]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/md/raid5.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
[mirror_ubuntu-focal-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58
59 #include <trace/events/block.h>
60 #include <linux/list_sort.h>
61
62 #include "md.h"
63 #include "raid5.h"
64 #include "raid0.h"
65 #include "md-bitmap.h"
66 #include "raid5-log.h"
67
68 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
69
70 #define cpu_to_group(cpu) cpu_to_node(cpu)
71 #define ANY_GROUP NUMA_NO_NODE
72
73 static bool devices_handle_discard_safely = false;
74 module_param(devices_handle_discard_safely, bool, 0644);
75 MODULE_PARM_DESC(devices_handle_discard_safely,
76 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
77 static struct workqueue_struct *raid5_wq;
78
79 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
80 {
81 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
82 return &conf->stripe_hashtbl[hash];
83 }
84
85 static inline int stripe_hash_locks_hash(sector_t sect)
86 {
87 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
88 }
89
90 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
91 {
92 spin_lock_irq(conf->hash_locks + hash);
93 spin_lock(&conf->device_lock);
94 }
95
96 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
97 {
98 spin_unlock(&conf->device_lock);
99 spin_unlock_irq(conf->hash_locks + hash);
100 }
101
102 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104 int i;
105 spin_lock_irq(conf->hash_locks);
106 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 spin_lock(&conf->device_lock);
109 }
110
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
112 {
113 int i;
114 spin_unlock(&conf->device_lock);
115 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
116 spin_unlock(conf->hash_locks + i);
117 spin_unlock_irq(conf->hash_locks);
118 }
119
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head *sh)
122 {
123 if (sh->ddf_layout)
124 /* ddf always start from first device */
125 return 0;
126 /* md starts just after Q block */
127 if (sh->qd_idx == sh->disks - 1)
128 return 0;
129 else
130 return sh->qd_idx + 1;
131 }
132 static inline int raid6_next_disk(int disk, int raid_disks)
133 {
134 disk++;
135 return (disk < raid_disks) ? disk : 0;
136 }
137
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139 * We need to map each disk to a 'slot', where the data disks are slot
140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141 * is raid_disks-1. This help does that mapping.
142 */
143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 int *count, int syndrome_disks)
145 {
146 int slot = *count;
147
148 if (sh->ddf_layout)
149 (*count)++;
150 if (idx == sh->pd_idx)
151 return syndrome_disks;
152 if (idx == sh->qd_idx)
153 return syndrome_disks + 1;
154 if (!sh->ddf_layout)
155 (*count)++;
156 return slot;
157 }
158
159 static void print_raid5_conf (struct r5conf *conf);
160
161 static int stripe_operations_active(struct stripe_head *sh)
162 {
163 return sh->check_state || sh->reconstruct_state ||
164 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
165 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
166 }
167
168 static bool stripe_is_lowprio(struct stripe_head *sh)
169 {
170 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
171 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
172 !test_bit(STRIPE_R5C_CACHING, &sh->state);
173 }
174
175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
176 {
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
179 int thread_cnt;
180 int i, cpu = sh->cpu;
181
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
184 sh->cpu = cpu;
185 }
186
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
190 if (stripe_is_lowprio(sh))
191 list_add_tail(&sh->lru, &group->loprio_list);
192 else
193 list_add_tail(&sh->lru, &group->handle_list);
194 group->stripes_cnt++;
195 sh->group = group;
196 }
197
198 if (conf->worker_cnt_per_group == 0) {
199 md_wakeup_thread(conf->mddev->thread);
200 return;
201 }
202
203 group = conf->worker_groups + cpu_to_group(sh->cpu);
204
205 group->workers[0].working = true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208
209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 /* wakeup more workers */
211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 if (group->workers[i].working == false) {
213 group->workers[i].working = true;
214 queue_work_on(sh->cpu, raid5_wq,
215 &group->workers[i].work);
216 thread_cnt--;
217 }
218 }
219 }
220
221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 struct list_head *temp_inactive_list)
223 {
224 int i;
225 int injournal = 0; /* number of date pages with R5_InJournal */
226
227 BUG_ON(!list_empty(&sh->lru));
228 BUG_ON(atomic_read(&conf->active_stripes)==0);
229
230 if (r5c_is_writeback(conf->log))
231 for (i = sh->disks; i--; )
232 if (test_bit(R5_InJournal, &sh->dev[i].flags))
233 injournal++;
234 /*
235 * In the following cases, the stripe cannot be released to cached
236 * lists. Therefore, we make the stripe write out and set
237 * STRIPE_HANDLE:
238 * 1. when quiesce in r5c write back;
239 * 2. when resync is requested fot the stripe.
240 */
241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
242 (conf->quiesce && r5c_is_writeback(conf->log) &&
243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
244 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
245 r5c_make_stripe_write_out(sh);
246 set_bit(STRIPE_HANDLE, &sh->state);
247 }
248
249 if (test_bit(STRIPE_HANDLE, &sh->state)) {
250 if (test_bit(STRIPE_DELAYED, &sh->state) &&
251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
252 list_add_tail(&sh->lru, &conf->delayed_list);
253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
254 sh->bm_seq - conf->seq_write > 0)
255 list_add_tail(&sh->lru, &conf->bitmap_list);
256 else {
257 clear_bit(STRIPE_DELAYED, &sh->state);
258 clear_bit(STRIPE_BIT_DELAY, &sh->state);
259 if (conf->worker_cnt_per_group == 0) {
260 if (stripe_is_lowprio(sh))
261 list_add_tail(&sh->lru,
262 &conf->loprio_list);
263 else
264 list_add_tail(&sh->lru,
265 &conf->handle_list);
266 } else {
267 raid5_wakeup_stripe_thread(sh);
268 return;
269 }
270 }
271 md_wakeup_thread(conf->mddev->thread);
272 } else {
273 BUG_ON(stripe_operations_active(sh));
274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
275 if (atomic_dec_return(&conf->preread_active_stripes)
276 < IO_THRESHOLD)
277 md_wakeup_thread(conf->mddev->thread);
278 atomic_dec(&conf->active_stripes);
279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
280 if (!r5c_is_writeback(conf->log))
281 list_add_tail(&sh->lru, temp_inactive_list);
282 else {
283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
284 if (injournal == 0)
285 list_add_tail(&sh->lru, temp_inactive_list);
286 else if (injournal == conf->raid_disks - conf->max_degraded) {
287 /* full stripe */
288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
289 atomic_inc(&conf->r5c_cached_full_stripes);
290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
291 atomic_dec(&conf->r5c_cached_partial_stripes);
292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
293 r5c_check_cached_full_stripe(conf);
294 } else
295 /*
296 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 * r5c_try_caching_write(). No need to
298 * set it again.
299 */
300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
301 }
302 }
303 }
304 }
305
306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
307 struct list_head *temp_inactive_list)
308 {
309 if (atomic_dec_and_test(&sh->count))
310 do_release_stripe(conf, sh, temp_inactive_list);
311 }
312
313 /*
314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
315 *
316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317 * given time. Adding stripes only takes device lock, while deleting stripes
318 * only takes hash lock.
319 */
320 static void release_inactive_stripe_list(struct r5conf *conf,
321 struct list_head *temp_inactive_list,
322 int hash)
323 {
324 int size;
325 bool do_wakeup = false;
326 unsigned long flags;
327
328 if (hash == NR_STRIPE_HASH_LOCKS) {
329 size = NR_STRIPE_HASH_LOCKS;
330 hash = NR_STRIPE_HASH_LOCKS - 1;
331 } else
332 size = 1;
333 while (size) {
334 struct list_head *list = &temp_inactive_list[size - 1];
335
336 /*
337 * We don't hold any lock here yet, raid5_get_active_stripe() might
338 * remove stripes from the list
339 */
340 if (!list_empty_careful(list)) {
341 spin_lock_irqsave(conf->hash_locks + hash, flags);
342 if (list_empty(conf->inactive_list + hash) &&
343 !list_empty(list))
344 atomic_dec(&conf->empty_inactive_list_nr);
345 list_splice_tail_init(list, conf->inactive_list + hash);
346 do_wakeup = true;
347 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
348 }
349 size--;
350 hash--;
351 }
352
353 if (do_wakeup) {
354 wake_up(&conf->wait_for_stripe);
355 if (atomic_read(&conf->active_stripes) == 0)
356 wake_up(&conf->wait_for_quiescent);
357 if (conf->retry_read_aligned)
358 md_wakeup_thread(conf->mddev->thread);
359 }
360 }
361
362 /* should hold conf->device_lock already */
363 static int release_stripe_list(struct r5conf *conf,
364 struct list_head *temp_inactive_list)
365 {
366 struct stripe_head *sh, *t;
367 int count = 0;
368 struct llist_node *head;
369
370 head = llist_del_all(&conf->released_stripes);
371 head = llist_reverse_order(head);
372 llist_for_each_entry_safe(sh, t, head, release_list) {
373 int hash;
374
375 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
376 smp_mb();
377 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
378 /*
379 * Don't worry the bit is set here, because if the bit is set
380 * again, the count is always > 1. This is true for
381 * STRIPE_ON_UNPLUG_LIST bit too.
382 */
383 hash = sh->hash_lock_index;
384 __release_stripe(conf, sh, &temp_inactive_list[hash]);
385 count++;
386 }
387
388 return count;
389 }
390
391 void raid5_release_stripe(struct stripe_head *sh)
392 {
393 struct r5conf *conf = sh->raid_conf;
394 unsigned long flags;
395 struct list_head list;
396 int hash;
397 bool wakeup;
398
399 /* Avoid release_list until the last reference.
400 */
401 if (atomic_add_unless(&sh->count, -1, 1))
402 return;
403
404 if (unlikely(!conf->mddev->thread) ||
405 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
406 goto slow_path;
407 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
408 if (wakeup)
409 md_wakeup_thread(conf->mddev->thread);
410 return;
411 slow_path:
412 local_irq_save(flags);
413 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
414 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
415 INIT_LIST_HEAD(&list);
416 hash = sh->hash_lock_index;
417 do_release_stripe(conf, sh, &list);
418 spin_unlock(&conf->device_lock);
419 release_inactive_stripe_list(conf, &list, hash);
420 }
421 local_irq_restore(flags);
422 }
423
424 static inline void remove_hash(struct stripe_head *sh)
425 {
426 pr_debug("remove_hash(), stripe %llu\n",
427 (unsigned long long)sh->sector);
428
429 hlist_del_init(&sh->hash);
430 }
431
432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433 {
434 struct hlist_head *hp = stripe_hash(conf, sh->sector);
435
436 pr_debug("insert_hash(), stripe %llu\n",
437 (unsigned long long)sh->sector);
438
439 hlist_add_head(&sh->hash, hp);
440 }
441
442 /* find an idle stripe, make sure it is unhashed, and return it. */
443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444 {
445 struct stripe_head *sh = NULL;
446 struct list_head *first;
447
448 if (list_empty(conf->inactive_list + hash))
449 goto out;
450 first = (conf->inactive_list + hash)->next;
451 sh = list_entry(first, struct stripe_head, lru);
452 list_del_init(first);
453 remove_hash(sh);
454 atomic_inc(&conf->active_stripes);
455 BUG_ON(hash != sh->hash_lock_index);
456 if (list_empty(conf->inactive_list + hash))
457 atomic_inc(&conf->empty_inactive_list_nr);
458 out:
459 return sh;
460 }
461
462 static void shrink_buffers(struct stripe_head *sh)
463 {
464 struct page *p;
465 int i;
466 int num = sh->raid_conf->pool_size;
467
468 for (i = 0; i < num ; i++) {
469 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
470 p = sh->dev[i].page;
471 if (!p)
472 continue;
473 sh->dev[i].page = NULL;
474 put_page(p);
475 }
476 }
477
478 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
479 {
480 int i;
481 int num = sh->raid_conf->pool_size;
482
483 for (i = 0; i < num; i++) {
484 struct page *page;
485
486 if (!(page = alloc_page(gfp))) {
487 return 1;
488 }
489 sh->dev[i].page = page;
490 sh->dev[i].orig_page = page;
491 }
492
493 return 0;
494 }
495
496 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
497 struct stripe_head *sh);
498
499 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
500 {
501 struct r5conf *conf = sh->raid_conf;
502 int i, seq;
503
504 BUG_ON(atomic_read(&sh->count) != 0);
505 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
506 BUG_ON(stripe_operations_active(sh));
507 BUG_ON(sh->batch_head);
508
509 pr_debug("init_stripe called, stripe %llu\n",
510 (unsigned long long)sector);
511 retry:
512 seq = read_seqcount_begin(&conf->gen_lock);
513 sh->generation = conf->generation - previous;
514 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
515 sh->sector = sector;
516 stripe_set_idx(sector, conf, previous, sh);
517 sh->state = 0;
518
519 for (i = sh->disks; i--; ) {
520 struct r5dev *dev = &sh->dev[i];
521
522 if (dev->toread || dev->read || dev->towrite || dev->written ||
523 test_bit(R5_LOCKED, &dev->flags)) {
524 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
525 (unsigned long long)sh->sector, i, dev->toread,
526 dev->read, dev->towrite, dev->written,
527 test_bit(R5_LOCKED, &dev->flags));
528 WARN_ON(1);
529 }
530 dev->flags = 0;
531 dev->sector = raid5_compute_blocknr(sh, i, previous);
532 }
533 if (read_seqcount_retry(&conf->gen_lock, seq))
534 goto retry;
535 sh->overwrite_disks = 0;
536 insert_hash(conf, sh);
537 sh->cpu = smp_processor_id();
538 set_bit(STRIPE_BATCH_READY, &sh->state);
539 }
540
541 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
542 short generation)
543 {
544 struct stripe_head *sh;
545
546 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
547 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
548 if (sh->sector == sector && sh->generation == generation)
549 return sh;
550 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
551 return NULL;
552 }
553
554 /*
555 * Need to check if array has failed when deciding whether to:
556 * - start an array
557 * - remove non-faulty devices
558 * - add a spare
559 * - allow a reshape
560 * This determination is simple when no reshape is happening.
561 * However if there is a reshape, we need to carefully check
562 * both the before and after sections.
563 * This is because some failed devices may only affect one
564 * of the two sections, and some non-in_sync devices may
565 * be insync in the section most affected by failed devices.
566 */
567 int raid5_calc_degraded(struct r5conf *conf)
568 {
569 int degraded, degraded2;
570 int i;
571
572 rcu_read_lock();
573 degraded = 0;
574 for (i = 0; i < conf->previous_raid_disks; i++) {
575 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
576 if (rdev && test_bit(Faulty, &rdev->flags))
577 rdev = rcu_dereference(conf->disks[i].replacement);
578 if (!rdev || test_bit(Faulty, &rdev->flags))
579 degraded++;
580 else if (test_bit(In_sync, &rdev->flags))
581 ;
582 else
583 /* not in-sync or faulty.
584 * If the reshape increases the number of devices,
585 * this is being recovered by the reshape, so
586 * this 'previous' section is not in_sync.
587 * If the number of devices is being reduced however,
588 * the device can only be part of the array if
589 * we are reverting a reshape, so this section will
590 * be in-sync.
591 */
592 if (conf->raid_disks >= conf->previous_raid_disks)
593 degraded++;
594 }
595 rcu_read_unlock();
596 if (conf->raid_disks == conf->previous_raid_disks)
597 return degraded;
598 rcu_read_lock();
599 degraded2 = 0;
600 for (i = 0; i < conf->raid_disks; i++) {
601 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
602 if (rdev && test_bit(Faulty, &rdev->flags))
603 rdev = rcu_dereference(conf->disks[i].replacement);
604 if (!rdev || test_bit(Faulty, &rdev->flags))
605 degraded2++;
606 else if (test_bit(In_sync, &rdev->flags))
607 ;
608 else
609 /* not in-sync or faulty.
610 * If reshape increases the number of devices, this
611 * section has already been recovered, else it
612 * almost certainly hasn't.
613 */
614 if (conf->raid_disks <= conf->previous_raid_disks)
615 degraded2++;
616 }
617 rcu_read_unlock();
618 if (degraded2 > degraded)
619 return degraded2;
620 return degraded;
621 }
622
623 static int has_failed(struct r5conf *conf)
624 {
625 int degraded;
626
627 if (conf->mddev->reshape_position == MaxSector)
628 return conf->mddev->degraded > conf->max_degraded;
629
630 degraded = raid5_calc_degraded(conf);
631 if (degraded > conf->max_degraded)
632 return 1;
633 return 0;
634 }
635
636 struct stripe_head *
637 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
638 int previous, int noblock, int noquiesce)
639 {
640 struct stripe_head *sh;
641 int hash = stripe_hash_locks_hash(sector);
642 int inc_empty_inactive_list_flag;
643
644 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
645
646 spin_lock_irq(conf->hash_locks + hash);
647
648 do {
649 wait_event_lock_irq(conf->wait_for_quiescent,
650 conf->quiesce == 0 || noquiesce,
651 *(conf->hash_locks + hash));
652 sh = __find_stripe(conf, sector, conf->generation - previous);
653 if (!sh) {
654 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
655 sh = get_free_stripe(conf, hash);
656 if (!sh && !test_bit(R5_DID_ALLOC,
657 &conf->cache_state))
658 set_bit(R5_ALLOC_MORE,
659 &conf->cache_state);
660 }
661 if (noblock && sh == NULL)
662 break;
663
664 r5c_check_stripe_cache_usage(conf);
665 if (!sh) {
666 set_bit(R5_INACTIVE_BLOCKED,
667 &conf->cache_state);
668 r5l_wake_reclaim(conf->log, 0);
669 wait_event_lock_irq(
670 conf->wait_for_stripe,
671 !list_empty(conf->inactive_list + hash) &&
672 (atomic_read(&conf->active_stripes)
673 < (conf->max_nr_stripes * 3 / 4)
674 || !test_bit(R5_INACTIVE_BLOCKED,
675 &conf->cache_state)),
676 *(conf->hash_locks + hash));
677 clear_bit(R5_INACTIVE_BLOCKED,
678 &conf->cache_state);
679 } else {
680 init_stripe(sh, sector, previous);
681 atomic_inc(&sh->count);
682 }
683 } else if (!atomic_inc_not_zero(&sh->count)) {
684 spin_lock(&conf->device_lock);
685 if (!atomic_read(&sh->count)) {
686 if (!test_bit(STRIPE_HANDLE, &sh->state))
687 atomic_inc(&conf->active_stripes);
688 BUG_ON(list_empty(&sh->lru) &&
689 !test_bit(STRIPE_EXPANDING, &sh->state));
690 inc_empty_inactive_list_flag = 0;
691 if (!list_empty(conf->inactive_list + hash))
692 inc_empty_inactive_list_flag = 1;
693 list_del_init(&sh->lru);
694 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
695 atomic_inc(&conf->empty_inactive_list_nr);
696 if (sh->group) {
697 sh->group->stripes_cnt--;
698 sh->group = NULL;
699 }
700 }
701 atomic_inc(&sh->count);
702 spin_unlock(&conf->device_lock);
703 }
704 } while (sh == NULL);
705
706 spin_unlock_irq(conf->hash_locks + hash);
707 return sh;
708 }
709
710 static bool is_full_stripe_write(struct stripe_head *sh)
711 {
712 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
713 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
714 }
715
716 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
717 {
718 if (sh1 > sh2) {
719 spin_lock_irq(&sh2->stripe_lock);
720 spin_lock_nested(&sh1->stripe_lock, 1);
721 } else {
722 spin_lock_irq(&sh1->stripe_lock);
723 spin_lock_nested(&sh2->stripe_lock, 1);
724 }
725 }
726
727 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728 {
729 spin_unlock(&sh1->stripe_lock);
730 spin_unlock_irq(&sh2->stripe_lock);
731 }
732
733 /* Only freshly new full stripe normal write stripe can be added to a batch list */
734 static bool stripe_can_batch(struct stripe_head *sh)
735 {
736 struct r5conf *conf = sh->raid_conf;
737
738 if (conf->log || raid5_has_ppl(conf))
739 return false;
740 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
741 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
742 is_full_stripe_write(sh);
743 }
744
745 /* we only do back search */
746 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
747 {
748 struct stripe_head *head;
749 sector_t head_sector, tmp_sec;
750 int hash;
751 int dd_idx;
752 int inc_empty_inactive_list_flag;
753
754 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
755 tmp_sec = sh->sector;
756 if (!sector_div(tmp_sec, conf->chunk_sectors))
757 return;
758 head_sector = sh->sector - STRIPE_SECTORS;
759
760 hash = stripe_hash_locks_hash(head_sector);
761 spin_lock_irq(conf->hash_locks + hash);
762 head = __find_stripe(conf, head_sector, conf->generation);
763 if (head && !atomic_inc_not_zero(&head->count)) {
764 spin_lock(&conf->device_lock);
765 if (!atomic_read(&head->count)) {
766 if (!test_bit(STRIPE_HANDLE, &head->state))
767 atomic_inc(&conf->active_stripes);
768 BUG_ON(list_empty(&head->lru) &&
769 !test_bit(STRIPE_EXPANDING, &head->state));
770 inc_empty_inactive_list_flag = 0;
771 if (!list_empty(conf->inactive_list + hash))
772 inc_empty_inactive_list_flag = 1;
773 list_del_init(&head->lru);
774 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
775 atomic_inc(&conf->empty_inactive_list_nr);
776 if (head->group) {
777 head->group->stripes_cnt--;
778 head->group = NULL;
779 }
780 }
781 atomic_inc(&head->count);
782 spin_unlock(&conf->device_lock);
783 }
784 spin_unlock_irq(conf->hash_locks + hash);
785
786 if (!head)
787 return;
788 if (!stripe_can_batch(head))
789 goto out;
790
791 lock_two_stripes(head, sh);
792 /* clear_batch_ready clear the flag */
793 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
794 goto unlock_out;
795
796 if (sh->batch_head)
797 goto unlock_out;
798
799 dd_idx = 0;
800 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
801 dd_idx++;
802 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
803 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
804 goto unlock_out;
805
806 if (head->batch_head) {
807 spin_lock(&head->batch_head->batch_lock);
808 /* This batch list is already running */
809 if (!stripe_can_batch(head)) {
810 spin_unlock(&head->batch_head->batch_lock);
811 goto unlock_out;
812 }
813 /*
814 * We must assign batch_head of this stripe within the
815 * batch_lock, otherwise clear_batch_ready of batch head
816 * stripe could clear BATCH_READY bit of this stripe and
817 * this stripe->batch_head doesn't get assigned, which
818 * could confuse clear_batch_ready for this stripe
819 */
820 sh->batch_head = head->batch_head;
821
822 /*
823 * at this point, head's BATCH_READY could be cleared, but we
824 * can still add the stripe to batch list
825 */
826 list_add(&sh->batch_list, &head->batch_list);
827 spin_unlock(&head->batch_head->batch_lock);
828 } else {
829 head->batch_head = head;
830 sh->batch_head = head->batch_head;
831 spin_lock(&head->batch_lock);
832 list_add_tail(&sh->batch_list, &head->batch_list);
833 spin_unlock(&head->batch_lock);
834 }
835
836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837 if (atomic_dec_return(&conf->preread_active_stripes)
838 < IO_THRESHOLD)
839 md_wakeup_thread(conf->mddev->thread);
840
841 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842 int seq = sh->bm_seq;
843 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844 sh->batch_head->bm_seq > seq)
845 seq = sh->batch_head->bm_seq;
846 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847 sh->batch_head->bm_seq = seq;
848 }
849
850 atomic_inc(&sh->count);
851 unlock_out:
852 unlock_two_stripes(head, sh);
853 out:
854 raid5_release_stripe(head);
855 }
856
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858 * in this stripe_head.
859 */
860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861 {
862 sector_t progress = conf->reshape_progress;
863 /* Need a memory barrier to make sure we see the value
864 * of conf->generation, or ->data_offset that was set before
865 * reshape_progress was updated.
866 */
867 smp_rmb();
868 if (progress == MaxSector)
869 return 0;
870 if (sh->generation == conf->generation - 1)
871 return 0;
872 /* We are in a reshape, and this is a new-generation stripe,
873 * so use new_data_offset.
874 */
875 return 1;
876 }
877
878 static void dispatch_bio_list(struct bio_list *tmp)
879 {
880 struct bio *bio;
881
882 while ((bio = bio_list_pop(tmp)))
883 generic_make_request(bio);
884 }
885
886 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
887 {
888 const struct r5pending_data *da = list_entry(a,
889 struct r5pending_data, sibling);
890 const struct r5pending_data *db = list_entry(b,
891 struct r5pending_data, sibling);
892 if (da->sector > db->sector)
893 return 1;
894 if (da->sector < db->sector)
895 return -1;
896 return 0;
897 }
898
899 static void dispatch_defer_bios(struct r5conf *conf, int target,
900 struct bio_list *list)
901 {
902 struct r5pending_data *data;
903 struct list_head *first, *next = NULL;
904 int cnt = 0;
905
906 if (conf->pending_data_cnt == 0)
907 return;
908
909 list_sort(NULL, &conf->pending_list, cmp_stripe);
910
911 first = conf->pending_list.next;
912
913 /* temporarily move the head */
914 if (conf->next_pending_data)
915 list_move_tail(&conf->pending_list,
916 &conf->next_pending_data->sibling);
917
918 while (!list_empty(&conf->pending_list)) {
919 data = list_first_entry(&conf->pending_list,
920 struct r5pending_data, sibling);
921 if (&data->sibling == first)
922 first = data->sibling.next;
923 next = data->sibling.next;
924
925 bio_list_merge(list, &data->bios);
926 list_move(&data->sibling, &conf->free_list);
927 cnt++;
928 if (cnt >= target)
929 break;
930 }
931 conf->pending_data_cnt -= cnt;
932 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
933
934 if (next != &conf->pending_list)
935 conf->next_pending_data = list_entry(next,
936 struct r5pending_data, sibling);
937 else
938 conf->next_pending_data = NULL;
939 /* list isn't empty */
940 if (first != &conf->pending_list)
941 list_move_tail(&conf->pending_list, first);
942 }
943
944 static void flush_deferred_bios(struct r5conf *conf)
945 {
946 struct bio_list tmp = BIO_EMPTY_LIST;
947
948 if (conf->pending_data_cnt == 0)
949 return;
950
951 spin_lock(&conf->pending_bios_lock);
952 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
953 BUG_ON(conf->pending_data_cnt != 0);
954 spin_unlock(&conf->pending_bios_lock);
955
956 dispatch_bio_list(&tmp);
957 }
958
959 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
960 struct bio_list *bios)
961 {
962 struct bio_list tmp = BIO_EMPTY_LIST;
963 struct r5pending_data *ent;
964
965 spin_lock(&conf->pending_bios_lock);
966 ent = list_first_entry(&conf->free_list, struct r5pending_data,
967 sibling);
968 list_move_tail(&ent->sibling, &conf->pending_list);
969 ent->sector = sector;
970 bio_list_init(&ent->bios);
971 bio_list_merge(&ent->bios, bios);
972 conf->pending_data_cnt++;
973 if (conf->pending_data_cnt >= PENDING_IO_MAX)
974 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
975
976 spin_unlock(&conf->pending_bios_lock);
977
978 dispatch_bio_list(&tmp);
979 }
980
981 static void
982 raid5_end_read_request(struct bio *bi);
983 static void
984 raid5_end_write_request(struct bio *bi);
985
986 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
987 {
988 struct r5conf *conf = sh->raid_conf;
989 int i, disks = sh->disks;
990 struct stripe_head *head_sh = sh;
991 struct bio_list pending_bios = BIO_EMPTY_LIST;
992 bool should_defer;
993
994 might_sleep();
995
996 if (log_stripe(sh, s) == 0)
997 return;
998
999 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1000
1001 for (i = disks; i--; ) {
1002 int op, op_flags = 0;
1003 int replace_only = 0;
1004 struct bio *bi, *rbi;
1005 struct md_rdev *rdev, *rrdev = NULL;
1006
1007 sh = head_sh;
1008 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1009 op = REQ_OP_WRITE;
1010 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1011 op_flags = REQ_FUA;
1012 if (test_bit(R5_Discard, &sh->dev[i].flags))
1013 op = REQ_OP_DISCARD;
1014 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1015 op = REQ_OP_READ;
1016 else if (test_and_clear_bit(R5_WantReplace,
1017 &sh->dev[i].flags)) {
1018 op = REQ_OP_WRITE;
1019 replace_only = 1;
1020 } else
1021 continue;
1022 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1023 op_flags |= REQ_SYNC;
1024
1025 again:
1026 bi = &sh->dev[i].req;
1027 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1028
1029 rcu_read_lock();
1030 rrdev = rcu_dereference(conf->disks[i].replacement);
1031 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1032 rdev = rcu_dereference(conf->disks[i].rdev);
1033 if (!rdev) {
1034 rdev = rrdev;
1035 rrdev = NULL;
1036 }
1037 if (op_is_write(op)) {
1038 if (replace_only)
1039 rdev = NULL;
1040 if (rdev == rrdev)
1041 /* We raced and saw duplicates */
1042 rrdev = NULL;
1043 } else {
1044 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1045 rdev = rrdev;
1046 rrdev = NULL;
1047 }
1048
1049 if (rdev && test_bit(Faulty, &rdev->flags))
1050 rdev = NULL;
1051 if (rdev)
1052 atomic_inc(&rdev->nr_pending);
1053 if (rrdev && test_bit(Faulty, &rrdev->flags))
1054 rrdev = NULL;
1055 if (rrdev)
1056 atomic_inc(&rrdev->nr_pending);
1057 rcu_read_unlock();
1058
1059 /* We have already checked bad blocks for reads. Now
1060 * need to check for writes. We never accept write errors
1061 * on the replacement, so we don't to check rrdev.
1062 */
1063 while (op_is_write(op) && rdev &&
1064 test_bit(WriteErrorSeen, &rdev->flags)) {
1065 sector_t first_bad;
1066 int bad_sectors;
1067 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1068 &first_bad, &bad_sectors);
1069 if (!bad)
1070 break;
1071
1072 if (bad < 0) {
1073 set_bit(BlockedBadBlocks, &rdev->flags);
1074 if (!conf->mddev->external &&
1075 conf->mddev->sb_flags) {
1076 /* It is very unlikely, but we might
1077 * still need to write out the
1078 * bad block log - better give it
1079 * a chance*/
1080 md_check_recovery(conf->mddev);
1081 }
1082 /*
1083 * Because md_wait_for_blocked_rdev
1084 * will dec nr_pending, we must
1085 * increment it first.
