 bi->bi_next = NULL;
5466 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5467
5468 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5469 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5470 int previous;
5471 int seq;
5472
5473 do_prepare = false;
5474 retry:
5475 seq = read_seqcount_begin(&conf->gen_lock);
5476 previous = 0;
5477 if (do_prepare)
5478 prepare_to_wait(&conf->wait_for_overlap, &w,
5479 TASK_UNINTERRUPTIBLE);
5480 if (unlikely(conf->reshape_progress != MaxSector)) {
5481 /* spinlock is needed as reshape_progress may be
5482 * 64bit on a 32bit platform, and so it might be
5483 * possible to see a half-updated value
5484 * Of course reshape_progress could change after
5485 * the lock is dropped, so once we get a reference
5486 * to the stripe that we think it is, we will have
5487 * to check again.
5488 */
5489 spin_lock_irq(&conf->device_lock);
5490 if (mddev->reshape_backwards
5491 ? logical_sector < conf->reshape_progress
5492 : logical_sector >= conf->reshape_progress) {
5493 previous = 1;
5494 } else {
5495 if (mddev->reshape_backwards
5496 ? logical_sector < conf->reshape_safe
5497 : logical_sector >= conf->reshape_safe) {
5498 spin_unlock_irq(&conf->device_lock);
5499 schedule();
5500 do_prepare = true;
5501 goto retry;
5502 }
5503 }
5504 spin_unlock_irq(&conf->device_lock);
5505 }
5506
5507 new_sector = raid5_compute_sector(conf, logical_sector,
5508 previous,
5509 &dd_idx, NULL);
5510 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5511 (unsigned long long)new_sector,
5512 (unsigned long long)logical_sector);
5513
5514 sh = raid5_get_active_stripe(conf, new_sector, previous,
5515 (bi->bi_opf & REQ_RAHEAD), 0);
5516 if (sh) {
5517 if (unlikely(previous)) {
5518 /* expansion might have moved on while waiting for a
5519 * stripe, so we must do the range check again.
5520 * Expansion could still move past after this
5521 * test, but as we are holding a reference to
5522 * 'sh', we know that if that happens,
5523 * STRIPE_EXPANDING will get set and the expansion
5524 * won't proceed until we finish with the stripe.
5525 */
5526 int must_retry = 0;
5527 spin_lock_irq(&conf->device_lock);
5528 if (mddev->reshape_backwards
5529 ? logical_sector >= conf->reshape_progress
5530 : logical_sector < conf->reshape_progress)
5531 /* mismatch, need to try again */
5532 must_retry = 1;
5533 spin_unlock_irq(&conf->device_lock);
5534 if (must_retry) {
5535 raid5_release_stripe(sh);
5536 schedule();
5537 do_prepare = true;
5538 goto retry;
5539 }
5540 }
5541 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5542 /* Might have got the wrong stripe_head
5543 * by accident
5544 */
5545 raid5_release_stripe(sh);
5546 goto retry;
5547 }
5548
5549 if (rw == WRITE &&
5550 logical_sector >= mddev->suspend_lo &&
5551 logical_sector < mddev->suspend_hi) {
5552 raid5_release_stripe(sh);
5553 /* As the suspend_* range is controlled by
5554 * userspace, we want an interruptible
5555 * wait.
5556 */
5557 flush_signals(current);
5558 prepare_to_wait(&conf->wait_for_overlap,
5559 &w, TASK_INTERRUPTIBLE);
5560 if (logical_sector >= mddev->suspend_lo &&
5561 logical_sector < mddev->suspend_hi) {
5562 schedule();
5563 do_prepare = true;
5564 }
5565 goto retry;
5566 }
5567
5568 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5569 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5570 /* Stripe is busy expanding or
5571 * add failed due to overlap. Flush everything
5572 * and wait a while
5573 */
5574 md_wakeup_thread(mddev->thread);
5575 raid5_release_stripe(sh);
5576 schedule();
5577 do_prepare = true;
5578 goto retry;
5579 }
5580 if (do_flush) {
5581 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5582 /* we only need flush for one stripe */
5583 do_flush = false;
5584 }
5585
5586 set_bit(STRIPE_HANDLE, &sh->state);
5587 clear_bit(STRIPE_DELAYED, &sh->state);
5588 if ((!sh->batch_head || sh == sh->batch_head) &&
5589 (bi->bi_opf & REQ_SYNC) &&
5590 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5591 atomic_inc(&conf->preread_active_stripes);
5592 release_stripe_plug(mddev, sh);
5593 } else {
5594 /* cannot get stripe for read-ahead, just give-up */
5595 bi->bi_error = -EIO;
5596 break;
5597 }
5598 }
5599 finish_wait(&conf->wait_for_overlap, &w);
5600
5601 remaining = raid5_dec_bi_active_stripes(bi);
5602 if (remaining == 0) {
5603
5604 if ( rw == WRITE )
5605 md_write_end(mddev);
5606
5607 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5608 bi, 0);
5609 bio_endio(bi);
5610 }
5611 }
5612
5613 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5614
5615 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5616 {
5617 /* reshaping is quite different to recovery/resync so it is
5618 * handled quite separately ... here.
5619 *
5620 * On each call to sync_request, we gather one chunk worth of
5621 * destination stripes and flag them as expanding.
5622 * Then we find all the source stripes and request reads.
5623 * As the reads complete, handle_stripe will copy the data
5624 * into the destination stripe and release that stripe.
5625 */
5626 struct r5conf *conf = mddev->private;
5627 struct stripe_head *sh;
5628 sector_t first_sector, last_sector;
5629 int raid_disks = conf->previous_raid_disks;
5630 int data_disks = raid_disks - conf->max_degraded;
5631 int new_data_disks = conf->raid_disks - conf->max_degraded;
5632 int i;
5633 int dd_idx;
5634 sector_t writepos, readpos, safepos;
5635 sector_t stripe_addr;
5636 int reshape_sectors;
5637 struct list_head stripes;
5638 sector_t retn;
5639
5640 if (sector_nr == 0) {
5641 /* If restarting in the middle, skip the initial sectors */
5642 if (mddev->reshape_backwards &&
5643 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5644 sector_nr = raid5_size(mddev, 0, 0)
5645 - conf->reshape_progress;
5646 } else if (mddev->reshape_backwards &&
5647 conf->reshape_progress == MaxSector) {
5648 /* shouldn't happen, but just in case, finish up.*/
5649 sector_nr = MaxSector;
5650 } else if (!mddev->reshape_backwards &&
5651 conf->reshape_progress > 0)
5652 sector_nr = conf->reshape_progress;
5653 sector_div(sector_nr, new_data_disks);
5654 if (sector_nr) {
5655 mddev->curr_resync_completed = sector_nr;
5656 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5657 *skipped = 1;
5658 retn = sector_nr;
5659 goto finish;
5660 }
5661 }
5662
5663 /* We need to process a full chunk at a time.
5664 * If old and new chunk sizes differ, we need to process the
5665 * largest of these
5666 */
5667
5668 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5669
5670 /* We update the metadata at least every 10 seconds, or when
5671 * the data about to be copied would over-write the source of
5672 * the data at the front of the range. i.e. one new_stripe
5673 * along from reshape_progress new_maps to after where
5674 * reshape_safe old_maps to
5675 */
5676 writepos = conf->reshape_progress;
5677 sector_div(writepos, new_data_disks);
5678 readpos = conf->reshape_progress;
5679 sector_div(readpos, data_disks);
5680 safepos = conf->reshape_safe;
5681 sector_div(safepos, data_disks);
5682 if (mddev->reshape_backwards) {
5683 BUG_ON(writepos < reshape_sectors);
5684 writepos -= reshape_sectors;
5685 readpos += reshape_sectors;
5686 safepos += reshape_sectors;
5687 } else {
5688 writepos += reshape_sectors;
5689 /* readpos and safepos are worst-case calculations.
5690 * A negative number is overly pessimistic, and causes
5691 * obvious problems for unsigned storage. So clip to 0.
5692 */
5693 readpos -= min_t(sector_t, reshape_sectors, readpos);
5694 safepos -= min_t(sector_t, reshape_sectors, safepos);
5695 }
5696
5697 /* Having calculated the 'writepos' possibly use it
5698 * to set 'stripe_addr' which is where we will write to.
5699 */
5700 if (mddev->reshape_backwards) {
5701 BUG_ON(conf->reshape_progress == 0);
5702 stripe_addr = writepos;
5703 BUG_ON((mddev->dev_sectors &
5704 ~((sector_t)reshape_sectors - 1))
5705 - reshape_sectors - stripe_addr
5706 != sector_nr);
5707 } else {
5708 BUG_ON(writepos != sector_nr + reshape_sectors);
5709 stripe_addr = sector_nr;
5710 }
5711
5712 /* 'writepos' is the most advanced device address we might write.
5713 * 'readpos' is the least advanced device address we might read.
5714 * 'safepos' is the least address recorded in the metadata as having
5715 * been reshaped.
5716 * If there is a min_offset_diff, these are adjusted either by
5717 * increasing the safepos/readpos if diff is negative, or
5718 * increasing writepos if diff is positive.
5719 * If 'readpos' is then behind 'writepos', there is no way that we can
5720 * ensure safety in the face of a crash - that must be done by userspace
5721 * making a backup of the data. So in that case there is no particular
5722 * rush to update metadata.
5723 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5724 * update the metadata to advance 'safepos' to match 'readpos' so that
5725 * we can be safe in the event of a crash.
5726 * So we insist on updating metadata if safepos is behind writepos and
5727 * readpos is beyond writepos.
5728 * In any case, update the metadata every 10 seconds.
5729 * Maybe that number should be configurable, but I'm not sure it is
5730 * worth it.... maybe it could be a multiple of safemode_delay???
5731 */
5732 if (conf->min_offset_diff < 0) {
5733 safepos += -conf->min_offset_diff;
5734 readpos += -conf->min_offset_diff;
5735 } else
5736 writepos += conf->min_offset_diff;
5737
5738 if ((mddev->reshape_backwards
5739 ? (safepos > writepos && readpos < writepos)
5740 : (safepos < writepos && readpos > writepos)) ||
5741 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5742 /* Cannot proceed until we've updated the superblock... */
5743 wait_event(conf->wait_for_overlap,
5744 atomic_read(&conf->reshape_stripes)==0
5745 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5746 if (atomic_read(&conf->reshape_stripes) != 0)
5747 return 0;
5748 mddev->reshape_position = conf->reshape_progress;
5749 mddev->curr_resync_completed = sector_nr;
5750 conf->reshape_checkpoint = jiffies;
5751 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5752 md_wakeup_thread(mddev->thread);
5753 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5754 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5755 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5756 return 0;
5757 spin_lock_irq(&conf->device_lock);
5758 conf->reshape_safe = mddev->reshape_position;
5759 spin_unlock_irq(&conf->device_lock);
5760 wake_up(&conf->wait_for_overlap);
5761 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5762 }
5763
5764 INIT_LIST_HEAD(&stripes);
5765 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5766 int j;
5767 int skipped_disk = 0;
5768 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5769 set_bit(STRIPE_EXPANDING, &sh->state);
5770 atomic_inc(&conf->reshape_stripes);
5771 /* If any of this stripe is beyond the end of the old
5772 * array, then we need to zero those blocks
5773 */
5774 for (j=sh->disks; j--;) {
5775 sector_t s;
5776 if (j == sh->pd_idx)
5777 continue;
5778 if (conf->level == 6 &&
5779 j == sh->qd_idx)
5780 continue;
5781 s = raid5_compute_blocknr(sh, j, 0);
5782 if (s < raid5_size(mddev, 0, 0)) {
5783 skipped_disk = 1;
5784 continue;
5785 }
5786 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5787 set_bit(R5_Expanded, &sh->dev[j].flags);
5788 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5789 }
5790 if (!skipped_disk) {
5791 set_bit(STRIPE_EXPAND_READY, &sh->state);
5792 set_bit(STRIPE_HANDLE, &sh->state);
5793 }
5794 list_add(&sh->lru, &stripes);
5795 }
5796 spin_lock_irq(&conf->device_lock);
5797 if (mddev->reshape_backwards)
5798 conf->reshape_progress -= reshape_sectors * new_data_disks;
5799 else
5800 conf->reshape_progress += reshape_sectors * new_data_disks;
5801 spin_unlock_irq(&conf->device_lock);
5802 /* Ok, those stripe are ready. We can start scheduling
5803 * reads on the source stripes.
