]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid5.c
md/r5cache: r5cache recovery: part 2
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78 }
79
80 static inline int stripe_hash_locks_hash(sector_t sect)
81 {
82 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
83 }
84
85 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
86 {
87 spin_lock_irq(conf->hash_locks + hash);
88 spin_lock(&conf->device_lock);
89 }
90
91 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
92 {
93 spin_unlock(&conf->device_lock);
94 spin_unlock_irq(conf->hash_locks + hash);
95 }
96
97 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
98 {
99 int i;
100 local_irq_disable();
101 spin_lock(conf->hash_locks);
102 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
103 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
104 spin_lock(&conf->device_lock);
105 }
106
107 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
108 {
109 int i;
110 spin_unlock(&conf->device_lock);
111 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
112 spin_unlock(conf->hash_locks + i - 1);
113 local_irq_enable();
114 }
115
116 /* Find first data disk in a raid6 stripe */
117 static inline int raid6_d0(struct stripe_head *sh)
118 {
119 if (sh->ddf_layout)
120 /* ddf always start from first device */
121 return 0;
122 /* md starts just after Q block */
123 if (sh->qd_idx == sh->disks - 1)
124 return 0;
125 else
126 return sh->qd_idx + 1;
127 }
128 static inline int raid6_next_disk(int disk, int raid_disks)
129 {
130 disk++;
131 return (disk < raid_disks) ? disk : 0;
132 }
133
134 /* When walking through the disks in a raid5, starting at raid6_d0,
135 * We need to map each disk to a 'slot', where the data disks are slot
136 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
137 * is raid_disks-1. This help does that mapping.
138 */
139 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
140 int *count, int syndrome_disks)
141 {
142 int slot = *count;
143
144 if (sh->ddf_layout)
145 (*count)++;
146 if (idx == sh->pd_idx)
147 return syndrome_disks;
148 if (idx == sh->qd_idx)
149 return syndrome_disks + 1;
150 if (!sh->ddf_layout)
151 (*count)++;
152 return slot;
153 }
154
155 static void return_io(struct bio_list *return_bi)
156 {
157 struct bio *bi;
158 while ((bi = bio_list_pop(return_bi)) != NULL) {
159 bi->bi_iter.bi_size = 0;
160 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
161 bi, 0);
162 bio_endio(bi);
163 }
164 }
165
166 static void print_raid5_conf (struct r5conf *conf);
167
168 static int stripe_operations_active(struct stripe_head *sh)
169 {
170 return sh->check_state || sh->reconstruct_state ||
171 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
172 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
173 }
174
175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
176 {
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
179 int thread_cnt;
180 int i, cpu = sh->cpu;
181
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
184 sh->cpu = cpu;
185 }
186
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
190 list_add_tail(&sh->lru, &group->handle_list);
191 group->stripes_cnt++;
192 sh->group = group;
193 }
194
195 if (conf->worker_cnt_per_group == 0) {
196 md_wakeup_thread(conf->mddev->thread);
197 return;
198 }
199
200 group = conf->worker_groups + cpu_to_group(sh->cpu);
201
202 group->workers[0].working = true;
203 /* at least one worker should run to avoid race */
204 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
205
206 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
207 /* wakeup more workers */
208 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
209 if (group->workers[i].working == false) {
210 group->workers[i].working = true;
211 queue_work_on(sh->cpu, raid5_wq,
212 &group->workers[i].work);
213 thread_cnt--;
214 }
215 }
216 }
217
218 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
219 struct list_head *temp_inactive_list)
220 {
221 int i;
222 int injournal = 0; /* number of date pages with R5_InJournal */
223
224 BUG_ON(!list_empty(&sh->lru));
225 BUG_ON(atomic_read(&conf->active_stripes)==0);
226
227 if (r5c_is_writeback(conf->log))
228 for (i = sh->disks; i--; )
229 if (test_bit(R5_InJournal, &sh->dev[i].flags))
230 injournal++;
231 /*
232 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
233 * data in journal, so they are not released to cached lists
234 */
235 if (conf->quiesce && r5c_is_writeback(conf->log) &&
236 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) {
237 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
238 r5c_make_stripe_write_out(sh);
239 set_bit(STRIPE_HANDLE, &sh->state);
240 }
241
242 if (test_bit(STRIPE_HANDLE, &sh->state)) {
243 if (test_bit(STRIPE_DELAYED, &sh->state) &&
244 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
245 list_add_tail(&sh->lru, &conf->delayed_list);
246 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
247 sh->bm_seq - conf->seq_write > 0)
248 list_add_tail(&sh->lru, &conf->bitmap_list);
249 else {
250 clear_bit(STRIPE_DELAYED, &sh->state);
251 clear_bit(STRIPE_BIT_DELAY, &sh->state);
252 if (conf->worker_cnt_per_group == 0) {
253 list_add_tail(&sh->lru, &conf->handle_list);
254 } else {
255 raid5_wakeup_stripe_thread(sh);
256 return;
257 }
258 }
259 md_wakeup_thread(conf->mddev->thread);
260 } else {
261 BUG_ON(stripe_operations_active(sh));
262 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
263 if (atomic_dec_return(&conf->preread_active_stripes)
264 < IO_THRESHOLD)
265 md_wakeup_thread(conf->mddev->thread);
266 atomic_dec(&conf->active_stripes);
267 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
268 if (!r5c_is_writeback(conf->log))
269 list_add_tail(&sh->lru, temp_inactive_list);
270 else {
271 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
272 if (injournal == 0)
273 list_add_tail(&sh->lru, temp_inactive_list);
274 else if (injournal == conf->raid_disks - conf->max_degraded) {
275 /* full stripe */
276 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
277 atomic_inc(&conf->r5c_cached_full_stripes);
278 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
279 atomic_dec(&conf->r5c_cached_partial_stripes);
280 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
281 r5c_check_cached_full_stripe(conf);
282 } else {
283 /* partial stripe */
284 if (!test_and_set_bit(STRIPE_R5C_PARTIAL_STRIPE,
285 &sh->state))
286 atomic_inc(&conf->r5c_cached_partial_stripes);
287 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
288 }
289 }
290 }
291 }
292 }
293
294 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
295 struct list_head *temp_inactive_list)
296 {
297 if (atomic_dec_and_test(&sh->count))
298 do_release_stripe(conf, sh, temp_inactive_list);
299 }
300
301 /*
302 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
303 *
304 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
305 * given time. Adding stripes only takes device lock, while deleting stripes
306 * only takes hash lock.
307 */
308 static void release_inactive_stripe_list(struct r5conf *conf,
309 struct list_head *temp_inactive_list,
310 int hash)
311 {
312 int size;
313 bool do_wakeup = false;
314 unsigned long flags;
315
316 if (hash == NR_STRIPE_HASH_LOCKS) {
317 size = NR_STRIPE_HASH_LOCKS;
318 hash = NR_STRIPE_HASH_LOCKS - 1;
319 } else
320 size = 1;
321 while (size) {
322 struct list_head *list = &temp_inactive_list[size - 1];
323
324 /*
325 * We don't hold any lock here yet, raid5_get_active_stripe() might
326 * remove stripes from the list
327 */
328 if (!list_empty_careful(list)) {
329 spin_lock_irqsave(conf->hash_locks + hash, flags);
330 if (list_empty(conf->inactive_list + hash) &&
331 !list_empty(list))
332 atomic_dec(&conf->empty_inactive_list_nr);
333 list_splice_tail_init(list, conf->inactive_list + hash);
334 do_wakeup = true;
335 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
336 }
337 size--;
338 hash--;
339 }
340
341 if (do_wakeup) {
342 wake_up(&conf->wait_for_stripe);
343 if (atomic_read(&conf->active_stripes) == 0)
344 wake_up(&conf->wait_for_quiescent);
345 if (conf->retry_read_aligned)
346 md_wakeup_thread(conf->mddev->thread);
347 }
348 }
349
350 /* should hold conf->device_lock already */
351 static int release_stripe_list(struct r5conf *conf,
352 struct list_head *temp_inactive_list)
353 {
354 struct stripe_head *sh;
355 int count = 0;
356 struct llist_node *head;
357
358 head = llist_del_all(&conf->released_stripes);
359 head = llist_reverse_order(head);
360 while (head) {
361 int hash;
362
363 sh = llist_entry(head, struct stripe_head, release_list);
364 head = llist_next(head);
365 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
366 smp_mb();
367 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
368 /*
369 * Don't worry the bit is set here, because if the bit is set
370 * again, the count is always > 1. This is true for
371 * STRIPE_ON_UNPLUG_LIST bit too.
372 */
373 hash = sh->hash_lock_index;
374 __release_stripe(conf, sh, &temp_inactive_list[hash]);
375 count++;
376 }
377
378 return count;
379 }
380
381 void raid5_release_stripe(struct stripe_head *sh)
382 {
383 struct r5conf *conf = sh->raid_conf;
384 unsigned long flags;
385 struct list_head list;
386 int hash;
387 bool wakeup;
388
389 /* Avoid release_list until the last reference.
390 */
391 if (atomic_add_unless(&sh->count, -1, 1))
392 return;
393
394 if (unlikely(!conf->mddev->thread) ||
395 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
396 goto slow_path;
397 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
398 if (wakeup)
399 md_wakeup_thread(conf->mddev->thread);
400 return;
401 slow_path:
402 local_irq_save(flags);
403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
405 INIT_LIST_HEAD(&list);
406 hash = sh->hash_lock_index;
407 do_release_stripe(conf, sh, &list);
408 spin_unlock(&conf->device_lock);
409 release_inactive_stripe_list(conf, &list, hash);
410 }
411 local_irq_restore(flags);
412 }
413
414 static inline void remove_hash(struct stripe_head *sh)
415 {
416 pr_debug("remove_hash(), stripe %llu\n",
417 (unsigned long long)sh->sector);
418
419 hlist_del_init(&sh->hash);
420 }
421
422 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
423 {
424 struct hlist_head *hp = stripe_hash(conf, sh->sector);
425
426 pr_debug("insert_hash(), stripe %llu\n",
427 (unsigned long long)sh->sector);
428
429 hlist_add_head(&sh->hash, hp);
430 }
431
432 /* find an idle stripe, make sure it is unhashed, and return it. */
433 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
434 {
435 struct stripe_head *sh = NULL;
436 struct list_head *first;
437
438 if (list_empty(conf->inactive_list + hash))
439 goto out;
440 first = (conf->inactive_list + hash)->next;
441 sh = list_entry(first, struct stripe_head, lru);
442 list_del_init(first);
443 remove_hash(sh);
444 atomic_inc(&conf->active_stripes);
445 BUG_ON(hash != sh->hash_lock_index);
446 if (list_empty(conf->inactive_list + hash))
447 atomic_inc(&conf->empty_inactive_list_nr);
448 out:
449 return sh;
450 }
451
452 static void shrink_buffers(struct stripe_head *sh)
453 {
454 struct page *p;
455 int i;
456 int num = sh->raid_conf->pool_size;
457
458 for (i = 0; i < num ; i++) {
459 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
460 p = sh->dev[i].page;
461 if (!p)
462 continue;
463 sh->dev[i].page = NULL;
464 put_page(p);
465 }
466 }
467
468 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
469 {
470 int i;
471 int num = sh->raid_conf->pool_size;
472
473 for (i = 0; i < num; i++) {
474 struct page *page;
475
476 if (!(page = alloc_page(gfp))) {
477 return 1;
478 }
479 sh->dev[i].page = page;
480 sh->dev[i].orig_page = page;
481 }
482 return 0;
483 }
484
485 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
486 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
487 struct stripe_head *sh);
488
489 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
490 {
491 struct r5conf *conf = sh->raid_conf;
492 int i, seq;
493
494 BUG_ON(atomic_read(&sh->count) != 0);
495 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
496 BUG_ON(stripe_operations_active(sh));
497 BUG_ON(sh->batch_head);
498
499 pr_debug("init_stripe called, stripe %llu\n",
500 (unsigned long long)sector);
501 retry:
502 seq = read_seqcount_begin(&conf->gen_lock);
503 sh->generation = conf->generation - previous;
504 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
505 sh->sector = sector;
506 stripe_set_idx(sector, conf, previous, sh);
507 sh->state = 0;
508
509 for (i = sh->disks; i--; ) {
510 struct r5dev *dev = &sh->dev[i];
511
512 if (dev->toread || dev->read || dev->towrite || dev->written ||
513 test_bit(R5_LOCKED, &dev->flags)) {
514 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
515 (unsigned long long)sh->sector, i, dev->toread,
516 dev->read, dev->towrite, dev->written,
517 test_bit(R5_LOCKED, &dev->flags));
518 WARN_ON(1);
519 }
520 dev->flags = 0;
521 raid5_build_block(sh, i, previous);
522 }
523 if (read_seqcount_retry(&conf->gen_lock, seq))
524 goto retry;
525 sh->overwrite_disks = 0;
526 insert_hash(conf, sh);
527 sh->cpu = smp_processor_id();
528 set_bit(STRIPE_BATCH_READY, &sh->state);
529 }
530
531 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
532 short generation)
533 {
534 struct stripe_head *sh;
535
536 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
537 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
538 if (sh->sector == sector && sh->generation == generation)
539 return sh;
540 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
541 return NULL;
542 }
543
544 /*
545 * Need to check if array has failed when deciding whether to:
546 * - start an array
547 * - remove non-faulty devices
548 * - add a spare
549 * - allow a reshape
550 * This determination is simple when no reshape is happening.
551 * However if there is a reshape, we need to carefully check
552 * both the before and after sections.
553 * This is because some failed devices may only affect one
554 * of the two sections, and some non-in_sync devices may
555 * be insync in the section most affected by failed devices.
556 */
557 static int calc_degraded(struct r5conf *conf)
558 {
559 int degraded, degraded2;
560 int i;
561
562 rcu_read_lock();
563 degraded = 0;
564 for (i = 0; i < conf->previous_raid_disks; i++) {
565 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
566 if (rdev && test_bit(Faulty, &rdev->flags))
567 rdev = rcu_dereference(conf->disks[i].replacement);
568 if (!rdev || test_bit(Faulty, &rdev->flags))
569 degraded++;
570 else if (test_bit(In_sync, &rdev->flags))
571 ;
572 else
573 /* not in-sync or faulty.
574 * If the reshape increases the number of devices,
575 * this is being recovered by the reshape, so
576 * this 'previous' section is not in_sync.
577 * If the number of devices is being reduced however,
578 * the device can only be part of the array if
579 * we are reverting a reshape, so this section will
580 * be in-sync.
581 */
582 if (conf->raid_disks >= conf->previous_raid_disks)
583 degraded++;
584 }
585 rcu_read_unlock();
586 if (conf->raid_disks == conf->previous_raid_disks)
587 return degraded;
588 rcu_read_lock();
589 degraded2 = 0;
590 for (i = 0; i < conf->raid_disks; i++) {
591 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
592 if (rdev && test_bit(Faulty, &rdev->flags))
593 rdev = rcu_dereference(conf->disks[i].replacement);
594 if (!rdev || test_bit(Faulty, &rdev->flags))
595 degraded2++;
596 else if (test_bit(In_sync, &rdev->flags))
597 ;
598 else
599 /* not in-sync or faulty.
600 * If reshape increases the number of devices, this
601 * section has already been recovered, else it
602 * almost certainly hasn't.
603 */
604 if (conf->raid_disks <= conf->previous_raid_disks)
605 degraded2++;
606 }
607 rcu_read_unlock();
608 if (degraded2 > degraded)
609 return degraded2;
610 return degraded;
611 }
612
613 static int has_failed(struct r5conf *conf)
614 {
615 int degraded;
616
617 if (conf->mddev->reshape_position == MaxSector)
618 return conf->mddev->degraded > conf->max_degraded;
619
620 degraded = calc_degraded(conf);
621 if (degraded > conf->max_degraded)
622 return 1;
623 return 0;
624 }
625
626 struct stripe_head *
627 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
628 int previous, int noblock, int noquiesce)
629 {
630 struct stripe_head *sh;
631 int hash = stripe_hash_locks_hash(sector);
632 int inc_empty_inactive_list_flag;
633
634 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
635
636 spin_lock_irq(conf->hash_locks + hash);
637
638 do {
639 wait_event_lock_irq(conf->wait_for_quiescent,
640 conf->quiesce == 0 || noquiesce,
641 *(conf->hash_locks + hash));
642 sh = __find_stripe(conf, sector, conf->generation - previous);
643 if (!sh) {
644 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
645 sh = get_free_stripe(conf, hash);
646 if (!sh && !test_bit(R5_DID_ALLOC,
647 &conf->cache_state))
648 set_bit(R5_ALLOC_MORE,
649 &conf->cache_state);
650 }
651 if (noblock && sh == NULL)
652 break;
653
654 r5c_check_stripe_cache_usage(conf);
655 if (!sh) {
656 set_bit(R5_INACTIVE_BLOCKED,
657 &conf->cache_state);
658 r5l_wake_reclaim(conf->log, 0);
659 wait_event_lock_irq(
660 conf->wait_for_stripe,
661 !list_empty(conf->inactive_list + hash) &&
662 (atomic_read(&conf->active_stripes)
663 < (conf->max_nr_stripes * 3 / 4)
664 || !test_bit(R5_INACTIVE_BLOCKED,
665 &conf->cache_state)),
666 *(conf->hash_locks + hash));
667 clear_bit(R5_INACTIVE_BLOCKED,
668 &conf->cache_state);
669 } else {
670 init_stripe(sh, sector, previous);
671 atomic_inc(&sh->count);
672 }
673 } else if (!atomic_inc_not_zero(&sh->count)) {
674 spin_lock(&conf->device_lock);
675 if (!atomic_read(&sh->count)) {
676 if (!test_bit(STRIPE_HANDLE, &sh->state))
677 atomic_inc(&conf->active_stripes);
678 BUG_ON(list_empty(&sh->lru) &&
679 !test_bit(STRIPE_EXPANDING, &sh->state));
680 inc_empty_inactive_list_flag = 0;
681 if (!list_empty(conf->inactive_list + hash))
682 inc_empty_inactive_list_flag = 1;
683 list_del_init(&sh->lru);
684 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
685 atomic_inc(&conf->empty_inactive_list_nr);
686 if (sh->group) {
687 sh->group->stripes_cnt--;
688 sh->group = NULL;
689 }
690 }
691 atomic_inc(&sh->count);
692 spin_unlock(&conf->device_lock);
693 }
694 } while (sh == NULL);
695
696 spin_unlock_irq(conf->hash_locks + hash);
697 return sh;
698 }
699
700 static bool is_full_stripe_write(struct stripe_head *sh)
701 {
702 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
703 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
704 }
705
706 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
707 {
708 local_irq_disable();
709 if (sh1 > sh2) {
710 spin_lock(&sh2->stripe_lock);
711 spin_lock_nested(&sh1->stripe_lock, 1);
712 } else {
713 spin_lock(&sh1->stripe_lock);
714 spin_lock_nested(&sh2->stripe_lock, 1);
715 }
716 }
717
718 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719 {
720 spin_unlock(&sh1->stripe_lock);
721 spin_unlock(&sh2->stripe_lock);
722 local_irq_enable();
723 }
724
725 /* Only freshly new full stripe normal write stripe can be added to a batch list */
726 static bool stripe_can_batch(struct stripe_head *sh)
727 {
728 struct r5conf *conf = sh->raid_conf;
729
730 if (conf->log)
731 return false;
732 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
733 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
734 is_full_stripe_write(sh);
735 }
736
737 /* we only do back search */
738 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
739 {
740 struct stripe_head *head;
741 sector_t head_sector, tmp_sec;
742 int hash;
743 int dd_idx;
744 int inc_empty_inactive_list_flag;
745
746 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
747 tmp_sec = sh->sector;
748 if (!sector_div(tmp_sec, conf->chunk_sectors))
749 return;
750 head_sector = sh->sector - STRIPE_SECTORS;
751
752 hash = stripe_hash_locks_hash(head_sector);
753 spin_lock_irq(conf->hash_locks + hash);
754 head = __find_stripe(conf, head_sector, conf->generation);
755 if (head && !atomic_inc_not_zero(&head->count)) {
756 spin_lock(&conf->device_lock);
757 if (!atomic_read(&head->count)) {
758 if (!test_bit(STRIPE_HANDLE, &head->state))
759 atomic_inc(&conf->active_stripes);
760 BUG_ON(list_empty(&head->lru) &&
761 !test_bit(STRIPE_EXPANDING, &head->state));
762 inc_empty_inactive_list_flag = 0;
763 if (!list_empty(conf->inactive_list + hash))
764 inc_empty_inactive_list_flag = 1;
765 list_del_init(&head->lru);
766 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
767 atomic_inc(&conf->empty_inactive_list_nr);
768 if (head->group) {
769 head->group->stripes_cnt--;
770 head->group = NULL;
771 }
772 }
773 atomic_inc(&head->count);
774 spin_unlock(&conf->device_lock);
775 }
776 spin_unlock_irq(conf->hash_locks + hash);
777
778 if (!head)
779 return;
780 if (!stripe_can_batch(head))
781 goto out;
782
783 lock_two_stripes(head, sh);
784 /* clear_batch_ready clear the flag */
785 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
786 goto unlock_out;
787
788 if (sh->batch_head)
789 goto unlock_out;
790
791 dd_idx = 0;
792 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
793 dd_idx++;
794 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
795 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
796 goto unlock_out;
797
798 if (head->batch_head) {
799 spin_lock(&head->batch_head->batch_lock);
800 /* This batch list is already running */
801 if (!stripe_can_batch(head)) {
802 spin_unlock(&head->batch_head->batch_lock);
803 goto unlock_out;
804 }
805
806 /*
807 * at this point, head's BATCH_READY could be cleared, but we
808 * can still add the stripe to batch list
809 */
810 list_add(&sh->batch_list, &head->batch_list);
811 spin_unlock(&head->batch_head->batch_lock);
812
813 sh->batch_head = head->batch_head;
814 } else {
815 head->batch_head = head;
816 sh->batch_head = head->batch_head;
817 spin_lock(&head->batch_lock);
818 list_add_tail(&sh->batch_list, &head->batch_list);
819 spin_unlock(&head->batch_lock);
820 }
821
822 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
823 if (atomic_dec_return(&conf->preread_active_stripes)
824 < IO_THRESHOLD)
825 md_wakeup_thread(conf->mddev->thread);
826
827 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
828 int seq = sh->bm_seq;
829 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
830 sh->batch_head->bm_seq > seq)
831 seq = sh->batch_head->bm_seq;
832 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
833 sh->batch_head->bm_seq = seq;
834 }
835
836 atomic_inc(&sh->count);
837 unlock_out:
838 unlock_two_stripes(head, sh);
839 out:
840 raid5_release_stripe(head);
841 }
842
843 /* Determine if 'data_offset' or 'new_data_offset' should be used
844 * in this stripe_head.
845 */
846 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
847 {
848 sector_t progress = conf->reshape_progress;
849 /* Need a memory barrier to make sure we see the value
850 * of conf->generation, or ->data_offset that was set before
851 * reshape_progress was updated.
852 */
853 smp_rmb();
854 if (progress == MaxSector)
855 return 0;
856 if (sh->generation == conf->generation - 1)
857 return 0;
858 /* We are in a reshape, and this is a new-generation stripe,
859 * so use new_data_offset.
860 */
861 return 1;
862 }
863
864 static void
865 raid5_end_read_request(struct bio *bi);
866 static void
867 raid5_end_write_request(struct bio *bi);
868
869 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
870 {
871 struct r5conf *conf = sh->raid_conf;
872 int i, disks = sh->disks;
873 struct stripe_head *head_sh = sh;
874
875 might_sleep();
876
877 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
878 /* writing out phase */
879 if (r5l_write_stripe(conf->log, sh) == 0)
880 return;
881 } else { /* caching phase */
882 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) {
883 r5c_cache_data(conf->log, sh, s);
884 return;
885 }
886 }
887
888 for (i = disks; i--; ) {
889 int op, op_flags = 0;
890 int replace_only = 0;
891 struct bio *bi, *rbi;
892 struct md_rdev *rdev, *rrdev = NULL;
893
894 sh = head_sh;
895 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
896 op = REQ_OP_WRITE;
897 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
898 op_flags = WRITE_FUA;
899 if (test_bit(R5_Discard, &sh->dev[i].flags))
900 op = REQ_OP_DISCARD;
901 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
902 op = REQ_OP_READ;
903 else if (test_and_clear_bit(R5_WantReplace,
904 &sh->dev[i].flags)) {
905 op = REQ_OP_WRITE;
906 replace_only = 1;
907 } else
908 continue;
909 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
910 op_flags |= REQ_SYNC;
911
912 again:
913 bi = &sh->dev[i].req;
914 rbi = &sh->dev[i].rreq; /* For writing to replacement */
915
916 rcu_read_lock();
917 rrdev = rcu_dereference(conf->disks[i].replacement);
918 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
919 rdev = rcu_dereference(conf->disks[i].rdev);
920 if (!rdev) {
921 rdev = rrdev;
922 rrdev = NULL;
923 }
924 if (op_is_write(op)) {
925 if (replace_only)
926 rdev = NULL;
927 if (rdev == rrdev)
928 /* We raced and saw duplicates */
929 rrdev = NULL;
930 } else {
931 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
932 rdev = rrdev;
933 rrdev = NULL;
934 }
935
936 if (rdev && test_bit(Faulty, &rdev->flags))
937 rdev = NULL;
938 if (rdev)
939 atomic_inc(&rdev->nr_pending);
940 if (rrdev && test_bit(Faulty, &rrdev->flags))
941 rrdev = NULL;
942 if (rrdev)
943 atomic_inc(&rrdev->nr_pending);
944 rcu_read_unlock();
945
946 /* We have already checked bad blocks for reads. Now
947 * need to check for writes. We never accept write errors
948 * on the replacement, so we don't to check rrdev.
