]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid5.c
powerpc: sys_pkey_alloc() and sys_pkey_free() system calls
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58
59 #include <trace/events/block.h>
60 #include <linux/list_sort.h>
61
62 #include "md.h"
63 #include "raid5.h"
64 #include "raid0.h"
65 #include "md-bitmap.h"
66 #include "raid5-log.h"
67
68 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
69
70 #define cpu_to_group(cpu) cpu_to_node(cpu)
71 #define ANY_GROUP NUMA_NO_NODE
72
73 static bool devices_handle_discard_safely = false;
74 module_param(devices_handle_discard_safely, bool, 0644);
75 MODULE_PARM_DESC(devices_handle_discard_safely,
76 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
77 static struct workqueue_struct *raid5_wq;
78
79 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
80 {
81 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
82 return &conf->stripe_hashtbl[hash];
83 }
84
85 static inline int stripe_hash_locks_hash(sector_t sect)
86 {
87 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
88 }
89
90 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
91 {
92 spin_lock_irq(conf->hash_locks + hash);
93 spin_lock(&conf->device_lock);
94 }
95
96 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
97 {
98 spin_unlock(&conf->device_lock);
99 spin_unlock_irq(conf->hash_locks + hash);
100 }
101
102 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104 int i;
105 spin_lock_irq(conf->hash_locks);
106 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 spin_lock(&conf->device_lock);
109 }
110
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
112 {
113 int i;
114 spin_unlock(&conf->device_lock);
115 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
116 spin_unlock(conf->hash_locks + i);
117 spin_unlock_irq(conf->hash_locks);
118 }
119
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head *sh)
122 {
123 if (sh->ddf_layout)
124 /* ddf always start from first device */
125 return 0;
126 /* md starts just after Q block */
127 if (sh->qd_idx == sh->disks - 1)
128 return 0;
129 else
130 return sh->qd_idx + 1;
131 }
132 static inline int raid6_next_disk(int disk, int raid_disks)
133 {
134 disk++;
135 return (disk < raid_disks) ? disk : 0;
136 }
137
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139 * We need to map each disk to a 'slot', where the data disks are slot
140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141 * is raid_disks-1. This help does that mapping.
142 */
143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 int *count, int syndrome_disks)
145 {
146 int slot = *count;
147
148 if (sh->ddf_layout)
149 (*count)++;
150 if (idx == sh->pd_idx)
151 return syndrome_disks;
152 if (idx == sh->qd_idx)
153 return syndrome_disks + 1;
154 if (!sh->ddf_layout)
155 (*count)++;
156 return slot;
157 }
158
159 static void print_raid5_conf (struct r5conf *conf);
160
161 static int stripe_operations_active(struct stripe_head *sh)
162 {
163 return sh->check_state || sh->reconstruct_state ||
164 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
165 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
166 }
167
168 static bool stripe_is_lowprio(struct stripe_head *sh)
169 {
170 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
171 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
172 !test_bit(STRIPE_R5C_CACHING, &sh->state);
173 }
174
175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
176 {
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
179 int thread_cnt;
180 int i, cpu = sh->cpu;
181
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
184 sh->cpu = cpu;
185 }
186
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
190 if (stripe_is_lowprio(sh))
191 list_add_tail(&sh->lru, &group->loprio_list);
192 else
193 list_add_tail(&sh->lru, &group->handle_list);
194 group->stripes_cnt++;
195 sh->group = group;
196 }
197
198 if (conf->worker_cnt_per_group == 0) {
199 md_wakeup_thread(conf->mddev->thread);
200 return;
201 }
202
203 group = conf->worker_groups + cpu_to_group(sh->cpu);
204
205 group->workers[0].working = true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208
209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 /* wakeup more workers */
211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 if (group->workers[i].working == false) {
213 group->workers[i].working = true;
214 queue_work_on(sh->cpu, raid5_wq,
215 &group->workers[i].work);
216 thread_cnt--;
217 }
218 }
219 }
220
221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 struct list_head *temp_inactive_list)
223 {
224 int i;
225 int injournal = 0; /* number of date pages with R5_InJournal */
226
227 BUG_ON(!list_empty(&sh->lru));
228 BUG_ON(atomic_read(&conf->active_stripes)==0);
229
230 if (r5c_is_writeback(conf->log))
231 for (i = sh->disks; i--; )
232 if (test_bit(R5_InJournal, &sh->dev[i].flags))
233 injournal++;
234 /*
235 * In the following cases, the stripe cannot be released to cached
236 * lists. Therefore, we make the stripe write out and set
237 * STRIPE_HANDLE:
238 * 1. when quiesce in r5c write back;
239 * 2. when resync is requested fot the stripe.
240 */
241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
242 (conf->quiesce && r5c_is_writeback(conf->log) &&
243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
244 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
245 r5c_make_stripe_write_out(sh);
246 set_bit(STRIPE_HANDLE, &sh->state);
247 }
248
249 if (test_bit(STRIPE_HANDLE, &sh->state)) {
250 if (test_bit(STRIPE_DELAYED, &sh->state) &&
251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
252 list_add_tail(&sh->lru, &conf->delayed_list);
253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
254 sh->bm_seq - conf->seq_write > 0)
255 list_add_tail(&sh->lru, &conf->bitmap_list);
256 else {
257 clear_bit(STRIPE_DELAYED, &sh->state);
258 clear_bit(STRIPE_BIT_DELAY, &sh->state);
259 if (conf->worker_cnt_per_group == 0) {
260 if (stripe_is_lowprio(sh))
261 list_add_tail(&sh->lru,
262 &conf->loprio_list);
263 else
264 list_add_tail(&sh->lru,
265 &conf->handle_list);
266 } else {
267 raid5_wakeup_stripe_thread(sh);
268 return;
269 }
270 }
271 md_wakeup_thread(conf->mddev->thread);
272 } else {
273 BUG_ON(stripe_operations_active(sh));
274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
275 if (atomic_dec_return(&conf->preread_active_stripes)
276 < IO_THRESHOLD)
277 md_wakeup_thread(conf->mddev->thread);
278 atomic_dec(&conf->active_stripes);
279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
280 if (!r5c_is_writeback(conf->log))
281 list_add_tail(&sh->lru, temp_inactive_list);
282 else {
283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
284 if (injournal == 0)
285 list_add_tail(&sh->lru, temp_inactive_list);
286 else if (injournal == conf->raid_disks - conf->max_degraded) {
287 /* full stripe */
288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
289 atomic_inc(&conf->r5c_cached_full_stripes);
290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
291 atomic_dec(&conf->r5c_cached_partial_stripes);
292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
293 r5c_check_cached_full_stripe(conf);
294 } else
295 /*
296 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 * r5c_try_caching_write(). No need to
298 * set it again.
299 */
300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
301 }
302 }
303 }
304 }
305
306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
307 struct list_head *temp_inactive_list)
308 {
309 if (atomic_dec_and_test(&sh->count))
310 do_release_stripe(conf, sh, temp_inactive_list);
311 }
312
313 /*
314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
315 *
316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317 * given time. Adding stripes only takes device lock, while deleting stripes
318 * only takes hash lock.
319 */
320 static void release_inactive_stripe_list(struct r5conf *conf,
321 struct list_head *temp_inactive_list,
322 int hash)
323 {
324 int size;
325 bool do_wakeup = false;
326 unsigned long flags;
327
328 if (hash == NR_STRIPE_HASH_LOCKS) {
329 size = NR_STRIPE_HASH_LOCKS;
330 hash = NR_STRIPE_HASH_LOCKS - 1;
331 } else
332 size = 1;
333 while (size) {
334 struct list_head *list = &temp_inactive_list[size - 1];
335
336 /*
337 * We don't hold any lock here yet, raid5_get_active_stripe() might
338 * remove stripes from the list
339 */
340 if (!list_empty_careful(list)) {
341 spin_lock_irqsave(conf->hash_locks + hash, flags);
342 if (list_empty(conf->inactive_list + hash) &&
343 !list_empty(list))
344 atomic_dec(&conf->empty_inactive_list_nr);
345 list_splice_tail_init(list, conf->inactive_list + hash);
346 do_wakeup = true;
347 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
348 }
349 size--;
350 hash--;
351 }
352
353 if (do_wakeup) {
354 wake_up(&conf->wait_for_stripe);
355 if (atomic_read(&conf->active_stripes) == 0)
356 wake_up(&conf->wait_for_quiescent);
357 if (conf->retry_read_aligned)
358 md_wakeup_thread(conf->mddev->thread);
359 }
360 }
361
362 /* should hold conf->device_lock already */
363 static int release_stripe_list(struct r5conf *conf,
364 struct list_head *temp_inactive_list)
365 {
366 struct stripe_head *sh, *t;
367 int count = 0;
368 struct llist_node *head;
369
370 head = llist_del_all(&conf->released_stripes);
371 head = llist_reverse_order(head);
372 llist_for_each_entry_safe(sh, t, head, release_list) {
373 int hash;
374
375 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
376 smp_mb();
377 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
378 /*
379 * Don't worry the bit is set here, because if the bit is set
380 * again, the count is always > 1. This is true for
381 * STRIPE_ON_UNPLUG_LIST bit too.
382 */
383 hash = sh->hash_lock_index;
384 __release_stripe(conf, sh, &temp_inactive_list[hash]);
385 count++;
386 }
387
388 return count;
389 }
390
391 void raid5_release_stripe(struct stripe_head *sh)
392 {
393 struct r5conf *conf = sh->raid_conf;
394 unsigned long flags;
395 struct list_head list;
396 int hash;
397 bool wakeup;
398
399 /* Avoid release_list until the last reference.
400 */
401 if (atomic_add_unless(&sh->count, -1, 1))
402 return;
403
404 if (unlikely(!conf->mddev->thread) ||
405 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
406 goto slow_path;
407 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
408 if (wakeup)
409 md_wakeup_thread(conf->mddev->thread);
410 return;
411 slow_path:
412 local_irq_save(flags);
413 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
414 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
415 INIT_LIST_HEAD(&list);
416 hash = sh->hash_lock_index;
417 do_release_stripe(conf, sh, &list);
418 spin_unlock(&conf->device_lock);
419 release_inactive_stripe_list(conf, &list, hash);
420 }
421 local_irq_restore(flags);
422 }
423
424 static inline void remove_hash(struct stripe_head *sh)
425 {
426 pr_debug("remove_hash(), stripe %llu\n",
427 (unsigned long long)sh->sector);
428
429 hlist_del_init(&sh->hash);
430 }
431
432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433 {
434 struct hlist_head *hp = stripe_hash(conf, sh->sector);
435
436 pr_debug("insert_hash(), stripe %llu\n",
437 (unsigned long long)sh->sector);
438
439 hlist_add_head(&sh->hash, hp);
440 }
441
442 /* find an idle stripe, make sure it is unhashed, and return it. */
443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444 {
445 struct stripe_head *sh = NULL;
446 struct list_head *first;
447
448 if (list_empty(conf->inactive_list + hash))
449 goto out;
450 first = (conf->inactive_list + hash)->next;
451 sh = list_entry(first, struct stripe_head, lru);
452 list_del_init(first);
453 remove_hash(sh);
454 atomic_inc(&conf->active_stripes);
455 BUG_ON(hash != sh->hash_lock_index);
456 if (list_empty(conf->inactive_list + hash))
457 atomic_inc(&conf->empty_inactive_list_nr);
458 out:
459 return sh;
460 }
461
462 static void shrink_buffers(struct stripe_head *sh)
463 {
464 struct page *p;
465 int i;
466 int num = sh->raid_conf->pool_size;
467
468 for (i = 0; i < num ; i++) {
469 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
470 p = sh->dev[i].page;
471 if (!p)
472 continue;
473 sh->dev[i].page = NULL;
474 put_page(p);
475 }
476 }
477
478 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
479 {
480 int i;
481 int num = sh->raid_conf->pool_size;
482
483 for (i = 0; i < num; i++) {
484 struct page *page;
485
486 if (!(page = alloc_page(gfp))) {
487 return 1;
488 }
489 sh->dev[i].page = page;
490 sh->dev[i].orig_page = page;
491 }
492
493 return 0;
494 }
495
496 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
497 struct stripe_head *sh);
498
499 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
500 {
501 struct r5conf *conf = sh->raid_conf;
502 int i, seq;
503
504 BUG_ON(atomic_read(&sh->count) != 0);
505 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
506 BUG_ON(stripe_operations_active(sh));
507 BUG_ON(sh->batch_head);
508
509 pr_debug("init_stripe called, stripe %llu\n",
510 (unsigned long long)sector);
511 retry:
512 seq = read_seqcount_begin(&conf->gen_lock);
513 sh->generation = conf->generation - previous;
514 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
515 sh->sector = sector;
516 stripe_set_idx(sector, conf, previous, sh);
517 sh->state = 0;
518
519 for (i = sh->disks; i--; ) {
520 struct r5dev *dev = &sh->dev[i];
521
522 if (dev->toread || dev->read || dev->towrite || dev->written ||
523 test_bit(R5_LOCKED, &dev->flags)) {
524 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
525 (unsigned long long)sh->sector, i, dev->toread,
526 dev->read, dev->towrite, dev->written,
527 test_bit(R5_LOCKED, &dev->flags));
528 WARN_ON(1);
529 }
530 dev->flags = 0;
531 dev->sector = raid5_compute_blocknr(sh, i, previous);
532 }
533 if (read_seqcount_retry(&conf->gen_lock, seq))
534 goto retry;
535 sh->overwrite_disks = 0;
536 insert_hash(conf, sh);
537 sh->cpu = smp_processor_id();
538 set_bit(STRIPE_BATCH_READY, &sh->state);
539 }
540
541 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
542 short generation)
543 {
544 struct stripe_head *sh;
545
546 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
547 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
548 if (sh->sector == sector && sh->generation == generation)
549 return sh;
550 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
551 return NULL;
552 }
553
554 /*
555 * Need to check if array has failed when deciding whether to:
556 * - start an array
557 * - remove non-faulty devices
558 * - add a spare
559 * - allow a reshape
560 * This determination is simple when no reshape is happening.
561 * However if there is a reshape, we need to carefully check
562 * both the before and after sections.
563 * This is because some failed devices may only affect one
564 * of the two sections, and some non-in_sync devices may
565 * be insync in the section most affected by failed devices.
566 */
567 int raid5_calc_degraded(struct r5conf *conf)
568 {
569 int degraded, degraded2;
570 int i;
571
572 rcu_read_lock();
573 degraded = 0;
574 for (i = 0; i < conf->previous_raid_disks; i++) {
575 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
576 if (rdev && test_bit(Faulty, &rdev->flags))
577 rdev = rcu_dereference(conf->disks[i].replacement);
578 if (!rdev || test_bit(Faulty, &rdev->flags))
579 degraded++;
580 else if (test_bit(In_sync, &rdev->flags))
581 ;
582 else
583 /* not in-sync or faulty.
584 * If the reshape increases the number of devices,
585 * this is being recovered by the reshape, so
586 * this 'previous' section is not in_sync.
587 * If the number of devices is being reduced however,
588 * the device can only be part of the array if
589 * we are reverting a reshape, so this section will
590 * be in-sync.
591 */
592 if (conf->raid_disks >= conf->previous_raid_disks)
593 degraded++;
594 }
595 rcu_read_unlock();
596 if (conf->raid_disks == conf->previous_raid_disks)
597 return degraded;
598 rcu_read_lock();
599 degraded2 = 0;
600 for (i = 0; i < conf->raid_disks; i++) {
601 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
602 if (rdev && test_bit(Faulty, &rdev->flags))
603 rdev = rcu_dereference(conf->disks[i].replacement);
604 if (!rdev || test_bit(Faulty, &rdev->flags))
605 degraded2++;
606 else if (test_bit(In_sync, &rdev->flags))
607 ;
608 else
609 /* not in-sync or faulty.
610 * If reshape increases the number of devices, this
611 * section has already been recovered, else it
612 * almost certainly hasn't.
613 */
614 if (conf->raid_disks <= conf->previous_raid_disks)
615 degraded2++;
616 }
617 rcu_read_unlock();
618 if (degraded2 > degraded)
619 return degraded2;
620 return degraded;
621 }
622
623 static int has_failed(struct r5conf *conf)
624 {
625 int degraded;
626
627 if (conf->mddev->reshape_position == MaxSector)
628 return conf->mddev->degraded > conf->max_degraded;
629
630 degraded = raid5_calc_degraded(conf);
631 if (degraded > conf->max_degraded)
632 return 1;
633 return 0;
634 }
635
636 struct stripe_head *
637 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
638 int previous, int noblock, int noquiesce)
639 {
640 struct stripe_head *sh;
641 int hash = stripe_hash_locks_hash(sector);
642 int inc_empty_inactive_list_flag;
643
644 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
645
646 spin_lock_irq(conf->hash_locks + hash);
647
648 do {
649 wait_event_lock_irq(conf->wait_for_quiescent,
650 conf->quiesce == 0 || noquiesce,
651 *(conf->hash_locks + hash));
652 sh = __find_stripe(conf, sector, conf->generation - previous);
653 if (!sh) {
654 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
655 sh = get_free_stripe(conf, hash);
656 if (!sh && !test_bit(R5_DID_ALLOC,
657 &conf->cache_state))
658 set_bit(R5_ALLOC_MORE,
659 &conf->cache_state);
660 }
661 if (noblock && sh == NULL)
662 break;
663
664 r5c_check_stripe_cache_usage(conf);
665 if (!sh) {
666 set_bit(R5_INACTIVE_BLOCKED,
667 &conf->cache_state);
668 r5l_wake_reclaim(conf->log, 0);
669 wait_event_lock_irq(
670 conf->wait_for_stripe,
671 !list_empty(conf->inactive_list + hash) &&
672 (atomic_read(&conf->active_stripes)
673 < (conf->max_nr_stripes * 3 / 4)
674 || !test_bit(R5_INACTIVE_BLOCKED,
675 &conf->cache_state)),
676 *(conf->hash_locks + hash));
677 clear_bit(R5_INACTIVE_BLOCKED,
678 &conf->cache_state);
679 } else {
680 init_stripe(sh, sector, previous);
681 atomic_inc(&sh->count);
682 }
683 } else if (!atomic_inc_not_zero(&sh->count)) {
684 spin_lock(&conf->device_lock);
685 if (!atomic_read(&sh->count)) {
686 if (!test_bit(STRIPE_HANDLE, &sh->state))
687 atomic_inc(&conf->active_stripes);
688 BUG_ON(list_empty(&sh->lru) &&
689 !test_bit(STRIPE_EXPANDING, &sh->state));
690 inc_empty_inactive_list_flag = 0;
691 if (!list_empty(conf->inactive_list + hash))
692 inc_empty_inactive_list_flag = 1;
693 list_del_init(&sh->lru);
694 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
695 atomic_inc(&conf->empty_inactive_list_nr);
696 if (sh->group) {
697 sh->group->stripes_cnt--;
698 sh->group = NULL;
699 }
700 }
701 atomic_inc(&sh->count);
702 spin_unlock(&conf->device_lock);
703 }
704 } while (sh == NULL);
705
706 spin_unlock_irq(conf->hash_locks + hash);
707 return sh;
708 }
709
710 static bool is_full_stripe_write(struct stripe_head *sh)
711 {
712 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
713 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
714 }
715
716 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
717 {
718 if (sh1 > sh2) {
719 spin_lock_irq(&sh2->stripe_lock);
720 spin_lock_nested(&sh1->stripe_lock, 1);
721 } else {
722 spin_lock_irq(&sh1->stripe_lock);
723 spin_lock_nested(&sh2->stripe_lock, 1);
724 }
725 }
726
727 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728 {
729 spin_unlock(&sh1->stripe_lock);
730 spin_unlock_irq(&sh2->stripe_lock);
731 }
732
733 /* Only freshly new full stripe normal write stripe can be added to a batch list */
734 static bool stripe_can_batch(struct stripe_head *sh)
735 {
736 struct r5conf *conf = sh->raid_conf;
737
738 if (conf->log || raid5_has_ppl(conf))
739 return false;
740 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
741 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
742 is_full_stripe_write(sh);
743 }
744
745 /* we only do back search */
746 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
747 {
748 struct stripe_head *head;
749 sector_t head_sector, tmp_sec;
750 int hash;
751 int dd_idx;
752 int inc_empty_inactive_list_flag;
753
754 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
755 tmp_sec = sh->sector;
756 if (!sector_div(tmp_sec, conf->chunk_sectors))
757 return;
758 head_sector = sh->sector - STRIPE_SECTORS;
759
760 hash = stripe_hash_locks_hash(head_sector);
761 spin_lock_irq(conf->hash_locks + hash);
762 head = __find_stripe(conf, head_sector, conf->generation);
763 if (head && !atomic_inc_not_zero(&head->count)) {
764 spin_lock(&conf->device_lock);
765 if (!atomic_read(&head->count)) {
766 if (!test_bit(STRIPE_HANDLE, &head->state))
767 atomic_inc(&conf->active_stripes);
768 BUG_ON(list_empty(&head->lru) &&
769 !test_bit(STRIPE_EXPANDING, &head->state));
770 inc_empty_inactive_list_flag = 0;
771 if (!list_empty(conf->inactive_list + hash))
772 inc_empty_inactive_list_flag = 1;
773 list_del_init(&head->lru);
774 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
775 atomic_inc(&conf->empty_inactive_list_nr);
776 if (head->group) {
777 head->group->stripes_cnt--;
778 head->group = NULL;
779 }
780 }
781 atomic_inc(&head->count);
782 spin_unlock(&conf->device_lock);
783 }
784 spin_unlock_irq(conf->hash_locks + hash);
785
786 if (!head)
787 return;
788 if (!stripe_can_batch(head))
789 goto out;
790
791 lock_two_stripes(head, sh);
792 /* clear_batch_ready clear the flag */
793 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
794 goto unlock_out;
795
796 if (sh->batch_head)
797 goto unlock_out;
798
799 dd_idx = 0;
800 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
801 dd_idx++;
802 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
803 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
804 goto unlock_out;
805
806 if (head->batch_head) {
807 spin_lock(&head->batch_head->batch_lock);
808 /* This batch list is already running */
809 if (!stripe_can_batch(head)) {
810 spin_unlock(&head->batch_head->batch_lock);
811 goto unlock_out;
812 }
813 /*
814 * We must assign batch_head of this stripe within the
815 * batch_lock, otherwise clear_batch_ready of batch head
816 * stripe could clear BATCH_READY bit of this stripe and
817 * this stripe->batch_head doesn't get assigned, which
818 * could confuse clear_batch_ready for this stripe
819 */
820 sh->batch_head = head->batch_head;
821
822 /*
823 * at this point, head's BATCH_READY could be cleared, but we
824 * can still add the stripe to batch list
825 */
826 list_add(&sh->batch_list, &head->batch_list);
827 spin_unlock(&head->batch_head->batch_lock);
828 } else {
829 head->batch_head = head;
830 sh->batch_head = head->batch_head;
831 spin_lock(&head->batch_lock);
832 list_add_tail(&sh->batch_list, &head->batch_list);
833 spin_unlock(&head->batch_lock);
834 }
835
836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837 if (atomic_dec_return(&conf->preread_active_stripes)
838 < IO_THRESHOLD)
839 md_wakeup_thread(conf->mddev->thread);
840
841 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842 int seq = sh->bm_seq;
843 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844 sh->batch_head->bm_seq > seq)
845 seq = sh->batch_head->bm_seq;
846 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847 sh->batch_head->bm_seq = seq;
848 }
849
850 atomic_inc(&sh->count);
851 unlock_out:
852 unlock_two_stripes(head, sh);
853 out:
854 raid5_release_stripe(head);
855 }
856
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858 * in this stripe_head.
859 */
860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861 {
862 sector_t progress = conf->reshape_progress;
863 /* Need a memory barrier to make sure we see the value
864 * of conf->generation, or ->data_offset that was set before
865 * reshape_progress was updated.
866 */
867 smp_rmb();
868 if (progress == MaxSector)
869 return 0;
870 if (sh->generation == conf->generation - 1)
871 return 0;
872 /* We are in a reshape, and this is a new-generation stripe,
873 * so use new_data_offset.
874 */
875 return 1;
876 }
877
878 static void dispatch_bio_list(struct bio_list *tmp)
879 {
880 struct bio *bio;
881
882 while ((bio = bio_list_pop(tmp)))
883 generic_make_request(bio);
884 }
885
886 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
887 {
888 const struct r5pending_data *da = list_entry(a,
889 struct r5pending_data, sibling);
890 const struct r5pending_data *db = list_entry(b,
891 struct r5pending_data, sibling);
892 if (da->sector > db->sector)
893 return 1;
894 if (da->sector < db->sector)
895 return -1;
896 return 0;
897 }
898
899 static void dispatch_defer_bios(struct r5conf *conf, int target,
900 struct bio_list *list)
901 {
902 struct r5pending_data *data;
903 struct list_head *first, *next = NULL;
904 int cnt = 0;
905
906 if (conf->pending_data_cnt == 0)
907 return;
908
909 list_sort(NULL, &conf->pending_list, cmp_stripe);
910
911 first = conf->pending_list.next;
912
913 /* temporarily move the head */
914 if (conf->next_pending_data)
915 list_move_tail(&conf->pending_list,
916 &conf->next_pending_data->sibling);
917
918 while (!list_empty(&conf->pending_list)) {
919 data = list_first_entry(&conf->pending_list,
920 struct r5pending_data, sibling);
921 if (&data->sibling == first)
922 first = data->sibling.next;
923 next = data->sibling.next;
924
925 bio_list_merge(list, &data->bios);
926 list_move(&data->sibling, &conf->free_list);
927 cnt++;
928 if (cnt >= target)
929 break;
930 }
931 conf->pending_data_cnt -= cnt;
932 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
933
934 if (next != &conf->pending_list)
935 conf->next_pending_data = list_entry(next,
936 struct r5pending_data, sibling);
937 else
938 conf->next_pending_data = NULL;
939 /* list isn't empty */
940 if (first != &conf->pending_list)
941 list_move_tail(&conf->pending_list, first);
942 }
943
944 static void flush_deferred_bios(struct r5conf *conf)
945 {
946 struct bio_list tmp = BIO_EMPTY_LIST;
947
948 if (conf->pending_data_cnt == 0)
949 return;
950
951 spin_lock(&conf->pending_bios_lock);
952 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
953 BUG_ON(conf->pending_data_cnt != 0);
954 spin_unlock(&conf->pending_bios_lock);
955
956 dispatch_bio_list(&tmp);
957 }
958
959 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
960 struct bio_list *bios)
961 {
962 struct bio_list tmp = BIO_EMPTY_LIST;
963 struct r5pending_data *ent;
964
965 spin_lock(&conf->pending_bios_lock);
966 ent = list_first_entry(&conf->free_list, struct r5pending_data,
967 sibling);
968 list_move_tail(&ent->sibling, &conf->pending_list);
969 ent->sector = sector;
970 bio_list_init(&ent->bios);
971 bio_list_merge(&ent->bios, bios);
972 conf->pending_data_cnt++;
973 if (conf->pending_data_cnt >= PENDING_IO_MAX)
974 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
975
976 spin_unlock(&conf->pending_bios_lock);
977
978 dispatch_bio_list(&tmp);
979 }
980
981 static void
982 raid5_end_read_request(struct bio *bi);
983 static void
984 raid5_end_write_request(struct bio *bi);
985
986 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
987 {
988 struct r5conf *conf = sh->raid_conf;
989 int i, disks = sh->disks;
990 struct stripe_head *head_sh = sh;
991 struct bio_list pending_bios = BIO_EMPTY_LIST;
992 bool should_defer;
993
994 might_sleep();
995
996 if (log_stripe(sh, s) == 0)
997 return;
998
999 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1000
1001 for (i = disks; i--; ) {
1002 int op, op_flags = 0;
1003 int replace_only = 0;
1004 struct bio *bi, *rbi;
1005 struct md_rdev *rdev, *rrdev = NULL;
1006
1007 sh = head_sh;
1008 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1009 op = REQ_OP_WRITE;
1010 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1011 op_flags = REQ_FUA;
1012 if (test_bit(R5_Discard, &sh->dev[i].flags))
1013 op = REQ_OP_DISCARD;
1014 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1015 op = REQ_OP_READ;
1016 else if (test_and_clear_bit(R5_WantReplace,
1017 &sh->dev[i].flags)) {
1018 op = REQ_OP_WRITE;
1019 replace_only = 1;
1020 } else
1021 continue;
1022 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1023 op_flags |= REQ_SYNC;
1024
1025 again:
1026 bi = &sh->dev[i].req;
1027 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1028
1029 rcu_read_lock();
1030 rrdev = rcu_dereference(conf->disks[i].replacement);
1031 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1032 rdev = rcu_dereference(conf->disks[i].rdev);
1033 if (!rdev) {
1034 rdev = rrdev;
1035 rrdev = NULL;
1036 }
1037 if (op_is_write(op)) {
1038 if (replace_only)
1039 rdev = NULL;
1040 if (rdev == rrdev)
1041 /* We raced and saw duplicates */
1042 rrdev = NULL;
1043 } else {
1044 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1045 rdev = rrdev;
1046 rrdev = NULL;
1047 }
1048
1049 if (rdev && test_bit(Faulty, &rdev->flags))
1050 rdev = NULL;
1051 if (rdev)
1052 atomic_inc(&rdev->nr_pending);
1053 if (rrdev && test_bit(Faulty, &rrdev->flags))
1054 rrdev = NULL;
1055 if (rrdev)
1056 atomic_inc(&rrdev->nr_pending);
1057 rcu_read_unlock();
1058
1059 /* We have already checked bad blocks for reads. Now
1060 * need to check for writes. We never accept write errors
1061 * on the replacement, so we don't to check rrdev.
1062 */
1063 while (op_is_write(op) && rdev &&
1064 test_bit(WriteErrorSeen, &rdev->flags)) {
1065 sector_t first_bad;
1066 int bad_sectors;
1067 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1068 &first_bad, &bad_sectors);
1069 if (!bad)
1070 break;
1071
1072 if (bad < 0) {
1073 set_bit(BlockedBadBlocks, &rdev->flags);
1074 if (!conf->mddev->external &&
1075 conf->mddev->sb_flags) {
1076 /* It is very unlikely, but we might
1077 * still need to write out the
1078 * bad block log - better give it
1079 * a chance*/
1080 md_check_recovery(conf->mddev);
1081 }
1082 /*
1083 * Because md_wait_for_blocked_rdev
1084 * will dec nr_pending, we must
1085 * increment it first.
