]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/raid5.c
block: Abstract out bvec iterator
[mirror_ubuntu-zesty-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static struct workqueue_struct *raid5_wq;
68 /*
69 * Stripe cache
70 */
71
72 #define NR_STRIPES 256
73 #define STRIPE_SIZE PAGE_SIZE
74 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD 1
77 #define BYPASS_THRESHOLD 1
78 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH 8
81
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85 return &conf->stripe_hashtbl[hash];
86 }
87
88 static inline int stripe_hash_locks_hash(sector_t sect)
89 {
90 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 }
92
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95 spin_lock_irq(conf->hash_locks + hash);
96 spin_lock(&conf->device_lock);
97 }
98
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100 {
101 spin_unlock(&conf->device_lock);
102 spin_unlock_irq(conf->hash_locks + hash);
103 }
104
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 {
107 int i;
108 local_irq_disable();
109 spin_lock(conf->hash_locks);
110 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112 spin_lock(&conf->device_lock);
113 }
114
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116 {
117 int i;
118 spin_unlock(&conf->device_lock);
119 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120 spin_unlock(conf->hash_locks + i - 1);
121 local_irq_enable();
122 }
123
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125 * order without overlap. There may be several bio's per stripe+device, and
126 * a bio could span several devices.
127 * When walking this list for a particular stripe+device, we must never proceed
128 * beyond a bio that extends past this device, as the next bio might no longer
129 * be valid.
130 * This function is used to determine the 'next' bio in the list, given the sector
131 * of the current stripe+device
132 */
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134 {
135 int sectors = bio_sectors(bio);
136 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
137 return bio->bi_next;
138 else
139 return NULL;
140 }
141
142 /*
143 * We maintain a biased count of active stripes in the bottom 16 bits of
144 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
145 */
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
147 {
148 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149 return (atomic_read(segments) >> 16) & 0xffff;
150 }
151
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
153 {
154 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155 return atomic_sub_return(1, segments) & 0xffff;
156 }
157
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
159 {
160 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161 atomic_inc(segments);
162 }
163
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165 unsigned int cnt)
166 {
167 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168 int old, new;
169
170 do {
171 old = atomic_read(segments);
172 new = (old & 0xffff) | (cnt << 16);
173 } while (atomic_cmpxchg(segments, old, new) != old);
174 }
175
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
177 {
178 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179 atomic_set(segments, cnt);
180 }
181
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
184 {
185 if (sh->ddf_layout)
186 /* ddf always start from first device */
187 return 0;
188 /* md starts just after Q block */
189 if (sh->qd_idx == sh->disks - 1)
190 return 0;
191 else
192 return sh->qd_idx + 1;
193 }
194 static inline int raid6_next_disk(int disk, int raid_disks)
195 {
196 disk++;
197 return (disk < raid_disks) ? disk : 0;
198 }
199
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201 * We need to map each disk to a 'slot', where the data disks are slot
202 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203 * is raid_disks-1. This help does that mapping.
204 */
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206 int *count, int syndrome_disks)
207 {
208 int slot = *count;
209
210 if (sh->ddf_layout)
211 (*count)++;
212 if (idx == sh->pd_idx)
213 return syndrome_disks;
214 if (idx == sh->qd_idx)
215 return syndrome_disks + 1;
216 if (!sh->ddf_layout)
217 (*count)++;
218 return slot;
219 }
220
221 static void return_io(struct bio *return_bi)
222 {
223 struct bio *bi = return_bi;
224 while (bi) {
225
226 return_bi = bi->bi_next;
227 bi->bi_next = NULL;
228 bi->bi_iter.bi_size = 0;
229 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230 bi, 0);
231 bio_endio(bi, 0);
232 bi = return_bi;
233 }
234 }
235
236 static void print_raid5_conf (struct r5conf *conf);
237
238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240 return sh->check_state || sh->reconstruct_state ||
241 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247 struct r5conf *conf = sh->raid_conf;
248 struct r5worker_group *group;
249 int thread_cnt;
250 int i, cpu = sh->cpu;
251
252 if (!cpu_online(cpu)) {
253 cpu = cpumask_any(cpu_online_mask);
254 sh->cpu = cpu;
255 }
256
257 if (list_empty(&sh->lru)) {
258 struct r5worker_group *group;
259 group = conf->worker_groups + cpu_to_group(cpu);
260 list_add_tail(&sh->lru, &group->handle_list);
261 group->stripes_cnt++;
262 sh->group = group;
263 }
264
265 if (conf->worker_cnt_per_group == 0) {
266 md_wakeup_thread(conf->mddev->thread);
267 return;
268 }
269
270 group = conf->worker_groups + cpu_to_group(sh->cpu);
271
272 group->workers[0].working = true;
273 /* at least one worker should run to avoid race */
274 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275
276 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277 /* wakeup more workers */
278 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279 if (group->workers[i].working == false) {
280 group->workers[i].working = true;
281 queue_work_on(sh->cpu, raid5_wq,
282 &group->workers[i].work);
283 thread_cnt--;
284 }
285 }
286 }
287
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289 struct list_head *temp_inactive_list)
290 {
291 BUG_ON(!list_empty(&sh->lru));
292 BUG_ON(atomic_read(&conf->active_stripes)==0);
293 if (test_bit(STRIPE_HANDLE, &sh->state)) {
294 if (test_bit(STRIPE_DELAYED, &sh->state) &&
295 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
296 list_add_tail(&sh->lru, &conf->delayed_list);
297 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
298 sh->bm_seq - conf->seq_write > 0)
299 list_add_tail(&sh->lru, &conf->bitmap_list);
300 else {
301 clear_bit(STRIPE_DELAYED, &sh->state);
302 clear_bit(STRIPE_BIT_DELAY, &sh->state);
303 if (conf->worker_cnt_per_group == 0) {
304 list_add_tail(&sh->lru, &conf->handle_list);
305 } else {
306 raid5_wakeup_stripe_thread(sh);
307 return;
308 }
309 }
310 md_wakeup_thread(conf->mddev->thread);
311 } else {
312 BUG_ON(stripe_operations_active(sh));
313 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
314 if (atomic_dec_return(&conf->preread_active_stripes)
315 < IO_THRESHOLD)
316 md_wakeup_thread(conf->mddev->thread);
317 atomic_dec(&conf->active_stripes);
318 if (!test_bit(STRIPE_EXPANDING, &sh->state))
319 list_add_tail(&sh->lru, temp_inactive_list);
320 }
321 }
322
323 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
324 struct list_head *temp_inactive_list)
325 {
326 if (atomic_dec_and_test(&sh->count))
327 do_release_stripe(conf, sh, temp_inactive_list);
328 }
329
330 /*
331 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
332 *
333 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334 * given time. Adding stripes only takes device lock, while deleting stripes
335 * only takes hash lock.
336 */
337 static void release_inactive_stripe_list(struct r5conf *conf,
338 struct list_head *temp_inactive_list,
339 int hash)
340 {
341 int size;
342 bool do_wakeup = false;
343 unsigned long flags;
344
345 if (hash == NR_STRIPE_HASH_LOCKS) {
346 size = NR_STRIPE_HASH_LOCKS;
347 hash = NR_STRIPE_HASH_LOCKS - 1;
348 } else
349 size = 1;
350 while (size) {
351 struct list_head *list = &temp_inactive_list[size - 1];
352
353 /*
354 * We don't hold any lock here yet, get_active_stripe() might
355 * remove stripes from the list
356 */
357 if (!list_empty_careful(list)) {
358 spin_lock_irqsave(conf->hash_locks + hash, flags);
359 if (list_empty(conf->inactive_list + hash) &&
360 !list_empty(list))
361 atomic_dec(&conf->empty_inactive_list_nr);
362 list_splice_tail_init(list, conf->inactive_list + hash);
363 do_wakeup = true;
364 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
365 }
366 size--;
367 hash--;
368 }
369
370 if (do_wakeup) {
371 wake_up(&conf->wait_for_stripe);
372 if (conf->retry_read_aligned)
373 md_wakeup_thread(conf->mddev->thread);
374 }
375 }
376
377 /* should hold conf->device_lock already */
378 static int release_stripe_list(struct r5conf *conf,
379 struct list_head *temp_inactive_list)
380 {
381 struct stripe_head *sh;
382 int count = 0;
383 struct llist_node *head;
384
385 head = llist_del_all(&conf->released_stripes);
386 head = llist_reverse_order(head);
387 while (head) {
388 int hash;
389
390 sh = llist_entry(head, struct stripe_head, release_list);
391 head = llist_next(head);
392 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
393 smp_mb();
394 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
395 /*
396 * Don't worry the bit is set here, because if the bit is set
397 * again, the count is always > 1. This is true for
398 * STRIPE_ON_UNPLUG_LIST bit too.
399 */
400 hash = sh->hash_lock_index;
401 __release_stripe(conf, sh, &temp_inactive_list[hash]);
402 count++;
403 }
404
405 return count;
406 }
407
408 static void release_stripe(struct stripe_head *sh)
409 {
410 struct r5conf *conf = sh->raid_conf;
411 unsigned long flags;
412 struct list_head list;
413 int hash;
414 bool wakeup;
415
416 if (unlikely(!conf->mddev->thread) ||
417 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
418 goto slow_path;
419 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
420 if (wakeup)
421 md_wakeup_thread(conf->mddev->thread);
422 return;
423 slow_path:
424 local_irq_save(flags);
425 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
426 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
427 INIT_LIST_HEAD(&list);
428 hash = sh->hash_lock_index;
429 do_release_stripe(conf, sh, &list);
430 spin_unlock(&conf->device_lock);
431 release_inactive_stripe_list(conf, &list, hash);
432 }
433 local_irq_restore(flags);
434 }
435
436 static inline void remove_hash(struct stripe_head *sh)
437 {
438 pr_debug("remove_hash(), stripe %llu\n",
439 (unsigned long long)sh->sector);
440
441 hlist_del_init(&sh->hash);
442 }
443
444 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
445 {
446 struct hlist_head *hp = stripe_hash(conf, sh->sector);
447
448 pr_debug("insert_hash(), stripe %llu\n",
449 (unsigned long long)sh->sector);
450
451 hlist_add_head(&sh->hash, hp);
452 }
453
454
455 /* find an idle stripe, make sure it is unhashed, and return it. */
456 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
457 {
458 struct stripe_head *sh = NULL;
459 struct list_head *first;
460
461 if (list_empty(conf->inactive_list + hash))
462 goto out;
463 first = (conf->inactive_list + hash)->next;
464 sh = list_entry(first, struct stripe_head, lru);
465 list_del_init(first);
466 remove_hash(sh);
467 atomic_inc(&conf->active_stripes);
468 BUG_ON(hash != sh->hash_lock_index);
469 if (list_empty(conf->inactive_list + hash))
470 atomic_inc(&conf->empty_inactive_list_nr);
471 out:
472 return sh;
473 }
474
475 static void shrink_buffers(struct stripe_head *sh)
476 {
477 struct page *p;
478 int i;
479 int num = sh->raid_conf->pool_size;
480
481 for (i = 0; i < num ; i++) {
482 p = sh->dev[i].page;
483 if (!p)
484 continue;
485 sh->dev[i].page = NULL;
486 put_page(p);
487 }
488 }
489
490 static int grow_buffers(struct stripe_head *sh)
491 {
492 int i;
493 int num = sh->raid_conf->pool_size;
494
495 for (i = 0; i < num; i++) {
496 struct page *page;
497
498 if (!(page = alloc_page(GFP_KERNEL))) {
499 return 1;
500 }
501 sh->dev[i].page = page;
502 }
503 return 0;
504 }
505
506 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
507 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
508 struct stripe_head *sh);
509
510 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
511 {
512 struct r5conf *conf = sh->raid_conf;
513 int i, seq;
514
515 BUG_ON(atomic_read(&sh->count) != 0);
516 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
517 BUG_ON(stripe_operations_active(sh));
518
519 pr_debug("init_stripe called, stripe %llu\n",
520 (unsigned long long)sh->sector);
521
522 remove_hash(sh);
523 retry:
524 seq = read_seqcount_begin(&conf->gen_lock);
525 sh->generation = conf->generation - previous;
526 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
527 sh->sector = sector;
528 stripe_set_idx(sector, conf, previous, sh);
529 sh->state = 0;
530
531
532 for (i = sh->disks; i--; ) {
533 struct r5dev *dev = &sh->dev[i];
534
535 if (dev->toread || dev->read || dev->towrite || dev->written ||
536 test_bit(R5_LOCKED, &dev->flags)) {
537 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
538 (unsigned long long)sh->sector, i, dev->toread,
539 dev->read, dev->towrite, dev->written,
540 test_bit(R5_LOCKED, &dev->flags));
541 WARN_ON(1);
542 }
543 dev->flags = 0;
544 raid5_build_block(sh, i, previous);
545 }
546 if (read_seqcount_retry(&conf->gen_lock, seq))
547 goto retry;
548 insert_hash(conf, sh);
549 sh->cpu = smp_processor_id();
550 }
551
552 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
553 short generation)
554 {
555 struct stripe_head *sh;
556
557 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
558 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
559 if (sh->sector == sector && sh->generation == generation)
560 return sh;
561 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
562 return NULL;
563 }
564
565 /*
566 * Need to check if array has failed when deciding whether to:
567 * - start an array
568 * - remove non-faulty devices
569 * - add a spare
570 * - allow a reshape
571 * This determination is simple when no reshape is happening.
572 * However if there is a reshape, we need to carefully check
573 * both the before and after sections.
574 * This is because some failed devices may only affect one
575 * of the two sections, and some non-in_sync devices may
576 * be insync in the section most affected by failed devices.
577 */
578 static int calc_degraded(struct r5conf *conf)
579 {
580 int degraded, degraded2;
581 int i;
582
583 rcu_read_lock();
584 degraded = 0;
585 for (i = 0; i < conf->previous_raid_disks; i++) {
586 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
587 if (rdev && test_bit(Faulty, &rdev->flags))
588 rdev = rcu_dereference(conf->disks[i].replacement);
589 if (!rdev || test_bit(Faulty, &rdev->flags))
590 degraded++;
591 else if (test_bit(In_sync, &rdev->flags))
592 ;
593 else
594 /* not in-sync or faulty.
595 * If the reshape increases the number of devices,
596 * this is being recovered by the reshape, so
597 * this 'previous' section is not in_sync.
598 * If the number of devices is being reduced however,
599 * the device can only be part of the array if
600 * we are reverting a reshape, so this section will
601 * be in-sync.
602 */
603 if (conf->raid_disks >= conf->previous_raid_disks)
604 degraded++;
605 }
606 rcu_read_unlock();
607 if (conf->raid_disks == conf->previous_raid_disks)
608 return degraded;
609 rcu_read_lock();
610 degraded2 = 0;
611 for (i = 0; i < conf->raid_disks; i++) {
612 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
613 if (rdev && test_bit(Faulty, &rdev->flags))
614 rdev = rcu_dereference(conf->disks[i].replacement);
615 if (!rdev || test_bit(Faulty, &rdev->flags))
616 degraded2++;
617 else if (test_bit(In_sync, &rdev->flags))
618 ;
619 else
620 /* not in-sync or faulty.
621 * If reshape increases the number of devices, this
622 * section has already been recovered, else it
623 * almost certainly hasn't.
624 */
625 if (conf->raid_disks <= conf->previous_raid_disks)
626 degraded2++;
627 }
628 rcu_read_unlock();
629 if (degraded2 > degraded)
630 return degraded2;
631 return degraded;
632 }
633
634 static int has_failed(struct r5conf *conf)
635 {
636 int degraded;
637
638 if (conf->mddev->reshape_position == MaxSector)
639 return conf->mddev->degraded > conf->max_degraded;
640
641 degraded = calc_degraded(conf);
642 if (degraded > conf->max_degraded)
643 return 1;
644 return 0;
645 }
646
647 static struct stripe_head *
648 get_active_stripe(struct r5conf *conf, sector_t sector,
649 int previous, int noblock, int noquiesce)
650 {
651 struct stripe_head *sh;
652 int hash = stripe_hash_locks_hash(sector);
653
654 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
655
656 spin_lock_irq(conf->hash_locks + hash);
657
658 do {
659 wait_event_lock_irq(conf->wait_for_stripe,
660 conf->quiesce == 0 || noquiesce,
661 *(conf->hash_locks + hash));
662 sh = __find_stripe(conf, sector, conf->generation - previous);
663 if (!sh) {
664 if (!conf->inactive_blocked)
665 sh = get_free_stripe(conf, hash);
666 if (noblock && sh == NULL)
667 break;
668 if (!sh) {
669 conf->inactive_blocked = 1;
670 wait_event_lock_irq(
671 conf->wait_for_stripe,
672 !list_empty(conf->inactive_list + hash) &&
673 (atomic_read(&conf->active_stripes)
674 < (conf->max_nr_stripes * 3 / 4)
675 || !conf->inactive_blocked),
676 *(conf->hash_locks + hash));
677 conf->inactive_blocked = 0;
678 } else
679 init_stripe(sh, sector, previous);
680 } else {
681 if (atomic_read(&sh->count)) {
682 BUG_ON(!list_empty(&sh->lru)
683 && !test_bit(STRIPE_EXPANDING, &sh->state)
684 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
685 && !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
686 } else {
687 spin_lock(&conf->device_lock);
688 if (!test_bit(STRIPE_HANDLE, &sh->state))
689 atomic_inc(&conf->active_stripes);
690 if (list_empty(&sh->lru) &&
691 !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state) &&
692 !test_bit(STRIPE_EXPANDING, &sh->state))
693 BUG();
694 list_del_init(&sh->lru);
695 if (sh->group) {
696 sh->group->stripes_cnt--;
697 sh->group = NULL;
698 }
699 spin_unlock(&conf->device_lock);
700 }
701 }
702 } while (sh == NULL);
703
704 if (sh)
705 atomic_inc(&sh->count);
706
707 spin_unlock_irq(conf->hash_locks + hash);
708 return sh;
709 }
710
711 /* Determine if 'data_offset' or 'new_data_offset' should be used
712 * in this stripe_head.
713 */
714 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
715 {
716 sector_t progress = conf->reshape_progress;
717 /* Need a memory barrier to make sure we see the value
718 * of conf->generation, or ->data_offset that was set before
719 * reshape_progress was updated.
720 */
721 smp_rmb();
722 if (progress == MaxSector)
723 return 0;
724 if (sh->generation == conf->generation - 1)
725 return 0;
726 /* We are in a reshape, and this is a new-generation stripe,
727 * so use new_data_offset.
728 */
729 return 1;
730 }
731
732 static void
733 raid5_end_read_request(struct bio *bi, int error);
734 static void
735 raid5_end_write_request(struct bio *bi, int error);
736
737 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
738 {
739 struct r5conf *conf = sh->raid_conf;
740 int i, disks = sh->disks;
741
742 might_sleep();
743
744 for (i = disks; i--; ) {
745 int rw;
746 int replace_only = 0;
747 struct bio *bi, *rbi;
748 struct md_rdev *rdev, *rrdev = NULL;
749 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
750 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
751 rw = WRITE_FUA;
752 else
753 rw = WRITE;
754 if (test_bit(R5_Discard, &sh->dev[i].flags))
755 rw |= REQ_DISCARD;
756 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
757 rw = READ;
758 else if (test_and_clear_bit(R5_WantReplace,
759 &sh->dev[i].flags)) {
760 rw = WRITE;
761 replace_only = 1;
762 } else
763 continue;
764 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
765 rw |= REQ_SYNC;
766
767 bi = &sh->dev[i].req;
768 rbi = &sh->dev[i].rreq; /* For writing to replacement */
769
770 rcu_read_lock();
771 rrdev = rcu_dereference(conf->disks[i].replacement);
772 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
773 rdev = rcu_dereference(conf->disks[i].rdev);
774 if (!rdev) {
775 rdev = rrdev;
776 rrdev = NULL;
777 }
778 if (rw & WRITE) {
779 if (replace_only)
780 rdev = NULL;
781 if (rdev == rrdev)
782 /* We raced and saw duplicates */
783 rrdev = NULL;
784 } else {
785 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
786 rdev = rrdev;
787 rrdev = NULL;
788 }
789
790 if (rdev && test_bit(Faulty, &rdev->flags))
791 rdev = NULL;
792 if (rdev)
793 atomic_inc(&rdev->nr_pending);
794 if (rrdev && test_bit(Faulty, &rrdev->flags))
795 rrdev = NULL;
796 if (rrdev)
797 atomic_inc(&rrdev->nr_pending);
798 rcu_read_unlock();
799
800 /* We have already checked bad blocks for reads. Now
801 * need to check for writes. We never accept write errors
802 * on the replacement, so we don't to check rrdev.
803 */
804 while ((rw & WRITE) && rdev &&
805 test_bit(WriteErrorSeen, &rdev->flags)) {
806 sector_t first_bad;
807 int bad_sectors;
808 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
809 &first_bad, &bad_sectors);
810 if (!bad)
811 break;
812
813 if (bad < 0) {
814 set_bit(BlockedBadBlocks, &rdev->flags);
815 if (!conf->mddev->external &&
816 conf->mddev->flags) {
817 /* It is very unlikely, but we might
818 * still need to write out the
819 * bad block log - better give it
820 * a chance*/
821 md_check_recovery(conf->mddev);
822 }
823 /*
824 * Because md_wait_for_blocked_rdev
825 * will dec nr_pending, we must
826 * increment it first.
827 */
828 atomic_inc(&rdev->nr_pending);
829 md_wait_for_blocked_rdev(rdev, conf->mddev);
830 } else {
831 /* Acknowledged bad block - skip the write */
832 rdev_dec_pending(rdev, conf->mddev);
833 rdev = NULL;
834 }
835 }
836
837 if (rdev) {
838 if (s->syncing || s->expanding || s->expanded
839 || s->replacing)
840 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
841
842 set_bit(STRIPE_IO_STARTED, &sh->state);
843
844 bio_reset(bi);
845 bi->bi_bdev = rdev->bdev;
846 bi->bi_rw = rw;
847 bi->bi_end_io = (rw & WRITE)
848 ? raid5_end_write_request
849 : raid5_end_read_request;
850 bi->bi_private = sh;
851
852 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
853 __func__, (unsigned long long)sh->sector,
854 bi->bi_rw, i);
855 atomic_inc(&sh->count);
856 if (use_new_offset(conf, sh))
857 bi->bi_iter.bi_sector = (sh->sector
858 + rdev->new_data_offset);
859 else
860 bi->bi_iter.bi_sector = (sh->sector
861 + rdev->data_offset);
862 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
863 bi->bi_rw |= REQ_NOMERGE;
864
865 bi->bi_vcnt = 1;
866 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
867 bi->bi_io_vec[0].bv_offset = 0;
868 bi->bi_iter.bi_size = STRIPE_SIZE;
869 /*
870 * If this is discard request, set bi_vcnt 0. We don't
871 * want to confuse SCSI because SCSI will replace payload
872 */
873 if (rw & REQ_DISCARD)
874 bi->bi_vcnt = 0;
875 if (rrdev)
876 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
877
878 if (conf->mddev->gendisk)
879 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
880 bi, disk_devt(conf->mddev->gendisk),
881 sh->dev[i].sector);
882 generic_make_request(bi);
883 }
884 if (rrdev) {
885 if (s->syncing || s->expanding || s->expanded
886 || s->replacing)
887 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
888
889 set_bit(STRIPE_IO_STARTED, &sh->state);
890
891 bio_reset(rbi);
892 rbi->bi_bdev = rrdev->bdev;
893 rbi->bi_rw = rw;
894 BUG_ON(!(rw & WRITE));
895 rbi->bi_end_io = raid5_end_write_request;
896 rbi->bi_private = sh;
897
898 pr_debug("%s: for %llu schedule op %ld on "
899 "replacement disc %d\n",
900 __func__, (unsigned long long)sh->sector,
901 rbi->bi_rw, i);
902 atomic_inc(&sh->count);
903 if (use_new_offset(conf, sh))
904 rbi->bi_iter.bi_sector = (sh->sector
905 + rrdev->new_data_offset);
906 else
907 rbi->bi_iter.bi_sector = (sh->sector
908 + rrdev->data_offset);
909 rbi->bi_vcnt = 1;
910 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
911 rbi->bi_io_vec[0].bv_offset = 0;
912 rbi->bi_iter.bi_size = STRIPE_SIZE;
913 /*
914 * If this is discard request, set bi_vcnt 0. We don't
915 * want to confuse SCSI because SCSI will replace payload
916 */
917 if (rw & REQ_DISCARD)
918 rbi->bi_vcnt = 0;
919 if (conf->mddev->gendisk)
920 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
921 rbi, disk_devt(conf->mddev->gendisk),
922 sh->dev[i].sector);
923 generic_make_request(rbi);
924 }
925 if (!rdev && !rrdev) {
926 if (rw & WRITE)
927 set_bit(STRIPE_DEGRADED, &sh->state);
928 pr_debug("skip op %ld on disc %d for sector %llu\n",
929 bi->bi_rw, i, (unsigned long long)sh->sector);
930 clear_bit(R5_LOCKED, &sh->dev[i].flags);
931 set_bit(STRIPE_HANDLE, &sh->state);
932 }
933 }
934 }
935
936 static struct dma_async_tx_descriptor *
937 async_copy_data(int frombio, struct bio *bio, struct page *page,
938 sector_t sector, struct dma_async_tx_descriptor *tx)
939 {
940 struct bio_vec *bvl;
941 struct page *bio_page;
942 int i;
943 int page_offset;
944 struct async_submit_ctl submit;
945 enum async_tx_flags flags = 0;
946
947 if (bio->bi_iter.bi_sector >= sector)
948 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
949 else
950 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
951
952 if (frombio)
953 flags |= ASYNC_TX_FENCE;
954 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
955
956 bio_for_each_segment(bvl, bio, i) {
957 int len = bvl->bv_len;
958 int clen;
959 int b_offset = 0;
960
961 if (page_offset < 0) {
962 b_offset = -page_offset;
963 page_offset += b_offset;
964 len -= b_offset;
965 }
966
967 if (len > 0 && page_offset + len > STRIPE_SIZE)
968 clen = STRIPE_SIZE - page_offset;
969 else
970 clen = len;
971
972 if (clen > 0) {
973 b_offset += bvl->bv_offset;
974 bio_page = bvl->bv_page;
975 if (frombio)
976 tx = async_memcpy(page, bio_page, page_offset,
977 b_offset, clen, &submit);
978 else
979 tx = async_memcpy(bio_page, page, b_offset,
980 page_offset, clen, &submit);
981 }
982 /* chain the operations */
983 submit.depend_tx = tx;
984
985 if (clen < len) /* hit end of page */
986 break;
987 page_offset += len;
988 }
989
990 return tx;
991 }
992
993 static void ops_complete_biofill(void *stripe_head_ref)
994 {
995 struct stripe_head *sh = stripe_head_ref;
996 struct bio *return_bi = NULL;
997 int i;
998
999 pr_debug("%s: stripe %llu\n", __func__,
1000 (unsigned long long)sh->sector);
1001
1002 /* clear completed biofills */
1003 for (i = sh->disks; i--; ) {
1004 struct r5dev *dev = &sh->dev[i];
1005
1006 /* acknowledge completion of a biofill operation */
1007 /* and check if we need to reply to a read request,
1008 * new R5_Wantfill requests are held off until
1009 * !STRIPE_BIOFILL_RUN
1010 */
1011 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1012 struct bio *rbi, *rbi2;
1013
1014 BUG_ON(!dev->read);
1015 rbi = dev->read;
1016 dev->read = NULL;
1017 while (rbi && rbi->bi_iter.bi_sector <
1018 dev->sector + STRIPE_SECTORS) {
1019 rbi2 = r5_next_bio(rbi, dev->sector);
1020 if (!raid5_dec_bi_active_stripes(rbi)) {
1021 rbi->bi_next = return_bi;
1022 return_bi = rbi;
1023 }
1024 rbi = rbi2;
1025 }
1026 }
1027 }
1028 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1029
1030 return_io(return_bi);
1031
1032 set_bit(STRIPE_HANDLE, &sh->state);
1033 release_stripe(sh);
1034 }
1035
1036 static void ops_run_biofill(struct stripe_head *sh)
1037 {
1038 struct dma_async_tx_descriptor *tx = NULL;
1039 struct async_submit_ctl submit;
1040 int i;
1041
1042 pr_debug("%s: stripe %llu\n", __func__,
1043 (unsigned long long)sh->sector);
1044
1045 for (i = sh->disks; i--; ) {
1046 struct r5dev *dev = &sh->dev[i];
1047 if (test_bit(R5_Wantfill, &dev->flags)) {
1048 struct bio *rbi;
1049 spin_lock_irq(&sh->stripe_lock);
1050 dev->read = rbi = dev->toread;
1051 dev->toread = NULL;
1052 spin_unlock_irq(&sh->stripe_lock);
1053 while (rbi && rbi->bi_iter.bi_sector <
1054 dev->sector + STRIPE_SECTORS) {
1055 tx = async_copy_data(0, rbi, dev->page,
1056 dev->sector, tx);
1057 rbi = r5_next_bio(rbi, dev->sector);
1058 }
1059 }
1060 }
1061
1062 atomic_inc(&sh->count);
1063 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1064 async_trigger_callback(&submit);
1065 }
1066
1067 static void mark_target_uptodate(struct stripe_head *sh, int target)
1068 {
1069 struct r5dev *tgt;
1070
1071 if (target < 0)
1072 return;
1073
1074 tgt = &sh->dev[target];
1075 set_bit(R5_UPTODATE, &tgt->flags);
1076 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1077 clear_bit(R5_Wantcompute, &tgt->flags);
1078 }
1079
1080 static void ops_complete_compute(void *stripe_head_ref)
1081 {
1082 struct stripe_head *sh = stripe_head_ref;
1083
1084 pr_debug("%s: stripe %llu\n", __func__,
1085 (unsigned long long)sh->sector);
1086
1087 /* mark the computed target(s) as uptodate */
1088 mark_target_uptodate(sh, sh->ops.target);
1089 mark_target_uptodate(sh, sh->ops.target2);
1090
1091 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1092 if (sh->check_state == check_state_compute_run)
1093 sh->check_state = check_state_compute_result;
1094 set_bit(STRIPE_HANDLE, &sh->state);
1095 release_stripe(sh);
1096 }
1097
1098 /* return a pointer to the address conversion region of the scribble buffer */
1099 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1100 struct raid5_percpu *percpu)
1101 {
1102 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1103 }
1104
1105 static struct dma_async_tx_descriptor *
1106 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1107 {
1108 int disks = sh->disks;
1109 struct page **xor_srcs = percpu->scribble;
1110 int target = sh->ops.target;
1111 struct r5dev *tgt = &sh->dev[target];
1112 struct page *xor_dest = tgt->page;
1113 int count = 0;
1114 struct dma_async_tx_descriptor *tx;
1115 struct async_submit_ctl submit;
1116 int i;
1117
1118 pr_debug("%s: stripe %llu block: %d\n",
1119 __func__, (unsigned long long)sh->sector, target);
1120 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1121
1122 for (i = disks; i--; )
1123 if (i != target)
1124 xor_srcs[count++] = sh->dev[i].page;
1125
1126 atomic_inc(&sh->count);
1127
1128 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1129 ops_complete_compute, sh, to_addr_conv(sh, percpu));
1130 if (unlikely(count == 1))
1131 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1132 else
1133 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1134
1135 return tx;
1136 }
1137
1138 /* set_syndrome_sources - populate source buffers for gen_syndrome
1139 * @srcs - (struct page *) array of size sh->disks
1140 * @sh - stripe_head to parse
1141 *
1142 * Populates srcs in proper layout order for the stripe and returns the
1143 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1144 * destination buffer is recorded in srcs[count] and the Q destination
1145 * is recorded in srcs[count+1]].