949 */
950 while (op_is_write(op) && rdev &&
951 test_bit(WriteErrorSeen, &rdev->flags)) {
952 sector_t first_bad;
953 int bad_sectors;
954 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
955 &first_bad, &bad_sectors);
956 if (!bad)
957 break;
958
959 if (bad < 0) {
960 set_bit(BlockedBadBlocks, &rdev->flags);
961 if (!conf->mddev->external &&
962 conf->mddev->flags) {
963 /* It is very unlikely, but we might
964 * still need to write out the
965 * bad block log - better give it
966 * a chance*/
967 md_check_recovery(conf->mddev);
968 }
969 /*
970 * Because md_wait_for_blocked_rdev
971 * will dec nr_pending, we must
972 * increment it first.
973 */
974 atomic_inc(&rdev->nr_pending);
975 md_wait_for_blocked_rdev(rdev, conf->mddev);
976 } else {
977 /* Acknowledged bad block - skip the write */
978 rdev_dec_pending(rdev, conf->mddev);
979 rdev = NULL;
980 }
981 }
982
983 if (rdev) {
984 if (s->syncing || s->expanding || s->expanded
985 || s->replacing)
986 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
987
988 set_bit(STRIPE_IO_STARTED, &sh->state);
989
990 bi->bi_bdev = rdev->bdev;
991 bio_set_op_attrs(bi, op, op_flags);
992 bi->bi_end_io = op_is_write(op)
993 ? raid5_end_write_request
994 : raid5_end_read_request;
995 bi->bi_private = sh;
996
997 pr_debug("%s: for %llu schedule op %d on disc %d\n",
998 __func__, (unsigned long long)sh->sector,
999 bi->bi_opf, i);
1000 atomic_inc(&sh->count);
1001 if (sh != head_sh)
1002 atomic_inc(&head_sh->count);
1003 if (use_new_offset(conf, sh))
1004 bi->bi_iter.bi_sector = (sh->sector
1005 + rdev->new_data_offset);
1006 else
1007 bi->bi_iter.bi_sector = (sh->sector
1008 + rdev->data_offset);
1009 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1010 bi->bi_opf |= REQ_NOMERGE;
1011
1012 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1013 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1014 sh->dev[i].vec.bv_page = sh->dev[i].page;
1015 bi->bi_vcnt = 1;
1016 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1017 bi->bi_io_vec[0].bv_offset = 0;
1018 bi->bi_iter.bi_size = STRIPE_SIZE;
1019 /*
1020 * If this is discard request, set bi_vcnt 0. We don't
1021 * want to confuse SCSI because SCSI will replace payload
1022 */
1023 if (op == REQ_OP_DISCARD)
1024 bi->bi_vcnt = 0;
1025 if (rrdev)
1026 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1027
1028 if (conf->mddev->gendisk)
1029 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1030 bi, disk_devt(conf->mddev->gendisk),
1031 sh->dev[i].sector);
1032 generic_make_request(bi);
1033 }
1034 if (rrdev) {
1035 if (s->syncing || s->expanding || s->expanded
1036 || s->replacing)
1037 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1038
1039 set_bit(STRIPE_IO_STARTED, &sh->state);
1040
1041 rbi->bi_bdev = rrdev->bdev;
1042 bio_set_op_attrs(rbi, op, op_flags);
1043 BUG_ON(!op_is_write(op));
1044 rbi->bi_end_io = raid5_end_write_request;
1045 rbi->bi_private = sh;
1046
1047 pr_debug("%s: for %llu schedule op %d on "
1048 "replacement disc %d\n",
1049 __func__, (unsigned long long)sh->sector,
1050 rbi->bi_opf, i);
1051 atomic_inc(&sh->count);
1052 if (sh != head_sh)
1053 atomic_inc(&head_sh->count);
1054 if (use_new_offset(conf, sh))
1055 rbi->bi_iter.bi_sector = (sh->sector
1056 + rrdev->new_data_offset);
1057 else
1058 rbi->bi_iter.bi_sector = (sh->sector
1059 + rrdev->data_offset);
1060 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1061 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1062 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1063 rbi->bi_vcnt = 1;
1064 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1065 rbi->bi_io_vec[0].bv_offset = 0;
1066 rbi->bi_iter.bi_size = STRIPE_SIZE;
1067 /*
1068 * If this is discard request, set bi_vcnt 0. We don't
1069 * want to confuse SCSI because SCSI will replace payload
1070 */
1071 if (op == REQ_OP_DISCARD)
1072 rbi->bi_vcnt = 0;
1073 if (conf->mddev->gendisk)
1074 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1075 rbi, disk_devt(conf->mddev->gendisk),
1076 sh->dev[i].sector);
1077 generic_make_request(rbi);
1078 }
1079 if (!rdev && !rrdev) {
1080 if (op_is_write(op))
1081 set_bit(STRIPE_DEGRADED, &sh->state);
1082 pr_debug("skip op %d on disc %d for sector %llu\n",
1083 bi->bi_opf, i, (unsigned long long)sh->sector);
1084 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1085 set_bit(STRIPE_HANDLE, &sh->state);
1086 }
1087
1088 if (!head_sh->batch_head)
1089 continue;
1090 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1091 batch_list);
1092 if (sh != head_sh)
1093 goto again;
1094 }
1095 }
1096
1097 static struct dma_async_tx_descriptor *
1098 async_copy_data(int frombio, struct bio *bio, struct page **page,
1099 sector_t sector, struct dma_async_tx_descriptor *tx,
1100 struct stripe_head *sh, int no_skipcopy)
1101 {
1102 struct bio_vec bvl;
1103 struct bvec_iter iter;
1104 struct page *bio_page;
1105 int page_offset;
1106 struct async_submit_ctl submit;
1107 enum async_tx_flags flags = 0;
1108
1109 if (bio->bi_iter.bi_sector >= sector)
1110 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1111 else
1112 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1113
1114 if (frombio)
1115 flags |= ASYNC_TX_FENCE;
1116 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1117
1118 bio_for_each_segment(bvl, bio, iter) {
1119 int len = bvl.bv_len;
1120 int clen;
1121 int b_offset = 0;
1122
1123 if (page_offset < 0) {
1124 b_offset = -page_offset;
1125 page_offset += b_offset;
1126 len -= b_offset;
1127 }
1128
1129 if (len > 0 && page_offset + len > STRIPE_SIZE)
1130 clen = STRIPE_SIZE - page_offset;
1131 else
1132 clen = len;
1133
1134 if (clen > 0) {
1135 b_offset += bvl.bv_offset;
1136 bio_page = bvl.bv_page;
1137 if (frombio) {
1138 if (sh->raid_conf->skip_copy &&
1139 b_offset == 0 && page_offset == 0 &&
1140 clen == STRIPE_SIZE &&
1141 !no_skipcopy)
1142 *page = bio_page;
1143 else
1144 tx = async_memcpy(*page, bio_page, page_offset,
1145 b_offset, clen, &submit);
1146 } else
1147 tx = async_memcpy(bio_page, *page, b_offset,
1148 page_offset, clen, &submit);
1149 }
1150 /* chain the operations */
1151 submit.depend_tx = tx;
1152
1153 if (clen < len) /* hit end of page */
1154 break;
1155 page_offset += len;
1156 }
1157
1158 return tx;
1159 }
1160
1161 static void ops_complete_biofill(void *stripe_head_ref)
1162 {
1163 struct stripe_head *sh = stripe_head_ref;
1164 struct bio_list return_bi = BIO_EMPTY_LIST;
1165 int i;
1166
1167 pr_debug("%s: stripe %llu\n", __func__,
1168 (unsigned long long)sh->sector);
1169
1170 /* clear completed biofills */
1171 for (i = sh->disks; i--; ) {
1172 struct r5dev *dev = &sh->dev[i];
1173
1174 /* acknowledge completion of a biofill operation */
1175 /* and check if we need to reply to a read request,
1176 * new R5_Wantfill requests are held off until
1177 * !STRIPE_BIOFILL_RUN
1178 */
1179 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1180 struct bio *rbi, *rbi2;
1181
1182 BUG_ON(!dev->read);
1183 rbi = dev->read;
1184 dev->read = NULL;
1185 while (rbi && rbi->bi_iter.bi_sector <
1186 dev->sector + STRIPE_SECTORS) {
1187 rbi2 = r5_next_bio(rbi, dev->sector);
1188 if (!raid5_dec_bi_active_stripes(rbi))
1189 bio_list_add(&return_bi, rbi);
1190 rbi = rbi2;
1191 }
1192 }
1193 }
1194 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1195
1196 return_io(&return_bi);
1197
1198 set_bit(STRIPE_HANDLE, &sh->state);
1199 raid5_release_stripe(sh);
1200 }
1201
1202 static void ops_run_biofill(struct stripe_head *sh)
1203 {
1204 struct dma_async_tx_descriptor *tx = NULL;
1205 struct async_submit_ctl submit;
1206 int i;
1207
1208 BUG_ON(sh->batch_head);
1209 pr_debug("%s: stripe %llu\n", __func__,
1210 (unsigned long long)sh->sector);
1211
1212 for (i = sh->disks; i--; ) {
1213 struct r5dev *dev = &sh->dev[i];
1214 if (test_bit(R5_Wantfill, &dev->flags)) {
1215 struct bio *rbi;
1216 spin_lock_irq(&sh->stripe_lock);
1217 dev->read = rbi = dev->toread;
1218 dev->toread = NULL;
1219 spin_unlock_irq(&sh->stripe_lock);
1220 while (rbi && rbi->bi_iter.bi_sector <
1221 dev->sector + STRIPE_SECTORS) {
1222 tx = async_copy_data(0, rbi, &dev->page,
1223 dev->sector, tx, sh, 0);
1224 rbi = r5_next_bio(rbi, dev->sector);
1225 }
1226 }
1227 }
1228
1229 atomic_inc(&sh->count);
1230 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1231 async_trigger_callback(&submit);
1232 }
1233
1234 static void mark_target_uptodate(struct stripe_head *sh, int target)
1235 {
1236 struct r5dev *tgt;
1237
1238 if (target < 0)
1239 return;
1240
1241 tgt = &sh->dev[target];
1242 set_bit(R5_UPTODATE, &tgt->flags);
1243 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1244 clear_bit(R5_Wantcompute, &tgt->flags);
1245 }
1246
1247 static void ops_complete_compute(void *stripe_head_ref)
1248 {
1249 struct stripe_head *sh = stripe_head_ref;
1250
1251 pr_debug("%s: stripe %llu\n", __func__,
1252 (unsigned long long)sh->sector);
1253
1254 /* mark the computed target(s) as uptodate */
1255 mark_target_uptodate(sh, sh->ops.target);
1256 mark_target_uptodate(sh, sh->ops.target2);
1257
1258 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1259 if (sh->check_state == check_state_compute_run)
1260 sh->check_state = check_state_compute_result;
1261 set_bit(STRIPE_HANDLE, &sh->state);
1262 raid5_release_stripe(sh);
1263 }
1264
1265 /* return a pointer to the address conversion region of the scribble buffer */
1266 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1267 struct raid5_percpu *percpu, int i)
1268 {
1269 void *addr;
1270
1271 addr = flex_array_get(percpu->scribble, i);
1272 return addr + sizeof(struct page *) * (sh->disks + 2);
1273 }
1274
1275 /* return a pointer to the address conversion region of the scribble buffer */
1276 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1277 {
1278 void *addr;
1279
1280 addr = flex_array_get(percpu->scribble, i);
1281 return addr;
1282 }
1283
1284 static struct dma_async_tx_descriptor *
1285 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1286 {
1287 int disks = sh->disks;
1288 struct page **xor_srcs = to_addr_page(percpu, 0);
1289 int target = sh->ops.target;
1290 struct r5dev *tgt = &sh->dev[target];
1291 struct page *xor_dest = tgt->page;
1292 int count = 0;
1293 struct dma_async_tx_descriptor *tx;
1294 struct async_submit_ctl submit;
1295 int i;
1296
1297 BUG_ON(sh->batch_head);
1298
1299 pr_debug("%s: stripe %llu block: %d\n",
1300 __func__, (unsigned long long)sh->sector, target);
1301 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1302
1303 for (i = disks; i--; )
1304 if (i != target)
1305 xor_srcs[count++] = sh->dev[i].page;
1306
1307 atomic_inc(&sh->count);
1308
1309 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1310 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1311 if (unlikely(count == 1))
1312 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1313 else
1314 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1315
1316 return tx;
1317 }
1318
1319 /* set_syndrome_sources - populate source buffers for gen_syndrome
1320 * @srcs - (struct page *) array of size sh->disks
1321 * @sh - stripe_head to parse
1322 *
1323 * Populates srcs in proper layout order for the stripe and returns the
1324 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1325 * destination buffer is recorded in srcs[count] and the Q destination
1326 * is recorded in srcs[count+1]].
1327 */
1328 static int set_syndrome_sources(struct page **srcs,
1329 struct stripe_head *sh,
1330 int srctype)
1331 {
1332 int disks = sh->disks;
1333 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1334 int d0_idx = raid6_d0(sh);
1335 int count;
1336 int i;
1337
1338 for (i = 0; i < disks; i++)
1339 srcs[i] = NULL;
1340
1341 count = 0;
1342 i = d0_idx;
1343 do {
1344 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1345 struct r5dev *dev = &sh->dev[i];
1346
1347 if (i == sh->qd_idx || i == sh->pd_idx ||
1348 (srctype == SYNDROME_SRC_ALL) ||
1349 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1350 (test_bit(R5_Wantdrain, &dev->flags) ||
1351 test_bit(R5_InJournal, &dev->flags))) ||
1352 (srctype == SYNDROME_SRC_WRITTEN &&
1353 dev->written)) {
1354 if (test_bit(R5_InJournal, &dev->flags))
1355 srcs[slot] = sh->dev[i].orig_page;
1356 else
1357 srcs[slot] = sh->dev[i].page;
1358 }
1359 i = raid6_next_disk(i, disks);
1360 } while (i != d0_idx);
1361
1362 return syndrome_disks;
1363 }
1364
1365 static struct dma_async_tx_descriptor *
1366 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1367 {
1368 int disks = sh->disks;
1369 struct page **blocks = to_addr_page(percpu, 0);
1370 int target;
1371 int qd_idx = sh->qd_idx;
1372 struct dma_async_tx_descriptor *tx;
1373 struct async_submit_ctl submit;
1374 struct r5dev *tgt;
1375 struct page *dest;
1376 int i;
1377 int count;
1378
1379 BUG_ON(sh->batch_head);
1380 if (sh->ops.target < 0)
1381 target = sh->ops.target2;
1382 else if (sh->ops.target2 < 0)
1383 target = sh->ops.target;
1384 else
1385 /* we should only have one valid target */
1386 BUG();
1387 BUG_ON(target < 0);
1388 pr_debug("%s: stripe %llu block: %d\n",
1389 __func__, (unsigned long long)sh->sector, target);
1390
1391 tgt = &sh->dev[target];
1392 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1393 dest = tgt->page;
1394
1395 atomic_inc(&sh->count);
1396
1397 if (target == qd_idx) {
1398 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1399 blocks[count] = NULL; /* regenerating p is not necessary */
1400 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1401 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1402 ops_complete_compute, sh,
1403 to_addr_conv(sh, percpu, 0));
1404 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1405 } else {
1406 /* Compute any data- or p-drive using XOR */
1407 count = 0;
1408 for (i = disks; i-- ; ) {
1409 if (i == target || i == qd_idx)
1410 continue;
1411 blocks[count++] = sh->dev[i].page;
1412 }
1413
1414 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1415 NULL, ops_complete_compute, sh,
1416 to_addr_conv(sh, percpu, 0));
1417 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1418 }
1419
1420 return tx;
1421 }
1422
1423 static struct dma_async_tx_descriptor *
1424 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1425 {
1426 int i, count, disks = sh->disks;
1427 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1428 int d0_idx = raid6_d0(sh);
1429 int faila = -1, failb = -1;
1430 int target = sh->ops.target;
1431 int target2 = sh->ops.target2;
1432 struct r5dev *tgt = &sh->dev[target];
1433 struct r5dev *tgt2 = &sh->dev[target2];
1434 struct dma_async_tx_descriptor *tx;
1435 struct page **blocks = to_addr_page(percpu, 0);
1436 struct async_submit_ctl submit;
1437
1438 BUG_ON(sh->batch_head);
1439 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1440 __func__, (unsigned long long)sh->sector, target, target2);
1441 BUG_ON(target < 0 || target2 < 0);
1442 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1443 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1444
1445 /* we need to open-code set_syndrome_sources to handle the
1446 * slot number conversion for 'faila' and 'failb'
1447 */
1448 for (i = 0; i < disks ; i++)
1449 blocks[i] = NULL;
1450 count = 0;
1451 i = d0_idx;
1452 do {
1453 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1454
1455 blocks[slot] = sh->dev[i].page;
1456
1457 if (i == target)
1458 faila = slot;
1459 if (i == target2)
1460 failb = slot;
1461 i = raid6_next_disk(i, disks);
1462 } while (i != d0_idx);
1463
1464 BUG_ON(faila == failb);
1465 if (failb < faila)
1466 swap(faila, failb);
1467 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1468 __func__, (unsigned long long)sh->sector, faila, failb);
1469
1470 atomic_inc(&sh->count);
1471
1472 if (failb == syndrome_disks+1) {
1473 /* Q disk is one of the missing disks */
1474 if (faila == syndrome_disks) {
1475 /* Missing P+Q, just recompute */
1476 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1477 ops_complete_compute, sh,
1478 to_addr_conv(sh, percpu, 0));
1479 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1480 STRIPE_SIZE, &submit);
1481 } else {
1482 struct page *dest;
1483 int data_target;
1484 int qd_idx = sh->qd_idx;
1485
1486 /* Missing D+Q: recompute D from P, then recompute Q */
1487 if (target == qd_idx)
1488 data_target = target2;
1489 else
1490 data_target = target;
1491
1492 count = 0;
1493 for (i = disks; i-- ; ) {
1494 if (i == data_target || i == qd_idx)
1495 continue;
1496 blocks[count++] = sh->dev[i].page;
1497 }
1498 dest = sh->dev[data_target].page;
1499 init_async_submit(&submit,
1500 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1501 NULL, NULL, NULL,
1502 to_addr_conv(sh, percpu, 0));
1503 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1504 &submit);
1505
1506 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1507 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1508 ops_complete_compute, sh,
1509 to_addr_conv(sh, percpu, 0));
1510 return async_gen_syndrome(blocks, 0, count+2,
1511 STRIPE_SIZE, &submit);
1512 }
1513 } else {
1514 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1515 ops_complete_compute, sh,
1516 to_addr_conv(sh, percpu, 0));
1517 if (failb == syndrome_disks) {
1518 /* We're missing D+P. */
1519 return async_raid6_datap_recov(syndrome_disks+2,
1520 STRIPE_SIZE, faila,
1521 blocks, &submit);
1522 } else {
1523 /* We're missing D+D. */
1524 return async_raid6_2data_recov(syndrome_disks+2,
1525 STRIPE_SIZE, faila, failb,
1526 blocks, &submit);
1527 }
1528 }
1529 }
1530
1531 static void ops_complete_prexor(void *stripe_head_ref)
1532 {
1533 struct stripe_head *sh = stripe_head_ref;
1534
1535 pr_debug("%s: stripe %llu\n", __func__,
1536 (unsigned long long)sh->sector);
1537
1538 if (r5c_is_writeback(sh->raid_conf->log))
1539 /*
1540 * raid5-cache write back uses orig_page during prexor.