1086 */
1087 atomic_inc(&rdev->nr_pending);
1088 md_wait_for_blocked_rdev(rdev, conf->mddev);
1089 } else {
1090 /* Acknowledged bad block - skip the write */
1091 rdev_dec_pending(rdev, conf->mddev);
1092 rdev = NULL;
1093 }
1094 }
1095
1096 if (rdev) {
1097 if (s->syncing || s->expanding || s->expanded
1098 || s->replacing)
1099 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1100
1101 set_bit(STRIPE_IO_STARTED, &sh->state);
1102
1103 bio_set_dev(bi, rdev->bdev);
1104 bio_set_op_attrs(bi, op, op_flags);
1105 bi->bi_end_io = op_is_write(op)
1106 ? raid5_end_write_request
1107 : raid5_end_read_request;
1108 bi->bi_private = sh;
1109
1110 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1111 __func__, (unsigned long long)sh->sector,
1112 bi->bi_opf, i);
1113 atomic_inc(&sh->count);
1114 if (sh != head_sh)
1115 atomic_inc(&head_sh->count);
1116 if (use_new_offset(conf, sh))
1117 bi->bi_iter.bi_sector = (sh->sector
1118 + rdev->new_data_offset);
1119 else
1120 bi->bi_iter.bi_sector = (sh->sector
1121 + rdev->data_offset);
1122 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1123 bi->bi_opf |= REQ_NOMERGE;
1124
1125 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1126 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1127
1128 if (!op_is_write(op) &&
1129 test_bit(R5_InJournal, &sh->dev[i].flags))
1130 /*
1131 * issuing read for a page in journal, this
1132 * must be preparing for prexor in rmw; read
1133 * the data into orig_page
1134 */
1135 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1136 else
1137 sh->dev[i].vec.bv_page = sh->dev[i].page;
1138 bi->bi_vcnt = 1;
1139 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1140 bi->bi_io_vec[0].bv_offset = 0;
1141 bi->bi_iter.bi_size = STRIPE_SIZE;
1142 /*
1143 * If this is discard request, set bi_vcnt 0. We don't
1144 * want to confuse SCSI because SCSI will replace payload
1145 */
1146 if (op == REQ_OP_DISCARD)
1147 bi->bi_vcnt = 0;
1148 if (rrdev)
1149 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1150
1151 if (conf->mddev->gendisk)
1152 trace_block_bio_remap(bi->bi_disk->queue,
1153 bi, disk_devt(conf->mddev->gendisk),
1154 sh->dev[i].sector);
1155 if (should_defer && op_is_write(op))
1156 bio_list_add(&pending_bios, bi);
1157 else
1158 generic_make_request(bi);
1159 }
1160 if (rrdev) {
1161 if (s->syncing || s->expanding || s->expanded
1162 || s->replacing)
1163 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1164
1165 set_bit(STRIPE_IO_STARTED, &sh->state);
1166
1167 bio_set_dev(rbi, rrdev->bdev);
1168 bio_set_op_attrs(rbi, op, op_flags);
1169 BUG_ON(!op_is_write(op));
1170 rbi->bi_end_io = raid5_end_write_request;
1171 rbi->bi_private = sh;
1172
1173 pr_debug("%s: for %llu schedule op %d on "
1174 "replacement disc %d\n",
1175 __func__, (unsigned long long)sh->sector,
1176 rbi->bi_opf, i);
1177 atomic_inc(&sh->count);
1178 if (sh != head_sh)
1179 atomic_inc(&head_sh->count);
1180 if (use_new_offset(conf, sh))
1181 rbi->bi_iter.bi_sector = (sh->sector
1182 + rrdev->new_data_offset);
1183 else
1184 rbi->bi_iter.bi_sector = (sh->sector
1185 + rrdev->data_offset);
1186 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1187 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1188 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1189 rbi->bi_vcnt = 1;
1190 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1191 rbi->bi_io_vec[0].bv_offset = 0;
1192 rbi->bi_iter.bi_size = STRIPE_SIZE;
1193 /*
1194 * If this is discard request, set bi_vcnt 0. We don't
1195 * want to confuse SCSI because SCSI will replace payload
1196 */
1197 if (op == REQ_OP_DISCARD)
1198 rbi->bi_vcnt = 0;
1199 if (conf->mddev->gendisk)
1200 trace_block_bio_remap(rbi->bi_disk->queue,
1201 rbi, disk_devt(conf->mddev->gendisk),
1202 sh->dev[i].sector);
1203 if (should_defer && op_is_write(op))
1204 bio_list_add(&pending_bios, rbi);
1205 else
1206 generic_make_request(rbi);
1207 }
1208 if (!rdev && !rrdev) {
1209 if (op_is_write(op))
1210 set_bit(STRIPE_DEGRADED, &sh->state);
1211 pr_debug("skip op %d on disc %d for sector %llu\n",
1212 bi->bi_opf, i, (unsigned long long)sh->sector);
1213 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1214 set_bit(STRIPE_HANDLE, &sh->state);
1215 }
1216
1217 if (!head_sh->batch_head)
1218 continue;
1219 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1220 batch_list);
1221 if (sh != head_sh)
1222 goto again;
1223 }
1224
1225 if (should_defer && !bio_list_empty(&pending_bios))
1226 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1227 }
1228
1229 static struct dma_async_tx_descriptor *
1230 async_copy_data(int frombio, struct bio *bio, struct page **page,
1231 sector_t sector, struct dma_async_tx_descriptor *tx,
1232 struct stripe_head *sh, int no_skipcopy)
1233 {
1234 struct bio_vec bvl;
1235 struct bvec_iter iter;
1236 struct page *bio_page;
1237 int page_offset;
1238 struct async_submit_ctl submit;
1239 enum async_tx_flags flags = 0;
1240
1241 if (bio->bi_iter.bi_sector >= sector)
1242 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1243 else
1244 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1245
1246 if (frombio)
1247 flags |= ASYNC_TX_FENCE;
1248 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1249
1250 bio_for_each_segment(bvl, bio, iter) {
1251 int len = bvl.bv_len;
1252 int clen;
1253 int b_offset = 0;
1254
1255 if (page_offset < 0) {
1256 b_offset = -page_offset;
1257 page_offset += b_offset;
1258 len -= b_offset;
1259 }
1260
1261 if (len > 0 && page_offset + len > STRIPE_SIZE)
1262 clen = STRIPE_SIZE - page_offset;
1263 else
1264 clen = len;
1265
1266 if (clen > 0) {
1267 b_offset += bvl.bv_offset;
1268 bio_page = bvl.bv_page;
1269 if (frombio) {
1270 if (sh->raid_conf->skip_copy &&
1271 b_offset == 0 && page_offset == 0 &&
1272 clen == STRIPE_SIZE &&
1273 !no_skipcopy)
1274 *page = bio_page;
1275 else
1276 tx = async_memcpy(*page, bio_page, page_offset,
1277 b_offset, clen, &submit);
1278 } else
1279 tx = async_memcpy(bio_page, *page, b_offset,
1280 page_offset, clen, &submit);
1281 }
1282 /* chain the operations */
1283 submit.depend_tx = tx;
1284
1285 if (clen < len) /* hit end of page */
1286 break;
1287 page_offset += len;
1288 }
1289
1290 return tx;
1291 }
1292
1293 static void ops_complete_biofill(void *stripe_head_ref)
1294 {
1295 struct stripe_head *sh = stripe_head_ref;
1296 int i;
1297
1298 pr_debug("%s: stripe %llu\n", __func__,
1299 (unsigned long long)sh->sector);
1300
1301 /* clear completed biofills */
1302 for (i = sh->disks; i--; ) {
1303 struct r5dev *dev = &sh->dev[i];
1304
1305 /* acknowledge completion of a biofill operation */
1306 /* and check if we need to reply to a read request,
1307 * new R5_Wantfill requests are held off until
1308 * !STRIPE_BIOFILL_RUN
1309 */
1310 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1311 struct bio *rbi, *rbi2;
1312
1313 BUG_ON(!dev->read);
1314 rbi = dev->read;
1315 dev->read = NULL;
1316 while (rbi && rbi->bi_iter.bi_sector <
1317 dev->sector + STRIPE_SECTORS) {
1318 rbi2 = r5_next_bio(rbi, dev->sector);
1319 bio_endio(rbi);
1320 rbi = rbi2;
1321 }
1322 }
1323 }
1324 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1325
1326 set_bit(STRIPE_HANDLE, &sh->state);
1327 raid5_release_stripe(sh);
1328 }
1329
1330 static void ops_run_biofill(struct stripe_head *sh)
1331 {
1332 struct dma_async_tx_descriptor *tx = NULL;
1333 struct async_submit_ctl submit;
1334 int i;
1335
1336 BUG_ON(sh->batch_head);
1337 pr_debug("%s: stripe %llu\n", __func__,
1338 (unsigned long long)sh->sector);
1339
1340 for (i = sh->disks; i--; ) {
1341 struct r5dev *dev = &sh->dev[i];
1342 if (test_bit(R5_Wantfill, &dev->flags)) {
1343 struct bio *rbi;
1344 spin_lock_irq(&sh->stripe_lock);
1345 dev->read = rbi = dev->toread;
1346 dev->toread = NULL;
1347 spin_unlock_irq(&sh->stripe_lock);
1348 while (rbi && rbi->bi_iter.bi_sector <
1349 dev->sector + STRIPE_SECTORS) {
1350 tx = async_copy_data(0, rbi, &dev->page,
1351 dev->sector, tx, sh, 0);
1352 rbi = r5_next_bio(rbi, dev->sector);
1353 }
1354 }
1355 }
1356
1357 atomic_inc(&sh->count);
1358 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1359 async_trigger_callback(&submit);
1360 }
1361
1362 static void mark_target_uptodate(struct stripe_head *sh, int target)
1363 {
1364 struct r5dev *tgt;
1365
1366 if (target < 0)
1367 return;
1368
1369 tgt = &sh->dev[target];
1370 set_bit(R5_UPTODATE, &tgt->flags);
1371 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1372 clear_bit(R5_Wantcompute, &tgt->flags);
1373 }
1374
1375 static void ops_complete_compute(void *stripe_head_ref)
1376 {
1377 struct stripe_head *sh = stripe_head_ref;
1378
1379 pr_debug("%s: stripe %llu\n", __func__,
1380 (unsigned long long)sh->sector);
1381
1382 /* mark the computed target(s) as uptodate */
1383 mark_target_uptodate(sh, sh->ops.target);
1384 mark_target_uptodate(sh, sh->ops.target2);
1385
1386 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1387 if (sh->check_state == check_state_compute_run)
1388 sh->check_state = check_state_compute_result;
1389 set_bit(STRIPE_HANDLE, &sh->state);
1390 raid5_release_stripe(sh);
1391 }
1392
1393 /* return a pointer to the address conversion region of the scribble buffer */
1394 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1395 struct raid5_percpu *percpu, int i)
1396 {
1397 void *addr;
1398
1399 addr = flex_array_get(percpu->scribble, i);
1400 return addr + sizeof(struct page *) * (sh->disks + 2);
1401 }
1402
1403 /* return a pointer to the address conversion region of the scribble buffer */
1404 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1405 {
1406 void *addr;
1407
1408 addr = flex_array_get(percpu->scribble, i);
1409 return addr;
1410 }
1411
1412 static struct dma_async_tx_descriptor *
1413 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1414 {
1415 int disks = sh->disks;
1416 struct page **xor_srcs = to_addr_page(percpu, 0);
1417 int target = sh->ops.target;
1418 struct r5dev *tgt = &sh->dev[target];
1419 struct page *xor_dest = tgt->page;
1420 int count = 0;
1421 struct dma_async_tx_descriptor *tx;
1422 struct async_submit_ctl submit;
1423 int i;
1424
1425 BUG_ON(sh->batch_head);
1426
1427 pr_debug("%s: stripe %llu block: %d\n",
1428 __func__, (unsigned long long)sh->sector, target);
1429 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1430
1431 for (i = disks; i--; )
1432 if (i != target)
1433 xor_srcs[count++] = sh->dev[i].page;
1434
1435 atomic_inc(&sh->count);
1436
1437 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1438 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1439 if (unlikely(count == 1))
1440 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1441 else
1442 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1443
1444 return tx;
1445 }
1446
1447 /* set_syndrome_sources - populate source buffers for gen_syndrome
1448 * @srcs - (struct page *) array of size sh->disks
1449 * @sh - stripe_head to parse
1450 *
1451 * Populates srcs in proper layout order for the stripe and returns the
1452 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1453 * destination buffer is recorded in srcs[count] and the Q destination
1454 * is recorded in srcs[count+1]].
1455 */
1456 static int set_syndrome_sources(struct page **srcs,
1457 struct stripe_head *sh,
1458 int srctype)
1459 {
1460 int disks = sh->disks;
1461 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1462 int d0_idx = raid6_d0(sh);
1463 int count;
1464 int i;
1465
1466 for (i = 0; i < disks; i++)
1467 srcs[i] = NULL;
1468
1469 count = 0;
1470 i = d0_idx;
1471 do {
1472 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1473 struct r5dev *dev = &sh->dev[i];
1474
1475 if (i == sh->qd_idx || i == sh->pd_idx ||
1476 (srctype == SYNDROME_SRC_ALL) ||
1477 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1478 (test_bit(R5_Wantdrain, &dev->flags) ||
1479 test_bit(R5_InJournal, &dev->flags))) ||
1480 (srctype == SYNDROME_SRC_WRITTEN &&
1481 (dev->written ||
1482 test_bit(R5_InJournal, &dev->flags)))) {
1483 if (test_bit(R5_InJournal, &dev->flags))
1484 srcs[slot] = sh->dev[i].orig_page;
1485 else
1486 srcs[slot] = sh->dev[i].page;
1487 }
1488 i = raid6_next_disk(i, disks);
1489 } while (i != d0_idx);
1490
1491 return syndrome_disks;
1492 }
1493
1494 static struct dma_async_tx_descriptor *
1495 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1496 {
1497 int disks = sh->disks;
1498 struct page **blocks = to_addr_page(percpu, 0);
1499 int target;
1500 int qd_idx = sh->qd_idx;
1501 struct dma_async_tx_descriptor *tx;
1502 struct async_submit_ctl submit;
1503 struct r5dev *tgt;
1504 struct page *dest;
1505 int i;
1506 int count;
1507
1508 BUG_ON(sh->batch_head);
1509 if (sh->ops.target < 0)
1510 target = sh->ops.target2;
1511 else if (sh->ops.target2 < 0)
1512 target = sh->ops.target;
1513 else
1514 /* we should only have one valid target */
1515 BUG();
1516 BUG_ON(target < 0);
1517 pr_debug("%s: stripe %llu block: %d\n",
1518 __func__, (unsigned long long)sh->sector, target);
1519
1520 tgt = &sh->dev[target];
1521 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1522 dest = tgt->page;
1523
1524 atomic_inc(&sh->count);
1525
1526 if (target == qd_idx) {
1527 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1528 blocks[count] = NULL; /* regenerating p is not necessary */
1529 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1530 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1531 ops_complete_compute, sh,
1532 to_addr_conv(sh, percpu, 0));
1533 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1534 } else {
1535 /* Compute any data- or p-drive using XOR */
1536 count = 0;
1537 for (i = disks; i-- ; ) {
1538 if (i == target || i == qd_idx)
1539 continue;
1540 blocks[count++] = sh->dev[i].page;
1541 }
1542
1543 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1544 NULL, ops_complete_compute, sh,
1545 to_addr_conv(sh, percpu, 0));
1546 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1547 }
1548
1549 return tx;
1550 }
1551
1552 static struct dma_async_tx_descriptor *
1553 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1554 {
1555 int i, count, disks = sh->disks;
1556 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1557 int d0_idx = raid6_d0(sh);
1558 int faila = -1, failb = -1;
1559 int target = sh->ops.target;
1560 int target2 = sh->ops.target2;
1561 struct r5dev *tgt = &sh->dev[target];
1562 struct r5dev *tgt2 = &sh->dev[target2];
1563 struct dma_async_tx_descriptor *tx;
1564 struct page **blocks = to_addr_page(percpu, 0);
1565 struct async_submit_ctl submit;
1566
1567 BUG_ON(sh->batch_head);
1568 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1569 __func__, (unsigned long long)sh->sector, target, target2);
1570 BUG_ON(target < 0 || target2 < 0);
1571 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1572 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1573
1574 /* we need to open-code set_syndrome_sources to handle the
1575 * slot number conversion for 'faila' and 'failb'
1576 */
1577 for (i = 0; i < disks ; i++)
1578 blocks[i] = NULL;
1579 count = 0;
1580 i = d0_idx;
1581 do {
1582 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1583
1584 blocks[slot] = sh->dev[i].page;
1585
1586 if (i == target)
1587 faila = slot;
1588 if (i == target2)
1589 failb = slot;
1590 i = raid6_next_disk(i, disks);
1591 } while (i != d0_idx);
1592
1593 BUG_ON(faila == failb);
1594 if (failb < faila)
1595 swap(faila, failb);
1596 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1597 __func__, (unsigned long long)sh->sector, faila, failb);
1598
1599 atomic_inc(&sh->count);
1600
1601 if (failb == syndrome_disks+1) {
1602 /* Q disk is one of the missing disks */
1603 if (faila == syndrome_disks) {
1604 /* Missing P+Q, just recompute */
1605 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1606 ops_complete_compute, sh,
1607 to_addr_conv(sh, percpu, 0));
1608 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1609 STRIPE_SIZE, &submit);
1610 } else {
1611 struct page *dest;
1612 int data_target;
1613 int qd_idx = sh->qd_idx;
1614
1615 /* Missing D+Q: recompute D from P, then recompute Q */
1616 if (target == qd_idx)
1617 data_target = target2;
1618 else
1619 data_target = target;
1620
1621 count = 0;
1622 for (i = disks; i-- ; ) {
1623 if (i == data_target || i == qd_idx)
1624 continue;
1625 blocks[count++] = sh->dev[i].page;
1626 }
1627 dest = sh->dev[data_target].page;
1628 init_async_submit(&submit,
1629 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1630 NULL, NULL, NULL,
1631 to_addr_conv(sh, percpu, 0));
1632 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1633 &submit);
1634
1635 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1636 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1637 ops_complete_compute, sh,
1638 to_addr_conv(sh, percpu, 0));
1639 return async_gen_syndrome(blocks, 0, count+2,
1640 STRIPE_SIZE, &submit);
1641 }
1642 } else {
1643 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1644 ops_complete_compute, sh,
1645 to_addr_conv(sh, percpu, 0));
1646 if (failb == syndrome_disks) {
1647 /* We're missing D+P. */
1648 return async_raid6_datap_recov(syndrome_disks+2,
1649 STRIPE_SIZE, faila,
1650 blocks, &submit);
1651 } else {
1652 /* We're missing D+D. */
1653 return async_raid6_2data_recov(syndrome_disks+2,
1654 STRIPE_SIZE, faila, failb,
1655 blocks, &submit);
1656 }
1657 }
1658 }
1659
1660 static void ops_complete_prexor(void *stripe_head_ref)
1661 {
1662 struct stripe_head *sh = stripe_head_ref;
1663
1664 pr_debug("%s: stripe %llu\n", __func__,
1665 (unsigned long long)sh->sector);
1666
1667 if (r5c_is_writeback(sh->raid_conf->log))
1668 /*
1669 * raid5-cache write back uses orig_page during prexor.
1670 * After prexor, it is time to free orig_page
1671 */
1672 r5c_release_extra_page(sh);
1673 }
1674
1675 static struct dma_async_tx_descriptor *
1676 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1677 struct dma_async_tx_descriptor *tx)
1678 {
1679 int disks = sh->disks;
1680 struct page **xor_srcs = to_addr_page(percpu, 0);
1681 int count = 0, pd_idx = sh->pd_idx, i;
1682 struct async_submit_ctl submit;
1683
1684 /* existing parity data subtracted */
1685 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1686
1687 BUG_ON(sh->batch_head);
1688 pr_debug("%s: stripe %llu\n", __func__,
1689 (unsigned long long)sh->sector);
1690
1691 for (i = disks; i--; ) {
1692 struct r5dev *dev = &sh->dev[i];
1693 /* Only process blocks that are known to be uptodate */
1694 if (test_bit(R5_InJournal, &dev->flags))
1695 xor_srcs[count++] = dev->orig_page;
1696 else if (test_bit(R5_Wantdrain, &dev->flags))
1697 xor_srcs[count++] = dev->page;
1698 }
1699
1700 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1701 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1702 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1703
1704 return tx;
1705 }
1706
1707 static struct dma_async_tx_descriptor *
1708 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1709 struct dma_async_tx_descriptor *tx)
1710 {
1711 struct page **blocks = to_addr_page(percpu, 0);
1712 int count;
1713 struct async_submit_ctl submit;
1714
1715 pr_debug("%s: stripe %llu\n", __func__,
1716 (unsigned long long)sh->sector);
1717
1718 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1719
1720 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1721 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1722 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1723
1724 return tx;
1725 }
1726
1727 static struct dma_async_tx_descriptor *
1728 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1729 {
1730 struct r5conf *conf = sh->raid_conf;
1731 int disks = sh->disks;
1732 int i;
1733 struct stripe_head *head_sh = sh;
1734
1735 pr_debug("%s: stripe %llu\n", __func__,
1736 (unsigned long long)sh->sector);
1737
1738 for (i = disks; i--; ) {
1739 struct r5dev *dev;
1740 struct bio *chosen;
1741
1742 sh = head_sh;
1743 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1744 struct bio *wbi;
1745
1746 again:
1747 dev = &sh->dev[i];
1748 /*
1749 * clear R5_InJournal, so when rewriting a page in
1750 * journal, it is not skipped by r5l_log_stripe()
1751 */
1752 clear_bit(R5_InJournal, &dev->flags);
1753 spin_lock_irq(&sh->stripe_lock);
1754 chosen = dev->towrite;
1755 dev->towrite = NULL;
1756 sh->overwrite_disks = 0;
1757 BUG_ON(dev->written);
1758 wbi = dev->written = chosen;
1759 spin_unlock_irq(&sh->stripe_lock);
1760 WARN_ON(dev->page != dev->orig_page);
1761
1762 while (wbi && wbi->bi_iter.bi_sector <
1763 dev->sector + STRIPE_SECTORS) {
1764 if (wbi->bi_opf & REQ_FUA)
1765 set_bit(R5_WantFUA, &dev->flags);
1766 if (wbi->bi_opf & REQ_SYNC)
1767 set_bit(R5_SyncIO, &dev->flags);
1768 if (bio_op(wbi) == REQ_OP_DISCARD)
1769 set_bit(R5_Discard, &dev->flags);
1770 else {
1771 tx = async_copy_data(1, wbi, &dev->page,
1772 dev->sector, tx, sh,
1773 r5c_is_writeback(conf->log));
1774 if (dev->page != dev->orig_page &&
1775 !r5c_is_writeback(conf->log)) {
1776 set_bit(R5_SkipCopy, &dev->flags);
1777 clear_bit(R5_UPTODATE, &dev->flags);
1778 clear_bit(R5_OVERWRITE, &dev->flags);
1779 }
1780 }
1781 wbi = r5_next_bio(wbi, dev->sector);
1782 }
1783
1784 if (head_sh->batch_head) {
1785 sh = list_first_entry(&sh->batch_list,
1786 struct stripe_head,
1787 batch_list);
1788 if (sh == head_sh)
1789 continue;
1790 goto again;
1791 }
1792 }
1793 }
1794
1795 return tx;
1796 }
1797
1798 static void ops_complete_reconstruct(void *stripe_head_ref)
1799 {
1800 struct stripe_head *sh = stripe_head_ref;
1801 int disks = sh->disks;
1802 int pd_idx = sh->pd_idx;
1803 int qd_idx = sh->qd_idx;
1804 int i;
1805 bool fua = false, sync = false, discard = false;
1806
1807 pr_debug("%s: stripe %llu\n", __func__,
1808 (unsigned long long)sh->sector);
1809
1810 for (i = disks; i--; ) {
1811 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1812 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1813 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1814 }
1815
1816 for (i = disks; i--; ) {
1817 struct r5dev *dev = &sh->dev[i];
1818
1819 if (dev->written || i == pd_idx || i == qd_idx) {
1820 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1821 set_bit(R5_UPTODATE, &dev->flags);
1822 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1823 set_bit(R5_Expanded, &dev->flags);
1824 }
1825 if (fua)
1826 set_bit(R5_WantFUA, &dev->flags);
1827 if (sync)
1828 set_bit(R5_SyncIO, &dev->flags);
1829 }
1830 }
1831
1832 if (sh->reconstruct_state == reconstruct_state_drain_run)
1833 sh->reconstruct_state = reconstruct_state_drain_result;
1834 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1835 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1836 else {
1837 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1838 sh->reconstruct_state = reconstruct_state_result;
1839 }
1840
1841 set_bit(STRIPE_HANDLE, &sh->state);
1842 raid5_release_stripe(sh);
1843 }
1844
1845 static void
1846 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1847 struct dma_async_tx_descriptor *tx)
1848 {
1849 int disks = sh->disks;
1850 struct page **xor_srcs;
1851 struct async_submit_ctl submit;
1852 int count, pd_idx = sh->pd_idx, i;
1853 struct page *xor_dest;
1854 int prexor = 0;
1855 unsigned long flags;
1856 int j = 0;
1857 struct stripe_head *head_sh = sh;
1858 int last_stripe;
1859
1860 pr_debug("%s: stripe %llu\n", __func__,
1861 (unsigned long long)sh->sector);
1862
1863 for (i = 0; i < sh->disks; i++) {
1864 if (pd_idx == i)
1865 continue;
1866 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1867 break;
1868 }
1869 if (i >= sh->disks) {
1870 atomic_inc(&sh->count);
1871 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1872 ops_complete_reconstruct(sh);
1873 return;
1874 }
1875 again:
1876 count = 0;
1877 xor_srcs = to_addr_page(percpu, j);
1878 /* check if prexor is active which means only process blocks
1879 * that are part of a read-modify-write (written)
1880 */
1881 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1882 prexor = 1;
1883 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1884 for (i = disks; i--; ) {
1885 struct r5dev *dev = &sh->dev[i];
1886 if (head_sh->dev[i].written ||
1887 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1888 xor_srcs[count++] = dev->page;
1889 }
1890 } else {
1891 xor_dest = sh->dev[pd_idx].page;
1892 for (i = disks; i--; ) {
1893 struct r5dev *dev = &sh->dev[i];
1894 if (i != pd_idx)
1895 xor_srcs[count++] = dev->page;
1896 }
1897 }
1898
1899 /* 1/ if we prexor'd then the dest is reused as a source
1900 * 2/ if we did not prexor then we are redoing the parity
1901 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1902 * for the synchronous xor case
1903 */
1904 last_stripe = !head_sh->batch_head ||
1905 list_first_entry(&sh->batch_list,
1906 struct stripe_head, batch_list) == head_sh;
1907 if (last_stripe) {
1908 flags = ASYNC_TX_ACK |
1909 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1910
1911 atomic_inc(&head_sh->count);
1912 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1913 to_addr_conv(sh, percpu, j));
1914 } else {
1915 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1916 init_async_submit(&submit, flags, tx, NULL, NULL,
1917 to_addr_conv(sh, percpu, j));
1918 }
1919
1920 if (unlikely(count == 1))
1921 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1922 else
1923 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1924 if (!last_stripe) {
1925 j++;
1926 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1927 batch_list);
1928 goto again;
1929 }
1930 }
1931
1932 static void
1933 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1934 struct dma_async_tx_descriptor *tx)
1935 {
1936 struct async_submit_ctl submit;
1937 struct page **blocks;
1938 int count, i, j = 0;
1939 struct stripe_head *head_sh = sh;
1940 int last_stripe;
1941 int synflags;
1942 unsigned long txflags;
1943
1944 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1945
1946 for (i = 0; i < sh->disks; i++) {
1947 if (sh->pd_idx == i || sh->qd_idx == i)
1948 continue;
1949 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1950 break;
1951 }
1952 if (i >= sh->disks) {
1953 atomic_inc(&sh->count);
1954 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1955 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1956 ops_complete_reconstruct(sh);
1957 return;
1958 }
1959
1960 again:
1961 blocks = to_addr_page(percpu, j);
1962
1963 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1964 synflags = SYNDROME_SRC_WRITTEN;
1965 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1966 } else {
1967 synflags = SYNDROME_SRC_ALL;
1968 txflags = ASYNC_TX_ACK;
1969 }
1970
1971 count = set_syndrome_sources(blocks, sh, synflags);
1972 last_stripe = !head_sh->batch_head ||
1973 list_first_entry(&sh->batch_list,
1974 struct stripe_head, batch_list) == head_sh;
1975
1976 if (last_stripe) {
1977 atomic_inc(&head_sh->count);
1978 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1979 head_sh, to_addr_conv(sh, percpu, j));
1980 } else
1981 init_async_submit(&submit, 0, tx, NULL, NULL,
1982 to_addr_conv(sh, percpu, j));
1983 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1984 if (!last_stripe) {
1985 j++;
1986 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1987 batch_list);
1988 goto again;
1989 }
1990 }
1991
1992 static void ops_complete_check(void *stripe_head_ref)
1993 {
1994 struct stripe_head *sh = stripe_head_ref;
1995
1996 pr_debug("%s: stripe %llu\n", __func__,
1997 (unsigned long long)sh->sector);
1998
1999 sh->check_state = check_state_check_result;
2000 set_bit(STRIPE_HANDLE, &sh->state);
2001 raid5_release_stripe(sh);
2002 }
2003
2004 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2005 {
2006 int disks = sh->disks;
2007 int pd_idx = sh->pd_idx;
2008 int qd_idx = sh->qd_idx;
2009 struct page *xor_dest;
2010 struct page **xor_srcs = to_addr_page(percpu, 0);
2011 struct dma_async_tx_descriptor *tx;
2012 struct async_submit_ctl submit;
2013 int count;
2014 int i;
2015
2016 pr_debug("%s: stripe %llu\n", __func__,
2017 (unsigned long long)sh->sector);
2018
2019 BUG_ON(sh->batch_head);
2020 count = 0;
2021 xor_dest = sh->dev[pd_idx].page;
2022 xor_srcs[count++] = xor_dest;
2023 for (i = disks; i--; ) {
2024 if (i == pd_idx || i == qd_idx)
2025 continue;
2026 xor_srcs[count++] = sh->dev[i].page;
2027 }
2028
2029 init_async_submit(&submit, 0, NULL, NULL, NULL,
2030 to_addr_conv(sh, percpu, 0));
2031 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2032 &sh->ops.zero_sum_result, &submit);
2033
2034 atomic_inc(&sh->count);
2035 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2036 tx = async_trigger_callback(&submit);
2037 }
2038
2039 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2040 {
2041 struct page **srcs = to_addr_page(percpu, 0);
2042 struct async_submit_ctl submit;
2043 int count;
2044
2045 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2046 (unsigned long long)sh->sector, checkp);
2047
2048 BUG_ON(sh->batch_head);
2049 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2050 if (!checkp)
2051 srcs[count] = NULL;
2052
2053 atomic_inc(&sh->count);
2054 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2055 sh, to_addr_conv(sh, percpu, 0));
2056 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2057 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2058 }
2059
2060 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2061 {
2062 int overlap_clear = 0, i, disks = sh->disks;
2063 struct dma_async_tx_descriptor *tx = NULL;
2064 struct r5conf *conf = sh->raid_conf;
2065 int level = conf->level;
2066 struct raid5_percpu *percpu;
2067 unsigned long cpu;
2068
2069 cpu = get_cpu();
2070 percpu = per_cpu_ptr(conf->percpu, cpu);
2071 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2072 ops_run_biofill(sh);
2073 overlap_clear++;
2074 }
2075
2076 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2077 if (level < 6)
2078 tx = ops_run_compute5(sh, percpu);
2079 else {
2080 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2081 tx = ops_run_compute6_1(sh, percpu);
2082 else
2083 tx = ops_run_compute6_2(sh, percpu);
2084 }
2085 /* terminate the chain if reconstruct is not set to be run */
2086 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2087 async_tx_ack(tx);
2088 }
2089
2090 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2091 if (level < 6)
2092 tx = ops_run_prexor5(sh, percpu, tx);
2093 else
2094 tx = ops_run_prexor6(sh, percpu, tx);
2095 }
2096
2097 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2098 tx = ops_run_partial_parity(sh, percpu, tx);
2099
2100 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2101 tx = ops_run_biodrain(sh, tx);
2102 overlap_clear++;
2103 }
2104
2105 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2106 if (level < 6)
2107 ops_run_reconstruct5(sh, percpu, tx);
2108 else
2109 ops_run_reconstruct6(sh, percpu, tx);
2110 }
2111
2112 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2113 if (sh->check_state == check_state_run)
2114 ops_run_check_p(sh, percpu);
2115 else if (sh->check_state == check_state_run_q)
2116 ops_run_check_pq(sh, percpu, 0);
2117 else if (sh->check_state == check_state_run_pq)
2118 ops_run_check_pq(sh, percpu, 1);
2119 else
2120 BUG();
2121 }
2122
2123 if (overlap_clear && !sh->batch_head)
2124 for (i = disks; i--; ) {
2125 struct r5dev *dev = &sh->dev[i];
2126 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2127 wake_up(&sh->raid_conf->wait_for_overlap);
2128 }
2129 put_cpu();
2130 }
2131
2132 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2133 {
2134 if (sh->ppl_page)
2135 __free_page(sh->ppl_page);
2136 kmem_cache_free(sc, sh);
2137 }
2138
2139 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2140 int disks, struct r5conf *conf)
2141 {
2142 struct stripe_head *sh;
2143 int i;
2144
2145 sh = kmem_cache_zalloc(sc, gfp);
2146 if (sh) {
2147 spin_lock_init(&sh->stripe_lock);
2148 spin_lock_init(&sh->batch_lock);
2149 INIT_LIST_HEAD(&sh->batch_list);
2150 INIT_LIST_HEAD(&sh->lru);
2151 INIT_LIST_HEAD(&sh->r5c);
2152 INIT_LIST_HEAD(&sh->log_list);
2153 atomic_set(&sh->count, 1);
2154 sh->raid_conf = conf;
2155 sh->log_start = MaxSector;
2156 for (i = 0; i < disks; i++) {
2157 struct r5dev *dev = &sh->dev[i];
2158
2159 bio_init(&dev->req, &dev->vec, 1);
2160 bio_init(&dev->rreq, &dev->rvec, 1);
2161 }
2162
2163 if (raid5_has_ppl(conf)) {
2164 sh->ppl_page = alloc_page(gfp);
2165 if (!sh->ppl_page) {
2166 free_stripe(sc, sh);
2167 sh = NULL;
2168 }
2169 }
2170 }
2171 return sh;
2172 }
2173 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2174 {
2175 struct stripe_head *sh;
2176
2177 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2178 if (!sh)
2179 return 0;
2180
2181 if (grow_buffers(sh, gfp)) {
2182 shrink_buffers(sh);
2183 free_stripe(conf->slab_cache, sh);
2184 return 0;
2185 }
2186 sh->hash_lock_index =
2187 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2188 /* we just created an active stripe so... */
2189 atomic_inc(&conf->active_stripes);
2190
2191 raid5_release_stripe(sh);
2192 conf->max_nr_stripes++;
2193 return 1;
2194 }
2195
2196 static int grow_stripes(struct r5conf *conf, int num)
2197 {
2198 struct kmem_cache *sc;
2199 size_t namelen = sizeof(conf->cache_name[0]);
2200 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2201
2202 if (conf->mddev->gendisk)
2203 snprintf(conf->cache_name[0], namelen,
2204 "raid%d-%s", conf->level, mdname(conf->mddev));
2205 else
2206 snprintf(conf->cache_name[0], namelen,
2207 "raid%d-%p", conf->level, conf->mddev);
2208 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2209
2210 conf->active_name = 0;
2211 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2212 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2213 0, 0, NULL);
2214 if (!sc)
2215 return 1;
2216 conf->slab_cache = sc;
2217 conf->pool_size = devs;
2218 while (num--)
2219 if (!grow_one_stripe(conf, GFP_KERNEL))
2220 return 1;
2221
2222 return 0;
2223 }
2224
2225 /**
2226 * scribble_len - return the required size of the scribble region
2227 * @num - total number of disks in the array
2228 *
2229 * The size must be enough to contain:
2230 * 1/ a struct page pointer for each device in the array +2
2231 * 2/ room to convert each entry in (1) to its corresponding dma
2232 * (dma_map_page()) or page (page_address()) address.
2233 *
2234 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2235 * calculate over all devices (not just the data blocks), using zeros in place
2236 * of the P and Q blocks.