1146 */
1147 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1148 {
1149 int disks = sh->disks;
1150 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1151 int d0_idx = raid6_d0(sh);
1152 int count;
1153 int i;
1154
1155 for (i = 0; i < disks; i++)
1156 srcs[i] = NULL;
1157
1158 count = 0;
1159 i = d0_idx;
1160 do {
1161 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1162
1163 srcs[slot] = sh->dev[i].page;
1164 i = raid6_next_disk(i, disks);
1165 } while (i != d0_idx);
1166
1167 return syndrome_disks;
1168 }
1169
1170 static struct dma_async_tx_descriptor *
1171 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1172 {
1173 int disks = sh->disks;
1174 struct page **blocks = percpu->scribble;
1175 int target;
1176 int qd_idx = sh->qd_idx;
1177 struct dma_async_tx_descriptor *tx;
1178 struct async_submit_ctl submit;
1179 struct r5dev *tgt;
1180 struct page *dest;
1181 int i;
1182 int count;
1183
1184 if (sh->ops.target < 0)
1185 target = sh->ops.target2;
1186 else if (sh->ops.target2 < 0)
1187 target = sh->ops.target;
1188 else
1189 /* we should only have one valid target */
1190 BUG();
1191 BUG_ON(target < 0);
1192 pr_debug("%s: stripe %llu block: %d\n",
1193 __func__, (unsigned long long)sh->sector, target);
1194
1195 tgt = &sh->dev[target];
1196 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1197 dest = tgt->page;
1198
1199 atomic_inc(&sh->count);
1200
1201 if (target == qd_idx) {
1202 count = set_syndrome_sources(blocks, sh);
1203 blocks[count] = NULL; /* regenerating p is not necessary */
1204 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1205 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1206 ops_complete_compute, sh,
1207 to_addr_conv(sh, percpu));
1208 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1209 } else {
1210 /* Compute any data- or p-drive using XOR */
1211 count = 0;
1212 for (i = disks; i-- ; ) {
1213 if (i == target || i == qd_idx)
1214 continue;
1215 blocks[count++] = sh->dev[i].page;
1216 }
1217
1218 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1219 NULL, ops_complete_compute, sh,
1220 to_addr_conv(sh, percpu));
1221 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1222 }
1223
1224 return tx;
1225 }
1226
1227 static struct dma_async_tx_descriptor *
1228 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1229 {
1230 int i, count, disks = sh->disks;
1231 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1232 int d0_idx = raid6_d0(sh);
1233 int faila = -1, failb = -1;
1234 int target = sh->ops.target;
1235 int target2 = sh->ops.target2;
1236 struct r5dev *tgt = &sh->dev[target];
1237 struct r5dev *tgt2 = &sh->dev[target2];
1238 struct dma_async_tx_descriptor *tx;
1239 struct page **blocks = percpu->scribble;
1240 struct async_submit_ctl submit;
1241
1242 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1243 __func__, (unsigned long long)sh->sector, target, target2);
1244 BUG_ON(target < 0 || target2 < 0);
1245 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1246 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1247
1248 /* we need to open-code set_syndrome_sources to handle the
1249 * slot number conversion for 'faila' and 'failb'
1250 */
1251 for (i = 0; i < disks ; i++)
1252 blocks[i] = NULL;
1253 count = 0;
1254 i = d0_idx;
1255 do {
1256 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1257
1258 blocks[slot] = sh->dev[i].page;
1259
1260 if (i == target)
1261 faila = slot;
1262 if (i == target2)
1263 failb = slot;
1264 i = raid6_next_disk(i, disks);
1265 } while (i != d0_idx);
1266
1267 BUG_ON(faila == failb);
1268 if (failb < faila)
1269 swap(faila, failb);
1270 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1271 __func__, (unsigned long long)sh->sector, faila, failb);
1272
1273 atomic_inc(&sh->count);
1274
1275 if (failb == syndrome_disks+1) {
1276 /* Q disk is one of the missing disks */
1277 if (faila == syndrome_disks) {
1278 /* Missing P+Q, just recompute */
1279 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1280 ops_complete_compute, sh,
1281 to_addr_conv(sh, percpu));
1282 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1283 STRIPE_SIZE, &submit);
1284 } else {
1285 struct page *dest;
1286 int data_target;
1287 int qd_idx = sh->qd_idx;
1288
1289 /* Missing D+Q: recompute D from P, then recompute Q */
1290 if (target == qd_idx)
1291 data_target = target2;
1292 else
1293 data_target = target;
1294
1295 count = 0;
1296 for (i = disks; i-- ; ) {
1297 if (i == data_target || i == qd_idx)
1298 continue;
1299 blocks[count++] = sh->dev[i].page;
1300 }
1301 dest = sh->dev[data_target].page;
1302 init_async_submit(&submit,
1303 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1304 NULL, NULL, NULL,
1305 to_addr_conv(sh, percpu));
1306 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1307 &submit);
1308
1309 count = set_syndrome_sources(blocks, sh);
1310 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1311 ops_complete_compute, sh,
1312 to_addr_conv(sh, percpu));
1313 return async_gen_syndrome(blocks, 0, count+2,
1314 STRIPE_SIZE, &submit);
1315 }
1316 } else {
1317 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1318 ops_complete_compute, sh,
1319 to_addr_conv(sh, percpu));
1320 if (failb == syndrome_disks) {
1321 /* We're missing D+P. */
1322 return async_raid6_datap_recov(syndrome_disks+2,
1323 STRIPE_SIZE, faila,
1324 blocks, &submit);
1325 } else {
1326 /* We're missing D+D. */
1327 return async_raid6_2data_recov(syndrome_disks+2,
1328 STRIPE_SIZE, faila, failb,
1329 blocks, &submit);
1330 }
1331 }
1332 }
1333
1334
1335 static void ops_complete_prexor(void *stripe_head_ref)
1336 {
1337 struct stripe_head *sh = stripe_head_ref;
1338
1339 pr_debug("%s: stripe %llu\n", __func__,
1340 (unsigned long long)sh->sector);
1341 }
1342
1343 static struct dma_async_tx_descriptor *
1344 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1345 struct dma_async_tx_descriptor *tx)
1346 {
1347 int disks = sh->disks;
1348 struct page **xor_srcs = percpu->scribble;
1349 int count = 0, pd_idx = sh->pd_idx, i;
1350 struct async_submit_ctl submit;
1351
1352 /* existing parity data subtracted */
1353 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1354
1355 pr_debug("%s: stripe %llu\n", __func__,
1356 (unsigned long long)sh->sector);
1357
1358 for (i = disks; i--; ) {
1359 struct r5dev *dev = &sh->dev[i];
1360 /* Only process blocks that are known to be uptodate */
1361 if (test_bit(R5_Wantdrain, &dev->flags))
1362 xor_srcs[count++] = dev->page;
1363 }
1364
1365 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1366 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1367 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1368
1369 return tx;
1370 }
1371
1372 static struct dma_async_tx_descriptor *
1373 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1374 {
1375 int disks = sh->disks;
1376 int i;
1377
1378 pr_debug("%s: stripe %llu\n", __func__,
1379 (unsigned long long)sh->sector);
1380
1381 for (i = disks; i--; ) {
1382 struct r5dev *dev = &sh->dev[i];
1383 struct bio *chosen;
1384
1385 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1386 struct bio *wbi;
1387
1388 spin_lock_irq(&sh->stripe_lock);
1389 chosen = dev->towrite;
1390 dev->towrite = NULL;
1391 BUG_ON(dev->written);
1392 wbi = dev->written = chosen;
1393 spin_unlock_irq(&sh->stripe_lock);
1394
1395 while (wbi && wbi->bi_iter.bi_sector <
1396 dev->sector + STRIPE_SECTORS) {
1397 if (wbi->bi_rw & REQ_FUA)
1398 set_bit(R5_WantFUA, &dev->flags);
1399 if (wbi->bi_rw & REQ_SYNC)
1400 set_bit(R5_SyncIO, &dev->flags);
1401 if (wbi->bi_rw & REQ_DISCARD)
1402 set_bit(R5_Discard, &dev->flags);
1403 else
1404 tx = async_copy_data(1, wbi, dev->page,
1405 dev->sector, tx);
1406 wbi = r5_next_bio(wbi, dev->sector);
1407 }
1408 }
1409 }
1410
1411 return tx;
1412 }
1413
1414 static void ops_complete_reconstruct(void *stripe_head_ref)
1415 {
1416 struct stripe_head *sh = stripe_head_ref;
1417 int disks = sh->disks;
1418 int pd_idx = sh->pd_idx;
1419 int qd_idx = sh->qd_idx;
1420 int i;
1421 bool fua = false, sync = false, discard = false;
1422
1423 pr_debug("%s: stripe %llu\n", __func__,
1424 (unsigned long long)sh->sector);
1425
1426 for (i = disks; i--; ) {
1427 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1428 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1429 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1430 }
1431
1432 for (i = disks; i--; ) {
1433 struct r5dev *dev = &sh->dev[i];
1434
1435 if (dev->written || i == pd_idx || i == qd_idx) {
1436 if (!discard)
1437 set_bit(R5_UPTODATE, &dev->flags);
1438 if (fua)
1439 set_bit(R5_WantFUA, &dev->flags);
1440 if (sync)
1441 set_bit(R5_SyncIO, &dev->flags);
1442 }
1443 }
1444
1445 if (sh->reconstruct_state == reconstruct_state_drain_run)
1446 sh->reconstruct_state = reconstruct_state_drain_result;
1447 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1448 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1449 else {
1450 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1451 sh->reconstruct_state = reconstruct_state_result;
1452 }
1453
1454 set_bit(STRIPE_HANDLE, &sh->state);
1455 release_stripe(sh);
1456 }
1457
1458 static void
1459 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1460 struct dma_async_tx_descriptor *tx)
1461 {
1462 int disks = sh->disks;
1463 struct page **xor_srcs = percpu->scribble;
1464 struct async_submit_ctl submit;
1465 int count = 0, pd_idx = sh->pd_idx, i;
1466 struct page *xor_dest;
1467 int prexor = 0;
1468 unsigned long flags;
1469
1470 pr_debug("%s: stripe %llu\n", __func__,
1471 (unsigned long long)sh->sector);
1472
1473 for (i = 0; i < sh->disks; i++) {
1474 if (pd_idx == i)
1475 continue;
1476 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1477 break;
1478 }
1479 if (i >= sh->disks) {
1480 atomic_inc(&sh->count);
1481 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1482 ops_complete_reconstruct(sh);
1483 return;
1484 }
1485 /* check if prexor is active which means only process blocks
1486 * that are part of a read-modify-write (written)
1487 */
1488 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1489 prexor = 1;
1490 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1491 for (i = disks; i--; ) {
1492 struct r5dev *dev = &sh->dev[i];
1493 if (dev->written)
1494 xor_srcs[count++] = dev->page;
1495 }
1496 } else {
1497 xor_dest = sh->dev[pd_idx].page;
1498 for (i = disks; i--; ) {
1499 struct r5dev *dev = &sh->dev[i];
1500 if (i != pd_idx)
1501 xor_srcs[count++] = dev->page;
1502 }
1503 }
1504
1505 /* 1/ if we prexor'd then the dest is reused as a source
1506 * 2/ if we did not prexor then we are redoing the parity
1507 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1508 * for the synchronous xor case
1509 */
1510 flags = ASYNC_TX_ACK |
1511 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1512
1513 atomic_inc(&sh->count);
1514
1515 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1516 to_addr_conv(sh, percpu));
1517 if (unlikely(count == 1))
1518 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1519 else
1520 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1521 }
1522
1523 static void
1524 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1525 struct dma_async_tx_descriptor *tx)
1526 {
1527 struct async_submit_ctl submit;
1528 struct page **blocks = percpu->scribble;
1529 int count, i;
1530
1531 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1532
1533 for (i = 0; i < sh->disks; i++) {
1534 if (sh->pd_idx == i || sh->qd_idx == i)
1535 continue;
1536 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1537 break;
1538 }
1539 if (i >= sh->disks) {
1540 atomic_inc(&sh->count);
1541 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1542 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1543 ops_complete_reconstruct(sh);
1544 return;
1545 }
1546
1547 count = set_syndrome_sources(blocks, sh);
1548
1549 atomic_inc(&sh->count);
1550
1551 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1552 sh, to_addr_conv(sh, percpu));
1553 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1554 }
1555
1556 static void ops_complete_check(void *stripe_head_ref)
1557 {
1558 struct stripe_head *sh = stripe_head_ref;
1559
1560 pr_debug("%s: stripe %llu\n", __func__,
1561 (unsigned long long)sh->sector);
1562
1563 sh->check_state = check_state_check_result;
1564 set_bit(STRIPE_HANDLE, &sh->state);
1565 release_stripe(sh);
1566 }
1567
1568 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1569 {
1570 int disks = sh->disks;
1571 int pd_idx = sh->pd_idx;
1572 int qd_idx = sh->qd_idx;
1573 struct page *xor_dest;
1574 struct page **xor_srcs = percpu->scribble;
1575 struct dma_async_tx_descriptor *tx;
1576 struct async_submit_ctl submit;
1577 int count;
1578 int i;
1579
1580 pr_debug("%s: stripe %llu\n", __func__,
1581 (unsigned long long)sh->sector);
1582
1583 count = 0;
1584 xor_dest = sh->dev[pd_idx].page;
1585 xor_srcs[count++] = xor_dest;
1586 for (i = disks; i--; ) {
1587 if (i == pd_idx || i == qd_idx)
1588 continue;
1589 xor_srcs[count++] = sh->dev[i].page;
1590 }
1591
1592 init_async_submit(&submit, 0, NULL, NULL, NULL,
1593 to_addr_conv(sh, percpu));
1594 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1595 &sh->ops.zero_sum_result, &submit);
1596
1597 atomic_inc(&sh->count);
1598 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1599 tx = async_trigger_callback(&submit);
1600 }
1601
1602 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1603 {
1604 struct page **srcs = percpu->scribble;
1605 struct async_submit_ctl submit;
1606 int count;
1607
1608 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1609 (unsigned long long)sh->sector, checkp);
1610
1611 count = set_syndrome_sources(srcs, sh);
1612 if (!checkp)
1613 srcs[count] = NULL;
1614
1615 atomic_inc(&sh->count);
1616 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1617 sh, to_addr_conv(sh, percpu));
1618 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1619 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1620 }
1621
1622 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1623 {
1624 int overlap_clear = 0, i, disks = sh->disks;
1625 struct dma_async_tx_descriptor *tx = NULL;
1626 struct r5conf *conf = sh->raid_conf;
1627 int level = conf->level;
1628 struct raid5_percpu *percpu;
1629 unsigned long cpu;
1630
1631 cpu = get_cpu();
1632 percpu = per_cpu_ptr(conf->percpu, cpu);
1633 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1634 ops_run_biofill(sh);
1635 overlap_clear++;
1636 }
1637
1638 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1639 if (level < 6)
1640 tx = ops_run_compute5(sh, percpu);
1641 else {
1642 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1643 tx = ops_run_compute6_1(sh, percpu);
1644 else
1645 tx = ops_run_compute6_2(sh, percpu);
1646 }
1647 /* terminate the chain if reconstruct is not set to be run */
1648 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1649 async_tx_ack(tx);
1650 }
1651
1652 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1653 tx = ops_run_prexor(sh, percpu, tx);
1654
1655 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1656 tx = ops_run_biodrain(sh, tx);
1657 overlap_clear++;
1658 }
1659
1660 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1661 if (level < 6)
1662 ops_run_reconstruct5(sh, percpu, tx);
1663 else
1664 ops_run_reconstruct6(sh, percpu, tx);
1665 }
1666
1667 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1668 if (sh->check_state == check_state_run)
1669 ops_run_check_p(sh, percpu);
1670 else if (sh->check_state == check_state_run_q)
1671 ops_run_check_pq(sh, percpu, 0);
1672 else if (sh->check_state == check_state_run_pq)
1673 ops_run_check_pq(sh, percpu, 1);
1674 else
1675 BUG();
1676 }
1677
1678 if (overlap_clear)
1679 for (i = disks; i--; ) {
1680 struct r5dev *dev = &sh->dev[i];
1681 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1682 wake_up(&sh->raid_conf->wait_for_overlap);
1683 }
1684 put_cpu();
1685 }
1686
1687 static int grow_one_stripe(struct r5conf *conf, int hash)
1688 {
1689 struct stripe_head *sh;
1690 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1691 if (!sh)
1692 return 0;
1693
1694 sh->raid_conf = conf;
1695
1696 spin_lock_init(&sh->stripe_lock);
1697
1698 if (grow_buffers(sh)) {
1699 shrink_buffers(sh);
1700 kmem_cache_free(conf->slab_cache, sh);
1701 return 0;
1702 }
1703 sh->hash_lock_index = hash;
1704 /* we just created an active stripe so... */
1705 atomic_set(&sh->count, 1);
1706 atomic_inc(&conf->active_stripes);
1707 INIT_LIST_HEAD(&sh->lru);
1708 release_stripe(sh);
1709 return 1;
1710 }
1711
1712 static int grow_stripes(struct r5conf *conf, int num)
1713 {
1714 struct kmem_cache *sc;
1715 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1716 int hash;
1717
1718 if (conf->mddev->gendisk)
1719 sprintf(conf->cache_name[0],
1720 "raid%d-%s", conf->level, mdname(conf->mddev));
1721 else
1722 sprintf(conf->cache_name[0],
1723 "raid%d-%p", conf->level, conf->mddev);
1724 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1725
1726 conf->active_name = 0;
1727 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1728 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1729 0, 0, NULL);
1730 if (!sc)
1731 return 1;
1732 conf->slab_cache = sc;
1733 conf->pool_size = devs;
1734 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1735 while (num--) {
1736 if (!grow_one_stripe(conf, hash))
1737 return 1;
1738 conf->max_nr_stripes++;
1739 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1740 }
1741 return 0;
1742 }
1743
1744 /**
1745 * scribble_len - return the required size of the scribble region
1746 * @num - total number of disks in the array
1747 *
1748 * The size must be enough to contain:
1749 * 1/ a struct page pointer for each device in the array +2
1750 * 2/ room to convert each entry in (1) to its corresponding dma
1751 * (dma_map_page()) or page (page_address()) address.
1752 *
1753 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1754 * calculate over all devices (not just the data blocks), using zeros in place
1755 * of the P and Q blocks.
1756 */
1757 static size_t scribble_len(int num)
1758 {
1759 size_t len;
1760
1761 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1762
1763 return len;
1764 }
1765
1766 static int resize_stripes(struct r5conf *conf, int newsize)
1767 {
1768 /* Make all the stripes able to hold 'newsize' devices.
1769 * New slots in each stripe get 'page' set to a new page.
1770 *
1771 * This happens in stages:
1772 * 1/ create a new kmem_cache and allocate the required number of
1773 * stripe_heads.
1774 * 2/ gather all the old stripe_heads and transfer the pages across
1775 * to the new stripe_heads. This will have the side effect of
1776 * freezing the array as once all stripe_heads have been collected,
1777 * no IO will be possible. Old stripe heads are freed once their
1778 * pages have been transferred over, and the old kmem_cache is
1779 * freed when all stripes are done.
1780 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1781 * we simple return a failre status - no need to clean anything up.
1782 * 4/ allocate new pages for the new slots in the new stripe_heads.
1783 * If this fails, we don't bother trying the shrink the
1784 * stripe_heads down again, we just leave them as they are.
1785 * As each stripe_head is processed the new one is released into
1786 * active service.
1787 *
1788 * Once step2 is started, we cannot afford to wait for a write,
1789 * so we use GFP_NOIO allocations.
1790 */
1791 struct stripe_head *osh, *nsh;
1792 LIST_HEAD(newstripes);
1793 struct disk_info *ndisks;
1794 unsigned long cpu;
1795 int err;
1796 struct kmem_cache *sc;
1797 int i;
1798 int hash, cnt;
1799
1800 if (newsize <= conf->pool_size)
1801 return 0; /* never bother to shrink */
1802
1803 err = md_allow_write(conf->mddev);
1804 if (err)
1805 return err;
1806
1807 /* Step 1 */
1808 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1809 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1810 0, 0, NULL);
1811 if (!sc)
1812 return -ENOMEM;
1813
1814 for (i = conf->max_nr_stripes; i; i--) {
1815 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1816 if (!nsh)
1817 break;
1818
1819 nsh->raid_conf = conf;
1820 spin_lock_init(&nsh->stripe_lock);
1821
1822 list_add(&nsh->lru, &newstripes);
1823 }
1824 if (i) {
1825 /* didn't get enough, give up */
1826 while (!list_empty(&newstripes)) {
1827 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1828 list_del(&nsh->lru);
1829 kmem_cache_free(sc, nsh);
1830 }
1831 kmem_cache_destroy(sc);
1832 return -ENOMEM;
1833 }
1834 /* Step 2 - Must use GFP_NOIO now.
1835 * OK, we have enough stripes, start collecting inactive
1836 * stripes and copying them over
1837 */
1838 hash = 0;
1839 cnt = 0;
1840 list_for_each_entry(nsh, &newstripes, lru) {
1841 lock_device_hash_lock(conf, hash);
1842 wait_event_cmd(conf->wait_for_stripe,
1843 !list_empty(conf->inactive_list + hash),
1844 unlock_device_hash_lock(conf, hash),
1845 lock_device_hash_lock(conf, hash));
1846 osh = get_free_stripe(conf, hash);
1847 unlock_device_hash_lock(conf, hash);
1848 atomic_set(&nsh->count, 1);
1849 for(i=0; i<conf->pool_size; i++)
1850 nsh->dev[i].page = osh->dev[i].page;
1851 for( ; i<newsize; i++)
1852 nsh->dev[i].page = NULL;
1853 nsh->hash_lock_index = hash;
1854 kmem_cache_free(conf->slab_cache, osh);
1855 cnt++;
1856 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1857 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1858 hash++;
1859 cnt = 0;
1860 }
1861 }
1862 kmem_cache_destroy(conf->slab_cache);
1863
1864 /* Step 3.
1865 * At this point, we are holding all the stripes so the array
1866 * is completely stalled, so now is a good time to resize
1867 * conf->disks and the scribble region
1868 */
1869 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1870 if (ndisks) {
1871 for (i=0; i<conf->raid_disks; i++)
1872 ndisks[i] = conf->disks[i];
1873 kfree(conf->disks);
1874 conf->disks = ndisks;
1875 } else
1876 err = -ENOMEM;
1877
1878 get_online_cpus();
1879 conf->scribble_len = scribble_len(newsize);
1880 for_each_present_cpu(cpu) {
1881 struct raid5_percpu *percpu;
1882 void *scribble;
1883
1884 percpu = per_cpu_ptr(conf->percpu, cpu);
1885 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1886
1887 if (scribble) {
1888 kfree(percpu->scribble);
1889 percpu->scribble = scribble;
1890 } else {
1891 err = -ENOMEM;
1892 break;
1893 }
1894 }
1895 put_online_cpus();
1896
1897 /* Step 4, return new stripes to service */
1898 while(!list_empty(&newstripes)) {
1899 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1900 list_del_init(&nsh->lru);
1901
1902 for (i=conf->raid_disks; i < newsize; i++)
1903 if (nsh->dev[i].page == NULL) {
1904 struct page *p = alloc_page(GFP_NOIO);
1905 nsh->dev[i].page = p;
1906 if (!p)
1907 err = -ENOMEM;
1908 }
1909 release_stripe(nsh);
1910 }
1911 /* critical section pass, GFP_NOIO no longer needed */
1912
1913 conf->slab_cache = sc;
1914 conf->active_name = 1-conf->active_name;
1915 conf->pool_size = newsize;
1916 return err;
1917 }
1918
1919 static int drop_one_stripe(struct r5conf *conf, int hash)
1920 {
1921 struct stripe_head *sh;
1922
1923 spin_lock_irq(conf->hash_locks + hash);
1924 sh = get_free_stripe(conf, hash);
1925 spin_unlock_irq(conf->hash_locks + hash);
1926 if (!sh)
1927 return 0;
1928 BUG_ON(atomic_read(&sh->count));
1929 shrink_buffers(sh);
1930 kmem_cache_free(conf->slab_cache, sh);
1931 atomic_dec(&conf->active_stripes);
1932 return 1;
1933 }
1934
1935 static void shrink_stripes(struct r5conf *conf)
1936 {
1937 int hash;
1938 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1939 while (drop_one_stripe(conf, hash))
1940 ;
1941
1942 if (conf->slab_cache)
1943 kmem_cache_destroy(conf->slab_cache);
1944 conf->slab_cache = NULL;
1945 }
1946
1947 static void raid5_end_read_request(struct bio * bi, int error)
1948 {
1949 struct stripe_head *sh = bi->bi_private;
1950 struct r5conf *conf = sh->raid_conf;
1951 int disks = sh->disks, i;
1952 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1953 char b[BDEVNAME_SIZE];
1954 struct md_rdev *rdev = NULL;
1955 sector_t s;
1956
1957 for (i=0 ; i<disks; i++)
1958 if (bi == &sh->dev[i].req)
1959 break;
1960
1961 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1962 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1963 uptodate);
1964 if (i == disks) {
1965 BUG();
1966 return;
1967 }
1968 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1969 /* If replacement finished while this request was outstanding,
1970 * 'replacement' might be NULL already.