1541 * After prexor, it is time to free orig_page
1542 */
1543 r5c_release_extra_page(sh);
1544 }
1545
1546 static struct dma_async_tx_descriptor *
1547 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1548 struct dma_async_tx_descriptor *tx)
1549 {
1550 int disks = sh->disks;
1551 struct page **xor_srcs = to_addr_page(percpu, 0);
1552 int count = 0, pd_idx = sh->pd_idx, i;
1553 struct async_submit_ctl submit;
1554
1555 /* existing parity data subtracted */
1556 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1557
1558 BUG_ON(sh->batch_head);
1559 pr_debug("%s: stripe %llu\n", __func__,
1560 (unsigned long long)sh->sector);
1561
1562 for (i = disks; i--; ) {
1563 struct r5dev *dev = &sh->dev[i];
1564 /* Only process blocks that are known to be uptodate */
1565 if (test_bit(R5_InJournal, &dev->flags))
1566 xor_srcs[count++] = dev->orig_page;
1567 else if (test_bit(R5_Wantdrain, &dev->flags))
1568 xor_srcs[count++] = dev->page;
1569 }
1570
1571 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1572 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1573 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1574
1575 return tx;
1576 }
1577
1578 static struct dma_async_tx_descriptor *
1579 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1580 struct dma_async_tx_descriptor *tx)
1581 {
1582 struct page **blocks = to_addr_page(percpu, 0);
1583 int count;
1584 struct async_submit_ctl submit;
1585
1586 pr_debug("%s: stripe %llu\n", __func__,
1587 (unsigned long long)sh->sector);
1588
1589 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1590
1591 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1592 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1593 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1594
1595 return tx;
1596 }
1597
1598 static struct dma_async_tx_descriptor *
1599 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1600 {
1601 struct r5conf *conf = sh->raid_conf;
1602 int disks = sh->disks;
1603 int i;
1604 struct stripe_head *head_sh = sh;
1605
1606 pr_debug("%s: stripe %llu\n", __func__,
1607 (unsigned long long)sh->sector);
1608
1609 for (i = disks; i--; ) {
1610 struct r5dev *dev;
1611 struct bio *chosen;
1612
1613 sh = head_sh;
1614 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1615 struct bio *wbi;
1616
1617 again:
1618 dev = &sh->dev[i];
1619 /*
1620 * clear R5_InJournal, so when rewriting a page in
1621 * journal, it is not skipped by r5l_log_stripe()
1622 */
1623 clear_bit(R5_InJournal, &dev->flags);
1624 spin_lock_irq(&sh->stripe_lock);
1625 chosen = dev->towrite;
1626 dev->towrite = NULL;
1627 sh->overwrite_disks = 0;
1628 BUG_ON(dev->written);
1629 wbi = dev->written = chosen;
1630 spin_unlock_irq(&sh->stripe_lock);
1631 WARN_ON(dev->page != dev->orig_page);
1632
1633 while (wbi && wbi->bi_iter.bi_sector <
1634 dev->sector + STRIPE_SECTORS) {
1635 if (wbi->bi_opf & REQ_FUA)
1636 set_bit(R5_WantFUA, &dev->flags);
1637 if (wbi->bi_opf & REQ_SYNC)
1638 set_bit(R5_SyncIO, &dev->flags);
1639 if (bio_op(wbi) == REQ_OP_DISCARD)
1640 set_bit(R5_Discard, &dev->flags);
1641 else {
1642 tx = async_copy_data(1, wbi, &dev->page,
1643 dev->sector, tx, sh,
1644 r5c_is_writeback(conf->log));
1645 if (dev->page != dev->orig_page &&
1646 !r5c_is_writeback(conf->log)) {
1647 set_bit(R5_SkipCopy, &dev->flags);
1648 clear_bit(R5_UPTODATE, &dev->flags);
1649 clear_bit(R5_OVERWRITE, &dev->flags);
1650 }
1651 }
1652 wbi = r5_next_bio(wbi, dev->sector);
1653 }
1654
1655 if (head_sh->batch_head) {
1656 sh = list_first_entry(&sh->batch_list,
1657 struct stripe_head,
1658 batch_list);
1659 if (sh == head_sh)
1660 continue;
1661 goto again;
1662 }
1663 }
1664 }
1665
1666 return tx;
1667 }
1668
1669 static void ops_complete_reconstruct(void *stripe_head_ref)
1670 {
1671 struct stripe_head *sh = stripe_head_ref;
1672 int disks = sh->disks;
1673 int pd_idx = sh->pd_idx;
1674 int qd_idx = sh->qd_idx;
1675 int i;
1676 bool fua = false, sync = false, discard = false;
1677
1678 pr_debug("%s: stripe %llu\n", __func__,
1679 (unsigned long long)sh->sector);
1680
1681 for (i = disks; i--; ) {
1682 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1683 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1684 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1685 }
1686
1687 for (i = disks; i--; ) {
1688 struct r5dev *dev = &sh->dev[i];
1689
1690 if (dev->written || i == pd_idx || i == qd_idx) {
1691 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1692 set_bit(R5_UPTODATE, &dev->flags);
1693 if (fua)
1694 set_bit(R5_WantFUA, &dev->flags);
1695 if (sync)
1696 set_bit(R5_SyncIO, &dev->flags);
1697 }
1698 }
1699
1700 if (sh->reconstruct_state == reconstruct_state_drain_run)
1701 sh->reconstruct_state = reconstruct_state_drain_result;
1702 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1703 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1704 else {
1705 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1706 sh->reconstruct_state = reconstruct_state_result;
1707 }
1708
1709 set_bit(STRIPE_HANDLE, &sh->state);
1710 raid5_release_stripe(sh);
1711 }
1712
1713 static void
1714 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1715 struct dma_async_tx_descriptor *tx)
1716 {
1717 int disks = sh->disks;
1718 struct page **xor_srcs;
1719 struct async_submit_ctl submit;
1720 int count, pd_idx = sh->pd_idx, i;
1721 struct page *xor_dest;
1722 int prexor = 0;
1723 unsigned long flags;
1724 int j = 0;
1725 struct stripe_head *head_sh = sh;
1726 int last_stripe;
1727
1728 pr_debug("%s: stripe %llu\n", __func__,
1729 (unsigned long long)sh->sector);
1730
1731 for (i = 0; i < sh->disks; i++) {
1732 if (pd_idx == i)
1733 continue;
1734 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1735 break;
1736 }
1737 if (i >= sh->disks) {
1738 atomic_inc(&sh->count);
1739 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1740 ops_complete_reconstruct(sh);
1741 return;
1742 }
1743 again:
1744 count = 0;
1745 xor_srcs = to_addr_page(percpu, j);
1746 /* check if prexor is active which means only process blocks
1747 * that are part of a read-modify-write (written)
1748 */
1749 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1750 prexor = 1;
1751 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1752 for (i = disks; i--; ) {
1753 struct r5dev *dev = &sh->dev[i];
1754 if (head_sh->dev[i].written ||
1755 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1756 xor_srcs[count++] = dev->page;
1757 }
1758 } else {
1759 xor_dest = sh->dev[pd_idx].page;
1760 for (i = disks; i--; ) {
1761 struct r5dev *dev = &sh->dev[i];
1762 if (i != pd_idx)
1763 xor_srcs[count++] = dev->page;
1764 }
1765 }
1766
1767 /* 1/ if we prexor'd then the dest is reused as a source
1768 * 2/ if we did not prexor then we are redoing the parity
1769 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1770 * for the synchronous xor case
1771 */
1772 last_stripe = !head_sh->batch_head ||
1773 list_first_entry(&sh->batch_list,
1774 struct stripe_head, batch_list) == head_sh;
1775 if (last_stripe) {
1776 flags = ASYNC_TX_ACK |
1777 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1778
1779 atomic_inc(&head_sh->count);
1780 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1781 to_addr_conv(sh, percpu, j));
1782 } else {
1783 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1784 init_async_submit(&submit, flags, tx, NULL, NULL,
1785 to_addr_conv(sh, percpu, j));
1786 }
1787
1788 if (unlikely(count == 1))
1789 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1790 else
1791 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1792 if (!last_stripe) {
1793 j++;
1794 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1795 batch_list);
1796 goto again;
1797 }
1798 }
1799
1800 static void
1801 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1802 struct dma_async_tx_descriptor *tx)
1803 {
1804 struct async_submit_ctl submit;
1805 struct page **blocks;
1806 int count, i, j = 0;
1807 struct stripe_head *head_sh = sh;
1808 int last_stripe;
1809 int synflags;
1810 unsigned long txflags;
1811
1812 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1813
1814 for (i = 0; i < sh->disks; i++) {
1815 if (sh->pd_idx == i || sh->qd_idx == i)
1816 continue;
1817 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1818 break;
1819 }
1820 if (i >= sh->disks) {
1821 atomic_inc(&sh->count);
1822 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1823 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1824 ops_complete_reconstruct(sh);
1825 return;
1826 }
1827
1828 again:
1829 blocks = to_addr_page(percpu, j);
1830
1831 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1832 synflags = SYNDROME_SRC_WRITTEN;
1833 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1834 } else {
1835 synflags = SYNDROME_SRC_ALL;
1836 txflags = ASYNC_TX_ACK;
1837 }
1838
1839 count = set_syndrome_sources(blocks, sh, synflags);
1840 last_stripe = !head_sh->batch_head ||
1841 list_first_entry(&sh->batch_list,
1842 struct stripe_head, batch_list) == head_sh;
1843
1844 if (last_stripe) {
1845 atomic_inc(&head_sh->count);
1846 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1847 head_sh, to_addr_conv(sh, percpu, j));
1848 } else
1849 init_async_submit(&submit, 0, tx, NULL, NULL,
1850 to_addr_conv(sh, percpu, j));
1851 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1852 if (!last_stripe) {
1853 j++;
1854 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1855 batch_list);
1856 goto again;
1857 }
1858 }
1859
1860 static void ops_complete_check(void *stripe_head_ref)
1861 {
1862 struct stripe_head *sh = stripe_head_ref;
1863
1864 pr_debug("%s: stripe %llu\n", __func__,
1865 (unsigned long long)sh->sector);
1866
1867 sh->check_state = check_state_check_result;
1868 set_bit(STRIPE_HANDLE, &sh->state);
1869 raid5_release_stripe(sh);
1870 }
1871
1872 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1873 {
1874 int disks = sh->disks;
1875 int pd_idx = sh->pd_idx;
1876 int qd_idx = sh->qd_idx;
1877 struct page *xor_dest;
1878 struct page **xor_srcs = to_addr_page(percpu, 0);
1879 struct dma_async_tx_descriptor *tx;
1880 struct async_submit_ctl submit;
1881 int count;
1882 int i;
1883
1884 pr_debug("%s: stripe %llu\n", __func__,
1885 (unsigned long long)sh->sector);
1886
1887 BUG_ON(sh->batch_head);
1888 count = 0;
1889 xor_dest = sh->dev[pd_idx].page;
1890 xor_srcs[count++] = xor_dest;
1891 for (i = disks; i--; ) {
1892 if (i == pd_idx || i == qd_idx)
1893 continue;
1894 xor_srcs[count++] = sh->dev[i].page;
1895 }
1896
1897 init_async_submit(&submit, 0, NULL, NULL, NULL,
1898 to_addr_conv(sh, percpu, 0));
1899 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1900 &sh->ops.zero_sum_result, &submit);
1901
1902 atomic_inc(&sh->count);
1903 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1904 tx = async_trigger_callback(&submit);
1905 }
1906
1907 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1908 {
1909 struct page **srcs = to_addr_page(percpu, 0);
1910 struct async_submit_ctl submit;
1911 int count;
1912
1913 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1914 (unsigned long long)sh->sector, checkp);
1915
1916 BUG_ON(sh->batch_head);
1917 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1918 if (!checkp)
1919 srcs[count] = NULL;
1920
1921 atomic_inc(&sh->count);
1922 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1923 sh, to_addr_conv(sh, percpu, 0));
1924 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1925 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1926 }
1927
1928 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1929 {
1930 int overlap_clear = 0, i, disks = sh->disks;
1931 struct dma_async_tx_descriptor *tx = NULL;
1932 struct r5conf *conf = sh->raid_conf;
1933 int level = conf->level;
1934 struct raid5_percpu *percpu;
1935 unsigned long cpu;
1936
1937 cpu = get_cpu();
1938 percpu = per_cpu_ptr(conf->percpu, cpu);
1939 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1940 ops_run_biofill(sh);
1941 overlap_clear++;
1942 }
1943
1944 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1945 if (level < 6)
1946 tx = ops_run_compute5(sh, percpu);
1947 else {
1948 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1949 tx = ops_run_compute6_1(sh, percpu);
1950 else
1951 tx = ops_run_compute6_2(sh, percpu);
1952 }
1953 /* terminate the chain if reconstruct is not set to be run */
1954 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1955 async_tx_ack(tx);
1956 }
1957
1958 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1959 if (level < 6)
1960 tx = ops_run_prexor5(sh, percpu, tx);
1961 else
1962 tx = ops_run_prexor6(sh, percpu, tx);
1963 }
1964
1965 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1966 tx = ops_run_biodrain(sh, tx);
1967 overlap_clear++;
1968 }
1969
1970 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1971 if (level < 6)
1972 ops_run_reconstruct5(sh, percpu, tx);
1973 else
1974 ops_run_reconstruct6(sh, percpu, tx);
1975 }
1976
1977 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1978 if (sh->check_state == check_state_run)
1979 ops_run_check_p(sh, percpu);
1980 else if (sh->check_state == check_state_run_q)
1981 ops_run_check_pq(sh, percpu, 0);
1982 else if (sh->check_state == check_state_run_pq)
1983 ops_run_check_pq(sh, percpu, 1);
1984 else
1985 BUG();
1986 }
1987
1988 if (overlap_clear && !sh->batch_head)
1989 for (i = disks; i--; ) {
1990 struct r5dev *dev = &sh->dev[i];
1991 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1992 wake_up(&sh->raid_conf->wait_for_overlap);
1993 }
1994 put_cpu();
1995 }
1996
1997 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
1998 int disks)
1999 {
2000 struct stripe_head *sh;
2001 int i;
2002
2003 sh = kmem_cache_zalloc(sc, gfp);
2004 if (sh) {
2005 spin_lock_init(&sh->stripe_lock);
2006 spin_lock_init(&sh->batch_lock);
2007 INIT_LIST_HEAD(&sh->batch_list);
2008 INIT_LIST_HEAD(&sh->lru);
2009 INIT_LIST_HEAD(&sh->r5c);
2010 atomic_set(&sh->count, 1);
2011 sh->log_start = MaxSector;
2012 for (i = 0; i < disks; i++) {
2013 struct r5dev *dev = &sh->dev[i];
2014
2015 bio_init(&dev->req);
2016 dev->req.bi_io_vec = &dev->vec;
2017 dev->req.bi_max_vecs = 1;
2018
2019 bio_init(&dev->rreq);
2020 dev->rreq.bi_io_vec = &dev->rvec;
2021 dev->rreq.bi_max_vecs = 1;
2022 }
2023 }
2024 return sh;
2025 }
2026 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2027 {
2028 struct stripe_head *sh;
2029
2030 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
2031 if (!sh)
2032 return 0;
2033
2034 sh->raid_conf = conf;
2035
2036 if (grow_buffers(sh, gfp)) {
2037 shrink_buffers(sh);
2038 kmem_cache_free(conf->slab_cache, sh);
2039 return 0;
2040 }
2041 sh->hash_lock_index =
2042 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2043 /* we just created an active stripe so... */
2044 atomic_inc(&conf->active_stripes);
2045
2046 raid5_release_stripe(sh);
2047 conf->max_nr_stripes++;
2048 return 1;
2049 }
2050
2051 static int grow_stripes(struct r5conf *conf, int num)
2052 {
2053 struct kmem_cache *sc;
2054 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2055
2056 if (conf->mddev->gendisk)
2057 sprintf(conf->cache_name[0],
2058 "raid%d-%s", conf->level, mdname(conf->mddev));
2059 else
2060 sprintf(conf->cache_name[0],
2061 "raid%d-%p", conf->level, conf->mddev);
2062 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2063
2064 conf->active_name = 0;
2065 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2066 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2067 0, 0, NULL);
2068 if (!sc)
2069 return 1;
2070 conf->slab_cache = sc;
2071 conf->pool_size = devs;
2072 while (num--)
2073 if (!grow_one_stripe(conf, GFP_KERNEL))
2074 return 1;
2075
2076 return 0;
2077 }
2078
2079 /**
2080 * scribble_len - return the required size of the scribble region
2081 * @num - total number of disks in the array
2082 *
2083 * The size must be enough to contain:
2084 * 1/ a struct page pointer for each device in the array +2
2085 * 2/ room to convert each entry in (1) to its corresponding dma
2086 * (dma_map_page()) or page (page_address()) address.
2087 *
2088 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2089 * calculate over all devices (not just the data blocks), using zeros in place
2090 * of the P and Q blocks.
2091 */
2092 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2093 {
2094 struct flex_array *ret;
2095 size_t len;
2096
2097 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2098 ret = flex_array_alloc(len, cnt, flags);
2099 if (!ret)
2100 return NULL;
2101 /* always prealloc all elements, so no locking is required */
2102 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2103 flex_array_free(ret);
2104 return NULL;
2105 }
2106 return ret;
2107 }
2108
2109 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2110 {
2111 unsigned long cpu;
2112 int err = 0;
2113
2114 /*
2115 * Never shrink. And mddev_suspend() could deadlock if this is called
2116 * from raid5d. In that case, scribble_disks and scribble_sectors
2117 * should equal to new_disks and new_sectors
2118 */
2119 if (conf->scribble_disks >= new_disks &&
2120 conf->scribble_sectors >= new_sectors)
2121 return 0;
2122 mddev_suspend(conf->mddev);
2123 get_online_cpus();
2124 for_each_present_cpu(cpu) {
2125 struct raid5_percpu *percpu;
2126 struct flex_array *scribble;
2127
2128 percpu = per_cpu_ptr(conf->percpu, cpu);
2129 scribble = scribble_alloc(new_disks,
2130 new_sectors / STRIPE_SECTORS,
2131 GFP_NOIO);
2132
2133 if (scribble) {
2134 flex_array_free(percpu->scribble);
2135 percpu->scribble = scribble;
2136 } else {
2137 err = -ENOMEM;
2138 break;
2139 }
2140 }
2141 put_online_cpus();
2142 mddev_resume(conf->mddev);
2143 if (!err) {
2144 conf->scribble_disks = new_disks;
2145 conf->scribble_sectors = new_sectors;
2146 }
2147 return err;
2148 }
2149
2150 static int resize_stripes(struct r5conf *conf, int newsize)
2151 {
2152 /* Make all the stripes able to hold 'newsize' devices.
2153 * New slots in each stripe get 'page' set to a new page.
2154 *
2155 * This happens in stages:
2156 * 1/ create a new kmem_cache and allocate the required number of
2157 * stripe_heads.
2158 * 2/ gather all the old stripe_heads and transfer the pages across
2159 * to the new stripe_heads. This will have the side effect of
2160 * freezing the array as once all stripe_heads have been collected,
2161 * no IO will be possible. Old stripe heads are freed once their
2162 * pages have been transferred over, and the old kmem_cache is
2163 * freed when all stripes are done.
2164 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2165 * we simple return a failre status - no need to clean anything up.
2166 * 4/ allocate new pages for the new slots in the new stripe_heads.
2167 * If this fails, we don't bother trying the shrink the
2168 * stripe_heads down again, we just leave them as they are.
2169 * As each stripe_head is processed the new one is released into
2170 * active service.
2171 *
2172 * Once step2 is started, we cannot afford to wait for a write,
2173 * so we use GFP_NOIO allocations.
2174 */
2175 struct stripe_head *osh, *nsh;
2176 LIST_HEAD(newstripes);
2177 struct disk_info *ndisks;
2178 int err;
2179 struct kmem_cache *sc;
2180 int i;
2181 int hash, cnt;
2182
2183 if (newsize <= conf->pool_size)
2184 return 0; /* never bother to shrink */
2185
2186 err = md_allow_write(conf->mddev);
2187 if (err)
2188 return err;
2189
2190 /* Step 1 */
2191 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2192 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2193 0, 0, NULL);
2194 if (!sc)
2195 return -ENOMEM;
2196
2197 /* Need to ensure auto-resizing doesn't interfere */
2198 mutex_lock(&conf->cache_size_mutex);
2199
2200 for (i = conf->max_nr_stripes; i; i--) {
2201 nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
2202 if (!nsh)
2203 break;
2204
2205 nsh->raid_conf = conf;
2206 list_add(&nsh->lru, &newstripes);
2207 }
2208 if (i) {
2209 /* didn't get enough, give up */
2210 while (!list_empty(&newstripes)) {
2211 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2212 list_del(&nsh->lru);
2213 kmem_cache_free(sc, nsh);
2214 }
2215 kmem_cache_destroy(sc);
2216 mutex_unlock(&conf->cache_size_mutex);
2217 return -ENOMEM;
2218 }
2219 /* Step 2 - Must use GFP_NOIO now.
2220 * OK, we have enough stripes, start collecting inactive
2221 * stripes and copying them over
2222 */
2223 hash = 0;
2224 cnt = 0;
2225 list_for_each_entry(nsh, &newstripes, lru) {
2226 lock_device_hash_lock(conf, hash);
2227 wait_event_cmd(conf->wait_for_stripe,
2228 !list_empty(conf->inactive_list + hash),
2229 unlock_device_hash_lock(conf, hash),
2230 lock_device_hash_lock(conf, hash));
2231 osh = get_free_stripe(conf, hash);
2232 unlock_device_hash_lock(conf, hash);
2233
2234 for(i=0; i<conf->pool_size; i++) {
2235 nsh->dev[i].page = osh->dev[i].page;
2236 nsh->dev[i].orig_page = osh->dev[i].page;
2237 }
2238 nsh->hash_lock_index = hash;
2239 kmem_cache_free(conf->slab_cache, osh);
2240 cnt++;
2241 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2242 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2243 hash++;
2244 cnt = 0;
2245 }
2246 }
2247 kmem_cache_destroy(conf->slab_cache);
2248
2249 /* Step 3.
2250 * At this point, we are holding all the stripes so the array
2251 * is completely stalled, so now is a good time to resize
2252 * conf->disks and the scribble region
2253 */
2254 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2255 if (ndisks) {
2256 for (i=0; i<conf->raid_disks; i++)
2257 ndisks[i] = conf->disks[i];
2258 kfree(conf->disks);
2259 conf->disks = ndisks;
2260 } else
2261 err = -ENOMEM;
2262
2263 mutex_unlock(&conf->cache_size_mutex);
2264 /* Step 4, return new stripes to service */
2265 while(!list_empty(&newstripes)) {
2266 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2267 list_del_init(&nsh->lru);
2268
2269 for (i=conf->raid_disks; i < newsize; i++)
2270 if (nsh->dev[i].page == NULL) {
2271 struct page *p = alloc_page(GFP_NOIO);
2272 nsh->dev[i].page = p;
2273 nsh->dev[i].orig_page = p;
2274 if (!p)
2275 err = -ENOMEM;
2276 }
2277 raid5_release_stripe(nsh);
2278 }
2279 /* critical section pass, GFP_NOIO no longer needed */
2280
2281 conf->slab_cache = sc;
2282 conf->active_name = 1-conf->active_name;
2283 if (!err)
2284 conf->pool_size = newsize;
2285 return err;
2286 }
2287
2288 static int drop_one_stripe(struct r5conf *conf)
2289 {
2290 struct stripe_head *sh;
2291 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2292
2293 spin_lock_irq(conf->hash_locks + hash);
2294 sh = get_free_stripe(conf, hash);
2295 spin_unlock_irq(conf->hash_locks + hash);
2296 if (!sh)
2297 return 0;
2298 BUG_ON(atomic_read(&sh->count));
2299 shrink_buffers(sh);
2300 kmem_cache_free(conf->slab_cache, sh);
2301 atomic_dec(&conf->active_stripes);
2302 conf->max_nr_stripes--;
2303 return 1;
2304 }
2305
2306 static void shrink_stripes(struct r5conf *conf)
2307 {
2308 while (conf->max_nr_stripes &&
2309 drop_one_stripe(conf))
2310 ;
2311
2312 kmem_cache_destroy(conf->slab_cache);
2313 conf->slab_cache = NULL;
2314 }
2315
2316 static void raid5_end_read_request(struct bio * bi)
2317 {
2318 struct stripe_head *sh = bi->bi_private;
2319 struct r5conf *conf = sh->raid_conf;
2320 int disks = sh->disks, i;
2321 char b[BDEVNAME_SIZE];
2322 struct md_rdev *rdev = NULL;
2323 sector_t s;
2324
2325 for (i=0 ; i<disks; i++)
2326 if (bi == &sh->dev[i].req)
2327 break;
2328
2329 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2330 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2331 bi->bi_error);
2332 if (i == disks) {
2333 bio_reset(bi);
2334 BUG();
2335 return;
2336 }
2337 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2338 /* If replacement finished while this request was outstanding,
2339 * 'replacement' might be NULL already.
2340 * In that case it moved down to 'rdev'.
2341 * rdev is not removed until all requests are finished.
2342 */
2343 rdev = conf->disks[i].replacement;
2344 if (!rdev)
2345 rdev = conf->disks[i].rdev;
2346
2347 if (use_new_offset(conf, sh))
2348 s = sh->sector + rdev->new_data_offset;
2349 else
2350 s = sh->sector + rdev->data_offset;
2351 if (!bi->bi_error) {
2352 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2353 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2354 /* Note that this cannot happen on a
2355 * replacement device. We just fail those on
2356 * any error
2357 */
2358 pr_info_ratelimited(
2359 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2360 mdname(conf->mddev), STRIPE_SECTORS,
2361 (unsigned long long)s,
2362 bdevname(rdev->bdev, b));
2363 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2364 clear_bit(R5_ReadError, &sh->dev[i].flags);
2365 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2366 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2367 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2368
2369 if (atomic_read(&rdev->read_errors))
2370 atomic_set(&rdev->read_errors, 0);
2371 } else {
2372 const char *bdn = bdevname(rdev->bdev, b);
2373 int retry = 0;
2374 int set_bad = 0;
2375
2376 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2377 atomic_inc(&rdev->read_errors);
2378 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2379 pr_warn_ratelimited(
2380 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2381 mdname(conf->mddev),
2382 (unsigned long long)s,
2383 bdn);
2384 else if (conf->mddev->degraded >= conf->max_degraded) {
2385 set_bad = 1;
2386 pr_warn_ratelimited(
2387 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2388 mdname(conf->mddev),
2389 (unsigned long long)s,
2390 bdn);
2391 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2392 /* Oh, no!!! */
2393 set_bad = 1;
2394 pr_warn_ratelimited(
2395 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2396 mdname(conf->mddev),
2397 (unsigned long long)s,
2398 bdn);
2399 } else if (atomic_read(&rdev->read_errors)
2400 > conf->max_nr_stripes)
2401 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2402 mdname(conf->mddev), bdn);
2403 else
2404 retry = 1;
2405 if (set_bad && test_bit(In_sync, &rdev->flags)
2406 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2407 retry = 1;
2408 if (retry)
2409 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2410 set_bit(R5_ReadError, &sh->dev[i].flags);
2411 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2412 } else
2413 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2414 else {
2415 clear_bit(R5_ReadError, &sh->dev[i].flags);
2416 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2417 if (!(set_bad
2418 && test_bit(In_sync, &rdev->flags)
2419 && rdev_set_badblocks(
2420 rdev, sh->sector, STRIPE_SECTORS, 0)))
2421 md_error(conf->mddev, rdev);
2422 }
2423 }
2424 rdev_dec_pending(rdev, conf->mddev);
2425 bio_reset(bi);
2426 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2427 set_bit(STRIPE_HANDLE, &sh->state);
2428 raid5_release_stripe(sh);
2429 }
2430
2431 static void raid5_end_write_request(struct bio *bi)
2432 {
2433 struct stripe_head *sh = bi->bi_private;
2434 struct r5conf *conf = sh->raid_conf;
2435 int disks = sh->disks, i;
2436 struct md_rdev *uninitialized_var(rdev);
2437 sector_t first_bad;
2438 int bad_sectors;
2439 int replacement = 0;
2440
2441 for (i = 0 ; i < disks; i++) {
2442 if (bi == &sh->dev[i].req) {
2443 rdev = conf->disks[i].rdev;
2444 break;
2445 }
2446 if (bi == &sh->dev[i].rreq) {
2447 rdev = conf->disks[i].replacement;
2448 if (rdev)
2449 replacement = 1;
2450 else
2451 /* rdev was removed and 'replacement'
2452 * replaced it. rdev is not removed
2453 * until all requests are finished.
2454 */
2455 rdev = conf->disks[i].rdev;
2456 break;
2457 }
2458 }
2459 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2460 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2461 bi->bi_error);
2462 if (i == disks) {
2463 bio_reset(bi);
2464 BUG();
2465 return;
2466 }
2467
2468 if (replacement) {
2469 if (bi->bi_error)
2470 md_error(conf->mddev, rdev);
2471 else if (is_badblock(rdev, sh->sector,
2472 STRIPE_SECTORS,
2473 &first_bad, &bad_sectors))
2474 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2475 } else {
2476 if (bi->bi_error) {
2477 set_bit(STRIPE_DEGRADED, &sh->state);
2478 set_bit(WriteErrorSeen, &rdev->flags);
2479 set_bit(R5_WriteError, &sh->dev[i].flags);
2480 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2481 set_bit(MD_RECOVERY_NEEDED,
2482 &rdev->mddev->recovery);
2483 } else if (is_badblock(rdev, sh->sector,
2484 STRIPE_SECTORS,
2485 &first_bad, &bad_sectors)) {
2486 set_bit(R5_MadeGood, &sh->dev[i].flags);
2487 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2488 /* That was a successful write so make
2489 * sure it looks like we already did
2490 * a re-write.
2491 */
2492 set_bit(R5_ReWrite, &sh->dev[i].flags);
2493 }
2494 }
2495 rdev_dec_pending(rdev, conf->mddev);
2496
2497 if (sh->batch_head && bi->bi_error && !replacement)
2498 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2499
2500 bio_reset(bi);
2501 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2502 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2503 set_bit(STRIPE_HANDLE, &sh->state);
2504 raid5_release_stripe(sh);
2505
2506 if (sh->batch_head && sh != sh->batch_head)
2507 raid5_release_stripe(sh->batch_head);
2508 }
2509
2510 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2511 {
2512 struct r5dev *dev = &sh->dev[i];
2513
2514 dev->flags = 0;
2515 dev->sector = raid5_compute_blocknr(sh, i, previous);
2516 }
2517
2518 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2519 {
2520 char b[BDEVNAME_SIZE];
2521 struct r5conf *conf = mddev->private;
2522 unsigned long flags;
2523 pr_debug("raid456: error called\n");
2524
2525 spin_lock_irqsave(&conf->device_lock, flags);
2526 clear_bit(In_sync, &rdev->flags);
2527 mddev->degraded = calc_degraded(conf);
2528 spin_unlock_irqrestore(&conf->device_lock, flags);
2529 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2530
2531 set_bit(Blocked, &rdev->flags);
2532 set_bit(Faulty, &rdev->flags);
2533 set_mask_bits(&mddev->flags, 0,
2534 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
2535 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2536 "md/raid:%s: Operation continuing on %d devices.\n",
2537 mdname(mddev),
2538 bdevname(rdev->bdev, b),
2539 mdname(mddev),
2540 conf->raid_disks - mddev->degraded);
2541 }
2542
2543 /*
2544 * Input: a 'big' sector number,
2545 * Output: index of the data and parity disk, and the sector # in them.
