2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
68 static bool devices_handle_discard_safely
= false;
69 module_param(devices_handle_discard_safely
, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely
,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct
*raid5_wq
;
74 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
76 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
77 return &conf
->stripe_hashtbl
[hash
];
80 static inline int stripe_hash_locks_hash(sector_t sect
)
82 return (sect
>> STRIPE_SHIFT
) & STRIPE_HASH_LOCKS_MASK
;
85 static inline void lock_device_hash_lock(struct r5conf
*conf
, int hash
)
87 spin_lock_irq(conf
->hash_locks
+ hash
);
88 spin_lock(&conf
->device_lock
);
91 static inline void unlock_device_hash_lock(struct r5conf
*conf
, int hash
)
93 spin_unlock(&conf
->device_lock
);
94 spin_unlock_irq(conf
->hash_locks
+ hash
);
97 static inline void lock_all_device_hash_locks_irq(struct r5conf
*conf
)
101 spin_lock(conf
->hash_locks
);
102 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
103 spin_lock_nest_lock(conf
->hash_locks
+ i
, conf
->hash_locks
);
104 spin_lock(&conf
->device_lock
);
107 static inline void unlock_all_device_hash_locks_irq(struct r5conf
*conf
)
110 spin_unlock(&conf
->device_lock
);
111 for (i
= NR_STRIPE_HASH_LOCKS
; i
; i
--)
112 spin_unlock(conf
->hash_locks
+ i
- 1);
116 /* Find first data disk in a raid6 stripe */
117 static inline int raid6_d0(struct stripe_head
*sh
)
120 /* ddf always start from first device */
122 /* md starts just after Q block */
123 if (sh
->qd_idx
== sh
->disks
- 1)
126 return sh
->qd_idx
+ 1;
128 static inline int raid6_next_disk(int disk
, int raid_disks
)
131 return (disk
< raid_disks
) ? disk
: 0;
134 /* When walking through the disks in a raid5, starting at raid6_d0,
135 * We need to map each disk to a 'slot', where the data disks are slot
136 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
137 * is raid_disks-1. This help does that mapping.
139 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
140 int *count
, int syndrome_disks
)
146 if (idx
== sh
->pd_idx
)
147 return syndrome_disks
;
148 if (idx
== sh
->qd_idx
)
149 return syndrome_disks
+ 1;
155 static void return_io(struct bio_list
*return_bi
)
158 while ((bi
= bio_list_pop(return_bi
)) != NULL
) {
159 bi
->bi_iter
.bi_size
= 0;
160 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
166 static void print_raid5_conf (struct r5conf
*conf
);
168 static int stripe_operations_active(struct stripe_head
*sh
)
170 return sh
->check_state
|| sh
->reconstruct_state
||
171 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
172 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
175 static void raid5_wakeup_stripe_thread(struct stripe_head
*sh
)
177 struct r5conf
*conf
= sh
->raid_conf
;
178 struct r5worker_group
*group
;
180 int i
, cpu
= sh
->cpu
;
182 if (!cpu_online(cpu
)) {
183 cpu
= cpumask_any(cpu_online_mask
);
187 if (list_empty(&sh
->lru
)) {
188 struct r5worker_group
*group
;
189 group
= conf
->worker_groups
+ cpu_to_group(cpu
);
190 list_add_tail(&sh
->lru
, &group
->handle_list
);
191 group
->stripes_cnt
++;
195 if (conf
->worker_cnt_per_group
== 0) {
196 md_wakeup_thread(conf
->mddev
->thread
);
200 group
= conf
->worker_groups
+ cpu_to_group(sh
->cpu
);
202 group
->workers
[0].working
= true;
203 /* at least one worker should run to avoid race */
204 queue_work_on(sh
->cpu
, raid5_wq
, &group
->workers
[0].work
);
206 thread_cnt
= group
->stripes_cnt
/ MAX_STRIPE_BATCH
- 1;
207 /* wakeup more workers */
208 for (i
= 1; i
< conf
->worker_cnt_per_group
&& thread_cnt
> 0; i
++) {
209 if (group
->workers
[i
].working
== false) {
210 group
->workers
[i
].working
= true;
211 queue_work_on(sh
->cpu
, raid5_wq
,
212 &group
->workers
[i
].work
);
218 static void do_release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
219 struct list_head
*temp_inactive_list
)
222 int injournal
= 0; /* number of date pages with R5_InJournal */
224 BUG_ON(!list_empty(&sh
->lru
));
225 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
227 if (r5c_is_writeback(conf
->log
))
228 for (i
= sh
->disks
; i
--; )
229 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
232 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
233 * data in journal, so they are not released to cached lists
235 if (conf
->quiesce
&& r5c_is_writeback(conf
->log
) &&
236 !test_bit(STRIPE_HANDLE
, &sh
->state
) && injournal
!= 0) {
237 if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
))
238 r5c_make_stripe_write_out(sh
);
239 set_bit(STRIPE_HANDLE
, &sh
->state
);
242 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
243 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
244 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
245 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
246 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
247 sh
->bm_seq
- conf
->seq_write
> 0)
248 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
250 clear_bit(STRIPE_DELAYED
, &sh
->state
);
251 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
252 if (conf
->worker_cnt_per_group
== 0) {
253 list_add_tail(&sh
->lru
, &conf
->handle_list
);
255 raid5_wakeup_stripe_thread(sh
);
259 md_wakeup_thread(conf
->mddev
->thread
);
261 BUG_ON(stripe_operations_active(sh
));
262 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
263 if (atomic_dec_return(&conf
->preread_active_stripes
)
265 md_wakeup_thread(conf
->mddev
->thread
);
266 atomic_dec(&conf
->active_stripes
);
267 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
268 if (!r5c_is_writeback(conf
->log
))
269 list_add_tail(&sh
->lru
, temp_inactive_list
);
271 WARN_ON(test_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
));
273 list_add_tail(&sh
->lru
, temp_inactive_list
);
274 else if (injournal
== conf
->raid_disks
- conf
->max_degraded
) {
276 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
))
277 atomic_inc(&conf
->r5c_cached_full_stripes
);
278 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
))
279 atomic_dec(&conf
->r5c_cached_partial_stripes
);
280 list_add_tail(&sh
->lru
, &conf
->r5c_full_stripe_list
);
281 r5c_check_cached_full_stripe(conf
);
284 if (!test_and_set_bit(STRIPE_R5C_PARTIAL_STRIPE
,
286 atomic_inc(&conf
->r5c_cached_partial_stripes
);
287 list_add_tail(&sh
->lru
, &conf
->r5c_partial_stripe_list
);
294 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
295 struct list_head
*temp_inactive_list
)
297 if (atomic_dec_and_test(&sh
->count
))
298 do_release_stripe(conf
, sh
, temp_inactive_list
);
302 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
304 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
305 * given time. Adding stripes only takes device lock, while deleting stripes
306 * only takes hash lock.
308 static void release_inactive_stripe_list(struct r5conf
*conf
,
309 struct list_head
*temp_inactive_list
,
313 bool do_wakeup
= false;
316 if (hash
== NR_STRIPE_HASH_LOCKS
) {
317 size
= NR_STRIPE_HASH_LOCKS
;
318 hash
= NR_STRIPE_HASH_LOCKS
- 1;
322 struct list_head
*list
= &temp_inactive_list
[size
- 1];
325 * We don't hold any lock here yet, raid5_get_active_stripe() might
326 * remove stripes from the list
328 if (!list_empty_careful(list
)) {
329 spin_lock_irqsave(conf
->hash_locks
+ hash
, flags
);
330 if (list_empty(conf
->inactive_list
+ hash
) &&
332 atomic_dec(&conf
->empty_inactive_list_nr
);
333 list_splice_tail_init(list
, conf
->inactive_list
+ hash
);
335 spin_unlock_irqrestore(conf
->hash_locks
+ hash
, flags
);
342 wake_up(&conf
->wait_for_stripe
);
343 if (atomic_read(&conf
->active_stripes
) == 0)
344 wake_up(&conf
->wait_for_quiescent
);
345 if (conf
->retry_read_aligned
)
346 md_wakeup_thread(conf
->mddev
->thread
);
350 /* should hold conf->device_lock already */
351 static int release_stripe_list(struct r5conf
*conf
,
352 struct list_head
*temp_inactive_list
)
354 struct stripe_head
*sh
;
356 struct llist_node
*head
;
358 head
= llist_del_all(&conf
->released_stripes
);
359 head
= llist_reverse_order(head
);
363 sh
= llist_entry(head
, struct stripe_head
, release_list
);
364 head
= llist_next(head
);
365 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 clear_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
);
369 * Don't worry the bit is set here, because if the bit is set
370 * again, the count is always > 1. This is true for
371 * STRIPE_ON_UNPLUG_LIST bit too.
373 hash
= sh
->hash_lock_index
;
374 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
381 void raid5_release_stripe(struct stripe_head
*sh
)
383 struct r5conf
*conf
= sh
->raid_conf
;
385 struct list_head list
;
389 /* Avoid release_list until the last reference.
391 if (atomic_add_unless(&sh
->count
, -1, 1))
394 if (unlikely(!conf
->mddev
->thread
) ||
395 test_and_set_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
))
397 wakeup
= llist_add(&sh
->release_list
, &conf
->released_stripes
);
399 md_wakeup_thread(conf
->mddev
->thread
);
402 local_irq_save(flags
);
403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 if (atomic_dec_and_lock(&sh
->count
, &conf
->device_lock
)) {
405 INIT_LIST_HEAD(&list
);
406 hash
= sh
->hash_lock_index
;
407 do_release_stripe(conf
, sh
, &list
);
408 spin_unlock(&conf
->device_lock
);
409 release_inactive_stripe_list(conf
, &list
, hash
);
411 local_irq_restore(flags
);
414 static inline void remove_hash(struct stripe_head
*sh
)
416 pr_debug("remove_hash(), stripe %llu\n",
417 (unsigned long long)sh
->sector
);
419 hlist_del_init(&sh
->hash
);
422 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
424 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
426 pr_debug("insert_hash(), stripe %llu\n",
427 (unsigned long long)sh
->sector
);
429 hlist_add_head(&sh
->hash
, hp
);
432 /* find an idle stripe, make sure it is unhashed, and return it. */
433 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
, int hash
)
435 struct stripe_head
*sh
= NULL
;
436 struct list_head
*first
;
438 if (list_empty(conf
->inactive_list
+ hash
))
440 first
= (conf
->inactive_list
+ hash
)->next
;
441 sh
= list_entry(first
, struct stripe_head
, lru
);
442 list_del_init(first
);
444 atomic_inc(&conf
->active_stripes
);
445 BUG_ON(hash
!= sh
->hash_lock_index
);
446 if (list_empty(conf
->inactive_list
+ hash
))
447 atomic_inc(&conf
->empty_inactive_list_nr
);
452 static void shrink_buffers(struct stripe_head
*sh
)
456 int num
= sh
->raid_conf
->pool_size
;
458 for (i
= 0; i
< num
; i
++) {
459 WARN_ON(sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
);
463 sh
->dev
[i
].page
= NULL
;
468 static int grow_buffers(struct stripe_head
*sh
, gfp_t gfp
)
471 int num
= sh
->raid_conf
->pool_size
;
473 for (i
= 0; i
< num
; i
++) {
476 if (!(page
= alloc_page(gfp
))) {
479 sh
->dev
[i
].page
= page
;
480 sh
->dev
[i
].orig_page
= page
;
485 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
486 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
487 struct stripe_head
*sh
);
489 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
491 struct r5conf
*conf
= sh
->raid_conf
;
494 BUG_ON(atomic_read(&sh
->count
) != 0);
495 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
496 BUG_ON(stripe_operations_active(sh
));
497 BUG_ON(sh
->batch_head
);
499 pr_debug("init_stripe called, stripe %llu\n",
500 (unsigned long long)sector
);
502 seq
= read_seqcount_begin(&conf
->gen_lock
);
503 sh
->generation
= conf
->generation
- previous
;
504 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
506 stripe_set_idx(sector
, conf
, previous
, sh
);
509 for (i
= sh
->disks
; i
--; ) {
510 struct r5dev
*dev
= &sh
->dev
[i
];
512 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
513 test_bit(R5_LOCKED
, &dev
->flags
)) {
514 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
515 (unsigned long long)sh
->sector
, i
, dev
->toread
,
516 dev
->read
, dev
->towrite
, dev
->written
,
517 test_bit(R5_LOCKED
, &dev
->flags
));
521 raid5_build_block(sh
, i
, previous
);
523 if (read_seqcount_retry(&conf
->gen_lock
, seq
))
525 sh
->overwrite_disks
= 0;
526 insert_hash(conf
, sh
);
527 sh
->cpu
= smp_processor_id();
528 set_bit(STRIPE_BATCH_READY
, &sh
->state
);
531 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
534 struct stripe_head
*sh
;
536 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
537 hlist_for_each_entry(sh
, stripe_hash(conf
, sector
), hash
)
538 if (sh
->sector
== sector
&& sh
->generation
== generation
)
540 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
545 * Need to check if array has failed when deciding whether to:
547 * - remove non-faulty devices
550 * This determination is simple when no reshape is happening.
551 * However if there is a reshape, we need to carefully check
552 * both the before and after sections.
553 * This is because some failed devices may only affect one
554 * of the two sections, and some non-in_sync devices may
555 * be insync in the section most affected by failed devices.
557 static int calc_degraded(struct r5conf
*conf
)
559 int degraded
, degraded2
;
564 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
565 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
566 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
567 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
568 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
570 else if (test_bit(In_sync
, &rdev
->flags
))
573 /* not in-sync or faulty.
574 * If the reshape increases the number of devices,
575 * this is being recovered by the reshape, so
576 * this 'previous' section is not in_sync.
577 * If the number of devices is being reduced however,
578 * the device can only be part of the array if
579 * we are reverting a reshape, so this section will
582 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
586 if (conf
->raid_disks
== conf
->previous_raid_disks
)
590 for (i
= 0; i
< conf
->raid_disks
; i
++) {
591 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
592 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
593 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
594 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
596 else if (test_bit(In_sync
, &rdev
->flags
))
599 /* not in-sync or faulty.
600 * If reshape increases the number of devices, this
601 * section has already been recovered, else it
602 * almost certainly hasn't.
604 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
608 if (degraded2
> degraded
)
613 static int has_failed(struct r5conf
*conf
)
617 if (conf
->mddev
->reshape_position
== MaxSector
)
618 return conf
->mddev
->degraded
> conf
->max_degraded
;
620 degraded
= calc_degraded(conf
);
621 if (degraded
> conf
->max_degraded
)
627 raid5_get_active_stripe(struct r5conf
*conf
, sector_t sector
,
628 int previous
, int noblock
, int noquiesce
)
630 struct stripe_head
*sh
;
631 int hash
= stripe_hash_locks_hash(sector
);
632 int inc_empty_inactive_list_flag
;
634 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
636 spin_lock_irq(conf
->hash_locks
+ hash
);
639 wait_event_lock_irq(conf
->wait_for_quiescent
,
640 conf
->quiesce
== 0 || noquiesce
,
641 *(conf
->hash_locks
+ hash
));
642 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
644 if (!test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
)) {
645 sh
= get_free_stripe(conf
, hash
);
646 if (!sh
&& !test_bit(R5_DID_ALLOC
,
648 set_bit(R5_ALLOC_MORE
,
651 if (noblock
&& sh
== NULL
)
654 r5c_check_stripe_cache_usage(conf
);
656 set_bit(R5_INACTIVE_BLOCKED
,
658 r5l_wake_reclaim(conf
->log
, 0);
660 conf
->wait_for_stripe
,
661 !list_empty(conf
->inactive_list
+ hash
) &&
662 (atomic_read(&conf
->active_stripes
)
663 < (conf
->max_nr_stripes
* 3 / 4)
664 || !test_bit(R5_INACTIVE_BLOCKED
,
665 &conf
->cache_state
)),
666 *(conf
->hash_locks
+ hash
));
667 clear_bit(R5_INACTIVE_BLOCKED
,
670 init_stripe(sh
, sector
, previous
);
671 atomic_inc(&sh
->count
);
673 } else if (!atomic_inc_not_zero(&sh
->count
)) {
674 spin_lock(&conf
->device_lock
);
675 if (!atomic_read(&sh
->count
)) {
676 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
677 atomic_inc(&conf
->active_stripes
);
678 BUG_ON(list_empty(&sh
->lru
) &&
679 !test_bit(STRIPE_EXPANDING
, &sh
->state
));
680 inc_empty_inactive_list_flag
= 0;
681 if (!list_empty(conf
->inactive_list
+ hash
))
682 inc_empty_inactive_list_flag
= 1;
683 list_del_init(&sh
->lru
);
684 if (list_empty(conf
->inactive_list
+ hash
) && inc_empty_inactive_list_flag
)
685 atomic_inc(&conf
->empty_inactive_list_nr
);
687 sh
->group
->stripes_cnt
--;
691 atomic_inc(&sh
->count
);
692 spin_unlock(&conf
->device_lock
);
694 } while (sh
== NULL
);
696 spin_unlock_irq(conf
->hash_locks
+ hash
);
700 static bool is_full_stripe_write(struct stripe_head
*sh
)
702 BUG_ON(sh
->overwrite_disks
> (sh
->disks
- sh
->raid_conf
->max_degraded
));
703 return sh
->overwrite_disks
== (sh
->disks
- sh
->raid_conf
->max_degraded
);
706 static void lock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
710 spin_lock(&sh2
->stripe_lock
);
711 spin_lock_nested(&sh1
->stripe_lock
, 1);
713 spin_lock(&sh1
->stripe_lock
);
714 spin_lock_nested(&sh2
->stripe_lock
, 1);
718 static void unlock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
720 spin_unlock(&sh1
->stripe_lock
);
721 spin_unlock(&sh2
->stripe_lock
);
725 /* Only freshly new full stripe normal write stripe can be added to a batch list */
726 static bool stripe_can_batch(struct stripe_head
*sh
)
728 struct r5conf
*conf
= sh
->raid_conf
;
732 return test_bit(STRIPE_BATCH_READY
, &sh
->state
) &&
733 !test_bit(STRIPE_BITMAP_PENDING
, &sh
->state
) &&
734 is_full_stripe_write(sh
);
737 /* we only do back search */
738 static void stripe_add_to_batch_list(struct r5conf
*conf
, struct stripe_head
*sh
)
740 struct stripe_head
*head
;
741 sector_t head_sector
, tmp_sec
;
744 int inc_empty_inactive_list_flag
;
746 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
747 tmp_sec
= sh
->sector
;
748 if (!sector_div(tmp_sec
, conf
->chunk_sectors
))
750 head_sector
= sh
->sector
- STRIPE_SECTORS
;
752 hash
= stripe_hash_locks_hash(head_sector
);
753 spin_lock_irq(conf
->hash_locks
+ hash
);
754 head
= __find_stripe(conf
, head_sector
, conf
->generation
);
755 if (head
&& !atomic_inc_not_zero(&head
->count
)) {
756 spin_lock(&conf
->device_lock
);
757 if (!atomic_read(&head
->count
)) {
758 if (!test_bit(STRIPE_HANDLE
, &head
->state
))
759 atomic_inc(&conf
->active_stripes
);
760 BUG_ON(list_empty(&head
->lru
) &&
761 !test_bit(STRIPE_EXPANDING
, &head
->state
));
762 inc_empty_inactive_list_flag
= 0;
763 if (!list_empty(conf
->inactive_list
+ hash
))
764 inc_empty_inactive_list_flag
= 1;
765 list_del_init(&head
->lru
);
766 if (list_empty(conf
->inactive_list
+ hash
) && inc_empty_inactive_list_flag
)
767 atomic_inc(&conf
->empty_inactive_list_nr
);
769 head
->group
->stripes_cnt
--;
773 atomic_inc(&head
->count
);
774 spin_unlock(&conf
->device_lock
);
776 spin_unlock_irq(conf
->hash_locks
+ hash
);
780 if (!stripe_can_batch(head
))
783 lock_two_stripes(head
, sh
);
784 /* clear_batch_ready clear the flag */
785 if (!stripe_can_batch(head
) || !stripe_can_batch(sh
))
792 while (dd_idx
== sh
->pd_idx
|| dd_idx
== sh
->qd_idx
)
794 if (head
->dev
[dd_idx
].towrite
->bi_opf
!= sh
->dev
[dd_idx
].towrite
->bi_opf
||
795 bio_op(head
->dev
[dd_idx
].towrite
) != bio_op(sh
->dev
[dd_idx
].towrite
))
798 if (head
->batch_head
) {
799 spin_lock(&head
->batch_head
->batch_lock
);
800 /* This batch list is already running */
801 if (!stripe_can_batch(head
)) {
802 spin_unlock(&head
->batch_head
->batch_lock
);
807 * at this point, head's BATCH_READY could be cleared, but we
808 * can still add the stripe to batch list
810 list_add(&sh
->batch_list
, &head
->batch_list
);
811 spin_unlock(&head
->batch_head
->batch_lock
);
813 sh
->batch_head
= head
->batch_head
;
815 head
->batch_head
= head
;
816 sh
->batch_head
= head
->batch_head
;
817 spin_lock(&head
->batch_lock
);
818 list_add_tail(&sh
->batch_list
, &head
->batch_list
);
819 spin_unlock(&head
->batch_lock
);
822 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
823 if (atomic_dec_return(&conf
->preread_active_stripes
)
825 md_wakeup_thread(conf
->mddev
->thread
);
827 if (test_and_clear_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
828 int seq
= sh
->bm_seq
;
829 if (test_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
) &&
830 sh
->batch_head
->bm_seq
> seq
)
831 seq
= sh
->batch_head
->bm_seq
;
832 set_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
);
833 sh
->batch_head
->bm_seq
= seq
;
836 atomic_inc(&sh
->count
);
838 unlock_two_stripes(head
, sh
);
840 raid5_release_stripe(head
);
843 /* Determine if 'data_offset' or 'new_data_offset' should be used
844 * in this stripe_head.
846 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
848 sector_t progress
= conf
->reshape_progress
;
849 /* Need a memory barrier to make sure we see the value
850 * of conf->generation, or ->data_offset that was set before
851 * reshape_progress was updated.
854 if (progress
== MaxSector
)
856 if (sh
->generation
== conf
->generation
- 1)
858 /* We are in a reshape, and this is a new-generation stripe,
859 * so use new_data_offset.
865 raid5_end_read_request(struct bio
*bi
);
867 raid5_end_write_request(struct bio
*bi
);
869 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
871 struct r5conf
*conf
= sh
->raid_conf
;
872 int i
, disks
= sh
->disks
;
873 struct stripe_head
*head_sh
= sh
;
877 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
878 /* writing out phase */
879 if (r5l_write_stripe(conf
->log
, sh
) == 0)
881 } else { /* caching phase */
882 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
)) {
883 r5c_cache_data(conf
->log
, sh
, s
);
888 for (i
= disks
; i
--; ) {
889 int op
, op_flags
= 0;
890 int replace_only
= 0;
891 struct bio
*bi
, *rbi
;
892 struct md_rdev
*rdev
, *rrdev
= NULL
;
895 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
897 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
898 op_flags
= WRITE_FUA
;
899 if (test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
901 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
903 else if (test_and_clear_bit(R5_WantReplace
,
904 &sh
->dev
[i
].flags
)) {
909 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
910 op_flags
|= REQ_SYNC
;
913 bi
= &sh
->dev
[i
].req
;
914 rbi
= &sh
->dev
[i
].rreq
; /* For writing to replacement */
917 rrdev
= rcu_dereference(conf
->disks
[i
].replacement
);
918 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
919 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
924 if (op_is_write(op
)) {
928 /* We raced and saw duplicates */
931 if (test_bit(R5_ReadRepl
, &head_sh
->dev
[i
].flags
) && rrdev
)
936 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
939 atomic_inc(&rdev
->nr_pending
);
940 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
943 atomic_inc(&rrdev
->nr_pending
);
946 /* We have already checked bad blocks for reads. Now
947 * need to check for writes. We never accept write errors
948 * on the replacement, so we don't to check rrdev.
950 while (op_is_write(op
) && rdev
&&
951 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
954 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
955 &first_bad
, &bad_sectors
);
960 set_bit(BlockedBadBlocks
, &rdev
->flags
);
961 if (!conf
->mddev
->external
&&
962 conf
->mddev
->flags
) {
963 /* It is very unlikely, but we might
964 * still need to write out the
965 * bad block log - better give it
967 md_check_recovery(conf
->mddev
);
970 * Because md_wait_for_blocked_rdev
971 * will dec nr_pending, we must
972 * increment it first.