1086 */
1087 atomic_inc(&rdev->nr_pending);
1088 md_wait_for_blocked_rdev(rdev, conf->mddev);
1089 } else {
1090 /* Acknowledged bad block - skip the write */
1091 rdev_dec_pending(rdev, conf->mddev);
1092 rdev = NULL;
1093 }
1094 }
1095
1096 if (rdev) {
1097 if (s->syncing || s->expanding || s->expanded
1098 || s->replacing)
1099 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1100
1101 set_bit(STRIPE_IO_STARTED, &sh->state);
1102
1103 bio_set_dev(bi, rdev->bdev);
1104 bio_set_op_attrs(bi, op, op_flags);
1105 bi->bi_end_io = op_is_write(op)
1106 ? raid5_end_write_request
1107 : raid5_end_read_request;
1108 bi->bi_private = sh;
1109
1110 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1111 __func__, (unsigned long long)sh->sector,
1112 bi->bi_opf, i);
1113 atomic_inc(&sh->count);
1114 if (sh != head_sh)
1115 atomic_inc(&head_sh->count);
1116 if (use_new_offset(conf, sh))
1117 bi->bi_iter.bi_sector = (sh->sector
1118 + rdev->new_data_offset);
1119 else
1120 bi->bi_iter.bi_sector = (sh->sector
1121 + rdev->data_offset);
1122 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1123 bi->bi_opf |= REQ_NOMERGE;
1124
1125 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1126 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1127
1128 if (!op_is_write(op) &&
1129 test_bit(R5_InJournal, &sh->dev[i].flags))
1130 /*
1131 * issuing read for a page in journal, this
1132 * must be preparing for prexor in rmw; read
1133 * the data into orig_page
1134 */
1135 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1136 else
1137 sh->dev[i].vec.bv_page = sh->dev[i].page;
1138 bi->bi_vcnt = 1;
1139 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1140 bi->bi_io_vec[0].bv_offset = 0;
1141 bi->bi_iter.bi_size = STRIPE_SIZE;
1142 bi->bi_write_hint = sh->dev[i].write_hint;
1143 if (!rrdev)
1144 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1145 /*
1146 * If this is discard request, set bi_vcnt 0. We don't
1147 * want to confuse SCSI because SCSI will replace payload
1148 */
1149 if (op == REQ_OP_DISCARD)
1150 bi->bi_vcnt = 0;
1151 if (rrdev)
1152 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1153
1154 if (conf->mddev->gendisk)
1155 trace_block_bio_remap(bi->bi_disk->queue,
1156 bi, disk_devt(conf->mddev->gendisk),
1157 sh->dev[i].sector);
1158 if (should_defer && op_is_write(op))
1159 bio_list_add(&pending_bios, bi);
1160 else
1161 generic_make_request(bi);
1162 }
1163 if (rrdev) {
1164 if (s->syncing || s->expanding || s->expanded
1165 || s->replacing)
1166 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1167
1168 set_bit(STRIPE_IO_STARTED, &sh->state);
1169
1170 bio_set_dev(rbi, rrdev->bdev);
1171 bio_set_op_attrs(rbi, op, op_flags);
1172 BUG_ON(!op_is_write(op));
1173 rbi->bi_end_io = raid5_end_write_request;
1174 rbi->bi_private = sh;
1175
1176 pr_debug("%s: for %llu schedule op %d on "
1177 "replacement disc %d\n",
1178 __func__, (unsigned long long)sh->sector,
1179 rbi->bi_opf, i);
1180 atomic_inc(&sh->count);
1181 if (sh != head_sh)
1182 atomic_inc(&head_sh->count);
1183 if (use_new_offset(conf, sh))
1184 rbi->bi_iter.bi_sector = (sh->sector
1185 + rrdev->new_data_offset);
1186 else
1187 rbi->bi_iter.bi_sector = (sh->sector
1188 + rrdev->data_offset);
1189 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1190 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1191 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1192 rbi->bi_vcnt = 1;
1193 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1194 rbi->bi_io_vec[0].bv_offset = 0;
1195 rbi->bi_iter.bi_size = STRIPE_SIZE;
1196 rbi->bi_write_hint = sh->dev[i].write_hint;
1197 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1198 /*
1199 * If this is discard request, set bi_vcnt 0. We don't
1200 * want to confuse SCSI because SCSI will replace payload
1201 */
1202 if (op == REQ_OP_DISCARD)
1203 rbi->bi_vcnt = 0;
1204 if (conf->mddev->gendisk)
1205 trace_block_bio_remap(rbi->bi_disk->queue,
1206 rbi, disk_devt(conf->mddev->gendisk),
1207 sh->dev[i].sector);
1208 if (should_defer && op_is_write(op))
1209 bio_list_add(&pending_bios, rbi);
1210 else
1211 generic_make_request(rbi);
1212 }
1213 if (!rdev && !rrdev) {
1214 if (op_is_write(op))
1215 set_bit(STRIPE_DEGRADED, &sh->state);
1216 pr_debug("skip op %d on disc %d for sector %llu\n",
1217 bi->bi_opf, i, (unsigned long long)sh->sector);
1218 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1219 set_bit(STRIPE_HANDLE, &sh->state);
1220 }
1221
1222 if (!head_sh->batch_head)
1223 continue;
1224 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1225 batch_list);
1226 if (sh != head_sh)
1227 goto again;
1228 }
1229
1230 if (should_defer && !bio_list_empty(&pending_bios))
1231 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1232 }
1233
1234 static struct dma_async_tx_descriptor *
1235 async_copy_data(int frombio, struct bio *bio, struct page **page,
1236 sector_t sector, struct dma_async_tx_descriptor *tx,
1237 struct stripe_head *sh, int no_skipcopy)
1238 {
1239 struct bio_vec bvl;
1240 struct bvec_iter iter;
1241 struct page *bio_page;
1242 int page_offset;
1243 struct async_submit_ctl submit;
1244 enum async_tx_flags flags = 0;
1245
1246 if (bio->bi_iter.bi_sector >= sector)
1247 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1248 else
1249 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1250
1251 if (frombio)
1252 flags |= ASYNC_TX_FENCE;
1253 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1254
1255 bio_for_each_segment(bvl, bio, iter) {
1256 int len = bvl.bv_len;
1257 int clen;
1258 int b_offset = 0;
1259
1260 if (page_offset < 0) {
1261 b_offset = -page_offset;
1262 page_offset += b_offset;
1263 len -= b_offset;
1264 }
1265
1266 if (len > 0 && page_offset + len > STRIPE_SIZE)
1267 clen = STRIPE_SIZE - page_offset;
1268 else
1269 clen = len;
1270
1271 if (clen > 0) {
1272 b_offset += bvl.bv_offset;
1273 bio_page = bvl.bv_page;
1274 if (frombio) {
1275 if (sh->raid_conf->skip_copy &&
1276 b_offset == 0 && page_offset == 0 &&
1277 clen == STRIPE_SIZE &&
1278 !no_skipcopy)
1279 *page = bio_page;
1280 else
1281 tx = async_memcpy(*page, bio_page, page_offset,
1282 b_offset, clen, &submit);
1283 } else
1284 tx = async_memcpy(bio_page, *page, b_offset,
1285 page_offset, clen, &submit);
1286 }
1287 /* chain the operations */
1288 submit.depend_tx = tx;
1289
1290 if (clen < len) /* hit end of page */
1291 break;
1292 page_offset += len;
1293 }
1294
1295 return tx;
1296 }
1297
1298 static void ops_complete_biofill(void *stripe_head_ref)
1299 {
1300 struct stripe_head *sh = stripe_head_ref;
1301 int i;
1302
1303 pr_debug("%s: stripe %llu\n", __func__,
1304 (unsigned long long)sh->sector);
1305
1306 /* clear completed biofills */
1307 for (i = sh->disks; i--; ) {
1308 struct r5dev *dev = &sh->dev[i];
1309
1310 /* acknowledge completion of a biofill operation */
1311 /* and check if we need to reply to a read request,
1312 * new R5_Wantfill requests are held off until
1313 * !STRIPE_BIOFILL_RUN
1314 */
1315 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1316 struct bio *rbi, *rbi2;
1317
1318 BUG_ON(!dev->read);
1319 rbi = dev->read;
1320 dev->read = NULL;
1321 while (rbi && rbi->bi_iter.bi_sector <
1322 dev->sector + STRIPE_SECTORS) {
1323 rbi2 = r5_next_bio(rbi, dev->sector);
1324 bio_endio(rbi);
1325 rbi = rbi2;
1326 }
1327 }
1328 }
1329 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1330
1331 set_bit(STRIPE_HANDLE, &sh->state);
1332 raid5_release_stripe(sh);
1333 }
1334
1335 static void ops_run_biofill(struct stripe_head *sh)
1336 {
1337 struct dma_async_tx_descriptor *tx = NULL;
1338 struct async_submit_ctl submit;
1339 int i;
1340
1341 BUG_ON(sh->batch_head);
1342 pr_debug("%s: stripe %llu\n", __func__,
1343 (unsigned long long)sh->sector);
1344
1345 for (i = sh->disks; i--; ) {
1346 struct r5dev *dev = &sh->dev[i];
1347 if (test_bit(R5_Wantfill, &dev->flags)) {
1348 struct bio *rbi;
1349 spin_lock_irq(&sh->stripe_lock);
1350 dev->read = rbi = dev->toread;
1351 dev->toread = NULL;
1352 spin_unlock_irq(&sh->stripe_lock);
1353 while (rbi && rbi->bi_iter.bi_sector <
1354 dev->sector + STRIPE_SECTORS) {
1355 tx = async_copy_data(0, rbi, &dev->page,
1356 dev->sector, tx, sh, 0);
1357 rbi = r5_next_bio(rbi, dev->sector);
1358 }
1359 }
1360 }
1361
1362 atomic_inc(&sh->count);
1363 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1364 async_trigger_callback(&submit);
1365 }
1366
1367 static void mark_target_uptodate(struct stripe_head *sh, int target)
1368 {
1369 struct r5dev *tgt;
1370
1371 if (target < 0)
1372 return;
1373
1374 tgt = &sh->dev[target];
1375 set_bit(R5_UPTODATE, &tgt->flags);
1376 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1377 clear_bit(R5_Wantcompute, &tgt->flags);
1378 }
1379
1380 static void ops_complete_compute(void *stripe_head_ref)
1381 {
1382 struct stripe_head *sh = stripe_head_ref;
1383
1384 pr_debug("%s: stripe %llu\n", __func__,
1385 (unsigned long long)sh->sector);
1386
1387 /* mark the computed target(s) as uptodate */
1388 mark_target_uptodate(sh, sh->ops.target);
1389 mark_target_uptodate(sh, sh->ops.target2);
1390
1391 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1392 if (sh->check_state == check_state_compute_run)
1393 sh->check_state = check_state_compute_result;
1394 set_bit(STRIPE_HANDLE, &sh->state);
1395 raid5_release_stripe(sh);
1396 }
1397
1398 /* return a pointer to the address conversion region of the scribble buffer */
1399 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1400 struct raid5_percpu *percpu, int i)
1401 {
1402 void *addr;
1403
1404 addr = flex_array_get(percpu->scribble, i);
1405 return addr + sizeof(struct page *) * (sh->disks + 2);
1406 }
1407
1408 /* return a pointer to the address conversion region of the scribble buffer */
1409 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1410 {
1411 void *addr;
1412
1413 addr = flex_array_get(percpu->scribble, i);
1414 return addr;
1415 }
1416
1417 static struct dma_async_tx_descriptor *
1418 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1419 {
1420 int disks = sh->disks;
1421 struct page **xor_srcs = to_addr_page(percpu, 0);
1422 int target = sh->ops.target;
1423 struct r5dev *tgt = &sh->dev[target];
1424 struct page *xor_dest = tgt->page;
1425 int count = 0;
1426 struct dma_async_tx_descriptor *tx;
1427 struct async_submit_ctl submit;
1428 int i;
1429
1430 BUG_ON(sh->batch_head);
1431
1432 pr_debug("%s: stripe %llu block: %d\n",
1433 __func__, (unsigned long long)sh->sector, target);
1434 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1435
1436 for (i = disks; i--; )
1437 if (i != target)
1438 xor_srcs[count++] = sh->dev[i].page;
1439
1440 atomic_inc(&sh->count);
1441
1442 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1443 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1444 if (unlikely(count == 1))
1445 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1446 else
1447 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1448
1449 return tx;
1450 }
1451
1452 /* set_syndrome_sources - populate source buffers for gen_syndrome
1453 * @srcs - (struct page *) array of size sh->disks
1454 * @sh - stripe_head to parse
1455 *
1456 * Populates srcs in proper layout order for the stripe and returns the
1457 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1458 * destination buffer is recorded in srcs[count] and the Q destination
1459 * is recorded in srcs[count+1]].
1460 */
1461 static int set_syndrome_sources(struct page **srcs,
1462 struct stripe_head *sh,
1463 int srctype)
1464 {
1465 int disks = sh->disks;
1466 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1467 int d0_idx = raid6_d0(sh);
1468 int count;
1469 int i;
1470
1471 for (i = 0; i < disks; i++)
1472 srcs[i] = NULL;
1473
1474 count = 0;
1475 i = d0_idx;
1476 do {
1477 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1478 struct r5dev *dev = &sh->dev[i];
1479
1480 if (i == sh->qd_idx || i == sh->pd_idx ||
1481 (srctype == SYNDROME_SRC_ALL) ||
1482 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1483 (test_bit(R5_Wantdrain, &dev->flags) ||
1484 test_bit(R5_InJournal, &dev->flags))) ||
1485 (srctype == SYNDROME_SRC_WRITTEN &&
1486 (dev->written ||
1487 test_bit(R5_InJournal, &dev->flags)))) {
1488 if (test_bit(R5_InJournal, &dev->flags))
1489 srcs[slot] = sh->dev[i].orig_page;
1490 else
1491 srcs[slot] = sh->dev[i].page;
1492 }
1493 i = raid6_next_disk(i, disks);
1494 } while (i != d0_idx);
1495
1496 return syndrome_disks;
1497 }
1498
1499 static struct dma_async_tx_descriptor *
1500 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1501 {
1502 int disks = sh->disks;
1503 struct page **blocks = to_addr_page(percpu, 0);
1504 int target;
1505 int qd_idx = sh->qd_idx;
1506 struct dma_async_tx_descriptor *tx;
1507 struct async_submit_ctl submit;
1508 struct r5dev *tgt;
1509 struct page *dest;
1510 int i;
1511 int count;
1512
1513 BUG_ON(sh->batch_head);
1514 if (sh->ops.target < 0)
1515 target = sh->ops.target2;
1516 else if (sh->ops.target2 < 0)
1517 target = sh->ops.target;
1518 else
1519 /* we should only have one valid target */
1520 BUG();
1521 BUG_ON(target < 0);
1522 pr_debug("%s: stripe %llu block: %d\n",
1523 __func__, (unsigned long long)sh->sector, target);
1524
1525 tgt = &sh->dev[target];
1526 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1527 dest = tgt->page;
1528
1529 atomic_inc(&sh->count);
1530
1531 if (target == qd_idx) {
1532 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1533 blocks[count] = NULL; /* regenerating p is not necessary */
1534 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1535 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1536 ops_complete_compute, sh,
1537 to_addr_conv(sh, percpu, 0));
1538 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1539 } else {
1540 /* Compute any data- or p-drive using XOR */
1541 count = 0;
1542 for (i = disks; i-- ; ) {
1543 if (i == target || i == qd_idx)
1544 continue;
1545 blocks[count++] = sh->dev[i].page;
1546 }
1547
1548 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1549 NULL, ops_complete_compute, sh,
1550 to_addr_conv(sh, percpu, 0));
1551 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1552 }
1553
1554 return tx;
1555 }
1556
1557 static struct dma_async_tx_descriptor *
1558 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1559 {
1560 int i, count, disks = sh->disks;
1561 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1562 int d0_idx = raid6_d0(sh);
1563 int faila = -1, failb = -1;
1564 int target = sh->ops.target;
1565 int target2 = sh->ops.target2;
1566 struct r5dev *tgt = &sh->dev[target];
1567 struct r5dev *tgt2 = &sh->dev[target2];
1568 struct dma_async_tx_descriptor *tx;
1569 struct page **blocks = to_addr_page(percpu, 0);
1570 struct async_submit_ctl submit;
1571
1572 BUG_ON(sh->batch_head);
1573 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1574 __func__, (unsigned long long)sh->sector, target, target2);
1575 BUG_ON(target < 0 || target2 < 0);
1576 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1577 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1578
1579 /* we need to open-code set_syndrome_sources to handle the
1580 * slot number conversion for 'faila' and 'failb'
1581 */
1582 for (i = 0; i < disks ; i++)
1583 blocks[i] = NULL;
1584 count = 0;
1585 i = d0_idx;
1586 do {
1587 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1588
1589 blocks[slot] = sh->dev[i].page;
1590
1591 if (i == target)
1592 faila = slot;
1593 if (i == target2)
1594 failb = slot;
1595 i = raid6_next_disk(i, disks);
1596 } while (i != d0_idx);
1597
1598 BUG_ON(faila == failb);
1599 if (failb < faila)
1600 swap(faila, failb);
1601 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1602 __func__, (unsigned long long)sh->sector, faila, failb);
1603
1604 atomic_inc(&sh->count);
1605
1606 if (failb == syndrome_disks+1) {
1607 /* Q disk is one of the missing disks */
1608 if (faila == syndrome_disks) {
1609 /* Missing P+Q, just recompute */
1610 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1611 ops_complete_compute, sh,
1612 to_addr_conv(sh, percpu, 0));
1613 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1614 STRIPE_SIZE, &submit);
1615 } else {
1616 struct page *dest;
1617 int data_target;
1618 int qd_idx = sh->qd_idx;
1619
1620 /* Missing D+Q: recompute D from P, then recompute Q */
1621 if (target == qd_idx)
1622 data_target = target2;
1623 else
1624 data_target = target;
1625
1626 count = 0;
1627 for (i = disks; i-- ; ) {
1628 if (i == data_target || i == qd_idx)
1629 continue;
1630 blocks[count++] = sh->dev[i].page;
1631 }
1632 dest = sh->dev[data_target].page;
1633 init_async_submit(&submit,
1634 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1635 NULL, NULL, NULL,
1636 to_addr_conv(sh, percpu, 0));
1637 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1638 &submit);
1639
1640 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1641 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1642 ops_complete_compute, sh,
1643 to_addr_conv(sh, percpu, 0));
1644 return async_gen_syndrome(blocks, 0, count+2,
1645 STRIPE_SIZE, &submit);
1646 }
1647 } else {
1648 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1649 ops_complete_compute, sh,
1650 to_addr_conv(sh, percpu, 0));
1651 if (failb == syndrome_disks) {
1652 /* We're missing D+P. */
1653 return async_raid6_datap_recov(syndrome_disks+2,
1654 STRIPE_SIZE, faila,
1655 blocks, &submit);
1656 } else {
1657 /* We're missing D+D. */
1658 return async_raid6_2data_recov(syndrome_disks+2,
1659 STRIPE_SIZE, faila, failb,
1660 blocks, &submit);
1661 }
1662 }
1663 }
1664
1665 static void ops_complete_prexor(void *stripe_head_ref)
1666 {
1667 struct stripe_head *sh = stripe_head_ref;
1668
1669 pr_debug("%s: stripe %llu\n", __func__,
1670 (unsigned long long)sh->sector);
1671
1672 if (r5c_is_writeback(sh->raid_conf->log))
1673 /*
1674 * raid5-cache write back uses orig_page during prexor.
1675 * After prexor, it is time to free orig_page
1676 */
1677 r5c_release_extra_page(sh);
1678 }
1679
1680 static struct dma_async_tx_descriptor *
1681 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1682 struct dma_async_tx_descriptor *tx)
1683 {
1684 int disks = sh->disks;
1685 struct page **xor_srcs = to_addr_page(percpu, 0);
1686 int count = 0, pd_idx = sh->pd_idx, i;
1687 struct async_submit_ctl submit;
1688
1689 /* existing parity data subtracted */
1690 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1691
1692 BUG_ON(sh->batch_head);
1693 pr_debug("%s: stripe %llu\n", __func__,
1694 (unsigned long long)sh->sector);
1695
1696 for (i = disks; i--; ) {
1697 struct r5dev *dev = &sh->dev[i];
1698 /* Only process blocks that are known to be uptodate */
1699 if (test_bit(R5_InJournal, &dev->flags))
1700 xor_srcs[count++] = dev->orig_page;
1701 else if (test_bit(R5_Wantdrain, &dev->flags))
1702 xor_srcs[count++] = dev->page;
1703 }
1704
1705 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1706 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1707 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1708
1709 return tx;
1710 }
1711
1712 static struct dma_async_tx_descriptor *
1713 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1714 struct dma_async_tx_descriptor *tx)
1715 {
1716 struct page **blocks = to_addr_page(percpu, 0);
1717 int count;
1718 struct async_submit_ctl submit;
1719
1720 pr_debug("%s: stripe %llu\n", __func__,
1721 (unsigned long long)sh->sector);
1722
1723 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1724
1725 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1726 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1727 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1728
1729 return tx;
1730 }
1731
1732 static struct dma_async_tx_descriptor *
1733 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1734 {
1735 struct r5conf *conf = sh->raid_conf;
1736 int disks = sh->disks;
1737 int i;
1738 struct stripe_head *head_sh = sh;
1739
1740 pr_debug("%s: stripe %llu\n", __func__,
1741 (unsigned long long)sh->sector);
1742
1743 for (i = disks; i--; ) {
1744 struct r5dev *dev;
1745 struct bio *chosen;
1746
1747 sh = head_sh;
1748 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1749 struct bio *wbi;
1750
1751 again:
1752 dev = &sh->dev[i];
1753 /*
1754 * clear R5_InJournal, so when rewriting a page in
1755 * journal, it is not skipped by r5l_log_stripe()
1756 */
1757 clear_bit(R5_InJournal, &dev->flags);
1758 spin_lock_irq(&sh->stripe_lock);
1759 chosen = dev->towrite;
1760 dev->towrite = NULL;
1761 sh->overwrite_disks = 0;
1762 BUG_ON(dev->written);
1763 wbi = dev->written = chosen;
1764 spin_unlock_irq(&sh->stripe_lock);
1765 WARN_ON(dev->page != dev->orig_page);
1766
1767 while (wbi && wbi->bi_iter.bi_sector <
1768 dev->sector + STRIPE_SECTORS) {
1769 if (wbi->bi_opf & REQ_FUA)
1770 set_bit(R5_WantFUA, &dev->flags);
1771 if (wbi->bi_opf & REQ_SYNC)
1772 set_bit(R5_SyncIO, &dev->flags);
1773 if (bio_op(wbi) == REQ_OP_DISCARD)
1774 set_bit(R5_Discard, &dev->flags);
1775 else {
1776 tx = async_copy_data(1, wbi, &dev->page,
1777 dev->sector, tx, sh,
1778 r5c_is_writeback(conf->log));
1779 if (dev->page != dev->orig_page &&
1780 !r5c_is_writeback(conf->log)) {
1781 set_bit(R5_SkipCopy, &dev->flags);
1782 clear_bit(R5_UPTODATE, &dev->flags);
1783 clear_bit(R5_OVERWRITE, &dev->flags);
1784 }
1785 }
1786 wbi = r5_next_bio(wbi, dev->sector);
1787 }
1788
1789 if (head_sh->batch_head) {
1790 sh = list_first_entry(&sh->batch_list,
1791 struct stripe_head,
1792 batch_list);
1793 if (sh == head_sh)
1794 continue;
1795 goto again;
1796 }
1797 }
1798 }
1799
1800 return tx;
1801 }
1802
1803 static void ops_complete_reconstruct(void *stripe_head_ref)
1804 {
1805 struct stripe_head *sh = stripe_head_ref;
1806 int disks = sh->disks;
1807 int pd_idx = sh->pd_idx;
1808 int qd_idx = sh->qd_idx;
1809 int i;
1810 bool fua = false, sync = false, discard = false;
1811
1812 pr_debug("%s: stripe %llu\n", __func__,
1813 (unsigned long long)sh->sector);
1814
1815 for (i = disks; i--; ) {
1816 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1817 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1818 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1819 }
1820
1821 for (i = disks; i--; ) {
1822 struct r5dev *dev = &sh->dev[i];
1823
1824 if (dev->written || i == pd_idx || i == qd_idx) {
1825 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1826 set_bit(R5_UPTODATE, &dev->flags);
1827 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1828 set_bit(R5_Expanded, &dev->flags);
1829 }
1830 if (fua)
1831 set_bit(R5_WantFUA, &dev->flags);
1832 if (sync)
1833 set_bit(R5_SyncIO, &dev->flags);
1834 }
1835 }
1836
1837 if (sh->reconstruct_state == reconstruct_state_drain_run)
1838 sh->reconstruct_state = reconstruct_state_drain_result;
1839 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1840 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1841 else {
1842 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1843 sh->reconstruct_state = reconstruct_state_result;
1844 }
1845
1846 set_bit(STRIPE_HANDLE, &sh->state);
1847 raid5_release_stripe(sh);
1848 }
1849
1850 static void
1851 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1852 struct dma_async_tx_descriptor *tx)
1853 {
1854 int disks = sh->disks;
1855 struct page **xor_srcs;
1856 struct async_submit_ctl submit;
1857 int count, pd_idx = sh->pd_idx, i;
1858 struct page *xor_dest;
1859 int prexor = 0;
1860 unsigned long flags;
1861 int j = 0;
1862 struct stripe_head *head_sh = sh;
1863 int last_stripe;
1864
1865 pr_debug("%s: stripe %llu\n", __func__,
1866 (unsigned long long)sh->sector);
1867
1868 for (i = 0; i < sh->disks; i++) {
1869 if (pd_idx == i)
1870 continue;
1871 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1872 break;
1873 }
1874 if (i >= sh->disks) {
1875 atomic_inc(&sh->count);
1876 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1877 ops_complete_reconstruct(sh);
1878 return;
1879 }
1880 again:
1881 count = 0;
1882 xor_srcs = to_addr_page(percpu, j);
1883 /* check if prexor is active which means only process blocks
1884 * that are part of a read-modify-write (written)
1885 */
1886 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1887 prexor = 1;
1888 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1889 for (i = disks; i--; ) {
1890 struct r5dev *dev = &sh->dev[i];
1891 if (head_sh->dev[i].written ||
1892 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1893 xor_srcs[count++] = dev->page;
1894 }
1895 } else {
1896 xor_dest = sh->dev[pd_idx].page;
1897 for (i = disks; i--; ) {
1898 struct r5dev *dev = &sh->dev[i];
1899 if (i != pd_idx)
1900 xor_srcs[count++] = dev->page;
1901 }
1902 }
1903
1904 /* 1/ if we prexor'd then the dest is reused as a source
1905 * 2/ if we did not prexor then we are redoing the parity
1906 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1907 * for the synchronous xor case
1908 */
1909 last_stripe = !head_sh->batch_head ||
1910 list_first_entry(&sh->batch_list,
1911 struct stripe_head, batch_list) == head_sh;
1912 if (last_stripe) {
1913 flags = ASYNC_TX_ACK |
1914 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1915
1916 atomic_inc(&head_sh->count);
1917 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1918 to_addr_conv(sh, percpu, j));
1919 } else {
1920 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1921 init_async_submit(&submit, flags, tx, NULL, NULL,
1922 to_addr_conv(sh, percpu, j));
1923 }
1924
1925 if (unlikely(count == 1))
1926 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1927 else
1928 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1929 if (!last_stripe) {
1930 j++;
1931 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1932 batch_list);
1933 goto again;
1934 }
1935 }
1936
1937 static void
1938 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1939 struct dma_async_tx_descriptor *tx)
1940 {
1941 struct async_submit_ctl submit;
1942 struct page **blocks;
1943 int count, i, j = 0;
1944 struct stripe_head *head_sh = sh;
1945 int last_stripe;
1946 int synflags;
1947 unsigned long txflags;
1948
1949 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1950
1951 for (i = 0; i < sh->disks; i++) {
1952 if (sh->pd_idx == i || sh->qd_idx == i)
1953 continue;
1954 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1955 break;
1956 }
1957 if (i >= sh->disks) {
1958 atomic_inc(&sh->count);
1959 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1960 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1961 ops_complete_reconstruct(sh);
1962 return;
1963 }
1964
1965 again:
1966 blocks = to_addr_page(percpu, j);
1967
1968 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1969 synflags = SYNDROME_SRC_WRITTEN;
1970 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1971 } else {
1972 synflags = SYNDROME_SRC_ALL;
1973 txflags = ASYNC_TX_ACK;
1974 }
1975
1976 count = set_syndrome_sources(blocks, sh, synflags);
1977 last_stripe = !head_sh->batch_head ||
1978 list_first_entry(&sh->batch_list,
1979 struct stripe_head, batch_list) == head_sh;
1980
1981 if (last_stripe) {
1982 atomic_inc(&head_sh->count);
1983 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1984 head_sh, to_addr_conv(sh, percpu, j));
1985 } else
1986 init_async_submit(&submit, 0, tx, NULL, NULL,
1987 to_addr_conv(sh, percpu, j));
1988 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1989 if (!last_stripe) {
1990 j++;
1991 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1992 batch_list);
1993 goto again;
1994 }
1995 }
1996
1997 static void ops_complete_check(void *stripe_head_ref)
1998 {
1999 struct stripe_head *sh = stripe_head_ref;
2000
2001 pr_debug("%s: stripe %llu\n", __func__,
2002 (unsigned long long)sh->sector);
2003
2004 sh->check_state = check_state_check_result;
2005 set_bit(STRIPE_HANDLE, &sh->state);
2006 raid5_release_stripe(sh);
2007 }
2008
2009 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2010 {
2011 int disks = sh->disks;
2012 int pd_idx = sh->pd_idx;
2013 int qd_idx = sh->qd_idx;
2014 struct page *xor_dest;
2015 struct page **xor_srcs = to_addr_page(percpu, 0);
2016 struct dma_async_tx_descriptor *tx;
2017 struct async_submit_ctl submit;
2018 int count;
2019 int i;
2020
2021 pr_debug("%s: stripe %llu\n", __func__,
2022 (unsigned long long)sh->sector);
2023
2024 BUG_ON(sh->batch_head);
2025 count = 0;
2026 xor_dest = sh->dev[pd_idx].page;
2027 xor_srcs[count++] = xor_dest;
2028 for (i = disks; i--; ) {
2029 if (i == pd_idx || i == qd_idx)
2030 continue;
2031 xor_srcs[count++] = sh->dev[i].page;
2032 }
2033
2034 init_async_submit(&submit, 0, NULL, NULL, NULL,
2035 to_addr_conv(sh, percpu, 0));
2036 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2037 &sh->ops.zero_sum_result, &submit);
2038
2039 atomic_inc(&sh->count);
2040 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2041 tx = async_trigger_callback(&submit);
2042 }
2043
2044 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2045 {
2046 struct page **srcs = to_addr_page(percpu, 0);
2047 struct async_submit_ctl submit;
2048 int count;
2049
2050 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2051 (unsigned long long)sh->sector, checkp);
2052
2053 BUG_ON(sh->batch_head);
2054 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2055 if (!checkp)
2056 srcs[count] = NULL;
2057
2058 atomic_inc(&sh->count);
2059 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2060 sh, to_addr_conv(sh, percpu, 0));
2061 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2062 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2063 }
2064
2065 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2066 {
2067 int overlap_clear = 0, i, disks = sh->disks;
2068 struct dma_async_tx_descriptor *tx = NULL;
2069 struct r5conf *conf = sh->raid_conf;
2070 int level = conf->level;
2071 struct raid5_percpu *percpu;
2072 unsigned long cpu;
2073
2074 cpu = get_cpu();
2075 percpu = per_cpu_ptr(conf->percpu, cpu);
2076 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2077 ops_run_biofill(sh);
2078 overlap_clear++;
2079 }
2080
2081 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2082 if (level < 6)
2083 tx = ops_run_compute5(sh, percpu);
2084 else {
2085 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2086 tx = ops_run_compute6_1(sh, percpu);
2087 else
2088 tx = ops_run_compute6_2(sh, percpu);
2089 }
2090 /* terminate the chain if reconstruct is not set to be run */
2091 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2092 async_tx_ack(tx);
2093 }
2094
2095 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2096 if (level < 6)
2097 tx = ops_run_prexor5(sh, percpu, tx);
2098 else
2099 tx = ops_run_prexor6(sh, percpu, tx);
2100 }
2101
2102 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2103 tx = ops_run_partial_parity(sh, percpu, tx);
2104
2105 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2106 tx = ops_run_biodrain(sh, tx);
2107 overlap_clear++;
2108 }
2109
2110 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2111 if (level < 6)
2112 ops_run_reconstruct5(sh, percpu, tx);
2113 else
2114 ops_run_reconstruct6(sh, percpu, tx);
2115 }
2116
2117 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2118 if (sh->check_state == check_state_run)
2119 ops_run_check_p(sh, percpu);
2120 else if (sh->check_state == check_state_run_q)
2121 ops_run_check_pq(sh, percpu, 0);
2122 else if (sh->check_state == check_state_run_pq)
2123 ops_run_check_pq(sh, percpu, 1);
2124 else
2125 BUG();
2126 }
2127
2128 if (overlap_clear && !sh->batch_head)
2129 for (i = disks; i--; ) {
2130 struct r5dev *dev = &sh->dev[i];
2131 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2132 wake_up(&sh->raid_conf->wait_for_overlap);
2133 }
2134 put_cpu();
2135 }
2136
2137 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2138 {
2139 if (sh->ppl_page)
2140 __free_page(sh->ppl_page);
2141 kmem_cache_free(sc, sh);
2142 }
2143
2144 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2145 int disks, struct r5conf *conf)
2146 {
2147 struct stripe_head *sh;
2148 int i;
2149
2150 sh = kmem_cache_zalloc(sc, gfp);
2151 if (sh) {
2152 spin_lock_init(&sh->stripe_lock);
2153 spin_lock_init(&sh->batch_lock);
2154 INIT_LIST_HEAD(&sh->batch_list);
2155 INIT_LIST_HEAD(&sh->lru);
2156 INIT_LIST_HEAD(&sh->r5c);
2157 INIT_LIST_HEAD(&sh->log_list);
2158 atomic_set(&sh->count, 1);
2159 sh->raid_conf = conf;
2160 sh->log_start = MaxSector;
2161 for (i = 0; i < disks; i++) {
2162 struct r5dev *dev = &sh->dev[i];
2163
2164 bio_init(&dev->req, &dev->vec, 1);
2165 bio_init(&dev->rreq, &dev->rvec, 1);
2166 }
2167
2168 if (raid5_has_ppl(conf)) {
2169 sh->ppl_page = alloc_page(gfp);
2170 if (!sh->ppl_page) {
2171 free_stripe(sc, sh);
2172 sh = NULL;
2173 }
2174 }
2175 }
2176 return sh;
2177 }
2178 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2179 {
2180 struct stripe_head *sh;
2181
2182 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2183 if (!sh)
2184 return 0;
2185
2186 if (grow_buffers(sh, gfp)) {
2187 shrink_buffers(sh);
2188 free_stripe(conf->slab_cache, sh);
2189 return 0;
2190 }
2191 sh->hash_lock_index =
2192 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2193 /* we just created an active stripe so... */
2194 atomic_inc(&conf->active_stripes);
2195
2196 raid5_release_stripe(sh);
2197 conf->max_nr_stripes++;
2198 return 1;
2199 }
2200
2201 static int grow_stripes(struct r5conf *conf, int num)
2202 {
2203 struct kmem_cache *sc;
2204 size_t namelen = sizeof(conf->cache_name[0]);
2205 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2206
2207 if (conf->mddev->gendisk)
2208 snprintf(conf->cache_name[0], namelen,
2209 "raid%d-%s", conf->level, mdname(conf->mddev));
2210 else
2211 snprintf(conf->cache_name[0], namelen,
2212 "raid%d-%p", conf->level, conf->mddev);
2213 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2214
2215 conf->active_name = 0;
2216 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2217 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2218 0, 0, NULL);
2219 if (!sc)
2220 return 1;
2221 conf->slab_cache = sc;
2222 conf->pool_size = devs;
2223 while (num--)
2224 if (!grow_one_stripe(conf, GFP_KERNEL))
2225 return 1;
2226
2227 return 0;
2228 }
2229
2230 /**
2231 * scribble_len - return the required size of the scribble region
2232 * @num - total number of disks in the array
2233 *
2234 * The size must be enough to contain:
2235 * 1/ a struct page pointer for each device in the array +2
2236 * 2/ room to convert each entry in (1) to its corresponding dma
2237 * (dma_map_page()) or page (page_address()) address.
2238 *
2239 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2240 * calculate over all devices (not just the data blocks), using zeros in place
2241 * of the P and Q blocks.