2546 */
2547 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2548 int previous, int *dd_idx,
2549 struct stripe_head *sh)
2550 {
2551 sector_t stripe, stripe2;
2552 sector_t chunk_number;
2553 unsigned int chunk_offset;
2554 int pd_idx, qd_idx;
2555 int ddf_layout = 0;
2556 sector_t new_sector;
2557 int algorithm = previous ? conf->prev_algo
2558 : conf->algorithm;
2559 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2560 : conf->chunk_sectors;
2561 int raid_disks = previous ? conf->previous_raid_disks
2562 : conf->raid_disks;
2563 int data_disks = raid_disks - conf->max_degraded;
2564
2565 /* First compute the information on this sector */
2566
2567 /*
2568 * Compute the chunk number and the sector offset inside the chunk
2569 */
2570 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2571 chunk_number = r_sector;
2572
2573 /*
2574 * Compute the stripe number
2575 */
2576 stripe = chunk_number;
2577 *dd_idx = sector_div(stripe, data_disks);
2578 stripe2 = stripe;
2579 /*
2580 * Select the parity disk based on the user selected algorithm.
2581 */
2582 pd_idx = qd_idx = -1;
2583 switch(conf->level) {
2584 case 4:
2585 pd_idx = data_disks;
2586 break;
2587 case 5:
2588 switch (algorithm) {
2589 case ALGORITHM_LEFT_ASYMMETRIC:
2590 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2591 if (*dd_idx >= pd_idx)
2592 (*dd_idx)++;
2593 break;
2594 case ALGORITHM_RIGHT_ASYMMETRIC:
2595 pd_idx = sector_div(stripe2, raid_disks);
2596 if (*dd_idx >= pd_idx)
2597 (*dd_idx)++;
2598 break;
2599 case ALGORITHM_LEFT_SYMMETRIC:
2600 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2601 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2602 break;
2603 case ALGORITHM_RIGHT_SYMMETRIC:
2604 pd_idx = sector_div(stripe2, raid_disks);
2605 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2606 break;
2607 case ALGORITHM_PARITY_0:
2608 pd_idx = 0;
2609 (*dd_idx)++;
2610 break;
2611 case ALGORITHM_PARITY_N:
2612 pd_idx = data_disks;
2613 break;
2614 default:
2615 BUG();
2616 }
2617 break;
2618 case 6:
2619
2620 switch (algorithm) {
2621 case ALGORITHM_LEFT_ASYMMETRIC:
2622 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2623 qd_idx = pd_idx + 1;
2624 if (pd_idx == raid_disks-1) {
2625 (*dd_idx)++; /* Q D D D P */
2626 qd_idx = 0;
2627 } else if (*dd_idx >= pd_idx)
2628 (*dd_idx) += 2; /* D D P Q D */
2629 break;
2630 case ALGORITHM_RIGHT_ASYMMETRIC:
2631 pd_idx = sector_div(stripe2, raid_disks);
2632 qd_idx = pd_idx + 1;
2633 if (pd_idx == raid_disks-1) {
2634 (*dd_idx)++; /* Q D D D P */
2635 qd_idx = 0;
2636 } else if (*dd_idx >= pd_idx)
2637 (*dd_idx) += 2; /* D D P Q D */
2638 break;
2639 case ALGORITHM_LEFT_SYMMETRIC:
2640 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2641 qd_idx = (pd_idx + 1) % raid_disks;
2642 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2643 break;
2644 case ALGORITHM_RIGHT_SYMMETRIC:
2645 pd_idx = sector_div(stripe2, raid_disks);
2646 qd_idx = (pd_idx + 1) % raid_disks;
2647 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2648 break;
2649
2650 case ALGORITHM_PARITY_0:
2651 pd_idx = 0;
2652 qd_idx = 1;
2653 (*dd_idx) += 2;
2654 break;
2655 case ALGORITHM_PARITY_N:
2656 pd_idx = data_disks;
2657 qd_idx = data_disks + 1;
2658 break;
2659
2660 case ALGORITHM_ROTATING_ZERO_RESTART:
2661 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2662 * of blocks for computing Q is different.
2663 */
2664 pd_idx = sector_div(stripe2, raid_disks);
2665 qd_idx = pd_idx + 1;
2666 if (pd_idx == raid_disks-1) {
2667 (*dd_idx)++; /* Q D D D P */
2668 qd_idx = 0;
2669 } else if (*dd_idx >= pd_idx)
2670 (*dd_idx) += 2; /* D D P Q D */
2671 ddf_layout = 1;
2672 break;
2673
2674 case ALGORITHM_ROTATING_N_RESTART:
2675 /* Same a left_asymmetric, by first stripe is
2676 * D D D P Q rather than
2677 * Q D D D P
2678 */
2679 stripe2 += 1;
2680 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2681 qd_idx = pd_idx + 1;
2682 if (pd_idx == raid_disks-1) {
2683 (*dd_idx)++; /* Q D D D P */
2684 qd_idx = 0;
2685 } else if (*dd_idx >= pd_idx)
2686 (*dd_idx) += 2; /* D D P Q D */
2687 ddf_layout = 1;
2688 break;
2689
2690 case ALGORITHM_ROTATING_N_CONTINUE:
2691 /* Same as left_symmetric but Q is before P */
2692 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2693 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2694 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2695 ddf_layout = 1;
2696 break;
2697
2698 case ALGORITHM_LEFT_ASYMMETRIC_6:
2699 /* RAID5 left_asymmetric, with Q on last device */
2700 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2701 if (*dd_idx >= pd_idx)
2702 (*dd_idx)++;
2703 qd_idx = raid_disks - 1;
2704 break;
2705
2706 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2707 pd_idx = sector_div(stripe2, raid_disks-1);
2708 if (*dd_idx >= pd_idx)
2709 (*dd_idx)++;
2710 qd_idx = raid_disks - 1;
2711 break;
2712
2713 case ALGORITHM_LEFT_SYMMETRIC_6:
2714 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2715 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2716 qd_idx = raid_disks - 1;
2717 break;
2718
2719 case ALGORITHM_RIGHT_SYMMETRIC_6:
2720 pd_idx = sector_div(stripe2, raid_disks-1);
2721 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2722 qd_idx = raid_disks - 1;
2723 break;
2724
2725 case ALGORITHM_PARITY_0_6:
2726 pd_idx = 0;
2727 (*dd_idx)++;
2728 qd_idx = raid_disks - 1;
2729 break;
2730
2731 default:
2732 BUG();
2733 }
2734 break;
2735 }
2736
2737 if (sh) {
2738 sh->pd_idx = pd_idx;
2739 sh->qd_idx = qd_idx;
2740 sh->ddf_layout = ddf_layout;
2741 }
2742 /*
2743 * Finally, compute the new sector number
2744 */
2745 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2746 return new_sector;
2747 }
2748
2749 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2750 {
2751 struct r5conf *conf = sh->raid_conf;
2752 int raid_disks = sh->disks;
2753 int data_disks = raid_disks - conf->max_degraded;
2754 sector_t new_sector = sh->sector, check;
2755 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2756 : conf->chunk_sectors;
2757 int algorithm = previous ? conf->prev_algo
2758 : conf->algorithm;
2759 sector_t stripe;
2760 int chunk_offset;
2761 sector_t chunk_number;
2762 int dummy1, dd_idx = i;
2763 sector_t r_sector;
2764 struct stripe_head sh2;
2765
2766 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2767 stripe = new_sector;
2768
2769 if (i == sh->pd_idx)
2770 return 0;
2771 switch(conf->level) {
2772 case 4: break;
2773 case 5:
2774 switch (algorithm) {
2775 case ALGORITHM_LEFT_ASYMMETRIC:
2776 case ALGORITHM_RIGHT_ASYMMETRIC:
2777 if (i > sh->pd_idx)
2778 i--;
2779 break;
2780 case ALGORITHM_LEFT_SYMMETRIC:
2781 case ALGORITHM_RIGHT_SYMMETRIC:
2782 if (i < sh->pd_idx)
2783 i += raid_disks;
2784 i -= (sh->pd_idx + 1);
2785 break;
2786 case ALGORITHM_PARITY_0:
2787 i -= 1;
2788 break;
2789 case ALGORITHM_PARITY_N:
2790 break;
2791 default:
2792 BUG();
2793 }
2794 break;
2795 case 6:
2796 if (i == sh->qd_idx)
2797 return 0; /* It is the Q disk */
2798 switch (algorithm) {
2799 case ALGORITHM_LEFT_ASYMMETRIC:
2800 case ALGORITHM_RIGHT_ASYMMETRIC:
2801 case ALGORITHM_ROTATING_ZERO_RESTART:
2802 case ALGORITHM_ROTATING_N_RESTART:
2803 if (sh->pd_idx == raid_disks-1)
2804 i--; /* Q D D D P */
2805 else if (i > sh->pd_idx)
2806 i -= 2; /* D D P Q D */
2807 break;
2808 case ALGORITHM_LEFT_SYMMETRIC:
2809 case ALGORITHM_RIGHT_SYMMETRIC:
2810 if (sh->pd_idx == raid_disks-1)
2811 i--; /* Q D D D P */
2812 else {
2813 /* D D P Q D */
2814 if (i < sh->pd_idx)
2815 i += raid_disks;
2816 i -= (sh->pd_idx + 2);
2817 }
2818 break;
2819 case ALGORITHM_PARITY_0:
2820 i -= 2;
2821 break;
2822 case ALGORITHM_PARITY_N:
2823 break;
2824 case ALGORITHM_ROTATING_N_CONTINUE:
2825 /* Like left_symmetric, but P is before Q */
2826 if (sh->pd_idx == 0)
2827 i--; /* P D D D Q */
2828 else {
2829 /* D D Q P D */
2830 if (i < sh->pd_idx)
2831 i += raid_disks;
2832 i -= (sh->pd_idx + 1);
2833 }
2834 break;
2835 case ALGORITHM_LEFT_ASYMMETRIC_6:
2836 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2837 if (i > sh->pd_idx)
2838 i--;
2839 break;
2840 case ALGORITHM_LEFT_SYMMETRIC_6:
2841 case ALGORITHM_RIGHT_SYMMETRIC_6:
2842 if (i < sh->pd_idx)
2843 i += data_disks + 1;
2844 i -= (sh->pd_idx + 1);
2845 break;
2846 case ALGORITHM_PARITY_0_6:
2847 i -= 1;
2848 break;
2849 default:
2850 BUG();
2851 }
2852 break;
2853 }
2854
2855 chunk_number = stripe * data_disks + i;
2856 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2857
2858 check = raid5_compute_sector(conf, r_sector,
2859 previous, &dummy1, &sh2);
2860 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2861 || sh2.qd_idx != sh->qd_idx) {
2862 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
2863 mdname(conf->mddev));
2864 return 0;
2865 }
2866 return r_sector;
2867 }
2868
2869 static void
2870 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2871 int rcw, int expand)
2872 {
2873 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2874 struct r5conf *conf = sh->raid_conf;
2875 int level = conf->level;
2876
2877 if (rcw) {
2878 /*
2879 * In some cases, handle_stripe_dirtying initially decided to
2880 * run rmw and allocates extra page for prexor. However, rcw is
2881 * cheaper later on. We need to free the extra page now,
2882 * because we won't be able to do that in ops_complete_prexor().
2883 */
2884 r5c_release_extra_page(sh);
2885
2886 for (i = disks; i--; ) {
2887 struct r5dev *dev = &sh->dev[i];
2888
2889 if (dev->towrite) {
2890 set_bit(R5_LOCKED, &dev->flags);
2891 set_bit(R5_Wantdrain, &dev->flags);
2892 if (!expand)
2893 clear_bit(R5_UPTODATE, &dev->flags);
2894 s->locked++;
2895 } else if (test_bit(R5_InJournal, &dev->flags)) {
2896 set_bit(R5_LOCKED, &dev->flags);
2897 s->locked++;
2898 }
2899 }
2900 /* if we are not expanding this is a proper write request, and
2901 * there will be bios with new data to be drained into the
2902 * stripe cache
2903 */
2904 if (!expand) {
2905 if (!s->locked)
2906 /* False alarm, nothing to do */
2907 return;
2908 sh->reconstruct_state = reconstruct_state_drain_run;
2909 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2910 } else
2911 sh->reconstruct_state = reconstruct_state_run;
2912
2913 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2914
2915 if (s->locked + conf->max_degraded == disks)
2916 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2917 atomic_inc(&conf->pending_full_writes);
2918 } else {
2919 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2920 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2921 BUG_ON(level == 6 &&
2922 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2923 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2924
2925 for (i = disks; i--; ) {
2926 struct r5dev *dev = &sh->dev[i];
2927 if (i == pd_idx || i == qd_idx)
2928 continue;
2929
2930 if (dev->towrite &&
2931 (test_bit(R5_UPTODATE, &dev->flags) ||
2932 test_bit(R5_Wantcompute, &dev->flags))) {
2933 set_bit(R5_Wantdrain, &dev->flags);
2934 set_bit(R5_LOCKED, &dev->flags);
2935 clear_bit(R5_UPTODATE, &dev->flags);
2936 s->locked++;
2937 } else if (test_bit(R5_InJournal, &dev->flags)) {
2938 set_bit(R5_LOCKED, &dev->flags);
2939 s->locked++;
2940 }
2941 }
2942 if (!s->locked)
2943 /* False alarm - nothing to do */
2944 return;
2945 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2946 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2947 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2948 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2949 }
2950
2951 /* keep the parity disk(s) locked while asynchronous operations
2952 * are in flight
2953 */
2954 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2955 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2956 s->locked++;
2957
2958 if (level == 6) {
2959 int qd_idx = sh->qd_idx;
2960 struct r5dev *dev = &sh->dev[qd_idx];
2961
2962 set_bit(R5_LOCKED, &dev->flags);
2963 clear_bit(R5_UPTODATE, &dev->flags);
2964 s->locked++;
2965 }
2966
2967 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2968 __func__, (unsigned long long)sh->sector,
2969 s->locked, s->ops_request);
2970 }
2971
2972 /*
2973 * Each stripe/dev can have one or more bion attached.
2974 * toread/towrite point to the first in a chain.
2975 * The bi_next chain must be in order.
2976 */
2977 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2978 int forwrite, int previous)
2979 {
2980 struct bio **bip;
2981 struct r5conf *conf = sh->raid_conf;
2982 int firstwrite=0;
2983
2984 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2985 (unsigned long long)bi->bi_iter.bi_sector,
2986 (unsigned long long)sh->sector);
2987
2988 /*
2989 * If several bio share a stripe. The bio bi_phys_segments acts as a
2990 * reference count to avoid race. The reference count should already be
2991 * increased before this function is called (for example, in
2992 * raid5_make_request()), so other bio sharing this stripe will not free the
2993 * stripe. If a stripe is owned by one stripe, the stripe lock will
2994 * protect it.
2995 */
2996 spin_lock_irq(&sh->stripe_lock);
2997 /* Don't allow new IO added to stripes in batch list */
2998 if (sh->batch_head)
2999 goto overlap;
3000 if (forwrite) {
3001 bip = &sh->dev[dd_idx].towrite;
3002 if (*bip == NULL)
3003 firstwrite = 1;
3004 } else
3005 bip = &sh->dev[dd_idx].toread;
3006 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3007 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3008 goto overlap;
3009 bip = & (*bip)->bi_next;
3010 }
3011 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3012 goto overlap;
3013
3014 if (!forwrite || previous)
3015 clear_bit(STRIPE_BATCH_READY, &sh->state);
3016
3017 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3018 if (*bip)
3019 bi->bi_next = *bip;
3020 *bip = bi;
3021 raid5_inc_bi_active_stripes(bi);
3022
3023 if (forwrite) {
3024 /* check if page is covered */
3025 sector_t sector = sh->dev[dd_idx].sector;
3026 for (bi=sh->dev[dd_idx].towrite;
3027 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3028 bi && bi->bi_iter.bi_sector <= sector;
3029 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3030 if (bio_end_sector(bi) >= sector)
3031 sector = bio_end_sector(bi);
3032 }
3033 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3034 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3035 sh->overwrite_disks++;
3036 }
3037
3038 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3039 (unsigned long long)(*bip)->bi_iter.bi_sector,
3040 (unsigned long long)sh->sector, dd_idx);
3041
3042 if (conf->mddev->bitmap && firstwrite) {
3043 /* Cannot hold spinlock over bitmap_startwrite,
3044 * but must ensure this isn't added to a batch until
3045 * we have added to the bitmap and set bm_seq.
3046 * So set STRIPE_BITMAP_PENDING to prevent
3047 * batching.
3048 * If multiple add_stripe_bio() calls race here they
3049 * much all set STRIPE_BITMAP_PENDING. So only the first one
3050 * to complete "bitmap_startwrite" gets to set
3051 * STRIPE_BIT_DELAY. This is important as once a stripe
3052 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3053 * any more.
3054 */
3055 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3056 spin_unlock_irq(&sh->stripe_lock);
3057 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3058 STRIPE_SECTORS, 0);
3059 spin_lock_irq(&sh->stripe_lock);
3060 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3061 if (!sh->batch_head) {
3062 sh->bm_seq = conf->seq_flush+1;
3063 set_bit(STRIPE_BIT_DELAY, &sh->state);
3064 }
3065 }
3066 spin_unlock_irq(&sh->stripe_lock);
3067
3068 if (stripe_can_batch(sh))
3069 stripe_add_to_batch_list(conf, sh);
3070 return 1;
3071
3072 overlap:
3073 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3074 spin_unlock_irq(&sh->stripe_lock);
3075 return 0;
3076 }
3077
3078 static void end_reshape(struct r5conf *conf);
3079
3080 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3081 struct stripe_head *sh)
3082 {
3083 int sectors_per_chunk =
3084 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3085 int dd_idx;
3086 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3087 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3088
3089 raid5_compute_sector(conf,
3090 stripe * (disks - conf->max_degraded)
3091 *sectors_per_chunk + chunk_offset,
3092 previous,
3093 &dd_idx, sh);
3094 }
3095
3096 static void
3097 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3098 struct stripe_head_state *s, int disks,
3099 struct bio_list *return_bi)
3100 {
3101 int i;
3102 BUG_ON(sh->batch_head);
3103 for (i = disks; i--; ) {
3104 struct bio *bi;
3105 int bitmap_end = 0;
3106
3107 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3108 struct md_rdev *rdev;
3109 rcu_read_lock();
3110 rdev = rcu_dereference(conf->disks[i].rdev);
3111 if (rdev && test_bit(In_sync, &rdev->flags) &&
3112 !test_bit(Faulty, &rdev->flags))
3113 atomic_inc(&rdev->nr_pending);
3114 else
3115 rdev = NULL;
3116 rcu_read_unlock();
3117 if (rdev) {
3118 if (!rdev_set_badblocks(
3119 rdev,
3120 sh->sector,
3121 STRIPE_SECTORS, 0))
3122 md_error(conf->mddev, rdev);
3123 rdev_dec_pending(rdev, conf->mddev);
3124 }
3125 }
3126 spin_lock_irq(&sh->stripe_lock);
3127 /* fail all writes first */
3128 bi = sh->dev[i].towrite;
3129 sh->dev[i].towrite = NULL;
3130 sh->overwrite_disks = 0;
3131 spin_unlock_irq(&sh->stripe_lock);
3132 if (bi)
3133 bitmap_end = 1;
3134
3135 r5l_stripe_write_finished(sh);
3136
3137 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3138 wake_up(&conf->wait_for_overlap);
3139
3140 while (bi && bi->bi_iter.bi_sector <
3141 sh->dev[i].sector + STRIPE_SECTORS) {
3142 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3143
3144 bi->bi_error = -EIO;
3145 if (!raid5_dec_bi_active_stripes(bi)) {
3146 md_write_end(conf->mddev);
3147 bio_list_add(return_bi, bi);
3148 }
3149 bi = nextbi;
3150 }
3151 if (bitmap_end)
3152 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3153 STRIPE_SECTORS, 0, 0);
3154 bitmap_end = 0;
3155 /* and fail all 'written' */
3156 bi = sh->dev[i].written;
3157 sh->dev[i].written = NULL;
3158 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3159 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3160 sh->dev[i].page = sh->dev[i].orig_page;
3161 }
3162
3163 if (bi) bitmap_end = 1;
3164 while (bi && bi->bi_iter.bi_sector <
3165 sh->dev[i].sector + STRIPE_SECTORS) {
3166 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3167
3168 bi->bi_error = -EIO;
3169 if (!raid5_dec_bi_active_stripes(bi)) {
3170 md_write_end(conf->mddev);
3171 bio_list_add(return_bi, bi);
3172 }
3173 bi = bi2;
3174 }
3175
3176 /* fail any reads if this device is non-operational and
3177 * the data has not reached the cache yet.
3178 */
3179 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3180 s->failed > conf->max_degraded &&
3181 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3182 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3183 spin_lock_irq(&sh->stripe_lock);
3184 bi = sh->dev[i].toread;
3185 sh->dev[i].toread = NULL;
3186 spin_unlock_irq(&sh->stripe_lock);
3187 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3188 wake_up(&conf->wait_for_overlap);
3189 if (bi)
3190 s->to_read--;
3191 while (bi && bi->bi_iter.bi_sector <
3192 sh->dev[i].sector + STRIPE_SECTORS) {
3193 struct bio *nextbi =
3194 r5_next_bio(bi, sh->dev[i].sector);
3195
3196 bi->bi_error = -EIO;
3197 if (!raid5_dec_bi_active_stripes(bi))
3198 bio_list_add(return_bi, bi);
3199 bi = nextbi;
3200 }
3201 }
3202 if (bitmap_end)
3203 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3204 STRIPE_SECTORS, 0, 0);
3205 /* If we were in the middle of a write the parity block might
3206 * still be locked - so just clear all R5_LOCKED flags
3207 */
3208 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3209 }
3210 s->to_write = 0;
3211 s->written = 0;
3212
3213 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3214 if (atomic_dec_and_test(&conf->pending_full_writes))
3215 md_wakeup_thread(conf->mddev->thread);
3216 }
3217
3218 static void
3219 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3220 struct stripe_head_state *s)
3221 {
3222 int abort = 0;
3223 int i;
3224
3225 BUG_ON(sh->batch_head);
3226 clear_bit(STRIPE_SYNCING, &sh->state);
3227 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3228 wake_up(&conf->wait_for_overlap);
3229 s->syncing = 0;
3230 s->replacing = 0;
3231 /* There is nothing more to do for sync/check/repair.
3232 * Don't even need to abort as that is handled elsewhere
3233 * if needed, and not always wanted e.g. if there is a known
3234 * bad block here.
3235 * For recover/replace we need to record a bad block on all
3236 * non-sync devices, or abort the recovery
3237 */
3238 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3239 /* During recovery devices cannot be removed, so
3240 * locking and refcounting of rdevs is not needed
3241 */
3242 rcu_read_lock();
3243 for (i = 0; i < conf->raid_disks; i++) {
3244 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3245 if (rdev
3246 && !test_bit(Faulty, &rdev->flags)
3247 && !test_bit(In_sync, &rdev->flags)
3248 && !rdev_set_badblocks(rdev, sh->sector,
3249 STRIPE_SECTORS, 0))
3250 abort = 1;
3251 rdev = rcu_dereference(conf->disks[i].replacement);
3252 if (rdev
3253 && !test_bit(Faulty, &rdev->flags)
3254 && !test_bit(In_sync, &rdev->flags)
3255 && !rdev_set_badblocks(rdev, sh->sector,
3256 STRIPE_SECTORS, 0))
3257 abort = 1;
3258 }
3259 rcu_read_unlock();
3260 if (abort)
3261 conf->recovery_disabled =
3262 conf->mddev->recovery_disabled;
3263 }
3264 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3265 }
3266
3267 static int want_replace(struct stripe_head *sh, int disk_idx)
3268 {
3269 struct md_rdev *rdev;
3270 int rv = 0;
3271
3272 rcu_read_lock();
3273 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3274 if (rdev
3275 && !test_bit(Faulty, &rdev->flags)
3276 && !test_bit(In_sync, &rdev->flags)
3277 && (rdev->recovery_offset <= sh->sector
3278 || rdev->mddev->recovery_cp <= sh->sector))
3279 rv = 1;
3280 rcu_read_unlock();
3281 return rv;
3282 }
3283
3284 /* fetch_block - checks the given member device to see if its data needs
3285 * to be read or computed to satisfy a request.
3286 *
3287 * Returns 1 when no more member devices need to be checked, otherwise returns
3288 * 0 to tell the loop in handle_stripe_fill to continue
3289 */
3290
3291 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3292 int disk_idx, int disks)
3293 {
3294 struct r5dev *dev = &sh->dev[disk_idx];
3295 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3296 &sh->dev[s->failed_num[1]] };
3297 int i;
3298
3299
3300 if (test_bit(R5_LOCKED, &dev->flags) ||
3301 test_bit(R5_UPTODATE, &dev->flags))
3302 /* No point reading this as we already have it or have
3303 * decided to get it.
3304 */
3305 return 0;
3306
3307 if (dev->toread ||
3308 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3309 /* We need this block to directly satisfy a request */
3310 return 1;
3311
3312 if (s->syncing || s->expanding ||
3313 (s->replacing && want_replace(sh, disk_idx)))
3314 /* When syncing, or expanding we read everything.
3315 * When replacing, we need the replaced block.
