]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid5.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74 * Stripe cache
75 */
76
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
137 */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 int sectors = bio_sectors(bio);
141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 return bio->bi_next;
143 else
144 return NULL;
145 }
146
147 /*
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150 */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
171 {
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
174
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
212 {
213 int slot = *count;
214
215 if (sh->ddf_layout)
216 (*count)++;
217 if (idx == sh->pd_idx)
218 return syndrome_disks;
219 if (idx == sh->qd_idx)
220 return syndrome_disks + 1;
221 if (!sh->ddf_layout)
222 (*count)++;
223 return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228 struct bio *bi;
229 while ((bi = bio_list_pop(return_bi)) != NULL) {
230 bi->bi_iter.bi_size = 0;
231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 bi, 0);
233 bio_endio(bi);
234 }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241 return sh->check_state || sh->reconstruct_state ||
242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248 struct r5conf *conf = sh->raid_conf;
249 struct r5worker_group *group;
250 int thread_cnt;
251 int i, cpu = sh->cpu;
252
253 if (!cpu_online(cpu)) {
254 cpu = cpumask_any(cpu_online_mask);
255 sh->cpu = cpu;
256 }
257
258 if (list_empty(&sh->lru)) {
259 struct r5worker_group *group;
260 group = conf->worker_groups + cpu_to_group(cpu);
261 list_add_tail(&sh->lru, &group->handle_list);
262 group->stripes_cnt++;
263 sh->group = group;
264 }
265
266 if (conf->worker_cnt_per_group == 0) {
267 md_wakeup_thread(conf->mddev->thread);
268 return;
269 }
270
271 group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273 group->workers[0].working = true;
274 /* at least one worker should run to avoid race */
275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 /* wakeup more workers */
279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 if (group->workers[i].working == false) {
281 group->workers[i].working = true;
282 queue_work_on(sh->cpu, raid5_wq,
283 &group->workers[i].work);
284 thread_cnt--;
285 }
286 }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 struct list_head *temp_inactive_list)
291 {
292 BUG_ON(!list_empty(&sh->lru));
293 BUG_ON(atomic_read(&conf->active_stripes)==0);
294 if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297 list_add_tail(&sh->lru, &conf->delayed_list);
298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299 sh->bm_seq - conf->seq_write > 0)
300 list_add_tail(&sh->lru, &conf->bitmap_list);
301 else {
302 clear_bit(STRIPE_DELAYED, &sh->state);
303 clear_bit(STRIPE_BIT_DELAY, &sh->state);
304 if (conf->worker_cnt_per_group == 0) {
305 list_add_tail(&sh->lru, &conf->handle_list);
306 } else {
307 raid5_wakeup_stripe_thread(sh);
308 return;
309 }
310 }
311 md_wakeup_thread(conf->mddev->thread);
312 } else {
313 BUG_ON(stripe_operations_active(sh));
314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 if (atomic_dec_return(&conf->preread_active_stripes)
316 < IO_THRESHOLD)
317 md_wakeup_thread(conf->mddev->thread);
318 atomic_dec(&conf->active_stripes);
319 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 list_add_tail(&sh->lru, temp_inactive_list);
321 }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 struct list_head *temp_inactive_list)
326 {
327 if (atomic_dec_and_test(&sh->count))
328 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333 *
334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335 * given time. Adding stripes only takes device lock, while deleting stripes
336 * only takes hash lock.
337 */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339 struct list_head *temp_inactive_list,
340 int hash)
341 {
342 int size;
343 bool do_wakeup = false;
344 unsigned long flags;
345
346 if (hash == NR_STRIPE_HASH_LOCKS) {
347 size = NR_STRIPE_HASH_LOCKS;
348 hash = NR_STRIPE_HASH_LOCKS - 1;
349 } else
350 size = 1;
351 while (size) {
352 struct list_head *list = &temp_inactive_list[size - 1];
353
354 /*
355 * We don't hold any lock here yet, raid5_get_active_stripe() might
356 * remove stripes from the list
357 */
358 if (!list_empty_careful(list)) {
359 spin_lock_irqsave(conf->hash_locks + hash, flags);
360 if (list_empty(conf->inactive_list + hash) &&
361 !list_empty(list))
362 atomic_dec(&conf->empty_inactive_list_nr);
363 list_splice_tail_init(list, conf->inactive_list + hash);
364 do_wakeup = true;
365 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366 }
367 size--;
368 hash--;
369 }
370
371 if (do_wakeup) {
372 wake_up(&conf->wait_for_stripe);
373 if (atomic_read(&conf->active_stripes) == 0)
374 wake_up(&conf->wait_for_quiescent);
375 if (conf->retry_read_aligned)
376 md_wakeup_thread(conf->mddev->thread);
377 }
378 }
379
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382 struct list_head *temp_inactive_list)
383 {
384 struct stripe_head *sh;
385 int count = 0;
386 struct llist_node *head;
387
388 head = llist_del_all(&conf->released_stripes);
389 head = llist_reverse_order(head);
390 while (head) {
391 int hash;
392
393 sh = llist_entry(head, struct stripe_head, release_list);
394 head = llist_next(head);
395 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396 smp_mb();
397 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398 /*
399 * Don't worry the bit is set here, because if the bit is set
400 * again, the count is always > 1. This is true for
401 * STRIPE_ON_UNPLUG_LIST bit too.
402 */
403 hash = sh->hash_lock_index;
404 __release_stripe(conf, sh, &temp_inactive_list[hash]);
405 count++;
406 }
407
408 return count;
409 }
410
411 void raid5_release_stripe(struct stripe_head *sh)
412 {
413 struct r5conf *conf = sh->raid_conf;
414 unsigned long flags;
415 struct list_head list;
416 int hash;
417 bool wakeup;
418
419 /* Avoid release_list until the last reference.
420 */
421 if (atomic_add_unless(&sh->count, -1, 1))
422 return;
423
424 if (unlikely(!conf->mddev->thread) ||
425 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426 goto slow_path;
427 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428 if (wakeup)
429 md_wakeup_thread(conf->mddev->thread);
430 return;
431 slow_path:
432 local_irq_save(flags);
433 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435 INIT_LIST_HEAD(&list);
436 hash = sh->hash_lock_index;
437 do_release_stripe(conf, sh, &list);
438 spin_unlock(&conf->device_lock);
439 release_inactive_stripe_list(conf, &list, hash);
440 }
441 local_irq_restore(flags);
442 }
443
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446 pr_debug("remove_hash(), stripe %llu\n",
447 (unsigned long long)sh->sector);
448
449 hlist_del_init(&sh->hash);
450 }
451
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454 struct hlist_head *hp = stripe_hash(conf, sh->sector);
455
456 pr_debug("insert_hash(), stripe %llu\n",
457 (unsigned long long)sh->sector);
458
459 hlist_add_head(&sh->hash, hp);
460 }
461
462 /* find an idle stripe, make sure it is unhashed, and return it. */
463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
464 {
465 struct stripe_head *sh = NULL;
466 struct list_head *first;
467
468 if (list_empty(conf->inactive_list + hash))
469 goto out;
470 first = (conf->inactive_list + hash)->next;
471 sh = list_entry(first, struct stripe_head, lru);
472 list_del_init(first);
473 remove_hash(sh);
474 atomic_inc(&conf->active_stripes);
475 BUG_ON(hash != sh->hash_lock_index);
476 if (list_empty(conf->inactive_list + hash))
477 atomic_inc(&conf->empty_inactive_list_nr);
478 out:
479 return sh;
480 }
481
482 static void shrink_buffers(struct stripe_head *sh)
483 {
484 struct page *p;
485 int i;
486 int num = sh->raid_conf->pool_size;
487
488 for (i = 0; i < num ; i++) {
489 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
490 p = sh->dev[i].page;
491 if (!p)
492 continue;
493 sh->dev[i].page = NULL;
494 put_page(p);
495 }
496 }
497
498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
499 {
500 int i;
501 int num = sh->raid_conf->pool_size;
502
503 for (i = 0; i < num; i++) {
504 struct page *page;
505
506 if (!(page = alloc_page(gfp))) {
507 return 1;
508 }
509 sh->dev[i].page = page;
510 sh->dev[i].orig_page = page;
511 }
512 return 0;
513 }
514
515 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
517 struct stripe_head *sh);
518
519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
520 {
521 struct r5conf *conf = sh->raid_conf;
522 int i, seq;
523
524 BUG_ON(atomic_read(&sh->count) != 0);
525 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
526 BUG_ON(stripe_operations_active(sh));
527 BUG_ON(sh->batch_head);
528
529 pr_debug("init_stripe called, stripe %llu\n",
530 (unsigned long long)sector);
531 retry:
532 seq = read_seqcount_begin(&conf->gen_lock);
533 sh->generation = conf->generation - previous;
534 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535 sh->sector = sector;
536 stripe_set_idx(sector, conf, previous, sh);
537 sh->state = 0;
538
539 for (i = sh->disks; i--; ) {
540 struct r5dev *dev = &sh->dev[i];
541
542 if (dev->toread || dev->read || dev->towrite || dev->written ||
543 test_bit(R5_LOCKED, &dev->flags)) {
544 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545 (unsigned long long)sh->sector, i, dev->toread,
546 dev->read, dev->towrite, dev->written,
547 test_bit(R5_LOCKED, &dev->flags));
548 WARN_ON(1);
549 }
550 dev->flags = 0;
551 raid5_build_block(sh, i, previous);
552 }
553 if (read_seqcount_retry(&conf->gen_lock, seq))
554 goto retry;
555 sh->overwrite_disks = 0;
556 insert_hash(conf, sh);
557 sh->cpu = smp_processor_id();
558 set_bit(STRIPE_BATCH_READY, &sh->state);
559 }
560
561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
562 short generation)
563 {
564 struct stripe_head *sh;
565
566 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
567 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
568 if (sh->sector == sector && sh->generation == generation)
569 return sh;
570 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
571 return NULL;
572 }
573
574 /*
575 * Need to check if array has failed when deciding whether to:
576 * - start an array
577 * - remove non-faulty devices
578 * - add a spare
579 * - allow a reshape
580 * This determination is simple when no reshape is happening.
581 * However if there is a reshape, we need to carefully check
582 * both the before and after sections.
583 * This is because some failed devices may only affect one
584 * of the two sections, and some non-in_sync devices may
585 * be insync in the section most affected by failed devices.
586 */
587 static int calc_degraded(struct r5conf *conf)
588 {
589 int degraded, degraded2;
590 int i;
591
592 rcu_read_lock();
593 degraded = 0;
594 for (i = 0; i < conf->previous_raid_disks; i++) {
595 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
596 if (rdev && test_bit(Faulty, &rdev->flags))
597 rdev = rcu_dereference(conf->disks[i].replacement);
598 if (!rdev || test_bit(Faulty, &rdev->flags))
599 degraded++;
600 else if (test_bit(In_sync, &rdev->flags))
601 ;
602 else
603 /* not in-sync or faulty.
604 * If the reshape increases the number of devices,
605 * this is being recovered by the reshape, so
606 * this 'previous' section is not in_sync.
607 * If the number of devices is being reduced however,
608 * the device can only be part of the array if
609 * we are reverting a reshape, so this section will
610 * be in-sync.
611 */
612 if (conf->raid_disks >= conf->previous_raid_disks)
613 degraded++;
614 }
615 rcu_read_unlock();
616 if (conf->raid_disks == conf->previous_raid_disks)
617 return degraded;
618 rcu_read_lock();
619 degraded2 = 0;
620 for (i = 0; i < conf->raid_disks; i++) {
621 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
622 if (rdev && test_bit(Faulty, &rdev->flags))
623 rdev = rcu_dereference(conf->disks[i].replacement);
624 if (!rdev || test_bit(Faulty, &rdev->flags))
625 degraded2++;
626 else if (test_bit(In_sync, &rdev->flags))
627 ;
628 else
629 /* not in-sync or faulty.
630 * If reshape increases the number of devices, this
631 * section has already been recovered, else it
632 * almost certainly hasn't.
633 */
634 if (conf->raid_disks <= conf->previous_raid_disks)
635 degraded2++;
636 }
637 rcu_read_unlock();
638 if (degraded2 > degraded)
639 return degraded2;
640 return degraded;
641 }
642
643 static int has_failed(struct r5conf *conf)
644 {
645 int degraded;
646
647 if (conf->mddev->reshape_position == MaxSector)
648 return conf->mddev->degraded > conf->max_degraded;
649
650 degraded = calc_degraded(conf);
651 if (degraded > conf->max_degraded)
652 return 1;
653 return 0;
654 }
655
656 struct stripe_head *
657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658 int previous, int noblock, int noquiesce)
659 {
660 struct stripe_head *sh;
661 int hash = stripe_hash_locks_hash(sector);
662
663 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
664
665 spin_lock_irq(conf->hash_locks + hash);
666
667 do {
668 wait_event_lock_irq(conf->wait_for_quiescent,
669 conf->quiesce == 0 || noquiesce,
670 *(conf->hash_locks + hash));
671 sh = __find_stripe(conf, sector, conf->generation - previous);
672 if (!sh) {
673 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
674 sh = get_free_stripe(conf, hash);
675 if (!sh && !test_bit(R5_DID_ALLOC,
676 &conf->cache_state))
677 set_bit(R5_ALLOC_MORE,
678 &conf->cache_state);
679 }
680 if (noblock && sh == NULL)
681 break;
682 if (!sh) {
683 set_bit(R5_INACTIVE_BLOCKED,
684 &conf->cache_state);
685 wait_event_lock_irq(
686 conf->wait_for_stripe,
687 !list_empty(conf->inactive_list + hash) &&
688 (atomic_read(&conf->active_stripes)
689 < (conf->max_nr_stripes * 3 / 4)
690 || !test_bit(R5_INACTIVE_BLOCKED,
691 &conf->cache_state)),
692 *(conf->hash_locks + hash));
693 clear_bit(R5_INACTIVE_BLOCKED,
694 &conf->cache_state);
695 } else {
696 init_stripe(sh, sector, previous);
697 atomic_inc(&sh->count);
698 }
699 } else if (!atomic_inc_not_zero(&sh->count)) {
700 spin_lock(&conf->device_lock);
701 if (!atomic_read(&sh->count)) {
702 if (!test_bit(STRIPE_HANDLE, &sh->state))
703 atomic_inc(&conf->active_stripes);
704 BUG_ON(list_empty(&sh->lru) &&
705 !test_bit(STRIPE_EXPANDING, &sh->state));
706 list_del_init(&sh->lru);
707 if (sh->group) {
708 sh->group->stripes_cnt--;
709 sh->group = NULL;
710 }
711 }
712 atomic_inc(&sh->count);
713 spin_unlock(&conf->device_lock);
714 }
715 } while (sh == NULL);
716
717 spin_unlock_irq(conf->hash_locks + hash);
718 return sh;
719 }
720
721 static bool is_full_stripe_write(struct stripe_head *sh)
722 {
723 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
724 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
725 }
726
727 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728 {
729 local_irq_disable();
730 if (sh1 > sh2) {
731 spin_lock(&sh2->stripe_lock);
732 spin_lock_nested(&sh1->stripe_lock, 1);
733 } else {
734 spin_lock(&sh1->stripe_lock);
735 spin_lock_nested(&sh2->stripe_lock, 1);
736 }
737 }
738
739 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
740 {
741 spin_unlock(&sh1->stripe_lock);
742 spin_unlock(&sh2->stripe_lock);
743 local_irq_enable();
744 }
745
746 /* Only freshly new full stripe normal write stripe can be added to a batch list */
747 static bool stripe_can_batch(struct stripe_head *sh)
748 {
749 struct r5conf *conf = sh->raid_conf;
750
751 if (conf->log)
752 return false;
753 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
754 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
755 is_full_stripe_write(sh);
756 }
757
758 /* we only do back search */
759 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
760 {
761 struct stripe_head *head;
762 sector_t head_sector, tmp_sec;
763 int hash;
764 int dd_idx;
765
766 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767 tmp_sec = sh->sector;
768 if (!sector_div(tmp_sec, conf->chunk_sectors))
769 return;
770 head_sector = sh->sector - STRIPE_SECTORS;
771
772 hash = stripe_hash_locks_hash(head_sector);
773 spin_lock_irq(conf->hash_locks + hash);
774 head = __find_stripe(conf, head_sector, conf->generation);
775 if (head && !atomic_inc_not_zero(&head->count)) {
776 spin_lock(&conf->device_lock);
777 if (!atomic_read(&head->count)) {
778 if (!test_bit(STRIPE_HANDLE, &head->state))
779 atomic_inc(&conf->active_stripes);
780 BUG_ON(list_empty(&head->lru) &&
781 !test_bit(STRIPE_EXPANDING, &head->state));
782 list_del_init(&head->lru);
783 if (head->group) {
784 head->group->stripes_cnt--;
785 head->group = NULL;
786 }
787 }
788 atomic_inc(&head->count);
789 spin_unlock(&conf->device_lock);
790 }
791 spin_unlock_irq(conf->hash_locks + hash);
792
793 if (!head)
794 return;
795 if (!stripe_can_batch(head))
796 goto out;
797
798 lock_two_stripes(head, sh);
799 /* clear_batch_ready clear the flag */
800 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
801 goto unlock_out;
802
803 if (sh->batch_head)
804 goto unlock_out;
805
806 dd_idx = 0;
807 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
808 dd_idx++;
809 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
810 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
811 goto unlock_out;
812
813 if (head->batch_head) {
814 spin_lock(&head->batch_head->batch_lock);
815 /* This batch list is already running */
816 if (!stripe_can_batch(head)) {
817 spin_unlock(&head->batch_head->batch_lock);
818 goto unlock_out;
819 }
820
821 /*
822 * at this point, head's BATCH_READY could be cleared, but we
823 * can still add the stripe to batch list
824 */
825 list_add(&sh->batch_list, &head->batch_list);
826 spin_unlock(&head->batch_head->batch_lock);
827
828 sh->batch_head = head->batch_head;
829 } else {
830 head->batch_head = head;
831 sh->batch_head = head->batch_head;
832 spin_lock(&head->batch_lock);
833 list_add_tail(&sh->batch_list, &head->batch_list);
834 spin_unlock(&head->batch_lock);
835 }
836
837 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
838 if (atomic_dec_return(&conf->preread_active_stripes)
839 < IO_THRESHOLD)
840 md_wakeup_thread(conf->mddev->thread);
841
842 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
843 int seq = sh->bm_seq;
844 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
845 sh->batch_head->bm_seq > seq)
846 seq = sh->batch_head->bm_seq;
847 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
848 sh->batch_head->bm_seq = seq;
849 }
850
851 atomic_inc(&sh->count);
852 unlock_out:
853 unlock_two_stripes(head, sh);
854 out:
855 raid5_release_stripe(head);
856 }
857
858 /* Determine if 'data_offset' or 'new_data_offset' should be used
859 * in this stripe_head.
860 */
861 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
862 {
863 sector_t progress = conf->reshape_progress;
864 /* Need a memory barrier to make sure we see the value
865 * of conf->generation, or ->data_offset that was set before
866 * reshape_progress was updated.
867 */
868 smp_rmb();
869 if (progress == MaxSector)
870 return 0;
871 if (sh->generation == conf->generation - 1)
872 return 0;
873 /* We are in a reshape, and this is a new-generation stripe,
874 * so use new_data_offset.
875 */
876 return 1;
877 }
878
879 static void
880 raid5_end_read_request(struct bio *bi);
881 static void
882 raid5_end_write_request(struct bio *bi);
883
884 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
885 {
886 struct r5conf *conf = sh->raid_conf;
887 int i, disks = sh->disks;
888 struct stripe_head *head_sh = sh;
889
890 might_sleep();
891
892 if (r5l_write_stripe(conf->log, sh) == 0)
893 return;
894 for (i = disks; i--; ) {
895 int op, op_flags = 0;
896 int replace_only = 0;
897 struct bio *bi, *rbi;
898 struct md_rdev *rdev, *rrdev = NULL;
899
900 sh = head_sh;
901 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
902 op = REQ_OP_WRITE;
903 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
904 op_flags = WRITE_FUA;
905 if (test_bit(R5_Discard, &sh->dev[i].flags))
906 op = REQ_OP_DISCARD;
907 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
908 op = REQ_OP_READ;
909 else if (test_and_clear_bit(R5_WantReplace,
910 &sh->dev[i].flags)) {
911 op = REQ_OP_WRITE;
912 replace_only = 1;
913 } else
914 continue;
915 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
916 op_flags |= REQ_SYNC;
917
918 again:
919 bi = &sh->dev[i].req;
920 rbi = &sh->dev[i].rreq; /* For writing to replacement */
921
922 rcu_read_lock();
923 rrdev = rcu_dereference(conf->disks[i].replacement);
924 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
925 rdev = rcu_dereference(conf->disks[i].rdev);
926 if (!rdev) {
927 rdev = rrdev;
928 rrdev = NULL;
929 }
930 if (op_is_write(op)) {
931 if (replace_only)
932 rdev = NULL;
933 if (rdev == rrdev)
934 /* We raced and saw duplicates */
935 rrdev = NULL;
936 } else {
937 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
938 rdev = rrdev;
939 rrdev = NULL;
940 }
941
942 if (rdev && test_bit(Faulty, &rdev->flags))
943 rdev = NULL;
944 if (rdev)
945 atomic_inc(&rdev->nr_pending);
946 if (rrdev && test_bit(Faulty, &rrdev->flags))
947 rrdev = NULL;
948 if (rrdev)
949 atomic_inc(&rrdev->nr_pending);
950 rcu_read_unlock();
951
952 /* We have already checked bad blocks for reads. Now
953 * need to check for writes. We never accept write errors
954 * on the replacement, so we don't to check rrdev.
955 */
956 while (op_is_write(op) && rdev &&
957 test_bit(WriteErrorSeen, &rdev->flags)) {
958 sector_t first_bad;
959 int bad_sectors;
960 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
961 &first_bad, &bad_sectors);
962 if (!bad)
963 break;
964
965 if (bad < 0) {
966 set_bit(BlockedBadBlocks, &rdev->flags);
967 if (!conf->mddev->external &&
968 conf->mddev->flags) {
969 /* It is very unlikely, but we might
970 * still need to write out the
971 * bad block log - better give it
972 * a chance*/
973 md_check_recovery(conf->mddev);
974 }
975 /*
976 * Because md_wait_for_blocked_rdev
977 * will dec nr_pending, we must
978 * increment it first.
979 */
980 atomic_inc(&rdev->nr_pending);
981 md_wait_for_blocked_rdev(rdev, conf->mddev);
982 } else {
983 /* Acknowledged bad block - skip the write */
984 rdev_dec_pending(rdev, conf->mddev);
985 rdev = NULL;
986 }
987 }
988
989 if (rdev) {
990 if (s->syncing || s->expanding || s->expanded
991 || s->replacing)
992 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
993
994 set_bit(STRIPE_IO_STARTED, &sh->state);
995
996 bio_reset(bi);
997 bi->bi_bdev = rdev->bdev;
998 bio_set_op_attrs(bi, op, op_flags);
999 bi->bi_end_io = op_is_write(op)
1000 ? raid5_end_write_request
1001 : raid5_end_read_request;
1002 bi->bi_private = sh;
1003
1004 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1005 __func__, (unsigned long long)sh->sector,
1006 bi->bi_opf, i);
1007 atomic_inc(&sh->count);
1008 if (sh != head_sh)
1009 atomic_inc(&head_sh->count);
1010 if (use_new_offset(conf, sh))
1011 bi->bi_iter.bi_sector = (sh->sector
1012 + rdev->new_data_offset);
1013 else
1014 bi->bi_iter.bi_sector = (sh->sector
1015 + rdev->data_offset);
1016 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1017 bi->bi_opf |= REQ_NOMERGE;
1018
1019 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1020 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1021 sh->dev[i].vec.bv_page = sh->dev[i].page;
1022 bi->bi_vcnt = 1;
1023 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1024 bi->bi_io_vec[0].bv_offset = 0;
1025 bi->bi_iter.bi_size = STRIPE_SIZE;
1026 /*
1027 * If this is discard request, set bi_vcnt 0. We don't
1028 * want to confuse SCSI because SCSI will replace payload
1029 */
1030 if (op == REQ_OP_DISCARD)
1031 bi->bi_vcnt = 0;
1032 if (rrdev)
1033 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1034
1035 if (conf->mddev->gendisk)
1036 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1037 bi, disk_devt(conf->mddev->gendisk),
1038 sh->dev[i].sector);
1039 generic_make_request(bi);
1040 }
1041 if (rrdev) {
1042 if (s->syncing || s->expanding || s->expanded
1043 || s->replacing)
1044 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1045
1046 set_bit(STRIPE_IO_STARTED, &sh->state);
1047
1048 bio_reset(rbi);
1049 rbi->bi_bdev = rrdev->bdev;
1050 bio_set_op_attrs(rbi, op, op_flags);
1051 BUG_ON(!op_is_write(op));
1052 rbi->bi_end_io = raid5_end_write_request;
1053 rbi->bi_private = sh;
1054
1055 pr_debug("%s: for %llu schedule op %d on "
1056 "replacement disc %d\n",
1057 __func__, (unsigned long long)sh->sector,
1058 rbi->bi_opf, i);
1059 atomic_inc(&sh->count);
1060 if (sh != head_sh)
1061 atomic_inc(&head_sh->count);
1062 if (use_new_offset(conf, sh))
1063 rbi->bi_iter.bi_sector = (sh->sector
1064 + rrdev->new_data_offset);
1065 else
1066 rbi->bi_iter.bi_sector = (sh->sector
1067 + rrdev->data_offset);
1068 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1069 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1070 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1071 rbi->bi_vcnt = 1;
1072 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1073 rbi->bi_io_vec[0].bv_offset = 0;
1074 rbi->bi_iter.bi_size = STRIPE_SIZE;
1075 /*
1076 * If this is discard request, set bi_vcnt 0. We don't
1077 * want to confuse SCSI because SCSI will replace payload
1078 */
1079 if (op == REQ_OP_DISCARD)
1080 rbi->bi_vcnt = 0;
1081 if (conf->mddev->gendisk)
1082 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1083 rbi, disk_devt(conf->mddev->gendisk),
1084 sh->dev[i].sector);
1085 generic_make_request(rbi);
1086 }
1087 if (!rdev && !rrdev) {
1088 if (op_is_write(op))
1089 set_bit(STRIPE_DEGRADED, &sh->state);
1090 pr_debug("skip op %d on disc %d for sector %llu\n",
1091 bi->bi_opf, i, (unsigned long long)sh->sector);
1092 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1093 set_bit(STRIPE_HANDLE, &sh->state);
1094 }
1095
1096 if (!head_sh->batch_head)
1097 continue;
1098 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1099 batch_list);
1100 if (sh != head_sh)
1101 goto again;
1102 }
1103 }
1104
1105 static struct dma_async_tx_descriptor *
1106 async_copy_data(int frombio, struct bio *bio, struct page **page,
1107 sector_t sector, struct dma_async_tx_descriptor *tx,
1108 struct stripe_head *sh)
1109 {
1110 struct bio_vec bvl;
1111 struct bvec_iter iter;
1112 struct page *bio_page;
1113 int page_offset;
1114 struct async_submit_ctl submit;
1115 enum async_tx_flags flags = 0;
1116
1117 if (bio->bi_iter.bi_sector >= sector)
1118 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1119 else
1120 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1121
1122 if (frombio)
1123 flags |= ASYNC_TX_FENCE;
1124 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1125
1126 bio_for_each_segment(bvl, bio, iter) {
1127 int len = bvl.bv_len;
1128 int clen;
1129 int b_offset = 0;
1130
1131 if (page_offset < 0) {
1132 b_offset = -page_offset;
1133 page_offset += b_offset;
1134 len -= b_offset;
1135 }
1136
1137 if (len > 0 && page_offset + len > STRIPE_SIZE)
1138 clen = STRIPE_SIZE - page_offset;
1139 else
1140 clen = len;
1141
1142 if (clen > 0) {
1143 b_offset += bvl.bv_offset;
1144 bio_page = bvl.bv_page;
1145 if (frombio) {
1146 if (sh->raid_conf->skip_copy &&
1147 b_offset == 0 && page_offset == 0 &&
1148 clen == STRIPE_SIZE)
1149 *page = bio_page;
1150 else
1151 tx = async_memcpy(*page, bio_page, page_offset,
1152 b_offset, clen, &submit);
1153 } else
1154 tx = async_memcpy(bio_page, *page, b_offset,
1155 page_offset, clen, &submit);
1156 }
1157 /* chain the operations */
1158 submit.depend_tx = tx;
1159
1160 if (clen < len) /* hit end of page */
1161 break;
1162 page_offset += len;
1163 }
1164
1165 return tx;
1166 }
1167
1168 static void ops_complete_biofill(void *stripe_head_ref)
1169 {
1170 struct stripe_head *sh = stripe_head_ref;
1171 struct bio_list return_bi = BIO_EMPTY_LIST;
1172 int i;
1173
1174 pr_debug("%s: stripe %llu\n", __func__,
1175 (unsigned long long)sh->sector);
1176
1177 /* clear completed biofills */
1178 for (i = sh->disks; i--; ) {
1179 struct r5dev *dev = &sh->dev[i];
1180
1181 /* acknowledge completion of a biofill operation */
1182 /* and check if we need to reply to a read request,
1183 * new R5_Wantfill requests are held off until
1184 * !STRIPE_BIOFILL_RUN
1185 */
1186 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1187 struct bio *rbi, *rbi2;
1188
1189 BUG_ON(!dev->read);
1190 rbi = dev->read;
1191 dev->read = NULL;
1192 while (rbi && rbi->bi_iter.bi_sector <
1193 dev->sector + STRIPE_SECTORS) {
1194 rbi2 = r5_next_bio(rbi, dev->sector);
1195 if (!raid5_dec_bi_active_stripes(rbi))
1196 bio_list_add(&return_bi, rbi);
1197 rbi = rbi2;
1198 }
1199 }
1200 }
1201 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1202
1203 return_io(&return_bi);
1204
1205 set_bit(STRIPE_HANDLE, &sh->state);
1206 raid5_release_stripe(sh);
1207 }
1208
1209 static void ops_run_biofill(struct stripe_head *sh)
1210 {
1211 struct dma_async_tx_descriptor *tx = NULL;
1212 struct async_submit_ctl submit;
1213 int i;
1214
1215 BUG_ON(sh->batch_head);
1216 pr_debug("%s: stripe %llu\n", __func__,
1217 (unsigned long long)sh->sector);
1218
1219 for (i = sh->disks; i--; ) {
1220 struct r5dev *dev = &sh->dev[i];
1221 if (test_bit(R5_Wantfill, &dev->flags)) {
1222 struct bio *rbi;
1223 spin_lock_irq(&sh->stripe_lock);
1224 dev->read = rbi = dev->toread;
1225 dev->toread = NULL;
1226 spin_unlock_irq(&sh->stripe_lock);
1227 while (rbi && rbi->bi_iter.bi_sector <
1228 dev->sector + STRIPE_SECTORS) {
1229 tx = async_copy_data(0, rbi, &dev->page,
1230 dev->sector, tx, sh);
1231 rbi = r5_next_bio(rbi, dev->sector);
1232 }
1233 }
1234 }
1235
1236 atomic_inc(&sh->count);
1237 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1238 async_trigger_callback(&submit);
1239 }
1240
1241 static void mark_target_uptodate(struct stripe_head *sh, int target)
1242 {
1243 struct r5dev *tgt;
1244
1245 if (target < 0)
1246 return;
1247
1248 tgt = &sh->dev[target];
1249 set_bit(R5_UPTODATE, &tgt->flags);
1250 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1251 clear_bit(R5_Wantcompute, &tgt->flags);
1252 }
1253
1254 static void ops_complete_compute(void *stripe_head_ref)
1255 {
1256 struct stripe_head *sh = stripe_head_ref;
1257
1258 pr_debug("%s: stripe %llu\n", __func__,
1259 (unsigned long long)sh->sector);
1260
1261 /* mark the computed target(s) as uptodate */
1262 mark_target_uptodate(sh, sh->ops.target);
1263 mark_target_uptodate(sh, sh->ops.target2);
1264
1265 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1266 if (sh->check_state == check_state_compute_run)
1267 sh->check_state = check_state_compute_result;
1268 set_bit(STRIPE_HANDLE, &sh->state);
1269 raid5_release_stripe(sh);
1270 }
1271
1272 /* return a pointer to the address conversion region of the scribble buffer */
1273 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1274 struct raid5_percpu *percpu, int i)
1275 {
1276 void *addr;
1277
1278 addr = flex_array_get(percpu->scribble, i);
1279 return addr + sizeof(struct page *) * (sh->disks + 2);
1280 }
1281
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1284 {
1285 void *addr;
1286
1287 addr = flex_array_get(percpu->scribble, i);
1288 return addr;
1289 }
1290
1291 static struct dma_async_tx_descriptor *
1292 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1293 {
1294 int disks = sh->disks;
1295 struct page **xor_srcs = to_addr_page(percpu, 0);
1296 int target = sh->ops.target;
1297 struct r5dev *tgt = &sh->dev[target];
1298 struct page *xor_dest = tgt->page;
1299 int count = 0;
1300 struct dma_async_tx_descriptor *tx;
1301 struct async_submit_ctl submit;
1302 int i;
1303
1304 BUG_ON(sh->batch_head);
1305
1306 pr_debug("%s: stripe %llu block: %d\n",
1307 __func__, (unsigned long long)sh->sector, target);
1308 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1309
1310 for (i = disks; i--; )
1311 if (i != target)
1312 xor_srcs[count++] = sh->dev[i].page;
1313
1314 atomic_inc(&sh->count);
1315
1316 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1317 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1318 if (unlikely(count == 1))
1319 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1320 else
1321 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1322
1323 return tx;
1324 }
1325
1326 /* set_syndrome_sources - populate source buffers for gen_syndrome
1327 * @srcs - (struct page *) array of size sh->disks
1328 * @sh - stripe_head to parse
1329 *
1330 * Populates srcs in proper layout order for the stripe and returns the
1331 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1332 * destination buffer is recorded in srcs[count] and the Q destination
1333 * is recorded in srcs[count+1]].