974 atomic_inc(&rdev
->nr_pending
);
975 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
977 /* Acknowledged bad block - skip the write */
978 rdev_dec_pending(rdev
, conf
->mddev
);
984 if (s
->syncing
|| s
->expanding
|| s
->expanded
986 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
988 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
990 bi
->bi_bdev
= rdev
->bdev
;
991 bio_set_op_attrs(bi
, op
, op_flags
);
992 bi
->bi_end_io
= op_is_write(op
)
993 ? raid5_end_write_request
994 : raid5_end_read_request
;
997 pr_debug("%s: for %llu schedule op %d on disc %d\n",
998 __func__
, (unsigned long long)sh
->sector
,
1000 atomic_inc(&sh
->count
);
1002 atomic_inc(&head_sh
->count
);
1003 if (use_new_offset(conf
, sh
))
1004 bi
->bi_iter
.bi_sector
= (sh
->sector
1005 + rdev
->new_data_offset
);
1007 bi
->bi_iter
.bi_sector
= (sh
->sector
1008 + rdev
->data_offset
);
1009 if (test_bit(R5_ReadNoMerge
, &head_sh
->dev
[i
].flags
))
1010 bi
->bi_opf
|= REQ_NOMERGE
;
1012 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1013 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1014 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].page
;
1016 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1017 bi
->bi_io_vec
[0].bv_offset
= 0;
1018 bi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1020 * If this is discard request, set bi_vcnt 0. We don't
1021 * want to confuse SCSI because SCSI will replace payload
1023 if (op
== REQ_OP_DISCARD
)
1026 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
1028 if (conf
->mddev
->gendisk
)
1029 trace_block_bio_remap(bdev_get_queue(bi
->bi_bdev
),
1030 bi
, disk_devt(conf
->mddev
->gendisk
),
1032 generic_make_request(bi
);
1035 if (s
->syncing
|| s
->expanding
|| s
->expanded
1037 md_sync_acct(rrdev
->bdev
, STRIPE_SECTORS
);
1039 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1041 rbi
->bi_bdev
= rrdev
->bdev
;
1042 bio_set_op_attrs(rbi
, op
, op_flags
);
1043 BUG_ON(!op_is_write(op
));
1044 rbi
->bi_end_io
= raid5_end_write_request
;
1045 rbi
->bi_private
= sh
;
1047 pr_debug("%s: for %llu schedule op %d on "
1048 "replacement disc %d\n",
1049 __func__
, (unsigned long long)sh
->sector
,
1051 atomic_inc(&sh
->count
);
1053 atomic_inc(&head_sh
->count
);
1054 if (use_new_offset(conf
, sh
))
1055 rbi
->bi_iter
.bi_sector
= (sh
->sector
1056 + rrdev
->new_data_offset
);
1058 rbi
->bi_iter
.bi_sector
= (sh
->sector
1059 + rrdev
->data_offset
);
1060 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1061 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1062 sh
->dev
[i
].rvec
.bv_page
= sh
->dev
[i
].page
;
1064 rbi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1065 rbi
->bi_io_vec
[0].bv_offset
= 0;
1066 rbi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1068 * If this is discard request, set bi_vcnt 0. We don't
1069 * want to confuse SCSI because SCSI will replace payload
1071 if (op
== REQ_OP_DISCARD
)
1073 if (conf
->mddev
->gendisk
)
1074 trace_block_bio_remap(bdev_get_queue(rbi
->bi_bdev
),
1075 rbi
, disk_devt(conf
->mddev
->gendisk
),
1077 generic_make_request(rbi
);
1079 if (!rdev
&& !rrdev
) {
1080 if (op_is_write(op
))
1081 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1082 pr_debug("skip op %d on disc %d for sector %llu\n",
1083 bi
->bi_opf
, i
, (unsigned long long)sh
->sector
);
1084 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1085 set_bit(STRIPE_HANDLE
, &sh
->state
);
1088 if (!head_sh
->batch_head
)
1090 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1097 static struct dma_async_tx_descriptor
*
1098 async_copy_data(int frombio
, struct bio
*bio
, struct page
**page
,
1099 sector_t sector
, struct dma_async_tx_descriptor
*tx
,
1100 struct stripe_head
*sh
, int no_skipcopy
)
1103 struct bvec_iter iter
;
1104 struct page
*bio_page
;
1106 struct async_submit_ctl submit
;
1107 enum async_tx_flags flags
= 0;
1109 if (bio
->bi_iter
.bi_sector
>= sector
)
1110 page_offset
= (signed)(bio
->bi_iter
.bi_sector
- sector
) * 512;
1112 page_offset
= (signed)(sector
- bio
->bi_iter
.bi_sector
) * -512;
1115 flags
|= ASYNC_TX_FENCE
;
1116 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
1118 bio_for_each_segment(bvl
, bio
, iter
) {
1119 int len
= bvl
.bv_len
;
1123 if (page_offset
< 0) {
1124 b_offset
= -page_offset
;
1125 page_offset
+= b_offset
;
1129 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1130 clen
= STRIPE_SIZE
- page_offset
;
1135 b_offset
+= bvl
.bv_offset
;
1136 bio_page
= bvl
.bv_page
;
1138 if (sh
->raid_conf
->skip_copy
&&
1139 b_offset
== 0 && page_offset
== 0 &&
1140 clen
== STRIPE_SIZE
&&
1144 tx
= async_memcpy(*page
, bio_page
, page_offset
,
1145 b_offset
, clen
, &submit
);
1147 tx
= async_memcpy(bio_page
, *page
, b_offset
,
1148 page_offset
, clen
, &submit
);
1150 /* chain the operations */
1151 submit
.depend_tx
= tx
;
1153 if (clen
< len
) /* hit end of page */
1161 static void ops_complete_biofill(void *stripe_head_ref
)
1163 struct stripe_head
*sh
= stripe_head_ref
;
1164 struct bio_list return_bi
= BIO_EMPTY_LIST
;
1167 pr_debug("%s: stripe %llu\n", __func__
,
1168 (unsigned long long)sh
->sector
);
1170 /* clear completed biofills */
1171 for (i
= sh
->disks
; i
--; ) {
1172 struct r5dev
*dev
= &sh
->dev
[i
];
1174 /* acknowledge completion of a biofill operation */
1175 /* and check if we need to reply to a read request,
1176 * new R5_Wantfill requests are held off until
1177 * !STRIPE_BIOFILL_RUN
1179 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
1180 struct bio
*rbi
, *rbi2
;
1185 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1186 dev
->sector
+ STRIPE_SECTORS
) {
1187 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1188 if (!raid5_dec_bi_active_stripes(rbi
))
1189 bio_list_add(&return_bi
, rbi
);
1194 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
1196 return_io(&return_bi
);
1198 set_bit(STRIPE_HANDLE
, &sh
->state
);
1199 raid5_release_stripe(sh
);
1202 static void ops_run_biofill(struct stripe_head
*sh
)
1204 struct dma_async_tx_descriptor
*tx
= NULL
;
1205 struct async_submit_ctl submit
;
1208 BUG_ON(sh
->batch_head
);
1209 pr_debug("%s: stripe %llu\n", __func__
,
1210 (unsigned long long)sh
->sector
);
1212 for (i
= sh
->disks
; i
--; ) {
1213 struct r5dev
*dev
= &sh
->dev
[i
];
1214 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
1216 spin_lock_irq(&sh
->stripe_lock
);
1217 dev
->read
= rbi
= dev
->toread
;
1219 spin_unlock_irq(&sh
->stripe_lock
);
1220 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1221 dev
->sector
+ STRIPE_SECTORS
) {
1222 tx
= async_copy_data(0, rbi
, &dev
->page
,
1223 dev
->sector
, tx
, sh
, 0);
1224 rbi
= r5_next_bio(rbi
, dev
->sector
);
1229 atomic_inc(&sh
->count
);
1230 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
1231 async_trigger_callback(&submit
);
1234 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
1241 tgt
= &sh
->dev
[target
];
1242 set_bit(R5_UPTODATE
, &tgt
->flags
);
1243 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1244 clear_bit(R5_Wantcompute
, &tgt
->flags
);
1247 static void ops_complete_compute(void *stripe_head_ref
)
1249 struct stripe_head
*sh
= stripe_head_ref
;
1251 pr_debug("%s: stripe %llu\n", __func__
,
1252 (unsigned long long)sh
->sector
);
1254 /* mark the computed target(s) as uptodate */
1255 mark_target_uptodate(sh
, sh
->ops
.target
);
1256 mark_target_uptodate(sh
, sh
->ops
.target2
);
1258 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
1259 if (sh
->check_state
== check_state_compute_run
)
1260 sh
->check_state
= check_state_compute_result
;
1261 set_bit(STRIPE_HANDLE
, &sh
->state
);
1262 raid5_release_stripe(sh
);
1265 /* return a pointer to the address conversion region of the scribble buffer */
1266 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
1267 struct raid5_percpu
*percpu
, int i
)
1271 addr
= flex_array_get(percpu
->scribble
, i
);
1272 return addr
+ sizeof(struct page
*) * (sh
->disks
+ 2);
1275 /* return a pointer to the address conversion region of the scribble buffer */
1276 static struct page
**to_addr_page(struct raid5_percpu
*percpu
, int i
)
1280 addr
= flex_array_get(percpu
->scribble
, i
);
1284 static struct dma_async_tx_descriptor
*
1285 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1287 int disks
= sh
->disks
;
1288 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1289 int target
= sh
->ops
.target
;
1290 struct r5dev
*tgt
= &sh
->dev
[target
];
1291 struct page
*xor_dest
= tgt
->page
;
1293 struct dma_async_tx_descriptor
*tx
;
1294 struct async_submit_ctl submit
;
1297 BUG_ON(sh
->batch_head
);
1299 pr_debug("%s: stripe %llu block: %d\n",
1300 __func__
, (unsigned long long)sh
->sector
, target
);
1301 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1303 for (i
= disks
; i
--; )
1305 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1307 atomic_inc(&sh
->count
);
1309 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
1310 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
, 0));
1311 if (unlikely(count
== 1))
1312 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1314 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1319 /* set_syndrome_sources - populate source buffers for gen_syndrome
1320 * @srcs - (struct page *) array of size sh->disks
1321 * @sh - stripe_head to parse
1323 * Populates srcs in proper layout order for the stripe and returns the
1324 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1325 * destination buffer is recorded in srcs[count] and the Q destination
1326 * is recorded in srcs[count+1]].
1328 static int set_syndrome_sources(struct page
**srcs
,
1329 struct stripe_head
*sh
,
1332 int disks
= sh
->disks
;
1333 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1334 int d0_idx
= raid6_d0(sh
);
1338 for (i
= 0; i
< disks
; i
++)
1344 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1345 struct r5dev
*dev
= &sh
->dev
[i
];
1347 if (i
== sh
->qd_idx
|| i
== sh
->pd_idx
||
1348 (srctype
== SYNDROME_SRC_ALL
) ||
1349 (srctype
== SYNDROME_SRC_WANT_DRAIN
&&
1350 (test_bit(R5_Wantdrain
, &dev
->flags
) ||
1351 test_bit(R5_InJournal
, &dev
->flags
))) ||
1352 (srctype
== SYNDROME_SRC_WRITTEN
&&
1354 if (test_bit(R5_InJournal
, &dev
->flags
))
1355 srcs
[slot
] = sh
->dev
[i
].orig_page
;
1357 srcs
[slot
] = sh
->dev
[i
].page
;
1359 i
= raid6_next_disk(i
, disks
);
1360 } while (i
!= d0_idx
);
1362 return syndrome_disks
;
1365 static struct dma_async_tx_descriptor
*
1366 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1368 int disks
= sh
->disks
;
1369 struct page
**blocks
= to_addr_page(percpu
, 0);
1371 int qd_idx
= sh
->qd_idx
;
1372 struct dma_async_tx_descriptor
*tx
;
1373 struct async_submit_ctl submit
;
1379 BUG_ON(sh
->batch_head
);
1380 if (sh
->ops
.target
< 0)
1381 target
= sh
->ops
.target2
;
1382 else if (sh
->ops
.target2
< 0)
1383 target
= sh
->ops
.target
;
1385 /* we should only have one valid target */
1388 pr_debug("%s: stripe %llu block: %d\n",
1389 __func__
, (unsigned long long)sh
->sector
, target
);
1391 tgt
= &sh
->dev
[target
];
1392 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1395 atomic_inc(&sh
->count
);
1397 if (target
== qd_idx
) {
1398 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1399 blocks
[count
] = NULL
; /* regenerating p is not necessary */
1400 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
1401 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1402 ops_complete_compute
, sh
,
1403 to_addr_conv(sh
, percpu
, 0));
1404 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1406 /* Compute any data- or p-drive using XOR */
1408 for (i
= disks
; i
-- ; ) {
1409 if (i
== target
|| i
== qd_idx
)
1411 blocks
[count
++] = sh
->dev
[i
].page
;
1414 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1415 NULL
, ops_complete_compute
, sh
,
1416 to_addr_conv(sh
, percpu
, 0));
1417 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
1423 static struct dma_async_tx_descriptor
*
1424 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1426 int i
, count
, disks
= sh
->disks
;
1427 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1428 int d0_idx
= raid6_d0(sh
);
1429 int faila
= -1, failb
= -1;
1430 int target
= sh
->ops
.target
;
1431 int target2
= sh
->ops
.target2
;
1432 struct r5dev
*tgt
= &sh
->dev
[target
];
1433 struct r5dev
*tgt2
= &sh
->dev
[target2
];
1434 struct dma_async_tx_descriptor
*tx
;
1435 struct page
**blocks
= to_addr_page(percpu
, 0);
1436 struct async_submit_ctl submit
;
1438 BUG_ON(sh
->batch_head
);
1439 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1440 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1441 BUG_ON(target
< 0 || target2
< 0);
1442 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1443 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1445 /* we need to open-code set_syndrome_sources to handle the
1446 * slot number conversion for 'faila' and 'failb'
1448 for (i
= 0; i
< disks
; i
++)
1453 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1455 blocks
[slot
] = sh
->dev
[i
].page
;
1461 i
= raid6_next_disk(i
, disks
);
1462 } while (i
!= d0_idx
);
1464 BUG_ON(faila
== failb
);
1467 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1468 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1470 atomic_inc(&sh
->count
);
1472 if (failb
== syndrome_disks
+1) {
1473 /* Q disk is one of the missing disks */
1474 if (faila
== syndrome_disks
) {
1475 /* Missing P+Q, just recompute */
1476 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1477 ops_complete_compute
, sh
,
1478 to_addr_conv(sh
, percpu
, 0));
1479 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
1480 STRIPE_SIZE
, &submit
);
1484 int qd_idx
= sh
->qd_idx
;
1486 /* Missing D+Q: recompute D from P, then recompute Q */
1487 if (target
== qd_idx
)
1488 data_target
= target2
;
1490 data_target
= target
;
1493 for (i
= disks
; i
-- ; ) {
1494 if (i
== data_target
|| i
== qd_idx
)
1496 blocks
[count
++] = sh
->dev
[i
].page
;
1498 dest
= sh
->dev
[data_target
].page
;
1499 init_async_submit(&submit
,
1500 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1502 to_addr_conv(sh
, percpu
, 0));
1503 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
1506 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1507 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1508 ops_complete_compute
, sh
,
1509 to_addr_conv(sh
, percpu
, 0));
1510 return async_gen_syndrome(blocks
, 0, count
+2,
1511 STRIPE_SIZE
, &submit
);
1514 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1515 ops_complete_compute
, sh
,
1516 to_addr_conv(sh
, percpu
, 0));
1517 if (failb
== syndrome_disks
) {
1518 /* We're missing D+P. */
1519 return async_raid6_datap_recov(syndrome_disks
+2,
1523 /* We're missing D+D. */
1524 return async_raid6_2data_recov(syndrome_disks
+2,
1525 STRIPE_SIZE
, faila
, failb
,
1531 static void ops_complete_prexor(void *stripe_head_ref
)
1533 struct stripe_head
*sh
= stripe_head_ref
;
1535 pr_debug("%s: stripe %llu\n", __func__
,
1536 (unsigned long long)sh
->sector
);
1538 if (r5c_is_writeback(sh
->raid_conf
->log
))
1540 * raid5-cache write back uses orig_page during prexor.
1541 * After prexor, it is time to free orig_page
1543 r5c_release_extra_page(sh
);
1546 static struct dma_async_tx_descriptor
*
1547 ops_run_prexor5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1548 struct dma_async_tx_descriptor
*tx
)
1550 int disks
= sh
->disks
;
1551 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1552 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1553 struct async_submit_ctl submit
;
1555 /* existing parity data subtracted */
1556 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1558 BUG_ON(sh
->batch_head
);
1559 pr_debug("%s: stripe %llu\n", __func__
,
1560 (unsigned long long)sh
->sector
);
1562 for (i
= disks
; i
--; ) {
1563 struct r5dev
*dev
= &sh
->dev
[i
];
1564 /* Only process blocks that are known to be uptodate */
1565 if (test_bit(R5_InJournal
, &dev
->flags
))
1566 xor_srcs
[count
++] = dev
->orig_page
;
1567 else if (test_bit(R5_Wantdrain
, &dev
->flags
))
1568 xor_srcs
[count
++] = dev
->page
;
1571 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1572 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1573 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1578 static struct dma_async_tx_descriptor
*
1579 ops_run_prexor6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1580 struct dma_async_tx_descriptor
*tx
)
1582 struct page
**blocks
= to_addr_page(percpu
, 0);
1584 struct async_submit_ctl submit
;
1586 pr_debug("%s: stripe %llu\n", __func__
,
1587 (unsigned long long)sh
->sector
);
1589 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_WANT_DRAIN
);
1591 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_PQ_XOR_DST
, tx
,
1592 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1593 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1598 static struct dma_async_tx_descriptor
*
1599 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1601 struct r5conf
*conf
= sh
->raid_conf
;
1602 int disks
= sh
->disks
;
1604 struct stripe_head
*head_sh
= sh
;
1606 pr_debug("%s: stripe %llu\n", __func__
,
1607 (unsigned long long)sh
->sector
);
1609 for (i
= disks
; i
--; ) {
1614 if (test_and_clear_bit(R5_Wantdrain
, &head_sh
->dev
[i
].flags
)) {
1620 * clear R5_InJournal, so when rewriting a page in
1621 * journal, it is not skipped by r5l_log_stripe()
1623 clear_bit(R5_InJournal
, &dev
->flags
);
1624 spin_lock_irq(&sh
->stripe_lock
);
1625 chosen
= dev
->towrite
;
1626 dev
->towrite
= NULL
;
1627 sh
->overwrite_disks
= 0;
1628 BUG_ON(dev
->written
);
1629 wbi
= dev
->written
= chosen
;
1630 spin_unlock_irq(&sh
->stripe_lock
);
1631 WARN_ON(dev
->page
!= dev
->orig_page
);
1633 while (wbi
&& wbi
->bi_iter
.bi_sector
<
1634 dev
->sector
+ STRIPE_SECTORS
) {
1635 if (wbi
->bi_opf
& REQ_FUA
)
1636 set_bit(R5_WantFUA
, &dev
->flags
);
1637 if (wbi
->bi_opf
& REQ_SYNC
)
1638 set_bit(R5_SyncIO
, &dev
->flags
);
1639 if (bio_op(wbi
) == REQ_OP_DISCARD
)
1640 set_bit(R5_Discard
, &dev
->flags
);
1642 tx
= async_copy_data(1, wbi
, &dev
->page
,
1643 dev
->sector
, tx
, sh
,
1644 r5c_is_writeback(conf
->log
));
1645 if (dev
->page
!= dev
->orig_page
&&
1646 !r5c_is_writeback(conf
->log
)) {
1647 set_bit(R5_SkipCopy
, &dev
->flags
);
1648 clear_bit(R5_UPTODATE
, &dev
->flags
);
1649 clear_bit(R5_OVERWRITE
, &dev
->flags
);
1652 wbi
= r5_next_bio(wbi
, dev
->sector
);
1655 if (head_sh
->batch_head
) {
1656 sh
= list_first_entry(&sh
->batch_list
,
1669 static void ops_complete_reconstruct(void *stripe_head_ref
)
1671 struct stripe_head
*sh
= stripe_head_ref
;
1672 int disks
= sh
->disks
;
1673 int pd_idx
= sh
->pd_idx
;
1674 int qd_idx
= sh
->qd_idx
;
1676 bool fua
= false, sync
= false, discard
= false;
1678 pr_debug("%s: stripe %llu\n", __func__
,
1679 (unsigned long long)sh
->sector
);
1681 for (i
= disks
; i
--; ) {
1682 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1683 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
1684 discard
|= test_bit(R5_Discard
, &sh
->dev
[i
].flags
);
1687 for (i
= disks
; i
--; ) {
1688 struct r5dev
*dev
= &sh
->dev
[i
];
1690 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1691 if (!discard
&& !test_bit(R5_SkipCopy
, &dev
->flags
))
1692 set_bit(R5_UPTODATE
, &dev
->flags
);
1694 set_bit(R5_WantFUA
, &dev
->flags
);
1696 set_bit(R5_SyncIO
, &dev
->flags
);
1700 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1701 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1702 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1703 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1705 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1706 sh
->reconstruct_state
= reconstruct_state_result
;
1709 set_bit(STRIPE_HANDLE
, &sh
->state
);
1710 raid5_release_stripe(sh
);
1714 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1715 struct dma_async_tx_descriptor
*tx
)
1717 int disks
= sh
->disks
;
1718 struct page
**xor_srcs
;
1719 struct async_submit_ctl submit
;
1720 int count
, pd_idx
= sh
->pd_idx
, i
;
1721 struct page
*xor_dest
;
1723 unsigned long flags
;
1725 struct stripe_head
*head_sh
= sh
;
1728 pr_debug("%s: stripe %llu\n", __func__
,
1729 (unsigned long long)sh
->sector
);
1731 for (i
= 0; i
< sh
->disks
; i
++) {
1734 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1737 if (i
>= sh
->disks
) {
1738 atomic_inc(&sh
->count
);
1739 set_bit(R5_Discard
, &sh
->dev
[pd_idx
].flags
);
1740 ops_complete_reconstruct(sh
);
1745 xor_srcs
= to_addr_page(percpu
, j
);
1746 /* check if prexor is active which means only process blocks
1747 * that are part of a read-modify-write (written)
1749 if (head_sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1751 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1752 for (i
= disks
; i
--; ) {
1753 struct r5dev
*dev
= &sh
->dev
[i
];
1754 if (head_sh
->dev
[i
].written
||
1755 test_bit(R5_InJournal
, &head_sh
->dev
[i
].flags
))
1756 xor_srcs
[count
++] = dev
->page
;
1759 xor_dest
= sh
->dev
[pd_idx
].page
;
1760 for (i
= disks
; i
--; ) {
1761 struct r5dev
*dev
= &sh
->dev
[i
];
1763 xor_srcs
[count
++] = dev
->page
;
1767 /* 1/ if we prexor'd then the dest is reused as a source
1768 * 2/ if we did not prexor then we are redoing the parity
1769 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1770 * for the synchronous xor case
1772 last_stripe
= !head_sh
->batch_head
||
1773 list_first_entry(&sh
->batch_list
,
1774 struct stripe_head
, batch_list
) == head_sh
;
1776 flags
= ASYNC_TX_ACK
|
1777 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1779 atomic_inc(&head_sh
->count
);
1780 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, head_sh
,
1781 to_addr_conv(sh
, percpu
, j
));
1783 flags
= prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
;
1784 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
,
1785 to_addr_conv(sh
, percpu
, j
));
1788 if (unlikely(count
== 1))
1789 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1791 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1794 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1801 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1802 struct dma_async_tx_descriptor
*tx
)
1804 struct async_submit_ctl submit
;
1805 struct page
**blocks
;
1806 int count
, i
, j
= 0;
1807 struct stripe_head
*head_sh
= sh
;
1810 unsigned long txflags
;
1812 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1814 for (i
= 0; i
< sh
->disks
; i
++) {
1815 if (sh
->pd_idx
== i
|| sh
->qd_idx
== i
)
1817 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1820 if (i
>= sh
->disks
) {
1821 atomic_inc(&sh
->count
);
1822 set_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
1823 set_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
1824 ops_complete_reconstruct(sh
);
1829 blocks
= to_addr_page(percpu
, j
);
1831 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1832 synflags
= SYNDROME_SRC_WRITTEN
;
1833 txflags
= ASYNC_TX_ACK
| ASYNC_TX_PQ_XOR_DST
;
1835 synflags
= SYNDROME_SRC_ALL
;
1836 txflags
= ASYNC_TX_ACK
;
1839 count
= set_syndrome_sources(blocks
, sh
, synflags
);
1840 last_stripe
= !head_sh
->batch_head
||
1841 list_first_entry(&sh
->batch_list
,
1842 struct stripe_head
, batch_list
) == head_sh
;
1845 atomic_inc(&head_sh
->count
);
1846 init_async_submit(&submit
, txflags
, tx
, ops_complete_reconstruct
,
1847 head_sh
, to_addr_conv(sh
, percpu
, j
));
1849 init_async_submit(&submit
, 0, tx
, NULL
, NULL
,
1850 to_addr_conv(sh
, percpu
, j
));
1851 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1854 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1860 static void ops_complete_check(void *stripe_head_ref
)
1862 struct stripe_head
*sh
= stripe_head_ref
;
1864 pr_debug("%s: stripe %llu\n", __func__
,
1865 (unsigned long long)sh
->sector
);
1867 sh
->check_state
= check_state_check_result
;
1868 set_bit(STRIPE_HANDLE
, &sh
->state
);
1869 raid5_release_stripe(sh
);
1872 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1874 int disks
= sh
->disks
;
1875 int pd_idx
= sh
->pd_idx
;
1876 int qd_idx
= sh
->qd_idx
;
1877 struct page
*xor_dest
;
1878 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1879 struct dma_async_tx_descriptor
*tx
;
1880 struct async_submit_ctl submit
;
1884 pr_debug("%s: stripe %llu\n", __func__
,
1885 (unsigned long long)sh
->sector
);
1887 BUG_ON(sh
->batch_head
);
1889 xor_dest
= sh
->dev
[pd_idx
].page
;
1890 xor_srcs
[count
++] = xor_dest
;
1891 for (i
= disks
; i
--; ) {
1892 if (i
== pd_idx
|| i
== qd_idx
)
1894 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1897 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1898 to_addr_conv(sh
, percpu
, 0));
1899 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1900 &sh
->ops
.zero_sum_result
, &submit
);
1902 atomic_inc(&sh
->count
);
1903 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1904 tx
= async_trigger_callback(&submit
);
1907 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1909 struct page
**srcs
= to_addr_page(percpu
, 0);
1910 struct async_submit_ctl submit
;
1913 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1914 (unsigned long long)sh
->sector
, checkp
);
1916 BUG_ON(sh
->batch_head
);
1917 count
= set_syndrome_sources(srcs
, sh
, SYNDROME_SRC_ALL
);
1921 atomic_inc(&sh
->count
);
1922 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1923 sh
, to_addr_conv(sh
, percpu
, 0));
1924 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1925 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1928 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1930 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1931 struct dma_async_tx_descriptor
*tx
= NULL
;
1932 struct r5conf
*conf
= sh
->raid_conf
;
1933 int level
= conf
->level
;
1934 struct raid5_percpu
*percpu
;
1938 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1939 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1940 ops_run_biofill(sh
);
1944 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1946 tx
= ops_run_compute5(sh
, percpu
);
1948 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1949 tx
= ops_run_compute6_1(sh
, percpu
);
1951 tx
= ops_run_compute6_2(sh
, percpu
);
1953 /* terminate the chain if reconstruct is not set to be run */
1954 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1958 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
)) {
1960 tx
= ops_run_prexor5(sh
, percpu
, tx
);
1962 tx
= ops_run_prexor6(sh
, percpu
, tx
);
1965 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1966 tx
= ops_run_biodrain(sh
, tx
);
1970 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1972 ops_run_reconstruct5(sh
, percpu
, tx
);
1974 ops_run_reconstruct6(sh
, percpu
, tx
);
1977 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1978 if (sh
->check_state
== check_state_run
)
1979 ops_run_check_p(sh
, percpu
);
1980 else if (sh
->check_state
== check_state_run_q
)
1981 ops_run_check_pq(sh
, percpu
, 0);
1982 else if (sh
->check_state
== check_state_run_pq
)
1983 ops_run_check_pq(sh
, percpu
, 1);
1988 if (overlap_clear
&& !sh
->batch_head
)
1989 for (i
= disks
; i
--; ) {
1990 struct r5dev
*dev
= &sh
->dev
[i
];
1991 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1992 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1997 static struct stripe_head
*alloc_stripe(struct kmem_cache
*sc
, gfp_t gfp
,
2000 struct stripe_head
*sh
;
2003 sh
= kmem_cache_zalloc(sc
, gfp
);
2005 spin_lock_init(&sh
->stripe_lock
);
2006 spin_lock_init(&sh
->batch_lock
);
2007 INIT_LIST_HEAD(&sh
->batch_list
);
2008 INIT_LIST_HEAD(&sh
->lru
);
2009 INIT_LIST_HEAD(&sh
->r5c
);
2010 atomic_set(&sh
->count
, 1);
2011 sh
->log_start
= MaxSector
;
2012 for (i
= 0; i
< disks
; i
++) {
2013 struct r5dev
*dev
= &sh
->dev
[i
];
2015 bio_init(&dev
->req
);
2016 dev
->req
.bi_io_vec
= &dev
->vec
;
2017 dev
->req
.bi_max_vecs
= 1;
2019 bio_init(&dev
->rreq
);
2020 dev
->rreq
.bi_io_vec
= &dev
->rvec
;
2021 dev
->rreq
.bi_max_vecs
= 1;
2026 static int grow_one_stripe(struct r5conf
*conf
, gfp_t gfp
)
2028 struct stripe_head
*sh
;
2030 sh
= alloc_stripe(conf
->slab_cache
, gfp
, conf
->pool_size
);
2034 sh
->raid_conf
= conf
;
2036 if (grow_buffers(sh
, gfp
)) {
2038 kmem_cache_free(conf
->slab_cache
, sh
);
2041 sh
->hash_lock_index
=
2042 conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
;
2043 /* we just created an active stripe so... */
2044 atomic_inc(&conf
->active_stripes
);
2046 raid5_release_stripe(sh
);
2047 conf
->max_nr_stripes
++;
2051 static int grow_stripes(struct r5conf
*conf
, int num
)
2053 struct kmem_cache
*sc
;
2054 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
2056 if (conf
->mddev
->gendisk
)
2057 sprintf(conf
->cache_name
[0],
2058 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
2060 sprintf(conf
->cache_name
[0],
2061 "raid%d-%p", conf
->level
, conf
->mddev
);
2062 sprintf(conf
->cache_name
[1], "%s-alt", conf
->cache_name
[0]);
2064 conf
->active_name
= 0;
2065 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
2066 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
2070 conf
->slab_cache
= sc
;
2071 conf
->pool_size
= devs
;
2073 if (!grow_one_stripe(conf
, GFP_KERNEL
))
2080 * scribble_len - return the required size of the scribble region
2081 * @num - total number of disks in the array
2083 * The size must be enough to contain:
2084 * 1/ a struct page pointer for each device in the array +2
2085 * 2/ room to convert each entry in (1) to its corresponding dma
2086 * (dma_map_page()) or page (page_address()) address.
2088 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2089 * calculate over all devices (not just the data blocks), using zeros in place
2090 * of the P and Q blocks.
2092 static struct flex_array
*scribble_alloc(int num
, int cnt
, gfp_t flags
)
2094 struct flex_array
*ret
;
2097 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
2098 ret
= flex_array_alloc(len
, cnt
, flags
);
2101 /* always prealloc all elements, so no locking is required */
2102 if (flex_array_prealloc(ret
, 0, cnt
, flags
)) {
2103 flex_array_free(ret
);
2109 static int resize_chunks(struct r5conf
*conf
, int new_disks
, int new_sectors
)
2115 * Never shrink. And mddev_suspend() could deadlock if this is called
2116 * from raid5d. In that case, scribble_disks and scribble_sectors
2117 * should equal to new_disks and new_sectors
2119 if (conf
->scribble_disks
>= new_disks
&&
2120 conf
->scribble_sectors
>= new_sectors
)
2122 mddev_suspend(conf
->mddev
);
2124 for_each_present_cpu(cpu
) {
2125 struct raid5_percpu
*percpu
;
2126 struct flex_array
*scribble
;
2128 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2129 scribble
= scribble_alloc(new_disks
,
2130 new_sectors
/ STRIPE_SECTORS
,
2134 flex_array_free(percpu
->scribble
);
2135 percpu
->scribble
= scribble
;
2142 mddev_resume(conf
->mddev
);
2144 conf
->scribble_disks
= new_disks
;
2145 conf
->scribble_sectors
= new_sectors
;
2150 static int resize_stripes(struct r5conf
*conf
, int newsize
)
2152 /* Make all the stripes able to hold 'newsize' devices.