2242 */
2243 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2244 {
2245 struct flex_array *ret;
2246 size_t len;
2247
2248 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2249 ret = flex_array_alloc(len, cnt, flags);
2250 if (!ret)
2251 return NULL;
2252 /* always prealloc all elements, so no locking is required */
2253 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2254 flex_array_free(ret);
2255 return NULL;
2256 }
2257 return ret;
2258 }
2259
2260 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2261 {
2262 unsigned long cpu;
2263 int err = 0;
2264
2265 /*
2266 * Never shrink. And mddev_suspend() could deadlock if this is called
2267 * from raid5d. In that case, scribble_disks and scribble_sectors
2268 * should equal to new_disks and new_sectors
2269 */
2270 if (conf->scribble_disks >= new_disks &&
2271 conf->scribble_sectors >= new_sectors)
2272 return 0;
2273 mddev_suspend(conf->mddev);
2274 get_online_cpus();
2275 for_each_present_cpu(cpu) {
2276 struct raid5_percpu *percpu;
2277 struct flex_array *scribble;
2278
2279 percpu = per_cpu_ptr(conf->percpu, cpu);
2280 scribble = scribble_alloc(new_disks,
2281 new_sectors / STRIPE_SECTORS,
2282 GFP_NOIO);
2283
2284 if (scribble) {
2285 flex_array_free(percpu->scribble);
2286 percpu->scribble = scribble;
2287 } else {
2288 err = -ENOMEM;
2289 break;
2290 }
2291 }
2292 put_online_cpus();
2293 mddev_resume(conf->mddev);
2294 if (!err) {
2295 conf->scribble_disks = new_disks;
2296 conf->scribble_sectors = new_sectors;
2297 }
2298 return err;
2299 }
2300
2301 static int resize_stripes(struct r5conf *conf, int newsize)
2302 {
2303 /* Make all the stripes able to hold 'newsize' devices.
2304 * New slots in each stripe get 'page' set to a new page.
2305 *
2306 * This happens in stages:
2307 * 1/ create a new kmem_cache and allocate the required number of
2308 * stripe_heads.
2309 * 2/ gather all the old stripe_heads and transfer the pages across
2310 * to the new stripe_heads. This will have the side effect of
2311 * freezing the array as once all stripe_heads have been collected,
2312 * no IO will be possible. Old stripe heads are freed once their
2313 * pages have been transferred over, and the old kmem_cache is
2314 * freed when all stripes are done.
2315 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2316 * we simple return a failure status - no need to clean anything up.
2317 * 4/ allocate new pages for the new slots in the new stripe_heads.
2318 * If this fails, we don't bother trying the shrink the
2319 * stripe_heads down again, we just leave them as they are.
2320 * As each stripe_head is processed the new one is released into
2321 * active service.
2322 *
2323 * Once step2 is started, we cannot afford to wait for a write,
2324 * so we use GFP_NOIO allocations.
2325 */
2326 struct stripe_head *osh, *nsh;
2327 LIST_HEAD(newstripes);
2328 struct disk_info *ndisks;
2329 int err = 0;
2330 struct kmem_cache *sc;
2331 int i;
2332 int hash, cnt;
2333
2334 md_allow_write(conf->mddev);
2335
2336 /* Step 1 */
2337 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2338 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2339 0, 0, NULL);
2340 if (!sc)
2341 return -ENOMEM;
2342
2343 /* Need to ensure auto-resizing doesn't interfere */
2344 mutex_lock(&conf->cache_size_mutex);
2345
2346 for (i = conf->max_nr_stripes; i; i--) {
2347 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2348 if (!nsh)
2349 break;
2350
2351 list_add(&nsh->lru, &newstripes);
2352 }
2353 if (i) {
2354 /* didn't get enough, give up */
2355 while (!list_empty(&newstripes)) {
2356 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2357 list_del(&nsh->lru);
2358 free_stripe(sc, nsh);
2359 }
2360 kmem_cache_destroy(sc);
2361 mutex_unlock(&conf->cache_size_mutex);
2362 return -ENOMEM;
2363 }
2364 /* Step 2 - Must use GFP_NOIO now.
2365 * OK, we have enough stripes, start collecting inactive
2366 * stripes and copying them over
2367 */
2368 hash = 0;
2369 cnt = 0;
2370 list_for_each_entry(nsh, &newstripes, lru) {
2371 lock_device_hash_lock(conf, hash);
2372 wait_event_cmd(conf->wait_for_stripe,
2373 !list_empty(conf->inactive_list + hash),
2374 unlock_device_hash_lock(conf, hash),
2375 lock_device_hash_lock(conf, hash));
2376 osh = get_free_stripe(conf, hash);
2377 unlock_device_hash_lock(conf, hash);
2378
2379 for(i=0; i<conf->pool_size; i++) {
2380 nsh->dev[i].page = osh->dev[i].page;
2381 nsh->dev[i].orig_page = osh->dev[i].page;
2382 }
2383 nsh->hash_lock_index = hash;
2384 free_stripe(conf->slab_cache, osh);
2385 cnt++;
2386 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2387 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2388 hash++;
2389 cnt = 0;
2390 }
2391 }
2392 kmem_cache_destroy(conf->slab_cache);
2393
2394 /* Step 3.
2395 * At this point, we are holding all the stripes so the array
2396 * is completely stalled, so now is a good time to resize
2397 * conf->disks and the scribble region
2398 */
2399 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2400 if (ndisks) {
2401 for (i = 0; i < conf->pool_size; i++)
2402 ndisks[i] = conf->disks[i];
2403
2404 for (i = conf->pool_size; i < newsize; i++) {
2405 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2406 if (!ndisks[i].extra_page)
2407 err = -ENOMEM;
2408 }
2409
2410 if (err) {
2411 for (i = conf->pool_size; i < newsize; i++)
2412 if (ndisks[i].extra_page)
2413 put_page(ndisks[i].extra_page);
2414 kfree(ndisks);
2415 } else {
2416 kfree(conf->disks);
2417 conf->disks = ndisks;
2418 }
2419 } else
2420 err = -ENOMEM;
2421
2422 mutex_unlock(&conf->cache_size_mutex);
2423
2424 conf->slab_cache = sc;
2425 conf->active_name = 1-conf->active_name;
2426
2427 /* Step 4, return new stripes to service */
2428 while(!list_empty(&newstripes)) {
2429 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2430 list_del_init(&nsh->lru);
2431
2432 for (i=conf->raid_disks; i < newsize; i++)
2433 if (nsh->dev[i].page == NULL) {
2434 struct page *p = alloc_page(GFP_NOIO);
2435 nsh->dev[i].page = p;
2436 nsh->dev[i].orig_page = p;
2437 if (!p)
2438 err = -ENOMEM;
2439 }
2440 raid5_release_stripe(nsh);
2441 }
2442 /* critical section pass, GFP_NOIO no longer needed */
2443
2444 if (!err)
2445 conf->pool_size = newsize;
2446 return err;
2447 }
2448
2449 static int drop_one_stripe(struct r5conf *conf)
2450 {
2451 struct stripe_head *sh;
2452 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2453
2454 spin_lock_irq(conf->hash_locks + hash);
2455 sh = get_free_stripe(conf, hash);
2456 spin_unlock_irq(conf->hash_locks + hash);
2457 if (!sh)
2458 return 0;
2459 BUG_ON(atomic_read(&sh->count));
2460 shrink_buffers(sh);
2461 free_stripe(conf->slab_cache, sh);
2462 atomic_dec(&conf->active_stripes);
2463 conf->max_nr_stripes--;
2464 return 1;
2465 }
2466
2467 static void shrink_stripes(struct r5conf *conf)
2468 {
2469 while (conf->max_nr_stripes &&
2470 drop_one_stripe(conf))
2471 ;
2472
2473 kmem_cache_destroy(conf->slab_cache);
2474 conf->slab_cache = NULL;
2475 }
2476
2477 static void raid5_end_read_request(struct bio * bi)
2478 {
2479 struct stripe_head *sh = bi->bi_private;
2480 struct r5conf *conf = sh->raid_conf;
2481 int disks = sh->disks, i;
2482 char b[BDEVNAME_SIZE];
2483 struct md_rdev *rdev = NULL;
2484 sector_t s;
2485
2486 for (i=0 ; i<disks; i++)
2487 if (bi == &sh->dev[i].req)
2488 break;
2489
2490 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2491 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2492 bi->bi_status);
2493 if (i == disks) {
2494 bio_reset(bi);
2495 BUG();
2496 return;
2497 }
2498 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2499 /* If replacement finished while this request was outstanding,
2500 * 'replacement' might be NULL already.
2501 * In that case it moved down to 'rdev'.
2502 * rdev is not removed until all requests are finished.
2503 */
2504 rdev = conf->disks[i].replacement;
2505 if (!rdev)
2506 rdev = conf->disks[i].rdev;
2507
2508 if (use_new_offset(conf, sh))
2509 s = sh->sector + rdev->new_data_offset;
2510 else
2511 s = sh->sector + rdev->data_offset;
2512 if (!bi->bi_status) {
2513 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2514 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2515 /* Note that this cannot happen on a
2516 * replacement device. We just fail those on
2517 * any error
2518 */
2519 pr_info_ratelimited(
2520 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2521 mdname(conf->mddev), STRIPE_SECTORS,
2522 (unsigned long long)s,
2523 bdevname(rdev->bdev, b));
2524 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2525 clear_bit(R5_ReadError, &sh->dev[i].flags);
2526 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2527 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2528 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2529
2530 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2531 /*
2532 * end read for a page in journal, this
2533 * must be preparing for prexor in rmw
2534 */
2535 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2536
2537 if (atomic_read(&rdev->read_errors))
2538 atomic_set(&rdev->read_errors, 0);
2539 } else {
2540 const char *bdn = bdevname(rdev->bdev, b);
2541 int retry = 0;
2542 int set_bad = 0;
2543
2544 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2545 atomic_inc(&rdev->read_errors);
2546 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2547 pr_warn_ratelimited(
2548 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2549 mdname(conf->mddev),
2550 (unsigned long long)s,
2551 bdn);
2552 else if (conf->mddev->degraded >= conf->max_degraded) {
2553 set_bad = 1;
2554 pr_warn_ratelimited(
2555 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2556 mdname(conf->mddev),
2557 (unsigned long long)s,
2558 bdn);
2559 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2560 /* Oh, no!!! */
2561 set_bad = 1;
2562 pr_warn_ratelimited(
2563 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2564 mdname(conf->mddev),
2565 (unsigned long long)s,
2566 bdn);
2567 } else if (atomic_read(&rdev->read_errors)
2568 > conf->max_nr_stripes)
2569 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2570 mdname(conf->mddev), bdn);
2571 else
2572 retry = 1;
2573 if (set_bad && test_bit(In_sync, &rdev->flags)
2574 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2575 retry = 1;
2576 if (retry)
2577 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2578 set_bit(R5_ReadError, &sh->dev[i].flags);
2579 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2580 } else
2581 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2582 else {
2583 clear_bit(R5_ReadError, &sh->dev[i].flags);
2584 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2585 if (!(set_bad
2586 && test_bit(In_sync, &rdev->flags)
2587 && rdev_set_badblocks(
2588 rdev, sh->sector, STRIPE_SECTORS, 0)))
2589 md_error(conf->mddev, rdev);
2590 }
2591 }
2592 rdev_dec_pending(rdev, conf->mddev);
2593 bio_reset(bi);
2594 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2595 set_bit(STRIPE_HANDLE, &sh->state);
2596 raid5_release_stripe(sh);
2597 }
2598
2599 static void raid5_end_write_request(struct bio *bi)
2600 {
2601 struct stripe_head *sh = bi->bi_private;
2602 struct r5conf *conf = sh->raid_conf;
2603 int disks = sh->disks, i;
2604 struct md_rdev *uninitialized_var(rdev);
2605 sector_t first_bad;
2606 int bad_sectors;
2607 int replacement = 0;
2608
2609 for (i = 0 ; i < disks; i++) {
2610 if (bi == &sh->dev[i].req) {
2611 rdev = conf->disks[i].rdev;
2612 break;
2613 }
2614 if (bi == &sh->dev[i].rreq) {
2615 rdev = conf->disks[i].replacement;
2616 if (rdev)
2617 replacement = 1;
2618 else
2619 /* rdev was removed and 'replacement'
2620 * replaced it. rdev is not removed
2621 * until all requests are finished.
2622 */
2623 rdev = conf->disks[i].rdev;
2624 break;
2625 }
2626 }
2627 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2628 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2629 bi->bi_status);
2630 if (i == disks) {
2631 bio_reset(bi);
2632 BUG();
2633 return;
2634 }
2635
2636 if (replacement) {
2637 if (bi->bi_status)
2638 md_error(conf->mddev, rdev);
2639 else if (is_badblock(rdev, sh->sector,
2640 STRIPE_SECTORS,
2641 &first_bad, &bad_sectors))
2642 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2643 } else {
2644 if (bi->bi_status) {
2645 set_bit(STRIPE_DEGRADED, &sh->state);
2646 set_bit(WriteErrorSeen, &rdev->flags);
2647 set_bit(R5_WriteError, &sh->dev[i].flags);
2648 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2649 set_bit(MD_RECOVERY_NEEDED,
2650 &rdev->mddev->recovery);
2651 } else if (is_badblock(rdev, sh->sector,
2652 STRIPE_SECTORS,
2653 &first_bad, &bad_sectors)) {
2654 set_bit(R5_MadeGood, &sh->dev[i].flags);
2655 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2656 /* That was a successful write so make
2657 * sure it looks like we already did
2658 * a re-write.
2659 */
2660 set_bit(R5_ReWrite, &sh->dev[i].flags);
2661 }
2662 }
2663 rdev_dec_pending(rdev, conf->mddev);
2664
2665 if (sh->batch_head && bi->bi_status && !replacement)
2666 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2667
2668 bio_reset(bi);
2669 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2670 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2671 set_bit(STRIPE_HANDLE, &sh->state);
2672 raid5_release_stripe(sh);
2673
2674 if (sh->batch_head && sh != sh->batch_head)
2675 raid5_release_stripe(sh->batch_head);
2676 }
2677
2678 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2679 {
2680 char b[BDEVNAME_SIZE];
2681 struct r5conf *conf = mddev->private;
2682 unsigned long flags;
2683 pr_debug("raid456: error called\n");
2684
2685 spin_lock_irqsave(&conf->device_lock, flags);
2686 set_bit(Faulty, &rdev->flags);
2687 clear_bit(In_sync, &rdev->flags);
2688 mddev->degraded = raid5_calc_degraded(conf);
2689 spin_unlock_irqrestore(&conf->device_lock, flags);
2690 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2691
2692 set_bit(Blocked, &rdev->flags);
2693 set_mask_bits(&mddev->sb_flags, 0,
2694 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2695 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2696 "md/raid:%s: Operation continuing on %d devices.\n",
2697 mdname(mddev),
2698 bdevname(rdev->bdev, b),
2699 mdname(mddev),
2700 conf->raid_disks - mddev->degraded);
2701 r5c_update_on_rdev_error(mddev, rdev);
2702 }
2703
2704 /*
2705 * Input: a 'big' sector number,
2706 * Output: index of the data and parity disk, and the sector # in them.
2707 */
2708 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2709 int previous, int *dd_idx,
2710 struct stripe_head *sh)
2711 {
2712 sector_t stripe, stripe2;
2713 sector_t chunk_number;
2714 unsigned int chunk_offset;
2715 int pd_idx, qd_idx;
2716 int ddf_layout = 0;
2717 sector_t new_sector;
2718 int algorithm = previous ? conf->prev_algo
2719 : conf->algorithm;
2720 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2721 : conf->chunk_sectors;
2722 int raid_disks = previous ? conf->previous_raid_disks
2723 : conf->raid_disks;
2724 int data_disks = raid_disks - conf->max_degraded;
2725
2726 /* First compute the information on this sector */
2727
2728 /*
2729 * Compute the chunk number and the sector offset inside the chunk
2730 */
2731 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2732 chunk_number = r_sector;
2733
2734 /*
2735 * Compute the stripe number
2736 */
2737 stripe = chunk_number;
2738 *dd_idx = sector_div(stripe, data_disks);
2739 stripe2 = stripe;
2740 /*
2741 * Select the parity disk based on the user selected algorithm.
2742 */
2743 pd_idx = qd_idx = -1;
2744 switch(conf->level) {
2745 case 4:
2746 pd_idx = data_disks;
2747 break;
2748 case 5:
2749 switch (algorithm) {
2750 case ALGORITHM_LEFT_ASYMMETRIC:
2751 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2752 if (*dd_idx >= pd_idx)
2753 (*dd_idx)++;
2754 break;
2755 case ALGORITHM_RIGHT_ASYMMETRIC:
2756 pd_idx = sector_div(stripe2, raid_disks);
2757 if (*dd_idx >= pd_idx)
2758 (*dd_idx)++;
2759 break;
2760 case ALGORITHM_LEFT_SYMMETRIC:
2761 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2762 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2763 break;
2764 case ALGORITHM_RIGHT_SYMMETRIC:
2765 pd_idx = sector_div(stripe2, raid_disks);
2766 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2767 break;
2768 case ALGORITHM_PARITY_0:
2769 pd_idx = 0;
2770 (*dd_idx)++;
2771 break;
2772 case ALGORITHM_PARITY_N:
2773 pd_idx = data_disks;
2774 break;
2775 default:
2776 BUG();
2777 }
2778 break;
2779 case 6:
2780
2781 switch (algorithm) {
2782 case ALGORITHM_LEFT_ASYMMETRIC:
2783 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2784 qd_idx = pd_idx + 1;
2785 if (pd_idx == raid_disks-1) {
2786 (*dd_idx)++; /* Q D D D P */
2787 qd_idx = 0;
2788 } else if (*dd_idx >= pd_idx)
2789 (*dd_idx) += 2; /* D D P Q D */
2790 break;
2791 case ALGORITHM_RIGHT_ASYMMETRIC:
2792 pd_idx = sector_div(stripe2, raid_disks);
2793 qd_idx = pd_idx + 1;
2794 if (pd_idx == raid_disks-1) {
2795 (*dd_idx)++; /* Q D D D P */
2796 qd_idx = 0;
2797 } else if (*dd_idx >= pd_idx)
2798 (*dd_idx) += 2; /* D D P Q D */
2799 break;
2800 case ALGORITHM_LEFT_SYMMETRIC:
2801 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2802 qd_idx = (pd_idx + 1) % raid_disks;
2803 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2804 break;
2805 case ALGORITHM_RIGHT_SYMMETRIC:
2806 pd_idx = sector_div(stripe2, raid_disks);
2807 qd_idx = (pd_idx + 1) % raid_disks;
2808 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2809 break;
2810
2811 case ALGORITHM_PARITY_0:
2812 pd_idx = 0;
2813 qd_idx = 1;
2814 (*dd_idx) += 2;
2815 break;
2816 case ALGORITHM_PARITY_N:
2817 pd_idx = data_disks;
2818 qd_idx = data_disks + 1;
2819 break;
2820
2821 case ALGORITHM_ROTATING_ZERO_RESTART:
2822 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2823 * of blocks for computing Q is different.
2824 */
2825 pd_idx = sector_div(stripe2, raid_disks);
2826 qd_idx = pd_idx + 1;
2827 if (pd_idx == raid_disks-1) {
2828 (*dd_idx)++; /* Q D D D P */
2829 qd_idx = 0;
2830 } else if (*dd_idx >= pd_idx)
2831 (*dd_idx) += 2; /* D D P Q D */
2832 ddf_layout = 1;
2833 break;
2834
2835 case ALGORITHM_ROTATING_N_RESTART:
2836 /* Same a left_asymmetric, by first stripe is
2837 * D D D P Q rather than
2838 * Q D D D P
2839 */
2840 stripe2 += 1;
2841 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2842 qd_idx = pd_idx + 1;
2843 if (pd_idx == raid_disks-1) {
2844 (*dd_idx)++; /* Q D D D P */
2845 qd_idx = 0;
2846 } else if (*dd_idx >= pd_idx)
2847 (*dd_idx) += 2; /* D D P Q D */
2848 ddf_layout = 1;
2849 break;
2850
2851 case ALGORITHM_ROTATING_N_CONTINUE:
2852 /* Same as left_symmetric but Q is before P */
2853 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2854 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2855 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2856 ddf_layout = 1;
2857 break;
2858
2859 case ALGORITHM_LEFT_ASYMMETRIC_6:
2860 /* RAID5 left_asymmetric, with Q on last device */
2861 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2862 if (*dd_idx >= pd_idx)
2863 (*dd_idx)++;
2864 qd_idx = raid_disks - 1;
2865 break;
2866
2867 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2868 pd_idx = sector_div(stripe2, raid_disks-1);
2869 if (*dd_idx >= pd_idx)
2870 (*dd_idx)++;
2871 qd_idx = raid_disks - 1;
2872 break;
2873
2874 case ALGORITHM_LEFT_SYMMETRIC_6:
2875 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2876 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2877 qd_idx = raid_disks - 1;
2878 break;
2879
2880 case ALGORITHM_RIGHT_SYMMETRIC_6:
2881 pd_idx = sector_div(stripe2, raid_disks-1);
2882 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2883 qd_idx = raid_disks - 1;
2884 break;
2885
2886 case ALGORITHM_PARITY_0_6:
2887 pd_idx = 0;
2888 (*dd_idx)++;
2889 qd_idx = raid_disks - 1;
2890 break;
2891
2892 default:
2893 BUG();
2894 }
2895 break;
2896 }
2897
2898 if (sh) {
2899 sh->pd_idx = pd_idx;
2900 sh->qd_idx = qd_idx;
2901 sh->ddf_layout = ddf_layout;
2902 }
2903 /*
2904 * Finally, compute the new sector number
2905 */
2906 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2907 return new_sector;
2908 }
2909
2910 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2911 {
2912 struct r5conf *conf = sh->raid_conf;
2913 int raid_disks = sh->disks;
2914 int data_disks = raid_disks - conf->max_degraded;
2915 sector_t new_sector = sh->sector, check;
2916 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2917 : conf->chunk_sectors;
2918 int algorithm = previous ? conf->prev_algo
2919 : conf->algorithm;
2920 sector_t stripe;
2921 int chunk_offset;
2922 sector_t chunk_number;
2923 int dummy1, dd_idx = i;
2924 sector_t r_sector;
2925 struct stripe_head sh2;
2926
2927 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2928 stripe = new_sector;
2929
2930 if (i == sh->pd_idx)
2931 return 0;
2932 switch(conf->level) {
2933 case 4: break;
2934 case 5:
2935 switch (algorithm) {
2936 case ALGORITHM_LEFT_ASYMMETRIC:
2937 case ALGORITHM_RIGHT_ASYMMETRIC:
2938 if (i > sh->pd_idx)
2939 i--;
2940 break;
2941 case ALGORITHM_LEFT_SYMMETRIC:
2942 case ALGORITHM_RIGHT_SYMMETRIC:
2943 if (i < sh->pd_idx)
2944 i += raid_disks;
2945 i -= (sh->pd_idx + 1);
2946 break;
2947 case ALGORITHM_PARITY_0:
2948 i -= 1;
2949 break;
2950 case ALGORITHM_PARITY_N:
2951 break;
2952 default:
2953 BUG();
2954 }
2955 break;
2956 case 6:
2957 if (i == sh->qd_idx)
2958 return 0; /* It is the Q disk */
2959 switch (algorithm) {
2960 case ALGORITHM_LEFT_ASYMMETRIC:
2961 case ALGORITHM_RIGHT_ASYMMETRIC:
2962 case ALGORITHM_ROTATING_ZERO_RESTART:
2963 case ALGORITHM_ROTATING_N_RESTART:
2964 if (sh->pd_idx == raid_disks-1)
2965 i--; /* Q D D D P */
2966 else if (i > sh->pd_idx)
2967 i -= 2; /* D D P Q D */
2968 break;
2969 case ALGORITHM_LEFT_SYMMETRIC:
2970 case ALGORITHM_RIGHT_SYMMETRIC:
2971 if (sh->pd_idx == raid_disks-1)
2972 i--; /* Q D D D P */
2973 else {
2974 /* D D P Q D */
2975 if (i < sh->pd_idx)
2976 i += raid_disks;
2977 i -= (sh->pd_idx + 2);
2978 }
2979 break;
2980 case ALGORITHM_PARITY_0:
2981 i -= 2;
2982 break;
2983 case ALGORITHM_PARITY_N:
2984 break;
2985 case ALGORITHM_ROTATING_N_CONTINUE:
2986 /* Like left_symmetric, but P is before Q */
2987 if (sh->pd_idx == 0)
2988 i--; /* P D D D Q */
2989 else {
2990 /* D D Q P D */
2991 if (i < sh->pd_idx)
2992 i += raid_disks;
2993 i -= (sh->pd_idx + 1);
2994 }
2995 break;
2996 case ALGORITHM_LEFT_ASYMMETRIC_6:
2997 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2998 if (i > sh->pd_idx)
2999 i--;
3000 break;
3001 case ALGORITHM_LEFT_SYMMETRIC_6:
3002 case ALGORITHM_RIGHT_SYMMETRIC_6:
3003 if (i < sh->pd_idx)
3004 i += data_disks + 1;
3005 i -= (sh->pd_idx + 1);
3006 break;
3007 case ALGORITHM_PARITY_0_6:
3008 i -= 1;
3009 break;
3010 default:
3011 BUG();
3012 }
3013 break;
3014 }
3015
3016 chunk_number = stripe * data_disks + i;
3017 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3018
3019 check = raid5_compute_sector(conf, r_sector,
3020 previous, &dummy1, &sh2);
3021 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3022 || sh2.qd_idx != sh->qd_idx) {
3023 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3024 mdname(conf->mddev));
3025 return 0;
3026 }
3027 return r_sector;
3028 }
3029
3030 /*
3031 * There are cases where we want handle_stripe_dirtying() and
3032 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3033 *
3034 * This function checks whether we want to delay the towrite. Specifically,
3035 * we delay the towrite when:
3036 *
3037 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3038 * stripe has data in journal (for other devices).
3039 *
3040 * In this case, when reading data for the non-overwrite dev, it is
3041 * necessary to handle complex rmw of write back cache (prexor with
3042 * orig_page, and xor with page). To keep read path simple, we would
3043 * like to flush data in journal to RAID disks first, so complex rmw
3044 * is handled in the write patch (handle_stripe_dirtying).
3045 *
3046 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3047 *
3048 * It is important to be able to flush all stripes in raid5-cache.
3049 * Therefore, we need reserve some space on the journal device for
3050 * these flushes. If flush operation includes pending writes to the
3051 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3052 * for the flush out. If we exclude these pending writes from flush
3053 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3054 * Therefore, excluding pending writes in these cases enables more
3055 * efficient use of the journal device.
3056 *
3057 * Note: To make sure the stripe makes progress, we only delay
3058 * towrite for stripes with data already in journal (injournal > 0).
3059 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3060 * no_space_stripes list.
3061 *
3062 * 3. during journal failure
3063 * In journal failure, we try to flush all cached data to raid disks
3064 * based on data in stripe cache. The array is read-only to upper
3065 * layers, so we would skip all pending writes.
3066 *
3067 */
3068 static inline bool delay_towrite(struct r5conf *conf,
3069 struct r5dev *dev,
3070 struct stripe_head_state *s)
3071 {
3072 /* case 1 above */
3073 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3074 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3075 return true;
3076 /* case 2 above */
3077 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3078 s->injournal > 0)
3079 return true;
3080 /* case 3 above */
3081 if (s->log_failed && s->injournal)
3082 return true;
3083 return false;
3084 }
3085
3086 static void
3087 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3088 int rcw, int expand)
3089 {
3090 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3091 struct r5conf *conf = sh->raid_conf;
3092 int level = conf->level;
3093
3094 if (rcw) {
3095 /*
3096 * In some cases, handle_stripe_dirtying initially decided to
3097 * run rmw and allocates extra page for prexor. However, rcw is
3098 * cheaper later on. We need to free the extra page now,
3099 * because we won't be able to do that in ops_complete_prexor().
3100 */
3101 r5c_release_extra_page(sh);
3102
3103 for (i = disks; i--; ) {
3104 struct r5dev *dev = &sh->dev[i];
3105
3106 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3107 set_bit(R5_LOCKED, &dev->flags);
3108 set_bit(R5_Wantdrain, &dev->flags);
3109 if (!expand)
3110 clear_bit(R5_UPTODATE, &dev->flags);
3111 s->locked++;
3112 } else if (test_bit(R5_InJournal, &dev->flags)) {
3113 set_bit(R5_LOCKED, &dev->flags);
3114 s->locked++;
3115 }
3116 }
3117 /* if we are not expanding this is a proper write request, and
3118 * there will be bios with new data to be drained into the
3119 * stripe cache
3120 */
3121 if (!expand) {
3122 if (!s->locked)
3123 /* False alarm, nothing to do */
3124 return;
3125 sh->reconstruct_state = reconstruct_state_drain_run;
3126 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3127 } else
3128 sh->reconstruct_state = reconstruct_state_run;
3129
3130 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3131
3132 if (s->locked + conf->max_degraded == disks)
3133 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3134 atomic_inc(&conf->pending_full_writes);
3135 } else {
3136 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3137 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3138 BUG_ON(level == 6 &&
3139 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3140 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3141
3142 for (i = disks; i--; ) {
3143 struct r5dev *dev = &sh->dev[i];
3144 if (i == pd_idx || i == qd_idx)
3145 continue;
3146
3147 if (dev->towrite &&
3148 (test_bit(R5_UPTODATE, &dev->flags) ||
3149 test_bit(R5_Wantcompute, &dev->flags))) {
3150 set_bit(R5_Wantdrain, &dev->flags);
3151 set_bit(R5_LOCKED, &dev->flags);
3152 clear_bit(R5_UPTODATE, &dev->flags);
3153 s->locked++;
3154 } else if (test_bit(R5_InJournal, &dev->flags)) {
3155 set_bit(R5_LOCKED, &dev->flags);
3156 s->locked++;
3157 }
3158 }
3159 if (!s->locked)
3160 /* False alarm - nothing to do */
3161 return;
3162 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3163 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3164 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3165 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3166 }
3167
3168 /* keep the parity disk(s) locked while asynchronous operations
3169 * are in flight
3170 */
3171 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3172 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3173 s->locked++;
3174
3175 if (level == 6) {
3176 int qd_idx = sh->qd_idx;
3177 struct r5dev *dev = &sh->dev[qd_idx];
3178
3179 set_bit(R5_LOCKED, &dev->flags);
3180 clear_bit(R5_UPTODATE, &dev->flags);
3181 s->locked++;
3182 }
3183
3184 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3185 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3186 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3187 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3188 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3189
3190 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3191 __func__, (unsigned long long)sh->sector,
3192 s->locked, s->ops_request);
3193 }
3194
3195 /*
3196 * Each stripe/dev can have one or more bion attached.
3197 * toread/towrite point to the first in a chain.
3198 * The bi_next chain must be in order.
3199 */
3200 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3201 int forwrite, int previous)
3202 {
3203 struct bio **bip;
3204 struct r5conf *conf = sh->raid_conf;
3205 int firstwrite=0;
3206
3207 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3208 (unsigned long long)bi->bi_iter.bi_sector,
3209 (unsigned long long)sh->sector);
3210
3211 spin_lock_irq(&sh->stripe_lock);
3212 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3213 /* Don't allow new IO added to stripes in batch list */
3214 if (sh->batch_head)
3215 goto overlap;
3216 if (forwrite) {
3217 bip = &sh->dev[dd_idx].towrite;
3218 if (*bip == NULL)
3219 firstwrite = 1;
3220 } else
3221 bip = &sh->dev[dd_idx].toread;
3222 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3223 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3224 goto overlap;
3225 bip = & (*bip)->bi_next;
3226 }
3227 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3228 goto overlap;
3229
3230 if (forwrite && raid5_has_ppl(conf)) {
3231 /*
3232 * With PPL only writes to consecutive data chunks within a
3233 * stripe are allowed because for a single stripe_head we can
3234 * only have one PPL entry at a time, which describes one data
3235 * range. Not really an overlap, but wait_for_overlap can be
3236 * used to handle this.
3237 */
3238 sector_t sector;
3239 sector_t first = 0;
3240 sector_t last = 0;
3241 int count = 0;
3242 int i;
3243
3244 for (i = 0; i < sh->disks; i++) {
3245 if (i != sh->pd_idx &&
3246 (i == dd_idx || sh->dev[i].towrite)) {
3247 sector = sh->dev[i].sector;
3248 if (count == 0 || sector < first)
3249 first = sector;
3250 if (sector > last)
3251 last = sector;
3252 count++;
3253 }
3254 }
3255
3256 if (first + conf->chunk_sectors * (count - 1) != last)
3257 goto overlap;
3258 }
3259
3260 if (!forwrite || previous)
3261 clear_bit(STRIPE_BATCH_READY, &sh->state);
3262
3263 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3264 if (*bip)
3265 bi->bi_next = *bip;
3266 *bip = bi;
3267 bio_inc_remaining(bi);
3268 md_write_inc(conf->mddev, bi);
3269
3270 if (forwrite) {
3271 /* check if page is covered */
3272 sector_t sector = sh->dev[dd_idx].sector;
3273 for (bi=sh->dev[dd_idx].towrite;
3274 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3275 bi && bi->bi_iter.bi_sector <= sector;
3276 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3277 if (bio_end_sector(bi) >= sector)
3278 sector = bio_end_sector(bi);
3279 }
3280 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3281 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3282 sh->overwrite_disks++;
3283 }
3284
3285 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3286 (unsigned long long)(*bip)->bi_iter.bi_sector,
3287 (unsigned long long)sh->sector, dd_idx);
3288
3289 if (conf->mddev->bitmap && firstwrite) {
3290 /* Cannot hold spinlock over bitmap_startwrite,
3291 * but must ensure this isn't added to a batch until
3292 * we have added to the bitmap and set bm_seq.
3293 * So set STRIPE_BITMAP_PENDING to prevent
3294 * batching.
3295 * If multiple add_stripe_bio() calls race here they
3296 * much all set STRIPE_BITMAP_PENDING. So only the first one
3297 * to complete "bitmap_startwrite" gets to set
3298 * STRIPE_BIT_DELAY. This is important as once a stripe
3299 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3300 * any more.