1971 * In that case it moved down to 'rdev'.
1972 * rdev is not removed until all requests are finished.
1973 */
1974 rdev = conf->disks[i].replacement;
1975 if (!rdev)
1976 rdev = conf->disks[i].rdev;
1977
1978 if (use_new_offset(conf, sh))
1979 s = sh->sector + rdev->new_data_offset;
1980 else
1981 s = sh->sector + rdev->data_offset;
1982 if (uptodate) {
1983 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1984 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1985 /* Note that this cannot happen on a
1986 * replacement device. We just fail those on
1987 * any error
1988 */
1989 printk_ratelimited(
1990 KERN_INFO
1991 "md/raid:%s: read error corrected"
1992 " (%lu sectors at %llu on %s)\n",
1993 mdname(conf->mddev), STRIPE_SECTORS,
1994 (unsigned long long)s,
1995 bdevname(rdev->bdev, b));
1996 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1997 clear_bit(R5_ReadError, &sh->dev[i].flags);
1998 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1999 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2000 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2001
2002 if (atomic_read(&rdev->read_errors))
2003 atomic_set(&rdev->read_errors, 0);
2004 } else {
2005 const char *bdn = bdevname(rdev->bdev, b);
2006 int retry = 0;
2007 int set_bad = 0;
2008
2009 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2010 atomic_inc(&rdev->read_errors);
2011 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2012 printk_ratelimited(
2013 KERN_WARNING
2014 "md/raid:%s: read error on replacement device "
2015 "(sector %llu on %s).\n",
2016 mdname(conf->mddev),
2017 (unsigned long long)s,
2018 bdn);
2019 else if (conf->mddev->degraded >= conf->max_degraded) {
2020 set_bad = 1;
2021 printk_ratelimited(
2022 KERN_WARNING
2023 "md/raid:%s: read error not correctable "
2024 "(sector %llu on %s).\n",
2025 mdname(conf->mddev),
2026 (unsigned long long)s,
2027 bdn);
2028 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2029 /* Oh, no!!! */
2030 set_bad = 1;
2031 printk_ratelimited(
2032 KERN_WARNING
2033 "md/raid:%s: read error NOT corrected!! "
2034 "(sector %llu on %s).\n",
2035 mdname(conf->mddev),
2036 (unsigned long long)s,
2037 bdn);
2038 } else if (atomic_read(&rdev->read_errors)
2039 > conf->max_nr_stripes)
2040 printk(KERN_WARNING
2041 "md/raid:%s: Too many read errors, failing device %s.\n",
2042 mdname(conf->mddev), bdn);
2043 else
2044 retry = 1;
2045 if (set_bad && test_bit(In_sync, &rdev->flags)
2046 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2047 retry = 1;
2048 if (retry)
2049 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2050 set_bit(R5_ReadError, &sh->dev[i].flags);
2051 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2052 } else
2053 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2054 else {
2055 clear_bit(R5_ReadError, &sh->dev[i].flags);
2056 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2057 if (!(set_bad
2058 && test_bit(In_sync, &rdev->flags)
2059 && rdev_set_badblocks(
2060 rdev, sh->sector, STRIPE_SECTORS, 0)))
2061 md_error(conf->mddev, rdev);
2062 }
2063 }
2064 rdev_dec_pending(rdev, conf->mddev);
2065 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2066 set_bit(STRIPE_HANDLE, &sh->state);
2067 release_stripe(sh);
2068 }
2069
2070 static void raid5_end_write_request(struct bio *bi, int error)
2071 {
2072 struct stripe_head *sh = bi->bi_private;
2073 struct r5conf *conf = sh->raid_conf;
2074 int disks = sh->disks, i;
2075 struct md_rdev *uninitialized_var(rdev);
2076 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2077 sector_t first_bad;
2078 int bad_sectors;
2079 int replacement = 0;
2080
2081 for (i = 0 ; i < disks; i++) {
2082 if (bi == &sh->dev[i].req) {
2083 rdev = conf->disks[i].rdev;
2084 break;
2085 }
2086 if (bi == &sh->dev[i].rreq) {
2087 rdev = conf->disks[i].replacement;
2088 if (rdev)
2089 replacement = 1;
2090 else
2091 /* rdev was removed and 'replacement'
2092 * replaced it. rdev is not removed
2093 * until all requests are finished.
2094 */
2095 rdev = conf->disks[i].rdev;
2096 break;
2097 }
2098 }
2099 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2100 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2101 uptodate);
2102 if (i == disks) {
2103 BUG();
2104 return;
2105 }
2106
2107 if (replacement) {
2108 if (!uptodate)
2109 md_error(conf->mddev, rdev);
2110 else if (is_badblock(rdev, sh->sector,
2111 STRIPE_SECTORS,
2112 &first_bad, &bad_sectors))
2113 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2114 } else {
2115 if (!uptodate) {
2116 set_bit(WriteErrorSeen, &rdev->flags);
2117 set_bit(R5_WriteError, &sh->dev[i].flags);
2118 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2119 set_bit(MD_RECOVERY_NEEDED,
2120 &rdev->mddev->recovery);
2121 } else if (is_badblock(rdev, sh->sector,
2122 STRIPE_SECTORS,
2123 &first_bad, &bad_sectors)) {
2124 set_bit(R5_MadeGood, &sh->dev[i].flags);
2125 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2126 /* That was a successful write so make
2127 * sure it looks like we already did
2128 * a re-write.
2129 */
2130 set_bit(R5_ReWrite, &sh->dev[i].flags);
2131 }
2132 }
2133 rdev_dec_pending(rdev, conf->mddev);
2134
2135 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2136 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2137 set_bit(STRIPE_HANDLE, &sh->state);
2138 release_stripe(sh);
2139 }
2140
2141 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2142
2143 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2144 {
2145 struct r5dev *dev = &sh->dev[i];
2146
2147 bio_init(&dev->req);
2148 dev->req.bi_io_vec = &dev->vec;
2149 dev->req.bi_vcnt++;
2150 dev->req.bi_max_vecs++;
2151 dev->req.bi_private = sh;
2152 dev->vec.bv_page = dev->page;
2153
2154 bio_init(&dev->rreq);
2155 dev->rreq.bi_io_vec = &dev->rvec;
2156 dev->rreq.bi_vcnt++;
2157 dev->rreq.bi_max_vecs++;
2158 dev->rreq.bi_private = sh;
2159 dev->rvec.bv_page = dev->page;
2160
2161 dev->flags = 0;
2162 dev->sector = compute_blocknr(sh, i, previous);
2163 }
2164
2165 static void error(struct mddev *mddev, struct md_rdev *rdev)
2166 {
2167 char b[BDEVNAME_SIZE];
2168 struct r5conf *conf = mddev->private;
2169 unsigned long flags;
2170 pr_debug("raid456: error called\n");
2171
2172 spin_lock_irqsave(&conf->device_lock, flags);
2173 clear_bit(In_sync, &rdev->flags);
2174 mddev->degraded = calc_degraded(conf);
2175 spin_unlock_irqrestore(&conf->device_lock, flags);
2176 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2177
2178 set_bit(Blocked, &rdev->flags);
2179 set_bit(Faulty, &rdev->flags);
2180 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2181 printk(KERN_ALERT
2182 "md/raid:%s: Disk failure on %s, disabling device.\n"
2183 "md/raid:%s: Operation continuing on %d devices.\n",
2184 mdname(mddev),
2185 bdevname(rdev->bdev, b),
2186 mdname(mddev),
2187 conf->raid_disks - mddev->degraded);
2188 }
2189
2190 /*
2191 * Input: a 'big' sector number,
2192 * Output: index of the data and parity disk, and the sector # in them.
2193 */
2194 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2195 int previous, int *dd_idx,
2196 struct stripe_head *sh)
2197 {
2198 sector_t stripe, stripe2;
2199 sector_t chunk_number;
2200 unsigned int chunk_offset;
2201 int pd_idx, qd_idx;
2202 int ddf_layout = 0;
2203 sector_t new_sector;
2204 int algorithm = previous ? conf->prev_algo
2205 : conf->algorithm;
2206 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2207 : conf->chunk_sectors;
2208 int raid_disks = previous ? conf->previous_raid_disks
2209 : conf->raid_disks;
2210 int data_disks = raid_disks - conf->max_degraded;
2211
2212 /* First compute the information on this sector */
2213
2214 /*
2215 * Compute the chunk number and the sector offset inside the chunk
2216 */
2217 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2218 chunk_number = r_sector;
2219
2220 /*
2221 * Compute the stripe number
2222 */
2223 stripe = chunk_number;
2224 *dd_idx = sector_div(stripe, data_disks);
2225 stripe2 = stripe;
2226 /*
2227 * Select the parity disk based on the user selected algorithm.
2228 */
2229 pd_idx = qd_idx = -1;
2230 switch(conf->level) {
2231 case 4:
2232 pd_idx = data_disks;
2233 break;
2234 case 5:
2235 switch (algorithm) {
2236 case ALGORITHM_LEFT_ASYMMETRIC:
2237 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2238 if (*dd_idx >= pd_idx)
2239 (*dd_idx)++;
2240 break;
2241 case ALGORITHM_RIGHT_ASYMMETRIC:
2242 pd_idx = sector_div(stripe2, raid_disks);
2243 if (*dd_idx >= pd_idx)
2244 (*dd_idx)++;
2245 break;
2246 case ALGORITHM_LEFT_SYMMETRIC:
2247 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2248 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2249 break;
2250 case ALGORITHM_RIGHT_SYMMETRIC:
2251 pd_idx = sector_div(stripe2, raid_disks);
2252 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2253 break;
2254 case ALGORITHM_PARITY_0:
2255 pd_idx = 0;
2256 (*dd_idx)++;
2257 break;
2258 case ALGORITHM_PARITY_N:
2259 pd_idx = data_disks;
2260 break;
2261 default:
2262 BUG();
2263 }
2264 break;
2265 case 6:
2266
2267 switch (algorithm) {
2268 case ALGORITHM_LEFT_ASYMMETRIC:
2269 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2270 qd_idx = pd_idx + 1;
2271 if (pd_idx == raid_disks-1) {
2272 (*dd_idx)++; /* Q D D D P */
2273 qd_idx = 0;
2274 } else if (*dd_idx >= pd_idx)
2275 (*dd_idx) += 2; /* D D P Q D */
2276 break;
2277 case ALGORITHM_RIGHT_ASYMMETRIC:
2278 pd_idx = sector_div(stripe2, raid_disks);
2279 qd_idx = pd_idx + 1;
2280 if (pd_idx == raid_disks-1) {
2281 (*dd_idx)++; /* Q D D D P */
2282 qd_idx = 0;
2283 } else if (*dd_idx >= pd_idx)
2284 (*dd_idx) += 2; /* D D P Q D */
2285 break;
2286 case ALGORITHM_LEFT_SYMMETRIC:
2287 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2288 qd_idx = (pd_idx + 1) % raid_disks;
2289 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2290 break;
2291 case ALGORITHM_RIGHT_SYMMETRIC:
2292 pd_idx = sector_div(stripe2, raid_disks);
2293 qd_idx = (pd_idx + 1) % raid_disks;
2294 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2295 break;
2296
2297 case ALGORITHM_PARITY_0:
2298 pd_idx = 0;
2299 qd_idx = 1;
2300 (*dd_idx) += 2;
2301 break;
2302 case ALGORITHM_PARITY_N:
2303 pd_idx = data_disks;
2304 qd_idx = data_disks + 1;
2305 break;
2306
2307 case ALGORITHM_ROTATING_ZERO_RESTART:
2308 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2309 * of blocks for computing Q is different.
2310 */
2311 pd_idx = sector_div(stripe2, raid_disks);
2312 qd_idx = pd_idx + 1;
2313 if (pd_idx == raid_disks-1) {
2314 (*dd_idx)++; /* Q D D D P */
2315 qd_idx = 0;
2316 } else if (*dd_idx >= pd_idx)
2317 (*dd_idx) += 2; /* D D P Q D */
2318 ddf_layout = 1;
2319 break;
2320
2321 case ALGORITHM_ROTATING_N_RESTART:
2322 /* Same a left_asymmetric, by first stripe is
2323 * D D D P Q rather than
2324 * Q D D D P
2325 */
2326 stripe2 += 1;
2327 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2328 qd_idx = pd_idx + 1;
2329 if (pd_idx == raid_disks-1) {
2330 (*dd_idx)++; /* Q D D D P */
2331 qd_idx = 0;
2332 } else if (*dd_idx >= pd_idx)
2333 (*dd_idx) += 2; /* D D P Q D */
2334 ddf_layout = 1;
2335 break;
2336
2337 case ALGORITHM_ROTATING_N_CONTINUE:
2338 /* Same as left_symmetric but Q is before P */
2339 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2340 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2341 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2342 ddf_layout = 1;
2343 break;
2344
2345 case ALGORITHM_LEFT_ASYMMETRIC_6:
2346 /* RAID5 left_asymmetric, with Q on last device */
2347 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2348 if (*dd_idx >= pd_idx)
2349 (*dd_idx)++;
2350 qd_idx = raid_disks - 1;
2351 break;
2352
2353 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2354 pd_idx = sector_div(stripe2, raid_disks-1);
2355 if (*dd_idx >= pd_idx)
2356 (*dd_idx)++;
2357 qd_idx = raid_disks - 1;
2358 break;
2359
2360 case ALGORITHM_LEFT_SYMMETRIC_6:
2361 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2362 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2363 qd_idx = raid_disks - 1;
2364 break;
2365
2366 case ALGORITHM_RIGHT_SYMMETRIC_6:
2367 pd_idx = sector_div(stripe2, raid_disks-1);
2368 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2369 qd_idx = raid_disks - 1;
2370 break;
2371
2372 case ALGORITHM_PARITY_0_6:
2373 pd_idx = 0;
2374 (*dd_idx)++;
2375 qd_idx = raid_disks - 1;
2376 break;
2377
2378 default:
2379 BUG();
2380 }
2381 break;
2382 }
2383
2384 if (sh) {
2385 sh->pd_idx = pd_idx;
2386 sh->qd_idx = qd_idx;
2387 sh->ddf_layout = ddf_layout;
2388 }
2389 /*
2390 * Finally, compute the new sector number
2391 */
2392 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2393 return new_sector;
2394 }
2395
2396
2397 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2398 {
2399 struct r5conf *conf = sh->raid_conf;
2400 int raid_disks = sh->disks;
2401 int data_disks = raid_disks - conf->max_degraded;
2402 sector_t new_sector = sh->sector, check;
2403 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2404 : conf->chunk_sectors;
2405 int algorithm = previous ? conf->prev_algo
2406 : conf->algorithm;
2407 sector_t stripe;
2408 int chunk_offset;
2409 sector_t chunk_number;
2410 int dummy1, dd_idx = i;
2411 sector_t r_sector;
2412 struct stripe_head sh2;
2413
2414
2415 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2416 stripe = new_sector;
2417
2418 if (i == sh->pd_idx)
2419 return 0;
2420 switch(conf->level) {
2421 case 4: break;
2422 case 5:
2423 switch (algorithm) {
2424 case ALGORITHM_LEFT_ASYMMETRIC:
2425 case ALGORITHM_RIGHT_ASYMMETRIC:
2426 if (i > sh->pd_idx)
2427 i--;
2428 break;
2429 case ALGORITHM_LEFT_SYMMETRIC:
2430 case ALGORITHM_RIGHT_SYMMETRIC:
2431 if (i < sh->pd_idx)
2432 i += raid_disks;
2433 i -= (sh->pd_idx + 1);
2434 break;
2435 case ALGORITHM_PARITY_0:
2436 i -= 1;
2437 break;
2438 case ALGORITHM_PARITY_N:
2439 break;
2440 default:
2441 BUG();
2442 }
2443 break;
2444 case 6:
2445 if (i == sh->qd_idx)
2446 return 0; /* It is the Q disk */
2447 switch (algorithm) {
2448 case ALGORITHM_LEFT_ASYMMETRIC:
2449 case ALGORITHM_RIGHT_ASYMMETRIC:
2450 case ALGORITHM_ROTATING_ZERO_RESTART:
2451 case ALGORITHM_ROTATING_N_RESTART:
2452 if (sh->pd_idx == raid_disks-1)
2453 i--; /* Q D D D P */
2454 else if (i > sh->pd_idx)
2455 i -= 2; /* D D P Q D */
2456 break;
2457 case ALGORITHM_LEFT_SYMMETRIC:
2458 case ALGORITHM_RIGHT_SYMMETRIC:
2459 if (sh->pd_idx == raid_disks-1)
2460 i--; /* Q D D D P */
2461 else {
2462 /* D D P Q D */
2463 if (i < sh->pd_idx)
2464 i += raid_disks;
2465 i -= (sh->pd_idx + 2);
2466 }
2467 break;
2468 case ALGORITHM_PARITY_0:
2469 i -= 2;
2470 break;
2471 case ALGORITHM_PARITY_N:
2472 break;
2473 case ALGORITHM_ROTATING_N_CONTINUE:
2474 /* Like left_symmetric, but P is before Q */
2475 if (sh->pd_idx == 0)
2476 i--; /* P D D D Q */
2477 else {
2478 /* D D Q P D */
2479 if (i < sh->pd_idx)
2480 i += raid_disks;
2481 i -= (sh->pd_idx + 1);
2482 }
2483 break;
2484 case ALGORITHM_LEFT_ASYMMETRIC_6:
2485 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2486 if (i > sh->pd_idx)
2487 i--;
2488 break;
2489 case ALGORITHM_LEFT_SYMMETRIC_6:
2490 case ALGORITHM_RIGHT_SYMMETRIC_6:
2491 if (i < sh->pd_idx)
2492 i += data_disks + 1;
2493 i -= (sh->pd_idx + 1);
2494 break;
2495 case ALGORITHM_PARITY_0_6:
2496 i -= 1;
2497 break;
2498 default:
2499 BUG();
2500 }
2501 break;
2502 }
2503
2504 chunk_number = stripe * data_disks + i;
2505 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2506
2507 check = raid5_compute_sector(conf, r_sector,
2508 previous, &dummy1, &sh2);
2509 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2510 || sh2.qd_idx != sh->qd_idx) {
2511 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2512 mdname(conf->mddev));
2513 return 0;
2514 }
2515 return r_sector;
2516 }
2517
2518
2519 static void
2520 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2521 int rcw, int expand)
2522 {
2523 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2524 struct r5conf *conf = sh->raid_conf;
2525 int level = conf->level;
2526
2527 if (rcw) {
2528
2529 for (i = disks; i--; ) {
2530 struct r5dev *dev = &sh->dev[i];
2531
2532 if (dev->towrite) {
2533 set_bit(R5_LOCKED, &dev->flags);
2534 set_bit(R5_Wantdrain, &dev->flags);
2535 if (!expand)
2536 clear_bit(R5_UPTODATE, &dev->flags);
2537 s->locked++;
2538 }
2539 }
2540 /* if we are not expanding this is a proper write request, and
2541 * there will be bios with new data to be drained into the
2542 * stripe cache
2543 */
2544 if (!expand) {
2545 if (!s->locked)
2546 /* False alarm, nothing to do */
2547 return;
2548 sh->reconstruct_state = reconstruct_state_drain_run;
2549 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2550 } else
2551 sh->reconstruct_state = reconstruct_state_run;
2552
2553 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2554
2555 if (s->locked + conf->max_degraded == disks)
2556 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2557 atomic_inc(&conf->pending_full_writes);
2558 } else {
2559 BUG_ON(level == 6);
2560 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2561 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2562
2563 for (i = disks; i--; ) {
2564 struct r5dev *dev = &sh->dev[i];
2565 if (i == pd_idx)
2566 continue;
2567
2568 if (dev->towrite &&
2569 (test_bit(R5_UPTODATE, &dev->flags) ||
2570 test_bit(R5_Wantcompute, &dev->flags))) {
2571 set_bit(R5_Wantdrain, &dev->flags);
2572 set_bit(R5_LOCKED, &dev->flags);
2573 clear_bit(R5_UPTODATE, &dev->flags);
2574 s->locked++;
2575 }
2576 }
2577 if (!s->locked)
2578 /* False alarm - nothing to do */
2579 return;
2580 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2581 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2582 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2583 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2584 }
2585
2586 /* keep the parity disk(s) locked while asynchronous operations
2587 * are in flight
2588 */
2589 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2590 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2591 s->locked++;
2592
2593 if (level == 6) {
2594 int qd_idx = sh->qd_idx;
2595 struct r5dev *dev = &sh->dev[qd_idx];
2596
2597 set_bit(R5_LOCKED, &dev->flags);
2598 clear_bit(R5_UPTODATE, &dev->flags);
2599 s->locked++;
2600 }
2601
2602 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2603 __func__, (unsigned long long)sh->sector,
2604 s->locked, s->ops_request);
2605 }
2606
2607 /*
2608 * Each stripe/dev can have one or more bion attached.
2609 * toread/towrite point to the first in a chain.
2610 * The bi_next chain must be in order.
2611 */
2612 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2613 {
2614 struct bio **bip;
2615 struct r5conf *conf = sh->raid_conf;
2616 int firstwrite=0;
2617
2618 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2619 (unsigned long long)bi->bi_iter.bi_sector,
2620 (unsigned long long)sh->sector);
2621
2622 /*
2623 * If several bio share a stripe. The bio bi_phys_segments acts as a
2624 * reference count to avoid race. The reference count should already be
2625 * increased before this function is called (for example, in
2626 * make_request()), so other bio sharing this stripe will not free the
2627 * stripe. If a stripe is owned by one stripe, the stripe lock will
2628 * protect it.
2629 */
2630 spin_lock_irq(&sh->stripe_lock);
2631 if (forwrite) {
2632 bip = &sh->dev[dd_idx].towrite;
2633 if (*bip == NULL)
2634 firstwrite = 1;
2635 } else
2636 bip = &sh->dev[dd_idx].toread;
2637 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2638 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2639 goto overlap;
2640 bip = & (*bip)->bi_next;
2641 }
2642 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2643 goto overlap;
2644
2645 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2646 if (*bip)
2647 bi->bi_next = *bip;
2648 *bip = bi;
2649 raid5_inc_bi_active_stripes(bi);
2650
2651 if (forwrite) {
2652 /* check if page is covered */
2653 sector_t sector = sh->dev[dd_idx].sector;
2654 for (bi=sh->dev[dd_idx].towrite;
2655 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2656 bi && bi->bi_iter.bi_sector <= sector;
2657 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2658 if (bio_end_sector(bi) >= sector)
2659 sector = bio_end_sector(bi);
2660 }
2661 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2662 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2663 }
2664
2665 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2666 (unsigned long long)(*bip)->bi_iter.bi_sector,
2667 (unsigned long long)sh->sector, dd_idx);
2668 spin_unlock_irq(&sh->stripe_lock);
2669
2670 if (conf->mddev->bitmap && firstwrite) {
2671 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2672 STRIPE_SECTORS, 0);
2673 sh->bm_seq = conf->seq_flush+1;
2674 set_bit(STRIPE_BIT_DELAY, &sh->state);
2675 }
2676 return 1;
2677
2678 overlap:
2679 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2680 spin_unlock_irq(&sh->stripe_lock);
2681 return 0;
2682 }
2683
2684 static void end_reshape(struct r5conf *conf);
2685
2686 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2687 struct stripe_head *sh)
2688 {
2689 int sectors_per_chunk =
2690 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2691 int dd_idx;
2692 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2693 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2694
2695 raid5_compute_sector(conf,
2696 stripe * (disks - conf->max_degraded)
2697 *sectors_per_chunk + chunk_offset,
2698 previous,
2699 &dd_idx, sh);
2700 }
2701
2702 static void
2703 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2704 struct stripe_head_state *s, int disks,
2705 struct bio **return_bi)
2706 {
2707 int i;
2708 for (i = disks; i--; ) {
2709 struct bio *bi;
2710 int bitmap_end = 0;
2711
2712 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2713 struct md_rdev *rdev;
2714 rcu_read_lock();
2715 rdev = rcu_dereference(conf->disks[i].rdev);
2716 if (rdev && test_bit(In_sync, &rdev->flags))
2717 atomic_inc(&rdev->nr_pending);
2718 else
2719 rdev = NULL;
2720 rcu_read_unlock();
2721 if (rdev) {
2722 if (!rdev_set_badblocks(
2723 rdev,
2724 sh->sector,
2725 STRIPE_SECTORS, 0))
2726 md_error(conf->mddev, rdev);
2727 rdev_dec_pending(rdev, conf->mddev);
2728 }
2729 }
2730 spin_lock_irq(&sh->stripe_lock);
2731 /* fail all writes first */
2732 bi = sh->dev[i].towrite;
2733 sh->dev[i].towrite = NULL;
2734 spin_unlock_irq(&sh->stripe_lock);
2735 if (bi)
2736 bitmap_end = 1;
2737
2738 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2739 wake_up(&conf->wait_for_overlap);
2740
2741 while (bi && bi->bi_iter.bi_sector <
2742 sh->dev[i].sector + STRIPE_SECTORS) {
2743 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2744 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2745 if (!raid5_dec_bi_active_stripes(bi)) {
2746 md_write_end(conf->mddev);
2747 bi->bi_next = *return_bi;
2748 *return_bi = bi;
2749 }
2750 bi = nextbi;
2751 }
2752 if (bitmap_end)
2753 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2754 STRIPE_SECTORS, 0, 0);
2755 bitmap_end = 0;
2756 /* and fail all 'written' */
2757 bi = sh->dev[i].written;
2758 sh->dev[i].written = NULL;
2759 if (bi) bitmap_end = 1;
2760 while (bi && bi->bi_iter.bi_sector <
2761 sh->dev[i].sector + STRIPE_SECTORS) {
2762 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2763 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2764 if (!raid5_dec_bi_active_stripes(bi)) {
2765 md_write_end(conf->mddev);
2766 bi->bi_next = *return_bi;
2767 *return_bi = bi;
2768 }
2769 bi = bi2;
2770 }
2771
2772 /* fail any reads if this device is non-operational and
2773 * the data has not reached the cache yet.
2774 */
2775 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2776 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2777 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2778 spin_lock_irq(&sh->stripe_lock);
2779 bi = sh->dev[i].toread;
2780 sh->dev[i].toread = NULL;
2781 spin_unlock_irq(&sh->stripe_lock);
2782 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2783 wake_up(&conf->wait_for_overlap);
2784 while (bi && bi->bi_iter.bi_sector <
2785 sh->dev[i].sector + STRIPE_SECTORS) {
2786 struct bio *nextbi =
2787 r5_next_bio(bi, sh->dev[i].sector);
2788 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2789 if (!raid5_dec_bi_active_stripes(bi)) {
2790 bi->bi_next = *return_bi;
2791 *return_bi = bi;
2792 }
2793 bi = nextbi;
2794 }
2795 }
2796 if (bitmap_end)
2797 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2798 STRIPE_SECTORS, 0, 0);
2799 /* If we were in the middle of a write the parity block might
2800 * still be locked - so just clear all R5_LOCKED flags
2801 */
2802 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2803 }
2804
2805 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2806 if (atomic_dec_and_test(&conf->pending_full_writes))
2807 md_wakeup_thread(conf->mddev->thread);
2808 }
2809
2810 static void
2811 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2812 struct stripe_head_state *s)
2813 {
2814 int abort = 0;
2815 int i;
2816
2817 clear_bit(STRIPE_SYNCING, &sh->state);
2818 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2819 wake_up(&conf->wait_for_overlap);
2820 s->syncing = 0;
2821 s->replacing = 0;
2822 /* There is nothing more to do for sync/check/repair.
2823 * Don't even need to abort as that is handled elsewhere
2824 * if needed, and not always wanted e.g. if there is a known
2825 * bad block here.