3316 */
3317 return 1;
3318
3319 if ((s->failed >= 1 && fdev[0]->toread) ||
3320 (s->failed >= 2 && fdev[1]->toread))
3321 /* If we want to read from a failed device, then
3322 * we need to actually read every other device.
3323 */
3324 return 1;
3325
3326 /* Sometimes neither read-modify-write nor reconstruct-write
3327 * cycles can work. In those cases we read every block we
3328 * can. Then the parity-update is certain to have enough to
3329 * work with.
3330 * This can only be a problem when we need to write something,
3331 * and some device has failed. If either of those tests
3332 * fail we need look no further.
3333 */
3334 if (!s->failed || !s->to_write)
3335 return 0;
3336
3337 if (test_bit(R5_Insync, &dev->flags) &&
3338 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3339 /* Pre-reads at not permitted until after short delay
3340 * to gather multiple requests. However if this
3341 * device is no Insync, the block could only be be computed
3342 * and there is no need to delay that.
3343 */
3344 return 0;
3345
3346 for (i = 0; i < s->failed && i < 2; i++) {
3347 if (fdev[i]->towrite &&
3348 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3349 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3350 /* If we have a partial write to a failed
3351 * device, then we will need to reconstruct
3352 * the content of that device, so all other
3353 * devices must be read.
3354 */
3355 return 1;
3356 }
3357
3358 /* If we are forced to do a reconstruct-write, either because
3359 * the current RAID6 implementation only supports that, or
3360 * or because parity cannot be trusted and we are currently
3361 * recovering it, there is extra need to be careful.
3362 * If one of the devices that we would need to read, because
3363 * it is not being overwritten (and maybe not written at all)
3364 * is missing/faulty, then we need to read everything we can.
3365 */
3366 if (sh->raid_conf->level != 6 &&
3367 sh->sector < sh->raid_conf->mddev->recovery_cp)
3368 /* reconstruct-write isn't being forced */
3369 return 0;
3370 for (i = 0; i < s->failed && i < 2; i++) {
3371 if (s->failed_num[i] != sh->pd_idx &&
3372 s->failed_num[i] != sh->qd_idx &&
3373 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3374 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3375 return 1;
3376 }
3377
3378 return 0;
3379 }
3380
3381 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3382 int disk_idx, int disks)
3383 {
3384 struct r5dev *dev = &sh->dev[disk_idx];
3385
3386 /* is the data in this block needed, and can we get it? */
3387 if (need_this_block(sh, s, disk_idx, disks)) {
3388 /* we would like to get this block, possibly by computing it,
3389 * otherwise read it if the backing disk is insync
3390 */
3391 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3392 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3393 BUG_ON(sh->batch_head);
3394 if ((s->uptodate == disks - 1) &&
3395 (s->failed && (disk_idx == s->failed_num[0] ||
3396 disk_idx == s->failed_num[1]))) {
3397 /* have disk failed, and we're requested to fetch it;
3398 * do compute it
3399 */
3400 pr_debug("Computing stripe %llu block %d\n",
3401 (unsigned long long)sh->sector, disk_idx);
3402 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3403 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3404 set_bit(R5_Wantcompute, &dev->flags);
3405 sh->ops.target = disk_idx;
3406 sh->ops.target2 = -1; /* no 2nd target */
3407 s->req_compute = 1;
3408 /* Careful: from this point on 'uptodate' is in the eye
3409 * of raid_run_ops which services 'compute' operations
3410 * before writes. R5_Wantcompute flags a block that will
3411 * be R5_UPTODATE by the time it is needed for a
3412 * subsequent operation.
3413 */
3414 s->uptodate++;
3415 return 1;
3416 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3417 /* Computing 2-failure is *very* expensive; only
3418 * do it if failed >= 2
3419 */
3420 int other;
3421 for (other = disks; other--; ) {
3422 if (other == disk_idx)
3423 continue;
3424 if (!test_bit(R5_UPTODATE,
3425 &sh->dev[other].flags))
3426 break;
3427 }
3428 BUG_ON(other < 0);
3429 pr_debug("Computing stripe %llu blocks %d,%d\n",
3430 (unsigned long long)sh->sector,
3431 disk_idx, other);
3432 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3433 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3434 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3435 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3436 sh->ops.target = disk_idx;
3437 sh->ops.target2 = other;
3438 s->uptodate += 2;
3439 s->req_compute = 1;
3440 return 1;
3441 } else if (test_bit(R5_Insync, &dev->flags)) {
3442 set_bit(R5_LOCKED, &dev->flags);
3443 set_bit(R5_Wantread, &dev->flags);
3444 s->locked++;
3445 pr_debug("Reading block %d (sync=%d)\n",
3446 disk_idx, s->syncing);
3447 }
3448 }
3449
3450 return 0;
3451 }
3452
3453 /**
3454 * handle_stripe_fill - read or compute data to satisfy pending requests.
3455 */
3456 static void handle_stripe_fill(struct stripe_head *sh,
3457 struct stripe_head_state *s,
3458 int disks)
3459 {
3460 int i;
3461
3462 /* look for blocks to read/compute, skip this if a compute
3463 * is already in flight, or if the stripe contents are in the
3464 * midst of changing due to a write
3465 */
3466 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3467 !sh->reconstruct_state)
3468 for (i = disks; i--; )
3469 if (fetch_block(sh, s, i, disks))
3470 break;
3471 set_bit(STRIPE_HANDLE, &sh->state);
3472 }
3473
3474 static void break_stripe_batch_list(struct stripe_head *head_sh,
3475 unsigned long handle_flags);
3476 /* handle_stripe_clean_event
3477 * any written block on an uptodate or failed drive can be returned.
3478 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3479 * never LOCKED, so we don't need to test 'failed' directly.
3480 */
3481 static void handle_stripe_clean_event(struct r5conf *conf,
3482 struct stripe_head *sh, int disks, struct bio_list *return_bi)
3483 {
3484 int i;
3485 struct r5dev *dev;
3486 int discard_pending = 0;
3487 struct stripe_head *head_sh = sh;
3488 bool do_endio = false;
3489
3490 for (i = disks; i--; )
3491 if (sh->dev[i].written) {
3492 dev = &sh->dev[i];
3493 if (!test_bit(R5_LOCKED, &dev->flags) &&
3494 (test_bit(R5_UPTODATE, &dev->flags) ||
3495 test_bit(R5_Discard, &dev->flags) ||
3496 test_bit(R5_SkipCopy, &dev->flags))) {
3497 /* We can return any write requests */
3498 struct bio *wbi, *wbi2;
3499 pr_debug("Return write for disc %d\n", i);
3500 if (test_and_clear_bit(R5_Discard, &dev->flags))
3501 clear_bit(R5_UPTODATE, &dev->flags);
3502 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3503 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3504 }
3505 do_endio = true;
3506
3507 returnbi:
3508 dev->page = dev->orig_page;
3509 wbi = dev->written;
3510 dev->written = NULL;
3511 while (wbi && wbi->bi_iter.bi_sector <
3512 dev->sector + STRIPE_SECTORS) {
3513 wbi2 = r5_next_bio(wbi, dev->sector);
3514 if (!raid5_dec_bi_active_stripes(wbi)) {
3515 md_write_end(conf->mddev);
3516 bio_list_add(return_bi, wbi);
3517 }
3518 wbi = wbi2;
3519 }
3520 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3521 STRIPE_SECTORS,
3522 !test_bit(STRIPE_DEGRADED, &sh->state),
3523 0);
3524 if (head_sh->batch_head) {
3525 sh = list_first_entry(&sh->batch_list,
3526 struct stripe_head,
3527 batch_list);
3528 if (sh != head_sh) {
3529 dev = &sh->dev[i];
3530 goto returnbi;
3531 }
3532 }
3533 sh = head_sh;
3534 dev = &sh->dev[i];
3535 } else if (test_bit(R5_Discard, &dev->flags))
3536 discard_pending = 1;
3537 }
3538
3539 r5l_stripe_write_finished(sh);
3540
3541 if (!discard_pending &&
3542 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3543 int hash;
3544 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3545 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3546 if (sh->qd_idx >= 0) {
3547 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3548 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3549 }
3550 /* now that discard is done we can proceed with any sync */
3551 clear_bit(STRIPE_DISCARD, &sh->state);
3552 /*
3553 * SCSI discard will change some bio fields and the stripe has
3554 * no updated data, so remove it from hash list and the stripe
3555 * will be reinitialized
3556 */
3557 unhash:
3558 hash = sh->hash_lock_index;
3559 spin_lock_irq(conf->hash_locks + hash);
3560 remove_hash(sh);
3561 spin_unlock_irq(conf->hash_locks + hash);
3562 if (head_sh->batch_head) {
3563 sh = list_first_entry(&sh->batch_list,
3564 struct stripe_head, batch_list);
3565 if (sh != head_sh)
3566 goto unhash;
3567 }
3568 sh = head_sh;
3569
3570 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3571 set_bit(STRIPE_HANDLE, &sh->state);
3572
3573 }
3574
3575 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3576 if (atomic_dec_and_test(&conf->pending_full_writes))
3577 md_wakeup_thread(conf->mddev->thread);
3578
3579 if (head_sh->batch_head && do_endio)
3580 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3581 }
3582
3583 static void handle_stripe_dirtying(struct r5conf *conf,
3584 struct stripe_head *sh,
3585 struct stripe_head_state *s,
3586 int disks)
3587 {
3588 int rmw = 0, rcw = 0, i;
3589 sector_t recovery_cp = conf->mddev->recovery_cp;
3590
3591 /* Check whether resync is now happening or should start.
3592 * If yes, then the array is dirty (after unclean shutdown or
3593 * initial creation), so parity in some stripes might be inconsistent.
3594 * In this case, we need to always do reconstruct-write, to ensure
3595 * that in case of drive failure or read-error correction, we
3596 * generate correct data from the parity.
3597 */
3598 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3599 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3600 s->failed == 0)) {
3601 /* Calculate the real rcw later - for now make it
3602 * look like rcw is cheaper
3603 */
3604 rcw = 1; rmw = 2;
3605 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3606 conf->rmw_level, (unsigned long long)recovery_cp,
3607 (unsigned long long)sh->sector);
3608 } else for (i = disks; i--; ) {
3609 /* would I have to read this buffer for read_modify_write */
3610 struct r5dev *dev = &sh->dev[i];
3611 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx ||
3612 test_bit(R5_InJournal, &dev->flags)) &&
3613 !test_bit(R5_LOCKED, &dev->flags) &&
3614 !((test_bit(R5_UPTODATE, &dev->flags) &&
3615 (!test_bit(R5_InJournal, &dev->flags) ||
3616 dev->page != dev->orig_page)) ||
3617 test_bit(R5_Wantcompute, &dev->flags))) {
3618 if (test_bit(R5_Insync, &dev->flags))
3619 rmw++;
3620 else
3621 rmw += 2*disks; /* cannot read it */
3622 }
3623 /* Would I have to read this buffer for reconstruct_write */
3624 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3625 i != sh->pd_idx && i != sh->qd_idx &&
3626 !test_bit(R5_LOCKED, &dev->flags) &&
3627 !(test_bit(R5_UPTODATE, &dev->flags) ||
3628 test_bit(R5_InJournal, &dev->flags) ||
3629 test_bit(R5_Wantcompute, &dev->flags))) {
3630 if (test_bit(R5_Insync, &dev->flags))
3631 rcw++;
3632 else
3633 rcw += 2*disks;
3634 }
3635 }
3636
3637 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3638 (unsigned long long)sh->sector, rmw, rcw);
3639 set_bit(STRIPE_HANDLE, &sh->state);
3640 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3641 /* prefer read-modify-write, but need to get some data */
3642 if (conf->mddev->queue)
3643 blk_add_trace_msg(conf->mddev->queue,
3644 "raid5 rmw %llu %d",
3645 (unsigned long long)sh->sector, rmw);
3646 for (i = disks; i--; ) {
3647 struct r5dev *dev = &sh->dev[i];
3648 if (test_bit(R5_InJournal, &dev->flags) &&
3649 dev->page == dev->orig_page &&
3650 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3651 /* alloc page for prexor */
3652 dev->orig_page = alloc_page(GFP_NOIO);
3653
3654 /* will handle failure in a later patch*/
3655 BUG_ON(!dev->orig_page);
3656 }
3657
3658 if ((dev->towrite ||
3659 i == sh->pd_idx || i == sh->qd_idx ||
3660 test_bit(R5_InJournal, &dev->flags)) &&
3661 !test_bit(R5_LOCKED, &dev->flags) &&
3662 !((test_bit(R5_UPTODATE, &dev->flags) &&
3663 (!test_bit(R5_InJournal, &dev->flags) ||
3664 dev->page != dev->orig_page)) ||
3665 test_bit(R5_Wantcompute, &dev->flags)) &&
3666 test_bit(R5_Insync, &dev->flags)) {
3667 if (test_bit(STRIPE_PREREAD_ACTIVE,
3668 &sh->state)) {
3669 pr_debug("Read_old block %d for r-m-w\n",
3670 i);
3671 set_bit(R5_LOCKED, &dev->flags);
3672 set_bit(R5_Wantread, &dev->flags);
3673 s->locked++;
3674 } else {
3675 set_bit(STRIPE_DELAYED, &sh->state);
3676 set_bit(STRIPE_HANDLE, &sh->state);
3677 }
3678 }
3679 }
3680 }
3681 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3682 /* want reconstruct write, but need to get some data */
3683 int qread =0;
3684 rcw = 0;
3685 for (i = disks; i--; ) {
3686 struct r5dev *dev = &sh->dev[i];
3687 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3688 i != sh->pd_idx && i != sh->qd_idx &&
3689 !test_bit(R5_LOCKED, &dev->flags) &&
3690 !(test_bit(R5_UPTODATE, &dev->flags) ||
3691 test_bit(R5_InJournal, &dev->flags) ||
3692 test_bit(R5_Wantcompute, &dev->flags))) {
3693 rcw++;
3694 if (test_bit(R5_Insync, &dev->flags) &&
3695 test_bit(STRIPE_PREREAD_ACTIVE,
3696 &sh->state)) {
3697 pr_debug("Read_old block "
3698 "%d for Reconstruct\n", i);
3699 set_bit(R5_LOCKED, &dev->flags);
3700 set_bit(R5_Wantread, &dev->flags);
3701 s->locked++;
3702 qread++;
3703 } else {
3704 set_bit(STRIPE_DELAYED, &sh->state);
3705 set_bit(STRIPE_HANDLE, &sh->state);
3706 }
3707 }
3708 }
3709 if (rcw && conf->mddev->queue)
3710 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3711 (unsigned long long)sh->sector,
3712 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3713 }
3714
3715 if (rcw > disks && rmw > disks &&
3716 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3717 set_bit(STRIPE_DELAYED, &sh->state);
3718
3719 /* now if nothing is locked, and if we have enough data,
3720 * we can start a write request
3721 */
3722 /* since handle_stripe can be called at any time we need to handle the
3723 * case where a compute block operation has been submitted and then a
3724 * subsequent call wants to start a write request. raid_run_ops only
3725 * handles the case where compute block and reconstruct are requested
3726 * simultaneously. If this is not the case then new writes need to be
3727 * held off until the compute completes.
3728 */
3729 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3730 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3731 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3732 schedule_reconstruction(sh, s, rcw == 0, 0);
3733 }
3734
3735 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3736 struct stripe_head_state *s, int disks)
3737 {
3738 struct r5dev *dev = NULL;
3739
3740 BUG_ON(sh->batch_head);
3741 set_bit(STRIPE_HANDLE, &sh->state);
3742
3743 switch (sh->check_state) {
3744 case check_state_idle:
3745 /* start a new check operation if there are no failures */
3746 if (s->failed == 0) {
3747 BUG_ON(s->uptodate != disks);
3748 sh->check_state = check_state_run;
3749 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3750 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3751 s->uptodate--;
3752 break;
3753 }
3754 dev = &sh->dev[s->failed_num[0]];
3755 /* fall through */
3756 case check_state_compute_result:
3757 sh->check_state = check_state_idle;
3758 if (!dev)
3759 dev = &sh->dev[sh->pd_idx];
3760
3761 /* check that a write has not made the stripe insync */
3762 if (test_bit(STRIPE_INSYNC, &sh->state))
3763 break;
3764
3765 /* either failed parity check, or recovery is happening */
3766 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3767 BUG_ON(s->uptodate != disks);
3768
3769 set_bit(R5_LOCKED, &dev->flags);
3770 s->locked++;
3771 set_bit(R5_Wantwrite, &dev->flags);
3772
3773 clear_bit(STRIPE_DEGRADED, &sh->state);
3774 set_bit(STRIPE_INSYNC, &sh->state);
3775 break;
3776 case check_state_run:
3777 break; /* we will be called again upon completion */
3778 case check_state_check_result:
3779 sh->check_state = check_state_idle;
3780
3781 /* if a failure occurred during the check operation, leave
3782 * STRIPE_INSYNC not set and let the stripe be handled again
3783 */
3784 if (s->failed)
3785 break;
3786
3787 /* handle a successful check operation, if parity is correct
3788 * we are done. Otherwise update the mismatch count and repair
3789 * parity if !MD_RECOVERY_CHECK
3790 */
3791 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3792 /* parity is correct (on disc,
3793 * not in buffer any more)
3794 */
3795 set_bit(STRIPE_INSYNC, &sh->state);
3796 else {
3797 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3798 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3799 /* don't try to repair!! */
3800 set_bit(STRIPE_INSYNC, &sh->state);
3801 else {
3802 sh->check_state = check_state_compute_run;
3803 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3804 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3805 set_bit(R5_Wantcompute,
3806 &sh->dev[sh->pd_idx].flags);
3807 sh->ops.target = sh->pd_idx;
3808 sh->ops.target2 = -1;
3809 s->uptodate++;
3810 }
3811 }
3812 break;
3813 case check_state_compute_run:
3814 break;
3815 default:
3816 pr_err("%s: unknown check_state: %d sector: %llu\n",
3817 __func__, sh->check_state,
3818 (unsigned long long) sh->sector);
3819 BUG();
3820 }
3821 }
3822
3823 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3824 struct stripe_head_state *s,
3825 int disks)
3826 {
3827 int pd_idx = sh->pd_idx;
3828 int qd_idx = sh->qd_idx;
3829 struct r5dev *dev;
3830
3831 BUG_ON(sh->batch_head);
3832 set_bit(STRIPE_HANDLE, &sh->state);
3833
3834 BUG_ON(s->failed > 2);
3835
3836 /* Want to check and possibly repair P and Q.
3837 * However there could be one 'failed' device, in which
3838 * case we can only check one of them, possibly using the
3839 * other to generate missing data
3840 */
3841
3842 switch (sh->check_state) {
3843 case check_state_idle:
3844 /* start a new check operation if there are < 2 failures */
3845 if (s->failed == s->q_failed) {
3846 /* The only possible failed device holds Q, so it
3847 * makes sense to check P (If anything else were failed,
3848 * we would have used P to recreate it).
3849 */
3850 sh->check_state = check_state_run;
3851 }
3852 if (!s->q_failed && s->failed < 2) {
3853 /* Q is not failed, and we didn't use it to generate
3854 * anything, so it makes sense to check it
3855 */
3856 if (sh->check_state == check_state_run)
3857 sh->check_state = check_state_run_pq;
3858 else
3859 sh->check_state = check_state_run_q;
3860 }
3861
3862 /* discard potentially stale zero_sum_result */
3863 sh->ops.zero_sum_result = 0;
3864
3865 if (sh->check_state == check_state_run) {
3866 /* async_xor_zero_sum destroys the contents of P */
3867 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3868 s->uptodate--;
3869 }
3870 if (sh->check_state >= check_state_run &&
3871 sh->check_state <= check_state_run_pq) {
3872 /* async_syndrome_zero_sum preserves P and Q, so
3873 * no need to mark them !uptodate here
3874 */
3875 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3876 break;
3877 }
3878
3879 /* we have 2-disk failure */
3880 BUG_ON(s->failed != 2);
3881 /* fall through */
3882 case check_state_compute_result:
3883 sh->check_state = check_state_idle;
3884
3885 /* check that a write has not made the stripe insync */
3886 if (test_bit(STRIPE_INSYNC, &sh->state))
3887 break;
3888
3889 /* now write out any block on a failed drive,
3890 * or P or Q if they were recomputed
3891 */
3892 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3893 if (s->failed == 2) {
3894 dev = &sh->dev[s->failed_num[1]];
3895 s->locked++;
3896 set_bit(R5_LOCKED, &dev->flags);
3897 set_bit(R5_Wantwrite, &dev->flags);
3898 }
3899 if (s->failed >= 1) {
3900 dev = &sh->dev[s->failed_num[0]];
3901 s->locked++;
3902 set_bit(R5_LOCKED, &dev->flags);
3903 set_bit(R5_Wantwrite, &dev->flags);
3904 }
3905 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3906 dev = &sh->dev[pd_idx];
3907 s->locked++;
3908 set_bit(R5_LOCKED, &dev->flags);
3909 set_bit(R5_Wantwrite, &dev->flags);
3910 }
3911 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3912 dev = &sh->dev[qd_idx];
3913 s->locked++;
3914 set_bit(R5_LOCKED, &dev->flags);
3915 set_bit(R5_Wantwrite, &dev->flags);
3916 }
3917 clear_bit(STRIPE_DEGRADED, &sh->state);
3918
3919 set_bit(STRIPE_INSYNC, &sh->state);
3920 break;
3921 case check_state_run:
3922 case check_state_run_q:
3923 case check_state_run_pq:
3924 break; /* we will be called again upon completion */
3925 case check_state_check_result:
3926 sh->check_state = check_state_idle;
3927
3928 /* handle a successful check operation, if parity is correct
3929 * we are done. Otherwise update the mismatch count and repair
3930 * parity if !MD_RECOVERY_CHECK
3931 */
3932 if (sh->ops.zero_sum_result == 0) {
3933 /* both parities are correct */
3934 if (!s->failed)
3935 set_bit(STRIPE_INSYNC, &sh->state);
3936 else {
3937 /* in contrast to the raid5 case we can validate
3938 * parity, but still have a failure to write
3939 * back
3940 */
3941 sh->check_state = check_state_compute_result;
3942 /* Returning at this point means that we may go
3943 * off and bring p and/or q uptodate again so
3944 * we make sure to check zero_sum_result again
3945 * to verify if p or q need writeback
3946 */
3947 }
3948 } else {
3949 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3950 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3951 /* don't try to repair!! */
3952 set_bit(STRIPE_INSYNC, &sh->state);
3953 else {
3954 int *target = &sh->ops.target;
3955
3956 sh->ops.target = -1;
3957 sh->ops.target2 = -1;
3958 sh->check_state = check_state_compute_run;
3959 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3960 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3961 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3962 set_bit(R5_Wantcompute,
3963 &sh->dev[pd_idx].flags);
3964 *target = pd_idx;
3965 target = &sh->ops.target2;
3966 s->uptodate++;
3967 }
3968 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3969 set_bit(R5_Wantcompute,
3970 &sh->dev[qd_idx].flags);
3971 *target = qd_idx;
3972 s->uptodate++;
3973 }
3974 }
3975 }
3976 break;
3977 case check_state_compute_run:
3978 break;
3979 default:
3980 pr_warn("%s: unknown check_state: %d sector: %llu\n",
3981 __func__, sh->check_state,
3982 (unsigned long long) sh->sector);
3983 BUG();
3984 }
3985 }
3986
3987 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3988 {
3989 int i;
3990
3991 /* We have read all the blocks in this stripe and now we need to
3992 * copy some of them into a target stripe for expand.
3993 */
3994 struct dma_async_tx_descriptor *tx = NULL;
3995 BUG_ON(sh->batch_head);
3996 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3997 for (i = 0; i < sh->disks; i++)
3998 if (i != sh->pd_idx && i != sh->qd_idx) {
3999 int dd_idx, j;
4000 struct stripe_head *sh2;
4001 struct async_submit_ctl submit;
4002
4003 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4004 sector_t s = raid5_compute_sector(conf, bn, 0,
4005 &dd_idx, NULL);
4006 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4007 if (sh2 == NULL)
4008 /* so far only the early blocks of this stripe
4009 * have been requested. When later blocks
4010 * get requested, we will try again
4011 */
4012 continue;
4013 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4014 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4015 /* must have already done this block */
4016 raid5_release_stripe(sh2);
4017 continue;
4018 }
4019
4020 /* place all the copies on one channel */
4021 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4022 tx = async_memcpy(sh2->dev[dd_idx].page,
4023 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4024 &submit);
4025
4026 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4027 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4028 for (j = 0; j < conf->raid_disks; j++)
4029 if (j != sh2->pd_idx &&
4030 j != sh2->qd_idx &&
4031 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4032 break;
4033 if (j == conf->raid_disks) {
4034 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4035 set_bit(STRIPE_HANDLE, &sh2->state);
4036 }
4037 raid5_release_stripe(sh2);
4038
4039 }
4040 /* done submitting copies, wait for them to complete */
4041 async_tx_quiesce(&tx);
4042 }
4043
4044 /*
4045 * handle_stripe - do things to a stripe.
4046 *
4047 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4048 * state of various bits to see what needs to be done.