5804 * The source stripes are determined by mapping the first and last
5805 * block on the destination stripes.
5806 */
5807 first_sector =
5808 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5809 1, &dd_idx, NULL);
5810 last_sector =
5811 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5812 * new_data_disks - 1),
5813 1, &dd_idx, NULL);
5814 if (last_sector >= mddev->dev_sectors)
5815 last_sector = mddev->dev_sectors - 1;
5816 while (first_sector <= last_sector) {
5817 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5818 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5819 set_bit(STRIPE_HANDLE, &sh->state);
5820 raid5_release_stripe(sh);
5821 first_sector += STRIPE_SECTORS;
5822 }
5823 /* Now that the sources are clearly marked, we can release
5824 * the destination stripes
5825 */
5826 while (!list_empty(&stripes)) {
5827 sh = list_entry(stripes.next, struct stripe_head, lru);
5828 list_del_init(&sh->lru);
5829 raid5_release_stripe(sh);
5830 }
5831 /* If this takes us to the resync_max point where we have to pause,
5832 * then we need to write out the superblock.
5833 */
5834 sector_nr += reshape_sectors;
5835 retn = reshape_sectors;
5836 finish:
5837 if (mddev->curr_resync_completed > mddev->resync_max ||
5838 (sector_nr - mddev->curr_resync_completed) * 2
5839 >= mddev->resync_max - mddev->curr_resync_completed) {
5840 /* Cannot proceed until we've updated the superblock... */
5841 wait_event(conf->wait_for_overlap,
5842 atomic_read(&conf->reshape_stripes) == 0
5843 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5844 if (atomic_read(&conf->reshape_stripes) != 0)
5845 goto ret;
5846 mddev->reshape_position = conf->reshape_progress;
5847 mddev->curr_resync_completed = sector_nr;
5848 conf->reshape_checkpoint = jiffies;
5849 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5850 md_wakeup_thread(mddev->thread);
5851 wait_event(mddev->sb_wait,
5852 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5853 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5854 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5855 goto ret;
5856 spin_lock_irq(&conf->device_lock);
5857 conf->reshape_safe = mddev->reshape_position;
5858 spin_unlock_irq(&conf->device_lock);
5859 wake_up(&conf->wait_for_overlap);
5860 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5861 }
5862 ret:
5863 return retn;
5864 }
5865
5866 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5867 int *skipped)
5868 {
5869 struct r5conf *conf = mddev->private;
5870 struct stripe_head *sh;
5871 sector_t max_sector = mddev->dev_sectors;
5872 sector_t sync_blocks;
5873 int still_degraded = 0;
5874 int i;
5875
5876 if (sector_nr >= max_sector) {
5877 /* just being told to finish up .. nothing much to do */
5878
5879 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5880 end_reshape(conf);
5881 return 0;
5882 }
5883
5884 if (mddev->curr_resync < max_sector) /* aborted */
5885 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5886 &sync_blocks, 1);
5887 else /* completed sync */
5888 conf->fullsync = 0;
5889 bitmap_close_sync(mddev->bitmap);
5890
5891 return 0;
5892 }
5893
5894 /* Allow raid5_quiesce to complete */
5895 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5896
5897 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5898 return reshape_request(mddev, sector_nr, skipped);
5899
5900 /* No need to check resync_max as we never do more than one
5901 * stripe, and as resync_max will always be on a chunk boundary,
5902 * if the check in md_do_sync didn't fire, there is no chance
5903 * of overstepping resync_max here
5904 */
5905
5906 /* if there is too many failed drives and we are trying
5907 * to resync, then assert that we are finished, because there is
5908 * nothing we can do.
5909 */
5910 if (mddev->degraded >= conf->max_degraded &&
5911 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5912 sector_t rv = mddev->dev_sectors - sector_nr;
5913 *skipped = 1;
5914 return rv;
5915 }
5916 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5917 !conf->fullsync &&
5918 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5919 sync_blocks >= STRIPE_SECTORS) {
5920 /* we can skip this block, and probably more */
5921 sync_blocks /= STRIPE_SECTORS;
5922 *skipped = 1;
5923 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5924 }
5925
5926 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5927
5928 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5929 if (sh == NULL) {
5930 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5931 /* make sure we don't swamp the stripe cache if someone else
5932 * is trying to get access
5933 */
5934 schedule_timeout_uninterruptible(1);
5935 }
5936 /* Need to check if array will still be degraded after recovery/resync
5937 * Note in case of > 1 drive failures it's possible we're rebuilding
5938 * one drive while leaving another faulty drive in array.
5939 */
5940 rcu_read_lock();
5941 for (i = 0; i < conf->raid_disks; i++) {
5942 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5943
5944 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5945 still_degraded = 1;
5946 }
5947 rcu_read_unlock();
5948
5949 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5950
5951 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5952 set_bit(STRIPE_HANDLE, &sh->state);
5953
5954 raid5_release_stripe(sh);
5955
5956 return STRIPE_SECTORS;
5957 }
5958
5959 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5960 {
5961 /* We may not be able to submit a whole bio at once as there
5962 * may not be enough stripe_heads available.
5963 * We cannot pre-allocate enough stripe_heads as we may need
5964 * more than exist in the cache (if we allow ever large chunks).
5965 * So we do one stripe head at a time and record in
5966 * ->bi_hw_segments how many have been done.
5967 *
5968 * We *know* that this entire raid_bio is in one chunk, so
5969 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5970 */
5971 struct stripe_head *sh;
5972 int dd_idx;
5973 sector_t sector, logical_sector, last_sector;
5974 int scnt = 0;
5975 int remaining;
5976 int handled = 0;
5977
5978 logical_sector = raid_bio->bi_iter.bi_sector &
5979 ~((sector_t)STRIPE_SECTORS-1);
5980 sector = raid5_compute_sector(conf, logical_sector,
5981 0, &dd_idx, NULL);
5982 last_sector = bio_end_sector(raid_bio);
5983
5984 for (; logical_sector < last_sector;
5985 logical_sector += STRIPE_SECTORS,
5986 sector += STRIPE_SECTORS,
5987 scnt++) {
5988
5989 if (scnt < raid5_bi_processed_stripes(raid_bio))
5990 /* already done this stripe */
5991 continue;
5992
5993 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5994
5995 if (!sh) {
5996 /* failed to get a stripe - must wait */
5997 raid5_set_bi_processed_stripes(raid_bio, scnt);
5998 conf->retry_read_aligned = raid_bio;
5999 return handled;
6000 }
6001
6002 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6003 raid5_release_stripe(sh);
6004 raid5_set_bi_processed_stripes(raid_bio, scnt);
6005 conf->retry_read_aligned = raid_bio;
6006 return handled;
6007 }
6008
6009 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6010 handle_stripe(sh);
6011 raid5_release_stripe(sh);
6012 handled++;
6013 }
6014 remaining = raid5_dec_bi_active_stripes(raid_bio);
6015 if (remaining == 0) {
6016 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
6017 raid_bio, 0);
6018 bio_endio(raid_bio);
6019 }
6020 if (atomic_dec_and_test(&conf->active_aligned_reads))
6021 wake_up(&conf->wait_for_quiescent);
6022 return handled;
6023 }
6024
6025 static int handle_active_stripes(struct r5conf *conf, int group,
6026 struct r5worker *worker,
6027 struct list_head *temp_inactive_list)
6028 {
6029 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6030 int i, batch_size = 0, hash;
6031 bool release_inactive = false;
6032
6033 while (batch_size < MAX_STRIPE_BATCH &&
6034 (sh = __get_priority_stripe(conf, group)) != NULL)
6035 batch[batch_size++] = sh;
6036
6037 if (batch_size == 0) {
6038 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6039 if (!list_empty(temp_inactive_list + i))
6040 break;
6041 if (i == NR_STRIPE_HASH_LOCKS) {
6042 spin_unlock_irq(&conf->device_lock);
6043 r5l_flush_stripe_to_raid(conf->log);
6044 spin_lock_irq(&conf->device_lock);
6045 return batch_size;
6046 }
6047 release_inactive = true;
6048 }
6049 spin_unlock_irq(&conf->device_lock);
6050
6051 release_inactive_stripe_list(conf, temp_inactive_list,
6052 NR_STRIPE_HASH_LOCKS);
6053
6054 r5l_flush_stripe_to_raid(conf->log);
6055 if (release_inactive) {
6056 spin_lock_irq(&conf->device_lock);
6057 return 0;
6058 }
6059
6060 for (i = 0; i < batch_size; i++)
6061 handle_stripe(batch[i]);
6062 r5l_write_stripe_run(conf->log);
6063
6064 cond_resched();
6065
6066 spin_lock_irq(&conf->device_lock);
6067 for (i = 0; i < batch_size; i++) {
6068 hash = batch[i]->hash_lock_index;
6069 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6070 }
6071 return batch_size;
6072 }
6073
6074 static void raid5_do_work(struct work_struct *work)
6075 {
6076 struct r5worker *worker = container_of(work, struct r5worker, work);
6077 struct r5worker_group *group = worker->group;
6078 struct r5conf *conf = group->conf;
6079 int group_id = group - conf->worker_groups;
6080 int handled;
6081 struct blk_plug plug;
6082
6083 pr_debug("+++ raid5worker active\n");
6084
6085 blk_start_plug(&plug);
6086 handled = 0;
6087 spin_lock_irq(&conf->device_lock);
6088 while (1) {
6089 int batch_size, released;
6090
6091 released = release_stripe_list(conf, worker->temp_inactive_list);
6092
6093 batch_size = handle_active_stripes(conf, group_id, worker,
6094 worker->temp_inactive_list);
6095 worker->working = false;
6096 if (!batch_size && !released)
6097 break;
6098 handled += batch_size;
6099 }
6100 pr_debug("%d stripes handled\n", handled);
6101
6102 spin_unlock_irq(&conf->device_lock);
6103 blk_finish_plug(&plug);
6104
6105 pr_debug("--- raid5worker inactive\n");
6106 }
6107
6108 /*
6109 * This is our raid5 kernel thread.
6110 *
6111 * We scan the hash table for stripes which can be handled now.
6112 * During the scan, completed stripes are saved for us by the interrupt
6113 * handler, so that they will not have to wait for our next wakeup.