3301 */
3302 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3303 spin_unlock_irq(&sh->stripe_lock);
3304 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3305 STRIPE_SECTORS, 0);
3306 spin_lock_irq(&sh->stripe_lock);
3307 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3308 if (!sh->batch_head) {
3309 sh->bm_seq = conf->seq_flush+1;
3310 set_bit(STRIPE_BIT_DELAY, &sh->state);
3311 }
3312 }
3313 spin_unlock_irq(&sh->stripe_lock);
3314
3315 if (stripe_can_batch(sh))
3316 stripe_add_to_batch_list(conf, sh);
3317 return 1;
3318
3319 overlap:
3320 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3321 spin_unlock_irq(&sh->stripe_lock);
3322 return 0;
3323 }
3324
3325 static void end_reshape(struct r5conf *conf);
3326
3327 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3328 struct stripe_head *sh)
3329 {
3330 int sectors_per_chunk =
3331 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3332 int dd_idx;
3333 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3334 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3335
3336 raid5_compute_sector(conf,
3337 stripe * (disks - conf->max_degraded)
3338 *sectors_per_chunk + chunk_offset,
3339 previous,
3340 &dd_idx, sh);
3341 }
3342
3343 static void
3344 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3345 struct stripe_head_state *s, int disks)
3346 {
3347 int i;
3348 BUG_ON(sh->batch_head);
3349 for (i = disks; i--; ) {
3350 struct bio *bi;
3351 int bitmap_end = 0;
3352
3353 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3354 struct md_rdev *rdev;
3355 rcu_read_lock();
3356 rdev = rcu_dereference(conf->disks[i].rdev);
3357 if (rdev && test_bit(In_sync, &rdev->flags) &&
3358 !test_bit(Faulty, &rdev->flags))
3359 atomic_inc(&rdev->nr_pending);
3360 else
3361 rdev = NULL;
3362 rcu_read_unlock();
3363 if (rdev) {
3364 if (!rdev_set_badblocks(
3365 rdev,
3366 sh->sector,
3367 STRIPE_SECTORS, 0))
3368 md_error(conf->mddev, rdev);
3369 rdev_dec_pending(rdev, conf->mddev);
3370 }
3371 }
3372 spin_lock_irq(&sh->stripe_lock);
3373 /* fail all writes first */
3374 bi = sh->dev[i].towrite;
3375 sh->dev[i].towrite = NULL;
3376 sh->overwrite_disks = 0;
3377 spin_unlock_irq(&sh->stripe_lock);
3378 if (bi)
3379 bitmap_end = 1;
3380
3381 log_stripe_write_finished(sh);
3382
3383 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3384 wake_up(&conf->wait_for_overlap);
3385
3386 while (bi && bi->bi_iter.bi_sector <
3387 sh->dev[i].sector + STRIPE_SECTORS) {
3388 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3389
3390 md_write_end(conf->mddev);
3391 bio_io_error(bi);
3392 bi = nextbi;
3393 }
3394 if (bitmap_end)
3395 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3396 STRIPE_SECTORS, 0, 0);
3397 bitmap_end = 0;
3398 /* and fail all 'written' */
3399 bi = sh->dev[i].written;
3400 sh->dev[i].written = NULL;
3401 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3402 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3403 sh->dev[i].page = sh->dev[i].orig_page;
3404 }
3405
3406 if (bi) bitmap_end = 1;
3407 while (bi && bi->bi_iter.bi_sector <
3408 sh->dev[i].sector + STRIPE_SECTORS) {
3409 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3410
3411 md_write_end(conf->mddev);
3412 bio_io_error(bi);
3413 bi = bi2;
3414 }
3415
3416 /* fail any reads if this device is non-operational and
3417 * the data has not reached the cache yet.
3418 */
3419 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3420 s->failed > conf->max_degraded &&
3421 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3422 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3423 spin_lock_irq(&sh->stripe_lock);
3424 bi = sh->dev[i].toread;
3425 sh->dev[i].toread = NULL;
3426 spin_unlock_irq(&sh->stripe_lock);
3427 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3428 wake_up(&conf->wait_for_overlap);
3429 if (bi)
3430 s->to_read--;
3431 while (bi && bi->bi_iter.bi_sector <
3432 sh->dev[i].sector + STRIPE_SECTORS) {
3433 struct bio *nextbi =
3434 r5_next_bio(bi, sh->dev[i].sector);
3435
3436 bio_io_error(bi);
3437 bi = nextbi;
3438 }
3439 }
3440 if (bitmap_end)
3441 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3442 STRIPE_SECTORS, 0, 0);
3443 /* If we were in the middle of a write the parity block might
3444 * still be locked - so just clear all R5_LOCKED flags
3445 */
3446 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3447 }
3448 s->to_write = 0;
3449 s->written = 0;
3450
3451 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3452 if (atomic_dec_and_test(&conf->pending_full_writes))
3453 md_wakeup_thread(conf->mddev->thread);
3454 }
3455
3456 static void
3457 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3458 struct stripe_head_state *s)
3459 {
3460 int abort = 0;
3461 int i;
3462
3463 BUG_ON(sh->batch_head);
3464 clear_bit(STRIPE_SYNCING, &sh->state);
3465 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3466 wake_up(&conf->wait_for_overlap);
3467 s->syncing = 0;
3468 s->replacing = 0;
3469 /* There is nothing more to do for sync/check/repair.
3470 * Don't even need to abort as that is handled elsewhere
3471 * if needed, and not always wanted e.g. if there is a known
3472 * bad block here.
3473 * For recover/replace we need to record a bad block on all
3474 * non-sync devices, or abort the recovery
3475 */
3476 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3477 /* During recovery devices cannot be removed, so
3478 * locking and refcounting of rdevs is not needed
3479 */
3480 rcu_read_lock();
3481 for (i = 0; i < conf->raid_disks; i++) {
3482 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3483 if (rdev
3484 && !test_bit(Faulty, &rdev->flags)
3485 && !test_bit(In_sync, &rdev->flags)
3486 && !rdev_set_badblocks(rdev, sh->sector,
3487 STRIPE_SECTORS, 0))
3488 abort = 1;
3489 rdev = rcu_dereference(conf->disks[i].replacement);
3490 if (rdev
3491 && !test_bit(Faulty, &rdev->flags)
3492 && !test_bit(In_sync, &rdev->flags)
3493 && !rdev_set_badblocks(rdev, sh->sector,
3494 STRIPE_SECTORS, 0))
3495 abort = 1;
3496 }
3497 rcu_read_unlock();
3498 if (abort)
3499 conf->recovery_disabled =
3500 conf->mddev->recovery_disabled;
3501 }
3502 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3503 }
3504
3505 static int want_replace(struct stripe_head *sh, int disk_idx)
3506 {
3507 struct md_rdev *rdev;
3508 int rv = 0;
3509
3510 rcu_read_lock();
3511 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3512 if (rdev
3513 && !test_bit(Faulty, &rdev->flags)
3514 && !test_bit(In_sync, &rdev->flags)
3515 && (rdev->recovery_offset <= sh->sector
3516 || rdev->mddev->recovery_cp <= sh->sector))
3517 rv = 1;
3518 rcu_read_unlock();
3519 return rv;
3520 }
3521
3522 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3523 int disk_idx, int disks)
3524 {
3525 struct r5dev *dev = &sh->dev[disk_idx];
3526 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3527 &sh->dev[s->failed_num[1]] };
3528 int i;
3529
3530
3531 if (test_bit(R5_LOCKED, &dev->flags) ||
3532 test_bit(R5_UPTODATE, &dev->flags))
3533 /* No point reading this as we already have it or have
3534 * decided to get it.
3535 */
3536 return 0;
3537
3538 if (dev->toread ||
3539 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3540 /* We need this block to directly satisfy a request */
3541 return 1;
3542
3543 if (s->syncing || s->expanding ||
3544 (s->replacing && want_replace(sh, disk_idx)))
3545 /* When syncing, or expanding we read everything.
3546 * When replacing, we need the replaced block.
3547 */
3548 return 1;
3549
3550 if ((s->failed >= 1 && fdev[0]->toread) ||
3551 (s->failed >= 2 && fdev[1]->toread))
3552 /* If we want to read from a failed device, then
3553 * we need to actually read every other device.
3554 */
3555 return 1;
3556
3557 /* Sometimes neither read-modify-write nor reconstruct-write
3558 * cycles can work. In those cases we read every block we
3559 * can. Then the parity-update is certain to have enough to
3560 * work with.
3561 * This can only be a problem when we need to write something,
3562 * and some device has failed. If either of those tests
3563 * fail we need look no further.
3564 */
3565 if (!s->failed || !s->to_write)
3566 return 0;
3567
3568 if (test_bit(R5_Insync, &dev->flags) &&
3569 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3570 /* Pre-reads at not permitted until after short delay
3571 * to gather multiple requests. However if this
3572 * device is no Insync, the block could only be computed
3573 * and there is no need to delay that.
3574 */
3575 return 0;
3576
3577 for (i = 0; i < s->failed && i < 2; i++) {
3578 if (fdev[i]->towrite &&
3579 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3580 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3581 /* If we have a partial write to a failed
3582 * device, then we will need to reconstruct
3583 * the content of that device, so all other
3584 * devices must be read.
3585 */
3586 return 1;
3587 }
3588
3589 /* If we are forced to do a reconstruct-write, either because
3590 * the current RAID6 implementation only supports that, or
3591 * because parity cannot be trusted and we are currently
3592 * recovering it, there is extra need to be careful.
3593 * If one of the devices that we would need to read, because
3594 * it is not being overwritten (and maybe not written at all)
3595 * is missing/faulty, then we need to read everything we can.
3596 */
3597 if (sh->raid_conf->level != 6 &&
3598 sh->sector < sh->raid_conf->mddev->recovery_cp)
3599 /* reconstruct-write isn't being forced */
3600 return 0;
3601 for (i = 0; i < s->failed && i < 2; i++) {
3602 if (s->failed_num[i] != sh->pd_idx &&
3603 s->failed_num[i] != sh->qd_idx &&
3604 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3605 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3606 return 1;
3607 }
3608
3609 return 0;
3610 }
3611
3612 /* fetch_block - checks the given member device to see if its data needs
3613 * to be read or computed to satisfy a request.
3614 *
3615 * Returns 1 when no more member devices need to be checked, otherwise returns
3616 * 0 to tell the loop in handle_stripe_fill to continue
3617 */
3618 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3619 int disk_idx, int disks)
3620 {
3621 struct r5dev *dev = &sh->dev[disk_idx];
3622
3623 /* is the data in this block needed, and can we get it? */
3624 if (need_this_block(sh, s, disk_idx, disks)) {
3625 /* we would like to get this block, possibly by computing it,
3626 * otherwise read it if the backing disk is insync
3627 */
3628 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3629 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3630 BUG_ON(sh->batch_head);
3631
3632 /*
3633 * In the raid6 case if the only non-uptodate disk is P
3634 * then we already trusted P to compute the other failed
3635 * drives. It is safe to compute rather than re-read P.
3636 * In other cases we only compute blocks from failed
3637 * devices, otherwise check/repair might fail to detect
3638 * a real inconsistency.
3639 */
3640
3641 if ((s->uptodate == disks - 1) &&
3642 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3643 (s->failed && (disk_idx == s->failed_num[0] ||
3644 disk_idx == s->failed_num[1])))) {
3645 /* have disk failed, and we're requested to fetch it;
3646 * do compute it
3647 */
3648 pr_debug("Computing stripe %llu block %d\n",
3649 (unsigned long long)sh->sector, disk_idx);
3650 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3651 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3652 set_bit(R5_Wantcompute, &dev->flags);
3653 sh->ops.target = disk_idx;
3654 sh->ops.target2 = -1; /* no 2nd target */
3655 s->req_compute = 1;
3656 /* Careful: from this point on 'uptodate' is in the eye
3657 * of raid_run_ops which services 'compute' operations
3658 * before writes. R5_Wantcompute flags a block that will
3659 * be R5_UPTODATE by the time it is needed for a
3660 * subsequent operation.
3661 */
3662 s->uptodate++;
3663 return 1;
3664 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3665 /* Computing 2-failure is *very* expensive; only
3666 * do it if failed >= 2
3667 */
3668 int other;
3669 for (other = disks; other--; ) {
3670 if (other == disk_idx)
3671 continue;
3672 if (!test_bit(R5_UPTODATE,
3673 &sh->dev[other].flags))
3674 break;
3675 }
3676 BUG_ON(other < 0);
3677 pr_debug("Computing stripe %llu blocks %d,%d\n",
3678 (unsigned long long)sh->sector,
3679 disk_idx, other);
3680 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3681 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3682 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3683 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3684 sh->ops.target = disk_idx;
3685 sh->ops.target2 = other;
3686 s->uptodate += 2;
3687 s->req_compute = 1;
3688 return 1;
3689 } else if (test_bit(R5_Insync, &dev->flags)) {
3690 set_bit(R5_LOCKED, &dev->flags);
3691 set_bit(R5_Wantread, &dev->flags);
3692 s->locked++;
3693 pr_debug("Reading block %d (sync=%d)\n",
3694 disk_idx, s->syncing);
3695 }
3696 }
3697
3698 return 0;
3699 }
3700
3701 /**
3702 * handle_stripe_fill - read or compute data to satisfy pending requests.
3703 */
3704 static void handle_stripe_fill(struct stripe_head *sh,
3705 struct stripe_head_state *s,
3706 int disks)
3707 {
3708 int i;
3709
3710 /* look for blocks to read/compute, skip this if a compute
3711 * is already in flight, or if the stripe contents are in the
3712 * midst of changing due to a write
3713 */
3714 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3715 !sh->reconstruct_state) {
3716
3717 /*
3718 * For degraded stripe with data in journal, do not handle
3719 * read requests yet, instead, flush the stripe to raid
3720 * disks first, this avoids handling complex rmw of write
3721 * back cache (prexor with orig_page, and then xor with
3722 * page) in the read path
3723 */
3724 if (s->injournal && s->failed) {
3725 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3726 r5c_make_stripe_write_out(sh);
3727 goto out;
3728 }
3729
3730 for (i = disks; i--; )
3731 if (fetch_block(sh, s, i, disks))
3732 break;
3733 }
3734 out:
3735 set_bit(STRIPE_HANDLE, &sh->state);
3736 }
3737
3738 static void break_stripe_batch_list(struct stripe_head *head_sh,
3739 unsigned long handle_flags);
3740 /* handle_stripe_clean_event
3741 * any written block on an uptodate or failed drive can be returned.
3742 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3743 * never LOCKED, so we don't need to test 'failed' directly.
3744 */
3745 static void handle_stripe_clean_event(struct r5conf *conf,
3746 struct stripe_head *sh, int disks)
3747 {
3748 int i;
3749 struct r5dev *dev;
3750 int discard_pending = 0;
3751 struct stripe_head *head_sh = sh;
3752 bool do_endio = false;
3753
3754 for (i = disks; i--; )
3755 if (sh->dev[i].written) {
3756 dev = &sh->dev[i];
3757 if (!test_bit(R5_LOCKED, &dev->flags) &&
3758 (test_bit(R5_UPTODATE, &dev->flags) ||
3759 test_bit(R5_Discard, &dev->flags) ||
3760 test_bit(R5_SkipCopy, &dev->flags))) {
3761 /* We can return any write requests */
3762 struct bio *wbi, *wbi2;
3763 pr_debug("Return write for disc %d\n", i);
3764 if (test_and_clear_bit(R5_Discard, &dev->flags))
3765 clear_bit(R5_UPTODATE, &dev->flags);
3766 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3767 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3768 }
3769 do_endio = true;
3770
3771 returnbi:
3772 dev->page = dev->orig_page;
3773 wbi = dev->written;
3774 dev->written = NULL;
3775 while (wbi && wbi->bi_iter.bi_sector <
3776 dev->sector + STRIPE_SECTORS) {
3777 wbi2 = r5_next_bio(wbi, dev->sector);
3778 md_write_end(conf->mddev);
3779 bio_endio(wbi);
3780 wbi = wbi2;
3781 }
3782 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3783 STRIPE_SECTORS,
3784 !test_bit(STRIPE_DEGRADED, &sh->state),
3785 0);
3786 if (head_sh->batch_head) {
3787 sh = list_first_entry(&sh->batch_list,
3788 struct stripe_head,
3789 batch_list);
3790 if (sh != head_sh) {
3791 dev = &sh->dev[i];
3792 goto returnbi;
3793 }
3794 }
3795 sh = head_sh;
3796 dev = &sh->dev[i];
3797 } else if (test_bit(R5_Discard, &dev->flags))
3798 discard_pending = 1;
3799 }
3800
3801 log_stripe_write_finished(sh);
3802
3803 if (!discard_pending &&
3804 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3805 int hash;
3806 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3807 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3808 if (sh->qd_idx >= 0) {
3809 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3810 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3811 }
3812 /* now that discard is done we can proceed with any sync */
3813 clear_bit(STRIPE_DISCARD, &sh->state);
3814 /*
3815 * SCSI discard will change some bio fields and the stripe has
3816 * no updated data, so remove it from hash list and the stripe
3817 * will be reinitialized
3818 */
3819 unhash:
3820 hash = sh->hash_lock_index;
3821 spin_lock_irq(conf->hash_locks + hash);
3822 remove_hash(sh);
3823 spin_unlock_irq(conf->hash_locks + hash);
3824 if (head_sh->batch_head) {
3825 sh = list_first_entry(&sh->batch_list,
3826 struct stripe_head, batch_list);
3827 if (sh != head_sh)
3828 goto unhash;
3829 }
3830 sh = head_sh;
3831
3832 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3833 set_bit(STRIPE_HANDLE, &sh->state);
3834
3835 }
3836
3837 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3838 if (atomic_dec_and_test(&conf->pending_full_writes))
3839 md_wakeup_thread(conf->mddev->thread);
3840
3841 if (head_sh->batch_head && do_endio)
3842 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3843 }
3844
3845 /*
3846 * For RMW in write back cache, we need extra page in prexor to store the
3847 * old data. This page is stored in dev->orig_page.
3848 *
3849 * This function checks whether we have data for prexor. The exact logic
3850 * is:
3851 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3852 */
3853 static inline bool uptodate_for_rmw(struct r5dev *dev)
3854 {
3855 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3856 (!test_bit(R5_InJournal, &dev->flags) ||
3857 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3858 }
3859
3860 static int handle_stripe_dirtying(struct r5conf *conf,
3861 struct stripe_head *sh,
3862 struct stripe_head_state *s,
3863 int disks)
3864 {
3865 int rmw = 0, rcw = 0, i;
3866 sector_t recovery_cp = conf->mddev->recovery_cp;
3867
3868 /* Check whether resync is now happening or should start.
3869 * If yes, then the array is dirty (after unclean shutdown or
3870 * initial creation), so parity in some stripes might be inconsistent.
3871 * In this case, we need to always do reconstruct-write, to ensure
3872 * that in case of drive failure or read-error correction, we
3873 * generate correct data from the parity.
3874 */
3875 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3876 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3877 s->failed == 0)) {
3878 /* Calculate the real rcw later - for now make it
3879 * look like rcw is cheaper
3880 */
3881 rcw = 1; rmw = 2;
3882 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3883 conf->rmw_level, (unsigned long long)recovery_cp,
3884 (unsigned long long)sh->sector);
3885 } else for (i = disks; i--; ) {
3886 /* would I have to read this buffer for read_modify_write */
3887 struct r5dev *dev = &sh->dev[i];
3888 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3889 i == sh->pd_idx || i == sh->qd_idx ||
3890 test_bit(R5_InJournal, &dev->flags)) &&
3891 !test_bit(R5_LOCKED, &dev->flags) &&
3892 !(uptodate_for_rmw(dev) ||
3893 test_bit(R5_Wantcompute, &dev->flags))) {
3894 if (test_bit(R5_Insync, &dev->flags))
3895 rmw++;
3896 else
3897 rmw += 2*disks; /* cannot read it */
3898 }
3899 /* Would I have to read this buffer for reconstruct_write */
3900 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3901 i != sh->pd_idx && i != sh->qd_idx &&
3902 !test_bit(R5_LOCKED, &dev->flags) &&
3903 !(test_bit(R5_UPTODATE, &dev->flags) ||
3904 test_bit(R5_Wantcompute, &dev->flags))) {
3905 if (test_bit(R5_Insync, &dev->flags))
3906 rcw++;
3907 else
3908 rcw += 2*disks;
3909 }
3910 }
3911
3912 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3913 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3914 set_bit(STRIPE_HANDLE, &sh->state);
3915 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3916 /* prefer read-modify-write, but need to get some data */
3917 if (conf->mddev->queue)
3918 blk_add_trace_msg(conf->mddev->queue,
3919 "raid5 rmw %llu %d",
3920 (unsigned long long)sh->sector, rmw);
3921 for (i = disks; i--; ) {
3922 struct r5dev *dev = &sh->dev[i];
3923 if (test_bit(R5_InJournal, &dev->flags) &&
3924 dev->page == dev->orig_page &&
3925 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3926 /* alloc page for prexor */
3927 struct page *p = alloc_page(GFP_NOIO);
3928
3929 if (p) {
3930 dev->orig_page = p;
3931 continue;
3932 }
3933
3934 /*
3935 * alloc_page() failed, try use
3936 * disk_info->extra_page
3937 */
3938 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3939 &conf->cache_state)) {
3940 r5c_use_extra_page(sh);
3941 break;
3942 }
3943
3944 /* extra_page in use, add to delayed_list */
3945 set_bit(STRIPE_DELAYED, &sh->state);
3946 s->waiting_extra_page = 1;
3947 return -EAGAIN;
3948 }
3949 }
3950
3951 for (i = disks; i--; ) {
3952 struct r5dev *dev = &sh->dev[i];
3953 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3954 i == sh->pd_idx || i == sh->qd_idx ||
3955 test_bit(R5_InJournal, &dev->flags)) &&
3956 !test_bit(R5_LOCKED, &dev->flags) &&
3957 !(uptodate_for_rmw(dev) ||
3958 test_bit(R5_Wantcompute, &dev->flags)) &&
3959 test_bit(R5_Insync, &dev->flags)) {
3960 if (test_bit(STRIPE_PREREAD_ACTIVE,
3961 &sh->state)) {
3962 pr_debug("Read_old block %d for r-m-w\n",
3963 i);
3964 set_bit(R5_LOCKED, &dev->flags);
3965 set_bit(R5_Wantread, &dev->flags);
3966 s->locked++;
3967 } else {
3968 set_bit(STRIPE_DELAYED, &sh->state);
3969 set_bit(STRIPE_HANDLE, &sh->state);
3970 }
3971 }
3972 }
3973 }
3974 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3975 /* want reconstruct write, but need to get some data */
3976 int qread =0;
3977 rcw = 0;
3978 for (i = disks; i--; ) {
3979 struct r5dev *dev = &sh->dev[i];
3980 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3981 i != sh->pd_idx && i != sh->qd_idx &&
3982 !test_bit(R5_LOCKED, &dev->flags) &&
3983 !(test_bit(R5_UPTODATE, &dev->flags) ||
3984 test_bit(R5_Wantcompute, &dev->flags))) {
3985 rcw++;
3986 if (test_bit(R5_Insync, &dev->flags) &&
3987 test_bit(STRIPE_PREREAD_ACTIVE,
3988 &sh->state)) {
3989 pr_debug("Read_old block "
3990 "%d for Reconstruct\n", i);
3991 set_bit(R5_LOCKED, &dev->flags);
3992 set_bit(R5_Wantread, &dev->flags);
3993 s->locked++;
3994 qread++;
3995 } else {
3996 set_bit(STRIPE_DELAYED, &sh->state);
3997 set_bit(STRIPE_HANDLE, &sh->state);
3998 }
3999 }
4000 }
4001 if (rcw && conf->mddev->queue)
4002 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4003 (unsigned long long)sh->sector,
4004 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4005 }
4006
4007 if (rcw > disks && rmw > disks &&
4008 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4009 set_bit(STRIPE_DELAYED, &sh->state);
4010
4011 /* now if nothing is locked, and if we have enough data,
4012 * we can start a write request
4013 */
4014 /* since handle_stripe can be called at any time we need to handle the
4015 * case where a compute block operation has been submitted and then a
4016 * subsequent call wants to start a write request. raid_run_ops only
4017 * handles the case where compute block and reconstruct are requested
4018 * simultaneously. If this is not the case then new writes need to be
4019 * held off until the compute completes.
4020 */
4021 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4022 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4023 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4024 schedule_reconstruction(sh, s, rcw == 0, 0);
4025 return 0;
4026 }
4027
4028 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4029 struct stripe_head_state *s, int disks)
4030 {
4031 struct r5dev *dev = NULL;
4032
4033 BUG_ON(sh->batch_head);
4034 set_bit(STRIPE_HANDLE, &sh->state);
4035
4036 switch (sh->check_state) {
4037 case check_state_idle:
4038 /* start a new check operation if there are no failures */
4039 if (s->failed == 0) {
4040 BUG_ON(s->uptodate != disks);
4041 sh->check_state = check_state_run;
4042 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4043 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4044 s->uptodate--;
4045 break;
4046 }
4047 dev = &sh->dev[s->failed_num[0]];
4048 /* fall through */
4049 case check_state_compute_result:
4050 sh->check_state = check_state_idle;
4051 if (!dev)
4052 dev = &sh->dev[sh->pd_idx];
4053
4054 /* check that a write has not made the stripe insync */
4055 if (test_bit(STRIPE_INSYNC, &sh->state))
4056 break;
4057
4058 /* either failed parity check, or recovery is happening */
4059 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4060 BUG_ON(s->uptodate != disks);
4061
4062 set_bit(R5_LOCKED, &dev->flags);
4063 s->locked++;
4064 set_bit(R5_Wantwrite, &dev->flags);
4065
4066 clear_bit(STRIPE_DEGRADED, &sh->state);
4067 set_bit(STRIPE_INSYNC, &sh->state);
4068 break;
4069 case check_state_run:
4070 break; /* we will be called again upon completion */
4071 case check_state_check_result:
4072 sh->check_state = check_state_idle;
4073
4074 /* if a failure occurred during the check operation, leave
4075 * STRIPE_INSYNC not set and let the stripe be handled again
4076 */
4077 if (s->failed)
4078 break;
4079
4080 /* handle a successful check operation, if parity is correct
4081 * we are done. Otherwise update the mismatch count and repair
4082 * parity if !MD_RECOVERY_CHECK
4083 */
4084 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4085 /* parity is correct (on disc,
4086 * not in buffer any more)
4087 */
4088 set_bit(STRIPE_INSYNC, &sh->state);
4089 else {
4090 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4091 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4092 /* don't try to repair!! */
4093 set_bit(STRIPE_INSYNC, &sh->state);
4094 pr_warn_ratelimited("%s: mismatch sector in range "
4095 "%llu-%llu\n", mdname(conf->mddev),
4096 (unsigned long long) sh->sector,
4097 (unsigned long long) sh->sector +
4098 STRIPE_SECTORS);
4099 } else {
4100 sh->check_state = check_state_compute_run;
4101 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4102 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4103 set_bit(R5_Wantcompute,
4104 &sh->dev[sh->pd_idx].flags);
4105 sh->ops.target = sh->pd_idx;
4106 sh->ops.target2 = -1;
4107 s->uptodate++;
4108 }
4109 }
4110 break;
4111 case check_state_compute_run:
4112 break;
4113 default:
4114 pr_err("%s: unknown check_state: %d sector: %llu\n",
4115 __func__, sh->check_state,
4116 (unsigned long long) sh->sector);
4117 BUG();
4118 }
4119 }
4120
4121 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4122 struct stripe_head_state *s,
4123 int disks)
4124 {
4125 int pd_idx = sh->pd_idx;
4126 int qd_idx = sh->qd_idx;
4127 struct r5dev *dev;
4128
4129 BUG_ON(sh->batch_head);
4130 set_bit(STRIPE_HANDLE, &sh->state);
4131
4132 BUG_ON(s->failed > 2);
4133
4134 /* Want to check and possibly repair P and Q.
4135 * However there could be one 'failed' device, in which
4136 * case we can only check one of them, possibly using the
4137 * other to generate missing data
4138 */
4139
4140 switch (sh->check_state) {
4141 case check_state_idle:
4142 /* start a new check operation if there are < 2 failures */
4143 if (s->failed == s->q_failed) {
4144 /* The only possible failed device holds Q, so it
4145 * makes sense to check P (If anything else were failed,
4146 * we would have used P to recreate it).
4147 */
4148 sh->check_state = check_state_run;
4149 }
4150 if (!s->q_failed && s->failed < 2) {
4151 /* Q is not failed, and we didn't use it to generate
4152 * anything, so it makes sense to check it
4153 */
4154 if (sh->check_state == check_state_run)
4155 sh->check_state = check_state_run_pq;
4156 else
4157 sh->check_state = check_state_run_q;
4158 }
4159
4160 /* discard potentially stale zero_sum_result */
4161 sh->ops.zero_sum_result = 0;
4162
4163 if (sh->check_state == check_state_run) {
4164 /* async_xor_zero_sum destroys the contents of P */
4165 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4166 s->uptodate--;
4167 }
4168 if (sh->check_state >= check_state_run &&
4169 sh->check_state <= check_state_run_pq) {
4170 /* async_syndrome_zero_sum preserves P and Q, so
4171 * no need to mark them !uptodate here
4172 */
4173 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4174 break;
4175 }
4176
4177 /* we have 2-disk failure */
4178 BUG_ON(s->failed != 2);
4179 /* fall through */
4180 case check_state_compute_result:
4181 sh->check_state = check_state_idle;
4182
4183 /* check that a write has not made the stripe insync */
4184 if (test_bit(STRIPE_INSYNC, &sh->state))
4185 break;
4186
4187 /* now write out any block on a failed drive,
4188 * or P or Q if they were recomputed
4189 */
4190 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4191 if (s->failed == 2) {
4192 dev = &sh->dev[s->failed_num[1]];
4193 s->locked++;
4194 set_bit(R5_LOCKED, &dev->flags);
4195 set_bit(R5_Wantwrite, &dev->flags);
4196 }
4197 if (s->failed >= 1) {
4198 dev = &sh->dev[s->failed_num[0]];
4199 s->locked++;
4200 set_bit(R5_LOCKED, &dev->flags);
4201 set_bit(R5_Wantwrite, &dev->flags);
4202 }
4203 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4204 dev = &sh->dev[pd_idx];
4205 s->locked++;
4206 set_bit(R5_LOCKED, &dev->flags);
4207 set_bit(R5_Wantwrite, &dev->flags);
4208 }
4209 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4210 dev = &sh->dev[qd_idx];
4211 s->locked++;
4212 set_bit(R5_LOCKED, &dev->flags);
4213 set_bit(R5_Wantwrite, &dev->flags);
4214 }
4215 clear_bit(STRIPE_DEGRADED, &sh->state);
4216
4217 set_bit(STRIPE_INSYNC, &sh->state);
4218 break;
4219 case check_state_run:
4220 case check_state_run_q:
4221 case check_state_run_pq:
4222 break; /* we will be called again upon completion */
4223 case check_state_check_result:
4224 sh->check_state = check_state_idle;
4225
4226 /* handle a successful check operation, if parity is correct
4227 * we are done. Otherwise update the mismatch count and repair
4228 * parity if !MD_RECOVERY_CHECK
4229 */
4230 if (sh->ops.zero_sum_result == 0) {
4231 /* both parities are correct */
4232 if (!s->failed)
4233 set_bit(STRIPE_INSYNC, &sh->state);
4234 else {
4235 /* in contrast to the raid5 case we can validate
4236 * parity, but still have a failure to write
4237 * back
4238 */
4239 sh->check_state = check_state_compute_result;
4240 /* Returning at this point means that we may go
4241 * off and bring p and/or q uptodate again so
4242 * we make sure to check zero_sum_result again
4243 * to verify if p or q need writeback
4244 */
4245 }
4246 } else {
4247 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4248 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4249 /* don't try to repair!! */
4250 set_bit(STRIPE_INSYNC, &sh->state);
4251 pr_warn_ratelimited("%s: mismatch sector in range "
4252 "%llu-%llu\n", mdname(conf->mddev),
4253 (unsigned long long) sh->sector,
4254 (unsigned long long) sh->sector +
4255 STRIPE_SECTORS);
4256 } else {
4257 int *target = &sh->ops.target;
4258
4259 sh->ops.target = -1;
4260 sh->ops.target2 = -1;
4261 sh->check_state = check_state_compute_run;
4262 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4263 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4264 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4265 set_bit(R5_Wantcompute,
4266 &sh->dev[pd_idx].flags);
4267 *target = pd_idx;
4268 target = &sh->ops.target2;
4269 s->uptodate++;
4270 }
4271 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4272 set_bit(R5_Wantcompute,
4273 &sh->dev[qd_idx].flags);
4274 *target = qd_idx;
4275 s->uptodate++;
4276 }
4277 }
4278 }
4279 break;
4280 case check_state_compute_run:
4281 break;
4282 default:
4283 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4284 __func__, sh->check_state,
4285 (unsigned long long) sh->sector);
4286 BUG();
4287 }
4288 }
4289
4290 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4291 {
4292 int i;
4293
4294 /* We have read all the blocks in this stripe and now we need to
4295 * copy some of them into a target stripe for expand.
4296 */
4297 struct dma_async_tx_descriptor *tx = NULL;
4298 BUG_ON(sh->batch_head);
4299 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4300 for (i = 0; i < sh->disks; i++)
4301 if (i != sh->pd_idx && i != sh->qd_idx) {
4302 int dd_idx, j;
4303 struct stripe_head *sh2;
4304 struct async_submit_ctl submit;
4305
4306 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4307 sector_t s = raid5_compute_sector(conf, bn, 0,
4308 &dd_idx, NULL);
4309 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4310 if (sh2 == NULL)
4311 /* so far only the early blocks of this stripe
4312 * have been requested. When later blocks
4313 * get requested, we will try again
4314 */
4315 continue;
4316 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4317 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4318 /* must have already done this block */
4319 raid5_release_stripe(sh2);
4320 continue;
4321 }
4322
4323 /* place all the copies on one channel */
4324 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4325 tx = async_memcpy(sh2->dev[dd_idx].page,
4326 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4327 &submit);
4328
4329 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4330 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4331 for (j = 0; j < conf->raid_disks; j++)
4332 if (j != sh2->pd_idx &&
4333 j != sh2->qd_idx &&
4334 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4335 break;
4336 if (j == conf->raid_disks) {
4337 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4338 set_bit(STRIPE_HANDLE, &sh2->state);
4339 }
4340 raid5_release_stripe(sh2);
4341
4342 }
4343 /* done submitting copies, wait for them to complete */
4344 async_tx_quiesce(&tx);
4345 }
4346
4347 /*
4348 * handle_stripe - do things to a stripe.