2237 */
2238 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2239 {
2240 struct flex_array *ret;
2241 size_t len;
2242
2243 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2244 ret = flex_array_alloc(len, cnt, flags);
2245 if (!ret)
2246 return NULL;
2247 /* always prealloc all elements, so no locking is required */
2248 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2249 flex_array_free(ret);
2250 return NULL;
2251 }
2252 return ret;
2253 }
2254
2255 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2256 {
2257 unsigned long cpu;
2258 int err = 0;
2259
2260 /*
2261 * Never shrink. And mddev_suspend() could deadlock if this is called
2262 * from raid5d. In that case, scribble_disks and scribble_sectors
2263 * should equal to new_disks and new_sectors
2264 */
2265 if (conf->scribble_disks >= new_disks &&
2266 conf->scribble_sectors >= new_sectors)
2267 return 0;
2268 mddev_suspend(conf->mddev);
2269 get_online_cpus();
2270 for_each_present_cpu(cpu) {
2271 struct raid5_percpu *percpu;
2272 struct flex_array *scribble;
2273
2274 percpu = per_cpu_ptr(conf->percpu, cpu);
2275 scribble = scribble_alloc(new_disks,
2276 new_sectors / STRIPE_SECTORS,
2277 GFP_NOIO);
2278
2279 if (scribble) {
2280 flex_array_free(percpu->scribble);
2281 percpu->scribble = scribble;
2282 } else {
2283 err = -ENOMEM;
2284 break;
2285 }
2286 }
2287 put_online_cpus();
2288 mddev_resume(conf->mddev);
2289 if (!err) {
2290 conf->scribble_disks = new_disks;
2291 conf->scribble_sectors = new_sectors;
2292 }
2293 return err;
2294 }
2295
2296 static int resize_stripes(struct r5conf *conf, int newsize)
2297 {
2298 /* Make all the stripes able to hold 'newsize' devices.
2299 * New slots in each stripe get 'page' set to a new page.
2300 *
2301 * This happens in stages:
2302 * 1/ create a new kmem_cache and allocate the required number of
2303 * stripe_heads.
2304 * 2/ gather all the old stripe_heads and transfer the pages across
2305 * to the new stripe_heads. This will have the side effect of
2306 * freezing the array as once all stripe_heads have been collected,
2307 * no IO will be possible. Old stripe heads are freed once their
2308 * pages have been transferred over, and the old kmem_cache is
2309 * freed when all stripes are done.
2310 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2311 * we simple return a failure status - no need to clean anything up.
2312 * 4/ allocate new pages for the new slots in the new stripe_heads.
2313 * If this fails, we don't bother trying the shrink the
2314 * stripe_heads down again, we just leave them as they are.
2315 * As each stripe_head is processed the new one is released into
2316 * active service.
2317 *
2318 * Once step2 is started, we cannot afford to wait for a write,
2319 * so we use GFP_NOIO allocations.
2320 */
2321 struct stripe_head *osh, *nsh;
2322 LIST_HEAD(newstripes);
2323 struct disk_info *ndisks;
2324 int err = 0;
2325 struct kmem_cache *sc;
2326 int i;
2327 int hash, cnt;
2328
2329 md_allow_write(conf->mddev);
2330
2331 /* Step 1 */
2332 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2333 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2334 0, 0, NULL);
2335 if (!sc)
2336 return -ENOMEM;
2337
2338 /* Need to ensure auto-resizing doesn't interfere */
2339 mutex_lock(&conf->cache_size_mutex);
2340
2341 for (i = conf->max_nr_stripes; i; i--) {
2342 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2343 if (!nsh)
2344 break;
2345
2346 list_add(&nsh->lru, &newstripes);
2347 }
2348 if (i) {
2349 /* didn't get enough, give up */
2350 while (!list_empty(&newstripes)) {
2351 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2352 list_del(&nsh->lru);
2353 free_stripe(sc, nsh);
2354 }
2355 kmem_cache_destroy(sc);
2356 mutex_unlock(&conf->cache_size_mutex);
2357 return -ENOMEM;
2358 }
2359 /* Step 2 - Must use GFP_NOIO now.
2360 * OK, we have enough stripes, start collecting inactive
2361 * stripes and copying them over
2362 */
2363 hash = 0;
2364 cnt = 0;
2365 list_for_each_entry(nsh, &newstripes, lru) {
2366 lock_device_hash_lock(conf, hash);
2367 wait_event_cmd(conf->wait_for_stripe,
2368 !list_empty(conf->inactive_list + hash),
2369 unlock_device_hash_lock(conf, hash),
2370 lock_device_hash_lock(conf, hash));
2371 osh = get_free_stripe(conf, hash);
2372 unlock_device_hash_lock(conf, hash);
2373
2374 for(i=0; i<conf->pool_size; i++) {
2375 nsh->dev[i].page = osh->dev[i].page;
2376 nsh->dev[i].orig_page = osh->dev[i].page;
2377 }
2378 nsh->hash_lock_index = hash;
2379 free_stripe(conf->slab_cache, osh);
2380 cnt++;
2381 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2382 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2383 hash++;
2384 cnt = 0;
2385 }
2386 }
2387 kmem_cache_destroy(conf->slab_cache);
2388
2389 /* Step 3.
2390 * At this point, we are holding all the stripes so the array
2391 * is completely stalled, so now is a good time to resize
2392 * conf->disks and the scribble region
2393 */
2394 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2395 if (ndisks) {
2396 for (i = 0; i < conf->pool_size; i++)
2397 ndisks[i] = conf->disks[i];
2398
2399 for (i = conf->pool_size; i < newsize; i++) {
2400 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2401 if (!ndisks[i].extra_page)
2402 err = -ENOMEM;
2403 }
2404
2405 if (err) {
2406 for (i = conf->pool_size; i < newsize; i++)
2407 if (ndisks[i].extra_page)
2408 put_page(ndisks[i].extra_page);
2409 kfree(ndisks);
2410 } else {
2411 kfree(conf->disks);
2412 conf->disks = ndisks;
2413 }
2414 } else
2415 err = -ENOMEM;
2416
2417 mutex_unlock(&conf->cache_size_mutex);
2418
2419 conf->slab_cache = sc;
2420 conf->active_name = 1-conf->active_name;
2421
2422 /* Step 4, return new stripes to service */
2423 while(!list_empty(&newstripes)) {
2424 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2425 list_del_init(&nsh->lru);
2426
2427 for (i=conf->raid_disks; i < newsize; i++)
2428 if (nsh->dev[i].page == NULL) {
2429 struct page *p = alloc_page(GFP_NOIO);
2430 nsh->dev[i].page = p;
2431 nsh->dev[i].orig_page = p;
2432 if (!p)
2433 err = -ENOMEM;
2434 }
2435 raid5_release_stripe(nsh);
2436 }
2437 /* critical section pass, GFP_NOIO no longer needed */
2438
2439 if (!err)
2440 conf->pool_size = newsize;
2441 return err;
2442 }
2443
2444 static int drop_one_stripe(struct r5conf *conf)
2445 {
2446 struct stripe_head *sh;
2447 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2448
2449 spin_lock_irq(conf->hash_locks + hash);
2450 sh = get_free_stripe(conf, hash);
2451 spin_unlock_irq(conf->hash_locks + hash);
2452 if (!sh)
2453 return 0;
2454 BUG_ON(atomic_read(&sh->count));
2455 shrink_buffers(sh);
2456 free_stripe(conf->slab_cache, sh);
2457 atomic_dec(&conf->active_stripes);
2458 conf->max_nr_stripes--;
2459 return 1;
2460 }
2461
2462 static void shrink_stripes(struct r5conf *conf)
2463 {
2464 while (conf->max_nr_stripes &&
2465 drop_one_stripe(conf))
2466 ;
2467
2468 kmem_cache_destroy(conf->slab_cache);
2469 conf->slab_cache = NULL;
2470 }
2471
2472 static void raid5_end_read_request(struct bio * bi)
2473 {
2474 struct stripe_head *sh = bi->bi_private;
2475 struct r5conf *conf = sh->raid_conf;
2476 int disks = sh->disks, i;
2477 char b[BDEVNAME_SIZE];
2478 struct md_rdev *rdev = NULL;
2479 sector_t s;
2480
2481 for (i=0 ; i<disks; i++)
2482 if (bi == &sh->dev[i].req)
2483 break;
2484
2485 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2486 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2487 bi->bi_status);
2488 if (i == disks) {
2489 bio_reset(bi);
2490 BUG();
2491 return;
2492 }
2493 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2494 /* If replacement finished while this request was outstanding,
2495 * 'replacement' might be NULL already.
2496 * In that case it moved down to 'rdev'.
2497 * rdev is not removed until all requests are finished.
2498 */
2499 rdev = conf->disks[i].replacement;
2500 if (!rdev)
2501 rdev = conf->disks[i].rdev;
2502
2503 if (use_new_offset(conf, sh))
2504 s = sh->sector + rdev->new_data_offset;
2505 else
2506 s = sh->sector + rdev->data_offset;
2507 if (!bi->bi_status) {
2508 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2509 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2510 /* Note that this cannot happen on a
2511 * replacement device. We just fail those on
2512 * any error
2513 */
2514 pr_info_ratelimited(
2515 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2516 mdname(conf->mddev), STRIPE_SECTORS,
2517 (unsigned long long)s,
2518 bdevname(rdev->bdev, b));
2519 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2520 clear_bit(R5_ReadError, &sh->dev[i].flags);
2521 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2522 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2523 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2524
2525 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2526 /*
2527 * end read for a page in journal, this
2528 * must be preparing for prexor in rmw
2529 */
2530 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2531
2532 if (atomic_read(&rdev->read_errors))
2533 atomic_set(&rdev->read_errors, 0);
2534 } else {
2535 const char *bdn = bdevname(rdev->bdev, b);
2536 int retry = 0;
2537 int set_bad = 0;
2538
2539 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2540 atomic_inc(&rdev->read_errors);
2541 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2542 pr_warn_ratelimited(
2543 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2544 mdname(conf->mddev),
2545 (unsigned long long)s,
2546 bdn);
2547 else if (conf->mddev->degraded >= conf->max_degraded) {
2548 set_bad = 1;
2549 pr_warn_ratelimited(
2550 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2551 mdname(conf->mddev),
2552 (unsigned long long)s,
2553 bdn);
2554 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2555 /* Oh, no!!! */
2556 set_bad = 1;
2557 pr_warn_ratelimited(
2558 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2559 mdname(conf->mddev),
2560 (unsigned long long)s,
2561 bdn);
2562 } else if (atomic_read(&rdev->read_errors)
2563 > conf->max_nr_stripes)
2564 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2565 mdname(conf->mddev), bdn);
2566 else
2567 retry = 1;
2568 if (set_bad && test_bit(In_sync, &rdev->flags)
2569 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2570 retry = 1;
2571 if (retry)
2572 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2573 set_bit(R5_ReadError, &sh->dev[i].flags);
2574 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2575 } else
2576 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2577 else {
2578 clear_bit(R5_ReadError, &sh->dev[i].flags);
2579 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2580 if (!(set_bad
2581 && test_bit(In_sync, &rdev->flags)
2582 && rdev_set_badblocks(
2583 rdev, sh->sector, STRIPE_SECTORS, 0)))
2584 md_error(conf->mddev, rdev);
2585 }
2586 }
2587 rdev_dec_pending(rdev, conf->mddev);
2588 bio_reset(bi);
2589 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2590 set_bit(STRIPE_HANDLE, &sh->state);
2591 raid5_release_stripe(sh);
2592 }
2593
2594 static void raid5_end_write_request(struct bio *bi)
2595 {
2596 struct stripe_head *sh = bi->bi_private;
2597 struct r5conf *conf = sh->raid_conf;
2598 int disks = sh->disks, i;
2599 struct md_rdev *uninitialized_var(rdev);
2600 sector_t first_bad;
2601 int bad_sectors;
2602 int replacement = 0;
2603
2604 for (i = 0 ; i < disks; i++) {
2605 if (bi == &sh->dev[i].req) {
2606 rdev = conf->disks[i].rdev;
2607 break;
2608 }
2609 if (bi == &sh->dev[i].rreq) {
2610 rdev = conf->disks[i].replacement;
2611 if (rdev)
2612 replacement = 1;
2613 else
2614 /* rdev was removed and 'replacement'
2615 * replaced it. rdev is not removed
2616 * until all requests are finished.
2617 */
2618 rdev = conf->disks[i].rdev;
2619 break;
2620 }
2621 }
2622 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2623 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2624 bi->bi_status);
2625 if (i == disks) {
2626 bio_reset(bi);
2627 BUG();
2628 return;
2629 }
2630
2631 if (replacement) {
2632 if (bi->bi_status)
2633 md_error(conf->mddev, rdev);
2634 else if (is_badblock(rdev, sh->sector,
2635 STRIPE_SECTORS,
2636 &first_bad, &bad_sectors))
2637 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2638 } else {
2639 if (bi->bi_status) {
2640 set_bit(STRIPE_DEGRADED, &sh->state);
2641 set_bit(WriteErrorSeen, &rdev->flags);
2642 set_bit(R5_WriteError, &sh->dev[i].flags);
2643 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2644 set_bit(MD_RECOVERY_NEEDED,
2645 &rdev->mddev->recovery);
2646 } else if (is_badblock(rdev, sh->sector,
2647 STRIPE_SECTORS,
2648 &first_bad, &bad_sectors)) {
2649 set_bit(R5_MadeGood, &sh->dev[i].flags);
2650 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2651 /* That was a successful write so make
2652 * sure it looks like we already did
2653 * a re-write.
2654 */
2655 set_bit(R5_ReWrite, &sh->dev[i].flags);
2656 }
2657 }
2658 rdev_dec_pending(rdev, conf->mddev);
2659
2660 if (sh->batch_head && bi->bi_status && !replacement)
2661 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2662
2663 bio_reset(bi);
2664 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2665 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2666 set_bit(STRIPE_HANDLE, &sh->state);
2667 raid5_release_stripe(sh);
2668
2669 if (sh->batch_head && sh != sh->batch_head)
2670 raid5_release_stripe(sh->batch_head);
2671 }
2672
2673 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2674 {
2675 char b[BDEVNAME_SIZE];
2676 struct r5conf *conf = mddev->private;
2677 unsigned long flags;
2678 pr_debug("raid456: error called\n");
2679
2680 spin_lock_irqsave(&conf->device_lock, flags);
2681 set_bit(Faulty, &rdev->flags);
2682 clear_bit(In_sync, &rdev->flags);
2683 mddev->degraded = raid5_calc_degraded(conf);
2684 spin_unlock_irqrestore(&conf->device_lock, flags);
2685 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2686
2687 set_bit(Blocked, &rdev->flags);
2688 set_mask_bits(&mddev->sb_flags, 0,
2689 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2690 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2691 "md/raid:%s: Operation continuing on %d devices.\n",
2692 mdname(mddev),
2693 bdevname(rdev->bdev, b),
2694 mdname(mddev),
2695 conf->raid_disks - mddev->degraded);
2696 r5c_update_on_rdev_error(mddev, rdev);
2697 }
2698
2699 /*
2700 * Input: a 'big' sector number,
2701 * Output: index of the data and parity disk, and the sector # in them.
2702 */
2703 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2704 int previous, int *dd_idx,
2705 struct stripe_head *sh)
2706 {
2707 sector_t stripe, stripe2;
2708 sector_t chunk_number;
2709 unsigned int chunk_offset;
2710 int pd_idx, qd_idx;
2711 int ddf_layout = 0;
2712 sector_t new_sector;
2713 int algorithm = previous ? conf->prev_algo
2714 : conf->algorithm;
2715 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2716 : conf->chunk_sectors;
2717 int raid_disks = previous ? conf->previous_raid_disks
2718 : conf->raid_disks;
2719 int data_disks = raid_disks - conf->max_degraded;
2720
2721 /* First compute the information on this sector */
2722
2723 /*
2724 * Compute the chunk number and the sector offset inside the chunk
2725 */
2726 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2727 chunk_number = r_sector;
2728
2729 /*
2730 * Compute the stripe number
2731 */
2732 stripe = chunk_number;
2733 *dd_idx = sector_div(stripe, data_disks);
2734 stripe2 = stripe;
2735 /*
2736 * Select the parity disk based on the user selected algorithm.
2737 */
2738 pd_idx = qd_idx = -1;
2739 switch(conf->level) {
2740 case 4:
2741 pd_idx = data_disks;
2742 break;
2743 case 5:
2744 switch (algorithm) {
2745 case ALGORITHM_LEFT_ASYMMETRIC:
2746 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2747 if (*dd_idx >= pd_idx)
2748 (*dd_idx)++;
2749 break;
2750 case ALGORITHM_RIGHT_ASYMMETRIC:
2751 pd_idx = sector_div(stripe2, raid_disks);
2752 if (*dd_idx >= pd_idx)
2753 (*dd_idx)++;
2754 break;
2755 case ALGORITHM_LEFT_SYMMETRIC:
2756 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2757 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2758 break;
2759 case ALGORITHM_RIGHT_SYMMETRIC:
2760 pd_idx = sector_div(stripe2, raid_disks);
2761 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2762 break;
2763 case ALGORITHM_PARITY_0:
2764 pd_idx = 0;
2765 (*dd_idx)++;
2766 break;
2767 case ALGORITHM_PARITY_N:
2768 pd_idx = data_disks;
2769 break;
2770 default:
2771 BUG();
2772 }
2773 break;
2774 case 6:
2775
2776 switch (algorithm) {
2777 case ALGORITHM_LEFT_ASYMMETRIC:
2778 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2779 qd_idx = pd_idx + 1;
2780 if (pd_idx == raid_disks-1) {
2781 (*dd_idx)++; /* Q D D D P */
2782 qd_idx = 0;
2783 } else if (*dd_idx >= pd_idx)
2784 (*dd_idx) += 2; /* D D P Q D */
2785 break;
2786 case ALGORITHM_RIGHT_ASYMMETRIC:
2787 pd_idx = sector_div(stripe2, raid_disks);
2788 qd_idx = pd_idx + 1;
2789 if (pd_idx == raid_disks-1) {
2790 (*dd_idx)++; /* Q D D D P */
2791 qd_idx = 0;
2792 } else if (*dd_idx >= pd_idx)
2793 (*dd_idx) += 2; /* D D P Q D */
2794 break;
2795 case ALGORITHM_LEFT_SYMMETRIC:
2796 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2797 qd_idx = (pd_idx + 1) % raid_disks;
2798 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2799 break;
2800 case ALGORITHM_RIGHT_SYMMETRIC:
2801 pd_idx = sector_div(stripe2, raid_disks);
2802 qd_idx = (pd_idx + 1) % raid_disks;
2803 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2804 break;
2805
2806 case ALGORITHM_PARITY_0:
2807 pd_idx = 0;
2808 qd_idx = 1;
2809 (*dd_idx) += 2;
2810 break;
2811 case ALGORITHM_PARITY_N:
2812 pd_idx = data_disks;
2813 qd_idx = data_disks + 1;
2814 break;
2815
2816 case ALGORITHM_ROTATING_ZERO_RESTART:
2817 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2818 * of blocks for computing Q is different.
2819 */
2820 pd_idx = sector_div(stripe2, raid_disks);
2821 qd_idx = pd_idx + 1;
2822 if (pd_idx == raid_disks-1) {
2823 (*dd_idx)++; /* Q D D D P */
2824 qd_idx = 0;
2825 } else if (*dd_idx >= pd_idx)
2826 (*dd_idx) += 2; /* D D P Q D */
2827 ddf_layout = 1;
2828 break;
2829
2830 case ALGORITHM_ROTATING_N_RESTART:
2831 /* Same a left_asymmetric, by first stripe is
2832 * D D D P Q rather than
2833 * Q D D D P
2834 */
2835 stripe2 += 1;
2836 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2837 qd_idx = pd_idx + 1;
2838 if (pd_idx == raid_disks-1) {
2839 (*dd_idx)++; /* Q D D D P */
2840 qd_idx = 0;
2841 } else if (*dd_idx >= pd_idx)
2842 (*dd_idx) += 2; /* D D P Q D */
2843 ddf_layout = 1;
2844 break;
2845
2846 case ALGORITHM_ROTATING_N_CONTINUE:
2847 /* Same as left_symmetric but Q is before P */
2848 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2849 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2850 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2851 ddf_layout = 1;
2852 break;
2853
2854 case ALGORITHM_LEFT_ASYMMETRIC_6:
2855 /* RAID5 left_asymmetric, with Q on last device */
2856 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2857 if (*dd_idx >= pd_idx)
2858 (*dd_idx)++;
2859 qd_idx = raid_disks - 1;
2860 break;
2861
2862 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2863 pd_idx = sector_div(stripe2, raid_disks-1);
2864 if (*dd_idx >= pd_idx)
2865 (*dd_idx)++;
2866 qd_idx = raid_disks - 1;
2867 break;
2868
2869 case ALGORITHM_LEFT_SYMMETRIC_6:
2870 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2871 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2872 qd_idx = raid_disks - 1;
2873 break;
2874
2875 case ALGORITHM_RIGHT_SYMMETRIC_6:
2876 pd_idx = sector_div(stripe2, raid_disks-1);
2877 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2878 qd_idx = raid_disks - 1;
2879 break;
2880
2881 case ALGORITHM_PARITY_0_6:
2882 pd_idx = 0;
2883 (*dd_idx)++;
2884 qd_idx = raid_disks - 1;
2885 break;
2886
2887 default:
2888 BUG();
2889 }
2890 break;
2891 }
2892
2893 if (sh) {
2894 sh->pd_idx = pd_idx;
2895 sh->qd_idx = qd_idx;
2896 sh->ddf_layout = ddf_layout;
2897 }
2898 /*
2899 * Finally, compute the new sector number
2900 */
2901 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2902 return new_sector;
2903 }
2904
2905 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2906 {
2907 struct r5conf *conf = sh->raid_conf;
2908 int raid_disks = sh->disks;
2909 int data_disks = raid_disks - conf->max_degraded;
2910 sector_t new_sector = sh->sector, check;
2911 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2912 : conf->chunk_sectors;
2913 int algorithm = previous ? conf->prev_algo
2914 : conf->algorithm;
2915 sector_t stripe;
2916 int chunk_offset;
2917 sector_t chunk_number;
2918 int dummy1, dd_idx = i;
2919 sector_t r_sector;
2920 struct stripe_head sh2;
2921
2922 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2923 stripe = new_sector;
2924
2925 if (i == sh->pd_idx)
2926 return 0;
2927 switch(conf->level) {
2928 case 4: break;
2929 case 5:
2930 switch (algorithm) {
2931 case ALGORITHM_LEFT_ASYMMETRIC:
2932 case ALGORITHM_RIGHT_ASYMMETRIC:
2933 if (i > sh->pd_idx)
2934 i--;
2935 break;
2936 case ALGORITHM_LEFT_SYMMETRIC:
2937 case ALGORITHM_RIGHT_SYMMETRIC:
2938 if (i < sh->pd_idx)
2939 i += raid_disks;
2940 i -= (sh->pd_idx + 1);
2941 break;
2942 case ALGORITHM_PARITY_0:
2943 i -= 1;
2944 break;
2945 case ALGORITHM_PARITY_N:
2946 break;
2947 default:
2948 BUG();
2949 }
2950 break;
2951 case 6:
2952 if (i == sh->qd_idx)
2953 return 0; /* It is the Q disk */
2954 switch (algorithm) {
2955 case ALGORITHM_LEFT_ASYMMETRIC:
2956 case ALGORITHM_RIGHT_ASYMMETRIC:
2957 case ALGORITHM_ROTATING_ZERO_RESTART:
2958 case ALGORITHM_ROTATING_N_RESTART:
2959 if (sh->pd_idx == raid_disks-1)
2960 i--; /* Q D D D P */
2961 else if (i > sh->pd_idx)
2962 i -= 2; /* D D P Q D */
2963 break;
2964 case ALGORITHM_LEFT_SYMMETRIC:
2965 case ALGORITHM_RIGHT_SYMMETRIC:
2966 if (sh->pd_idx == raid_disks-1)
2967 i--; /* Q D D D P */
2968 else {
2969 /* D D P Q D */
2970 if (i < sh->pd_idx)
2971 i += raid_disks;
2972 i -= (sh->pd_idx + 2);
2973 }
2974 break;
2975 case ALGORITHM_PARITY_0:
2976 i -= 2;
2977 break;
2978 case ALGORITHM_PARITY_N:
2979 break;
2980 case ALGORITHM_ROTATING_N_CONTINUE:
2981 /* Like left_symmetric, but P is before Q */
2982 if (sh->pd_idx == 0)
2983 i--; /* P D D D Q */
2984 else {
2985 /* D D Q P D */
2986 if (i < sh->pd_idx)
2987 i += raid_disks;
2988 i -= (sh->pd_idx + 1);
2989 }
2990 break;
2991 case ALGORITHM_LEFT_ASYMMETRIC_6:
2992 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2993 if (i > sh->pd_idx)
2994 i--;
2995 break;
2996 case ALGORITHM_LEFT_SYMMETRIC_6:
2997 case ALGORITHM_RIGHT_SYMMETRIC_6:
2998 if (i < sh->pd_idx)
2999 i += data_disks + 1;
3000 i -= (sh->pd_idx + 1);
3001 break;
3002 case ALGORITHM_PARITY_0_6:
3003 i -= 1;
3004 break;
3005 default:
3006 BUG();
3007 }
3008 break;
3009 }
3010
3011 chunk_number = stripe * data_disks + i;
3012 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3013
3014 check = raid5_compute_sector(conf, r_sector,
3015 previous, &dummy1, &sh2);
3016 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3017 || sh2.qd_idx != sh->qd_idx) {
3018 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3019 mdname(conf->mddev));
3020 return 0;
3021 }
3022 return r_sector;
3023 }
3024
3025 /*
3026 * There are cases where we want handle_stripe_dirtying() and
3027 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3028 *
3029 * This function checks whether we want to delay the towrite. Specifically,
3030 * we delay the towrite when:
3031 *
3032 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3033 * stripe has data in journal (for other devices).
3034 *
3035 * In this case, when reading data for the non-overwrite dev, it is
3036 * necessary to handle complex rmw of write back cache (prexor with
3037 * orig_page, and xor with page). To keep read path simple, we would
3038 * like to flush data in journal to RAID disks first, so complex rmw
3039 * is handled in the write patch (handle_stripe_dirtying).
3040 *
3041 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3042 *
3043 * It is important to be able to flush all stripes in raid5-cache.
3044 * Therefore, we need reserve some space on the journal device for
3045 * these flushes. If flush operation includes pending writes to the
3046 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3047 * for the flush out. If we exclude these pending writes from flush
3048 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3049 * Therefore, excluding pending writes in these cases enables more
3050 * efficient use of the journal device.
3051 *
3052 * Note: To make sure the stripe makes progress, we only delay
3053 * towrite for stripes with data already in journal (injournal > 0).
3054 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3055 * no_space_stripes list.
3056 *
3057 * 3. during journal failure
3058 * In journal failure, we try to flush all cached data to raid disks
3059 * based on data in stripe cache. The array is read-only to upper
3060 * layers, so we would skip all pending writes.
3061 *
3062 */
3063 static inline bool delay_towrite(struct r5conf *conf,
3064 struct r5dev *dev,
3065 struct stripe_head_state *s)
3066 {
3067 /* case 1 above */
3068 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3069 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3070 return true;
3071 /* case 2 above */
3072 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3073 s->injournal > 0)
3074 return true;
3075 /* case 3 above */
3076 if (s->log_failed && s->injournal)
3077 return true;
3078 return false;
3079 }
3080
3081 static void
3082 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3083 int rcw, int expand)
3084 {
3085 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3086 struct r5conf *conf = sh->raid_conf;
3087 int level = conf->level;
3088
3089 if (rcw) {
3090 /*
3091 * In some cases, handle_stripe_dirtying initially decided to
3092 * run rmw and allocates extra page for prexor. However, rcw is
3093 * cheaper later on. We need to free the extra page now,
3094 * because we won't be able to do that in ops_complete_prexor().
3095 */
3096 r5c_release_extra_page(sh);
3097
3098 for (i = disks; i--; ) {
3099 struct r5dev *dev = &sh->dev[i];
3100
3101 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3102 set_bit(R5_LOCKED, &dev->flags);
3103 set_bit(R5_Wantdrain, &dev->flags);
3104 if (!expand)
3105 clear_bit(R5_UPTODATE, &dev->flags);
3106 s->locked++;
3107 } else if (test_bit(R5_InJournal, &dev->flags)) {
3108 set_bit(R5_LOCKED, &dev->flags);
3109 s->locked++;
3110 }
3111 }
3112 /* if we are not expanding this is a proper write request, and
3113 * there will be bios with new data to be drained into the
3114 * stripe cache
3115 */
3116 if (!expand) {
3117 if (!s->locked)
3118 /* False alarm, nothing to do */
3119 return;
3120 sh->reconstruct_state = reconstruct_state_drain_run;
3121 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3122 } else
3123 sh->reconstruct_state = reconstruct_state_run;
3124
3125 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3126
3127 if (s->locked + conf->max_degraded == disks)
3128 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3129 atomic_inc(&conf->pending_full_writes);
3130 } else {
3131 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3132 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3133 BUG_ON(level == 6 &&
3134 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3135 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3136
3137 for (i = disks; i--; ) {
3138 struct r5dev *dev = &sh->dev[i];
3139 if (i == pd_idx || i == qd_idx)
3140 continue;
3141
3142 if (dev->towrite &&
3143 (test_bit(R5_UPTODATE, &dev->flags) ||
3144 test_bit(R5_Wantcompute, &dev->flags))) {
3145 set_bit(R5_Wantdrain, &dev->flags);
3146 set_bit(R5_LOCKED, &dev->flags);
3147 clear_bit(R5_UPTODATE, &dev->flags);
3148 s->locked++;
3149 } else if (test_bit(R5_InJournal, &dev->flags)) {
3150 set_bit(R5_LOCKED, &dev->flags);
3151 s->locked++;
3152 }
3153 }
3154 if (!s->locked)
3155 /* False alarm - nothing to do */
3156 return;
3157 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3158 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3159 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3160 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3161 }
3162
3163 /* keep the parity disk(s) locked while asynchronous operations
3164 * are in flight
3165 */
3166 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3167 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3168 s->locked++;
3169
3170 if (level == 6) {
3171 int qd_idx = sh->qd_idx;
3172 struct r5dev *dev = &sh->dev[qd_idx];
3173
3174 set_bit(R5_LOCKED, &dev->flags);
3175 clear_bit(R5_UPTODATE, &dev->flags);
3176 s->locked++;
3177 }
3178
3179 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3180 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3181 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3182 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3183 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3184
3185 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3186 __func__, (unsigned long long)sh->sector,
3187 s->locked, s->ops_request);
3188 }
3189
3190 /*
3191 * Each stripe/dev can have one or more bion attached.
3192 * toread/towrite point to the first in a chain.
3193 * The bi_next chain must be in order.
3194 */
3195 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3196 int forwrite, int previous)
3197 {
3198 struct bio **bip;
3199 struct r5conf *conf = sh->raid_conf;
3200 int firstwrite=0;
3201
3202 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3203 (unsigned long long)bi->bi_iter.bi_sector,
3204 (unsigned long long)sh->sector);
3205
3206 spin_lock_irq(&sh->stripe_lock);
3207 /* Don't allow new IO added to stripes in batch list */
3208 if (sh->batch_head)
3209 goto overlap;
3210 if (forwrite) {
3211 bip = &sh->dev[dd_idx].towrite;
3212 if (*bip == NULL)
3213 firstwrite = 1;
3214 } else
3215 bip = &sh->dev[dd_idx].toread;
3216 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3217 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3218 goto overlap;
3219 bip = & (*bip)->bi_next;
3220 }
3221 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3222 goto overlap;
3223
3224 if (forwrite && raid5_has_ppl(conf)) {
3225 /*
3226 * With PPL only writes to consecutive data chunks within a
3227 * stripe are allowed because for a single stripe_head we can
3228 * only have one PPL entry at a time, which describes one data
3229 * range. Not really an overlap, but wait_for_overlap can be
3230 * used to handle this.
3231 */
3232 sector_t sector;
3233 sector_t first = 0;
3234 sector_t last = 0;
3235 int count = 0;
3236 int i;
3237
3238 for (i = 0; i < sh->disks; i++) {
3239 if (i != sh->pd_idx &&
3240 (i == dd_idx || sh->dev[i].towrite)) {
3241 sector = sh->dev[i].sector;
3242 if (count == 0 || sector < first)
3243 first = sector;
3244 if (sector > last)
3245 last = sector;
3246 count++;
3247 }
3248 }
3249
3250 if (first + conf->chunk_sectors * (count - 1) != last)
3251 goto overlap;
3252 }
3253
3254 if (!forwrite || previous)
3255 clear_bit(STRIPE_BATCH_READY, &sh->state);
3256
3257 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3258 if (*bip)
3259 bi->bi_next = *bip;
3260 *bip = bi;
3261 bio_inc_remaining(bi);
3262 md_write_inc(conf->mddev, bi);
3263
3264 if (forwrite) {
3265 /* check if page is covered */
3266 sector_t sector = sh->dev[dd_idx].sector;
3267 for (bi=sh->dev[dd_idx].towrite;
3268 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3269 bi && bi->bi_iter.bi_sector <= sector;
3270 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3271 if (bio_end_sector(bi) >= sector)
3272 sector = bio_end_sector(bi);
3273 }
3274 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3275 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3276 sh->overwrite_disks++;
3277 }
3278
3279 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3280 (unsigned long long)(*bip)->bi_iter.bi_sector,
3281 (unsigned long long)sh->sector, dd_idx);
3282
3283 if (conf->mddev->bitmap && firstwrite) {
3284 /* Cannot hold spinlock over bitmap_startwrite,
3285 * but must ensure this isn't added to a batch until
3286 * we have added to the bitmap and set bm_seq.
3287 * So set STRIPE_BITMAP_PENDING to prevent
3288 * batching.
3289 * If multiple add_stripe_bio() calls race here they
3290 * much all set STRIPE_BITMAP_PENDING. So only the first one
3291 * to complete "bitmap_startwrite" gets to set
3292 * STRIPE_BIT_DELAY. This is important as once a stripe
3293 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3294 * any more.