2153 * New slots in each stripe get 'page' set to a new page.
2155 * This happens in stages:
2156 * 1/ create a new kmem_cache and allocate the required number of
2158 * 2/ gather all the old stripe_heads and transfer the pages across
2159 * to the new stripe_heads. This will have the side effect of
2160 * freezing the array as once all stripe_heads have been collected,
2161 * no IO will be possible. Old stripe heads are freed once their
2162 * pages have been transferred over, and the old kmem_cache is
2163 * freed when all stripes are done.
2164 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2165 * we simple return a failre status - no need to clean anything up.
2166 * 4/ allocate new pages for the new slots in the new stripe_heads.
2167 * If this fails, we don't bother trying the shrink the
2168 * stripe_heads down again, we just leave them as they are.
2169 * As each stripe_head is processed the new one is released into
2172 * Once step2 is started, we cannot afford to wait for a write,
2173 * so we use GFP_NOIO allocations.
2175 struct stripe_head
*osh
, *nsh
;
2176 LIST_HEAD(newstripes
);
2177 struct disk_info
*ndisks
;
2179 struct kmem_cache
*sc
;
2183 if (newsize
<= conf
->pool_size
)
2184 return 0; /* never bother to shrink */
2186 err
= md_allow_write(conf
->mddev
);
2191 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
2192 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
2197 /* Need to ensure auto-resizing doesn't interfere */
2198 mutex_lock(&conf
->cache_size_mutex
);
2200 for (i
= conf
->max_nr_stripes
; i
; i
--) {
2201 nsh
= alloc_stripe(sc
, GFP_KERNEL
, newsize
);
2205 nsh
->raid_conf
= conf
;
2206 list_add(&nsh
->lru
, &newstripes
);
2209 /* didn't get enough, give up */
2210 while (!list_empty(&newstripes
)) {
2211 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2212 list_del(&nsh
->lru
);
2213 kmem_cache_free(sc
, nsh
);
2215 kmem_cache_destroy(sc
);
2216 mutex_unlock(&conf
->cache_size_mutex
);
2219 /* Step 2 - Must use GFP_NOIO now.
2220 * OK, we have enough stripes, start collecting inactive
2221 * stripes and copying them over
2225 list_for_each_entry(nsh
, &newstripes
, lru
) {
2226 lock_device_hash_lock(conf
, hash
);
2227 wait_event_cmd(conf
->wait_for_stripe
,
2228 !list_empty(conf
->inactive_list
+ hash
),
2229 unlock_device_hash_lock(conf
, hash
),
2230 lock_device_hash_lock(conf
, hash
));
2231 osh
= get_free_stripe(conf
, hash
);
2232 unlock_device_hash_lock(conf
, hash
);
2234 for(i
=0; i
<conf
->pool_size
; i
++) {
2235 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
2236 nsh
->dev
[i
].orig_page
= osh
->dev
[i
].page
;
2238 nsh
->hash_lock_index
= hash
;
2239 kmem_cache_free(conf
->slab_cache
, osh
);
2241 if (cnt
>= conf
->max_nr_stripes
/ NR_STRIPE_HASH_LOCKS
+
2242 !!((conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
) > hash
)) {
2247 kmem_cache_destroy(conf
->slab_cache
);
2250 * At this point, we are holding all the stripes so the array
2251 * is completely stalled, so now is a good time to resize
2252 * conf->disks and the scribble region
2254 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
2256 for (i
=0; i
<conf
->raid_disks
; i
++)
2257 ndisks
[i
] = conf
->disks
[i
];
2259 conf
->disks
= ndisks
;
2263 mutex_unlock(&conf
->cache_size_mutex
);
2264 /* Step 4, return new stripes to service */
2265 while(!list_empty(&newstripes
)) {
2266 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2267 list_del_init(&nsh
->lru
);
2269 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
2270 if (nsh
->dev
[i
].page
== NULL
) {
2271 struct page
*p
= alloc_page(GFP_NOIO
);
2272 nsh
->dev
[i
].page
= p
;
2273 nsh
->dev
[i
].orig_page
= p
;
2277 raid5_release_stripe(nsh
);
2279 /* critical section pass, GFP_NOIO no longer needed */
2281 conf
->slab_cache
= sc
;
2282 conf
->active_name
= 1-conf
->active_name
;
2284 conf
->pool_size
= newsize
;
2288 static int drop_one_stripe(struct r5conf
*conf
)
2290 struct stripe_head
*sh
;
2291 int hash
= (conf
->max_nr_stripes
- 1) & STRIPE_HASH_LOCKS_MASK
;
2293 spin_lock_irq(conf
->hash_locks
+ hash
);
2294 sh
= get_free_stripe(conf
, hash
);
2295 spin_unlock_irq(conf
->hash_locks
+ hash
);
2298 BUG_ON(atomic_read(&sh
->count
));
2300 kmem_cache_free(conf
->slab_cache
, sh
);
2301 atomic_dec(&conf
->active_stripes
);
2302 conf
->max_nr_stripes
--;
2306 static void shrink_stripes(struct r5conf
*conf
)
2308 while (conf
->max_nr_stripes
&&
2309 drop_one_stripe(conf
))
2312 kmem_cache_destroy(conf
->slab_cache
);
2313 conf
->slab_cache
= NULL
;
2316 static void raid5_end_read_request(struct bio
* bi
)
2318 struct stripe_head
*sh
= bi
->bi_private
;
2319 struct r5conf
*conf
= sh
->raid_conf
;
2320 int disks
= sh
->disks
, i
;
2321 char b
[BDEVNAME_SIZE
];
2322 struct md_rdev
*rdev
= NULL
;
2325 for (i
=0 ; i
<disks
; i
++)
2326 if (bi
== &sh
->dev
[i
].req
)
2329 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2330 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2337 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2338 /* If replacement finished while this request was outstanding,
2339 * 'replacement' might be NULL already.
2340 * In that case it moved down to 'rdev'.
2341 * rdev is not removed until all requests are finished.
2343 rdev
= conf
->disks
[i
].replacement
;
2345 rdev
= conf
->disks
[i
].rdev
;
2347 if (use_new_offset(conf
, sh
))
2348 s
= sh
->sector
+ rdev
->new_data_offset
;
2350 s
= sh
->sector
+ rdev
->data_offset
;
2351 if (!bi
->bi_error
) {
2352 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2353 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2354 /* Note that this cannot happen on a
2355 * replacement device. We just fail those on
2358 pr_info_ratelimited(
2359 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2360 mdname(conf
->mddev
), STRIPE_SECTORS
,
2361 (unsigned long long)s
,
2362 bdevname(rdev
->bdev
, b
));
2363 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
2364 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2365 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2366 } else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2367 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2369 if (atomic_read(&rdev
->read_errors
))
2370 atomic_set(&rdev
->read_errors
, 0);
2372 const char *bdn
= bdevname(rdev
->bdev
, b
);
2376 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2377 atomic_inc(&rdev
->read_errors
);
2378 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2379 pr_warn_ratelimited(
2380 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2381 mdname(conf
->mddev
),
2382 (unsigned long long)s
,
2384 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
2386 pr_warn_ratelimited(
2387 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2388 mdname(conf
->mddev
),
2389 (unsigned long long)s
,
2391 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
2394 pr_warn_ratelimited(
2395 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2396 mdname(conf
->mddev
),
2397 (unsigned long long)s
,
2399 } else if (atomic_read(&rdev
->read_errors
)
2400 > conf
->max_nr_stripes
)
2401 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2402 mdname(conf
->mddev
), bdn
);
2405 if (set_bad
&& test_bit(In_sync
, &rdev
->flags
)
2406 && !test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2409 if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
)) {
2410 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2411 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2413 set_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2415 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2416 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2418 && test_bit(In_sync
, &rdev
->flags
)
2419 && rdev_set_badblocks(
2420 rdev
, sh
->sector
, STRIPE_SECTORS
, 0)))
2421 md_error(conf
->mddev
, rdev
);
2424 rdev_dec_pending(rdev
, conf
->mddev
);
2426 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2427 set_bit(STRIPE_HANDLE
, &sh
->state
);
2428 raid5_release_stripe(sh
);
2431 static void raid5_end_write_request(struct bio
*bi
)
2433 struct stripe_head
*sh
= bi
->bi_private
;
2434 struct r5conf
*conf
= sh
->raid_conf
;
2435 int disks
= sh
->disks
, i
;
2436 struct md_rdev
*uninitialized_var(rdev
);
2439 int replacement
= 0;
2441 for (i
= 0 ; i
< disks
; i
++) {
2442 if (bi
== &sh
->dev
[i
].req
) {
2443 rdev
= conf
->disks
[i
].rdev
;
2446 if (bi
== &sh
->dev
[i
].rreq
) {
2447 rdev
= conf
->disks
[i
].replacement
;
2451 /* rdev was removed and 'replacement'
2452 * replaced it. rdev is not removed
2453 * until all requests are finished.
2455 rdev
= conf
->disks
[i
].rdev
;
2459 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2460 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2470 md_error(conf
->mddev
, rdev
);
2471 else if (is_badblock(rdev
, sh
->sector
,
2473 &first_bad
, &bad_sectors
))
2474 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
2477 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2478 set_bit(WriteErrorSeen
, &rdev
->flags
);
2479 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
2480 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2481 set_bit(MD_RECOVERY_NEEDED
,
2482 &rdev
->mddev
->recovery
);
2483 } else if (is_badblock(rdev
, sh
->sector
,
2485 &first_bad
, &bad_sectors
)) {
2486 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
2487 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))
2488 /* That was a successful write so make
2489 * sure it looks like we already did
2492 set_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2495 rdev_dec_pending(rdev
, conf
->mddev
);
2497 if (sh
->batch_head
&& bi
->bi_error
&& !replacement
)
2498 set_bit(STRIPE_BATCH_ERR
, &sh
->batch_head
->state
);
2501 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
2502 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2503 set_bit(STRIPE_HANDLE
, &sh
->state
);
2504 raid5_release_stripe(sh
);
2506 if (sh
->batch_head
&& sh
!= sh
->batch_head
)
2507 raid5_release_stripe(sh
->batch_head
);
2510 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
2512 struct r5dev
*dev
= &sh
->dev
[i
];
2515 dev
->sector
= raid5_compute_blocknr(sh
, i
, previous
);
2518 static void raid5_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
2520 char b
[BDEVNAME_SIZE
];
2521 struct r5conf
*conf
= mddev
->private;
2522 unsigned long flags
;
2523 pr_debug("raid456: error called\n");
2525 spin_lock_irqsave(&conf
->device_lock
, flags
);
2526 clear_bit(In_sync
, &rdev
->flags
);
2527 mddev
->degraded
= calc_degraded(conf
);
2528 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2529 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2531 set_bit(Blocked
, &rdev
->flags
);
2532 set_bit(Faulty
, &rdev
->flags
);
2533 set_mask_bits(&mddev
->flags
, 0,
2534 BIT(MD_CHANGE_DEVS
) | BIT(MD_CHANGE_PENDING
));
2535 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2536 "md/raid:%s: Operation continuing on %d devices.\n",
2538 bdevname(rdev
->bdev
, b
),
2540 conf
->raid_disks
- mddev
->degraded
);
2544 * Input: a 'big' sector number,
2545 * Output: index of the data and parity disk, and the sector # in them.
2547 sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
2548 int previous
, int *dd_idx
,
2549 struct stripe_head
*sh
)
2551 sector_t stripe
, stripe2
;
2552 sector_t chunk_number
;
2553 unsigned int chunk_offset
;
2556 sector_t new_sector
;
2557 int algorithm
= previous
? conf
->prev_algo
2559 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2560 : conf
->chunk_sectors
;
2561 int raid_disks
= previous
? conf
->previous_raid_disks
2563 int data_disks
= raid_disks
- conf
->max_degraded
;
2565 /* First compute the information on this sector */
2568 * Compute the chunk number and the sector offset inside the chunk
2570 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
2571 chunk_number
= r_sector
;
2574 * Compute the stripe number
2576 stripe
= chunk_number
;
2577 *dd_idx
= sector_div(stripe
, data_disks
);
2580 * Select the parity disk based on the user selected algorithm.
2582 pd_idx
= qd_idx
= -1;
2583 switch(conf
->level
) {
2585 pd_idx
= data_disks
;
2588 switch (algorithm
) {
2589 case ALGORITHM_LEFT_ASYMMETRIC
:
2590 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2591 if (*dd_idx
>= pd_idx
)
2594 case ALGORITHM_RIGHT_ASYMMETRIC
:
2595 pd_idx
= sector_div(stripe2
, raid_disks
);
2596 if (*dd_idx
>= pd_idx
)
2599 case ALGORITHM_LEFT_SYMMETRIC
:
2600 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2601 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2603 case ALGORITHM_RIGHT_SYMMETRIC
:
2604 pd_idx
= sector_div(stripe2
, raid_disks
);
2605 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2607 case ALGORITHM_PARITY_0
:
2611 case ALGORITHM_PARITY_N
:
2612 pd_idx
= data_disks
;
2620 switch (algorithm
) {
2621 case ALGORITHM_LEFT_ASYMMETRIC
:
2622 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2623 qd_idx
= pd_idx
+ 1;
2624 if (pd_idx
== raid_disks
-1) {
2625 (*dd_idx
)++; /* Q D D D P */
2627 } else if (*dd_idx
>= pd_idx
)
2628 (*dd_idx
) += 2; /* D D P Q D */
2630 case ALGORITHM_RIGHT_ASYMMETRIC
:
2631 pd_idx
= sector_div(stripe2
, raid_disks
);
2632 qd_idx
= pd_idx
+ 1;
2633 if (pd_idx
== raid_disks
-1) {
2634 (*dd_idx
)++; /* Q D D D P */
2636 } else if (*dd_idx
>= pd_idx
)
2637 (*dd_idx
) += 2; /* D D P Q D */
2639 case ALGORITHM_LEFT_SYMMETRIC
:
2640 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2641 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2642 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2644 case ALGORITHM_RIGHT_SYMMETRIC
:
2645 pd_idx
= sector_div(stripe2
, raid_disks
);
2646 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2647 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2650 case ALGORITHM_PARITY_0
:
2655 case ALGORITHM_PARITY_N
:
2656 pd_idx
= data_disks
;
2657 qd_idx
= data_disks
+ 1;
2660 case ALGORITHM_ROTATING_ZERO_RESTART
:
2661 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2662 * of blocks for computing Q is different.
2664 pd_idx
= sector_div(stripe2
, raid_disks
);
2665 qd_idx
= pd_idx
+ 1;
2666 if (pd_idx
== raid_disks
-1) {
2667 (*dd_idx
)++; /* Q D D D P */
2669 } else if (*dd_idx
>= pd_idx
)
2670 (*dd_idx
) += 2; /* D D P Q D */
2674 case ALGORITHM_ROTATING_N_RESTART
:
2675 /* Same a left_asymmetric, by first stripe is
2676 * D D D P Q rather than
2680 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2681 qd_idx
= pd_idx
+ 1;
2682 if (pd_idx
== raid_disks
-1) {
2683 (*dd_idx
)++; /* Q D D D P */
2685 } else if (*dd_idx
>= pd_idx
)
2686 (*dd_idx
) += 2; /* D D P Q D */
2690 case ALGORITHM_ROTATING_N_CONTINUE
:
2691 /* Same as left_symmetric but Q is before P */
2692 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2693 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
2694 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2698 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2699 /* RAID5 left_asymmetric, with Q on last device */
2700 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2701 if (*dd_idx
>= pd_idx
)
2703 qd_idx
= raid_disks
- 1;
2706 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2707 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2708 if (*dd_idx
>= pd_idx
)
2710 qd_idx
= raid_disks
- 1;
2713 case ALGORITHM_LEFT_SYMMETRIC_6
:
2714 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2715 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2716 qd_idx
= raid_disks
- 1;
2719 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2720 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2721 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2722 qd_idx
= raid_disks
- 1;
2725 case ALGORITHM_PARITY_0_6
:
2728 qd_idx
= raid_disks
- 1;
2738 sh
->pd_idx
= pd_idx
;
2739 sh
->qd_idx
= qd_idx
;
2740 sh
->ddf_layout
= ddf_layout
;
2743 * Finally, compute the new sector number
2745 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
2749 sector_t
raid5_compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
2751 struct r5conf
*conf
= sh
->raid_conf
;
2752 int raid_disks
= sh
->disks
;
2753 int data_disks
= raid_disks
- conf
->max_degraded
;
2754 sector_t new_sector
= sh
->sector
, check
;
2755 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2756 : conf
->chunk_sectors
;
2757 int algorithm
= previous
? conf
->prev_algo
2761 sector_t chunk_number
;
2762 int dummy1
, dd_idx
= i
;
2764 struct stripe_head sh2
;
2766 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
2767 stripe
= new_sector
;
2769 if (i
== sh
->pd_idx
)
2771 switch(conf
->level
) {
2774 switch (algorithm
) {
2775 case ALGORITHM_LEFT_ASYMMETRIC
:
2776 case ALGORITHM_RIGHT_ASYMMETRIC
:
2780 case ALGORITHM_LEFT_SYMMETRIC
:
2781 case ALGORITHM_RIGHT_SYMMETRIC
:
2784 i
-= (sh
->pd_idx
+ 1);
2786 case ALGORITHM_PARITY_0
:
2789 case ALGORITHM_PARITY_N
:
2796 if (i
== sh
->qd_idx
)
2797 return 0; /* It is the Q disk */
2798 switch (algorithm
) {
2799 case ALGORITHM_LEFT_ASYMMETRIC
:
2800 case ALGORITHM_RIGHT_ASYMMETRIC
:
2801 case ALGORITHM_ROTATING_ZERO_RESTART
:
2802 case ALGORITHM_ROTATING_N_RESTART
:
2803 if (sh
->pd_idx
== raid_disks
-1)
2804 i
--; /* Q D D D P */
2805 else if (i
> sh
->pd_idx
)
2806 i
-= 2; /* D D P Q D */
2808 case ALGORITHM_LEFT_SYMMETRIC
:
2809 case ALGORITHM_RIGHT_SYMMETRIC
:
2810 if (sh
->pd_idx
== raid_disks
-1)
2811 i
--; /* Q D D D P */
2816 i
-= (sh
->pd_idx
+ 2);
2819 case ALGORITHM_PARITY_0
:
2822 case ALGORITHM_PARITY_N
:
2824 case ALGORITHM_ROTATING_N_CONTINUE
:
2825 /* Like left_symmetric, but P is before Q */
2826 if (sh
->pd_idx
== 0)
2827 i
--; /* P D D D Q */
2832 i
-= (sh
->pd_idx
+ 1);
2835 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2836 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2840 case ALGORITHM_LEFT_SYMMETRIC_6
:
2841 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2843 i
+= data_disks
+ 1;
2844 i
-= (sh
->pd_idx
+ 1);
2846 case ALGORITHM_PARITY_0_6
:
2855 chunk_number
= stripe
* data_disks
+ i
;
2856 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2858 check
= raid5_compute_sector(conf
, r_sector
,
2859 previous
, &dummy1
, &sh2
);
2860 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2861 || sh2
.qd_idx
!= sh
->qd_idx
) {
2862 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
2863 mdname(conf
->mddev
));
2870 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2871 int rcw
, int expand
)
2873 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
, disks
= sh
->disks
;
2874 struct r5conf
*conf
= sh
->raid_conf
;
2875 int level
= conf
->level
;
2879 * In some cases, handle_stripe_dirtying initially decided to
2880 * run rmw and allocates extra page for prexor. However, rcw is
2881 * cheaper later on. We need to free the extra page now,
2882 * because we won't be able to do that in ops_complete_prexor().
2884 r5c_release_extra_page(sh
);
2886 for (i
= disks
; i
--; ) {
2887 struct r5dev
*dev
= &sh
->dev
[i
];
2890 set_bit(R5_LOCKED
, &dev
->flags
);
2891 set_bit(R5_Wantdrain
, &dev
->flags
);
2893 clear_bit(R5_UPTODATE
, &dev
->flags
);
2895 } else if (test_bit(R5_InJournal
, &dev
->flags
)) {
2896 set_bit(R5_LOCKED
, &dev
->flags
);
2900 /* if we are not expanding this is a proper write request, and
2901 * there will be bios with new data to be drained into the
2906 /* False alarm, nothing to do */
2908 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2909 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2911 sh
->reconstruct_state
= reconstruct_state_run
;
2913 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2915 if (s
->locked
+ conf
->max_degraded
== disks
)
2916 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2917 atomic_inc(&conf
->pending_full_writes
);
2919 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2920 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2921 BUG_ON(level
== 6 &&
2922 (!(test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
) ||
2923 test_bit(R5_Wantcompute
, &sh
->dev
[qd_idx
].flags
))));
2925 for (i
= disks
; i
--; ) {
2926 struct r5dev
*dev
= &sh
->dev
[i
];
2927 if (i
== pd_idx
|| i
== qd_idx
)
2931 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2932 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2933 set_bit(R5_Wantdrain
, &dev
->flags
);
2934 set_bit(R5_LOCKED
, &dev
->flags
);
2935 clear_bit(R5_UPTODATE
, &dev
->flags
);
2937 } else if (test_bit(R5_InJournal
, &dev
->flags
)) {
2938 set_bit(R5_LOCKED
, &dev
->flags
);
2943 /* False alarm - nothing to do */
2945 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2946 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2947 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2948 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2951 /* keep the parity disk(s) locked while asynchronous operations
2954 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2955 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2959 int qd_idx
= sh
->qd_idx
;
2960 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2962 set_bit(R5_LOCKED
, &dev
->flags
);
2963 clear_bit(R5_UPTODATE
, &dev
->flags
);
2967 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2968 __func__
, (unsigned long long)sh
->sector
,
2969 s
->locked
, s
->ops_request
);
2973 * Each stripe/dev can have one or more bion attached.
2974 * toread/towrite point to the first in a chain.
2975 * The bi_next chain must be in order.
2977 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
,
2978 int forwrite
, int previous
)
2981 struct r5conf
*conf
= sh
->raid_conf
;
2984 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2985 (unsigned long long)bi
->bi_iter
.bi_sector
,
2986 (unsigned long long)sh
->sector
);
2989 * If several bio share a stripe. The bio bi_phys_segments acts as a
2990 * reference count to avoid race. The reference count should already be
2991 * increased before this function is called (for example, in
2992 * raid5_make_request()), so other bio sharing this stripe will not free the
2993 * stripe. If a stripe is owned by one stripe, the stripe lock will
2996 spin_lock_irq(&sh
->stripe_lock
);
2997 /* Don't allow new IO added to stripes in batch list */
3001 bip
= &sh
->dev
[dd_idx
].towrite
;
3005 bip
= &sh
->dev
[dd_idx
].toread
;
3006 while (*bip
&& (*bip
)->bi_iter
.bi_sector
< bi
->bi_iter
.bi_sector
) {
3007 if (bio_end_sector(*bip
) > bi
->bi_iter
.bi_sector
)
3009 bip
= & (*bip
)->bi_next
;
3011 if (*bip
&& (*bip
)->bi_iter
.bi_sector
< bio_end_sector(bi
))
3014 if (!forwrite
|| previous
)
3015 clear_bit(STRIPE_BATCH_READY
, &sh
->state
);
3017 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
3021 raid5_inc_bi_active_stripes(bi
);
3024 /* check if page is covered */
3025 sector_t sector
= sh
->dev
[dd_idx
].sector
;
3026 for (bi
=sh
->dev
[dd_idx
].towrite
;
3027 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
3028 bi
&& bi
->bi_iter
.bi_sector
<= sector
;
3029 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
3030 if (bio_end_sector(bi
) >= sector
)
3031 sector
= bio_end_sector(bi
);
3033 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
3034 if (!test_and_set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
))
3035 sh
->overwrite_disks
++;
3038 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3039 (unsigned long long)(*bip
)->bi_iter
.bi_sector
,
3040 (unsigned long long)sh
->sector
, dd_idx
);
3042 if (conf
->mddev
->bitmap
&& firstwrite
) {
3043 /* Cannot hold spinlock over bitmap_startwrite,
3044 * but must ensure this isn't added to a batch until
3045 * we have added to the bitmap and set bm_seq.
3046 * So set STRIPE_BITMAP_PENDING to prevent
3048 * If multiple add_stripe_bio() calls race here they
3049 * much all set STRIPE_BITMAP_PENDING. So only the first one
3050 * to complete "bitmap_startwrite" gets to set
3051 * STRIPE_BIT_DELAY. This is important as once a stripe
3052 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3055 set_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3056 spin_unlock_irq(&sh
->stripe_lock
);
3057 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
3059 spin_lock_irq(&sh
->stripe_lock
);
3060 clear_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3061 if (!sh
->batch_head
) {
3062 sh
->bm_seq
= conf
->seq_flush
+1;
3063 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
3066 spin_unlock_irq(&sh
->stripe_lock
);
3068 if (stripe_can_batch(sh
))
3069 stripe_add_to_batch_list(conf
, sh
);
3073 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
3074 spin_unlock_irq(&sh
->stripe_lock
);
3078 static void end_reshape(struct r5conf
*conf
);
3080 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
3081 struct stripe_head
*sh
)
3083 int sectors_per_chunk
=
3084 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
3086 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
3087 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
3089 raid5_compute_sector(conf
,
3090 stripe
* (disks
- conf
->max_degraded
)
3091 *sectors_per_chunk
+ chunk_offset
,
3097 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
3098 struct stripe_head_state
*s
, int disks
,
3099 struct bio_list
*return_bi
)
3102 BUG_ON(sh
->batch_head
);
3103 for (i
= disks
; i
--; ) {
3107 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
3108 struct md_rdev
*rdev
;
3110 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3111 if (rdev
&& test_bit(In_sync
, &rdev
->flags
) &&
3112 !test_bit(Faulty
, &rdev
->flags
))
3113 atomic_inc(&rdev
->nr_pending
);
3118 if (!rdev_set_badblocks(
3122 md_error(conf
->mddev
, rdev
);
3123 rdev_dec_pending(rdev
, conf
->mddev
);
3126 spin_lock_irq(&sh
->stripe_lock
);
3127 /* fail all writes first */
3128 bi
= sh
->dev
[i
].towrite
;
3129 sh
->dev
[i
].towrite
= NULL
;
3130 sh
->overwrite_disks
= 0;
3131 spin_unlock_irq(&sh
->stripe_lock
);
3135 r5l_stripe_write_finished(sh
);
3137 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3138 wake_up(&conf
->wait_for_overlap
);
3140 while (bi
&& bi
->bi_iter
.bi_sector
<
3141 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3142 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3144 bi
->bi_error
= -EIO
;
3145 if (!raid5_dec_bi_active_stripes(bi
)) {
3146 md_write_end(conf
->mddev
);
3147 bio_list_add(return_bi
, bi
);
3152 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3153 STRIPE_SECTORS
, 0, 0);
3155 /* and fail all 'written' */
3156 bi
= sh
->dev
[i
].written
;
3157 sh
->dev
[i
].written
= NULL
;
3158 if (test_and_clear_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
)) {
3159 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
3160 sh
->dev
[i
].page
= sh
->dev
[i
].orig_page
;
3163 if (bi
) bitmap_end
= 1;
3164 while (bi
&& bi
->bi_iter
.bi_sector
<
3165 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3166 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3168 bi
->bi_error
= -EIO
;
3169 if (!raid5_dec_bi_active_stripes(bi
)) {
3170 md_write_end(conf
->mddev
);
3171 bio_list_add(return_bi
, bi
);
3176 /* fail any reads if this device is non-operational and
3177 * the data has not reached the cache yet.