4349 *
4350 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4351 * state of various bits to see what needs to be done.
4352 * Possible results:
4353 * return some read requests which now have data
4354 * return some write requests which are safely on storage
4355 * schedule a read on some buffers
4356 * schedule a write of some buffers
4357 * return confirmation of parity correctness
4358 *
4359 */
4360
4361 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4362 {
4363 struct r5conf *conf = sh->raid_conf;
4364 int disks = sh->disks;
4365 struct r5dev *dev;
4366 int i;
4367 int do_recovery = 0;
4368
4369 memset(s, 0, sizeof(*s));
4370
4371 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4372 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4373 s->failed_num[0] = -1;
4374 s->failed_num[1] = -1;
4375 s->log_failed = r5l_log_disk_error(conf);
4376
4377 /* Now to look around and see what can be done */
4378 rcu_read_lock();
4379 for (i=disks; i--; ) {
4380 struct md_rdev *rdev;
4381 sector_t first_bad;
4382 int bad_sectors;
4383 int is_bad = 0;
4384
4385 dev = &sh->dev[i];
4386
4387 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4388 i, dev->flags,
4389 dev->toread, dev->towrite, dev->written);
4390 /* maybe we can reply to a read
4391 *
4392 * new wantfill requests are only permitted while
4393 * ops_complete_biofill is guaranteed to be inactive
4394 */
4395 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4396 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4397 set_bit(R5_Wantfill, &dev->flags);
4398
4399 /* now count some things */
4400 if (test_bit(R5_LOCKED, &dev->flags))
4401 s->locked++;
4402 if (test_bit(R5_UPTODATE, &dev->flags))
4403 s->uptodate++;
4404 if (test_bit(R5_Wantcompute, &dev->flags)) {
4405 s->compute++;
4406 BUG_ON(s->compute > 2);
4407 }
4408
4409 if (test_bit(R5_Wantfill, &dev->flags))
4410 s->to_fill++;
4411 else if (dev->toread)
4412 s->to_read++;
4413 if (dev->towrite) {
4414 s->to_write++;
4415 if (!test_bit(R5_OVERWRITE, &dev->flags))
4416 s->non_overwrite++;
4417 }
4418 if (dev->written)
4419 s->written++;
4420 /* Prefer to use the replacement for reads, but only
4421 * if it is recovered enough and has no bad blocks.
4422 */
4423 rdev = rcu_dereference(conf->disks[i].replacement);
4424 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4425 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4426 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4427 &first_bad, &bad_sectors))
4428 set_bit(R5_ReadRepl, &dev->flags);
4429 else {
4430 if (rdev && !test_bit(Faulty, &rdev->flags))
4431 set_bit(R5_NeedReplace, &dev->flags);
4432 else
4433 clear_bit(R5_NeedReplace, &dev->flags);
4434 rdev = rcu_dereference(conf->disks[i].rdev);
4435 clear_bit(R5_ReadRepl, &dev->flags);
4436 }
4437 if (rdev && test_bit(Faulty, &rdev->flags))
4438 rdev = NULL;
4439 if (rdev) {
4440 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4441 &first_bad, &bad_sectors);
4442 if (s->blocked_rdev == NULL
4443 && (test_bit(Blocked, &rdev->flags)
4444 || is_bad < 0)) {
4445 if (is_bad < 0)
4446 set_bit(BlockedBadBlocks,
4447 &rdev->flags);
4448 s->blocked_rdev = rdev;
4449 atomic_inc(&rdev->nr_pending);
4450 }
4451 }
4452 clear_bit(R5_Insync, &dev->flags);
4453 if (!rdev)
4454 /* Not in-sync */;
4455 else if (is_bad) {
4456 /* also not in-sync */
4457 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4458 test_bit(R5_UPTODATE, &dev->flags)) {
4459 /* treat as in-sync, but with a read error
4460 * which we can now try to correct
4461 */
4462 set_bit(R5_Insync, &dev->flags);
4463 set_bit(R5_ReadError, &dev->flags);
4464 }
4465 } else if (test_bit(In_sync, &rdev->flags))
4466 set_bit(R5_Insync, &dev->flags);
4467 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4468 /* in sync if before recovery_offset */
4469 set_bit(R5_Insync, &dev->flags);
4470 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4471 test_bit(R5_Expanded, &dev->flags))
4472 /* If we've reshaped into here, we assume it is Insync.
4473 * We will shortly update recovery_offset to make
4474 * it official.
4475 */
4476 set_bit(R5_Insync, &dev->flags);
4477
4478 if (test_bit(R5_WriteError, &dev->flags)) {
4479 /* This flag does not apply to '.replacement'
4480 * only to .rdev, so make sure to check that*/
4481 struct md_rdev *rdev2 = rcu_dereference(
4482 conf->disks[i].rdev);
4483 if (rdev2 == rdev)
4484 clear_bit(R5_Insync, &dev->flags);
4485 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4486 s->handle_bad_blocks = 1;
4487 atomic_inc(&rdev2->nr_pending);
4488 } else
4489 clear_bit(R5_WriteError, &dev->flags);
4490 }
4491 if (test_bit(R5_MadeGood, &dev->flags)) {
4492 /* This flag does not apply to '.replacement'
4493 * only to .rdev, so make sure to check that*/
4494 struct md_rdev *rdev2 = rcu_dereference(
4495 conf->disks[i].rdev);
4496 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4497 s->handle_bad_blocks = 1;
4498 atomic_inc(&rdev2->nr_pending);
4499 } else
4500 clear_bit(R5_MadeGood, &dev->flags);
4501 }
4502 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4503 struct md_rdev *rdev2 = rcu_dereference(
4504 conf->disks[i].replacement);
4505 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4506 s->handle_bad_blocks = 1;
4507 atomic_inc(&rdev2->nr_pending);
4508 } else
4509 clear_bit(R5_MadeGoodRepl, &dev->flags);
4510 }
4511 if (!test_bit(R5_Insync, &dev->flags)) {
4512 /* The ReadError flag will just be confusing now */
4513 clear_bit(R5_ReadError, &dev->flags);
4514 clear_bit(R5_ReWrite, &dev->flags);
4515 }
4516 if (test_bit(R5_ReadError, &dev->flags))
4517 clear_bit(R5_Insync, &dev->flags);
4518 if (!test_bit(R5_Insync, &dev->flags)) {
4519 if (s->failed < 2)
4520 s->failed_num[s->failed] = i;
4521 s->failed++;
4522 if (rdev && !test_bit(Faulty, &rdev->flags))
4523 do_recovery = 1;
4524 }
4525
4526 if (test_bit(R5_InJournal, &dev->flags))
4527 s->injournal++;
4528 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4529 s->just_cached++;
4530 }
4531 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4532 /* If there is a failed device being replaced,
4533 * we must be recovering.
4534 * else if we are after recovery_cp, we must be syncing
4535 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4536 * else we can only be replacing
4537 * sync and recovery both need to read all devices, and so
4538 * use the same flag.
4539 */
4540 if (do_recovery ||
4541 sh->sector >= conf->mddev->recovery_cp ||
4542 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4543 s->syncing = 1;
4544 else
4545 s->replacing = 1;
4546 }
4547 rcu_read_unlock();
4548 }
4549
4550 static int clear_batch_ready(struct stripe_head *sh)
4551 {
4552 /* Return '1' if this is a member of batch, or
4553 * '0' if it is a lone stripe or a head which can now be
4554 * handled.
4555 */
4556 struct stripe_head *tmp;
4557 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4558 return (sh->batch_head && sh->batch_head != sh);
4559 spin_lock(&sh->stripe_lock);
4560 if (!sh->batch_head) {
4561 spin_unlock(&sh->stripe_lock);
4562 return 0;
4563 }
4564
4565 /*
4566 * this stripe could be added to a batch list before we check
4567 * BATCH_READY, skips it
4568 */
4569 if (sh->batch_head != sh) {
4570 spin_unlock(&sh->stripe_lock);
4571 return 1;
4572 }
4573 spin_lock(&sh->batch_lock);
4574 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4575 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4576 spin_unlock(&sh->batch_lock);
4577 spin_unlock(&sh->stripe_lock);
4578
4579 /*
4580 * BATCH_READY is cleared, no new stripes can be added.
4581 * batch_list can be accessed without lock
4582 */
4583 return 0;
4584 }
4585
4586 static void break_stripe_batch_list(struct stripe_head *head_sh,
4587 unsigned long handle_flags)
4588 {
4589 struct stripe_head *sh, *next;
4590 int i;
4591 int do_wakeup = 0;
4592
4593 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4594
4595 list_del_init(&sh->batch_list);
4596
4597 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4598 (1 << STRIPE_SYNCING) |
4599 (1 << STRIPE_REPLACED) |
4600 (1 << STRIPE_DELAYED) |
4601 (1 << STRIPE_BIT_DELAY) |
4602 (1 << STRIPE_FULL_WRITE) |
4603 (1 << STRIPE_BIOFILL_RUN) |
4604 (1 << STRIPE_COMPUTE_RUN) |
4605 (1 << STRIPE_OPS_REQ_PENDING) |
4606 (1 << STRIPE_DISCARD) |
4607 (1 << STRIPE_BATCH_READY) |
4608 (1 << STRIPE_BATCH_ERR) |
4609 (1 << STRIPE_BITMAP_PENDING)),
4610 "stripe state: %lx\n", sh->state);
4611 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4612 (1 << STRIPE_REPLACED)),
4613 "head stripe state: %lx\n", head_sh->state);
4614
4615 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4616 (1 << STRIPE_PREREAD_ACTIVE) |
4617 (1 << STRIPE_DEGRADED) |
4618 (1 << STRIPE_ON_UNPLUG_LIST)),
4619 head_sh->state & (1 << STRIPE_INSYNC));
4620
4621 sh->check_state = head_sh->check_state;
4622 sh->reconstruct_state = head_sh->reconstruct_state;
4623 spin_lock_irq(&sh->stripe_lock);
4624 sh->batch_head = NULL;
4625 spin_unlock_irq(&sh->stripe_lock);
4626 for (i = 0; i < sh->disks; i++) {
4627 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4628 do_wakeup = 1;
4629 sh->dev[i].flags = head_sh->dev[i].flags &
4630 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4631 }
4632 if (handle_flags == 0 ||
4633 sh->state & handle_flags)
4634 set_bit(STRIPE_HANDLE, &sh->state);
4635 raid5_release_stripe(sh);
4636 }
4637 spin_lock_irq(&head_sh->stripe_lock);
4638 head_sh->batch_head = NULL;
4639 spin_unlock_irq(&head_sh->stripe_lock);
4640 for (i = 0; i < head_sh->disks; i++)
4641 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4642 do_wakeup = 1;
4643 if (head_sh->state & handle_flags)
4644 set_bit(STRIPE_HANDLE, &head_sh->state);
4645
4646 if (do_wakeup)
4647 wake_up(&head_sh->raid_conf->wait_for_overlap);
4648 }
4649
4650 static void handle_stripe(struct stripe_head *sh)
4651 {
4652 struct stripe_head_state s;
4653 struct r5conf *conf = sh->raid_conf;
4654 int i;
4655 int prexor;
4656 int disks = sh->disks;
4657 struct r5dev *pdev, *qdev;
4658
4659 clear_bit(STRIPE_HANDLE, &sh->state);
4660 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4661 /* already being handled, ensure it gets handled
4662 * again when current action finishes */
4663 set_bit(STRIPE_HANDLE, &sh->state);
4664 return;
4665 }
4666
4667 if (clear_batch_ready(sh) ) {
4668 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4669 return;
4670 }
4671
4672 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4673 break_stripe_batch_list(sh, 0);
4674
4675 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4676 spin_lock(&sh->stripe_lock);
4677 /*
4678 * Cannot process 'sync' concurrently with 'discard'.
4679 * Flush data in r5cache before 'sync'.
4680 */
4681 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4682 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4683 !test_bit(STRIPE_DISCARD, &sh->state) &&
4684 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4685 set_bit(STRIPE_SYNCING, &sh->state);
4686 clear_bit(STRIPE_INSYNC, &sh->state);
4687 clear_bit(STRIPE_REPLACED, &sh->state);
4688 }
4689 spin_unlock(&sh->stripe_lock);
4690 }
4691 clear_bit(STRIPE_DELAYED, &sh->state);
4692
4693 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4694 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4695 (unsigned long long)sh->sector, sh->state,
4696 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4697 sh->check_state, sh->reconstruct_state);
4698
4699 analyse_stripe(sh, &s);
4700
4701 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4702 goto finish;
4703
4704 if (s.handle_bad_blocks ||
4705 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4706 set_bit(STRIPE_HANDLE, &sh->state);
4707 goto finish;
4708 }
4709
4710 if (unlikely(s.blocked_rdev)) {
4711 if (s.syncing || s.expanding || s.expanded ||
4712 s.replacing || s.to_write || s.written) {
4713 set_bit(STRIPE_HANDLE, &sh->state);
4714 goto finish;
4715 }
4716 /* There is nothing for the blocked_rdev to block */
4717 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4718 s.blocked_rdev = NULL;
4719 }
4720
4721 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4722 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4723 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4724 }
4725
4726 pr_debug("locked=%d uptodate=%d to_read=%d"
4727 " to_write=%d failed=%d failed_num=%d,%d\n",
4728 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4729 s.failed_num[0], s.failed_num[1]);
4730 /*
4731 * check if the array has lost more than max_degraded devices and,
4732 * if so, some requests might need to be failed.
4733 *
4734 * When journal device failed (log_failed), we will only process
4735 * the stripe if there is data need write to raid disks
4736 */
4737 if (s.failed > conf->max_degraded ||
4738 (s.log_failed && s.injournal == 0)) {
4739 sh->check_state = 0;
4740 sh->reconstruct_state = 0;
4741 break_stripe_batch_list(sh, 0);
4742 if (s.to_read+s.to_write+s.written)
4743 handle_failed_stripe(conf, sh, &s, disks);
4744 if (s.syncing + s.replacing)
4745 handle_failed_sync(conf, sh, &s);
4746 }
4747
4748 /* Now we check to see if any write operations have recently
4749 * completed
4750 */
4751 prexor = 0;
4752 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4753 prexor = 1;
4754 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4755 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4756 sh->reconstruct_state = reconstruct_state_idle;
4757
4758 /* All the 'written' buffers and the parity block are ready to
4759 * be written back to disk
4760 */
4761 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4762 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4763 BUG_ON(sh->qd_idx >= 0 &&
4764 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4765 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4766 for (i = disks; i--; ) {
4767 struct r5dev *dev = &sh->dev[i];
4768 if (test_bit(R5_LOCKED, &dev->flags) &&
4769 (i == sh->pd_idx || i == sh->qd_idx ||
4770 dev->written || test_bit(R5_InJournal,
4771 &dev->flags))) {
4772 pr_debug("Writing block %d\n", i);
4773 set_bit(R5_Wantwrite, &dev->flags);
4774 if (prexor)
4775 continue;
4776 if (s.failed > 1)
4777 continue;
4778 if (!test_bit(R5_Insync, &dev->flags) ||
4779 ((i == sh->pd_idx || i == sh->qd_idx) &&
4780 s.failed == 0))
4781 set_bit(STRIPE_INSYNC, &sh->state);
4782 }
4783 }
4784 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4785 s.dec_preread_active = 1;
4786 }
4787
4788 /*
4789 * might be able to return some write requests if the parity blocks
4790 * are safe, or on a failed drive
4791 */
4792 pdev = &sh->dev[sh->pd_idx];
4793 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4794 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4795 qdev = &sh->dev[sh->qd_idx];
4796 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4797 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4798 || conf->level < 6;
4799
4800 if (s.written &&
4801 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4802 && !test_bit(R5_LOCKED, &pdev->flags)
4803 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4804 test_bit(R5_Discard, &pdev->flags))))) &&
4805 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4806 && !test_bit(R5_LOCKED, &qdev->flags)
4807 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4808 test_bit(R5_Discard, &qdev->flags))))))
4809 handle_stripe_clean_event(conf, sh, disks);
4810
4811 if (s.just_cached)
4812 r5c_handle_cached_data_endio(conf, sh, disks);
4813 log_stripe_write_finished(sh);
4814
4815 /* Now we might consider reading some blocks, either to check/generate
4816 * parity, or to satisfy requests
4817 * or to load a block that is being partially written.
4818 */
4819 if (s.to_read || s.non_overwrite
4820 || (conf->level == 6 && s.to_write && s.failed)
4821 || (s.syncing && (s.uptodate + s.compute < disks))
4822 || s.replacing
4823 || s.expanding)
4824 handle_stripe_fill(sh, &s, disks);
4825
4826 /*
4827 * When the stripe finishes full journal write cycle (write to journal
4828 * and raid disk), this is the clean up procedure so it is ready for
4829 * next operation.
4830 */
4831 r5c_finish_stripe_write_out(conf, sh, &s);
4832
4833 /*
4834 * Now to consider new write requests, cache write back and what else,
4835 * if anything should be read. We do not handle new writes when:
4836 * 1/ A 'write' operation (copy+xor) is already in flight.
4837 * 2/ A 'check' operation is in flight, as it may clobber the parity
4838 * block.
4839 * 3/ A r5c cache log write is in flight.
4840 */
4841
4842 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4843 if (!r5c_is_writeback(conf->log)) {
4844 if (s.to_write)
4845 handle_stripe_dirtying(conf, sh, &s, disks);
4846 } else { /* write back cache */
4847 int ret = 0;
4848
4849 /* First, try handle writes in caching phase */
4850 if (s.to_write)
4851 ret = r5c_try_caching_write(conf, sh, &s,
4852 disks);
4853 /*
4854 * If caching phase failed: ret == -EAGAIN
4855 * OR
4856 * stripe under reclaim: !caching && injournal
4857 *
4858 * fall back to handle_stripe_dirtying()
4859 */
4860 if (ret == -EAGAIN ||
4861 /* stripe under reclaim: !caching && injournal */
4862 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4863 s.injournal > 0)) {
4864 ret = handle_stripe_dirtying(conf, sh, &s,
4865 disks);
4866 if (ret == -EAGAIN)
4867 goto finish;
4868 }
4869 }
4870 }
4871
4872 /* maybe we need to check and possibly fix the parity for this stripe
4873 * Any reads will already have been scheduled, so we just see if enough
4874 * data is available. The parity check is held off while parity
4875 * dependent operations are in flight.
4876 */
4877 if (sh->check_state ||
4878 (s.syncing && s.locked == 0 &&
4879 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4880 !test_bit(STRIPE_INSYNC, &sh->state))) {
4881 if (conf->level == 6)
4882 handle_parity_checks6(conf, sh, &s, disks);
4883 else
4884 handle_parity_checks5(conf, sh, &s, disks);
4885 }
4886
4887 if ((s.replacing || s.syncing) && s.locked == 0
4888 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4889 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4890 /* Write out to replacement devices where possible */
4891 for (i = 0; i < conf->raid_disks; i++)
4892 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4893 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4894 set_bit(R5_WantReplace, &sh->dev[i].flags);
4895 set_bit(R5_LOCKED, &sh->dev[i].flags);
4896 s.locked++;
4897 }
4898 if (s.replacing)
4899 set_bit(STRIPE_INSYNC, &sh->state);
4900 set_bit(STRIPE_REPLACED, &sh->state);
4901 }
4902 if ((s.syncing || s.replacing) && s.locked == 0 &&
4903 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4904 test_bit(STRIPE_INSYNC, &sh->state)) {
4905 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4906 clear_bit(STRIPE_SYNCING, &sh->state);
4907 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4908 wake_up(&conf->wait_for_overlap);
4909 }
4910
4911 /* If the failed drives are just a ReadError, then we might need
4912 * to progress the repair/check process
4913 */
4914 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4915 for (i = 0; i < s.failed; i++) {
4916 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4917 if (test_bit(R5_ReadError, &dev->flags)
4918 && !test_bit(R5_LOCKED, &dev->flags)
4919 && test_bit(R5_UPTODATE, &dev->flags)
4920 ) {
4921 if (!test_bit(R5_ReWrite, &dev->flags)) {
4922 set_bit(R5_Wantwrite, &dev->flags);
4923 set_bit(R5_ReWrite, &dev->flags);
4924 set_bit(R5_LOCKED, &dev->flags);
4925 s.locked++;
4926 } else {
4927 /* let's read it back */
4928 set_bit(R5_Wantread, &dev->flags);
4929 set_bit(R5_LOCKED, &dev->flags);
4930 s.locked++;
4931 }
4932 }
4933 }
4934
4935 /* Finish reconstruct operations initiated by the expansion process */
4936 if (sh->reconstruct_state == reconstruct_state_result) {
4937 struct stripe_head *sh_src
4938 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4939 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4940 /* sh cannot be written until sh_src has been read.
4941 * so arrange for sh to be delayed a little
4942 */
4943 set_bit(STRIPE_DELAYED, &sh->state);
4944 set_bit(STRIPE_HANDLE, &sh->state);
4945 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4946 &sh_src->state))
4947 atomic_inc(&conf->preread_active_stripes);
4948 raid5_release_stripe(sh_src);
4949 goto finish;
4950 }
4951 if (sh_src)
4952 raid5_release_stripe(sh_src);
4953
4954 sh->reconstruct_state = reconstruct_state_idle;
4955 clear_bit(STRIPE_EXPANDING, &sh->state);
4956 for (i = conf->raid_disks; i--; ) {
4957 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4958 set_bit(R5_LOCKED, &sh->dev[i].flags);
4959 s.locked++;
4960 }
4961 }
4962
4963 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4964 !sh->reconstruct_state) {
4965 /* Need to write out all blocks after computing parity */
4966 sh->disks = conf->raid_disks;
4967 stripe_set_idx(sh->sector, conf, 0, sh);
4968 schedule_reconstruction(sh, &s, 1, 1);
4969 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4970 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4971 atomic_dec(&conf->reshape_stripes);
4972 wake_up(&conf->wait_for_overlap);
4973 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4974 }
4975
4976 if (s.expanding && s.locked == 0 &&
4977 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4978 handle_stripe_expansion(conf, sh);
4979
4980 finish:
4981 /* wait for this device to become unblocked */
4982 if (unlikely(s.blocked_rdev)) {
4983 if (conf->mddev->external)
4984 md_wait_for_blocked_rdev(s.blocked_rdev,
4985 conf->mddev);
4986 else
4987 /* Internal metadata will immediately
4988 * be written by raid5d, so we don't
4989 * need to wait here.
4990 */
4991 rdev_dec_pending(s.blocked_rdev,
4992 conf->mddev);
4993 }
4994
4995 if (s.handle_bad_blocks)
4996 for (i = disks; i--; ) {
4997 struct md_rdev *rdev;
4998 struct r5dev *dev = &sh->dev[i];
4999 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5000 /* We own a safe reference to the rdev */
5001 rdev = conf->disks[i].rdev;
5002 if (!rdev_set_badblocks(rdev, sh->sector,
5003 STRIPE_SECTORS, 0))
5004 md_error(conf->mddev, rdev);
5005 rdev_dec_pending(rdev, conf->mddev);
5006 }
5007 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5008 rdev = conf->disks[i].rdev;
5009 rdev_clear_badblocks(rdev, sh->sector,
5010 STRIPE_SECTORS, 0);
5011 rdev_dec_pending(rdev, conf->mddev);
5012 }
5013 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5014 rdev = conf->disks[i].replacement;
5015 if (!rdev)
5016 /* rdev have been moved down */
5017 rdev = conf->disks[i].rdev;
5018 rdev_clear_badblocks(rdev, sh->sector,
5019 STRIPE_SECTORS, 0);
5020 rdev_dec_pending(rdev, conf->mddev);
5021 }
5022 }
5023
5024 if (s.ops_request)
5025 raid_run_ops(sh, s.ops_request);
5026
5027 ops_run_io(sh, &s);
5028
5029 if (s.dec_preread_active) {
5030 /* We delay this until after ops_run_io so that if make_request
5031 * is waiting on a flush, it won't continue until the writes
5032 * have actually been submitted.
5033 */
5034 atomic_dec(&conf->preread_active_stripes);
5035 if (atomic_read(&conf->preread_active_stripes) <
5036 IO_THRESHOLD)
5037 md_wakeup_thread(conf->mddev->thread);
5038 }
5039
5040 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5041 }
5042
5043 static void raid5_activate_delayed(struct r5conf *conf)
5044 {
5045 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5046 while (!list_empty(&conf->delayed_list)) {
5047 struct list_head *l = conf->delayed_list.next;
5048 struct stripe_head *sh;
5049 sh = list_entry(l, struct stripe_head, lru);
5050 list_del_init(l);
5051 clear_bit(STRIPE_DELAYED, &sh->state);
5052 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5053 atomic_inc(&conf->preread_active_stripes);
5054 list_add_tail(&sh->lru, &conf->hold_list);
5055 raid5_wakeup_stripe_thread(sh);
5056 }
5057 }
5058 }
5059
5060 static void activate_bit_delay(struct r5conf *conf,
5061 struct list_head *temp_inactive_list)
5062 {
5063 /* device_lock is held */
5064 struct list_head head;
5065 list_add(&head, &conf->bitmap_list);
5066 list_del_init(&conf->bitmap_list);
5067 while (!list_empty(&head)) {
5068 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5069 int hash;
5070 list_del_init(&sh->lru);
5071 atomic_inc(&sh->count);
5072 hash = sh->hash_lock_index;
5073 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5074 }
5075 }
5076
5077 static int raid5_congested(struct mddev *mddev, int bits)
5078 {
5079 struct r5conf *conf = mddev->private;
5080
5081 /* No difference between reads and writes. Just check
5082 * how busy the stripe_cache is
5083 */
5084
5085 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5086 return 1;
5087
5088 /* Also checks whether there is pressure on r5cache log space */
5089 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5090 return 1;
5091 if (conf->quiesce)
5092 return 1;
5093 if (atomic_read(&conf->empty_inactive_list_nr))
5094 return 1;
5095
5096 return 0;
5097 }
5098
5099 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5100 {
5101 struct r5conf *conf = mddev->private;
5102 sector_t sector = bio->bi_iter.bi_sector;
5103 unsigned int chunk_sectors;
5104 unsigned int bio_sectors = bio_sectors(bio);
5105
5106 WARN_ON_ONCE(bio->bi_partno);
5107
5108 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5109 return chunk_sectors >=
5110 ((sector & (chunk_sectors - 1)) + bio_sectors);
5111 }
5112
5113 /*
5114 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5115 * later sampled by raid5d.
5116 */
5117 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5118 {
5119 unsigned long flags;
5120
5121 spin_lock_irqsave(&conf->device_lock, flags);
5122
5123 bi->bi_next = conf->retry_read_aligned_list;
5124 conf->retry_read_aligned_list = bi;
5125
5126 spin_unlock_irqrestore(&conf->device_lock, flags);
5127 md_wakeup_thread(conf->mddev->thread);
5128 }
5129
5130 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5131 unsigned int *offset)
5132 {
5133 struct bio *bi;
5134
5135 bi = conf->retry_read_aligned;
5136 if (bi) {
5137 *offset = conf->retry_read_offset;
5138 conf->retry_read_aligned = NULL;
5139 return bi;
5140 }
5141 bi = conf->retry_read_aligned_list;
5142 if(bi) {
5143 conf->retry_read_aligned_list = bi->bi_next;
5144 bi->bi_next = NULL;
5145 *offset = 0;
5146 }
5147
5148 return bi;
5149 }
5150
5151 /*
5152 * The "raid5_align_endio" should check if the read succeeded and if it
5153 * did, call bio_endio on the original bio (having bio_put the new bio
5154 * first).
5155 * If the read failed..
5156 */
5157 static void raid5_align_endio(struct bio *bi)
5158 {
5159 struct bio* raid_bi = bi->bi_private;
5160 struct mddev *mddev;
5161 struct r5conf *conf;
5162 struct md_rdev *rdev;
5163 blk_status_t error = bi->bi_status;
5164
5165 bio_put(bi);
5166
5167 rdev = (void*)raid_bi->bi_next;
5168 raid_bi->bi_next = NULL;
5169 mddev = rdev->mddev;
5170 conf = mddev->private;
5171
5172 rdev_dec_pending(rdev, conf->mddev);
5173
5174 if (!error) {
5175 bio_endio(raid_bi);
5176 if (atomic_dec_and_test(&conf->active_aligned_reads))
5177 wake_up(&conf->wait_for_quiescent);
5178 return;
5179 }
5180
5181 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5182
5183 add_bio_to_retry(raid_bi, conf);
5184 }
5185
5186 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5187 {
5188 struct r5conf *conf = mddev->private;
5189 int dd_idx;
5190 struct bio* align_bi;
5191 struct md_rdev *rdev;
5192 sector_t end_sector;
5193
5194 if (!in_chunk_boundary(mddev, raid_bio)) {
5195 pr_debug("%s: non aligned\n", __func__);
5196 return 0;
5197 }
5198 /*
5199 * use bio_clone_fast to make a copy of the bio
5200 */
5201 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5202 if (!align_bi)
5203 return 0;
5204 /*
5205 * set bi_end_io to a new function, and set bi_private to the
5206 * original bio.
5207 */
5208 align_bi->bi_end_io = raid5_align_endio;
5209 align_bi->bi_private = raid_bio;
5210 /*
5211 * compute position
5212 */
5213 align_bi->bi_iter.bi_sector =
5214 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5215 0, &dd_idx, NULL);
5216
5217 end_sector = bio_end_sector(align_bi);
5218 rcu_read_lock();
5219 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5220 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5221 rdev->recovery_offset < end_sector) {
5222 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5223 if (rdev &&
5224 (test_bit(Faulty, &rdev->flags) ||
5225 !(test_bit(In_sync, &rdev->flags) ||
5226 rdev->recovery_offset >= end_sector)))
5227 rdev = NULL;
5228 }
5229
5230 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5231 rcu_read_unlock();
5232 bio_put(align_bi);
5233 return 0;
5234 }
5235
5236 if (rdev) {
5237 sector_t first_bad;
5238 int bad_sectors;
5239
5240 atomic_inc(&rdev->nr_pending);
5241 rcu_read_unlock();
5242 raid_bio->bi_next = (void*)rdev;
5243 bio_set_dev(align_bi, rdev->bdev);
5244 bio_clear_flag(align_bi, BIO_SEG_VALID);
5245
5246 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5247 bio_sectors(align_bi),
5248 &first_bad, &bad_sectors)) {
5249 bio_put(align_bi);
5250 rdev_dec_pending(rdev, mddev);
5251 return 0;
5252 }
5253
5254 /* No reshape active, so we can trust rdev->data_offset */
5255 align_bi->bi_iter.bi_sector += rdev->data_offset;
5256
5257 spin_lock_irq(&conf->device_lock);
5258 wait_event_lock_irq(conf->wait_for_quiescent,
5259 conf->quiesce == 0,
5260 conf->device_lock);
5261 atomic_inc(&conf->active_aligned_reads);
5262 spin_unlock_irq(&conf->device_lock);
5263
5264 if (mddev->gendisk)
5265 trace_block_bio_remap(align_bi->bi_disk->queue,
5266 align_bi, disk_devt(mddev->gendisk),
5267 raid_bio->bi_iter.bi_sector);
5268 generic_make_request(align_bi);
5269 return 1;
5270 } else {
5271 rcu_read_unlock();
5272 bio_put(align_bi);
5273 return 0;
5274 }
5275 }
5276
5277 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5278 {
5279 struct bio *split;
5280 sector_t sector = raid_bio->bi_iter.bi_sector;
5281 unsigned chunk_sects = mddev->chunk_sectors;
5282 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5283
5284 if (sectors < bio_sectors(raid_bio)) {
5285 struct r5conf *conf = mddev->private;
5286 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5287 bio_chain(split, raid_bio);
5288 generic_make_request(raid_bio);
5289 raid_bio = split;
5290 }
5291
5292 if (!raid5_read_one_chunk(mddev, raid_bio))
5293 return raid_bio;
5294
5295 return NULL;
5296 }
5297
5298 /* __get_priority_stripe - get the next stripe to process
5299 *
5300 * Full stripe writes are allowed to pass preread active stripes up until
5301 * the bypass_threshold is exceeded. In general the bypass_count
5302 * increments when the handle_list is handled before the hold_list; however, it
5303 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5304 * stripe with in flight i/o. The bypass_count will be reset when the
5305 * head of the hold_list has changed, i.e. the head was promoted to the
5306 * handle_list.