4049 * Possible results:
4050 * return some read requests which now have data
4051 * return some write requests which are safely on storage
4052 * schedule a read on some buffers
4053 * schedule a write of some buffers
4054 * return confirmation of parity correctness
4055 *
4056 */
4057
4058 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4059 {
4060 struct r5conf *conf = sh->raid_conf;
4061 int disks = sh->disks;
4062 struct r5dev *dev;
4063 int i;
4064 int do_recovery = 0;
4065
4066 memset(s, 0, sizeof(*s));
4067
4068 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4069 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4070 s->failed_num[0] = -1;
4071 s->failed_num[1] = -1;
4072 s->log_failed = r5l_log_disk_error(conf);
4073
4074 /* Now to look around and see what can be done */
4075 rcu_read_lock();
4076 for (i=disks; i--; ) {
4077 struct md_rdev *rdev;
4078 sector_t first_bad;
4079 int bad_sectors;
4080 int is_bad = 0;
4081
4082 dev = &sh->dev[i];
4083
4084 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4085 i, dev->flags,
4086 dev->toread, dev->towrite, dev->written);
4087 /* maybe we can reply to a read
4088 *
4089 * new wantfill requests are only permitted while
4090 * ops_complete_biofill is guaranteed to be inactive
4091 */
4092 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4093 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4094 set_bit(R5_Wantfill, &dev->flags);
4095
4096 /* now count some things */
4097 if (test_bit(R5_LOCKED, &dev->flags))
4098 s->locked++;
4099 if (test_bit(R5_UPTODATE, &dev->flags))
4100 s->uptodate++;
4101 if (test_bit(R5_Wantcompute, &dev->flags)) {
4102 s->compute++;
4103 BUG_ON(s->compute > 2);
4104 }
4105
4106 if (test_bit(R5_Wantfill, &dev->flags))
4107 s->to_fill++;
4108 else if (dev->toread)
4109 s->to_read++;
4110 if (dev->towrite) {
4111 s->to_write++;
4112 if (!test_bit(R5_OVERWRITE, &dev->flags))
4113 s->non_overwrite++;
4114 }
4115 if (dev->written)
4116 s->written++;
4117 /* Prefer to use the replacement for reads, but only
4118 * if it is recovered enough and has no bad blocks.
4119 */
4120 rdev = rcu_dereference(conf->disks[i].replacement);
4121 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4122 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4123 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4124 &first_bad, &bad_sectors))
4125 set_bit(R5_ReadRepl, &dev->flags);
4126 else {
4127 if (rdev && !test_bit(Faulty, &rdev->flags))
4128 set_bit(R5_NeedReplace, &dev->flags);
4129 else
4130 clear_bit(R5_NeedReplace, &dev->flags);
4131 rdev = rcu_dereference(conf->disks[i].rdev);
4132 clear_bit(R5_ReadRepl, &dev->flags);
4133 }
4134 if (rdev && test_bit(Faulty, &rdev->flags))
4135 rdev = NULL;
4136 if (rdev) {
4137 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4138 &first_bad, &bad_sectors);
4139 if (s->blocked_rdev == NULL
4140 && (test_bit(Blocked, &rdev->flags)
4141 || is_bad < 0)) {
4142 if (is_bad < 0)
4143 set_bit(BlockedBadBlocks,
4144 &rdev->flags);
4145 s->blocked_rdev = rdev;
4146 atomic_inc(&rdev->nr_pending);
4147 }
4148 }
4149 clear_bit(R5_Insync, &dev->flags);
4150 if (!rdev)
4151 /* Not in-sync */;
4152 else if (is_bad) {
4153 /* also not in-sync */
4154 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4155 test_bit(R5_UPTODATE, &dev->flags)) {
4156 /* treat as in-sync, but with a read error
4157 * which we can now try to correct
4158 */
4159 set_bit(R5_Insync, &dev->flags);
4160 set_bit(R5_ReadError, &dev->flags);
4161 }
4162 } else if (test_bit(In_sync, &rdev->flags))
4163 set_bit(R5_Insync, &dev->flags);
4164 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4165 /* in sync if before recovery_offset */
4166 set_bit(R5_Insync, &dev->flags);
4167 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4168 test_bit(R5_Expanded, &dev->flags))
4169 /* If we've reshaped into here, we assume it is Insync.
4170 * We will shortly update recovery_offset to make
4171 * it official.
4172 */
4173 set_bit(R5_Insync, &dev->flags);
4174
4175 if (test_bit(R5_WriteError, &dev->flags)) {
4176 /* This flag does not apply to '.replacement'
4177 * only to .rdev, so make sure to check that*/
4178 struct md_rdev *rdev2 = rcu_dereference(
4179 conf->disks[i].rdev);
4180 if (rdev2 == rdev)
4181 clear_bit(R5_Insync, &dev->flags);
4182 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4183 s->handle_bad_blocks = 1;
4184 atomic_inc(&rdev2->nr_pending);
4185 } else
4186 clear_bit(R5_WriteError, &dev->flags);
4187 }
4188 if (test_bit(R5_MadeGood, &dev->flags)) {
4189 /* This flag does not apply to '.replacement'
4190 * only to .rdev, so make sure to check that*/
4191 struct md_rdev *rdev2 = rcu_dereference(
4192 conf->disks[i].rdev);
4193 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4194 s->handle_bad_blocks = 1;
4195 atomic_inc(&rdev2->nr_pending);
4196 } else
4197 clear_bit(R5_MadeGood, &dev->flags);
4198 }
4199 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4200 struct md_rdev *rdev2 = rcu_dereference(
4201 conf->disks[i].replacement);
4202 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4203 s->handle_bad_blocks = 1;
4204 atomic_inc(&rdev2->nr_pending);
4205 } else
4206 clear_bit(R5_MadeGoodRepl, &dev->flags);
4207 }
4208 if (!test_bit(R5_Insync, &dev->flags)) {
4209 /* The ReadError flag will just be confusing now */
4210 clear_bit(R5_ReadError, &dev->flags);
4211 clear_bit(R5_ReWrite, &dev->flags);
4212 }
4213 if (test_bit(R5_ReadError, &dev->flags))
4214 clear_bit(R5_Insync, &dev->flags);
4215 if (!test_bit(R5_Insync, &dev->flags)) {
4216 if (s->failed < 2)
4217 s->failed_num[s->failed] = i;
4218 s->failed++;
4219 if (rdev && !test_bit(Faulty, &rdev->flags))
4220 do_recovery = 1;
4221 }
4222
4223 if (test_bit(R5_InJournal, &dev->flags))
4224 s->injournal++;
4225 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4226 s->just_cached++;
4227 }
4228 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4229 /* If there is a failed device being replaced,
4230 * we must be recovering.
4231 * else if we are after recovery_cp, we must be syncing
4232 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4233 * else we can only be replacing
4234 * sync and recovery both need to read all devices, and so
4235 * use the same flag.
4236 */
4237 if (do_recovery ||
4238 sh->sector >= conf->mddev->recovery_cp ||
4239 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4240 s->syncing = 1;
4241 else
4242 s->replacing = 1;
4243 }
4244 rcu_read_unlock();
4245 }
4246
4247 static int clear_batch_ready(struct stripe_head *sh)
4248 {
4249 /* Return '1' if this is a member of batch, or
4250 * '0' if it is a lone stripe or a head which can now be
4251 * handled.
4252 */
4253 struct stripe_head *tmp;
4254 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4255 return (sh->batch_head && sh->batch_head != sh);
4256 spin_lock(&sh->stripe_lock);
4257 if (!sh->batch_head) {
4258 spin_unlock(&sh->stripe_lock);
4259 return 0;
4260 }
4261
4262 /*
4263 * this stripe could be added to a batch list before we check
4264 * BATCH_READY, skips it
4265 */
4266 if (sh->batch_head != sh) {
4267 spin_unlock(&sh->stripe_lock);
4268 return 1;
4269 }
4270 spin_lock(&sh->batch_lock);
4271 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4272 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4273 spin_unlock(&sh->batch_lock);
4274 spin_unlock(&sh->stripe_lock);
4275
4276 /*
4277 * BATCH_READY is cleared, no new stripes can be added.
4278 * batch_list can be accessed without lock
4279 */
4280 return 0;
4281 }
4282
4283 static void break_stripe_batch_list(struct stripe_head *head_sh,
4284 unsigned long handle_flags)
4285 {
4286 struct stripe_head *sh, *next;
4287 int i;
4288 int do_wakeup = 0;
4289
4290 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4291
4292 list_del_init(&sh->batch_list);
4293
4294 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4295 (1 << STRIPE_SYNCING) |
4296 (1 << STRIPE_REPLACED) |
4297 (1 << STRIPE_DELAYED) |
4298 (1 << STRIPE_BIT_DELAY) |
4299 (1 << STRIPE_FULL_WRITE) |
4300 (1 << STRIPE_BIOFILL_RUN) |
4301 (1 << STRIPE_COMPUTE_RUN) |
4302 (1 << STRIPE_OPS_REQ_PENDING) |
4303 (1 << STRIPE_DISCARD) |
4304 (1 << STRIPE_BATCH_READY) |
4305 (1 << STRIPE_BATCH_ERR) |
4306 (1 << STRIPE_BITMAP_PENDING)),
4307 "stripe state: %lx\n", sh->state);
4308 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4309 (1 << STRIPE_REPLACED)),
4310 "head stripe state: %lx\n", head_sh->state);
4311
4312 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4313 (1 << STRIPE_PREREAD_ACTIVE) |
4314 (1 << STRIPE_DEGRADED)),
4315 head_sh->state & (1 << STRIPE_INSYNC));
4316
4317 sh->check_state = head_sh->check_state;
4318 sh->reconstruct_state = head_sh->reconstruct_state;
4319 for (i = 0; i < sh->disks; i++) {
4320 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4321 do_wakeup = 1;
4322 sh->dev[i].flags = head_sh->dev[i].flags &
4323 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4324 }
4325 spin_lock_irq(&sh->stripe_lock);
4326 sh->batch_head = NULL;
4327 spin_unlock_irq(&sh->stripe_lock);
4328 if (handle_flags == 0 ||
4329 sh->state & handle_flags)
4330 set_bit(STRIPE_HANDLE, &sh->state);
4331 raid5_release_stripe(sh);
4332 }
4333 spin_lock_irq(&head_sh->stripe_lock);
4334 head_sh->batch_head = NULL;
4335 spin_unlock_irq(&head_sh->stripe_lock);
4336 for (i = 0; i < head_sh->disks; i++)
4337 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4338 do_wakeup = 1;
4339 if (head_sh->state & handle_flags)
4340 set_bit(STRIPE_HANDLE, &head_sh->state);
4341
4342 if (do_wakeup)
4343 wake_up(&head_sh->raid_conf->wait_for_overlap);
4344 }
4345
4346 static void handle_stripe(struct stripe_head *sh)
4347 {
4348 struct stripe_head_state s;
4349 struct r5conf *conf = sh->raid_conf;
4350 int i;
4351 int prexor;
4352 int disks = sh->disks;
4353 struct r5dev *pdev, *qdev;
4354
4355 clear_bit(STRIPE_HANDLE, &sh->state);
4356 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4357 /* already being handled, ensure it gets handled
4358 * again when current action finishes */
4359 set_bit(STRIPE_HANDLE, &sh->state);
4360 return;
4361 }
4362
4363 if (clear_batch_ready(sh) ) {
4364 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4365 return;
4366 }
4367
4368 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4369 break_stripe_batch_list(sh, 0);
4370
4371 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4372 spin_lock(&sh->stripe_lock);
4373 /* Cannot process 'sync' concurrently with 'discard' */
4374 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4375 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4376 set_bit(STRIPE_SYNCING, &sh->state);
4377 clear_bit(STRIPE_INSYNC, &sh->state);
4378 clear_bit(STRIPE_REPLACED, &sh->state);
4379 }
4380 spin_unlock(&sh->stripe_lock);
4381 }
4382 clear_bit(STRIPE_DELAYED, &sh->state);
4383
4384 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4385 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4386 (unsigned long long)sh->sector, sh->state,
4387 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4388 sh->check_state, sh->reconstruct_state);
4389
4390 analyse_stripe(sh, &s);
4391
4392 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4393 goto finish;
4394
4395 if (s.handle_bad_blocks) {
4396 set_bit(STRIPE_HANDLE, &sh->state);
4397 goto finish;
4398 }
4399
4400 if (unlikely(s.blocked_rdev)) {
4401 if (s.syncing || s.expanding || s.expanded ||
4402 s.replacing || s.to_write || s.written) {
4403 set_bit(STRIPE_HANDLE, &sh->state);
4404 goto finish;
4405 }
4406 /* There is nothing for the blocked_rdev to block */
4407 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4408 s.blocked_rdev = NULL;
4409 }
4410
4411 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4412 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4413 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4414 }
4415
4416 pr_debug("locked=%d uptodate=%d to_read=%d"
4417 " to_write=%d failed=%d failed_num=%d,%d\n",
4418 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4419 s.failed_num[0], s.failed_num[1]);
4420 /* check if the array has lost more than max_degraded devices and,
4421 * if so, some requests might need to be failed.
4422 */
4423 if (s.failed > conf->max_degraded || s.log_failed) {
4424 sh->check_state = 0;
4425 sh->reconstruct_state = 0;
4426 break_stripe_batch_list(sh, 0);
4427 if (s.to_read+s.to_write+s.written)
4428 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4429 if (s.syncing + s.replacing)
4430 handle_failed_sync(conf, sh, &s);
4431 }
4432
4433 /* Now we check to see if any write operations have recently
4434 * completed
4435 */
4436 prexor = 0;
4437 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4438 prexor = 1;
4439 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4440 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4441 sh->reconstruct_state = reconstruct_state_idle;
4442
4443 /* All the 'written' buffers and the parity block are ready to
4444 * be written back to disk
4445 */
4446 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4447 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4448 BUG_ON(sh->qd_idx >= 0 &&
4449 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4450 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4451 for (i = disks; i--; ) {
4452 struct r5dev *dev = &sh->dev[i];
4453 if (test_bit(R5_LOCKED, &dev->flags) &&
4454 (i == sh->pd_idx || i == sh->qd_idx ||
4455 dev->written || test_bit(R5_InJournal,
4456 &dev->flags))) {
4457 pr_debug("Writing block %d\n", i);
4458 set_bit(R5_Wantwrite, &dev->flags);
4459 if (prexor)
4460 continue;
4461 if (s.failed > 1)
4462 continue;
4463 if (!test_bit(R5_Insync, &dev->flags) ||
4464 ((i == sh->pd_idx || i == sh->qd_idx) &&
4465 s.failed == 0))
4466 set_bit(STRIPE_INSYNC, &sh->state);
4467 }
4468 }
4469 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4470 s.dec_preread_active = 1;
4471 }
4472
4473 /*
4474 * might be able to return some write requests if the parity blocks
4475 * are safe, or on a failed drive
4476 */
4477 pdev = &sh->dev[sh->pd_idx];
4478 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4479 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4480 qdev = &sh->dev[sh->qd_idx];
4481 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4482 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4483 || conf->level < 6;
4484
4485 if (s.written &&
4486 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4487 && !test_bit(R5_LOCKED, &pdev->flags)
4488 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4489 test_bit(R5_Discard, &pdev->flags))))) &&
4490 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4491 && !test_bit(R5_LOCKED, &qdev->flags)
4492 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4493 test_bit(R5_Discard, &qdev->flags))))))
4494 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4495
4496 if (s.just_cached)
4497 r5c_handle_cached_data_endio(conf, sh, disks, &s.return_bi);
4498 r5l_stripe_write_finished(sh);
4499
4500 /* Now we might consider reading some blocks, either to check/generate
4501 * parity, or to satisfy requests
4502 * or to load a block that is being partially written.
4503 */
4504 if (s.to_read || s.non_overwrite
4505 || (conf->level == 6 && s.to_write && s.failed)
4506 || (s.syncing && (s.uptodate + s.compute < disks))
4507 || s.replacing
4508 || s.expanding)
4509 handle_stripe_fill(sh, &s, disks);
4510
4511 /*
4512 * When the stripe finishes full journal write cycle (write to journal
4513 * and raid disk), this is the clean up procedure so it is ready for
4514 * next operation.
4515 */
4516 r5c_finish_stripe_write_out(conf, sh, &s);
4517
4518 /*
4519 * Now to consider new write requests, cache write back and what else,
4520 * if anything should be read. We do not handle new writes when:
4521 * 1/ A 'write' operation (copy+xor) is already in flight.
4522 * 2/ A 'check' operation is in flight, as it may clobber the parity
4523 * block.
4524 * 3/ A r5c cache log write is in flight.
4525 */
4526
4527 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4528 if (!r5c_is_writeback(conf->log)) {
4529 if (s.to_write)
4530 handle_stripe_dirtying(conf, sh, &s, disks);
4531 } else { /* write back cache */
4532 int ret = 0;
4533
4534 /* First, try handle writes in caching phase */
4535 if (s.to_write)
4536 ret = r5c_try_caching_write(conf, sh, &s,
4537 disks);
4538 /*
4539 * If caching phase failed: ret == -EAGAIN
4540 * OR
4541 * stripe under reclaim: !caching && injournal
4542 *
4543 * fall back to handle_stripe_dirtying()
4544 */
4545 if (ret == -EAGAIN ||
4546 /* stripe under reclaim: !caching && injournal */
4547 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4548 s.injournal > 0))
4549 handle_stripe_dirtying(conf, sh, &s, disks);
4550 }
4551 }
4552
4553 /* maybe we need to check and possibly fix the parity for this stripe
4554 * Any reads will already have been scheduled, so we just see if enough
4555 * data is available. The parity check is held off while parity
4556 * dependent operations are in flight.
4557 */
4558 if (sh->check_state ||
4559 (s.syncing && s.locked == 0 &&
4560 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4561 !test_bit(STRIPE_INSYNC, &sh->state))) {
4562 if (conf->level == 6)
4563 handle_parity_checks6(conf, sh, &s, disks);
4564 else
4565 handle_parity_checks5(conf, sh, &s, disks);
4566 }
4567
4568 if ((s.replacing || s.syncing) && s.locked == 0
4569 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4570 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4571 /* Write out to replacement devices where possible */
4572 for (i = 0; i < conf->raid_disks; i++)
4573 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4574 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4575 set_bit(R5_WantReplace, &sh->dev[i].flags);
4576 set_bit(R5_LOCKED, &sh->dev[i].flags);
4577 s.locked++;
4578 }
4579 if (s.replacing)
4580 set_bit(STRIPE_INSYNC, &sh->state);
4581 set_bit(STRIPE_REPLACED, &sh->state);
4582 }
4583 if ((s.syncing || s.replacing) && s.locked == 0 &&
4584 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4585 test_bit(STRIPE_INSYNC, &sh->state)) {
4586 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4587 clear_bit(STRIPE_SYNCING, &sh->state);
4588 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4589 wake_up(&conf->wait_for_overlap);
4590 }
4591
4592 /* If the failed drives are just a ReadError, then we might need
4593 * to progress the repair/check process
4594 */
4595 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4596 for (i = 0; i < s.failed; i++) {
4597 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4598 if (test_bit(R5_ReadError, &dev->flags)
4599 && !test_bit(R5_LOCKED, &dev->flags)
4600 && test_bit(R5_UPTODATE, &dev->flags)
4601 ) {
4602 if (!test_bit(R5_ReWrite, &dev->flags)) {
4603 set_bit(R5_Wantwrite, &dev->flags);
4604 set_bit(R5_ReWrite, &dev->flags);
4605 set_bit(R5_LOCKED, &dev->flags);
4606 s.locked++;
4607 } else {
4608 /* let's read it back */
4609 set_bit(R5_Wantread, &dev->flags);
4610 set_bit(R5_LOCKED, &dev->flags);
4611 s.locked++;
4612 }
4613 }
4614 }
4615
4616 /* Finish reconstruct operations initiated by the expansion process */
4617 if (sh->reconstruct_state == reconstruct_state_result) {
4618 struct stripe_head *sh_src
4619 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4620 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4621 /* sh cannot be written until sh_src has been read.
4622 * so arrange for sh to be delayed a little
4623 */
4624 set_bit(STRIPE_DELAYED, &sh->state);
4625 set_bit(STRIPE_HANDLE, &sh->state);
4626 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4627 &sh_src->state))
4628 atomic_inc(&conf->preread_active_stripes);
4629 raid5_release_stripe(sh_src);
4630 goto finish;
4631 }
4632 if (sh_src)
4633 raid5_release_stripe(sh_src);
4634
4635 sh->reconstruct_state = reconstruct_state_idle;
4636 clear_bit(STRIPE_EXPANDING, &sh->state);
4637 for (i = conf->raid_disks; i--; ) {
4638 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4639 set_bit(R5_LOCKED, &sh->dev[i].flags);
4640 s.locked++;
4641 }
4642 }
4643
4644 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4645 !sh->reconstruct_state) {
4646 /* Need to write out all blocks after computing parity */
4647 sh->disks = conf->raid_disks;
4648 stripe_set_idx(sh->sector, conf, 0, sh);
4649 schedule_reconstruction(sh, &s, 1, 1);
4650 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4651 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4652 atomic_dec(&conf->reshape_stripes);
4653 wake_up(&conf->wait_for_overlap);
4654 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4655 }
4656
4657 if (s.expanding && s.locked == 0 &&
4658 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4659 handle_stripe_expansion(conf, sh);
4660
4661 finish:
4662 /* wait for this device to become unblocked */
4663 if (unlikely(s.blocked_rdev)) {
4664 if (conf->mddev->external)
4665 md_wait_for_blocked_rdev(s.blocked_rdev,
4666 conf->mddev);
4667 else
4668 /* Internal metadata will immediately
4669 * be written by raid5d, so we don't
4670 * need to wait here.
4671 */
4672 rdev_dec_pending(s.blocked_rdev,
4673 conf->mddev);
4674 }
4675
4676 if (s.handle_bad_blocks)
4677 for (i = disks; i--; ) {
4678 struct md_rdev *rdev;
4679 struct r5dev *dev = &sh->dev[i];
4680 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4681 /* We own a safe reference to the rdev */
4682 rdev = conf->disks[i].rdev;
4683 if (!rdev_set_badblocks(rdev, sh->sector,
4684 STRIPE_SECTORS, 0))
4685 md_error(conf->mddev, rdev);
4686 rdev_dec_pending(rdev, conf->mddev);
4687 }
4688 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4689 rdev = conf->disks[i].rdev;
4690 rdev_clear_badblocks(rdev, sh->sector,
4691 STRIPE_SECTORS, 0);
4692 rdev_dec_pending(rdev, conf->mddev);
4693 }
4694 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4695 rdev = conf->disks[i].replacement;
4696 if (!rdev)
4697 /* rdev have been moved down */
4698 rdev = conf->disks[i].rdev;
4699 rdev_clear_badblocks(rdev, sh->sector,
4700 STRIPE_SECTORS, 0);
4701 rdev_dec_pending(rdev, conf->mddev);
4702 }
4703 }
4704
4705 if (s.ops_request)
4706 raid_run_ops(sh, s.ops_request);
4707
4708 ops_run_io(sh, &s);
4709
4710 if (s.dec_preread_active) {
4711 /* We delay this until after ops_run_io so that if make_request
4712 * is waiting on a flush, it won't continue until the writes
4713 * have actually been submitted.
4714 */
4715 atomic_dec(&conf->preread_active_stripes);
4716 if (atomic_read(&conf->preread_active_stripes) <
4717 IO_THRESHOLD)
4718 md_wakeup_thread(conf->mddev->thread);
4719 }
4720
4721 if (!bio_list_empty(&s.return_bi)) {
4722 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4723 spin_lock_irq(&conf->device_lock);
4724 bio_list_merge(&conf->return_bi, &s.return_bi);
4725 spin_unlock_irq(&conf->device_lock);
4726 md_wakeup_thread(conf->mddev->thread);
4727 } else
4728 return_io(&s.return_bi);
4729 }
4730
4731 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4732 }
4733
4734 static void raid5_activate_delayed(struct r5conf *conf)
4735 {
4736 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4737 while (!list_empty(&conf->delayed_list)) {
4738 struct list_head *l = conf->delayed_list.next;
4739 struct stripe_head *sh;
4740 sh = list_entry(l, struct stripe_head, lru);
4741 list_del_init(l);
4742 clear_bit(STRIPE_DELAYED, &sh->state);
4743 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4744 atomic_inc(&conf->preread_active_stripes);
4745 list_add_tail(&sh->lru, &conf->hold_list);
4746 raid5_wakeup_stripe_thread(sh);
4747 }
4748 }
4749 }
4750
4751 static void activate_bit_delay(struct r5conf *conf,
4752 struct list_head *temp_inactive_list)
4753 {
4754 /* device_lock is held */
4755 struct list_head head;
4756 list_add(&head, &conf->bitmap_list);
4757 list_del_init(&conf->bitmap_list);
4758 while (!list_empty(&head)) {
4759 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4760 int hash;
4761 list_del_init(&sh->lru);
4762 atomic_inc(&sh->count);
4763 hash = sh->hash_lock_index;
4764 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4765 }
4766 }
4767
4768 static int raid5_congested(struct mddev *mddev, int bits)
4769 {
4770 struct r5conf *conf = mddev->private;
4771
4772 /* No difference between reads and writes. Just check
4773 * how busy the stripe_cache is
4774 */
4775
4776 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4777 return 1;
4778
4779 /* Also checks whether there is pressure on r5cache log space */
4780 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
4781 return 1;
4782 if (conf->quiesce)
4783 return 1;
4784 if (atomic_read(&conf->empty_inactive_list_nr))
4785 return 1;
4786
4787 return 0;
4788 }
4789
4790 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4791 {
4792 struct r5conf *conf = mddev->private;
4793 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4794 unsigned int chunk_sectors;
4795 unsigned int bio_sectors = bio_sectors(bio);
4796
4797 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4798 return chunk_sectors >=
4799 ((sector & (chunk_sectors - 1)) + bio_sectors);
4800 }
4801
4802 /*
4803 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4804 * later sampled by raid5d.