6114 */
6115 static void raid5d(struct md_thread *thread)
6116 {
6117 struct mddev *mddev = thread->mddev;
6118 struct r5conf *conf = mddev->private;
6119 int handled;
6120 struct blk_plug plug;
6121
6122 pr_debug("+++ raid5d active\n");
6123
6124 md_check_recovery(mddev);
6125
6126 if (!bio_list_empty(&conf->return_bi) &&
6127 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
6128 struct bio_list tmp = BIO_EMPTY_LIST;
6129 spin_lock_irq(&conf->device_lock);
6130 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
6131 bio_list_merge(&tmp, &conf->return_bi);
6132 bio_list_init(&conf->return_bi);
6133 }
6134 spin_unlock_irq(&conf->device_lock);
6135 return_io(&tmp);
6136 }
6137
6138 blk_start_plug(&plug);
6139 handled = 0;
6140 spin_lock_irq(&conf->device_lock);
6141 while (1) {
6142 struct bio *bio;
6143 int batch_size, released;
6144
6145 released = release_stripe_list(conf, conf->temp_inactive_list);
6146 if (released)
6147 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6148
6149 if (
6150 !list_empty(&conf->bitmap_list)) {
6151 /* Now is a good time to flush some bitmap updates */
6152 conf->seq_flush++;
6153 spin_unlock_irq(&conf->device_lock);
6154 bitmap_unplug(mddev->bitmap);
6155 spin_lock_irq(&conf->device_lock);
6156 conf->seq_write = conf->seq_flush;
6157 activate_bit_delay(conf, conf->temp_inactive_list);
6158 }
6159 raid5_activate_delayed(conf);
6160
6161 while ((bio = remove_bio_from_retry(conf))) {
6162 int ok;
6163 spin_unlock_irq(&conf->device_lock);
6164 ok = retry_aligned_read(conf, bio);
6165 spin_lock_irq(&conf->device_lock);
6166 if (!ok)
6167 break;
6168 handled++;
6169 }
6170
6171 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6172 conf->temp_inactive_list);
6173 if (!batch_size && !released)
6174 break;
6175 handled += batch_size;
6176
6177 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6178 spin_unlock_irq(&conf->device_lock);
6179 md_check_recovery(mddev);
6180 spin_lock_irq(&conf->device_lock);
6181 }
6182 }
6183 pr_debug("%d stripes handled\n", handled);
6184
6185 spin_unlock_irq(&conf->device_lock);
6186 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6187 mutex_trylock(&conf->cache_size_mutex)) {
6188 grow_one_stripe(conf, __GFP_NOWARN);
6189 /* Set flag even if allocation failed. This helps
6190 * slow down allocation requests when mem is short
6191 */
6192 set_bit(R5_DID_ALLOC, &conf->cache_state);
6193 mutex_unlock(&conf->cache_size_mutex);
6194 }
6195
6196 flush_deferred_bios(conf);
6197
6198 r5l_flush_stripe_to_raid(conf->log);
6199
6200 async_tx_issue_pending_all();
6201 blk_finish_plug(&plug);
6202
6203 pr_debug("--- raid5d inactive\n");
6204 }
6205
6206 static ssize_t
6207 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6208 {
6209 struct r5conf *conf;
6210 int ret = 0;
6211 spin_lock(&mddev->lock);
6212 conf = mddev->private;
6213 if (conf)
6214 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6215 spin_unlock(&mddev->lock);
6216 return ret;
6217 }
6218
6219 int
6220 raid5_set_cache_size(struct mddev *mddev, int size)
6221 {
6222 struct r5conf *conf = mddev->private;
6223 int err;
6224
6225 if (size <= 16 || size > 32768)
6226 return -EINVAL;
6227
6228 conf->min_nr_stripes = size;
6229 mutex_lock(&conf->cache_size_mutex);
6230 while (size < conf->max_nr_stripes &&
6231 drop_one_stripe(conf))
6232 ;
6233 mutex_unlock(&conf->cache_size_mutex);
6234
6235
6236 err = md_allow_write(mddev);
6237 if (err)
6238 return err;
6239
6240 mutex_lock(&conf->cache_size_mutex);
6241 while (size > conf->max_nr_stripes)
6242 if (!grow_one_stripe(conf, GFP_KERNEL))
6243 break;
6244 mutex_unlock(&conf->cache_size_mutex);
6245
6246 return 0;
6247 }
6248 EXPORT_SYMBOL(raid5_set_cache_size);
6249
6250 static ssize_t
6251 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6252 {
6253 struct r5conf *conf;
6254 unsigned long new;
6255 int err;
6256
6257 if (len >= PAGE_SIZE)
6258 return -EINVAL;
6259 if (kstrtoul(page, 10, &new))
6260 return -EINVAL;
6261 err = mddev_lock(mddev);
6262 if (err)
6263 return err;
6264 conf = mddev->private;
6265 if (!conf)
6266 err = -ENODEV;
6267 else
6268 err = raid5_set_cache_size(mddev, new);
6269 mddev_unlock(mddev);
6270
6271 return err ?: len;
6272 }
6273
6274 static struct md_sysfs_entry
6275 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6276 raid5_show_stripe_cache_size,
6277 raid5_store_stripe_cache_size);
6278
6279 static ssize_t
6280 raid5_show_rmw_level(struct mddev *mddev, char *page)
6281 {
6282 struct r5conf *conf = mddev->private;
6283 if (conf)
6284 return sprintf(page, "%d\n", conf->rmw_level);
6285 else
6286 return 0;
6287 }
6288
6289 static ssize_t
6290 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6291 {
6292 struct r5conf *conf = mddev->private;
6293 unsigned long new;
6294
6295 if (!conf)
6296 return -ENODEV;
6297
6298 if (len >= PAGE_SIZE)
6299 return -EINVAL;
6300
6301 if (kstrtoul(page, 10, &new))
6302 return -EINVAL;
6303
6304 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6305 return -EINVAL;
6306
6307 if (new != PARITY_DISABLE_RMW &&
6308 new != PARITY_ENABLE_RMW &&
6309 new != PARITY_PREFER_RMW)
6310 return -EINVAL;
6311
6312 conf->rmw_level = new;
6313 return len;
6314 }
6315
6316 static struct md_sysfs_entry
6317 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6318 raid5_show_rmw_level,
6319 raid5_store_rmw_level);
6320
6321
6322 static ssize_t
6323 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6324 {
6325 struct r5conf *conf;
6326 int ret = 0;
6327 spin_lock(&mddev->lock);
6328 conf = mddev->private;
6329 if (conf)
6330 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6331 spin_unlock(&mddev->lock);
6332 return ret;
6333 }
6334
6335 static ssize_t
6336 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6337 {
6338 struct r5conf *conf;
6339 unsigned long new;
6340 int err;
6341
6342 if (len >= PAGE_SIZE)
6343 return -EINVAL;
6344 if (kstrtoul(page, 10, &new))
6345 return -EINVAL;
6346
6347 err = mddev_lock(mddev);
6348 if (err)
6349 return err;
6350 conf = mddev->private;
6351 if (!conf)
6352 err = -ENODEV;
6353 else if (new > conf->min_nr_stripes)
6354 err = -EINVAL;
6355 else
6356 conf->bypass_threshold = new;
6357 mddev_unlock(mddev);
6358 return err ?: len;
6359 }
6360
6361 static struct md_sysfs_entry
6362 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6363 S_IRUGO | S_IWUSR,
6364 raid5_show_preread_threshold,
6365 raid5_store_preread_threshold);
6366
6367 static ssize_t
6368 raid5_show_skip_copy(struct mddev *mddev, char *page)
6369 {
6370 struct r5conf *conf;
6371 int ret = 0;
6372 spin_lock(&mddev->lock);
6373 conf = mddev->private;
6374 if (conf)
6375 ret = sprintf(page, "%d\n", conf->skip_copy);
6376 spin_unlock(&mddev->lock);
6377 return ret;
6378 }
6379
6380 static ssize_t
6381 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6382 {
6383 struct r5conf *conf;
6384 unsigned long new;
6385 int err;
6386
6387 if (len >= PAGE_SIZE)
6388 return -EINVAL;
6389 if (kstrtoul(page, 10, &new))
6390 return -EINVAL;
6391 new = !!new;
6392
6393 err = mddev_lock(mddev);
6394 if (err)
6395 return err;
6396 conf = mddev->private;
6397 if (!conf)
6398 err = -ENODEV;
6399 else if (new != conf->skip_copy) {
6400 mddev_suspend(mddev);
6401 conf->skip_copy = new;
6402 if (new)
6403 mddev->queue->backing_dev_info->capabilities |=
6404 BDI_CAP_STABLE_WRITES;
6405 else
6406 mddev->queue->backing_dev_info->capabilities &=
6407 ~BDI_CAP_STABLE_WRITES;
6408 mddev_resume(mddev);
6409 }
6410 mddev_unlock(mddev);
6411 return err ?: len;
6412 }
6413
6414 static struct md_sysfs_entry
6415 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6416 raid5_show_skip_copy,
6417 raid5_store_skip_copy);
6418
6419 static ssize_t
6420 stripe_cache_active_show(struct mddev *mddev, char *page)
6421 {
6422 struct r5conf *conf = mddev->private;
6423 if (conf)
6424 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6425 else
6426 return 0;
6427 }
6428
6429 static struct md_sysfs_entry
6430 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6431
6432 static ssize_t
6433 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6434 {
6435 struct r5conf *conf;
6436 int ret = 0;
6437 spin_lock(&mddev->lock);
6438 conf = mddev->private;
6439 if (conf)
6440 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6441 spin_unlock(&mddev->lock);
6442 return ret;
6443 }
6444
6445 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6446 int *group_cnt,
6447 int *worker_cnt_per_group,
6448 struct r5worker_group **worker_groups);
6449 static ssize_t
6450 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6451 {
6452 struct r5conf *conf;
6453 unsigned long new;
6454 int err;
6455 struct r5worker_group *new_groups, *old_groups;
6456 int group_cnt, worker_cnt_per_group;
6457
6458 if (len >= PAGE_SIZE)
6459 return -EINVAL;
6460 if (kstrtoul(page, 10, &new))
6461 return -EINVAL;
6462
6463 err = mddev_lock(mddev);
6464 if (err)
6465 return err;
6466 conf = mddev->private;
6467 if (!conf)
6468 err = -ENODEV;
6469 else if (new != conf->worker_cnt_per_group) {
6470 mddev_suspend(mddev);
6471
6472 old_groups = conf->worker_groups;
6473 if (old_groups)
6474 flush_workqueue(raid5_wq);
6475
6476 err = alloc_thread_groups(conf, new,
6477 &group_cnt, &worker_cnt_per_group,
6478 &new_groups);
6479 if (!err) {
6480 spin_lock_irq(&conf->device_lock);
6481 conf->group_cnt = group_cnt;
6482 conf->worker_cnt_per_group = worker_cnt_per_group;
6483 conf->worker_groups = new_groups;
6484 spin_unlock_irq(&conf->device_lock);
6485
6486 if (old_groups)
6487 kfree(old_groups[0].workers);
6488 kfree(old_groups);
6489 }
6490 mddev_resume(mddev);
6491 }
6492 mddev_unlock(mddev);
6493
6494 return err ?: len;
6495 }
6496
6497 static struct md_sysfs_entry
6498 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6499 raid5_show_group_thread_cnt,
6500 raid5_store_group_thread_cnt);
6501
6502 static struct attribute *raid5_attrs[] = {
6503 &raid5_stripecache_size.attr,
6504 &raid5_stripecache_active.attr,
6505 &raid5_preread_bypass_threshold.attr,
6506 &raid5_group_thread_cnt.attr,
6507 &raid5_skip_copy.attr,
6508 &raid5_rmw_level.attr,
6509 &r5c_journal_mode.attr,
6510 NULL,
6511 };
6512 static struct attribute_group raid5_attrs_group = {
6513 .name = NULL,
6514 .attrs = raid5_attrs,
6515 };
6516
6517 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6518 int *group_cnt,
6519 int *worker_cnt_per_group,
6520 struct r5worker_group **worker_groups)
6521 {
6522 int i, j, k;
6523 ssize_t size;
6524 struct r5worker *workers;
6525
6526 *worker_cnt_per_group = cnt;
6527 if (cnt == 0) {
6528 *group_cnt = 0;
6529 *worker_groups = NULL;
6530 return 0;
6531 }
6532 *group_cnt = num_possible_nodes();
6533 size = sizeof(struct r5worker) * cnt;
6534 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6535 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6536 *group_cnt, GFP_NOIO);
6537 if (!*worker_groups || !workers) {
6538 kfree(workers);
6539 kfree(*worker_groups);
6540 return -ENOMEM;
6541 }
6542
6543 for (i = 0; i < *group_cnt; i++) {
6544 struct r5worker_group *group;
6545
6546 group = &(*worker_groups)[i];
6547 INIT_LIST_HEAD(&group->handle_list);
6548 group->conf = conf;
6549 group->workers = workers + i * cnt;
6550
6551 for (j = 0; j < cnt; j++) {
6552 struct r5worker *worker = group->workers + j;
6553 worker->group = group;
6554 INIT_WORK(&worker->work, raid5_do_work);
6555