3179 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
3180 s
->failed
> conf
->max_degraded
&&
3181 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
3182 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
3183 spin_lock_irq(&sh
->stripe_lock
);
3184 bi
= sh
->dev
[i
].toread
;
3185 sh
->dev
[i
].toread
= NULL
;
3186 spin_unlock_irq(&sh
->stripe_lock
);
3187 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3188 wake_up(&conf
->wait_for_overlap
);
3191 while (bi
&& bi
->bi_iter
.bi_sector
<
3192 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3193 struct bio
*nextbi
=
3194 r5_next_bio(bi
, sh
->dev
[i
].sector
);
3196 bi
->bi_error
= -EIO
;
3197 if (!raid5_dec_bi_active_stripes(bi
))
3198 bio_list_add(return_bi
, bi
);
3203 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3204 STRIPE_SECTORS
, 0, 0);
3205 /* If we were in the middle of a write the parity block might
3206 * still be locked - so just clear all R5_LOCKED flags
3208 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3213 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3214 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3215 md_wakeup_thread(conf
->mddev
->thread
);
3219 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
3220 struct stripe_head_state
*s
)
3225 BUG_ON(sh
->batch_head
);
3226 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3227 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
3228 wake_up(&conf
->wait_for_overlap
);
3231 /* There is nothing more to do for sync/check/repair.
3232 * Don't even need to abort as that is handled elsewhere
3233 * if needed, and not always wanted e.g. if there is a known
3235 * For recover/replace we need to record a bad block on all
3236 * non-sync devices, or abort the recovery
3238 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
3239 /* During recovery devices cannot be removed, so
3240 * locking and refcounting of rdevs is not needed
3243 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3244 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3246 && !test_bit(Faulty
, &rdev
->flags
)
3247 && !test_bit(In_sync
, &rdev
->flags
)
3248 && !rdev_set_badblocks(rdev
, sh
->sector
,
3251 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
3253 && !test_bit(Faulty
, &rdev
->flags
)
3254 && !test_bit(In_sync
, &rdev
->flags
)
3255 && !rdev_set_badblocks(rdev
, sh
->sector
,
3261 conf
->recovery_disabled
=
3262 conf
->mddev
->recovery_disabled
;
3264 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, !abort
);
3267 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
3269 struct md_rdev
*rdev
;
3273 rdev
= rcu_dereference(sh
->raid_conf
->disks
[disk_idx
].replacement
);
3275 && !test_bit(Faulty
, &rdev
->flags
)
3276 && !test_bit(In_sync
, &rdev
->flags
)
3277 && (rdev
->recovery_offset
<= sh
->sector
3278 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
3284 /* fetch_block - checks the given member device to see if its data needs
3285 * to be read or computed to satisfy a request.
3287 * Returns 1 when no more member devices need to be checked, otherwise returns
3288 * 0 to tell the loop in handle_stripe_fill to continue
3291 static int need_this_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3292 int disk_idx
, int disks
)
3294 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3295 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
3296 &sh
->dev
[s
->failed_num
[1]] };
3300 if (test_bit(R5_LOCKED
, &dev
->flags
) ||
3301 test_bit(R5_UPTODATE
, &dev
->flags
))
3302 /* No point reading this as we already have it or have
3303 * decided to get it.
3308 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)))
3309 /* We need this block to directly satisfy a request */
3312 if (s
->syncing
|| s
->expanding
||
3313 (s
->replacing
&& want_replace(sh
, disk_idx
)))
3314 /* When syncing, or expanding we read everything.
3315 * When replacing, we need the replaced block.
3319 if ((s
->failed
>= 1 && fdev
[0]->toread
) ||
3320 (s
->failed
>= 2 && fdev
[1]->toread
))
3321 /* If we want to read from a failed device, then
3322 * we need to actually read every other device.
3326 /* Sometimes neither read-modify-write nor reconstruct-write
3327 * cycles can work. In those cases we read every block we
3328 * can. Then the parity-update is certain to have enough to
3330 * This can only be a problem when we need to write something,
3331 * and some device has failed. If either of those tests
3332 * fail we need look no further.
3334 if (!s
->failed
|| !s
->to_write
)
3337 if (test_bit(R5_Insync
, &dev
->flags
) &&
3338 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3339 /* Pre-reads at not permitted until after short delay
3340 * to gather multiple requests. However if this
3341 * device is no Insync, the block could only be be computed
3342 * and there is no need to delay that.
3346 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3347 if (fdev
[i
]->towrite
&&
3348 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3349 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3350 /* If we have a partial write to a failed
3351 * device, then we will need to reconstruct
3352 * the content of that device, so all other
3353 * devices must be read.
3358 /* If we are forced to do a reconstruct-write, either because
3359 * the current RAID6 implementation only supports that, or
3360 * or because parity cannot be trusted and we are currently
3361 * recovering it, there is extra need to be careful.
3362 * If one of the devices that we would need to read, because
3363 * it is not being overwritten (and maybe not written at all)
3364 * is missing/faulty, then we need to read everything we can.
3366 if (sh
->raid_conf
->level
!= 6 &&
3367 sh
->sector
< sh
->raid_conf
->mddev
->recovery_cp
)
3368 /* reconstruct-write isn't being forced */
3370 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3371 if (s
->failed_num
[i
] != sh
->pd_idx
&&
3372 s
->failed_num
[i
] != sh
->qd_idx
&&
3373 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3374 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3381 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3382 int disk_idx
, int disks
)
3384 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3386 /* is the data in this block needed, and can we get it? */
3387 if (need_this_block(sh
, s
, disk_idx
, disks
)) {
3388 /* we would like to get this block, possibly by computing it,
3389 * otherwise read it if the backing disk is insync
3391 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
3392 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
3393 BUG_ON(sh
->batch_head
);
3394 if ((s
->uptodate
== disks
- 1) &&
3395 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
3396 disk_idx
== s
->failed_num
[1]))) {
3397 /* have disk failed, and we're requested to fetch it;
3400 pr_debug("Computing stripe %llu block %d\n",
3401 (unsigned long long)sh
->sector
, disk_idx
);
3402 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3403 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3404 set_bit(R5_Wantcompute
, &dev
->flags
);
3405 sh
->ops
.target
= disk_idx
;
3406 sh
->ops
.target2
= -1; /* no 2nd target */
3408 /* Careful: from this point on 'uptodate' is in the eye
3409 * of raid_run_ops which services 'compute' operations
3410 * before writes. R5_Wantcompute flags a block that will
3411 * be R5_UPTODATE by the time it is needed for a
3412 * subsequent operation.
3416 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
3417 /* Computing 2-failure is *very* expensive; only
3418 * do it if failed >= 2
3421 for (other
= disks
; other
--; ) {
3422 if (other
== disk_idx
)
3424 if (!test_bit(R5_UPTODATE
,
3425 &sh
->dev
[other
].flags
))
3429 pr_debug("Computing stripe %llu blocks %d,%d\n",
3430 (unsigned long long)sh
->sector
,
3432 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3433 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3434 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
3435 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
3436 sh
->ops
.target
= disk_idx
;
3437 sh
->ops
.target2
= other
;
3441 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
3442 set_bit(R5_LOCKED
, &dev
->flags
);
3443 set_bit(R5_Wantread
, &dev
->flags
);
3445 pr_debug("Reading block %d (sync=%d)\n",
3446 disk_idx
, s
->syncing
);
3454 * handle_stripe_fill - read or compute data to satisfy pending requests.
3456 static void handle_stripe_fill(struct stripe_head
*sh
,
3457 struct stripe_head_state
*s
,
3462 /* look for blocks to read/compute, skip this if a compute
3463 * is already in flight, or if the stripe contents are in the
3464 * midst of changing due to a write
3466 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
3467 !sh
->reconstruct_state
)
3468 for (i
= disks
; i
--; )
3469 if (fetch_block(sh
, s
, i
, disks
))
3471 set_bit(STRIPE_HANDLE
, &sh
->state
);
3474 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
3475 unsigned long handle_flags
);
3476 /* handle_stripe_clean_event
3477 * any written block on an uptodate or failed drive can be returned.
3478 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3479 * never LOCKED, so we don't need to test 'failed' directly.
3481 static void handle_stripe_clean_event(struct r5conf
*conf
,
3482 struct stripe_head
*sh
, int disks
, struct bio_list
*return_bi
)
3486 int discard_pending
= 0;
3487 struct stripe_head
*head_sh
= sh
;
3488 bool do_endio
= false;
3490 for (i
= disks
; i
--; )
3491 if (sh
->dev
[i
].written
) {
3493 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
3494 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3495 test_bit(R5_Discard
, &dev
->flags
) ||
3496 test_bit(R5_SkipCopy
, &dev
->flags
))) {
3497 /* We can return any write requests */
3498 struct bio
*wbi
, *wbi2
;
3499 pr_debug("Return write for disc %d\n", i
);
3500 if (test_and_clear_bit(R5_Discard
, &dev
->flags
))
3501 clear_bit(R5_UPTODATE
, &dev
->flags
);
3502 if (test_and_clear_bit(R5_SkipCopy
, &dev
->flags
)) {
3503 WARN_ON(test_bit(R5_UPTODATE
, &dev
->flags
));
3508 dev
->page
= dev
->orig_page
;
3510 dev
->written
= NULL
;
3511 while (wbi
&& wbi
->bi_iter
.bi_sector
<
3512 dev
->sector
+ STRIPE_SECTORS
) {
3513 wbi2
= r5_next_bio(wbi
, dev
->sector
);
3514 if (!raid5_dec_bi_active_stripes(wbi
)) {
3515 md_write_end(conf
->mddev
);
3516 bio_list_add(return_bi
, wbi
);
3520 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3522 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
3524 if (head_sh
->batch_head
) {
3525 sh
= list_first_entry(&sh
->batch_list
,
3528 if (sh
!= head_sh
) {
3535 } else if (test_bit(R5_Discard
, &dev
->flags
))
3536 discard_pending
= 1;
3539 r5l_stripe_write_finished(sh
);
3541 if (!discard_pending
&&
3542 test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3544 clear_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
3545 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3546 if (sh
->qd_idx
>= 0) {
3547 clear_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
3548 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
);
3550 /* now that discard is done we can proceed with any sync */
3551 clear_bit(STRIPE_DISCARD
, &sh
->state
);
3553 * SCSI discard will change some bio fields and the stripe has
3554 * no updated data, so remove it from hash list and the stripe
3555 * will be reinitialized
3558 hash
= sh
->hash_lock_index
;
3559 spin_lock_irq(conf
->hash_locks
+ hash
);
3561 spin_unlock_irq(conf
->hash_locks
+ hash
);
3562 if (head_sh
->batch_head
) {
3563 sh
= list_first_entry(&sh
->batch_list
,
3564 struct stripe_head
, batch_list
);
3570 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
3571 set_bit(STRIPE_HANDLE
, &sh
->state
);
3575 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3576 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3577 md_wakeup_thread(conf
->mddev
->thread
);
3579 if (head_sh
->batch_head
&& do_endio
)
3580 break_stripe_batch_list(head_sh
, STRIPE_EXPAND_SYNC_FLAGS
);
3583 static void handle_stripe_dirtying(struct r5conf
*conf
,
3584 struct stripe_head
*sh
,
3585 struct stripe_head_state
*s
,
3588 int rmw
= 0, rcw
= 0, i
;
3589 sector_t recovery_cp
= conf
->mddev
->recovery_cp
;
3591 /* Check whether resync is now happening or should start.
3592 * If yes, then the array is dirty (after unclean shutdown or
3593 * initial creation), so parity in some stripes might be inconsistent.
3594 * In this case, we need to always do reconstruct-write, to ensure
3595 * that in case of drive failure or read-error correction, we
3596 * generate correct data from the parity.
3598 if (conf
->rmw_level
== PARITY_DISABLE_RMW
||
3599 (recovery_cp
< MaxSector
&& sh
->sector
>= recovery_cp
&&
3601 /* Calculate the real rcw later - for now make it
3602 * look like rcw is cheaper
3605 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3606 conf
->rmw_level
, (unsigned long long)recovery_cp
,
3607 (unsigned long long)sh
->sector
);
3608 } else for (i
= disks
; i
--; ) {
3609 /* would I have to read this buffer for read_modify_write */
3610 struct r5dev
*dev
= &sh
->dev
[i
];
3611 if ((dev
->towrite
|| i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3612 test_bit(R5_InJournal
, &dev
->flags
)) &&
3613 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3614 !((test_bit(R5_UPTODATE
, &dev
->flags
) &&
3615 (!test_bit(R5_InJournal
, &dev
->flags
) ||
3616 dev
->page
!= dev
->orig_page
)) ||
3617 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3618 if (test_bit(R5_Insync
, &dev
->flags
))
3621 rmw
+= 2*disks
; /* cannot read it */
3623 /* Would I have to read this buffer for reconstruct_write */
3624 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3625 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3626 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3627 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3628 test_bit(R5_InJournal
, &dev
->flags
) ||
3629 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3630 if (test_bit(R5_Insync
, &dev
->flags
))
3637 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3638 (unsigned long long)sh
->sector
, rmw
, rcw
);
3639 set_bit(STRIPE_HANDLE
, &sh
->state
);
3640 if ((rmw
< rcw
|| (rmw
== rcw
&& conf
->rmw_level
== PARITY_PREFER_RMW
)) && rmw
> 0) {
3641 /* prefer read-modify-write, but need to get some data */
3642 if (conf
->mddev
->queue
)
3643 blk_add_trace_msg(conf
->mddev
->queue
,
3644 "raid5 rmw %llu %d",
3645 (unsigned long long)sh
->sector
, rmw
);
3646 for (i
= disks
; i
--; ) {
3647 struct r5dev
*dev
= &sh
->dev
[i
];
3648 if (test_bit(R5_InJournal
, &dev
->flags
) &&
3649 dev
->page
== dev
->orig_page
&&
3650 !test_bit(R5_LOCKED
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3651 /* alloc page for prexor */
3652 dev
->orig_page
= alloc_page(GFP_NOIO
);
3654 /* will handle failure in a later patch*/
3655 BUG_ON(!dev
->orig_page
);
3658 if ((dev
->towrite
||
3659 i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3660 test_bit(R5_InJournal
, &dev
->flags
)) &&
3661 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3662 !((test_bit(R5_UPTODATE
, &dev
->flags
) &&
3663 (!test_bit(R5_InJournal
, &dev
->flags
) ||
3664 dev
->page
!= dev
->orig_page
)) ||
3665 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
3666 test_bit(R5_Insync
, &dev
->flags
)) {
3667 if (test_bit(STRIPE_PREREAD_ACTIVE
,
3669 pr_debug("Read_old block %d for r-m-w\n",
3671 set_bit(R5_LOCKED
, &dev
->flags
);
3672 set_bit(R5_Wantread
, &dev
->flags
);
3675 set_bit(STRIPE_DELAYED
, &sh
->state
);
3676 set_bit(STRIPE_HANDLE
, &sh
->state
);
3681 if ((rcw
< rmw
|| (rcw
== rmw
&& conf
->rmw_level
!= PARITY_PREFER_RMW
)) && rcw
> 0) {
3682 /* want reconstruct write, but need to get some data */
3685 for (i
= disks
; i
--; ) {
3686 struct r5dev
*dev
= &sh
->dev
[i
];
3687 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3688 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3689 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3690 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3691 test_bit(R5_InJournal
, &dev
->flags
) ||
3692 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3694 if (test_bit(R5_Insync
, &dev
->flags
) &&
3695 test_bit(STRIPE_PREREAD_ACTIVE
,
3697 pr_debug("Read_old block "
3698 "%d for Reconstruct\n", i
);
3699 set_bit(R5_LOCKED
, &dev
->flags
);
3700 set_bit(R5_Wantread
, &dev
->flags
);
3704 set_bit(STRIPE_DELAYED
, &sh
->state
);
3705 set_bit(STRIPE_HANDLE
, &sh
->state
);
3709 if (rcw
&& conf
->mddev
->queue
)
3710 blk_add_trace_msg(conf
->mddev
->queue
, "raid5 rcw %llu %d %d %d",
3711 (unsigned long long)sh
->sector
,
3712 rcw
, qread
, test_bit(STRIPE_DELAYED
, &sh
->state
));
3715 if (rcw
> disks
&& rmw
> disks
&&
3716 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3717 set_bit(STRIPE_DELAYED
, &sh
->state
);
3719 /* now if nothing is locked, and if we have enough data,
3720 * we can start a write request
3722 /* since handle_stripe can be called at any time we need to handle the
3723 * case where a compute block operation has been submitted and then a
3724 * subsequent call wants to start a write request. raid_run_ops only
3725 * handles the case where compute block and reconstruct are requested
3726 * simultaneously. If this is not the case then new writes need to be
3727 * held off until the compute completes.
3729 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
3730 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
3731 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
3732 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
3735 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
3736 struct stripe_head_state
*s
, int disks
)
3738 struct r5dev
*dev
= NULL
;
3740 BUG_ON(sh
->batch_head
);
3741 set_bit(STRIPE_HANDLE
, &sh
->state
);
3743 switch (sh
->check_state
) {
3744 case check_state_idle
:
3745 /* start a new check operation if there are no failures */
3746 if (s
->failed
== 0) {
3747 BUG_ON(s
->uptodate
!= disks
);
3748 sh
->check_state
= check_state_run
;
3749 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3750 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3754 dev
= &sh
->dev
[s
->failed_num
[0]];
3756 case check_state_compute_result
:
3757 sh
->check_state
= check_state_idle
;
3759 dev
= &sh
->dev
[sh
->pd_idx
];
3761 /* check that a write has not made the stripe insync */
3762 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3765 /* either failed parity check, or recovery is happening */
3766 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
3767 BUG_ON(s
->uptodate
!= disks
);
3769 set_bit(R5_LOCKED
, &dev
->flags
);
3771 set_bit(R5_Wantwrite
, &dev
->flags
);
3773 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3774 set_bit(STRIPE_INSYNC
, &sh
->state
);
3776 case check_state_run
:
3777 break; /* we will be called again upon completion */
3778 case check_state_check_result
:
3779 sh
->check_state
= check_state_idle
;
3781 /* if a failure occurred during the check operation, leave
3782 * STRIPE_INSYNC not set and let the stripe be handled again
3787 /* handle a successful check operation, if parity is correct
3788 * we are done. Otherwise update the mismatch count and repair
3789 * parity if !MD_RECOVERY_CHECK
3791 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
3792 /* parity is correct (on disc,
3793 * not in buffer any more)
3795 set_bit(STRIPE_INSYNC
, &sh
->state
);
3797 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3798 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3799 /* don't try to repair!! */
3800 set_bit(STRIPE_INSYNC
, &sh
->state
);
3802 sh
->check_state
= check_state_compute_run
;
3803 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3804 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3805 set_bit(R5_Wantcompute
,
3806 &sh
->dev
[sh
->pd_idx
].flags
);
3807 sh
->ops
.target
= sh
->pd_idx
;
3808 sh
->ops
.target2
= -1;
3813 case check_state_compute_run
:
3816 pr_err("%s: unknown check_state: %d sector: %llu\n",
3817 __func__
, sh
->check_state
,
3818 (unsigned long long) sh
->sector
);
3823 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
3824 struct stripe_head_state
*s
,
3827 int pd_idx
= sh
->pd_idx
;
3828 int qd_idx
= sh
->qd_idx
;
3831 BUG_ON(sh
->batch_head
);
3832 set_bit(STRIPE_HANDLE
, &sh
->state
);
3834 BUG_ON(s
->failed
> 2);
3836 /* Want to check and possibly repair P and Q.
3837 * However there could be one 'failed' device, in which
3838 * case we can only check one of them, possibly using the
3839 * other to generate missing data
3842 switch (sh
->check_state
) {
3843 case check_state_idle
:
3844 /* start a new check operation if there are < 2 failures */
3845 if (s
->failed
== s
->q_failed
) {
3846 /* The only possible failed device holds Q, so it
3847 * makes sense to check P (If anything else were failed,
3848 * we would have used P to recreate it).
3850 sh
->check_state
= check_state_run
;
3852 if (!s
->q_failed
&& s
->failed
< 2) {
3853 /* Q is not failed, and we didn't use it to generate
3854 * anything, so it makes sense to check it
3856 if (sh
->check_state
== check_state_run
)
3857 sh
->check_state
= check_state_run_pq
;
3859 sh
->check_state
= check_state_run_q
;
3862 /* discard potentially stale zero_sum_result */
3863 sh
->ops
.zero_sum_result
= 0;
3865 if (sh
->check_state
== check_state_run
) {
3866 /* async_xor_zero_sum destroys the contents of P */
3867 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
3870 if (sh
->check_state
>= check_state_run
&&
3871 sh
->check_state
<= check_state_run_pq
) {
3872 /* async_syndrome_zero_sum preserves P and Q, so
3873 * no need to mark them !uptodate here
3875 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3879 /* we have 2-disk failure */
3880 BUG_ON(s
->failed
!= 2);
3882 case check_state_compute_result
:
3883 sh
->check_state
= check_state_idle
;
3885 /* check that a write has not made the stripe insync */
3886 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3889 /* now write out any block on a failed drive,
3890 * or P or Q if they were recomputed
3892 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
3893 if (s
->failed
== 2) {
3894 dev
= &sh
->dev
[s
->failed_num
[1]];
3896 set_bit(R5_LOCKED
, &dev
->flags
);
3897 set_bit(R5_Wantwrite
, &dev
->flags
);
3899 if (s
->failed
>= 1) {
3900 dev
= &sh
->dev
[s
->failed_num
[0]];
3902 set_bit(R5_LOCKED
, &dev
->flags
);
3903 set_bit(R5_Wantwrite
, &dev
->flags
);
3905 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3906 dev
= &sh
->dev
[pd_idx
];
3908 set_bit(R5_LOCKED
, &dev
->flags
);
3909 set_bit(R5_Wantwrite
, &dev
->flags
);
3911 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3912 dev
= &sh
->dev
[qd_idx
];
3914 set_bit(R5_LOCKED
, &dev
->flags
);
3915 set_bit(R5_Wantwrite
, &dev
->flags
);
3917 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3919 set_bit(STRIPE_INSYNC
, &sh
->state
);
3921 case check_state_run
:
3922 case check_state_run_q
:
3923 case check_state_run_pq
:
3924 break; /* we will be called again upon completion */
3925 case check_state_check_result
:
3926 sh
->check_state
= check_state_idle
;
3928 /* handle a successful check operation, if parity is correct
3929 * we are done. Otherwise update the mismatch count and repair
3930 * parity if !MD_RECOVERY_CHECK
3932 if (sh
->ops
.zero_sum_result
== 0) {
3933 /* both parities are correct */
3935 set_bit(STRIPE_INSYNC
, &sh
->state
);
3937 /* in contrast to the raid5 case we can validate
3938 * parity, but still have a failure to write
3941 sh
->check_state
= check_state_compute_result
;
3942 /* Returning at this point means that we may go
3943 * off and bring p and/or q uptodate again so
3944 * we make sure to check zero_sum_result again
3945 * to verify if p or q need writeback
3949 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3950 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3951 /* don't try to repair!! */
3952 set_bit(STRIPE_INSYNC
, &sh
->state
);
3954 int *target
= &sh
->ops
.target
;
3956 sh
->ops
.target
= -1;
3957 sh
->ops
.target2
= -1;
3958 sh
->check_state
= check_state_compute_run
;
3959 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3960 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3961 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3962 set_bit(R5_Wantcompute
,
3963 &sh
->dev
[pd_idx
].flags
);
3965 target
= &sh
->ops
.target2
;
3968 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3969 set_bit(R5_Wantcompute
,
3970 &sh
->dev
[qd_idx
].flags
);
3977 case check_state_compute_run
:
3980 pr_warn("%s: unknown check_state: %d sector: %llu\n",
3981 __func__
, sh
->check_state
,
3982 (unsigned long long) sh
->sector
);
3987 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
3991 /* We have read all the blocks in this stripe and now we need to
3992 * copy some of them into a target stripe for expand.
3994 struct dma_async_tx_descriptor
*tx
= NULL
;
3995 BUG_ON(sh
->batch_head
);
3996 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3997 for (i
= 0; i
< sh
->disks
; i
++)
3998 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
4000 struct stripe_head
*sh2
;
4001 struct async_submit_ctl submit
;
4003 sector_t bn
= raid5_compute_blocknr(sh
, i
, 1);
4004 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
4006 sh2
= raid5_get_active_stripe(conf
, s
, 0, 1, 1);
4008 /* so far only the early blocks of this stripe
4009 * have been requested. When later blocks
4010 * get requested, we will try again
4013 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
4014 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
4015 /* must have already done this block */
4016 raid5_release_stripe(sh2
);
4020 /* place all the copies on one channel */
4021 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
4022 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
4023 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
4026 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
4027 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
4028 for (j
= 0; j
< conf
->raid_disks
; j
++)
4029 if (j
!= sh2
->pd_idx
&&
4031 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
4033 if (j
== conf
->raid_disks
) {
4034 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
4035 set_bit(STRIPE_HANDLE
, &sh2
->state
);
4037 raid5_release_stripe(sh2
);
4040 /* done submitting copies, wait for them to complete */
4041 async_tx_quiesce(&tx
);
4045 * handle_stripe - do things to a stripe.
4047 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4048 * state of various bits to see what needs to be done.
4050 * return some read requests which now have data
4051 * return some write requests which are safely on storage
4052 * schedule a read on some buffers
4053 * schedule a write of some buffers
4054 * return confirmation of parity correctness
4058 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
4060 struct r5conf
*conf
= sh
->raid_conf
;
4061 int disks
= sh
->disks
;
4064 int do_recovery
= 0;
4066 memset(s
, 0, sizeof(*s
));
4068 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) && !sh
->batch_head
;
4069 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
) && !sh
->batch_head
;
4070 s
->failed_num
[0] = -1;
4071 s
->failed_num
[1] = -1;
4072 s
->log_failed
= r5l_log_disk_error(conf
);
4074 /* Now to look around and see what can be done */
4076 for (i
=disks
; i
--; ) {
4077 struct md_rdev
*rdev
;
4084 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4086 dev
->toread
, dev
->towrite
, dev
->written
);
4087 /* maybe we can reply to a read
4089 * new wantfill requests are only permitted while
4090 * ops_complete_biofill is guaranteed to be inactive
4092 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
4093 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
4094 set_bit(R5_Wantfill
, &dev
->flags
);
4096 /* now count some things */
4097 if (test_bit(R5_LOCKED
, &dev
->flags
))
4099 if (test_bit(R5_UPTODATE
, &dev
->flags
))
4101 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
4103 BUG_ON(s
->compute
> 2);
4106 if (test_bit(R5_Wantfill
, &dev
->flags
))
4108 else if (dev
->toread
)
4112 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
4117 /* Prefer to use the replacement for reads, but only
4118 * if it is recovered enough and has no bad blocks.
4120 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
4121 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
4122 rdev
->recovery_offset
>= sh
->sector
+ STRIPE_SECTORS
&&
4123 !is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4124 &first_bad
, &bad_sectors
))
4125 set_bit(R5_ReadRepl
, &dev
->flags
);
4127 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4128 set_bit(R5_NeedReplace
, &dev
->flags
);
4130 clear_bit(R5_NeedReplace
, &dev
->flags
);
4131 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
4132 clear_bit(R5_ReadRepl
, &dev
->flags
);
4134 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
4137 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4138 &first_bad
, &bad_sectors
);
4139 if (s
->blocked_rdev
== NULL
4140 && (test_bit(Blocked
, &rdev
->flags
)
4143 set_bit(BlockedBadBlocks
,
4145 s
->blocked_rdev
= rdev
;
4146 atomic_inc(&rdev
->nr_pending
);
4149 clear_bit(R5_Insync
, &dev
->flags
);
4153 /* also not in-sync */
4154 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
4155 test_bit(R5_UPTODATE
, &dev
->flags
)) {
4156 /* treat as in-sync, but with a read error
4157 * which we can now try to correct
4159 set_bit(R5_Insync
, &dev
->flags
);
4160 set_bit(R5_ReadError
, &dev
->flags
);
4162 } else if (test_bit(In_sync
, &rdev
->flags
))
4163 set_bit(R5_Insync
, &dev
->flags
);
4164 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
4165 /* in sync if before recovery_offset */
4166 set_bit(R5_Insync
, &dev
->flags
);
4167 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
4168 test_bit(R5_Expanded
, &dev
->flags
))
4169 /* If we've reshaped into here, we assume it is Insync.