5307 */
5308 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5309 {
5310 struct stripe_head *sh, *tmp;
5311 struct list_head *handle_list = NULL;
5312 struct r5worker_group *wg;
5313 bool second_try = !r5c_is_writeback(conf->log) &&
5314 !r5l_log_disk_error(conf);
5315 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5316 r5l_log_disk_error(conf);
5317
5318 again:
5319 wg = NULL;
5320 sh = NULL;
5321 if (conf->worker_cnt_per_group == 0) {
5322 handle_list = try_loprio ? &conf->loprio_list :
5323 &conf->handle_list;
5324 } else if (group != ANY_GROUP) {
5325 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5326 &conf->worker_groups[group].handle_list;
5327 wg = &conf->worker_groups[group];
5328 } else {
5329 int i;
5330 for (i = 0; i < conf->group_cnt; i++) {
5331 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5332 &conf->worker_groups[i].handle_list;
5333 wg = &conf->worker_groups[i];
5334 if (!list_empty(handle_list))
5335 break;
5336 }
5337 }
5338
5339 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5340 __func__,
5341 list_empty(handle_list) ? "empty" : "busy",
5342 list_empty(&conf->hold_list) ? "empty" : "busy",
5343 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5344
5345 if (!list_empty(handle_list)) {
5346 sh = list_entry(handle_list->next, typeof(*sh), lru);
5347
5348 if (list_empty(&conf->hold_list))
5349 conf->bypass_count = 0;
5350 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5351 if (conf->hold_list.next == conf->last_hold)
5352 conf->bypass_count++;
5353 else {
5354 conf->last_hold = conf->hold_list.next;
5355 conf->bypass_count -= conf->bypass_threshold;
5356 if (conf->bypass_count < 0)
5357 conf->bypass_count = 0;
5358 }
5359 }
5360 } else if (!list_empty(&conf->hold_list) &&
5361 ((conf->bypass_threshold &&
5362 conf->bypass_count > conf->bypass_threshold) ||
5363 atomic_read(&conf->pending_full_writes) == 0)) {
5364
5365 list_for_each_entry(tmp, &conf->hold_list, lru) {
5366 if (conf->worker_cnt_per_group == 0 ||
5367 group == ANY_GROUP ||
5368 !cpu_online(tmp->cpu) ||
5369 cpu_to_group(tmp->cpu) == group) {
5370 sh = tmp;
5371 break;
5372 }
5373 }
5374
5375 if (sh) {
5376 conf->bypass_count -= conf->bypass_threshold;
5377 if (conf->bypass_count < 0)
5378 conf->bypass_count = 0;
5379 }
5380 wg = NULL;
5381 }
5382
5383 if (!sh) {
5384 if (second_try)
5385 return NULL;
5386 second_try = true;
5387 try_loprio = !try_loprio;
5388 goto again;
5389 }
5390
5391 if (wg) {
5392 wg->stripes_cnt--;
5393 sh->group = NULL;
5394 }
5395 list_del_init(&sh->lru);
5396 BUG_ON(atomic_inc_return(&sh->count) != 1);
5397 return sh;
5398 }
5399
5400 struct raid5_plug_cb {
5401 struct blk_plug_cb cb;
5402 struct list_head list;
5403 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5404 };
5405
5406 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5407 {
5408 struct raid5_plug_cb *cb = container_of(
5409 blk_cb, struct raid5_plug_cb, cb);
5410 struct stripe_head *sh;
5411 struct mddev *mddev = cb->cb.data;
5412 struct r5conf *conf = mddev->private;
5413 int cnt = 0;
5414 int hash;
5415
5416 if (cb->list.next && !list_empty(&cb->list)) {
5417 spin_lock_irq(&conf->device_lock);
5418 while (!list_empty(&cb->list)) {
5419 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5420 list_del_init(&sh->lru);
5421 /*
5422 * avoid race release_stripe_plug() sees
5423 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5424 * is still in our list
5425 */
5426 smp_mb__before_atomic();
5427 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5428 /*
5429 * STRIPE_ON_RELEASE_LIST could be set here. In that
5430 * case, the count is always > 1 here
5431 */
5432 hash = sh->hash_lock_index;
5433 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5434 cnt++;
5435 }
5436 spin_unlock_irq(&conf->device_lock);
5437 }
5438 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5439 NR_STRIPE_HASH_LOCKS);
5440 if (mddev->queue)
5441 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5442 kfree(cb);
5443 }
5444
5445 static void release_stripe_plug(struct mddev *mddev,
5446 struct stripe_head *sh)
5447 {
5448 struct blk_plug_cb *blk_cb = blk_check_plugged(
5449 raid5_unplug, mddev,
5450 sizeof(struct raid5_plug_cb));
5451 struct raid5_plug_cb *cb;
5452
5453 if (!blk_cb) {
5454 raid5_release_stripe(sh);
5455 return;
5456 }
5457
5458 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5459
5460 if (cb->list.next == NULL) {
5461 int i;
5462 INIT_LIST_HEAD(&cb->list);
5463 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5464 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5465 }
5466
5467 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5468 list_add_tail(&sh->lru, &cb->list);
5469 else
5470 raid5_release_stripe(sh);
5471 }
5472
5473 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5474 {
5475 struct r5conf *conf = mddev->private;
5476 sector_t logical_sector, last_sector;
5477 struct stripe_head *sh;
5478 int stripe_sectors;
5479
5480 if (mddev->reshape_position != MaxSector)
5481 /* Skip discard while reshape is happening */
5482 return;
5483
5484 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5485 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5486
5487 bi->bi_next = NULL;
5488
5489 stripe_sectors = conf->chunk_sectors *
5490 (conf->raid_disks - conf->max_degraded);
5491 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5492 stripe_sectors);
5493 sector_div(last_sector, stripe_sectors);
5494
5495 logical_sector *= conf->chunk_sectors;
5496 last_sector *= conf->chunk_sectors;
5497
5498 for (; logical_sector < last_sector;
5499 logical_sector += STRIPE_SECTORS) {
5500 DEFINE_WAIT(w);
5501 int d;
5502 again:
5503 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5504 prepare_to_wait(&conf->wait_for_overlap, &w,
5505 TASK_UNINTERRUPTIBLE);
5506 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5507 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5508 raid5_release_stripe(sh);
5509 schedule();
5510 goto again;
5511 }
5512 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5513 spin_lock_irq(&sh->stripe_lock);
5514 for (d = 0; d < conf->raid_disks; d++) {
5515 if (d == sh->pd_idx || d == sh->qd_idx)
5516 continue;
5517 if (sh->dev[d].towrite || sh->dev[d].toread) {
5518 set_bit(R5_Overlap, &sh->dev[d].flags);
5519 spin_unlock_irq(&sh->stripe_lock);
5520 raid5_release_stripe(sh);
5521 schedule();
5522 goto again;
5523 }
5524 }
5525 set_bit(STRIPE_DISCARD, &sh->state);
5526 finish_wait(&conf->wait_for_overlap, &w);
5527 sh->overwrite_disks = 0;
5528 for (d = 0; d < conf->raid_disks; d++) {
5529 if (d == sh->pd_idx || d == sh->qd_idx)
5530 continue;
5531 sh->dev[d].towrite = bi;
5532 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5533 bio_inc_remaining(bi);
5534 md_write_inc(mddev, bi);
5535 sh->overwrite_disks++;
5536 }
5537 spin_unlock_irq(&sh->stripe_lock);
5538 if (conf->mddev->bitmap) {
5539 for (d = 0;
5540 d < conf->raid_disks - conf->max_degraded;
5541 d++)
5542 bitmap_startwrite(mddev->bitmap,
5543 sh->sector,
5544 STRIPE_SECTORS,
5545 0);
5546 sh->bm_seq = conf->seq_flush + 1;
5547 set_bit(STRIPE_BIT_DELAY, &sh->state);
5548 }
5549
5550 set_bit(STRIPE_HANDLE, &sh->state);
5551 clear_bit(STRIPE_DELAYED, &sh->state);
5552 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5553 atomic_inc(&conf->preread_active_stripes);
5554 release_stripe_plug(mddev, sh);
5555 }
5556
5557 bio_endio(bi);
5558 }
5559
5560 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5561 {
5562 struct r5conf *conf = mddev->private;
5563 int dd_idx;
5564 sector_t new_sector;
5565 sector_t logical_sector, last_sector;
5566 struct stripe_head *sh;
5567 const int rw = bio_data_dir(bi);
5568 DEFINE_WAIT(w);
5569 bool do_prepare;
5570 bool do_flush = false;
5571
5572 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5573 int ret = log_handle_flush_request(conf, bi);
5574
5575 if (ret == 0)
5576 return true;
5577 if (ret == -ENODEV) {
5578 md_flush_request(mddev, bi);
5579 return true;
5580 }
5581 /* ret == -EAGAIN, fallback */
5582 /*
5583 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5584 * we need to flush journal device
5585 */
5586 do_flush = bi->bi_opf & REQ_PREFLUSH;
5587 }
5588
5589 if (!md_write_start(mddev, bi))
5590 return false;
5591 /*
5592 * If array is degraded, better not do chunk aligned read because
5593 * later we might have to read it again in order to reconstruct
5594 * data on failed drives.
5595 */
5596 if (rw == READ && mddev->degraded == 0 &&
5597 mddev->reshape_position == MaxSector) {
5598 bi = chunk_aligned_read(mddev, bi);
5599 if (!bi)
5600 return true;
5601 }
5602
5603 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5604 make_discard_request(mddev, bi);
5605 md_write_end(mddev);
5606 return true;
5607 }
5608
5609 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5610 last_sector = bio_end_sector(bi);
5611 bi->bi_next = NULL;
5612
5613 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5614 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5615 int previous;
5616 int seq;
5617
5618 do_prepare = false;
5619 retry:
5620 seq = read_seqcount_begin(&conf->gen_lock);
5621 previous = 0;
5622 if (do_prepare)
5623 prepare_to_wait(&conf->wait_for_overlap, &w,
5624 TASK_UNINTERRUPTIBLE);
5625 if (unlikely(conf->reshape_progress != MaxSector)) {
5626 /* spinlock is needed as reshape_progress may be
5627 * 64bit on a 32bit platform, and so it might be
5628 * possible to see a half-updated value
5629 * Of course reshape_progress could change after
5630 * the lock is dropped, so once we get a reference
5631 * to the stripe that we think it is, we will have
5632 * to check again.
5633 */
5634 spin_lock_irq(&conf->device_lock);
5635 if (mddev->reshape_backwards
5636 ? logical_sector < conf->reshape_progress
5637 : logical_sector >= conf->reshape_progress) {
5638 previous = 1;
5639 } else {
5640 if (mddev->reshape_backwards
5641 ? logical_sector < conf->reshape_safe
5642 : logical_sector >= conf->reshape_safe) {
5643 spin_unlock_irq(&conf->device_lock);
5644 schedule();
5645 do_prepare = true;
5646 goto retry;
5647 }
5648 }
5649 spin_unlock_irq(&conf->device_lock);
5650 }
5651
5652 new_sector = raid5_compute_sector(conf, logical_sector,
5653 previous,
5654 &dd_idx, NULL);
5655 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5656 (unsigned long long)new_sector,
5657 (unsigned long long)logical_sector);
5658
5659 sh = raid5_get_active_stripe(conf, new_sector, previous,
5660 (bi->bi_opf & REQ_RAHEAD), 0);
5661 if (sh) {
5662 if (unlikely(previous)) {
5663 /* expansion might have moved on while waiting for a
5664 * stripe, so we must do the range check again.
5665 * Expansion could still move past after this
5666 * test, but as we are holding a reference to
5667 * 'sh', we know that if that happens,
5668 * STRIPE_EXPANDING will get set and the expansion
5669 * won't proceed until we finish with the stripe.
5670 */
5671 int must_retry = 0;
5672 spin_lock_irq(&conf->device_lock);
5673 if (mddev->reshape_backwards
5674 ? logical_sector >= conf->reshape_progress
5675 : logical_sector < conf->reshape_progress)
5676 /* mismatch, need to try again */
5677 must_retry = 1;
5678 spin_unlock_irq(&conf->device_lock);
5679 if (must_retry) {
5680 raid5_release_stripe(sh);
5681 schedule();
5682 do_prepare = true;
5683 goto retry;
5684 }
5685 }
5686 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5687 /* Might have got the wrong stripe_head
5688 * by accident
5689 */
5690 raid5_release_stripe(sh);
5691 goto retry;
5692 }
5693
5694 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5695 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5696 /* Stripe is busy expanding or
5697 * add failed due to overlap. Flush everything
5698 * and wait a while
5699 */
5700 md_wakeup_thread(mddev->thread);
5701 raid5_release_stripe(sh);
5702 schedule();
5703 do_prepare = true;
5704 goto retry;
5705 }
5706 if (do_flush) {
5707 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5708 /* we only need flush for one stripe */
5709 do_flush = false;
5710 }
5711
5712 set_bit(STRIPE_HANDLE, &sh->state);
5713 clear_bit(STRIPE_DELAYED, &sh->state);
5714 if ((!sh->batch_head || sh == sh->batch_head) &&
5715 (bi->bi_opf & REQ_SYNC) &&
5716 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5717 atomic_inc(&conf->preread_active_stripes);
5718 release_stripe_plug(mddev, sh);
5719 } else {
5720 /* cannot get stripe for read-ahead, just give-up */
5721 bi->bi_status = BLK_STS_IOERR;
5722 break;
5723 }
5724 }
5725 finish_wait(&conf->wait_for_overlap, &w);
5726
5727 if (rw == WRITE)
5728 md_write_end(mddev);
5729 bio_endio(bi);
5730 return true;
5731 }
5732
5733 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5734
5735 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5736 {
5737 /* reshaping is quite different to recovery/resync so it is
5738 * handled quite separately ... here.
5739 *
5740 * On each call to sync_request, we gather one chunk worth of
5741 * destination stripes and flag them as expanding.
5742 * Then we find all the source stripes and request reads.
5743 * As the reads complete, handle_stripe will copy the data
5744 * into the destination stripe and release that stripe.
5745 */
5746 struct r5conf *conf = mddev->private;
5747 struct stripe_head *sh;
5748 struct md_rdev *rdev;
5749 sector_t first_sector, last_sector;
5750 int raid_disks = conf->previous_raid_disks;
5751 int data_disks = raid_disks - conf->max_degraded;
5752 int new_data_disks = conf->raid_disks - conf->max_degraded;
5753 int i;
5754 int dd_idx;
5755 sector_t writepos, readpos, safepos;
5756 sector_t stripe_addr;
5757 int reshape_sectors;
5758 struct list_head stripes;
5759 sector_t retn;
5760
5761 if (sector_nr == 0) {
5762 /* If restarting in the middle, skip the initial sectors */
5763 if (mddev->reshape_backwards &&
5764 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5765 sector_nr = raid5_size(mddev, 0, 0)
5766 - conf->reshape_progress;
5767 } else if (mddev->reshape_backwards &&
5768 conf->reshape_progress == MaxSector) {
5769 /* shouldn't happen, but just in case, finish up.*/
5770 sector_nr = MaxSector;
5771 } else if (!mddev->reshape_backwards &&
5772 conf->reshape_progress > 0)
5773 sector_nr = conf->reshape_progress;
5774 sector_div(sector_nr, new_data_disks);
5775 if (sector_nr) {
5776 mddev->curr_resync_completed = sector_nr;
5777 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5778 *skipped = 1;
5779 retn = sector_nr;
5780 goto finish;
5781 }
5782 }
5783
5784 /* We need to process a full chunk at a time.
5785 * If old and new chunk sizes differ, we need to process the
5786 * largest of these
5787 */
5788
5789 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5790
5791 /* We update the metadata at least every 10 seconds, or when
5792 * the data about to be copied would over-write the source of
5793 * the data at the front of the range. i.e. one new_stripe
5794 * along from reshape_progress new_maps to after where
5795 * reshape_safe old_maps to
5796 */
5797 writepos = conf->reshape_progress;
5798 sector_div(writepos, new_data_disks);
5799 readpos = conf->reshape_progress;
5800 sector_div(readpos, data_disks);
5801 safepos = conf->reshape_safe;
5802 sector_div(safepos, data_disks);
5803 if (mddev->reshape_backwards) {
5804 BUG_ON(writepos < reshape_sectors);
5805 writepos -= reshape_sectors;
5806 readpos += reshape_sectors;
5807 safepos += reshape_sectors;
5808 } else {
5809 writepos += reshape_sectors;
5810 /* readpos and safepos are worst-case calculations.
5811 * A negative number is overly pessimistic, and causes
5812 * obvious problems for unsigned storage. So clip to 0.
5813 */
5814 readpos -= min_t(sector_t, reshape_sectors, readpos);
5815 safepos -= min_t(sector_t, reshape_sectors, safepos);
5816 }
5817
5818 /* Having calculated the 'writepos' possibly use it
5819 * to set 'stripe_addr' which is where we will write to.
5820 */
5821 if (mddev->reshape_backwards) {
5822 BUG_ON(conf->reshape_progress == 0);
5823 stripe_addr = writepos;
5824 BUG_ON((mddev->dev_sectors &
5825 ~((sector_t)reshape_sectors - 1))
5826 - reshape_sectors - stripe_addr
5827 != sector_nr);
5828 } else {
5829 BUG_ON(writepos != sector_nr + reshape_sectors);
5830 stripe_addr = sector_nr;
5831 }
5832
5833 /* 'writepos' is the most advanced device address we might write.
5834 * 'readpos' is the least advanced device address we might read.
5835 * 'safepos' is the least address recorded in the metadata as having
5836 * been reshaped.
5837 * If there is a min_offset_diff, these are adjusted either by
5838 * increasing the safepos/readpos if diff is negative, or
5839 * increasing writepos if diff is positive.
5840 * If 'readpos' is then behind 'writepos', there is no way that we can
5841 * ensure safety in the face of a crash - that must be done by userspace
5842 * making a backup of the data. So in that case there is no particular
5843 * rush to update metadata.
5844 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5845 * update the metadata to advance 'safepos' to match 'readpos' so that
5846 * we can be safe in the event of a crash.
5847 * So we insist on updating metadata if safepos is behind writepos and
5848 * readpos is beyond writepos.
5849 * In any case, update the metadata every 10 seconds.
5850 * Maybe that number should be configurable, but I'm not sure it is
5851 * worth it.... maybe it could be a multiple of safemode_delay???
5852 */
5853 if (conf->min_offset_diff < 0) {
5854 safepos += -conf->min_offset_diff;
5855 readpos += -conf->min_offset_diff;
5856 } else
5857 writepos += conf->min_offset_diff;
5858
5859 if ((mddev->reshape_backwards
5860 ? (safepos > writepos && readpos < writepos)
5861 : (safepos < writepos && readpos > writepos)) ||
5862 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5863 /* Cannot proceed until we've updated the superblock... */
5864 wait_event(conf->wait_for_overlap,
5865 atomic_read(&conf->reshape_stripes)==0
5866 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5867 if (atomic_read(&conf->reshape_stripes) != 0)
5868 return 0;
5869 mddev->reshape_position = conf->reshape_progress;
5870 mddev->curr_resync_completed = sector_nr;
5871 if (!mddev->reshape_backwards)
5872 /* Can update recovery_offset */
5873 rdev_for_each(rdev, mddev)
5874 if (rdev->raid_disk >= 0 &&
5875 !test_bit(Journal, &rdev->flags) &&
5876 !test_bit(In_sync, &rdev->flags) &&
5877 rdev->recovery_offset < sector_nr)
5878 rdev->recovery_offset = sector_nr;
5879
5880 conf->reshape_checkpoint = jiffies;
5881 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5882 md_wakeup_thread(mddev->thread);
5883 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5884 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5885 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5886 return 0;
5887 spin_lock_irq(&conf->device_lock);
5888 conf->reshape_safe = mddev->reshape_position;
5889 spin_unlock_irq(&conf->device_lock);
5890 wake_up(&conf->wait_for_overlap);
5891 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5892 }
5893
5894 INIT_LIST_HEAD(&stripes);
5895 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5896 int j;
5897 int skipped_disk = 0;
5898 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5899 set_bit(STRIPE_EXPANDING, &sh->state);
5900 atomic_inc(&conf->reshape_stripes);
5901 /* If any of this stripe is beyond the end of the old
5902 * array, then we need to zero those blocks
5903 */
5904 for (j=sh->disks; j--;) {
5905 sector_t s;
5906 if (j == sh->pd_idx)
5907 continue;
5908 if (conf->level == 6 &&
5909 j == sh->qd_idx)
5910 continue;
5911 s = raid5_compute_blocknr(sh, j, 0);
5912 if (s < raid5_size(mddev, 0, 0)) {
5913 skipped_disk = 1;
5914 continue;
5915 }
5916 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5917 set_bit(R5_Expanded, &sh->dev[j].flags);
5918 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5919 }
5920 if (!skipped_disk) {
5921 set_bit(STRIPE_EXPAND_READY, &sh->state);
5922 set_bit(STRIPE_HANDLE, &sh->state);
5923 }
5924 list_add(&sh->lru, &stripes);
5925 }
5926 spin_lock_irq(&conf->device_lock);
5927 if (mddev->reshape_backwards)
5928 conf->reshape_progress -= reshape_sectors * new_data_disks;
5929 else
5930 conf->reshape_progress += reshape_sectors * new_data_disks;
5931 spin_unlock_irq(&conf->device_lock);
5932 /* Ok, those stripe are ready. We can start scheduling
5933 * reads on the source stripes.
5934 * The source stripes are determined by mapping the first and last
5935 * block on the destination stripes.
5936 */
5937 first_sector =
5938 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5939 1, &dd_idx, NULL);
5940 last_sector =
5941 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5942 * new_data_disks - 1),
5943 1, &dd_idx, NULL);
5944 if (last_sector >= mddev->dev_sectors)
5945 last_sector = mddev->dev_sectors - 1;
5946 while (first_sector <= last_sector) {
5947 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5948 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5949 set_bit(STRIPE_HANDLE, &sh->state);
5950 raid5_release_stripe(sh);
5951 first_sector += STRIPE_SECTORS;
5952 }
5953 /* Now that the sources are clearly marked, we can release
5954 * the destination stripes
5955 */
5956 while (!list_empty(&stripes)) {
5957 sh = list_entry(stripes.next, struct stripe_head, lru);
5958 list_del_init(&sh->lru);
5959 raid5_release_stripe(sh);
5960 }
5961 /* If this takes us to the resync_max point where we have to pause,
5962 * then we need to write out the superblock.
5963 */
5964 sector_nr += reshape_sectors;
5965 retn = reshape_sectors;
5966 finish:
5967 if (mddev->curr_resync_completed > mddev->resync_max ||
5968 (sector_nr - mddev->curr_resync_completed) * 2
5969 >= mddev->resync_max - mddev->curr_resync_completed) {
5970 /* Cannot proceed until we've updated the superblock... */
5971 wait_event(conf->wait_for_overlap,
5972 atomic_read(&conf->reshape_stripes) == 0
5973 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5974 if (atomic_read(&conf->reshape_stripes) != 0)
5975 goto ret;
5976 mddev->reshape_position = conf->reshape_progress;
5977 mddev->curr_resync_completed = sector_nr;
5978 if (!mddev->reshape_backwards)
5979 /* Can update recovery_offset */
5980 rdev_for_each(rdev, mddev)
5981 if (rdev->raid_disk >= 0 &&
5982 !test_bit(Journal, &rdev->flags) &&
5983 !test_bit(In_sync, &rdev->flags) &&
5984 rdev->recovery_offset < sector_nr)
5985 rdev->recovery_offset = sector_nr;
5986 conf->reshape_checkpoint = jiffies;
5987 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5988 md_wakeup_thread(mddev->thread);
5989 wait_event(mddev->sb_wait,
5990 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5991 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5992 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5993 goto ret;
5994 spin_lock_irq(&conf->device_lock);
5995 conf->reshape_safe = mddev->reshape_position;
5996 spin_unlock_irq(&conf->device_lock);
5997 wake_up(&conf->wait_for_overlap);
5998 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5999 }
6000 ret:
6001 return retn;
6002 }
6003
6004 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6005 int *skipped)
6006 {
6007 struct r5conf *conf = mddev->private;
6008 struct stripe_head *sh;
6009 sector_t max_sector = mddev->dev_sectors;
6010 sector_t sync_blocks;
6011 int still_degraded = 0;
6012 int i;
6013
6014 if (sector_nr >= max_sector) {
6015 /* just being told to finish up .. nothing much to do */
6016
6017 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6018 end_reshape(conf);
6019 return 0;
6020 }
6021
6022 if (mddev->curr_resync < max_sector) /* aborted */
6023 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6024 &sync_blocks, 1);
6025 else /* completed sync */
6026 conf->fullsync = 0;
6027 bitmap_close_sync(mddev->bitmap);
6028
6029 return 0;
6030 }
6031
6032 /* Allow raid5_quiesce to complete */
6033 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6034
6035 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6036 return reshape_request(mddev, sector_nr, skipped);
6037
6038 /* No need to check resync_max as we never do more than one
6039 * stripe, and as resync_max will always be on a chunk boundary,
6040 * if the check in md_do_sync didn't fire, there is no chance
6041 * of overstepping resync_max here
6042 */
6043
6044 /* if there is too many failed drives and we are trying
6045 * to resync, then assert that we are finished, because there is
6046 * nothing we can do.
6047 */
6048 if (mddev->degraded >= conf->max_degraded &&
6049 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6050 sector_t rv = mddev->dev_sectors - sector_nr;
6051 *skipped = 1;
6052 return rv;
6053 }
6054 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6055 !conf->fullsync &&
6056 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6057 sync_blocks >= STRIPE_SECTORS) {
6058 /* we can skip this block, and probably more */
6059 sync_blocks /= STRIPE_SECTORS;
6060 *skipped = 1;
6061 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6062 }
6063
6064 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6065
6066 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6067 if (sh == NULL) {
6068 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6069 /* make sure we don't swamp the stripe cache if someone else
6070 * is trying to get access
6071 */
6072 schedule_timeout_uninterruptible(1);
6073 }
6074 /* Need to check if array will still be degraded after recovery/resync
6075 * Note in case of > 1 drive failures it's possible we're rebuilding
6076 * one drive while leaving another faulty drive in array.
6077 */
6078 rcu_read_lock();
6079 for (i = 0; i < conf->raid_disks; i++) {
6080 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6081
6082 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6083 still_degraded = 1;
6084 }
6085 rcu_read_unlock();
6086
6087 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6088
6089 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6090 set_bit(STRIPE_HANDLE, &sh->state);
6091
6092 raid5_release_stripe(sh);
6093
6094 return STRIPE_SECTORS;
6095 }
6096
6097 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6098 unsigned int offset)
6099 {
6100 /* We may not be able to submit a whole bio at once as there
6101 * may not be enough stripe_heads available.
6102 * We cannot pre-allocate enough stripe_heads as we may need
6103 * more than exist in the cache (if we allow ever large chunks).
6104 * So we do one stripe head at a time and record in
6105 * ->bi_hw_segments how many have been done.
6106 *
6107 * We *know* that this entire raid_bio is in one chunk, so
6108 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6109 */
6110 struct stripe_head *sh;
6111 int dd_idx;
6112 sector_t sector, logical_sector, last_sector;
6113 int scnt = 0;
6114 int handled = 0;
6115
6116 logical_sector = raid_bio->bi_iter.bi_sector &
6117 ~((sector_t)STRIPE_SECTORS-1);
6118 sector = raid5_compute_sector(conf, logical_sector,
6119 0, &dd_idx, NULL);
6120 last_sector = bio_end_sector(raid_bio);
6121
6122 for (; logical_sector < last_sector;
6123 logical_sector += STRIPE_SECTORS,
6124 sector += STRIPE_SECTORS,
6125 scnt++) {
6126
6127 if (scnt < offset)
6128 /* already done this stripe */
6129 continue;
6130
6131 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6132
6133 if (!sh) {
6134 /* failed to get a stripe - must wait */
6135 conf->retry_read_aligned = raid_bio;
6136 conf->retry_read_offset = scnt;
6137 return handled;
6138 }
6139
6140 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6141 raid5_release_stripe(sh);
6142 conf->retry_read_aligned = raid_bio;
6143 conf->retry_read_offset = scnt;
6144 return handled;
6145 }
6146
6147 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6148 handle_stripe(sh);
6149 raid5_release_stripe(sh);
6150 handled++;
6151 }
6152
6153 bio_endio(raid_bio);
6154
6155 if (atomic_dec_and_test(&conf->active_aligned_reads))
6156 wake_up(&conf->wait_for_quiescent);
6157 return handled;
6158 }
6159
6160 static int handle_active_stripes(struct r5conf *conf, int group,
6161 struct r5worker *worker,
6162 struct list_head *temp_inactive_list)
6163 {
6164 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6165 int i, batch_size = 0, hash;
6166 bool release_inactive = false;
6167
6168 while (batch_size < MAX_STRIPE_BATCH &&
6169 (sh = __get_priority_stripe(conf, group)) != NULL)
6170 batch[batch_size++] = sh;
6171
6172 if (batch_size == 0) {
6173 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6174 if (!list_empty(temp_inactive_list + i))
6175 break;
6176 if (i == NR_STRIPE_HASH_LOCKS) {
6177 spin_unlock_irq(&conf->device_lock);
6178 log_flush_stripe_to_raid(conf);
6179 spin_lock_irq(&conf->device_lock);
6180 return batch_size;
6181 }
6182 release_inactive = true;
6183 }
6184 spin_unlock_irq(&conf->device_lock);
6185
6186 release_inactive_stripe_list(conf, temp_inactive_list,
6187 NR_STRIPE_HASH_LOCKS);
6188
6189 r5l_flush_stripe_to_raid(conf->log);
6190 if (release_inactive) {
6191 spin_lock_irq(&conf->device_lock);
6192 return 0;
6193 }
6194
6195 for (i = 0; i < batch_size; i++)
6196 handle_stripe(batch[i]);
6197 log_write_stripe_run(conf);
6198
6199 cond_resched();
6200
6201 spin_lock_irq(&conf->device_lock);
6202 for (i = 0; i < batch_size; i++) {
6203 hash = batch[i]->hash_lock_index;
6204 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6205 }
6206 return batch_size;
6207 }
6208
6209 static void raid5_do_work(struct work_struct *work)
6210 {
6211 struct r5worker *worker = container_of(work, struct r5worker, work);
6212 struct r5worker_group *group = worker->group;
6213 struct r5conf *conf = group->conf;
6214 struct mddev *mddev = conf->mddev;
6215 int group_id = group - conf->worker_groups;
6216 int handled;
6217 struct blk_plug plug;
6218
6219 pr_debug("+++ raid5worker active\n");
6220
6221 blk_start_plug(&plug);
6222 handled = 0;
6223 spin_lock_irq(&conf->device_lock);
6224 while (1) {
6225 int batch_size, released;
6226
6227 released = release_stripe_list(conf, worker->temp_inactive_list);
6228
6229 batch_size = handle_active_stripes(conf, group_id, worker,
6230 worker->temp_inactive_list);
6231 worker->working = false;
6232 if (!batch_size && !released)
6233 break;
6234 handled += batch_size;
6235 wait_event_lock_irq(mddev->sb_wait,
6236 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6237 conf->device_lock);
6238 }
6239 pr_debug("%d stripes handled\n", handled);
6240
6241 spin_unlock_irq(&conf->device_lock);
6242
6243 flush_deferred_bios(conf);
6244
6245 r5l_flush_stripe_to_raid(conf->log);
6246
6247 async_tx_issue_pending_all();
6248 blk_finish_plug(&plug);
6249
6250 pr_debug("--- raid5worker inactive\n");
6251 }
6252
6253 /*
6254 * This is our raid5 kernel thread.
6255 *
6256 * We scan the hash table for stripes which can be handled now.
6257 * During the scan, completed stripes are saved for us by the interrupt
6258 * handler, so that they will not have to wait for our next wakeup.