6556 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6557 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6558 }
6559 }
6560
6561 return 0;
6562 }
6563
6564 static void free_thread_groups(struct r5conf *conf)
6565 {
6566 if (conf->worker_groups)
6567 kfree(conf->worker_groups[0].workers);
6568 kfree(conf->worker_groups);
6569 conf->worker_groups = NULL;
6570 }
6571
6572 static sector_t
6573 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6574 {
6575 struct r5conf *conf = mddev->private;
6576
6577 if (!sectors)
6578 sectors = mddev->dev_sectors;
6579 if (!raid_disks)
6580 /* size is defined by the smallest of previous and new size */
6581 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6582
6583 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6584 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6585 return sectors * (raid_disks - conf->max_degraded);
6586 }
6587
6588 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6589 {
6590 safe_put_page(percpu->spare_page);
6591 if (percpu->scribble)
6592 flex_array_free(percpu->scribble);
6593 percpu->spare_page = NULL;
6594 percpu->scribble = NULL;
6595 }
6596
6597 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6598 {
6599 if (conf->level == 6 && !percpu->spare_page)
6600 percpu->spare_page = alloc_page(GFP_KERNEL);
6601 if (!percpu->scribble)
6602 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6603 conf->previous_raid_disks),
6604 max(conf->chunk_sectors,
6605 conf->prev_chunk_sectors)
6606 / STRIPE_SECTORS,
6607 GFP_KERNEL);
6608
6609 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6610 free_scratch_buffer(conf, percpu);
6611 return -ENOMEM;
6612 }
6613
6614 return 0;
6615 }
6616
6617 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6618 {
6619 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6620
6621 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6622 return 0;
6623 }
6624
6625 static void raid5_free_percpu(struct r5conf *conf)
6626 {
6627 if (!conf->percpu)
6628 return;
6629
6630 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6631 free_percpu(conf->percpu);
6632 }
6633
6634 static void free_conf(struct r5conf *conf)
6635 {
6636 int i;
6637
6638 if (conf->log)
6639 r5l_exit_log(conf->log);
6640 if (conf->shrinker.nr_deferred)
6641 unregister_shrinker(&conf->shrinker);
6642
6643 free_thread_groups(conf);
6644 shrink_stripes(conf);
6645 raid5_free_percpu(conf);
6646 for (i = 0; i < conf->pool_size; i++)
6647 if (conf->disks[i].extra_page)
6648 put_page(conf->disks[i].extra_page);
6649 kfree(conf->disks);
6650 kfree(conf->stripe_hashtbl);
6651 kfree(conf);
6652 }
6653
6654 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6655 {
6656 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6657 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6658
6659 if (alloc_scratch_buffer(conf, percpu)) {
6660 pr_warn("%s: failed memory allocation for cpu%u\n",
6661 __func__, cpu);
6662 return -ENOMEM;
6663 }
6664 return 0;
6665 }
6666
6667 static int raid5_alloc_percpu(struct r5conf *conf)
6668 {
6669 int err = 0;
6670
6671 conf->percpu = alloc_percpu(struct raid5_percpu);
6672 if (!conf->percpu)
6673 return -ENOMEM;
6674
6675 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6676 if (!err) {
6677 conf->scribble_disks = max(conf->raid_disks,
6678 conf->previous_raid_disks);
6679 conf->scribble_sectors = max(conf->chunk_sectors,
6680 conf->prev_chunk_sectors);
6681 }
6682 return err;
6683 }
6684
6685 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6686 struct shrink_control *sc)
6687 {
6688 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6689 unsigned long ret = SHRINK_STOP;
6690
6691 if (mutex_trylock(&conf->cache_size_mutex)) {
6692 ret= 0;
6693 while (ret < sc->nr_to_scan &&
6694 conf->max_nr_stripes > conf->min_nr_stripes) {
6695 if (drop_one_stripe(conf) == 0) {
6696 ret = SHRINK_STOP;
6697 break;
6698 }
6699 ret++;
6700 }
6701 mutex_unlock(&conf->cache_size_mutex);
6702 }
6703 return ret;
6704 }
6705
6706 static unsigned long raid5_cache_count(struct shrinker *shrink,
6707 struct shrink_control *sc)
6708 {
6709 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6710
6711 if (conf->max_nr_stripes < conf->min_nr_stripes)
6712 /* unlikely, but not impossible */
6713 return 0;
6714 return conf->max_nr_stripes - conf->min_nr_stripes;
6715 }
6716
6717 static struct r5conf *setup_conf(struct mddev *mddev)
6718 {
6719 struct r5conf *conf;
6720 int raid_disk, memory, max_disks;
6721 struct md_rdev *rdev;
6722 struct disk_info *disk;
6723 char pers_name[6];
6724 int i;
6725 int group_cnt, worker_cnt_per_group;
6726 struct r5worker_group *new_group;
6727
6728 if (mddev->new_level != 5
6729 && mddev->new_level != 4
6730 && mddev->new_level != 6) {
6731 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6732 mdname(mddev), mddev->new_level);
6733 return ERR_PTR(-EIO);
6734 }
6735 if ((mddev->new_level == 5
6736 && !algorithm_valid_raid5(mddev->new_layout)) ||
6737 (mddev->new_level == 6
6738 && !algorithm_valid_raid6(mddev->new_layout))) {
6739 pr_warn("md/raid:%s: layout %d not supported\n",
6740 mdname(mddev), mddev->new_layout);
6741 return ERR_PTR(-EIO);
6742 }
6743 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6744 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6745 mdname(mddev), mddev->raid_disks);
6746 return ERR_PTR(-EINVAL);
6747 }
6748
6749 if (!mddev->new_chunk_sectors ||
6750 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6751 !is_power_of_2(mddev->new_chunk_sectors)) {
6752 pr_warn("md/raid:%s: invalid chunk size %d\n",
6753 mdname(mddev), mddev->new_chunk_sectors << 9);
6754 return ERR_PTR(-EINVAL);
6755 }
6756
6757 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6758 if (conf == NULL)
6759 goto abort;
6760 /* Don't enable multi-threading by default*/
6761 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6762 &new_group)) {
6763 conf->group_cnt = group_cnt;
6764 conf->worker_cnt_per_group = worker_cnt_per_group;
6765 conf->worker_groups = new_group;
6766 } else
6767 goto abort;
6768 spin_lock_init(&conf->device_lock);
6769 seqcount_init(&conf->gen_lock);
6770 mutex_init(&conf->cache_size_mutex);
6771 init_waitqueue_head(&conf->wait_for_quiescent);
6772 init_waitqueue_head(&conf->wait_for_stripe);
6773 init_waitqueue_head(&conf->wait_for_overlap);
6774 INIT_LIST_HEAD(&conf->handle_list);
6775 INIT_LIST_HEAD(&conf->hold_list);
6776 INIT_LIST_HEAD(&conf->delayed_list);
6777 INIT_LIST_HEAD(&conf->bitmap_list);
6778 bio_list_init(&conf->return_bi);
6779 init_llist_head(&conf->released_stripes);
6780 atomic_set(&conf->active_stripes, 0);
6781 atomic_set(&conf->preread_active_stripes, 0);
6782 atomic_set(&conf->active_aligned_reads, 0);
6783 bio_list_init(&conf->pending_bios);
6784 spin_lock_init(&conf->pending_bios_lock);
6785 conf->batch_bio_dispatch = true;
6786 rdev_for_each(rdev, mddev) {
6787 if (test_bit(Journal, &rdev->flags))
6788 continue;
6789 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6790 conf->batch_bio_dispatch = false;
6791 break;
6792 }
6793 }
6794
6795 conf->bypass_threshold = BYPASS_THRESHOLD;
6796 conf->recovery_disabled = mddev->recovery_disabled - 1;
6797
6798 conf->raid_disks = mddev->raid_disks;
6799 if (mddev->reshape_position == MaxSector)
6800 conf->previous_raid_disks = mddev->raid_disks;
6801 else
6802 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6803 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6804
6805 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6806 GFP_KERNEL);
6807
6808 if (!conf->disks)
6809 goto abort;
6810
6811 for (i = 0; i < max_disks; i++) {
6812 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6813 if (!conf->disks[i].extra_page)
6814 goto abort;
6815 }
6816
6817 conf->mddev = mddev;
6818
6819 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6820 goto abort;
6821
6822 /* We init hash_locks[0] separately to that it can be used
6823 * as the reference lock in the spin_lock_nest_lock() call
6824 * in lock_all_device_hash_locks_irq in order to convince
6825 * lockdep that we know what we are doing.
6826 */
6827 spin_lock_init(conf->hash_locks);
6828 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6829 spin_lock_init(conf->hash_locks + i);
6830
6831 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6832 INIT_LIST_HEAD(conf->inactive_list + i);
6833
6834 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6835 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6836
6837 atomic_set(&conf->r5c_cached_full_stripes, 0);
6838 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6839 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6840 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6841 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6842 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6843
6844 conf->level = mddev->new_level;
6845 conf->chunk_sectors = mddev->new_chunk_sectors;
6846 if (raid5_alloc_percpu(conf) != 0)
6847 goto abort;
6848
6849 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6850
6851 rdev_for_each(rdev, mddev) {
6852 raid_disk = rdev->raid_disk;
6853 if (raid_disk >= max_disks
6854 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6855 continue;
6856 disk = conf->disks + raid_disk;
6857
6858 if (test_bit(Replacement, &rdev->flags)) {
6859 if (disk->replacement)
6860 goto abort;
6861 disk->replacement = rdev;
6862 } else {
6863 if (disk->rdev)
6864 goto abort;
6865 disk->rdev = rdev;
6866 }
6867
6868 if (test_bit(In_sync, &rdev->flags)) {
6869 char b[BDEVNAME_SIZE];
6870 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6871 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6872 } else if (rdev->saved_raid_disk != raid_disk)
6873 /* Cannot rely on bitmap to complete recovery */
6874 conf->fullsync = 1;
6875 }
6876
6877 conf->level = mddev->new_level;
6878 if (conf->level == 6) {
6879 conf->max_degraded = 2;
6880 if (raid6_call.xor_syndrome)
6881 conf->rmw_level = PARITY_ENABLE_RMW;
6882 else
6883 conf->rmw_level = PARITY_DISABLE_RMW;
6884 } else {
6885 conf->max_degraded = 1;
6886 conf->rmw_level = PARITY_ENABLE_RMW;
6887 }
6888 conf->algorithm = mddev->new_layout;
6889 conf->reshape_progress = mddev->reshape_position;
6890 if (conf->reshape_progress != MaxSector) {
6891 conf->prev_chunk_sectors = mddev->chunk_sectors;
6892 conf->prev_algo = mddev->layout;
6893 } else {
6894 conf->prev_chunk_sectors = conf->chunk_sectors;
6895 conf->prev_algo = conf->algorithm;
6896 }
6897
6898 conf->min_nr_stripes = NR_STRIPES;
6899 if (mddev->reshape_position != MaxSector) {
6900 int stripes = max_t(int,
6901 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
6902 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
6903 conf->min_nr_stripes = max(NR_STRIPES, stripes);
6904 if (conf->min_nr_stripes != NR_STRIPES)
6905 pr_info("md/raid:%s: force stripe size %d for reshape\n",
6906 mdname(mddev), conf->min_nr_stripes);
6907 }
6908 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6909 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6910 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6911 if (grow_stripes(conf, conf->min_nr_stripes)) {
6912 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
6913 mdname(mddev), memory);
6914 goto abort;
6915 } else
6916 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
6917 /*
6918 * Losing a stripe head costs more than the time to refill it,
6919 * it reduces the queue depth and so can hurt throughput.