3295 */
3296 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3297 spin_unlock_irq(&sh->stripe_lock);
3298 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3299 STRIPE_SECTORS, 0);
3300 spin_lock_irq(&sh->stripe_lock);
3301 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3302 if (!sh->batch_head) {
3303 sh->bm_seq = conf->seq_flush+1;
3304 set_bit(STRIPE_BIT_DELAY, &sh->state);
3305 }
3306 }
3307 spin_unlock_irq(&sh->stripe_lock);
3308
3309 if (stripe_can_batch(sh))
3310 stripe_add_to_batch_list(conf, sh);
3311 return 1;
3312
3313 overlap:
3314 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3315 spin_unlock_irq(&sh->stripe_lock);
3316 return 0;
3317 }
3318
3319 static void end_reshape(struct r5conf *conf);
3320
3321 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3322 struct stripe_head *sh)
3323 {
3324 int sectors_per_chunk =
3325 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3326 int dd_idx;
3327 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3328 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3329
3330 raid5_compute_sector(conf,
3331 stripe * (disks - conf->max_degraded)
3332 *sectors_per_chunk + chunk_offset,
3333 previous,
3334 &dd_idx, sh);
3335 }
3336
3337 static void
3338 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3339 struct stripe_head_state *s, int disks)
3340 {
3341 int i;
3342 BUG_ON(sh->batch_head);
3343 for (i = disks; i--; ) {
3344 struct bio *bi;
3345 int bitmap_end = 0;
3346
3347 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3348 struct md_rdev *rdev;
3349 rcu_read_lock();
3350 rdev = rcu_dereference(conf->disks[i].rdev);
3351 if (rdev && test_bit(In_sync, &rdev->flags) &&
3352 !test_bit(Faulty, &rdev->flags))
3353 atomic_inc(&rdev->nr_pending);
3354 else
3355 rdev = NULL;
3356 rcu_read_unlock();
3357 if (rdev) {
3358 if (!rdev_set_badblocks(
3359 rdev,
3360 sh->sector,
3361 STRIPE_SECTORS, 0))
3362 md_error(conf->mddev, rdev);
3363 rdev_dec_pending(rdev, conf->mddev);
3364 }
3365 }
3366 spin_lock_irq(&sh->stripe_lock);
3367 /* fail all writes first */
3368 bi = sh->dev[i].towrite;
3369 sh->dev[i].towrite = NULL;
3370 sh->overwrite_disks = 0;
3371 spin_unlock_irq(&sh->stripe_lock);
3372 if (bi)
3373 bitmap_end = 1;
3374
3375 log_stripe_write_finished(sh);
3376
3377 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3378 wake_up(&conf->wait_for_overlap);
3379
3380 while (bi && bi->bi_iter.bi_sector <
3381 sh->dev[i].sector + STRIPE_SECTORS) {
3382 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3383
3384 md_write_end(conf->mddev);
3385 bio_io_error(bi);
3386 bi = nextbi;
3387 }
3388 if (bitmap_end)
3389 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3390 STRIPE_SECTORS, 0, 0);
3391 bitmap_end = 0;
3392 /* and fail all 'written' */
3393 bi = sh->dev[i].written;
3394 sh->dev[i].written = NULL;
3395 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3396 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3397 sh->dev[i].page = sh->dev[i].orig_page;
3398 }
3399
3400 if (bi) bitmap_end = 1;
3401 while (bi && bi->bi_iter.bi_sector <
3402 sh->dev[i].sector + STRIPE_SECTORS) {
3403 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3404
3405 md_write_end(conf->mddev);
3406 bio_io_error(bi);
3407 bi = bi2;
3408 }
3409
3410 /* fail any reads if this device is non-operational and
3411 * the data has not reached the cache yet.
3412 */
3413 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3414 s->failed > conf->max_degraded &&
3415 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3416 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3417 spin_lock_irq(&sh->stripe_lock);
3418 bi = sh->dev[i].toread;
3419 sh->dev[i].toread = NULL;
3420 spin_unlock_irq(&sh->stripe_lock);
3421 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3422 wake_up(&conf->wait_for_overlap);
3423 if (bi)
3424 s->to_read--;
3425 while (bi && bi->bi_iter.bi_sector <
3426 sh->dev[i].sector + STRIPE_SECTORS) {
3427 struct bio *nextbi =
3428 r5_next_bio(bi, sh->dev[i].sector);
3429
3430 bio_io_error(bi);
3431 bi = nextbi;
3432 }
3433 }
3434 if (bitmap_end)
3435 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3436 STRIPE_SECTORS, 0, 0);
3437 /* If we were in the middle of a write the parity block might
3438 * still be locked - so just clear all R5_LOCKED flags
3439 */
3440 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3441 }
3442 s->to_write = 0;
3443 s->written = 0;
3444
3445 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3446 if (atomic_dec_and_test(&conf->pending_full_writes))
3447 md_wakeup_thread(conf->mddev->thread);
3448 }
3449
3450 static void
3451 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3452 struct stripe_head_state *s)
3453 {
3454 int abort = 0;
3455 int i;
3456
3457 BUG_ON(sh->batch_head);
3458 clear_bit(STRIPE_SYNCING, &sh->state);
3459 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3460 wake_up(&conf->wait_for_overlap);
3461 s->syncing = 0;
3462 s->replacing = 0;
3463 /* There is nothing more to do for sync/check/repair.
3464 * Don't even need to abort as that is handled elsewhere
3465 * if needed, and not always wanted e.g. if there is a known
3466 * bad block here.
3467 * For recover/replace we need to record a bad block on all
3468 * non-sync devices, or abort the recovery
3469 */
3470 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3471 /* During recovery devices cannot be removed, so
3472 * locking and refcounting of rdevs is not needed
3473 */
3474 rcu_read_lock();
3475 for (i = 0; i < conf->raid_disks; i++) {
3476 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3477 if (rdev
3478 && !test_bit(Faulty, &rdev->flags)
3479 && !test_bit(In_sync, &rdev->flags)
3480 && !rdev_set_badblocks(rdev, sh->sector,
3481 STRIPE_SECTORS, 0))
3482 abort = 1;
3483 rdev = rcu_dereference(conf->disks[i].replacement);
3484 if (rdev
3485 && !test_bit(Faulty, &rdev->flags)
3486 && !test_bit(In_sync, &rdev->flags)
3487 && !rdev_set_badblocks(rdev, sh->sector,
3488 STRIPE_SECTORS, 0))
3489 abort = 1;
3490 }
3491 rcu_read_unlock();
3492 if (abort)
3493 conf->recovery_disabled =
3494 conf->mddev->recovery_disabled;
3495 }
3496 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3497 }
3498
3499 static int want_replace(struct stripe_head *sh, int disk_idx)
3500 {
3501 struct md_rdev *rdev;
3502 int rv = 0;
3503
3504 rcu_read_lock();
3505 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3506 if (rdev
3507 && !test_bit(Faulty, &rdev->flags)
3508 && !test_bit(In_sync, &rdev->flags)
3509 && (rdev->recovery_offset <= sh->sector
3510 || rdev->mddev->recovery_cp <= sh->sector))
3511 rv = 1;
3512 rcu_read_unlock();
3513 return rv;
3514 }
3515
3516 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3517 int disk_idx, int disks)
3518 {
3519 struct r5dev *dev = &sh->dev[disk_idx];
3520 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3521 &sh->dev[s->failed_num[1]] };
3522 int i;
3523
3524
3525 if (test_bit(R5_LOCKED, &dev->flags) ||
3526 test_bit(R5_UPTODATE, &dev->flags))
3527 /* No point reading this as we already have it or have
3528 * decided to get it.
3529 */
3530 return 0;
3531
3532 if (dev->toread ||
3533 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3534 /* We need this block to directly satisfy a request */
3535 return 1;
3536
3537 if (s->syncing || s->expanding ||
3538 (s->replacing && want_replace(sh, disk_idx)))
3539 /* When syncing, or expanding we read everything.
3540 * When replacing, we need the replaced block.
3541 */
3542 return 1;
3543
3544 if ((s->failed >= 1 && fdev[0]->toread) ||
3545 (s->failed >= 2 && fdev[1]->toread))
3546 /* If we want to read from a failed device, then
3547 * we need to actually read every other device.
3548 */
3549 return 1;
3550
3551 /* Sometimes neither read-modify-write nor reconstruct-write
3552 * cycles can work. In those cases we read every block we
3553 * can. Then the parity-update is certain to have enough to
3554 * work with.
3555 * This can only be a problem when we need to write something,
3556 * and some device has failed. If either of those tests
3557 * fail we need look no further.
3558 */
3559 if (!s->failed || !s->to_write)
3560 return 0;
3561
3562 if (test_bit(R5_Insync, &dev->flags) &&
3563 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3564 /* Pre-reads at not permitted until after short delay
3565 * to gather multiple requests. However if this
3566 * device is no Insync, the block could only be computed
3567 * and there is no need to delay that.
3568 */
3569 return 0;
3570
3571 for (i = 0; i < s->failed && i < 2; i++) {
3572 if (fdev[i]->towrite &&
3573 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3574 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3575 /* If we have a partial write to a failed
3576 * device, then we will need to reconstruct
3577 * the content of that device, so all other
3578 * devices must be read.
3579 */
3580 return 1;
3581 }
3582
3583 /* If we are forced to do a reconstruct-write, either because
3584 * the current RAID6 implementation only supports that, or
3585 * because parity cannot be trusted and we are currently
3586 * recovering it, there is extra need to be careful.
3587 * If one of the devices that we would need to read, because
3588 * it is not being overwritten (and maybe not written at all)
3589 * is missing/faulty, then we need to read everything we can.
3590 */
3591 if (sh->raid_conf->level != 6 &&
3592 sh->sector < sh->raid_conf->mddev->recovery_cp)
3593 /* reconstruct-write isn't being forced */
3594 return 0;
3595 for (i = 0; i < s->failed && i < 2; i++) {
3596 if (s->failed_num[i] != sh->pd_idx &&
3597 s->failed_num[i] != sh->qd_idx &&
3598 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3599 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3600 return 1;
3601 }
3602
3603 return 0;
3604 }
3605
3606 /* fetch_block - checks the given member device to see if its data needs
3607 * to be read or computed to satisfy a request.
3608 *
3609 * Returns 1 when no more member devices need to be checked, otherwise returns
3610 * 0 to tell the loop in handle_stripe_fill to continue
3611 */
3612 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3613 int disk_idx, int disks)
3614 {
3615 struct r5dev *dev = &sh->dev[disk_idx];
3616
3617 /* is the data in this block needed, and can we get it? */
3618 if (need_this_block(sh, s, disk_idx, disks)) {
3619 /* we would like to get this block, possibly by computing it,
3620 * otherwise read it if the backing disk is insync
3621 */
3622 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3623 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3624 BUG_ON(sh->batch_head);
3625
3626 /*
3627 * In the raid6 case if the only non-uptodate disk is P
3628 * then we already trusted P to compute the other failed
3629 * drives. It is safe to compute rather than re-read P.
3630 * In other cases we only compute blocks from failed
3631 * devices, otherwise check/repair might fail to detect
3632 * a real inconsistency.
3633 */
3634
3635 if ((s->uptodate == disks - 1) &&
3636 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3637 (s->failed && (disk_idx == s->failed_num[0] ||
3638 disk_idx == s->failed_num[1])))) {
3639 /* have disk failed, and we're requested to fetch it;
3640 * do compute it
3641 */
3642 pr_debug("Computing stripe %llu block %d\n",
3643 (unsigned long long)sh->sector, disk_idx);
3644 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3645 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3646 set_bit(R5_Wantcompute, &dev->flags);
3647 sh->ops.target = disk_idx;
3648 sh->ops.target2 = -1; /* no 2nd target */
3649 s->req_compute = 1;
3650 /* Careful: from this point on 'uptodate' is in the eye
3651 * of raid_run_ops which services 'compute' operations
3652 * before writes. R5_Wantcompute flags a block that will
3653 * be R5_UPTODATE by the time it is needed for a
3654 * subsequent operation.
3655 */
3656 s->uptodate++;
3657 return 1;
3658 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3659 /* Computing 2-failure is *very* expensive; only
3660 * do it if failed >= 2
3661 */
3662 int other;
3663 for (other = disks; other--; ) {
3664 if (other == disk_idx)
3665 continue;
3666 if (!test_bit(R5_UPTODATE,
3667 &sh->dev[other].flags))
3668 break;
3669 }
3670 BUG_ON(other < 0);
3671 pr_debug("Computing stripe %llu blocks %d,%d\n",
3672 (unsigned long long)sh->sector,
3673 disk_idx, other);
3674 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3675 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3676 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3677 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3678 sh->ops.target = disk_idx;
3679 sh->ops.target2 = other;
3680 s->uptodate += 2;
3681 s->req_compute = 1;
3682 return 1;
3683 } else if (test_bit(R5_Insync, &dev->flags)) {
3684 set_bit(R5_LOCKED, &dev->flags);
3685 set_bit(R5_Wantread, &dev->flags);
3686 s->locked++;
3687 pr_debug("Reading block %d (sync=%d)\n",
3688 disk_idx, s->syncing);
3689 }
3690 }
3691
3692 return 0;
3693 }
3694
3695 /**
3696 * handle_stripe_fill - read or compute data to satisfy pending requests.
3697 */
3698 static void handle_stripe_fill(struct stripe_head *sh,
3699 struct stripe_head_state *s,
3700 int disks)
3701 {
3702 int i;
3703
3704 /* look for blocks to read/compute, skip this if a compute
3705 * is already in flight, or if the stripe contents are in the
3706 * midst of changing due to a write
3707 */
3708 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3709 !sh->reconstruct_state) {
3710
3711 /*
3712 * For degraded stripe with data in journal, do not handle
3713 * read requests yet, instead, flush the stripe to raid
3714 * disks first, this avoids handling complex rmw of write
3715 * back cache (prexor with orig_page, and then xor with
3716 * page) in the read path
3717 */
3718 if (s->injournal && s->failed) {
3719 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3720 r5c_make_stripe_write_out(sh);
3721 goto out;
3722 }
3723
3724 for (i = disks; i--; )
3725 if (fetch_block(sh, s, i, disks))
3726 break;
3727 }
3728 out:
3729 set_bit(STRIPE_HANDLE, &sh->state);
3730 }
3731
3732 static void break_stripe_batch_list(struct stripe_head *head_sh,
3733 unsigned long handle_flags);
3734 /* handle_stripe_clean_event
3735 * any written block on an uptodate or failed drive can be returned.
3736 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3737 * never LOCKED, so we don't need to test 'failed' directly.
3738 */
3739 static void handle_stripe_clean_event(struct r5conf *conf,
3740 struct stripe_head *sh, int disks)
3741 {
3742 int i;
3743 struct r5dev *dev;
3744 int discard_pending = 0;
3745 struct stripe_head *head_sh = sh;
3746 bool do_endio = false;
3747
3748 for (i = disks; i--; )
3749 if (sh->dev[i].written) {
3750 dev = &sh->dev[i];
3751 if (!test_bit(R5_LOCKED, &dev->flags) &&
3752 (test_bit(R5_UPTODATE, &dev->flags) ||
3753 test_bit(R5_Discard, &dev->flags) ||
3754 test_bit(R5_SkipCopy, &dev->flags))) {
3755 /* We can return any write requests */
3756 struct bio *wbi, *wbi2;
3757 pr_debug("Return write for disc %d\n", i);
3758 if (test_and_clear_bit(R5_Discard, &dev->flags))
3759 clear_bit(R5_UPTODATE, &dev->flags);
3760 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3761 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3762 }
3763 do_endio = true;
3764
3765 returnbi:
3766 dev->page = dev->orig_page;
3767 wbi = dev->written;
3768 dev->written = NULL;
3769 while (wbi && wbi->bi_iter.bi_sector <
3770 dev->sector + STRIPE_SECTORS) {
3771 wbi2 = r5_next_bio(wbi, dev->sector);
3772 md_write_end(conf->mddev);
3773 bio_endio(wbi);
3774 wbi = wbi2;
3775 }
3776 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3777 STRIPE_SECTORS,
3778 !test_bit(STRIPE_DEGRADED, &sh->state),
3779 0);
3780 if (head_sh->batch_head) {
3781 sh = list_first_entry(&sh->batch_list,
3782 struct stripe_head,
3783 batch_list);
3784 if (sh != head_sh) {
3785 dev = &sh->dev[i];
3786 goto returnbi;
3787 }
3788 }
3789 sh = head_sh;
3790 dev = &sh->dev[i];
3791 } else if (test_bit(R5_Discard, &dev->flags))
3792 discard_pending = 1;
3793 }
3794
3795 log_stripe_write_finished(sh);
3796
3797 if (!discard_pending &&
3798 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3799 int hash;
3800 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3801 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3802 if (sh->qd_idx >= 0) {
3803 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3804 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3805 }
3806 /* now that discard is done we can proceed with any sync */
3807 clear_bit(STRIPE_DISCARD, &sh->state);
3808 /*
3809 * SCSI discard will change some bio fields and the stripe has
3810 * no updated data, so remove it from hash list and the stripe
3811 * will be reinitialized
3812 */
3813 unhash:
3814 hash = sh->hash_lock_index;
3815 spin_lock_irq(conf->hash_locks + hash);
3816 remove_hash(sh);
3817 spin_unlock_irq(conf->hash_locks + hash);
3818 if (head_sh->batch_head) {
3819 sh = list_first_entry(&sh->batch_list,
3820 struct stripe_head, batch_list);
3821 if (sh != head_sh)
3822 goto unhash;
3823 }
3824 sh = head_sh;
3825
3826 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3827 set_bit(STRIPE_HANDLE, &sh->state);
3828
3829 }
3830
3831 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3832 if (atomic_dec_and_test(&conf->pending_full_writes))
3833 md_wakeup_thread(conf->mddev->thread);
3834
3835 if (head_sh->batch_head && do_endio)
3836 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3837 }
3838
3839 /*
3840 * For RMW in write back cache, we need extra page in prexor to store the
3841 * old data. This page is stored in dev->orig_page.
3842 *
3843 * This function checks whether we have data for prexor. The exact logic
3844 * is:
3845 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3846 */
3847 static inline bool uptodate_for_rmw(struct r5dev *dev)
3848 {
3849 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3850 (!test_bit(R5_InJournal, &dev->flags) ||
3851 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3852 }
3853
3854 static int handle_stripe_dirtying(struct r5conf *conf,
3855 struct stripe_head *sh,
3856 struct stripe_head_state *s,
3857 int disks)
3858 {
3859 int rmw = 0, rcw = 0, i;
3860 sector_t recovery_cp = conf->mddev->recovery_cp;
3861
3862 /* Check whether resync is now happening or should start.
3863 * If yes, then the array is dirty (after unclean shutdown or
3864 * initial creation), so parity in some stripes might be inconsistent.
3865 * In this case, we need to always do reconstruct-write, to ensure
3866 * that in case of drive failure or read-error correction, we
3867 * generate correct data from the parity.
3868 */
3869 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3870 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3871 s->failed == 0)) {
3872 /* Calculate the real rcw later - for now make it
3873 * look like rcw is cheaper
3874 */
3875 rcw = 1; rmw = 2;
3876 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3877 conf->rmw_level, (unsigned long long)recovery_cp,
3878 (unsigned long long)sh->sector);
3879 } else for (i = disks; i--; ) {
3880 /* would I have to read this buffer for read_modify_write */
3881 struct r5dev *dev = &sh->dev[i];
3882 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3883 i == sh->pd_idx || i == sh->qd_idx ||
3884 test_bit(R5_InJournal, &dev->flags)) &&
3885 !test_bit(R5_LOCKED, &dev->flags) &&
3886 !(uptodate_for_rmw(dev) ||
3887 test_bit(R5_Wantcompute, &dev->flags))) {
3888 if (test_bit(R5_Insync, &dev->flags))
3889 rmw++;
3890 else
3891 rmw += 2*disks; /* cannot read it */
3892 }
3893 /* Would I have to read this buffer for reconstruct_write */
3894 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3895 i != sh->pd_idx && i != sh->qd_idx &&
3896 !test_bit(R5_LOCKED, &dev->flags) &&
3897 !(test_bit(R5_UPTODATE, &dev->flags) ||
3898 test_bit(R5_Wantcompute, &dev->flags))) {
3899 if (test_bit(R5_Insync, &dev->flags))
3900 rcw++;
3901 else
3902 rcw += 2*disks;
3903 }
3904 }
3905
3906 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3907 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3908 set_bit(STRIPE_HANDLE, &sh->state);
3909 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3910 /* prefer read-modify-write, but need to get some data */
3911 if (conf->mddev->queue)
3912 blk_add_trace_msg(conf->mddev->queue,
3913 "raid5 rmw %llu %d",
3914 (unsigned long long)sh->sector, rmw);
3915 for (i = disks; i--; ) {
3916 struct r5dev *dev = &sh->dev[i];
3917 if (test_bit(R5_InJournal, &dev->flags) &&
3918 dev->page == dev->orig_page &&
3919 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3920 /* alloc page for prexor */
3921 struct page *p = alloc_page(GFP_NOIO);
3922
3923 if (p) {
3924 dev->orig_page = p;
3925 continue;
3926 }
3927
3928 /*
3929 * alloc_page() failed, try use
3930 * disk_info->extra_page
3931 */
3932 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3933 &conf->cache_state)) {
3934 r5c_use_extra_page(sh);
3935 break;
3936 }
3937
3938 /* extra_page in use, add to delayed_list */
3939 set_bit(STRIPE_DELAYED, &sh->state);
3940 s->waiting_extra_page = 1;
3941 return -EAGAIN;
3942 }
3943 }
3944
3945 for (i = disks; i--; ) {
3946 struct r5dev *dev = &sh->dev[i];
3947 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3948 i == sh->pd_idx || i == sh->qd_idx ||
3949 test_bit(R5_InJournal, &dev->flags)) &&
3950 !test_bit(R5_LOCKED, &dev->flags) &&
3951 !(uptodate_for_rmw(dev) ||
3952 test_bit(R5_Wantcompute, &dev->flags)) &&
3953 test_bit(R5_Insync, &dev->flags)) {
3954 if (test_bit(STRIPE_PREREAD_ACTIVE,
3955 &sh->state)) {
3956 pr_debug("Read_old block %d for r-m-w\n",
3957 i);
3958 set_bit(R5_LOCKED, &dev->flags);
3959 set_bit(R5_Wantread, &dev->flags);
3960 s->locked++;
3961 } else {
3962 set_bit(STRIPE_DELAYED, &sh->state);
3963 set_bit(STRIPE_HANDLE, &sh->state);
3964 }
3965 }
3966 }
3967 }
3968 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3969 /* want reconstruct write, but need to get some data */
3970 int qread =0;
3971 rcw = 0;
3972 for (i = disks; i--; ) {
3973 struct r5dev *dev = &sh->dev[i];
3974 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3975 i != sh->pd_idx && i != sh->qd_idx &&
3976 !test_bit(R5_LOCKED, &dev->flags) &&
3977 !(test_bit(R5_UPTODATE, &dev->flags) ||
3978 test_bit(R5_Wantcompute, &dev->flags))) {
3979 rcw++;
3980 if (test_bit(R5_Insync, &dev->flags) &&
3981 test_bit(STRIPE_PREREAD_ACTIVE,
3982 &sh->state)) {
3983 pr_debug("Read_old block "
3984 "%d for Reconstruct\n", i);
3985 set_bit(R5_LOCKED, &dev->flags);
3986 set_bit(R5_Wantread, &dev->flags);
3987 s->locked++;
3988 qread++;
3989 } else {
3990 set_bit(STRIPE_DELAYED, &sh->state);
3991 set_bit(STRIPE_HANDLE, &sh->state);
3992 }
3993 }
3994 }
3995 if (rcw && conf->mddev->queue)
3996 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3997 (unsigned long long)sh->sector,
3998 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3999 }
4000
4001 if (rcw > disks && rmw > disks &&
4002 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4003 set_bit(STRIPE_DELAYED, &sh->state);
4004
4005 /* now if nothing is locked, and if we have enough data,
4006 * we can start a write request
4007 */
4008 /* since handle_stripe can be called at any time we need to handle the
4009 * case where a compute block operation has been submitted and then a
4010 * subsequent call wants to start a write request. raid_run_ops only
4011 * handles the case where compute block and reconstruct are requested
4012 * simultaneously. If this is not the case then new writes need to be
4013 * held off until the compute completes.
4014 */
4015 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4016 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4017 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4018 schedule_reconstruction(sh, s, rcw == 0, 0);
4019 return 0;
4020 }
4021
4022 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4023 struct stripe_head_state *s, int disks)
4024 {
4025 struct r5dev *dev = NULL;
4026
4027 BUG_ON(sh->batch_head);
4028 set_bit(STRIPE_HANDLE, &sh->state);
4029
4030 switch (sh->check_state) {
4031 case check_state_idle:
4032 /* start a new check operation if there are no failures */
4033 if (s->failed == 0) {
4034 BUG_ON(s->uptodate != disks);
4035 sh->check_state = check_state_run;
4036 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4037 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4038 s->uptodate--;
4039 break;
4040 }
4041 dev = &sh->dev[s->failed_num[0]];
4042 /* fall through */
4043 case check_state_compute_result:
4044 sh->check_state = check_state_idle;
4045 if (!dev)
4046 dev = &sh->dev[sh->pd_idx];
4047
4048 /* check that a write has not made the stripe insync */
4049 if (test_bit(STRIPE_INSYNC, &sh->state))
4050 break;
4051
4052 /* either failed parity check, or recovery is happening */
4053 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4054 BUG_ON(s->uptodate != disks);
4055
4056 set_bit(R5_LOCKED, &dev->flags);
4057 s->locked++;
4058 set_bit(R5_Wantwrite, &dev->flags);
4059
4060 clear_bit(STRIPE_DEGRADED, &sh->state);
4061 set_bit(STRIPE_INSYNC, &sh->state);
4062 break;
4063 case check_state_run:
4064 break; /* we will be called again upon completion */
4065 case check_state_check_result:
4066 sh->check_state = check_state_idle;
4067
4068 /* if a failure occurred during the check operation, leave
4069 * STRIPE_INSYNC not set and let the stripe be handled again
4070 */
4071 if (s->failed)
4072 break;
4073
4074 /* handle a successful check operation, if parity is correct
4075 * we are done. Otherwise update the mismatch count and repair
4076 * parity if !MD_RECOVERY_CHECK
4077 */
4078 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4079 /* parity is correct (on disc,
4080 * not in buffer any more)
4081 */
4082 set_bit(STRIPE_INSYNC, &sh->state);
4083 else {
4084 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4085 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4086 /* don't try to repair!! */
4087 set_bit(STRIPE_INSYNC, &sh->state);
4088 pr_warn_ratelimited("%s: mismatch sector in range "
4089 "%llu-%llu\n", mdname(conf->mddev),
4090 (unsigned long long) sh->sector,
4091 (unsigned long long) sh->sector +
4092 STRIPE_SECTORS);
4093 } else {
4094 sh->check_state = check_state_compute_run;
4095 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4096 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4097 set_bit(R5_Wantcompute,
4098 &sh->dev[sh->pd_idx].flags);
4099 sh->ops.target = sh->pd_idx;
4100 sh->ops.target2 = -1;
4101 s->uptodate++;
4102 }
4103 }
4104 break;
4105 case check_state_compute_run:
4106 break;
4107 default:
4108 pr_err("%s: unknown check_state: %d sector: %llu\n",
4109 __func__, sh->check_state,
4110 (unsigned long long) sh->sector);
4111 BUG();
4112 }
4113 }
4114
4115 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4116 struct stripe_head_state *s,
4117 int disks)
4118 {
4119 int pd_idx = sh->pd_idx;
4120 int qd_idx = sh->qd_idx;
4121 struct r5dev *dev;
4122
4123 BUG_ON(sh->batch_head);
4124 set_bit(STRIPE_HANDLE, &sh->state);
4125
4126 BUG_ON(s->failed > 2);
4127
4128 /* Want to check and possibly repair P and Q.
4129 * However there could be one 'failed' device, in which
4130 * case we can only check one of them, possibly using the
4131 * other to generate missing data
4132 */
4133
4134 switch (sh->check_state) {
4135 case check_state_idle:
4136 /* start a new check operation if there are < 2 failures */
4137 if (s->failed == s->q_failed) {
4138 /* The only possible failed device holds Q, so it
4139 * makes sense to check P (If anything else were failed,
4140 * we would have used P to recreate it).
4141 */
4142 sh->check_state = check_state_run;
4143 }
4144 if (!s->q_failed && s->failed < 2) {
4145 /* Q is not failed, and we didn't use it to generate
4146 * anything, so it makes sense to check it
4147 */
4148 if (sh->check_state == check_state_run)
4149 sh->check_state = check_state_run_pq;
4150 else
4151 sh->check_state = check_state_run_q;
4152 }
4153
4154 /* discard potentially stale zero_sum_result */
4155 sh->ops.zero_sum_result = 0;
4156
4157 if (sh->check_state == check_state_run) {
4158 /* async_xor_zero_sum destroys the contents of P */
4159 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4160 s->uptodate--;
4161 }
4162 if (sh->check_state >= check_state_run &&
4163 sh->check_state <= check_state_run_pq) {
4164 /* async_syndrome_zero_sum preserves P and Q, so
4165 * no need to mark them !uptodate here
4166 */
4167 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4168 break;
4169 }
4170
4171 /* we have 2-disk failure */
4172 BUG_ON(s->failed != 2);
4173 /* fall through */
4174 case check_state_compute_result:
4175 sh->check_state = check_state_idle;
4176
4177 /* check that a write has not made the stripe insync */
4178 if (test_bit(STRIPE_INSYNC, &sh->state))
4179 break;
4180
4181 /* now write out any block on a failed drive,
4182 * or P or Q if they were recomputed
4183 */
4184 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4185 if (s->failed == 2) {
4186 dev = &sh->dev[s->failed_num[1]];
4187 s->locked++;
4188 set_bit(R5_LOCKED, &dev->flags);
4189 set_bit(R5_Wantwrite, &dev->flags);
4190 }
4191 if (s->failed >= 1) {
4192 dev = &sh->dev[s->failed_num[0]];
4193 s->locked++;
4194 set_bit(R5_LOCKED, &dev->flags);
4195 set_bit(R5_Wantwrite, &dev->flags);
4196 }
4197 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4198 dev = &sh->dev[pd_idx];
4199 s->locked++;
4200 set_bit(R5_LOCKED, &dev->flags);
4201 set_bit(R5_Wantwrite, &dev->flags);
4202 }
4203 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4204 dev = &sh->dev[qd_idx];
4205 s->locked++;
4206 set_bit(R5_LOCKED, &dev->flags);
4207 set_bit(R5_Wantwrite, &dev->flags);
4208 }
4209 clear_bit(STRIPE_DEGRADED, &sh->state);
4210
4211 set_bit(STRIPE_INSYNC, &sh->state);
4212 break;
4213 case check_state_run:
4214 case check_state_run_q:
4215 case check_state_run_pq:
4216 break; /* we will be called again upon completion */
4217 case check_state_check_result:
4218 sh->check_state = check_state_idle;
4219
4220 /* handle a successful check operation, if parity is correct
4221 * we are done. Otherwise update the mismatch count and repair
4222 * parity if !MD_RECOVERY_CHECK
4223 */
4224 if (sh->ops.zero_sum_result == 0) {
4225 /* both parities are correct */
4226 if (!s->failed)
4227 set_bit(STRIPE_INSYNC, &sh->state);
4228 else {
4229 /* in contrast to the raid5 case we can validate
4230 * parity, but still have a failure to write
4231 * back
4232 */
4233 sh->check_state = check_state_compute_result;
4234 /* Returning at this point means that we may go
4235 * off and bring p and/or q uptodate again so
4236 * we make sure to check zero_sum_result again
4237 * to verify if p or q need writeback
4238 */
4239 }
4240 } else {
4241 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4242 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4243 /* don't try to repair!! */
4244 set_bit(STRIPE_INSYNC, &sh->state);
4245 pr_warn_ratelimited("%s: mismatch sector in range "
4246 "%llu-%llu\n", mdname(conf->mddev),
4247 (unsigned long long) sh->sector,
4248 (unsigned long long) sh->sector +
4249 STRIPE_SECTORS);
4250 } else {
4251 int *target = &sh->ops.target;
4252
4253 sh->ops.target = -1;
4254 sh->ops.target2 = -1;
4255 sh->check_state = check_state_compute_run;
4256 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4257 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4258 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4259 set_bit(R5_Wantcompute,
4260 &sh->dev[pd_idx].flags);
4261 *target = pd_idx;
4262 target = &sh->ops.target2;
4263 s->uptodate++;
4264 }
4265 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4266 set_bit(R5_Wantcompute,
4267 &sh->dev[qd_idx].flags);
4268 *target = qd_idx;
4269 s->uptodate++;
4270 }
4271 }
4272 }
4273 break;
4274 case check_state_compute_run:
4275 break;
4276 default:
4277 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4278 __func__, sh->check_state,
4279 (unsigned long long) sh->sector);
4280 BUG();
4281 }
4282 }
4283
4284 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4285 {
4286 int i;
4287
4288 /* We have read all the blocks in this stripe and now we need to
4289 * copy some of them into a target stripe for expand.
4290 */
4291 struct dma_async_tx_descriptor *tx = NULL;
4292 BUG_ON(sh->batch_head);
4293 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4294 for (i = 0; i < sh->disks; i++)
4295 if (i != sh->pd_idx && i != sh->qd_idx) {
4296 int dd_idx, j;
4297 struct stripe_head *sh2;
4298 struct async_submit_ctl submit;
4299
4300 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4301 sector_t s = raid5_compute_sector(conf, bn, 0,
4302 &dd_idx, NULL);
4303 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4304 if (sh2 == NULL)
4305 /* so far only the early blocks of this stripe
4306 * have been requested. When later blocks
4307 * get requested, we will try again
4308 */
4309 continue;
4310 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4311 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4312 /* must have already done this block */
4313 raid5_release_stripe(sh2);
4314 continue;
4315 }
4316
4317 /* place all the copies on one channel */
4318 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4319 tx = async_memcpy(sh2->dev[dd_idx].page,
4320 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4321 &submit);
4322
4323 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4324 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4325 for (j = 0; j < conf->raid_disks; j++)
4326 if (j != sh2->pd_idx &&
4327 j != sh2->qd_idx &&
4328 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4329 break;
4330 if (j == conf->raid_disks) {
4331 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4332 set_bit(STRIPE_HANDLE, &sh2->state);
4333 }
4334 raid5_release_stripe(sh2);
4335
4336 }
4337 /* done submitting copies, wait for them to complete */
4338 async_tx_quiesce(&tx);
4339 }
4340
4341 /*
4342 * handle_stripe - do things to a stripe.