1334 */
1335 static int set_syndrome_sources(struct page **srcs,
1336 struct stripe_head *sh,
1337 int srctype)
1338 {
1339 int disks = sh->disks;
1340 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1341 int d0_idx = raid6_d0(sh);
1342 int count;
1343 int i;
1344
1345 for (i = 0; i < disks; i++)
1346 srcs[i] = NULL;
1347
1348 count = 0;
1349 i = d0_idx;
1350 do {
1351 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1352 struct r5dev *dev = &sh->dev[i];
1353
1354 if (i == sh->qd_idx || i == sh->pd_idx ||
1355 (srctype == SYNDROME_SRC_ALL) ||
1356 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1357 test_bit(R5_Wantdrain, &dev->flags)) ||
1358 (srctype == SYNDROME_SRC_WRITTEN &&
1359 dev->written))
1360 srcs[slot] = sh->dev[i].page;
1361 i = raid6_next_disk(i, disks);
1362 } while (i != d0_idx);
1363
1364 return syndrome_disks;
1365 }
1366
1367 static struct dma_async_tx_descriptor *
1368 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1369 {
1370 int disks = sh->disks;
1371 struct page **blocks = to_addr_page(percpu, 0);
1372 int target;
1373 int qd_idx = sh->qd_idx;
1374 struct dma_async_tx_descriptor *tx;
1375 struct async_submit_ctl submit;
1376 struct r5dev *tgt;
1377 struct page *dest;
1378 int i;
1379 int count;
1380
1381 BUG_ON(sh->batch_head);
1382 if (sh->ops.target < 0)
1383 target = sh->ops.target2;
1384 else if (sh->ops.target2 < 0)
1385 target = sh->ops.target;
1386 else
1387 /* we should only have one valid target */
1388 BUG();
1389 BUG_ON(target < 0);
1390 pr_debug("%s: stripe %llu block: %d\n",
1391 __func__, (unsigned long long)sh->sector, target);
1392
1393 tgt = &sh->dev[target];
1394 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1395 dest = tgt->page;
1396
1397 atomic_inc(&sh->count);
1398
1399 if (target == qd_idx) {
1400 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1401 blocks[count] = NULL; /* regenerating p is not necessary */
1402 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1403 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1404 ops_complete_compute, sh,
1405 to_addr_conv(sh, percpu, 0));
1406 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1407 } else {
1408 /* Compute any data- or p-drive using XOR */
1409 count = 0;
1410 for (i = disks; i-- ; ) {
1411 if (i == target || i == qd_idx)
1412 continue;
1413 blocks[count++] = sh->dev[i].page;
1414 }
1415
1416 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1417 NULL, ops_complete_compute, sh,
1418 to_addr_conv(sh, percpu, 0));
1419 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1420 }
1421
1422 return tx;
1423 }
1424
1425 static struct dma_async_tx_descriptor *
1426 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1427 {
1428 int i, count, disks = sh->disks;
1429 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1430 int d0_idx = raid6_d0(sh);
1431 int faila = -1, failb = -1;
1432 int target = sh->ops.target;
1433 int target2 = sh->ops.target2;
1434 struct r5dev *tgt = &sh->dev[target];
1435 struct r5dev *tgt2 = &sh->dev[target2];
1436 struct dma_async_tx_descriptor *tx;
1437 struct page **blocks = to_addr_page(percpu, 0);
1438 struct async_submit_ctl submit;
1439
1440 BUG_ON(sh->batch_head);
1441 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442 __func__, (unsigned long long)sh->sector, target, target2);
1443 BUG_ON(target < 0 || target2 < 0);
1444 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1446
1447 /* we need to open-code set_syndrome_sources to handle the
1448 * slot number conversion for 'faila' and 'failb'
1449 */
1450 for (i = 0; i < disks ; i++)
1451 blocks[i] = NULL;
1452 count = 0;
1453 i = d0_idx;
1454 do {
1455 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1456
1457 blocks[slot] = sh->dev[i].page;
1458
1459 if (i == target)
1460 faila = slot;
1461 if (i == target2)
1462 failb = slot;
1463 i = raid6_next_disk(i, disks);
1464 } while (i != d0_idx);
1465
1466 BUG_ON(faila == failb);
1467 if (failb < faila)
1468 swap(faila, failb);
1469 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470 __func__, (unsigned long long)sh->sector, faila, failb);
1471
1472 atomic_inc(&sh->count);
1473
1474 if (failb == syndrome_disks+1) {
1475 /* Q disk is one of the missing disks */
1476 if (faila == syndrome_disks) {
1477 /* Missing P+Q, just recompute */
1478 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1479 ops_complete_compute, sh,
1480 to_addr_conv(sh, percpu, 0));
1481 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1482 STRIPE_SIZE, &submit);
1483 } else {
1484 struct page *dest;
1485 int data_target;
1486 int qd_idx = sh->qd_idx;
1487
1488 /* Missing D+Q: recompute D from P, then recompute Q */
1489 if (target == qd_idx)
1490 data_target = target2;
1491 else
1492 data_target = target;
1493
1494 count = 0;
1495 for (i = disks; i-- ; ) {
1496 if (i == data_target || i == qd_idx)
1497 continue;
1498 blocks[count++] = sh->dev[i].page;
1499 }
1500 dest = sh->dev[data_target].page;
1501 init_async_submit(&submit,
1502 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1503 NULL, NULL, NULL,
1504 to_addr_conv(sh, percpu, 0));
1505 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1506 &submit);
1507
1508 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1509 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1510 ops_complete_compute, sh,
1511 to_addr_conv(sh, percpu, 0));
1512 return async_gen_syndrome(blocks, 0, count+2,
1513 STRIPE_SIZE, &submit);
1514 }
1515 } else {
1516 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1517 ops_complete_compute, sh,
1518 to_addr_conv(sh, percpu, 0));
1519 if (failb == syndrome_disks) {
1520 /* We're missing D+P. */
1521 return async_raid6_datap_recov(syndrome_disks+2,
1522 STRIPE_SIZE, faila,
1523 blocks, &submit);
1524 } else {
1525 /* We're missing D+D. */
1526 return async_raid6_2data_recov(syndrome_disks+2,
1527 STRIPE_SIZE, faila, failb,
1528 blocks, &submit);
1529 }
1530 }
1531 }
1532
1533 static void ops_complete_prexor(void *stripe_head_ref)
1534 {
1535 struct stripe_head *sh = stripe_head_ref;
1536
1537 pr_debug("%s: stripe %llu\n", __func__,
1538 (unsigned long long)sh->sector);
1539 }
1540
1541 static struct dma_async_tx_descriptor *
1542 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1543 struct dma_async_tx_descriptor *tx)
1544 {
1545 int disks = sh->disks;
1546 struct page **xor_srcs = to_addr_page(percpu, 0);
1547 int count = 0, pd_idx = sh->pd_idx, i;
1548 struct async_submit_ctl submit;
1549
1550 /* existing parity data subtracted */
1551 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1552
1553 BUG_ON(sh->batch_head);
1554 pr_debug("%s: stripe %llu\n", __func__,
1555 (unsigned long long)sh->sector);
1556
1557 for (i = disks; i--; ) {
1558 struct r5dev *dev = &sh->dev[i];
1559 /* Only process blocks that are known to be uptodate */
1560 if (test_bit(R5_Wantdrain, &dev->flags))
1561 xor_srcs[count++] = dev->page;
1562 }
1563
1564 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1565 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1566 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1567
1568 return tx;
1569 }
1570
1571 static struct dma_async_tx_descriptor *
1572 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1573 struct dma_async_tx_descriptor *tx)
1574 {
1575 struct page **blocks = to_addr_page(percpu, 0);
1576 int count;
1577 struct async_submit_ctl submit;
1578
1579 pr_debug("%s: stripe %llu\n", __func__,
1580 (unsigned long long)sh->sector);
1581
1582 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1583
1584 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1585 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1586 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1587
1588 return tx;
1589 }
1590
1591 static struct dma_async_tx_descriptor *
1592 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1593 {
1594 int disks = sh->disks;
1595 int i;
1596 struct stripe_head *head_sh = sh;
1597
1598 pr_debug("%s: stripe %llu\n", __func__,
1599 (unsigned long long)sh->sector);
1600
1601 for (i = disks; i--; ) {
1602 struct r5dev *dev;
1603 struct bio *chosen;
1604
1605 sh = head_sh;
1606 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1607 struct bio *wbi;
1608
1609 again:
1610 dev = &sh->dev[i];
1611 spin_lock_irq(&sh->stripe_lock);
1612 chosen = dev->towrite;
1613 dev->towrite = NULL;
1614 sh->overwrite_disks = 0;
1615 BUG_ON(dev->written);
1616 wbi = dev->written = chosen;
1617 spin_unlock_irq(&sh->stripe_lock);
1618 WARN_ON(dev->page != dev->orig_page);
1619
1620 while (wbi && wbi->bi_iter.bi_sector <
1621 dev->sector + STRIPE_SECTORS) {
1622 if (wbi->bi_opf & REQ_FUA)
1623 set_bit(R5_WantFUA, &dev->flags);
1624 if (wbi->bi_opf & REQ_SYNC)
1625 set_bit(R5_SyncIO, &dev->flags);
1626 if (bio_op(wbi) == REQ_OP_DISCARD)
1627 set_bit(R5_Discard, &dev->flags);
1628 else {
1629 tx = async_copy_data(1, wbi, &dev->page,
1630 dev->sector, tx, sh);
1631 if (dev->page != dev->orig_page) {
1632 set_bit(R5_SkipCopy, &dev->flags);
1633 clear_bit(R5_UPTODATE, &dev->flags);
1634 clear_bit(R5_OVERWRITE, &dev->flags);
1635 }
1636 }
1637 wbi = r5_next_bio(wbi, dev->sector);
1638 }
1639
1640 if (head_sh->batch_head) {
1641 sh = list_first_entry(&sh->batch_list,
1642 struct stripe_head,
1643 batch_list);
1644 if (sh == head_sh)
1645 continue;
1646 goto again;
1647 }
1648 }
1649 }
1650
1651 return tx;
1652 }
1653
1654 static void ops_complete_reconstruct(void *stripe_head_ref)
1655 {
1656 struct stripe_head *sh = stripe_head_ref;
1657 int disks = sh->disks;
1658 int pd_idx = sh->pd_idx;
1659 int qd_idx = sh->qd_idx;
1660 int i;
1661 bool fua = false, sync = false, discard = false;
1662
1663 pr_debug("%s: stripe %llu\n", __func__,
1664 (unsigned long long)sh->sector);
1665
1666 for (i = disks; i--; ) {
1667 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1668 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1669 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1670 }
1671
1672 for (i = disks; i--; ) {
1673 struct r5dev *dev = &sh->dev[i];
1674
1675 if (dev->written || i == pd_idx || i == qd_idx) {
1676 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1677 set_bit(R5_UPTODATE, &dev->flags);
1678 if (fua)
1679 set_bit(R5_WantFUA, &dev->flags);
1680 if (sync)
1681 set_bit(R5_SyncIO, &dev->flags);
1682 }
1683 }
1684
1685 if (sh->reconstruct_state == reconstruct_state_drain_run)
1686 sh->reconstruct_state = reconstruct_state_drain_result;
1687 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1688 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1689 else {
1690 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1691 sh->reconstruct_state = reconstruct_state_result;
1692 }
1693
1694 set_bit(STRIPE_HANDLE, &sh->state);
1695 raid5_release_stripe(sh);
1696 }
1697
1698 static void
1699 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1700 struct dma_async_tx_descriptor *tx)
1701 {
1702 int disks = sh->disks;
1703 struct page **xor_srcs;
1704 struct async_submit_ctl submit;
1705 int count, pd_idx = sh->pd_idx, i;
1706 struct page *xor_dest;
1707 int prexor = 0;
1708 unsigned long flags;
1709 int j = 0;
1710 struct stripe_head *head_sh = sh;
1711 int last_stripe;
1712
1713 pr_debug("%s: stripe %llu\n", __func__,
1714 (unsigned long long)sh->sector);
1715
1716 for (i = 0; i < sh->disks; i++) {
1717 if (pd_idx == i)
1718 continue;
1719 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1720 break;
1721 }
1722 if (i >= sh->disks) {
1723 atomic_inc(&sh->count);
1724 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1725 ops_complete_reconstruct(sh);
1726 return;
1727 }
1728 again:
1729 count = 0;
1730 xor_srcs = to_addr_page(percpu, j);
1731 /* check if prexor is active which means only process blocks
1732 * that are part of a read-modify-write (written)
1733 */
1734 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1735 prexor = 1;
1736 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1737 for (i = disks; i--; ) {
1738 struct r5dev *dev = &sh->dev[i];
1739 if (head_sh->dev[i].written)
1740 xor_srcs[count++] = dev->page;
1741 }
1742 } else {
1743 xor_dest = sh->dev[pd_idx].page;
1744 for (i = disks; i--; ) {
1745 struct r5dev *dev = &sh->dev[i];
1746 if (i != pd_idx)
1747 xor_srcs[count++] = dev->page;
1748 }
1749 }
1750
1751 /* 1/ if we prexor'd then the dest is reused as a source
1752 * 2/ if we did not prexor then we are redoing the parity
1753 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754 * for the synchronous xor case
1755 */
1756 last_stripe = !head_sh->batch_head ||
1757 list_first_entry(&sh->batch_list,
1758 struct stripe_head, batch_list) == head_sh;
1759 if (last_stripe) {
1760 flags = ASYNC_TX_ACK |
1761 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1762
1763 atomic_inc(&head_sh->count);
1764 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1765 to_addr_conv(sh, percpu, j));
1766 } else {
1767 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1768 init_async_submit(&submit, flags, tx, NULL, NULL,
1769 to_addr_conv(sh, percpu, j));
1770 }
1771
1772 if (unlikely(count == 1))
1773 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1774 else
1775 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1776 if (!last_stripe) {
1777 j++;
1778 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1779 batch_list);
1780 goto again;
1781 }
1782 }
1783
1784 static void
1785 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1786 struct dma_async_tx_descriptor *tx)
1787 {
1788 struct async_submit_ctl submit;
1789 struct page **blocks;
1790 int count, i, j = 0;
1791 struct stripe_head *head_sh = sh;
1792 int last_stripe;
1793 int synflags;
1794 unsigned long txflags;
1795
1796 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1797
1798 for (i = 0; i < sh->disks; i++) {
1799 if (sh->pd_idx == i || sh->qd_idx == i)
1800 continue;
1801 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1802 break;
1803 }
1804 if (i >= sh->disks) {
1805 atomic_inc(&sh->count);
1806 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1807 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1808 ops_complete_reconstruct(sh);
1809 return;
1810 }
1811
1812 again:
1813 blocks = to_addr_page(percpu, j);
1814
1815 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1816 synflags = SYNDROME_SRC_WRITTEN;
1817 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1818 } else {
1819 synflags = SYNDROME_SRC_ALL;
1820 txflags = ASYNC_TX_ACK;
1821 }
1822
1823 count = set_syndrome_sources(blocks, sh, synflags);
1824 last_stripe = !head_sh->batch_head ||
1825 list_first_entry(&sh->batch_list,
1826 struct stripe_head, batch_list) == head_sh;
1827
1828 if (last_stripe) {
1829 atomic_inc(&head_sh->count);
1830 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1831 head_sh, to_addr_conv(sh, percpu, j));
1832 } else
1833 init_async_submit(&submit, 0, tx, NULL, NULL,
1834 to_addr_conv(sh, percpu, j));
1835 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1836 if (!last_stripe) {
1837 j++;
1838 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1839 batch_list);
1840 goto again;
1841 }
1842 }
1843
1844 static void ops_complete_check(void *stripe_head_ref)
1845 {
1846 struct stripe_head *sh = stripe_head_ref;
1847
1848 pr_debug("%s: stripe %llu\n", __func__,
1849 (unsigned long long)sh->sector);
1850
1851 sh->check_state = check_state_check_result;
1852 set_bit(STRIPE_HANDLE, &sh->state);
1853 raid5_release_stripe(sh);
1854 }
1855
1856 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1857 {
1858 int disks = sh->disks;
1859 int pd_idx = sh->pd_idx;
1860 int qd_idx = sh->qd_idx;
1861 struct page *xor_dest;
1862 struct page **xor_srcs = to_addr_page(percpu, 0);
1863 struct dma_async_tx_descriptor *tx;
1864 struct async_submit_ctl submit;
1865 int count;
1866 int i;
1867
1868 pr_debug("%s: stripe %llu\n", __func__,
1869 (unsigned long long)sh->sector);
1870
1871 BUG_ON(sh->batch_head);
1872 count = 0;
1873 xor_dest = sh->dev[pd_idx].page;
1874 xor_srcs[count++] = xor_dest;
1875 for (i = disks; i--; ) {
1876 if (i == pd_idx || i == qd_idx)
1877 continue;
1878 xor_srcs[count++] = sh->dev[i].page;
1879 }
1880
1881 init_async_submit(&submit, 0, NULL, NULL, NULL,
1882 to_addr_conv(sh, percpu, 0));
1883 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1884 &sh->ops.zero_sum_result, &submit);
1885
1886 atomic_inc(&sh->count);
1887 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1888 tx = async_trigger_callback(&submit);
1889 }
1890
1891 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1892 {
1893 struct page **srcs = to_addr_page(percpu, 0);
1894 struct async_submit_ctl submit;
1895 int count;
1896
1897 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1898 (unsigned long long)sh->sector, checkp);
1899
1900 BUG_ON(sh->batch_head);
1901 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1902 if (!checkp)
1903 srcs[count] = NULL;
1904
1905 atomic_inc(&sh->count);
1906 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1907 sh, to_addr_conv(sh, percpu, 0));
1908 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1909 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1910 }
1911
1912 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1913 {
1914 int overlap_clear = 0, i, disks = sh->disks;
1915 struct dma_async_tx_descriptor *tx = NULL;
1916 struct r5conf *conf = sh->raid_conf;
1917 int level = conf->level;
1918 struct raid5_percpu *percpu;
1919 unsigned long cpu;
1920
1921 cpu = get_cpu();
1922 percpu = per_cpu_ptr(conf->percpu, cpu);
1923 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1924 ops_run_biofill(sh);
1925 overlap_clear++;
1926 }
1927
1928 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1929 if (level < 6)
1930 tx = ops_run_compute5(sh, percpu);
1931 else {
1932 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1933 tx = ops_run_compute6_1(sh, percpu);
1934 else
1935 tx = ops_run_compute6_2(sh, percpu);
1936 }
1937 /* terminate the chain if reconstruct is not set to be run */
1938 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1939 async_tx_ack(tx);
1940 }
1941
1942 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1943 if (level < 6)
1944 tx = ops_run_prexor5(sh, percpu, tx);
1945 else
1946 tx = ops_run_prexor6(sh, percpu, tx);
1947 }
1948
1949 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1950 tx = ops_run_biodrain(sh, tx);
1951 overlap_clear++;
1952 }
1953
1954 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1955 if (level < 6)
1956 ops_run_reconstruct5(sh, percpu, tx);
1957 else
1958 ops_run_reconstruct6(sh, percpu, tx);
1959 }
1960
1961 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1962 if (sh->check_state == check_state_run)
1963 ops_run_check_p(sh, percpu);
1964 else if (sh->check_state == check_state_run_q)
1965 ops_run_check_pq(sh, percpu, 0);
1966 else if (sh->check_state == check_state_run_pq)
1967 ops_run_check_pq(sh, percpu, 1);
1968 else
1969 BUG();
1970 }
1971
1972 if (overlap_clear && !sh->batch_head)
1973 for (i = disks; i--; ) {
1974 struct r5dev *dev = &sh->dev[i];
1975 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1976 wake_up(&sh->raid_conf->wait_for_overlap);
1977 }
1978 put_cpu();
1979 }
1980
1981 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1982 {
1983 struct stripe_head *sh;
1984
1985 sh = kmem_cache_zalloc(sc, gfp);
1986 if (sh) {
1987 spin_lock_init(&sh->stripe_lock);
1988 spin_lock_init(&sh->batch_lock);
1989 INIT_LIST_HEAD(&sh->batch_list);
1990 INIT_LIST_HEAD(&sh->lru);
1991 atomic_set(&sh->count, 1);
1992 }
1993 return sh;
1994 }
1995 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1996 {
1997 struct stripe_head *sh;
1998
1999 sh = alloc_stripe(conf->slab_cache, gfp);
2000 if (!sh)
2001 return 0;
2002
2003 sh->raid_conf = conf;
2004
2005 if (grow_buffers(sh, gfp)) {
2006 shrink_buffers(sh);
2007 kmem_cache_free(conf->slab_cache, sh);
2008 return 0;
2009 }
2010 sh->hash_lock_index =
2011 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2012 /* we just created an active stripe so... */
2013 atomic_inc(&conf->active_stripes);
2014
2015 raid5_release_stripe(sh);
2016 conf->max_nr_stripes++;
2017 return 1;
2018 }
2019
2020 static int grow_stripes(struct r5conf *conf, int num)
2021 {
2022 struct kmem_cache *sc;
2023 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2024
2025 if (conf->mddev->gendisk)
2026 sprintf(conf->cache_name[0],
2027 "raid%d-%s", conf->level, mdname(conf->mddev));
2028 else
2029 sprintf(conf->cache_name[0],
2030 "raid%d-%p", conf->level, conf->mddev);
2031 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2032
2033 conf->active_name = 0;
2034 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2035 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2036 0, 0, NULL);
2037 if (!sc)
2038 return 1;
2039 conf->slab_cache = sc;
2040 conf->pool_size = devs;
2041 while (num--)
2042 if (!grow_one_stripe(conf, GFP_KERNEL))
2043 return 1;
2044
2045 return 0;
2046 }
2047
2048 /**
2049 * scribble_len - return the required size of the scribble region
2050 * @num - total number of disks in the array
2051 *
2052 * The size must be enough to contain:
2053 * 1/ a struct page pointer for each device in the array +2
2054 * 2/ room to convert each entry in (1) to its corresponding dma
2055 * (dma_map_page()) or page (page_address()) address.
2056 *
2057 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058 * calculate over all devices (not just the data blocks), using zeros in place
2059 * of the P and Q blocks.
2060 */
2061 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2062 {
2063 struct flex_array *ret;
2064 size_t len;
2065
2066 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2067 ret = flex_array_alloc(len, cnt, flags);
2068 if (!ret)
2069 return NULL;
2070 /* always prealloc all elements, so no locking is required */
2071 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2072 flex_array_free(ret);
2073 return NULL;
2074 }
2075 return ret;
2076 }
2077
2078 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2079 {
2080 unsigned long cpu;
2081 int err = 0;
2082
2083 /*
2084 * Never shrink. And mddev_suspend() could deadlock if this is called
2085 * from raid5d. In that case, scribble_disks and scribble_sectors
2086 * should equal to new_disks and new_sectors
2087 */
2088 if (conf->scribble_disks >= new_disks &&
2089 conf->scribble_sectors >= new_sectors)
2090 return 0;
2091 mddev_suspend(conf->mddev);
2092 get_online_cpus();
2093 for_each_present_cpu(cpu) {
2094 struct raid5_percpu *percpu;
2095 struct flex_array *scribble;
2096
2097 percpu = per_cpu_ptr(conf->percpu, cpu);
2098 scribble = scribble_alloc(new_disks,
2099 new_sectors / STRIPE_SECTORS,
2100 GFP_NOIO);
2101
2102 if (scribble) {
2103 flex_array_free(percpu->scribble);
2104 percpu->scribble = scribble;
2105 } else {
2106 err = -ENOMEM;
2107 break;
2108 }
2109 }
2110 put_online_cpus();
2111 mddev_resume(conf->mddev);
2112 if (!err) {
2113 conf->scribble_disks = new_disks;
2114 conf->scribble_sectors = new_sectors;
2115 }
2116 return err;
2117 }
2118
2119 static int resize_stripes(struct r5conf *conf, int newsize)
2120 {
2121 /* Make all the stripes able to hold 'newsize' devices.
2122 * New slots in each stripe get 'page' set to a new page.
2123 *
2124 * This happens in stages:
2125 * 1/ create a new kmem_cache and allocate the required number of
2126 * stripe_heads.
2127 * 2/ gather all the old stripe_heads and transfer the pages across
2128 * to the new stripe_heads. This will have the side effect of
2129 * freezing the array as once all stripe_heads have been collected,
2130 * no IO will be possible. Old stripe heads are freed once their
2131 * pages have been transferred over, and the old kmem_cache is
2132 * freed when all stripes are done.
2133 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2134 * we simple return a failre status - no need to clean anything up.
2135 * 4/ allocate new pages for the new slots in the new stripe_heads.
2136 * If this fails, we don't bother trying the shrink the
2137 * stripe_heads down again, we just leave them as they are.
2138 * As each stripe_head is processed the new one is released into
2139 * active service.
2140 *
2141 * Once step2 is started, we cannot afford to wait for a write,
2142 * so we use GFP_NOIO allocations.
2143 */
2144 struct stripe_head *osh, *nsh;
2145 LIST_HEAD(newstripes);
2146 struct disk_info *ndisks;
2147 int err;
2148 struct kmem_cache *sc;
2149 int i;
2150 int hash, cnt;
2151
2152 if (newsize <= conf->pool_size)
2153 return 0; /* never bother to shrink */
2154
2155 err = md_allow_write(conf->mddev);
2156 if (err)
2157 return err;
2158
2159 /* Step 1 */
2160 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2161 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2162 0, 0, NULL);
2163 if (!sc)
2164 return -ENOMEM;
2165
2166 /* Need to ensure auto-resizing doesn't interfere */
2167 mutex_lock(&conf->cache_size_mutex);
2168
2169 for (i = conf->max_nr_stripes; i; i--) {
2170 nsh = alloc_stripe(sc, GFP_KERNEL);
2171 if (!nsh)
2172 break;
2173
2174 nsh->raid_conf = conf;
2175 list_add(&nsh->lru, &newstripes);
2176 }
2177 if (i) {
2178 /* didn't get enough, give up */
2179 while (!list_empty(&newstripes)) {
2180 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2181 list_del(&nsh->lru);
2182 kmem_cache_free(sc, nsh);
2183 }
2184 kmem_cache_destroy(sc);
2185 mutex_unlock(&conf->cache_size_mutex);
2186 return -ENOMEM;
2187 }
2188 /* Step 2 - Must use GFP_NOIO now.
2189 * OK, we have enough stripes, start collecting inactive
2190 * stripes and copying them over
2191 */
2192 hash = 0;
2193 cnt = 0;
2194 list_for_each_entry(nsh, &newstripes, lru) {
2195 lock_device_hash_lock(conf, hash);
2196 wait_event_cmd(conf->wait_for_stripe,
2197 !list_empty(conf->inactive_list + hash),
2198 unlock_device_hash_lock(conf, hash),
2199 lock_device_hash_lock(conf, hash));
2200 osh = get_free_stripe(conf, hash);
2201 unlock_device_hash_lock(conf, hash);
2202
2203 for(i=0; i<conf->pool_size; i++) {
2204 nsh->dev[i].page = osh->dev[i].page;
2205 nsh->dev[i].orig_page = osh->dev[i].page;
2206 }
2207 nsh->hash_lock_index = hash;
2208 kmem_cache_free(conf->slab_cache, osh);
2209 cnt++;
2210 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2211 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2212 hash++;
2213 cnt = 0;
2214 }
2215 }
2216 kmem_cache_destroy(conf->slab_cache);
2217
2218 /* Step 3.
2219 * At this point, we are holding all the stripes so the array
2220 * is completely stalled, so now is a good time to resize
2221 * conf->disks and the scribble region
2222 */
2223 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2224 if (ndisks) {
2225 for (i=0; i<conf->raid_disks; i++)
2226 ndisks[i] = conf->disks[i];
2227 kfree(conf->disks);
2228 conf->disks = ndisks;
2229 } else
2230 err = -ENOMEM;
2231
2232 mutex_unlock(&conf->cache_size_mutex);
2233 /* Step 4, return new stripes to service */
2234 while(!list_empty(&newstripes)) {
2235 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2236 list_del_init(&nsh->lru);
2237
2238 for (i=conf->raid_disks; i < newsize; i++)
2239 if (nsh->dev[i].page == NULL) {
2240 struct page *p = alloc_page(GFP_NOIO);
2241 nsh->dev[i].page = p;
2242 nsh->dev[i].orig_page = p;
2243 if (!p)
2244 err = -ENOMEM;
2245 }
2246 raid5_release_stripe(nsh);
2247 }
2248 /* critical section pass, GFP_NOIO no longer needed */
2249
2250 conf->slab_cache = sc;
2251 conf->active_name = 1-conf->active_name;
2252 if (!err)
2253 conf->pool_size = newsize;
2254 return err;
2255 }
2256
2257 static int drop_one_stripe(struct r5conf *conf)
2258 {
2259 struct stripe_head *sh;
2260 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2261
2262 spin_lock_irq(conf->hash_locks + hash);
2263 sh = get_free_stripe(conf, hash);
2264 spin_unlock_irq(conf->hash_locks + hash);
2265 if (!sh)
2266 return 0;
2267 BUG_ON(atomic_read(&sh->count));
2268 shrink_buffers(sh);
2269 kmem_cache_free(conf->slab_cache, sh);
2270 atomic_dec(&conf->active_stripes);
2271 conf->max_nr_stripes--;
2272 return 1;
2273 }
2274
2275 static void shrink_stripes(struct r5conf *conf)
2276 {
2277 while (conf->max_nr_stripes &&
2278 drop_one_stripe(conf))
2279 ;
2280
2281 kmem_cache_destroy(conf->slab_cache);
2282 conf->slab_cache = NULL;
2283 }
2284
2285 static void raid5_end_read_request(struct bio * bi)
2286 {
2287 struct stripe_head *sh = bi->bi_private;
2288 struct r5conf *conf = sh->raid_conf;
2289 int disks = sh->disks, i;
2290 char b[BDEVNAME_SIZE];
2291 struct md_rdev *rdev = NULL;
2292 sector_t s;
2293
2294 for (i=0 ; i<disks; i++)
2295 if (bi == &sh->dev[i].req)
2296 break;
2297
2298 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2299 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2300 bi->bi_error);
2301 if (i == disks) {
2302 BUG();
2303 return;
2304 }
2305 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2306 /* If replacement finished while this request was outstanding,
2307 * 'replacement' might be NULL already.