6259 */
6260 static void raid5d(struct md_thread *thread)
6261 {
6262 struct mddev *mddev = thread->mddev;
6263 struct r5conf *conf = mddev->private;
6264 int handled;
6265 struct blk_plug plug;
6266
6267 pr_debug("+++ raid5d active\n");
6268
6269 md_check_recovery(mddev);
6270
6271 blk_start_plug(&plug);
6272 handled = 0;
6273 spin_lock_irq(&conf->device_lock);
6274 while (1) {
6275 struct bio *bio;
6276 int batch_size, released;
6277 unsigned int offset;
6278
6279 released = release_stripe_list(conf, conf->temp_inactive_list);
6280 if (released)
6281 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6282
6283 if (
6284 !list_empty(&conf->bitmap_list)) {
6285 /* Now is a good time to flush some bitmap updates */
6286 conf->seq_flush++;
6287 spin_unlock_irq(&conf->device_lock);
6288 bitmap_unplug(mddev->bitmap);
6289 spin_lock_irq(&conf->device_lock);
6290 conf->seq_write = conf->seq_flush;
6291 activate_bit_delay(conf, conf->temp_inactive_list);
6292 }
6293 raid5_activate_delayed(conf);
6294
6295 while ((bio = remove_bio_from_retry(conf, &offset))) {
6296 int ok;
6297 spin_unlock_irq(&conf->device_lock);
6298 ok = retry_aligned_read(conf, bio, offset);
6299 spin_lock_irq(&conf->device_lock);
6300 if (!ok)
6301 break;
6302 handled++;
6303 }
6304
6305 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6306 conf->temp_inactive_list);
6307 if (!batch_size && !released)
6308 break;
6309 handled += batch_size;
6310
6311 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6312 spin_unlock_irq(&conf->device_lock);
6313 md_check_recovery(mddev);
6314 spin_lock_irq(&conf->device_lock);
6315 }
6316 }
6317 pr_debug("%d stripes handled\n", handled);
6318
6319 spin_unlock_irq(&conf->device_lock);
6320 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6321 mutex_trylock(&conf->cache_size_mutex)) {
6322 grow_one_stripe(conf, __GFP_NOWARN);
6323 /* Set flag even if allocation failed. This helps
6324 * slow down allocation requests when mem is short
6325 */
6326 set_bit(R5_DID_ALLOC, &conf->cache_state);
6327 mutex_unlock(&conf->cache_size_mutex);
6328 }
6329
6330 flush_deferred_bios(conf);
6331
6332 r5l_flush_stripe_to_raid(conf->log);
6333
6334 async_tx_issue_pending_all();
6335 blk_finish_plug(&plug);
6336
6337 pr_debug("--- raid5d inactive\n");
6338 }
6339
6340 static ssize_t
6341 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6342 {
6343 struct r5conf *conf;
6344 int ret = 0;
6345 spin_lock(&mddev->lock);
6346 conf = mddev->private;
6347 if (conf)
6348 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6349 spin_unlock(&mddev->lock);
6350 return ret;
6351 }
6352
6353 int
6354 raid5_set_cache_size(struct mddev *mddev, int size)
6355 {
6356 struct r5conf *conf = mddev->private;
6357
6358 if (size <= 16 || size > 32768)
6359 return -EINVAL;
6360
6361 conf->min_nr_stripes = size;
6362 mutex_lock(&conf->cache_size_mutex);
6363 while (size < conf->max_nr_stripes &&
6364 drop_one_stripe(conf))
6365 ;
6366 mutex_unlock(&conf->cache_size_mutex);
6367
6368 md_allow_write(mddev);
6369
6370 mutex_lock(&conf->cache_size_mutex);
6371 while (size > conf->max_nr_stripes)
6372 if (!grow_one_stripe(conf, GFP_KERNEL))
6373 break;
6374 mutex_unlock(&conf->cache_size_mutex);
6375
6376 return 0;
6377 }
6378 EXPORT_SYMBOL(raid5_set_cache_size);
6379
6380 static ssize_t
6381 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6382 {
6383 struct r5conf *conf;
6384 unsigned long new;
6385 int err;
6386
6387 if (len >= PAGE_SIZE)
6388 return -EINVAL;
6389 if (kstrtoul(page, 10, &new))
6390 return -EINVAL;
6391 err = mddev_lock(mddev);
6392 if (err)
6393 return err;
6394 conf = mddev->private;
6395 if (!conf)
6396 err = -ENODEV;
6397 else
6398 err = raid5_set_cache_size(mddev, new);
6399 mddev_unlock(mddev);
6400
6401 return err ?: len;
6402 }
6403
6404 static struct md_sysfs_entry
6405 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6406 raid5_show_stripe_cache_size,
6407 raid5_store_stripe_cache_size);
6408
6409 static ssize_t
6410 raid5_show_rmw_level(struct mddev *mddev, char *page)
6411 {
6412 struct r5conf *conf = mddev->private;
6413 if (conf)
6414 return sprintf(page, "%d\n", conf->rmw_level);
6415 else
6416 return 0;
6417 }
6418
6419 static ssize_t
6420 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6421 {
6422 struct r5conf *conf = mddev->private;
6423 unsigned long new;
6424
6425 if (!conf)
6426 return -ENODEV;
6427
6428 if (len >= PAGE_SIZE)
6429 return -EINVAL;
6430
6431 if (kstrtoul(page, 10, &new))
6432 return -EINVAL;
6433
6434 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6435 return -EINVAL;
6436
6437 if (new != PARITY_DISABLE_RMW &&
6438 new != PARITY_ENABLE_RMW &&
6439 new != PARITY_PREFER_RMW)
6440 return -EINVAL;
6441
6442 conf->rmw_level = new;
6443 return len;
6444 }
6445
6446 static struct md_sysfs_entry
6447 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6448 raid5_show_rmw_level,
6449 raid5_store_rmw_level);
6450
6451
6452 static ssize_t
6453 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6454 {
6455 struct r5conf *conf;
6456 int ret = 0;
6457 spin_lock(&mddev->lock);
6458 conf = mddev->private;
6459 if (conf)
6460 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6461 spin_unlock(&mddev->lock);
6462 return ret;
6463 }
6464
6465 static ssize_t
6466 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6467 {
6468 struct r5conf *conf;
6469 unsigned long new;
6470 int err;
6471
6472 if (len >= PAGE_SIZE)
6473 return -EINVAL;
6474 if (kstrtoul(page, 10, &new))
6475 return -EINVAL;
6476
6477 err = mddev_lock(mddev);
6478 if (err)
6479 return err;
6480 conf = mddev->private;
6481 if (!conf)
6482 err = -ENODEV;
6483 else if (new > conf->min_nr_stripes)
6484 err = -EINVAL;
6485 else
6486 conf->bypass_threshold = new;
6487 mddev_unlock(mddev);
6488 return err ?: len;
6489 }
6490
6491 static struct md_sysfs_entry
6492 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6493 S_IRUGO | S_IWUSR,
6494 raid5_show_preread_threshold,
6495 raid5_store_preread_threshold);
6496
6497 static ssize_t
6498 raid5_show_skip_copy(struct mddev *mddev, char *page)
6499 {
6500 struct r5conf *conf;
6501 int ret = 0;
6502 spin_lock(&mddev->lock);
6503 conf = mddev->private;
6504 if (conf)
6505 ret = sprintf(page, "%d\n", conf->skip_copy);
6506 spin_unlock(&mddev->lock);
6507 return ret;
6508 }
6509
6510 static ssize_t
6511 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6512 {
6513 struct r5conf *conf;
6514 unsigned long new;
6515 int err;
6516
6517 if (len >= PAGE_SIZE)
6518 return -EINVAL;
6519 if (kstrtoul(page, 10, &new))
6520 return -EINVAL;
6521 new = !!new;
6522
6523 err = mddev_lock(mddev);
6524 if (err)
6525 return err;
6526 conf = mddev->private;
6527 if (!conf)
6528 err = -ENODEV;
6529 else if (new != conf->skip_copy) {
6530 mddev_suspend(mddev);
6531 conf->skip_copy = new;
6532 if (new)
6533 mddev->queue->backing_dev_info->capabilities |=
6534 BDI_CAP_STABLE_WRITES;
6535 else
6536 mddev->queue->backing_dev_info->capabilities &=
6537 ~BDI_CAP_STABLE_WRITES;
6538 mddev_resume(mddev);
6539 }
6540 mddev_unlock(mddev);
6541 return err ?: len;
6542 }
6543
6544 static struct md_sysfs_entry
6545 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6546 raid5_show_skip_copy,
6547 raid5_store_skip_copy);
6548
6549 static ssize_t
6550 stripe_cache_active_show(struct mddev *mddev, char *page)
6551 {
6552 struct r5conf *conf = mddev->private;
6553 if (conf)
6554 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6555 else
6556 return 0;
6557 }
6558
6559 static struct md_sysfs_entry
6560 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6561
6562 static ssize_t
6563 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6564 {
6565 struct r5conf *conf;
6566 int ret = 0;
6567 spin_lock(&mddev->lock);
6568 conf = mddev->private;
6569 if (conf)
6570 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6571 spin_unlock(&mddev->lock);
6572 return ret;
6573 }
6574
6575 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6576 int *group_cnt,
6577 int *worker_cnt_per_group,
6578 struct r5worker_group **worker_groups);
6579 static ssize_t
6580 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6581 {
6582 struct r5conf *conf;
6583 unsigned int new;
6584 int err;
6585 struct r5worker_group *new_groups, *old_groups;
6586 int group_cnt, worker_cnt_per_group;
6587
6588 if (len >= PAGE_SIZE)
6589 return -EINVAL;
6590 if (kstrtouint(page, 10, &new))
6591 return -EINVAL;
6592 /* 8192 should be big enough */
6593 if (new > 8192)
6594 return -EINVAL;
6595
6596 err = mddev_lock(mddev);
6597 if (err)
6598 return err;
6599 conf = mddev->private;
6600 if (!conf)
6601 err = -ENODEV;
6602 else if (new != conf->worker_cnt_per_group) {
6603 mddev_suspend(mddev);
6604
6605 old_groups = conf->worker_groups;
6606 if (old_groups)
6607 flush_workqueue(raid5_wq);
6608
6609 err = alloc_thread_groups(conf, new,
6610 &group_cnt, &worker_cnt_per_group,
6611 &new_groups);
6612 if (!err) {
6613 spin_lock_irq(&conf->device_lock);
6614 conf->group_cnt = group_cnt;
6615 conf->worker_cnt_per_group = worker_cnt_per_group;
6616 conf->worker_groups = new_groups;
6617 spin_unlock_irq(&conf->device_lock);
6618
6619 if (old_groups)
6620 kfree(old_groups[0].workers);
6621 kfree(old_groups);
6622 }
6623 mddev_resume(mddev);
6624 }
6625 mddev_unlock(mddev);
6626
6627 return err ?: len;
6628 }
6629
6630 static struct md_sysfs_entry
6631 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6632 raid5_show_group_thread_cnt,
6633 raid5_store_group_thread_cnt);
6634
6635 static struct attribute *raid5_attrs[] = {
6636 &raid5_stripecache_size.attr,
6637 &raid5_stripecache_active.attr,
6638 &raid5_preread_bypass_threshold.attr,
6639 &raid5_group_thread_cnt.attr,
6640 &raid5_skip_copy.attr,
6641 &raid5_rmw_level.attr,
6642 &r5c_journal_mode.attr,
6643 NULL,
6644 };
6645 static struct attribute_group raid5_attrs_group = {
6646 .name = NULL,
6647 .attrs = raid5_attrs,
6648 };
6649
6650 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6651 int *group_cnt,
6652 int *worker_cnt_per_group,
6653 struct r5worker_group **worker_groups)
6654 {
6655 int i, j, k;
6656 ssize_t size;
6657 struct r5worker *workers;
6658
6659 *worker_cnt_per_group = cnt;
6660 if (cnt == 0) {
6661 *group_cnt = 0;
6662 *worker_groups = NULL;
6663 return 0;
6664 }
6665 *group_cnt = num_possible_nodes();
6666 size = sizeof(struct r5worker) * cnt;
6667 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6668 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6669 *group_cnt, GFP_NOIO);
6670 if (!*worker_groups || !workers) {
6671 kfree(workers);
6672 kfree(*worker_groups);
6673 return -ENOMEM;
6674 }
6675
6676 for (i = 0; i < *group_cnt; i++) {
6677 struct r5worker_group *group;
6678
6679 group = &(*worker_groups)[i];
6680 INIT_LIST_HEAD(&group->handle_list);
6681 INIT_LIST_HEAD(&group->loprio_list);
6682 group->conf = conf;
6683 group->workers = workers + i * cnt;
6684
6685 for (j = 0; j < cnt; j++) {
6686 struct r5worker *worker = group->workers + j;
6687 worker->group = group;
6688 INIT_WORK(&worker->work, raid5_do_work);
6689
6690 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6691 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6692 }
6693 }
6694
6695 return 0;
6696 }
6697
6698 static void free_thread_groups(struct r5conf *conf)
6699 {
6700 if (conf->worker_groups)
6701 kfree(conf->worker_groups[0].workers);
6702 kfree(conf->worker_groups);
6703 conf->worker_groups = NULL;
6704 }
6705
6706 static sector_t
6707 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6708 {
6709 struct r5conf *conf = mddev->private;
6710
6711 if (!sectors)
6712 sectors = mddev->dev_sectors;
6713 if (!raid_disks)
6714 /* size is defined by the smallest of previous and new size */
6715 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6716
6717 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6718 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6719 return sectors * (raid_disks - conf->max_degraded);
6720 }
6721
6722 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6723 {
6724 safe_put_page(percpu->spare_page);
6725 if (percpu->scribble)
6726 flex_array_free(percpu->scribble);
6727 percpu->spare_page = NULL;
6728 percpu->scribble = NULL;
6729 }
6730
6731 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6732 {
6733 if (conf->level == 6 && !percpu->spare_page)
6734 percpu->spare_page = alloc_page(GFP_KERNEL);
6735 if (!percpu->scribble)
6736 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6737 conf->previous_raid_disks),
6738 max(conf->chunk_sectors,
6739 conf->prev_chunk_sectors)
6740 / STRIPE_SECTORS,
6741 GFP_KERNEL);
6742
6743 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6744 free_scratch_buffer(conf, percpu);
6745 return -ENOMEM;
6746 }
6747
6748 return 0;
6749 }
6750
6751 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6752 {
6753 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6754
6755 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6756 return 0;
6757 }
6758
6759 static void raid5_free_percpu(struct r5conf *conf)
6760 {
6761 if (!conf->percpu)
6762 return;
6763
6764 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6765 free_percpu(conf->percpu);
6766 }
6767
6768 static void free_conf(struct r5conf *conf)
6769 {
6770 int i;
6771
6772 log_exit(conf);
6773
6774 unregister_shrinker(&conf->shrinker);
6775 free_thread_groups(conf);
6776 shrink_stripes(conf);
6777 raid5_free_percpu(conf);
6778 for (i = 0; i < conf->pool_size; i++)
6779 if (conf->disks[i].extra_page)
6780 put_page(conf->disks[i].extra_page);
6781 kfree(conf->disks);
6782 bioset_exit(&conf->bio_split);
6783 kfree(conf->stripe_hashtbl);
6784 kfree(conf->pending_data);
6785 kfree(conf);
6786 }
6787
6788 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6789 {
6790 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6791 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6792
6793 if (alloc_scratch_buffer(conf, percpu)) {
6794 pr_warn("%s: failed memory allocation for cpu%u\n",
6795 __func__, cpu);
6796 return -ENOMEM;
6797 }
6798 return 0;
6799 }
6800
6801 static int raid5_alloc_percpu(struct r5conf *conf)
6802 {
6803 int err = 0;
6804
6805 conf->percpu = alloc_percpu(struct raid5_percpu);
6806 if (!conf->percpu)
6807 return -ENOMEM;
6808
6809 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6810 if (!err) {
6811 conf->scribble_disks = max(conf->raid_disks,
6812 conf->previous_raid_disks);
6813 conf->scribble_sectors = max(conf->chunk_sectors,
6814 conf->prev_chunk_sectors);
6815 }
6816 return err;
6817 }
6818
6819 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6820 struct shrink_control *sc)
6821 {
6822 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6823 unsigned long ret = SHRINK_STOP;
6824
6825 if (mutex_trylock(&conf->cache_size_mutex)) {
6826 ret= 0;
6827 while (ret < sc->nr_to_scan &&
6828 conf->max_nr_stripes > conf->min_nr_stripes) {
6829 if (drop_one_stripe(conf) == 0) {
6830 ret = SHRINK_STOP;
6831 break;
6832 }
6833 ret++;
6834 }
6835 mutex_unlock(&conf->cache_size_mutex);
6836 }
6837 return ret;
6838 }
6839
6840 static unsigned long raid5_cache_count(struct shrinker *shrink,
6841 struct shrink_control *sc)
6842 {
6843 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6844
6845 if (conf->max_nr_stripes < conf->min_nr_stripes)
6846 /* unlikely, but not impossible */
6847 return 0;
6848 return conf->max_nr_stripes - conf->min_nr_stripes;
6849 }
6850
6851 static struct r5conf *setup_conf(struct mddev *mddev)
6852 {
6853 struct r5conf *conf;
6854 int raid_disk, memory, max_disks;
6855 struct md_rdev *rdev;
6856 struct disk_info *disk;
6857 char pers_name[6];
6858 int i;
6859 int group_cnt, worker_cnt_per_group;
6860 struct r5worker_group *new_group;
6861 int ret;
6862
6863 if (mddev->new_level != 5
6864 && mddev->new_level != 4
6865 && mddev->new_level != 6) {
6866 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6867 mdname(mddev), mddev->new_level);
6868 return ERR_PTR(-EIO);
6869 }
6870 if ((mddev->new_level == 5
6871 && !algorithm_valid_raid5(mddev->new_layout)) ||
6872 (mddev->new_level == 6
6873 && !algorithm_valid_raid6(mddev->new_layout))) {
6874 pr_warn("md/raid:%s: layout %d not supported\n",
6875 mdname(mddev), mddev->new_layout);
6876 return ERR_PTR(-EIO);
6877 }
6878 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6879 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6880 mdname(mddev), mddev->raid_disks);
6881 return ERR_PTR(-EINVAL);
6882 }
6883
6884 if (!mddev->new_chunk_sectors ||
6885 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6886 !is_power_of_2(mddev->new_chunk_sectors)) {
6887 pr_warn("md/raid:%s: invalid chunk size %d\n",
6888 mdname(mddev), mddev->new_chunk_sectors << 9);
6889 return ERR_PTR(-EINVAL);
6890 }
6891
6892 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6893 if (conf == NULL)
6894 goto abort;
6895 INIT_LIST_HEAD(&conf->free_list);
6896 INIT_LIST_HEAD(&conf->pending_list);
6897 conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6898 PENDING_IO_MAX, GFP_KERNEL);
6899 if (!conf->pending_data)
6900 goto abort;
6901 for (i = 0; i < PENDING_IO_MAX; i++)
6902 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6903 /* Don't enable multi-threading by default*/
6904 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6905 &new_group)) {
6906 conf->group_cnt = group_cnt;
6907 conf->worker_cnt_per_group = worker_cnt_per_group;
6908 conf->worker_groups = new_group;
6909 } else
6910 goto abort;
6911 spin_lock_init(&conf->device_lock);
6912 seqcount_init(&conf->gen_lock);
6913 mutex_init(&conf->cache_size_mutex);
6914 init_waitqueue_head(&conf->wait_for_quiescent);
6915 init_waitqueue_head(&conf->wait_for_stripe);
6916 init_waitqueue_head(&conf->wait_for_overlap);
6917 INIT_LIST_HEAD(&conf->handle_list);
6918 INIT_LIST_HEAD(&conf->loprio_list);
6919 INIT_LIST_HEAD(&conf->hold_list);
6920 INIT_LIST_HEAD(&conf->delayed_list);
6921 INIT_LIST_HEAD(&conf->bitmap_list);
6922 init_llist_head(&conf->released_stripes);
6923 atomic_set(&conf->active_stripes, 0);
6924 atomic_set(&conf->preread_active_stripes, 0);
6925 atomic_set(&conf->active_aligned_reads, 0);
6926 spin_lock_init(&conf->pending_bios_lock);
6927 conf->batch_bio_dispatch = true;
6928 rdev_for_each(rdev, mddev) {
6929 if (test_bit(Journal, &rdev->flags))
6930 continue;
6931 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6932 conf->batch_bio_dispatch = false;
6933 break;
6934 }
6935 }
6936
6937 conf->bypass_threshold = BYPASS_THRESHOLD;
6938 conf->recovery_disabled = mddev->recovery_disabled - 1;
6939
6940 conf->raid_disks = mddev->raid_disks;
6941 if (mddev->reshape_position == MaxSector)
6942 conf->previous_raid_disks = mddev->raid_disks;
6943 else
6944 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6945 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6946
6947 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6948 GFP_KERNEL);
6949
6950 if (!conf->disks)
6951 goto abort;
6952
6953 for (i = 0; i < max_disks; i++) {
6954 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6955 if (!conf->disks[i].extra_page)
6956 goto abort;
6957 }
6958
6959 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6960 if (ret)
6961 goto abort;
6962 conf->mddev = mddev;
6963
6964 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6965 goto abort;
6966
6967 /* We init hash_locks[0] separately to that it can be used
6968 * as the reference lock in the spin_lock_nest_lock() call
6969 * in lock_all_device_hash_locks_irq in order to convince
6970 * lockdep that we know what we are doing.
6971 */
6972 spin_lock_init(conf->hash_locks);
6973 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6974 spin_lock_init(conf->hash_locks + i);
6975
6976 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6977 INIT_LIST_HEAD(conf->inactive_list + i);
6978
6979 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6980 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6981
6982 atomic_set(&conf->r5c_cached_full_stripes, 0);
6983 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6984 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6985 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6986 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6987 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6988
6989 conf->level = mddev->new_level;
6990 conf->chunk_sectors = mddev->new_chunk_sectors;
6991 if (raid5_alloc_percpu(conf) != 0)
6992 goto abort;
6993
6994 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6995
6996 rdev_for_each(rdev, mddev) {
6997 raid_disk = rdev->raid_disk;
6998 if (raid_disk >= max_disks
6999 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7000 continue;
7001 disk = conf->disks + raid_disk;
7002
7003 if (test_bit(Replacement, &rdev->flags)) {
7004 if (disk->replacement)
7005 goto abort;
7006 disk->replacement = rdev;
7007 } else {
7008 if (disk->rdev)
7009 goto abort;
7010 disk->rdev = rdev;
7011 }
7012
7013 if (test_bit(In_sync, &rdev->flags)) {
7014 char b[BDEVNAME_SIZE];
7015 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7016 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7017 } else if (rdev->saved_raid_disk != raid_disk)
7018 /* Cannot rely on bitmap to complete recovery */
7019 conf->fullsync = 1;
7020 }
7021
7022 conf->level = mddev->new_level;
7023 if (conf->level == 6) {
7024 conf->max_degraded = 2;
7025 if (raid6_call.xor_syndrome)
7026 conf->rmw_level = PARITY_ENABLE_RMW;
7027 else
7028 conf->rmw_level = PARITY_DISABLE_RMW;
7029 } else {
7030 conf->max_degraded = 1;
7031 conf->rmw_level = PARITY_ENABLE_RMW;
7032 }
7033 conf->algorithm = mddev->new_layout;
7034 conf->reshape_progress = mddev->reshape_position;
7035 if (conf->reshape_progress != MaxSector) {
7036 conf->prev_chunk_sectors = mddev->chunk_sectors;
7037 conf->prev_algo = mddev->layout;
7038 } else {
7039 conf->prev_chunk_sectors = conf->chunk_sectors;
7040 conf->prev_algo = conf->algorithm;
7041 }
7042
7043 conf->min_nr_stripes = NR_STRIPES;
7044 if (mddev->reshape_position != MaxSector) {
7045 int stripes = max_t(int,
7046 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7047 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7048 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7049 if (conf->min_nr_stripes != NR_STRIPES)
7050 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7051 mdname(mddev), conf->min_nr_stripes);
7052 }
7053 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7054 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7055 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7056 if (grow_stripes(conf, conf->min_nr_stripes)) {
7057 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7058 mdname(mddev), memory);
7059 goto abort;
7060 } else
7061 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7062 /*
7063 * Losing a stripe head costs more than the time to refill it,
7064 * it reduces the queue depth and so can hurt throughput.
7065 * So set it rather large, scaled by number of devices.
7066 */
7067 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7068 conf->shrinker.scan_objects = raid5_cache_scan;
7069 conf->shrinker.count_objects = raid5_cache_count;
7070 conf->shrinker.batch = 128;
7071 conf->shrinker.flags = 0;
7072 if (register_shrinker(&conf->shrinker)) {
7073 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7074 mdname(mddev));
7075 goto abort;
7076 }
7077
7078 sprintf(pers_name, "raid%d", mddev->new_level);
7079 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7080 if (!conf->thread) {
7081 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7082 mdname(mddev));
7083 goto abort;
7084 }
7085
7086 return conf;
7087
7088 abort:
7089 if (conf) {
7090 free_conf(conf);
7091 return ERR_PTR(-EIO);
7092 } else
7093 return ERR_PTR(-ENOMEM);
7094 }
7095
7096 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7097 {
7098 switch (algo) {
7099 case ALGORITHM_PARITY_0:
7100 if (raid_disk < max_degraded)
7101 return 1;
7102 break;
7103 case ALGORITHM_PARITY_N:
7104 if (raid_disk >= raid_disks - max_degraded)
7105 return 1;
7106 break;
7107 case ALGORITHM_PARITY_0_6:
7108 if (raid_disk == 0 ||
7109 raid_disk == raid_disks - 1)
7110 return 1;
7111 break;
7112 case ALGORITHM_LEFT_ASYMMETRIC_6:
7113 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7114 case ALGORITHM_LEFT_SYMMETRIC_6:
7115 case ALGORITHM_RIGHT_SYMMETRIC_6:
7116 if (raid_disk == raid_disks - 1)
7117 return 1;
7118 }
7119 return 0;
7120 }
7121
7122 static int raid5_run(struct mddev *mddev)
7123 {
7124 struct r5conf *conf;
7125 int working_disks = 0;
7126 int dirty_parity_disks = 0;
7127 struct md_rdev *rdev;
7128 struct md_rdev *journal_dev = NULL;
7129 sector_t reshape_offset = 0;
7130 int i;
7131 long long min_offset_diff = 0;
7132 int first = 1;
7133
7134 if (mddev_init_writes_pending(mddev) < 0)
7135 return -ENOMEM;
7136
7137 if (mddev->recovery_cp != MaxSector)
7138 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7139 mdname(mddev));
7140
7141 rdev_for_each(rdev, mddev) {
7142 long long diff;
7143
7144 if (test_bit(Journal, &rdev->flags)) {
7145 journal_dev = rdev;
7146 continue;
7147 }
7148 if (rdev->raid_disk < 0)
7149 continue;
7150 diff = (rdev->new_data_offset - rdev->data_offset);
7151 if (first) {
7152 min_offset_diff = diff;
7153 first = 0;
7154 } else if (mddev->reshape_backwards &&
7155 diff < min_offset_diff)
7156 min_offset_diff = diff;
7157 else if (!mddev->reshape_backwards &&
7158 diff > min_offset_diff)
7159 min_offset_diff = diff;
7160 }
7161
7162 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7163 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7164 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7165 mdname(mddev));
7166 return -EINVAL;
7167 }
7168
7169 if (mddev->reshape_position != MaxSector) {
7170 /* Check that we can continue the reshape.
7171 * Difficulties arise if the stripe we would write to
7172 * next is at or after the stripe we would read from next.
7173 * For a reshape that changes the number of devices, this
7174 * is only possible for a very short time, and mdadm makes
7175 * sure that time appears to have past before assembling
7176 * the array. So we fail if that time hasn't passed.
7177 * For a reshape that keeps the number of devices the same
7178 * mdadm must be monitoring the reshape can keeping the
7179 * critical areas read-only and backed up. It will start
7180 * the array in read-only mode, so we check for that.
7181 */
7182 sector_t here_new, here_old;
7183 int old_disks;
7184 int max_degraded = (mddev->level == 6 ? 2 : 1);
7185 int chunk_sectors;
7186 int new_data_disks;
7187
7188 if (journal_dev) {
7189 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7190 mdname(mddev));
7191 return -EINVAL;
7192 }
7193
7194 if (mddev->new_level != mddev->level) {
7195 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7196 mdname(mddev));
7197 return -EINVAL;
7198 }
7199 old_disks = mddev->raid_disks - mddev->delta_disks;
7200 /* reshape_position must be on a new-stripe boundary, and one
7201 * further up in new geometry must map after here in old
7202 * geometry.
7203 * If the chunk sizes are different, then as we perform reshape
7204 * in units of the largest of the two, reshape_position needs
7205 * be a multiple of the largest chunk size times new data disks.
7206 */
7207 here_new = mddev->reshape_position;
7208 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7209 new_data_disks = mddev->raid_disks - max_degraded;
7210 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7211 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7212 mdname(mddev));
7213 return -EINVAL;
7214 }
7215 reshape_offset = here_new * chunk_sectors;
7216 /* here_new is the stripe we will write to */
7217 here_old = mddev->reshape_position;
7218 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7219 /* here_old is the first stripe that we might need to read
7220 * from */
7221 if (mddev->delta_disks == 0) {
7222 /* We cannot be sure it is safe to start an in-place
7223 * reshape. It is only safe if user-space is monitoring
7224 * and taking constant backups.
7225 * mdadm always starts a situation like this in
7226 * readonly mode so it can take control before
7227 * allowing any writes. So just check for that.
7228 */
7229 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7230 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7231 /* not really in-place - so OK */;
7232 else if (mddev->ro == 0) {
7233 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7234 mdname(mddev));
7235 return -EINVAL;
7236 }
7237 } else if (mddev->reshape_backwards
7238 ? (here_new * chunk_sectors + min_offset_diff <=
7239 here_old * chunk_sectors)
7240 : (here_new * chunk_sectors >=
7241 here_old * chunk_sectors + (-min_offset_diff))) {
7242 /* Reading from the same stripe as writing to - bad */
7243 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7244 mdname(mddev));
7245 return -EINVAL;
7246 }
7247 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7248 /* OK, we should be able to continue; */
7249 } else {
7250 BUG_ON(mddev->level != mddev->new_level);
7251 BUG_ON(mddev->layout != mddev->new_layout);
7252 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7253 BUG_ON(mddev->delta_disks != 0);
7254 }
7255
7256 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7257 test_bit(MD_HAS_PPL, &mddev->flags)) {
7258 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7259 mdname(mddev));
7260 clear_bit(MD_HAS_PPL, &mddev->flags);
7261 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7262 }
7263
7264 if (mddev->private == NULL)
7265 conf = setup_conf(mddev);
7266 else
7267 conf = mddev->private;
7268
7269 if (IS_ERR(conf))
7270 return PTR_ERR(conf);
7271
7272 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7273 if (!journal_dev) {
7274 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7275 mdname(mddev));
7276 mddev->ro = 1;
7277 set_disk_ro(mddev->gendisk, 1);
7278 } else if (mddev->recovery_cp == MaxSector)
7279 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7280 }
7281
7282 conf->min_offset_diff = min_offset_diff;
7283 mddev->thread = conf->thread;
7284 conf->thread = NULL;
7285 mddev->private = conf;
7286
7287 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7288 i++) {
7289 rdev = conf->disks[i].rdev;
7290 if (!rdev && conf->disks[i].replacement) {
7291 /* The replacement is all we have yet */
7292 rdev = conf->disks[i].replacement;
7293 conf->disks[i].replacement = NULL;
7294 clear_bit(Replacement, &rdev->flags);
7295 conf->disks[i].rdev = rdev;
7296 }
7297 if (!rdev)
7298 continue;
7299 if (conf->disks[i].replacement &&
7300 conf->reshape_progress != MaxSector) {
7301 /* replacements and reshape simply do not mix. */
7302 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7303 goto abort;
7304 }
7305 if (test_bit(In_sync, &rdev->flags)) {
7306 working_disks++;
7307 continue;
7308 }
7309 /* This disc is not fully in-sync. However if it
7310 * just stored parity (beyond the recovery_offset),
7311 * when we don't need to be concerned about the
7312 * array being dirty.
7313 * When reshape goes 'backwards', we never have
7314 * partially completed devices, so we only need
7315 * to worry about reshape going forwards.
7316 */
7317 /* Hack because v0.91 doesn't store recovery_offset properly. */
7318 if (mddev->major_version == 0 &&
7319 mddev->minor_version > 90)
7320 rdev->recovery_offset = reshape_offset;
7321
7322 if (rdev->recovery_offset < reshape_offset) {
7323 /* We need to check old and new layout */
7324 if (!only_parity(rdev->raid_disk,
7325 conf->algorithm,
7326 conf->raid_disks,
7327 conf->max_degraded))
7328 continue;
7329 }
7330 if (!only_parity(rdev->raid_disk,
7331 conf->prev_algo,
7332 conf->previous_raid_disks,
7333 conf->max_degraded))
7334 continue;
7335 dirty_parity_disks++;
7336 }
7337
7338 /*
7339 * 0 for a fully functional array, 1 or 2 for a degraded array.
7340 */
7341 mddev->degraded = raid5_calc_degraded(conf);
7342
7343 if (has_failed(conf)) {
7344 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7345 mdname(mddev), mddev->degraded, conf->raid_disks);
7346 goto abort;
7347 }
7348
7349 /* device size must be a multiple of chunk size */
7350 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7351 mddev->resync_max_sectors = mddev->dev_sectors;
7352
7353 if (mddev->degraded > dirty_parity_disks &&
7354 mddev->recovery_cp != MaxSector) {
7355 if (test_bit(MD_HAS_PPL, &mddev->flags))
7356 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7357 mdname(mddev));
7358 else if (mddev->ok_start_degraded)
7359 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7360 mdname(mddev));
7361 else {
7362 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7363 mdname(mddev));
7364 goto abort;
7365 }
7366 }
7367
7368 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7369 mdname(mddev), conf->level,
7370 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7371 mddev->new_layout);
7372
7373 print_raid5_conf(conf);
7374
7375 if (conf->reshape_progress != MaxSector) {
7376 conf->reshape_safe = conf->reshape_progress;
7377 atomic_set(&conf->reshape_stripes, 0);
7378 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7379 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7380 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7381 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7382 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7383 "reshape");
7384 }
7385
7386 /* Ok, everything is just fine now */
7387 if (mddev->to_remove == &raid5_attrs_group)
7388 mddev->to_remove = NULL;
7389 else if (mddev->kobj.sd &&
7390 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7391 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7392 mdname(mddev));
7393 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7394
7395 if (mddev->queue) {
7396 int chunk_size;
7397 /* read-ahead size must cover two whole stripes, which
7398 * is 2 * (datadisks) * chunksize where 'n' is the
7399 * number of raid devices
7400 */
7401 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7402 int stripe = data_disks *
7403 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7404 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7405 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7406
7407 chunk_size = mddev->chunk_sectors << 9;
7408 blk_queue_io_min(mddev->queue, chunk_size);
7409 blk_queue_io_opt(mddev->queue, chunk_size *
7410 (conf->raid_disks - conf->max_degraded));
7411 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7412 /*
7413 * We can only discard a whole stripe. It doesn't make sense to
7414 * discard data disk but write parity disk
7415 */
7416 stripe = stripe * PAGE_SIZE;
7417 /* Round up to power of 2, as discard handling
7418 * currently assumes that */
7419 while ((stripe-1) & stripe)
7420 stripe = (stripe | (stripe-1)) + 1;
7421 mddev->queue->limits.discard_alignment = stripe;
7422 mddev->queue->limits.discard_granularity = stripe;
7423
7424 blk_queue_max_write_same_sectors(mddev->queue, 0);
7425 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7426
7427 rdev_for_each(rdev, mddev) {
7428 disk_stack_limits(mddev->gendisk, rdev->bdev,
7429 rdev->data_offset << 9);
7430 disk_stack_limits(mddev->gendisk, rdev->bdev,
7431 rdev->new_data_offset << 9);
7432 }
7433
7434 /*
7435 * zeroing is required, otherwise data
7436 * could be lost. Consider a scenario: discard a stripe
7437 * (the stripe could be inconsistent if
7438 * discard_zeroes_data is 0); write one disk of the
7439 * stripe (the stripe could be inconsistent again
7440 * depending on which disks are used to calculate
7441 * parity); the disk is broken; The stripe data of this
7442 * disk is lost.
7443 *
7444 * We only allow DISCARD if the sysadmin has confirmed that
7445 * only safe devices are in use by setting a module parameter.
7446 * A better idea might be to turn DISCARD into WRITE_ZEROES
7447 * requests, as that is required to be safe.