4343 *
4344 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4345 * state of various bits to see what needs to be done.
4346 * Possible results:
4347 * return some read requests which now have data
4348 * return some write requests which are safely on storage
4349 * schedule a read on some buffers
4350 * schedule a write of some buffers
4351 * return confirmation of parity correctness
4352 *
4353 */
4354
4355 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4356 {
4357 struct r5conf *conf = sh->raid_conf;
4358 int disks = sh->disks;
4359 struct r5dev *dev;
4360 int i;
4361 int do_recovery = 0;
4362
4363 memset(s, 0, sizeof(*s));
4364
4365 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4366 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4367 s->failed_num[0] = -1;
4368 s->failed_num[1] = -1;
4369 s->log_failed = r5l_log_disk_error(conf);
4370
4371 /* Now to look around and see what can be done */
4372 rcu_read_lock();
4373 for (i=disks; i--; ) {
4374 struct md_rdev *rdev;
4375 sector_t first_bad;
4376 int bad_sectors;
4377 int is_bad = 0;
4378
4379 dev = &sh->dev[i];
4380
4381 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4382 i, dev->flags,
4383 dev->toread, dev->towrite, dev->written);
4384 /* maybe we can reply to a read
4385 *
4386 * new wantfill requests are only permitted while
4387 * ops_complete_biofill is guaranteed to be inactive
4388 */
4389 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4390 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4391 set_bit(R5_Wantfill, &dev->flags);
4392
4393 /* now count some things */
4394 if (test_bit(R5_LOCKED, &dev->flags))
4395 s->locked++;
4396 if (test_bit(R5_UPTODATE, &dev->flags))
4397 s->uptodate++;
4398 if (test_bit(R5_Wantcompute, &dev->flags)) {
4399 s->compute++;
4400 BUG_ON(s->compute > 2);
4401 }
4402
4403 if (test_bit(R5_Wantfill, &dev->flags))
4404 s->to_fill++;
4405 else if (dev->toread)
4406 s->to_read++;
4407 if (dev->towrite) {
4408 s->to_write++;
4409 if (!test_bit(R5_OVERWRITE, &dev->flags))
4410 s->non_overwrite++;
4411 }
4412 if (dev->written)
4413 s->written++;
4414 /* Prefer to use the replacement for reads, but only
4415 * if it is recovered enough and has no bad blocks.
4416 */
4417 rdev = rcu_dereference(conf->disks[i].replacement);
4418 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4419 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4420 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4421 &first_bad, &bad_sectors))
4422 set_bit(R5_ReadRepl, &dev->flags);
4423 else {
4424 if (rdev && !test_bit(Faulty, &rdev->flags))
4425 set_bit(R5_NeedReplace, &dev->flags);
4426 else
4427 clear_bit(R5_NeedReplace, &dev->flags);
4428 rdev = rcu_dereference(conf->disks[i].rdev);
4429 clear_bit(R5_ReadRepl, &dev->flags);
4430 }
4431 if (rdev && test_bit(Faulty, &rdev->flags))
4432 rdev = NULL;
4433 if (rdev) {
4434 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4435 &first_bad, &bad_sectors);
4436 if (s->blocked_rdev == NULL
4437 && (test_bit(Blocked, &rdev->flags)
4438 || is_bad < 0)) {
4439 if (is_bad < 0)
4440 set_bit(BlockedBadBlocks,
4441 &rdev->flags);
4442 s->blocked_rdev = rdev;
4443 atomic_inc(&rdev->nr_pending);
4444 }
4445 }
4446 clear_bit(R5_Insync, &dev->flags);
4447 if (!rdev)
4448 /* Not in-sync */;
4449 else if (is_bad) {
4450 /* also not in-sync */
4451 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4452 test_bit(R5_UPTODATE, &dev->flags)) {
4453 /* treat as in-sync, but with a read error
4454 * which we can now try to correct
4455 */
4456 set_bit(R5_Insync, &dev->flags);
4457 set_bit(R5_ReadError, &dev->flags);
4458 }
4459 } else if (test_bit(In_sync, &rdev->flags))
4460 set_bit(R5_Insync, &dev->flags);
4461 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4462 /* in sync if before recovery_offset */
4463 set_bit(R5_Insync, &dev->flags);
4464 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4465 test_bit(R5_Expanded, &dev->flags))
4466 /* If we've reshaped into here, we assume it is Insync.
4467 * We will shortly update recovery_offset to make
4468 * it official.
4469 */
4470 set_bit(R5_Insync, &dev->flags);
4471
4472 if (test_bit(R5_WriteError, &dev->flags)) {
4473 /* This flag does not apply to '.replacement'
4474 * only to .rdev, so make sure to check that*/
4475 struct md_rdev *rdev2 = rcu_dereference(
4476 conf->disks[i].rdev);
4477 if (rdev2 == rdev)
4478 clear_bit(R5_Insync, &dev->flags);
4479 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4480 s->handle_bad_blocks = 1;
4481 atomic_inc(&rdev2->nr_pending);
4482 } else
4483 clear_bit(R5_WriteError, &dev->flags);
4484 }
4485 if (test_bit(R5_MadeGood, &dev->flags)) {
4486 /* This flag does not apply to '.replacement'
4487 * only to .rdev, so make sure to check that*/
4488 struct md_rdev *rdev2 = rcu_dereference(
4489 conf->disks[i].rdev);
4490 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4491 s->handle_bad_blocks = 1;
4492 atomic_inc(&rdev2->nr_pending);
4493 } else
4494 clear_bit(R5_MadeGood, &dev->flags);
4495 }
4496 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4497 struct md_rdev *rdev2 = rcu_dereference(
4498 conf->disks[i].replacement);
4499 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4500 s->handle_bad_blocks = 1;
4501 atomic_inc(&rdev2->nr_pending);
4502 } else
4503 clear_bit(R5_MadeGoodRepl, &dev->flags);
4504 }
4505 if (!test_bit(R5_Insync, &dev->flags)) {
4506 /* The ReadError flag will just be confusing now */
4507 clear_bit(R5_ReadError, &dev->flags);
4508 clear_bit(R5_ReWrite, &dev->flags);
4509 }
4510 if (test_bit(R5_ReadError, &dev->flags))
4511 clear_bit(R5_Insync, &dev->flags);
4512 if (!test_bit(R5_Insync, &dev->flags)) {
4513 if (s->failed < 2)
4514 s->failed_num[s->failed] = i;
4515 s->failed++;
4516 if (rdev && !test_bit(Faulty, &rdev->flags))
4517 do_recovery = 1;
4518 }
4519
4520 if (test_bit(R5_InJournal, &dev->flags))
4521 s->injournal++;
4522 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4523 s->just_cached++;
4524 }
4525 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4526 /* If there is a failed device being replaced,
4527 * we must be recovering.
4528 * else if we are after recovery_cp, we must be syncing
4529 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4530 * else we can only be replacing
4531 * sync and recovery both need to read all devices, and so
4532 * use the same flag.
4533 */
4534 if (do_recovery ||
4535 sh->sector >= conf->mddev->recovery_cp ||
4536 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4537 s->syncing = 1;
4538 else
4539 s->replacing = 1;
4540 }
4541 rcu_read_unlock();
4542 }
4543
4544 static int clear_batch_ready(struct stripe_head *sh)
4545 {
4546 /* Return '1' if this is a member of batch, or
4547 * '0' if it is a lone stripe or a head which can now be
4548 * handled.
4549 */
4550 struct stripe_head *tmp;
4551 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4552 return (sh->batch_head && sh->batch_head != sh);
4553 spin_lock(&sh->stripe_lock);
4554 if (!sh->batch_head) {
4555 spin_unlock(&sh->stripe_lock);
4556 return 0;
4557 }
4558
4559 /*
4560 * this stripe could be added to a batch list before we check
4561 * BATCH_READY, skips it
4562 */
4563 if (sh->batch_head != sh) {
4564 spin_unlock(&sh->stripe_lock);
4565 return 1;
4566 }
4567 spin_lock(&sh->batch_lock);
4568 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4569 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4570 spin_unlock(&sh->batch_lock);
4571 spin_unlock(&sh->stripe_lock);
4572
4573 /*
4574 * BATCH_READY is cleared, no new stripes can be added.
4575 * batch_list can be accessed without lock
4576 */
4577 return 0;
4578 }
4579
4580 static void break_stripe_batch_list(struct stripe_head *head_sh,
4581 unsigned long handle_flags)
4582 {
4583 struct stripe_head *sh, *next;
4584 int i;
4585 int do_wakeup = 0;
4586
4587 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4588
4589 list_del_init(&sh->batch_list);
4590
4591 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4592 (1 << STRIPE_SYNCING) |
4593 (1 << STRIPE_REPLACED) |
4594 (1 << STRIPE_DELAYED) |
4595 (1 << STRIPE_BIT_DELAY) |
4596 (1 << STRIPE_FULL_WRITE) |
4597 (1 << STRIPE_BIOFILL_RUN) |
4598 (1 << STRIPE_COMPUTE_RUN) |
4599 (1 << STRIPE_OPS_REQ_PENDING) |
4600 (1 << STRIPE_DISCARD) |
4601 (1 << STRIPE_BATCH_READY) |
4602 (1 << STRIPE_BATCH_ERR) |
4603 (1 << STRIPE_BITMAP_PENDING)),
4604 "stripe state: %lx\n", sh->state);
4605 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4606 (1 << STRIPE_REPLACED)),
4607 "head stripe state: %lx\n", head_sh->state);
4608
4609 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4610 (1 << STRIPE_PREREAD_ACTIVE) |
4611 (1 << STRIPE_DEGRADED) |
4612 (1 << STRIPE_ON_UNPLUG_LIST)),
4613 head_sh->state & (1 << STRIPE_INSYNC));
4614
4615 sh->check_state = head_sh->check_state;
4616 sh->reconstruct_state = head_sh->reconstruct_state;
4617 for (i = 0; i < sh->disks; i++) {
4618 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4619 do_wakeup = 1;
4620 sh->dev[i].flags = head_sh->dev[i].flags &
4621 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4622 }
4623 spin_lock_irq(&sh->stripe_lock);
4624 sh->batch_head = NULL;
4625 spin_unlock_irq(&sh->stripe_lock);
4626 if (handle_flags == 0 ||
4627 sh->state & handle_flags)
4628 set_bit(STRIPE_HANDLE, &sh->state);
4629 raid5_release_stripe(sh);
4630 }
4631 spin_lock_irq(&head_sh->stripe_lock);
4632 head_sh->batch_head = NULL;
4633 spin_unlock_irq(&head_sh->stripe_lock);
4634 for (i = 0; i < head_sh->disks; i++)
4635 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4636 do_wakeup = 1;
4637 if (head_sh->state & handle_flags)
4638 set_bit(STRIPE_HANDLE, &head_sh->state);
4639
4640 if (do_wakeup)
4641 wake_up(&head_sh->raid_conf->wait_for_overlap);
4642 }
4643
4644 static void handle_stripe(struct stripe_head *sh)
4645 {
4646 struct stripe_head_state s;
4647 struct r5conf *conf = sh->raid_conf;
4648 int i;
4649 int prexor;
4650 int disks = sh->disks;
4651 struct r5dev *pdev, *qdev;
4652
4653 clear_bit(STRIPE_HANDLE, &sh->state);
4654 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4655 /* already being handled, ensure it gets handled
4656 * again when current action finishes */
4657 set_bit(STRIPE_HANDLE, &sh->state);
4658 return;
4659 }
4660
4661 if (clear_batch_ready(sh) ) {
4662 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4663 return;
4664 }
4665
4666 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4667 break_stripe_batch_list(sh, 0);
4668
4669 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4670 spin_lock(&sh->stripe_lock);
4671 /*
4672 * Cannot process 'sync' concurrently with 'discard'.
4673 * Flush data in r5cache before 'sync'.
4674 */
4675 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4676 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4677 !test_bit(STRIPE_DISCARD, &sh->state) &&
4678 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4679 set_bit(STRIPE_SYNCING, &sh->state);
4680 clear_bit(STRIPE_INSYNC, &sh->state);
4681 clear_bit(STRIPE_REPLACED, &sh->state);
4682 }
4683 spin_unlock(&sh->stripe_lock);
4684 }
4685 clear_bit(STRIPE_DELAYED, &sh->state);
4686
4687 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4688 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4689 (unsigned long long)sh->sector, sh->state,
4690 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4691 sh->check_state, sh->reconstruct_state);
4692
4693 analyse_stripe(sh, &s);
4694
4695 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4696 goto finish;
4697
4698 if (s.handle_bad_blocks ||
4699 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4700 set_bit(STRIPE_HANDLE, &sh->state);
4701 goto finish;
4702 }
4703
4704 if (unlikely(s.blocked_rdev)) {
4705 if (s.syncing || s.expanding || s.expanded ||
4706 s.replacing || s.to_write || s.written) {
4707 set_bit(STRIPE_HANDLE, &sh->state);
4708 goto finish;
4709 }
4710 /* There is nothing for the blocked_rdev to block */
4711 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4712 s.blocked_rdev = NULL;
4713 }
4714
4715 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4716 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4717 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4718 }
4719
4720 pr_debug("locked=%d uptodate=%d to_read=%d"
4721 " to_write=%d failed=%d failed_num=%d,%d\n",
4722 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4723 s.failed_num[0], s.failed_num[1]);
4724 /*
4725 * check if the array has lost more than max_degraded devices and,
4726 * if so, some requests might need to be failed.
4727 *
4728 * When journal device failed (log_failed), we will only process
4729 * the stripe if there is data need write to raid disks
4730 */
4731 if (s.failed > conf->max_degraded ||
4732 (s.log_failed && s.injournal == 0)) {
4733 sh->check_state = 0;
4734 sh->reconstruct_state = 0;
4735 break_stripe_batch_list(sh, 0);
4736 if (s.to_read+s.to_write+s.written)
4737 handle_failed_stripe(conf, sh, &s, disks);
4738 if (s.syncing + s.replacing)
4739 handle_failed_sync(conf, sh, &s);
4740 }
4741
4742 /* Now we check to see if any write operations have recently
4743 * completed
4744 */
4745 prexor = 0;
4746 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4747 prexor = 1;
4748 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4749 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4750 sh->reconstruct_state = reconstruct_state_idle;
4751
4752 /* All the 'written' buffers and the parity block are ready to
4753 * be written back to disk
4754 */
4755 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4756 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4757 BUG_ON(sh->qd_idx >= 0 &&
4758 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4759 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4760 for (i = disks; i--; ) {
4761 struct r5dev *dev = &sh->dev[i];
4762 if (test_bit(R5_LOCKED, &dev->flags) &&
4763 (i == sh->pd_idx || i == sh->qd_idx ||
4764 dev->written || test_bit(R5_InJournal,
4765 &dev->flags))) {
4766 pr_debug("Writing block %d\n", i);
4767 set_bit(R5_Wantwrite, &dev->flags);
4768 if (prexor)
4769 continue;
4770 if (s.failed > 1)
4771 continue;
4772 if (!test_bit(R5_Insync, &dev->flags) ||
4773 ((i == sh->pd_idx || i == sh->qd_idx) &&
4774 s.failed == 0))
4775 set_bit(STRIPE_INSYNC, &sh->state);
4776 }
4777 }
4778 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4779 s.dec_preread_active = 1;
4780 }
4781
4782 /*
4783 * might be able to return some write requests if the parity blocks
4784 * are safe, or on a failed drive
4785 */
4786 pdev = &sh->dev[sh->pd_idx];
4787 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4788 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4789 qdev = &sh->dev[sh->qd_idx];
4790 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4791 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4792 || conf->level < 6;
4793
4794 if (s.written &&
4795 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4796 && !test_bit(R5_LOCKED, &pdev->flags)
4797 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4798 test_bit(R5_Discard, &pdev->flags))))) &&
4799 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4800 && !test_bit(R5_LOCKED, &qdev->flags)
4801 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4802 test_bit(R5_Discard, &qdev->flags))))))
4803 handle_stripe_clean_event(conf, sh, disks);
4804
4805 if (s.just_cached)
4806 r5c_handle_cached_data_endio(conf, sh, disks);
4807 log_stripe_write_finished(sh);
4808
4809 /* Now we might consider reading some blocks, either to check/generate
4810 * parity, or to satisfy requests
4811 * or to load a block that is being partially written.
4812 */
4813 if (s.to_read || s.non_overwrite
4814 || (conf->level == 6 && s.to_write && s.failed)
4815 || (s.syncing && (s.uptodate + s.compute < disks))
4816 || s.replacing
4817 || s.expanding)
4818 handle_stripe_fill(sh, &s, disks);
4819
4820 /*
4821 * When the stripe finishes full journal write cycle (write to journal
4822 * and raid disk), this is the clean up procedure so it is ready for
4823 * next operation.
4824 */
4825 r5c_finish_stripe_write_out(conf, sh, &s);
4826
4827 /*
4828 * Now to consider new write requests, cache write back and what else,
4829 * if anything should be read. We do not handle new writes when:
4830 * 1/ A 'write' operation (copy+xor) is already in flight.
4831 * 2/ A 'check' operation is in flight, as it may clobber the parity
4832 * block.
4833 * 3/ A r5c cache log write is in flight.
4834 */
4835
4836 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4837 if (!r5c_is_writeback(conf->log)) {
4838 if (s.to_write)
4839 handle_stripe_dirtying(conf, sh, &s, disks);
4840 } else { /* write back cache */
4841 int ret = 0;
4842
4843 /* First, try handle writes in caching phase */
4844 if (s.to_write)
4845 ret = r5c_try_caching_write(conf, sh, &s,
4846 disks);
4847 /*
4848 * If caching phase failed: ret == -EAGAIN
4849 * OR
4850 * stripe under reclaim: !caching && injournal
4851 *
4852 * fall back to handle_stripe_dirtying()
4853 */
4854 if (ret == -EAGAIN ||
4855 /* stripe under reclaim: !caching && injournal */
4856 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4857 s.injournal > 0)) {
4858 ret = handle_stripe_dirtying(conf, sh, &s,
4859 disks);
4860 if (ret == -EAGAIN)
4861 goto finish;
4862 }
4863 }
4864 }
4865
4866 /* maybe we need to check and possibly fix the parity for this stripe
4867 * Any reads will already have been scheduled, so we just see if enough
4868 * data is available. The parity check is held off while parity
4869 * dependent operations are in flight.
4870 */
4871 if (sh->check_state ||
4872 (s.syncing && s.locked == 0 &&
4873 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4874 !test_bit(STRIPE_INSYNC, &sh->state))) {
4875 if (conf->level == 6)
4876 handle_parity_checks6(conf, sh, &s, disks);
4877 else
4878 handle_parity_checks5(conf, sh, &s, disks);
4879 }
4880
4881 if ((s.replacing || s.syncing) && s.locked == 0
4882 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4883 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4884 /* Write out to replacement devices where possible */
4885 for (i = 0; i < conf->raid_disks; i++)
4886 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4887 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4888 set_bit(R5_WantReplace, &sh->dev[i].flags);
4889 set_bit(R5_LOCKED, &sh->dev[i].flags);
4890 s.locked++;
4891 }
4892 if (s.replacing)
4893 set_bit(STRIPE_INSYNC, &sh->state);
4894 set_bit(STRIPE_REPLACED, &sh->state);
4895 }
4896 if ((s.syncing || s.replacing) && s.locked == 0 &&
4897 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4898 test_bit(STRIPE_INSYNC, &sh->state)) {
4899 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4900 clear_bit(STRIPE_SYNCING, &sh->state);
4901 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4902 wake_up(&conf->wait_for_overlap);
4903 }
4904
4905 /* If the failed drives are just a ReadError, then we might need
4906 * to progress the repair/check process
4907 */
4908 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4909 for (i = 0; i < s.failed; i++) {
4910 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4911 if (test_bit(R5_ReadError, &dev->flags)
4912 && !test_bit(R5_LOCKED, &dev->flags)
4913 && test_bit(R5_UPTODATE, &dev->flags)
4914 ) {
4915 if (!test_bit(R5_ReWrite, &dev->flags)) {
4916 set_bit(R5_Wantwrite, &dev->flags);
4917 set_bit(R5_ReWrite, &dev->flags);
4918 set_bit(R5_LOCKED, &dev->flags);
4919 s.locked++;
4920 } else {
4921 /* let's read it back */
4922 set_bit(R5_Wantread, &dev->flags);
4923 set_bit(R5_LOCKED, &dev->flags);
4924 s.locked++;
4925 }
4926 }
4927 }
4928
4929 /* Finish reconstruct operations initiated by the expansion process */
4930 if (sh->reconstruct_state == reconstruct_state_result) {
4931 struct stripe_head *sh_src
4932 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4933 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4934 /* sh cannot be written until sh_src has been read.
4935 * so arrange for sh to be delayed a little
4936 */
4937 set_bit(STRIPE_DELAYED, &sh->state);
4938 set_bit(STRIPE_HANDLE, &sh->state);
4939 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4940 &sh_src->state))
4941 atomic_inc(&conf->preread_active_stripes);
4942 raid5_release_stripe(sh_src);
4943 goto finish;
4944 }
4945 if (sh_src)
4946 raid5_release_stripe(sh_src);
4947
4948 sh->reconstruct_state = reconstruct_state_idle;
4949 clear_bit(STRIPE_EXPANDING, &sh->state);
4950 for (i = conf->raid_disks; i--; ) {
4951 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4952 set_bit(R5_LOCKED, &sh->dev[i].flags);
4953 s.locked++;
4954 }
4955 }
4956
4957 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4958 !sh->reconstruct_state) {
4959 /* Need to write out all blocks after computing parity */
4960 sh->disks = conf->raid_disks;
4961 stripe_set_idx(sh->sector, conf, 0, sh);
4962 schedule_reconstruction(sh, &s, 1, 1);
4963 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4964 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4965 atomic_dec(&conf->reshape_stripes);
4966 wake_up(&conf->wait_for_overlap);
4967 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4968 }
4969
4970 if (s.expanding && s.locked == 0 &&
4971 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4972 handle_stripe_expansion(conf, sh);
4973
4974 finish:
4975 /* wait for this device to become unblocked */
4976 if (unlikely(s.blocked_rdev)) {
4977 if (conf->mddev->external)
4978 md_wait_for_blocked_rdev(s.blocked_rdev,
4979 conf->mddev);
4980 else
4981 /* Internal metadata will immediately
4982 * be written by raid5d, so we don't
4983 * need to wait here.
4984 */
4985 rdev_dec_pending(s.blocked_rdev,
4986 conf->mddev);
4987 }
4988
4989 if (s.handle_bad_blocks)
4990 for (i = disks; i--; ) {
4991 struct md_rdev *rdev;
4992 struct r5dev *dev = &sh->dev[i];
4993 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4994 /* We own a safe reference to the rdev */
4995 rdev = conf->disks[i].rdev;
4996 if (!rdev_set_badblocks(rdev, sh->sector,
4997 STRIPE_SECTORS, 0))
4998 md_error(conf->mddev, rdev);
4999 rdev_dec_pending(rdev, conf->mddev);
5000 }
5001 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5002 rdev = conf->disks[i].rdev;
5003 rdev_clear_badblocks(rdev, sh->sector,
5004 STRIPE_SECTORS, 0);
5005 rdev_dec_pending(rdev, conf->mddev);
5006 }
5007 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5008 rdev = conf->disks[i].replacement;
5009 if (!rdev)
5010 /* rdev have been moved down */
5011 rdev = conf->disks[i].rdev;
5012 rdev_clear_badblocks(rdev, sh->sector,
5013 STRIPE_SECTORS, 0);
5014 rdev_dec_pending(rdev, conf->mddev);
5015 }
5016 }
5017
5018 if (s.ops_request)
5019 raid_run_ops(sh, s.ops_request);
5020
5021 ops_run_io(sh, &s);
5022
5023 if (s.dec_preread_active) {
5024 /* We delay this until after ops_run_io so that if make_request
5025 * is waiting on a flush, it won't continue until the writes
5026 * have actually been submitted.
5027 */
5028 atomic_dec(&conf->preread_active_stripes);
5029 if (atomic_read(&conf->preread_active_stripes) <
5030 IO_THRESHOLD)
5031 md_wakeup_thread(conf->mddev->thread);
5032 }
5033
5034 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5035 }
5036
5037 static void raid5_activate_delayed(struct r5conf *conf)
5038 {
5039 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5040 while (!list_empty(&conf->delayed_list)) {
5041 struct list_head *l = conf->delayed_list.next;
5042 struct stripe_head *sh;
5043 sh = list_entry(l, struct stripe_head, lru);
5044 list_del_init(l);
5045 clear_bit(STRIPE_DELAYED, &sh->state);
5046 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5047 atomic_inc(&conf->preread_active_stripes);
5048 list_add_tail(&sh->lru, &conf->hold_list);
5049 raid5_wakeup_stripe_thread(sh);
5050 }
5051 }
5052 }
5053
5054 static void activate_bit_delay(struct r5conf *conf,
5055 struct list_head *temp_inactive_list)
5056 {
5057 /* device_lock is held */
5058 struct list_head head;
5059 list_add(&head, &conf->bitmap_list);
5060 list_del_init(&conf->bitmap_list);
5061 while (!list_empty(&head)) {
5062 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5063 int hash;
5064 list_del_init(&sh->lru);
5065 atomic_inc(&sh->count);
5066 hash = sh->hash_lock_index;
5067 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5068 }
5069 }
5070
5071 static int raid5_congested(struct mddev *mddev, int bits)
5072 {
5073 struct r5conf *conf = mddev->private;
5074
5075 /* No difference between reads and writes. Just check
5076 * how busy the stripe_cache is
5077 */
5078
5079 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5080 return 1;
5081
5082 /* Also checks whether there is pressure on r5cache log space */
5083 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5084 return 1;
5085 if (conf->quiesce)
5086 return 1;
5087 if (atomic_read(&conf->empty_inactive_list_nr))
5088 return 1;
5089
5090 return 0;
5091 }
5092
5093 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5094 {
5095 struct r5conf *conf = mddev->private;
5096 sector_t sector = bio->bi_iter.bi_sector;
5097 unsigned int chunk_sectors;
5098 unsigned int bio_sectors = bio_sectors(bio);
5099
5100 WARN_ON_ONCE(bio->bi_partno);
5101
5102 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5103 return chunk_sectors >=
5104 ((sector & (chunk_sectors - 1)) + bio_sectors);
5105 }
5106
5107 /*
5108 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5109 * later sampled by raid5d.
5110 */
5111 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5112 {
5113 unsigned long flags;
5114
5115 spin_lock_irqsave(&conf->device_lock, flags);
5116
5117 bi->bi_next = conf->retry_read_aligned_list;
5118 conf->retry_read_aligned_list = bi;
5119
5120 spin_unlock_irqrestore(&conf->device_lock, flags);
5121 md_wakeup_thread(conf->mddev->thread);
5122 }
5123
5124 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5125 unsigned int *offset)
5126 {
5127 struct bio *bi;
5128
5129 bi = conf->retry_read_aligned;
5130 if (bi) {
5131 *offset = conf->retry_read_offset;
5132 conf->retry_read_aligned = NULL;
5133 return bi;
5134 }
5135 bi = conf->retry_read_aligned_list;
5136 if(bi) {
5137 conf->retry_read_aligned_list = bi->bi_next;
5138 bi->bi_next = NULL;
5139 *offset = 0;
5140 }
5141
5142 return bi;
5143 }
5144
5145 /*
5146 * The "raid5_align_endio" should check if the read succeeded and if it
5147 * did, call bio_endio on the original bio (having bio_put the new bio
5148 * first).
5149 * If the read failed..
5150 */
5151 static void raid5_align_endio(struct bio *bi)
5152 {
5153 struct bio* raid_bi = bi->bi_private;
5154 struct mddev *mddev;
5155 struct r5conf *conf;
5156 struct md_rdev *rdev;
5157 blk_status_t error = bi->bi_status;
5158
5159 bio_put(bi);
5160
5161 rdev = (void*)raid_bi->bi_next;
5162 raid_bi->bi_next = NULL;
5163 mddev = rdev->mddev;
5164 conf = mddev->private;
5165
5166 rdev_dec_pending(rdev, conf->mddev);
5167
5168 if (!error) {
5169 bio_endio(raid_bi);
5170 if (atomic_dec_and_test(&conf->active_aligned_reads))
5171 wake_up(&conf->wait_for_quiescent);
5172 return;
5173 }
5174
5175 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5176
5177 add_bio_to_retry(raid_bi, conf);
5178 }
5179
5180 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5181 {
5182 struct r5conf *conf = mddev->private;
5183 int dd_idx;
5184 struct bio* align_bi;
5185 struct md_rdev *rdev;
5186 sector_t end_sector;
5187
5188 if (!in_chunk_boundary(mddev, raid_bio)) {
5189 pr_debug("%s: non aligned\n", __func__);
5190 return 0;
5191 }
5192 /*
5193 * use bio_clone_fast to make a copy of the bio
5194 */
5195 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5196 if (!align_bi)
5197 return 0;
5198 /*
5199 * set bi_end_io to a new function, and set bi_private to the
5200 * original bio.
5201 */
5202 align_bi->bi_end_io = raid5_align_endio;
5203 align_bi->bi_private = raid_bio;
5204 /*
5205 * compute position
5206 */
5207 align_bi->bi_iter.bi_sector =
5208 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5209 0, &dd_idx, NULL);
5210
5211 end_sector = bio_end_sector(align_bi);
5212 rcu_read_lock();
5213 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5214 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5215 rdev->recovery_offset < end_sector) {
5216 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5217 if (rdev &&
5218 (test_bit(Faulty, &rdev->flags) ||
5219 !(test_bit(In_sync, &rdev->flags) ||
5220 rdev->recovery_offset >= end_sector)))
5221 rdev = NULL;
5222 }
5223
5224 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5225 rcu_read_unlock();
5226 bio_put(align_bi);
5227 return 0;
5228 }
5229
5230 if (rdev) {
5231 sector_t first_bad;
5232 int bad_sectors;
5233
5234 atomic_inc(&rdev->nr_pending);
5235 rcu_read_unlock();
5236 raid_bio->bi_next = (void*)rdev;
5237 bio_set_dev(align_bi, rdev->bdev);
5238 bio_clear_flag(align_bi, BIO_SEG_VALID);
5239
5240 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5241 bio_sectors(align_bi),
5242 &first_bad, &bad_sectors)) {
5243 bio_put(align_bi);
5244 rdev_dec_pending(rdev, mddev);
5245 return 0;
5246 }
5247
5248 /* No reshape active, so we can trust rdev->data_offset */
5249 align_bi->bi_iter.bi_sector += rdev->data_offset;
5250
5251 spin_lock_irq(&conf->device_lock);
5252 wait_event_lock_irq(conf->wait_for_quiescent,
5253 conf->quiesce == 0,
5254 conf->device_lock);
5255 atomic_inc(&conf->active_aligned_reads);
5256 spin_unlock_irq(&conf->device_lock);
5257
5258 if (mddev->gendisk)
5259 trace_block_bio_remap(align_bi->bi_disk->queue,
5260 align_bi, disk_devt(mddev->gendisk),
5261 raid_bio->bi_iter.bi_sector);
5262 generic_make_request(align_bi);
5263 return 1;
5264 } else {
5265 rcu_read_unlock();
5266 bio_put(align_bi);
5267 return 0;
5268 }
5269 }
5270
5271 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5272 {
5273 struct bio *split;
5274 sector_t sector = raid_bio->bi_iter.bi_sector;
5275 unsigned chunk_sects = mddev->chunk_sectors;
5276 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5277
5278 if (sectors < bio_sectors(raid_bio)) {
5279 struct r5conf *conf = mddev->private;
5280 split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5281 bio_chain(split, raid_bio);
5282 generic_make_request(raid_bio);
5283 raid_bio = split;
5284 }
5285
5286 if (!raid5_read_one_chunk(mddev, raid_bio))
5287 return raid_bio;
5288
5289 return NULL;
5290 }
5291
5292 /* __get_priority_stripe - get the next stripe to process
5293 *
5294 * Full stripe writes are allowed to pass preread active stripes up until
5295 * the bypass_threshold is exceeded. In general the bypass_count
5296 * increments when the handle_list is handled before the hold_list; however, it
5297 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5298 * stripe with in flight i/o. The bypass_count will be reset when the
5299 * head of the hold_list has changed, i.e. the head was promoted to the
5300 * handle_list.