4170 * We will shortly update recovery_offset to make
4173 set_bit(R5_Insync
, &dev
->flags
);
4175 if (test_bit(R5_WriteError
, &dev
->flags
)) {
4176 /* This flag does not apply to '.replacement'
4177 * only to .rdev, so make sure to check that*/
4178 struct md_rdev
*rdev2
= rcu_dereference(
4179 conf
->disks
[i
].rdev
);
4181 clear_bit(R5_Insync
, &dev
->flags
);
4182 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4183 s
->handle_bad_blocks
= 1;
4184 atomic_inc(&rdev2
->nr_pending
);
4186 clear_bit(R5_WriteError
, &dev
->flags
);
4188 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
4189 /* This flag does not apply to '.replacement'
4190 * only to .rdev, so make sure to check that*/
4191 struct md_rdev
*rdev2
= rcu_dereference(
4192 conf
->disks
[i
].rdev
);
4193 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4194 s
->handle_bad_blocks
= 1;
4195 atomic_inc(&rdev2
->nr_pending
);
4197 clear_bit(R5_MadeGood
, &dev
->flags
);
4199 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4200 struct md_rdev
*rdev2
= rcu_dereference(
4201 conf
->disks
[i
].replacement
);
4202 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4203 s
->handle_bad_blocks
= 1;
4204 atomic_inc(&rdev2
->nr_pending
);
4206 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
4208 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4209 /* The ReadError flag will just be confusing now */
4210 clear_bit(R5_ReadError
, &dev
->flags
);
4211 clear_bit(R5_ReWrite
, &dev
->flags
);
4213 if (test_bit(R5_ReadError
, &dev
->flags
))
4214 clear_bit(R5_Insync
, &dev
->flags
);
4215 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4217 s
->failed_num
[s
->failed
] = i
;
4219 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4223 if (test_bit(R5_InJournal
, &dev
->flags
))
4225 if (test_bit(R5_InJournal
, &dev
->flags
) && dev
->written
)
4228 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
4229 /* If there is a failed device being replaced,
4230 * we must be recovering.
4231 * else if we are after recovery_cp, we must be syncing
4232 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4233 * else we can only be replacing
4234 * sync and recovery both need to read all devices, and so
4235 * use the same flag.
4238 sh
->sector
>= conf
->mddev
->recovery_cp
||
4239 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
4247 static int clear_batch_ready(struct stripe_head
*sh
)
4249 /* Return '1' if this is a member of batch, or
4250 * '0' if it is a lone stripe or a head which can now be
4253 struct stripe_head
*tmp
;
4254 if (!test_and_clear_bit(STRIPE_BATCH_READY
, &sh
->state
))
4255 return (sh
->batch_head
&& sh
->batch_head
!= sh
);
4256 spin_lock(&sh
->stripe_lock
);
4257 if (!sh
->batch_head
) {
4258 spin_unlock(&sh
->stripe_lock
);
4263 * this stripe could be added to a batch list before we check
4264 * BATCH_READY, skips it
4266 if (sh
->batch_head
!= sh
) {
4267 spin_unlock(&sh
->stripe_lock
);
4270 spin_lock(&sh
->batch_lock
);
4271 list_for_each_entry(tmp
, &sh
->batch_list
, batch_list
)
4272 clear_bit(STRIPE_BATCH_READY
, &tmp
->state
);
4273 spin_unlock(&sh
->batch_lock
);
4274 spin_unlock(&sh
->stripe_lock
);
4277 * BATCH_READY is cleared, no new stripes can be added.
4278 * batch_list can be accessed without lock
4283 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
4284 unsigned long handle_flags
)
4286 struct stripe_head
*sh
, *next
;
4290 list_for_each_entry_safe(sh
, next
, &head_sh
->batch_list
, batch_list
) {
4292 list_del_init(&sh
->batch_list
);
4294 WARN_ONCE(sh
->state
& ((1 << STRIPE_ACTIVE
) |
4295 (1 << STRIPE_SYNCING
) |
4296 (1 << STRIPE_REPLACED
) |
4297 (1 << STRIPE_DELAYED
) |
4298 (1 << STRIPE_BIT_DELAY
) |
4299 (1 << STRIPE_FULL_WRITE
) |
4300 (1 << STRIPE_BIOFILL_RUN
) |
4301 (1 << STRIPE_COMPUTE_RUN
) |
4302 (1 << STRIPE_OPS_REQ_PENDING
) |
4303 (1 << STRIPE_DISCARD
) |
4304 (1 << STRIPE_BATCH_READY
) |
4305 (1 << STRIPE_BATCH_ERR
) |
4306 (1 << STRIPE_BITMAP_PENDING
)),
4307 "stripe state: %lx\n", sh
->state
);
4308 WARN_ONCE(head_sh
->state
& ((1 << STRIPE_DISCARD
) |
4309 (1 << STRIPE_REPLACED
)),
4310 "head stripe state: %lx\n", head_sh
->state
);
4312 set_mask_bits(&sh
->state
, ~(STRIPE_EXPAND_SYNC_FLAGS
|
4313 (1 << STRIPE_PREREAD_ACTIVE
) |
4314 (1 << STRIPE_DEGRADED
)),
4315 head_sh
->state
& (1 << STRIPE_INSYNC
));
4317 sh
->check_state
= head_sh
->check_state
;
4318 sh
->reconstruct_state
= head_sh
->reconstruct_state
;
4319 for (i
= 0; i
< sh
->disks
; i
++) {
4320 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
4322 sh
->dev
[i
].flags
= head_sh
->dev
[i
].flags
&
4323 (~((1 << R5_WriteError
) | (1 << R5_Overlap
)));
4325 spin_lock_irq(&sh
->stripe_lock
);
4326 sh
->batch_head
= NULL
;
4327 spin_unlock_irq(&sh
->stripe_lock
);
4328 if (handle_flags
== 0 ||
4329 sh
->state
& handle_flags
)
4330 set_bit(STRIPE_HANDLE
, &sh
->state
);
4331 raid5_release_stripe(sh
);
4333 spin_lock_irq(&head_sh
->stripe_lock
);
4334 head_sh
->batch_head
= NULL
;
4335 spin_unlock_irq(&head_sh
->stripe_lock
);
4336 for (i
= 0; i
< head_sh
->disks
; i
++)
4337 if (test_and_clear_bit(R5_Overlap
, &head_sh
->dev
[i
].flags
))
4339 if (head_sh
->state
& handle_flags
)
4340 set_bit(STRIPE_HANDLE
, &head_sh
->state
);
4343 wake_up(&head_sh
->raid_conf
->wait_for_overlap
);
4346 static void handle_stripe(struct stripe_head
*sh
)
4348 struct stripe_head_state s
;
4349 struct r5conf
*conf
= sh
->raid_conf
;
4352 int disks
= sh
->disks
;
4353 struct r5dev
*pdev
, *qdev
;
4355 clear_bit(STRIPE_HANDLE
, &sh
->state
);
4356 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
4357 /* already being handled, ensure it gets handled
4358 * again when current action finishes */
4359 set_bit(STRIPE_HANDLE
, &sh
->state
);
4363 if (clear_batch_ready(sh
) ) {
4364 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4368 if (test_and_clear_bit(STRIPE_BATCH_ERR
, &sh
->state
))
4369 break_stripe_batch_list(sh
, 0);
4371 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) && !sh
->batch_head
) {
4372 spin_lock(&sh
->stripe_lock
);
4373 /* Cannot process 'sync' concurrently with 'discard' */
4374 if (!test_bit(STRIPE_DISCARD
, &sh
->state
) &&
4375 test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
4376 set_bit(STRIPE_SYNCING
, &sh
->state
);
4377 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4378 clear_bit(STRIPE_REPLACED
, &sh
->state
);
4380 spin_unlock(&sh
->stripe_lock
);
4382 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4384 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4385 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4386 (unsigned long long)sh
->sector
, sh
->state
,
4387 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
4388 sh
->check_state
, sh
->reconstruct_state
);
4390 analyse_stripe(sh
, &s
);
4392 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
4395 if (s
.handle_bad_blocks
) {
4396 set_bit(STRIPE_HANDLE
, &sh
->state
);
4400 if (unlikely(s
.blocked_rdev
)) {
4401 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
4402 s
.replacing
|| s
.to_write
|| s
.written
) {
4403 set_bit(STRIPE_HANDLE
, &sh
->state
);
4406 /* There is nothing for the blocked_rdev to block */
4407 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
4408 s
.blocked_rdev
= NULL
;
4411 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
4412 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
4413 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
4416 pr_debug("locked=%d uptodate=%d to_read=%d"
4417 " to_write=%d failed=%d failed_num=%d,%d\n",
4418 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
4419 s
.failed_num
[0], s
.failed_num
[1]);
4420 /* check if the array has lost more than max_degraded devices and,
4421 * if so, some requests might need to be failed.
4423 if (s
.failed
> conf
->max_degraded
|| s
.log_failed
) {
4424 sh
->check_state
= 0;
4425 sh
->reconstruct_state
= 0;
4426 break_stripe_batch_list(sh
, 0);
4427 if (s
.to_read
+s
.to_write
+s
.written
)
4428 handle_failed_stripe(conf
, sh
, &s
, disks
, &s
.return_bi
);
4429 if (s
.syncing
+ s
.replacing
)
4430 handle_failed_sync(conf
, sh
, &s
);
4433 /* Now we check to see if any write operations have recently
4437 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
4439 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
4440 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
4441 sh
->reconstruct_state
= reconstruct_state_idle
;
4443 /* All the 'written' buffers and the parity block are ready to
4444 * be written back to disk
4446 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
) &&
4447 !test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
));
4448 BUG_ON(sh
->qd_idx
>= 0 &&
4449 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
) &&
4450 !test_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
));
4451 for (i
= disks
; i
--; ) {
4452 struct r5dev
*dev
= &sh
->dev
[i
];
4453 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
4454 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
4455 dev
->written
|| test_bit(R5_InJournal
,
4457 pr_debug("Writing block %d\n", i
);
4458 set_bit(R5_Wantwrite
, &dev
->flags
);
4463 if (!test_bit(R5_Insync
, &dev
->flags
) ||
4464 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
4466 set_bit(STRIPE_INSYNC
, &sh
->state
);
4469 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4470 s
.dec_preread_active
= 1;
4474 * might be able to return some write requests if the parity blocks
4475 * are safe, or on a failed drive
4477 pdev
= &sh
->dev
[sh
->pd_idx
];
4478 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
4479 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
4480 qdev
= &sh
->dev
[sh
->qd_idx
];
4481 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
4482 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
4486 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
4487 && !test_bit(R5_LOCKED
, &pdev
->flags
)
4488 && (test_bit(R5_UPTODATE
, &pdev
->flags
) ||
4489 test_bit(R5_Discard
, &pdev
->flags
))))) &&
4490 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
4491 && !test_bit(R5_LOCKED
, &qdev
->flags
)
4492 && (test_bit(R5_UPTODATE
, &qdev
->flags
) ||
4493 test_bit(R5_Discard
, &qdev
->flags
))))))
4494 handle_stripe_clean_event(conf
, sh
, disks
, &s
.return_bi
);
4497 r5c_handle_cached_data_endio(conf
, sh
, disks
, &s
.return_bi
);
4498 r5l_stripe_write_finished(sh
);
4500 /* Now we might consider reading some blocks, either to check/generate
4501 * parity, or to satisfy requests
4502 * or to load a block that is being partially written.
4504 if (s
.to_read
|| s
.non_overwrite
4505 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
4506 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
4509 handle_stripe_fill(sh
, &s
, disks
);
4512 * When the stripe finishes full journal write cycle (write to journal
4513 * and raid disk), this is the clean up procedure so it is ready for
4516 r5c_finish_stripe_write_out(conf
, sh
, &s
);
4519 * Now to consider new write requests, cache write back and what else,
4520 * if anything should be read. We do not handle new writes when:
4521 * 1/ A 'write' operation (copy+xor) is already in flight.
4522 * 2/ A 'check' operation is in flight, as it may clobber the parity
4524 * 3/ A r5c cache log write is in flight.
4527 if (!sh
->reconstruct_state
&& !sh
->check_state
&& !sh
->log_io
) {
4528 if (!r5c_is_writeback(conf
->log
)) {
4530 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
4531 } else { /* write back cache */
4534 /* First, try handle writes in caching phase */
4536 ret
= r5c_try_caching_write(conf
, sh
, &s
,
4539 * If caching phase failed: ret == -EAGAIN
4541 * stripe under reclaim: !caching && injournal
4543 * fall back to handle_stripe_dirtying()
4545 if (ret
== -EAGAIN
||
4546 /* stripe under reclaim: !caching && injournal */
4547 (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
) &&
4549 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
4553 /* maybe we need to check and possibly fix the parity for this stripe
4554 * Any reads will already have been scheduled, so we just see if enough
4555 * data is available. The parity check is held off while parity
4556 * dependent operations are in flight.
4558 if (sh
->check_state
||
4559 (s
.syncing
&& s
.locked
== 0 &&
4560 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4561 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
4562 if (conf
->level
== 6)
4563 handle_parity_checks6(conf
, sh
, &s
, disks
);
4565 handle_parity_checks5(conf
, sh
, &s
, disks
);
4568 if ((s
.replacing
|| s
.syncing
) && s
.locked
== 0
4569 && !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)
4570 && !test_bit(STRIPE_REPLACED
, &sh
->state
)) {
4571 /* Write out to replacement devices where possible */
4572 for (i
= 0; i
< conf
->raid_disks
; i
++)
4573 if (test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
4574 WARN_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
4575 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
4576 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4580 set_bit(STRIPE_INSYNC
, &sh
->state
);
4581 set_bit(STRIPE_REPLACED
, &sh
->state
);
4583 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
4584 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4585 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
4586 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4587 clear_bit(STRIPE_SYNCING
, &sh
->state
);
4588 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
4589 wake_up(&conf
->wait_for_overlap
);
4592 /* If the failed drives are just a ReadError, then we might need
4593 * to progress the repair/check process
4595 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
4596 for (i
= 0; i
< s
.failed
; i
++) {
4597 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
4598 if (test_bit(R5_ReadError
, &dev
->flags
)
4599 && !test_bit(R5_LOCKED
, &dev
->flags
)
4600 && test_bit(R5_UPTODATE
, &dev
->flags
)
4602 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
4603 set_bit(R5_Wantwrite
, &dev
->flags
);
4604 set_bit(R5_ReWrite
, &dev
->flags
);
4605 set_bit(R5_LOCKED
, &dev
->flags
);
4608 /* let's read it back */
4609 set_bit(R5_Wantread
, &dev
->flags
);
4610 set_bit(R5_LOCKED
, &dev
->flags
);
4616 /* Finish reconstruct operations initiated by the expansion process */
4617 if (sh
->reconstruct_state
== reconstruct_state_result
) {
4618 struct stripe_head
*sh_src
4619 = raid5_get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
4620 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
4621 /* sh cannot be written until sh_src has been read.
4622 * so arrange for sh to be delayed a little
4624 set_bit(STRIPE_DELAYED
, &sh
->state
);
4625 set_bit(STRIPE_HANDLE
, &sh
->state
);
4626 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
4628 atomic_inc(&conf
->preread_active_stripes
);
4629 raid5_release_stripe(sh_src
);
4633 raid5_release_stripe(sh_src
);
4635 sh
->reconstruct_state
= reconstruct_state_idle
;
4636 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
4637 for (i
= conf
->raid_disks
; i
--; ) {
4638 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
4639 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4644 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
4645 !sh
->reconstruct_state
) {
4646 /* Need to write out all blocks after computing parity */
4647 sh
->disks
= conf
->raid_disks
;
4648 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
4649 schedule_reconstruction(sh
, &s
, 1, 1);
4650 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
4651 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4652 atomic_dec(&conf
->reshape_stripes
);
4653 wake_up(&conf
->wait_for_overlap
);
4654 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4657 if (s
.expanding
&& s
.locked
== 0 &&
4658 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
4659 handle_stripe_expansion(conf
, sh
);
4662 /* wait for this device to become unblocked */
4663 if (unlikely(s
.blocked_rdev
)) {
4664 if (conf
->mddev
->external
)
4665 md_wait_for_blocked_rdev(s
.blocked_rdev
,
4668 /* Internal metadata will immediately
4669 * be written by raid5d, so we don't
4670 * need to wait here.
4672 rdev_dec_pending(s
.blocked_rdev
,
4676 if (s
.handle_bad_blocks
)
4677 for (i
= disks
; i
--; ) {
4678 struct md_rdev
*rdev
;
4679 struct r5dev
*dev
= &sh
->dev
[i
];
4680 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
4681 /* We own a safe reference to the rdev */
4682 rdev
= conf
->disks
[i
].rdev
;
4683 if (!rdev_set_badblocks(rdev
, sh
->sector
,
4685 md_error(conf
->mddev
, rdev
);
4686 rdev_dec_pending(rdev
, conf
->mddev
);
4688 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
4689 rdev
= conf
->disks
[i
].rdev
;
4690 rdev_clear_badblocks(rdev
, sh
->sector
,
4692 rdev_dec_pending(rdev
, conf
->mddev
);
4694 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4695 rdev
= conf
->disks
[i
].replacement
;
4697 /* rdev have been moved down */
4698 rdev
= conf
->disks
[i
].rdev
;
4699 rdev_clear_badblocks(rdev
, sh
->sector
,
4701 rdev_dec_pending(rdev
, conf
->mddev
);
4706 raid_run_ops(sh
, s
.ops_request
);
4710 if (s
.dec_preread_active
) {
4711 /* We delay this until after ops_run_io so that if make_request
4712 * is waiting on a flush, it won't continue until the writes
4713 * have actually been submitted.
4715 atomic_dec(&conf
->preread_active_stripes
);
4716 if (atomic_read(&conf
->preread_active_stripes
) <
4718 md_wakeup_thread(conf
->mddev
->thread
);
4721 if (!bio_list_empty(&s
.return_bi
)) {
4722 if (test_bit(MD_CHANGE_PENDING
, &conf
->mddev
->flags
)) {
4723 spin_lock_irq(&conf
->device_lock
);
4724 bio_list_merge(&conf
->return_bi
, &s
.return_bi
);
4725 spin_unlock_irq(&conf
->device_lock
);
4726 md_wakeup_thread(conf
->mddev
->thread
);
4728 return_io(&s
.return_bi
);
4731 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4734 static void raid5_activate_delayed(struct r5conf
*conf
)
4736 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
4737 while (!list_empty(&conf
->delayed_list
)) {
4738 struct list_head
*l
= conf
->delayed_list
.next
;
4739 struct stripe_head
*sh
;
4740 sh
= list_entry(l
, struct stripe_head
, lru
);
4742 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4743 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4744 atomic_inc(&conf
->preread_active_stripes
);
4745 list_add_tail(&sh
->lru
, &conf
->hold_list
);
4746 raid5_wakeup_stripe_thread(sh
);
4751 static void activate_bit_delay(struct r5conf
*conf
,
4752 struct list_head
*temp_inactive_list
)
4754 /* device_lock is held */
4755 struct list_head head
;
4756 list_add(&head
, &conf
->bitmap_list
);
4757 list_del_init(&conf
->bitmap_list
);
4758 while (!list_empty(&head
)) {
4759 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
4761 list_del_init(&sh
->lru
);
4762 atomic_inc(&sh
->count
);
4763 hash
= sh
->hash_lock_index
;
4764 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
4768 static int raid5_congested(struct mddev
*mddev
, int bits
)
4770 struct r5conf
*conf
= mddev
->private;
4772 /* No difference between reads and writes. Just check
4773 * how busy the stripe_cache is
4776 if (test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
))
4779 /* Also checks whether there is pressure on r5cache log space */
4780 if (test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
))
4784 if (atomic_read(&conf
->empty_inactive_list_nr
))
4790 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
4792 struct r5conf
*conf
= mddev
->private;
4793 sector_t sector
= bio
->bi_iter
.bi_sector
+ get_start_sect(bio
->bi_bdev
);
4794 unsigned int chunk_sectors
;
4795 unsigned int bio_sectors
= bio_sectors(bio
);
4797 chunk_sectors
= min(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
4798 return chunk_sectors
>=
4799 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
4803 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4804 * later sampled by raid5d.
4806 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
4808 unsigned long flags
;
4810 spin_lock_irqsave(&conf
->device_lock
, flags
);
4812 bi
->bi_next
= conf
->retry_read_aligned_list
;
4813 conf
->retry_read_aligned_list
= bi
;
4815 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4816 md_wakeup_thread(conf
->mddev
->thread
);
4819 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
)
4823 bi
= conf
->retry_read_aligned
;
4825 conf
->retry_read_aligned
= NULL
;
4828 bi
= conf
->retry_read_aligned_list
;
4830 conf
->retry_read_aligned_list
= bi
->bi_next
;
4833 * this sets the active strip count to 1 and the processed
4834 * strip count to zero (upper 8 bits)
4836 raid5_set_bi_stripes(bi
, 1); /* biased count of active stripes */
4843 * The "raid5_align_endio" should check if the read succeeded and if it
4844 * did, call bio_endio on the original bio (having bio_put the new bio
4846 * If the read failed..
4848 static void raid5_align_endio(struct bio
*bi
)
4850 struct bio
* raid_bi
= bi
->bi_private
;
4851 struct mddev
*mddev
;
4852 struct r5conf
*conf
;
4853 struct md_rdev
*rdev
;
4854 int error
= bi
->bi_error
;
4858 rdev
= (void*)raid_bi
->bi_next
;
4859 raid_bi
->bi_next
= NULL
;
4860 mddev
= rdev
->mddev
;
4861 conf
= mddev
->private;
4863 rdev_dec_pending(rdev
, conf
->mddev
);
4866 trace_block_bio_complete(bdev_get_queue(raid_bi
->bi_bdev
),
4869 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4870 wake_up(&conf
->wait_for_quiescent
);
4874 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4876 add_bio_to_retry(raid_bi
, conf
);
4879 static int raid5_read_one_chunk(struct mddev
*mddev
, struct bio
*raid_bio
)
4881 struct r5conf
*conf
= mddev
->private;
4883 struct bio
* align_bi
;
4884 struct md_rdev
*rdev
;
4885 sector_t end_sector
;
4887 if (!in_chunk_boundary(mddev
, raid_bio
)) {
4888 pr_debug("%s: non aligned\n", __func__
);
4892 * use bio_clone_mddev to make a copy of the bio
4894 align_bi
= bio_clone_mddev(raid_bio
, GFP_NOIO
, mddev
);
4898 * set bi_end_io to a new function, and set bi_private to the
4901 align_bi
->bi_end_io
= raid5_align_endio
;
4902 align_bi
->bi_private
= raid_bio
;
4906 align_bi
->bi_iter
.bi_sector
=
4907 raid5_compute_sector(conf
, raid_bio
->bi_iter
.bi_sector
,
4910 end_sector
= bio_end_sector(align_bi
);
4912 rdev
= rcu_dereference(conf
->disks
[dd_idx
].replacement
);
4913 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
4914 rdev
->recovery_offset
< end_sector
) {
4915 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
4917 (test_bit(Faulty
, &rdev
->flags
) ||
4918 !(test_bit(In_sync
, &rdev
->flags
) ||
4919 rdev
->recovery_offset
>= end_sector
)))
4926 atomic_inc(&rdev
->nr_pending
);
4928 raid_bio
->bi_next
= (void*)rdev
;
4929 align_bi
->bi_bdev
= rdev
->bdev
;
4930 bio_clear_flag(align_bi
, BIO_SEG_VALID
);
4932 if (is_badblock(rdev
, align_bi
->bi_iter
.bi_sector
,
4933 bio_sectors(align_bi
),
4934 &first_bad
, &bad_sectors
)) {
4936 rdev_dec_pending(rdev
, mddev
);
4940 /* No reshape active, so we can trust rdev->data_offset */
4941 align_bi
->bi_iter
.bi_sector
+= rdev
->data_offset
;
4943 spin_lock_irq(&conf
->device_lock
);
4944 wait_event_lock_irq(conf
->wait_for_quiescent
,
4947 atomic_inc(&conf
->active_aligned_reads
);
4948 spin_unlock_irq(&conf
->device_lock
);
4951 trace_block_bio_remap(bdev_get_queue(align_bi
->bi_bdev
),
4952 align_bi
, disk_devt(mddev
->gendisk
),
4953 raid_bio
->bi_iter
.bi_sector
);
4954 generic_make_request(align_bi
);
4963 static struct bio
*chunk_aligned_read(struct mddev
*mddev
, struct bio
*raid_bio
)
4968 sector_t sector
= raid_bio
->bi_iter
.bi_sector
;
4969 unsigned chunk_sects
= mddev
->chunk_sectors
;
4970 unsigned sectors
= chunk_sects
- (sector
& (chunk_sects
-1));
4972 if (sectors
< bio_sectors(raid_bio
)) {
4973 split
= bio_split(raid_bio
, sectors
, GFP_NOIO
, fs_bio_set
);
4974 bio_chain(split
, raid_bio
);
4978 if (!raid5_read_one_chunk(mddev
, split
)) {
4979 if (split
!= raid_bio
)
4980 generic_make_request(raid_bio
);
4983 } while (split
!= raid_bio
);
4988 /* __get_priority_stripe - get the next stripe to process
4990 * Full stripe writes are allowed to pass preread active stripes up until
4991 * the bypass_threshold is exceeded. In general the bypass_count
4992 * increments when the handle_list is handled before the hold_list; however, it
4993 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4994 * stripe with in flight i/o. The bypass_count will be reset when the
4995 * head of the hold_list has changed, i.e. the head was promoted to the
4998 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
, int group
)
5000 struct stripe_head
*sh
= NULL
, *tmp
;
5001 struct list_head
*handle_list
= NULL
;
5002 struct r5worker_group
*wg
= NULL
;
5004 if (conf
->worker_cnt_per_group
== 0) {
5005 handle_list
= &conf
->handle_list
;
5006 } else if (group
!= ANY_GROUP
) {
5007 handle_list
= &conf
->worker_groups
[group
].handle_list
;
5008 wg
= &conf
->worker_groups
[group
];
5011 for (i
= 0; i
< conf
->group_cnt
; i
++) {
5012 handle_list
= &conf
->worker_groups
[i
].handle_list
;
5013 wg
= &conf
->worker_groups
[i
];
5014 if (!list_empty(handle_list
))
5019 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5021 list_empty(handle_list
) ? "empty" : "busy",
5022 list_empty(&conf
->hold_list
) ? "empty" : "busy",
5023 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
5025 if (!list_empty(handle_list
)) {
5026 sh
= list_entry(handle_list
->next
, typeof(*sh
), lru
);
5028 if (list_empty(&conf
->hold_list
))
5029 conf
->bypass_count
= 0;
5030 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
5031 if (conf
->hold_list
.next
== conf
->last_hold
)
5032 conf
->bypass_count
++;
5034 conf
->last_hold
= conf
->hold_list
.next
;
5035 conf
->bypass_count
-= conf
->bypass_threshold
;
5036 if (conf
->bypass_count
< 0)
5037 conf
->bypass_count
= 0;
5040 } else if (!list_empty(&conf
->hold_list
) &&
5041 ((conf
->bypass_threshold
&&
5042 conf
->bypass_count
> conf
->bypass_threshold
) ||
5043 atomic_read(&conf
->pending_full_writes
) == 0)) {
5045 list_for_each_entry(tmp
, &conf
->hold_list
, lru
) {
5046 if (conf
->worker_cnt_per_group
== 0 ||
5047 group
== ANY_GROUP
||
5048 !cpu_online(tmp
->cpu
) ||
5049 cpu_to_group(tmp
->cpu
) == group
) {
5056 conf
->bypass_count
-= conf
->bypass_threshold
;
5057 if (conf
->bypass_count
< 0)
5058 conf
->bypass_count
= 0;
5070 list_del_init(&sh
->lru
);
5071 BUG_ON(atomic_inc_return(&sh
->count
) != 1);
5075 struct raid5_plug_cb
{
5076 struct blk_plug_cb cb
;
5077 struct list_head list
;
5078 struct list_head temp_inactive_list
[NR_STRIPE_HASH_LOCKS
];
5081 static void raid5_unplug(struct blk_plug_cb
*blk_cb
, bool from_schedule
)
5083 struct raid5_plug_cb
*cb
= container_of(
5084 blk_cb
, struct raid5_plug_cb
, cb
);
5085 struct stripe_head
*sh
;
5086 struct mddev
*mddev
= cb
->cb
.data
;
5087 struct r5conf
*conf
= mddev
->private;
5091 if (cb
->list
.next
&& !list_empty(&cb
->list
)) {
5092 spin_lock_irq(&conf
->device_lock
);
5093 while (!list_empty(&cb
->list
)) {
5094 sh
= list_first_entry(&cb
->list
, struct stripe_head
, lru
);
5095 list_del_init(&sh
->lru
);
5097 * avoid race release_stripe_plug() sees
5098 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5099 * is still in our list
5101 smp_mb__before_atomic();
5102 clear_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
);
5104 * STRIPE_ON_RELEASE_LIST could be set here. In that
5105 * case, the count is always > 1 here
5107 hash
= sh
->hash_lock_index
;
5108 __release_stripe(conf
, sh
, &cb
->temp_inactive_list
[hash
]);
5111 spin_unlock_irq(&conf
->device_lock
);
5113 release_inactive_stripe_list(conf
, cb
->temp_inactive_list
,
5114 NR_STRIPE_HASH_LOCKS
);
5116 trace_block_unplug(mddev
->queue
, cnt
, !from_schedule
);
5120 static void release_stripe_plug(struct mddev
*mddev
,
5121 struct stripe_head
*sh
)
5123 struct blk_plug_cb
*blk_cb
= blk_check_plugged(
5124 raid5_unplug
, mddev
,
5125 sizeof(struct raid5_plug_cb
));
5126 struct raid5_plug_cb
*cb
;
5129 raid5_release_stripe(sh
);
5133 cb
= container_of(blk_cb
, struct raid5_plug_cb
, cb
);
5135 if (cb
->list
.next
== NULL
) {
5137 INIT_LIST_HEAD(&cb
->list
);
5138 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5139 INIT_LIST_HEAD(cb
->temp_inactive_list
+ i
);
5142 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
))
5143 list_add_tail(&sh
->lru
, &cb
->list
);
5145 raid5_release_stripe(sh
);
5148 static void make_discard_request(struct mddev
*mddev
, struct bio
*bi
)
5150 struct r5conf
*conf
= mddev
->private;
5151 sector_t logical_sector
, last_sector
;
5152 struct stripe_head
*sh
;
5156 if (mddev
->reshape_position
!= MaxSector
)
5157 /* Skip discard while reshape is happening */
5160 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5161 last_sector
= bi
->bi_iter
.bi_sector
+ (bi
->bi_iter
.bi_size
>>9);
5164 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
5166 stripe_sectors
= conf
->chunk_sectors
*
5167 (conf
->raid_disks
- conf
->max_degraded
);
5168 logical_sector
= DIV_ROUND_UP_SECTOR_T(logical_sector
,
5170 sector_div(last_sector
, stripe_sectors
);
5172 logical_sector
*= conf
->chunk_sectors
;
5173 last_sector
*= conf
->chunk_sectors
;
5175 for (; logical_sector
< last_sector
;
5176 logical_sector
+= STRIPE_SECTORS
) {
5180 sh
= raid5_get_active_stripe(conf
, logical_sector
, 0, 0, 0);
5181 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5182 TASK_UNINTERRUPTIBLE
);
5183 set_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5184 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
5185 raid5_release_stripe(sh
);
5189 clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5190 spin_lock_irq(&sh
->stripe_lock
);
5191 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5192 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5194 if (sh
->dev
[d
].towrite
|| sh
->dev
[d
].toread
) {
5195 set_bit(R5_Overlap
, &sh
->dev
[d
].flags
);
5196 spin_unlock_irq(&sh
->stripe_lock
);
5197 raid5_release_stripe(sh
);
5202 set_bit(STRIPE_DISCARD
, &sh
->state
);
5203 finish_wait(&conf
->wait_for_overlap
, &w
);
5204 sh
->overwrite_disks
= 0;
5205 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5206 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5208 sh
->dev
[d
].towrite
= bi
;
5209 set_bit(R5_OVERWRITE
, &sh
->dev
[d
].flags
);
5210 raid5_inc_bi_active_stripes(bi
);
5211 sh
->overwrite_disks
++;
5213 spin_unlock_irq(&sh
->stripe_lock
);
5214 if (conf
->mddev
->bitmap
) {
5216 d
< conf
->raid_disks
- conf
->max_degraded
;
5218 bitmap_startwrite(mddev
->bitmap
,
5222 sh
->bm_seq
= conf
->seq_flush
+ 1;
5223 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
5226 set_bit(STRIPE_HANDLE
, &sh
->state
);
5227 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5228 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5229 atomic_inc(&conf
->preread_active_stripes
);
5230 release_stripe_plug(mddev
, sh
);
5233 remaining
= raid5_dec_bi_active_stripes(bi
);
5234 if (remaining
== 0) {
5235 md_write_end(mddev
);
5240 static void raid5_make_request(struct mddev
*mddev
, struct bio
* bi
)
5242 struct r5conf
*conf
= mddev
->private;
5244 sector_t new_sector
;
5245 sector_t logical_sector
, last_sector
;
5246 struct stripe_head
*sh
;
5247 const int rw
= bio_data_dir(bi
);
5252 if (unlikely(bi
->bi_opf
& REQ_PREFLUSH
)) {
5253 int ret
= r5l_handle_flush_request(conf
->log
, bi
);
5257 if (ret
== -ENODEV
) {
5258 md_flush_request(mddev
, bi
);
5261 /* ret == -EAGAIN, fallback */
5264 md_write_start(mddev
, bi
);
5267 * If array is degraded, better not do chunk aligned read because
5268 * later we might have to read it again in order to reconstruct
5269 * data on failed drives.