2826 * For recover/replace we need to record a bad block on all
2827 * non-sync devices, or abort the recovery
2828 */
2829 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2830 /* During recovery devices cannot be removed, so
2831 * locking and refcounting of rdevs is not needed
2832 */
2833 for (i = 0; i < conf->raid_disks; i++) {
2834 struct md_rdev *rdev = conf->disks[i].rdev;
2835 if (rdev
2836 && !test_bit(Faulty, &rdev->flags)
2837 && !test_bit(In_sync, &rdev->flags)
2838 && !rdev_set_badblocks(rdev, sh->sector,
2839 STRIPE_SECTORS, 0))
2840 abort = 1;
2841 rdev = conf->disks[i].replacement;
2842 if (rdev
2843 && !test_bit(Faulty, &rdev->flags)
2844 && !test_bit(In_sync, &rdev->flags)
2845 && !rdev_set_badblocks(rdev, sh->sector,
2846 STRIPE_SECTORS, 0))
2847 abort = 1;
2848 }
2849 if (abort)
2850 conf->recovery_disabled =
2851 conf->mddev->recovery_disabled;
2852 }
2853 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2854 }
2855
2856 static int want_replace(struct stripe_head *sh, int disk_idx)
2857 {
2858 struct md_rdev *rdev;
2859 int rv = 0;
2860 /* Doing recovery so rcu locking not required */
2861 rdev = sh->raid_conf->disks[disk_idx].replacement;
2862 if (rdev
2863 && !test_bit(Faulty, &rdev->flags)
2864 && !test_bit(In_sync, &rdev->flags)
2865 && (rdev->recovery_offset <= sh->sector
2866 || rdev->mddev->recovery_cp <= sh->sector))
2867 rv = 1;
2868
2869 return rv;
2870 }
2871
2872 /* fetch_block - checks the given member device to see if its data needs
2873 * to be read or computed to satisfy a request.
2874 *
2875 * Returns 1 when no more member devices need to be checked, otherwise returns
2876 * 0 to tell the loop in handle_stripe_fill to continue
2877 */
2878 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2879 int disk_idx, int disks)
2880 {
2881 struct r5dev *dev = &sh->dev[disk_idx];
2882 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2883 &sh->dev[s->failed_num[1]] };
2884
2885 /* is the data in this block needed, and can we get it? */
2886 if (!test_bit(R5_LOCKED, &dev->flags) &&
2887 !test_bit(R5_UPTODATE, &dev->flags) &&
2888 (dev->toread ||
2889 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2890 s->syncing || s->expanding ||
2891 (s->replacing && want_replace(sh, disk_idx)) ||
2892 (s->failed >= 1 && fdev[0]->toread) ||
2893 (s->failed >= 2 && fdev[1]->toread) ||
2894 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2895 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2896 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2897 /* we would like to get this block, possibly by computing it,
2898 * otherwise read it if the backing disk is insync
2899 */
2900 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2901 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2902 if ((s->uptodate == disks - 1) &&
2903 (s->failed && (disk_idx == s->failed_num[0] ||
2904 disk_idx == s->failed_num[1]))) {
2905 /* have disk failed, and we're requested to fetch it;
2906 * do compute it
2907 */
2908 pr_debug("Computing stripe %llu block %d\n",
2909 (unsigned long long)sh->sector, disk_idx);
2910 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2911 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2912 set_bit(R5_Wantcompute, &dev->flags);
2913 sh->ops.target = disk_idx;
2914 sh->ops.target2 = -1; /* no 2nd target */
2915 s->req_compute = 1;
2916 /* Careful: from this point on 'uptodate' is in the eye
2917 * of raid_run_ops which services 'compute' operations
2918 * before writes. R5_Wantcompute flags a block that will
2919 * be R5_UPTODATE by the time it is needed for a
2920 * subsequent operation.
2921 */
2922 s->uptodate++;
2923 return 1;
2924 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2925 /* Computing 2-failure is *very* expensive; only
2926 * do it if failed >= 2
2927 */
2928 int other;
2929 for (other = disks; other--; ) {
2930 if (other == disk_idx)
2931 continue;
2932 if (!test_bit(R5_UPTODATE,
2933 &sh->dev[other].flags))
2934 break;
2935 }
2936 BUG_ON(other < 0);
2937 pr_debug("Computing stripe %llu blocks %d,%d\n",
2938 (unsigned long long)sh->sector,
2939 disk_idx, other);
2940 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2941 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2942 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2943 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2944 sh->ops.target = disk_idx;
2945 sh->ops.target2 = other;
2946 s->uptodate += 2;
2947 s->req_compute = 1;
2948 return 1;
2949 } else if (test_bit(R5_Insync, &dev->flags)) {
2950 set_bit(R5_LOCKED, &dev->flags);
2951 set_bit(R5_Wantread, &dev->flags);
2952 s->locked++;
2953 pr_debug("Reading block %d (sync=%d)\n",
2954 disk_idx, s->syncing);
2955 }
2956 }
2957
2958 return 0;
2959 }
2960
2961 /**
2962 * handle_stripe_fill - read or compute data to satisfy pending requests.
2963 */
2964 static void handle_stripe_fill(struct stripe_head *sh,
2965 struct stripe_head_state *s,
2966 int disks)
2967 {
2968 int i;
2969
2970 /* look for blocks to read/compute, skip this if a compute
2971 * is already in flight, or if the stripe contents are in the
2972 * midst of changing due to a write
2973 */
2974 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2975 !sh->reconstruct_state)
2976 for (i = disks; i--; )
2977 if (fetch_block(sh, s, i, disks))
2978 break;
2979 set_bit(STRIPE_HANDLE, &sh->state);
2980 }
2981
2982
2983 /* handle_stripe_clean_event
2984 * any written block on an uptodate or failed drive can be returned.
2985 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2986 * never LOCKED, so we don't need to test 'failed' directly.
2987 */
2988 static void handle_stripe_clean_event(struct r5conf *conf,
2989 struct stripe_head *sh, int disks, struct bio **return_bi)
2990 {
2991 int i;
2992 struct r5dev *dev;
2993 int discard_pending = 0;
2994
2995 for (i = disks; i--; )
2996 if (sh->dev[i].written) {
2997 dev = &sh->dev[i];
2998 if (!test_bit(R5_LOCKED, &dev->flags) &&
2999 (test_bit(R5_UPTODATE, &dev->flags) ||
3000 test_bit(R5_Discard, &dev->flags))) {
3001 /* We can return any write requests */
3002 struct bio *wbi, *wbi2;
3003 pr_debug("Return write for disc %d\n", i);
3004 if (test_and_clear_bit(R5_Discard, &dev->flags))
3005 clear_bit(R5_UPTODATE, &dev->flags);
3006 wbi = dev->written;
3007 dev->written = NULL;
3008 while (wbi && wbi->bi_iter.bi_sector <
3009 dev->sector + STRIPE_SECTORS) {
3010 wbi2 = r5_next_bio(wbi, dev->sector);
3011 if (!raid5_dec_bi_active_stripes(wbi)) {
3012 md_write_end(conf->mddev);
3013 wbi->bi_next = *return_bi;
3014 *return_bi = wbi;
3015 }
3016 wbi = wbi2;
3017 }
3018 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3019 STRIPE_SECTORS,
3020 !test_bit(STRIPE_DEGRADED, &sh->state),
3021 0);
3022 } else if (test_bit(R5_Discard, &dev->flags))
3023 discard_pending = 1;
3024 }
3025 if (!discard_pending &&
3026 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3027 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3028 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3029 if (sh->qd_idx >= 0) {
3030 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3031 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3032 }
3033 /* now that discard is done we can proceed with any sync */
3034 clear_bit(STRIPE_DISCARD, &sh->state);
3035 /*
3036 * SCSI discard will change some bio fields and the stripe has
3037 * no updated data, so remove it from hash list and the stripe
3038 * will be reinitialized
3039 */
3040 spin_lock_irq(&conf->device_lock);
3041 remove_hash(sh);
3042 spin_unlock_irq(&conf->device_lock);
3043 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3044 set_bit(STRIPE_HANDLE, &sh->state);
3045
3046 }
3047
3048 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3049 if (atomic_dec_and_test(&conf->pending_full_writes))
3050 md_wakeup_thread(conf->mddev->thread);
3051 }
3052
3053 static void handle_stripe_dirtying(struct r5conf *conf,
3054 struct stripe_head *sh,
3055 struct stripe_head_state *s,
3056 int disks)
3057 {
3058 int rmw = 0, rcw = 0, i;
3059 sector_t recovery_cp = conf->mddev->recovery_cp;
3060
3061 /* RAID6 requires 'rcw' in current implementation.
3062 * Otherwise, check whether resync is now happening or should start.
3063 * If yes, then the array is dirty (after unclean shutdown or
3064 * initial creation), so parity in some stripes might be inconsistent.
3065 * In this case, we need to always do reconstruct-write, to ensure
3066 * that in case of drive failure or read-error correction, we
3067 * generate correct data from the parity.
3068 */
3069 if (conf->max_degraded == 2 ||
3070 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3071 /* Calculate the real rcw later - for now make it
3072 * look like rcw is cheaper
3073 */
3074 rcw = 1; rmw = 2;
3075 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3076 conf->max_degraded, (unsigned long long)recovery_cp,
3077 (unsigned long long)sh->sector);
3078 } else for (i = disks; i--; ) {
3079 /* would I have to read this buffer for read_modify_write */
3080 struct r5dev *dev = &sh->dev[i];
3081 if ((dev->towrite || i == sh->pd_idx) &&
3082 !test_bit(R5_LOCKED, &dev->flags) &&
3083 !(test_bit(R5_UPTODATE, &dev->flags) ||
3084 test_bit(R5_Wantcompute, &dev->flags))) {
3085 if (test_bit(R5_Insync, &dev->flags))
3086 rmw++;
3087 else
3088 rmw += 2*disks; /* cannot read it */
3089 }
3090 /* Would I have to read this buffer for reconstruct_write */
3091 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3092 !test_bit(R5_LOCKED, &dev->flags) &&
3093 !(test_bit(R5_UPTODATE, &dev->flags) ||
3094 test_bit(R5_Wantcompute, &dev->flags))) {
3095 if (test_bit(R5_Insync, &dev->flags)) rcw++;
3096 else
3097 rcw += 2*disks;
3098 }
3099 }
3100 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3101 (unsigned long long)sh->sector, rmw, rcw);
3102 set_bit(STRIPE_HANDLE, &sh->state);
3103 if (rmw < rcw && rmw > 0) {
3104 /* prefer read-modify-write, but need to get some data */
3105 if (conf->mddev->queue)
3106 blk_add_trace_msg(conf->mddev->queue,
3107 "raid5 rmw %llu %d",
3108 (unsigned long long)sh->sector, rmw);
3109 for (i = disks; i--; ) {
3110 struct r5dev *dev = &sh->dev[i];
3111 if ((dev->towrite || i == sh->pd_idx) &&
3112 !test_bit(R5_LOCKED, &dev->flags) &&
3113 !(test_bit(R5_UPTODATE, &dev->flags) ||
3114 test_bit(R5_Wantcompute, &dev->flags)) &&
3115 test_bit(R5_Insync, &dev->flags)) {
3116 if (
3117 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3118 pr_debug("Read_old block "
3119 "%d for r-m-w\n", i);
3120 set_bit(R5_LOCKED, &dev->flags);
3121 set_bit(R5_Wantread, &dev->flags);
3122 s->locked++;
3123 } else {
3124 set_bit(STRIPE_DELAYED, &sh->state);
3125 set_bit(STRIPE_HANDLE, &sh->state);
3126 }
3127 }
3128 }
3129 }
3130 if (rcw <= rmw && rcw > 0) {
3131 /* want reconstruct write, but need to get some data */
3132 int qread =0;
3133 rcw = 0;
3134 for (i = disks; i--; ) {
3135 struct r5dev *dev = &sh->dev[i];
3136 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3137 i != sh->pd_idx && i != sh->qd_idx &&
3138 !test_bit(R5_LOCKED, &dev->flags) &&
3139 !(test_bit(R5_UPTODATE, &dev->flags) ||
3140 test_bit(R5_Wantcompute, &dev->flags))) {
3141 rcw++;
3142 if (!test_bit(R5_Insync, &dev->flags))
3143 continue; /* it's a failed drive */
3144 if (
3145 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3146 pr_debug("Read_old block "
3147 "%d for Reconstruct\n", i);
3148 set_bit(R5_LOCKED, &dev->flags);
3149 set_bit(R5_Wantread, &dev->flags);
3150 s->locked++;
3151 qread++;
3152 } else {
3153 set_bit(STRIPE_DELAYED, &sh->state);
3154 set_bit(STRIPE_HANDLE, &sh->state);
3155 }
3156 }
3157 }
3158 if (rcw && conf->mddev->queue)
3159 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3160 (unsigned long long)sh->sector,
3161 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3162 }
3163 /* now if nothing is locked, and if we have enough data,
3164 * we can start a write request
3165 */
3166 /* since handle_stripe can be called at any time we need to handle the
3167 * case where a compute block operation has been submitted and then a
3168 * subsequent call wants to start a write request. raid_run_ops only
3169 * handles the case where compute block and reconstruct are requested
3170 * simultaneously. If this is not the case then new writes need to be
3171 * held off until the compute completes.
3172 */
3173 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3174 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3175 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3176 schedule_reconstruction(sh, s, rcw == 0, 0);
3177 }
3178
3179 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3180 struct stripe_head_state *s, int disks)
3181 {
3182 struct r5dev *dev = NULL;
3183
3184 set_bit(STRIPE_HANDLE, &sh->state);
3185
3186 switch (sh->check_state) {
3187 case check_state_idle:
3188 /* start a new check operation if there are no failures */
3189 if (s->failed == 0) {
3190 BUG_ON(s->uptodate != disks);
3191 sh->check_state = check_state_run;
3192 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3193 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3194 s->uptodate--;
3195 break;
3196 }
3197 dev = &sh->dev[s->failed_num[0]];
3198 /* fall through */
3199 case check_state_compute_result:
3200 sh->check_state = check_state_idle;
3201 if (!dev)
3202 dev = &sh->dev[sh->pd_idx];
3203
3204 /* check that a write has not made the stripe insync */
3205 if (test_bit(STRIPE_INSYNC, &sh->state))
3206 break;
3207
3208 /* either failed parity check, or recovery is happening */
3209 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3210 BUG_ON(s->uptodate != disks);
3211
3212 set_bit(R5_LOCKED, &dev->flags);
3213 s->locked++;
3214 set_bit(R5_Wantwrite, &dev->flags);
3215
3216 clear_bit(STRIPE_DEGRADED, &sh->state);
3217 set_bit(STRIPE_INSYNC, &sh->state);
3218 break;
3219 case check_state_run:
3220 break; /* we will be called again upon completion */
3221 case check_state_check_result:
3222 sh->check_state = check_state_idle;
3223
3224 /* if a failure occurred during the check operation, leave
3225 * STRIPE_INSYNC not set and let the stripe be handled again
3226 */
3227 if (s->failed)
3228 break;
3229
3230 /* handle a successful check operation, if parity is correct
3231 * we are done. Otherwise update the mismatch count and repair
3232 * parity if !MD_RECOVERY_CHECK
3233 */
3234 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3235 /* parity is correct (on disc,
3236 * not in buffer any more)
3237 */
3238 set_bit(STRIPE_INSYNC, &sh->state);
3239 else {
3240 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3241 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3242 /* don't try to repair!! */
3243 set_bit(STRIPE_INSYNC, &sh->state);
3244 else {
3245 sh->check_state = check_state_compute_run;
3246 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3247 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3248 set_bit(R5_Wantcompute,
3249 &sh->dev[sh->pd_idx].flags);
3250 sh->ops.target = sh->pd_idx;
3251 sh->ops.target2 = -1;
3252 s->uptodate++;
3253 }
3254 }
3255 break;
3256 case check_state_compute_run:
3257 break;
3258 default:
3259 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3260 __func__, sh->check_state,
3261 (unsigned long long) sh->sector);
3262 BUG();
3263 }
3264 }
3265
3266
3267 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3268 struct stripe_head_state *s,
3269 int disks)
3270 {
3271 int pd_idx = sh->pd_idx;
3272 int qd_idx = sh->qd_idx;
3273 struct r5dev *dev;
3274
3275 set_bit(STRIPE_HANDLE, &sh->state);
3276
3277 BUG_ON(s->failed > 2);
3278
3279 /* Want to check and possibly repair P and Q.
3280 * However there could be one 'failed' device, in which
3281 * case we can only check one of them, possibly using the
3282 * other to generate missing data
3283 */
3284
3285 switch (sh->check_state) {
3286 case check_state_idle:
3287 /* start a new check operation if there are < 2 failures */
3288 if (s->failed == s->q_failed) {
3289 /* The only possible failed device holds Q, so it
3290 * makes sense to check P (If anything else were failed,
3291 * we would have used P to recreate it).
3292 */
3293 sh->check_state = check_state_run;
3294 }
3295 if (!s->q_failed && s->failed < 2) {
3296 /* Q is not failed, and we didn't use it to generate
3297 * anything, so it makes sense to check it
3298 */
3299 if (sh->check_state == check_state_run)
3300 sh->check_state = check_state_run_pq;
3301 else
3302 sh->check_state = check_state_run_q;
3303 }
3304
3305 /* discard potentially stale zero_sum_result */
3306 sh->ops.zero_sum_result = 0;
3307
3308 if (sh->check_state == check_state_run) {
3309 /* async_xor_zero_sum destroys the contents of P */
3310 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3311 s->uptodate--;
3312 }
3313 if (sh->check_state >= check_state_run &&
3314 sh->check_state <= check_state_run_pq) {
3315 /* async_syndrome_zero_sum preserves P and Q, so
3316 * no need to mark them !uptodate here
3317 */
3318 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3319 break;
3320 }
3321
3322 /* we have 2-disk failure */
3323 BUG_ON(s->failed != 2);
3324 /* fall through */
3325 case check_state_compute_result:
3326 sh->check_state = check_state_idle;
3327
3328 /* check that a write has not made the stripe insync */
3329 if (test_bit(STRIPE_INSYNC, &sh->state))
3330 break;
3331
3332 /* now write out any block on a failed drive,
3333 * or P or Q if they were recomputed
3334 */
3335 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3336 if (s->failed == 2) {
3337 dev = &sh->dev[s->failed_num[1]];
3338 s->locked++;
3339 set_bit(R5_LOCKED, &dev->flags);
3340 set_bit(R5_Wantwrite, &dev->flags);
3341 }
3342 if (s->failed >= 1) {
3343 dev = &sh->dev[s->failed_num[0]];
3344 s->locked++;
3345 set_bit(R5_LOCKED, &dev->flags);
3346 set_bit(R5_Wantwrite, &dev->flags);
3347 }
3348 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3349 dev = &sh->dev[pd_idx];
3350 s->locked++;
3351 set_bit(R5_LOCKED, &dev->flags);
3352 set_bit(R5_Wantwrite, &dev->flags);
3353 }
3354 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3355 dev = &sh->dev[qd_idx];
3356 s->locked++;
3357 set_bit(R5_LOCKED, &dev->flags);
3358 set_bit(R5_Wantwrite, &dev->flags);
3359 }
3360 clear_bit(STRIPE_DEGRADED, &sh->state);
3361
3362 set_bit(STRIPE_INSYNC, &sh->state);
3363 break;
3364 case check_state_run:
3365 case check_state_run_q:
3366 case check_state_run_pq:
3367 break; /* we will be called again upon completion */
3368 case check_state_check_result:
3369 sh->check_state = check_state_idle;
3370
3371 /* handle a successful check operation, if parity is correct
3372 * we are done. Otherwise update the mismatch count and repair
3373 * parity if !MD_RECOVERY_CHECK
3374 */
3375 if (sh->ops.zero_sum_result == 0) {
3376 /* both parities are correct */
3377 if (!s->failed)
3378 set_bit(STRIPE_INSYNC, &sh->state);
3379 else {
3380 /* in contrast to the raid5 case we can validate
3381 * parity, but still have a failure to write
3382 * back
3383 */
3384 sh->check_state = check_state_compute_result;
3385 /* Returning at this point means that we may go
3386 * off and bring p and/or q uptodate again so
3387 * we make sure to check zero_sum_result again
3388 * to verify if p or q need writeback
3389 */
3390 }
3391 } else {
3392 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3393 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3394 /* don't try to repair!! */
3395 set_bit(STRIPE_INSYNC, &sh->state);
3396 else {
3397 int *target = &sh->ops.target;
3398
3399 sh->ops.target = -1;
3400 sh->ops.target2 = -1;
3401 sh->check_state = check_state_compute_run;
3402 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3403 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3404 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3405 set_bit(R5_Wantcompute,
3406 &sh->dev[pd_idx].flags);
3407 *target = pd_idx;
3408 target = &sh->ops.target2;
3409 s->uptodate++;
3410 }
3411 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3412 set_bit(R5_Wantcompute,
3413 &sh->dev[qd_idx].flags);
3414 *target = qd_idx;
3415 s->uptodate++;
3416 }
3417 }
3418 }
3419 break;
3420 case check_state_compute_run:
3421 break;
3422 default:
3423 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3424 __func__, sh->check_state,
3425 (unsigned long long) sh->sector);
3426 BUG();
3427 }
3428 }
3429
3430 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3431 {
3432 int i;
3433
3434 /* We have read all the blocks in this stripe and now we need to
3435 * copy some of them into a target stripe for expand.
3436 */
3437 struct dma_async_tx_descriptor *tx = NULL;
3438 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3439 for (i = 0; i < sh->disks; i++)
3440 if (i != sh->pd_idx && i != sh->qd_idx) {
3441 int dd_idx, j;
3442 struct stripe_head *sh2;
3443 struct async_submit_ctl submit;
3444
3445 sector_t bn = compute_blocknr(sh, i, 1);
3446 sector_t s = raid5_compute_sector(conf, bn, 0,
3447 &dd_idx, NULL);
3448 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3449 if (sh2 == NULL)
3450 /* so far only the early blocks of this stripe
3451 * have been requested. When later blocks
3452 * get requested, we will try again
3453 */
3454 continue;
3455 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3456 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3457 /* must have already done this block */
3458 release_stripe(sh2);
3459 continue;
3460 }
3461
3462 /* place all the copies on one channel */
3463 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3464 tx = async_memcpy(sh2->dev[dd_idx].page,
3465 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3466 &submit);
3467
3468 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3469 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3470 for (j = 0; j < conf->raid_disks; j++)
3471 if (j != sh2->pd_idx &&
3472 j != sh2->qd_idx &&
3473 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3474 break;
3475 if (j == conf->raid_disks) {
3476 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3477 set_bit(STRIPE_HANDLE, &sh2->state);
3478 }
3479 release_stripe(sh2);
3480
3481 }
3482 /* done submitting copies, wait for them to complete */
3483 async_tx_quiesce(&tx);
3484 }
3485
3486 /*
3487 * handle_stripe - do things to a stripe.
3488 *
3489 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3490 * state of various bits to see what needs to be done.
3491 * Possible results:
3492 * return some read requests which now have data
3493 * return some write requests which are safely on storage
3494 * schedule a read on some buffers
3495 * schedule a write of some buffers
3496 * return confirmation of parity correctness
3497 *
3498 */
3499
3500 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3501 {
3502 struct r5conf *conf = sh->raid_conf;
3503 int disks = sh->disks;
3504 struct r5dev *dev;
3505 int i;
3506 int do_recovery = 0;
3507
3508 memset(s, 0, sizeof(*s));
3509
3510 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3511 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3512 s->failed_num[0] = -1;
3513 s->failed_num[1] = -1;
3514
3515 /* Now to look around and see what can be done */
3516 rcu_read_lock();
3517 for (i=disks; i--; ) {
3518 struct md_rdev *rdev;
3519 sector_t first_bad;
3520 int bad_sectors;
3521 int is_bad = 0;
3522
3523 dev = &sh->dev[i];
3524
3525 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3526 i, dev->flags,
3527 dev->toread, dev->towrite, dev->written);
3528 /* maybe we can reply to a read
3529 *
3530 * new wantfill requests are only permitted while
3531 * ops_complete_biofill is guaranteed to be inactive
3532 */
3533 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3534 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3535 set_bit(R5_Wantfill, &dev->flags);
3536
3537 /* now count some things */
3538 if (test_bit(R5_LOCKED, &dev->flags))
3539 s->locked++;
3540 if (test_bit(R5_UPTODATE, &dev->flags))
3541 s->uptodate++;
3542 if (test_bit(R5_Wantcompute, &dev->flags)) {
3543 s->compute++;
3544 BUG_ON(s->compute > 2);
3545 }
3546
3547 if (test_bit(R5_Wantfill, &dev->flags))
3548 s->to_fill++;
3549 else if (dev->toread)
3550 s->to_read++;
3551 if (dev->towrite) {
3552 s->to_write++;
3553 if (!test_bit(R5_OVERWRITE, &dev->flags))
3554 s->non_overwrite++;
3555 }
3556 if (dev->written)
3557 s->written++;
3558 /* Prefer to use the replacement for reads, but only
3559 * if it is recovered enough and has no bad blocks.
3560 */
3561 rdev = rcu_dereference(conf->disks[i].replacement);
3562 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3563 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3564 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3565 &first_bad, &bad_sectors))
3566 set_bit(R5_ReadRepl, &dev->flags);
3567 else {
3568 if (rdev)
3569 set_bit(R5_NeedReplace, &dev->flags);
3570 rdev = rcu_dereference(conf->disks[i].rdev);
3571 clear_bit(R5_ReadRepl, &dev->flags);
3572 }
3573 if (rdev && test_bit(Faulty, &rdev->flags))
3574 rdev = NULL;
3575 if (rdev) {
3576 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3577 &first_bad, &bad_sectors);
3578 if (s->blocked_rdev == NULL
3579 && (test_bit(Blocked, &rdev->flags)
3580 || is_bad < 0)) {
3581 if (is_bad < 0)
3582 set_bit(BlockedBadBlocks,
3583 &rdev->flags);
3584 s->blocked_rdev = rdev;
3585 atomic_inc(&rdev->nr_pending);
3586 }
3587 }
3588 clear_bit(R5_Insync, &dev->flags);
3589 if (!rdev)
3590 /* Not in-sync */;
3591 else if (is_bad) {
3592 /* also not in-sync */
3593 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3594 test_bit(R5_UPTODATE, &dev->flags)) {
3595 /* treat as in-sync, but with a read error
3596 * which we can now try to correct
3597 */
3598 set_bit(R5_Insync, &dev->flags);
3599 set_bit(R5_ReadError, &dev->flags);
3600 }
3601 } else if (test_bit(In_sync, &rdev->flags))
3602 set_bit(R5_Insync, &dev->flags);
3603 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3604 /* in sync if before recovery_offset */
3605 set_bit(R5_Insync, &dev->flags);
3606 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3607 test_bit(R5_Expanded, &dev->flags))
3608 /* If we've reshaped into here, we assume it is Insync.
3609 * We will shortly update recovery_offset to make
3610 * it official.
3611 */
3612 set_bit(R5_Insync, &dev->flags);
3613
3614 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3615 /* This flag does not apply to '.replacement'
3616 * only to .rdev, so make sure to check that*/
3617 struct md_rdev *rdev2 = rcu_dereference(
3618 conf->disks[i].rdev);
3619 if (rdev2 == rdev)
3620 clear_bit(R5_Insync, &dev->flags);
3621 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3622 s->handle_bad_blocks = 1;
3623 atomic_inc(&rdev2->nr_pending);
3624 } else
3625 clear_bit(R5_WriteError, &dev->flags);
3626 }
3627 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3628 /* This flag does not apply to '.replacement'
3629 * only to .rdev, so make sure to check that*/
3630 struct md_rdev *rdev2 = rcu_dereference(
3631 conf->disks[i].rdev);
3632 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3633 s->handle_bad_blocks = 1;
3634 atomic_inc(&rdev2->nr_pending);
3635 } else
3636 clear_bit(R5_MadeGood, &dev->flags);
3637 }
3638 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3639 struct md_rdev *rdev2 = rcu_dereference(
3640 conf->disks[i].replacement);
3641 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3642 s->handle_bad_blocks = 1;
3643 atomic_inc(&rdev2->nr_pending);
3644 } else
3645 clear_bit(R5_MadeGoodRepl, &dev->flags);
3646 }
3647 if (!test_bit(R5_Insync, &dev->flags)) {
3648 /* The ReadError flag will just be confusing now */
3649 clear_bit(R5_ReadError, &dev->flags);
3650 clear_bit(R5_ReWrite, &dev->flags);
3651 }
3652 if (test_bit(R5_ReadError, &dev->flags))
3653 clear_bit(R5_Insync, &dev->flags);
3654 if (!test_bit(R5_Insync, &dev->flags)) {
3655 if (s->failed < 2)
3656 s->failed_num[s->failed] = i;
3657 s->failed++;
3658 if (rdev && !test_bit(Faulty, &rdev->flags))
3659 do_recovery = 1;
3660 }
3661 }
3662 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3663 /* If there is a failed device being replaced,
3664 * we must be recovering.