5301 */
5302 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5303 {
5304 struct stripe_head *sh, *tmp;
5305 struct list_head *handle_list = NULL;
5306 struct r5worker_group *wg;
5307 bool second_try = !r5c_is_writeback(conf->log) &&
5308 !r5l_log_disk_error(conf);
5309 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5310 r5l_log_disk_error(conf);
5311
5312 again:
5313 wg = NULL;
5314 sh = NULL;
5315 if (conf->worker_cnt_per_group == 0) {
5316 handle_list = try_loprio ? &conf->loprio_list :
5317 &conf->handle_list;
5318 } else if (group != ANY_GROUP) {
5319 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5320 &conf->worker_groups[group].handle_list;
5321 wg = &conf->worker_groups[group];
5322 } else {
5323 int i;
5324 for (i = 0; i < conf->group_cnt; i++) {
5325 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5326 &conf->worker_groups[i].handle_list;
5327 wg = &conf->worker_groups[i];
5328 if (!list_empty(handle_list))
5329 break;
5330 }
5331 }
5332
5333 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5334 __func__,
5335 list_empty(handle_list) ? "empty" : "busy",
5336 list_empty(&conf->hold_list) ? "empty" : "busy",
5337 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5338
5339 if (!list_empty(handle_list)) {
5340 sh = list_entry(handle_list->next, typeof(*sh), lru);
5341
5342 if (list_empty(&conf->hold_list))
5343 conf->bypass_count = 0;
5344 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5345 if (conf->hold_list.next == conf->last_hold)
5346 conf->bypass_count++;
5347 else {
5348 conf->last_hold = conf->hold_list.next;
5349 conf->bypass_count -= conf->bypass_threshold;
5350 if (conf->bypass_count < 0)
5351 conf->bypass_count = 0;
5352 }
5353 }
5354 } else if (!list_empty(&conf->hold_list) &&
5355 ((conf->bypass_threshold &&
5356 conf->bypass_count > conf->bypass_threshold) ||
5357 atomic_read(&conf->pending_full_writes) == 0)) {
5358
5359 list_for_each_entry(tmp, &conf->hold_list, lru) {
5360 if (conf->worker_cnt_per_group == 0 ||
5361 group == ANY_GROUP ||
5362 !cpu_online(tmp->cpu) ||
5363 cpu_to_group(tmp->cpu) == group) {
5364 sh = tmp;
5365 break;
5366 }
5367 }
5368
5369 if (sh) {
5370 conf->bypass_count -= conf->bypass_threshold;
5371 if (conf->bypass_count < 0)
5372 conf->bypass_count = 0;
5373 }
5374 wg = NULL;
5375 }
5376
5377 if (!sh) {
5378 if (second_try)
5379 return NULL;
5380 second_try = true;
5381 try_loprio = !try_loprio;
5382 goto again;
5383 }
5384
5385 if (wg) {
5386 wg->stripes_cnt--;
5387 sh->group = NULL;
5388 }
5389 list_del_init(&sh->lru);
5390 BUG_ON(atomic_inc_return(&sh->count) != 1);
5391 return sh;
5392 }
5393
5394 struct raid5_plug_cb {
5395 struct blk_plug_cb cb;
5396 struct list_head list;
5397 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5398 };
5399
5400 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5401 {
5402 struct raid5_plug_cb *cb = container_of(
5403 blk_cb, struct raid5_plug_cb, cb);
5404 struct stripe_head *sh;
5405 struct mddev *mddev = cb->cb.data;
5406 struct r5conf *conf = mddev->private;
5407 int cnt = 0;
5408 int hash;
5409
5410 if (cb->list.next && !list_empty(&cb->list)) {
5411 spin_lock_irq(&conf->device_lock);
5412 while (!list_empty(&cb->list)) {
5413 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5414 list_del_init(&sh->lru);
5415 /*
5416 * avoid race release_stripe_plug() sees
5417 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5418 * is still in our list
5419 */
5420 smp_mb__before_atomic();
5421 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5422 /*
5423 * STRIPE_ON_RELEASE_LIST could be set here. In that
5424 * case, the count is always > 1 here
5425 */
5426 hash = sh->hash_lock_index;
5427 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5428 cnt++;
5429 }
5430 spin_unlock_irq(&conf->device_lock);
5431 }
5432 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5433 NR_STRIPE_HASH_LOCKS);
5434 if (mddev->queue)
5435 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5436 kfree(cb);
5437 }
5438
5439 static void release_stripe_plug(struct mddev *mddev,
5440 struct stripe_head *sh)
5441 {
5442 struct blk_plug_cb *blk_cb = blk_check_plugged(
5443 raid5_unplug, mddev,
5444 sizeof(struct raid5_plug_cb));
5445 struct raid5_plug_cb *cb;
5446
5447 if (!blk_cb) {
5448 raid5_release_stripe(sh);
5449 return;
5450 }
5451
5452 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5453
5454 if (cb->list.next == NULL) {
5455 int i;
5456 INIT_LIST_HEAD(&cb->list);
5457 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5458 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5459 }
5460
5461 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5462 list_add_tail(&sh->lru, &cb->list);
5463 else
5464 raid5_release_stripe(sh);
5465 }
5466
5467 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5468 {
5469 struct r5conf *conf = mddev->private;
5470 sector_t logical_sector, last_sector;
5471 struct stripe_head *sh;
5472 int stripe_sectors;
5473
5474 if (mddev->reshape_position != MaxSector)
5475 /* Skip discard while reshape is happening */
5476 return;
5477
5478 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5479 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5480
5481 bi->bi_next = NULL;
5482
5483 stripe_sectors = conf->chunk_sectors *
5484 (conf->raid_disks - conf->max_degraded);
5485 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5486 stripe_sectors);
5487 sector_div(last_sector, stripe_sectors);
5488
5489 logical_sector *= conf->chunk_sectors;
5490 last_sector *= conf->chunk_sectors;
5491
5492 for (; logical_sector < last_sector;
5493 logical_sector += STRIPE_SECTORS) {
5494 DEFINE_WAIT(w);
5495 int d;
5496 again:
5497 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5498 prepare_to_wait(&conf->wait_for_overlap, &w,
5499 TASK_UNINTERRUPTIBLE);
5500 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5501 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5502 raid5_release_stripe(sh);
5503 schedule();
5504 goto again;
5505 }
5506 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5507 spin_lock_irq(&sh->stripe_lock);
5508 for (d = 0; d < conf->raid_disks; d++) {
5509 if (d == sh->pd_idx || d == sh->qd_idx)
5510 continue;
5511 if (sh->dev[d].towrite || sh->dev[d].toread) {
5512 set_bit(R5_Overlap, &sh->dev[d].flags);
5513 spin_unlock_irq(&sh->stripe_lock);
5514 raid5_release_stripe(sh);
5515 schedule();
5516 goto again;
5517 }
5518 }
5519 set_bit(STRIPE_DISCARD, &sh->state);
5520 finish_wait(&conf->wait_for_overlap, &w);
5521 sh->overwrite_disks = 0;
5522 for (d = 0; d < conf->raid_disks; d++) {
5523 if (d == sh->pd_idx || d == sh->qd_idx)
5524 continue;
5525 sh->dev[d].towrite = bi;
5526 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5527 bio_inc_remaining(bi);
5528 md_write_inc(mddev, bi);
5529 sh->overwrite_disks++;
5530 }
5531 spin_unlock_irq(&sh->stripe_lock);
5532 if (conf->mddev->bitmap) {
5533 for (d = 0;
5534 d < conf->raid_disks - conf->max_degraded;
5535 d++)
5536 bitmap_startwrite(mddev->bitmap,
5537 sh->sector,
5538 STRIPE_SECTORS,
5539 0);
5540 sh->bm_seq = conf->seq_flush + 1;
5541 set_bit(STRIPE_BIT_DELAY, &sh->state);
5542 }
5543
5544 set_bit(STRIPE_HANDLE, &sh->state);
5545 clear_bit(STRIPE_DELAYED, &sh->state);
5546 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5547 atomic_inc(&conf->preread_active_stripes);
5548 release_stripe_plug(mddev, sh);
5549 }
5550
5551 bio_endio(bi);
5552 }
5553
5554 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5555 {
5556 struct r5conf *conf = mddev->private;
5557 int dd_idx;
5558 sector_t new_sector;
5559 sector_t logical_sector, last_sector;
5560 struct stripe_head *sh;
5561 const int rw = bio_data_dir(bi);
5562 DEFINE_WAIT(w);
5563 bool do_prepare;
5564 bool do_flush = false;
5565
5566 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5567 int ret = r5l_handle_flush_request(conf->log, bi);
5568
5569 if (ret == 0)
5570 return true;
5571 if (ret == -ENODEV) {
5572 md_flush_request(mddev, bi);
5573 return true;
5574 }
5575 /* ret == -EAGAIN, fallback */
5576 /*
5577 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5578 * we need to flush journal device
5579 */
5580 do_flush = bi->bi_opf & REQ_PREFLUSH;
5581 }
5582
5583 if (!md_write_start(mddev, bi))
5584 return false;
5585 /*
5586 * If array is degraded, better not do chunk aligned read because
5587 * later we might have to read it again in order to reconstruct
5588 * data on failed drives.
5589 */
5590 if (rw == READ && mddev->degraded == 0 &&
5591 mddev->reshape_position == MaxSector) {
5592 bi = chunk_aligned_read(mddev, bi);
5593 if (!bi)
5594 return true;
5595 }
5596
5597 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5598 make_discard_request(mddev, bi);
5599 md_write_end(mddev);
5600 return true;
5601 }
5602
5603 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5604 last_sector = bio_end_sector(bi);
5605 bi->bi_next = NULL;
5606
5607 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5608 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5609 int previous;
5610 int seq;
5611
5612 do_prepare = false;
5613 retry:
5614 seq = read_seqcount_begin(&conf->gen_lock);
5615 previous = 0;
5616 if (do_prepare)
5617 prepare_to_wait(&conf->wait_for_overlap, &w,
5618 TASK_UNINTERRUPTIBLE);
5619 if (unlikely(conf->reshape_progress != MaxSector)) {
5620 /* spinlock is needed as reshape_progress may be
5621 * 64bit on a 32bit platform, and so it might be
5622 * possible to see a half-updated value
5623 * Of course reshape_progress could change after
5624 * the lock is dropped, so once we get a reference
5625 * to the stripe that we think it is, we will have
5626 * to check again.
5627 */
5628 spin_lock_irq(&conf->device_lock);
5629 if (mddev->reshape_backwards
5630 ? logical_sector < conf->reshape_progress
5631 : logical_sector >= conf->reshape_progress) {
5632 previous = 1;
5633 } else {
5634 if (mddev->reshape_backwards
5635 ? logical_sector < conf->reshape_safe
5636 : logical_sector >= conf->reshape_safe) {
5637 spin_unlock_irq(&conf->device_lock);
5638 schedule();
5639 do_prepare = true;
5640 goto retry;
5641 }
5642 }
5643 spin_unlock_irq(&conf->device_lock);
5644 }
5645
5646 new_sector = raid5_compute_sector(conf, logical_sector,
5647 previous,
5648 &dd_idx, NULL);
5649 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5650 (unsigned long long)new_sector,
5651 (unsigned long long)logical_sector);
5652
5653 sh = raid5_get_active_stripe(conf, new_sector, previous,
5654 (bi->bi_opf & REQ_RAHEAD), 0);
5655 if (sh) {
5656 if (unlikely(previous)) {
5657 /* expansion might have moved on while waiting for a
5658 * stripe, so we must do the range check again.
5659 * Expansion could still move past after this
5660 * test, but as we are holding a reference to
5661 * 'sh', we know that if that happens,
5662 * STRIPE_EXPANDING will get set and the expansion
5663 * won't proceed until we finish with the stripe.
5664 */
5665 int must_retry = 0;
5666 spin_lock_irq(&conf->device_lock);
5667 if (mddev->reshape_backwards
5668 ? logical_sector >= conf->reshape_progress
5669 : logical_sector < conf->reshape_progress)
5670 /* mismatch, need to try again */
5671 must_retry = 1;
5672 spin_unlock_irq(&conf->device_lock);
5673 if (must_retry) {
5674 raid5_release_stripe(sh);
5675 schedule();
5676 do_prepare = true;
5677 goto retry;
5678 }
5679 }
5680 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5681 /* Might have got the wrong stripe_head
5682 * by accident
5683 */
5684 raid5_release_stripe(sh);
5685 goto retry;
5686 }
5687
5688 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5689 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5690 /* Stripe is busy expanding or
5691 * add failed due to overlap. Flush everything
5692 * and wait a while
5693 */
5694 md_wakeup_thread(mddev->thread);
5695 raid5_release_stripe(sh);
5696 schedule();
5697 do_prepare = true;
5698 goto retry;
5699 }
5700 if (do_flush) {
5701 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5702 /* we only need flush for one stripe */
5703 do_flush = false;
5704 }
5705
5706 set_bit(STRIPE_HANDLE, &sh->state);
5707 clear_bit(STRIPE_DELAYED, &sh->state);
5708 if ((!sh->batch_head || sh == sh->batch_head) &&
5709 (bi->bi_opf & REQ_SYNC) &&
5710 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5711 atomic_inc(&conf->preread_active_stripes);
5712 release_stripe_plug(mddev, sh);
5713 } else {
5714 /* cannot get stripe for read-ahead, just give-up */
5715 bi->bi_status = BLK_STS_IOERR;
5716 break;
5717 }
5718 }
5719 finish_wait(&conf->wait_for_overlap, &w);
5720
5721 if (rw == WRITE)
5722 md_write_end(mddev);
5723 bio_endio(bi);
5724 return true;
5725 }
5726
5727 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5728
5729 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5730 {
5731 /* reshaping is quite different to recovery/resync so it is
5732 * handled quite separately ... here.
5733 *
5734 * On each call to sync_request, we gather one chunk worth of
5735 * destination stripes and flag them as expanding.
5736 * Then we find all the source stripes and request reads.
5737 * As the reads complete, handle_stripe will copy the data
5738 * into the destination stripe and release that stripe.
5739 */
5740 struct r5conf *conf = mddev->private;
5741 struct stripe_head *sh;
5742 struct md_rdev *rdev;
5743 sector_t first_sector, last_sector;
5744 int raid_disks = conf->previous_raid_disks;
5745 int data_disks = raid_disks - conf->max_degraded;
5746 int new_data_disks = conf->raid_disks - conf->max_degraded;
5747 int i;
5748 int dd_idx;
5749 sector_t writepos, readpos, safepos;
5750 sector_t stripe_addr;
5751 int reshape_sectors;
5752 struct list_head stripes;
5753 sector_t retn;
5754
5755 if (sector_nr == 0) {
5756 /* If restarting in the middle, skip the initial sectors */
5757 if (mddev->reshape_backwards &&
5758 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5759 sector_nr = raid5_size(mddev, 0, 0)
5760 - conf->reshape_progress;
5761 } else if (mddev->reshape_backwards &&
5762 conf->reshape_progress == MaxSector) {
5763 /* shouldn't happen, but just in case, finish up.*/
5764 sector_nr = MaxSector;
5765 } else if (!mddev->reshape_backwards &&
5766 conf->reshape_progress > 0)
5767 sector_nr = conf->reshape_progress;
5768 sector_div(sector_nr, new_data_disks);
5769 if (sector_nr) {
5770 mddev->curr_resync_completed = sector_nr;
5771 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5772 *skipped = 1;
5773 retn = sector_nr;
5774 goto finish;
5775 }
5776 }
5777
5778 /* We need to process a full chunk at a time.
5779 * If old and new chunk sizes differ, we need to process the
5780 * largest of these
5781 */
5782
5783 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5784
5785 /* We update the metadata at least every 10 seconds, or when
5786 * the data about to be copied would over-write the source of
5787 * the data at the front of the range. i.e. one new_stripe
5788 * along from reshape_progress new_maps to after where
5789 * reshape_safe old_maps to
5790 */
5791 writepos = conf->reshape_progress;
5792 sector_div(writepos, new_data_disks);
5793 readpos = conf->reshape_progress;
5794 sector_div(readpos, data_disks);
5795 safepos = conf->reshape_safe;
5796 sector_div(safepos, data_disks);
5797 if (mddev->reshape_backwards) {
5798 BUG_ON(writepos < reshape_sectors);
5799 writepos -= reshape_sectors;
5800 readpos += reshape_sectors;
5801 safepos += reshape_sectors;
5802 } else {
5803 writepos += reshape_sectors;
5804 /* readpos and safepos are worst-case calculations.
5805 * A negative number is overly pessimistic, and causes
5806 * obvious problems for unsigned storage. So clip to 0.
5807 */
5808 readpos -= min_t(sector_t, reshape_sectors, readpos);
5809 safepos -= min_t(sector_t, reshape_sectors, safepos);
5810 }
5811
5812 /* Having calculated the 'writepos' possibly use it
5813 * to set 'stripe_addr' which is where we will write to.
5814 */
5815 if (mddev->reshape_backwards) {
5816 BUG_ON(conf->reshape_progress == 0);
5817 stripe_addr = writepos;
5818 BUG_ON((mddev->dev_sectors &
5819 ~((sector_t)reshape_sectors - 1))
5820 - reshape_sectors - stripe_addr
5821 != sector_nr);
5822 } else {
5823 BUG_ON(writepos != sector_nr + reshape_sectors);
5824 stripe_addr = sector_nr;
5825 }
5826
5827 /* 'writepos' is the most advanced device address we might write.
5828 * 'readpos' is the least advanced device address we might read.
5829 * 'safepos' is the least address recorded in the metadata as having
5830 * been reshaped.
5831 * If there is a min_offset_diff, these are adjusted either by
5832 * increasing the safepos/readpos if diff is negative, or
5833 * increasing writepos if diff is positive.
5834 * If 'readpos' is then behind 'writepos', there is no way that we can
5835 * ensure safety in the face of a crash - that must be done by userspace
5836 * making a backup of the data. So in that case there is no particular
5837 * rush to update metadata.
5838 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5839 * update the metadata to advance 'safepos' to match 'readpos' so that
5840 * we can be safe in the event of a crash.
5841 * So we insist on updating metadata if safepos is behind writepos and
5842 * readpos is beyond writepos.
5843 * In any case, update the metadata every 10 seconds.
5844 * Maybe that number should be configurable, but I'm not sure it is
5845 * worth it.... maybe it could be a multiple of safemode_delay???
5846 */
5847 if (conf->min_offset_diff < 0) {
5848 safepos += -conf->min_offset_diff;
5849 readpos += -conf->min_offset_diff;
5850 } else
5851 writepos += conf->min_offset_diff;
5852
5853 if ((mddev->reshape_backwards
5854 ? (safepos > writepos && readpos < writepos)
5855 : (safepos < writepos && readpos > writepos)) ||
5856 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5857 /* Cannot proceed until we've updated the superblock... */
5858 wait_event(conf->wait_for_overlap,
5859 atomic_read(&conf->reshape_stripes)==0
5860 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5861 if (atomic_read(&conf->reshape_stripes) != 0)
5862 return 0;
5863 mddev->reshape_position = conf->reshape_progress;
5864 mddev->curr_resync_completed = sector_nr;
5865 if (!mddev->reshape_backwards)
5866 /* Can update recovery_offset */
5867 rdev_for_each(rdev, mddev)
5868 if (rdev->raid_disk >= 0 &&
5869 !test_bit(Journal, &rdev->flags) &&
5870 !test_bit(In_sync, &rdev->flags) &&
5871 rdev->recovery_offset < sector_nr)
5872 rdev->recovery_offset = sector_nr;
5873
5874 conf->reshape_checkpoint = jiffies;
5875 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5876 md_wakeup_thread(mddev->thread);
5877 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5878 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5879 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5880 return 0;
5881 spin_lock_irq(&conf->device_lock);
5882 conf->reshape_safe = mddev->reshape_position;
5883 spin_unlock_irq(&conf->device_lock);
5884 wake_up(&conf->wait_for_overlap);
5885 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5886 }
5887
5888 INIT_LIST_HEAD(&stripes);
5889 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5890 int j;
5891 int skipped_disk = 0;
5892 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5893 set_bit(STRIPE_EXPANDING, &sh->state);
5894 atomic_inc(&conf->reshape_stripes);
5895 /* If any of this stripe is beyond the end of the old
5896 * array, then we need to zero those blocks
5897 */
5898 for (j=sh->disks; j--;) {
5899 sector_t s;
5900 if (j == sh->pd_idx)
5901 continue;
5902 if (conf->level == 6 &&
5903 j == sh->qd_idx)
5904 continue;
5905 s = raid5_compute_blocknr(sh, j, 0);
5906 if (s < raid5_size(mddev, 0, 0)) {
5907 skipped_disk = 1;
5908 continue;
5909 }
5910 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5911 set_bit(R5_Expanded, &sh->dev[j].flags);
5912 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5913 }
5914 if (!skipped_disk) {
5915 set_bit(STRIPE_EXPAND_READY, &sh->state);
5916 set_bit(STRIPE_HANDLE, &sh->state);
5917 }
5918 list_add(&sh->lru, &stripes);
5919 }
5920 spin_lock_irq(&conf->device_lock);
5921 if (mddev->reshape_backwards)
5922 conf->reshape_progress -= reshape_sectors * new_data_disks;
5923 else
5924 conf->reshape_progress += reshape_sectors * new_data_disks;
5925 spin_unlock_irq(&conf->device_lock);
5926 /* Ok, those stripe are ready. We can start scheduling
5927 * reads on the source stripes.
5928 * The source stripes are determined by mapping the first and last
5929 * block on the destination stripes.
5930 */
5931 first_sector =
5932 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5933 1, &dd_idx, NULL);
5934 last_sector =
5935 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5936 * new_data_disks - 1),
5937 1, &dd_idx, NULL);
5938 if (last_sector >= mddev->dev_sectors)
5939 last_sector = mddev->dev_sectors - 1;
5940 while (first_sector <= last_sector) {
5941 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5942 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5943 set_bit(STRIPE_HANDLE, &sh->state);
5944 raid5_release_stripe(sh);
5945 first_sector += STRIPE_SECTORS;
5946 }
5947 /* Now that the sources are clearly marked, we can release
5948 * the destination stripes
5949 */
5950 while (!list_empty(&stripes)) {
5951 sh = list_entry(stripes.next, struct stripe_head, lru);
5952 list_del_init(&sh->lru);
5953 raid5_release_stripe(sh);
5954 }
5955 /* If this takes us to the resync_max point where we have to pause,
5956 * then we need to write out the superblock.
5957 */
5958 sector_nr += reshape_sectors;
5959 retn = reshape_sectors;
5960 finish:
5961 if (mddev->curr_resync_completed > mddev->resync_max ||
5962 (sector_nr - mddev->curr_resync_completed) * 2
5963 >= mddev->resync_max - mddev->curr_resync_completed) {
5964 /* Cannot proceed until we've updated the superblock... */
5965 wait_event(conf->wait_for_overlap,
5966 atomic_read(&conf->reshape_stripes) == 0
5967 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5968 if (atomic_read(&conf->reshape_stripes) != 0)
5969 goto ret;
5970 mddev->reshape_position = conf->reshape_progress;
5971 mddev->curr_resync_completed = sector_nr;
5972 if (!mddev->reshape_backwards)
5973 /* Can update recovery_offset */
5974 rdev_for_each(rdev, mddev)
5975 if (rdev->raid_disk >= 0 &&
5976 !test_bit(Journal, &rdev->flags) &&
5977 !test_bit(In_sync, &rdev->flags) &&
5978 rdev->recovery_offset < sector_nr)
5979 rdev->recovery_offset = sector_nr;
5980 conf->reshape_checkpoint = jiffies;
5981 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5982 md_wakeup_thread(mddev->thread);
5983 wait_event(mddev->sb_wait,
5984 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5985 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5986 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5987 goto ret;
5988 spin_lock_irq(&conf->device_lock);
5989 conf->reshape_safe = mddev->reshape_position;
5990 spin_unlock_irq(&conf->device_lock);
5991 wake_up(&conf->wait_for_overlap);
5992 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5993 }
5994 ret:
5995 return retn;
5996 }
5997
5998 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5999 int *skipped)
6000 {
6001 struct r5conf *conf = mddev->private;
6002 struct stripe_head *sh;
6003 sector_t max_sector = mddev->dev_sectors;
6004 sector_t sync_blocks;
6005 int still_degraded = 0;
6006 int i;
6007
6008 if (sector_nr >= max_sector) {
6009 /* just being told to finish up .. nothing much to do */
6010
6011 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6012 end_reshape(conf);
6013 return 0;
6014 }
6015
6016 if (mddev->curr_resync < max_sector) /* aborted */
6017 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6018 &sync_blocks, 1);
6019 else /* completed sync */
6020 conf->fullsync = 0;
6021 bitmap_close_sync(mddev->bitmap);
6022
6023 return 0;
6024 }
6025
6026 /* Allow raid5_quiesce to complete */
6027 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6028
6029 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6030 return reshape_request(mddev, sector_nr, skipped);
6031
6032 /* No need to check resync_max as we never do more than one
6033 * stripe, and as resync_max will always be on a chunk boundary,
6034 * if the check in md_do_sync didn't fire, there is no chance
6035 * of overstepping resync_max here
6036 */
6037
6038 /* if there is too many failed drives and we are trying
6039 * to resync, then assert that we are finished, because there is
6040 * nothing we can do.
6041 */
6042 if (mddev->degraded >= conf->max_degraded &&
6043 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6044 sector_t rv = mddev->dev_sectors - sector_nr;
6045 *skipped = 1;
6046 return rv;
6047 }
6048 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6049 !conf->fullsync &&
6050 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6051 sync_blocks >= STRIPE_SECTORS) {
6052 /* we can skip this block, and probably more */
6053 sync_blocks /= STRIPE_SECTORS;
6054 *skipped = 1;
6055 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6056 }
6057
6058 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6059
6060 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6061 if (sh == NULL) {
6062 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6063 /* make sure we don't swamp the stripe cache if someone else
6064 * is trying to get access
6065 */
6066 schedule_timeout_uninterruptible(1);
6067 }
6068 /* Need to check if array will still be degraded after recovery/resync
6069 * Note in case of > 1 drive failures it's possible we're rebuilding
6070 * one drive while leaving another faulty drive in array.
6071 */
6072 rcu_read_lock();
6073 for (i = 0; i < conf->raid_disks; i++) {
6074 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6075
6076 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6077 still_degraded = 1;
6078 }
6079 rcu_read_unlock();
6080
6081 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6082
6083 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6084 set_bit(STRIPE_HANDLE, &sh->state);
6085
6086 raid5_release_stripe(sh);
6087
6088 return STRIPE_SECTORS;
6089 }
6090
6091 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6092 unsigned int offset)
6093 {
6094 /* We may not be able to submit a whole bio at once as there
6095 * may not be enough stripe_heads available.
6096 * We cannot pre-allocate enough stripe_heads as we may need
6097 * more than exist in the cache (if we allow ever large chunks).
6098 * So we do one stripe head at a time and record in
6099 * ->bi_hw_segments how many have been done.
6100 *
6101 * We *know* that this entire raid_bio is in one chunk, so
6102 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6103 */
6104 struct stripe_head *sh;
6105 int dd_idx;
6106 sector_t sector, logical_sector, last_sector;
6107 int scnt = 0;
6108 int handled = 0;
6109
6110 logical_sector = raid_bio->bi_iter.bi_sector &
6111 ~((sector_t)STRIPE_SECTORS-1);
6112 sector = raid5_compute_sector(conf, logical_sector,
6113 0, &dd_idx, NULL);
6114 last_sector = bio_end_sector(raid_bio);
6115
6116 for (; logical_sector < last_sector;
6117 logical_sector += STRIPE_SECTORS,
6118 sector += STRIPE_SECTORS,
6119 scnt++) {
6120
6121 if (scnt < offset)
6122 /* already done this stripe */
6123 continue;
6124
6125 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6126
6127 if (!sh) {
6128 /* failed to get a stripe - must wait */
6129 conf->retry_read_aligned = raid_bio;
6130 conf->retry_read_offset = scnt;
6131 return handled;
6132 }
6133
6134 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6135 raid5_release_stripe(sh);
6136 conf->retry_read_aligned = raid_bio;
6137 conf->retry_read_offset = scnt;
6138 return handled;
6139 }
6140
6141 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6142 handle_stripe(sh);
6143 raid5_release_stripe(sh);
6144 handled++;
6145 }
6146
6147 bio_endio(raid_bio);
6148
6149 if (atomic_dec_and_test(&conf->active_aligned_reads))
6150 wake_up(&conf->wait_for_quiescent);
6151 return handled;
6152 }
6153
6154 static int handle_active_stripes(struct r5conf *conf, int group,
6155 struct r5worker *worker,
6156 struct list_head *temp_inactive_list)
6157 {
6158 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6159 int i, batch_size = 0, hash;
6160 bool release_inactive = false;
6161
6162 while (batch_size < MAX_STRIPE_BATCH &&
6163 (sh = __get_priority_stripe(conf, group)) != NULL)
6164 batch[batch_size++] = sh;
6165
6166 if (batch_size == 0) {
6167 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6168 if (!list_empty(temp_inactive_list + i))
6169 break;
6170 if (i == NR_STRIPE_HASH_LOCKS) {
6171 spin_unlock_irq(&conf->device_lock);
6172 r5l_flush_stripe_to_raid(conf->log);
6173 spin_lock_irq(&conf->device_lock);
6174 return batch_size;
6175 }
6176 release_inactive = true;
6177 }
6178 spin_unlock_irq(&conf->device_lock);
6179
6180 release_inactive_stripe_list(conf, temp_inactive_list,
6181 NR_STRIPE_HASH_LOCKS);
6182
6183 r5l_flush_stripe_to_raid(conf->log);
6184 if (release_inactive) {
6185 spin_lock_irq(&conf->device_lock);
6186 return 0;
6187 }
6188
6189 for (i = 0; i < batch_size; i++)
6190 handle_stripe(batch[i]);
6191 log_write_stripe_run(conf);
6192
6193 cond_resched();
6194
6195 spin_lock_irq(&conf->device_lock);
6196 for (i = 0; i < batch_size; i++) {
6197 hash = batch[i]->hash_lock_index;
6198 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6199 }
6200 return batch_size;
6201 }
6202
6203 static void raid5_do_work(struct work_struct *work)
6204 {
6205 struct r5worker *worker = container_of(work, struct r5worker, work);
6206 struct r5worker_group *group = worker->group;
6207 struct r5conf *conf = group->conf;
6208 struct mddev *mddev = conf->mddev;
6209 int group_id = group - conf->worker_groups;
6210 int handled;
6211 struct blk_plug plug;
6212
6213 pr_debug("+++ raid5worker active\n");
6214
6215 blk_start_plug(&plug);
6216 handled = 0;
6217 spin_lock_irq(&conf->device_lock);
6218 while (1) {
6219 int batch_size, released;
6220
6221 released = release_stripe_list(conf, worker->temp_inactive_list);
6222
6223 batch_size = handle_active_stripes(conf, group_id, worker,
6224 worker->temp_inactive_list);
6225 worker->working = false;
6226 if (!batch_size && !released)
6227 break;
6228 handled += batch_size;
6229 wait_event_lock_irq(mddev->sb_wait,
6230 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6231 conf->device_lock);
6232 }
6233 pr_debug("%d stripes handled\n", handled);
6234
6235 spin_unlock_irq(&conf->device_lock);
6236
6237 flush_deferred_bios(conf);
6238
6239 r5l_flush_stripe_to_raid(conf->log);
6240
6241 async_tx_issue_pending_all();
6242 blk_finish_plug(&plug);
6243
6244 pr_debug("--- raid5worker inactive\n");
6245 }
6246
6247 /*
6248 * This is our raid5 kernel thread.
6249 *
6250 * We scan the hash table for stripes which can be handled now.
6251 * During the scan, completed stripes are saved for us by the interrupt
6252 * handler, so that they will not have to wait for our next wakeup.