5271 if (rw
== READ
&& mddev
->degraded
== 0 &&
5272 !r5c_is_writeback(conf
->log
) &&
5273 mddev
->reshape_position
== MaxSector
) {
5274 bi
= chunk_aligned_read(mddev
, bi
);
5279 if (unlikely(bio_op(bi
) == REQ_OP_DISCARD
)) {
5280 make_discard_request(mddev
, bi
);
5284 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5285 last_sector
= bio_end_sector(bi
);
5287 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
5289 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
5290 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
5296 seq
= read_seqcount_begin(&conf
->gen_lock
);
5299 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5300 TASK_UNINTERRUPTIBLE
);
5301 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
5302 /* spinlock is needed as reshape_progress may be
5303 * 64bit on a 32bit platform, and so it might be
5304 * possible to see a half-updated value
5305 * Of course reshape_progress could change after
5306 * the lock is dropped, so once we get a reference
5307 * to the stripe that we think it is, we will have
5310 spin_lock_irq(&conf
->device_lock
);
5311 if (mddev
->reshape_backwards
5312 ? logical_sector
< conf
->reshape_progress
5313 : logical_sector
>= conf
->reshape_progress
) {
5316 if (mddev
->reshape_backwards
5317 ? logical_sector
< conf
->reshape_safe
5318 : logical_sector
>= conf
->reshape_safe
) {
5319 spin_unlock_irq(&conf
->device_lock
);
5325 spin_unlock_irq(&conf
->device_lock
);
5328 new_sector
= raid5_compute_sector(conf
, logical_sector
,
5331 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5332 (unsigned long long)new_sector
,
5333 (unsigned long long)logical_sector
);
5335 sh
= raid5_get_active_stripe(conf
, new_sector
, previous
,
5336 (bi
->bi_opf
& REQ_RAHEAD
), 0);
5338 if (unlikely(previous
)) {
5339 /* expansion might have moved on while waiting for a
5340 * stripe, so we must do the range check again.
5341 * Expansion could still move past after this
5342 * test, but as we are holding a reference to
5343 * 'sh', we know that if that happens,
5344 * STRIPE_EXPANDING will get set and the expansion
5345 * won't proceed until we finish with the stripe.
5348 spin_lock_irq(&conf
->device_lock
);
5349 if (mddev
->reshape_backwards
5350 ? logical_sector
>= conf
->reshape_progress
5351 : logical_sector
< conf
->reshape_progress
)
5352 /* mismatch, need to try again */
5354 spin_unlock_irq(&conf
->device_lock
);
5356 raid5_release_stripe(sh
);
5362 if (read_seqcount_retry(&conf
->gen_lock
, seq
)) {
5363 /* Might have got the wrong stripe_head
5366 raid5_release_stripe(sh
);
5371 logical_sector
>= mddev
->suspend_lo
&&
5372 logical_sector
< mddev
->suspend_hi
) {
5373 raid5_release_stripe(sh
);
5374 /* As the suspend_* range is controlled by
5375 * userspace, we want an interruptible
5378 flush_signals(current
);
5379 prepare_to_wait(&conf
->wait_for_overlap
,
5380 &w
, TASK_INTERRUPTIBLE
);
5381 if (logical_sector
>= mddev
->suspend_lo
&&
5382 logical_sector
< mddev
->suspend_hi
) {
5389 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
5390 !add_stripe_bio(sh
, bi
, dd_idx
, rw
, previous
)) {
5391 /* Stripe is busy expanding or
5392 * add failed due to overlap. Flush everything
5395 md_wakeup_thread(mddev
->thread
);
5396 raid5_release_stripe(sh
);
5401 set_bit(STRIPE_HANDLE
, &sh
->state
);
5402 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5403 if ((!sh
->batch_head
|| sh
== sh
->batch_head
) &&
5404 (bi
->bi_opf
& REQ_SYNC
) &&
5405 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5406 atomic_inc(&conf
->preread_active_stripes
);
5407 release_stripe_plug(mddev
, sh
);
5409 /* cannot get stripe for read-ahead, just give-up */
5410 bi
->bi_error
= -EIO
;
5414 finish_wait(&conf
->wait_for_overlap
, &w
);
5416 remaining
= raid5_dec_bi_active_stripes(bi
);
5417 if (remaining
== 0) {
5420 md_write_end(mddev
);
5422 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
5428 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
5430 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
5432 /* reshaping is quite different to recovery/resync so it is
5433 * handled quite separately ... here.
5435 * On each call to sync_request, we gather one chunk worth of
5436 * destination stripes and flag them as expanding.
5437 * Then we find all the source stripes and request reads.
5438 * As the reads complete, handle_stripe will copy the data
5439 * into the destination stripe and release that stripe.
5441 struct r5conf
*conf
= mddev
->private;
5442 struct stripe_head
*sh
;
5443 sector_t first_sector
, last_sector
;
5444 int raid_disks
= conf
->previous_raid_disks
;
5445 int data_disks
= raid_disks
- conf
->max_degraded
;
5446 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5449 sector_t writepos
, readpos
, safepos
;
5450 sector_t stripe_addr
;
5451 int reshape_sectors
;
5452 struct list_head stripes
;
5455 if (sector_nr
== 0) {
5456 /* If restarting in the middle, skip the initial sectors */
5457 if (mddev
->reshape_backwards
&&
5458 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
5459 sector_nr
= raid5_size(mddev
, 0, 0)
5460 - conf
->reshape_progress
;
5461 } else if (mddev
->reshape_backwards
&&
5462 conf
->reshape_progress
== MaxSector
) {
5463 /* shouldn't happen, but just in case, finish up.*/
5464 sector_nr
= MaxSector
;
5465 } else if (!mddev
->reshape_backwards
&&
5466 conf
->reshape_progress
> 0)
5467 sector_nr
= conf
->reshape_progress
;
5468 sector_div(sector_nr
, new_data_disks
);
5470 mddev
->curr_resync_completed
= sector_nr
;
5471 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5478 /* We need to process a full chunk at a time.
5479 * If old and new chunk sizes differ, we need to process the
5483 reshape_sectors
= max(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
5485 /* We update the metadata at least every 10 seconds, or when
5486 * the data about to be copied would over-write the source of
5487 * the data at the front of the range. i.e. one new_stripe
5488 * along from reshape_progress new_maps to after where
5489 * reshape_safe old_maps to
5491 writepos
= conf
->reshape_progress
;
5492 sector_div(writepos
, new_data_disks
);
5493 readpos
= conf
->reshape_progress
;
5494 sector_div(readpos
, data_disks
);
5495 safepos
= conf
->reshape_safe
;
5496 sector_div(safepos
, data_disks
);
5497 if (mddev
->reshape_backwards
) {
5498 BUG_ON(writepos
< reshape_sectors
);
5499 writepos
-= reshape_sectors
;
5500 readpos
+= reshape_sectors
;
5501 safepos
+= reshape_sectors
;
5503 writepos
+= reshape_sectors
;
5504 /* readpos and safepos are worst-case calculations.
5505 * A negative number is overly pessimistic, and causes
5506 * obvious problems for unsigned storage. So clip to 0.
5508 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
5509 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
5512 /* Having calculated the 'writepos' possibly use it
5513 * to set 'stripe_addr' which is where we will write to.
5515 if (mddev
->reshape_backwards
) {
5516 BUG_ON(conf
->reshape_progress
== 0);
5517 stripe_addr
= writepos
;
5518 BUG_ON((mddev
->dev_sectors
&
5519 ~((sector_t
)reshape_sectors
- 1))
5520 - reshape_sectors
- stripe_addr
5523 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
5524 stripe_addr
= sector_nr
;
5527 /* 'writepos' is the most advanced device address we might write.
5528 * 'readpos' is the least advanced device address we might read.
5529 * 'safepos' is the least address recorded in the metadata as having
5531 * If there is a min_offset_diff, these are adjusted either by
5532 * increasing the safepos/readpos if diff is negative, or
5533 * increasing writepos if diff is positive.
5534 * If 'readpos' is then behind 'writepos', there is no way that we can
5535 * ensure safety in the face of a crash - that must be done by userspace
5536 * making a backup of the data. So in that case there is no particular
5537 * rush to update metadata.
5538 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5539 * update the metadata to advance 'safepos' to match 'readpos' so that
5540 * we can be safe in the event of a crash.
5541 * So we insist on updating metadata if safepos is behind writepos and
5542 * readpos is beyond writepos.
5543 * In any case, update the metadata every 10 seconds.
5544 * Maybe that number should be configurable, but I'm not sure it is
5545 * worth it.... maybe it could be a multiple of safemode_delay???
5547 if (conf
->min_offset_diff
< 0) {
5548 safepos
+= -conf
->min_offset_diff
;
5549 readpos
+= -conf
->min_offset_diff
;
5551 writepos
+= conf
->min_offset_diff
;
5553 if ((mddev
->reshape_backwards
5554 ? (safepos
> writepos
&& readpos
< writepos
)
5555 : (safepos
< writepos
&& readpos
> writepos
)) ||
5556 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
5557 /* Cannot proceed until we've updated the superblock... */
5558 wait_event(conf
->wait_for_overlap
,
5559 atomic_read(&conf
->reshape_stripes
)==0
5560 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5561 if (atomic_read(&conf
->reshape_stripes
) != 0)
5563 mddev
->reshape_position
= conf
->reshape_progress
;
5564 mddev
->curr_resync_completed
= sector_nr
;
5565 conf
->reshape_checkpoint
= jiffies
;
5566 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5567 md_wakeup_thread(mddev
->thread
);
5568 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
5569 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5570 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5572 spin_lock_irq(&conf
->device_lock
);
5573 conf
->reshape_safe
= mddev
->reshape_position
;
5574 spin_unlock_irq(&conf
->device_lock
);
5575 wake_up(&conf
->wait_for_overlap
);
5576 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5579 INIT_LIST_HEAD(&stripes
);
5580 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
5582 int skipped_disk
= 0;
5583 sh
= raid5_get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
5584 set_bit(STRIPE_EXPANDING
, &sh
->state
);
5585 atomic_inc(&conf
->reshape_stripes
);
5586 /* If any of this stripe is beyond the end of the old
5587 * array, then we need to zero those blocks
5589 for (j
=sh
->disks
; j
--;) {
5591 if (j
== sh
->pd_idx
)
5593 if (conf
->level
== 6 &&
5596 s
= raid5_compute_blocknr(sh
, j
, 0);
5597 if (s
< raid5_size(mddev
, 0, 0)) {
5601 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
5602 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
5603 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
5605 if (!skipped_disk
) {
5606 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
5607 set_bit(STRIPE_HANDLE
, &sh
->state
);
5609 list_add(&sh
->lru
, &stripes
);
5611 spin_lock_irq(&conf
->device_lock
);
5612 if (mddev
->reshape_backwards
)
5613 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
5615 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
5616 spin_unlock_irq(&conf
->device_lock
);
5617 /* Ok, those stripe are ready. We can start scheduling
5618 * reads on the source stripes.
5619 * The source stripes are determined by mapping the first and last
5620 * block on the destination stripes.
5623 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
5626 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
5627 * new_data_disks
- 1),
5629 if (last_sector
>= mddev
->dev_sectors
)
5630 last_sector
= mddev
->dev_sectors
- 1;
5631 while (first_sector
<= last_sector
) {
5632 sh
= raid5_get_active_stripe(conf
, first_sector
, 1, 0, 1);
5633 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
5634 set_bit(STRIPE_HANDLE
, &sh
->state
);
5635 raid5_release_stripe(sh
);
5636 first_sector
+= STRIPE_SECTORS
;
5638 /* Now that the sources are clearly marked, we can release
5639 * the destination stripes
5641 while (!list_empty(&stripes
)) {
5642 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
5643 list_del_init(&sh
->lru
);
5644 raid5_release_stripe(sh
);
5646 /* If this takes us to the resync_max point where we have to pause,
5647 * then we need to write out the superblock.
5649 sector_nr
+= reshape_sectors
;
5650 retn
= reshape_sectors
;
5652 if (mddev
->curr_resync_completed
> mddev
->resync_max
||
5653 (sector_nr
- mddev
->curr_resync_completed
) * 2
5654 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
5655 /* Cannot proceed until we've updated the superblock... */
5656 wait_event(conf
->wait_for_overlap
,
5657 atomic_read(&conf
->reshape_stripes
) == 0
5658 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5659 if (atomic_read(&conf
->reshape_stripes
) != 0)
5661 mddev
->reshape_position
= conf
->reshape_progress
;
5662 mddev
->curr_resync_completed
= sector_nr
;
5663 conf
->reshape_checkpoint
= jiffies
;
5664 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5665 md_wakeup_thread(mddev
->thread
);
5666 wait_event(mddev
->sb_wait
,
5667 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
5668 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5669 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5671 spin_lock_irq(&conf
->device_lock
);
5672 conf
->reshape_safe
= mddev
->reshape_position
;
5673 spin_unlock_irq(&conf
->device_lock
);
5674 wake_up(&conf
->wait_for_overlap
);
5675 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5681 static inline sector_t
raid5_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
5684 struct r5conf
*conf
= mddev
->private;
5685 struct stripe_head
*sh
;
5686 sector_t max_sector
= mddev
->dev_sectors
;
5687 sector_t sync_blocks
;
5688 int still_degraded
= 0;
5691 if (sector_nr
>= max_sector
) {
5692 /* just being told to finish up .. nothing much to do */
5694 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
5699 if (mddev
->curr_resync
< max_sector
) /* aborted */
5700 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
5702 else /* completed sync */
5704 bitmap_close_sync(mddev
->bitmap
);
5709 /* Allow raid5_quiesce to complete */
5710 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
5712 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
5713 return reshape_request(mddev
, sector_nr
, skipped
);
5715 /* No need to check resync_max as we never do more than one
5716 * stripe, and as resync_max will always be on a chunk boundary,
5717 * if the check in md_do_sync didn't fire, there is no chance
5718 * of overstepping resync_max here
5721 /* if there is too many failed drives and we are trying
5722 * to resync, then assert that we are finished, because there is
5723 * nothing we can do.
5725 if (mddev
->degraded
>= conf
->max_degraded
&&
5726 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
5727 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
5731 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
5733 !bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
5734 sync_blocks
>= STRIPE_SECTORS
) {
5735 /* we can skip this block, and probably more */
5736 sync_blocks
/= STRIPE_SECTORS
;
5738 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
5741 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, false);
5743 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 1, 0);
5745 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 0, 0);
5746 /* make sure we don't swamp the stripe cache if someone else
5747 * is trying to get access
5749 schedule_timeout_uninterruptible(1);
5751 /* Need to check if array will still be degraded after recovery/resync
5752 * Note in case of > 1 drive failures it's possible we're rebuilding
5753 * one drive while leaving another faulty drive in array.
5756 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5757 struct md_rdev
*rdev
= ACCESS_ONCE(conf
->disks
[i
].rdev
);
5759 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
))
5764 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
5766 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
5767 set_bit(STRIPE_HANDLE
, &sh
->state
);
5769 raid5_release_stripe(sh
);
5771 return STRIPE_SECTORS
;
5774 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
)
5776 /* We may not be able to submit a whole bio at once as there
5777 * may not be enough stripe_heads available.
5778 * We cannot pre-allocate enough stripe_heads as we may need
5779 * more than exist in the cache (if we allow ever large chunks).
5780 * So we do one stripe head at a time and record in
5781 * ->bi_hw_segments how many have been done.
5783 * We *know* that this entire raid_bio is in one chunk, so
5784 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5786 struct stripe_head
*sh
;
5788 sector_t sector
, logical_sector
, last_sector
;
5793 logical_sector
= raid_bio
->bi_iter
.bi_sector
&
5794 ~((sector_t
)STRIPE_SECTORS
-1);
5795 sector
= raid5_compute_sector(conf
, logical_sector
,
5797 last_sector
= bio_end_sector(raid_bio
);
5799 for (; logical_sector
< last_sector
;
5800 logical_sector
+= STRIPE_SECTORS
,
5801 sector
+= STRIPE_SECTORS
,
5804 if (scnt
< raid5_bi_processed_stripes(raid_bio
))
5805 /* already done this stripe */
5808 sh
= raid5_get_active_stripe(conf
, sector
, 0, 1, 1);
5811 /* failed to get a stripe - must wait */
5812 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5813 conf
->retry_read_aligned
= raid_bio
;
5817 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0, 0)) {
5818 raid5_release_stripe(sh
);
5819 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5820 conf
->retry_read_aligned
= raid_bio
;
5824 set_bit(R5_ReadNoMerge
, &sh
->dev
[dd_idx
].flags
);
5826 raid5_release_stripe(sh
);
5829 remaining
= raid5_dec_bi_active_stripes(raid_bio
);
5830 if (remaining
== 0) {
5831 trace_block_bio_complete(bdev_get_queue(raid_bio
->bi_bdev
),
5833 bio_endio(raid_bio
);
5835 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
5836 wake_up(&conf
->wait_for_quiescent
);
5840 static int handle_active_stripes(struct r5conf
*conf
, int group
,
5841 struct r5worker
*worker
,
5842 struct list_head
*temp_inactive_list
)
5844 struct stripe_head
*batch
[MAX_STRIPE_BATCH
], *sh
;
5845 int i
, batch_size
= 0, hash
;
5846 bool release_inactive
= false;
5848 while (batch_size
< MAX_STRIPE_BATCH
&&
5849 (sh
= __get_priority_stripe(conf
, group
)) != NULL
)
5850 batch
[batch_size
++] = sh
;
5852 if (batch_size
== 0) {
5853 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5854 if (!list_empty(temp_inactive_list
+ i
))
5856 if (i
== NR_STRIPE_HASH_LOCKS
) {
5857 spin_unlock_irq(&conf
->device_lock
);
5858 r5l_flush_stripe_to_raid(conf
->log
);
5859 spin_lock_irq(&conf
->device_lock
);
5862 release_inactive
= true;
5864 spin_unlock_irq(&conf
->device_lock
);
5866 release_inactive_stripe_list(conf
, temp_inactive_list
,
5867 NR_STRIPE_HASH_LOCKS
);
5869 r5l_flush_stripe_to_raid(conf
->log
);
5870 if (release_inactive
) {
5871 spin_lock_irq(&conf
->device_lock
);
5875 for (i
= 0; i
< batch_size
; i
++)
5876 handle_stripe(batch
[i
]);
5877 r5l_write_stripe_run(conf
->log
);
5881 spin_lock_irq(&conf
->device_lock
);
5882 for (i
= 0; i
< batch_size
; i
++) {
5883 hash
= batch
[i
]->hash_lock_index
;
5884 __release_stripe(conf
, batch
[i
], &temp_inactive_list
[hash
]);
5889 static void raid5_do_work(struct work_struct
*work
)
5891 struct r5worker
*worker
= container_of(work
, struct r5worker
, work
);
5892 struct r5worker_group
*group
= worker
->group
;
5893 struct r5conf
*conf
= group
->conf
;
5894 int group_id
= group
- conf
->worker_groups
;
5896 struct blk_plug plug
;
5898 pr_debug("+++ raid5worker active\n");
5900 blk_start_plug(&plug
);
5902 spin_lock_irq(&conf
->device_lock
);
5904 int batch_size
, released
;
5906 released
= release_stripe_list(conf
, worker
->temp_inactive_list
);
5908 batch_size
= handle_active_stripes(conf
, group_id
, worker
,
5909 worker
->temp_inactive_list
);
5910 worker
->working
= false;
5911 if (!batch_size
&& !released
)
5913 handled
+= batch_size
;
5915 pr_debug("%d stripes handled\n", handled
);
5917 spin_unlock_irq(&conf
->device_lock
);
5918 blk_finish_plug(&plug
);
5920 pr_debug("--- raid5worker inactive\n");
5924 * This is our raid5 kernel thread.
5926 * We scan the hash table for stripes which can be handled now.
5927 * During the scan, completed stripes are saved for us by the interrupt
5928 * handler, so that they will not have to wait for our next wakeup.