2308 * In that case it moved down to 'rdev'.
2309 * rdev is not removed until all requests are finished.
2310 */
2311 rdev = conf->disks[i].replacement;
2312 if (!rdev)
2313 rdev = conf->disks[i].rdev;
2314
2315 if (use_new_offset(conf, sh))
2316 s = sh->sector + rdev->new_data_offset;
2317 else
2318 s = sh->sector + rdev->data_offset;
2319 if (!bi->bi_error) {
2320 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2321 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2322 /* Note that this cannot happen on a
2323 * replacement device. We just fail those on
2324 * any error
2325 */
2326 printk_ratelimited(
2327 KERN_INFO
2328 "md/raid:%s: read error corrected"
2329 " (%lu sectors at %llu on %s)\n",
2330 mdname(conf->mddev), STRIPE_SECTORS,
2331 (unsigned long long)s,
2332 bdevname(rdev->bdev, b));
2333 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2334 clear_bit(R5_ReadError, &sh->dev[i].flags);
2335 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2336 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2337 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2338
2339 if (atomic_read(&rdev->read_errors))
2340 atomic_set(&rdev->read_errors, 0);
2341 } else {
2342 const char *bdn = bdevname(rdev->bdev, b);
2343 int retry = 0;
2344 int set_bad = 0;
2345
2346 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2347 atomic_inc(&rdev->read_errors);
2348 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2349 printk_ratelimited(
2350 KERN_WARNING
2351 "md/raid:%s: read error on replacement device "
2352 "(sector %llu on %s).\n",
2353 mdname(conf->mddev),
2354 (unsigned long long)s,
2355 bdn);
2356 else if (conf->mddev->degraded >= conf->max_degraded) {
2357 set_bad = 1;
2358 printk_ratelimited(
2359 KERN_WARNING
2360 "md/raid:%s: read error not correctable "
2361 "(sector %llu on %s).\n",
2362 mdname(conf->mddev),
2363 (unsigned long long)s,
2364 bdn);
2365 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2366 /* Oh, no!!! */
2367 set_bad = 1;
2368 printk_ratelimited(
2369 KERN_WARNING
2370 "md/raid:%s: read error NOT corrected!! "
2371 "(sector %llu on %s).\n",
2372 mdname(conf->mddev),
2373 (unsigned long long)s,
2374 bdn);
2375 } else if (atomic_read(&rdev->read_errors)
2376 > conf->max_nr_stripes)
2377 printk(KERN_WARNING
2378 "md/raid:%s: Too many read errors, failing device %s.\n",
2379 mdname(conf->mddev), bdn);
2380 else
2381 retry = 1;
2382 if (set_bad && test_bit(In_sync, &rdev->flags)
2383 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2384 retry = 1;
2385 if (retry)
2386 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2387 set_bit(R5_ReadError, &sh->dev[i].flags);
2388 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2389 } else
2390 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2391 else {
2392 clear_bit(R5_ReadError, &sh->dev[i].flags);
2393 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2394 if (!(set_bad
2395 && test_bit(In_sync, &rdev->flags)
2396 && rdev_set_badblocks(
2397 rdev, sh->sector, STRIPE_SECTORS, 0)))
2398 md_error(conf->mddev, rdev);
2399 }
2400 }
2401 rdev_dec_pending(rdev, conf->mddev);
2402 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2403 set_bit(STRIPE_HANDLE, &sh->state);
2404 raid5_release_stripe(sh);
2405 }
2406
2407 static void raid5_end_write_request(struct bio *bi)
2408 {
2409 struct stripe_head *sh = bi->bi_private;
2410 struct r5conf *conf = sh->raid_conf;
2411 int disks = sh->disks, i;
2412 struct md_rdev *uninitialized_var(rdev);
2413 sector_t first_bad;
2414 int bad_sectors;
2415 int replacement = 0;
2416
2417 for (i = 0 ; i < disks; i++) {
2418 if (bi == &sh->dev[i].req) {
2419 rdev = conf->disks[i].rdev;
2420 break;
2421 }
2422 if (bi == &sh->dev[i].rreq) {
2423 rdev = conf->disks[i].replacement;
2424 if (rdev)
2425 replacement = 1;
2426 else
2427 /* rdev was removed and 'replacement'
2428 * replaced it. rdev is not removed
2429 * until all requests are finished.
2430 */
2431 rdev = conf->disks[i].rdev;
2432 break;
2433 }
2434 }
2435 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2436 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2437 bi->bi_error);
2438 if (i == disks) {
2439 BUG();
2440 return;
2441 }
2442
2443 if (replacement) {
2444 if (bi->bi_error)
2445 md_error(conf->mddev, rdev);
2446 else if (is_badblock(rdev, sh->sector,
2447 STRIPE_SECTORS,
2448 &first_bad, &bad_sectors))
2449 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2450 } else {
2451 if (bi->bi_error) {
2452 set_bit(STRIPE_DEGRADED, &sh->state);
2453 set_bit(WriteErrorSeen, &rdev->flags);
2454 set_bit(R5_WriteError, &sh->dev[i].flags);
2455 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2456 set_bit(MD_RECOVERY_NEEDED,
2457 &rdev->mddev->recovery);
2458 } else if (is_badblock(rdev, sh->sector,
2459 STRIPE_SECTORS,
2460 &first_bad, &bad_sectors)) {
2461 set_bit(R5_MadeGood, &sh->dev[i].flags);
2462 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2463 /* That was a successful write so make
2464 * sure it looks like we already did
2465 * a re-write.
2466 */
2467 set_bit(R5_ReWrite, &sh->dev[i].flags);
2468 }
2469 }
2470 rdev_dec_pending(rdev, conf->mddev);
2471
2472 if (sh->batch_head && bi->bi_error && !replacement)
2473 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2474
2475 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2476 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2477 set_bit(STRIPE_HANDLE, &sh->state);
2478 raid5_release_stripe(sh);
2479
2480 if (sh->batch_head && sh != sh->batch_head)
2481 raid5_release_stripe(sh->batch_head);
2482 }
2483
2484 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2485 {
2486 struct r5dev *dev = &sh->dev[i];
2487
2488 bio_init(&dev->req);
2489 dev->req.bi_io_vec = &dev->vec;
2490 dev->req.bi_max_vecs = 1;
2491 dev->req.bi_private = sh;
2492
2493 bio_init(&dev->rreq);
2494 dev->rreq.bi_io_vec = &dev->rvec;
2495 dev->rreq.bi_max_vecs = 1;
2496 dev->rreq.bi_private = sh;
2497
2498 dev->flags = 0;
2499 dev->sector = raid5_compute_blocknr(sh, i, previous);
2500 }
2501
2502 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2503 {
2504 char b[BDEVNAME_SIZE];
2505 struct r5conf *conf = mddev->private;
2506 unsigned long flags;
2507 pr_debug("raid456: error called\n");
2508
2509 spin_lock_irqsave(&conf->device_lock, flags);
2510 clear_bit(In_sync, &rdev->flags);
2511 mddev->degraded = calc_degraded(conf);
2512 spin_unlock_irqrestore(&conf->device_lock, flags);
2513 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2514
2515 set_bit(Blocked, &rdev->flags);
2516 set_bit(Faulty, &rdev->flags);
2517 set_mask_bits(&mddev->flags, 0,
2518 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
2519 printk(KERN_ALERT
2520 "md/raid:%s: Disk failure on %s, disabling device.\n"
2521 "md/raid:%s: Operation continuing on %d devices.\n",
2522 mdname(mddev),
2523 bdevname(rdev->bdev, b),
2524 mdname(mddev),
2525 conf->raid_disks - mddev->degraded);
2526 }
2527
2528 /*
2529 * Input: a 'big' sector number,
2530 * Output: index of the data and parity disk, and the sector # in them.
2531 */
2532 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2533 int previous, int *dd_idx,
2534 struct stripe_head *sh)
2535 {
2536 sector_t stripe, stripe2;
2537 sector_t chunk_number;
2538 unsigned int chunk_offset;
2539 int pd_idx, qd_idx;
2540 int ddf_layout = 0;
2541 sector_t new_sector;
2542 int algorithm = previous ? conf->prev_algo
2543 : conf->algorithm;
2544 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2545 : conf->chunk_sectors;
2546 int raid_disks = previous ? conf->previous_raid_disks
2547 : conf->raid_disks;
2548 int data_disks = raid_disks - conf->max_degraded;
2549
2550 /* First compute the information on this sector */
2551
2552 /*
2553 * Compute the chunk number and the sector offset inside the chunk
2554 */
2555 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2556 chunk_number = r_sector;
2557
2558 /*
2559 * Compute the stripe number
2560 */
2561 stripe = chunk_number;
2562 *dd_idx = sector_div(stripe, data_disks);
2563 stripe2 = stripe;
2564 /*
2565 * Select the parity disk based on the user selected algorithm.
2566 */
2567 pd_idx = qd_idx = -1;
2568 switch(conf->level) {
2569 case 4:
2570 pd_idx = data_disks;
2571 break;
2572 case 5:
2573 switch (algorithm) {
2574 case ALGORITHM_LEFT_ASYMMETRIC:
2575 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2576 if (*dd_idx >= pd_idx)
2577 (*dd_idx)++;
2578 break;
2579 case ALGORITHM_RIGHT_ASYMMETRIC:
2580 pd_idx = sector_div(stripe2, raid_disks);
2581 if (*dd_idx >= pd_idx)
2582 (*dd_idx)++;
2583 break;
2584 case ALGORITHM_LEFT_SYMMETRIC:
2585 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2586 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2587 break;
2588 case ALGORITHM_RIGHT_SYMMETRIC:
2589 pd_idx = sector_div(stripe2, raid_disks);
2590 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2591 break;
2592 case ALGORITHM_PARITY_0:
2593 pd_idx = 0;
2594 (*dd_idx)++;
2595 break;
2596 case ALGORITHM_PARITY_N:
2597 pd_idx = data_disks;
2598 break;
2599 default:
2600 BUG();
2601 }
2602 break;
2603 case 6:
2604
2605 switch (algorithm) {
2606 case ALGORITHM_LEFT_ASYMMETRIC:
2607 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2608 qd_idx = pd_idx + 1;
2609 if (pd_idx == raid_disks-1) {
2610 (*dd_idx)++; /* Q D D D P */
2611 qd_idx = 0;
2612 } else if (*dd_idx >= pd_idx)
2613 (*dd_idx) += 2; /* D D P Q D */
2614 break;
2615 case ALGORITHM_RIGHT_ASYMMETRIC:
2616 pd_idx = sector_div(stripe2, raid_disks);
2617 qd_idx = pd_idx + 1;
2618 if (pd_idx == raid_disks-1) {
2619 (*dd_idx)++; /* Q D D D P */
2620 qd_idx = 0;
2621 } else if (*dd_idx >= pd_idx)
2622 (*dd_idx) += 2; /* D D P Q D */
2623 break;
2624 case ALGORITHM_LEFT_SYMMETRIC:
2625 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2626 qd_idx = (pd_idx + 1) % raid_disks;
2627 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2628 break;
2629 case ALGORITHM_RIGHT_SYMMETRIC:
2630 pd_idx = sector_div(stripe2, raid_disks);
2631 qd_idx = (pd_idx + 1) % raid_disks;
2632 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2633 break;
2634
2635 case ALGORITHM_PARITY_0:
2636 pd_idx = 0;
2637 qd_idx = 1;
2638 (*dd_idx) += 2;
2639 break;
2640 case ALGORITHM_PARITY_N:
2641 pd_idx = data_disks;
2642 qd_idx = data_disks + 1;
2643 break;
2644
2645 case ALGORITHM_ROTATING_ZERO_RESTART:
2646 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2647 * of blocks for computing Q is different.
2648 */
2649 pd_idx = sector_div(stripe2, raid_disks);
2650 qd_idx = pd_idx + 1;
2651 if (pd_idx == raid_disks-1) {
2652 (*dd_idx)++; /* Q D D D P */
2653 qd_idx = 0;
2654 } else if (*dd_idx >= pd_idx)
2655 (*dd_idx) += 2; /* D D P Q D */
2656 ddf_layout = 1;
2657 break;
2658
2659 case ALGORITHM_ROTATING_N_RESTART:
2660 /* Same a left_asymmetric, by first stripe is
2661 * D D D P Q rather than
2662 * Q D D D P
2663 */
2664 stripe2 += 1;
2665 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2666 qd_idx = pd_idx + 1;
2667 if (pd_idx == raid_disks-1) {
2668 (*dd_idx)++; /* Q D D D P */
2669 qd_idx = 0;
2670 } else if (*dd_idx >= pd_idx)
2671 (*dd_idx) += 2; /* D D P Q D */
2672 ddf_layout = 1;
2673 break;
2674
2675 case ALGORITHM_ROTATING_N_CONTINUE:
2676 /* Same as left_symmetric but Q is before P */
2677 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2678 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2679 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2680 ddf_layout = 1;
2681 break;
2682
2683 case ALGORITHM_LEFT_ASYMMETRIC_6:
2684 /* RAID5 left_asymmetric, with Q on last device */
2685 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2686 if (*dd_idx >= pd_idx)
2687 (*dd_idx)++;
2688 qd_idx = raid_disks - 1;
2689 break;
2690
2691 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2692 pd_idx = sector_div(stripe2, raid_disks-1);
2693 if (*dd_idx >= pd_idx)
2694 (*dd_idx)++;
2695 qd_idx = raid_disks - 1;
2696 break;
2697
2698 case ALGORITHM_LEFT_SYMMETRIC_6:
2699 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2700 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2701 qd_idx = raid_disks - 1;
2702 break;
2703
2704 case ALGORITHM_RIGHT_SYMMETRIC_6:
2705 pd_idx = sector_div(stripe2, raid_disks-1);
2706 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2707 qd_idx = raid_disks - 1;
2708 break;
2709
2710 case ALGORITHM_PARITY_0_6:
2711 pd_idx = 0;
2712 (*dd_idx)++;
2713 qd_idx = raid_disks - 1;
2714 break;
2715
2716 default:
2717 BUG();
2718 }
2719 break;
2720 }
2721
2722 if (sh) {
2723 sh->pd_idx = pd_idx;
2724 sh->qd_idx = qd_idx;
2725 sh->ddf_layout = ddf_layout;
2726 }
2727 /*
2728 * Finally, compute the new sector number
2729 */
2730 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2731 return new_sector;
2732 }
2733
2734 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2735 {
2736 struct r5conf *conf = sh->raid_conf;
2737 int raid_disks = sh->disks;
2738 int data_disks = raid_disks - conf->max_degraded;
2739 sector_t new_sector = sh->sector, check;
2740 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2741 : conf->chunk_sectors;
2742 int algorithm = previous ? conf->prev_algo
2743 : conf->algorithm;
2744 sector_t stripe;
2745 int chunk_offset;
2746 sector_t chunk_number;
2747 int dummy1, dd_idx = i;
2748 sector_t r_sector;
2749 struct stripe_head sh2;
2750
2751 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2752 stripe = new_sector;
2753
2754 if (i == sh->pd_idx)
2755 return 0;
2756 switch(conf->level) {
2757 case 4: break;
2758 case 5:
2759 switch (algorithm) {
2760 case ALGORITHM_LEFT_ASYMMETRIC:
2761 case ALGORITHM_RIGHT_ASYMMETRIC:
2762 if (i > sh->pd_idx)
2763 i--;
2764 break;
2765 case ALGORITHM_LEFT_SYMMETRIC:
2766 case ALGORITHM_RIGHT_SYMMETRIC:
2767 if (i < sh->pd_idx)
2768 i += raid_disks;
2769 i -= (sh->pd_idx + 1);
2770 break;
2771 case ALGORITHM_PARITY_0:
2772 i -= 1;
2773 break;
2774 case ALGORITHM_PARITY_N:
2775 break;
2776 default:
2777 BUG();
2778 }
2779 break;
2780 case 6:
2781 if (i == sh->qd_idx)
2782 return 0; /* It is the Q disk */
2783 switch (algorithm) {
2784 case ALGORITHM_LEFT_ASYMMETRIC:
2785 case ALGORITHM_RIGHT_ASYMMETRIC:
2786 case ALGORITHM_ROTATING_ZERO_RESTART:
2787 case ALGORITHM_ROTATING_N_RESTART:
2788 if (sh->pd_idx == raid_disks-1)
2789 i--; /* Q D D D P */
2790 else if (i > sh->pd_idx)
2791 i -= 2; /* D D P Q D */
2792 break;
2793 case ALGORITHM_LEFT_SYMMETRIC:
2794 case ALGORITHM_RIGHT_SYMMETRIC:
2795 if (sh->pd_idx == raid_disks-1)
2796 i--; /* Q D D D P */
2797 else {
2798 /* D D P Q D */
2799 if (i < sh->pd_idx)
2800 i += raid_disks;
2801 i -= (sh->pd_idx + 2);
2802 }
2803 break;
2804 case ALGORITHM_PARITY_0:
2805 i -= 2;
2806 break;
2807 case ALGORITHM_PARITY_N:
2808 break;
2809 case ALGORITHM_ROTATING_N_CONTINUE:
2810 /* Like left_symmetric, but P is before Q */
2811 if (sh->pd_idx == 0)
2812 i--; /* P D D D Q */
2813 else {
2814 /* D D Q P D */
2815 if (i < sh->pd_idx)
2816 i += raid_disks;
2817 i -= (sh->pd_idx + 1);
2818 }
2819 break;
2820 case ALGORITHM_LEFT_ASYMMETRIC_6:
2821 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2822 if (i > sh->pd_idx)
2823 i--;
2824 break;
2825 case ALGORITHM_LEFT_SYMMETRIC_6:
2826 case ALGORITHM_RIGHT_SYMMETRIC_6:
2827 if (i < sh->pd_idx)
2828 i += data_disks + 1;
2829 i -= (sh->pd_idx + 1);
2830 break;
2831 case ALGORITHM_PARITY_0_6:
2832 i -= 1;
2833 break;
2834 default:
2835 BUG();
2836 }
2837 break;
2838 }
2839
2840 chunk_number = stripe * data_disks + i;
2841 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2842
2843 check = raid5_compute_sector(conf, r_sector,
2844 previous, &dummy1, &sh2);
2845 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2846 || sh2.qd_idx != sh->qd_idx) {
2847 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2848 mdname(conf->mddev));
2849 return 0;
2850 }
2851 return r_sector;
2852 }
2853
2854 static void
2855 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2856 int rcw, int expand)
2857 {
2858 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2859 struct r5conf *conf = sh->raid_conf;
2860 int level = conf->level;
2861
2862 if (rcw) {
2863
2864 for (i = disks; i--; ) {
2865 struct r5dev *dev = &sh->dev[i];
2866
2867 if (dev->towrite) {
2868 set_bit(R5_LOCKED, &dev->flags);
2869 set_bit(R5_Wantdrain, &dev->flags);
2870 if (!expand)
2871 clear_bit(R5_UPTODATE, &dev->flags);
2872 s->locked++;
2873 }
2874 }
2875 /* if we are not expanding this is a proper write request, and
2876 * there will be bios with new data to be drained into the
2877 * stripe cache
2878 */
2879 if (!expand) {
2880 if (!s->locked)
2881 /* False alarm, nothing to do */
2882 return;
2883 sh->reconstruct_state = reconstruct_state_drain_run;
2884 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2885 } else
2886 sh->reconstruct_state = reconstruct_state_run;
2887
2888 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2889
2890 if (s->locked + conf->max_degraded == disks)
2891 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2892 atomic_inc(&conf->pending_full_writes);
2893 } else {
2894 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2895 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2896 BUG_ON(level == 6 &&
2897 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2898 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2899
2900 for (i = disks; i--; ) {
2901 struct r5dev *dev = &sh->dev[i];
2902 if (i == pd_idx || i == qd_idx)
2903 continue;
2904
2905 if (dev->towrite &&
2906 (test_bit(R5_UPTODATE, &dev->flags) ||
2907 test_bit(R5_Wantcompute, &dev->flags))) {
2908 set_bit(R5_Wantdrain, &dev->flags);
2909 set_bit(R5_LOCKED, &dev->flags);
2910 clear_bit(R5_UPTODATE, &dev->flags);
2911 s->locked++;
2912 }
2913 }
2914 if (!s->locked)
2915 /* False alarm - nothing to do */
2916 return;
2917 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2918 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2919 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2920 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2921 }
2922
2923 /* keep the parity disk(s) locked while asynchronous operations
2924 * are in flight
2925 */
2926 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2927 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2928 s->locked++;
2929
2930 if (level == 6) {
2931 int qd_idx = sh->qd_idx;
2932 struct r5dev *dev = &sh->dev[qd_idx];
2933
2934 set_bit(R5_LOCKED, &dev->flags);
2935 clear_bit(R5_UPTODATE, &dev->flags);
2936 s->locked++;
2937 }
2938
2939 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2940 __func__, (unsigned long long)sh->sector,
2941 s->locked, s->ops_request);
2942 }
2943
2944 /*
2945 * Each stripe/dev can have one or more bion attached.
2946 * toread/towrite point to the first in a chain.
2947 * The bi_next chain must be in order.
2948 */
2949 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2950 int forwrite, int previous)
2951 {
2952 struct bio **bip;
2953 struct r5conf *conf = sh->raid_conf;
2954 int firstwrite=0;
2955
2956 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2957 (unsigned long long)bi->bi_iter.bi_sector,
2958 (unsigned long long)sh->sector);
2959
2960 /*
2961 * If several bio share a stripe. The bio bi_phys_segments acts as a
2962 * reference count to avoid race. The reference count should already be
2963 * increased before this function is called (for example, in
2964 * raid5_make_request()), so other bio sharing this stripe will not free the
2965 * stripe. If a stripe is owned by one stripe, the stripe lock will
2966 * protect it.
2967 */
2968 spin_lock_irq(&sh->stripe_lock);
2969 /* Don't allow new IO added to stripes in batch list */
2970 if (sh->batch_head)
2971 goto overlap;
2972 if (forwrite) {
2973 bip = &sh->dev[dd_idx].towrite;
2974 if (*bip == NULL)
2975 firstwrite = 1;
2976 } else
2977 bip = &sh->dev[dd_idx].toread;
2978 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2979 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2980 goto overlap;
2981 bip = & (*bip)->bi_next;
2982 }
2983 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2984 goto overlap;
2985
2986 if (!forwrite || previous)
2987 clear_bit(STRIPE_BATCH_READY, &sh->state);
2988
2989 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2990 if (*bip)
2991 bi->bi_next = *bip;
2992 *bip = bi;
2993 raid5_inc_bi_active_stripes(bi);
2994
2995 if (forwrite) {
2996 /* check if page is covered */
2997 sector_t sector = sh->dev[dd_idx].sector;
2998 for (bi=sh->dev[dd_idx].towrite;
2999 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3000 bi && bi->bi_iter.bi_sector <= sector;
3001 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3002 if (bio_end_sector(bi) >= sector)
3003 sector = bio_end_sector(bi);
3004 }
3005 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3006 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3007 sh->overwrite_disks++;
3008 }
3009
3010 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3011 (unsigned long long)(*bip)->bi_iter.bi_sector,
3012 (unsigned long long)sh->sector, dd_idx);
3013
3014 if (conf->mddev->bitmap && firstwrite) {
3015 /* Cannot hold spinlock over bitmap_startwrite,
3016 * but must ensure this isn't added to a batch until
3017 * we have added to the bitmap and set bm_seq.
3018 * So set STRIPE_BITMAP_PENDING to prevent
3019 * batching.
3020 * If multiple add_stripe_bio() calls race here they
3021 * much all set STRIPE_BITMAP_PENDING. So only the first one
3022 * to complete "bitmap_startwrite" gets to set
3023 * STRIPE_BIT_DELAY. This is important as once a stripe
3024 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3025 * any more.
3026 */
3027 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3028 spin_unlock_irq(&sh->stripe_lock);
3029 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3030 STRIPE_SECTORS, 0);
3031 spin_lock_irq(&sh->stripe_lock);
3032 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3033 if (!sh->batch_head) {
3034 sh->bm_seq = conf->seq_flush+1;
3035 set_bit(STRIPE_BIT_DELAY, &sh->state);
3036 }
3037 }
3038 spin_unlock_irq(&sh->stripe_lock);
3039
3040 if (stripe_can_batch(sh))
3041 stripe_add_to_batch_list(conf, sh);
3042 return 1;
3043
3044 overlap:
3045 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3046 spin_unlock_irq(&sh->stripe_lock);
3047 return 0;
3048 }
3049
3050 static void end_reshape(struct r5conf *conf);
3051
3052 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3053 struct stripe_head *sh)
3054 {
3055 int sectors_per_chunk =
3056 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3057 int dd_idx;
3058 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3059 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3060
3061 raid5_compute_sector(conf,
3062 stripe * (disks - conf->max_degraded)
3063 *sectors_per_chunk + chunk_offset,
3064 previous,
3065 &dd_idx, sh);
3066 }
3067
3068 static void
3069 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3070 struct stripe_head_state *s, int disks,
3071 struct bio_list *return_bi)
3072 {
3073 int i;
3074 BUG_ON(sh->batch_head);
3075 for (i = disks; i--; ) {
3076 struct bio *bi;
3077 int bitmap_end = 0;
3078
3079 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3080 struct md_rdev *rdev;
3081 rcu_read_lock();
3082 rdev = rcu_dereference(conf->disks[i].rdev);
3083 if (rdev && test_bit(In_sync, &rdev->flags) &&
3084 !test_bit(Faulty, &rdev->flags))
3085 atomic_inc(&rdev->nr_pending);
3086 else
3087 rdev = NULL;
3088 rcu_read_unlock();
3089 if (rdev) {
3090 if (!rdev_set_badblocks(
3091 rdev,
3092 sh->sector,
3093 STRIPE_SECTORS, 0))
3094 md_error(conf->mddev, rdev);
3095 rdev_dec_pending(rdev, conf->mddev);
3096 }
3097 }
3098 spin_lock_irq(&sh->stripe_lock);
3099 /* fail all writes first */
3100 bi = sh->dev[i].towrite;
3101 sh->dev[i].towrite = NULL;
3102 sh->overwrite_disks = 0;
3103 spin_unlock_irq(&sh->stripe_lock);
3104 if (bi)
3105 bitmap_end = 1;
3106
3107 r5l_stripe_write_finished(sh);
3108
3109 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3110 wake_up(&conf->wait_for_overlap);
3111
3112 while (bi && bi->bi_iter.bi_sector <
3113 sh->dev[i].sector + STRIPE_SECTORS) {
3114 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3115
3116 bi->bi_error = -EIO;
3117 if (!raid5_dec_bi_active_stripes(bi)) {
3118 md_write_end(conf->mddev);
3119 bio_list_add(return_bi, bi);
3120 }
3121 bi = nextbi;
3122 }
3123 if (bitmap_end)
3124 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3125 STRIPE_SECTORS, 0, 0);
3126 bitmap_end = 0;
3127 /* and fail all 'written' */
3128 bi = sh->dev[i].written;
3129 sh->dev[i].written = NULL;
3130 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3131 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3132 sh->dev[i].page = sh->dev[i].orig_page;
3133 }
3134
3135 if (bi) bitmap_end = 1;
3136 while (bi && bi->bi_iter.bi_sector <
3137 sh->dev[i].sector + STRIPE_SECTORS) {
3138 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3139
3140 bi->bi_error = -EIO;
3141 if (!raid5_dec_bi_active_stripes(bi)) {
3142 md_write_end(conf->mddev);
3143 bio_list_add(return_bi, bi);
3144 }
3145 bi = bi2;
3146 }
3147
3148 /* fail any reads if this device is non-operational and
3149 * the data has not reached the cache yet.
3150 */
3151 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3152 s->failed > conf->max_degraded &&
3153 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3154 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3155 spin_lock_irq(&sh->stripe_lock);
3156 bi = sh->dev[i].toread;
3157 sh->dev[i].toread = NULL;
3158 spin_unlock_irq(&sh->stripe_lock);
3159 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3160 wake_up(&conf->wait_for_overlap);
3161 if (bi)
3162 s->to_read--;
3163 while (bi && bi->bi_iter.bi_sector <
3164 sh->dev[i].sector + STRIPE_SECTORS) {
3165 struct bio *nextbi =
3166 r5_next_bio(bi, sh->dev[i].sector);
3167
3168 bi->bi_error = -EIO;
3169 if (!raid5_dec_bi_active_stripes(bi))
3170 bio_list_add(return_bi, bi);
3171 bi = nextbi;
3172 }
3173 }
3174 if (bitmap_end)
3175 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3176 STRIPE_SECTORS, 0, 0);
3177 /* If we were in the middle of a write the parity block might
3178 * still be locked - so just clear all R5_LOCKED flags
3179 */
3180 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3181 }
3182 s->to_write = 0;
3183 s->written = 0;
3184
3185 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3186 if (atomic_dec_and_test(&conf->pending_full_writes))
3187 md_wakeup_thread(conf->mddev->thread);
3188 }
3189
3190 static void
3191 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3192 struct stripe_head_state *s)
3193 {
3194 int abort = 0;
3195 int i;
3196
3197 BUG_ON(sh->batch_head);
3198 clear_bit(STRIPE_SYNCING, &sh->state);
3199 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3200 wake_up(&conf->wait_for_overlap);
3201 s->syncing = 0;
3202 s->replacing = 0;
3203 /* There is nothing more to do for sync/check/repair.
3204 * Don't even need to abort as that is handled elsewhere
3205 * if needed, and not always wanted e.g. if there is a known
3206 * bad block here.