7448 */
7449 if (devices_handle_discard_safely &&
7450 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7451 mddev->queue->limits.discard_granularity >= stripe)
7452 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7453 mddev->queue);
7454 else
7455 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7456 mddev->queue);
7457
7458 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7459 }
7460
7461 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7462 goto abort;
7463
7464 return 0;
7465 abort:
7466 md_unregister_thread(&mddev->thread);
7467 print_raid5_conf(conf);
7468 free_conf(conf);
7469 mddev->private = NULL;
7470 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7471 return -EIO;
7472 }
7473
7474 static void raid5_free(struct mddev *mddev, void *priv)
7475 {
7476 struct r5conf *conf = priv;
7477
7478 free_conf(conf);
7479 mddev->to_remove = &raid5_attrs_group;
7480 }
7481
7482 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7483 {
7484 struct r5conf *conf = mddev->private;
7485 int i;
7486
7487 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7488 conf->chunk_sectors / 2, mddev->layout);
7489 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7490 rcu_read_lock();
7491 for (i = 0; i < conf->raid_disks; i++) {
7492 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7493 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7494 }
7495 rcu_read_unlock();
7496 seq_printf (seq, "]");
7497 }
7498
7499 static void print_raid5_conf (struct r5conf *conf)
7500 {
7501 int i;
7502 struct disk_info *tmp;
7503
7504 pr_debug("RAID conf printout:\n");
7505 if (!conf) {
7506 pr_debug("(conf==NULL)\n");
7507 return;
7508 }
7509 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7510 conf->raid_disks,
7511 conf->raid_disks - conf->mddev->degraded);
7512
7513 for (i = 0; i < conf->raid_disks; i++) {
7514 char b[BDEVNAME_SIZE];
7515 tmp = conf->disks + i;
7516 if (tmp->rdev)
7517 pr_debug(" disk %d, o:%d, dev:%s\n",
7518 i, !test_bit(Faulty, &tmp->rdev->flags),
7519 bdevname(tmp->rdev->bdev, b));
7520 }
7521 }
7522
7523 static int raid5_spare_active(struct mddev *mddev)
7524 {
7525 int i;
7526 struct r5conf *conf = mddev->private;
7527 struct disk_info *tmp;
7528 int count = 0;
7529 unsigned long flags;
7530
7531 for (i = 0; i < conf->raid_disks; i++) {
7532 tmp = conf->disks + i;
7533 if (tmp->replacement
7534 && tmp->replacement->recovery_offset == MaxSector
7535 && !test_bit(Faulty, &tmp->replacement->flags)
7536 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7537 /* Replacement has just become active. */
7538 if (!tmp->rdev
7539 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7540 count++;
7541 if (tmp->rdev) {
7542 /* Replaced device not technically faulty,
7543 * but we need to be sure it gets removed
7544 * and never re-added.
7545 */
7546 set_bit(Faulty, &tmp->rdev->flags);
7547 sysfs_notify_dirent_safe(
7548 tmp->rdev->sysfs_state);
7549 }
7550 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7551 } else if (tmp->rdev
7552 && tmp->rdev->recovery_offset == MaxSector
7553 && !test_bit(Faulty, &tmp->rdev->flags)
7554 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7555 count++;
7556 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7557 }
7558 }
7559 spin_lock_irqsave(&conf->device_lock, flags);
7560 mddev->degraded = raid5_calc_degraded(conf);
7561 spin_unlock_irqrestore(&conf->device_lock, flags);
7562 print_raid5_conf(conf);
7563 return count;
7564 }
7565
7566 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7567 {
7568 struct r5conf *conf = mddev->private;
7569 int err = 0;
7570 int number = rdev->raid_disk;
7571 struct md_rdev **rdevp;
7572 struct disk_info *p = conf->disks + number;
7573
7574 print_raid5_conf(conf);
7575 if (test_bit(Journal, &rdev->flags) && conf->log) {
7576 /*
7577 * we can't wait pending write here, as this is called in
7578 * raid5d, wait will deadlock.
7579 * neilb: there is no locking about new writes here,
7580 * so this cannot be safe.
7581 */
7582 if (atomic_read(&conf->active_stripes) ||
7583 atomic_read(&conf->r5c_cached_full_stripes) ||
7584 atomic_read(&conf->r5c_cached_partial_stripes)) {
7585 return -EBUSY;
7586 }
7587 log_exit(conf);
7588 return 0;
7589 }
7590 if (rdev == p->rdev)
7591 rdevp = &p->rdev;
7592 else if (rdev == p->replacement)
7593 rdevp = &p->replacement;
7594 else
7595 return 0;
7596
7597 if (number >= conf->raid_disks &&
7598 conf->reshape_progress == MaxSector)
7599 clear_bit(In_sync, &rdev->flags);
7600
7601 if (test_bit(In_sync, &rdev->flags) ||
7602 atomic_read(&rdev->nr_pending)) {
7603 err = -EBUSY;
7604 goto abort;
7605 }
7606 /* Only remove non-faulty devices if recovery
7607 * isn't possible.
7608 */
7609 if (!test_bit(Faulty, &rdev->flags) &&
7610 mddev->recovery_disabled != conf->recovery_disabled &&
7611 !has_failed(conf) &&
7612 (!p->replacement || p->replacement == rdev) &&
7613 number < conf->raid_disks) {
7614 err = -EBUSY;
7615 goto abort;
7616 }
7617 *rdevp = NULL;
7618 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7619 synchronize_rcu();
7620 if (atomic_read(&rdev->nr_pending)) {
7621 /* lost the race, try later */
7622 err = -EBUSY;
7623 *rdevp = rdev;
7624 }
7625 }
7626 if (!err) {
7627 err = log_modify(conf, rdev, false);
7628 if (err)
7629 goto abort;
7630 }
7631 if (p->replacement) {
7632 /* We must have just cleared 'rdev' */
7633 p->rdev = p->replacement;
7634 clear_bit(Replacement, &p->replacement->flags);
7635 smp_mb(); /* Make sure other CPUs may see both as identical
7636 * but will never see neither - if they are careful
7637 */
7638 p->replacement = NULL;
7639
7640 if (!err)
7641 err = log_modify(conf, p->rdev, true);
7642 }
7643
7644 clear_bit(WantReplacement, &rdev->flags);
7645 abort:
7646
7647 print_raid5_conf(conf);
7648 return err;
7649 }
7650
7651 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7652 {
7653 struct r5conf *conf = mddev->private;
7654 int err = -EEXIST;
7655 int disk;
7656 struct disk_info *p;
7657 int first = 0;
7658 int last = conf->raid_disks - 1;
7659
7660 if (test_bit(Journal, &rdev->flags)) {
7661 if (conf->log)
7662 return -EBUSY;
7663
7664 rdev->raid_disk = 0;
7665 /*
7666 * The array is in readonly mode if journal is missing, so no
7667 * write requests running. We should be safe
7668 */
7669 log_init(conf, rdev, false);
7670 return 0;
7671 }
7672 if (mddev->recovery_disabled == conf->recovery_disabled)
7673 return -EBUSY;
7674
7675 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7676 /* no point adding a device */
7677 return -EINVAL;
7678
7679 if (rdev->raid_disk >= 0)
7680 first = last = rdev->raid_disk;
7681
7682 /*
7683 * find the disk ... but prefer rdev->saved_raid_disk
7684 * if possible.
7685 */
7686 if (rdev->saved_raid_disk >= 0 &&
7687 rdev->saved_raid_disk >= first &&
7688 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7689 first = rdev->saved_raid_disk;
7690
7691 for (disk = first; disk <= last; disk++) {
7692 p = conf->disks + disk;
7693 if (p->rdev == NULL) {
7694 clear_bit(In_sync, &rdev->flags);
7695 rdev->raid_disk = disk;
7696 if (rdev->saved_raid_disk != disk)
7697 conf->fullsync = 1;
7698 rcu_assign_pointer(p->rdev, rdev);
7699
7700 err = log_modify(conf, rdev, true);
7701
7702 goto out;
7703 }
7704 }
7705 for (disk = first; disk <= last; disk++) {
7706 p = conf->disks + disk;
7707 if (test_bit(WantReplacement, &p->rdev->flags) &&
7708 p->replacement == NULL) {
7709 clear_bit(In_sync, &rdev->flags);
7710 set_bit(Replacement, &rdev->flags);
7711 rdev->raid_disk = disk;
7712 err = 0;
7713 conf->fullsync = 1;
7714 rcu_assign_pointer(p->replacement, rdev);
7715 break;
7716 }
7717 }
7718 out:
7719 print_raid5_conf(conf);
7720 return err;
7721 }
7722
7723 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7724 {
7725 /* no resync is happening, and there is enough space
7726 * on all devices, so we can resize.
7727 * We need to make sure resync covers any new space.
7728 * If the array is shrinking we should possibly wait until
7729 * any io in the removed space completes, but it hardly seems
7730 * worth it.
7731 */
7732 sector_t newsize;
7733 struct r5conf *conf = mddev->private;
7734
7735 if (conf->log || raid5_has_ppl(conf))
7736 return -EINVAL;
7737 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7738 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7739 if (mddev->external_size &&
7740 mddev->array_sectors > newsize)
7741 return -EINVAL;
7742 if (mddev->bitmap) {
7743 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7744 if (ret)
7745 return ret;
7746 }
7747 md_set_array_sectors(mddev, newsize);
7748 if (sectors > mddev->dev_sectors &&
7749 mddev->recovery_cp > mddev->dev_sectors) {
7750 mddev->recovery_cp = mddev->dev_sectors;
7751 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7752 }
7753 mddev->dev_sectors = sectors;
7754 mddev->resync_max_sectors = sectors;
7755 return 0;
7756 }
7757
7758 static int check_stripe_cache(struct mddev *mddev)
7759 {
7760 /* Can only proceed if there are plenty of stripe_heads.
7761 * We need a minimum of one full stripe,, and for sensible progress
7762 * it is best to have about 4 times that.
7763 * If we require 4 times, then the default 256 4K stripe_heads will
7764 * allow for chunk sizes up to 256K, which is probably OK.
7765 * If the chunk size is greater, user-space should request more
7766 * stripe_heads first.
7767 */
7768 struct r5conf *conf = mddev->private;
7769 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7770 > conf->min_nr_stripes ||
7771 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7772 > conf->min_nr_stripes) {
7773 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7774 mdname(mddev),
7775 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7776 / STRIPE_SIZE)*4);
7777 return 0;
7778 }
7779 return 1;
7780 }
7781
7782 static int check_reshape(struct mddev *mddev)
7783 {
7784 struct r5conf *conf = mddev->private;
7785
7786 if (conf->log || raid5_has_ppl(conf))
7787 return -EINVAL;
7788 if (mddev->delta_disks == 0 &&
7789 mddev->new_layout == mddev->layout &&
7790 mddev->new_chunk_sectors == mddev->chunk_sectors)
7791 return 0; /* nothing to do */
7792 if (has_failed(conf))
7793 return -EINVAL;
7794 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7795 /* We might be able to shrink, but the devices must
7796 * be made bigger first.
7797 * For raid6, 4 is the minimum size.
7798 * Otherwise 2 is the minimum
7799 */
7800 int min = 2;
7801 if (mddev->level == 6)
7802 min = 4;
7803 if (mddev->raid_disks + mddev->delta_disks < min)
7804 return -EINVAL;
7805 }
7806
7807 if (!check_stripe_cache(mddev))
7808 return -ENOSPC;
7809
7810 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7811 mddev->delta_disks > 0)
7812 if (resize_chunks(conf,
7813 conf->previous_raid_disks
7814 + max(0, mddev->delta_disks),
7815 max(mddev->new_chunk_sectors,
7816 mddev->chunk_sectors)
7817 ) < 0)
7818 return -ENOMEM;
7819
7820 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7821 return 0; /* never bother to shrink */
7822 return resize_stripes(conf, (conf->previous_raid_disks
7823 + mddev->delta_disks));
7824 }
7825
7826 static int raid5_start_reshape(struct mddev *mddev)
7827 {
7828 struct r5conf *conf = mddev->private;
7829 struct md_rdev *rdev;
7830 int spares = 0;
7831 unsigned long flags;
7832
7833 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7834 return -EBUSY;
7835
7836 if (!check_stripe_cache(mddev))
7837 return -ENOSPC;
7838
7839 if (has_failed(conf))
7840 return -EINVAL;
7841
7842 rdev_for_each(rdev, mddev) {
7843 if (!test_bit(In_sync, &rdev->flags)
7844 && !test_bit(Faulty, &rdev->flags))
7845 spares++;
7846 }
7847
7848 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7849 /* Not enough devices even to make a degraded array
7850 * of that size
7851 */
7852 return -EINVAL;
7853
7854 /* Refuse to reduce size of the array. Any reductions in
7855 * array size must be through explicit setting of array_size
7856 * attribute.
7857 */
7858 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7859 < mddev->array_sectors) {
7860 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7861 mdname(mddev));
7862 return -EINVAL;
7863 }
7864
7865 atomic_set(&conf->reshape_stripes, 0);
7866 spin_lock_irq(&conf->device_lock);
7867 write_seqcount_begin(&conf->gen_lock);
7868 conf->previous_raid_disks = conf->raid_disks;
7869 conf->raid_disks += mddev->delta_disks;
7870 conf->prev_chunk_sectors = conf->chunk_sectors;
7871 conf->chunk_sectors = mddev->new_chunk_sectors;
7872 conf->prev_algo = conf->algorithm;
7873 conf->algorithm = mddev->new_layout;
7874 conf->generation++;
7875 /* Code that selects data_offset needs to see the generation update
7876 * if reshape_progress has been set - so a memory barrier needed.
7877 */
7878 smp_mb();
7879 if (mddev->reshape_backwards)
7880 conf->reshape_progress = raid5_size(mddev, 0, 0);
7881 else
7882 conf->reshape_progress = 0;
7883 conf->reshape_safe = conf->reshape_progress;
7884 write_seqcount_end(&conf->gen_lock);
7885 spin_unlock_irq(&conf->device_lock);
7886
7887 /* Now make sure any requests that proceeded on the assumption
7888 * the reshape wasn't running - like Discard or Read - have
7889 * completed.
7890 */
7891 mddev_suspend(mddev);
7892 mddev_resume(mddev);
7893
7894 /* Add some new drives, as many as will fit.
7895 * We know there are enough to make the newly sized array work.
7896 * Don't add devices if we are reducing the number of
7897 * devices in the array. This is because it is not possible
7898 * to correctly record the "partially reconstructed" state of
7899 * such devices during the reshape and confusion could result.
7900 */
7901 if (mddev->delta_disks >= 0) {
7902 rdev_for_each(rdev, mddev)
7903 if (rdev->raid_disk < 0 &&
7904 !test_bit(Faulty, &rdev->flags)) {
7905 if (raid5_add_disk(mddev, rdev) == 0) {
7906 if (rdev->raid_disk
7907 >= conf->previous_raid_disks)
7908 set_bit(In_sync, &rdev->flags);
7909 else
7910 rdev->recovery_offset = 0;
7911
7912 if (sysfs_link_rdev(mddev, rdev))
7913 /* Failure here is OK */;
7914 }
7915 } else if (rdev->raid_disk >= conf->previous_raid_disks
7916 && !test_bit(Faulty, &rdev->flags)) {
7917 /* This is a spare that was manually added */
7918 set_bit(In_sync, &rdev->flags);
7919 }
7920
7921 /* When a reshape changes the number of devices,
7922 * ->degraded is measured against the larger of the
7923 * pre and post number of devices.
7924 */
7925 spin_lock_irqsave(&conf->device_lock, flags);
7926 mddev->degraded = raid5_calc_degraded(conf);
7927 spin_unlock_irqrestore(&conf->device_lock, flags);
7928 }
7929 mddev->raid_disks = conf->raid_disks;
7930 mddev->reshape_position = conf->reshape_progress;
7931 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7932
7933 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7934 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7935 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7936 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7937 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7938 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7939 "reshape");
7940 if (!mddev->sync_thread) {
7941 mddev->recovery = 0;
7942 spin_lock_irq(&conf->device_lock);
7943 write_seqcount_begin(&conf->gen_lock);
7944 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7945 mddev->new_chunk_sectors =
7946 conf->chunk_sectors = conf->prev_chunk_sectors;
7947 mddev->new_layout = conf->algorithm = conf->prev_algo;
7948 rdev_for_each(rdev, mddev)
7949 rdev->new_data_offset = rdev->data_offset;
7950 smp_wmb();
7951 conf->generation --;
7952 conf->reshape_progress = MaxSector;
7953 mddev->reshape_position = MaxSector;
7954 write_seqcount_end(&conf->gen_lock);
7955 spin_unlock_irq(&conf->device_lock);
7956 return -EAGAIN;
7957 }
7958 conf->reshape_checkpoint = jiffies;
7959 md_wakeup_thread(mddev->sync_thread);
7960 md_new_event(mddev);
7961 return 0;
7962 }
7963
7964 /* This is called from the reshape thread and should make any
7965 * changes needed in 'conf'
7966 */
7967 static void end_reshape(struct r5conf *conf)
7968 {
7969
7970 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7971 struct md_rdev *rdev;
7972
7973 spin_lock_irq(&conf->device_lock);
7974 conf->previous_raid_disks = conf->raid_disks;
7975 md_finish_reshape(conf->mddev);
7976 smp_wmb();
7977 conf->reshape_progress = MaxSector;
7978 conf->mddev->reshape_position = MaxSector;
7979 rdev_for_each(rdev, conf->mddev)
7980 if (rdev->raid_disk >= 0 &&
7981 !test_bit(Journal, &rdev->flags) &&
7982 !test_bit(In_sync, &rdev->flags))
7983 rdev->recovery_offset = MaxSector;
7984 spin_unlock_irq(&conf->device_lock);
7985 wake_up(&conf->wait_for_overlap);
7986
7987 /* read-ahead size must cover two whole stripes, which is
7988 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7989 */
7990 if (conf->mddev->queue) {
7991 int data_disks = conf->raid_disks - conf->max_degraded;
7992 int stripe = data_disks * ((conf->chunk_sectors << 9)
7993 / PAGE_SIZE);
7994 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7995 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7996 }
7997 }
7998 }
7999
8000 /* This is called from the raid5d thread with mddev_lock held.
8001 * It makes config changes to the device.
8002 */
8003 static void raid5_finish_reshape(struct mddev *mddev)
8004 {
8005 struct r5conf *conf = mddev->private;
8006
8007 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8008
8009 if (mddev->delta_disks <= 0) {
8010 int d;
8011 spin_lock_irq(&conf->device_lock);
8012 mddev->degraded = raid5_calc_degraded(conf);
8013 spin_unlock_irq(&conf->device_lock);
8014 for (d = conf->raid_disks ;
8015 d < conf->raid_disks - mddev->delta_disks;
8016 d++) {
8017 struct md_rdev *rdev = conf->disks[d].rdev;
8018 if (rdev)
8019 clear_bit(In_sync, &rdev->flags);
8020 rdev = conf->disks[d].replacement;
8021 if (rdev)
8022 clear_bit(In_sync, &rdev->flags);
8023 }
8024 }
8025 mddev->layout = conf->algorithm;
8026 mddev->chunk_sectors = conf->chunk_sectors;
8027 mddev->reshape_position = MaxSector;
8028 mddev->delta_disks = 0;
8029 mddev->reshape_backwards = 0;
8030 }
8031 }
8032
8033 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8034 {
8035 struct r5conf *conf = mddev->private;
8036
8037 if (quiesce) {
8038 /* stop all writes */
8039 lock_all_device_hash_locks_irq(conf);
8040 /* '2' tells resync/reshape to pause so that all
8041 * active stripes can drain
8042 */
8043 r5c_flush_cache(conf, INT_MAX);
8044 conf->quiesce = 2;
8045 wait_event_cmd(conf->wait_for_quiescent,
8046 atomic_read(&conf->active_stripes) == 0 &&
8047 atomic_read(&conf->active_aligned_reads) == 0,
8048 unlock_all_device_hash_locks_irq(conf),
8049 lock_all_device_hash_locks_irq(conf));
8050 conf->quiesce = 1;
8051 unlock_all_device_hash_locks_irq(conf);
8052 /* allow reshape to continue */
8053 wake_up(&conf->wait_for_overlap);
8054 } else {
8055 /* re-enable writes */
8056 lock_all_device_hash_locks_irq(conf);
8057 conf->quiesce = 0;
8058 wake_up(&conf->wait_for_quiescent);
8059 wake_up(&conf->wait_for_overlap);
8060 unlock_all_device_hash_locks_irq(conf);
8061 }
8062 log_quiesce(conf, quiesce);
8063 }
8064
8065 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8066 {
8067 struct r0conf *raid0_conf = mddev->private;
8068 sector_t sectors;
8069
8070 /* for raid0 takeover only one zone is supported */
8071 if (raid0_conf->nr_strip_zones > 1) {
8072 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8073 mdname(mddev));
8074 return ERR_PTR(-EINVAL);
8075 }
8076
8077 sectors = raid0_conf->strip_zone[0].zone_end;
8078 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8079 mddev->dev_sectors = sectors;
8080 mddev->new_level = level;
8081 mddev->new_layout = ALGORITHM_PARITY_N;
8082 mddev->new_chunk_sectors = mddev->chunk_sectors;
8083 mddev->raid_disks += 1;
8084 mddev->delta_disks = 1;
8085 /* make sure it will be not marked as dirty */
8086 mddev->recovery_cp = MaxSector;
8087
8088 return setup_conf(mddev);
8089 }
8090
8091 static void *raid5_takeover_raid1(struct mddev *mddev)
8092 {
8093 int chunksect;
8094 void *ret;
8095
8096 if (mddev->raid_disks != 2 ||
8097 mddev->degraded > 1)
8098 return ERR_PTR(-EINVAL);
8099
8100 /* Should check if there are write-behind devices? */
8101
8102 chunksect = 64*2; /* 64K by default */
8103
8104 /* The array must be an exact multiple of chunksize */
8105 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8106 chunksect >>= 1;
8107
8108 if ((chunksect<<9) < STRIPE_SIZE)
8109 /* array size does not allow a suitable chunk size */
8110 return ERR_PTR(-EINVAL);
8111
8112 mddev->new_level = 5;
8113 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8114 mddev->new_chunk_sectors = chunksect;
8115
8116 ret = setup_conf(mddev);
8117 if (!IS_ERR(ret))
8118 mddev_clear_unsupported_flags(mddev,
8119 UNSUPPORTED_MDDEV_FLAGS);
8120 return ret;
8121 }
8122
8123 static void *raid5_takeover_raid6(struct mddev *mddev)
8124 {
8125 int new_layout;
8126
8127 switch (mddev->layout) {
8128 case ALGORITHM_LEFT_ASYMMETRIC_6:
8129 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8130 break;
8131 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8132 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8133 break;
8134 case ALGORITHM_LEFT_SYMMETRIC_6:
8135 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8136 break;
8137 case ALGORITHM_RIGHT_SYMMETRIC_6:
8138 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8139 break;
8140 case ALGORITHM_PARITY_0_6:
8141 new_layout = ALGORITHM_PARITY_0;
8142 break;
8143 case ALGORITHM_PARITY_N:
8144 new_layout = ALGORITHM_PARITY_N;
8145 break;
8146 default:
8147 return ERR_PTR(-EINVAL);
8148 }
8149 mddev->new_level = 5;
8150 mddev->new_layout = new_layout;
8151 mddev->delta_disks = -1;
8152 mddev->raid_disks -= 1;
8153 return setup_conf(mddev);
8154 }
8155
8156 static int raid5_check_reshape(struct mddev *mddev)
8157 {
8158 /* For a 2-drive array, the layout and chunk size can be changed
8159 * immediately as not restriping is needed.
8160 * For larger arrays we record the new value - after validation
8161 * to be used by a reshape pass.
8162 */
8163 struct r5conf *conf = mddev->private;
8164 int new_chunk = mddev->new_chunk_sectors;
8165
8166 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8167 return -EINVAL;
8168 if (new_chunk > 0) {
8169 if (!is_power_of_2(new_chunk))
8170 return -EINVAL;
8171 if (new_chunk < (PAGE_SIZE>>9))
8172 return -EINVAL;
8173 if (mddev->array_sectors & (new_chunk-1))
8174 /* not factor of array size */
8175 return -EINVAL;
8176 }
8177
8178 /* They look valid */
8179
8180 if (mddev->raid_disks == 2) {
8181 /* can make the change immediately */
8182 if (mddev->new_layout >= 0) {
8183 conf->algorithm = mddev->new_layout;
8184 mddev->layout = mddev->new_layout;
8185 }
8186 if (new_chunk > 0) {
8187 conf->chunk_sectors = new_chunk ;
8188 mddev->chunk_sectors = new_chunk;
8189 }
8190 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8191 md_wakeup_thread(mddev->thread);
8192 }
8193 return check_reshape(mddev);
8194 }
8195
8196 static int raid6_check_reshape(struct mddev *mddev)
8197 {
8198 int new_chunk = mddev->new_chunk_sectors;
8199
8200 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8201 return -EINVAL;
8202 if (new_chunk > 0) {
8203 if (!is_power_of_2(new_chunk))
8204 return -EINVAL;
8205 if (new_chunk < (PAGE_SIZE >> 9))
8206 return -EINVAL;
8207 if (mddev->array_sectors & (new_chunk-1))
8208 /* not factor of array size */
8209 return -EINVAL;
8210 }
8211
8212 /* They look valid */
8213 return check_reshape(mddev);
8214 }
8215
8216 static void *raid5_takeover(struct mddev *mddev)
8217 {
8218 /* raid5 can take over:
8219 * raid0 - if there is only one strip zone - make it a raid4 layout
8220 * raid1 - if there are two drives. We need to know the chunk size
8221 * raid4 - trivial - just use a raid4 layout.
8222 * raid6 - Providing it is a *_6 layout
8223 */
8224 if (mddev->level == 0)
8225 return raid45_takeover_raid0(mddev, 5);
8226 if (mddev->level == 1)
8227 return raid5_takeover_raid1(mddev);
8228 if (mddev->level == 4) {
8229 mddev->new_layout = ALGORITHM_PARITY_N;
8230 mddev->new_level = 5;
8231 return setup_conf(mddev);
8232 }
8233 if (mddev->level == 6)
8234 return raid5_takeover_raid6(mddev);
8235
8236 return ERR_PTR(-EINVAL);
8237 }
8238
8239 static void *raid4_takeover(struct mddev *mddev)
8240 {
8241 /* raid4 can take over:
8242 * raid0 - if there is only one strip zone
8243 * raid5 - if layout is right
8244 */
8245 if (mddev->level == 0)
8246 return raid45_takeover_raid0(mddev, 4);
8247 if (mddev->level == 5 &&
8248 mddev->layout == ALGORITHM_PARITY_N) {
8249 mddev->new_layout = 0;
8250 mddev->new_level = 4;
8251 return setup_conf(mddev);
8252 }
8253 return ERR_PTR(-EINVAL);
8254 }
8255
8256 static struct md_personality raid5_personality;
8257
8258 static void *raid6_takeover(struct mddev *mddev)
8259 {
8260 /* Currently can only take over a raid5. We map the
8261 * personality to an equivalent raid6 personality
8262 * with the Q block at the end.
8263 */
8264 int new_layout;
8265
8266 if (mddev->pers != &raid5_personality)
8267 return ERR_PTR(-EINVAL);
8268 if (mddev->degraded > 1)
8269 return ERR_PTR(-EINVAL);
8270 if (mddev->raid_disks > 253)
8271 return ERR_PTR(-EINVAL);
8272 if (mddev->raid_disks < 3)
8273 return ERR_PTR(-EINVAL);
8274
8275 switch (mddev->layout) {
8276 case ALGORITHM_LEFT_ASYMMETRIC:
8277 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8278 break;
8279 case ALGORITHM_RIGHT_ASYMMETRIC:
8280 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8281 break;
8282 case ALGORITHM_LEFT_SYMMETRIC:
8283 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8284 break;
8285 case ALGORITHM_RIGHT_SYMMETRIC:
8286 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8287 break;
8288 case ALGORITHM_PARITY_0:
8289 new_layout = ALGORITHM_PARITY_0_6;
8290 break;
8291 case ALGORITHM_PARITY_N:
8292 new_layout = ALGORITHM_PARITY_N;
8293 break;
8294 default:
8295 return ERR_PTR(-EINVAL);
8296 }
8297 mddev->new_level = 6;
8298 mddev->new_layout = new_layout;
8299 mddev->delta_disks = 1;
8300 mddev->raid_disks += 1;
8301 return setup_conf(mddev);
8302 }
8303
8304 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8305 {
8306 struct r5conf *conf;
8307 int err;
8308
8309 err = mddev_lock(mddev);
8310 if (err)
8311 return err;
8312 conf = mddev->private;
8313 if (!conf) {
8314 mddev_unlock(mddev);
8315 return -ENODEV;
8316 }
8317
8318 if (strncmp(buf, "ppl", 3) == 0) {
8319 /* ppl only works with RAID 5 */
8320 if (!raid5_has_ppl(conf) && conf->level == 5) {
8321 err = log_init(conf, NULL, true);
8322 if (!err) {
8323 err = resize_stripes(conf, conf->pool_size);
8324 if (err)
8325 log_exit(conf);
8326 }
8327 } else
8328 err = -EINVAL;
8329 } else if (strncmp(buf, "resync", 6) == 0) {
8330 if (raid5_has_ppl(conf)) {
8331 mddev_suspend(mddev);
8332 log_exit(conf);
8333 mddev_resume(mddev);
8334 err = resize_stripes(conf, conf->pool_size);
8335 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8336 r5l_log_disk_error(conf)) {
8337 bool journal_dev_exists = false;
8338 struct md_rdev *rdev;
8339
8340 rdev_for_each(rdev, mddev)
8341 if (test_bit(Journal, &rdev->flags)) {
8342 journal_dev_exists = true;
8343 break;
8344 }
8345
8346 if (!journal_dev_exists) {
8347 mddev_suspend(mddev);
8348 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8349 mddev_resume(mddev);
8350 } else /* need remove journal device first */
8351 err = -EBUSY;
8352 } else
8353 err = -EINVAL;
8354 } else {
8355 err = -EINVAL;
8356 }
8357
8358 if (!err)
8359 md_update_sb(mddev, 1);
8360
8361 mddev_unlock(mddev);
8362
8363 return err;
8364 }
8365
8366 static int raid5_start(struct mddev *mddev)
8367 {
8368 struct r5conf *conf = mddev->private;
8369
8370 return r5l_start(conf->log);
8371 }
8372
8373 static struct md_personality raid6_personality =
8374 {
8375 .name = "raid6",
8376 .level = 6,
8377 .owner = THIS_MODULE,
8378 .make_request = raid5_make_request,
8379 .run = raid5_run,
8380 .start = raid5_start,
8381 .free = raid5_free,
8382 .status = raid5_status,
8383 .error_handler = raid5_error,
8384 .hot_add_disk = raid5_add_disk,
8385 .hot_remove_disk= raid5_remove_disk,
8386 .spare_active = raid5_spare_active,
8387 .sync_request = raid5_sync_request,
8388 .resize = raid5_resize,
8389 .size = raid5_size,
8390 .check_reshape = raid6_check_reshape,
8391 .start_reshape = raid5_start_reshape,
8392 .finish_reshape = raid5_finish_reshape,
8393 .quiesce = raid5_quiesce,
8394 .takeover = raid6_takeover,
8395 .congested = raid5_congested,
8396 .change_consistency_policy = raid5_change_consistency_policy,
8397 };
8398 static struct md_personality raid5_personality =
8399 {
8400 .name = "raid5",
8401 .level = 5,
8402 .owner = THIS_MODULE,
8403 .make_request = raid5_make_request,
8404 .run = raid5_run,
8405 .start = raid5_start,
8406 .free = raid5_free,
8407 .status = raid5_status,
8408 .error_handler = raid5_error,
8409 .hot_add_disk = raid5_add_disk,
8410 .hot_remove_disk= raid5_remove_disk,
8411 .spare_active = raid5_spare_active,
8412 .sync_request = raid5_sync_request,
8413 .resize = raid5_resize,
8414 .size = raid5_size,
8415 .check_reshape = raid5_check_reshape,
8416 .start_reshape = raid5_start_reshape,
8417 .finish_reshape = raid5_finish_reshape,
8418 .quiesce = raid5_quiesce,
8419 .takeover = raid5_takeover,
8420 .congested = raid5_congested,
8421 .change_consistency_policy = raid5_change_consistency_policy,
8422 };
8423
8424 static struct md_personality raid4_personality =
8425 {
8426 .name = "raid4",
8427 .level = 4,
8428 .owner = THIS_MODULE,
8429 .make_request = raid5_make_request,
8430 .run = raid5_run,
8431 .start = raid5_start,
8432 .free = raid5_free,
8433 .status = raid5_status,
8434 .error_handler = raid5_error,
8435 .hot_add_disk = raid5_add_disk,
8436 .hot_remove_disk= raid5_remove_disk,
8437 .spare_active = raid5_spare_active,
8438 .sync_request = raid5_sync_request,
8439 .resize = raid5_resize,
8440 .size = raid5_size,
8441 .check_reshape = raid5_check_reshape,
8442 .start_reshape = raid5_start_reshape,
8443 .finish_reshape = raid5_finish_reshape,
8444 .quiesce = raid5_quiesce,
8445 .takeover = raid4_takeover,
8446 .congested = raid5_congested,
8447 .change_consistency_policy = raid5_change_consistency_policy,
8448 };
8449
8450 static int __init raid5_init(void)
8451 {
8452 int ret;
8453
8454 raid5_wq = alloc_workqueue("raid5wq",
8455 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8456 if (!raid5_wq)
8457 return -ENOMEM;
8458
8459 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8460 "md/raid5:prepare",
8461 raid456_cpu_up_prepare,
8462 raid456_cpu_dead);
8463 if (ret) {
8464 destroy_workqueue(raid5_wq);
8465 return ret;
8466 }
8467 register_md_personality(&raid6_personality);
8468 register_md_personality(&raid5_personality);
8469 register_md_personality(&raid4_personality);
8470 return 0;
8471 }
8472
8473 static void raid5_exit(void)
8474 {
8475 unregister_md_personality(&raid6_personality);
8476 unregister_md_personality(&raid5_personality);
8477 unregister_md_personality(&raid4_personality);
8478 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8479 destroy_workqueue(raid5_wq);
8480 }
8481
8482 module_init(raid5_init);
8483 module_exit(raid5_exit);
8484 MODULE_LICENSE("GPL");
8485 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8486 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8487 MODULE_ALIAS("md-raid5");
8488 MODULE_ALIAS("md-raid4");
8489 MODULE_ALIAS("md-level-5");
8490 MODULE_ALIAS("md-level-4");
8491 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8492 MODULE_ALIAS("md-raid6");
8493 MODULE_ALIAS("md-level-6");
8494
8495 /* This used to be two separate modules, they were: */
8496 MODULE_ALIAS("raid5");
8497 MODULE_ALIAS("raid6");