3665 * else if we are after recovery_cp, we must be syncing
3666 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3667 * else we can only be replacing
3668 * sync and recovery both need to read all devices, and so
3669 * use the same flag.
3670 */
3671 if (do_recovery ||
3672 sh->sector >= conf->mddev->recovery_cp ||
3673 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3674 s->syncing = 1;
3675 else
3676 s->replacing = 1;
3677 }
3678 rcu_read_unlock();
3679 }
3680
3681 static void handle_stripe(struct stripe_head *sh)
3682 {
3683 struct stripe_head_state s;
3684 struct r5conf *conf = sh->raid_conf;
3685 int i;
3686 int prexor;
3687 int disks = sh->disks;
3688 struct r5dev *pdev, *qdev;
3689
3690 clear_bit(STRIPE_HANDLE, &sh->state);
3691 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3692 /* already being handled, ensure it gets handled
3693 * again when current action finishes */
3694 set_bit(STRIPE_HANDLE, &sh->state);
3695 return;
3696 }
3697
3698 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3699 spin_lock(&sh->stripe_lock);
3700 /* Cannot process 'sync' concurrently with 'discard' */
3701 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3702 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3703 set_bit(STRIPE_SYNCING, &sh->state);
3704 clear_bit(STRIPE_INSYNC, &sh->state);
3705 clear_bit(STRIPE_REPLACED, &sh->state);
3706 }
3707 spin_unlock(&sh->stripe_lock);
3708 }
3709 clear_bit(STRIPE_DELAYED, &sh->state);
3710
3711 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3712 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3713 (unsigned long long)sh->sector, sh->state,
3714 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3715 sh->check_state, sh->reconstruct_state);
3716
3717 analyse_stripe(sh, &s);
3718
3719 if (s.handle_bad_blocks) {
3720 set_bit(STRIPE_HANDLE, &sh->state);
3721 goto finish;
3722 }
3723
3724 if (unlikely(s.blocked_rdev)) {
3725 if (s.syncing || s.expanding || s.expanded ||
3726 s.replacing || s.to_write || s.written) {
3727 set_bit(STRIPE_HANDLE, &sh->state);
3728 goto finish;
3729 }
3730 /* There is nothing for the blocked_rdev to block */
3731 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3732 s.blocked_rdev = NULL;
3733 }
3734
3735 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3736 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3737 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3738 }
3739
3740 pr_debug("locked=%d uptodate=%d to_read=%d"
3741 " to_write=%d failed=%d failed_num=%d,%d\n",
3742 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3743 s.failed_num[0], s.failed_num[1]);
3744 /* check if the array has lost more than max_degraded devices and,
3745 * if so, some requests might need to be failed.
3746 */
3747 if (s.failed > conf->max_degraded) {
3748 sh->check_state = 0;
3749 sh->reconstruct_state = 0;
3750 if (s.to_read+s.to_write+s.written)
3751 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3752 if (s.syncing + s.replacing)
3753 handle_failed_sync(conf, sh, &s);
3754 }
3755
3756 /* Now we check to see if any write operations have recently
3757 * completed
3758 */
3759 prexor = 0;
3760 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3761 prexor = 1;
3762 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3763 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3764 sh->reconstruct_state = reconstruct_state_idle;
3765
3766 /* All the 'written' buffers and the parity block are ready to
3767 * be written back to disk
3768 */
3769 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3770 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3771 BUG_ON(sh->qd_idx >= 0 &&
3772 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3773 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3774 for (i = disks; i--; ) {
3775 struct r5dev *dev = &sh->dev[i];
3776 if (test_bit(R5_LOCKED, &dev->flags) &&
3777 (i == sh->pd_idx || i == sh->qd_idx ||
3778 dev->written)) {
3779 pr_debug("Writing block %d\n", i);
3780 set_bit(R5_Wantwrite, &dev->flags);
3781 if (prexor)
3782 continue;
3783 if (!test_bit(R5_Insync, &dev->flags) ||
3784 ((i == sh->pd_idx || i == sh->qd_idx) &&
3785 s.failed == 0))
3786 set_bit(STRIPE_INSYNC, &sh->state);
3787 }
3788 }
3789 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3790 s.dec_preread_active = 1;
3791 }
3792
3793 /*
3794 * might be able to return some write requests if the parity blocks
3795 * are safe, or on a failed drive
3796 */
3797 pdev = &sh->dev[sh->pd_idx];
3798 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3799 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3800 qdev = &sh->dev[sh->qd_idx];
3801 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3802 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3803 || conf->level < 6;
3804
3805 if (s.written &&
3806 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3807 && !test_bit(R5_LOCKED, &pdev->flags)
3808 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3809 test_bit(R5_Discard, &pdev->flags))))) &&
3810 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3811 && !test_bit(R5_LOCKED, &qdev->flags)
3812 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3813 test_bit(R5_Discard, &qdev->flags))))))
3814 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3815
3816 /* Now we might consider reading some blocks, either to check/generate
3817 * parity, or to satisfy requests
3818 * or to load a block that is being partially written.
3819 */
3820 if (s.to_read || s.non_overwrite
3821 || (conf->level == 6 && s.to_write && s.failed)
3822 || (s.syncing && (s.uptodate + s.compute < disks))
3823 || s.replacing
3824 || s.expanding)
3825 handle_stripe_fill(sh, &s, disks);
3826
3827 /* Now to consider new write requests and what else, if anything
3828 * should be read. We do not handle new writes when:
3829 * 1/ A 'write' operation (copy+xor) is already in flight.
3830 * 2/ A 'check' operation is in flight, as it may clobber the parity
3831 * block.
3832 */
3833 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3834 handle_stripe_dirtying(conf, sh, &s, disks);
3835
3836 /* maybe we need to check and possibly fix the parity for this stripe
3837 * Any reads will already have been scheduled, so we just see if enough
3838 * data is available. The parity check is held off while parity
3839 * dependent operations are in flight.
3840 */
3841 if (sh->check_state ||
3842 (s.syncing && s.locked == 0 &&
3843 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3844 !test_bit(STRIPE_INSYNC, &sh->state))) {
3845 if (conf->level == 6)
3846 handle_parity_checks6(conf, sh, &s, disks);
3847 else
3848 handle_parity_checks5(conf, sh, &s, disks);
3849 }
3850
3851 if ((s.replacing || s.syncing) && s.locked == 0
3852 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3853 && !test_bit(STRIPE_REPLACED, &sh->state)) {
3854 /* Write out to replacement devices where possible */
3855 for (i = 0; i < conf->raid_disks; i++)
3856 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3857 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3858 set_bit(R5_WantReplace, &sh->dev[i].flags);
3859 set_bit(R5_LOCKED, &sh->dev[i].flags);
3860 s.locked++;
3861 }
3862 if (s.replacing)
3863 set_bit(STRIPE_INSYNC, &sh->state);
3864 set_bit(STRIPE_REPLACED, &sh->state);
3865 }
3866 if ((s.syncing || s.replacing) && s.locked == 0 &&
3867 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3868 test_bit(STRIPE_INSYNC, &sh->state)) {
3869 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3870 clear_bit(STRIPE_SYNCING, &sh->state);
3871 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3872 wake_up(&conf->wait_for_overlap);
3873 }
3874
3875 /* If the failed drives are just a ReadError, then we might need
3876 * to progress the repair/check process
3877 */
3878 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3879 for (i = 0; i < s.failed; i++) {
3880 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3881 if (test_bit(R5_ReadError, &dev->flags)
3882 && !test_bit(R5_LOCKED, &dev->flags)
3883 && test_bit(R5_UPTODATE, &dev->flags)
3884 ) {
3885 if (!test_bit(R5_ReWrite, &dev->flags)) {
3886 set_bit(R5_Wantwrite, &dev->flags);
3887 set_bit(R5_ReWrite, &dev->flags);
3888 set_bit(R5_LOCKED, &dev->flags);
3889 s.locked++;
3890 } else {
3891 /* let's read it back */
3892 set_bit(R5_Wantread, &dev->flags);
3893 set_bit(R5_LOCKED, &dev->flags);
3894 s.locked++;
3895 }
3896 }
3897 }
3898
3899
3900 /* Finish reconstruct operations initiated by the expansion process */
3901 if (sh->reconstruct_state == reconstruct_state_result) {
3902 struct stripe_head *sh_src
3903 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3904 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3905 /* sh cannot be written until sh_src has been read.
3906 * so arrange for sh to be delayed a little
3907 */
3908 set_bit(STRIPE_DELAYED, &sh->state);
3909 set_bit(STRIPE_HANDLE, &sh->state);
3910 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3911 &sh_src->state))
3912 atomic_inc(&conf->preread_active_stripes);
3913 release_stripe(sh_src);
3914 goto finish;
3915 }
3916 if (sh_src)
3917 release_stripe(sh_src);
3918
3919 sh->reconstruct_state = reconstruct_state_idle;
3920 clear_bit(STRIPE_EXPANDING, &sh->state);
3921 for (i = conf->raid_disks; i--; ) {
3922 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3923 set_bit(R5_LOCKED, &sh->dev[i].flags);
3924 s.locked++;
3925 }
3926 }
3927
3928 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3929 !sh->reconstruct_state) {
3930 /* Need to write out all blocks after computing parity */
3931 sh->disks = conf->raid_disks;
3932 stripe_set_idx(sh->sector, conf, 0, sh);
3933 schedule_reconstruction(sh, &s, 1, 1);
3934 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3935 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3936 atomic_dec(&conf->reshape_stripes);
3937 wake_up(&conf->wait_for_overlap);
3938 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3939 }
3940
3941 if (s.expanding && s.locked == 0 &&
3942 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3943 handle_stripe_expansion(conf, sh);
3944
3945 finish:
3946 /* wait for this device to become unblocked */
3947 if (unlikely(s.blocked_rdev)) {
3948 if (conf->mddev->external)
3949 md_wait_for_blocked_rdev(s.blocked_rdev,
3950 conf->mddev);
3951 else
3952 /* Internal metadata will immediately
3953 * be written by raid5d, so we don't
3954 * need to wait here.
3955 */
3956 rdev_dec_pending(s.blocked_rdev,
3957 conf->mddev);
3958 }
3959
3960 if (s.handle_bad_blocks)
3961 for (i = disks; i--; ) {
3962 struct md_rdev *rdev;
3963 struct r5dev *dev = &sh->dev[i];
3964 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3965 /* We own a safe reference to the rdev */
3966 rdev = conf->disks[i].rdev;
3967 if (!rdev_set_badblocks(rdev, sh->sector,
3968 STRIPE_SECTORS, 0))
3969 md_error(conf->mddev, rdev);
3970 rdev_dec_pending(rdev, conf->mddev);
3971 }
3972 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3973 rdev = conf->disks[i].rdev;
3974 rdev_clear_badblocks(rdev, sh->sector,
3975 STRIPE_SECTORS, 0);
3976 rdev_dec_pending(rdev, conf->mddev);
3977 }
3978 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3979 rdev = conf->disks[i].replacement;
3980 if (!rdev)
3981 /* rdev have been moved down */
3982 rdev = conf->disks[i].rdev;
3983 rdev_clear_badblocks(rdev, sh->sector,
3984 STRIPE_SECTORS, 0);
3985 rdev_dec_pending(rdev, conf->mddev);
3986 }
3987 }
3988
3989 if (s.ops_request)
3990 raid_run_ops(sh, s.ops_request);
3991
3992 ops_run_io(sh, &s);
3993
3994 if (s.dec_preread_active) {
3995 /* We delay this until after ops_run_io so that if make_request
3996 * is waiting on a flush, it won't continue until the writes
3997 * have actually been submitted.
3998 */
3999 atomic_dec(&conf->preread_active_stripes);
4000 if (atomic_read(&conf->preread_active_stripes) <
4001 IO_THRESHOLD)
4002 md_wakeup_thread(conf->mddev->thread);
4003 }
4004
4005 return_io(s.return_bi);
4006
4007 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4008 }
4009
4010 static void raid5_activate_delayed(struct r5conf *conf)
4011 {
4012 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4013 while (!list_empty(&conf->delayed_list)) {
4014 struct list_head *l = conf->delayed_list.next;
4015 struct stripe_head *sh;
4016 sh = list_entry(l, struct stripe_head, lru);
4017 list_del_init(l);
4018 clear_bit(STRIPE_DELAYED, &sh->state);
4019 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4020 atomic_inc(&conf->preread_active_stripes);
4021 list_add_tail(&sh->lru, &conf->hold_list);
4022 raid5_wakeup_stripe_thread(sh);
4023 }
4024 }
4025 }
4026
4027 static void activate_bit_delay(struct r5conf *conf,
4028 struct list_head *temp_inactive_list)
4029 {
4030 /* device_lock is held */
4031 struct list_head head;
4032 list_add(&head, &conf->bitmap_list);
4033 list_del_init(&conf->bitmap_list);
4034 while (!list_empty(&head)) {
4035 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4036 int hash;
4037 list_del_init(&sh->lru);
4038 atomic_inc(&sh->count);
4039 hash = sh->hash_lock_index;
4040 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4041 }
4042 }
4043
4044 int md_raid5_congested(struct mddev *mddev, int bits)
4045 {
4046 struct r5conf *conf = mddev->private;
4047
4048 /* No difference between reads and writes. Just check
4049 * how busy the stripe_cache is
4050 */
4051
4052 if (conf->inactive_blocked)
4053 return 1;
4054 if (conf->quiesce)
4055 return 1;
4056 if (atomic_read(&conf->empty_inactive_list_nr))
4057 return 1;
4058
4059 return 0;
4060 }
4061 EXPORT_SYMBOL_GPL(md_raid5_congested);
4062
4063 static int raid5_congested(void *data, int bits)
4064 {
4065 struct mddev *mddev = data;
4066
4067 return mddev_congested(mddev, bits) ||
4068 md_raid5_congested(mddev, bits);
4069 }
4070
4071 /* We want read requests to align with chunks where possible,
4072 * but write requests don't need to.
4073 */
4074 static int raid5_mergeable_bvec(struct request_queue *q,
4075 struct bvec_merge_data *bvm,
4076 struct bio_vec *biovec)
4077 {
4078 struct mddev *mddev = q->queuedata;
4079 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4080 int max;
4081 unsigned int chunk_sectors = mddev->chunk_sectors;
4082 unsigned int bio_sectors = bvm->bi_size >> 9;
4083
4084 if ((bvm->bi_rw & 1) == WRITE)
4085 return biovec->bv_len; /* always allow writes to be mergeable */
4086
4087 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4088 chunk_sectors = mddev->new_chunk_sectors;
4089 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4090 if (max < 0) max = 0;
4091 if (max <= biovec->bv_len && bio_sectors == 0)
4092 return biovec->bv_len;
4093 else
4094 return max;
4095 }
4096
4097
4098 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4099 {
4100 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4101 unsigned int chunk_sectors = mddev->chunk_sectors;
4102 unsigned int bio_sectors = bio_sectors(bio);
4103
4104 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4105 chunk_sectors = mddev->new_chunk_sectors;
4106 return chunk_sectors >=
4107 ((sector & (chunk_sectors - 1)) + bio_sectors);
4108 }
4109
4110 /*
4111 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4112 * later sampled by raid5d.
4113 */
4114 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4115 {
4116 unsigned long flags;
4117
4118 spin_lock_irqsave(&conf->device_lock, flags);
4119
4120 bi->bi_next = conf->retry_read_aligned_list;
4121 conf->retry_read_aligned_list = bi;
4122
4123 spin_unlock_irqrestore(&conf->device_lock, flags);
4124 md_wakeup_thread(conf->mddev->thread);
4125 }
4126
4127
4128 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4129 {
4130 struct bio *bi;
4131
4132 bi = conf->retry_read_aligned;
4133 if (bi) {
4134 conf->retry_read_aligned = NULL;
4135 return bi;
4136 }
4137 bi = conf->retry_read_aligned_list;
4138 if(bi) {
4139 conf->retry_read_aligned_list = bi->bi_next;
4140 bi->bi_next = NULL;
4141 /*
4142 * this sets the active strip count to 1 and the processed
4143 * strip count to zero (upper 8 bits)
4144 */
4145 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4146 }
4147
4148 return bi;
4149 }
4150
4151
4152 /*
4153 * The "raid5_align_endio" should check if the read succeeded and if it
4154 * did, call bio_endio on the original bio (having bio_put the new bio
4155 * first).
4156 * If the read failed..
4157 */
4158 static void raid5_align_endio(struct bio *bi, int error)
4159 {
4160 struct bio* raid_bi = bi->bi_private;
4161 struct mddev *mddev;
4162 struct r5conf *conf;
4163 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4164 struct md_rdev *rdev;
4165
4166 bio_put(bi);
4167
4168 rdev = (void*)raid_bi->bi_next;
4169 raid_bi->bi_next = NULL;
4170 mddev = rdev->mddev;
4171 conf = mddev->private;
4172
4173 rdev_dec_pending(rdev, conf->mddev);
4174
4175 if (!error && uptodate) {
4176 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4177 raid_bi, 0);
4178 bio_endio(raid_bi, 0);
4179 if (atomic_dec_and_test(&conf->active_aligned_reads))
4180 wake_up(&conf->wait_for_stripe);
4181 return;
4182 }
4183
4184
4185 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4186
4187 add_bio_to_retry(raid_bi, conf);
4188 }
4189
4190 static int bio_fits_rdev(struct bio *bi)
4191 {
4192 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4193
4194 if (bio_sectors(bi) > queue_max_sectors(q))
4195 return 0;
4196 blk_recount_segments(q, bi);
4197 if (bi->bi_phys_segments > queue_max_segments(q))
4198 return 0;
4199
4200 if (q->merge_bvec_fn)
4201 /* it's too hard to apply the merge_bvec_fn at this stage,
4202 * just just give up
4203 */
4204 return 0;
4205
4206 return 1;
4207 }
4208
4209
4210 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4211 {
4212 struct r5conf *conf = mddev->private;
4213 int dd_idx;
4214 struct bio* align_bi;
4215 struct md_rdev *rdev;
4216 sector_t end_sector;
4217
4218 if (!in_chunk_boundary(mddev, raid_bio)) {
4219 pr_debug("chunk_aligned_read : non aligned\n");
4220 return 0;
4221 }
4222 /*
4223 * use bio_clone_mddev to make a copy of the bio
4224 */
4225 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4226 if (!align_bi)
4227 return 0;
4228 /*
4229 * set bi_end_io to a new function, and set bi_private to the
4230 * original bio.
4231 */
4232 align_bi->bi_end_io = raid5_align_endio;
4233 align_bi->bi_private = raid_bio;
4234 /*
4235 * compute position
4236 */
4237 align_bi->bi_iter.bi_sector =
4238 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4239 0, &dd_idx, NULL);
4240
4241 end_sector = bio_end_sector(align_bi);
4242 rcu_read_lock();
4243 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4244 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4245 rdev->recovery_offset < end_sector) {
4246 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4247 if (rdev &&
4248 (test_bit(Faulty, &rdev->flags) ||
4249 !(test_bit(In_sync, &rdev->flags) ||
4250 rdev->recovery_offset >= end_sector)))
4251 rdev = NULL;
4252 }
4253 if (rdev) {
4254 sector_t first_bad;
4255 int bad_sectors;
4256
4257 atomic_inc(&rdev->nr_pending);
4258 rcu_read_unlock();
4259 raid_bio->bi_next = (void*)rdev;
4260 align_bi->bi_bdev = rdev->bdev;
4261 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4262
4263 if (!bio_fits_rdev(align_bi) ||
4264 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4265 bio_sectors(align_bi),
4266 &first_bad, &bad_sectors)) {
4267 /* too big in some way, or has a known bad block */
4268 bio_put(align_bi);
4269 rdev_dec_pending(rdev, mddev);
4270 return 0;
4271 }
4272
4273 /* No reshape active, so we can trust rdev->data_offset */
4274 align_bi->bi_iter.bi_sector += rdev->data_offset;
4275
4276 spin_lock_irq(&conf->device_lock);
4277 wait_event_lock_irq(conf->wait_for_stripe,
4278 conf->quiesce == 0,
4279 conf->device_lock);
4280 atomic_inc(&conf->active_aligned_reads);
4281 spin_unlock_irq(&conf->device_lock);
4282
4283 if (mddev->gendisk)
4284 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4285 align_bi, disk_devt(mddev->gendisk),
4286 raid_bio->bi_iter.bi_sector);
4287 generic_make_request(align_bi);
4288 return 1;
4289 } else {
4290 rcu_read_unlock();
4291 bio_put(align_bi);
4292 return 0;
4293 }
4294 }
4295
4296 /* __get_priority_stripe - get the next stripe to process
4297 *
4298 * Full stripe writes are allowed to pass preread active stripes up until
4299 * the bypass_threshold is exceeded. In general the bypass_count
4300 * increments when the handle_list is handled before the hold_list; however, it
4301 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4302 * stripe with in flight i/o. The bypass_count will be reset when the
4303 * head of the hold_list has changed, i.e. the head was promoted to the
4304 * handle_list.
4305 */
4306 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4307 {
4308 struct stripe_head *sh = NULL, *tmp;
4309 struct list_head *handle_list = NULL;
4310 struct r5worker_group *wg = NULL;
4311
4312 if (conf->worker_cnt_per_group == 0) {
4313 handle_list = &conf->handle_list;
4314 } else if (group != ANY_GROUP) {
4315 handle_list = &conf->worker_groups[group].handle_list;
4316 wg = &conf->worker_groups[group];
4317 } else {
4318 int i;
4319 for (i = 0; i < conf->group_cnt; i++) {
4320 handle_list = &conf->worker_groups[i].handle_list;
4321 wg = &conf->worker_groups[i];
4322 if (!list_empty(handle_list))
4323 break;
4324 }
4325 }
4326
4327 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4328 __func__,
4329 list_empty(handle_list) ? "empty" : "busy",
4330 list_empty(&conf->hold_list) ? "empty" : "busy",
4331 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4332
4333 if (!list_empty(handle_list)) {
4334 sh = list_entry(handle_list->next, typeof(*sh), lru);
4335
4336 if (list_empty(&conf->hold_list))
4337 conf->bypass_count = 0;
4338 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4339 if (conf->hold_list.next == conf->last_hold)
4340 conf->bypass_count++;
4341 else {
4342 conf->last_hold = conf->hold_list.next;
4343 conf->bypass_count -= conf->bypass_threshold;
4344 if (conf->bypass_count < 0)
4345 conf->bypass_count = 0;
4346 }
4347 }
4348 } else if (!list_empty(&conf->hold_list) &&
4349 ((conf->bypass_threshold &&
4350 conf->bypass_count > conf->bypass_threshold) ||
4351 atomic_read(&conf->pending_full_writes) == 0)) {
4352
4353 list_for_each_entry(tmp, &conf->hold_list, lru) {
4354 if (conf->worker_cnt_per_group == 0 ||
4355 group == ANY_GROUP ||
4356 !cpu_online(tmp->cpu) ||
4357 cpu_to_group(tmp->cpu) == group) {
4358 sh = tmp;
4359 break;
4360 }
4361 }
4362
4363 if (sh) {
4364 conf->bypass_count -= conf->bypass_threshold;
4365 if (conf->bypass_count < 0)
4366 conf->bypass_count = 0;
4367 }
4368 wg = NULL;
4369 }
4370
4371 if (!sh)
4372 return NULL;
4373
4374 if (wg) {
4375 wg->stripes_cnt--;
4376 sh->group = NULL;
4377 }
4378 list_del_init(&sh->lru);
4379 atomic_inc(&sh->count);
4380 BUG_ON(atomic_read(&sh->count) != 1);
4381 return sh;
4382 }
4383
4384 struct raid5_plug_cb {
4385 struct blk_plug_cb cb;
4386 struct list_head list;
4387 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4388 };
4389
4390 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4391 {
4392 struct raid5_plug_cb *cb = container_of(
4393 blk_cb, struct raid5_plug_cb, cb);
4394 struct stripe_head *sh;
4395 struct mddev *mddev = cb->cb.data;
4396 struct r5conf *conf = mddev->private;
4397 int cnt = 0;
4398 int hash;
4399
4400 if (cb->list.next && !list_empty(&cb->list)) {
4401 spin_lock_irq(&conf->device_lock);
4402 while (!list_empty(&cb->list)) {
4403 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4404 list_del_init(&sh->lru);
4405 /*
4406 * avoid race release_stripe_plug() sees
4407 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4408 * is still in our list
4409 */
4410 smp_mb__before_clear_bit();
4411 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4412 /*
4413 * STRIPE_ON_RELEASE_LIST could be set here. In that
4414 * case, the count is always > 1 here
4415 */
4416 hash = sh->hash_lock_index;
4417 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4418 cnt++;
4419 }
4420 spin_unlock_irq(&conf->device_lock);
4421 }
4422 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4423 NR_STRIPE_HASH_LOCKS);
4424 if (mddev->queue)
4425 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4426 kfree(cb);
4427 }
4428
4429 static void release_stripe_plug(struct mddev *mddev,
4430 struct stripe_head *sh)
4431 {
4432 struct blk_plug_cb *blk_cb = blk_check_plugged(
4433 raid5_unplug, mddev,
4434 sizeof(struct raid5_plug_cb));
4435 struct raid5_plug_cb *cb;
4436
4437 if (!blk_cb) {
4438 release_stripe(sh);
4439 return;
4440 }
4441
4442 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4443
4444 if (cb->list.next == NULL) {
4445 int i;
4446 INIT_LIST_HEAD(&cb->list);
4447 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4448 INIT_LIST_HEAD(cb->temp_inactive_list + i);
4449 }
4450
4451 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4452 list_add_tail(&sh->lru, &cb->list);
4453 else
4454 release_stripe(sh);
4455 }
4456
4457 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4458 {
4459 struct r5conf *conf = mddev->private;
4460 sector_t logical_sector, last_sector;
4461 struct stripe_head *sh;
4462 int remaining;
4463 int stripe_sectors;
4464
4465 if (mddev->reshape_position != MaxSector)
4466 /* Skip discard while reshape is happening */
4467 return;
4468
4469 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4470 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4471
4472 bi->bi_next = NULL;
4473 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4474
4475 stripe_sectors = conf->chunk_sectors *
4476 (conf->raid_disks - conf->max_degraded);
4477 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4478 stripe_sectors);
4479 sector_div(last_sector, stripe_sectors);
4480
4481 logical_sector *= conf->chunk_sectors;
4482 last_sector *= conf->chunk_sectors;
4483
4484 for (; logical_sector < last_sector;
4485 logical_sector += STRIPE_SECTORS) {
4486 DEFINE_WAIT(w);
4487 int d;
4488 again:
4489 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4490 prepare_to_wait(&conf->wait_for_overlap, &w,
4491 TASK_UNINTERRUPTIBLE);
4492 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4493 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4494 release_stripe(sh);
4495 schedule();
4496 goto again;
4497 }
4498 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4499 spin_lock_irq(&sh->stripe_lock);
4500 for (d = 0; d < conf->raid_disks; d++) {
4501 if (d == sh->pd_idx || d == sh->qd_idx)
4502 continue;
4503 if (sh->dev[d].towrite || sh->dev[d].toread) {
4504 set_bit(R5_Overlap, &sh->dev[d].flags);
4505 spin_unlock_irq(&sh->stripe_lock);
4506 release_stripe(sh);
4507 schedule();
4508 goto again;
4509 }
4510 }
4511 set_bit(STRIPE_DISCARD, &sh->state);
4512 finish_wait(&conf->wait_for_overlap, &w);
4513 for (d = 0; d < conf->raid_disks; d++) {
4514 if (d == sh->pd_idx || d == sh->qd_idx)
4515 continue;
4516 sh->dev[d].towrite = bi;
4517 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4518 raid5_inc_bi_active_stripes(bi);
4519 }
4520 spin_unlock_irq(&sh->stripe_lock);
4521 if (conf->mddev->bitmap) {
4522 for (d = 0;
4523 d < conf->raid_disks - conf->max_degraded;
4524 d++)
4525 bitmap_startwrite(mddev->bitmap,
4526 sh->sector,
4527 STRIPE_SECTORS,
4528 0);
4529 sh->bm_seq = conf->seq_flush + 1;
4530 set_bit(STRIPE_BIT_DELAY, &sh->state);
4531 }
4532
4533 set_bit(STRIPE_HANDLE, &sh->state);
4534 clear_bit(STRIPE_DELAYED, &sh->state);
4535 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4536 atomic_inc(&conf->preread_active_stripes);
4537 release_stripe_plug(mddev, sh);
4538 }
4539
4540 remaining = raid5_dec_bi_active_stripes(bi);
4541 if (remaining == 0) {
4542 md_write_end(mddev);
4543 bio_endio(bi, 0);
4544 }
4545 }
4546
4547 static void make_request(struct mddev *mddev, struct bio * bi)
4548 {
4549 struct r5conf *conf = mddev->private;
4550 int dd_idx;
4551 sector_t new_sector;
4552 sector_t logical_sector, last_sector;
4553 struct stripe_head *sh;
4554 const int rw = bio_data_dir(bi);
4555 int remaining;
4556
4557 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4558 md_flush_request(mddev, bi);
4559 return;
4560 }
4561
4562 md_write_start(mddev, bi);
4563
4564 if (rw == READ &&
4565 mddev->reshape_position == MaxSector &&
4566 chunk_aligned_read(mddev,bi))
4567 return;
4568
4569 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4570 make_discard_request(mddev, bi);
4571 return;
4572 }
4573
4574 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4575 last_sector = bio_end_sector(bi);
4576 bi->bi_next = NULL;
4577 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4578
4579 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4580 DEFINE_WAIT(w);
4581 int previous;
4582 int seq;
4583
4584 retry:
4585 seq = read_seqcount_begin(&conf->gen_lock);
4586 previous = 0;
4587 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4588 if (unlikely(conf->reshape_progress != MaxSector)) {
4589 /* spinlock is needed as reshape_progress may be
4590 * 64bit on a 32bit platform, and so it might be
4591 * possible to see a half-updated value
4592 * Of course reshape_progress could change after
4593 * the lock is dropped, so once we get a reference
4594 * to the stripe that we think it is, we will have
4595 * to check again.