3207 * For recover/replace we need to record a bad block on all
3208 * non-sync devices, or abort the recovery
3209 */
3210 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3211 /* During recovery devices cannot be removed, so
3212 * locking and refcounting of rdevs is not needed
3213 */
3214 rcu_read_lock();
3215 for (i = 0; i < conf->raid_disks; i++) {
3216 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3217 if (rdev
3218 && !test_bit(Faulty, &rdev->flags)
3219 && !test_bit(In_sync, &rdev->flags)
3220 && !rdev_set_badblocks(rdev, sh->sector,
3221 STRIPE_SECTORS, 0))
3222 abort = 1;
3223 rdev = rcu_dereference(conf->disks[i].replacement);
3224 if (rdev
3225 && !test_bit(Faulty, &rdev->flags)
3226 && !test_bit(In_sync, &rdev->flags)
3227 && !rdev_set_badblocks(rdev, sh->sector,
3228 STRIPE_SECTORS, 0))
3229 abort = 1;
3230 }
3231 rcu_read_unlock();
3232 if (abort)
3233 conf->recovery_disabled =
3234 conf->mddev->recovery_disabled;
3235 }
3236 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3237 }
3238
3239 static int want_replace(struct stripe_head *sh, int disk_idx)
3240 {
3241 struct md_rdev *rdev;
3242 int rv = 0;
3243
3244 rcu_read_lock();
3245 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3246 if (rdev
3247 && !test_bit(Faulty, &rdev->flags)
3248 && !test_bit(In_sync, &rdev->flags)
3249 && (rdev->recovery_offset <= sh->sector
3250 || rdev->mddev->recovery_cp <= sh->sector))
3251 rv = 1;
3252 rcu_read_unlock();
3253 return rv;
3254 }
3255
3256 /* fetch_block - checks the given member device to see if its data needs
3257 * to be read or computed to satisfy a request.
3258 *
3259 * Returns 1 when no more member devices need to be checked, otherwise returns
3260 * 0 to tell the loop in handle_stripe_fill to continue
3261 */
3262
3263 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3264 int disk_idx, int disks)
3265 {
3266 struct r5dev *dev = &sh->dev[disk_idx];
3267 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3268 &sh->dev[s->failed_num[1]] };
3269 int i;
3270
3271
3272 if (test_bit(R5_LOCKED, &dev->flags) ||
3273 test_bit(R5_UPTODATE, &dev->flags))
3274 /* No point reading this as we already have it or have
3275 * decided to get it.
3276 */
3277 return 0;
3278
3279 if (dev->toread ||
3280 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3281 /* We need this block to directly satisfy a request */
3282 return 1;
3283
3284 if (s->syncing || s->expanding ||
3285 (s->replacing && want_replace(sh, disk_idx)))
3286 /* When syncing, or expanding we read everything.
3287 * When replacing, we need the replaced block.
3288 */
3289 return 1;
3290
3291 if ((s->failed >= 1 && fdev[0]->toread) ||
3292 (s->failed >= 2 && fdev[1]->toread))
3293 /* If we want to read from a failed device, then
3294 * we need to actually read every other device.
3295 */
3296 return 1;
3297
3298 /* Sometimes neither read-modify-write nor reconstruct-write
3299 * cycles can work. In those cases we read every block we
3300 * can. Then the parity-update is certain to have enough to
3301 * work with.
3302 * This can only be a problem when we need to write something,
3303 * and some device has failed. If either of those tests
3304 * fail we need look no further.
3305 */
3306 if (!s->failed || !s->to_write)
3307 return 0;
3308
3309 if (test_bit(R5_Insync, &dev->flags) &&
3310 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3311 /* Pre-reads at not permitted until after short delay
3312 * to gather multiple requests. However if this
3313 * device is no Insync, the block could only be be computed
3314 * and there is no need to delay that.
3315 */
3316 return 0;
3317
3318 for (i = 0; i < s->failed && i < 2; i++) {
3319 if (fdev[i]->towrite &&
3320 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3321 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3322 /* If we have a partial write to a failed
3323 * device, then we will need to reconstruct
3324 * the content of that device, so all other
3325 * devices must be read.
3326 */
3327 return 1;
3328 }
3329
3330 /* If we are forced to do a reconstruct-write, either because
3331 * the current RAID6 implementation only supports that, or
3332 * or because parity cannot be trusted and we are currently
3333 * recovering it, there is extra need to be careful.
3334 * If one of the devices that we would need to read, because
3335 * it is not being overwritten (and maybe not written at all)
3336 * is missing/faulty, then we need to read everything we can.
3337 */
3338 if (sh->raid_conf->level != 6 &&
3339 sh->sector < sh->raid_conf->mddev->recovery_cp)
3340 /* reconstruct-write isn't being forced */
3341 return 0;
3342 for (i = 0; i < s->failed && i < 2; i++) {
3343 if (s->failed_num[i] != sh->pd_idx &&
3344 s->failed_num[i] != sh->qd_idx &&
3345 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3346 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3347 return 1;
3348 }
3349
3350 return 0;
3351 }
3352
3353 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3354 int disk_idx, int disks)
3355 {
3356 struct r5dev *dev = &sh->dev[disk_idx];
3357
3358 /* is the data in this block needed, and can we get it? */
3359 if (need_this_block(sh, s, disk_idx, disks)) {
3360 /* we would like to get this block, possibly by computing it,
3361 * otherwise read it if the backing disk is insync
3362 */
3363 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3364 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3365 BUG_ON(sh->batch_head);
3366 if ((s->uptodate == disks - 1) &&
3367 (s->failed && (disk_idx == s->failed_num[0] ||
3368 disk_idx == s->failed_num[1]))) {
3369 /* have disk failed, and we're requested to fetch it;
3370 * do compute it
3371 */
3372 pr_debug("Computing stripe %llu block %d\n",
3373 (unsigned long long)sh->sector, disk_idx);
3374 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3375 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3376 set_bit(R5_Wantcompute, &dev->flags);
3377 sh->ops.target = disk_idx;
3378 sh->ops.target2 = -1; /* no 2nd target */
3379 s->req_compute = 1;
3380 /* Careful: from this point on 'uptodate' is in the eye
3381 * of raid_run_ops which services 'compute' operations
3382 * before writes. R5_Wantcompute flags a block that will
3383 * be R5_UPTODATE by the time it is needed for a
3384 * subsequent operation.
3385 */
3386 s->uptodate++;
3387 return 1;
3388 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3389 /* Computing 2-failure is *very* expensive; only
3390 * do it if failed >= 2
3391 */
3392 int other;
3393 for (other = disks; other--; ) {
3394 if (other == disk_idx)
3395 continue;
3396 if (!test_bit(R5_UPTODATE,
3397 &sh->dev[other].flags))
3398 break;
3399 }
3400 BUG_ON(other < 0);
3401 pr_debug("Computing stripe %llu blocks %d,%d\n",
3402 (unsigned long long)sh->sector,
3403 disk_idx, other);
3404 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3405 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3406 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3407 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3408 sh->ops.target = disk_idx;
3409 sh->ops.target2 = other;
3410 s->uptodate += 2;
3411 s->req_compute = 1;
3412 return 1;
3413 } else if (test_bit(R5_Insync, &dev->flags)) {
3414 set_bit(R5_LOCKED, &dev->flags);
3415 set_bit(R5_Wantread, &dev->flags);
3416 s->locked++;
3417 pr_debug("Reading block %d (sync=%d)\n",
3418 disk_idx, s->syncing);
3419 }
3420 }
3421
3422 return 0;
3423 }
3424
3425 /**
3426 * handle_stripe_fill - read or compute data to satisfy pending requests.
3427 */
3428 static void handle_stripe_fill(struct stripe_head *sh,
3429 struct stripe_head_state *s,
3430 int disks)
3431 {
3432 int i;
3433
3434 /* look for blocks to read/compute, skip this if a compute
3435 * is already in flight, or if the stripe contents are in the
3436 * midst of changing due to a write
3437 */
3438 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3439 !sh->reconstruct_state)
3440 for (i = disks; i--; )
3441 if (fetch_block(sh, s, i, disks))
3442 break;
3443 set_bit(STRIPE_HANDLE, &sh->state);
3444 }
3445
3446 static void break_stripe_batch_list(struct stripe_head *head_sh,
3447 unsigned long handle_flags);
3448 /* handle_stripe_clean_event
3449 * any written block on an uptodate or failed drive can be returned.
3450 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3451 * never LOCKED, so we don't need to test 'failed' directly.
3452 */
3453 static void handle_stripe_clean_event(struct r5conf *conf,
3454 struct stripe_head *sh, int disks, struct bio_list *return_bi)
3455 {
3456 int i;
3457 struct r5dev *dev;
3458 int discard_pending = 0;
3459 struct stripe_head *head_sh = sh;
3460 bool do_endio = false;
3461
3462 for (i = disks; i--; )
3463 if (sh->dev[i].written) {
3464 dev = &sh->dev[i];
3465 if (!test_bit(R5_LOCKED, &dev->flags) &&
3466 (test_bit(R5_UPTODATE, &dev->flags) ||
3467 test_bit(R5_Discard, &dev->flags) ||
3468 test_bit(R5_SkipCopy, &dev->flags))) {
3469 /* We can return any write requests */
3470 struct bio *wbi, *wbi2;
3471 pr_debug("Return write for disc %d\n", i);
3472 if (test_and_clear_bit(R5_Discard, &dev->flags))
3473 clear_bit(R5_UPTODATE, &dev->flags);
3474 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3475 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3476 }
3477 do_endio = true;
3478
3479 returnbi:
3480 dev->page = dev->orig_page;
3481 wbi = dev->written;
3482 dev->written = NULL;
3483 while (wbi && wbi->bi_iter.bi_sector <
3484 dev->sector + STRIPE_SECTORS) {
3485 wbi2 = r5_next_bio(wbi, dev->sector);
3486 if (!raid5_dec_bi_active_stripes(wbi)) {
3487 md_write_end(conf->mddev);
3488 bio_list_add(return_bi, wbi);
3489 }
3490 wbi = wbi2;
3491 }
3492 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3493 STRIPE_SECTORS,
3494 !test_bit(STRIPE_DEGRADED, &sh->state),
3495 0);
3496 if (head_sh->batch_head) {
3497 sh = list_first_entry(&sh->batch_list,
3498 struct stripe_head,
3499 batch_list);
3500 if (sh != head_sh) {
3501 dev = &sh->dev[i];
3502 goto returnbi;
3503 }
3504 }
3505 sh = head_sh;
3506 dev = &sh->dev[i];
3507 } else if (test_bit(R5_Discard, &dev->flags))
3508 discard_pending = 1;
3509 }
3510
3511 r5l_stripe_write_finished(sh);
3512
3513 if (!discard_pending &&
3514 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3515 int hash;
3516 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3517 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3518 if (sh->qd_idx >= 0) {
3519 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3520 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3521 }
3522 /* now that discard is done we can proceed with any sync */
3523 clear_bit(STRIPE_DISCARD, &sh->state);
3524 /*
3525 * SCSI discard will change some bio fields and the stripe has
3526 * no updated data, so remove it from hash list and the stripe
3527 * will be reinitialized
3528 */
3529 unhash:
3530 hash = sh->hash_lock_index;
3531 spin_lock_irq(conf->hash_locks + hash);
3532 remove_hash(sh);
3533 spin_unlock_irq(conf->hash_locks + hash);
3534 if (head_sh->batch_head) {
3535 sh = list_first_entry(&sh->batch_list,
3536 struct stripe_head, batch_list);
3537 if (sh != head_sh)
3538 goto unhash;
3539 }
3540 sh = head_sh;
3541
3542 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3543 set_bit(STRIPE_HANDLE, &sh->state);
3544
3545 }
3546
3547 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3548 if (atomic_dec_and_test(&conf->pending_full_writes))
3549 md_wakeup_thread(conf->mddev->thread);
3550
3551 if (head_sh->batch_head && do_endio)
3552 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3553 }
3554
3555 static void handle_stripe_dirtying(struct r5conf *conf,
3556 struct stripe_head *sh,
3557 struct stripe_head_state *s,
3558 int disks)
3559 {
3560 int rmw = 0, rcw = 0, i;
3561 sector_t recovery_cp = conf->mddev->recovery_cp;
3562
3563 /* Check whether resync is now happening or should start.
3564 * If yes, then the array is dirty (after unclean shutdown or
3565 * initial creation), so parity in some stripes might be inconsistent.
3566 * In this case, we need to always do reconstruct-write, to ensure
3567 * that in case of drive failure or read-error correction, we
3568 * generate correct data from the parity.
3569 */
3570 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3571 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3572 s->failed == 0)) {
3573 /* Calculate the real rcw later - for now make it
3574 * look like rcw is cheaper
3575 */
3576 rcw = 1; rmw = 2;
3577 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3578 conf->rmw_level, (unsigned long long)recovery_cp,
3579 (unsigned long long)sh->sector);
3580 } else for (i = disks; i--; ) {
3581 /* would I have to read this buffer for read_modify_write */
3582 struct r5dev *dev = &sh->dev[i];
3583 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3584 !test_bit(R5_LOCKED, &dev->flags) &&
3585 !(test_bit(R5_UPTODATE, &dev->flags) ||
3586 test_bit(R5_Wantcompute, &dev->flags))) {
3587 if (test_bit(R5_Insync, &dev->flags))
3588 rmw++;
3589 else
3590 rmw += 2*disks; /* cannot read it */
3591 }
3592 /* Would I have to read this buffer for reconstruct_write */
3593 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3594 i != sh->pd_idx && i != sh->qd_idx &&
3595 !test_bit(R5_LOCKED, &dev->flags) &&
3596 !(test_bit(R5_UPTODATE, &dev->flags) ||
3597 test_bit(R5_Wantcompute, &dev->flags))) {
3598 if (test_bit(R5_Insync, &dev->flags))
3599 rcw++;
3600 else
3601 rcw += 2*disks;
3602 }
3603 }
3604 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3605 (unsigned long long)sh->sector, rmw, rcw);
3606 set_bit(STRIPE_HANDLE, &sh->state);
3607 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3608 /* prefer read-modify-write, but need to get some data */
3609 if (conf->mddev->queue)
3610 blk_add_trace_msg(conf->mddev->queue,
3611 "raid5 rmw %llu %d",
3612 (unsigned long long)sh->sector, rmw);
3613 for (i = disks; i--; ) {
3614 struct r5dev *dev = &sh->dev[i];
3615 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3616 !test_bit(R5_LOCKED, &dev->flags) &&
3617 !(test_bit(R5_UPTODATE, &dev->flags) ||
3618 test_bit(R5_Wantcompute, &dev->flags)) &&
3619 test_bit(R5_Insync, &dev->flags)) {
3620 if (test_bit(STRIPE_PREREAD_ACTIVE,
3621 &sh->state)) {
3622 pr_debug("Read_old block %d for r-m-w\n",
3623 i);
3624 set_bit(R5_LOCKED, &dev->flags);
3625 set_bit(R5_Wantread, &dev->flags);
3626 s->locked++;
3627 } else {
3628 set_bit(STRIPE_DELAYED, &sh->state);
3629 set_bit(STRIPE_HANDLE, &sh->state);
3630 }
3631 }
3632 }
3633 }
3634 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3635 /* want reconstruct write, but need to get some data */
3636 int qread =0;
3637 rcw = 0;
3638 for (i = disks; i--; ) {
3639 struct r5dev *dev = &sh->dev[i];
3640 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3641 i != sh->pd_idx && i != sh->qd_idx &&
3642 !test_bit(R5_LOCKED, &dev->flags) &&
3643 !(test_bit(R5_UPTODATE, &dev->flags) ||
3644 test_bit(R5_Wantcompute, &dev->flags))) {
3645 rcw++;
3646 if (test_bit(R5_Insync, &dev->flags) &&
3647 test_bit(STRIPE_PREREAD_ACTIVE,
3648 &sh->state)) {
3649 pr_debug("Read_old block "
3650 "%d for Reconstruct\n", i);
3651 set_bit(R5_LOCKED, &dev->flags);
3652 set_bit(R5_Wantread, &dev->flags);
3653 s->locked++;
3654 qread++;
3655 } else {
3656 set_bit(STRIPE_DELAYED, &sh->state);
3657 set_bit(STRIPE_HANDLE, &sh->state);
3658 }
3659 }
3660 }
3661 if (rcw && conf->mddev->queue)
3662 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3663 (unsigned long long)sh->sector,
3664 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3665 }
3666
3667 if (rcw > disks && rmw > disks &&
3668 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3669 set_bit(STRIPE_DELAYED, &sh->state);
3670
3671 /* now if nothing is locked, and if we have enough data,
3672 * we can start a write request
3673 */
3674 /* since handle_stripe can be called at any time we need to handle the
3675 * case where a compute block operation has been submitted and then a
3676 * subsequent call wants to start a write request. raid_run_ops only
3677 * handles the case where compute block and reconstruct are requested
3678 * simultaneously. If this is not the case then new writes need to be
3679 * held off until the compute completes.
3680 */
3681 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3682 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3683 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3684 schedule_reconstruction(sh, s, rcw == 0, 0);
3685 }
3686
3687 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3688 struct stripe_head_state *s, int disks)
3689 {
3690 struct r5dev *dev = NULL;
3691
3692 BUG_ON(sh->batch_head);
3693 set_bit(STRIPE_HANDLE, &sh->state);
3694
3695 switch (sh->check_state) {
3696 case check_state_idle:
3697 /* start a new check operation if there are no failures */
3698 if (s->failed == 0) {
3699 BUG_ON(s->uptodate != disks);
3700 sh->check_state = check_state_run;
3701 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3702 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3703 s->uptodate--;
3704 break;
3705 }
3706 dev = &sh->dev[s->failed_num[0]];
3707 /* fall through */
3708 case check_state_compute_result:
3709 sh->check_state = check_state_idle;
3710 if (!dev)
3711 dev = &sh->dev[sh->pd_idx];
3712
3713 /* check that a write has not made the stripe insync */
3714 if (test_bit(STRIPE_INSYNC, &sh->state))
3715 break;
3716
3717 /* either failed parity check, or recovery is happening */
3718 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3719 BUG_ON(s->uptodate != disks);
3720
3721 set_bit(R5_LOCKED, &dev->flags);
3722 s->locked++;
3723 set_bit(R5_Wantwrite, &dev->flags);
3724
3725 clear_bit(STRIPE_DEGRADED, &sh->state);
3726 set_bit(STRIPE_INSYNC, &sh->state);
3727 break;
3728 case check_state_run:
3729 break; /* we will be called again upon completion */
3730 case check_state_check_result:
3731 sh->check_state = check_state_idle;
3732
3733 /* if a failure occurred during the check operation, leave
3734 * STRIPE_INSYNC not set and let the stripe be handled again
3735 */
3736 if (s->failed)
3737 break;
3738
3739 /* handle a successful check operation, if parity is correct
3740 * we are done. Otherwise update the mismatch count and repair
3741 * parity if !MD_RECOVERY_CHECK
3742 */
3743 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3744 /* parity is correct (on disc,
3745 * not in buffer any more)
3746 */
3747 set_bit(STRIPE_INSYNC, &sh->state);
3748 else {
3749 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3750 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3751 /* don't try to repair!! */
3752 set_bit(STRIPE_INSYNC, &sh->state);
3753 else {
3754 sh->check_state = check_state_compute_run;
3755 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3756 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3757 set_bit(R5_Wantcompute,
3758 &sh->dev[sh->pd_idx].flags);
3759 sh->ops.target = sh->pd_idx;
3760 sh->ops.target2 = -1;
3761 s->uptodate++;
3762 }
3763 }
3764 break;
3765 case check_state_compute_run:
3766 break;
3767 default:
3768 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3769 __func__, sh->check_state,
3770 (unsigned long long) sh->sector);
3771 BUG();
3772 }
3773 }
3774
3775 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3776 struct stripe_head_state *s,
3777 int disks)
3778 {
3779 int pd_idx = sh->pd_idx;
3780 int qd_idx = sh->qd_idx;
3781 struct r5dev *dev;
3782
3783 BUG_ON(sh->batch_head);
3784 set_bit(STRIPE_HANDLE, &sh->state);
3785
3786 BUG_ON(s->failed > 2);
3787
3788 /* Want to check and possibly repair P and Q.
3789 * However there could be one 'failed' device, in which
3790 * case we can only check one of them, possibly using the
3791 * other to generate missing data
3792 */
3793
3794 switch (sh->check_state) {
3795 case check_state_idle:
3796 /* start a new check operation if there are < 2 failures */
3797 if (s->failed == s->q_failed) {
3798 /* The only possible failed device holds Q, so it
3799 * makes sense to check P (If anything else were failed,
3800 * we would have used P to recreate it).
3801 */
3802 sh->check_state = check_state_run;
3803 }
3804 if (!s->q_failed && s->failed < 2) {
3805 /* Q is not failed, and we didn't use it to generate
3806 * anything, so it makes sense to check it
3807 */
3808 if (sh->check_state == check_state_run)
3809 sh->check_state = check_state_run_pq;
3810 else
3811 sh->check_state = check_state_run_q;
3812 }
3813
3814 /* discard potentially stale zero_sum_result */
3815 sh->ops.zero_sum_result = 0;
3816
3817 if (sh->check_state == check_state_run) {
3818 /* async_xor_zero_sum destroys the contents of P */
3819 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3820 s->uptodate--;
3821 }
3822 if (sh->check_state >= check_state_run &&
3823 sh->check_state <= check_state_run_pq) {
3824 /* async_syndrome_zero_sum preserves P and Q, so
3825 * no need to mark them !uptodate here
3826 */
3827 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3828 break;
3829 }
3830
3831 /* we have 2-disk failure */
3832 BUG_ON(s->failed != 2);
3833 /* fall through */
3834 case check_state_compute_result:
3835 sh->check_state = check_state_idle;
3836
3837 /* check that a write has not made the stripe insync */
3838 if (test_bit(STRIPE_INSYNC, &sh->state))
3839 break;
3840
3841 /* now write out any block on a failed drive,
3842 * or P or Q if they were recomputed
3843 */
3844 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3845 if (s->failed == 2) {
3846 dev = &sh->dev[s->failed_num[1]];
3847 s->locked++;
3848 set_bit(R5_LOCKED, &dev->flags);
3849 set_bit(R5_Wantwrite, &dev->flags);
3850 }
3851 if (s->failed >= 1) {
3852 dev = &sh->dev[s->failed_num[0]];
3853 s->locked++;
3854 set_bit(R5_LOCKED, &dev->flags);
3855 set_bit(R5_Wantwrite, &dev->flags);
3856 }
3857 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3858 dev = &sh->dev[pd_idx];
3859 s->locked++;
3860 set_bit(R5_LOCKED, &dev->flags);
3861 set_bit(R5_Wantwrite, &dev->flags);
3862 }
3863 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3864 dev = &sh->dev[qd_idx];
3865 s->locked++;
3866 set_bit(R5_LOCKED, &dev->flags);
3867 set_bit(R5_Wantwrite, &dev->flags);
3868 }
3869 clear_bit(STRIPE_DEGRADED, &sh->state);
3870
3871 set_bit(STRIPE_INSYNC, &sh->state);
3872 break;
3873 case check_state_run:
3874 case check_state_run_q:
3875 case check_state_run_pq:
3876 break; /* we will be called again upon completion */
3877 case check_state_check_result:
3878 sh->check_state = check_state_idle;
3879
3880 /* handle a successful check operation, if parity is correct
3881 * we are done. Otherwise update the mismatch count and repair
3882 * parity if !MD_RECOVERY_CHECK
3883 */
3884 if (sh->ops.zero_sum_result == 0) {
3885 /* both parities are correct */
3886 if (!s->failed)
3887 set_bit(STRIPE_INSYNC, &sh->state);
3888 else {
3889 /* in contrast to the raid5 case we can validate
3890 * parity, but still have a failure to write
3891 * back
3892 */
3893 sh->check_state = check_state_compute_result;
3894 /* Returning at this point means that we may go
3895 * off and bring p and/or q uptodate again so
3896 * we make sure to check zero_sum_result again
3897 * to verify if p or q need writeback
3898 */
3899 }
3900 } else {
3901 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3902 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3903 /* don't try to repair!! */
3904 set_bit(STRIPE_INSYNC, &sh->state);
3905 else {
3906 int *target = &sh->ops.target;
3907
3908 sh->ops.target = -1;
3909 sh->ops.target2 = -1;
3910 sh->check_state = check_state_compute_run;
3911 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3912 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3913 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3914 set_bit(R5_Wantcompute,
3915 &sh->dev[pd_idx].flags);
3916 *target = pd_idx;
3917 target = &sh->ops.target2;
3918 s->uptodate++;
3919 }
3920 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3921 set_bit(R5_Wantcompute,
3922 &sh->dev[qd_idx].flags);
3923 *target = qd_idx;
3924 s->uptodate++;
3925 }
3926 }
3927 }
3928 break;
3929 case check_state_compute_run:
3930 break;
3931 default:
3932 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3933 __func__, sh->check_state,
3934 (unsigned long long) sh->sector);
3935 BUG();
3936 }
3937 }
3938
3939 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3940 {
3941 int i;
3942
3943 /* We have read all the blocks in this stripe and now we need to
3944 * copy some of them into a target stripe for expand.
3945 */
3946 struct dma_async_tx_descriptor *tx = NULL;
3947 BUG_ON(sh->batch_head);
3948 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3949 for (i = 0; i < sh->disks; i++)
3950 if (i != sh->pd_idx && i != sh->qd_idx) {
3951 int dd_idx, j;
3952 struct stripe_head *sh2;
3953 struct async_submit_ctl submit;
3954
3955 sector_t bn = raid5_compute_blocknr(sh, i, 1);
3956 sector_t s = raid5_compute_sector(conf, bn, 0,
3957 &dd_idx, NULL);
3958 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3959 if (sh2 == NULL)
3960 /* so far only the early blocks of this stripe
3961 * have been requested. When later blocks
3962 * get requested, we will try again
3963 */
3964 continue;
3965 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3966 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3967 /* must have already done this block */
3968 raid5_release_stripe(sh2);
3969 continue;
3970 }
3971
3972 /* place all the copies on one channel */
3973 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3974 tx = async_memcpy(sh2->dev[dd_idx].page,
3975 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3976 &submit);
3977
3978 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3979 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3980 for (j = 0; j < conf->raid_disks; j++)
3981 if (j != sh2->pd_idx &&
3982 j != sh2->qd_idx &&
3983 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3984 break;
3985 if (j == conf->raid_disks) {
3986 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3987 set_bit(STRIPE_HANDLE, &sh2->state);
3988 }
3989 raid5_release_stripe(sh2);
3990
3991 }
3992 /* done submitting copies, wait for them to complete */
3993 async_tx_quiesce(&tx);
3994 }
3995
3996 /*
3997 * handle_stripe - do things to a stripe.
3998 *
3999 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4000 * state of various bits to see what needs to be done.
4001 * Possible results:
4002 * return some read requests which now have data
4003 * return some write requests which are safely on storage
4004 * schedule a read on some buffers
4005 * schedule a write of some buffers
4006 * return confirmation of parity correctness
4007 *
4008 */
4009
4010 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4011 {
4012 struct r5conf *conf = sh->raid_conf;
4013 int disks = sh->disks;
4014 struct r5dev *dev;
4015 int i;
4016 int do_recovery = 0;
4017
4018 memset(s, 0, sizeof(*s));
4019
4020 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4021 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4022 s->failed_num[0] = -1;
4023 s->failed_num[1] = -1;
4024 s->log_failed = r5l_log_disk_error(conf);
4025
4026 /* Now to look around and see what can be done */
4027 rcu_read_lock();
4028 for (i=disks; i--; ) {
4029 struct md_rdev *rdev;
4030 sector_t first_bad;
4031 int bad_sectors;
4032 int is_bad = 0;
4033
4034 dev = &sh->dev[i];
4035
4036 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4037 i, dev->flags,
4038 dev->toread, dev->towrite, dev->written);
4039 /* maybe we can reply to a read
4040 *
4041 * new wantfill requests are only permitted while
4042 * ops_complete_biofill is guaranteed to be inactive
4043 */
4044 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4045 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4046 set_bit(R5_Wantfill, &dev->flags);
4047
4048 /* now count some things */
4049 if (test_bit(R5_LOCKED, &dev->flags))
4050 s->locked++;
4051 if (test_bit(R5_UPTODATE, &dev->flags))
4052 s->uptodate++;
4053 if (test_bit(R5_Wantcompute, &dev->flags)) {
4054 s->compute++;
4055 BUG_ON(s->compute > 2);
4056 }
4057
4058 if (test_bit(R5_Wantfill, &dev->flags))
4059 s->to_fill++;
4060 else if (dev->toread)
4061 s->to_read++;
4062 if (dev->towrite) {
4063 s->to_write++;
4064 if (!test_bit(R5_OVERWRITE, &dev->flags))
4065 s->non_overwrite++;
4066 }
4067 if (dev->written)
4068 s->written++;
4069 /* Prefer to use the replacement for reads, but only
4070 * if it is recovered enough and has no bad blocks.
4071 */
4072 rdev = rcu_dereference(conf->disks[i].replacement);
4073 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4074 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4075 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4076 &first_bad, &bad_sectors))
4077 set_bit(R5_ReadRepl, &dev->flags);
4078 else {
4079 if (rdev && !test_bit(Faulty, &rdev->flags))
4080 set_bit(R5_NeedReplace, &dev->flags);
4081 else
4082 clear_bit(R5_NeedReplace, &dev->flags);
4083 rdev = rcu_dereference(conf->disks[i].rdev);
4084 clear_bit(R5_ReadRepl, &dev->flags);
4085 }
4086 if (rdev && test_bit(Faulty, &rdev->flags))
4087 rdev = NULL;
4088 if (rdev) {
4089 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4090 &first_bad, &bad_sectors);
4091 if (s->blocked_rdev == NULL
4092 && (test_bit(Blocked, &rdev->flags)
4093 || is_bad < 0)) {
4094 if (is_bad < 0)
4095 set_bit(BlockedBadBlocks,
4096 &rdev->flags);
4097 s->blocked_rdev = rdev;
4098 atomic_inc(&rdev->nr_pending);
4099 }
4100 }
4101 clear_bit(R5_Insync, &dev->flags);
4102 if (!rdev)
4103 /* Not in-sync */;
4104 else if (is_bad) {
4105 /* also not in-sync */
4106 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4107 test_bit(R5_UPTODATE, &dev->flags)) {
4108 /* treat as in-sync, but with a read error
4109 * which we can now try to correct
4110 */
4111 set_bit(R5_Insync, &dev->flags);
4112 set_bit(R5_ReadError, &dev->flags);
4113 }
4114 } else if (test_bit(In_sync, &rdev->flags))
4115 set_bit(R5_Insync, &dev->flags);
4116 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4117 /* in sync if before recovery_offset */
4118 set_bit(R5_Insync, &dev->flags);
4119 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4120 test_bit(R5_Expanded, &dev->flags))
4121 /* If we've reshaped into here, we assume it is Insync.
4122 * We will shortly update recovery_offset to make
4123 * it official.
4124 */
4125 set_bit(R5_Insync, &dev->flags);
4126
4127 if (test_bit(R5_WriteError, &dev->flags)) {
4128 /* This flag does not apply to '.replacement'
4129 * only to .rdev, so make sure to check that*/
4130 struct md_rdev *rdev2 = rcu_dereference(
4131 conf->disks[i].rdev);
4132 if (rdev2 == rdev)
4133 clear_bit(R5_Insync, &dev->flags);
4134 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4135 s->handle_bad_blocks = 1;
4136 atomic_inc(&rdev2->nr_pending);
4137 } else
4138 clear_bit(R5_WriteError, &dev->flags);
4139 }
4140 if (test_bit(R5_MadeGood, &dev->flags)) {
4141 /* This flag does not apply to '.replacement'
4142 * only to .rdev, so make sure to check that*/
4143 struct md_rdev *rdev2 = rcu_dereference(
4144 conf->disks[i].rdev);
4145 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4146 s->handle_bad_blocks = 1;
4147 atomic_inc(&rdev2->nr_pending);
4148 } else
4149 clear_bit(R5_MadeGood, &dev->flags);
4150 }
4151 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4152 struct md_rdev *rdev2 = rcu_dereference(
4153 conf->disks[i].replacement);
4154 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4155 s->handle_bad_blocks = 1;
4156 atomic_inc(&rdev2->nr_pending);
4157 } else
4158 clear_bit(R5_MadeGoodRepl, &dev->flags);
4159 }
4160 if (!test_bit(R5_Insync, &dev->flags)) {
4161 /* The ReadError flag will just be confusing now */
4162 clear_bit(R5_ReadError, &dev->flags);
4163 clear_bit(R5_ReWrite, &dev->flags);
4164 }
4165 if (test_bit(R5_ReadError, &dev->flags))
4166 clear_bit(R5_Insync, &dev->flags);
4167 if (!test_bit(R5_Insync, &dev->flags)) {
4168 if (s->failed < 2)
4169 s->failed_num[s->failed] = i;
4170 s->failed++;
4171 if (rdev && !test_bit(Faulty, &rdev->flags))
4172 do_recovery = 1;
4173 }
4174 }
4175 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4176 /* If there is a failed device being replaced,
4177 * we must be recovering.