6920 * So set it rather large, scaled by number of devices.
6921 */
6922 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6923 conf->shrinker.scan_objects = raid5_cache_scan;
6924 conf->shrinker.count_objects = raid5_cache_count;
6925 conf->shrinker.batch = 128;
6926 conf->shrinker.flags = 0;
6927 if (register_shrinker(&conf->shrinker)) {
6928 pr_warn("md/raid:%s: couldn't register shrinker.\n",
6929 mdname(mddev));
6930 goto abort;
6931 }
6932
6933 sprintf(pers_name, "raid%d", mddev->new_level);
6934 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6935 if (!conf->thread) {
6936 pr_warn("md/raid:%s: couldn't allocate thread.\n",
6937 mdname(mddev));
6938 goto abort;
6939 }
6940
6941 return conf;
6942
6943 abort:
6944 if (conf) {
6945 free_conf(conf);
6946 return ERR_PTR(-EIO);
6947 } else
6948 return ERR_PTR(-ENOMEM);
6949 }
6950
6951 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6952 {
6953 switch (algo) {
6954 case ALGORITHM_PARITY_0:
6955 if (raid_disk < max_degraded)
6956 return 1;
6957 break;
6958 case ALGORITHM_PARITY_N:
6959 if (raid_disk >= raid_disks - max_degraded)
6960 return 1;
6961 break;
6962 case ALGORITHM_PARITY_0_6:
6963 if (raid_disk == 0 ||
6964 raid_disk == raid_disks - 1)
6965 return 1;
6966 break;
6967 case ALGORITHM_LEFT_ASYMMETRIC_6:
6968 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6969 case ALGORITHM_LEFT_SYMMETRIC_6:
6970 case ALGORITHM_RIGHT_SYMMETRIC_6:
6971 if (raid_disk == raid_disks - 1)
6972 return 1;
6973 }
6974 return 0;
6975 }
6976
6977 static int raid5_run(struct mddev *mddev)
6978 {
6979 struct r5conf *conf;
6980 int working_disks = 0;
6981 int dirty_parity_disks = 0;
6982 struct md_rdev *rdev;
6983 struct md_rdev *journal_dev = NULL;
6984 sector_t reshape_offset = 0;
6985 int i;
6986 long long min_offset_diff = 0;
6987 int first = 1;
6988
6989 if (mddev->recovery_cp != MaxSector)
6990 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
6991 mdname(mddev));
6992
6993 rdev_for_each(rdev, mddev) {
6994 long long diff;
6995
6996 if (test_bit(Journal, &rdev->flags)) {
6997 journal_dev = rdev;
6998 continue;
6999 }
7000 if (rdev->raid_disk < 0)
7001 continue;
7002 diff = (rdev->new_data_offset - rdev->data_offset);
7003 if (first) {
7004 min_offset_diff = diff;
7005 first = 0;
7006 } else if (mddev->reshape_backwards &&
7007 diff < min_offset_diff)
7008 min_offset_diff = diff;
7009 else if (!mddev->reshape_backwards &&
7010 diff > min_offset_diff)
7011 min_offset_diff = diff;
7012 }
7013
7014 if (mddev->reshape_position != MaxSector) {
7015 /* Check that we can continue the reshape.
7016 * Difficulties arise if the stripe we would write to
7017 * next is at or after the stripe we would read from next.
7018 * For a reshape that changes the number of devices, this
7019 * is only possible for a very short time, and mdadm makes
7020 * sure that time appears to have past before assembling
7021 * the array. So we fail if that time hasn't passed.
7022 * For a reshape that keeps the number of devices the same
7023 * mdadm must be monitoring the reshape can keeping the
7024 * critical areas read-only and backed up. It will start
7025 * the array in read-only mode, so we check for that.
7026 */
7027 sector_t here_new, here_old;
7028 int old_disks;
7029 int max_degraded = (mddev->level == 6 ? 2 : 1);
7030 int chunk_sectors;
7031 int new_data_disks;
7032
7033 if (journal_dev) {
7034 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7035 mdname(mddev));
7036 return -EINVAL;
7037 }
7038
7039 if (mddev->new_level != mddev->level) {
7040 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7041 mdname(mddev));
7042 return -EINVAL;
7043 }
7044 old_disks = mddev->raid_disks - mddev->delta_disks;
7045 /* reshape_position must be on a new-stripe boundary, and one
7046 * further up in new geometry must map after here in old
7047 * geometry.
7048 * If the chunk sizes are different, then as we perform reshape
7049 * in units of the largest of the two, reshape_position needs
7050 * be a multiple of the largest chunk size times new data disks.
7051 */
7052 here_new = mddev->reshape_position;
7053 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7054 new_data_disks = mddev->raid_disks - max_degraded;
7055 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7056 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7057 mdname(mddev));
7058 return -EINVAL;
7059 }
7060 reshape_offset = here_new * chunk_sectors;
7061 /* here_new is the stripe we will write to */
7062 here_old = mddev->reshape_position;
7063 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7064 /* here_old is the first stripe that we might need to read
7065 * from */
7066 if (mddev->delta_disks == 0) {
7067 /* We cannot be sure it is safe to start an in-place
7068 * reshape. It is only safe if user-space is monitoring
7069 * and taking constant backups.
7070 * mdadm always starts a situation like this in
7071 * readonly mode so it can take control before
7072 * allowing any writes. So just check for that.
7073 */
7074 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7075 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7076 /* not really in-place - so OK */;
7077 else if (mddev->ro == 0) {
7078 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7079 mdname(mddev));
7080 return -EINVAL;
7081 }
7082 } else if (mddev->reshape_backwards
7083 ? (here_new * chunk_sectors + min_offset_diff <=
7084 here_old * chunk_sectors)
7085 : (here_new * chunk_sectors >=
7086 here_old * chunk_sectors + (-min_offset_diff))) {
7087 /* Reading from the same stripe as writing to - bad */
7088 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7089 mdname(mddev));
7090 return -EINVAL;
7091 }
7092 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7093 /* OK, we should be able to continue; */
7094 } else {
7095 BUG_ON(mddev->level != mddev->new_level);
7096 BUG_ON(mddev->layout != mddev->new_layout);
7097 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7098 BUG_ON(mddev->delta_disks != 0);
7099 }
7100
7101 if (mddev->private == NULL)
7102 conf = setup_conf(mddev);
7103 else
7104 conf = mddev->private;
7105
7106 if (IS_ERR(conf))
7107 return PTR_ERR(conf);
7108
7109 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7110 if (!journal_dev) {
7111 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7112 mdname(mddev));
7113 mddev->ro = 1;
7114 set_disk_ro(mddev->gendisk, 1);
7115 } else if (mddev->recovery_cp == MaxSector)
7116 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7117 }
7118
7119 conf->min_offset_diff = min_offset_diff;
7120 mddev->thread = conf->thread;
7121 conf->thread = NULL;
7122 mddev->private = conf;
7123
7124 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7125 i++) {
7126 rdev = conf->disks[i].rdev;
7127 if (!rdev && conf->disks[i].replacement) {
7128 /* The replacement is all we have yet */
7129 rdev = conf->disks[i].replacement;
7130 conf->disks[i].replacement = NULL;
7131 clear_bit(Replacement, &rdev->flags);
7132 conf->disks[i].rdev = rdev;
7133 }
7134 if (!rdev)
7135 continue;
7136 if (conf->disks[i].replacement &&
7137 conf->reshape_progress != MaxSector) {
7138 /* replacements and reshape simply do not mix. */
7139 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7140 goto abort;
7141 }
7142 if (test_bit(In_sync, &rdev->flags)) {
7143 working_disks++;
7144 continue;
7145 }
7146 /* This disc is not fully in-sync. However if it
7147 * just stored parity (beyond the recovery_offset),
7148 * when we don't need to be concerned about the
7149 * array being dirty.
7150 * When reshape goes 'backwards', we never have
7151 * partially completed devices, so we only need
7152 * to worry about reshape going forwards.
7153 */
7154 /* Hack because v0.91 doesn't store recovery_offset properly. */
7155 if (mddev->major_version == 0 &&
7156 mddev->minor_version > 90)
7157 rdev->recovery_offset = reshape_offset;
7158
7159 if (rdev->recovery_offset < reshape_offset) {
7160 /* We need to check old and new layout */
7161 if (!only_parity(rdev->raid_disk,
7162 conf->algorithm,
7163 conf->raid_disks,
7164 conf->max_degraded))
7165 continue;
7166 }
7167 if (!only_parity(rdev->raid_disk,
7168 conf->prev_algo,
7169 conf->previous_raid_disks,
7170 conf->max_degraded))
7171 continue;
7172 dirty_parity_disks++;
7173 }
7174
7175 /*
7176 * 0 for a fully functional array, 1 or 2 for a degraded array.
7177 */
7178 mddev->degraded = raid5_calc_degraded(conf);
7179
7180 if (has_failed(conf)) {
7181 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7182 mdname(mddev), mddev->degraded, conf->raid_disks);
7183 goto abort;
7184 }
7185
7186 /* device size must be a multiple of chunk size */
7187 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7188 mddev->resync_max_sectors = mddev->dev_sectors;
7189
7190 if (mddev->degraded > dirty_parity_disks &&
7191 mddev->recovery_cp != MaxSector) {
7192 if (mddev->ok_start_degraded)
7193 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7194 mdname(mddev));
7195 else {
7196 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7197 mdname(mddev));
7198 goto abort;
7199 }
7200 }
7201
7202 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7203 mdname(mddev), conf->level,
7204 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7205 mddev->new_layout);
7206
7207 print_raid5_conf(conf);
7208
7209 if (conf->reshape_progress != MaxSector) {
7210 conf->reshape_safe = conf->reshape_progress;
7211 atomic_set(&conf->reshape_stripes, 0);
7212 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7213 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7214 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7215 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7216 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7217 "reshape");
7218 }
7219
7220 /* Ok, everything is just fine now */
7221 if (mddev->to_remove == &raid5_attrs_group)
7222 mddev->to_remove = NULL;
7223 else if (mddev->kobj.sd &&
7224 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7225 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7226 mdname(mddev));
7227 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7228
7229 if (mddev->queue) {
7230 int chunk_size;
7231 bool discard_supported = true;
7232 /* read-ahead size must cover two whole stripes, which
7233 * is 2 * (datadisks) * chunksize where 'n' is the
7234 * number of raid devices
7235 */
7236 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7237 int stripe = data_disks *
7238 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7239 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7240 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7241
7242 chunk_size = mddev->chunk_sectors << 9;
7243 blk_queue_io_min(mddev->queue, chunk_size);
7244 blk_queue_io_opt(mddev->queue, chunk_size *
7245 (conf->raid_disks - conf->max_degraded));
7246 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7247 /*
7248 * We can only discard a whole stripe. It doesn't make sense to
7249 * discard data disk but write parity disk
7250 */
7251 stripe = stripe * PAGE_SIZE;
7252 /* Round up to power of 2, as discard handling
7253 * currently assumes that */
7254 while ((stripe-1) & stripe)
7255 stripe = (stripe | (stripe-1)) + 1;
7256 mddev->queue->limits.discard_alignment = stripe;
7257 mddev->queue->limits.discard_granularity = stripe;
7258
7259 /*
7260 * We use 16-bit counter of active stripes in bi_phys_segments
7261 * (minus one for over-loaded initialization)
7262 */
7263 blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS);
7264 blk_queue_max_discard_sectors(mddev->queue,
7265 0xfffe * STRIPE_SECTORS);
7266
7267 /*
7268 * unaligned part of discard request will be ignored, so can't
7269 * guarantee discard_zeroes_data
7270 */
7271 mddev->queue->limits.discard_zeroes_data = 0;
7272
7273 blk_queue_max_write_same_sectors(mddev->queue, 0);
7274
7275 rdev_for_each(rdev, mddev) {
7276 disk_stack_limits(mddev->gendisk, rdev->bdev,
7277 rdev->data_offset << 9);
7278 disk_stack_limits(mddev->gendisk, rdev->bdev,
7279 rdev->new_data_offset << 9);
7280 /*
7281 * discard_zeroes_data is required, otherwise data
7282 * could be lost. Consider a scenario: discard a stripe
7283 * (the stripe could be inconsistent if
7284 * discard_zeroes_data is 0); write one disk of the
7285 * stripe (the stripe could be inconsistent again
7286 * depending on which disks are used to calculate
7287 * parity); the disk is broken; The stripe data of this
7288 * disk is lost.