4596 */
4597 spin_lock_irq(&conf->device_lock);
4598 if (mddev->reshape_backwards
4599 ? logical_sector < conf->reshape_progress
4600 : logical_sector >= conf->reshape_progress) {
4601 previous = 1;
4602 } else {
4603 if (mddev->reshape_backwards
4604 ? logical_sector < conf->reshape_safe
4605 : logical_sector >= conf->reshape_safe) {
4606 spin_unlock_irq(&conf->device_lock);
4607 schedule();
4608 goto retry;
4609 }
4610 }
4611 spin_unlock_irq(&conf->device_lock);
4612 }
4613
4614 new_sector = raid5_compute_sector(conf, logical_sector,
4615 previous,
4616 &dd_idx, NULL);
4617 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4618 (unsigned long long)new_sector,
4619 (unsigned long long)logical_sector);
4620
4621 sh = get_active_stripe(conf, new_sector, previous,
4622 (bi->bi_rw&RWA_MASK), 0);
4623 if (sh) {
4624 if (unlikely(previous)) {
4625 /* expansion might have moved on while waiting for a
4626 * stripe, so we must do the range check again.
4627 * Expansion could still move past after this
4628 * test, but as we are holding a reference to
4629 * 'sh', we know that if that happens,
4630 * STRIPE_EXPANDING will get set and the expansion
4631 * won't proceed until we finish with the stripe.
4632 */
4633 int must_retry = 0;
4634 spin_lock_irq(&conf->device_lock);
4635 if (mddev->reshape_backwards
4636 ? logical_sector >= conf->reshape_progress
4637 : logical_sector < conf->reshape_progress)
4638 /* mismatch, need to try again */
4639 must_retry = 1;
4640 spin_unlock_irq(&conf->device_lock);
4641 if (must_retry) {
4642 release_stripe(sh);
4643 schedule();
4644 goto retry;
4645 }
4646 }
4647 if (read_seqcount_retry(&conf->gen_lock, seq)) {
4648 /* Might have got the wrong stripe_head
4649 * by accident
4650 */
4651 release_stripe(sh);
4652 goto retry;
4653 }
4654
4655 if (rw == WRITE &&
4656 logical_sector >= mddev->suspend_lo &&
4657 logical_sector < mddev->suspend_hi) {
4658 release_stripe(sh);
4659 /* As the suspend_* range is controlled by
4660 * userspace, we want an interruptible
4661 * wait.
4662 */
4663 flush_signals(current);
4664 prepare_to_wait(&conf->wait_for_overlap,
4665 &w, TASK_INTERRUPTIBLE);
4666 if (logical_sector >= mddev->suspend_lo &&
4667 logical_sector < mddev->suspend_hi)
4668 schedule();
4669 goto retry;
4670 }
4671
4672 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4673 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4674 /* Stripe is busy expanding or
4675 * add failed due to overlap. Flush everything
4676 * and wait a while
4677 */
4678 md_wakeup_thread(mddev->thread);
4679 release_stripe(sh);
4680 schedule();
4681 goto retry;
4682 }
4683 finish_wait(&conf->wait_for_overlap, &w);
4684 set_bit(STRIPE_HANDLE, &sh->state);
4685 clear_bit(STRIPE_DELAYED, &sh->state);
4686 if ((bi->bi_rw & REQ_SYNC) &&
4687 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4688 atomic_inc(&conf->preread_active_stripes);
4689 release_stripe_plug(mddev, sh);
4690 } else {
4691 /* cannot get stripe for read-ahead, just give-up */
4692 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4693 finish_wait(&conf->wait_for_overlap, &w);
4694 break;
4695 }
4696 }
4697
4698 remaining = raid5_dec_bi_active_stripes(bi);
4699 if (remaining == 0) {
4700
4701 if ( rw == WRITE )
4702 md_write_end(mddev);
4703
4704 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4705 bi, 0);
4706 bio_endio(bi, 0);
4707 }
4708 }
4709
4710 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4711
4712 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4713 {
4714 /* reshaping is quite different to recovery/resync so it is
4715 * handled quite separately ... here.
4716 *
4717 * On each call to sync_request, we gather one chunk worth of
4718 * destination stripes and flag them as expanding.
4719 * Then we find all the source stripes and request reads.
4720 * As the reads complete, handle_stripe will copy the data
4721 * into the destination stripe and release that stripe.
4722 */
4723 struct r5conf *conf = mddev->private;
4724 struct stripe_head *sh;
4725 sector_t first_sector, last_sector;
4726 int raid_disks = conf->previous_raid_disks;
4727 int data_disks = raid_disks - conf->max_degraded;
4728 int new_data_disks = conf->raid_disks - conf->max_degraded;
4729 int i;
4730 int dd_idx;
4731 sector_t writepos, readpos, safepos;
4732 sector_t stripe_addr;
4733 int reshape_sectors;
4734 struct list_head stripes;
4735
4736 if (sector_nr == 0) {
4737 /* If restarting in the middle, skip the initial sectors */
4738 if (mddev->reshape_backwards &&
4739 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4740 sector_nr = raid5_size(mddev, 0, 0)
4741 - conf->reshape_progress;
4742 } else if (!mddev->reshape_backwards &&
4743 conf->reshape_progress > 0)
4744 sector_nr = conf->reshape_progress;
4745 sector_div(sector_nr, new_data_disks);
4746 if (sector_nr) {
4747 mddev->curr_resync_completed = sector_nr;
4748 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4749 *skipped = 1;
4750 return sector_nr;
4751 }
4752 }
4753
4754 /* We need to process a full chunk at a time.
4755 * If old and new chunk sizes differ, we need to process the
4756 * largest of these
4757 */
4758 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4759 reshape_sectors = mddev->new_chunk_sectors;
4760 else
4761 reshape_sectors = mddev->chunk_sectors;
4762
4763 /* We update the metadata at least every 10 seconds, or when
4764 * the data about to be copied would over-write the source of
4765 * the data at the front of the range. i.e. one new_stripe
4766 * along from reshape_progress new_maps to after where
4767 * reshape_safe old_maps to
4768 */
4769 writepos = conf->reshape_progress;
4770 sector_div(writepos, new_data_disks);
4771 readpos = conf->reshape_progress;
4772 sector_div(readpos, data_disks);
4773 safepos = conf->reshape_safe;
4774 sector_div(safepos, data_disks);
4775 if (mddev->reshape_backwards) {
4776 writepos -= min_t(sector_t, reshape_sectors, writepos);
4777 readpos += reshape_sectors;
4778 safepos += reshape_sectors;
4779 } else {
4780 writepos += reshape_sectors;
4781 readpos -= min_t(sector_t, reshape_sectors, readpos);
4782 safepos -= min_t(sector_t, reshape_sectors, safepos);
4783 }
4784
4785 /* Having calculated the 'writepos' possibly use it
4786 * to set 'stripe_addr' which is where we will write to.
4787 */
4788 if (mddev->reshape_backwards) {
4789 BUG_ON(conf->reshape_progress == 0);
4790 stripe_addr = writepos;
4791 BUG_ON((mddev->dev_sectors &
4792 ~((sector_t)reshape_sectors - 1))
4793 - reshape_sectors - stripe_addr
4794 != sector_nr);
4795 } else {
4796 BUG_ON(writepos != sector_nr + reshape_sectors);
4797 stripe_addr = sector_nr;
4798 }
4799
4800 /* 'writepos' is the most advanced device address we might write.
4801 * 'readpos' is the least advanced device address we might read.
4802 * 'safepos' is the least address recorded in the metadata as having
4803 * been reshaped.
4804 * If there is a min_offset_diff, these are adjusted either by
4805 * increasing the safepos/readpos if diff is negative, or
4806 * increasing writepos if diff is positive.
4807 * If 'readpos' is then behind 'writepos', there is no way that we can
4808 * ensure safety in the face of a crash - that must be done by userspace
4809 * making a backup of the data. So in that case there is no particular
4810 * rush to update metadata.
4811 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4812 * update the metadata to advance 'safepos' to match 'readpos' so that
4813 * we can be safe in the event of a crash.
4814 * So we insist on updating metadata if safepos is behind writepos and
4815 * readpos is beyond writepos.
4816 * In any case, update the metadata every 10 seconds.
4817 * Maybe that number should be configurable, but I'm not sure it is
4818 * worth it.... maybe it could be a multiple of safemode_delay???
4819 */
4820 if (conf->min_offset_diff < 0) {
4821 safepos += -conf->min_offset_diff;
4822 readpos += -conf->min_offset_diff;
4823 } else
4824 writepos += conf->min_offset_diff;
4825
4826 if ((mddev->reshape_backwards
4827 ? (safepos > writepos && readpos < writepos)
4828 : (safepos < writepos && readpos > writepos)) ||
4829 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4830 /* Cannot proceed until we've updated the superblock... */
4831 wait_event(conf->wait_for_overlap,
4832 atomic_read(&conf->reshape_stripes)==0
4833 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4834 if (atomic_read(&conf->reshape_stripes) != 0)
4835 return 0;
4836 mddev->reshape_position = conf->reshape_progress;
4837 mddev->curr_resync_completed = sector_nr;
4838 conf->reshape_checkpoint = jiffies;
4839 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4840 md_wakeup_thread(mddev->thread);
4841 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4842 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4843 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4844 return 0;
4845 spin_lock_irq(&conf->device_lock);
4846 conf->reshape_safe = mddev->reshape_position;
4847 spin_unlock_irq(&conf->device_lock);
4848 wake_up(&conf->wait_for_overlap);
4849 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4850 }
4851
4852 INIT_LIST_HEAD(&stripes);
4853 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4854 int j;
4855 int skipped_disk = 0;
4856 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4857 set_bit(STRIPE_EXPANDING, &sh->state);
4858 atomic_inc(&conf->reshape_stripes);
4859 /* If any of this stripe is beyond the end of the old
4860 * array, then we need to zero those blocks
4861 */
4862 for (j=sh->disks; j--;) {
4863 sector_t s;
4864 if (j == sh->pd_idx)
4865 continue;
4866 if (conf->level == 6 &&
4867 j == sh->qd_idx)
4868 continue;
4869 s = compute_blocknr(sh, j, 0);
4870 if (s < raid5_size(mddev, 0, 0)) {
4871 skipped_disk = 1;
4872 continue;
4873 }
4874 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4875 set_bit(R5_Expanded, &sh->dev[j].flags);
4876 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4877 }
4878 if (!skipped_disk) {
4879 set_bit(STRIPE_EXPAND_READY, &sh->state);
4880 set_bit(STRIPE_HANDLE, &sh->state);
4881 }
4882 list_add(&sh->lru, &stripes);
4883 }
4884 spin_lock_irq(&conf->device_lock);
4885 if (mddev->reshape_backwards)
4886 conf->reshape_progress -= reshape_sectors * new_data_disks;
4887 else
4888 conf->reshape_progress += reshape_sectors * new_data_disks;
4889 spin_unlock_irq(&conf->device_lock);
4890 /* Ok, those stripe are ready. We can start scheduling
4891 * reads on the source stripes.
4892 * The source stripes are determined by mapping the first and last
4893 * block on the destination stripes.
4894 */
4895 first_sector =
4896 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4897 1, &dd_idx, NULL);
4898 last_sector =
4899 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4900 * new_data_disks - 1),
4901 1, &dd_idx, NULL);
4902 if (last_sector >= mddev->dev_sectors)
4903 last_sector = mddev->dev_sectors - 1;
4904 while (first_sector <= last_sector) {
4905 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4906 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4907 set_bit(STRIPE_HANDLE, &sh->state);
4908 release_stripe(sh);
4909 first_sector += STRIPE_SECTORS;
4910 }
4911 /* Now that the sources are clearly marked, we can release
4912 * the destination stripes
4913 */
4914 while (!list_empty(&stripes)) {
4915 sh = list_entry(stripes.next, struct stripe_head, lru);
4916 list_del_init(&sh->lru);
4917 release_stripe(sh);
4918 }
4919 /* If this takes us to the resync_max point where we have to pause,
4920 * then we need to write out the superblock.
4921 */
4922 sector_nr += reshape_sectors;
4923 if ((sector_nr - mddev->curr_resync_completed) * 2
4924 >= mddev->resync_max - mddev->curr_resync_completed) {
4925 /* Cannot proceed until we've updated the superblock... */
4926 wait_event(conf->wait_for_overlap,
4927 atomic_read(&conf->reshape_stripes) == 0
4928 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4929 if (atomic_read(&conf->reshape_stripes) != 0)
4930 goto ret;
4931 mddev->reshape_position = conf->reshape_progress;
4932 mddev->curr_resync_completed = sector_nr;
4933 conf->reshape_checkpoint = jiffies;
4934 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4935 md_wakeup_thread(mddev->thread);
4936 wait_event(mddev->sb_wait,
4937 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4938 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4939 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4940 goto ret;
4941 spin_lock_irq(&conf->device_lock);
4942 conf->reshape_safe = mddev->reshape_position;
4943 spin_unlock_irq(&conf->device_lock);
4944 wake_up(&conf->wait_for_overlap);
4945 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4946 }
4947 ret:
4948 return reshape_sectors;
4949 }
4950
4951 /* FIXME go_faster isn't used */
4952 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4953 {
4954 struct r5conf *conf = mddev->private;
4955 struct stripe_head *sh;
4956 sector_t max_sector = mddev->dev_sectors;
4957 sector_t sync_blocks;
4958 int still_degraded = 0;
4959 int i;
4960
4961 if (sector_nr >= max_sector) {
4962 /* just being told to finish up .. nothing much to do */
4963
4964 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4965 end_reshape(conf);
4966 return 0;
4967 }
4968
4969 if (mddev->curr_resync < max_sector) /* aborted */
4970 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4971 &sync_blocks, 1);
4972 else /* completed sync */
4973 conf->fullsync = 0;
4974 bitmap_close_sync(mddev->bitmap);
4975
4976 return 0;
4977 }
4978
4979 /* Allow raid5_quiesce to complete */
4980 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4981
4982 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4983 return reshape_request(mddev, sector_nr, skipped);
4984
4985 /* No need to check resync_max as we never do more than one
4986 * stripe, and as resync_max will always be on a chunk boundary,
4987 * if the check in md_do_sync didn't fire, there is no chance
4988 * of overstepping resync_max here
4989 */
4990
4991 /* if there is too many failed drives and we are trying
4992 * to resync, then assert that we are finished, because there is
4993 * nothing we can do.
4994 */
4995 if (mddev->degraded >= conf->max_degraded &&
4996 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4997 sector_t rv = mddev->dev_sectors - sector_nr;
4998 *skipped = 1;
4999 return rv;
5000 }
5001 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5002 !conf->fullsync &&
5003 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5004 sync_blocks >= STRIPE_SECTORS) {
5005 /* we can skip this block, and probably more */
5006 sync_blocks /= STRIPE_SECTORS;
5007 *skipped = 1;
5008 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5009 }
5010
5011 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5012
5013 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5014 if (sh == NULL) {
5015 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5016 /* make sure we don't swamp the stripe cache if someone else
5017 * is trying to get access
5018 */
5019 schedule_timeout_uninterruptible(1);
5020 }
5021 /* Need to check if array will still be degraded after recovery/resync
5022 * We don't need to check the 'failed' flag as when that gets set,
5023 * recovery aborts.
5024 */
5025 for (i = 0; i < conf->raid_disks; i++)
5026 if (conf->disks[i].rdev == NULL)
5027 still_degraded = 1;
5028
5029 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5030
5031 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5032
5033 handle_stripe(sh);
5034 release_stripe(sh);
5035
5036 return STRIPE_SECTORS;
5037 }
5038
5039 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5040 {
5041 /* We may not be able to submit a whole bio at once as there
5042 * may not be enough stripe_heads available.
5043 * We cannot pre-allocate enough stripe_heads as we may need
5044 * more than exist in the cache (if we allow ever large chunks).
5045 * So we do one stripe head at a time and record in
5046 * ->bi_hw_segments how many have been done.
5047 *
5048 * We *know* that this entire raid_bio is in one chunk, so
5049 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5050 */
5051 struct stripe_head *sh;
5052 int dd_idx;
5053 sector_t sector, logical_sector, last_sector;
5054 int scnt = 0;
5055 int remaining;
5056 int handled = 0;
5057
5058 logical_sector = raid_bio->bi_iter.bi_sector &
5059 ~((sector_t)STRIPE_SECTORS-1);
5060 sector = raid5_compute_sector(conf, logical_sector,
5061 0, &dd_idx, NULL);
5062 last_sector = bio_end_sector(raid_bio);
5063
5064 for (; logical_sector < last_sector;
5065 logical_sector += STRIPE_SECTORS,
5066 sector += STRIPE_SECTORS,
5067 scnt++) {
5068
5069 if (scnt < raid5_bi_processed_stripes(raid_bio))
5070 /* already done this stripe */
5071 continue;
5072
5073 sh = get_active_stripe(conf, sector, 0, 1, 0);
5074
5075 if (!sh) {
5076 /* failed to get a stripe - must wait */
5077 raid5_set_bi_processed_stripes(raid_bio, scnt);
5078 conf->retry_read_aligned = raid_bio;
5079 return handled;
5080 }
5081
5082 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5083 release_stripe(sh);
5084 raid5_set_bi_processed_stripes(raid_bio, scnt);
5085 conf->retry_read_aligned = raid_bio;
5086 return handled;
5087 }
5088
5089 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5090 handle_stripe(sh);
5091 release_stripe(sh);
5092 handled++;
5093 }
5094 remaining = raid5_dec_bi_active_stripes(raid_bio);
5095 if (remaining == 0) {
5096 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5097 raid_bio, 0);
5098 bio_endio(raid_bio, 0);
5099 }
5100 if (atomic_dec_and_test(&conf->active_aligned_reads))
5101 wake_up(&conf->wait_for_stripe);
5102 return handled;
5103 }
5104
5105 static int handle_active_stripes(struct r5conf *conf, int group,
5106 struct r5worker *worker,
5107 struct list_head *temp_inactive_list)
5108 {
5109 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5110 int i, batch_size = 0, hash;
5111 bool release_inactive = false;
5112
5113 while (batch_size < MAX_STRIPE_BATCH &&
5114 (sh = __get_priority_stripe(conf, group)) != NULL)
5115 batch[batch_size++] = sh;
5116
5117 if (batch_size == 0) {
5118 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5119 if (!list_empty(temp_inactive_list + i))
5120 break;
5121 if (i == NR_STRIPE_HASH_LOCKS)
5122 return batch_size;
5123 release_inactive = true;
5124 }
5125 spin_unlock_irq(&conf->device_lock);
5126
5127 release_inactive_stripe_list(conf, temp_inactive_list,
5128 NR_STRIPE_HASH_LOCKS);
5129
5130 if (release_inactive) {
5131 spin_lock_irq(&conf->device_lock);
5132 return 0;
5133 }
5134
5135 for (i = 0; i < batch_size; i++)
5136 handle_stripe(batch[i]);
5137
5138 cond_resched();
5139
5140 spin_lock_irq(&conf->device_lock);
5141 for (i = 0; i < batch_size; i++) {
5142 hash = batch[i]->hash_lock_index;
5143 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5144 }
5145 return batch_size;
5146 }
5147
5148 static void raid5_do_work(struct work_struct *work)
5149 {
5150 struct r5worker *worker = container_of(work, struct r5worker, work);
5151 struct r5worker_group *group = worker->group;
5152 struct r5conf *conf = group->conf;
5153 int group_id = group - conf->worker_groups;
5154 int handled;
5155 struct blk_plug plug;
5156
5157 pr_debug("+++ raid5worker active\n");
5158
5159 blk_start_plug(&plug);
5160 handled = 0;
5161 spin_lock_irq(&conf->device_lock);
5162 while (1) {
5163 int batch_size, released;
5164
5165 released = release_stripe_list(conf, worker->temp_inactive_list);
5166
5167 batch_size = handle_active_stripes(conf, group_id, worker,
5168 worker->temp_inactive_list);
5169 worker->working = false;
5170 if (!batch_size && !released)
5171 break;
5172 handled += batch_size;
5173 }
5174 pr_debug("%d stripes handled\n", handled);
5175
5176 spin_unlock_irq(&conf->device_lock);
5177 blk_finish_plug(&plug);
5178
5179 pr_debug("--- raid5worker inactive\n");
5180 }
5181
5182 /*
5183 * This is our raid5 kernel thread.
5184 *
5185 * We scan the hash table for stripes which can be handled now.
5186 * During the scan, completed stripes are saved for us by the interrupt
5187 * handler, so that they will not have to wait for our next wakeup.