4805 */
4806 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4807 {
4808 unsigned long flags;
4809
4810 spin_lock_irqsave(&conf->device_lock, flags);
4811
4812 bi->bi_next = conf->retry_read_aligned_list;
4813 conf->retry_read_aligned_list = bi;
4814
4815 spin_unlock_irqrestore(&conf->device_lock, flags);
4816 md_wakeup_thread(conf->mddev->thread);
4817 }
4818
4819 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4820 {
4821 struct bio *bi;
4822
4823 bi = conf->retry_read_aligned;
4824 if (bi) {
4825 conf->retry_read_aligned = NULL;
4826 return bi;
4827 }
4828 bi = conf->retry_read_aligned_list;
4829 if(bi) {
4830 conf->retry_read_aligned_list = bi->bi_next;
4831 bi->bi_next = NULL;
4832 /*
4833 * this sets the active strip count to 1 and the processed
4834 * strip count to zero (upper 8 bits)
4835 */
4836 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4837 }
4838
4839 return bi;
4840 }
4841
4842 /*
4843 * The "raid5_align_endio" should check if the read succeeded and if it
4844 * did, call bio_endio on the original bio (having bio_put the new bio
4845 * first).
4846 * If the read failed..
4847 */
4848 static void raid5_align_endio(struct bio *bi)
4849 {
4850 struct bio* raid_bi = bi->bi_private;
4851 struct mddev *mddev;
4852 struct r5conf *conf;
4853 struct md_rdev *rdev;
4854 int error = bi->bi_error;
4855
4856 bio_put(bi);
4857
4858 rdev = (void*)raid_bi->bi_next;
4859 raid_bi->bi_next = NULL;
4860 mddev = rdev->mddev;
4861 conf = mddev->private;
4862
4863 rdev_dec_pending(rdev, conf->mddev);
4864
4865 if (!error) {
4866 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4867 raid_bi, 0);
4868 bio_endio(raid_bi);
4869 if (atomic_dec_and_test(&conf->active_aligned_reads))
4870 wake_up(&conf->wait_for_quiescent);
4871 return;
4872 }
4873
4874 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4875
4876 add_bio_to_retry(raid_bi, conf);
4877 }
4878
4879 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4880 {
4881 struct r5conf *conf = mddev->private;
4882 int dd_idx;
4883 struct bio* align_bi;
4884 struct md_rdev *rdev;
4885 sector_t end_sector;
4886
4887 if (!in_chunk_boundary(mddev, raid_bio)) {
4888 pr_debug("%s: non aligned\n", __func__);
4889 return 0;
4890 }
4891 /*
4892 * use bio_clone_mddev to make a copy of the bio
4893 */
4894 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4895 if (!align_bi)
4896 return 0;
4897 /*
4898 * set bi_end_io to a new function, and set bi_private to the
4899 * original bio.
4900 */
4901 align_bi->bi_end_io = raid5_align_endio;
4902 align_bi->bi_private = raid_bio;
4903 /*
4904 * compute position
4905 */
4906 align_bi->bi_iter.bi_sector =
4907 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4908 0, &dd_idx, NULL);
4909
4910 end_sector = bio_end_sector(align_bi);
4911 rcu_read_lock();
4912 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4913 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4914 rdev->recovery_offset < end_sector) {
4915 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4916 if (rdev &&
4917 (test_bit(Faulty, &rdev->flags) ||
4918 !(test_bit(In_sync, &rdev->flags) ||
4919 rdev->recovery_offset >= end_sector)))
4920 rdev = NULL;
4921 }
4922 if (rdev) {
4923 sector_t first_bad;
4924 int bad_sectors;
4925
4926 atomic_inc(&rdev->nr_pending);
4927 rcu_read_unlock();
4928 raid_bio->bi_next = (void*)rdev;
4929 align_bi->bi_bdev = rdev->bdev;
4930 bio_clear_flag(align_bi, BIO_SEG_VALID);
4931
4932 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4933 bio_sectors(align_bi),
4934 &first_bad, &bad_sectors)) {
4935 bio_put(align_bi);
4936 rdev_dec_pending(rdev, mddev);
4937 return 0;
4938 }
4939
4940 /* No reshape active, so we can trust rdev->data_offset */
4941 align_bi->bi_iter.bi_sector += rdev->data_offset;
4942
4943 spin_lock_irq(&conf->device_lock);
4944 wait_event_lock_irq(conf->wait_for_quiescent,
4945 conf->quiesce == 0,
4946 conf->device_lock);
4947 atomic_inc(&conf->active_aligned_reads);
4948 spin_unlock_irq(&conf->device_lock);
4949
4950 if (mddev->gendisk)
4951 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4952 align_bi, disk_devt(mddev->gendisk),
4953 raid_bio->bi_iter.bi_sector);
4954 generic_make_request(align_bi);
4955 return 1;
4956 } else {
4957 rcu_read_unlock();
4958 bio_put(align_bi);
4959 return 0;
4960 }
4961 }
4962
4963 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4964 {
4965 struct bio *split;
4966
4967 do {
4968 sector_t sector = raid_bio->bi_iter.bi_sector;
4969 unsigned chunk_sects = mddev->chunk_sectors;
4970 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4971
4972 if (sectors < bio_sectors(raid_bio)) {
4973 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4974 bio_chain(split, raid_bio);
4975 } else
4976 split = raid_bio;
4977
4978 if (!raid5_read_one_chunk(mddev, split)) {
4979 if (split != raid_bio)
4980 generic_make_request(raid_bio);
4981 return split;
4982 }
4983 } while (split != raid_bio);
4984
4985 return NULL;
4986 }
4987
4988 /* __get_priority_stripe - get the next stripe to process
4989 *
4990 * Full stripe writes are allowed to pass preread active stripes up until
4991 * the bypass_threshold is exceeded. In general the bypass_count
4992 * increments when the handle_list is handled before the hold_list; however, it
4993 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4994 * stripe with in flight i/o. The bypass_count will be reset when the
4995 * head of the hold_list has changed, i.e. the head was promoted to the
4996 * handle_list.
4997 */
4998 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4999 {
5000 struct stripe_head *sh = NULL, *tmp;
5001 struct list_head *handle_list = NULL;
5002 struct r5worker_group *wg = NULL;
5003
5004 if (conf->worker_cnt_per_group == 0) {
5005 handle_list = &conf->handle_list;
5006 } else if (group != ANY_GROUP) {
5007 handle_list = &conf->worker_groups[group].handle_list;
5008 wg = &conf->worker_groups[group];
5009 } else {
5010 int i;
5011 for (i = 0; i < conf->group_cnt; i++) {
5012 handle_list = &conf->worker_groups[i].handle_list;
5013 wg = &conf->worker_groups[i];
5014 if (!list_empty(handle_list))
5015 break;
5016 }
5017 }
5018
5019 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5020 __func__,
5021 list_empty(handle_list) ? "empty" : "busy",
5022 list_empty(&conf->hold_list) ? "empty" : "busy",
5023 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5024
5025 if (!list_empty(handle_list)) {
5026 sh = list_entry(handle_list->next, typeof(*sh), lru);
5027
5028 if (list_empty(&conf->hold_list))
5029 conf->bypass_count = 0;
5030 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5031 if (conf->hold_list.next == conf->last_hold)
5032 conf->bypass_count++;
5033 else {
5034 conf->last_hold = conf->hold_list.next;
5035 conf->bypass_count -= conf->bypass_threshold;
5036 if (conf->bypass_count < 0)
5037 conf->bypass_count = 0;
5038 }
5039 }
5040 } else if (!list_empty(&conf->hold_list) &&
5041 ((conf->bypass_threshold &&
5042 conf->bypass_count > conf->bypass_threshold) ||
5043 atomic_read(&conf->pending_full_writes) == 0)) {
5044
5045 list_for_each_entry(tmp, &conf->hold_list, lru) {
5046 if (conf->worker_cnt_per_group == 0 ||
5047 group == ANY_GROUP ||
5048 !cpu_online(tmp->cpu) ||
5049 cpu_to_group(tmp->cpu) == group) {
5050 sh = tmp;
5051 break;
5052 }
5053 }
5054
5055 if (sh) {
5056 conf->bypass_count -= conf->bypass_threshold;
5057 if (conf->bypass_count < 0)
5058 conf->bypass_count = 0;
5059 }
5060 wg = NULL;
5061 }
5062
5063 if (!sh)
5064 return NULL;
5065
5066 if (wg) {
5067 wg->stripes_cnt--;
5068 sh->group = NULL;
5069 }
5070 list_del_init(&sh->lru);
5071 BUG_ON(atomic_inc_return(&sh->count) != 1);
5072 return sh;
5073 }
5074
5075 struct raid5_plug_cb {
5076 struct blk_plug_cb cb;
5077 struct list_head list;
5078 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5079 };
5080
5081 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5082 {
5083 struct raid5_plug_cb *cb = container_of(
5084 blk_cb, struct raid5_plug_cb, cb);
5085 struct stripe_head *sh;
5086 struct mddev *mddev = cb->cb.data;
5087 struct r5conf *conf = mddev->private;
5088 int cnt = 0;
5089 int hash;
5090
5091 if (cb->list.next && !list_empty(&cb->list)) {
5092 spin_lock_irq(&conf->device_lock);
5093 while (!list_empty(&cb->list)) {
5094 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5095 list_del_init(&sh->lru);
5096 /*
5097 * avoid race release_stripe_plug() sees
5098 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5099 * is still in our list
5100 */
5101 smp_mb__before_atomic();
5102 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5103 /*
5104 * STRIPE_ON_RELEASE_LIST could be set here. In that
5105 * case, the count is always > 1 here
5106 */
5107 hash = sh->hash_lock_index;
5108 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5109 cnt++;
5110 }
5111 spin_unlock_irq(&conf->device_lock);
5112 }
5113 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5114 NR_STRIPE_HASH_LOCKS);
5115 if (mddev->queue)
5116 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5117 kfree(cb);
5118 }
5119
5120 static void release_stripe_plug(struct mddev *mddev,
5121 struct stripe_head *sh)
5122 {
5123 struct blk_plug_cb *blk_cb = blk_check_plugged(
5124 raid5_unplug, mddev,
5125 sizeof(struct raid5_plug_cb));
5126 struct raid5_plug_cb *cb;
5127
5128 if (!blk_cb) {
5129 raid5_release_stripe(sh);
5130 return;
5131 }
5132
5133 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5134
5135 if (cb->list.next == NULL) {
5136 int i;
5137 INIT_LIST_HEAD(&cb->list);
5138 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5139 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5140 }
5141
5142 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5143 list_add_tail(&sh->lru, &cb->list);
5144 else
5145 raid5_release_stripe(sh);
5146 }
5147
5148 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5149 {
5150 struct r5conf *conf = mddev->private;
5151 sector_t logical_sector, last_sector;
5152 struct stripe_head *sh;
5153 int remaining;
5154 int stripe_sectors;
5155
5156 if (mddev->reshape_position != MaxSector)
5157 /* Skip discard while reshape is happening */
5158 return;
5159
5160 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5161 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5162
5163 bi->bi_next = NULL;
5164 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5165
5166 stripe_sectors = conf->chunk_sectors *
5167 (conf->raid_disks - conf->max_degraded);
5168 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5169 stripe_sectors);
5170 sector_div(last_sector, stripe_sectors);
5171
5172 logical_sector *= conf->chunk_sectors;
5173 last_sector *= conf->chunk_sectors;
5174
5175 for (; logical_sector < last_sector;
5176 logical_sector += STRIPE_SECTORS) {
5177 DEFINE_WAIT(w);
5178 int d;
5179 again:
5180 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5181 prepare_to_wait(&conf->wait_for_overlap, &w,
5182 TASK_UNINTERRUPTIBLE);
5183 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5184 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5185 raid5_release_stripe(sh);
5186 schedule();
5187 goto again;
5188 }
5189 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5190 spin_lock_irq(&sh->stripe_lock);
5191 for (d = 0; d < conf->raid_disks; d++) {
5192 if (d == sh->pd_idx || d == sh->qd_idx)
5193 continue;
5194 if (sh->dev[d].towrite || sh->dev[d].toread) {
5195 set_bit(R5_Overlap, &sh->dev[d].flags);
5196 spin_unlock_irq(&sh->stripe_lock);
5197 raid5_release_stripe(sh);
5198 schedule();
5199 goto again;
5200 }
5201 }
5202 set_bit(STRIPE_DISCARD, &sh->state);
5203 finish_wait(&conf->wait_for_overlap, &w);
5204 sh->overwrite_disks = 0;
5205 for (d = 0; d < conf->raid_disks; d++) {
5206 if (d == sh->pd_idx || d == sh->qd_idx)
5207 continue;
5208 sh->dev[d].towrite = bi;
5209 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5210 raid5_inc_bi_active_stripes(bi);
5211 sh->overwrite_disks++;
5212 }
5213 spin_unlock_irq(&sh->stripe_lock);
5214 if (conf->mddev->bitmap) {
5215 for (d = 0;
5216 d < conf->raid_disks - conf->max_degraded;
5217 d++)
5218 bitmap_startwrite(mddev->bitmap,
5219 sh->sector,
5220 STRIPE_SECTORS,
5221 0);
5222 sh->bm_seq = conf->seq_flush + 1;
5223 set_bit(STRIPE_BIT_DELAY, &sh->state);
5224 }
5225
5226 set_bit(STRIPE_HANDLE, &sh->state);
5227 clear_bit(STRIPE_DELAYED, &sh->state);
5228 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5229 atomic_inc(&conf->preread_active_stripes);
5230 release_stripe_plug(mddev, sh);
5231 }
5232
5233 remaining = raid5_dec_bi_active_stripes(bi);
5234 if (remaining == 0) {
5235 md_write_end(mddev);
5236 bio_endio(bi);
5237 }
5238 }
5239
5240 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5241 {
5242 struct r5conf *conf = mddev->private;
5243 int dd_idx;
5244 sector_t new_sector;
5245 sector_t logical_sector, last_sector;
5246 struct stripe_head *sh;
5247 const int rw = bio_data_dir(bi);
5248 int remaining;
5249 DEFINE_WAIT(w);
5250 bool do_prepare;
5251
5252 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5253 int ret = r5l_handle_flush_request(conf->log, bi);
5254
5255 if (ret == 0)
5256 return;
5257 if (ret == -ENODEV) {
5258 md_flush_request(mddev, bi);
5259 return;
5260 }
5261 /* ret == -EAGAIN, fallback */
5262 }
5263
5264 md_write_start(mddev, bi);
5265
5266 /*
5267 * If array is degraded, better not do chunk aligned read because
5268 * later we might have to read it again in order to reconstruct
5269 * data on failed drives.
5270 */
5271 if (rw == READ && mddev->degraded == 0 &&
5272 !r5c_is_writeback(conf->log) &&
5273 mddev->reshape_position == MaxSector) {
5274 bi = chunk_aligned_read(mddev, bi);
5275 if (!bi)
5276 return;
5277 }
5278
5279 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5280 make_discard_request(mddev, bi);
5281 return;
5282 }
5283
5284 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5285 last_sector = bio_end_sector(bi);
5286 bi->bi_next = NULL;
5287 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5288
5289 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5290 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5291 int previous;
5292 int seq;
5293
5294 do_prepare = false;
5295 retry:
5296 seq = read_seqcount_begin(&conf->gen_lock);
5297 previous = 0;
5298 if (do_prepare)
5299 prepare_to_wait(&conf->wait_for_overlap, &w,
5300 TASK_UNINTERRUPTIBLE);
5301 if (unlikely(conf->reshape_progress != MaxSector)) {
5302 /* spinlock is needed as reshape_progress may be
5303 * 64bit on a 32bit platform, and so it might be
5304 * possible to see a half-updated value
5305 * Of course reshape_progress could change after
5306 * the lock is dropped, so once we get a reference
5307 * to the stripe that we think it is, we will have
5308 * to check again.
5309 */
5310 spin_lock_irq(&conf->device_lock);
5311 if (mddev->reshape_backwards
5312 ? logical_sector < conf->reshape_progress
5313 : logical_sector >= conf->reshape_progress) {
5314 previous = 1;
5315 } else {
5316 if (mddev->reshape_backwards
5317 ? logical_sector < conf->reshape_safe
5318 : logical_sector >= conf->reshape_safe) {
5319 spin_unlock_irq(&conf->device_lock);
5320 schedule();
5321 do_prepare = true;
5322 goto retry;
5323 }
5324 }
5325 spin_unlock_irq(&conf->device_lock);
5326 }
5327
5328 new_sector = raid5_compute_sector(conf, logical_sector,
5329 previous,
5330 &dd_idx, NULL);
5331 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5332 (unsigned long long)new_sector,
5333 (unsigned long long)logical_sector);
5334
5335 sh = raid5_get_active_stripe(conf, new_sector, previous,
5336 (bi->bi_opf & REQ_RAHEAD), 0);
5337 if (sh) {
5338 if (unlikely(previous)) {
5339 /* expansion might have moved on while waiting for a
5340 * stripe, so we must do the range check again.
5341 * Expansion could still move past after this
5342 * test, but as we are holding a reference to
5343 * 'sh', we know that if that happens,
5344 * STRIPE_EXPANDING will get set and the expansion
5345 * won't proceed until we finish with the stripe.
5346 */
5347 int must_retry = 0;
5348 spin_lock_irq(&conf->device_lock);
5349 if (mddev->reshape_backwards
5350 ? logical_sector >= conf->reshape_progress
5351 : logical_sector < conf->reshape_progress)
5352 /* mismatch, need to try again */
5353 must_retry = 1;
5354 spin_unlock_irq(&conf->device_lock);
5355 if (must_retry) {
5356 raid5_release_stripe(sh);
5357 schedule();
5358 do_prepare = true;
5359 goto retry;
5360 }
5361 }
5362 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5363 /* Might have got the wrong stripe_head
5364 * by accident
5365 */
5366 raid5_release_stripe(sh);
5367 goto retry;
5368 }
5369
5370 if (rw == WRITE &&
5371 logical_sector >= mddev->suspend_lo &&
5372 logical_sector < mddev->suspend_hi) {
5373 raid5_release_stripe(sh);
5374 /* As the suspend_* range is controlled by
5375 * userspace, we want an interruptible
5376 * wait.
5377 */
5378 flush_signals(current);
5379 prepare_to_wait(&conf->wait_for_overlap,
5380 &w, TASK_INTERRUPTIBLE);
5381 if (logical_sector >= mddev->suspend_lo &&
5382 logical_sector < mddev->suspend_hi) {
5383 schedule();
5384 do_prepare = true;
5385 }
5386 goto retry;
5387 }
5388
5389 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5390 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5391 /* Stripe is busy expanding or
5392 * add failed due to overlap. Flush everything
5393 * and wait a while
5394 */
5395 md_wakeup_thread(mddev->thread);
5396 raid5_release_stripe(sh);
5397 schedule();
5398 do_prepare = true;
5399 goto retry;
5400 }
5401 set_bit(STRIPE_HANDLE, &sh->state);
5402 clear_bit(STRIPE_DELAYED, &sh->state);
5403 if ((!sh->batch_head || sh == sh->batch_head) &&
5404 (bi->bi_opf & REQ_SYNC) &&
5405 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5406 atomic_inc(&conf->preread_active_stripes);
5407 release_stripe_plug(mddev, sh);
5408 } else {
5409 /* cannot get stripe for read-ahead, just give-up */
5410 bi->bi_error = -EIO;
5411 break;
5412 }
5413 }
5414 finish_wait(&conf->wait_for_overlap, &w);
5415
5416 remaining = raid5_dec_bi_active_stripes(bi);
5417 if (remaining == 0) {
5418
5419 if ( rw == WRITE )
5420 md_write_end(mddev);
5421
5422 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5423 bi, 0);
5424 bio_endio(bi);
5425 }
5426 }
5427
5428 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5429
5430 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5431 {
5432 /* reshaping is quite different to recovery/resync so it is
5433 * handled quite separately ... here.
5434 *
5435 * On each call to sync_request, we gather one chunk worth of
5436 * destination stripes and flag them as expanding.
5437 * Then we find all the source stripes and request reads.
5438 * As the reads complete, handle_stripe will copy the data
5439 * into the destination stripe and release that stripe.
5440 */
5441 struct r5conf *conf = mddev->private;
5442 struct stripe_head *sh;
5443 sector_t first_sector, last_sector;
5444 int raid_disks = conf->previous_raid_disks;
5445 int data_disks = raid_disks - conf->max_degraded;
5446 int new_data_disks = conf->raid_disks - conf->max_degraded;
5447 int i;
5448 int dd_idx;
5449 sector_t writepos, readpos, safepos;
5450 sector_t stripe_addr;
5451 int reshape_sectors;
5452 struct list_head stripes;
5453 sector_t retn;
5454
5455 if (sector_nr == 0) {
5456 /* If restarting in the middle, skip the initial sectors */
5457 if (mddev->reshape_backwards &&
5458 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5459 sector_nr = raid5_size(mddev, 0, 0)
5460 - conf->reshape_progress;
5461 } else if (mddev->reshape_backwards &&
5462 conf->reshape_progress == MaxSector) {
5463 /* shouldn't happen, but just in case, finish up.*/
5464 sector_nr = MaxSector;
5465 } else if (!mddev->reshape_backwards &&
5466 conf->reshape_progress > 0)
5467 sector_nr = conf->reshape_progress;
5468 sector_div(sector_nr, new_data_disks);
5469 if (sector_nr) {
5470 mddev->curr_resync_completed = sector_nr;
5471 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5472 *skipped = 1;
5473 retn = sector_nr;
5474 goto finish;
5475 }
5476 }
5477
5478 /* We need to process a full chunk at a time.
5479 * If old and new chunk sizes differ, we need to process the
5480 * largest of these
5481 */
5482
5483 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5484
5485 /* We update the metadata at least every 10 seconds, or when
5486 * the data about to be copied would over-write the source of
5487 * the data at the front of the range. i.e. one new_stripe
5488 * along from reshape_progress new_maps to after where
5489 * reshape_safe old_maps to
5490 */
5491 writepos = conf->reshape_progress;
5492 sector_div(writepos, new_data_disks);
5493 readpos = conf->reshape_progress;
5494 sector_div(readpos, data_disks);
5495 safepos = conf->reshape_safe;
5496 sector_div(safepos, data_disks);
5497 if (mddev->reshape_backwards) {
5498 BUG_ON(writepos < reshape_sectors);
5499 writepos -= reshape_sectors;
5500 readpos += reshape_sectors;
5501 safepos += reshape_sectors;
5502 } else {
5503 writepos += reshape_sectors;
5504 /* readpos and safepos are worst-case calculations.
5505 * A negative number is overly pessimistic, and causes
5506 * obvious problems for unsigned storage. So clip to 0.
5507 */
5508 readpos -= min_t(sector_t, reshape_sectors, readpos);
5509 safepos -= min_t(sector_t, reshape_sectors, safepos);
5510 }
5511
5512 /* Having calculated the 'writepos' possibly use it
5513 * to set 'stripe_addr' which is where we will write to.
5514 */
5515 if (mddev->reshape_backwards) {
5516 BUG_ON(conf->reshape_progress == 0);
5517 stripe_addr = writepos;
5518 BUG_ON((mddev->dev_sectors &
5519 ~((sector_t)reshape_sectors - 1))
5520 - reshape_sectors - stripe_addr
5521 != sector_nr);
5522 } else {
5523 BUG_ON(writepos != sector_nr + reshape_sectors);
5524 stripe_addr = sector_nr;
5525 }
5526
5527 /* 'writepos' is the most advanced device address we might write.
5528 * 'readpos' is the least advanced device address we might read.
5529 * 'safepos' is the least address recorded in the metadata as having
5530 * been reshaped.
5531 * If there is a min_offset_diff, these are adjusted either by
5532 * increasing the safepos/readpos if diff is negative, or
5533 * increasing writepos if diff is positive.
5534 * If 'readpos' is then behind 'writepos', there is no way that we can
5535 * ensure safety in the face of a crash - that must be done by userspace
5536 * making a backup of the data. So in that case there is no particular
5537 * rush to update metadata.
5538 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5539 * update the metadata to advance 'safepos' to match 'readpos' so that
5540 * we can be safe in the event of a crash.
5541 * So we insist on updating metadata if safepos is behind writepos and
5542 * readpos is beyond writepos.
5543 * In any case, update the metadata every 10 seconds.
5544 * Maybe that number should be configurable, but I'm not sure it is
5545 * worth it.... maybe it could be a multiple of safemode_delay???