6253 */
6254 static void raid5d(struct md_thread *thread)
6255 {
6256 struct mddev *mddev = thread->mddev;
6257 struct r5conf *conf = mddev->private;
6258 int handled;
6259 struct blk_plug plug;
6260
6261 pr_debug("+++ raid5d active\n");
6262
6263 md_check_recovery(mddev);
6264
6265 blk_start_plug(&plug);
6266 handled = 0;
6267 spin_lock_irq(&conf->device_lock);
6268 while (1) {
6269 struct bio *bio;
6270 int batch_size, released;
6271 unsigned int offset;
6272
6273 released = release_stripe_list(conf, conf->temp_inactive_list);
6274 if (released)
6275 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6276
6277 if (
6278 !list_empty(&conf->bitmap_list)) {
6279 /* Now is a good time to flush some bitmap updates */
6280 conf->seq_flush++;
6281 spin_unlock_irq(&conf->device_lock);
6282 bitmap_unplug(mddev->bitmap);
6283 spin_lock_irq(&conf->device_lock);
6284 conf->seq_write = conf->seq_flush;
6285 activate_bit_delay(conf, conf->temp_inactive_list);
6286 }
6287 raid5_activate_delayed(conf);
6288
6289 while ((bio = remove_bio_from_retry(conf, &offset))) {
6290 int ok;
6291 spin_unlock_irq(&conf->device_lock);
6292 ok = retry_aligned_read(conf, bio, offset);
6293 spin_lock_irq(&conf->device_lock);
6294 if (!ok)
6295 break;
6296 handled++;
6297 }
6298
6299 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6300 conf->temp_inactive_list);
6301 if (!batch_size && !released)
6302 break;
6303 handled += batch_size;
6304
6305 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6306 spin_unlock_irq(&conf->device_lock);
6307 md_check_recovery(mddev);
6308 spin_lock_irq(&conf->device_lock);
6309 }
6310 }
6311 pr_debug("%d stripes handled\n", handled);
6312
6313 spin_unlock_irq(&conf->device_lock);
6314 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6315 mutex_trylock(&conf->cache_size_mutex)) {
6316 grow_one_stripe(conf, __GFP_NOWARN);
6317 /* Set flag even if allocation failed. This helps
6318 * slow down allocation requests when mem is short
6319 */
6320 set_bit(R5_DID_ALLOC, &conf->cache_state);
6321 mutex_unlock(&conf->cache_size_mutex);
6322 }
6323
6324 flush_deferred_bios(conf);
6325
6326 r5l_flush_stripe_to_raid(conf->log);
6327
6328 async_tx_issue_pending_all();
6329 blk_finish_plug(&plug);
6330
6331 pr_debug("--- raid5d inactive\n");
6332 }
6333
6334 static ssize_t
6335 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6336 {
6337 struct r5conf *conf;
6338 int ret = 0;
6339 spin_lock(&mddev->lock);
6340 conf = mddev->private;
6341 if (conf)
6342 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6343 spin_unlock(&mddev->lock);
6344 return ret;
6345 }
6346
6347 int
6348 raid5_set_cache_size(struct mddev *mddev, int size)
6349 {
6350 struct r5conf *conf = mddev->private;
6351
6352 if (size <= 16 || size > 32768)
6353 return -EINVAL;
6354
6355 conf->min_nr_stripes = size;
6356 mutex_lock(&conf->cache_size_mutex);
6357 while (size < conf->max_nr_stripes &&
6358 drop_one_stripe(conf))
6359 ;
6360 mutex_unlock(&conf->cache_size_mutex);
6361
6362 md_allow_write(mddev);
6363
6364 mutex_lock(&conf->cache_size_mutex);
6365 while (size > conf->max_nr_stripes)
6366 if (!grow_one_stripe(conf, GFP_KERNEL))
6367 break;
6368 mutex_unlock(&conf->cache_size_mutex);
6369
6370 return 0;
6371 }
6372 EXPORT_SYMBOL(raid5_set_cache_size);
6373
6374 static ssize_t
6375 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6376 {
6377 struct r5conf *conf;
6378 unsigned long new;
6379 int err;
6380
6381 if (len >= PAGE_SIZE)
6382 return -EINVAL;
6383 if (kstrtoul(page, 10, &new))
6384 return -EINVAL;
6385 err = mddev_lock(mddev);
6386 if (err)
6387 return err;
6388 conf = mddev->private;
6389 if (!conf)
6390 err = -ENODEV;
6391 else
6392 err = raid5_set_cache_size(mddev, new);
6393 mddev_unlock(mddev);
6394
6395 return err ?: len;
6396 }
6397
6398 static struct md_sysfs_entry
6399 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6400 raid5_show_stripe_cache_size,
6401 raid5_store_stripe_cache_size);
6402
6403 static ssize_t
6404 raid5_show_rmw_level(struct mddev *mddev, char *page)
6405 {
6406 struct r5conf *conf = mddev->private;
6407 if (conf)
6408 return sprintf(page, "%d\n", conf->rmw_level);
6409 else
6410 return 0;
6411 }
6412
6413 static ssize_t
6414 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6415 {
6416 struct r5conf *conf = mddev->private;
6417 unsigned long new;
6418
6419 if (!conf)
6420 return -ENODEV;
6421
6422 if (len >= PAGE_SIZE)
6423 return -EINVAL;
6424
6425 if (kstrtoul(page, 10, &new))
6426 return -EINVAL;
6427
6428 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6429 return -EINVAL;
6430
6431 if (new != PARITY_DISABLE_RMW &&
6432 new != PARITY_ENABLE_RMW &&
6433 new != PARITY_PREFER_RMW)
6434 return -EINVAL;
6435
6436 conf->rmw_level = new;
6437 return len;
6438 }
6439
6440 static struct md_sysfs_entry
6441 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6442 raid5_show_rmw_level,
6443 raid5_store_rmw_level);
6444
6445
6446 static ssize_t
6447 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6448 {
6449 struct r5conf *conf;
6450 int ret = 0;
6451 spin_lock(&mddev->lock);
6452 conf = mddev->private;
6453 if (conf)
6454 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6455 spin_unlock(&mddev->lock);
6456 return ret;
6457 }
6458
6459 static ssize_t
6460 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6461 {
6462 struct r5conf *conf;
6463 unsigned long new;
6464 int err;
6465
6466 if (len >= PAGE_SIZE)
6467 return -EINVAL;
6468 if (kstrtoul(page, 10, &new))
6469 return -EINVAL;
6470
6471 err = mddev_lock(mddev);
6472 if (err)
6473 return err;
6474 conf = mddev->private;
6475 if (!conf)
6476 err = -ENODEV;
6477 else if (new > conf->min_nr_stripes)
6478 err = -EINVAL;
6479 else
6480 conf->bypass_threshold = new;
6481 mddev_unlock(mddev);
6482 return err ?: len;
6483 }
6484
6485 static struct md_sysfs_entry
6486 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6487 S_IRUGO | S_IWUSR,
6488 raid5_show_preread_threshold,
6489 raid5_store_preread_threshold);
6490
6491 static ssize_t
6492 raid5_show_skip_copy(struct mddev *mddev, char *page)
6493 {
6494 struct r5conf *conf;
6495 int ret = 0;
6496 spin_lock(&mddev->lock);
6497 conf = mddev->private;
6498 if (conf)
6499 ret = sprintf(page, "%d\n", conf->skip_copy);
6500 spin_unlock(&mddev->lock);
6501 return ret;
6502 }
6503
6504 static ssize_t
6505 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6506 {
6507 struct r5conf *conf;
6508 unsigned long new;
6509 int err;
6510
6511 if (len >= PAGE_SIZE)
6512 return -EINVAL;
6513 if (kstrtoul(page, 10, &new))
6514 return -EINVAL;
6515 new = !!new;
6516
6517 err = mddev_lock(mddev);
6518 if (err)
6519 return err;
6520 conf = mddev->private;
6521 if (!conf)
6522 err = -ENODEV;
6523 else if (new != conf->skip_copy) {
6524 mddev_suspend(mddev);
6525 conf->skip_copy = new;
6526 if (new)
6527 mddev->queue->backing_dev_info->capabilities |=
6528 BDI_CAP_STABLE_WRITES;
6529 else
6530 mddev->queue->backing_dev_info->capabilities &=
6531 ~BDI_CAP_STABLE_WRITES;
6532 mddev_resume(mddev);
6533 }
6534 mddev_unlock(mddev);
6535 return err ?: len;
6536 }
6537
6538 static struct md_sysfs_entry
6539 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6540 raid5_show_skip_copy,
6541 raid5_store_skip_copy);
6542
6543 static ssize_t
6544 stripe_cache_active_show(struct mddev *mddev, char *page)
6545 {
6546 struct r5conf *conf = mddev->private;
6547 if (conf)
6548 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6549 else
6550 return 0;
6551 }
6552
6553 static struct md_sysfs_entry
6554 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6555
6556 static ssize_t
6557 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6558 {
6559 struct r5conf *conf;
6560 int ret = 0;
6561 spin_lock(&mddev->lock);
6562 conf = mddev->private;
6563 if (conf)
6564 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6565 spin_unlock(&mddev->lock);
6566 return ret;
6567 }
6568
6569 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6570 int *group_cnt,
6571 int *worker_cnt_per_group,
6572 struct r5worker_group **worker_groups);
6573 static ssize_t
6574 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6575 {
6576 struct r5conf *conf;
6577 unsigned int new;
6578 int err;
6579 struct r5worker_group *new_groups, *old_groups;
6580 int group_cnt, worker_cnt_per_group;
6581
6582 if (len >= PAGE_SIZE)
6583 return -EINVAL;
6584 if (kstrtouint(page, 10, &new))
6585 return -EINVAL;
6586 /* 8192 should be big enough */
6587 if (new > 8192)
6588 return -EINVAL;
6589
6590 err = mddev_lock(mddev);
6591 if (err)
6592 return err;
6593 conf = mddev->private;
6594 if (!conf)
6595 err = -ENODEV;
6596 else if (new != conf->worker_cnt_per_group) {
6597 mddev_suspend(mddev);
6598
6599 old_groups = conf->worker_groups;
6600 if (old_groups)
6601 flush_workqueue(raid5_wq);
6602
6603 err = alloc_thread_groups(conf, new,
6604 &group_cnt, &worker_cnt_per_group,
6605 &new_groups);
6606 if (!err) {
6607 spin_lock_irq(&conf->device_lock);
6608 conf->group_cnt = group_cnt;
6609 conf->worker_cnt_per_group = worker_cnt_per_group;
6610 conf->worker_groups = new_groups;
6611 spin_unlock_irq(&conf->device_lock);
6612
6613 if (old_groups)
6614 kfree(old_groups[0].workers);
6615 kfree(old_groups);
6616 }
6617 mddev_resume(mddev);
6618 }
6619 mddev_unlock(mddev);
6620
6621 return err ?: len;
6622 }
6623
6624 static struct md_sysfs_entry
6625 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6626 raid5_show_group_thread_cnt,
6627 raid5_store_group_thread_cnt);
6628
6629 static struct attribute *raid5_attrs[] = {
6630 &raid5_stripecache_size.attr,
6631 &raid5_stripecache_active.attr,
6632 &raid5_preread_bypass_threshold.attr,
6633 &raid5_group_thread_cnt.attr,
6634 &raid5_skip_copy.attr,
6635 &raid5_rmw_level.attr,
6636 &r5c_journal_mode.attr,
6637 NULL,
6638 };
6639 static struct attribute_group raid5_attrs_group = {
6640 .name = NULL,
6641 .attrs = raid5_attrs,
6642 };
6643
6644 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6645 int *group_cnt,
6646 int *worker_cnt_per_group,
6647 struct r5worker_group **worker_groups)
6648 {
6649 int i, j, k;
6650 ssize_t size;
6651 struct r5worker *workers;
6652
6653 *worker_cnt_per_group = cnt;
6654 if (cnt == 0) {
6655 *group_cnt = 0;
6656 *worker_groups = NULL;
6657 return 0;
6658 }
6659 *group_cnt = num_possible_nodes();
6660 size = sizeof(struct r5worker) * cnt;
6661 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6662 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6663 *group_cnt, GFP_NOIO);
6664 if (!*worker_groups || !workers) {
6665 kfree(workers);
6666 kfree(*worker_groups);
6667 return -ENOMEM;
6668 }
6669
6670 for (i = 0; i < *group_cnt; i++) {
6671 struct r5worker_group *group;
6672
6673 group = &(*worker_groups)[i];
6674 INIT_LIST_HEAD(&group->handle_list);
6675 INIT_LIST_HEAD(&group->loprio_list);
6676 group->conf = conf;
6677 group->workers = workers + i * cnt;
6678
6679 for (j = 0; j < cnt; j++) {
6680 struct r5worker *worker = group->workers + j;
6681 worker->group = group;
6682 INIT_WORK(&worker->work, raid5_do_work);
6683
6684 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6685 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6686 }
6687 }
6688
6689 return 0;
6690 }
6691
6692 static void free_thread_groups(struct r5conf *conf)
6693 {
6694 if (conf->worker_groups)
6695 kfree(conf->worker_groups[0].workers);
6696 kfree(conf->worker_groups);
6697 conf->worker_groups = NULL;
6698 }
6699
6700 static sector_t
6701 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6702 {
6703 struct r5conf *conf = mddev->private;
6704
6705 if (!sectors)
6706 sectors = mddev->dev_sectors;
6707 if (!raid_disks)
6708 /* size is defined by the smallest of previous and new size */
6709 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6710
6711 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6712 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6713 return sectors * (raid_disks - conf->max_degraded);
6714 }
6715
6716 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6717 {
6718 safe_put_page(percpu->spare_page);
6719 if (percpu->scribble)
6720 flex_array_free(percpu->scribble);
6721 percpu->spare_page = NULL;
6722 percpu->scribble = NULL;
6723 }
6724
6725 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6726 {
6727 if (conf->level == 6 && !percpu->spare_page)
6728 percpu->spare_page = alloc_page(GFP_KERNEL);
6729 if (!percpu->scribble)
6730 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6731 conf->previous_raid_disks),
6732 max(conf->chunk_sectors,
6733 conf->prev_chunk_sectors)
6734 / STRIPE_SECTORS,
6735 GFP_KERNEL);
6736
6737 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6738 free_scratch_buffer(conf, percpu);
6739 return -ENOMEM;
6740 }
6741
6742 return 0;
6743 }
6744
6745 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6746 {
6747 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6748
6749 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6750 return 0;
6751 }
6752
6753 static void raid5_free_percpu(struct r5conf *conf)
6754 {
6755 if (!conf->percpu)
6756 return;
6757
6758 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6759 free_percpu(conf->percpu);
6760 }
6761
6762 static void free_conf(struct r5conf *conf)
6763 {
6764 int i;
6765
6766 log_exit(conf);
6767
6768 if (conf->shrinker.nr_deferred)
6769 unregister_shrinker(&conf->shrinker);
6770
6771 free_thread_groups(conf);
6772 shrink_stripes(conf);
6773 raid5_free_percpu(conf);
6774 for (i = 0; i < conf->pool_size; i++)
6775 if (conf->disks[i].extra_page)
6776 put_page(conf->disks[i].extra_page);
6777 kfree(conf->disks);
6778 if (conf->bio_split)
6779 bioset_free(conf->bio_split);
6780 kfree(conf->stripe_hashtbl);
6781 kfree(conf->pending_data);
6782 kfree(conf);
6783 }
6784
6785 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6786 {
6787 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6788 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6789
6790 if (alloc_scratch_buffer(conf, percpu)) {
6791 pr_warn("%s: failed memory allocation for cpu%u\n",
6792 __func__, cpu);
6793 return -ENOMEM;
6794 }
6795 return 0;
6796 }
6797
6798 static int raid5_alloc_percpu(struct r5conf *conf)
6799 {
6800 int err = 0;
6801
6802 conf->percpu = alloc_percpu(struct raid5_percpu);
6803 if (!conf->percpu)
6804 return -ENOMEM;
6805
6806 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6807 if (!err) {
6808 conf->scribble_disks = max(conf->raid_disks,
6809 conf->previous_raid_disks);
6810 conf->scribble_sectors = max(conf->chunk_sectors,
6811 conf->prev_chunk_sectors);
6812 }
6813 return err;
6814 }
6815
6816 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6817 struct shrink_control *sc)
6818 {
6819 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6820 unsigned long ret = SHRINK_STOP;
6821
6822 if (mutex_trylock(&conf->cache_size_mutex)) {
6823 ret= 0;
6824 while (ret < sc->nr_to_scan &&
6825 conf->max_nr_stripes > conf->min_nr_stripes) {
6826 if (drop_one_stripe(conf) == 0) {
6827 ret = SHRINK_STOP;
6828 break;
6829 }
6830 ret++;
6831 }
6832 mutex_unlock(&conf->cache_size_mutex);
6833 }
6834 return ret;
6835 }
6836
6837 static unsigned long raid5_cache_count(struct shrinker *shrink,
6838 struct shrink_control *sc)
6839 {
6840 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6841
6842 if (conf->max_nr_stripes < conf->min_nr_stripes)
6843 /* unlikely, but not impossible */
6844 return 0;
6845 return conf->max_nr_stripes - conf->min_nr_stripes;
6846 }
6847
6848 static struct r5conf *setup_conf(struct mddev *mddev)
6849 {
6850 struct r5conf *conf;
6851 int raid_disk, memory, max_disks;
6852 struct md_rdev *rdev;
6853 struct disk_info *disk;
6854 char pers_name[6];
6855 int i;
6856 int group_cnt, worker_cnt_per_group;
6857 struct r5worker_group *new_group;
6858
6859 if (mddev->new_level != 5
6860 && mddev->new_level != 4
6861 && mddev->new_level != 6) {
6862 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6863 mdname(mddev), mddev->new_level);
6864 return ERR_PTR(-EIO);
6865 }
6866 if ((mddev->new_level == 5
6867 && !algorithm_valid_raid5(mddev->new_layout)) ||
6868 (mddev->new_level == 6
6869 && !algorithm_valid_raid6(mddev->new_layout))) {
6870 pr_warn("md/raid:%s: layout %d not supported\n",
6871 mdname(mddev), mddev->new_layout);
6872 return ERR_PTR(-EIO);
6873 }
6874 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6875 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6876 mdname(mddev), mddev->raid_disks);
6877 return ERR_PTR(-EINVAL);
6878 }
6879
6880 if (!mddev->new_chunk_sectors ||
6881 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6882 !is_power_of_2(mddev->new_chunk_sectors)) {
6883 pr_warn("md/raid:%s: invalid chunk size %d\n",
6884 mdname(mddev), mddev->new_chunk_sectors << 9);
6885 return ERR_PTR(-EINVAL);
6886 }
6887
6888 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6889 if (conf == NULL)
6890 goto abort;
6891 INIT_LIST_HEAD(&conf->free_list);
6892 INIT_LIST_HEAD(&conf->pending_list);
6893 conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6894 PENDING_IO_MAX, GFP_KERNEL);
6895 if (!conf->pending_data)
6896 goto abort;
6897 for (i = 0; i < PENDING_IO_MAX; i++)
6898 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6899 /* Don't enable multi-threading by default*/
6900 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6901 &new_group)) {
6902 conf->group_cnt = group_cnt;
6903 conf->worker_cnt_per_group = worker_cnt_per_group;
6904 conf->worker_groups = new_group;
6905 } else
6906 goto abort;
6907 spin_lock_init(&conf->device_lock);
6908 seqcount_init(&conf->gen_lock);
6909 mutex_init(&conf->cache_size_mutex);
6910 init_waitqueue_head(&conf->wait_for_quiescent);
6911 init_waitqueue_head(&conf->wait_for_stripe);
6912 init_waitqueue_head(&conf->wait_for_overlap);
6913 INIT_LIST_HEAD(&conf->handle_list);
6914 INIT_LIST_HEAD(&conf->loprio_list);
6915 INIT_LIST_HEAD(&conf->hold_list);
6916 INIT_LIST_HEAD(&conf->delayed_list);
6917 INIT_LIST_HEAD(&conf->bitmap_list);
6918 init_llist_head(&conf->released_stripes);
6919 atomic_set(&conf->active_stripes, 0);
6920 atomic_set(&conf->preread_active_stripes, 0);
6921 atomic_set(&conf->active_aligned_reads, 0);
6922 spin_lock_init(&conf->pending_bios_lock);
6923 conf->batch_bio_dispatch = true;
6924 rdev_for_each(rdev, mddev) {
6925 if (test_bit(Journal, &rdev->flags))
6926 continue;
6927 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6928 conf->batch_bio_dispatch = false;
6929 break;
6930 }
6931 }
6932
6933 conf->bypass_threshold = BYPASS_THRESHOLD;
6934 conf->recovery_disabled = mddev->recovery_disabled - 1;
6935
6936 conf->raid_disks = mddev->raid_disks;
6937 if (mddev->reshape_position == MaxSector)
6938 conf->previous_raid_disks = mddev->raid_disks;
6939 else
6940 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6941 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6942
6943 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6944 GFP_KERNEL);
6945
6946 if (!conf->disks)
6947 goto abort;
6948
6949 for (i = 0; i < max_disks; i++) {
6950 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6951 if (!conf->disks[i].extra_page)
6952 goto abort;
6953 }
6954
6955 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
6956 if (!conf->bio_split)
6957 goto abort;
6958 conf->mddev = mddev;
6959
6960 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6961 goto abort;
6962
6963 /* We init hash_locks[0] separately to that it can be used
6964 * as the reference lock in the spin_lock_nest_lock() call
6965 * in lock_all_device_hash_locks_irq in order to convince
6966 * lockdep that we know what we are doing.
6967 */
6968 spin_lock_init(conf->hash_locks);
6969 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6970 spin_lock_init(conf->hash_locks + i);
6971
6972 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6973 INIT_LIST_HEAD(conf->inactive_list + i);
6974
6975 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6976 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6977
6978 atomic_set(&conf->r5c_cached_full_stripes, 0);
6979 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6980 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6981 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6982 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6983 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6984
6985 conf->level = mddev->new_level;
6986 conf->chunk_sectors = mddev->new_chunk_sectors;
6987 if (raid5_alloc_percpu(conf) != 0)
6988 goto abort;
6989
6990 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6991
6992 rdev_for_each(rdev, mddev) {
6993 raid_disk = rdev->raid_disk;
6994 if (raid_disk >= max_disks
6995 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6996 continue;
6997 disk = conf->disks + raid_disk;
6998
6999 if (test_bit(Replacement, &rdev->flags)) {
7000 if (disk->replacement)
7001 goto abort;
7002 disk->replacement = rdev;
7003 } else {
7004 if (disk->rdev)
7005 goto abort;
7006 disk->rdev = rdev;
7007 }
7008
7009 if (test_bit(In_sync, &rdev->flags)) {
7010 char b[BDEVNAME_SIZE];
7011 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7012 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7013 } else if (rdev->saved_raid_disk != raid_disk)
7014 /* Cannot rely on bitmap to complete recovery */
7015 conf->fullsync = 1;
7016 }
7017
7018 conf->level = mddev->new_level;
7019 if (conf->level == 6) {
7020 conf->max_degraded = 2;
7021 if (raid6_call.xor_syndrome)
7022 conf->rmw_level = PARITY_ENABLE_RMW;
7023 else
7024 conf->rmw_level = PARITY_DISABLE_RMW;
7025 } else {
7026 conf->max_degraded = 1;
7027 conf->rmw_level = PARITY_ENABLE_RMW;
7028 }
7029 conf->algorithm = mddev->new_layout;
7030 conf->reshape_progress = mddev->reshape_position;
7031 if (conf->reshape_progress != MaxSector) {
7032 conf->prev_chunk_sectors = mddev->chunk_sectors;
7033 conf->prev_algo = mddev->layout;
7034 } else {
7035 conf->prev_chunk_sectors = conf->chunk_sectors;
7036 conf->prev_algo = conf->algorithm;
7037 }
7038
7039 conf->min_nr_stripes = NR_STRIPES;
7040 if (mddev->reshape_position != MaxSector) {
7041 int stripes = max_t(int,
7042 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7043 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7044 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7045 if (conf->min_nr_stripes != NR_STRIPES)
7046 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7047 mdname(mddev), conf->min_nr_stripes);
7048 }
7049 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7050 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7051 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7052 if (grow_stripes(conf, conf->min_nr_stripes)) {
7053 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7054 mdname(mddev), memory);
7055 goto abort;
7056 } else
7057 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7058 /*
7059 * Losing a stripe head costs more than the time to refill it,
7060 * it reduces the queue depth and so can hurt throughput.
7061 * So set it rather large, scaled by number of devices.
7062 */
7063 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7064 conf->shrinker.scan_objects = raid5_cache_scan;
7065 conf->shrinker.count_objects = raid5_cache_count;
7066 conf->shrinker.batch = 128;
7067 conf->shrinker.flags = 0;
7068 if (register_shrinker(&conf->shrinker)) {
7069 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7070 mdname(mddev));
7071 goto abort;
7072 }
7073
7074 sprintf(pers_name, "raid%d", mddev->new_level);
7075 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7076 if (!conf->thread) {
7077 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7078 mdname(mddev));
7079 goto abort;
7080 }
7081
7082 return conf;
7083
7084 abort:
7085 if (conf) {
7086 free_conf(conf);
7087 return ERR_PTR(-EIO);
7088 } else
7089 return ERR_PTR(-ENOMEM);
7090 }
7091
7092 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7093 {
7094 switch (algo) {
7095 case ALGORITHM_PARITY_0:
7096 if (raid_disk < max_degraded)
7097 return 1;
7098 break;
7099 case ALGORITHM_PARITY_N:
7100 if (raid_disk >= raid_disks - max_degraded)
7101 return 1;
7102 break;
7103 case ALGORITHM_PARITY_0_6:
7104 if (raid_disk == 0 ||
7105 raid_disk == raid_disks - 1)
7106 return 1;
7107 break;
7108 case ALGORITHM_LEFT_ASYMMETRIC_6:
7109 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7110 case ALGORITHM_LEFT_SYMMETRIC_6:
7111 case ALGORITHM_RIGHT_SYMMETRIC_6:
7112 if (raid_disk == raid_disks - 1)
7113 return 1;
7114 }
7115 return 0;
7116 }
7117
7118 static int raid5_run(struct mddev *mddev)
7119 {
7120 struct r5conf *conf;
7121 int working_disks = 0;
7122 int dirty_parity_disks = 0;
7123 struct md_rdev *rdev;
7124 struct md_rdev *journal_dev = NULL;
7125 sector_t reshape_offset = 0;
7126 int i;
7127 long long min_offset_diff = 0;
7128 int first = 1;
7129
7130 if (mddev_init_writes_pending(mddev) < 0)
7131 return -ENOMEM;
7132
7133 if (mddev->recovery_cp != MaxSector)
7134 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7135 mdname(mddev));
7136
7137 rdev_for_each(rdev, mddev) {
7138 long long diff;
7139
7140 if (test_bit(Journal, &rdev->flags)) {
7141 journal_dev = rdev;
7142 continue;
7143 }
7144 if (rdev->raid_disk < 0)
7145 continue;
7146 diff = (rdev->new_data_offset - rdev->data_offset);
7147 if (first) {
7148 min_offset_diff = diff;
7149 first = 0;
7150 } else if (mddev->reshape_backwards &&
7151 diff < min_offset_diff)
7152 min_offset_diff = diff;
7153 else if (!mddev->reshape_backwards &&
7154 diff > min_offset_diff)
7155 min_offset_diff = diff;
7156 }
7157
7158 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7159 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7160 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7161 mdname(mddev));
7162 return -EINVAL;
7163 }
7164
7165 if (mddev->reshape_position != MaxSector) {
7166 /* Check that we can continue the reshape.
7167 * Difficulties arise if the stripe we would write to
7168 * next is at or after the stripe we would read from next.
7169 * For a reshape that changes the number of devices, this
7170 * is only possible for a very short time, and mdadm makes
7171 * sure that time appears to have past before assembling
7172 * the array. So we fail if that time hasn't passed.
7173 * For a reshape that keeps the number of devices the same
7174 * mdadm must be monitoring the reshape can keeping the
7175 * critical areas read-only and backed up. It will start
7176 * the array in read-only mode, so we check for that.
7177 */
7178 sector_t here_new, here_old;
7179 int old_disks;
7180 int max_degraded = (mddev->level == 6 ? 2 : 1);
7181 int chunk_sectors;
7182 int new_data_disks;
7183
7184 if (journal_dev) {
7185 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7186 mdname(mddev));
7187 return -EINVAL;
7188 }
7189
7190 if (mddev->new_level != mddev->level) {
7191 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7192 mdname(mddev));
7193 return -EINVAL;
7194 }
7195 old_disks = mddev->raid_disks - mddev->delta_disks;
7196 /* reshape_position must be on a new-stripe boundary, and one
7197 * further up in new geometry must map after here in old
7198 * geometry.
7199 * If the chunk sizes are different, then as we perform reshape
7200 * in units of the largest of the two, reshape_position needs
7201 * be a multiple of the largest chunk size times new data disks.
7202 */
7203 here_new = mddev->reshape_position;
7204 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7205 new_data_disks = mddev->raid_disks - max_degraded;
7206 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7207 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7208 mdname(mddev));
7209 return -EINVAL;
7210 }
7211 reshape_offset = here_new * chunk_sectors;
7212 /* here_new is the stripe we will write to */
7213 here_old = mddev->reshape_position;
7214 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7215 /* here_old is the first stripe that we might need to read
7216 * from */
7217 if (mddev->delta_disks == 0) {
7218 /* We cannot be sure it is safe to start an in-place
7219 * reshape. It is only safe if user-space is monitoring
7220 * and taking constant backups.
7221 * mdadm always starts a situation like this in
7222 * readonly mode so it can take control before
7223 * allowing any writes. So just check for that.
7224 */
7225 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7226 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7227 /* not really in-place - so OK */;
7228 else if (mddev->ro == 0) {
7229 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7230 mdname(mddev));
7231 return -EINVAL;
7232 }
7233 } else if (mddev->reshape_backwards
7234 ? (here_new * chunk_sectors + min_offset_diff <=
7235 here_old * chunk_sectors)
7236 : (here_new * chunk_sectors >=
7237 here_old * chunk_sectors + (-min_offset_diff))) {
7238 /* Reading from the same stripe as writing to - bad */
7239 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7240 mdname(mddev));
7241 return -EINVAL;
7242 }
7243 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7244 /* OK, we should be able to continue; */
7245 } else {
7246 BUG_ON(mddev->level != mddev->new_level);
7247 BUG_ON(mddev->layout != mddev->new_layout);
7248 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7249 BUG_ON(mddev->delta_disks != 0);
7250 }
7251
7252 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7253 test_bit(MD_HAS_PPL, &mddev->flags)) {
7254 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7255 mdname(mddev));
7256 clear_bit(MD_HAS_PPL, &mddev->flags);
7257 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7258 }
7259
7260 if (mddev->private == NULL)
7261 conf = setup_conf(mddev);
7262 else
7263 conf = mddev->private;
7264
7265 if (IS_ERR(conf))
7266 return PTR_ERR(conf);
7267
7268 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7269 if (!journal_dev) {
7270 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7271 mdname(mddev));
7272 mddev->ro = 1;
7273 set_disk_ro(mddev->gendisk, 1);
7274 } else if (mddev->recovery_cp == MaxSector)
7275 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7276 }
7277
7278 conf->min_offset_diff = min_offset_diff;
7279 mddev->thread = conf->thread;
7280 conf->thread = NULL;
7281 mddev->private = conf;
7282
7283 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7284 i++) {
7285 rdev = conf->disks[i].rdev;
7286 if (!rdev && conf->disks[i].replacement) {
7287 /* The replacement is all we have yet */
7288 rdev = conf->disks[i].replacement;
7289 conf->disks[i].replacement = NULL;
7290 clear_bit(Replacement, &rdev->flags);
7291 conf->disks[i].rdev = rdev;
7292 }
7293 if (!rdev)
7294 continue;
7295 if (conf->disks[i].replacement &&
7296 conf->reshape_progress != MaxSector) {
7297 /* replacements and reshape simply do not mix. */
7298 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7299 goto abort;
7300 }
7301 if (test_bit(In_sync, &rdev->flags)) {
7302 working_disks++;
7303 continue;
7304 }
7305 /* This disc is not fully in-sync. However if it
7306 * just stored parity (beyond the recovery_offset),
7307 * when we don't need to be concerned about the
7308 * array being dirty.
7309 * When reshape goes 'backwards', we never have
7310 * partially completed devices, so we only need
7311 * to worry about reshape going forwards.
7312 */
7313 /* Hack because v0.91 doesn't store recovery_offset properly. */
7314 if (mddev->major_version == 0 &&
7315 mddev->minor_version > 90)
7316 rdev->recovery_offset = reshape_offset;
7317
7318 if (rdev->recovery_offset < reshape_offset) {
7319 /* We need to check old and new layout */
7320 if (!only_parity(rdev->raid_disk,
7321 conf->algorithm,
7322 conf->raid_disks,
7323 conf->max_degraded))
7324 continue;
7325 }
7326 if (!only_parity(rdev->raid_disk,
7327 conf->prev_algo,
7328 conf->previous_raid_disks,
7329 conf->max_degraded))
7330 continue;
7331 dirty_parity_disks++;
7332 }
7333
7334 /*
7335 * 0 for a fully functional array, 1 or 2 for a degraded array.
7336 */
7337 mddev->degraded = raid5_calc_degraded(conf);
7338
7339 if (has_failed(conf)) {
7340 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7341 mdname(mddev), mddev->degraded, conf->raid_disks);
7342 goto abort;
7343 }
7344
7345 /* device size must be a multiple of chunk size */
7346 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7347 mddev->resync_max_sectors = mddev->dev_sectors;
7348
7349 if (mddev->degraded > dirty_parity_disks &&
7350 mddev->recovery_cp != MaxSector) {
7351 if (test_bit(MD_HAS_PPL, &mddev->flags))
7352 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7353 mdname(mddev));
7354 else if (mddev->ok_start_degraded)
7355 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7356 mdname(mddev));
7357 else {
7358 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7359 mdname(mddev));
7360 goto abort;
7361 }
7362 }
7363
7364 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7365 mdname(mddev), conf->level,
7366 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7367 mddev->new_layout);
7368
7369 print_raid5_conf(conf);
7370
7371 if (conf->reshape_progress != MaxSector) {
7372 conf->reshape_safe = conf->reshape_progress;
7373 atomic_set(&conf->reshape_stripes, 0);
7374 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7375 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7376 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7377 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7378 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7379 "reshape");
7380 }
7381
7382 /* Ok, everything is just fine now */
7383 if (mddev->to_remove == &raid5_attrs_group)
7384 mddev->to_remove = NULL;
7385 else if (mddev->kobj.sd &&
7386 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7387 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7388 mdname(mddev));
7389 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7390
7391 if (mddev->queue) {
7392 int chunk_size;
7393 /* read-ahead size must cover two whole stripes, which
7394 * is 2 * (datadisks) * chunksize where 'n' is the
7395 * number of raid devices
7396 */
7397 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7398 int stripe = data_disks *
7399 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7400 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7401 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7402
7403 chunk_size = mddev->chunk_sectors << 9;
7404 blk_queue_io_min(mddev->queue, chunk_size);
7405 blk_queue_io_opt(mddev->queue, chunk_size *
7406 (conf->raid_disks - conf->max_degraded));
7407 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7408 /*
7409 * We can only discard a whole stripe. It doesn't make sense to
7410 * discard data disk but write parity disk
7411 */
7412 stripe = stripe * PAGE_SIZE;
7413 /* Round up to power of 2, as discard handling
7414 * currently assumes that */
7415 while ((stripe-1) & stripe)
7416 stripe = (stripe | (stripe-1)) + 1;
7417 mddev->queue->limits.discard_alignment = stripe;
7418 mddev->queue->limits.discard_granularity = stripe;
7419
7420 blk_queue_max_write_same_sectors(mddev->queue, 0);
7421 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7422
7423 rdev_for_each(rdev, mddev) {
7424 disk_stack_limits(mddev->gendisk, rdev->bdev,
7425 rdev->data_offset << 9);
7426 disk_stack_limits(mddev->gendisk, rdev->bdev,
7427 rdev->new_data_offset << 9);
7428 }
7429
7430 /*
7431 * zeroing is required, otherwise data
7432 * could be lost. Consider a scenario: discard a stripe
7433 * (the stripe could be inconsistent if
7434 * discard_zeroes_data is 0); write one disk of the
7435 * stripe (the stripe could be inconsistent again
7436 * depending on which disks are used to calculate
7437 * parity); the disk is broken; The stripe data of this
7438 * disk is lost.
7439 *
7440 * We only allow DISCARD if the sysadmin has confirmed that
7441 * only safe devices are in use by setting a module parameter.
7442 * A better idea might be to turn DISCARD into WRITE_ZEROES
7443 * requests, as that is required to be safe.