5930 static void raid5d(struct md_thread
*thread
)
5932 struct mddev
*mddev
= thread
->mddev
;
5933 struct r5conf
*conf
= mddev
->private;
5935 struct blk_plug plug
;
5937 pr_debug("+++ raid5d active\n");
5939 md_check_recovery(mddev
);
5941 if (!bio_list_empty(&conf
->return_bi
) &&
5942 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
5943 struct bio_list tmp
= BIO_EMPTY_LIST
;
5944 spin_lock_irq(&conf
->device_lock
);
5945 if (!test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
5946 bio_list_merge(&tmp
, &conf
->return_bi
);
5947 bio_list_init(&conf
->return_bi
);
5949 spin_unlock_irq(&conf
->device_lock
);
5953 blk_start_plug(&plug
);
5955 spin_lock_irq(&conf
->device_lock
);
5958 int batch_size
, released
;
5960 released
= release_stripe_list(conf
, conf
->temp_inactive_list
);
5962 clear_bit(R5_DID_ALLOC
, &conf
->cache_state
);
5965 !list_empty(&conf
->bitmap_list
)) {
5966 /* Now is a good time to flush some bitmap updates */
5968 spin_unlock_irq(&conf
->device_lock
);
5969 bitmap_unplug(mddev
->bitmap
);
5970 spin_lock_irq(&conf
->device_lock
);
5971 conf
->seq_write
= conf
->seq_flush
;
5972 activate_bit_delay(conf
, conf
->temp_inactive_list
);
5974 raid5_activate_delayed(conf
);
5976 while ((bio
= remove_bio_from_retry(conf
))) {
5978 spin_unlock_irq(&conf
->device_lock
);
5979 ok
= retry_aligned_read(conf
, bio
);
5980 spin_lock_irq(&conf
->device_lock
);
5986 batch_size
= handle_active_stripes(conf
, ANY_GROUP
, NULL
,
5987 conf
->temp_inactive_list
);
5988 if (!batch_size
&& !released
)
5990 handled
+= batch_size
;
5992 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
)) {
5993 spin_unlock_irq(&conf
->device_lock
);
5994 md_check_recovery(mddev
);
5995 spin_lock_irq(&conf
->device_lock
);
5998 pr_debug("%d stripes handled\n", handled
);
6000 spin_unlock_irq(&conf
->device_lock
);
6001 if (test_and_clear_bit(R5_ALLOC_MORE
, &conf
->cache_state
) &&
6002 mutex_trylock(&conf
->cache_size_mutex
)) {
6003 grow_one_stripe(conf
, __GFP_NOWARN
);
6004 /* Set flag even if allocation failed. This helps
6005 * slow down allocation requests when mem is short
6007 set_bit(R5_DID_ALLOC
, &conf
->cache_state
);
6008 mutex_unlock(&conf
->cache_size_mutex
);
6011 r5l_flush_stripe_to_raid(conf
->log
);
6013 async_tx_issue_pending_all();
6014 blk_finish_plug(&plug
);
6016 pr_debug("--- raid5d inactive\n");
6020 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
6022 struct r5conf
*conf
;
6024 spin_lock(&mddev
->lock
);
6025 conf
= mddev
->private;
6027 ret
= sprintf(page
, "%d\n", conf
->min_nr_stripes
);
6028 spin_unlock(&mddev
->lock
);
6033 raid5_set_cache_size(struct mddev
*mddev
, int size
)
6035 struct r5conf
*conf
= mddev
->private;
6038 if (size
<= 16 || size
> 32768)
6041 conf
->min_nr_stripes
= size
;
6042 mutex_lock(&conf
->cache_size_mutex
);
6043 while (size
< conf
->max_nr_stripes
&&
6044 drop_one_stripe(conf
))
6046 mutex_unlock(&conf
->cache_size_mutex
);
6049 err
= md_allow_write(mddev
);
6053 mutex_lock(&conf
->cache_size_mutex
);
6054 while (size
> conf
->max_nr_stripes
)
6055 if (!grow_one_stripe(conf
, GFP_KERNEL
))
6057 mutex_unlock(&conf
->cache_size_mutex
);
6061 EXPORT_SYMBOL(raid5_set_cache_size
);
6064 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
6066 struct r5conf
*conf
;
6070 if (len
>= PAGE_SIZE
)
6072 if (kstrtoul(page
, 10, &new))
6074 err
= mddev_lock(mddev
);
6077 conf
= mddev
->private;
6081 err
= raid5_set_cache_size(mddev
, new);
6082 mddev_unlock(mddev
);
6087 static struct md_sysfs_entry
6088 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
6089 raid5_show_stripe_cache_size
,
6090 raid5_store_stripe_cache_size
);
6093 raid5_show_rmw_level(struct mddev
*mddev
, char *page
)
6095 struct r5conf
*conf
= mddev
->private;
6097 return sprintf(page
, "%d\n", conf
->rmw_level
);
6103 raid5_store_rmw_level(struct mddev
*mddev
, const char *page
, size_t len
)
6105 struct r5conf
*conf
= mddev
->private;
6111 if (len
>= PAGE_SIZE
)
6114 if (kstrtoul(page
, 10, &new))
6117 if (new != PARITY_DISABLE_RMW
&& !raid6_call
.xor_syndrome
)
6120 if (new != PARITY_DISABLE_RMW
&&
6121 new != PARITY_ENABLE_RMW
&&
6122 new != PARITY_PREFER_RMW
)
6125 conf
->rmw_level
= new;
6129 static struct md_sysfs_entry
6130 raid5_rmw_level
= __ATTR(rmw_level
, S_IRUGO
| S_IWUSR
,
6131 raid5_show_rmw_level
,
6132 raid5_store_rmw_level
);
6136 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
6138 struct r5conf
*conf
;
6140 spin_lock(&mddev
->lock
);
6141 conf
= mddev
->private;
6143 ret
= sprintf(page
, "%d\n", conf
->bypass_threshold
);
6144 spin_unlock(&mddev
->lock
);
6149 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
6151 struct r5conf
*conf
;
6155 if (len
>= PAGE_SIZE
)
6157 if (kstrtoul(page
, 10, &new))
6160 err
= mddev_lock(mddev
);
6163 conf
= mddev
->private;
6166 else if (new > conf
->min_nr_stripes
)
6169 conf
->bypass_threshold
= new;
6170 mddev_unlock(mddev
);
6174 static struct md_sysfs_entry
6175 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
6177 raid5_show_preread_threshold
,
6178 raid5_store_preread_threshold
);
6181 raid5_show_skip_copy(struct mddev
*mddev
, char *page
)
6183 struct r5conf
*conf
;
6185 spin_lock(&mddev
->lock
);
6186 conf
= mddev
->private;
6188 ret
= sprintf(page
, "%d\n", conf
->skip_copy
);
6189 spin_unlock(&mddev
->lock
);
6194 raid5_store_skip_copy(struct mddev
*mddev
, const char *page
, size_t len
)
6196 struct r5conf
*conf
;
6200 if (len
>= PAGE_SIZE
)
6202 if (kstrtoul(page
, 10, &new))
6206 err
= mddev_lock(mddev
);
6209 conf
= mddev
->private;
6212 else if (new != conf
->skip_copy
) {
6213 mddev_suspend(mddev
);
6214 conf
->skip_copy
= new;
6216 mddev
->queue
->backing_dev_info
.capabilities
|=
6217 BDI_CAP_STABLE_WRITES
;
6219 mddev
->queue
->backing_dev_info
.capabilities
&=
6220 ~BDI_CAP_STABLE_WRITES
;
6221 mddev_resume(mddev
);
6223 mddev_unlock(mddev
);
6227 static struct md_sysfs_entry
6228 raid5_skip_copy
= __ATTR(skip_copy
, S_IRUGO
| S_IWUSR
,
6229 raid5_show_skip_copy
,
6230 raid5_store_skip_copy
);
6233 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
6235 struct r5conf
*conf
= mddev
->private;
6237 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
6242 static struct md_sysfs_entry
6243 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
6246 raid5_show_group_thread_cnt(struct mddev
*mddev
, char *page
)
6248 struct r5conf
*conf
;
6250 spin_lock(&mddev
->lock
);
6251 conf
= mddev
->private;
6253 ret
= sprintf(page
, "%d\n", conf
->worker_cnt_per_group
);
6254 spin_unlock(&mddev
->lock
);
6258 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6260 int *worker_cnt_per_group
,
6261 struct r5worker_group
**worker_groups
);
6263 raid5_store_group_thread_cnt(struct mddev
*mddev
, const char *page
, size_t len
)
6265 struct r5conf
*conf
;
6268 struct r5worker_group
*new_groups
, *old_groups
;
6269 int group_cnt
, worker_cnt_per_group
;
6271 if (len
>= PAGE_SIZE
)
6273 if (kstrtoul(page
, 10, &new))
6276 err
= mddev_lock(mddev
);
6279 conf
= mddev
->private;
6282 else if (new != conf
->worker_cnt_per_group
) {
6283 mddev_suspend(mddev
);
6285 old_groups
= conf
->worker_groups
;
6287 flush_workqueue(raid5_wq
);
6289 err
= alloc_thread_groups(conf
, new,
6290 &group_cnt
, &worker_cnt_per_group
,
6293 spin_lock_irq(&conf
->device_lock
);
6294 conf
->group_cnt
= group_cnt
;
6295 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6296 conf
->worker_groups
= new_groups
;
6297 spin_unlock_irq(&conf
->device_lock
);
6300 kfree(old_groups
[0].workers
);
6303 mddev_resume(mddev
);
6305 mddev_unlock(mddev
);
6310 static struct md_sysfs_entry
6311 raid5_group_thread_cnt
= __ATTR(group_thread_cnt
, S_IRUGO
| S_IWUSR
,
6312 raid5_show_group_thread_cnt
,
6313 raid5_store_group_thread_cnt
);
6315 static struct attribute
*raid5_attrs
[] = {
6316 &raid5_stripecache_size
.attr
,
6317 &raid5_stripecache_active
.attr
,
6318 &raid5_preread_bypass_threshold
.attr
,
6319 &raid5_group_thread_cnt
.attr
,
6320 &raid5_skip_copy
.attr
,
6321 &raid5_rmw_level
.attr
,
6322 &r5c_journal_mode
.attr
,
6325 static struct attribute_group raid5_attrs_group
= {
6327 .attrs
= raid5_attrs
,
6330 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6332 int *worker_cnt_per_group
,
6333 struct r5worker_group
**worker_groups
)
6337 struct r5worker
*workers
;
6339 *worker_cnt_per_group
= cnt
;
6342 *worker_groups
= NULL
;
6345 *group_cnt
= num_possible_nodes();
6346 size
= sizeof(struct r5worker
) * cnt
;
6347 workers
= kzalloc(size
* *group_cnt
, GFP_NOIO
);
6348 *worker_groups
= kzalloc(sizeof(struct r5worker_group
) *
6349 *group_cnt
, GFP_NOIO
);
6350 if (!*worker_groups
|| !workers
) {
6352 kfree(*worker_groups
);
6356 for (i
= 0; i
< *group_cnt
; i
++) {
6357 struct r5worker_group
*group
;
6359 group
= &(*worker_groups
)[i
];
6360 INIT_LIST_HEAD(&group
->handle_list
);
6362 group
->workers
= workers
+ i
* cnt
;
6364 for (j
= 0; j
< cnt
; j
++) {
6365 struct r5worker
*worker
= group
->workers
+ j
;
6366 worker
->group
= group
;
6367 INIT_WORK(&worker
->work
, raid5_do_work
);
6369 for (k
= 0; k
< NR_STRIPE_HASH_LOCKS
; k
++)
6370 INIT_LIST_HEAD(worker
->temp_inactive_list
+ k
);
6377 static void free_thread_groups(struct r5conf
*conf
)
6379 if (conf
->worker_groups
)
6380 kfree(conf
->worker_groups
[0].workers
);
6381 kfree(conf
->worker_groups
);
6382 conf
->worker_groups
= NULL
;
6386 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
6388 struct r5conf
*conf
= mddev
->private;
6391 sectors
= mddev
->dev_sectors
;
6393 /* size is defined by the smallest of previous and new size */
6394 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
6396 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
6397 sectors
&= ~((sector_t
)conf
->prev_chunk_sectors
- 1);
6398 return sectors
* (raid_disks
- conf
->max_degraded
);
6401 static void free_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6403 safe_put_page(percpu
->spare_page
);
6404 if (percpu
->scribble
)
6405 flex_array_free(percpu
->scribble
);
6406 percpu
->spare_page
= NULL
;
6407 percpu
->scribble
= NULL
;
6410 static int alloc_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6412 if (conf
->level
== 6 && !percpu
->spare_page
)
6413 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
6414 if (!percpu
->scribble
)
6415 percpu
->scribble
= scribble_alloc(max(conf
->raid_disks
,
6416 conf
->previous_raid_disks
),
6417 max(conf
->chunk_sectors
,
6418 conf
->prev_chunk_sectors
)
6422 if (!percpu
->scribble
|| (conf
->level
== 6 && !percpu
->spare_page
)) {
6423 free_scratch_buffer(conf
, percpu
);
6430 static int raid456_cpu_dead(unsigned int cpu
, struct hlist_node
*node
)
6432 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
6434 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6438 static void raid5_free_percpu(struct r5conf
*conf
)
6443 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
6444 free_percpu(conf
->percpu
);
6447 static void free_conf(struct r5conf
*conf
)
6450 r5l_exit_log(conf
->log
);
6451 if (conf
->shrinker
.nr_deferred
)
6452 unregister_shrinker(&conf
->shrinker
);
6454 free_thread_groups(conf
);
6455 shrink_stripes(conf
);
6456 raid5_free_percpu(conf
);
6458 kfree(conf
->stripe_hashtbl
);
6462 static int raid456_cpu_up_prepare(unsigned int cpu
, struct hlist_node
*node
)
6464 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
6465 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
6467 if (alloc_scratch_buffer(conf
, percpu
)) {
6468 pr_warn("%s: failed memory allocation for cpu%u\n",
6475 static int raid5_alloc_percpu(struct r5conf
*conf
)
6479 conf
->percpu
= alloc_percpu(struct raid5_percpu
);
6483 err
= cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
6485 conf
->scribble_disks
= max(conf
->raid_disks
,
6486 conf
->previous_raid_disks
);
6487 conf
->scribble_sectors
= max(conf
->chunk_sectors
,
6488 conf
->prev_chunk_sectors
);
6493 static unsigned long raid5_cache_scan(struct shrinker
*shrink
,
6494 struct shrink_control
*sc
)
6496 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6497 unsigned long ret
= SHRINK_STOP
;
6499 if (mutex_trylock(&conf
->cache_size_mutex
)) {
6501 while (ret
< sc
->nr_to_scan
&&
6502 conf
->max_nr_stripes
> conf
->min_nr_stripes
) {
6503 if (drop_one_stripe(conf
) == 0) {
6509 mutex_unlock(&conf
->cache_size_mutex
);
6514 static unsigned long raid5_cache_count(struct shrinker
*shrink
,
6515 struct shrink_control
*sc
)
6517 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6519 if (conf
->max_nr_stripes
< conf
->min_nr_stripes
)
6520 /* unlikely, but not impossible */
6522 return conf
->max_nr_stripes
- conf
->min_nr_stripes
;
6525 static struct r5conf
*setup_conf(struct mddev
*mddev
)
6527 struct r5conf
*conf
;
6528 int raid_disk
, memory
, max_disks
;
6529 struct md_rdev
*rdev
;
6530 struct disk_info
*disk
;
6533 int group_cnt
, worker_cnt_per_group
;
6534 struct r5worker_group
*new_group
;
6536 if (mddev
->new_level
!= 5
6537 && mddev
->new_level
!= 4
6538 && mddev
->new_level
!= 6) {
6539 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6540 mdname(mddev
), mddev
->new_level
);
6541 return ERR_PTR(-EIO
);
6543 if ((mddev
->new_level
== 5
6544 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
6545 (mddev
->new_level
== 6
6546 && !algorithm_valid_raid6(mddev
->new_layout
))) {
6547 pr_warn("md/raid:%s: layout %d not supported\n",
6548 mdname(mddev
), mddev
->new_layout
);
6549 return ERR_PTR(-EIO
);
6551 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
6552 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6553 mdname(mddev
), mddev
->raid_disks
);
6554 return ERR_PTR(-EINVAL
);
6557 if (!mddev
->new_chunk_sectors
||
6558 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
6559 !is_power_of_2(mddev
->new_chunk_sectors
)) {
6560 pr_warn("md/raid:%s: invalid chunk size %d\n",
6561 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
6562 return ERR_PTR(-EINVAL
);
6565 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
6568 /* Don't enable multi-threading by default*/
6569 if (!alloc_thread_groups(conf
, 0, &group_cnt
, &worker_cnt_per_group
,
6571 conf
->group_cnt
= group_cnt
;
6572 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6573 conf
->worker_groups
= new_group
;
6576 spin_lock_init(&conf
->device_lock
);
6577 seqcount_init(&conf
->gen_lock
);
6578 mutex_init(&conf
->cache_size_mutex
);
6579 init_waitqueue_head(&conf
->wait_for_quiescent
);
6580 init_waitqueue_head(&conf
->wait_for_stripe
);
6581 init_waitqueue_head(&conf
->wait_for_overlap
);
6582 INIT_LIST_HEAD(&conf
->handle_list
);
6583 INIT_LIST_HEAD(&conf
->hold_list
);
6584 INIT_LIST_HEAD(&conf
->delayed_list
);
6585 INIT_LIST_HEAD(&conf
->bitmap_list
);
6586 bio_list_init(&conf
->return_bi
);
6587 init_llist_head(&conf
->released_stripes
);
6588 atomic_set(&conf
->active_stripes
, 0);
6589 atomic_set(&conf
->preread_active_stripes
, 0);
6590 atomic_set(&conf
->active_aligned_reads
, 0);
6591 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
6592 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
6594 conf
->raid_disks
= mddev
->raid_disks
;
6595 if (mddev
->reshape_position
== MaxSector
)
6596 conf
->previous_raid_disks
= mddev
->raid_disks
;
6598 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6599 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
6601 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
6606 conf
->mddev
= mddev
;
6608 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
6611 /* We init hash_locks[0] separately to that it can be used
6612 * as the reference lock in the spin_lock_nest_lock() call
6613 * in lock_all_device_hash_locks_irq in order to convince
6614 * lockdep that we know what we are doing.
6616 spin_lock_init(conf
->hash_locks
);
6617 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6618 spin_lock_init(conf
->hash_locks
+ i
);
6620 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6621 INIT_LIST_HEAD(conf
->inactive_list
+ i
);
6623 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6624 INIT_LIST_HEAD(conf
->temp_inactive_list
+ i
);
6626 atomic_set(&conf
->r5c_cached_full_stripes
, 0);
6627 INIT_LIST_HEAD(&conf
->r5c_full_stripe_list
);
6628 atomic_set(&conf
->r5c_cached_partial_stripes
, 0);
6629 INIT_LIST_HEAD(&conf
->r5c_partial_stripe_list
);
6631 conf
->level
= mddev
->new_level
;
6632 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
6633 if (raid5_alloc_percpu(conf
) != 0)
6636 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
6638 rdev_for_each(rdev
, mddev
) {
6639 raid_disk
= rdev
->raid_disk
;
6640 if (raid_disk
>= max_disks
6641 || raid_disk
< 0 || test_bit(Journal
, &rdev
->flags
))
6643 disk
= conf
->disks
+ raid_disk
;
6645 if (test_bit(Replacement
, &rdev
->flags
)) {
6646 if (disk
->replacement
)
6648 disk
->replacement
= rdev
;
6655 if (test_bit(In_sync
, &rdev
->flags
)) {
6656 char b
[BDEVNAME_SIZE
];
6657 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6658 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
6659 } else if (rdev
->saved_raid_disk
!= raid_disk
)
6660 /* Cannot rely on bitmap to complete recovery */
6664 conf
->level
= mddev
->new_level
;
6665 if (conf
->level
== 6) {
6666 conf
->max_degraded
= 2;
6667 if (raid6_call
.xor_syndrome
)
6668 conf
->rmw_level
= PARITY_ENABLE_RMW
;
6670 conf
->rmw_level
= PARITY_DISABLE_RMW
;
6672 conf
->max_degraded
= 1;
6673 conf
->rmw_level
= PARITY_ENABLE_RMW
;
6675 conf
->algorithm
= mddev
->new_layout
;
6676 conf
->reshape_progress
= mddev
->reshape_position
;
6677 if (conf
->reshape_progress
!= MaxSector
) {
6678 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
6679 conf
->prev_algo
= mddev
->layout
;
6681 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
6682 conf
->prev_algo
= conf
->algorithm
;
6685 conf
->min_nr_stripes
= NR_STRIPES
;
6686 if (mddev
->reshape_position
!= MaxSector
) {
6687 int stripes
= max_t(int,
6688 ((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4,
6689 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4);
6690 conf
->min_nr_stripes
= max(NR_STRIPES
, stripes
);
6691 if (conf
->min_nr_stripes
!= NR_STRIPES
)
6692 pr_info("md/raid:%s: force stripe size %d for reshape\n",
6693 mdname(mddev
), conf
->min_nr_stripes
);
6695 memory
= conf
->min_nr_stripes
* (sizeof(struct stripe_head
) +
6696 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
6697 atomic_set(&conf
->empty_inactive_list_nr
, NR_STRIPE_HASH_LOCKS
);
6698 if (grow_stripes(conf
, conf
->min_nr_stripes
)) {
6699 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
6700 mdname(mddev
), memory
);
6703 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev
), memory
);
6705 * Losing a stripe head costs more than the time to refill it,
6706 * it reduces the queue depth and so can hurt throughput.
6707 * So set it rather large, scaled by number of devices.
6709 conf
->shrinker
.seeks
= DEFAULT_SEEKS
* conf
->raid_disks
* 4;
6710 conf
->shrinker
.scan_objects
= raid5_cache_scan
;
6711 conf
->shrinker
.count_objects
= raid5_cache_count
;
6712 conf
->shrinker
.batch
= 128;
6713 conf
->shrinker
.flags
= 0;
6714 if (register_shrinker(&conf
->shrinker
)) {
6715 pr_warn("md/raid:%s: couldn't register shrinker.\n",
6720 sprintf(pers_name
, "raid%d", mddev
->new_level
);
6721 conf
->thread
= md_register_thread(raid5d
, mddev
, pers_name
);
6722 if (!conf
->thread
) {
6723 pr_warn("md/raid:%s: couldn't allocate thread.\n",
6733 return ERR_PTR(-EIO
);
6735 return ERR_PTR(-ENOMEM
);
6738 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
6741 case ALGORITHM_PARITY_0
:
6742 if (raid_disk
< max_degraded
)
6745 case ALGORITHM_PARITY_N
:
6746 if (raid_disk
>= raid_disks
- max_degraded
)
6749 case ALGORITHM_PARITY_0_6
:
6750 if (raid_disk
== 0 ||
6751 raid_disk
== raid_disks
- 1)
6754 case ALGORITHM_LEFT_ASYMMETRIC_6
:
6755 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
6756 case ALGORITHM_LEFT_SYMMETRIC_6
:
6757 case ALGORITHM_RIGHT_SYMMETRIC_6
:
6758 if (raid_disk
== raid_disks
- 1)
6764 static int raid5_run(struct mddev
*mddev
)
6766 struct r5conf
*conf
;
6767 int working_disks
= 0;
6768 int dirty_parity_disks
= 0;
6769 struct md_rdev
*rdev
;
6770 struct md_rdev
*journal_dev
= NULL
;
6771 sector_t reshape_offset
= 0;
6773 long long min_offset_diff
= 0;
6776 if (mddev
->recovery_cp
!= MaxSector
)
6777 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
6780 rdev_for_each(rdev
, mddev
) {
6783 if (test_bit(Journal
, &rdev
->flags
)) {
6787 if (rdev
->raid_disk
< 0)
6789 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
6791 min_offset_diff
= diff
;
6793 } else if (mddev
->reshape_backwards
&&
6794 diff
< min_offset_diff
)
6795 min_offset_diff
= diff
;
6796 else if (!mddev
->reshape_backwards
&&
6797 diff
> min_offset_diff
)
6798 min_offset_diff
= diff
;
6801 if (mddev
->reshape_position
!= MaxSector
) {
6802 /* Check that we can continue the reshape.
6803 * Difficulties arise if the stripe we would write to
6804 * next is at or after the stripe we would read from next.
6805 * For a reshape that changes the number of devices, this
6806 * is only possible for a very short time, and mdadm makes
6807 * sure that time appears to have past before assembling
6808 * the array. So we fail if that time hasn't passed.
6809 * For a reshape that keeps the number of devices the same
6810 * mdadm must be monitoring the reshape can keeping the
6811 * critical areas read-only and backed up. It will start
6812 * the array in read-only mode, so we check for that.
6814 sector_t here_new
, here_old
;
6816 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
6821 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
6826 if (mddev
->new_level
!= mddev
->level
) {
6827 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
6831 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6832 /* reshape_position must be on a new-stripe boundary, and one
6833 * further up in new geometry must map after here in old
6835 * If the chunk sizes are different, then as we perform reshape
6836 * in units of the largest of the two, reshape_position needs
6837 * be a multiple of the largest chunk size times new data disks.
6839 here_new
= mddev
->reshape_position
;
6840 chunk_sectors
= max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
);
6841 new_data_disks
= mddev
->raid_disks
- max_degraded
;
6842 if (sector_div(here_new
, chunk_sectors
* new_data_disks
)) {
6843 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
6847 reshape_offset
= here_new
* chunk_sectors
;
6848 /* here_new is the stripe we will write to */
6849 here_old
= mddev
->reshape_position
;
6850 sector_div(here_old
, chunk_sectors
* (old_disks
-max_degraded
));
6851 /* here_old is the first stripe that we might need to read
6853 if (mddev
->delta_disks
== 0) {
6854 /* We cannot be sure it is safe to start an in-place
6855 * reshape. It is only safe if user-space is monitoring
6856 * and taking constant backups.
6857 * mdadm always starts a situation like this in
6858 * readonly mode so it can take control before
6859 * allowing any writes. So just check for that.
6861 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
6862 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
6863 /* not really in-place - so OK */;
6864 else if (mddev
->ro
== 0) {
6865 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
6869 } else if (mddev
->reshape_backwards
6870 ? (here_new
* chunk_sectors
+ min_offset_diff
<=
6871 here_old
* chunk_sectors
)
6872 : (here_new
* chunk_sectors
>=
6873 here_old
* chunk_sectors
+ (-min_offset_diff
))) {
6874 /* Reading from the same stripe as writing to - bad */
6875 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
6879 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev
));
6880 /* OK, we should be able to continue; */
6882 BUG_ON(mddev
->level
!= mddev
->new_level
);
6883 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
6884 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
6885 BUG_ON(mddev
->delta_disks
!= 0);
6888 if (mddev
->private == NULL
)
6889 conf
= setup_conf(mddev
);
6891 conf
= mddev
->private;
6894 return PTR_ERR(conf
);
6896 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
)) {
6898 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
6901 set_disk_ro(mddev
->gendisk
, 1);
6902 } else if (mddev
->recovery_cp
== MaxSector
)
6903 set_bit(MD_JOURNAL_CLEAN
, &mddev
->flags
);
6906 conf
->min_offset_diff
= min_offset_diff
;
6907 mddev
->thread
= conf
->thread
;
6908 conf
->thread
= NULL
;
6909 mddev
->private = conf
;
6911 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
6913 rdev
= conf
->disks
[i
].rdev
;
6914 if (!rdev
&& conf
->disks
[i
].replacement
) {
6915 /* The replacement is all we have yet */
6916 rdev
= conf
->disks
[i
].replacement
;
6917 conf
->disks
[i
].replacement
= NULL
;
6918 clear_bit(Replacement
, &rdev
->flags
);
6919 conf
->disks
[i
].rdev
= rdev
;
6923 if (conf
->disks
[i
].replacement
&&
6924 conf
->reshape_progress
!= MaxSector
) {
6925 /* replacements and reshape simply do not mix. */
6926 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
6929 if (test_bit(In_sync
, &rdev
->flags
)) {
6933 /* This disc is not fully in-sync. However if it
6934 * just stored parity (beyond the recovery_offset),
6935 * when we don't need to be concerned about the
6936 * array being dirty.
6937 * When reshape goes 'backwards', we never have
6938 * partially completed devices, so we only need
6939 * to worry about reshape going forwards.
6941 /* Hack because v0.91 doesn't store recovery_offset properly. */
6942 if (mddev
->major_version
== 0 &&
6943 mddev
->minor_version
> 90)
6944 rdev
->recovery_offset
= reshape_offset
;
6946 if (rdev
->recovery_offset
< reshape_offset
) {
6947 /* We need to check old and new layout */
6948 if (!only_parity(rdev
->raid_disk
,
6951 conf
->max_degraded
))
6954 if (!only_parity(rdev
->raid_disk
,
6956 conf
->previous_raid_disks
,
6957 conf
->max_degraded
))
6959 dirty_parity_disks
++;
6963 * 0 for a fully functional array, 1 or 2 for a degraded array.
6965 mddev
->degraded
= calc_degraded(conf
);
6967 if (has_failed(conf
)) {
6968 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
6969 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
6973 /* device size must be a multiple of chunk size */
6974 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
6975 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
6977 if (mddev
->degraded
> dirty_parity_disks
&&
6978 mddev
->recovery_cp
!= MaxSector
) {
6979 if (mddev
->ok_start_degraded
)
6980 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
6983 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
6989 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
6990 mdname(mddev
), conf
->level
,
6991 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
6994 print_raid5_conf(conf
);
6996 if (conf
->reshape_progress
!= MaxSector
) {
6997 conf
->reshape_safe
= conf
->reshape_progress
;
6998 atomic_set(&conf
->reshape_stripes
, 0);
6999 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7000 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7001 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7002 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7003 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7007 /* Ok, everything is just fine now */
7008 if (mddev
->to_remove
== &raid5_attrs_group
)
7009 mddev
->to_remove
= NULL
;
7010 else if (mddev
->kobj
.sd
&&
7011 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
7012 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7014 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
7018 bool discard_supported
= true;
7019 /* read-ahead size must cover two whole stripes, which
7020 * is 2 * (datadisks) * chunksize where 'n' is the
7021 * number of raid devices
7023 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
7024 int stripe
= data_disks
*
7025 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
7026 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
7027 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
7029 chunk_size
= mddev
->chunk_sectors
<< 9;
7030 blk_queue_io_min(mddev
->queue
, chunk_size
);
7031 blk_queue_io_opt(mddev
->queue
, chunk_size
*
7032 (conf
->raid_disks
- conf
->max_degraded
));
7033 mddev
->queue
->limits
.raid_partial_stripes_expensive
= 1;
7035 * We can only discard a whole stripe. It doesn't make sense to
7036 * discard data disk but write parity disk
7038 stripe
= stripe
* PAGE_SIZE
;
7039 /* Round up to power of 2, as discard handling
7040 * currently assumes that */
7041 while ((stripe
-1) & stripe
)
7042 stripe
= (stripe
| (stripe
-1)) + 1;
7043 mddev
->queue
->limits
.discard_alignment
= stripe
;
7044 mddev
->queue
->limits
.discard_granularity
= stripe
;
7046 * unaligned part of discard request will be ignored, so can't
7047 * guarantee discard_zeroes_data
7049 mddev
->queue
->limits
.discard_zeroes_data
= 0;
7051 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
7053 rdev_for_each(rdev
, mddev
) {
7054 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
7055 rdev
->data_offset
<< 9);
7056 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
7057 rdev
->new_data_offset
<< 9);
7059 * discard_zeroes_data is required, otherwise data
7060 * could be lost. Consider a scenario: discard a stripe
7061 * (the stripe could be inconsistent if
7062 * discard_zeroes_data is 0); write one disk of the
7063 * stripe (the stripe could be inconsistent again
7064 * depending on which disks are used to calculate
7065 * parity); the disk is broken; The stripe data of this
7068 if (!blk_queue_discard(bdev_get_queue(rdev
->bdev
)) ||
7069 !bdev_get_queue(rdev
->bdev
)->
7070 limits
.discard_zeroes_data
)
7071 discard_supported
= false;
7072 /* Unfortunately, discard_zeroes_data is not currently
7073 * a guarantee - just a hint. So we only allow DISCARD
7074 * if the sysadmin has confirmed that only safe devices
7075 * are in use by setting a module parameter.