5188 */
5189 static void raid5d(struct md_thread *thread)
5190 {
5191 struct mddev *mddev = thread->mddev;
5192 struct r5conf *conf = mddev->private;
5193 int handled;
5194 struct blk_plug plug;
5195
5196 pr_debug("+++ raid5d active\n");
5197
5198 md_check_recovery(mddev);
5199
5200 blk_start_plug(&plug);
5201 handled = 0;
5202 spin_lock_irq(&conf->device_lock);
5203 while (1) {
5204 struct bio *bio;
5205 int batch_size, released;
5206
5207 released = release_stripe_list(conf, conf->temp_inactive_list);
5208
5209 if (
5210 !list_empty(&conf->bitmap_list)) {
5211 /* Now is a good time to flush some bitmap updates */
5212 conf->seq_flush++;
5213 spin_unlock_irq(&conf->device_lock);
5214 bitmap_unplug(mddev->bitmap);
5215 spin_lock_irq(&conf->device_lock);
5216 conf->seq_write = conf->seq_flush;
5217 activate_bit_delay(conf, conf->temp_inactive_list);
5218 }
5219 raid5_activate_delayed(conf);
5220
5221 while ((bio = remove_bio_from_retry(conf))) {
5222 int ok;
5223 spin_unlock_irq(&conf->device_lock);
5224 ok = retry_aligned_read(conf, bio);
5225 spin_lock_irq(&conf->device_lock);
5226 if (!ok)
5227 break;
5228 handled++;
5229 }
5230
5231 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5232 conf->temp_inactive_list);
5233 if (!batch_size && !released)
5234 break;
5235 handled += batch_size;
5236
5237 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5238 spin_unlock_irq(&conf->device_lock);
5239 md_check_recovery(mddev);
5240 spin_lock_irq(&conf->device_lock);
5241 }
5242 }
5243 pr_debug("%d stripes handled\n", handled);
5244
5245 spin_unlock_irq(&conf->device_lock);
5246
5247 async_tx_issue_pending_all();
5248 blk_finish_plug(&plug);
5249
5250 pr_debug("--- raid5d inactive\n");
5251 }
5252
5253 static ssize_t
5254 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5255 {
5256 struct r5conf *conf = mddev->private;
5257 if (conf)
5258 return sprintf(page, "%d\n", conf->max_nr_stripes);
5259 else
5260 return 0;
5261 }
5262
5263 int
5264 raid5_set_cache_size(struct mddev *mddev, int size)
5265 {
5266 struct r5conf *conf = mddev->private;
5267 int err;
5268 int hash;
5269
5270 if (size <= 16 || size > 32768)
5271 return -EINVAL;
5272 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5273 while (size < conf->max_nr_stripes) {
5274 if (drop_one_stripe(conf, hash))
5275 conf->max_nr_stripes--;
5276 else
5277 break;
5278 hash--;
5279 if (hash < 0)
5280 hash = NR_STRIPE_HASH_LOCKS - 1;
5281 }
5282 err = md_allow_write(mddev);
5283 if (err)
5284 return err;
5285 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5286 while (size > conf->max_nr_stripes) {
5287 if (grow_one_stripe(conf, hash))
5288 conf->max_nr_stripes++;
5289 else break;
5290 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5291 }
5292 return 0;
5293 }
5294 EXPORT_SYMBOL(raid5_set_cache_size);
5295
5296 static ssize_t
5297 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5298 {
5299 struct r5conf *conf = mddev->private;
5300 unsigned long new;
5301 int err;
5302
5303 if (len >= PAGE_SIZE)
5304 return -EINVAL;
5305 if (!conf)
5306 return -ENODEV;
5307
5308 if (kstrtoul(page, 10, &new))
5309 return -EINVAL;
5310 err = raid5_set_cache_size(mddev, new);
5311 if (err)
5312 return err;
5313 return len;
5314 }
5315
5316 static struct md_sysfs_entry
5317 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5318 raid5_show_stripe_cache_size,
5319 raid5_store_stripe_cache_size);
5320
5321 static ssize_t
5322 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5323 {
5324 struct r5conf *conf = mddev->private;
5325 if (conf)
5326 return sprintf(page, "%d\n", conf->bypass_threshold);
5327 else
5328 return 0;
5329 }
5330
5331 static ssize_t
5332 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5333 {
5334 struct r5conf *conf = mddev->private;
5335 unsigned long new;
5336 if (len >= PAGE_SIZE)
5337 return -EINVAL;
5338 if (!conf)
5339 return -ENODEV;
5340
5341 if (kstrtoul(page, 10, &new))
5342 return -EINVAL;
5343 if (new > conf->max_nr_stripes)
5344 return -EINVAL;
5345 conf->bypass_threshold = new;
5346 return len;
5347 }
5348
5349 static struct md_sysfs_entry
5350 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5351 S_IRUGO | S_IWUSR,
5352 raid5_show_preread_threshold,
5353 raid5_store_preread_threshold);
5354
5355 static ssize_t
5356 stripe_cache_active_show(struct mddev *mddev, char *page)
5357 {
5358 struct r5conf *conf = mddev->private;
5359 if (conf)
5360 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5361 else
5362 return 0;
5363 }
5364
5365 static struct md_sysfs_entry
5366 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5367
5368 static ssize_t
5369 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5370 {
5371 struct r5conf *conf = mddev->private;
5372 if (conf)
5373 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5374 else
5375 return 0;
5376 }
5377
5378 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5379 int *group_cnt,
5380 int *worker_cnt_per_group,
5381 struct r5worker_group **worker_groups);
5382 static ssize_t
5383 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5384 {
5385 struct r5conf *conf = mddev->private;
5386 unsigned long new;
5387 int err;
5388 struct r5worker_group *new_groups, *old_groups;
5389 int group_cnt, worker_cnt_per_group;
5390
5391 if (len >= PAGE_SIZE)
5392 return -EINVAL;
5393 if (!conf)
5394 return -ENODEV;
5395
5396 if (kstrtoul(page, 10, &new))
5397 return -EINVAL;
5398
5399 if (new == conf->worker_cnt_per_group)
5400 return len;
5401
5402 mddev_suspend(mddev);
5403
5404 old_groups = conf->worker_groups;
5405 if (old_groups)
5406 flush_workqueue(raid5_wq);
5407
5408 err = alloc_thread_groups(conf, new,
5409 &group_cnt, &worker_cnt_per_group,
5410 &new_groups);
5411 if (!err) {
5412 spin_lock_irq(&conf->device_lock);
5413 conf->group_cnt = group_cnt;
5414 conf->worker_cnt_per_group = worker_cnt_per_group;
5415 conf->worker_groups = new_groups;
5416 spin_unlock_irq(&conf->device_lock);
5417
5418 if (old_groups)
5419 kfree(old_groups[0].workers);
5420 kfree(old_groups);
5421 }
5422
5423 mddev_resume(mddev);
5424
5425 if (err)
5426 return err;
5427 return len;
5428 }
5429
5430 static struct md_sysfs_entry
5431 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5432 raid5_show_group_thread_cnt,
5433 raid5_store_group_thread_cnt);
5434
5435 static struct attribute *raid5_attrs[] = {
5436 &raid5_stripecache_size.attr,
5437 &raid5_stripecache_active.attr,
5438 &raid5_preread_bypass_threshold.attr,
5439 &raid5_group_thread_cnt.attr,
5440 NULL,
5441 };
5442 static struct attribute_group raid5_attrs_group = {
5443 .name = NULL,
5444 .attrs = raid5_attrs,
5445 };
5446
5447 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5448 int *group_cnt,
5449 int *worker_cnt_per_group,
5450 struct r5worker_group **worker_groups)
5451 {
5452 int i, j, k;
5453 ssize_t size;
5454 struct r5worker *workers;
5455
5456 *worker_cnt_per_group = cnt;
5457 if (cnt == 0) {
5458 *group_cnt = 0;
5459 *worker_groups = NULL;
5460 return 0;
5461 }
5462 *group_cnt = num_possible_nodes();
5463 size = sizeof(struct r5worker) * cnt;
5464 workers = kzalloc(size * *group_cnt, GFP_NOIO);
5465 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5466 *group_cnt, GFP_NOIO);
5467 if (!*worker_groups || !workers) {
5468 kfree(workers);
5469 kfree(*worker_groups);
5470 return -ENOMEM;
5471 }
5472
5473 for (i = 0; i < *group_cnt; i++) {
5474 struct r5worker_group *group;
5475
5476 group = worker_groups[i];
5477 INIT_LIST_HEAD(&group->handle_list);
5478 group->conf = conf;
5479 group->workers = workers + i * cnt;
5480
5481 for (j = 0; j < cnt; j++) {
5482 struct r5worker *worker = group->workers + j;
5483 worker->group = group;
5484 INIT_WORK(&worker->work, raid5_do_work);
5485
5486 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5487 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5488 }
5489 }
5490
5491 return 0;
5492 }
5493
5494 static void free_thread_groups(struct r5conf *conf)
5495 {
5496 if (conf->worker_groups)
5497 kfree(conf->worker_groups[0].workers);
5498 kfree(conf->worker_groups);
5499 conf->worker_groups = NULL;
5500 }
5501
5502 static sector_t
5503 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5504 {
5505 struct r5conf *conf = mddev->private;
5506
5507 if (!sectors)
5508 sectors = mddev->dev_sectors;
5509 if (!raid_disks)
5510 /* size is defined by the smallest of previous and new size */
5511 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5512
5513 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5514 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5515 return sectors * (raid_disks - conf->max_degraded);
5516 }
5517
5518 static void raid5_free_percpu(struct r5conf *conf)
5519 {
5520 struct raid5_percpu *percpu;
5521 unsigned long cpu;
5522
5523 if (!conf->percpu)
5524 return;
5525
5526 get_online_cpus();
5527 for_each_possible_cpu(cpu) {
5528 percpu = per_cpu_ptr(conf->percpu, cpu);
5529 safe_put_page(percpu->spare_page);
5530 kfree(percpu->scribble);
5531 }
5532 #ifdef CONFIG_HOTPLUG_CPU
5533 unregister_cpu_notifier(&conf->cpu_notify);
5534 #endif
5535 put_online_cpus();
5536
5537 free_percpu(conf->percpu);
5538 }
5539
5540 static void free_conf(struct r5conf *conf)
5541 {
5542 free_thread_groups(conf);
5543 shrink_stripes(conf);
5544 raid5_free_percpu(conf);
5545 kfree(conf->disks);
5546 kfree(conf->stripe_hashtbl);
5547 kfree(conf);
5548 }
5549
5550 #ifdef CONFIG_HOTPLUG_CPU
5551 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5552 void *hcpu)
5553 {
5554 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5555 long cpu = (long)hcpu;
5556 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5557
5558 switch (action) {
5559 case CPU_UP_PREPARE:
5560 case CPU_UP_PREPARE_FROZEN:
5561 if (conf->level == 6 && !percpu->spare_page)
5562 percpu->spare_page = alloc_page(GFP_KERNEL);
5563 if (!percpu->scribble)
5564 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5565
5566 if (!percpu->scribble ||
5567 (conf->level == 6 && !percpu->spare_page)) {
5568 safe_put_page(percpu->spare_page);
5569 kfree(percpu->scribble);
5570 pr_err("%s: failed memory allocation for cpu%ld\n",
5571 __func__, cpu);
5572 return notifier_from_errno(-ENOMEM);
5573 }
5574 break;
5575 case CPU_DEAD:
5576 case CPU_DEAD_FROZEN:
5577 safe_put_page(percpu->spare_page);
5578 kfree(percpu->scribble);
5579 percpu->spare_page = NULL;
5580 percpu->scribble = NULL;
5581 break;
5582 default:
5583 break;
5584 }
5585 return NOTIFY_OK;
5586 }
5587 #endif
5588
5589 static int raid5_alloc_percpu(struct r5conf *conf)
5590 {
5591 unsigned long cpu;
5592 struct page *spare_page;
5593 struct raid5_percpu __percpu *allcpus;
5594 void *scribble;
5595 int err;
5596
5597 allcpus = alloc_percpu(struct raid5_percpu);
5598 if (!allcpus)
5599 return -ENOMEM;
5600 conf->percpu = allcpus;
5601
5602 get_online_cpus();
5603 err = 0;
5604 for_each_present_cpu(cpu) {
5605 if (conf->level == 6) {
5606 spare_page = alloc_page(GFP_KERNEL);
5607 if (!spare_page) {
5608 err = -ENOMEM;
5609 break;
5610 }
5611 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5612 }
5613 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5614 if (!scribble) {
5615 err = -ENOMEM;
5616 break;
5617 }
5618 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5619 }
5620 #ifdef CONFIG_HOTPLUG_CPU
5621 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5622 conf->cpu_notify.priority = 0;
5623 if (err == 0)
5624 err = register_cpu_notifier(&conf->cpu_notify);
5625 #endif
5626 put_online_cpus();
5627
5628 return err;
5629 }
5630
5631 static struct r5conf *setup_conf(struct mddev *mddev)
5632 {
5633 struct r5conf *conf;
5634 int raid_disk, memory, max_disks;
5635 struct md_rdev *rdev;
5636 struct disk_info *disk;
5637 char pers_name[6];
5638 int i;
5639 int group_cnt, worker_cnt_per_group;
5640 struct r5worker_group *new_group;
5641
5642 if (mddev->new_level != 5
5643 && mddev->new_level != 4
5644 && mddev->new_level != 6) {
5645 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5646 mdname(mddev), mddev->new_level);
5647 return ERR_PTR(-EIO);
5648 }
5649 if ((mddev->new_level == 5
5650 && !algorithm_valid_raid5(mddev->new_layout)) ||
5651 (mddev->new_level == 6
5652 && !algorithm_valid_raid6(mddev->new_layout))) {
5653 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5654 mdname(mddev), mddev->new_layout);
5655 return ERR_PTR(-EIO);
5656 }
5657 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5658 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5659 mdname(mddev), mddev->raid_disks);
5660 return ERR_PTR(-EINVAL);
5661 }
5662
5663 if (!mddev->new_chunk_sectors ||
5664 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5665 !is_power_of_2(mddev->new_chunk_sectors)) {
5666 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5667 mdname(mddev), mddev->new_chunk_sectors << 9);
5668 return ERR_PTR(-EINVAL);
5669 }
5670
5671 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5672 if (conf == NULL)
5673 goto abort;
5674 /* Don't enable multi-threading by default*/
5675 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5676 &new_group)) {
5677 conf->group_cnt = group_cnt;
5678 conf->worker_cnt_per_group = worker_cnt_per_group;
5679 conf->worker_groups = new_group;
5680 } else
5681 goto abort;
5682 spin_lock_init(&conf->device_lock);
5683 seqcount_init(&conf->gen_lock);
5684 init_waitqueue_head(&conf->wait_for_stripe);
5685 init_waitqueue_head(&conf->wait_for_overlap);
5686 INIT_LIST_HEAD(&conf->handle_list);
5687 INIT_LIST_HEAD(&conf->hold_list);
5688 INIT_LIST_HEAD(&conf->delayed_list);
5689 INIT_LIST_HEAD(&conf->bitmap_list);
5690 init_llist_head(&conf->released_stripes);
5691 atomic_set(&conf->active_stripes, 0);
5692 atomic_set(&conf->preread_active_stripes, 0);
5693 atomic_set(&conf->active_aligned_reads, 0);
5694 conf->bypass_threshold = BYPASS_THRESHOLD;
5695 conf->recovery_disabled = mddev->recovery_disabled - 1;
5696
5697 conf->raid_disks = mddev->raid_disks;
5698 if (mddev->reshape_position == MaxSector)
5699 conf->previous_raid_disks = mddev->raid_disks;
5700 else
5701 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5702 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5703 conf->scribble_len = scribble_len(max_disks);
5704
5705 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5706 GFP_KERNEL);
5707 if (!conf->disks)
5708 goto abort;
5709
5710 conf->mddev = mddev;
5711
5712 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5713 goto abort;
5714
5715 /* We init hash_locks[0] separately to that it can be used
5716 * as the reference lock in the spin_lock_nest_lock() call
5717 * in lock_all_device_hash_locks_irq in order to convince
5718 * lockdep that we know what we are doing.
5719 */
5720 spin_lock_init(conf->hash_locks);
5721 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5722 spin_lock_init(conf->hash_locks + i);
5723
5724 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5725 INIT_LIST_HEAD(conf->inactive_list + i);
5726
5727 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5728 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5729
5730 conf->level = mddev->new_level;
5731 if (raid5_alloc_percpu(conf) != 0)
5732 goto abort;
5733
5734 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5735
5736 rdev_for_each(rdev, mddev) {
5737 raid_disk = rdev->raid_disk;
5738 if (raid_disk >= max_disks
5739 || raid_disk < 0)
5740 continue;
5741 disk = conf->disks + raid_disk;
5742
5743 if (test_bit(Replacement, &rdev->flags)) {
5744 if (disk->replacement)
5745 goto abort;
5746 disk->replacement = rdev;
5747 } else {
5748 if (disk->rdev)
5749 goto abort;
5750 disk->rdev = rdev;
5751 }
5752
5753 if (test_bit(In_sync, &rdev->flags)) {
5754 char b[BDEVNAME_SIZE];
5755 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5756 " disk %d\n",
5757 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5758 } else if (rdev->saved_raid_disk != raid_disk)
5759 /* Cannot rely on bitmap to complete recovery */
5760 conf->fullsync = 1;
5761 }
5762
5763 conf->chunk_sectors = mddev->new_chunk_sectors;
5764 conf->level = mddev->new_level;
5765 if (conf->level == 6)
5766 conf->max_degraded = 2;
5767 else
5768 conf->max_degraded = 1;
5769 conf->algorithm = mddev->new_layout;
5770 conf->reshape_progress = mddev->reshape_position;
5771 if (conf->reshape_progress != MaxSector) {
5772 conf->prev_chunk_sectors = mddev->chunk_sectors;
5773 conf->prev_algo = mddev->layout;
5774 }
5775
5776 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5777 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5778 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5779 if (grow_stripes(conf, NR_STRIPES)) {
5780 printk(KERN_ERR
5781 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5782 mdname(mddev), memory);
5783 goto abort;
5784 } else
5785 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5786 mdname(mddev), memory);
5787
5788 sprintf(pers_name, "raid%d", mddev->new_level);
5789 conf->thread = md_register_thread(raid5d, mddev, pers_name);
5790 if (!conf->thread) {
5791 printk(KERN_ERR
5792 "md/raid:%s: couldn't allocate thread.\n",
5793 mdname(mddev));
5794 goto abort;
5795 }
5796
5797 return conf;
5798
5799 abort:
5800 if (conf) {
5801 free_conf(conf);
5802 return ERR_PTR(-EIO);
5803 } else
5804 return ERR_PTR(-ENOMEM);
5805 }
5806
5807
5808 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5809 {
5810 switch (algo) {
5811 case ALGORITHM_PARITY_0:
5812 if (raid_disk < max_degraded)
5813 return 1;
5814 break;
5815 case ALGORITHM_PARITY_N:
5816 if (raid_disk >= raid_disks - max_degraded)
5817 return 1;
5818 break;
5819 case ALGORITHM_PARITY_0_6:
5820 if (raid_disk == 0 ||
5821 raid_disk == raid_disks - 1)
5822 return 1;
5823 break;
5824 case ALGORITHM_LEFT_ASYMMETRIC_6:
5825 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5826 case ALGORITHM_LEFT_SYMMETRIC_6:
5827 case ALGORITHM_RIGHT_SYMMETRIC_6:
5828 if (raid_disk == raid_disks - 1)
5829 return 1;
5830 }
5831 return 0;
5832 }
5833
5834 static int run(struct mddev *mddev)
5835 {
5836 struct r5conf *conf;
5837 int working_disks = 0;
5838 int dirty_parity_disks = 0;
5839 struct md_rdev *rdev;
5840 sector_t reshape_offset = 0;
5841 int i;
5842 long long min_offset_diff = 0;
5843 int first = 1;
5844
5845 if (mddev->recovery_cp != MaxSector)
5846 printk(KERN_NOTICE "md/raid:%s: not clean"
5847 " -- starting background reconstruction\n",
5848 mdname(mddev));
5849
5850 rdev_for_each(rdev, mddev) {
5851 long long diff;
5852 if (rdev->raid_disk < 0)
5853 continue;
5854 diff = (rdev->new_data_offset - rdev->data_offset);
5855 if (first) {
5856 min_offset_diff = diff;
5857 first = 0;
5858 } else if (mddev->reshape_backwards &&
5859 diff < min_offset_diff)
5860 min_offset_diff = diff;
5861 else if (!mddev->reshape_backwards &&
5862 diff > min_offset_diff)
5863 min_offset_diff = diff;
5864 }
5865
5866 if (mddev->reshape_position != MaxSector) {
5867 /* Check that we can continue the reshape.
5868 * Difficulties arise if the stripe we would write to
5869 * next is at or after the stripe we would read from next.
5870 * For a reshape that changes the number of devices, this
5871 * is only possible for a very short time, and mdadm makes
5872 * sure that time appears to have past before assembling
5873 * the array. So we fail if that time hasn't passed.
5874 * For a reshape that keeps the number of devices the same
5875 * mdadm must be monitoring the reshape can keeping the
5876 * critical areas read-only and backed up. It will start
5877 * the array in read-only mode, so we check for that.
5878 */
5879 sector_t here_new, here_old;
5880 int old_disks;
5881 int max_degraded = (mddev->level == 6 ? 2 : 1);
5882
5883 if (mddev->new_level != mddev->level) {
5884 printk(KERN_ERR "md/raid:%s: unsupported reshape "
5885 "required - aborting.\n",
5886 mdname(mddev));
5887 return -EINVAL;
5888 }
5889 old_disks = mddev->raid_disks - mddev->delta_disks;
5890 /* reshape_position must be on a new-stripe boundary, and one
5891 * further up in new geometry must map after here in old
5892 * geometry.
5893 */
5894 here_new = mddev->reshape_position;
5895 if (sector_div(here_new, mddev->new_chunk_sectors *
5896 (mddev->raid_disks - max_degraded))) {
5897 printk(KERN_ERR "md/raid:%s: reshape_position not "
5898 "on a stripe boundary\n", mdname(mddev));
5899 return -EINVAL;
5900 }
5901 reshape_offset = here_new * mddev->new_chunk_sectors;
5902 /* here_new is the stripe we will write to */
5903 here_old = mddev->reshape_position;
5904 sector_div(here_old, mddev->chunk_sectors *
5905 (old_disks-max_degraded));
5906 /* here_old is the first stripe that we might need to read
5907 * from */
5908 if (mddev->delta_disks == 0) {
5909 if ((here_new * mddev->new_chunk_sectors !=
5910 here_old * mddev->chunk_sectors)) {
5911 printk(KERN_ERR "md/raid:%s: reshape position is"
5912 " confused - aborting\n", mdname(mddev));
5913 return -EINVAL;
5914 }
5915 /* We cannot be sure it is safe to start an in-place
5916 * reshape. It is only safe if user-space is monitoring
5917 * and taking constant backups.
5918 * mdadm always starts a situation like this in
5919 * readonly mode so it can take control before
5920 * allowing any writes. So just check for that.
5921 */
5922 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5923 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5924 /* not really in-place - so OK */;
5925 else if (mddev->ro == 0) {
5926 printk(KERN_ERR "md/raid:%s: in-place reshape "
5927 "must be started in read-only mode "
5928 "- aborting\n",
5929 mdname(mddev));
5930 return -EINVAL;
5931 }
5932 } else if (mddev->reshape_backwards
5933 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5934 here_old * mddev->chunk_sectors)
5935 : (here_new * mddev->new_chunk_sectors >=
5936 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5937 /* Reading from the same stripe as writing to - bad */
5938 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5939 "auto-recovery - aborting.\n",
5940 mdname(mddev));
5941 return -EINVAL;
5942 }
5943 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5944 mdname(mddev));
5945 /* OK, we should be able to continue; */
5946 } else {
5947 BUG_ON(mddev->level != mddev->new_level);
5948 BUG_ON(mddev->layout != mddev->new_layout);
5949 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5950 BUG_ON(mddev->delta_disks != 0);
5951 }
5952
5953 if (mddev->private == NULL)
5954 conf = setup_conf(mddev);
5955 else
5956 conf = mddev->private;
5957
5958 if (IS_ERR(conf))
5959 return PTR_ERR(conf);
5960
5961 conf->min_offset_diff = min_offset_diff;
5962 mddev->thread = conf->thread;
5963 conf->thread = NULL;
5964 mddev->private = conf;
5965
5966 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5967 i++) {
5968 rdev = conf->disks[i].rdev;
5969 if (!rdev && conf->disks[i].replacement) {
5970 /* The replacement is all we have yet */
5971 rdev = conf->disks[i].replacement;
5972 conf->disks[i].replacement = NULL;
5973 clear_bit(Replacement, &rdev->flags);
5974 conf->disks[i].rdev = rdev;
5975 }
5976 if (!rdev)
5977 continue;
5978 if (conf->disks[i].replacement &&
5979 conf->reshape_progress != MaxSector) {
5980 /* replacements and reshape simply do not mix. */
5981 printk(KERN_ERR "md: cannot handle concurrent "
5982 "replacement and reshape.\n");
5983 goto abort;
5984 }
5985 if (test_bit(In_sync, &rdev->flags)) {
5986 working_disks++;
5987 continue;
5988 }
5989 /* This disc is not fully in-sync. However if it
5990 * just stored parity (beyond the recovery_offset),
5991 * when we don't need to be concerned about the
5992 * array being dirty.
5993 * When reshape goes 'backwards', we never have
5994 * partially completed devices, so we only need
5995 * to worry about reshape going forwards.
5996 */
5997 /* Hack because v0.91 doesn't store recovery_offset properly. */
5998 if (mddev->major_version == 0 &&
5999 mddev->minor_version > 90)
6000 rdev->recovery_offset = reshape_offset;
6001
6002 if (rdev->recovery_offset < reshape_offset) {
6003 /* We need to check old and new layout */
6004 if (!only_parity(rdev->raid_disk,
6005 conf->algorithm,
6006 conf->raid_disks,
6007 conf->max_degraded))
6008 continue;
6009 }
6010 if (!only_parity(rdev->raid_disk,
6011 conf->prev_algo,
6012 conf->previous_raid_disks,
6013 conf->max_degraded))
6014 continue;
6015 dirty_parity_disks++;
6016 }
6017
6018 /*
6019 * 0 for a fully functional array, 1 or 2 for a degraded array.
6020 */
6021 mddev->degraded = calc_degraded(conf);
6022
6023 if (has_failed(conf)) {
6024 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6025 " (%d/%d failed)\n",
6026 mdname(mddev), mddev->degraded, conf->raid_disks);
6027 goto abort;
6028 }
6029
6030 /* device size must be a multiple of chunk size */
6031 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6032 mddev->resync_max_sectors = mddev->dev_sectors;
6033
6034 if (mddev->degraded > dirty_parity_disks &&
6035 mddev->recovery_cp != MaxSector) {
6036 if (mddev->ok_start_degraded)
6037 printk(KERN_WARNING
6038 "md/raid:%s: starting dirty degraded array"
6039 " - data corruption possible.\n",
6040 mdname(mddev));
6041 else {
6042 printk(KERN_ERR
6043 "md/raid:%s: cannot start dirty degraded array.\n",
6044 mdname(mddev));
6045 goto abort;
6046 }
6047 }
6048
6049 if (mddev->degraded == 0)
6050 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6051 " devices, algorithm %d\n", mdname(mddev), conf->level,
6052 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6053 mddev->new_layout);
6054 else
6055 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6056 " out of %d devices, algorithm %d\n",
6057 mdname(mddev), conf->level,
6058 mddev->raid_disks - mddev->degraded,
6059 mddev->raid_disks, mddev->new_layout);
6060
6061 print_raid5_conf(conf);
6062
6063 if (conf->reshape_progress != MaxSector) {
6064 conf->reshape_safe = conf->reshape_progress;
6065 atomic_set(&conf->reshape_stripes, 0);
6066 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6067 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6068 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6069 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6070 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6071 "reshape");
6072 }
6073
6074
6075 /* Ok, everything is just fine now */
6076 if (mddev->to_remove == &raid5_attrs_group)
6077 mddev->to_remove = NULL;
6078 else if (mddev->kobj.sd &&
6079 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6080 printk(KERN_WARNING
6081 "raid5: failed to create sysfs attributes for %s\n",
6082 mdname(mddev));
6083 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6084
6085 if (mddev->queue) {
6086 int chunk_size;
6087 bool discard_supported = true;
6088 /* read-ahead size must cover two whole stripes, which
6089 * is 2 * (datadisks) * chunksize where 'n' is the
6090 * number of raid devices
6091 */
6092 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6093 int stripe = data_disks *
6094 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6095 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6096 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6097
6098 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6099
6100 mddev->queue->backing_dev_info.congested_data = mddev;
6101 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6102
6103 chunk_size = mddev->chunk_sectors << 9;
6104 blk_queue_io_min(mddev->queue, chunk_size);
6105 blk_queue_io_opt(mddev->queue, chunk_size *
6106 (conf->raid_disks - conf->max_degraded));
6107 /*
6108 * We can only discard a whole stripe. It doesn't make sense to
6109 * discard data disk but write parity disk
6110 */
6111 stripe = stripe * PAGE_SIZE;
6112 /* Round up to power of 2, as discard handling
6113 * currently assumes that */
6114 while ((stripe-1) & stripe)
6115 stripe = (stripe | (stripe-1)) + 1;
6116 mddev->queue->limits.discard_alignment = stripe;
6117 mddev->queue->limits.discard_granularity = stripe;
6118 /*
6119 * unaligned part of discard request will be ignored, so can't
6120 * guarantee discard_zerors_data
6121 */
6122 mddev->queue->limits.discard_zeroes_data = 0;
6123
6124 blk_queue_max_write_same_sectors(mddev->queue, 0);
6125
6126 rdev_for_each(rdev, mddev) {
6127 disk_stack_limits(mddev->gendisk, rdev->bdev,
6128 rdev->data_offset << 9);
6129 disk_stack_limits(mddev->gendisk, rdev->bdev,
6130 rdev->new_data_offset << 9);
6131 /*
6132 * discard_zeroes_data is required, otherwise data
6133 * could be lost. Consider a scenario: discard a stripe
6134 * (the stripe could be inconsistent if
6135 * discard_zeroes_data is 0); write one disk of the
6136 * stripe (the stripe could be inconsistent again
6137 * depending on which disks are used to calculate
6138 * parity); the disk is broken; The stripe data of this
6139 * disk is lost.
6140 */
6141 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6142 !bdev_get_queue(rdev->bdev)->
6143 limits.discard_zeroes_data)
6144 discard_supported = false;
6145 }
6146
6147 if (discard_supported &&
6148 mddev->queue->limits.max_discard_sectors >= stripe &&
6149 mddev->queue->limits.discard_granularity >= stripe)
6150 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6151 mddev->queue);
6152 else
6153 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6154 mddev->queue);
6155 }
6156
6157 return 0;
6158 abort:
6159 md_unregister_thread(&mddev->thread);
6160 print_raid5_conf(conf);
6161 free_conf(conf);
6162 mddev->private = NULL;
6163 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6164 return -EIO;
6165 }
6166
6167 static int stop(struct mddev *mddev)
6168 {
6169 struct r5conf *conf = mddev->private;
6170
6171 md_unregister_thread(&mddev->thread);
6172 if (mddev->queue)
6173 mddev->queue->backing_dev_info.congested_fn = NULL;
6174 free_conf(conf);
6175 mddev->private = NULL;
6176 mddev->to_remove = &raid5_attrs_group;
6177 return 0;
6178 }
6179
6180 static void status(struct seq_file *seq, struct mddev *mddev)
6181 {
6182 struct r5conf *conf = mddev->private;
6183 int i;
6184
6185 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6186 mddev->chunk_sectors / 2, mddev->layout);
6187 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6188 for (i = 0; i < conf->raid_disks; i++)
6189 seq_printf (seq, "%s",
6190 conf->disks[i].rdev &&
6191 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6192 seq_printf (seq, "]");
6193 }
6194
6195 static void print_raid5_conf (struct r5conf *conf)
6196 {
6197 int i;
6198 struct disk_info *tmp;
6199
6200 printk(KERN_DEBUG "RAID conf printout:\n");
6201 if (!conf) {
6202 printk("(conf==NULL)\n");
6203 return;
6204 }
6205 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6206 conf->raid_disks,
6207 conf->raid_disks - conf->mddev->degraded);
6208
6209 for (i = 0; i < conf->raid_disks; i++) {
6210 char b[BDEVNAME_SIZE];
6211 tmp = conf->disks + i;
6212 if (tmp->rdev)
6213 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6214 i, !test_bit(Faulty, &tmp->rdev->flags),
6215 bdevname(tmp->rdev->bdev, b));
6216 }
6217 }
6218
6219 static int raid5_spare_active(struct mddev *mddev)
6220 {
6221 int i;
6222 struct r5conf *conf = mddev->private;
6223 struct disk_info *tmp;
6224 int count = 0;
6225 unsigned long flags;
6226
6227 for (i = 0; i < conf->raid_disks; i++) {
6228 tmp = conf->disks + i;
6229 if (tmp->replacement
6230 && tmp->replacement->recovery_offset == MaxSector
6231 && !test_bit(Faulty, &tmp->replacement->flags)
6232 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6233 /* Replacement has just become active. */
6234 if (!tmp->rdev
6235 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6236 count++;
6237 if (tmp->rdev) {
6238 /* Replaced device not technically faulty,
6239 * but we need to be sure it gets removed
6240 * and never re-added.