7444 */
7445 if (devices_handle_discard_safely &&
7446 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7447 mddev->queue->limits.discard_granularity >= stripe)
7448 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7449 mddev->queue);
7450 else
7451 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7452 mddev->queue);
7453
7454 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7455 }
7456
7457 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7458 goto abort;
7459
7460 return 0;
7461 abort:
7462 md_unregister_thread(&mddev->thread);
7463 print_raid5_conf(conf);
7464 free_conf(conf);
7465 mddev->private = NULL;
7466 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7467 return -EIO;
7468 }
7469
7470 static void raid5_free(struct mddev *mddev, void *priv)
7471 {
7472 struct r5conf *conf = priv;
7473
7474 free_conf(conf);
7475 mddev->to_remove = &raid5_attrs_group;
7476 }
7477
7478 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7479 {
7480 struct r5conf *conf = mddev->private;
7481 int i;
7482
7483 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7484 conf->chunk_sectors / 2, mddev->layout);
7485 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7486 rcu_read_lock();
7487 for (i = 0; i < conf->raid_disks; i++) {
7488 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7489 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7490 }
7491 rcu_read_unlock();
7492 seq_printf (seq, "]");
7493 }
7494
7495 static void print_raid5_conf (struct r5conf *conf)
7496 {
7497 int i;
7498 struct disk_info *tmp;
7499
7500 pr_debug("RAID conf printout:\n");
7501 if (!conf) {
7502 pr_debug("(conf==NULL)\n");
7503 return;
7504 }
7505 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7506 conf->raid_disks,
7507 conf->raid_disks - conf->mddev->degraded);
7508
7509 for (i = 0; i < conf->raid_disks; i++) {
7510 char b[BDEVNAME_SIZE];
7511 tmp = conf->disks + i;
7512 if (tmp->rdev)
7513 pr_debug(" disk %d, o:%d, dev:%s\n",
7514 i, !test_bit(Faulty, &tmp->rdev->flags),
7515 bdevname(tmp->rdev->bdev, b));
7516 }
7517 }
7518
7519 static int raid5_spare_active(struct mddev *mddev)
7520 {
7521 int i;
7522 struct r5conf *conf = mddev->private;
7523 struct disk_info *tmp;
7524 int count = 0;
7525 unsigned long flags;
7526
7527 for (i = 0; i < conf->raid_disks; i++) {
7528 tmp = conf->disks + i;
7529 if (tmp->replacement
7530 && tmp->replacement->recovery_offset == MaxSector
7531 && !test_bit(Faulty, &tmp->replacement->flags)
7532 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7533 /* Replacement has just become active. */
7534 if (!tmp->rdev
7535 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7536 count++;
7537 if (tmp->rdev) {
7538 /* Replaced device not technically faulty,
7539 * but we need to be sure it gets removed
7540 * and never re-added.
7541 */
7542 set_bit(Faulty, &tmp->rdev->flags);
7543 sysfs_notify_dirent_safe(
7544 tmp->rdev->sysfs_state);
7545 }
7546 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7547 } else if (tmp->rdev
7548 && tmp->rdev->recovery_offset == MaxSector
7549 && !test_bit(Faulty, &tmp->rdev->flags)
7550 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7551 count++;
7552 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7553 }
7554 }
7555 spin_lock_irqsave(&conf->device_lock, flags);
7556 mddev->degraded = raid5_calc_degraded(conf);
7557 spin_unlock_irqrestore(&conf->device_lock, flags);
7558 print_raid5_conf(conf);
7559 return count;
7560 }
7561
7562 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7563 {
7564 struct r5conf *conf = mddev->private;
7565 int err = 0;
7566 int number = rdev->raid_disk;
7567 struct md_rdev **rdevp;
7568 struct disk_info *p = conf->disks + number;
7569
7570 print_raid5_conf(conf);
7571 if (test_bit(Journal, &rdev->flags) && conf->log) {
7572 /*
7573 * we can't wait pending write here, as this is called in
7574 * raid5d, wait will deadlock.
7575 * neilb: there is no locking about new writes here,
7576 * so this cannot be safe.
7577 */
7578 if (atomic_read(&conf->active_stripes) ||
7579 atomic_read(&conf->r5c_cached_full_stripes) ||
7580 atomic_read(&conf->r5c_cached_partial_stripes)) {
7581 return -EBUSY;
7582 }
7583 log_exit(conf);
7584 return 0;
7585 }
7586 if (rdev == p->rdev)
7587 rdevp = &p->rdev;
7588 else if (rdev == p->replacement)
7589 rdevp = &p->replacement;
7590 else
7591 return 0;
7592
7593 if (number >= conf->raid_disks &&
7594 conf->reshape_progress == MaxSector)
7595 clear_bit(In_sync, &rdev->flags);
7596
7597 if (test_bit(In_sync, &rdev->flags) ||
7598 atomic_read(&rdev->nr_pending)) {
7599 err = -EBUSY;
7600 goto abort;
7601 }
7602 /* Only remove non-faulty devices if recovery
7603 * isn't possible.
7604 */
7605 if (!test_bit(Faulty, &rdev->flags) &&
7606 mddev->recovery_disabled != conf->recovery_disabled &&
7607 !has_failed(conf) &&
7608 (!p->replacement || p->replacement == rdev) &&
7609 number < conf->raid_disks) {
7610 err = -EBUSY;
7611 goto abort;
7612 }
7613 *rdevp = NULL;
7614 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7615 synchronize_rcu();
7616 if (atomic_read(&rdev->nr_pending)) {
7617 /* lost the race, try later */
7618 err = -EBUSY;
7619 *rdevp = rdev;
7620 }
7621 }
7622 if (!err) {
7623 err = log_modify(conf, rdev, false);
7624 if (err)
7625 goto abort;
7626 }
7627 if (p->replacement) {
7628 /* We must have just cleared 'rdev' */
7629 p->rdev = p->replacement;
7630 clear_bit(Replacement, &p->replacement->flags);
7631 smp_mb(); /* Make sure other CPUs may see both as identical
7632 * but will never see neither - if they are careful
7633 */
7634 p->replacement = NULL;
7635
7636 if (!err)
7637 err = log_modify(conf, p->rdev, true);
7638 }
7639
7640 clear_bit(WantReplacement, &rdev->flags);
7641 abort:
7642
7643 print_raid5_conf(conf);
7644 return err;
7645 }
7646
7647 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7648 {
7649 struct r5conf *conf = mddev->private;
7650 int err = -EEXIST;
7651 int disk;
7652 struct disk_info *p;
7653 int first = 0;
7654 int last = conf->raid_disks - 1;
7655
7656 if (test_bit(Journal, &rdev->flags)) {
7657 if (conf->log)
7658 return -EBUSY;
7659
7660 rdev->raid_disk = 0;
7661 /*
7662 * The array is in readonly mode if journal is missing, so no
7663 * write requests running. We should be safe
7664 */
7665 log_init(conf, rdev, false);
7666 return 0;
7667 }
7668 if (mddev->recovery_disabled == conf->recovery_disabled)
7669 return -EBUSY;
7670
7671 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7672 /* no point adding a device */
7673 return -EINVAL;
7674
7675 if (rdev->raid_disk >= 0)
7676 first = last = rdev->raid_disk;
7677
7678 /*
7679 * find the disk ... but prefer rdev->saved_raid_disk
7680 * if possible.
7681 */
7682 if (rdev->saved_raid_disk >= 0 &&
7683 rdev->saved_raid_disk >= first &&
7684 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7685 first = rdev->saved_raid_disk;
7686
7687 for (disk = first; disk <= last; disk++) {
7688 p = conf->disks + disk;
7689 if (p->rdev == NULL) {
7690 clear_bit(In_sync, &rdev->flags);
7691 rdev->raid_disk = disk;
7692 if (rdev->saved_raid_disk != disk)
7693 conf->fullsync = 1;
7694 rcu_assign_pointer(p->rdev, rdev);
7695
7696 err = log_modify(conf, rdev, true);
7697
7698 goto out;
7699 }
7700 }
7701 for (disk = first; disk <= last; disk++) {
7702 p = conf->disks + disk;
7703 if (test_bit(WantReplacement, &p->rdev->flags) &&
7704 p->replacement == NULL) {
7705 clear_bit(In_sync, &rdev->flags);
7706 set_bit(Replacement, &rdev->flags);
7707 rdev->raid_disk = disk;
7708 err = 0;
7709 conf->fullsync = 1;
7710 rcu_assign_pointer(p->replacement, rdev);
7711 break;
7712 }
7713 }
7714 out:
7715 print_raid5_conf(conf);
7716 return err;
7717 }
7718
7719 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7720 {
7721 /* no resync is happening, and there is enough space
7722 * on all devices, so we can resize.
7723 * We need to make sure resync covers any new space.
7724 * If the array is shrinking we should possibly wait until
7725 * any io in the removed space completes, but it hardly seems
7726 * worth it.
7727 */
7728 sector_t newsize;
7729 struct r5conf *conf = mddev->private;
7730
7731 if (conf->log || raid5_has_ppl(conf))
7732 return -EINVAL;
7733 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7734 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7735 if (mddev->external_size &&
7736 mddev->array_sectors > newsize)
7737 return -EINVAL;
7738 if (mddev->bitmap) {
7739 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7740 if (ret)
7741 return ret;
7742 }
7743 md_set_array_sectors(mddev, newsize);
7744 if (sectors > mddev->dev_sectors &&
7745 mddev->recovery_cp > mddev->dev_sectors) {
7746 mddev->recovery_cp = mddev->dev_sectors;
7747 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7748 }
7749 mddev->dev_sectors = sectors;
7750 mddev->resync_max_sectors = sectors;
7751 return 0;
7752 }
7753
7754 static int check_stripe_cache(struct mddev *mddev)
7755 {
7756 /* Can only proceed if there are plenty of stripe_heads.
7757 * We need a minimum of one full stripe,, and for sensible progress
7758 * it is best to have about 4 times that.
7759 * If we require 4 times, then the default 256 4K stripe_heads will
7760 * allow for chunk sizes up to 256K, which is probably OK.
7761 * If the chunk size is greater, user-space should request more
7762 * stripe_heads first.
7763 */
7764 struct r5conf *conf = mddev->private;
7765 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7766 > conf->min_nr_stripes ||
7767 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7768 > conf->min_nr_stripes) {
7769 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7770 mdname(mddev),
7771 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7772 / STRIPE_SIZE)*4);
7773 return 0;
7774 }
7775 return 1;
7776 }
7777
7778 static int check_reshape(struct mddev *mddev)
7779 {
7780 struct r5conf *conf = mddev->private;
7781
7782 if (conf->log || raid5_has_ppl(conf))
7783 return -EINVAL;
7784 if (mddev->delta_disks == 0 &&
7785 mddev->new_layout == mddev->layout &&
7786 mddev->new_chunk_sectors == mddev->chunk_sectors)
7787 return 0; /* nothing to do */
7788 if (has_failed(conf))
7789 return -EINVAL;
7790 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7791 /* We might be able to shrink, but the devices must
7792 * be made bigger first.
7793 * For raid6, 4 is the minimum size.
7794 * Otherwise 2 is the minimum
7795 */
7796 int min = 2;
7797 if (mddev->level == 6)
7798 min = 4;
7799 if (mddev->raid_disks + mddev->delta_disks < min)
7800 return -EINVAL;
7801 }
7802
7803 if (!check_stripe_cache(mddev))
7804 return -ENOSPC;
7805
7806 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7807 mddev->delta_disks > 0)
7808 if (resize_chunks(conf,
7809 conf->previous_raid_disks
7810 + max(0, mddev->delta_disks),
7811 max(mddev->new_chunk_sectors,
7812 mddev->chunk_sectors)
7813 ) < 0)
7814 return -ENOMEM;
7815
7816 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7817 return 0; /* never bother to shrink */
7818 return resize_stripes(conf, (conf->previous_raid_disks
7819 + mddev->delta_disks));
7820 }
7821
7822 static int raid5_start_reshape(struct mddev *mddev)
7823 {
7824 struct r5conf *conf = mddev->private;
7825 struct md_rdev *rdev;
7826 int spares = 0;
7827 unsigned long flags;
7828
7829 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7830 return -EBUSY;
7831
7832 if (!check_stripe_cache(mddev))
7833 return -ENOSPC;
7834
7835 if (has_failed(conf))
7836 return -EINVAL;
7837
7838 rdev_for_each(rdev, mddev) {
7839 if (!test_bit(In_sync, &rdev->flags)
7840 && !test_bit(Faulty, &rdev->flags))
7841 spares++;
7842 }
7843
7844 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7845 /* Not enough devices even to make a degraded array
7846 * of that size
7847 */
7848 return -EINVAL;
7849
7850 /* Refuse to reduce size of the array. Any reductions in
7851 * array size must be through explicit setting of array_size
7852 * attribute.
7853 */
7854 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7855 < mddev->array_sectors) {
7856 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7857 mdname(mddev));
7858 return -EINVAL;
7859 }
7860
7861 atomic_set(&conf->reshape_stripes, 0);
7862 spin_lock_irq(&conf->device_lock);
7863 write_seqcount_begin(&conf->gen_lock);
7864 conf->previous_raid_disks = conf->raid_disks;
7865 conf->raid_disks += mddev->delta_disks;
7866 conf->prev_chunk_sectors = conf->chunk_sectors;
7867 conf->chunk_sectors = mddev->new_chunk_sectors;
7868 conf->prev_algo = conf->algorithm;
7869 conf->algorithm = mddev->new_layout;
7870 conf->generation++;
7871 /* Code that selects data_offset needs to see the generation update
7872 * if reshape_progress has been set - so a memory barrier needed.
7873 */
7874 smp_mb();
7875 if (mddev->reshape_backwards)
7876 conf->reshape_progress = raid5_size(mddev, 0, 0);
7877 else
7878 conf->reshape_progress = 0;
7879 conf->reshape_safe = conf->reshape_progress;
7880 write_seqcount_end(&conf->gen_lock);
7881 spin_unlock_irq(&conf->device_lock);
7882
7883 /* Now make sure any requests that proceeded on the assumption
7884 * the reshape wasn't running - like Discard or Read - have
7885 * completed.
7886 */
7887 mddev_suspend(mddev);
7888 mddev_resume(mddev);
7889
7890 /* Add some new drives, as many as will fit.
7891 * We know there are enough to make the newly sized array work.
7892 * Don't add devices if we are reducing the number of
7893 * devices in the array. This is because it is not possible
7894 * to correctly record the "partially reconstructed" state of
7895 * such devices during the reshape and confusion could result.
7896 */
7897 if (mddev->delta_disks >= 0) {
7898 rdev_for_each(rdev, mddev)
7899 if (rdev->raid_disk < 0 &&
7900 !test_bit(Faulty, &rdev->flags)) {
7901 if (raid5_add_disk(mddev, rdev) == 0) {
7902 if (rdev->raid_disk
7903 >= conf->previous_raid_disks)
7904 set_bit(In_sync, &rdev->flags);
7905 else
7906 rdev->recovery_offset = 0;
7907
7908 if (sysfs_link_rdev(mddev, rdev))
7909 /* Failure here is OK */;
7910 }
7911 } else if (rdev->raid_disk >= conf->previous_raid_disks
7912 && !test_bit(Faulty, &rdev->flags)) {
7913 /* This is a spare that was manually added */
7914 set_bit(In_sync, &rdev->flags);
7915 }
7916
7917 /* When a reshape changes the number of devices,
7918 * ->degraded is measured against the larger of the
7919 * pre and post number of devices.
7920 */
7921 spin_lock_irqsave(&conf->device_lock, flags);
7922 mddev->degraded = raid5_calc_degraded(conf);
7923 spin_unlock_irqrestore(&conf->device_lock, flags);
7924 }
7925 mddev->raid_disks = conf->raid_disks;
7926 mddev->reshape_position = conf->reshape_progress;
7927 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7928
7929 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7930 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7931 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7932 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7933 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7934 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7935 "reshape");
7936 if (!mddev->sync_thread) {
7937 mddev->recovery = 0;
7938 spin_lock_irq(&conf->device_lock);
7939 write_seqcount_begin(&conf->gen_lock);
7940 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7941 mddev->new_chunk_sectors =
7942 conf->chunk_sectors = conf->prev_chunk_sectors;
7943 mddev->new_layout = conf->algorithm = conf->prev_algo;
7944 rdev_for_each(rdev, mddev)
7945 rdev->new_data_offset = rdev->data_offset;
7946 smp_wmb();
7947 conf->generation --;
7948 conf->reshape_progress = MaxSector;
7949 mddev->reshape_position = MaxSector;
7950 write_seqcount_end(&conf->gen_lock);
7951 spin_unlock_irq(&conf->device_lock);
7952 return -EAGAIN;
7953 }
7954 conf->reshape_checkpoint = jiffies;
7955 md_wakeup_thread(mddev->sync_thread);
7956 md_new_event(mddev);
7957 return 0;
7958 }
7959
7960 /* This is called from the reshape thread and should make any
7961 * changes needed in 'conf'
7962 */
7963 static void end_reshape(struct r5conf *conf)
7964 {
7965
7966 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7967 struct md_rdev *rdev;
7968
7969 spin_lock_irq(&conf->device_lock);
7970 conf->previous_raid_disks = conf->raid_disks;
7971 md_finish_reshape(conf->mddev);
7972 smp_wmb();
7973 conf->reshape_progress = MaxSector;
7974 conf->mddev->reshape_position = MaxSector;
7975 rdev_for_each(rdev, conf->mddev)
7976 if (rdev->raid_disk >= 0 &&
7977 !test_bit(Journal, &rdev->flags) &&
7978 !test_bit(In_sync, &rdev->flags))
7979 rdev->recovery_offset = MaxSector;
7980 spin_unlock_irq(&conf->device_lock);
7981 wake_up(&conf->wait_for_overlap);
7982
7983 /* read-ahead size must cover two whole stripes, which is
7984 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7985 */
7986 if (conf->mddev->queue) {
7987 int data_disks = conf->raid_disks - conf->max_degraded;
7988 int stripe = data_disks * ((conf->chunk_sectors << 9)
7989 / PAGE_SIZE);
7990 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7991 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7992 }
7993 }
7994 }
7995
7996 /* This is called from the raid5d thread with mddev_lock held.
7997 * It makes config changes to the device.
7998 */
7999 static void raid5_finish_reshape(struct mddev *mddev)
8000 {
8001 struct r5conf *conf = mddev->private;
8002
8003 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8004
8005 if (mddev->delta_disks <= 0) {
8006 int d;
8007 spin_lock_irq(&conf->device_lock);
8008 mddev->degraded = raid5_calc_degraded(conf);
8009 spin_unlock_irq(&conf->device_lock);
8010 for (d = conf->raid_disks ;
8011 d < conf->raid_disks - mddev->delta_disks;
8012 d++) {
8013 struct md_rdev *rdev = conf->disks[d].rdev;
8014 if (rdev)
8015 clear_bit(In_sync, &rdev->flags);
8016 rdev = conf->disks[d].replacement;
8017 if (rdev)
8018 clear_bit(In_sync, &rdev->flags);
8019 }
8020 }
8021 mddev->layout = conf->algorithm;
8022 mddev->chunk_sectors = conf->chunk_sectors;
8023 mddev->reshape_position = MaxSector;
8024 mddev->delta_disks = 0;
8025 mddev->reshape_backwards = 0;
8026 }
8027 }
8028
8029 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8030 {
8031 struct r5conf *conf = mddev->private;
8032
8033 if (quiesce) {
8034 /* stop all writes */
8035 lock_all_device_hash_locks_irq(conf);
8036 /* '2' tells resync/reshape to pause so that all
8037 * active stripes can drain
8038 */
8039 r5c_flush_cache(conf, INT_MAX);
8040 conf->quiesce = 2;
8041 wait_event_cmd(conf->wait_for_quiescent,
8042 atomic_read(&conf->active_stripes) == 0 &&
8043 atomic_read(&conf->active_aligned_reads) == 0,
8044 unlock_all_device_hash_locks_irq(conf),
8045 lock_all_device_hash_locks_irq(conf));
8046 conf->quiesce = 1;
8047 unlock_all_device_hash_locks_irq(conf);
8048 /* allow reshape to continue */
8049 wake_up(&conf->wait_for_overlap);
8050 } else {
8051 /* re-enable writes */
8052 lock_all_device_hash_locks_irq(conf);
8053 conf->quiesce = 0;
8054 wake_up(&conf->wait_for_quiescent);
8055 wake_up(&conf->wait_for_overlap);
8056 unlock_all_device_hash_locks_irq(conf);
8057 }
8058 r5l_quiesce(conf->log, quiesce);
8059 }
8060
8061 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8062 {
8063 struct r0conf *raid0_conf = mddev->private;
8064 sector_t sectors;
8065
8066 /* for raid0 takeover only one zone is supported */
8067 if (raid0_conf->nr_strip_zones > 1) {
8068 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8069 mdname(mddev));
8070 return ERR_PTR(-EINVAL);
8071 }
8072
8073 sectors = raid0_conf->strip_zone[0].zone_end;
8074 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8075 mddev->dev_sectors = sectors;
8076 mddev->new_level = level;
8077 mddev->new_layout = ALGORITHM_PARITY_N;
8078 mddev->new_chunk_sectors = mddev->chunk_sectors;
8079 mddev->raid_disks += 1;
8080 mddev->delta_disks = 1;
8081 /* make sure it will be not marked as dirty */
8082 mddev->recovery_cp = MaxSector;
8083
8084 return setup_conf(mddev);
8085 }
8086
8087 static void *raid5_takeover_raid1(struct mddev *mddev)
8088 {
8089 int chunksect;
8090 void *ret;
8091
8092 if (mddev->raid_disks != 2 ||
8093 mddev->degraded > 1)
8094 return ERR_PTR(-EINVAL);
8095
8096 /* Should check if there are write-behind devices? */
8097
8098 chunksect = 64*2; /* 64K by default */
8099
8100 /* The array must be an exact multiple of chunksize */
8101 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8102 chunksect >>= 1;
8103
8104 if ((chunksect<<9) < STRIPE_SIZE)
8105 /* array size does not allow a suitable chunk size */
8106 return ERR_PTR(-EINVAL);
8107
8108 mddev->new_level = 5;
8109 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8110 mddev->new_chunk_sectors = chunksect;
8111
8112 ret = setup_conf(mddev);
8113 if (!IS_ERR(ret))
8114 mddev_clear_unsupported_flags(mddev,
8115 UNSUPPORTED_MDDEV_FLAGS);
8116 return ret;
8117 }
8118
8119 static void *raid5_takeover_raid6(struct mddev *mddev)
8120 {
8121 int new_layout;
8122
8123 switch (mddev->layout) {
8124 case ALGORITHM_LEFT_ASYMMETRIC_6:
8125 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8126 break;
8127 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8128 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8129 break;
8130 case ALGORITHM_LEFT_SYMMETRIC_6:
8131 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8132 break;
8133 case ALGORITHM_RIGHT_SYMMETRIC_6:
8134 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8135 break;
8136 case ALGORITHM_PARITY_0_6:
8137 new_layout = ALGORITHM_PARITY_0;
8138 break;
8139 case ALGORITHM_PARITY_N:
8140 new_layout = ALGORITHM_PARITY_N;
8141 break;
8142 default:
8143 return ERR_PTR(-EINVAL);
8144 }
8145 mddev->new_level = 5;
8146 mddev->new_layout = new_layout;
8147 mddev->delta_disks = -1;
8148 mddev->raid_disks -= 1;
8149 return setup_conf(mddev);
8150 }
8151
8152 static int raid5_check_reshape(struct mddev *mddev)
8153 {
8154 /* For a 2-drive array, the layout and chunk size can be changed
8155 * immediately as not restriping is needed.
8156 * For larger arrays we record the new value - after validation
8157 * to be used by a reshape pass.
8158 */
8159 struct r5conf *conf = mddev->private;
8160 int new_chunk = mddev->new_chunk_sectors;
8161
8162 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8163 return -EINVAL;
8164 if (new_chunk > 0) {
8165 if (!is_power_of_2(new_chunk))
8166 return -EINVAL;
8167 if (new_chunk < (PAGE_SIZE>>9))
8168 return -EINVAL;
8169 if (mddev->array_sectors & (new_chunk-1))
8170 /* not factor of array size */
8171 return -EINVAL;
8172 }
8173
8174 /* They look valid */
8175
8176 if (mddev->raid_disks == 2) {
8177 /* can make the change immediately */
8178 if (mddev->new_layout >= 0) {
8179 conf->algorithm = mddev->new_layout;
8180 mddev->layout = mddev->new_layout;
8181 }
8182 if (new_chunk > 0) {
8183 conf->chunk_sectors = new_chunk ;
8184 mddev->chunk_sectors = new_chunk;
8185 }
8186 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8187 md_wakeup_thread(mddev->thread);
8188 }
8189 return check_reshape(mddev);
8190 }
8191
8192 static int raid6_check_reshape(struct mddev *mddev)
8193 {
8194 int new_chunk = mddev->new_chunk_sectors;
8195
8196 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8197 return -EINVAL;
8198 if (new_chunk > 0) {
8199 if (!is_power_of_2(new_chunk))
8200 return -EINVAL;
8201 if (new_chunk < (PAGE_SIZE >> 9))
8202 return -EINVAL;
8203 if (mddev->array_sectors & (new_chunk-1))
8204 /* not factor of array size */
8205 return -EINVAL;
8206 }
8207
8208 /* They look valid */
8209 return check_reshape(mddev);
8210 }
8211
8212 static void *raid5_takeover(struct mddev *mddev)
8213 {
8214 /* raid5 can take over:
8215 * raid0 - if there is only one strip zone - make it a raid4 layout
8216 * raid1 - if there are two drives. We need to know the chunk size
8217 * raid4 - trivial - just use a raid4 layout.
8218 * raid6 - Providing it is a *_6 layout
8219 */
8220 if (mddev->level == 0)
8221 return raid45_takeover_raid0(mddev, 5);
8222 if (mddev->level == 1)
8223 return raid5_takeover_raid1(mddev);
8224 if (mddev->level == 4) {
8225 mddev->new_layout = ALGORITHM_PARITY_N;
8226 mddev->new_level = 5;
8227 return setup_conf(mddev);
8228 }
8229 if (mddev->level == 6)
8230 return raid5_takeover_raid6(mddev);
8231
8232 return ERR_PTR(-EINVAL);
8233 }
8234
8235 static void *raid4_takeover(struct mddev *mddev)
8236 {
8237 /* raid4 can take over:
8238 * raid0 - if there is only one strip zone
8239 * raid5 - if layout is right
8240 */
8241 if (mddev->level == 0)
8242 return raid45_takeover_raid0(mddev, 4);
8243 if (mddev->level == 5 &&
8244 mddev->layout == ALGORITHM_PARITY_N) {
8245 mddev->new_layout = 0;
8246 mddev->new_level = 4;
8247 return setup_conf(mddev);
8248 }
8249 return ERR_PTR(-EINVAL);
8250 }
8251
8252 static struct md_personality raid5_personality;
8253
8254 static void *raid6_takeover(struct mddev *mddev)
8255 {
8256 /* Currently can only take over a raid5. We map the
8257 * personality to an equivalent raid6 personality
8258 * with the Q block at the end.
8259 */
8260 int new_layout;
8261
8262 if (mddev->pers != &raid5_personality)
8263 return ERR_PTR(-EINVAL);
8264 if (mddev->degraded > 1)
8265 return ERR_PTR(-EINVAL);
8266 if (mddev->raid_disks > 253)
8267 return ERR_PTR(-EINVAL);
8268 if (mddev->raid_disks < 3)
8269 return ERR_PTR(-EINVAL);
8270
8271 switch (mddev->layout) {
8272 case ALGORITHM_LEFT_ASYMMETRIC:
8273 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8274 break;
8275 case ALGORITHM_RIGHT_ASYMMETRIC:
8276 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8277 break;
8278 case ALGORITHM_LEFT_SYMMETRIC:
8279 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8280 break;
8281 case ALGORITHM_RIGHT_SYMMETRIC:
8282 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8283 break;
8284 case ALGORITHM_PARITY_0:
8285 new_layout = ALGORITHM_PARITY_0_6;
8286 break;
8287 case ALGORITHM_PARITY_N:
8288 new_layout = ALGORITHM_PARITY_N;
8289 break;
8290 default:
8291 return ERR_PTR(-EINVAL);
8292 }
8293 mddev->new_level = 6;
8294 mddev->new_layout = new_layout;
8295 mddev->delta_disks = 1;
8296 mddev->raid_disks += 1;
8297 return setup_conf(mddev);
8298 }
8299
8300 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8301 {
8302 struct r5conf *conf;
8303 int err;
8304
8305 err = mddev_lock(mddev);
8306 if (err)
8307 return err;
8308 conf = mddev->private;
8309 if (!conf) {
8310 mddev_unlock(mddev);
8311 return -ENODEV;
8312 }
8313
8314 if (strncmp(buf, "ppl", 3) == 0) {
8315 /* ppl only works with RAID 5 */
8316 if (!raid5_has_ppl(conf) && conf->level == 5) {
8317 err = log_init(conf, NULL, true);
8318 if (!err) {
8319 err = resize_stripes(conf, conf->pool_size);
8320 if (err)
8321 log_exit(conf);
8322 }
8323 } else
8324 err = -EINVAL;
8325 } else if (strncmp(buf, "resync", 6) == 0) {
8326 if (raid5_has_ppl(conf)) {
8327 mddev_suspend(mddev);
8328 log_exit(conf);
8329 mddev_resume(mddev);
8330 err = resize_stripes(conf, conf->pool_size);
8331 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8332 r5l_log_disk_error(conf)) {
8333 bool journal_dev_exists = false;
8334 struct md_rdev *rdev;
8335
8336 rdev_for_each(rdev, mddev)
8337 if (test_bit(Journal, &rdev->flags)) {
8338 journal_dev_exists = true;
8339 break;
8340 }
8341
8342 if (!journal_dev_exists) {
8343 mddev_suspend(mddev);
8344 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8345 mddev_resume(mddev);
8346 } else /* need remove journal device first */
8347 err = -EBUSY;
8348 } else
8349 err = -EINVAL;
8350 } else {
8351 err = -EINVAL;
8352 }
8353
8354 if (!err)
8355 md_update_sb(mddev, 1);
8356
8357 mddev_unlock(mddev);
8358
8359 return err;
8360 }
8361
8362 static struct md_personality raid6_personality =
8363 {
8364 .name = "raid6",
8365 .level = 6,
8366 .owner = THIS_MODULE,
8367 .make_request = raid5_make_request,
8368 .run = raid5_run,
8369 .free = raid5_free,
8370 .status = raid5_status,
8371 .error_handler = raid5_error,
8372 .hot_add_disk = raid5_add_disk,
8373 .hot_remove_disk= raid5_remove_disk,
8374 .spare_active = raid5_spare_active,
8375 .sync_request = raid5_sync_request,
8376 .resize = raid5_resize,
8377 .size = raid5_size,
8378 .check_reshape = raid6_check_reshape,
8379 .start_reshape = raid5_start_reshape,
8380 .finish_reshape = raid5_finish_reshape,
8381 .quiesce = raid5_quiesce,
8382 .takeover = raid6_takeover,
8383 .congested = raid5_congested,
8384 .change_consistency_policy = raid5_change_consistency_policy,
8385 };
8386 static struct md_personality raid5_personality =
8387 {
8388 .name = "raid5",
8389 .level = 5,
8390 .owner = THIS_MODULE,
8391 .make_request = raid5_make_request,
8392 .run = raid5_run,
8393 .free = raid5_free,
8394 .status = raid5_status,
8395 .error_handler = raid5_error,
8396 .hot_add_disk = raid5_add_disk,
8397 .hot_remove_disk= raid5_remove_disk,
8398 .spare_active = raid5_spare_active,
8399 .sync_request = raid5_sync_request,
8400 .resize = raid5_resize,
8401 .size = raid5_size,
8402 .check_reshape = raid5_check_reshape,
8403 .start_reshape = raid5_start_reshape,
8404 .finish_reshape = raid5_finish_reshape,
8405 .quiesce = raid5_quiesce,
8406 .takeover = raid5_takeover,
8407 .congested = raid5_congested,
8408 .change_consistency_policy = raid5_change_consistency_policy,
8409 };
8410
8411 static struct md_personality raid4_personality =
8412 {
8413 .name = "raid4",
8414 .level = 4,
8415 .owner = THIS_MODULE,
8416 .make_request = raid5_make_request,
8417 .run = raid5_run,
8418 .free = raid5_free,
8419 .status = raid5_status,
8420 .error_handler = raid5_error,
8421 .hot_add_disk = raid5_add_disk,
8422 .hot_remove_disk= raid5_remove_disk,
8423 .spare_active = raid5_spare_active,
8424 .sync_request = raid5_sync_request,
8425 .resize = raid5_resize,
8426 .size = raid5_size,
8427 .check_reshape = raid5_check_reshape,
8428 .start_reshape = raid5_start_reshape,
8429 .finish_reshape = raid5_finish_reshape,
8430 .quiesce = raid5_quiesce,
8431 .takeover = raid4_takeover,
8432 .congested = raid5_congested,
8433 .change_consistency_policy = raid5_change_consistency_policy,
8434 };
8435
8436 static int __init raid5_init(void)
8437 {
8438 int ret;
8439
8440 raid5_wq = alloc_workqueue("raid5wq",
8441 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8442 if (!raid5_wq)
8443 return -ENOMEM;
8444
8445 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8446 "md/raid5:prepare",
8447 raid456_cpu_up_prepare,
8448 raid456_cpu_dead);
8449 if (ret) {
8450 destroy_workqueue(raid5_wq);
8451 return ret;
8452 }
8453 register_md_personality(&raid6_personality);
8454 register_md_personality(&raid5_personality);
8455 register_md_personality(&raid4_personality);
8456 return 0;
8457 }
8458
8459 static void raid5_exit(void)
8460 {
8461 unregister_md_personality(&raid6_personality);
8462 unregister_md_personality(&raid5_personality);
8463 unregister_md_personality(&raid4_personality);
8464 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8465 destroy_workqueue(raid5_wq);
8466 }
8467
8468 module_init(raid5_init);
8469 module_exit(raid5_exit);
8470 MODULE_LICENSE("GPL");
8471 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8472 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8473 MODULE_ALIAS("md-raid5");
8474 MODULE_ALIAS("md-raid4");
8475 MODULE_ALIAS("md-level-5");
8476 MODULE_ALIAS("md-level-4");
8477 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8478 MODULE_ALIAS("md-raid6");
8479 MODULE_ALIAS("md-level-6");
8480
8481 /* This used to be two separate modules, they were: */
8482 MODULE_ALIAS("raid5");
8483 MODULE_ALIAS("raid6");