7077 if (!devices_handle_discard_safely
) {
7078 if (discard_supported
) {
7079 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7080 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7082 discard_supported
= false;
7086 if (discard_supported
&&
7087 mddev
->queue
->limits
.max_discard_sectors
>= (stripe
>> 9) &&
7088 mddev
->queue
->limits
.discard_granularity
>= stripe
)
7089 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
7092 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
7095 blk_queue_max_hw_sectors(mddev
->queue
, UINT_MAX
);
7099 char b
[BDEVNAME_SIZE
];
7101 pr_debug("md/raid:%s: using device %s as journal\n",
7102 mdname(mddev
), bdevname(journal_dev
->bdev
, b
));
7103 if (r5l_init_log(conf
, journal_dev
))
7109 md_unregister_thread(&mddev
->thread
);
7110 print_raid5_conf(conf
);
7112 mddev
->private = NULL
;
7113 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev
));
7117 static void raid5_free(struct mddev
*mddev
, void *priv
)
7119 struct r5conf
*conf
= priv
;
7122 mddev
->to_remove
= &raid5_attrs_group
;
7125 static void raid5_status(struct seq_file
*seq
, struct mddev
*mddev
)
7127 struct r5conf
*conf
= mddev
->private;
7130 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
7131 conf
->chunk_sectors
/ 2, mddev
->layout
);
7132 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
7134 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7135 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
7136 seq_printf (seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
7139 seq_printf (seq
, "]");
7142 static void print_raid5_conf (struct r5conf
*conf
)
7145 struct disk_info
*tmp
;
7147 pr_debug("RAID conf printout:\n");
7149 pr_debug("(conf==NULL)\n");
7152 pr_debug(" --- level:%d rd:%d wd:%d\n", conf
->level
,
7154 conf
->raid_disks
- conf
->mddev
->degraded
);
7156 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7157 char b
[BDEVNAME_SIZE
];
7158 tmp
= conf
->disks
+ i
;
7160 pr_debug(" disk %d, o:%d, dev:%s\n",
7161 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
7162 bdevname(tmp
->rdev
->bdev
, b
));
7166 static int raid5_spare_active(struct mddev
*mddev
)
7169 struct r5conf
*conf
= mddev
->private;
7170 struct disk_info
*tmp
;
7172 unsigned long flags
;
7174 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7175 tmp
= conf
->disks
+ i
;
7176 if (tmp
->replacement
7177 && tmp
->replacement
->recovery_offset
== MaxSector
7178 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
7179 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
7180 /* Replacement has just become active. */
7182 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
7185 /* Replaced device not technically faulty,
7186 * but we need to be sure it gets removed
7187 * and never re-added.
7189 set_bit(Faulty
, &tmp
->rdev
->flags
);
7190 sysfs_notify_dirent_safe(
7191 tmp
->rdev
->sysfs_state
);
7193 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
7194 } else if (tmp
->rdev
7195 && tmp
->rdev
->recovery_offset
== MaxSector
7196 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
7197 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
7199 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
7202 spin_lock_irqsave(&conf
->device_lock
, flags
);
7203 mddev
->degraded
= calc_degraded(conf
);
7204 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7205 print_raid5_conf(conf
);
7209 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7211 struct r5conf
*conf
= mddev
->private;
7213 int number
= rdev
->raid_disk
;
7214 struct md_rdev
**rdevp
;
7215 struct disk_info
*p
= conf
->disks
+ number
;
7217 print_raid5_conf(conf
);
7218 if (test_bit(Journal
, &rdev
->flags
) && conf
->log
) {
7219 struct r5l_log
*log
;
7221 * we can't wait pending write here, as this is called in
7222 * raid5d, wait will deadlock.
7224 if (atomic_read(&mddev
->writes_pending
))
7232 if (rdev
== p
->rdev
)
7234 else if (rdev
== p
->replacement
)
7235 rdevp
= &p
->replacement
;
7239 if (number
>= conf
->raid_disks
&&
7240 conf
->reshape_progress
== MaxSector
)
7241 clear_bit(In_sync
, &rdev
->flags
);
7243 if (test_bit(In_sync
, &rdev
->flags
) ||
7244 atomic_read(&rdev
->nr_pending
)) {
7248 /* Only remove non-faulty devices if recovery
7251 if (!test_bit(Faulty
, &rdev
->flags
) &&
7252 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
7253 !has_failed(conf
) &&
7254 (!p
->replacement
|| p
->replacement
== rdev
) &&
7255 number
< conf
->raid_disks
) {
7260 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
7262 if (atomic_read(&rdev
->nr_pending
)) {
7263 /* lost the race, try later */
7268 if (p
->replacement
) {
7269 /* We must have just cleared 'rdev' */
7270 p
->rdev
= p
->replacement
;
7271 clear_bit(Replacement
, &p
->replacement
->flags
);
7272 smp_mb(); /* Make sure other CPUs may see both as identical
7273 * but will never see neither - if they are careful
7275 p
->replacement
= NULL
;
7276 clear_bit(WantReplacement
, &rdev
->flags
);
7278 /* We might have just removed the Replacement as faulty-
7279 * clear the bit just in case
7281 clear_bit(WantReplacement
, &rdev
->flags
);
7284 print_raid5_conf(conf
);
7288 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7290 struct r5conf
*conf
= mddev
->private;
7293 struct disk_info
*p
;
7295 int last
= conf
->raid_disks
- 1;
7297 if (test_bit(Journal
, &rdev
->flags
)) {
7298 char b
[BDEVNAME_SIZE
];
7302 rdev
->raid_disk
= 0;
7304 * The array is in readonly mode if journal is missing, so no
7305 * write requests running. We should be safe
7307 r5l_init_log(conf
, rdev
);
7308 pr_debug("md/raid:%s: using device %s as journal\n",
7309 mdname(mddev
), bdevname(rdev
->bdev
, b
));
7312 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
7315 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
7316 /* no point adding a device */
7319 if (rdev
->raid_disk
>= 0)
7320 first
= last
= rdev
->raid_disk
;
7323 * find the disk ... but prefer rdev->saved_raid_disk
7326 if (rdev
->saved_raid_disk
>= 0 &&
7327 rdev
->saved_raid_disk
>= first
&&
7328 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
7329 first
= rdev
->saved_raid_disk
;
7331 for (disk
= first
; disk
<= last
; disk
++) {
7332 p
= conf
->disks
+ disk
;
7333 if (p
->rdev
== NULL
) {
7334 clear_bit(In_sync
, &rdev
->flags
);
7335 rdev
->raid_disk
= disk
;
7337 if (rdev
->saved_raid_disk
!= disk
)
7339 rcu_assign_pointer(p
->rdev
, rdev
);
7343 for (disk
= first
; disk
<= last
; disk
++) {
7344 p
= conf
->disks
+ disk
;
7345 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
7346 p
->replacement
== NULL
) {
7347 clear_bit(In_sync
, &rdev
->flags
);
7348 set_bit(Replacement
, &rdev
->flags
);
7349 rdev
->raid_disk
= disk
;
7352 rcu_assign_pointer(p
->replacement
, rdev
);
7357 print_raid5_conf(conf
);
7361 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
7363 /* no resync is happening, and there is enough space
7364 * on all devices, so we can resize.
7365 * We need to make sure resync covers any new space.
7366 * If the array is shrinking we should possibly wait until
7367 * any io in the removed space completes, but it hardly seems
7371 struct r5conf
*conf
= mddev
->private;
7375 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
7376 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
7377 if (mddev
->external_size
&&
7378 mddev
->array_sectors
> newsize
)
7380 if (mddev
->bitmap
) {
7381 int ret
= bitmap_resize(mddev
->bitmap
, sectors
, 0, 0);
7385 md_set_array_sectors(mddev
, newsize
);
7386 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
7387 revalidate_disk(mddev
->gendisk
);
7388 if (sectors
> mddev
->dev_sectors
&&
7389 mddev
->recovery_cp
> mddev
->dev_sectors
) {
7390 mddev
->recovery_cp
= mddev
->dev_sectors
;
7391 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7393 mddev
->dev_sectors
= sectors
;
7394 mddev
->resync_max_sectors
= sectors
;
7398 static int check_stripe_cache(struct mddev
*mddev
)
7400 /* Can only proceed if there are plenty of stripe_heads.
7401 * We need a minimum of one full stripe,, and for sensible progress
7402 * it is best to have about 4 times that.
7403 * If we require 4 times, then the default 256 4K stripe_heads will
7404 * allow for chunk sizes up to 256K, which is probably OK.
7405 * If the chunk size is greater, user-space should request more
7406 * stripe_heads first.
7408 struct r5conf
*conf
= mddev
->private;
7409 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7410 > conf
->min_nr_stripes
||
7411 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7412 > conf
->min_nr_stripes
) {
7413 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7415 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
7422 static int check_reshape(struct mddev
*mddev
)
7424 struct r5conf
*conf
= mddev
->private;
7428 if (mddev
->delta_disks
== 0 &&
7429 mddev
->new_layout
== mddev
->layout
&&
7430 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
7431 return 0; /* nothing to do */
7432 if (has_failed(conf
))
7434 if (mddev
->delta_disks
< 0 && mddev
->reshape_position
== MaxSector
) {
7435 /* We might be able to shrink, but the devices must
7436 * be made bigger first.
7437 * For raid6, 4 is the minimum size.
7438 * Otherwise 2 is the minimum
7441 if (mddev
->level
== 6)
7443 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
7447 if (!check_stripe_cache(mddev
))
7450 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
||
7451 mddev
->delta_disks
> 0)
7452 if (resize_chunks(conf
,
7453 conf
->previous_raid_disks
7454 + max(0, mddev
->delta_disks
),
7455 max(mddev
->new_chunk_sectors
,
7456 mddev
->chunk_sectors
)
7459 return resize_stripes(conf
, (conf
->previous_raid_disks
7460 + mddev
->delta_disks
));
7463 static int raid5_start_reshape(struct mddev
*mddev
)
7465 struct r5conf
*conf
= mddev
->private;
7466 struct md_rdev
*rdev
;
7468 unsigned long flags
;
7470 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
7473 if (!check_stripe_cache(mddev
))
7476 if (has_failed(conf
))
7479 rdev_for_each(rdev
, mddev
) {
7480 if (!test_bit(In_sync
, &rdev
->flags
)
7481 && !test_bit(Faulty
, &rdev
->flags
))
7485 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
7486 /* Not enough devices even to make a degraded array
7491 /* Refuse to reduce size of the array. Any reductions in
7492 * array size must be through explicit setting of array_size
7495 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
7496 < mddev
->array_sectors
) {
7497 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7502 atomic_set(&conf
->reshape_stripes
, 0);
7503 spin_lock_irq(&conf
->device_lock
);
7504 write_seqcount_begin(&conf
->gen_lock
);
7505 conf
->previous_raid_disks
= conf
->raid_disks
;
7506 conf
->raid_disks
+= mddev
->delta_disks
;
7507 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7508 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
7509 conf
->prev_algo
= conf
->algorithm
;
7510 conf
->algorithm
= mddev
->new_layout
;
7512 /* Code that selects data_offset needs to see the generation update
7513 * if reshape_progress has been set - so a memory barrier needed.
7516 if (mddev
->reshape_backwards
)
7517 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
7519 conf
->reshape_progress
= 0;
7520 conf
->reshape_safe
= conf
->reshape_progress
;
7521 write_seqcount_end(&conf
->gen_lock
);
7522 spin_unlock_irq(&conf
->device_lock
);
7524 /* Now make sure any requests that proceeded on the assumption
7525 * the reshape wasn't running - like Discard or Read - have
7528 mddev_suspend(mddev
);
7529 mddev_resume(mddev
);
7531 /* Add some new drives, as many as will fit.
7532 * We know there are enough to make the newly sized array work.
7533 * Don't add devices if we are reducing the number of
7534 * devices in the array. This is because it is not possible
7535 * to correctly record the "partially reconstructed" state of
7536 * such devices during the reshape and confusion could result.
7538 if (mddev
->delta_disks
>= 0) {
7539 rdev_for_each(rdev
, mddev
)
7540 if (rdev
->raid_disk
< 0 &&
7541 !test_bit(Faulty
, &rdev
->flags
)) {
7542 if (raid5_add_disk(mddev
, rdev
) == 0) {
7544 >= conf
->previous_raid_disks
)
7545 set_bit(In_sync
, &rdev
->flags
);
7547 rdev
->recovery_offset
= 0;
7549 if (sysfs_link_rdev(mddev
, rdev
))
7550 /* Failure here is OK */;
7552 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
7553 && !test_bit(Faulty
, &rdev
->flags
)) {
7554 /* This is a spare that was manually added */
7555 set_bit(In_sync
, &rdev
->flags
);
7558 /* When a reshape changes the number of devices,
7559 * ->degraded is measured against the larger of the
7560 * pre and post number of devices.
7562 spin_lock_irqsave(&conf
->device_lock
, flags
);
7563 mddev
->degraded
= calc_degraded(conf
);
7564 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7566 mddev
->raid_disks
= conf
->raid_disks
;
7567 mddev
->reshape_position
= conf
->reshape_progress
;
7568 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7570 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7571 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7572 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
7573 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7574 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7575 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7577 if (!mddev
->sync_thread
) {
7578 mddev
->recovery
= 0;
7579 spin_lock_irq(&conf
->device_lock
);
7580 write_seqcount_begin(&conf
->gen_lock
);
7581 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
7582 mddev
->new_chunk_sectors
=
7583 conf
->chunk_sectors
= conf
->prev_chunk_sectors
;
7584 mddev
->new_layout
= conf
->algorithm
= conf
->prev_algo
;
7585 rdev_for_each(rdev
, mddev
)
7586 rdev
->new_data_offset
= rdev
->data_offset
;
7588 conf
->generation
--;
7589 conf
->reshape_progress
= MaxSector
;
7590 mddev
->reshape_position
= MaxSector
;
7591 write_seqcount_end(&conf
->gen_lock
);
7592 spin_unlock_irq(&conf
->device_lock
);
7595 conf
->reshape_checkpoint
= jiffies
;
7596 md_wakeup_thread(mddev
->sync_thread
);
7597 md_new_event(mddev
);
7601 /* This is called from the reshape thread and should make any
7602 * changes needed in 'conf'
7604 static void end_reshape(struct r5conf
*conf
)
7607 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
7608 struct md_rdev
*rdev
;
7610 spin_lock_irq(&conf
->device_lock
);
7611 conf
->previous_raid_disks
= conf
->raid_disks
;
7612 rdev_for_each(rdev
, conf
->mddev
)
7613 rdev
->data_offset
= rdev
->new_data_offset
;
7615 conf
->reshape_progress
= MaxSector
;
7616 conf
->mddev
->reshape_position
= MaxSector
;
7617 spin_unlock_irq(&conf
->device_lock
);
7618 wake_up(&conf
->wait_for_overlap
);
7620 /* read-ahead size must cover two whole stripes, which is
7621 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7623 if (conf
->mddev
->queue
) {
7624 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
7625 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
7627 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
7628 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
7633 /* This is called from the raid5d thread with mddev_lock held.
7634 * It makes config changes to the device.
7636 static void raid5_finish_reshape(struct mddev
*mddev
)
7638 struct r5conf
*conf
= mddev
->private;
7640 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
7642 if (mddev
->delta_disks
> 0) {
7643 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
7645 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
7646 revalidate_disk(mddev
->gendisk
);
7650 spin_lock_irq(&conf
->device_lock
);
7651 mddev
->degraded
= calc_degraded(conf
);
7652 spin_unlock_irq(&conf
->device_lock
);
7653 for (d
= conf
->raid_disks
;
7654 d
< conf
->raid_disks
- mddev
->delta_disks
;
7656 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
7658 clear_bit(In_sync
, &rdev
->flags
);
7659 rdev
= conf
->disks
[d
].replacement
;
7661 clear_bit(In_sync
, &rdev
->flags
);
7664 mddev
->layout
= conf
->algorithm
;
7665 mddev
->chunk_sectors
= conf
->chunk_sectors
;
7666 mddev
->reshape_position
= MaxSector
;
7667 mddev
->delta_disks
= 0;
7668 mddev
->reshape_backwards
= 0;
7672 static void raid5_quiesce(struct mddev
*mddev
, int state
)
7674 struct r5conf
*conf
= mddev
->private;
7677 case 2: /* resume for a suspend */
7678 wake_up(&conf
->wait_for_overlap
);
7681 case 1: /* stop all writes */
7682 lock_all_device_hash_locks_irq(conf
);
7683 /* '2' tells resync/reshape to pause so that all
7684 * active stripes can drain
7686 r5c_flush_cache(conf
, INT_MAX
);
7688 wait_event_cmd(conf
->wait_for_quiescent
,
7689 atomic_read(&conf
->active_stripes
) == 0 &&
7690 atomic_read(&conf
->active_aligned_reads
) == 0,
7691 unlock_all_device_hash_locks_irq(conf
),
7692 lock_all_device_hash_locks_irq(conf
));
7694 unlock_all_device_hash_locks_irq(conf
);
7695 /* allow reshape to continue */
7696 wake_up(&conf
->wait_for_overlap
);
7699 case 0: /* re-enable writes */
7700 lock_all_device_hash_locks_irq(conf
);
7702 wake_up(&conf
->wait_for_quiescent
);
7703 wake_up(&conf
->wait_for_overlap
);
7704 unlock_all_device_hash_locks_irq(conf
);
7707 r5l_quiesce(conf
->log
, state
);
7710 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
7712 struct r0conf
*raid0_conf
= mddev
->private;
7715 /* for raid0 takeover only one zone is supported */
7716 if (raid0_conf
->nr_strip_zones
> 1) {
7717 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7719 return ERR_PTR(-EINVAL
);
7722 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
7723 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
7724 mddev
->dev_sectors
= sectors
;
7725 mddev
->new_level
= level
;
7726 mddev
->new_layout
= ALGORITHM_PARITY_N
;
7727 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
7728 mddev
->raid_disks
+= 1;
7729 mddev
->delta_disks
= 1;
7730 /* make sure it will be not marked as dirty */
7731 mddev
->recovery_cp
= MaxSector
;
7733 return setup_conf(mddev
);
7736 static void *raid5_takeover_raid1(struct mddev
*mddev
)
7740 if (mddev
->raid_disks
!= 2 ||
7741 mddev
->degraded
> 1)
7742 return ERR_PTR(-EINVAL
);
7744 /* Should check if there are write-behind devices? */
7746 chunksect
= 64*2; /* 64K by default */
7748 /* The array must be an exact multiple of chunksize */
7749 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
7752 if ((chunksect
<<9) < STRIPE_SIZE
)
7753 /* array size does not allow a suitable chunk size */
7754 return ERR_PTR(-EINVAL
);
7756 mddev
->new_level
= 5;
7757 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
7758 mddev
->new_chunk_sectors
= chunksect
;
7760 return setup_conf(mddev
);
7763 static void *raid5_takeover_raid6(struct mddev
*mddev
)
7767 switch (mddev
->layout
) {
7768 case ALGORITHM_LEFT_ASYMMETRIC_6
:
7769 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
7771 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
7772 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
7774 case ALGORITHM_LEFT_SYMMETRIC_6
:
7775 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
7777 case ALGORITHM_RIGHT_SYMMETRIC_6
:
7778 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
7780 case ALGORITHM_PARITY_0_6
:
7781 new_layout
= ALGORITHM_PARITY_0
;
7783 case ALGORITHM_PARITY_N
:
7784 new_layout
= ALGORITHM_PARITY_N
;
7787 return ERR_PTR(-EINVAL
);
7789 mddev
->new_level
= 5;
7790 mddev
->new_layout
= new_layout
;
7791 mddev
->delta_disks
= -1;
7792 mddev
->raid_disks
-= 1;
7793 return setup_conf(mddev
);
7796 static int raid5_check_reshape(struct mddev
*mddev
)
7798 /* For a 2-drive array, the layout and chunk size can be changed
7799 * immediately as not restriping is needed.
7800 * For larger arrays we record the new value - after validation
7801 * to be used by a reshape pass.
7803 struct r5conf
*conf
= mddev
->private;
7804 int new_chunk
= mddev
->new_chunk_sectors
;
7806 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
7808 if (new_chunk
> 0) {
7809 if (!is_power_of_2(new_chunk
))
7811 if (new_chunk
< (PAGE_SIZE
>>9))
7813 if (mddev
->array_sectors
& (new_chunk
-1))
7814 /* not factor of array size */
7818 /* They look valid */
7820 if (mddev
->raid_disks
== 2) {
7821 /* can make the change immediately */
7822 if (mddev
->new_layout
>= 0) {
7823 conf
->algorithm
= mddev
->new_layout
;
7824 mddev
->layout
= mddev
->new_layout
;
7826 if (new_chunk
> 0) {
7827 conf
->chunk_sectors
= new_chunk
;
7828 mddev
->chunk_sectors
= new_chunk
;
7830 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7831 md_wakeup_thread(mddev
->thread
);
7833 return check_reshape(mddev
);
7836 static int raid6_check_reshape(struct mddev
*mddev
)
7838 int new_chunk
= mddev
->new_chunk_sectors
;
7840 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
7842 if (new_chunk
> 0) {
7843 if (!is_power_of_2(new_chunk
))
7845 if (new_chunk
< (PAGE_SIZE
>> 9))
7847 if (mddev
->array_sectors
& (new_chunk
-1))
7848 /* not factor of array size */
7852 /* They look valid */
7853 return check_reshape(mddev
);
7856 static void *raid5_takeover(struct mddev
*mddev
)
7858 /* raid5 can take over:
7859 * raid0 - if there is only one strip zone - make it a raid4 layout
7860 * raid1 - if there are two drives. We need to know the chunk size
7861 * raid4 - trivial - just use a raid4 layout.
7862 * raid6 - Providing it is a *_6 layout
7864 if (mddev
->level
== 0)
7865 return raid45_takeover_raid0(mddev
, 5);
7866 if (mddev
->level
== 1)
7867 return raid5_takeover_raid1(mddev
);
7868 if (mddev
->level
== 4) {
7869 mddev
->new_layout
= ALGORITHM_PARITY_N
;
7870 mddev
->new_level
= 5;
7871 return setup_conf(mddev
);
7873 if (mddev
->level
== 6)
7874 return raid5_takeover_raid6(mddev
);
7876 return ERR_PTR(-EINVAL
);
7879 static void *raid4_takeover(struct mddev
*mddev
)
7881 /* raid4 can take over:
7882 * raid0 - if there is only one strip zone
7883 * raid5 - if layout is right
7885 if (mddev
->level
== 0)
7886 return raid45_takeover_raid0(mddev
, 4);
7887 if (mddev
->level
== 5 &&
7888 mddev
->layout
== ALGORITHM_PARITY_N
) {
7889 mddev
->new_layout
= 0;
7890 mddev
->new_level
= 4;
7891 return setup_conf(mddev
);
7893 return ERR_PTR(-EINVAL
);
7896 static struct md_personality raid5_personality
;
7898 static void *raid6_takeover(struct mddev
*mddev
)
7900 /* Currently can only take over a raid5. We map the
7901 * personality to an equivalent raid6 personality
7902 * with the Q block at the end.
7906 if (mddev
->pers
!= &raid5_personality
)
7907 return ERR_PTR(-EINVAL
);
7908 if (mddev
->degraded
> 1)
7909 return ERR_PTR(-EINVAL
);
7910 if (mddev
->raid_disks
> 253)
7911 return ERR_PTR(-EINVAL
);
7912 if (mddev
->raid_disks
< 3)
7913 return ERR_PTR(-EINVAL
);
7915 switch (mddev
->layout
) {
7916 case ALGORITHM_LEFT_ASYMMETRIC
:
7917 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
7919 case ALGORITHM_RIGHT_ASYMMETRIC
:
7920 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
7922 case ALGORITHM_LEFT_SYMMETRIC
:
7923 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
7925 case ALGORITHM_RIGHT_SYMMETRIC
:
7926 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
7928 case ALGORITHM_PARITY_0
:
7929 new_layout
= ALGORITHM_PARITY_0_6
;
7931 case ALGORITHM_PARITY_N
:
7932 new_layout
= ALGORITHM_PARITY_N
;
7935 return ERR_PTR(-EINVAL
);
7937 mddev
->new_level
= 6;
7938 mddev
->new_layout
= new_layout
;
7939 mddev
->delta_disks
= 1;
7940 mddev
->raid_disks
+= 1;
7941 return setup_conf(mddev
);
7944 static struct md_personality raid6_personality
=
7948 .owner
= THIS_MODULE
,
7949 .make_request
= raid5_make_request
,
7952 .status
= raid5_status
,
7953 .error_handler
= raid5_error
,
7954 .hot_add_disk
= raid5_add_disk
,
7955 .hot_remove_disk
= raid5_remove_disk
,
7956 .spare_active
= raid5_spare_active
,
7957 .sync_request
= raid5_sync_request
,
7958 .resize
= raid5_resize
,
7960 .check_reshape
= raid6_check_reshape
,
7961 .start_reshape
= raid5_start_reshape
,
7962 .finish_reshape
= raid5_finish_reshape
,
7963 .quiesce
= raid5_quiesce
,
7964 .takeover
= raid6_takeover
,
7965 .congested
= raid5_congested
,
7967 static struct md_personality raid5_personality
=
7971 .owner
= THIS_MODULE
,
7972 .make_request
= raid5_make_request
,
7975 .status
= raid5_status
,
7976 .error_handler
= raid5_error
,
7977 .hot_add_disk
= raid5_add_disk
,
7978 .hot_remove_disk
= raid5_remove_disk
,
7979 .spare_active
= raid5_spare_active
,
7980 .sync_request
= raid5_sync_request
,
7981 .resize
= raid5_resize
,
7983 .check_reshape
= raid5_check_reshape
,
7984 .start_reshape
= raid5_start_reshape
,
7985 .finish_reshape
= raid5_finish_reshape
,
7986 .quiesce
= raid5_quiesce
,
7987 .takeover
= raid5_takeover
,
7988 .congested
= raid5_congested
,
7991 static struct md_personality raid4_personality
=
7995 .owner
= THIS_MODULE
,
7996 .make_request
= raid5_make_request
,
7999 .status
= raid5_status
,
8000 .error_handler
= raid5_error
,
8001 .hot_add_disk
= raid5_add_disk
,
8002 .hot_remove_disk
= raid5_remove_disk
,
8003 .spare_active
= raid5_spare_active
,
8004 .sync_request
= raid5_sync_request
,
8005 .resize
= raid5_resize
,
8007 .check_reshape
= raid5_check_reshape
,
8008 .start_reshape
= raid5_start_reshape
,
8009 .finish_reshape
= raid5_finish_reshape
,
8010 .quiesce
= raid5_quiesce
,
8011 .takeover
= raid4_takeover
,
8012 .congested
= raid5_congested
,
8015 static int __init
raid5_init(void)
8019 raid5_wq
= alloc_workqueue("raid5wq",
8020 WQ_UNBOUND
|WQ_MEM_RECLAIM
|WQ_CPU_INTENSIVE
|WQ_SYSFS
, 0);
8024 ret
= cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE
,
8026 raid456_cpu_up_prepare
,
8029 destroy_workqueue(raid5_wq
);
8032 register_md_personality(&raid6_personality
);
8033 register_md_personality(&raid5_personality
);
8034 register_md_personality(&raid4_personality
);
8038 static void raid5_exit(void)
8040 unregister_md_personality(&raid6_personality
);
8041 unregister_md_personality(&raid5_personality
);
8042 unregister_md_personality(&raid4_personality
);
8043 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE
);
8044 destroy_workqueue(raid5_wq
);
8047 module_init(raid5_init
);
8048 module_exit(raid5_exit
);
8049 MODULE_LICENSE("GPL");
8050 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8051 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8052 MODULE_ALIAS("md-raid5");
8053 MODULE_ALIAS("md-raid4");
8054 MODULE_ALIAS("md-level-5");
8055 MODULE_ALIAS("md-level-4");
8056 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8057 MODULE_ALIAS("md-raid6");
8058 MODULE_ALIAS("md-level-6");
8060 /* This used to be two separate modules, they were: */
8061 MODULE_ALIAS("raid5");
8062 MODULE_ALIAS("raid6");