7289 */
7290 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7291 !bdev_get_queue(rdev->bdev)->
7292 limits.discard_zeroes_data)
7293 discard_supported = false;
7294 /* Unfortunately, discard_zeroes_data is not currently
7295 * a guarantee - just a hint. So we only allow DISCARD
7296 * if the sysadmin has confirmed that only safe devices
7297 * are in use by setting a module parameter.
7298 */
7299 if (!devices_handle_discard_safely) {
7300 if (discard_supported) {
7301 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7302 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7303 }
7304 discard_supported = false;
7305 }
7306 }
7307
7308 if (discard_supported &&
7309 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7310 mddev->queue->limits.discard_granularity >= stripe)
7311 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7312 mddev->queue);
7313 else
7314 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7315 mddev->queue);
7316
7317 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7318 }
7319
7320 if (journal_dev) {
7321 char b[BDEVNAME_SIZE];
7322
7323 pr_debug("md/raid:%s: using device %s as journal\n",
7324 mdname(mddev), bdevname(journal_dev->bdev, b));
7325 if (r5l_init_log(conf, journal_dev))
7326 goto abort;
7327 }
7328
7329 return 0;
7330 abort:
7331 md_unregister_thread(&mddev->thread);
7332 print_raid5_conf(conf);
7333 free_conf(conf);
7334 mddev->private = NULL;
7335 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7336 return -EIO;
7337 }
7338
7339 static void raid5_free(struct mddev *mddev, void *priv)
7340 {
7341 struct r5conf *conf = priv;
7342
7343 free_conf(conf);
7344 mddev->to_remove = &raid5_attrs_group;
7345 }
7346
7347 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7348 {
7349 struct r5conf *conf = mddev->private;
7350 int i;
7351
7352 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7353 conf->chunk_sectors / 2, mddev->layout);
7354 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7355 rcu_read_lock();
7356 for (i = 0; i < conf->raid_disks; i++) {
7357 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7358 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7359 }
7360 rcu_read_unlock();
7361 seq_printf (seq, "]");
7362 }
7363
7364 static void print_raid5_conf (struct r5conf *conf)
7365 {
7366 int i;
7367 struct disk_info *tmp;
7368
7369 pr_debug("RAID conf printout:\n");
7370 if (!conf) {
7371 pr_debug("(conf==NULL)\n");
7372 return;
7373 }
7374 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7375 conf->raid_disks,
7376 conf->raid_disks - conf->mddev->degraded);
7377
7378 for (i = 0; i < conf->raid_disks; i++) {
7379 char b[BDEVNAME_SIZE];
7380 tmp = conf->disks + i;
7381 if (tmp->rdev)
7382 pr_debug(" disk %d, o:%d, dev:%s\n",
7383 i, !test_bit(Faulty, &tmp->rdev->flags),
7384 bdevname(tmp->rdev->bdev, b));
7385 }
7386 }
7387
7388 static int raid5_spare_active(struct mddev *mddev)
7389 {
7390 int i;
7391 struct r5conf *conf = mddev->private;
7392 struct disk_info *tmp;
7393 int count = 0;
7394 unsigned long flags;
7395
7396 for (i = 0; i < conf->raid_disks; i++) {
7397 tmp = conf->disks + i;
7398 if (tmp->replacement
7399 && tmp->replacement->recovery_offset == MaxSector
7400 && !test_bit(Faulty, &tmp->replacement->flags)
7401 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7402 /* Replacement has just become active. */
7403 if (!tmp->rdev
7404 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7405 count++;
7406 if (tmp->rdev) {
7407 /* Replaced device not technically faulty,
7408 * but we need to be sure it gets removed
7409 * and never re-added.
7410 */
7411 set_bit(Faulty, &tmp->rdev->flags);
7412 sysfs_notify_dirent_safe(
7413 tmp->rdev->sysfs_state);
7414 }
7415 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7416 } else if (tmp->rdev
7417 && tmp->rdev->recovery_offset == MaxSector
7418 && !test_bit(Faulty, &tmp->rdev->flags)
7419 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7420 count++;
7421 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7422 }
7423 }
7424 spin_lock_irqsave(&conf->device_lock, flags);
7425 mddev->degraded = raid5_calc_degraded(conf);
7426 spin_unlock_irqrestore(&conf->device_lock, flags);
7427 print_raid5_conf(conf);
7428 return count;
7429 }
7430
7431 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7432 {
7433 struct r5conf *conf = mddev->private;
7434 int err = 0;
7435 int number = rdev->raid_disk;
7436 struct md_rdev **rdevp;
7437 struct disk_info *p = conf->disks + number;
7438
7439 print_raid5_conf(conf);
7440 if (test_bit(Journal, &rdev->flags) && conf->log) {
7441 struct r5l_log *log;
7442 /*
7443 * we can't wait pending write here, as this is called in
7444 * raid5d, wait will deadlock.
7445 */
7446 if (atomic_read(&mddev->writes_pending))
7447 return -EBUSY;
7448 log = conf->log;
7449 conf->log = NULL;
7450 synchronize_rcu();
7451 r5l_exit_log(log);
7452 return 0;
7453 }
7454 if (rdev == p->rdev)
7455 rdevp = &p->rdev;
7456 else if (rdev == p->replacement)
7457 rdevp = &p->replacement;
7458 else
7459 return 0;
7460
7461 if (number >= conf->raid_disks &&
7462 conf->reshape_progress == MaxSector)
7463 clear_bit(In_sync, &rdev->flags);
7464
7465 if (test_bit(In_sync, &rdev->flags) ||
7466 atomic_read(&rdev->nr_pending)) {
7467 err = -EBUSY;
7468 goto abort;
7469 }
7470 /* Only remove non-faulty devices if recovery
7471 * isn't possible.
7472 */
7473 if (!test_bit(Faulty, &rdev->flags) &&
7474 mddev->recovery_disabled != conf->recovery_disabled &&
7475 !has_failed(conf) &&
7476 (!p->replacement || p->replacement == rdev) &&
7477 number < conf->raid_disks) {
7478 err = -EBUSY;
7479 goto abort;
7480 }
7481 *rdevp = NULL;
7482 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7483 synchronize_rcu();
7484 if (atomic_read(&rdev->nr_pending)) {
7485 /* lost the race, try later */
7486 err = -EBUSY;
7487 *rdevp = rdev;
7488 }
7489 }
7490 if (p->replacement) {
7491 /* We must have just cleared 'rdev' */
7492 p->rdev = p->replacement;
7493 clear_bit(Replacement, &p->replacement->flags);
7494 smp_mb(); /* Make sure other CPUs may see both as identical
7495 * but will never see neither - if they are careful
7496 */
7497 p->replacement = NULL;
7498 clear_bit(WantReplacement, &rdev->flags);
7499 } else
7500 /* We might have just removed the Replacement as faulty-
7501 * clear the bit just in case
7502 */
7503 clear_bit(WantReplacement, &rdev->flags);
7504 abort:
7505
7506 print_raid5_conf(conf);
7507 return err;
7508 }
7509
7510 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7511 {
7512 struct r5conf *conf = mddev->private;
7513 int err = -EEXIST;
7514 int disk;
7515 struct disk_info *p;
7516 int first = 0;
7517 int last = conf->raid_disks - 1;
7518
7519 if (test_bit(Journal, &rdev->flags)) {
7520 char b[BDEVNAME_SIZE];
7521 if (conf->log)
7522 return -EBUSY;
7523
7524 rdev->raid_disk = 0;
7525 /*
7526 * The array is in readonly mode if journal is missing, so no
7527 * write requests running. We should be safe
7528 */
7529 r5l_init_log(conf, rdev);
7530 pr_debug("md/raid:%s: using device %s as journal\n",
7531 mdname(mddev), bdevname(rdev->bdev, b));
7532 return 0;
7533 }
7534 if (mddev->recovery_disabled == conf->recovery_disabled)
7535 return -EBUSY;
7536
7537 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7538 /* no point adding a device */
7539 return -EINVAL;
7540
7541 if (rdev->raid_disk >= 0)
7542 first = last = rdev->raid_disk;
7543
7544 /*
7545 * find the disk ... but prefer rdev->saved_raid_disk
7546 * if possible.
7547 */
7548 if (rdev->saved_raid_disk >= 0 &&
7549 rdev->saved_raid_disk >= first &&
7550 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7551 first = rdev->saved_raid_disk;
7552
7553 for (disk = first; disk <= last; disk++) {
7554 p = conf->disks + disk;
7555 if (p->rdev == NULL) {
7556 clear_bit(In_sync, &rdev->flags);
7557 rdev->raid_disk = disk;
7558 err = 0;
7559 if (rdev->saved_raid_disk != disk)
7560 conf->fullsync = 1;
7561 rcu_assign_pointer(p->rdev, rdev);
7562 goto out;
7563 }
7564 }
7565 for (disk = first; disk <= last; disk++) {
7566 p = conf->disks + disk;
7567 if (test_bit(WantReplacement, &p->rdev->flags) &&
7568 p->replacement == NULL) {
7569 clear_bit(In_sync, &rdev->flags);
7570 set_bit(Replacement, &rdev->flags);
7571 rdev->raid_disk = disk;
7572 err = 0;
7573 conf->fullsync = 1;
7574 rcu_assign_pointer(p->replacement, rdev);
7575 break;
7576 }
7577 }
7578 out:
7579 print_raid5_conf(conf);
7580 return err;
7581 }
7582
7583 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7584 {
7585 /* no resync is happening, and there is enough space
7586 * on all devices, so we can resize.
7587 * We need to make sure resync covers any new space.
7588 * If the array is shrinking we should possibly wait until
7589 * any io in the removed space completes, but it hardly seems
7590 * worth it.
7591 */
7592 sector_t newsize;
7593 struct r5conf *conf = mddev->private;
7594
7595 if (conf->log)
7596 return -EINVAL;
7597 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7598 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7599 if (mddev->external_size &&
7600 mddev->array_sectors > newsize)
7601 return -EINVAL;
7602 if (mddev->bitmap) {
7603 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7604 if (ret)
7605 return ret;
7606 }
7607 md_set_array_sectors(mddev, newsize);
7608 set_capacity(mddev->gendisk, mddev->array_sectors);
7609 revalidate_disk(mddev->gendisk);
7610 if (sectors > mddev->dev_sectors &&
7611 mddev->recovery_cp > mddev->dev_sectors) {
7612 mddev->recovery_cp = mddev->dev_sectors;
7613 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7614 }
7615 mddev->dev_sectors = sectors;
7616 mddev->resync_max_sectors = sectors;
7617 return 0;
7618 }
7619
7620 static int check_stripe_cache(struct mddev *mddev)
7621 {
7622 /* Can only proceed if there are plenty of stripe_heads.