4178 * else if we are after recovery_cp, we must be syncing
4179 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4180 * else we can only be replacing
4181 * sync and recovery both need to read all devices, and so
4182 * use the same flag.
4183 */
4184 if (do_recovery ||
4185 sh->sector >= conf->mddev->recovery_cp ||
4186 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4187 s->syncing = 1;
4188 else
4189 s->replacing = 1;
4190 }
4191 rcu_read_unlock();
4192 }
4193
4194 static int clear_batch_ready(struct stripe_head *sh)
4195 {
4196 /* Return '1' if this is a member of batch, or
4197 * '0' if it is a lone stripe or a head which can now be
4198 * handled.
4199 */
4200 struct stripe_head *tmp;
4201 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4202 return (sh->batch_head && sh->batch_head != sh);
4203 spin_lock(&sh->stripe_lock);
4204 if (!sh->batch_head) {
4205 spin_unlock(&sh->stripe_lock);
4206 return 0;
4207 }
4208
4209 /*
4210 * this stripe could be added to a batch list before we check
4211 * BATCH_READY, skips it
4212 */
4213 if (sh->batch_head != sh) {
4214 spin_unlock(&sh->stripe_lock);
4215 return 1;
4216 }
4217 spin_lock(&sh->batch_lock);
4218 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4219 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4220 spin_unlock(&sh->batch_lock);
4221 spin_unlock(&sh->stripe_lock);
4222
4223 /*
4224 * BATCH_READY is cleared, no new stripes can be added.
4225 * batch_list can be accessed without lock
4226 */
4227 return 0;
4228 }
4229
4230 static void break_stripe_batch_list(struct stripe_head *head_sh,
4231 unsigned long handle_flags)
4232 {
4233 struct stripe_head *sh, *next;
4234 int i;
4235 int do_wakeup = 0;
4236
4237 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4238
4239 list_del_init(&sh->batch_list);
4240
4241 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4242 (1 << STRIPE_SYNCING) |
4243 (1 << STRIPE_REPLACED) |
4244 (1 << STRIPE_DELAYED) |
4245 (1 << STRIPE_BIT_DELAY) |
4246 (1 << STRIPE_FULL_WRITE) |
4247 (1 << STRIPE_BIOFILL_RUN) |
4248 (1 << STRIPE_COMPUTE_RUN) |
4249 (1 << STRIPE_OPS_REQ_PENDING) |
4250 (1 << STRIPE_DISCARD) |
4251 (1 << STRIPE_BATCH_READY) |
4252 (1 << STRIPE_BATCH_ERR) |
4253 (1 << STRIPE_BITMAP_PENDING)),
4254 "stripe state: %lx\n", sh->state);
4255 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4256 (1 << STRIPE_REPLACED)),
4257 "head stripe state: %lx\n", head_sh->state);
4258
4259 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4260 (1 << STRIPE_PREREAD_ACTIVE) |
4261 (1 << STRIPE_DEGRADED)),
4262 head_sh->state & (1 << STRIPE_INSYNC));
4263
4264 sh->check_state = head_sh->check_state;
4265 sh->reconstruct_state = head_sh->reconstruct_state;
4266 for (i = 0; i < sh->disks; i++) {
4267 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4268 do_wakeup = 1;
4269 sh->dev[i].flags = head_sh->dev[i].flags &
4270 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4271 }
4272 spin_lock_irq(&sh->stripe_lock);
4273 sh->batch_head = NULL;
4274 spin_unlock_irq(&sh->stripe_lock);
4275 if (handle_flags == 0 ||
4276 sh->state & handle_flags)
4277 set_bit(STRIPE_HANDLE, &sh->state);
4278 raid5_release_stripe(sh);
4279 }
4280 spin_lock_irq(&head_sh->stripe_lock);
4281 head_sh->batch_head = NULL;
4282 spin_unlock_irq(&head_sh->stripe_lock);
4283 for (i = 0; i < head_sh->disks; i++)
4284 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4285 do_wakeup = 1;
4286 if (head_sh->state & handle_flags)
4287 set_bit(STRIPE_HANDLE, &head_sh->state);
4288
4289 if (do_wakeup)
4290 wake_up(&head_sh->raid_conf->wait_for_overlap);
4291 }
4292
4293 static void handle_stripe(struct stripe_head *sh)
4294 {
4295 struct stripe_head_state s;
4296 struct r5conf *conf = sh->raid_conf;
4297 int i;
4298 int prexor;
4299 int disks = sh->disks;
4300 struct r5dev *pdev, *qdev;
4301
4302 clear_bit(STRIPE_HANDLE, &sh->state);
4303 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4304 /* already being handled, ensure it gets handled
4305 * again when current action finishes */
4306 set_bit(STRIPE_HANDLE, &sh->state);
4307 return;
4308 }
4309
4310 if (clear_batch_ready(sh) ) {
4311 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4312 return;
4313 }
4314
4315 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4316 break_stripe_batch_list(sh, 0);
4317
4318 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4319 spin_lock(&sh->stripe_lock);
4320 /* Cannot process 'sync' concurrently with 'discard' */
4321 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4322 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4323 set_bit(STRIPE_SYNCING, &sh->state);
4324 clear_bit(STRIPE_INSYNC, &sh->state);
4325 clear_bit(STRIPE_REPLACED, &sh->state);
4326 }
4327 spin_unlock(&sh->stripe_lock);
4328 }
4329 clear_bit(STRIPE_DELAYED, &sh->state);
4330
4331 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4332 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4333 (unsigned long long)sh->sector, sh->state,
4334 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4335 sh->check_state, sh->reconstruct_state);
4336
4337 analyse_stripe(sh, &s);
4338
4339 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4340 goto finish;
4341
4342 if (s.handle_bad_blocks) {
4343 set_bit(STRIPE_HANDLE, &sh->state);
4344 goto finish;
4345 }
4346
4347 if (unlikely(s.blocked_rdev)) {
4348 if (s.syncing || s.expanding || s.expanded ||
4349 s.replacing || s.to_write || s.written) {
4350 set_bit(STRIPE_HANDLE, &sh->state);
4351 goto finish;
4352 }
4353 /* There is nothing for the blocked_rdev to block */
4354 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4355 s.blocked_rdev = NULL;
4356 }
4357
4358 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4359 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4360 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4361 }
4362
4363 pr_debug("locked=%d uptodate=%d to_read=%d"
4364 " to_write=%d failed=%d failed_num=%d,%d\n",
4365 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4366 s.failed_num[0], s.failed_num[1]);
4367 /* check if the array has lost more than max_degraded devices and,
4368 * if so, some requests might need to be failed.
4369 */
4370 if (s.failed > conf->max_degraded || s.log_failed) {
4371 sh->check_state = 0;
4372 sh->reconstruct_state = 0;
4373 break_stripe_batch_list(sh, 0);
4374 if (s.to_read+s.to_write+s.written)
4375 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4376 if (s.syncing + s.replacing)
4377 handle_failed_sync(conf, sh, &s);
4378 }
4379
4380 /* Now we check to see if any write operations have recently
4381 * completed
4382 */
4383 prexor = 0;
4384 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4385 prexor = 1;
4386 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4387 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4388 sh->reconstruct_state = reconstruct_state_idle;
4389
4390 /* All the 'written' buffers and the parity block are ready to
4391 * be written back to disk
4392 */
4393 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4394 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4395 BUG_ON(sh->qd_idx >= 0 &&
4396 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4397 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4398 for (i = disks; i--; ) {
4399 struct r5dev *dev = &sh->dev[i];
4400 if (test_bit(R5_LOCKED, &dev->flags) &&
4401 (i == sh->pd_idx || i == sh->qd_idx ||
4402 dev->written)) {
4403 pr_debug("Writing block %d\n", i);
4404 set_bit(R5_Wantwrite, &dev->flags);
4405 if (prexor)
4406 continue;
4407 if (s.failed > 1)
4408 continue;
4409 if (!test_bit(R5_Insync, &dev->flags) ||
4410 ((i == sh->pd_idx || i == sh->qd_idx) &&
4411 s.failed == 0))
4412 set_bit(STRIPE_INSYNC, &sh->state);
4413 }
4414 }
4415 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4416 s.dec_preread_active = 1;
4417 }
4418
4419 /*
4420 * might be able to return some write requests if the parity blocks
4421 * are safe, or on a failed drive
4422 */
4423 pdev = &sh->dev[sh->pd_idx];
4424 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4425 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4426 qdev = &sh->dev[sh->qd_idx];
4427 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4428 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4429 || conf->level < 6;
4430
4431 if (s.written &&
4432 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4433 && !test_bit(R5_LOCKED, &pdev->flags)
4434 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4435 test_bit(R5_Discard, &pdev->flags))))) &&
4436 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4437 && !test_bit(R5_LOCKED, &qdev->flags)
4438 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4439 test_bit(R5_Discard, &qdev->flags))))))
4440 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4441
4442 /* Now we might consider reading some blocks, either to check/generate
4443 * parity, or to satisfy requests
4444 * or to load a block that is being partially written.
4445 */
4446 if (s.to_read || s.non_overwrite
4447 || (conf->level == 6 && s.to_write && s.failed)
4448 || (s.syncing && (s.uptodate + s.compute < disks))
4449 || s.replacing
4450 || s.expanding)
4451 handle_stripe_fill(sh, &s, disks);
4452
4453 /* Now to consider new write requests and what else, if anything
4454 * should be read. We do not handle new writes when:
4455 * 1/ A 'write' operation (copy+xor) is already in flight.
4456 * 2/ A 'check' operation is in flight, as it may clobber the parity
4457 * block.
4458 */
4459 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4460 handle_stripe_dirtying(conf, sh, &s, disks);
4461
4462 /* maybe we need to check and possibly fix the parity for this stripe
4463 * Any reads will already have been scheduled, so we just see if enough
4464 * data is available. The parity check is held off while parity
4465 * dependent operations are in flight.
4466 */
4467 if (sh->check_state ||
4468 (s.syncing && s.locked == 0 &&
4469 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4470 !test_bit(STRIPE_INSYNC, &sh->state))) {
4471 if (conf->level == 6)
4472 handle_parity_checks6(conf, sh, &s, disks);
4473 else
4474 handle_parity_checks5(conf, sh, &s, disks);
4475 }
4476
4477 if ((s.replacing || s.syncing) && s.locked == 0
4478 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4479 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4480 /* Write out to replacement devices where possible */
4481 for (i = 0; i < conf->raid_disks; i++)
4482 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4483 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4484 set_bit(R5_WantReplace, &sh->dev[i].flags);
4485 set_bit(R5_LOCKED, &sh->dev[i].flags);
4486 s.locked++;
4487 }
4488 if (s.replacing)
4489 set_bit(STRIPE_INSYNC, &sh->state);
4490 set_bit(STRIPE_REPLACED, &sh->state);
4491 }
4492 if ((s.syncing || s.replacing) && s.locked == 0 &&
4493 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4494 test_bit(STRIPE_INSYNC, &sh->state)) {
4495 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4496 clear_bit(STRIPE_SYNCING, &sh->state);
4497 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4498 wake_up(&conf->wait_for_overlap);
4499 }
4500
4501 /* If the failed drives are just a ReadError, then we might need
4502 * to progress the repair/check process
4503 */
4504 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4505 for (i = 0; i < s.failed; i++) {
4506 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4507 if (test_bit(R5_ReadError, &dev->flags)
4508 && !test_bit(R5_LOCKED, &dev->flags)
4509 && test_bit(R5_UPTODATE, &dev->flags)
4510 ) {
4511 if (!test_bit(R5_ReWrite, &dev->flags)) {
4512 set_bit(R5_Wantwrite, &dev->flags);
4513 set_bit(R5_ReWrite, &dev->flags);
4514 set_bit(R5_LOCKED, &dev->flags);
4515 s.locked++;
4516 } else {
4517 /* let's read it back */
4518 set_bit(R5_Wantread, &dev->flags);
4519 set_bit(R5_LOCKED, &dev->flags);
4520 s.locked++;
4521 }
4522 }
4523 }
4524
4525 /* Finish reconstruct operations initiated by the expansion process */
4526 if (sh->reconstruct_state == reconstruct_state_result) {
4527 struct stripe_head *sh_src
4528 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4529 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4530 /* sh cannot be written until sh_src has been read.
4531 * so arrange for sh to be delayed a little
4532 */
4533 set_bit(STRIPE_DELAYED, &sh->state);
4534 set_bit(STRIPE_HANDLE, &sh->state);
4535 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4536 &sh_src->state))
4537 atomic_inc(&conf->preread_active_stripes);
4538 raid5_release_stripe(sh_src);
4539 goto finish;
4540 }
4541 if (sh_src)
4542 raid5_release_stripe(sh_src);
4543
4544 sh->reconstruct_state = reconstruct_state_idle;
4545 clear_bit(STRIPE_EXPANDING, &sh->state);
4546 for (i = conf->raid_disks; i--; ) {
4547 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4548 set_bit(R5_LOCKED, &sh->dev[i].flags);
4549 s.locked++;
4550 }
4551 }
4552
4553 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4554 !sh->reconstruct_state) {
4555 /* Need to write out all blocks after computing parity */
4556 sh->disks = conf->raid_disks;
4557 stripe_set_idx(sh->sector, conf, 0, sh);
4558 schedule_reconstruction(sh, &s, 1, 1);
4559 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4560 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4561 atomic_dec(&conf->reshape_stripes);
4562 wake_up(&conf->wait_for_overlap);
4563 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4564 }
4565
4566 if (s.expanding && s.locked == 0 &&
4567 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4568 handle_stripe_expansion(conf, sh);
4569
4570 finish:
4571 /* wait for this device to become unblocked */
4572 if (unlikely(s.blocked_rdev)) {
4573 if (conf->mddev->external)
4574 md_wait_for_blocked_rdev(s.blocked_rdev,
4575 conf->mddev);
4576 else
4577 /* Internal metadata will immediately
4578 * be written by raid5d, so we don't
4579 * need to wait here.
4580 */
4581 rdev_dec_pending(s.blocked_rdev,
4582 conf->mddev);
4583 }
4584
4585 if (s.handle_bad_blocks)
4586 for (i = disks; i--; ) {
4587 struct md_rdev *rdev;
4588 struct r5dev *dev = &sh->dev[i];
4589 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4590 /* We own a safe reference to the rdev */
4591 rdev = conf->disks[i].rdev;
4592 if (!rdev_set_badblocks(rdev, sh->sector,
4593 STRIPE_SECTORS, 0))
4594 md_error(conf->mddev, rdev);
4595 rdev_dec_pending(rdev, conf->mddev);
4596 }
4597 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4598 rdev = conf->disks[i].rdev;
4599 rdev_clear_badblocks(rdev, sh->sector,
4600 STRIPE_SECTORS, 0);
4601 rdev_dec_pending(rdev, conf->mddev);
4602 }
4603 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4604 rdev = conf->disks[i].replacement;
4605 if (!rdev)
4606 /* rdev have been moved down */
4607 rdev = conf->disks[i].rdev;
4608 rdev_clear_badblocks(rdev, sh->sector,
4609 STRIPE_SECTORS, 0);
4610 rdev_dec_pending(rdev, conf->mddev);
4611 }
4612 }
4613
4614 if (s.ops_request)
4615 raid_run_ops(sh, s.ops_request);
4616
4617 ops_run_io(sh, &s);
4618
4619 if (s.dec_preread_active) {
4620 /* We delay this until after ops_run_io so that if make_request
4621 * is waiting on a flush, it won't continue until the writes
4622 * have actually been submitted.
4623 */
4624 atomic_dec(&conf->preread_active_stripes);
4625 if (atomic_read(&conf->preread_active_stripes) <
4626 IO_THRESHOLD)
4627 md_wakeup_thread(conf->mddev->thread);
4628 }
4629
4630 if (!bio_list_empty(&s.return_bi)) {
4631 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4632 spin_lock_irq(&conf->device_lock);
4633 bio_list_merge(&conf->return_bi, &s.return_bi);
4634 spin_unlock_irq(&conf->device_lock);
4635 md_wakeup_thread(conf->mddev->thread);
4636 } else
4637 return_io(&s.return_bi);
4638 }
4639
4640 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4641 }
4642
4643 static void raid5_activate_delayed(struct r5conf *conf)
4644 {
4645 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4646 while (!list_empty(&conf->delayed_list)) {
4647 struct list_head *l = conf->delayed_list.next;
4648 struct stripe_head *sh;
4649 sh = list_entry(l, struct stripe_head, lru);
4650 list_del_init(l);
4651 clear_bit(STRIPE_DELAYED, &sh->state);
4652 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4653 atomic_inc(&conf->preread_active_stripes);
4654 list_add_tail(&sh->lru, &conf->hold_list);
4655 raid5_wakeup_stripe_thread(sh);
4656 }
4657 }
4658 }
4659
4660 static void activate_bit_delay(struct r5conf *conf,
4661 struct list_head *temp_inactive_list)
4662 {
4663 /* device_lock is held */
4664 struct list_head head;
4665 list_add(&head, &conf->bitmap_list);
4666 list_del_init(&conf->bitmap_list);
4667 while (!list_empty(&head)) {
4668 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4669 int hash;
4670 list_del_init(&sh->lru);
4671 atomic_inc(&sh->count);
4672 hash = sh->hash_lock_index;
4673 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4674 }
4675 }
4676
4677 static int raid5_congested(struct mddev *mddev, int bits)
4678 {
4679 struct r5conf *conf = mddev->private;
4680
4681 /* No difference between reads and writes. Just check
4682 * how busy the stripe_cache is
4683 */
4684
4685 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4686 return 1;
4687 if (conf->quiesce)
4688 return 1;
4689 if (atomic_read(&conf->empty_inactive_list_nr))
4690 return 1;
4691
4692 return 0;
4693 }
4694
4695 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4696 {
4697 struct r5conf *conf = mddev->private;
4698 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4699 unsigned int chunk_sectors;
4700 unsigned int bio_sectors = bio_sectors(bio);
4701
4702 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4703 return chunk_sectors >=
4704 ((sector & (chunk_sectors - 1)) + bio_sectors);
4705 }
4706
4707 /*
4708 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4709 * later sampled by raid5d.
4710 */
4711 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4712 {
4713 unsigned long flags;
4714
4715 spin_lock_irqsave(&conf->device_lock, flags);
4716
4717 bi->bi_next = conf->retry_read_aligned_list;
4718 conf->retry_read_aligned_list = bi;
4719
4720 spin_unlock_irqrestore(&conf->device_lock, flags);
4721 md_wakeup_thread(conf->mddev->thread);
4722 }
4723
4724 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4725 {
4726 struct bio *bi;
4727
4728 bi = conf->retry_read_aligned;
4729 if (bi) {
4730 conf->retry_read_aligned = NULL;
4731 return bi;
4732 }
4733 bi = conf->retry_read_aligned_list;
4734 if(bi) {
4735 conf->retry_read_aligned_list = bi->bi_next;
4736 bi->bi_next = NULL;
4737 /*
4738 * this sets the active strip count to 1 and the processed
4739 * strip count to zero (upper 8 bits)
4740 */
4741 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4742 }
4743
4744 return bi;
4745 }
4746
4747 /*
4748 * The "raid5_align_endio" should check if the read succeeded and if it
4749 * did, call bio_endio on the original bio (having bio_put the new bio
4750 * first).
4751 * If the read failed..
4752 */
4753 static void raid5_align_endio(struct bio *bi)
4754 {
4755 struct bio* raid_bi = bi->bi_private;
4756 struct mddev *mddev;
4757 struct r5conf *conf;
4758 struct md_rdev *rdev;
4759 int error = bi->bi_error;
4760
4761 bio_put(bi);
4762
4763 rdev = (void*)raid_bi->bi_next;
4764 raid_bi->bi_next = NULL;
4765 mddev = rdev->mddev;
4766 conf = mddev->private;
4767
4768 rdev_dec_pending(rdev, conf->mddev);
4769
4770 if (!error) {
4771 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4772 raid_bi, 0);
4773 bio_endio(raid_bi);
4774 if (atomic_dec_and_test(&conf->active_aligned_reads))
4775 wake_up(&conf->wait_for_quiescent);
4776 return;
4777 }
4778
4779 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4780
4781 add_bio_to_retry(raid_bi, conf);
4782 }
4783
4784 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4785 {
4786 struct r5conf *conf = mddev->private;
4787 int dd_idx;
4788 struct bio* align_bi;
4789 struct md_rdev *rdev;
4790 sector_t end_sector;
4791
4792 if (!in_chunk_boundary(mddev, raid_bio)) {
4793 pr_debug("%s: non aligned\n", __func__);
4794 return 0;
4795 }
4796 /*
4797 * use bio_clone_mddev to make a copy of the bio
4798 */
4799 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4800 if (!align_bi)
4801 return 0;
4802 /*
4803 * set bi_end_io to a new function, and set bi_private to the
4804 * original bio.
4805 */
4806 align_bi->bi_end_io = raid5_align_endio;
4807 align_bi->bi_private = raid_bio;
4808 /*
4809 * compute position
4810 */
4811 align_bi->bi_iter.bi_sector =
4812 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4813 0, &dd_idx, NULL);
4814
4815 end_sector = bio_end_sector(align_bi);
4816 rcu_read_lock();
4817 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4818 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4819 rdev->recovery_offset < end_sector) {
4820 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4821 if (rdev &&
4822 (test_bit(Faulty, &rdev->flags) ||
4823 !(test_bit(In_sync, &rdev->flags) ||
4824 rdev->recovery_offset >= end_sector)))
4825 rdev = NULL;
4826 }
4827 if (rdev) {
4828 sector_t first_bad;
4829 int bad_sectors;
4830
4831 atomic_inc(&rdev->nr_pending);
4832 rcu_read_unlock();
4833 raid_bio->bi_next = (void*)rdev;
4834 align_bi->bi_bdev = rdev->bdev;
4835 bio_clear_flag(align_bi, BIO_SEG_VALID);
4836
4837 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4838 bio_sectors(align_bi),
4839 &first_bad, &bad_sectors)) {
4840 bio_put(align_bi);
4841 rdev_dec_pending(rdev, mddev);
4842 return 0;
4843 }
4844
4845 /* No reshape active, so we can trust rdev->data_offset */
4846 align_bi->bi_iter.bi_sector += rdev->data_offset;
4847
4848 spin_lock_irq(&conf->device_lock);
4849 wait_event_lock_irq(conf->wait_for_quiescent,
4850 conf->quiesce == 0,
4851 conf->device_lock);
4852 atomic_inc(&conf->active_aligned_reads);
4853 spin_unlock_irq(&conf->device_lock);
4854
4855 if (mddev->gendisk)
4856 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4857 align_bi, disk_devt(mddev->gendisk),
4858 raid_bio->bi_iter.bi_sector);
4859 generic_make_request(align_bi);
4860 return 1;
4861 } else {
4862 rcu_read_unlock();
4863 bio_put(align_bi);
4864 return 0;
4865 }
4866 }
4867
4868 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4869 {
4870 struct bio *split;
4871
4872 do {
4873 sector_t sector = raid_bio->bi_iter.bi_sector;
4874 unsigned chunk_sects = mddev->chunk_sectors;
4875 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4876
4877 if (sectors < bio_sectors(raid_bio)) {
4878 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4879 bio_chain(split, raid_bio);
4880 } else
4881 split = raid_bio;
4882
4883 if (!raid5_read_one_chunk(mddev, split)) {
4884 if (split != raid_bio)
4885 generic_make_request(raid_bio);
4886 return split;
4887 }
4888 } while (split != raid_bio);
4889
4890 return NULL;
4891 }
4892
4893 /* __get_priority_stripe - get the next stripe to process
4894 *
4895 * Full stripe writes are allowed to pass preread active stripes up until
4896 * the bypass_threshold is exceeded. In general the bypass_count
4897 * increments when the handle_list is handled before the hold_list; however, it
4898 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4899 * stripe with in flight i/o. The bypass_count will be reset when the
4900 * head of the hold_list has changed, i.e. the head was promoted to the
4901 * handle_list.
4902 */
4903 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4904 {
4905 struct stripe_head *sh = NULL, *tmp;
4906 struct list_head *handle_list = NULL;
4907 struct r5worker_group *wg = NULL;
4908
4909 if (conf->worker_cnt_per_group == 0) {
4910 handle_list = &conf->handle_list;
4911 } else if (group != ANY_GROUP) {
4912 handle_list = &conf->worker_groups[group].handle_list;
4913 wg = &conf->worker_groups[group];
4914 } else {
4915 int i;
4916 for (i = 0; i < conf->group_cnt; i++) {
4917 handle_list = &conf->worker_groups[i].handle_list;
4918 wg = &conf->worker_groups[i];
4919 if (!list_empty(handle_list))
4920 break;
4921 }
4922 }
4923
4924 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4925 __func__,
4926 list_empty(handle_list) ? "empty" : "busy",
4927 list_empty(&conf->hold_list) ? "empty" : "busy",
4928 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4929
4930 if (!list_empty(handle_list)) {
4931 sh = list_entry(handle_list->next, typeof(*sh), lru);
4932
4933 if (list_empty(&conf->hold_list))
4934 conf->bypass_count = 0;
4935 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4936 if (conf->hold_list.next == conf->last_hold)
4937 conf->bypass_count++;
4938 else {
4939 conf->last_hold = conf->hold_list.next;
4940 conf->bypass_count -= conf->bypass_threshold;
4941 if (conf->bypass_count < 0)
4942 conf->bypass_count = 0;
4943 }
4944 }
4945 } else if (!list_empty(&conf->hold_list) &&
4946 ((conf->bypass_threshold &&
4947 conf->bypass_count > conf->bypass_threshold) ||
4948 atomic_read(&conf->pending_full_writes) == 0)) {
4949
4950 list_for_each_entry(tmp, &conf->hold_list, lru) {
4951 if (conf->worker_cnt_per_group == 0 ||
4952 group == ANY_GROUP ||
4953 !cpu_online(tmp->cpu) ||
4954 cpu_to_group(tmp->cpu) == group) {
4955 sh = tmp;
4956 break;
4957 }
4958 }
4959
4960 if (sh) {
4961 conf->bypass_count -= conf->bypass_threshold;
4962 if (conf->bypass_count < 0)
4963 conf->bypass_count = 0;
4964 }
4965 wg = NULL;
4966 }
4967
4968 if (!sh)
4969 return NULL;
4970
4971 if (wg) {
4972 wg->stripes_cnt--;
4973 sh->group = NULL;
4974 }
4975 list_del_init(&sh->lru);
4976 BUG_ON(atomic_inc_return(&sh->count) != 1);
4977 return sh;
4978 }
4979
4980 struct raid5_plug_cb {
4981 struct blk_plug_cb cb;
4982 struct list_head list;
4983 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4984 };
4985
4986 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4987 {
4988 struct raid5_plug_cb *cb = container_of(
4989 blk_cb, struct raid5_plug_cb, cb);
4990 struct stripe_head *sh;
4991 struct mddev *mddev = cb->cb.data;
4992 struct r5conf *conf = mddev->private;
4993 int cnt = 0;
4994 int hash;
4995
4996 if (cb->list.next && !list_empty(&cb->list)) {
4997 spin_lock_irq(&conf->device_lock);
4998 while (!list_empty(&cb->list)) {
4999 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5000 list_del_init(&sh->lru);
5001 /*
5002 * avoid race release_stripe_plug() sees
5003 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5004 * is still in our list
5005 */
5006 smp_mb__before_atomic();
5007 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5008 /*
5009 * STRIPE_ON_RELEASE_LIST could be set here. In that
5010 * case, the count is always > 1 here
5011 */
5012 hash = sh->hash_lock_index;
5013 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5014 cnt++;
5015 }
5016 spin_unlock_irq(&conf->device_lock);
5017 }
5018 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5019 NR_STRIPE_HASH_LOCKS);
5020 if (mddev->queue)
5021 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5022 kfree(cb);
5023 }
5024
5025 static void release_stripe_plug(struct mddev *mddev,
5026 struct stripe_head *sh)
5027 {
5028 struct blk_plug_cb *blk_cb = blk_check_plugged(
5029 raid5_unplug, mddev,
5030 sizeof(struct raid5_plug_cb));
5031 struct raid5_plug_cb *cb;
5032
5033 if (!blk_cb) {
5034 raid5_release_stripe(sh);
5035 return;
5036 }
5037
5038 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5039
5040 if (cb->list.next == NULL) {
5041 int i;
5042 INIT_LIST_HEAD(&cb->list);
5043 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5044 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5045 }
5046
5047 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5048 list_add_tail(&sh->lru, &cb->list);
5049 else
5050 raid5_release_stripe(sh);
5051 }
5052
5053 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5054 {
5055 struct r5conf *conf = mddev->private;
5056 sector_t logical_sector, last_sector;
5057 struct stripe_head *sh;
5058 int remaining;
5059 int stripe_sectors;
5060
5061 if (mddev->reshape_position != MaxSector)
5062 /* Skip discard while reshape is happening */
5063 return;
5064
5065 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5066 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5067
5068 bi->bi_next = NULL;
5069 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5070
5071 stripe_sectors = conf->chunk_sectors *
5072 (conf->raid_disks - conf->max_degraded);
5073 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5074 stripe_sectors);
5075 sector_div(last_sector, stripe_sectors);
5076
5077 logical_sector *= conf->chunk_sectors;
5078 last_sector *= conf->chunk_sectors;
5079
5080 for (; logical_sector < last_sector;
5081 logical_sector += STRIPE_SECTORS) {
5082 DEFINE_WAIT(w);
5083 int d;
5084 again:
5085 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5086 prepare_to_wait(&conf->wait_for_overlap, &w,
5087 TASK_UNINTERRUPTIBLE);
5088 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5089 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5090 raid5_release_stripe(sh);
5091 schedule();
5092 goto again;
5093 }
5094 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5095 spin_lock_irq(&sh->stripe_lock);
5096 for (d = 0; d < conf->raid_disks; d++) {
5097 if (d == sh->pd_idx || d == sh->qd_idx)
5098 continue;
5099 if (sh->dev[d].towrite || sh->dev[d].toread) {
5100 set_bit(R5_Overlap, &sh->dev[d].flags);
5101 spin_unlock_irq(&sh->stripe_lock);
5102 raid5_release_stripe(sh);
5103 schedule();
5104 goto again;
5105 }
5106 }
5107 set_bit(STRIPE_DISCARD, &sh->state);
5108 finish_wait(&conf->wait_for_overlap, &w);
5109 sh->overwrite_disks = 0;
5110 for (d = 0; d < conf->raid_disks; d++) {
5111 if (d == sh->pd_idx || d == sh->qd_idx)
5112 continue;
5113 sh->dev[d].towrite = bi;
5114 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5115 raid5_inc_bi_active_stripes(bi);
5116 sh->overwrite_disks++;
5117 }
5118 spin_unlock_irq(&sh->stripe_lock);
5119 if (conf->mddev->bitmap) {
5120 for (d = 0;
5121 d < conf->raid_disks - conf->max_degraded;
5122 d++)
5123 bitmap_startwrite(mddev->bitmap,
5124 sh->sector,
5125 STRIPE_SECTORS,
5126 0);
5127 sh->bm_seq = conf->seq_flush + 1;
5128 set_bit(STRIPE_BIT_DELAY, &sh->state);
5129 }
5130
5131 set_bit(STRIPE_HANDLE, &sh->state);
5132 clear_bit(STRIPE_DELAYED, &sh->state);
5133 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5134 atomic_inc(&conf->preread_active_stripes);
5135 release_stripe_plug(mddev, sh);
5136 }
5137
5138 remaining = raid5_dec_bi_active_stripes(bi);
5139 if (remaining == 0) {
5140 md_write_end(mddev);
5141 bio_endio(bi);
5142 }
5143 }
5144
5145 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5146 {
5147 struct r5conf *conf = mddev->private;
5148 int dd_idx;
5149 sector_t new_sector;
5150 sector_t logical_sector, last_sector;
5151 struct stripe_head *sh;
5152 const int rw = bio_data_dir(bi);
5153 int remaining;
5154 DEFINE_WAIT(w);
5155 bool do_prepare;
5156
5157 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5158 int ret = r5l_handle_flush_request(conf->log, bi);
5159
5160 if (ret == 0)
5161 return;
5162 if (ret == -ENODEV) {
5163 md_flush_request(mddev, bi);
5164 return;
5165 }
5166 /* ret == -EAGAIN, fallback */
5167 }
5168
5169 md_write_start(mddev, bi);
5170
5171 /*
5172 * If array is degraded, better not do chunk aligned read because
5173 * later we might have to read it again in order to reconstruct
5174 * data on failed drives.