6241 */
6242 set_bit(Faulty, &tmp->rdev->flags);
6243 sysfs_notify_dirent_safe(
6244 tmp->rdev->sysfs_state);
6245 }
6246 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6247 } else if (tmp->rdev
6248 && tmp->rdev->recovery_offset == MaxSector
6249 && !test_bit(Faulty, &tmp->rdev->flags)
6250 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6251 count++;
6252 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6253 }
6254 }
6255 spin_lock_irqsave(&conf->device_lock, flags);
6256 mddev->degraded = calc_degraded(conf);
6257 spin_unlock_irqrestore(&conf->device_lock, flags);
6258 print_raid5_conf(conf);
6259 return count;
6260 }
6261
6262 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6263 {
6264 struct r5conf *conf = mddev->private;
6265 int err = 0;
6266 int number = rdev->raid_disk;
6267 struct md_rdev **rdevp;
6268 struct disk_info *p = conf->disks + number;
6269
6270 print_raid5_conf(conf);
6271 if (rdev == p->rdev)
6272 rdevp = &p->rdev;
6273 else if (rdev == p->replacement)
6274 rdevp = &p->replacement;
6275 else
6276 return 0;
6277
6278 if (number >= conf->raid_disks &&
6279 conf->reshape_progress == MaxSector)
6280 clear_bit(In_sync, &rdev->flags);
6281
6282 if (test_bit(In_sync, &rdev->flags) ||
6283 atomic_read(&rdev->nr_pending)) {
6284 err = -EBUSY;
6285 goto abort;
6286 }
6287 /* Only remove non-faulty devices if recovery
6288 * isn't possible.
6289 */
6290 if (!test_bit(Faulty, &rdev->flags) &&
6291 mddev->recovery_disabled != conf->recovery_disabled &&
6292 !has_failed(conf) &&
6293 (!p->replacement || p->replacement == rdev) &&
6294 number < conf->raid_disks) {
6295 err = -EBUSY;
6296 goto abort;
6297 }
6298 *rdevp = NULL;
6299 synchronize_rcu();
6300 if (atomic_read(&rdev->nr_pending)) {
6301 /* lost the race, try later */
6302 err = -EBUSY;
6303 *rdevp = rdev;
6304 } else if (p->replacement) {
6305 /* We must have just cleared 'rdev' */
6306 p->rdev = p->replacement;
6307 clear_bit(Replacement, &p->replacement->flags);
6308 smp_mb(); /* Make sure other CPUs may see both as identical
6309 * but will never see neither - if they are careful
6310 */
6311 p->replacement = NULL;
6312 clear_bit(WantReplacement, &rdev->flags);
6313 } else
6314 /* We might have just removed the Replacement as faulty-
6315 * clear the bit just in case
6316 */
6317 clear_bit(WantReplacement, &rdev->flags);
6318 abort:
6319
6320 print_raid5_conf(conf);
6321 return err;
6322 }
6323
6324 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6325 {
6326 struct r5conf *conf = mddev->private;
6327 int err = -EEXIST;
6328 int disk;
6329 struct disk_info *p;
6330 int first = 0;
6331 int last = conf->raid_disks - 1;
6332
6333 if (mddev->recovery_disabled == conf->recovery_disabled)
6334 return -EBUSY;
6335
6336 if (rdev->saved_raid_disk < 0 && has_failed(conf))
6337 /* no point adding a device */
6338 return -EINVAL;
6339
6340 if (rdev->raid_disk >= 0)
6341 first = last = rdev->raid_disk;
6342
6343 /*
6344 * find the disk ... but prefer rdev->saved_raid_disk
6345 * if possible.
6346 */
6347 if (rdev->saved_raid_disk >= 0 &&
6348 rdev->saved_raid_disk >= first &&
6349 conf->disks[rdev->saved_raid_disk].rdev == NULL)
6350 first = rdev->saved_raid_disk;
6351
6352 for (disk = first; disk <= last; disk++) {
6353 p = conf->disks + disk;
6354 if (p->rdev == NULL) {
6355 clear_bit(In_sync, &rdev->flags);
6356 rdev->raid_disk = disk;
6357 err = 0;
6358 if (rdev->saved_raid_disk != disk)
6359 conf->fullsync = 1;
6360 rcu_assign_pointer(p->rdev, rdev);
6361 goto out;
6362 }
6363 }
6364 for (disk = first; disk <= last; disk++) {
6365 p = conf->disks + disk;
6366 if (test_bit(WantReplacement, &p->rdev->flags) &&
6367 p->replacement == NULL) {
6368 clear_bit(In_sync, &rdev->flags);
6369 set_bit(Replacement, &rdev->flags);
6370 rdev->raid_disk = disk;
6371 err = 0;
6372 conf->fullsync = 1;
6373 rcu_assign_pointer(p->replacement, rdev);
6374 break;
6375 }
6376 }
6377 out:
6378 print_raid5_conf(conf);
6379 return err;
6380 }
6381
6382 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6383 {
6384 /* no resync is happening, and there is enough space
6385 * on all devices, so we can resize.
6386 * We need to make sure resync covers any new space.
6387 * If the array is shrinking we should possibly wait until
6388 * any io in the removed space completes, but it hardly seems
6389 * worth it.
6390 */
6391 sector_t newsize;
6392 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6393 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6394 if (mddev->external_size &&
6395 mddev->array_sectors > newsize)
6396 return -EINVAL;
6397 if (mddev->bitmap) {
6398 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6399 if (ret)
6400 return ret;
6401 }
6402 md_set_array_sectors(mddev, newsize);
6403 set_capacity(mddev->gendisk, mddev->array_sectors);
6404 revalidate_disk(mddev->gendisk);
6405 if (sectors > mddev->dev_sectors &&
6406 mddev->recovery_cp > mddev->dev_sectors) {
6407 mddev->recovery_cp = mddev->dev_sectors;
6408 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6409 }
6410 mddev->dev_sectors = sectors;
6411 mddev->resync_max_sectors = sectors;
6412 return 0;
6413 }
6414
6415 static int check_stripe_cache(struct mddev *mddev)
6416 {
6417 /* Can only proceed if there are plenty of stripe_heads.
6418 * We need a minimum of one full stripe,, and for sensible progress
6419 * it is best to have about 4 times that.
6420 * If we require 4 times, then the default 256 4K stripe_heads will
6421 * allow for chunk sizes up to 256K, which is probably OK.
6422 * If the chunk size is greater, user-space should request more
6423 * stripe_heads first.
6424 */
6425 struct r5conf *conf = mddev->private;
6426 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6427 > conf->max_nr_stripes ||
6428 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6429 > conf->max_nr_stripes) {
6430 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
6431 mdname(mddev),
6432 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6433 / STRIPE_SIZE)*4);
6434 return 0;
6435 }
6436 return 1;
6437 }
6438
6439 static int check_reshape(struct mddev *mddev)
6440 {
6441 struct r5conf *conf = mddev->private;
6442
6443 if (mddev->delta_disks == 0 &&
6444 mddev->new_layout == mddev->layout &&
6445 mddev->new_chunk_sectors == mddev->chunk_sectors)
6446 return 0; /* nothing to do */
6447 if (has_failed(conf))
6448 return -EINVAL;
6449 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6450 /* We might be able to shrink, but the devices must
6451 * be made bigger first.
6452 * For raid6, 4 is the minimum size.
6453 * Otherwise 2 is the minimum
6454 */
6455 int min = 2;
6456 if (mddev->level == 6)
6457 min = 4;
6458 if (mddev->raid_disks + mddev->delta_disks < min)
6459 return -EINVAL;
6460 }
6461
6462 if (!check_stripe_cache(mddev))
6463 return -ENOSPC;
6464
6465 return resize_stripes(conf, (conf->previous_raid_disks
6466 + mddev->delta_disks));
6467 }
6468
6469 static int raid5_start_reshape(struct mddev *mddev)
6470 {
6471 struct r5conf *conf = mddev->private;
6472 struct md_rdev *rdev;
6473 int spares = 0;
6474 unsigned long flags;
6475
6476 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6477 return -EBUSY;
6478
6479 if (!check_stripe_cache(mddev))
6480 return -ENOSPC;
6481
6482 if (has_failed(conf))
6483 return -EINVAL;
6484
6485 rdev_for_each(rdev, mddev) {
6486 if (!test_bit(In_sync, &rdev->flags)
6487 && !test_bit(Faulty, &rdev->flags))
6488 spares++;
6489 }
6490
6491 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6492 /* Not enough devices even to make a degraded array
6493 * of that size
6494 */
6495 return -EINVAL;
6496
6497 /* Refuse to reduce size of the array. Any reductions in
6498 * array size must be through explicit setting of array_size
6499 * attribute.
6500 */
6501 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6502 < mddev->array_sectors) {
6503 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6504 "before number of disks\n", mdname(mddev));
6505 return -EINVAL;
6506 }
6507
6508 atomic_set(&conf->reshape_stripes, 0);
6509 spin_lock_irq(&conf->device_lock);
6510 write_seqcount_begin(&conf->gen_lock);
6511 conf->previous_raid_disks = conf->raid_disks;
6512 conf->raid_disks += mddev->delta_disks;
6513 conf->prev_chunk_sectors = conf->chunk_sectors;
6514 conf->chunk_sectors = mddev->new_chunk_sectors;
6515 conf->prev_algo = conf->algorithm;
6516 conf->algorithm = mddev->new_layout;
6517 conf->generation++;
6518 /* Code that selects data_offset needs to see the generation update
6519 * if reshape_progress has been set - so a memory barrier needed.
6520 */
6521 smp_mb();
6522 if (mddev->reshape_backwards)
6523 conf->reshape_progress = raid5_size(mddev, 0, 0);
6524 else
6525 conf->reshape_progress = 0;
6526 conf->reshape_safe = conf->reshape_progress;
6527 write_seqcount_end(&conf->gen_lock);
6528 spin_unlock_irq(&conf->device_lock);
6529
6530 /* Now make sure any requests that proceeded on the assumption
6531 * the reshape wasn't running - like Discard or Read - have
6532 * completed.
6533 */
6534 mddev_suspend(mddev);
6535 mddev_resume(mddev);
6536
6537 /* Add some new drives, as many as will fit.
6538 * We know there are enough to make the newly sized array work.
6539 * Don't add devices if we are reducing the number of
6540 * devices in the array. This is because it is not possible
6541 * to correctly record the "partially reconstructed" state of
6542 * such devices during the reshape and confusion could result.
6543 */
6544 if (mddev->delta_disks >= 0) {
6545 rdev_for_each(rdev, mddev)
6546 if (rdev->raid_disk < 0 &&
6547 !test_bit(Faulty, &rdev->flags)) {
6548 if (raid5_add_disk(mddev, rdev) == 0) {
6549 if (rdev->raid_disk
6550 >= conf->previous_raid_disks)
6551 set_bit(In_sync, &rdev->flags);
6552 else
6553 rdev->recovery_offset = 0;
6554
6555 if (sysfs_link_rdev(mddev, rdev))
6556 /* Failure here is OK */;
6557 }
6558 } else if (rdev->raid_disk >= conf->previous_raid_disks
6559 && !test_bit(Faulty, &rdev->flags)) {
6560 /* This is a spare that was manually added */
6561 set_bit(In_sync, &rdev->flags);
6562 }
6563
6564 /* When a reshape changes the number of devices,
6565 * ->degraded is measured against the larger of the
6566 * pre and post number of devices.
6567 */
6568 spin_lock_irqsave(&conf->device_lock, flags);
6569 mddev->degraded = calc_degraded(conf);
6570 spin_unlock_irqrestore(&conf->device_lock, flags);
6571 }
6572 mddev->raid_disks = conf->raid_disks;
6573 mddev->reshape_position = conf->reshape_progress;
6574 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6575
6576 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6577 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6578 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6579 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6580 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6581 "reshape");
6582 if (!mddev->sync_thread) {
6583 mddev->recovery = 0;
6584 spin_lock_irq(&conf->device_lock);
6585 write_seqcount_begin(&conf->gen_lock);
6586 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6587 mddev->new_chunk_sectors =
6588 conf->chunk_sectors = conf->prev_chunk_sectors;
6589 mddev->new_layout = conf->algorithm = conf->prev_algo;
6590 rdev_for_each(rdev, mddev)
6591 rdev->new_data_offset = rdev->data_offset;
6592 smp_wmb();
6593 conf->generation --;
6594 conf->reshape_progress = MaxSector;
6595 mddev->reshape_position = MaxSector;
6596 write_seqcount_end(&conf->gen_lock);
6597 spin_unlock_irq(&conf->device_lock);
6598 return -EAGAIN;
6599 }
6600 conf->reshape_checkpoint = jiffies;
6601 md_wakeup_thread(mddev->sync_thread);
6602 md_new_event(mddev);
6603 return 0;
6604 }
6605
6606 /* This is called from the reshape thread and should make any
6607 * changes needed in 'conf'
6608 */
6609 static void end_reshape(struct r5conf *conf)
6610 {
6611
6612 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6613 struct md_rdev *rdev;
6614
6615 spin_lock_irq(&conf->device_lock);
6616 conf->previous_raid_disks = conf->raid_disks;
6617 rdev_for_each(rdev, conf->mddev)
6618 rdev->data_offset = rdev->new_data_offset;
6619 smp_wmb();
6620 conf->reshape_progress = MaxSector;
6621 spin_unlock_irq(&conf->device_lock);
6622 wake_up(&conf->wait_for_overlap);
6623
6624 /* read-ahead size must cover two whole stripes, which is
6625 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6626 */
6627 if (conf->mddev->queue) {
6628 int data_disks = conf->raid_disks - conf->max_degraded;
6629 int stripe = data_disks * ((conf->chunk_sectors << 9)
6630 / PAGE_SIZE);
6631 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6632 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6633 }
6634 }
6635 }
6636
6637 /* This is called from the raid5d thread with mddev_lock held.
6638 * It makes config changes to the device.
6639 */
6640 static void raid5_finish_reshape(struct mddev *mddev)
6641 {
6642 struct r5conf *conf = mddev->private;
6643
6644 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6645
6646 if (mddev->delta_disks > 0) {
6647 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6648 set_capacity(mddev->gendisk, mddev->array_sectors);
6649 revalidate_disk(mddev->gendisk);
6650 } else {
6651 int d;
6652 spin_lock_irq(&conf->device_lock);
6653 mddev->degraded = calc_degraded(conf);
6654 spin_unlock_irq(&conf->device_lock);
6655 for (d = conf->raid_disks ;
6656 d < conf->raid_disks - mddev->delta_disks;
6657 d++) {
6658 struct md_rdev *rdev = conf->disks[d].rdev;
6659 if (rdev)
6660 clear_bit(In_sync, &rdev->flags);
6661 rdev = conf->disks[d].replacement;
6662 if (rdev)
6663 clear_bit(In_sync, &rdev->flags);
6664 }
6665 }
6666 mddev->layout = conf->algorithm;
6667 mddev->chunk_sectors = conf->chunk_sectors;
6668 mddev->reshape_position = MaxSector;
6669 mddev->delta_disks = 0;
6670 mddev->reshape_backwards = 0;
6671 }
6672 }
6673
6674 static void raid5_quiesce(struct mddev *mddev, int state)
6675 {
6676 struct r5conf *conf = mddev->private;
6677
6678 switch(state) {
6679 case 2: /* resume for a suspend */
6680 wake_up(&conf->wait_for_overlap);
6681 break;
6682
6683 case 1: /* stop all writes */
6684 lock_all_device_hash_locks_irq(conf);
6685 /* '2' tells resync/reshape to pause so that all
6686 * active stripes can drain
6687 */
6688 conf->quiesce = 2;
6689 wait_event_cmd(conf->wait_for_stripe,
6690 atomic_read(&conf->active_stripes) == 0 &&
6691 atomic_read(&conf->active_aligned_reads) == 0,
6692 unlock_all_device_hash_locks_irq(conf),
6693 lock_all_device_hash_locks_irq(conf));
6694 conf->quiesce = 1;
6695 unlock_all_device_hash_locks_irq(conf);
6696 /* allow reshape to continue */
6697 wake_up(&conf->wait_for_overlap);
6698 break;
6699
6700 case 0: /* re-enable writes */
6701 lock_all_device_hash_locks_irq(conf);
6702 conf->quiesce = 0;
6703 wake_up(&conf->wait_for_stripe);
6704 wake_up(&conf->wait_for_overlap);
6705 unlock_all_device_hash_locks_irq(conf);
6706 break;
6707 }
6708 }
6709
6710
6711 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6712 {
6713 struct r0conf *raid0_conf = mddev->private;
6714 sector_t sectors;
6715
6716 /* for raid0 takeover only one zone is supported */
6717 if (raid0_conf->nr_strip_zones > 1) {
6718 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6719 mdname(mddev));
6720 return ERR_PTR(-EINVAL);
6721 }
6722
6723 sectors = raid0_conf->strip_zone[0].zone_end;
6724 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6725 mddev->dev_sectors = sectors;
6726 mddev->new_level = level;
6727 mddev->new_layout = ALGORITHM_PARITY_N;
6728 mddev->new_chunk_sectors = mddev->chunk_sectors;
6729 mddev->raid_disks += 1;
6730 mddev->delta_disks = 1;
6731 /* make sure it will be not marked as dirty */
6732 mddev->recovery_cp = MaxSector;
6733
6734 return setup_conf(mddev);
6735 }
6736
6737
6738 static void *raid5_takeover_raid1(struct mddev *mddev)
6739 {
6740 int chunksect;
6741
6742 if (mddev->raid_disks != 2 ||
6743 mddev->degraded > 1)
6744 return ERR_PTR(-EINVAL);
6745
6746 /* Should check if there are write-behind devices? */
6747
6748 chunksect = 64*2; /* 64K by default */
6749
6750 /* The array must be an exact multiple of chunksize */
6751 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6752 chunksect >>= 1;
6753
6754 if ((chunksect<<9) < STRIPE_SIZE)
6755 /* array size does not allow a suitable chunk size */
6756 return ERR_PTR(-EINVAL);
6757
6758 mddev->new_level = 5;
6759 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6760 mddev->new_chunk_sectors = chunksect;
6761
6762 return setup_conf(mddev);
6763 }
6764
6765 static void *raid5_takeover_raid6(struct mddev *mddev)
6766 {
6767 int new_layout;
6768
6769 switch (mddev->layout) {
6770 case ALGORITHM_LEFT_ASYMMETRIC_6:
6771 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6772 break;
6773 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6774 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6775 break;
6776 case ALGORITHM_LEFT_SYMMETRIC_6:
6777 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6778 break;
6779 case ALGORITHM_RIGHT_SYMMETRIC_6:
6780 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6781 break;
6782 case ALGORITHM_PARITY_0_6:
6783 new_layout = ALGORITHM_PARITY_0;
6784 break;
6785 case ALGORITHM_PARITY_N:
6786 new_layout = ALGORITHM_PARITY_N;
6787 break;
6788 default:
6789 return ERR_PTR(-EINVAL);
6790 }
6791 mddev->new_level = 5;
6792 mddev->new_layout = new_layout;
6793 mddev->delta_disks = -1;
6794 mddev->raid_disks -= 1;
6795 return setup_conf(mddev);
6796 }
6797
6798
6799 static int raid5_check_reshape(struct mddev *mddev)
6800 {
6801 /* For a 2-drive array, the layout and chunk size can be changed
6802 * immediately as not restriping is needed.
6803 * For larger arrays we record the new value - after validation
6804 * to be used by a reshape pass.
6805 */
6806 struct r5conf *conf = mddev->private;
6807 int new_chunk = mddev->new_chunk_sectors;
6808
6809 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6810 return -EINVAL;
6811 if (new_chunk > 0) {
6812 if (!is_power_of_2(new_chunk))
6813 return -EINVAL;
6814 if (new_chunk < (PAGE_SIZE>>9))
6815 return -EINVAL;
6816 if (mddev->array_sectors & (new_chunk-1))
6817 /* not factor of array size */
6818 return -EINVAL;
6819 }
6820
6821 /* They look valid */
6822
6823 if (mddev->raid_disks == 2) {
6824 /* can make the change immediately */
6825 if (mddev->new_layout >= 0) {
6826 conf->algorithm = mddev->new_layout;
6827 mddev->layout = mddev->new_layout;
6828 }
6829 if (new_chunk > 0) {
6830 conf->chunk_sectors = new_chunk ;
6831 mddev->chunk_sectors = new_chunk;
6832 }
6833 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6834 md_wakeup_thread(mddev->thread);
6835 }
6836 return check_reshape(mddev);
6837 }
6838
6839 static int raid6_check_reshape(struct mddev *mddev)
6840 {
6841 int new_chunk = mddev->new_chunk_sectors;
6842
6843 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6844 return -EINVAL;
6845 if (new_chunk > 0) {
6846 if (!is_power_of_2(new_chunk))
6847 return -EINVAL;
6848 if (new_chunk < (PAGE_SIZE >> 9))
6849 return -EINVAL;
6850 if (mddev->array_sectors & (new_chunk-1))
6851 /* not factor of array size */
6852 return -EINVAL;
6853 }
6854
6855 /* They look valid */
6856 return check_reshape(mddev);
6857 }
6858
6859 static void *raid5_takeover(struct mddev *mddev)
6860 {
6861 /* raid5 can take over:
6862 * raid0 - if there is only one strip zone - make it a raid4 layout
6863 * raid1 - if there are two drives. We need to know the chunk size
6864 * raid4 - trivial - just use a raid4 layout.
6865 * raid6 - Providing it is a *_6 layout
6866 */
6867 if (mddev->level == 0)
6868 return raid45_takeover_raid0(mddev, 5);
6869 if (mddev->level == 1)
6870 return raid5_takeover_raid1(mddev);
6871 if (mddev->level == 4) {
6872 mddev->new_layout = ALGORITHM_PARITY_N;
6873 mddev->new_level = 5;
6874 return setup_conf(mddev);
6875 }
6876 if (mddev->level == 6)
6877 return raid5_takeover_raid6(mddev);
6878
6879 return ERR_PTR(-EINVAL);
6880 }
6881
6882 static void *raid4_takeover(struct mddev *mddev)
6883 {
6884 /* raid4 can take over:
6885 * raid0 - if there is only one strip zone
6886 * raid5 - if layout is right
6887 */
6888 if (mddev->level == 0)
6889 return raid45_takeover_raid0(mddev, 4);
6890 if (mddev->level == 5 &&
6891 mddev->layout == ALGORITHM_PARITY_N) {
6892 mddev->new_layout = 0;
6893 mddev->new_level = 4;
6894 return setup_conf(mddev);
6895 }
6896 return ERR_PTR(-EINVAL);
6897 }
6898
6899 static struct md_personality raid5_personality;
6900
6901 static void *raid6_takeover(struct mddev *mddev)
6902 {
6903 /* Currently can only take over a raid5. We map the
6904 * personality to an equivalent raid6 personality
6905 * with the Q block at the end.
6906 */
6907 int new_layout;
6908
6909 if (mddev->pers != &raid5_personality)
6910 return ERR_PTR(-EINVAL);
6911 if (mddev->degraded > 1)
6912 return ERR_PTR(-EINVAL);
6913 if (mddev->raid_disks > 253)
6914 return ERR_PTR(-EINVAL);
6915 if (mddev->raid_disks < 3)
6916 return ERR_PTR(-EINVAL);
6917
6918 switch (mddev->layout) {
6919 case ALGORITHM_LEFT_ASYMMETRIC:
6920 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6921 break;
6922 case ALGORITHM_RIGHT_ASYMMETRIC:
6923 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6924 break;
6925 case ALGORITHM_LEFT_SYMMETRIC:
6926 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6927 break;
6928 case ALGORITHM_RIGHT_SYMMETRIC:
6929 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6930 break;
6931 case ALGORITHM_PARITY_0:
6932 new_layout = ALGORITHM_PARITY_0_6;
6933 break;
6934 case ALGORITHM_PARITY_N:
6935 new_layout = ALGORITHM_PARITY_N;
6936 break;
6937 default:
6938 return ERR_PTR(-EINVAL);
6939 }
6940 mddev->new_level = 6;
6941 mddev->new_layout = new_layout;
6942 mddev->delta_disks = 1;
6943 mddev->raid_disks += 1;
6944 return setup_conf(mddev);
6945 }
6946
6947
6948 static struct md_personality raid6_personality =
6949 {
6950 .name = "raid6",
6951 .level = 6,
6952 .owner = THIS_MODULE,
6953 .make_request = make_request,
6954 .run = run,
6955 .stop = stop,
6956 .status = status,
6957 .error_handler = error,
6958 .hot_add_disk = raid5_add_disk,
6959 .hot_remove_disk= raid5_remove_disk,
6960 .spare_active = raid5_spare_active,
6961 .sync_request = sync_request,
6962 .resize = raid5_resize,
6963 .size = raid5_size,
6964 .check_reshape = raid6_check_reshape,
6965 .start_reshape = raid5_start_reshape,
6966 .finish_reshape = raid5_finish_reshape,
6967 .quiesce = raid5_quiesce,
6968 .takeover = raid6_takeover,
6969 };
6970 static struct md_personality raid5_personality =
6971 {
6972 .name = "raid5",
6973 .level = 5,
6974 .owner = THIS_MODULE,
6975 .make_request = make_request,
6976 .run = run,
6977 .stop = stop,
6978 .status = status,
6979 .error_handler = error,
6980 .hot_add_disk = raid5_add_disk,
6981 .hot_remove_disk= raid5_remove_disk,
6982 .spare_active = raid5_spare_active,
6983 .sync_request = sync_request,
6984 .resize = raid5_resize,
6985 .size = raid5_size,
6986 .check_reshape = raid5_check_reshape,
6987 .start_reshape = raid5_start_reshape,
6988 .finish_reshape = raid5_finish_reshape,
6989 .quiesce = raid5_quiesce,
6990 .takeover = raid5_takeover,
6991 };
6992
6993 static struct md_personality raid4_personality =
6994 {
6995 .name = "raid4",
6996 .level = 4,
6997 .owner = THIS_MODULE,
6998 .make_request = make_request,
6999 .run = run,
7000 .stop = stop,
7001 .status = status,
7002 .error_handler = error,
7003 .hot_add_disk = raid5_add_disk,
7004 .hot_remove_disk= raid5_remove_disk,
7005 .spare_active = raid5_spare_active,
7006 .sync_request = sync_request,
7007 .resize = raid5_resize,
7008 .size = raid5_size,
7009 .check_reshape = raid5_check_reshape,
7010 .start_reshape = raid5_start_reshape,
7011 .finish_reshape = raid5_finish_reshape,
7012 .quiesce = raid5_quiesce,
7013 .takeover = raid4_takeover,
7014 };
7015
7016 static int __init raid5_init(void)
7017 {
7018 raid5_wq = alloc_workqueue("raid5wq",
7019 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7020 if (!raid5_wq)
7021 return -ENOMEM;
7022 register_md_personality(&raid6_personality);
7023 register_md_personality(&raid5_personality);
7024 register_md_personality(&raid4_personality);
7025 return 0;
7026 }
7027
7028 static void raid5_exit(void)
7029 {
7030 unregister_md_personality(&raid6_personality);
7031 unregister_md_personality(&raid5_personality);
7032 unregister_md_personality(&raid4_personality);
7033 destroy_workqueue(raid5_wq);
7034 }
7035
7036 module_init(raid5_init);
7037 module_exit(raid5_exit);
7038 MODULE_LICENSE("GPL");
7039 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7040 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7041 MODULE_ALIAS("md-raid5");
7042 MODULE_ALIAS("md-raid4");
7043 MODULE_ALIAS("md-level-5");
7044 MODULE_ALIAS("md-level-4");
7045 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7046 MODULE_ALIAS("md-raid6");
7047 MODULE_ALIAS("md-level-6");
7048
7049 /* This used to be two separate modules, they were: */
7050 MODULE_ALIAS("raid5");
7051 MODULE_ALIAS("raid6");