7623 * We need a minimum of one full stripe,, and for sensible progress
7624 * it is best to have about 4 times that.
7625 * If we require 4 times, then the default 256 4K stripe_heads will
7626 * allow for chunk sizes up to 256K, which is probably OK.
7627 * If the chunk size is greater, user-space should request more
7628 * stripe_heads first.
7629 */
7630 struct r5conf *conf = mddev->private;
7631 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7632 > conf->min_nr_stripes ||
7633 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7634 > conf->min_nr_stripes) {
7635 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7636 mdname(mddev),
7637 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7638 / STRIPE_SIZE)*4);
7639 return 0;
7640 }
7641 return 1;
7642 }
7643
7644 static int check_reshape(struct mddev *mddev)
7645 {
7646 struct r5conf *conf = mddev->private;
7647
7648 if (conf->log)
7649 return -EINVAL;
7650 if (mddev->delta_disks == 0 &&
7651 mddev->new_layout == mddev->layout &&
7652 mddev->new_chunk_sectors == mddev->chunk_sectors)
7653 return 0; /* nothing to do */
7654 if (has_failed(conf))
7655 return -EINVAL;
7656 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7657 /* We might be able to shrink, but the devices must
7658 * be made bigger first.
7659 * For raid6, 4 is the minimum size.
7660 * Otherwise 2 is the minimum
7661 */
7662 int min = 2;
7663 if (mddev->level == 6)
7664 min = 4;
7665 if (mddev->raid_disks + mddev->delta_disks < min)
7666 return -EINVAL;
7667 }
7668
7669 if (!check_stripe_cache(mddev))
7670 return -ENOSPC;
7671
7672 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7673 mddev->delta_disks > 0)
7674 if (resize_chunks(conf,
7675 conf->previous_raid_disks
7676 + max(0, mddev->delta_disks),
7677 max(mddev->new_chunk_sectors,
7678 mddev->chunk_sectors)
7679 ) < 0)
7680 return -ENOMEM;
7681 return resize_stripes(conf, (conf->previous_raid_disks
7682 + mddev->delta_disks));
7683 }
7684
7685 static int raid5_start_reshape(struct mddev *mddev)
7686 {
7687 struct r5conf *conf = mddev->private;
7688 struct md_rdev *rdev;
7689 int spares = 0;
7690 unsigned long flags;
7691
7692 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7693 return -EBUSY;
7694
7695 if (!check_stripe_cache(mddev))
7696 return -ENOSPC;
7697
7698 if (has_failed(conf))
7699 return -EINVAL;
7700
7701 rdev_for_each(rdev, mddev) {
7702 if (!test_bit(In_sync, &rdev->flags)
7703 && !test_bit(Faulty, &rdev->flags))
7704 spares++;
7705 }
7706
7707 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7708 /* Not enough devices even to make a degraded array
7709 * of that size
7710 */
7711 return -EINVAL;
7712
7713 /* Refuse to reduce size of the array. Any reductions in
7714 * array size must be through explicit setting of array_size
7715 * attribute.
7716 */
7717 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7718 < mddev->array_sectors) {
7719 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7720 mdname(mddev));
7721 return -EINVAL;
7722 }
7723
7724 atomic_set(&conf->reshape_stripes, 0);
7725 spin_lock_irq(&conf->device_lock);
7726 write_seqcount_begin(&conf->gen_lock);
7727 conf->previous_raid_disks = conf->raid_disks;
7728 conf->raid_disks += mddev->delta_disks;
7729 conf->prev_chunk_sectors = conf->chunk_sectors;
7730 conf->chunk_sectors = mddev->new_chunk_sectors;
7731 conf->prev_algo = conf->algorithm;
7732 conf->algorithm = mddev->new_layout;
7733 conf->generation++;
7734 /* Code that selects data_offset needs to see the generation update
7735 * if reshape_progress has been set - so a memory barrier needed.
7736 */
7737 smp_mb();
7738 if (mddev->reshape_backwards)
7739 conf->reshape_progress = raid5_size(mddev, 0, 0);
7740 else
7741 conf->reshape_progress = 0;
7742 conf->reshape_safe = conf->reshape_progress;
7743 write_seqcount_end(&conf->gen_lock);
7744 spin_unlock_irq(&conf->device_lock);
7745
7746 /* Now make sure any requests that proceeded on the assumption
7747 * the reshape wasn't running - like Discard or Read - have
7748 * completed.
7749 */
7750 mddev_suspend(mddev);
7751 mddev_resume(mddev);
7752
7753 /* Add some new drives, as many as will fit.
7754 * We know there are enough to make the newly sized array work.
7755 * Don't add devices if we are reducing the number of
7756 * devices in the array. This is because it is not possible
7757 * to correctly record the "partially reconstructed" state of
7758 * such devices during the reshape and confusion could result.
7759 */
7760 if (mddev->delta_disks >= 0) {
7761 rdev_for_each(rdev, mddev)
7762 if (rdev->raid_disk < 0 &&
7763 !test_bit(Faulty, &rdev->flags)) {
7764 if (raid5_add_disk(mddev, rdev) == 0) {
7765 if (rdev->raid_disk
7766 >= conf->previous_raid_disks)
7767 set_bit(In_sync, &rdev->flags);
7768 else
7769 rdev->recovery_offset = 0;
7770
7771 if (sysfs_link_rdev(mddev, rdev))
7772 /* Failure here is OK */;
7773 }
7774 } else if (rdev->raid_disk >= conf->previous_raid_disks
7775 && !test_bit(Faulty, &rdev->flags)) {
7776 /* This is a spare that was manually added */
7777 set_bit(In_sync, &rdev->flags);
7778 }
7779
7780 /* When a reshape changes the number of devices,
7781 * ->degraded is measured against the larger of the
7782 * pre and post number of devices.
7783 */
7784 spin_lock_irqsave(&conf->device_lock, flags);
7785 mddev->degraded = raid5_calc_degraded(conf);
7786 spin_unlock_irqrestore(&conf->device_lock, flags);
7787 }
7788 mddev->raid_disks = conf->raid_disks;
7789 mddev->reshape_position = conf->reshape_progress;
7790 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7791
7792 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7793 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7794 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7795 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7796 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7797 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7798 "reshape");
7799 if (!mddev->sync_thread) {
7800 mddev->recovery = 0;
7801 spin_lock_irq(&conf->device_lock);
7802 write_seqcount_begin(&conf->gen_lock);
7803 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7804 mddev->new_chunk_sectors =
7805 conf->chunk_sectors = conf->prev_chunk_sectors;
7806 mddev->new_layout = conf->algorithm = conf->prev_algo;
7807 rdev_for_each(rdev, mddev)
7808 rdev->new_data_offset = rdev->data_offset;
7809 smp_wmb();
7810 conf->generation --;
7811 conf->reshape_progress = MaxSector;
7812 mddev->reshape_position = MaxSector;
7813 write_seqcount_end(&conf->gen_lock);
7814 spin_unlock_irq(&conf->device_lock);
7815 return -EAGAIN;
7816 }
7817 conf->reshape_checkpoint = jiffies;
7818 md_wakeup_thread(mddev->sync_thread);
7819 md_new_event(mddev);
7820 return 0;
7821 }
7822
7823 /* This is called from the reshape thread and should make any
7824 * changes needed in 'conf'
7825 */
7826 static void end_reshape(struct r5conf *conf)
7827 {
7828
7829 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7830 struct md_rdev *rdev;
7831
7832 spin_lock_irq(&conf->device_lock);
7833 conf->previous_raid_disks = conf->raid_disks;
7834 rdev_for_each(rdev, conf->mddev)
7835 rdev->data_offset = rdev->new_data_offset;
7836 smp_wmb();
7837 conf->reshape_progress = MaxSector;
7838 conf->mddev->reshape_position = MaxSector;
7839 spin_unlock_irq(&conf->device_lock);
7840 wake_up(&conf->wait_for_overlap);
7841
7842 /* read-ahead size must cover two whole stripes, which is
7843 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7844 */
7845 if (conf->mddev->queue) {
7846 int data_disks = conf->raid_disks - conf->max_degraded;
7847 int stripe = data_disks * ((conf->chunk_sectors << 9)
7848 / PAGE_SIZE);
7849 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7850 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7851 }
7852 }
7853 }
7854
7855 /* This is called from the raid5d thread with mddev_lock held.
7856 * It makes config changes to the device.
7857 */
7858 static void raid5_finish_reshape(struct mddev *mddev)
7859 {
7860 struct r5conf *conf = mddev->private;
7861
7862 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7863
7864 if (mddev->delta_disks > 0) {
7865 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7866 if (mddev->queue) {
7867 set_capacity(mddev->gendisk, mddev->array_sectors);
7868 revalidate_disk(mddev->gendisk);
7869 }
7870 } else {
7871 int d;
7872 spin_lock_irq(&conf->device_lock);
7873 mddev->degraded = raid5_calc_degraded(conf);
7874 spin_unlock_irq(&conf->device_lock);
7875 for (d = conf->raid_disks ;
7876 d < conf->raid_disks - mddev->delta_disks;
7877 d++) {
7878 struct md_rdev *rdev = conf->disks[d].rdev;
7879 if (rdev)
7880 clear_bit(In_sync, &rdev->flags);
7881 rdev = conf->disks[d].replacement;
7882 if (rdev)
7883 clear_bit(In_sync, &rdev->flags);
7884 }
7885 }
7886 mddev->layout = conf->algorithm;
7887 mddev->chunk_sectors = conf->chunk_sectors;
7888 mddev->reshape_position = MaxSector;
7889 mddev->delta_disks = 0;
7890 mddev->reshape_backwards = 0;
7891 }
7892 }
7893
7894 static void raid5_quiesce(struct mddev *mddev, int state)
7895 {
7896 struct r5conf *conf = mddev->private;
7897
7898 switch(state) {
7899 case 2: /* resume for a suspend */
7900 wake_up(&conf->wait_for_overlap);
7901 break;
7902
7903 case 1: /* stop all writes */
7904 lock_all_device_hash_locks_irq(conf);
7905 /* '2' tells resync/reshape to pause so that all
7906 * active stripes can drain
7907 */
7908 r5c_flush_cache(conf, INT_MAX);
7909 conf->quiesce = 2;
7910 wait_event_cmd(conf->wait_for_quiescent,
7911 atomic_read(&conf->active_stripes) == 0 &&
7912 atomic_read(&conf->active_aligned_reads) == 0,
7913 unlock_all_device_hash_locks_irq(conf),
7914 lock_all_device_hash_locks_irq(conf));
7915 conf->quiesce = 1;
7916 unlock_all_device_hash_locks_irq(conf);
7917 /* allow reshape to continue */
7918 wake_up(&conf->wait_for_overlap);
7919 break;
7920
7921 case 0: /* re-enable writes */
7922 lock_all_device_hash_locks_irq(conf);
7923 conf->quiesce = 0;
7924 wake_up(&conf->wait_for_quiescent);
7925 wake_up(&conf->wait_for_overlap);
7926 unlock_all_device_hash_locks_irq(conf);
7927 break;
7928 }
7929 r5l_quiesce(conf->log, state);
7930 }
7931
7932 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7933 {
7934 struct r0conf *raid0_conf = mddev->private;
7935 sector_t sectors;
7936
7937 /* for raid0 takeover only one zone is supported */
7938 if (raid0_conf->nr_strip_zones > 1) {
7939 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7940 mdname(mddev));
7941 return ERR_PTR(-EINVAL);
7942 }
7943
7944 sectors = raid0_conf->strip_zone[0].zone_end;
7945 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7946 mddev->dev_sectors = sectors;
7947 mddev->new_level = level;
7948 mddev->new_layout = ALGORITHM_PARITY_N;
7949 mddev->new_chunk_sectors = mddev->chunk_sectors;
7950 mddev->raid_disks += 1;
7951 mddev->delta_disks = 1;
7952 /* make sure it will be not marked as dirty */
7953 mddev->recovery_cp = MaxSector;
7954
7955 return setup_conf(mddev);
7956 }
7957
7958 static void *raid5_takeover_raid1(struct mddev *mddev)
7959 {
7960 int chunksect;
7961 void *ret;
7962
7963 if (mddev->raid_disks != 2 ||
7964 mddev->degraded > 1)
7965 return ERR_PTR(-EINVAL);
7966
7967 /* Should check if there are write-behind devices? */
7968
7969 chunksect = 64*2; /* 64K by default */
7970
7971 /* The array must be an exact multiple of chunksize */
7972 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7973 chunksect >>= 1;
7974
7975 if ((chunksect<<9) < STRIPE_SIZE)
7976 /* array size does not allow a suitable chunk size */
7977 return ERR_PTR(-EINVAL);
7978
7979 mddev->new_level = 5;
7980 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7981 mddev->new_chunk_sectors = chunksect;
7982
7983 ret = setup_conf(mddev);
7984 if (!IS_ERR(ret))
7985 mddev_clear_unsupported_flags(mddev,
7986 UNSUPPORTED_MDDEV_FLAGS);
7987 return ret;
7988 }
7989
7990 static void *raid5_takeover_raid6(struct mddev *mddev)
7991 {
7992 int new_layout;
7993
7994 switch (mddev->layout) {
7995 case ALGORITHM_LEFT_ASYMMETRIC_6:
7996 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7997 break;
7998 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7999 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8000 break;
8001 case ALGORITHM_LEFT_SYMMETRIC_6:
8002 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8003 break;
8004 case ALGORITHM_RIGHT_SYMMETRIC_6:
8005 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8006 break;
8007 case ALGORITHM_PARITY_0_6:
8008 new_layout = ALGORITHM_PARITY_0;
8009 break;
8010 case ALGORITHM_PARITY_N:
8011 new_layout = ALGORITHM_PARITY_N;
8012 break;
8013 default:
8014 return ERR_PTR(-EINVAL);
8015 }
8016 mddev->new_level = 5;
8017 mddev->new_layout = new_layout;
8018 mddev->delta_disks = -1;
8019 mddev->raid_disks -= 1;
8020 return setup_conf(mddev);
8021 }
8022
8023 static int raid5_check_reshape(struct mddev *mddev)
8024 {
8025 /* For a 2-drive array, the layout and chunk size can be changed
8026 * immediately as not restriping is needed.