5175 */
5176 if (rw == READ && mddev->degraded == 0 &&
5177 mddev->reshape_position == MaxSector) {
5178 bi = chunk_aligned_read(mddev, bi);
5179 if (!bi)
5180 return;
5181 }
5182
5183 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5184 make_discard_request(mddev, bi);
5185 return;
5186 }
5187
5188 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5189 last_sector = bio_end_sector(bi);
5190 bi->bi_next = NULL;
5191 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5192
5193 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5194 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5195 int previous;
5196 int seq;
5197
5198 do_prepare = false;
5199 retry:
5200 seq = read_seqcount_begin(&conf->gen_lock);
5201 previous = 0;
5202 if (do_prepare)
5203 prepare_to_wait(&conf->wait_for_overlap, &w,
5204 TASK_UNINTERRUPTIBLE);
5205 if (unlikely(conf->reshape_progress != MaxSector)) {
5206 /* spinlock is needed as reshape_progress may be
5207 * 64bit on a 32bit platform, and so it might be
5208 * possible to see a half-updated value
5209 * Of course reshape_progress could change after
5210 * the lock is dropped, so once we get a reference
5211 * to the stripe that we think it is, we will have
5212 * to check again.
5213 */
5214 spin_lock_irq(&conf->device_lock);
5215 if (mddev->reshape_backwards
5216 ? logical_sector < conf->reshape_progress
5217 : logical_sector >= conf->reshape_progress) {
5218 previous = 1;
5219 } else {
5220 if (mddev->reshape_backwards
5221 ? logical_sector < conf->reshape_safe
5222 : logical_sector >= conf->reshape_safe) {
5223 spin_unlock_irq(&conf->device_lock);
5224 schedule();
5225 do_prepare = true;
5226 goto retry;
5227 }
5228 }
5229 spin_unlock_irq(&conf->device_lock);
5230 }
5231
5232 new_sector = raid5_compute_sector(conf, logical_sector,
5233 previous,
5234 &dd_idx, NULL);
5235 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5236 (unsigned long long)new_sector,
5237 (unsigned long long)logical_sector);
5238
5239 sh = raid5_get_active_stripe(conf, new_sector, previous,
5240 (bi->bi_opf & REQ_RAHEAD), 0);
5241 if (sh) {
5242 if (unlikely(previous)) {
5243 /* expansion might have moved on while waiting for a
5244 * stripe, so we must do the range check again.
5245 * Expansion could still move past after this
5246 * test, but as we are holding a reference to
5247 * 'sh', we know that if that happens,
5248 * STRIPE_EXPANDING will get set and the expansion
5249 * won't proceed until we finish with the stripe.
5250 */
5251 int must_retry = 0;
5252 spin_lock_irq(&conf->device_lock);
5253 if (mddev->reshape_backwards
5254 ? logical_sector >= conf->reshape_progress
5255 : logical_sector < conf->reshape_progress)
5256 /* mismatch, need to try again */
5257 must_retry = 1;
5258 spin_unlock_irq(&conf->device_lock);
5259 if (must_retry) {
5260 raid5_release_stripe(sh);
5261 schedule();
5262 do_prepare = true;
5263 goto retry;
5264 }
5265 }
5266 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5267 /* Might have got the wrong stripe_head
5268 * by accident
5269 */
5270 raid5_release_stripe(sh);
5271 goto retry;
5272 }
5273
5274 if (rw == WRITE &&
5275 logical_sector >= mddev->suspend_lo &&
5276 logical_sector < mddev->suspend_hi) {
5277 raid5_release_stripe(sh);
5278 /* As the suspend_* range is controlled by
5279 * userspace, we want an interruptible
5280 * wait.
5281 */
5282 flush_signals(current);
5283 prepare_to_wait(&conf->wait_for_overlap,
5284 &w, TASK_INTERRUPTIBLE);
5285 if (logical_sector >= mddev->suspend_lo &&
5286 logical_sector < mddev->suspend_hi) {
5287 schedule();
5288 do_prepare = true;
5289 }
5290 goto retry;
5291 }
5292
5293 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5294 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5295 /* Stripe is busy expanding or
5296 * add failed due to overlap. Flush everything
5297 * and wait a while
5298 */
5299 md_wakeup_thread(mddev->thread);
5300 raid5_release_stripe(sh);
5301 schedule();
5302 do_prepare = true;
5303 goto retry;
5304 }
5305 set_bit(STRIPE_HANDLE, &sh->state);
5306 clear_bit(STRIPE_DELAYED, &sh->state);
5307 if ((!sh->batch_head || sh == sh->batch_head) &&
5308 (bi->bi_opf & REQ_SYNC) &&
5309 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5310 atomic_inc(&conf->preread_active_stripes);
5311 release_stripe_plug(mddev, sh);
5312 } else {
5313 /* cannot get stripe for read-ahead, just give-up */
5314 bi->bi_error = -EIO;
5315 break;
5316 }
5317 }
5318 finish_wait(&conf->wait_for_overlap, &w);
5319
5320 remaining = raid5_dec_bi_active_stripes(bi);
5321 if (remaining == 0) {
5322
5323 if ( rw == WRITE )
5324 md_write_end(mddev);
5325
5326 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5327 bi, 0);
5328 bio_endio(bi);
5329 }
5330 }
5331
5332 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5333
5334 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5335 {
5336 /* reshaping is quite different to recovery/resync so it is
5337 * handled quite separately ... here.
5338 *
5339 * On each call to sync_request, we gather one chunk worth of
5340 * destination stripes and flag them as expanding.
5341 * Then we find all the source stripes and request reads.
5342 * As the reads complete, handle_stripe will copy the data
5343 * into the destination stripe and release that stripe.
5344 */
5345 struct r5conf *conf = mddev->private;
5346 struct stripe_head *sh;
5347 sector_t first_sector, last_sector;
5348 int raid_disks = conf->previous_raid_disks;
5349 int data_disks = raid_disks - conf->max_degraded;
5350 int new_data_disks = conf->raid_disks - conf->max_degraded;
5351 int i;
5352 int dd_idx;
5353 sector_t writepos, readpos, safepos;
5354 sector_t stripe_addr;
5355 int reshape_sectors;
5356 struct list_head stripes;
5357 sector_t retn;
5358
5359 if (sector_nr == 0) {
5360 /* If restarting in the middle, skip the initial sectors */
5361 if (mddev->reshape_backwards &&
5362 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5363 sector_nr = raid5_size(mddev, 0, 0)
5364 - conf->reshape_progress;
5365 } else if (mddev->reshape_backwards &&
5366 conf->reshape_progress == MaxSector) {
5367 /* shouldn't happen, but just in case, finish up.*/
5368 sector_nr = MaxSector;
5369 } else if (!mddev->reshape_backwards &&
5370 conf->reshape_progress > 0)
5371 sector_nr = conf->reshape_progress;
5372 sector_div(sector_nr, new_data_disks);
5373 if (sector_nr) {
5374 mddev->curr_resync_completed = sector_nr;
5375 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5376 *skipped = 1;
5377 retn = sector_nr;
5378 goto finish;
5379 }
5380 }
5381
5382 /* We need to process a full chunk at a time.
5383 * If old and new chunk sizes differ, we need to process the
5384 * largest of these
5385 */
5386
5387 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5388
5389 /* We update the metadata at least every 10 seconds, or when
5390 * the data about to be copied would over-write the source of
5391 * the data at the front of the range. i.e. one new_stripe
5392 * along from reshape_progress new_maps to after where
5393 * reshape_safe old_maps to
5394 */
5395 writepos = conf->reshape_progress;
5396 sector_div(writepos, new_data_disks);
5397 readpos = conf->reshape_progress;
5398 sector_div(readpos, data_disks);
5399 safepos = conf->reshape_safe;
5400 sector_div(safepos, data_disks);
5401 if (mddev->reshape_backwards) {
5402 BUG_ON(writepos < reshape_sectors);
5403 writepos -= reshape_sectors;
5404 readpos += reshape_sectors;
5405 safepos += reshape_sectors;
5406 } else {
5407 writepos += reshape_sectors;
5408 /* readpos and safepos are worst-case calculations.
5409 * A negative number is overly pessimistic, and causes
5410 * obvious problems for unsigned storage. So clip to 0.
5411 */
5412 readpos -= min_t(sector_t, reshape_sectors, readpos);
5413 safepos -= min_t(sector_t, reshape_sectors, safepos);
5414 }
5415
5416 /* Having calculated the 'writepos' possibly use it
5417 * to set 'stripe_addr' which is where we will write to.
5418 */
5419 if (mddev->reshape_backwards) {
5420 BUG_ON(conf->reshape_progress == 0);
5421 stripe_addr = writepos;
5422 BUG_ON((mddev->dev_sectors &
5423 ~((sector_t)reshape_sectors - 1))
5424 - reshape_sectors - stripe_addr
5425 != sector_nr);
5426 } else {
5427 BUG_ON(writepos != sector_nr + reshape_sectors);
5428 stripe_addr = sector_nr;
5429 }
5430
5431 /* 'writepos' is the most advanced device address we might write.
5432 * 'readpos' is the least advanced device address we might read.
5433 * 'safepos' is the least address recorded in the metadata as having
5434 * been reshaped.
5435 * If there is a min_offset_diff, these are adjusted either by
5436 * increasing the safepos/readpos if diff is negative, or
5437 * increasing writepos if diff is positive.
5438 * If 'readpos' is then behind 'writepos', there is no way that we can
5439 * ensure safety in the face of a crash - that must be done by userspace
5440 * making a backup of the data. So in that case there is no particular
5441 * rush to update metadata.
5442 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5443 * update the metadata to advance 'safepos' to match 'readpos' so that
5444 * we can be safe in the event of a crash.
5445 * So we insist on updating metadata if safepos is behind writepos and
5446 * readpos is beyond writepos.
5447 * In any case, update the metadata every 10 seconds.
5448 * Maybe that number should be configurable, but I'm not sure it is
5449 * worth it.... maybe it could be a multiple of safemode_delay???
5450 */
5451 if (conf->min_offset_diff < 0) {
5452 safepos += -conf->min_offset_diff;
5453 readpos += -conf->min_offset_diff;
5454 } else
5455 writepos += conf->min_offset_diff;
5456
5457 if ((mddev->reshape_backwards
5458 ? (safepos > writepos && readpos < writepos)
5459 : (safepos < writepos && readpos > writepos)) ||
5460 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5461 /* Cannot proceed until we've updated the superblock... */
5462 wait_event(conf->wait_for_overlap,
5463 atomic_read(&conf->reshape_stripes)==0
5464 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5465 if (atomic_read(&conf->reshape_stripes) != 0)
5466 return 0;
5467 mddev->reshape_position = conf->reshape_progress;
5468 mddev->curr_resync_completed = sector_nr;
5469 conf->reshape_checkpoint = jiffies;
5470 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5471 md_wakeup_thread(mddev->thread);
5472 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5473 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5474 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5475 return 0;
5476 spin_lock_irq(&conf->device_lock);
5477 conf->reshape_safe = mddev->reshape_position;
5478 spin_unlock_irq(&conf->device_lock);
5479 wake_up(&conf->wait_for_overlap);
5480 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5481 }
5482
5483 INIT_LIST_HEAD(&stripes);
5484 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5485 int j;
5486 int skipped_disk = 0;
5487 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5488 set_bit(STRIPE_EXPANDING, &sh->state);
5489 atomic_inc(&conf->reshape_stripes);
5490 /* If any of this stripe is beyond the end of the old
5491 * array, then we need to zero those blocks
5492 */
5493 for (j=sh->disks; j--;) {
5494 sector_t s;
5495 if (j == sh->pd_idx)
5496 continue;
5497 if (conf->level == 6 &&
5498 j == sh->qd_idx)
5499 continue;
5500 s = raid5_compute_blocknr(sh, j, 0);
5501 if (s < raid5_size(mddev, 0, 0)) {
5502 skipped_disk = 1;
5503 continue;
5504 }
5505 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5506 set_bit(R5_Expanded, &sh->dev[j].flags);
5507 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5508 }
5509 if (!skipped_disk) {
5510 set_bit(STRIPE_EXPAND_READY, &sh->state);
5511 set_bit(STRIPE_HANDLE, &sh->state);
5512 }
5513 list_add(&sh->lru, &stripes);
5514 }
5515 spin_lock_irq(&conf->device_lock);
5516 if (mddev->reshape_backwards)
5517 conf->reshape_progress -= reshape_sectors * new_data_disks;
5518 else
5519 conf->reshape_progress += reshape_sectors * new_data_disks;
5520 spin_unlock_irq(&conf->device_lock);
5521 /* Ok, those stripe are ready. We can start scheduling
5522 * reads on the source stripes.
5523 * The source stripes are determined by mapping the first and last
5524 * block on the destination stripes.
5525 */
5526 first_sector =
5527 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5528 1, &dd_idx, NULL);
5529 last_sector =
5530 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5531 * new_data_disks - 1),
5532 1, &dd_idx, NULL);
5533 if (last_sector >= mddev->dev_sectors)
5534 last_sector = mddev->dev_sectors - 1;
5535 while (first_sector <= last_sector) {
5536 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5537 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5538 set_bit(STRIPE_HANDLE, &sh->state);
5539 raid5_release_stripe(sh);
5540 first_sector += STRIPE_SECTORS;
5541 }
5542 /* Now that the sources are clearly marked, we can release
5543 * the destination stripes
5544 */
5545 while (!list_empty(&stripes)) {
5546 sh = list_entry(stripes.next, struct stripe_head, lru);
5547 list_del_init(&sh->lru);
5548 raid5_release_stripe(sh);
5549 }
5550 /* If this takes us to the resync_max point where we have to pause,
5551 * then we need to write out the superblock.
5552 */
5553 sector_nr += reshape_sectors;
5554 retn = reshape_sectors;
5555 finish:
5556 if (mddev->curr_resync_completed > mddev->resync_max ||
5557 (sector_nr - mddev->curr_resync_completed) * 2
5558 >= mddev->resync_max - mddev->curr_resync_completed) {
5559 /* Cannot proceed until we've updated the superblock... */
5560 wait_event(conf->wait_for_overlap,
5561 atomic_read(&conf->reshape_stripes) == 0
5562 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5563 if (atomic_read(&conf->reshape_stripes) != 0)
5564 goto ret;
5565 mddev->reshape_position = conf->reshape_progress;
5566 mddev->curr_resync_completed = sector_nr;
5567 conf->reshape_checkpoint = jiffies;
5568 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5569 md_wakeup_thread(mddev->thread);
5570 wait_event(mddev->sb_wait,
5571 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5572 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5573 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5574 goto ret;
5575 spin_lock_irq(&conf->device_lock);
5576 conf->reshape_safe = mddev->reshape_position;
5577 spin_unlock_irq(&conf->device_lock);
5578 wake_up(&conf->wait_for_overlap);
5579 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5580 }
5581 ret:
5582 return retn;
5583 }
5584
5585 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5586 int *skipped)
5587 {
5588 struct r5conf *conf = mddev->private;
5589 struct stripe_head *sh;
5590 sector_t max_sector = mddev->dev_sectors;
5591 sector_t sync_blocks;
5592 int still_degraded = 0;
5593 int i;
5594
5595 if (sector_nr >= max_sector) {
5596 /* just being told to finish up .. nothing much to do */
5597
5598 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5599 end_reshape(conf);
5600 return 0;
5601 }
5602
5603 if (mddev->curr_resync < max_sector) /* aborted */
5604 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5605 &sync_blocks, 1);
5606 else /* completed sync */
5607 conf->fullsync = 0;
5608 bitmap_close_sync(mddev->bitmap);
5609
5610 return 0;
5611 }
5612
5613 /* Allow raid5_quiesce to complete */
5614 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5615
5616 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5617 return reshape_request(mddev, sector_nr, skipped);
5618
5619 /* No need to check resync_max as we never do more than one
5620 * stripe, and as resync_max will always be on a chunk boundary,
5621 * if the check in md_do_sync didn't fire, there is no chance
5622 * of overstepping resync_max here
5623 */
5624
5625 /* if there is too many failed drives and we are trying
5626 * to resync, then assert that we are finished, because there is
5627 * nothing we can do.
5628 */
5629 if (mddev->degraded >= conf->max_degraded &&
5630 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5631 sector_t rv = mddev->dev_sectors - sector_nr;
5632 *skipped = 1;
5633 return rv;
5634 }
5635 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5636 !conf->fullsync &&
5637 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5638 sync_blocks >= STRIPE_SECTORS) {
5639 /* we can skip this block, and probably more */
5640 sync_blocks /= STRIPE_SECTORS;
5641 *skipped = 1;
5642 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5643 }
5644
5645 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5646
5647 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5648 if (sh == NULL) {
5649 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5650 /* make sure we don't swamp the stripe cache if someone else
5651 * is trying to get access
5652 */
5653 schedule_timeout_uninterruptible(1);
5654 }
5655 /* Need to check if array will still be degraded after recovery/resync
5656 * Note in case of > 1 drive failures it's possible we're rebuilding
5657 * one drive while leaving another faulty drive in array.
5658 */
5659 rcu_read_lock();
5660 for (i = 0; i < conf->raid_disks; i++) {
5661 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5662
5663 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5664 still_degraded = 1;
5665 }
5666 rcu_read_unlock();
5667
5668 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5669
5670 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5671 set_bit(STRIPE_HANDLE, &sh->state);
5672
5673 raid5_release_stripe(sh);
5674
5675 return STRIPE_SECTORS;
5676 }
5677
5678 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5679 {
5680 /* We may not be able to submit a whole bio at once as there
5681 * may not be enough stripe_heads available.
5682 * We cannot pre-allocate enough stripe_heads as we may need
5683 * more than exist in the cache (if we allow ever large chunks).
5684 * So we do one stripe head at a time and record in
5685 * ->bi_hw_segments how many have been done.
5686 *
5687 * We *know* that this entire raid_bio is in one chunk, so
5688 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5689 */
5690 struct stripe_head *sh;
5691 int dd_idx;
5692 sector_t sector, logical_sector, last_sector;
5693 int scnt = 0;
5694 int remaining;
5695 int handled = 0;
5696
5697 logical_sector = raid_bio->bi_iter.bi_sector &
5698 ~((sector_t)STRIPE_SECTORS-1);
5699 sector = raid5_compute_sector(conf, logical_sector,
5700 0, &dd_idx, NULL);
5701 last_sector = bio_end_sector(raid_bio);
5702
5703 for (; logical_sector < last_sector;
5704 logical_sector += STRIPE_SECTORS,
5705 sector += STRIPE_SECTORS,
5706 scnt++) {
5707
5708 if (scnt < raid5_bi_processed_stripes(raid_bio))
5709 /* already done this stripe */
5710 continue;
5711
5712 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5713
5714 if (!sh) {
5715 /* failed to get a stripe - must wait */
5716 raid5_set_bi_processed_stripes(raid_bio, scnt);
5717 conf->retry_read_aligned = raid_bio;
5718 return handled;
5719 }
5720
5721 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5722 raid5_release_stripe(sh);
5723 raid5_set_bi_processed_stripes(raid_bio, scnt);
5724 conf->retry_read_aligned = raid_bio;
5725 return handled;
5726 }
5727
5728 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5729 handle_stripe(sh);
5730 raid5_release_stripe(sh);
5731 handled++;
5732 }
5733 remaining = raid5_dec_bi_active_stripes(raid_bio);
5734 if (remaining == 0) {
5735 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5736 raid_bio, 0);
5737 bio_endio(raid_bio);
5738 }
5739 if (atomic_dec_and_test(&conf->active_aligned_reads))
5740 wake_up(&conf->wait_for_quiescent);
5741 return handled;
5742 }
5743
5744 static int handle_active_stripes(struct r5conf *conf, int group,
5745 struct r5worker *worker,
5746 struct list_head *temp_inactive_list)
5747 {
5748 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5749 int i, batch_size = 0, hash;
5750 bool release_inactive = false;
5751
5752 while (batch_size < MAX_STRIPE_BATCH &&
5753 (sh = __get_priority_stripe(conf, group)) != NULL)
5754 batch[batch_size++] = sh;
5755
5756 if (batch_size == 0) {
5757 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5758 if (!list_empty(temp_inactive_list + i))
5759 break;
5760 if (i == NR_STRIPE_HASH_LOCKS) {
5761 spin_unlock_irq(&conf->device_lock);
5762 r5l_flush_stripe_to_raid(conf->log);
5763 spin_lock_irq(&conf->device_lock);
5764 return batch_size;
5765 }
5766 release_inactive = true;
5767 }
5768 spin_unlock_irq(&conf->device_lock);
5769
5770 release_inactive_stripe_list(conf, temp_inactive_list,
5771 NR_STRIPE_HASH_LOCKS);
5772
5773 r5l_flush_stripe_to_raid(conf->log);
5774 if (release_inactive) {
5775 spin_lock_irq(&conf->device_lock);
5776 return 0;
5777 }
5778
5779 for (i = 0; i < batch_size; i++)
5780 handle_stripe(batch[i]);
5781 r5l_write_stripe_run(conf->log);
5782
5783 cond_resched();
5784
5785 spin_lock_irq(&conf->device_lock);
5786 for (i = 0; i < batch_size; i++) {
5787 hash = batch[i]->hash_lock_index;
5788 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5789 }
5790 return batch_size;
5791 }
5792
5793 static void raid5_do_work(struct work_struct *work)
5794 {
5795 struct r5worker *worker = container_of(work, struct r5worker, work);
5796 struct r5worker_group *group = worker->group;
5797 struct r5conf *conf = group->conf;
5798 int group_id = group - conf->worker_groups;
5799 int handled;
5800 struct blk_plug plug;
5801
5802 pr_debug("+++ raid5worker active\n");
5803
5804 blk_start_plug(&plug);
5805 handled = 0;
5806 spin_lock_irq(&conf->device_lock);
5807 while (1) {
5808 int batch_size, released;
5809
5810 released = release_stripe_list(conf, worker->temp_inactive_list);
5811
5812 batch_size = handle_active_stripes(conf, group_id, worker,
5813 worker->temp_inactive_list);
5814 worker->working = false;
5815 if (!batch_size && !released)
5816 break;
5817 handled += batch_size;
5818 }
5819 pr_debug("%d stripes handled\n", handled);
5820
5821 spin_unlock_irq(&conf->device_lock);
5822 blk_finish_plug(&plug);
5823
5824 pr_debug("--- raid5worker inactive\n");
5825 }
5826
5827 /*
5828 * This is our raid5 kernel thread.
5829 *
5830 * We scan the hash table for stripes which can be handled now.
5831 * During the scan, completed stripes are saved for us by the interrupt
5832 * handler, so that they will not have to wait for our next wakeup.