8027 * For larger arrays we record the new value - after validation
8028 * to be used by a reshape pass.
8029 */
8030 struct r5conf *conf = mddev->private;
8031 int new_chunk = mddev->new_chunk_sectors;
8032
8033 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8034 return -EINVAL;
8035 if (new_chunk > 0) {
8036 if (!is_power_of_2(new_chunk))
8037 return -EINVAL;
8038 if (new_chunk < (PAGE_SIZE>>9))
8039 return -EINVAL;
8040 if (mddev->array_sectors & (new_chunk-1))
8041 /* not factor of array size */
8042 return -EINVAL;
8043 }
8044
8045 /* They look valid */
8046
8047 if (mddev->raid_disks == 2) {
8048 /* can make the change immediately */
8049 if (mddev->new_layout >= 0) {
8050 conf->algorithm = mddev->new_layout;
8051 mddev->layout = mddev->new_layout;
8052 }
8053 if (new_chunk > 0) {
8054 conf->chunk_sectors = new_chunk ;
8055 mddev->chunk_sectors = new_chunk;
8056 }
8057 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8058 md_wakeup_thread(mddev->thread);
8059 }
8060 return check_reshape(mddev);
8061 }
8062
8063 static int raid6_check_reshape(struct mddev *mddev)
8064 {
8065 int new_chunk = mddev->new_chunk_sectors;
8066
8067 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8068 return -EINVAL;
8069 if (new_chunk > 0) {
8070 if (!is_power_of_2(new_chunk))
8071 return -EINVAL;
8072 if (new_chunk < (PAGE_SIZE >> 9))
8073 return -EINVAL;
8074 if (mddev->array_sectors & (new_chunk-1))
8075 /* not factor of array size */
8076 return -EINVAL;
8077 }
8078
8079 /* They look valid */
8080 return check_reshape(mddev);
8081 }
8082
8083 static void *raid5_takeover(struct mddev *mddev)
8084 {
8085 /* raid5 can take over:
8086 * raid0 - if there is only one strip zone - make it a raid4 layout
8087 * raid1 - if there are two drives. We need to know the chunk size
8088 * raid4 - trivial - just use a raid4 layout.
8089 * raid6 - Providing it is a *_6 layout
8090 */
8091 if (mddev->level == 0)
8092 return raid45_takeover_raid0(mddev, 5);
8093 if (mddev->level == 1)
8094 return raid5_takeover_raid1(mddev);
8095 if (mddev->level == 4) {
8096 mddev->new_layout = ALGORITHM_PARITY_N;
8097 mddev->new_level = 5;
8098 return setup_conf(mddev);
8099 }
8100 if (mddev->level == 6)
8101 return raid5_takeover_raid6(mddev);
8102
8103 return ERR_PTR(-EINVAL);
8104 }
8105
8106 static void *raid4_takeover(struct mddev *mddev)
8107 {
8108 /* raid4 can take over:
8109 * raid0 - if there is only one strip zone
8110 * raid5 - if layout is right
8111 */
8112 if (mddev->level == 0)
8113 return raid45_takeover_raid0(mddev, 4);
8114 if (mddev->level == 5 &&
8115 mddev->layout == ALGORITHM_PARITY_N) {
8116 mddev->new_layout = 0;
8117 mddev->new_level = 4;
8118 return setup_conf(mddev);
8119 }
8120 return ERR_PTR(-EINVAL);
8121 }
8122
8123 static struct md_personality raid5_personality;
8124
8125 static void *raid6_takeover(struct mddev *mddev)
8126 {
8127 /* Currently can only take over a raid5. We map the
8128 * personality to an equivalent raid6 personality
8129 * with the Q block at the end.
8130 */
8131 int new_layout;
8132
8133 if (mddev->pers != &raid5_personality)
8134 return ERR_PTR(-EINVAL);
8135 if (mddev->degraded > 1)
8136 return ERR_PTR(-EINVAL);
8137 if (mddev->raid_disks > 253)
8138 return ERR_PTR(-EINVAL);
8139 if (mddev->raid_disks < 3)
8140 return ERR_PTR(-EINVAL);
8141
8142 switch (mddev->layout) {
8143 case ALGORITHM_LEFT_ASYMMETRIC:
8144 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8145 break;
8146 case ALGORITHM_RIGHT_ASYMMETRIC:
8147 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8148 break;
8149 case ALGORITHM_LEFT_SYMMETRIC:
8150 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8151 break;
8152 case ALGORITHM_RIGHT_SYMMETRIC:
8153 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8154 break;
8155 case ALGORITHM_PARITY_0:
8156 new_layout = ALGORITHM_PARITY_0_6;
8157 break;
8158 case ALGORITHM_PARITY_N:
8159 new_layout = ALGORITHM_PARITY_N;
8160 break;
8161 default:
8162 return ERR_PTR(-EINVAL);
8163 }
8164 mddev->new_level = 6;
8165 mddev->new_layout = new_layout;
8166 mddev->delta_disks = 1;
8167 mddev->raid_disks += 1;
8168 return setup_conf(mddev);
8169 }
8170
8171 static struct md_personality raid6_personality =
8172 {
8173 .name = "raid6",
8174 .level = 6,
8175 .owner = THIS_MODULE,
8176 .make_request = raid5_make_request,
8177 .run = raid5_run,
8178 .free = raid5_free,
8179 .status = raid5_status,
8180 .error_handler = raid5_error,
8181 .hot_add_disk = raid5_add_disk,
8182 .hot_remove_disk= raid5_remove_disk,
8183 .spare_active = raid5_spare_active,
8184 .sync_request = raid5_sync_request,
8185 .resize = raid5_resize,
8186 .size = raid5_size,
8187 .check_reshape = raid6_check_reshape,
8188 .start_reshape = raid5_start_reshape,
8189 .finish_reshape = raid5_finish_reshape,
8190 .quiesce = raid5_quiesce,
8191 .takeover = raid6_takeover,
8192 .congested = raid5_congested,
8193 };
8194 static struct md_personality raid5_personality =
8195 {
8196 .name = "raid5",
8197 .level = 5,
8198 .owner = THIS_MODULE,
8199 .make_request = raid5_make_request,
8200 .run = raid5_run,
8201 .free = raid5_free,
8202 .status = raid5_status,
8203 .error_handler = raid5_error,
8204 .hot_add_disk = raid5_add_disk,
8205 .hot_remove_disk= raid5_remove_disk,
8206 .spare_active = raid5_spare_active,
8207 .sync_request = raid5_sync_request,
8208 .resize = raid5_resize,
8209 .size = raid5_size,
8210 .check_reshape = raid5_check_reshape,
8211 .start_reshape = raid5_start_reshape,
8212 .finish_reshape = raid5_finish_reshape,
8213 .quiesce = raid5_quiesce,
8214 .takeover = raid5_takeover,
8215 .congested = raid5_congested,
8216 };
8217
8218 static struct md_personality raid4_personality =
8219 {
8220 .name = "raid4",
8221 .level = 4,
8222 .owner = THIS_MODULE,
8223 .make_request = raid5_make_request,
8224 .run = raid5_run,
8225 .free = raid5_free,
8226 .status = raid5_status,
8227 .error_handler = raid5_error,
8228 .hot_add_disk = raid5_add_disk,
8229 .hot_remove_disk= raid5_remove_disk,
8230 .spare_active = raid5_spare_active,
8231 .sync_request = raid5_sync_request,
8232 .resize = raid5_resize,
8233 .size = raid5_size,
8234 .check_reshape = raid5_check_reshape,
8235 .start_reshape = raid5_start_reshape,
8236 .finish_reshape = raid5_finish_reshape,
8237 .quiesce = raid5_quiesce,
8238 .takeover = raid4_takeover,
8239 .congested = raid5_congested,
8240 };
8241
8242 static int __init raid5_init(void)
8243 {
8244 int ret;
8245
8246 raid5_wq = alloc_workqueue("raid5wq",
8247 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8248 if (!raid5_wq)
8249 return -ENOMEM;
8250
8251 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8252 "md/raid5:prepare",
8253 raid456_cpu_up_prepare,
8254 raid456_cpu_dead);
8255 if (ret) {
8256 destroy_workqueue(raid5_wq);
8257 return ret;
8258 }
8259 register_md_personality(&raid6_personality);
8260 register_md_personality(&raid5_personality);
8261 register_md_personality(&raid4_personality);
8262 return 0;
8263 }
8264
8265 static void raid5_exit(void)
8266 {
8267 unregister_md_personality(&raid6_personality);
8268 unregister_md_personality(&raid5_personality);
8269 unregister_md_personality(&raid4_personality);
8270 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8271 destroy_workqueue(raid5_wq);
8272 }
8273
8274 module_init(raid5_init);
8275 module_exit(raid5_exit);
8276 MODULE_LICENSE("GPL");
8277 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8278 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8279 MODULE_ALIAS("md-raid5");
8280 MODULE_ALIAS("md-raid4");
8281 MODULE_ALIAS("md-level-5");
8282 MODULE_ALIAS("md-level-4");
8283 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8284 MODULE_ALIAS("md-raid6");
8285 MODULE_ALIAS("md-level-6");
8286
8287 /* This used to be two separate modules, they were: */
8288 MODULE_ALIAS("raid5");
8289 MODULE_ALIAS("raid6");