5833 */
5834 static void raid5d(struct md_thread *thread)
5835 {
5836 struct mddev *mddev = thread->mddev;
5837 struct r5conf *conf = mddev->private;
5838 int handled;
5839 struct blk_plug plug;
5840
5841 pr_debug("+++ raid5d active\n");
5842
5843 md_check_recovery(mddev);
5844
5845 if (!bio_list_empty(&conf->return_bi) &&
5846 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5847 struct bio_list tmp = BIO_EMPTY_LIST;
5848 spin_lock_irq(&conf->device_lock);
5849 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5850 bio_list_merge(&tmp, &conf->return_bi);
5851 bio_list_init(&conf->return_bi);
5852 }
5853 spin_unlock_irq(&conf->device_lock);
5854 return_io(&tmp);
5855 }
5856
5857 blk_start_plug(&plug);
5858 handled = 0;
5859 spin_lock_irq(&conf->device_lock);
5860 while (1) {
5861 struct bio *bio;
5862 int batch_size, released;
5863
5864 released = release_stripe_list(conf, conf->temp_inactive_list);
5865 if (released)
5866 clear_bit(R5_DID_ALLOC, &conf->cache_state);
5867
5868 if (
5869 !list_empty(&conf->bitmap_list)) {
5870 /* Now is a good time to flush some bitmap updates */
5871 conf->seq_flush++;
5872 spin_unlock_irq(&conf->device_lock);
5873 bitmap_unplug(mddev->bitmap);
5874 spin_lock_irq(&conf->device_lock);
5875 conf->seq_write = conf->seq_flush;
5876 activate_bit_delay(conf, conf->temp_inactive_list);
5877 }
5878 raid5_activate_delayed(conf);
5879
5880 while ((bio = remove_bio_from_retry(conf))) {
5881 int ok;
5882 spin_unlock_irq(&conf->device_lock);
5883 ok = retry_aligned_read(conf, bio);
5884 spin_lock_irq(&conf->device_lock);
5885 if (!ok)
5886 break;
5887 handled++;
5888 }
5889
5890 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5891 conf->temp_inactive_list);
5892 if (!batch_size && !released)
5893 break;
5894 handled += batch_size;
5895
5896 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5897 spin_unlock_irq(&conf->device_lock);
5898 md_check_recovery(mddev);
5899 spin_lock_irq(&conf->device_lock);
5900 }
5901 }
5902 pr_debug("%d stripes handled\n", handled);
5903
5904 spin_unlock_irq(&conf->device_lock);
5905 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5906 mutex_trylock(&conf->cache_size_mutex)) {
5907 grow_one_stripe(conf, __GFP_NOWARN);
5908 /* Set flag even if allocation failed. This helps
5909 * slow down allocation requests when mem is short
5910 */
5911 set_bit(R5_DID_ALLOC, &conf->cache_state);
5912 mutex_unlock(&conf->cache_size_mutex);
5913 }
5914
5915 r5l_flush_stripe_to_raid(conf->log);
5916
5917 async_tx_issue_pending_all();
5918 blk_finish_plug(&plug);
5919
5920 pr_debug("--- raid5d inactive\n");
5921 }
5922
5923 static ssize_t
5924 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5925 {
5926 struct r5conf *conf;
5927 int ret = 0;
5928 spin_lock(&mddev->lock);
5929 conf = mddev->private;
5930 if (conf)
5931 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5932 spin_unlock(&mddev->lock);
5933 return ret;
5934 }
5935
5936 int
5937 raid5_set_cache_size(struct mddev *mddev, int size)
5938 {
5939 struct r5conf *conf = mddev->private;
5940 int err;
5941
5942 if (size <= 16 || size > 32768)
5943 return -EINVAL;
5944
5945 conf->min_nr_stripes = size;
5946 mutex_lock(&conf->cache_size_mutex);
5947 while (size < conf->max_nr_stripes &&
5948 drop_one_stripe(conf))
5949 ;
5950 mutex_unlock(&conf->cache_size_mutex);
5951
5952
5953 err = md_allow_write(mddev);
5954 if (err)
5955 return err;
5956
5957 mutex_lock(&conf->cache_size_mutex);
5958 while (size > conf->max_nr_stripes)
5959 if (!grow_one_stripe(conf, GFP_KERNEL))
5960 break;
5961 mutex_unlock(&conf->cache_size_mutex);
5962
5963 return 0;
5964 }
5965 EXPORT_SYMBOL(raid5_set_cache_size);
5966
5967 static ssize_t
5968 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5969 {
5970 struct r5conf *conf;
5971 unsigned long new;
5972 int err;
5973
5974 if (len >= PAGE_SIZE)
5975 return -EINVAL;
5976 if (kstrtoul(page, 10, &new))
5977 return -EINVAL;
5978 err = mddev_lock(mddev);
5979 if (err)
5980 return err;
5981 conf = mddev->private;
5982 if (!conf)
5983 err = -ENODEV;
5984 else
5985 err = raid5_set_cache_size(mddev, new);
5986 mddev_unlock(mddev);
5987
5988 return err ?: len;
5989 }
5990
5991 static struct md_sysfs_entry
5992 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5993 raid5_show_stripe_cache_size,
5994 raid5_store_stripe_cache_size);
5995
5996 static ssize_t
5997 raid5_show_rmw_level(struct mddev *mddev, char *page)
5998 {
5999 struct r5conf *conf = mddev->private;
6000 if (conf)
6001 return sprintf(page, "%d\n", conf->rmw_level);
6002 else
6003 return 0;
6004 }
6005
6006 static ssize_t
6007 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6008 {
6009 struct r5conf *conf = mddev->private;
6010 unsigned long new;
6011
6012 if (!conf)
6013 return -ENODEV;
6014
6015 if (len >= PAGE_SIZE)
6016 return -EINVAL;
6017
6018 if (kstrtoul(page, 10, &new))
6019 return -EINVAL;
6020
6021 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6022 return -EINVAL;
6023
6024 if (new != PARITY_DISABLE_RMW &&
6025 new != PARITY_ENABLE_RMW &&
6026 new != PARITY_PREFER_RMW)
6027 return -EINVAL;
6028
6029 conf->rmw_level = new;
6030 return len;
6031 }
6032
6033 static struct md_sysfs_entry
6034 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6035 raid5_show_rmw_level,
6036 raid5_store_rmw_level);
6037
6038
6039 static ssize_t
6040 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6041 {
6042 struct r5conf *conf;
6043 int ret = 0;
6044 spin_lock(&mddev->lock);
6045 conf = mddev->private;
6046 if (conf)
6047 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6048 spin_unlock(&mddev->lock);
6049 return ret;
6050 }
6051
6052 static ssize_t
6053 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6054 {
6055 struct r5conf *conf;
6056 unsigned long new;
6057 int err;
6058
6059 if (len >= PAGE_SIZE)
6060 return -EINVAL;
6061 if (kstrtoul(page, 10, &new))
6062 return -EINVAL;
6063
6064 err = mddev_lock(mddev);
6065 if (err)
6066 return err;
6067 conf = mddev->private;
6068 if (!conf)
6069 err = -ENODEV;
6070 else if (new > conf->min_nr_stripes)
6071 err = -EINVAL;
6072 else
6073 conf->bypass_threshold = new;
6074 mddev_unlock(mddev);
6075 return err ?: len;
6076 }
6077
6078 static struct md_sysfs_entry
6079 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6080 S_IRUGO | S_IWUSR,
6081 raid5_show_preread_threshold,
6082 raid5_store_preread_threshold);
6083
6084 static ssize_t
6085 raid5_show_skip_copy(struct mddev *mddev, char *page)
6086 {
6087 struct r5conf *conf;
6088 int ret = 0;
6089 spin_lock(&mddev->lock);
6090 conf = mddev->private;
6091 if (conf)
6092 ret = sprintf(page, "%d\n", conf->skip_copy);
6093 spin_unlock(&mddev->lock);
6094 return ret;
6095 }
6096
6097 static ssize_t
6098 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6099 {
6100 struct r5conf *conf;
6101 unsigned long new;
6102 int err;
6103
6104 if (len >= PAGE_SIZE)
6105 return -EINVAL;
6106 if (kstrtoul(page, 10, &new))
6107 return -EINVAL;
6108 new = !!new;
6109
6110 err = mddev_lock(mddev);
6111 if (err)
6112 return err;
6113 conf = mddev->private;
6114 if (!conf)
6115 err = -ENODEV;
6116 else if (new != conf->skip_copy) {
6117 mddev_suspend(mddev);
6118 conf->skip_copy = new;
6119 if (new)
6120 mddev->queue->backing_dev_info.capabilities |=
6121 BDI_CAP_STABLE_WRITES;
6122 else
6123 mddev->queue->backing_dev_info.capabilities &=
6124 ~BDI_CAP_STABLE_WRITES;
6125 mddev_resume(mddev);
6126 }
6127 mddev_unlock(mddev);
6128 return err ?: len;
6129 }
6130
6131 static struct md_sysfs_entry
6132 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6133 raid5_show_skip_copy,
6134 raid5_store_skip_copy);
6135
6136 static ssize_t
6137 stripe_cache_active_show(struct mddev *mddev, char *page)
6138 {
6139 struct r5conf *conf = mddev->private;
6140 if (conf)
6141 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6142 else
6143 return 0;
6144 }
6145
6146 static struct md_sysfs_entry
6147 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6148
6149 static ssize_t
6150 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6151 {
6152 struct r5conf *conf;
6153 int ret = 0;
6154 spin_lock(&mddev->lock);
6155 conf = mddev->private;
6156 if (conf)
6157 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6158 spin_unlock(&mddev->lock);
6159 return ret;
6160 }
6161
6162 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6163 int *group_cnt,
6164 int *worker_cnt_per_group,
6165 struct r5worker_group **worker_groups);
6166 static ssize_t
6167 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6168 {
6169 struct r5conf *conf;
6170 unsigned long new;
6171 int err;
6172 struct r5worker_group *new_groups, *old_groups;
6173 int group_cnt, worker_cnt_per_group;
6174
6175 if (len >= PAGE_SIZE)
6176 return -EINVAL;
6177 if (kstrtoul(page, 10, &new))
6178 return -EINVAL;
6179
6180 err = mddev_lock(mddev);
6181 if (err)
6182 return err;
6183 conf = mddev->private;
6184 if (!conf)
6185 err = -ENODEV;
6186 else if (new != conf->worker_cnt_per_group) {
6187 mddev_suspend(mddev);
6188
6189 old_groups = conf->worker_groups;
6190 if (old_groups)
6191 flush_workqueue(raid5_wq);
6192
6193 err = alloc_thread_groups(conf, new,
6194 &group_cnt, &worker_cnt_per_group,
6195 &new_groups);
6196 if (!err) {
6197 spin_lock_irq(&conf->device_lock);
6198 conf->group_cnt = group_cnt;
6199 conf->worker_cnt_per_group = worker_cnt_per_group;
6200 conf->worker_groups = new_groups;
6201 spin_unlock_irq(&conf->device_lock);
6202
6203 if (old_groups)
6204 kfree(old_groups[0].workers);
6205 kfree(old_groups);
6206 }
6207 mddev_resume(mddev);
6208 }
6209 mddev_unlock(mddev);
6210
6211 return err ?: len;
6212 }
6213
6214 static struct md_sysfs_entry
6215 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6216 raid5_show_group_thread_cnt,
6217 raid5_store_group_thread_cnt);
6218
6219 static struct attribute *raid5_attrs[] = {
6220 &raid5_stripecache_size.attr,
6221 &raid5_stripecache_active.attr,
6222 &raid5_preread_bypass_threshold.attr,
6223 &raid5_group_thread_cnt.attr,
6224 &raid5_skip_copy.attr,
6225 &raid5_rmw_level.attr,
6226 NULL,
6227 };
6228 static struct attribute_group raid5_attrs_group = {
6229 .name = NULL,
6230 .attrs = raid5_attrs,
6231 };
6232
6233 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6234 int *group_cnt,
6235 int *worker_cnt_per_group,
6236 struct r5worker_group **worker_groups)
6237 {
6238 int i, j, k;
6239 ssize_t size;
6240 struct r5worker *workers;
6241
6242 *worker_cnt_per_group = cnt;
6243 if (cnt == 0) {
6244 *group_cnt = 0;
6245 *worker_groups = NULL;
6246 return 0;
6247 }
6248 *group_cnt = num_possible_nodes();
6249 size = sizeof(struct r5worker) * cnt;
6250 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6251 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6252 *group_cnt, GFP_NOIO);
6253 if (!*worker_groups || !workers) {
6254 kfree(workers);
6255 kfree(*worker_groups);
6256 return -ENOMEM;
6257 }
6258
6259 for (i = 0; i < *group_cnt; i++) {
6260 struct r5worker_group *group;
6261
6262 group = &(*worker_groups)[i];
6263 INIT_LIST_HEAD(&group->handle_list);
6264 group->conf = conf;
6265 group->workers = workers + i * cnt;
6266
6267 for (j = 0; j < cnt; j++) {
6268 struct r5worker *worker = group->workers + j;
6269 worker->group = group;
6270 INIT_WORK(&worker->work, raid5_do_work);
6271
6272 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6273 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6274 }
6275 }
6276
6277 return 0;
6278 }
6279
6280 static void free_thread_groups(struct r5conf *conf)
6281 {
6282 if (conf->worker_groups)
6283 kfree(conf->worker_groups[0].workers);
6284 kfree(conf->worker_groups);
6285 conf->worker_groups = NULL;
6286 }
6287
6288 static sector_t
6289 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6290 {
6291 struct r5conf *conf = mddev->private;
6292
6293 if (!sectors)
6294 sectors = mddev->dev_sectors;
6295 if (!raid_disks)
6296 /* size is defined by the smallest of previous and new size */
6297 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6298
6299 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6300 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6301 return sectors * (raid_disks - conf->max_degraded);
6302 }
6303
6304 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6305 {
6306 safe_put_page(percpu->spare_page);
6307 if (percpu->scribble)
6308 flex_array_free(percpu->scribble);
6309 percpu->spare_page = NULL;
6310 percpu->scribble = NULL;
6311 }
6312
6313 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6314 {
6315 if (conf->level == 6 && !percpu->spare_page)
6316 percpu->spare_page = alloc_page(GFP_KERNEL);
6317 if (!percpu->scribble)
6318 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6319 conf->previous_raid_disks),
6320 max(conf->chunk_sectors,
6321 conf->prev_chunk_sectors)
6322 / STRIPE_SECTORS,
6323 GFP_KERNEL);
6324
6325 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6326 free_scratch_buffer(conf, percpu);
6327 return -ENOMEM;
6328 }
6329
6330 return 0;
6331 }
6332
6333 static void raid5_free_percpu(struct r5conf *conf)
6334 {
6335 unsigned long cpu;
6336
6337 if (!conf->percpu)
6338 return;
6339
6340 #ifdef CONFIG_HOTPLUG_CPU
6341 unregister_cpu_notifier(&conf->cpu_notify);
6342 #endif
6343
6344 get_online_cpus();
6345 for_each_possible_cpu(cpu)
6346 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6347 put_online_cpus();
6348
6349 free_percpu(conf->percpu);
6350 }
6351
6352 static void free_conf(struct r5conf *conf)
6353 {
6354 if (conf->log)
6355 r5l_exit_log(conf->log);
6356 if (conf->shrinker.seeks)
6357 unregister_shrinker(&conf->shrinker);
6358
6359 free_thread_groups(conf);
6360 shrink_stripes(conf);
6361 raid5_free_percpu(conf);
6362 kfree(conf->disks);
6363 kfree(conf->stripe_hashtbl);
6364 kfree(conf);
6365 }
6366
6367 #ifdef CONFIG_HOTPLUG_CPU
6368 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6369 void *hcpu)
6370 {
6371 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6372 long cpu = (long)hcpu;
6373 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6374
6375 switch (action) {
6376 case CPU_UP_PREPARE:
6377 case CPU_UP_PREPARE_FROZEN:
6378 if (alloc_scratch_buffer(conf, percpu)) {
6379 pr_err("%s: failed memory allocation for cpu%ld\n",
6380 __func__, cpu);
6381 return notifier_from_errno(-ENOMEM);
6382 }
6383 break;
6384 case CPU_DEAD:
6385 case CPU_DEAD_FROZEN:
6386 case CPU_UP_CANCELED:
6387 case CPU_UP_CANCELED_FROZEN:
6388 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6389 break;
6390 default:
6391 break;
6392 }
6393 return NOTIFY_OK;
6394 }
6395 #endif
6396
6397 static int raid5_alloc_percpu(struct r5conf *conf)
6398 {
6399 unsigned long cpu;
6400 int err = 0;
6401
6402 conf->percpu = alloc_percpu(struct raid5_percpu);
6403 if (!conf->percpu)
6404 return -ENOMEM;
6405
6406 #ifdef CONFIG_HOTPLUG_CPU
6407 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6408 conf->cpu_notify.priority = 0;
6409 err = register_cpu_notifier(&conf->cpu_notify);
6410 if (err)
6411 return err;
6412 #endif
6413
6414 get_online_cpus();
6415 for_each_present_cpu(cpu) {
6416 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6417 if (err) {
6418 pr_err("%s: failed memory allocation for cpu%ld\n",
6419 __func__, cpu);
6420 break;
6421 }
6422 }
6423 put_online_cpus();
6424
6425 if (!err) {
6426 conf->scribble_disks = max(conf->raid_disks,
6427 conf->previous_raid_disks);
6428 conf->scribble_sectors = max(conf->chunk_sectors,
6429 conf->prev_chunk_sectors);
6430 }
6431 return err;
6432 }
6433
6434 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6435 struct shrink_control *sc)
6436 {
6437 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6438 unsigned long ret = SHRINK_STOP;
6439
6440 if (mutex_trylock(&conf->cache_size_mutex)) {
6441 ret= 0;
6442 while (ret < sc->nr_to_scan &&
6443 conf->max_nr_stripes > conf->min_nr_stripes) {
6444 if (drop_one_stripe(conf) == 0) {
6445 ret = SHRINK_STOP;
6446 break;
6447 }
6448 ret++;
6449 }
6450 mutex_unlock(&conf->cache_size_mutex);
6451 }
6452 return ret;
6453 }
6454
6455 static unsigned long raid5_cache_count(struct shrinker *shrink,
6456 struct shrink_control *sc)
6457 {
6458 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6459
6460 if (conf->max_nr_stripes < conf->min_nr_stripes)
6461 /* unlikely, but not impossible */
6462 return 0;
6463 return conf->max_nr_stripes - conf->min_nr_stripes;
6464 }
6465
6466 static struct r5conf *setup_conf(struct mddev *mddev)
6467 {
6468 struct r5conf *conf;
6469 int raid_disk, memory, max_disks;
6470 struct md_rdev *rdev;
6471 struct disk_info *disk;
6472 char pers_name[6];
6473 int i;
6474 int group_cnt, worker_cnt_per_group;
6475 struct r5worker_group *new_group;
6476
6477 if (mddev->new_level != 5
6478 && mddev->new_level != 4
6479 && mddev->new_level != 6) {
6480 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6481 mdname(mddev), mddev->new_level);
6482 return ERR_PTR(-EIO);
6483 }
6484 if ((mddev->new_level == 5
6485 && !algorithm_valid_raid5(mddev->new_layout)) ||
6486 (mddev->new_level == 6
6487 && !algorithm_valid_raid6(mddev->new_layout))) {
6488 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6489 mdname(mddev), mddev->new_layout);
6490 return ERR_PTR(-EIO);
6491 }
6492 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6493 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6494 mdname(mddev), mddev->raid_disks);
6495 return ERR_PTR(-EINVAL);
6496 }
6497
6498 if (!mddev->new_chunk_sectors ||
6499 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6500 !is_power_of_2(mddev->new_chunk_sectors)) {
6501 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6502 mdname(mddev), mddev->new_chunk_sectors << 9);
6503 return ERR_PTR(-EINVAL);
6504 }
6505
6506 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6507 if (conf == NULL)
6508 goto abort;
6509 /* Don't enable multi-threading by default*/
6510 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6511 &new_group)) {
6512 conf->group_cnt = group_cnt;
6513 conf->worker_cnt_per_group = worker_cnt_per_group;
6514 conf->worker_groups = new_group;
6515 } else
6516 goto abort;
6517 spin_lock_init(&conf->device_lock);
6518 seqcount_init(&conf->gen_lock);
6519 mutex_init(&conf->cache_size_mutex);
6520 init_waitqueue_head(&conf->wait_for_quiescent);
6521 init_waitqueue_head(&conf->wait_for_stripe);
6522 init_waitqueue_head(&conf->wait_for_overlap);
6523 INIT_LIST_HEAD(&conf->handle_list);
6524 INIT_LIST_HEAD(&conf->hold_list);
6525 INIT_LIST_HEAD(&conf->delayed_list);
6526 INIT_LIST_HEAD(&conf->bitmap_list);
6527 bio_list_init(&conf->return_bi);
6528 init_llist_head(&conf->released_stripes);
6529 atomic_set(&conf->active_stripes, 0);
6530 atomic_set(&conf->preread_active_stripes, 0);
6531 atomic_set(&conf->active_aligned_reads, 0);
6532 conf->bypass_threshold = BYPASS_THRESHOLD;
6533 conf->recovery_disabled = mddev->recovery_disabled - 1;
6534
6535 conf->raid_disks = mddev->raid_disks;
6536 if (mddev->reshape_position == MaxSector)
6537 conf->previous_raid_disks = mddev->raid_disks;
6538 else
6539 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6540 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6541
6542 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6543 GFP_KERNEL);
6544 if (!conf->disks)
6545 goto abort;
6546
6547 conf->mddev = mddev;
6548
6549 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6550 goto abort;
6551
6552 /* We init hash_locks[0] separately to that it can be used
6553 * as the reference lock in the spin_lock_nest_lock() call
6554 * in lock_all_device_hash_locks_irq in order to convince
6555 * lockdep that we know what we are doing.
6556 */
6557 spin_lock_init(conf->hash_locks);
6558 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6559 spin_lock_init(conf->hash_locks + i);
6560
6561 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6562 INIT_LIST_HEAD(conf->inactive_list + i);
6563
6564 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6565 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6566
6567 conf->level = mddev->new_level;
6568 conf->chunk_sectors = mddev->new_chunk_sectors;
6569 if (raid5_alloc_percpu(conf) != 0)
6570 goto abort;
6571
6572 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6573
6574 rdev_for_each(rdev, mddev) {
6575 raid_disk = rdev->raid_disk;
6576 if (raid_disk >= max_disks
6577 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6578 continue;
6579 disk = conf->disks + raid_disk;
6580
6581 if (test_bit(Replacement, &rdev->flags)) {
6582 if (disk->replacement)
6583 goto abort;
6584 disk->replacement = rdev;
6585 } else {
6586 if (disk->rdev)
6587 goto abort;
6588 disk->rdev = rdev;
6589 }
6590
6591 if (test_bit(In_sync, &rdev->flags)) {
6592 char b[BDEVNAME_SIZE];
6593 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6594 " disk %d\n",
6595 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6596 } else if (rdev->saved_raid_disk != raid_disk)
6597 /* Cannot rely on bitmap to complete recovery */
6598 conf->fullsync = 1;
6599 }
6600
6601 conf->level = mddev->new_level;
6602 if (conf->level == 6) {
6603 conf->max_degraded = 2;
6604 if (raid6_call.xor_syndrome)
6605 conf->rmw_level = PARITY_ENABLE_RMW;
6606 else
6607 conf->rmw_level = PARITY_DISABLE_RMW;
6608 } else {
6609 conf->max_degraded = 1;
6610 conf->rmw_level = PARITY_ENABLE_RMW;
6611 }
6612 conf->algorithm = mddev->new_layout;
6613 conf->reshape_progress = mddev->reshape_position;
6614 if (conf->reshape_progress != MaxSector) {
6615 conf->prev_chunk_sectors = mddev->chunk_sectors;
6616 conf->prev_algo = mddev->layout;
6617 } else {
6618 conf->prev_chunk_sectors = conf->chunk_sectors;
6619 conf->prev_algo = conf->algorithm;
6620 }
6621
6622 conf->min_nr_stripes = NR_STRIPES;
6623 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6624 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6625 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6626 if (grow_stripes(conf, conf->min_nr_stripes)) {
6627 printk(KERN_ERR
6628 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6629 mdname(mddev), memory);
6630 goto abort;
6631 } else
6632 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6633 mdname(mddev), memory);
6634 /*
6635 * Losing a stripe head costs more than the time to refill it,
6636 * it reduces the queue depth and so can hurt throughput.
6637 * So set it rather large, scaled by number of devices.
6638 */
6639 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6640 conf->shrinker.scan_objects = raid5_cache_scan;
6641 conf->shrinker.count_objects = raid5_cache_count;
6642 conf->shrinker.batch = 128;
6643 conf->shrinker.flags = 0;
6644 register_shrinker(&conf->shrinker);
6645
6646 sprintf(pers_name, "raid%d", mddev->new_level);
6647 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6648 if (!conf->thread) {
6649 printk(KERN_ERR
6650 "md/raid:%s: couldn't allocate thread.\n",
6651 mdname(mddev));
6652 goto abort;
6653 }
6654
6655 return conf;
6656
6657 abort:
6658 if (conf) {
6659 free_conf(conf);
6660 return ERR_PTR(-EIO);
6661 } else
6662 return ERR_PTR(-ENOMEM);
6663 }
6664
6665 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6666 {
6667 switch (algo) {
6668 case ALGORITHM_PARITY_0:
6669 if (raid_disk < max_degraded)
6670 return 1;
6671 break;
6672 case ALGORITHM_PARITY_N:
6673 if (raid_disk >= raid_disks - max_degraded)
6674 return 1;
6675 break;
6676 case ALGORITHM_PARITY_0_6:
6677 if (raid_disk == 0 ||
6678 raid_disk == raid_disks - 1)
6679 return 1;
6680 break;
6681 case ALGORITHM_LEFT_ASYMMETRIC_6:
6682 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6683 case ALGORITHM_LEFT_SYMMETRIC_6:
6684 case ALGORITHM_RIGHT_SYMMETRIC_6:
6685 if (raid_disk == raid_disks - 1)
6686 return 1;
6687 }
6688 return 0;
6689 }
6690
6691 static int raid5_run(struct mddev *mddev)
6692 {
6693 struct r5conf *conf;
6694 int working_disks = 0;
6695 int dirty_parity_disks = 0;
6696 struct md_rdev *rdev;
6697 struct md_rdev *journal_dev = NULL;
6698 sector_t reshape_offset = 0;
6699 int i;
6700 long long min_offset_diff = 0;
6701 int first = 1;
6702
6703 if (mddev->recovery_cp != MaxSector)
6704 printk(KERN_NOTICE "md/raid:%s: not clean"
6705 " -- starting background reconstruction\n",
6706 mdname(mddev));
6707
6708 rdev_for_each(rdev, mddev) {
6709 long long diff;
6710
6711 if (test_bit(Journal, &rdev->flags)) {
6712 journal_dev = rdev;
6713 continue;
6714 }
6715 if (rdev->raid_disk < 0)
6716 continue;
6717 diff = (rdev->new_data_offset - rdev->data_offset);
6718 if (first) {
6719 min_offset_diff = diff;
6720 first = 0;
6721 } else if (mddev->reshape_backwards &&
6722 diff < min_offset_diff)
6723 min_offset_diff = diff;
6724 else if (!mddev->reshape_backwards &&
6725 diff > min_offset_diff)
6726 min_offset_diff = diff;
6727 }
6728
6729 if (mddev->reshape_position != MaxSector) {
6730 /* Check that we can continue the reshape.
6731 * Difficulties arise if the stripe we would write to
6732 * next is at or after the stripe we would read from next.
6733 * For a reshape that changes the number of devices, this
6734 * is only possible for a very short time, and mdadm makes
6735 * sure that time appears to have past before assembling
6736 * the array. So we fail if that time hasn't passed.
6737 * For a reshape that keeps the number of devices the same
6738 * mdadm must be monitoring the reshape can keeping the
6739 * critical areas read-only and backed up. It will start
6740 * the array in read-only mode, so we check for that.
6741 */
6742 sector_t here_new, here_old;
6743 int old_disks;
6744 int max_degraded = (mddev->level == 6 ? 2 : 1);
6745 int chunk_sectors;
6746 int new_data_disks;
6747
6748 if (journal_dev) {
6749 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6750 mdname(mddev));
6751 return -EINVAL;
6752 }
6753
6754 if (mddev->new_level != mddev->level) {
6755 printk(KERN_ERR "md/raid:%s: unsupported reshape "
6756 "required - aborting.\n",
6757 mdname(mddev));
6758 return -EINVAL;
6759 }
6760 old_disks = mddev->raid_disks - mddev->delta_disks;
6761 /* reshape_position must be on a new-stripe boundary, and one
6762 * further up in new geometry must map after here in old
6763 * geometry.
6764 * If the chunk sizes are different, then as we perform reshape
6765 * in units of the largest of the two, reshape_position needs
6766 * be a multiple of the largest chunk size times new data disks.
6767 */
6768 here_new = mddev->reshape_position;
6769 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6770 new_data_disks = mddev->raid_disks - max_degraded;
6771 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6772 printk(KERN_ERR "md/raid:%s: reshape_position not "
6773 "on a stripe boundary\n", mdname(mddev));
6774 return -EINVAL;
6775 }
6776 reshape_offset = here_new * chunk_sectors;
6777 /* here_new is the stripe we will write to */
6778 here_old = mddev->reshape_position;
6779 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6780 /* here_old is the first stripe that we might need to read
6781 * from */
6782 if (mddev->delta_disks == 0) {
6783 /* We cannot be sure it is safe to start an in-place
6784 * reshape. It is only safe if user-space is monitoring
6785 * and taking constant backups.
6786 * mdadm always starts a situation like this in
6787 * readonly mode so it can take control before
6788 * allowing any writes. So just check for that.
6789 */
6790 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6791 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6792 /* not really in-place - so OK */;
6793 else if (mddev->ro == 0) {
6794 printk(KERN_ERR "md/raid:%s: in-place reshape "
6795 "must be started in read-only mode "
6796 "- aborting\n",
6797 mdname(mddev));
6798 return -EINVAL;
6799 }
6800 } else if (mddev->reshape_backwards
6801 ? (here_new * chunk_sectors + min_offset_diff <=
6802 here_old * chunk_sectors)
6803 : (here_new * chunk_sectors >=
6804 here_old * chunk_sectors + (-min_offset_diff))) {
6805 /* Reading from the same stripe as writing to - bad */
6806 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6807 "auto-recovery - aborting.\n",
6808 mdname(mddev));
6809 return -EINVAL;
6810 }
6811 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6812 mdname(mddev));
6813 /* OK, we should be able to continue; */
6814 } else {
6815 BUG_ON(mddev->level != mddev->new_level);
6816 BUG_ON(mddev->layout != mddev->new_layout);
6817 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6818 BUG_ON(mddev->delta_disks != 0);
6819 }
6820
6821 if (mddev->private == NULL)
6822 conf = setup_conf(mddev);
6823 else
6824 conf = mddev->private;
6825
6826 if (IS_ERR(conf))
6827 return PTR_ERR(conf);
6828
6829 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6830 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6831 mdname(mddev));
6832 mddev->ro = 1;
6833 set_disk_ro(mddev->gendisk, 1);
6834 }
6835
6836 conf->min_offset_diff = min_offset_diff;
6837 mddev->thread = conf->thread;
6838 conf->thread = NULL;
6839 mddev->private = conf;
6840
6841 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6842 i++) {
6843 rdev = conf->disks[i].rdev;
6844 if (!rdev && conf->disks[i].replacement) {
6845 /* The replacement is all we have yet */
6846 rdev = conf->disks[i].replacement;
6847 conf->disks[i].replacement = NULL;
6848 clear_bit(Replacement, &rdev->flags);
6849 conf->disks[i].rdev = rdev;
6850 }
6851 if (!rdev)
6852 continue;
6853 if (conf->disks[i].replacement &&
6854 conf->reshape_progress != MaxSector) {
6855 /* replacements and reshape simply do not mix. */
6856 printk(KERN_ERR "md: cannot handle concurrent "
6857 "replacement and reshape.\n");
6858 goto abort;
6859 }
6860 if (test_bit(In_sync, &rdev->flags)) {
6861 working_disks++;
6862 continue;
6863 }
6864 /* This disc is not fully in-sync. However if it
6865 * just stored parity (beyond the recovery_offset),
6866 * when we don't need to be concerned about the
6867 * array being dirty.
6868 * When reshape goes 'backwards', we never have
6869 * partially completed devices, so we only need
6870 * to worry about reshape going forwards.
6871 */
6872 /* Hack because v0.91 doesn't store recovery_offset properly. */
6873 if (mddev->major_version == 0 &&
6874 mddev->minor_version > 90)
6875 rdev->recovery_offset = reshape_offset;
6876
6877 if (rdev->recovery_offset < reshape_offset) {
6878 /* We need to check old and new layout */
6879 if (!only_parity(rdev->raid_disk,
6880 conf->algorithm,
6881 conf->raid_disks,
6882 conf->max_degraded))
6883 continue;
6884 }
6885 if (!only_parity(rdev->raid_disk,
6886 conf->prev_algo,
6887 conf->previous_raid_disks,
6888 conf->max_degraded))
6889 continue;
6890 dirty_parity_disks++;
6891 }
6892
6893 /*
6894 * 0 for a fully functional array, 1 or 2 for a degraded array.
6895 */
6896 mddev->degraded = calc_degraded(conf);
6897
6898 if (has_failed(conf)) {
6899 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6900 " (%d/%d failed)\n",
6901 mdname(mddev), mddev->degraded, conf->raid_disks);
6902 goto abort;
6903 }
6904
6905 /* device size must be a multiple of chunk size */
6906 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6907 mddev->resync_max_sectors = mddev->dev_sectors;
6908
6909 if (mddev->degraded > dirty_parity_disks &&
6910 mddev->recovery_cp != MaxSector) {
6911 if (mddev->ok_start_degraded)
6912 printk(KERN_WARNING
6913 "md/raid:%s: starting dirty degraded array"
6914 " - data corruption possible.\n",
6915 mdname(mddev));
6916 else {
6917 printk(KERN_ERR
6918 "md/raid:%s: cannot start dirty degraded array.\n",
6919 mdname(mddev));
6920 goto abort;
6921 }
6922 }
6923
6924 if (mddev->degraded == 0)
6925 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6926 " devices, algorithm %d\n", mdname(mddev), conf->level,
6927 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6928 mddev->new_layout);
6929 else
6930 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6931 " out of %d devices, algorithm %d\n",
6932 mdname(mddev), conf->level,
6933 mddev->raid_disks - mddev->degraded,
6934 mddev->raid_disks, mddev->new_layout);
6935
6936 print_raid5_conf(conf);
6937
6938 if (conf->reshape_progress != MaxSector) {
6939 conf->reshape_safe = conf->reshape_progress;
6940 atomic_set(&conf->reshape_stripes, 0);
6941 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6942 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6943 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6944 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6945 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6946 "reshape");
6947 }
6948
6949 /* Ok, everything is just fine now */
6950 if (mddev->to_remove == &raid5_attrs_group)
6951 mddev->to_remove = NULL;
6952 else if (mddev->kobj.sd &&
6953 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6954 printk(KERN_WARNING
6955 "raid5: failed to create sysfs attributes for %s\n",
6956 mdname(mddev));
6957 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6958
6959 if (mddev->queue) {
6960 int chunk_size;
6961 bool discard_supported = true;
6962 /* read-ahead size must cover two whole stripes, which
6963 * is 2 * (datadisks) * chunksize where 'n' is the
6964 * number of raid devices
6965 */
6966 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6967 int stripe = data_disks *
6968 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6969 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6970 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6971
6972 chunk_size = mddev->chunk_sectors << 9;
6973 blk_queue_io_min(mddev->queue, chunk_size);
6974 blk_queue_io_opt(mddev->queue, chunk_size *
6975 (conf->raid_disks - conf->max_degraded));
6976 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6977 /*
6978 * We can only discard a whole stripe. It doesn't make sense to
6979 * discard data disk but write parity disk
6980 */
6981 stripe = stripe * PAGE_SIZE;
6982 /* Round up to power of 2, as discard handling
6983 * currently assumes that */
6984 while ((stripe-1) & stripe)
6985 stripe = (stripe | (stripe-1)) + 1;
6986 mddev->queue->limits.discard_alignment = stripe;
6987 mddev->queue->limits.discard_granularity = stripe;
6988 /*
6989 * unaligned part of discard request will be ignored, so can't
6990 * guarantee discard_zeroes_data
6991 */
6992 mddev->queue->limits.discard_zeroes_data = 0;
6993
6994 blk_queue_max_write_same_sectors(mddev->queue, 0);
6995
6996 rdev_for_each(rdev, mddev) {
6997 disk_stack_limits(mddev->gendisk, rdev->bdev,
6998 rdev->data_offset << 9);
6999 disk_stack_limits(mddev->gendisk, rdev->bdev,
7000 rdev->new_data_offset << 9);
7001 /*
7002 * discard_zeroes_data is required, otherwise data
7003 * could be lost. Consider a scenario: discard a stripe
7004 * (the stripe could be inconsistent if
7005 * discard_zeroes_data is 0); write one disk of the
7006 * stripe (the stripe could be inconsistent again
7007 * depending on which disks are used to calculate
7008 * parity); the disk is broken; The stripe data of this
7009 * disk is lost.
7010 */
7011 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7012 !bdev_get_queue(rdev->bdev)->
7013 limits.discard_zeroes_data)
7014 discard_supported = false;
7015 /* Unfortunately, discard_zeroes_data is not currently
7016 * a guarantee - just a hint. So we only allow DISCARD
7017 * if the sysadmin has confirmed that only safe devices
7018 * are in use by setting a module parameter.
7019 */
7020 if (!devices_handle_discard_safely) {
7021 if (discard_supported) {
7022 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7023 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7024 }
7025 discard_supported = false;
7026 }
7027 }
7028
7029 if (discard_supported &&
7030 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7031 mddev->queue->limits.discard_granularity >= stripe)
7032 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7033 mddev->queue);
7034 else
7035 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7036 mddev->queue);
7037 }
7038
7039 if (journal_dev) {
7040 char b[BDEVNAME_SIZE];
7041
7042 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7043 mdname(mddev), bdevname(journal_dev->bdev, b));
7044 r5l_init_log(conf, journal_dev);
7045 }
7046
7047 return 0;
7048 abort:
7049 md_unregister_thread(&mddev->thread);
7050 print_raid5_conf(conf);
7051 free_conf(conf);
7052 mddev->private = NULL;
7053 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7054 return -EIO;
7055 }
7056
7057 static void raid5_free(struct mddev *mddev, void *priv)
7058 {
7059 struct r5conf *conf = priv;
7060
7061 free_conf(conf);
7062 mddev->to_remove = &raid5_attrs_group;
7063 }
7064
7065 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7066 {
7067 struct r5conf *conf = mddev->private;
7068 int i;
7069
7070 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7071 conf->chunk_sectors / 2, mddev->layout);
7072 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7073 rcu_read_lock();
7074 for (i = 0; i < conf->raid_disks; i++) {
7075 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7076 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7077 }
7078 rcu_read_unlock();
7079 seq_printf (seq, "]");
7080 }
7081
7082 static void print_raid5_conf (struct r5conf *conf)
7083 {
7084 int i;
7085 struct disk_info *tmp;
7086
7087 printk(KERN_DEBUG "RAID conf printout:\n");
7088 if (!conf) {
7089 printk("(conf==NULL)\n");
7090 return;
7091 }
7092 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7093 conf->raid_disks,
7094 conf->raid_disks - conf->mddev->degraded);
7095
7096 for (i = 0; i < conf->raid_disks; i++) {
7097 char b[BDEVNAME_SIZE];
7098 tmp = conf->disks + i;
7099 if (tmp->rdev)
7100 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7101 i, !test_bit(Faulty, &tmp->rdev->flags),
7102 bdevname(tmp->rdev->bdev, b));
7103 }
7104 }
7105
7106 static int raid5_spare_active(struct mddev *mddev)
7107 {
7108 int i;
7109 struct r5conf *conf = mddev->private;
7110 struct disk_info *tmp;
7111 int count = 0;
7112 unsigned long flags;
7113
7114 for (i = 0; i < conf->raid_disks; i++) {
7115 tmp = conf->disks + i;
7116 if (tmp->replacement
7117 && tmp->replacement->recovery_offset == MaxSector
7118 && !test_bit(Faulty, &tmp->replacement->flags)
7119 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7120 /* Replacement has just become active. */
7121 if (!tmp->rdev
7122 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7123 count++;
7124 if (tmp->rdev) {
7125 /* Replaced device not technically faulty,
7126 * but we need to be sure it gets removed
7127 * and never re-added.
7128 */
7129 set_bit(Faulty, &tmp->rdev->flags);
7130 sysfs_notify_dirent_safe(
7131 tmp->rdev->sysfs_state);
7132 }
7133 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7134 } else if (tmp->rdev
7135 && tmp->rdev->recovery_offset == MaxSector
7136 && !test_bit(Faulty, &tmp->rdev->flags)
7137 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7138 count++;
7139 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7140 }
7141 }
7142 spin_lock_irqsave(&conf->device_lock, flags);
7143 mddev->degraded = calc_degraded(conf);
7144 spin_unlock_irqrestore(&conf->device_lock, flags);
7145 print_raid5_conf(conf);
7146 return count;
7147 }
7148
7149 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7150 {
7151 struct r5conf *conf = mddev->private;
7152 int err = 0;
7153 int number = rdev->raid_disk;
7154 struct md_rdev **rdevp;
7155 struct disk_info *p = conf->disks + number;
7156
7157 print_raid5_conf(conf);
7158 if (test_bit(Journal, &rdev->flags) && conf->log) {
7159 struct r5l_log *log;
7160 /*
7161 * we can't wait pending write here, as this is called in
7162 * raid5d, wait will deadlock.
7163 */
7164 if (atomic_read(&mddev->writes_pending))
7165 return -EBUSY;
7166 log = conf->log;
7167 conf->log = NULL;
7168 synchronize_rcu();
7169 r5l_exit_log(log);
7170 return 0;
7171 }
7172 if (rdev == p->rdev)
7173 rdevp = &p->rdev;
7174 else if (rdev == p->replacement)
7175 rdevp = &p->replacement;
7176 else
7177 return 0;
7178
7179 if (number >= conf->raid_disks &&
7180 conf->reshape_progress == MaxSector)
7181 clear_bit(In_sync, &rdev->flags);
7182
7183 if (test_bit(In_sync, &rdev->flags) ||
7184 atomic_read(&rdev->nr_pending)) {
7185 err = -EBUSY;
7186 goto abort;
7187 }
7188 /* Only remove non-faulty devices if recovery
7189 * isn't possible.
7190 */
7191 if (!test_bit(Faulty, &rdev->flags) &&
7192 mddev->recovery_disabled != conf->recovery_disabled &&
7193 !has_failed(conf) &&
7194 (!p->replacement || p->replacement == rdev) &&
7195 number < conf->raid_disks) {
7196 err = -EBUSY;
7197 goto abort;
7198 }
7199 *rdevp = NULL;
7200 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7201 synchronize_rcu();
7202 if (atomic_read(&rdev->nr_pending)) {
7203 /* lost the race, try later */
7204 err = -EBUSY;
7205 *rdevp = rdev;
7206 }
7207 }
7208 if (p->replacement) {
7209 /* We must have just cleared 'rdev' */
7210 p->rdev = p->replacement;
7211 clear_bit(Replacement, &p->replacement->flags);
7212 smp_mb(); /* Make sure other CPUs may see both as identical
7213 * but will never see neither - if they are careful
7214 */
7215 p->replacement = NULL;
7216 clear_bit(WantReplacement, &rdev->flags);
7217 } else
7218 /* We might have just removed the Replacement as faulty-
7219 * clear the bit just in case
7220 */
7221 clear_bit(WantReplacement, &rdev->flags);
7222 abort:
7223
7224 print_raid5_conf(conf);
7225 return err;
7226 }
7227
7228 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7229 {
7230 struct r5conf *conf = mddev->private;
7231 int err = -EEXIST;
7232 int disk;
7233 struct disk_info *p;
7234 int first = 0;
7235 int last = conf->raid_disks - 1;
7236
7237 if (test_bit(Journal, &rdev->flags)) {
7238 char b[BDEVNAME_SIZE];
7239 if (conf->log)
7240 return -EBUSY;
7241
7242 rdev->raid_disk = 0;
7243 /*
7244 * The array is in readonly mode if journal is missing, so no
7245 * write requests running. We should be safe
7246 */
7247 r5l_init_log(conf, rdev);
7248 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7249 mdname(mddev), bdevname(rdev->bdev, b));
7250 return 0;
7251 }
7252 if (mddev->recovery_disabled == conf->recovery_disabled)
7253 return -EBUSY;
7254
7255 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7256 /* no point adding a device */
7257 return -EINVAL;
7258
7259 if (rdev->raid_disk >= 0)
7260 first = last = rdev->raid_disk;
7261
7262 /*
7263 * find the disk ... but prefer rdev->saved_raid_disk
7264 * if possible.
7265 */
7266 if (rdev->saved_raid_disk >= 0 &&
7267 rdev->saved_raid_disk >= first &&
7268 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7269 first = rdev->saved_raid_disk;
7270
7271 for (disk = first; disk <= last; disk++) {
7272 p = conf->disks + disk;
7273 if (p->rdev == NULL) {
7274 clear_bit(In_sync, &rdev->flags);
7275 rdev->raid_disk = disk;
7276 err = 0;
7277 if (rdev->saved_raid_disk != disk)
7278 conf->fullsync = 1;
7279 rcu_assign_pointer(p->rdev, rdev);
7280 goto out;
7281 }
7282 }
7283 for (disk = first; disk <= last; disk++) {
7284 p = conf->disks + disk;
7285 if (test_bit(WantReplacement, &p->rdev->flags) &&
7286 p->replacement == NULL) {
7287 clear_bit(In_sync, &rdev->flags);
7288 set_bit(Replacement, &rdev->flags);
7289 rdev->raid_disk = disk;
7290 err = 0;
7291 conf->fullsync = 1;
7292 rcu_assign_pointer(p->replacement, rdev);
7293 break;
7294 }
7295 }
7296 out:
7297 print_raid5_conf(conf);
7298 return err;
7299 }
7300
7301 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7302 {
7303 /* no resync is happening, and there is enough space
7304 * on all devices, so we can resize.
7305 * We need to make sure resync covers any new space.
7306 * If the array is shrinking we should possibly wait until
7307 * any io in the removed space completes, but it hardly seems
7308 * worth it.
7309 */
7310 sector_t newsize;
7311 struct r5conf *conf = mddev->private;
7312
7313 if (conf->log)
7314 return -EINVAL;
7315 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7316 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7317 if (mddev->external_size &&
7318 mddev->array_sectors > newsize)
7319 return -EINVAL;
7320 if (mddev->bitmap) {
7321 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7322 if (ret)
7323 return ret;
7324 }
7325 md_set_array_sectors(mddev, newsize);
7326 set_capacity(mddev->gendisk, mddev->array_sectors);
7327 revalidate_disk(mddev->gendisk);
7328 if (sectors > mddev->dev_sectors &&
7329 mddev->recovery_cp > mddev->dev_sectors) {
7330 mddev->recovery_cp = mddev->dev_sectors;
7331 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7332 }
7333 mddev->dev_sectors = sectors;
7334 mddev->resync_max_sectors = sectors;
7335 return 0;
7336 }
7337
7338 static int check_stripe_cache(struct mddev *mddev)
7339 {
7340 /* Can only proceed if there are plenty of stripe_heads.
7341 * We need a minimum of one full stripe,, and for sensible progress
7342 * it is best to have about 4 times that.
7343 * If we require 4 times, then the default 256 4K stripe_heads will
7344 * allow for chunk sizes up to 256K, which is probably OK.
7345 * If the chunk size is greater, user-space should request more
7346 * stripe_heads first.
7347 */
7348 struct r5conf *conf = mddev->private;
7349 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7350 > conf->min_nr_stripes ||
7351 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7352 > conf->min_nr_stripes) {
7353 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7354 mdname(mddev),
7355 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7356 / STRIPE_SIZE)*4);
7357 return 0;
7358 }
7359 return 1;
7360 }
7361
7362 static int check_reshape(struct mddev *mddev)
7363 {
7364 struct r5conf *conf = mddev->private;
7365
7366 if (conf->log)
7367 return -EINVAL;
7368 if (mddev->delta_disks == 0 &&
7369 mddev->new_layout == mddev->layout &&
7370 mddev->new_chunk_sectors == mddev->chunk_sectors)
7371 return 0; /* nothing to do */
7372 if (has_failed(conf))
7373 return -EINVAL;
7374 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7375 /* We might be able to shrink, but the devices must
7376 * be made bigger first.
7377 * For raid6, 4 is the minimum size.
7378 * Otherwise 2 is the minimum
7379 */
7380 int min = 2;
7381 if (mddev->level == 6)
7382 min = 4;
7383 if (mddev->raid_disks + mddev->delta_disks < min)
7384 return -EINVAL;
7385 }
7386
7387 if (!check_stripe_cache(mddev))
7388 return -ENOSPC;
7389
7390 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7391 mddev->delta_disks > 0)
7392 if (resize_chunks(conf,
7393 conf->previous_raid_disks
7394 + max(0, mddev->delta_disks),
7395 max(mddev->new_chunk_sectors,
7396 mddev->chunk_sectors)
7397 ) < 0)
7398 return -ENOMEM;
7399 return resize_stripes(conf, (conf->previous_raid_disks
7400 + mddev->delta_disks));
7401 }
7402
7403 static int raid5_start_reshape(struct mddev *mddev)
7404 {
7405 struct r5conf *conf = mddev->private;
7406 struct md_rdev *rdev;
7407 int spares = 0;
7408 unsigned long flags;
7409
7410 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7411 return -EBUSY;
7412
7413 if (!check_stripe_cache(mddev))
7414 return -ENOSPC;
7415
7416 if (has_failed(conf))
7417 return -EINVAL;
7418
7419 rdev_for_each(rdev, mddev) {
7420 if (!test_bit(In_sync, &rdev->flags)
7421 && !test_bit(Faulty, &rdev->flags))
7422 spares++;
7423 }
7424
7425 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7426 /* Not enough devices even to make a degraded array
7427 * of that size
7428 */
7429 return -EINVAL;
7430
7431 /* Refuse to reduce size of the array. Any reductions in
7432 * array size must be through explicit setting of array_size
7433 * attribute.
7434 */
7435 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7436 < mddev->array_sectors) {
7437 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7438 "before number of disks\n", mdname(mddev));
7439 return -EINVAL;
7440 }
7441
7442 atomic_set(&conf->reshape_stripes, 0);
7443 spin_lock_irq(&conf->device_lock);
7444 write_seqcount_begin(&conf->gen_lock);
7445 conf->previous_raid_disks = conf->raid_disks;
7446 conf->raid_disks += mddev->delta_disks;
7447 conf->prev_chunk_sectors = conf->chunk_sectors;
7448 conf->chunk_sectors = mddev->new_chunk_sectors;
7449 conf->prev_algo = conf->algorithm;
7450 conf->algorithm = mddev->new_layout;
7451 conf->generation++;
7452 /* Code that selects data_offset needs to see the generation update
7453 * if reshape_progress has been set - so a memory barrier needed.
7454 */
7455 smp_mb();
7456 if (mddev->reshape_backwards)
7457 conf->reshape_progress = raid5_size(mddev, 0, 0);
7458 else
7459 conf->reshape_progress = 0;
7460 conf->reshape_safe = conf->reshape_progress;
7461 write_seqcount_end(&conf->gen_lock);
7462 spin_unlock_irq(&conf->device_lock);
7463
7464 /* Now make sure any requests that proceeded on the assumption
7465 * the reshape wasn't running - like Discard or Read - have
7466 * completed.
7467 */
7468 mddev_suspend(mddev);
7469 mddev_resume(mddev);
7470
7471 /* Add some new drives, as many as will fit.
7472 * We know there are enough to make the newly sized array work.
7473 * Don't add devices if we are reducing the number of
7474 * devices in the array. This is because it is not possible
7475 * to correctly record the "partially reconstructed" state of
7476 * such devices during the reshape and confusion could result.
7477 */
7478 if (mddev->delta_disks >= 0) {
7479 rdev_for_each(rdev, mddev)
7480 if (rdev->raid_disk < 0 &&
7481 !test_bit(Faulty, &rdev->flags)) {
7482 if (raid5_add_disk(mddev, rdev) == 0) {
7483 if (rdev->raid_disk
7484 >= conf->previous_raid_disks)
7485 set_bit(In_sync, &rdev->flags);
7486 else
7487 rdev->recovery_offset = 0;
7488
7489 if (sysfs_link_rdev(mddev, rdev))
7490 /* Failure here is OK */;
7491 }
7492 } else if (rdev->raid_disk >= conf->previous_raid_disks
7493 && !test_bit(Faulty, &rdev->flags)) {
7494 /* This is a spare that was manually added */
7495 set_bit(In_sync, &rdev->flags);
7496 }
7497
7498 /* When a reshape changes the number of devices,
7499 * ->degraded is measured against the larger of the
7500 * pre and post number of devices.
7501 */
7502 spin_lock_irqsave(&conf->device_lock, flags);
7503 mddev->degraded = calc_degraded(conf);
7504 spin_unlock_irqrestore(&conf->device_lock, flags);
7505 }
7506 mddev->raid_disks = conf->raid_disks;
7507 mddev->reshape_position = conf->reshape_progress;
7508 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7509
7510 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7511 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7512 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7513 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7514 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7515 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7516 "reshape");
7517 if (!mddev->sync_thread) {
7518 mddev->recovery = 0;
7519 spin_lock_irq(&conf->device_lock);
7520 write_seqcount_begin(&conf->gen_lock);
7521 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7522 mddev->new_chunk_sectors =
7523 conf->chunk_sectors = conf->prev_chunk_sectors;
7524 mddev->new_layout = conf->algorithm = conf->prev_algo;
7525 rdev_for_each(rdev, mddev)
7526 rdev->new_data_offset = rdev->data_offset;
7527 smp_wmb();
7528 conf->generation --;
7529 conf->reshape_progress = MaxSector;
7530 mddev->reshape_position = MaxSector;
7531 write_seqcount_end(&conf->gen_lock);
7532 spin_unlock_irq(&conf->device_lock);
7533 return -EAGAIN;
7534 }
7535 conf->reshape_checkpoint = jiffies;
7536 md_wakeup_thread(mddev->sync_thread);
7537 md_new_event(mddev);
7538 return 0;
7539 }
7540
7541 /* This is called from the reshape thread and should make any
7542 * changes needed in 'conf'
7543 */
7544 static void end_reshape(struct r5conf *conf)
7545 {
7546
7547 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7548 struct md_rdev *rdev;
7549
7550 spin_lock_irq(&conf->device_lock);
7551 conf->previous_raid_disks = conf->raid_disks;
7552 rdev_for_each(rdev, conf->mddev)
7553 rdev->data_offset = rdev->new_data_offset;
7554 smp_wmb();
7555 conf->reshape_progress = MaxSector;
7556 conf->mddev->reshape_position = MaxSector;
7557 spin_unlock_irq(&conf->device_lock);
7558 wake_up(&conf->wait_for_overlap);
7559
7560 /* read-ahead size must cover two whole stripes, which is
7561 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7562 */
7563 if (conf->mddev->queue) {
7564 int data_disks = conf->raid_disks - conf->max_degraded;
7565 int stripe = data_disks * ((conf->chunk_sectors << 9)
7566 / PAGE_SIZE);
7567 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7568 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7569 }
7570 }
7571 }
7572
7573 /* This is called from the raid5d thread with mddev_lock held.
7574 * It makes config changes to the device.
7575 */
7576 static void raid5_finish_reshape(struct mddev *mddev)
7577 {
7578 struct r5conf *conf = mddev->private;
7579
7580 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7581
7582 if (mddev->delta_disks > 0) {
7583 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7584 if (mddev->queue) {
7585 set_capacity(mddev->gendisk, mddev->array_sectors);
7586 revalidate_disk(mddev->gendisk);
7587 }
7588 } else {
7589 int d;
7590 spin_lock_irq(&conf->device_lock);
7591 mddev->degraded = calc_degraded(conf);
7592 spin_unlock_irq(&conf->device_lock);
7593 for (d = conf->raid_disks ;
7594 d < conf->raid_disks - mddev->delta_disks;
7595 d++) {
7596 struct md_rdev *rdev = conf->disks[d].rdev;
7597 if (rdev)
7598 clear_bit(In_sync, &rdev->flags);
7599 rdev = conf->disks[d].replacement;
7600 if (rdev)
7601 clear_bit(In_sync, &rdev->flags);
7602 }
7603 }
7604 mddev->layout = conf->algorithm;
7605 mddev->chunk_sectors = conf->chunk_sectors;
7606 mddev->reshape_position = MaxSector;
7607 mddev->delta_disks = 0;
7608 mddev->reshape_backwards = 0;
7609 }
7610 }
7611
7612 static void raid5_quiesce(struct mddev *mddev, int state)
7613 {
7614 struct r5conf *conf = mddev->private;
7615
7616 switch(state) {
7617 case 2: /* resume for a suspend */
7618 wake_up(&conf->wait_for_overlap);
7619 break;
7620
7621 case 1: /* stop all writes */
7622 lock_all_device_hash_locks_irq(conf);
7623 /* '2' tells resync/reshape to pause so that all
7624 * active stripes can drain
7625 */
7626 conf->quiesce = 2;
7627 wait_event_cmd(conf->wait_for_quiescent,
7628 atomic_read(&conf->active_stripes) == 0 &&
7629 atomic_read(&conf->active_aligned_reads) == 0,
7630 unlock_all_device_hash_locks_irq(conf),
7631 lock_all_device_hash_locks_irq(conf));
7632 conf->quiesce = 1;
7633 unlock_all_device_hash_locks_irq(conf);
7634 /* allow reshape to continue */
7635 wake_up(&conf->wait_for_overlap);
7636 break;
7637
7638 case 0: /* re-enable writes */
7639 lock_all_device_hash_locks_irq(conf);
7640 conf->quiesce = 0;
7641 wake_up(&conf->wait_for_quiescent);
7642 wake_up(&conf->wait_for_overlap);
7643 unlock_all_device_hash_locks_irq(conf);
7644 break;
7645 }
7646 r5l_quiesce(conf->log, state);
7647 }
7648
7649 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7650 {
7651 struct r0conf *raid0_conf = mddev->private;
7652 sector_t sectors;
7653
7654 /* for raid0 takeover only one zone is supported */
7655 if (raid0_conf->nr_strip_zones > 1) {
7656 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7657 mdname(mddev));
7658 return ERR_PTR(-EINVAL);
7659 }
7660
7661 sectors = raid0_conf->strip_zone[0].zone_end;
7662 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7663 mddev->dev_sectors = sectors;
7664 mddev->new_level = level;
7665 mddev->new_layout = ALGORITHM_PARITY_N;
7666 mddev->new_chunk_sectors = mddev->chunk_sectors;
7667 mddev->raid_disks += 1;
7668 mddev->delta_disks = 1;
7669 /* make sure it will be not marked as dirty */
7670 mddev->recovery_cp = MaxSector;
7671
7672 return setup_conf(mddev);
7673 }
7674
7675 static void *raid5_takeover_raid1(struct mddev *mddev)
7676 {
7677 int chunksect;
7678
7679 if (mddev->raid_disks != 2 ||
7680 mddev->degraded > 1)
7681 return ERR_PTR(-EINVAL);
7682
7683 /* Should check if there are write-behind devices? */
7684
7685 chunksect = 64*2; /* 64K by default */
7686
7687 /* The array must be an exact multiple of chunksize */
7688 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7689 chunksect >>= 1;
7690
7691 if ((chunksect<<9) < STRIPE_SIZE)
7692 /* array size does not allow a suitable chunk size */
7693 return ERR_PTR(-EINVAL);
7694
7695 mddev->new_level = 5;
7696 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7697 mddev->new_chunk_sectors = chunksect;
7698
7699 return setup_conf(mddev);
7700 }
7701
7702 static void *raid5_takeover_raid6(struct mddev *mddev)
7703 {
7704 int new_layout;
7705
7706 switch (mddev->layout) {
7707 case ALGORITHM_LEFT_ASYMMETRIC_6:
7708 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7709 break;
7710 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7711 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7712 break;
7713 case ALGORITHM_LEFT_SYMMETRIC_6:
7714 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7715 break;
7716 case ALGORITHM_RIGHT_SYMMETRIC_6:
7717 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7718 break;
7719 case ALGORITHM_PARITY_0_6:
7720 new_layout = ALGORITHM_PARITY_0;
7721 break;
7722 case ALGORITHM_PARITY_N:
7723 new_layout = ALGORITHM_PARITY_N;
7724 break;
7725 default:
7726 return ERR_PTR(-EINVAL);
7727 }
7728 mddev->new_level = 5;
7729 mddev->new_layout = new_layout;
7730 mddev->delta_disks = -1;
7731 mddev->raid_disks -= 1;
7732 return setup_conf(mddev);
7733 }
7734
7735 static int raid5_check_reshape(struct mddev *mddev)
7736 {
7737 /* For a 2-drive array, the layout and chunk size can be changed
7738 * immediately as not restriping is needed.
7739 * For larger arrays we record the new value - after validation
7740 * to be used by a reshape pass.
7741 */
7742 struct r5conf *conf = mddev->private;
7743 int new_chunk = mddev->new_chunk_sectors;
7744
7745 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7746 return -EINVAL;
7747 if (new_chunk > 0) {
7748 if (!is_power_of_2(new_chunk))
7749 return -EINVAL;
7750 if (new_chunk < (PAGE_SIZE>>9))
7751 return -EINVAL;
7752 if (mddev->array_sectors & (new_chunk-1))
7753 /* not factor of array size */
7754 return -EINVAL;
7755 }
7756
7757 /* They look valid */
7758
7759 if (mddev->raid_disks == 2) {
7760 /* can make the change immediately */
7761 if (mddev->new_layout >= 0) {
7762 conf->algorithm = mddev->new_layout;
7763 mddev->layout = mddev->new_layout;
7764 }
7765 if (new_chunk > 0) {
7766 conf->chunk_sectors = new_chunk ;
7767 mddev->chunk_sectors = new_chunk;
7768 }
7769 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7770 md_wakeup_thread(mddev->thread);
7771 }
7772 return check_reshape(mddev);
7773 }
7774
7775 static int raid6_check_reshape(struct mddev *mddev)
7776 {
7777 int new_chunk = mddev->new_chunk_sectors;
7778
7779 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7780 return -EINVAL;
7781 if (new_chunk > 0) {
7782 if (!is_power_of_2(new_chunk))
7783 return -EINVAL;
7784 if (new_chunk < (PAGE_SIZE >> 9))
7785 return -EINVAL;
7786 if (mddev->array_sectors & (new_chunk-1))
7787 /* not factor of array size */
7788 return -EINVAL;
7789 }
7790
7791 /* They look valid */
7792 return check_reshape(mddev);
7793 }
7794
7795 static void *raid5_takeover(struct mddev *mddev)
7796 {
7797 /* raid5 can take over:
7798 * raid0 - if there is only one strip zone - make it a raid4 layout
7799 * raid1 - if there are two drives. We need to know the chunk size
7800 * raid4 - trivial - just use a raid4 layout.
7801 * raid6 - Providing it is a *_6 layout
7802 */
7803 if (mddev->level == 0)
7804 return raid45_takeover_raid0(mddev, 5);
7805 if (mddev->level == 1)
7806 return raid5_takeover_raid1(mddev);
7807 if (mddev->level == 4) {
7808 mddev->new_layout = ALGORITHM_PARITY_N;
7809 mddev->new_level = 5;
7810 return setup_conf(mddev);
7811 }
7812 if (mddev->level == 6)
7813 return raid5_takeover_raid6(mddev);
7814
7815 return ERR_PTR(-EINVAL);
7816 }
7817
7818 static void *raid4_takeover(struct mddev *mddev)
7819 {
7820 /* raid4 can take over:
7821 * raid0 - if there is only one strip zone
7822 * raid5 - if layout is right
7823 */
7824 if (mddev->level == 0)
7825 return raid45_takeover_raid0(mddev, 4);
7826 if (mddev->level == 5 &&
7827 mddev->layout == ALGORITHM_PARITY_N) {
7828 mddev->new_layout = 0;
7829 mddev->new_level = 4;
7830 return setup_conf(mddev);
7831 }
7832 return ERR_PTR(-EINVAL);
7833 }
7834
7835 static struct md_personality raid5_personality;
7836
7837 static void *raid6_takeover(struct mddev *mddev)
7838 {
7839 /* Currently can only take over a raid5. We map the
7840 * personality to an equivalent raid6 personality
7841 * with the Q block at the end.
7842 */
7843 int new_layout;
7844
7845 if (mddev->pers != &raid5_personality)
7846 return ERR_PTR(-EINVAL);
7847 if (mddev->degraded > 1)
7848 return ERR_PTR(-EINVAL);
7849 if (mddev->raid_disks > 253)
7850 return ERR_PTR(-EINVAL);
7851 if (mddev->raid_disks < 3)
7852 return ERR_PTR(-EINVAL);
7853
7854 switch (mddev->layout) {
7855 case ALGORITHM_LEFT_ASYMMETRIC:
7856 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7857 break;
7858 case ALGORITHM_RIGHT_ASYMMETRIC:
7859 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7860 break;
7861 case ALGORITHM_LEFT_SYMMETRIC:
7862 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7863 break;
7864 case ALGORITHM_RIGHT_SYMMETRIC:
7865 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7866 break;
7867 case ALGORITHM_PARITY_0:
7868 new_layout = ALGORITHM_PARITY_0_6;
7869 break;
7870 case ALGORITHM_PARITY_N:
7871 new_layout = ALGORITHM_PARITY_N;
7872 break;
7873 default:
7874 return ERR_PTR(-EINVAL);
7875 }
7876 mddev->new_level = 6;
7877 mddev->new_layout = new_layout;
7878 mddev->delta_disks = 1;
7879 mddev->raid_disks += 1;
7880 return setup_conf(mddev);
7881 }
7882
7883 static struct md_personality raid6_personality =
7884 {
7885 .name = "raid6",
7886 .level = 6,
7887 .owner = THIS_MODULE,
7888 .make_request = raid5_make_request,
7889 .run = raid5_run,
7890 .free = raid5_free,
7891 .status = raid5_status,
7892 .error_handler = raid5_error,
7893 .hot_add_disk = raid5_add_disk,
7894 .hot_remove_disk= raid5_remove_disk,
7895 .spare_active = raid5_spare_active,
7896 .sync_request = raid5_sync_request,
7897 .resize = raid5_resize,
7898 .size = raid5_size,
7899 .check_reshape = raid6_check_reshape,
7900 .start_reshape = raid5_start_reshape,
7901 .finish_reshape = raid5_finish_reshape,
7902 .quiesce = raid5_quiesce,
7903 .takeover = raid6_takeover,
7904 .congested = raid5_congested,
7905 };
7906 static struct md_personality raid5_personality =
7907 {
7908 .name = "raid5",
7909 .level = 5,
7910 .owner = THIS_MODULE,
7911 .make_request = raid5_make_request,
7912 .run = raid5_run,
7913 .free = raid5_free,
7914 .status = raid5_status,
7915 .error_handler = raid5_error,
7916 .hot_add_disk = raid5_add_disk,
7917 .hot_remove_disk= raid5_remove_disk,
7918 .spare_active = raid5_spare_active,
7919 .sync_request = raid5_sync_request,
7920 .resize = raid5_resize,
7921 .size = raid5_size,
7922 .check_reshape = raid5_check_reshape,
7923 .start_reshape = raid5_start_reshape,
7924 .finish_reshape = raid5_finish_reshape,
7925 .quiesce = raid5_quiesce,
7926 .takeover = raid5_takeover,
7927 .congested = raid5_congested,
7928 };
7929
7930 static struct md_personality raid4_personality =
7931 {
7932 .name = "raid4",
7933 .level = 4,
7934 .owner = THIS_MODULE,
7935 .make_request = raid5_make_request,
7936 .run = raid5_run,
7937 .free = raid5_free,
7938 .status = raid5_status,
7939 .error_handler = raid5_error,
7940 .hot_add_disk = raid5_add_disk,
7941 .hot_remove_disk= raid5_remove_disk,
7942 .spare_active = raid5_spare_active,
7943 .sync_request = raid5_sync_request,
7944 .resize = raid5_resize,
7945 .size = raid5_size,
7946 .check_reshape = raid5_check_reshape,
7947 .start_reshape = raid5_start_reshape,
7948 .finish_reshape = raid5_finish_reshape,
7949 .quiesce = raid5_quiesce,
7950 .takeover = raid4_takeover,
7951 .congested = raid5_congested,
7952 };
7953
7954 static int __init raid5_init(void)
7955 {
7956 raid5_wq = alloc_workqueue("raid5wq",
7957 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7958 if (!raid5_wq)
7959 return -ENOMEM;
7960 register_md_personality(&raid6_personality);
7961 register_md_personality(&raid5_personality);
7962 register_md_personality(&raid4_personality);
7963 return 0;
7964 }
7965
7966 static void raid5_exit(void)
7967 {
7968 unregister_md_personality(&raid6_personality);
7969 unregister_md_personality(&raid5_personality);
7970 unregister_md_personality(&raid4_personality);
7971 destroy_workqueue(raid5_wq);
7972 }
7973
7974 module_init(raid5_init);
7975 module_exit(raid5_exit);
7976 MODULE_LICENSE("GPL");
7977 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7978 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7979 MODULE_ALIAS("md-raid5");
7980 MODULE_ALIAS("md-raid4");
7981 MODULE_ALIAS("md-level-5");
7982 MODULE_ALIAS("md-level-4");
7983 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7984 MODULE_ALIAS("md-raid6");
7985 MODULE_ALIAS("md-level-6");
7986
7987 /* This used to be two separate modules, they were: */
7988 MODULE_ALIAS("raid5");
7989 MODULE_ALIAS("raid6");