5546 */
5547 if (conf->min_offset_diff < 0) {
5548 safepos += -conf->min_offset_diff;
5549 readpos += -conf->min_offset_diff;
5550 } else
5551 writepos += conf->min_offset_diff;
5552
5553 if ((mddev->reshape_backwards
5554 ? (safepos > writepos && readpos < writepos)
5555 : (safepos < writepos && readpos > writepos)) ||
5556 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5557 /* Cannot proceed until we've updated the superblock... */
5558 wait_event(conf->wait_for_overlap,
5559 atomic_read(&conf->reshape_stripes)==0
5560 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5561 if (atomic_read(&conf->reshape_stripes) != 0)
5562 return 0;
5563 mddev->reshape_position = conf->reshape_progress;
5564 mddev->curr_resync_completed = sector_nr;
5565 conf->reshape_checkpoint = jiffies;
5566 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5567 md_wakeup_thread(mddev->thread);
5568 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5569 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5570 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5571 return 0;
5572 spin_lock_irq(&conf->device_lock);
5573 conf->reshape_safe = mddev->reshape_position;
5574 spin_unlock_irq(&conf->device_lock);
5575 wake_up(&conf->wait_for_overlap);
5576 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5577 }
5578
5579 INIT_LIST_HEAD(&stripes);
5580 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5581 int j;
5582 int skipped_disk = 0;
5583 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5584 set_bit(STRIPE_EXPANDING, &sh->state);
5585 atomic_inc(&conf->reshape_stripes);
5586 /* If any of this stripe is beyond the end of the old
5587 * array, then we need to zero those blocks
5588 */
5589 for (j=sh->disks; j--;) {
5590 sector_t s;
5591 if (j == sh->pd_idx)
5592 continue;
5593 if (conf->level == 6 &&
5594 j == sh->qd_idx)
5595 continue;
5596 s = raid5_compute_blocknr(sh, j, 0);
5597 if (s < raid5_size(mddev, 0, 0)) {
5598 skipped_disk = 1;
5599 continue;
5600 }
5601 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5602 set_bit(R5_Expanded, &sh->dev[j].flags);
5603 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5604 }
5605 if (!skipped_disk) {
5606 set_bit(STRIPE_EXPAND_READY, &sh->state);
5607 set_bit(STRIPE_HANDLE, &sh->state);
5608 }
5609 list_add(&sh->lru, &stripes);
5610 }
5611 spin_lock_irq(&conf->device_lock);
5612 if (mddev->reshape_backwards)
5613 conf->reshape_progress -= reshape_sectors * new_data_disks;
5614 else
5615 conf->reshape_progress += reshape_sectors * new_data_disks;
5616 spin_unlock_irq(&conf->device_lock);
5617 /* Ok, those stripe are ready. We can start scheduling
5618 * reads on the source stripes.
5619 * The source stripes are determined by mapping the first and last
5620 * block on the destination stripes.
5621 */
5622 first_sector =
5623 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5624 1, &dd_idx, NULL);
5625 last_sector =
5626 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5627 * new_data_disks - 1),
5628 1, &dd_idx, NULL);
5629 if (last_sector >= mddev->dev_sectors)
5630 last_sector = mddev->dev_sectors - 1;
5631 while (first_sector <= last_sector) {
5632 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5633 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5634 set_bit(STRIPE_HANDLE, &sh->state);
5635 raid5_release_stripe(sh);
5636 first_sector += STRIPE_SECTORS;
5637 }
5638 /* Now that the sources are clearly marked, we can release
5639 * the destination stripes
5640 */
5641 while (!list_empty(&stripes)) {
5642 sh = list_entry(stripes.next, struct stripe_head, lru);
5643 list_del_init(&sh->lru);
5644 raid5_release_stripe(sh);
5645 }
5646 /* If this takes us to the resync_max point where we have to pause,
5647 * then we need to write out the superblock.
5648 */
5649 sector_nr += reshape_sectors;
5650 retn = reshape_sectors;
5651 finish:
5652 if (mddev->curr_resync_completed > mddev->resync_max ||
5653 (sector_nr - mddev->curr_resync_completed) * 2
5654 >= mddev->resync_max - mddev->curr_resync_completed) {
5655 /* Cannot proceed until we've updated the superblock... */
5656 wait_event(conf->wait_for_overlap,
5657 atomic_read(&conf->reshape_stripes) == 0
5658 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5659 if (atomic_read(&conf->reshape_stripes) != 0)
5660 goto ret;
5661 mddev->reshape_position = conf->reshape_progress;
5662 mddev->curr_resync_completed = sector_nr;
5663 conf->reshape_checkpoint = jiffies;
5664 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5665 md_wakeup_thread(mddev->thread);
5666 wait_event(mddev->sb_wait,
5667 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5668 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5669 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5670 goto ret;
5671 spin_lock_irq(&conf->device_lock);
5672 conf->reshape_safe = mddev->reshape_position;
5673 spin_unlock_irq(&conf->device_lock);
5674 wake_up(&conf->wait_for_overlap);
5675 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5676 }
5677 ret:
5678 return retn;
5679 }
5680
5681 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5682 int *skipped)
5683 {
5684 struct r5conf *conf = mddev->private;
5685 struct stripe_head *sh;
5686 sector_t max_sector = mddev->dev_sectors;
5687 sector_t sync_blocks;
5688 int still_degraded = 0;
5689 int i;
5690
5691 if (sector_nr >= max_sector) {
5692 /* just being told to finish up .. nothing much to do */
5693
5694 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5695 end_reshape(conf);
5696 return 0;
5697 }
5698
5699 if (mddev->curr_resync < max_sector) /* aborted */
5700 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5701 &sync_blocks, 1);
5702 else /* completed sync */
5703 conf->fullsync = 0;
5704 bitmap_close_sync(mddev->bitmap);
5705
5706 return 0;
5707 }
5708
5709 /* Allow raid5_quiesce to complete */
5710 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5711
5712 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5713 return reshape_request(mddev, sector_nr, skipped);
5714
5715 /* No need to check resync_max as we never do more than one
5716 * stripe, and as resync_max will always be on a chunk boundary,
5717 * if the check in md_do_sync didn't fire, there is no chance
5718 * of overstepping resync_max here
5719 */
5720
5721 /* if there is too many failed drives and we are trying
5722 * to resync, then assert that we are finished, because there is
5723 * nothing we can do.
5724 */
5725 if (mddev->degraded >= conf->max_degraded &&
5726 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5727 sector_t rv = mddev->dev_sectors - sector_nr;
5728 *skipped = 1;
5729 return rv;
5730 }
5731 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5732 !conf->fullsync &&
5733 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5734 sync_blocks >= STRIPE_SECTORS) {
5735 /* we can skip this block, and probably more */
5736 sync_blocks /= STRIPE_SECTORS;
5737 *skipped = 1;
5738 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5739 }
5740
5741 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5742
5743 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5744 if (sh == NULL) {
5745 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5746 /* make sure we don't swamp the stripe cache if someone else
5747 * is trying to get access
5748 */
5749 schedule_timeout_uninterruptible(1);
5750 }
5751 /* Need to check if array will still be degraded after recovery/resync
5752 * Note in case of > 1 drive failures it's possible we're rebuilding
5753 * one drive while leaving another faulty drive in array.
5754 */
5755 rcu_read_lock();
5756 for (i = 0; i < conf->raid_disks; i++) {
5757 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5758
5759 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5760 still_degraded = 1;
5761 }
5762 rcu_read_unlock();
5763
5764 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5765
5766 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5767 set_bit(STRIPE_HANDLE, &sh->state);
5768
5769 raid5_release_stripe(sh);
5770
5771 return STRIPE_SECTORS;
5772 }
5773
5774 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5775 {
5776 /* We may not be able to submit a whole bio at once as there
5777 * may not be enough stripe_heads available.
5778 * We cannot pre-allocate enough stripe_heads as we may need
5779 * more than exist in the cache (if we allow ever large chunks).
5780 * So we do one stripe head at a time and record in
5781 * ->bi_hw_segments how many have been done.
5782 *
5783 * We *know* that this entire raid_bio is in one chunk, so
5784 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5785 */
5786 struct stripe_head *sh;
5787 int dd_idx;
5788 sector_t sector, logical_sector, last_sector;
5789 int scnt = 0;
5790 int remaining;
5791 int handled = 0;
5792
5793 logical_sector = raid_bio->bi_iter.bi_sector &
5794 ~((sector_t)STRIPE_SECTORS-1);
5795 sector = raid5_compute_sector(conf, logical_sector,
5796 0, &dd_idx, NULL);
5797 last_sector = bio_end_sector(raid_bio);
5798
5799 for (; logical_sector < last_sector;
5800 logical_sector += STRIPE_SECTORS,
5801 sector += STRIPE_SECTORS,
5802 scnt++) {
5803
5804 if (scnt < raid5_bi_processed_stripes(raid_bio))
5805 /* already done this stripe */
5806 continue;
5807
5808 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5809
5810 if (!sh) {
5811 /* failed to get a stripe - must wait */
5812 raid5_set_bi_processed_stripes(raid_bio, scnt);
5813 conf->retry_read_aligned = raid_bio;
5814 return handled;
5815 }
5816
5817 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5818 raid5_release_stripe(sh);
5819 raid5_set_bi_processed_stripes(raid_bio, scnt);
5820 conf->retry_read_aligned = raid_bio;
5821 return handled;
5822 }
5823
5824 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5825 handle_stripe(sh);
5826 raid5_release_stripe(sh);
5827 handled++;
5828 }
5829 remaining = raid5_dec_bi_active_stripes(raid_bio);
5830 if (remaining == 0) {
5831 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5832 raid_bio, 0);
5833 bio_endio(raid_bio);
5834 }
5835 if (atomic_dec_and_test(&conf->active_aligned_reads))
5836 wake_up(&conf->wait_for_quiescent);
5837 return handled;
5838 }
5839
5840 static int handle_active_stripes(struct r5conf *conf, int group,
5841 struct r5worker *worker,
5842 struct list_head *temp_inactive_list)
5843 {
5844 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5845 int i, batch_size = 0, hash;
5846 bool release_inactive = false;
5847
5848 while (batch_size < MAX_STRIPE_BATCH &&
5849 (sh = __get_priority_stripe(conf, group)) != NULL)
5850 batch[batch_size++] = sh;
5851
5852 if (batch_size == 0) {
5853 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5854 if (!list_empty(temp_inactive_list + i))
5855 break;
5856 if (i == NR_STRIPE_HASH_LOCKS) {
5857 spin_unlock_irq(&conf->device_lock);
5858 r5l_flush_stripe_to_raid(conf->log);
5859 spin_lock_irq(&conf->device_lock);
5860 return batch_size;
5861 }
5862 release_inactive = true;
5863 }
5864 spin_unlock_irq(&conf->device_lock);
5865
5866 release_inactive_stripe_list(conf, temp_inactive_list,
5867 NR_STRIPE_HASH_LOCKS);
5868
5869 r5l_flush_stripe_to_raid(conf->log);
5870 if (release_inactive) {
5871 spin_lock_irq(&conf->device_lock);
5872 return 0;
5873 }
5874
5875 for (i = 0; i < batch_size; i++)
5876 handle_stripe(batch[i]);
5877 r5l_write_stripe_run(conf->log);
5878
5879 cond_resched();
5880
5881 spin_lock_irq(&conf->device_lock);
5882 for (i = 0; i < batch_size; i++) {
5883 hash = batch[i]->hash_lock_index;
5884 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5885 }
5886 return batch_size;
5887 }
5888
5889 static void raid5_do_work(struct work_struct *work)
5890 {
5891 struct r5worker *worker = container_of(work, struct r5worker, work);
5892 struct r5worker_group *group = worker->group;
5893 struct r5conf *conf = group->conf;
5894 int group_id = group - conf->worker_groups;
5895 int handled;
5896 struct blk_plug plug;
5897
5898 pr_debug("+++ raid5worker active\n");
5899
5900 blk_start_plug(&plug);
5901 handled = 0;
5902 spin_lock_irq(&conf->device_lock);
5903 while (1) {
5904 int batch_size, released;
5905
5906 released = release_stripe_list(conf, worker->temp_inactive_list);
5907
5908 batch_size = handle_active_stripes(conf, group_id, worker,
5909 worker->temp_inactive_list);
5910 worker->working = false;
5911 if (!batch_size && !released)
5912 break;
5913 handled += batch_size;
5914 }
5915 pr_debug("%d stripes handled\n", handled);
5916
5917 spin_unlock_irq(&conf->device_lock);
5918 blk_finish_plug(&plug);
5919
5920 pr_debug("--- raid5worker inactive\n");
5921 }
5922
5923 /*
5924 * This is our raid5 kernel thread.
5925 *
5926 * We scan the hash table for stripes which can be handled now.
5927 * During the scan, completed stripes are saved for us by the interrupt
5928 * handler, so that they will not have to wait for our next wakeup.
5929 */
5930 static void raid5d(struct md_thread *thread)
5931 {
5932 struct mddev *mddev = thread->mddev;
5933 struct r5conf *conf = mddev->private;
5934 int handled;
5935 struct blk_plug plug;
5936
5937 pr_debug("+++ raid5d active\n");
5938
5939 md_check_recovery(mddev);
5940
5941 if (!bio_list_empty(&conf->return_bi) &&
5942 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5943 struct bio_list tmp = BIO_EMPTY_LIST;
5944 spin_lock_irq(&conf->device_lock);
5945 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5946 bio_list_merge(&tmp, &conf->return_bi);
5947 bio_list_init(&conf->return_bi);
5948 }
5949 spin_unlock_irq(&conf->device_lock);
5950 return_io(&tmp);
5951 }
5952
5953 blk_start_plug(&plug);
5954 handled = 0;
5955 spin_lock_irq(&conf->device_lock);
5956 while (1) {
5957 struct bio *bio;
5958 int batch_size, released;
5959
5960 released = release_stripe_list(conf, conf->temp_inactive_list);
5961 if (released)
5962 clear_bit(R5_DID_ALLOC, &conf->cache_state);
5963
5964 if (
5965 !list_empty(&conf->bitmap_list)) {
5966 /* Now is a good time to flush some bitmap updates */
5967 conf->seq_flush++;
5968 spin_unlock_irq(&conf->device_lock);
5969 bitmap_unplug(mddev->bitmap);
5970 spin_lock_irq(&conf->device_lock);
5971 conf->seq_write = conf->seq_flush;
5972 activate_bit_delay(conf, conf->temp_inactive_list);
5973 }
5974 raid5_activate_delayed(conf);
5975
5976 while ((bio = remove_bio_from_retry(conf))) {
5977 int ok;
5978 spin_unlock_irq(&conf->device_lock);
5979 ok = retry_aligned_read(conf, bio);
5980 spin_lock_irq(&conf->device_lock);
5981 if (!ok)
5982 break;
5983 handled++;
5984 }
5985
5986 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5987 conf->temp_inactive_list);
5988 if (!batch_size && !released)
5989 break;
5990 handled += batch_size;
5991
5992 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5993 spin_unlock_irq(&conf->device_lock);
5994 md_check_recovery(mddev);
5995 spin_lock_irq(&conf->device_lock);
5996 }
5997 }
5998 pr_debug("%d stripes handled\n", handled);
5999
6000 spin_unlock_irq(&conf->device_lock);
6001 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6002 mutex_trylock(&conf->cache_size_mutex)) {
6003 grow_one_stripe(conf, __GFP_NOWARN);
6004 /* Set flag even if allocation failed. This helps
6005 * slow down allocation requests when mem is short
6006 */
6007 set_bit(R5_DID_ALLOC, &conf->cache_state);
6008 mutex_unlock(&conf->cache_size_mutex);
6009 }
6010
6011 r5l_flush_stripe_to_raid(conf->log);
6012
6013 async_tx_issue_pending_all();
6014 blk_finish_plug(&plug);
6015
6016 pr_debug("--- raid5d inactive\n");
6017 }
6018
6019 static ssize_t
6020 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6021 {
6022 struct r5conf *conf;
6023 int ret = 0;
6024 spin_lock(&mddev->lock);
6025 conf = mddev->private;
6026 if (conf)
6027 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6028 spin_unlock(&mddev->lock);
6029 return ret;
6030 }
6031
6032 int
6033 raid5_set_cache_size(struct mddev *mddev, int size)
6034 {
6035 struct r5conf *conf = mddev->private;
6036 int err;
6037
6038 if (size <= 16 || size > 32768)
6039 return -EINVAL;
6040
6041 conf->min_nr_stripes = size;
6042 mutex_lock(&conf->cache_size_mutex);
6043 while (size < conf->max_nr_stripes &&
6044 drop_one_stripe(conf))
6045 ;
6046 mutex_unlock(&conf->cache_size_mutex);
6047
6048
6049 err = md_allow_write(mddev);
6050 if (err)
6051 return err;
6052
6053 mutex_lock(&conf->cache_size_mutex);
6054 while (size > conf->max_nr_stripes)
6055 if (!grow_one_stripe(conf, GFP_KERNEL))
6056 break;
6057 mutex_unlock(&conf->cache_size_mutex);
6058
6059 return 0;
6060 }
6061 EXPORT_SYMBOL(raid5_set_cache_size);
6062
6063 static ssize_t
6064 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6065 {
6066 struct r5conf *conf;
6067 unsigned long new;
6068 int err;
6069
6070 if (len >= PAGE_SIZE)
6071 return -EINVAL;
6072 if (kstrtoul(page, 10, &new))
6073 return -EINVAL;
6074 err = mddev_lock(mddev);
6075 if (err)
6076 return err;
6077 conf = mddev->private;
6078 if (!conf)
6079 err = -ENODEV;
6080 else
6081 err = raid5_set_cache_size(mddev, new);
6082 mddev_unlock(mddev);
6083
6084 return err ?: len;
6085 }
6086
6087 static struct md_sysfs_entry
6088 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6089 raid5_show_stripe_cache_size,
6090 raid5_store_stripe_cache_size);
6091
6092 static ssize_t
6093 raid5_show_rmw_level(struct mddev *mddev, char *page)
6094 {
6095 struct r5conf *conf = mddev->private;
6096 if (conf)
6097 return sprintf(page, "%d\n", conf->rmw_level);
6098 else
6099 return 0;
6100 }
6101
6102 static ssize_t
6103 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6104 {
6105 struct r5conf *conf = mddev->private;
6106 unsigned long new;
6107
6108 if (!conf)
6109 return -ENODEV;
6110
6111 if (len >= PAGE_SIZE)
6112 return -EINVAL;
6113
6114 if (kstrtoul(page, 10, &new))
6115 return -EINVAL;
6116
6117 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6118 return -EINVAL;
6119
6120 if (new != PARITY_DISABLE_RMW &&
6121 new != PARITY_ENABLE_RMW &&
6122 new != PARITY_PREFER_RMW)
6123 return -EINVAL;
6124
6125 conf->rmw_level = new;
6126 return len;
6127 }
6128
6129 static struct md_sysfs_entry
6130 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6131 raid5_show_rmw_level,
6132 raid5_store_rmw_level);
6133
6134
6135 static ssize_t
6136 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6137 {
6138 struct r5conf *conf;
6139 int ret = 0;
6140 spin_lock(&mddev->lock);
6141 conf = mddev->private;
6142 if (conf)
6143 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6144 spin_unlock(&mddev->lock);
6145 return ret;
6146 }
6147
6148 static ssize_t
6149 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6150 {
6151 struct r5conf *conf;
6152 unsigned long new;
6153 int err;
6154
6155 if (len >= PAGE_SIZE)
6156 return -EINVAL;
6157 if (kstrtoul(page, 10, &new))
6158 return -EINVAL;
6159
6160 err = mddev_lock(mddev);
6161 if (err)
6162 return err;
6163 conf = mddev->private;
6164 if (!conf)
6165 err = -ENODEV;
6166 else if (new > conf->min_nr_stripes)
6167 err = -EINVAL;
6168 else
6169 conf->bypass_threshold = new;
6170 mddev_unlock(mddev);
6171 return err ?: len;
6172 }
6173
6174 static struct md_sysfs_entry
6175 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6176 S_IRUGO | S_IWUSR,
6177 raid5_show_preread_threshold,
6178 raid5_store_preread_threshold);
6179
6180 static ssize_t
6181 raid5_show_skip_copy(struct mddev *mddev, char *page)
6182 {
6183 struct r5conf *conf;
6184 int ret = 0;
6185 spin_lock(&mddev->lock);
6186 conf = mddev->private;
6187 if (conf)
6188 ret = sprintf(page, "%d\n", conf->skip_copy);
6189 spin_unlock(&mddev->lock);
6190 return ret;
6191 }
6192
6193 static ssize_t
6194 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6195 {
6196 struct r5conf *conf;
6197 unsigned long new;
6198 int err;
6199
6200 if (len >= PAGE_SIZE)
6201 return -EINVAL;
6202 if (kstrtoul(page, 10, &new))
6203 return -EINVAL;
6204 new = !!new;
6205
6206 err = mddev_lock(mddev);
6207 if (err)
6208 return err;
6209 conf = mddev->private;
6210 if (!conf)
6211 err = -ENODEV;
6212 else if (new != conf->skip_copy) {
6213 mddev_suspend(mddev);
6214 conf->skip_copy = new;
6215 if (new)
6216 mddev->queue->backing_dev_info.capabilities |=
6217 BDI_CAP_STABLE_WRITES;
6218 else
6219 mddev->queue->backing_dev_info.capabilities &=
6220 ~BDI_CAP_STABLE_WRITES;
6221 mddev_resume(mddev);
6222 }
6223 mddev_unlock(mddev);
6224 return err ?: len;
6225 }
6226
6227 static struct md_sysfs_entry
6228 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6229 raid5_show_skip_copy,
6230 raid5_store_skip_copy);
6231
6232 static ssize_t
6233 stripe_cache_active_show(struct mddev *mddev, char *page)
6234 {
6235 struct r5conf *conf = mddev->private;
6236 if (conf)
6237 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6238 else
6239 return 0;
6240 }
6241
6242 static struct md_sysfs_entry
6243 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6244
6245 static ssize_t
6246 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6247 {
6248 struct r5conf *conf;
6249 int ret = 0;
6250 spin_lock(&mddev->lock);
6251 conf = mddev->private;
6252 if (conf)
6253 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6254 spin_unlock(&mddev->lock);
6255 return ret;
6256 }
6257
6258 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6259 int *group_cnt,
6260 int *worker_cnt_per_group,
6261 struct r5worker_group **worker_groups);
6262 static ssize_t
6263 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6264 {
6265 struct r5conf *conf;
6266 unsigned long new;
6267 int err;
6268 struct r5worker_group *new_groups, *old_groups;
6269 int group_cnt, worker_cnt_per_group;
6270
6271 if (len >= PAGE_SIZE)
6272 return -EINVAL;
6273 if (kstrtoul(page, 10, &new))
6274 return -EINVAL;
6275
6276 err = mddev_lock(mddev);
6277 if (err)
6278 return err;
6279 conf = mddev->private;
6280 if (!conf)
6281 err = -ENODEV;
6282 else if (new != conf->worker_cnt_per_group) {
6283 mddev_suspend(mddev);
6284
6285 old_groups = conf->worker_groups;
6286 if (old_groups)
6287 flush_workqueue(raid5_wq);
6288
6289 err = alloc_thread_groups(conf, new,
6290 &group_cnt, &worker_cnt_per_group,
6291 &new_groups);
6292 if (!err) {
6293 spin_lock_irq(&conf->device_lock);
6294 conf->group_cnt = group_cnt;
6295 conf->worker_cnt_per_group = worker_cnt_per_group;
6296 conf->worker_groups = new_groups;
6297 spin_unlock_irq(&conf->device_lock);
6298
6299 if (old_groups)
6300 kfree(old_groups[0].workers);
6301 kfree(old_groups);
6302 }
6303 mddev_resume(mddev);
6304 }
6305 mddev_unlock(mddev);
6306
6307 return err ?: len;
6308 }
6309
6310 static struct md_sysfs_entry
6311 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6312 raid5_show_group_thread_cnt,
6313 raid5_store_group_thread_cnt);
6314
6315 static struct attribute *raid5_attrs[] = {
6316 &raid5_stripecache_size.attr,
6317 &raid5_stripecache_active.attr,
6318 &raid5_preread_bypass_threshold.attr,
6319 &raid5_group_thread_cnt.attr,
6320 &raid5_skip_copy.attr,
6321 &raid5_rmw_level.attr,
6322 &r5c_journal_mode.attr,
6323 NULL,
6324 };
6325 static struct attribute_group raid5_attrs_group = {
6326 .name = NULL,
6327 .attrs = raid5_attrs,
6328 };
6329
6330 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6331 int *group_cnt,
6332 int *worker_cnt_per_group,
6333 struct r5worker_group **worker_groups)
6334 {
6335 int i, j, k;
6336 ssize_t size;
6337 struct r5worker *workers;
6338
6339 *worker_cnt_per_group = cnt;
6340 if (cnt == 0) {
6341 *group_cnt = 0;
6342 *worker_groups = NULL;
6343 return 0;
6344 }
6345 *group_cnt = num_possible_nodes();
6346 size = sizeof(struct r5worker) * cnt;
6347 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6348 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6349 *group_cnt, GFP_NOIO);
6350 if (!*worker_groups || !workers) {
6351 kfree(workers);
6352 kfree(*worker_groups);
6353 return -ENOMEM;
6354 }
6355
6356 for (i = 0; i < *group_cnt; i++) {
6357 struct r5worker_group *group;
6358
6359 group = &(*worker_groups)[i];
6360 INIT_LIST_HEAD(&group->handle_list);
6361 group->conf = conf;
6362 group->workers = workers + i * cnt;
6363
6364 for (j = 0; j < cnt; j++) {
6365 struct r5worker *worker = group->workers + j;
6366 worker->group = group;
6367 INIT_WORK(&worker->work, raid5_do_work);
6368
6369 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6370 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6371 }
6372 }
6373
6374 return 0;
6375 }
6376
6377 static void free_thread_groups(struct r5conf *conf)
6378 {
6379 if (conf->worker_groups)
6380 kfree(conf->worker_groups[0].workers);
6381 kfree(conf->worker_groups);
6382 conf->worker_groups = NULL;
6383 }
6384
6385 static sector_t
6386 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6387 {
6388 struct r5conf *conf = mddev->private;
6389
6390 if (!sectors)
6391 sectors = mddev->dev_sectors;
6392 if (!raid_disks)
6393 /* size is defined by the smallest of previous and new size */
6394 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6395
6396 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6397 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6398 return sectors * (raid_disks - conf->max_degraded);
6399 }
6400
6401 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6402 {
6403 safe_put_page(percpu->spare_page);
6404 if (percpu->scribble)
6405 flex_array_free(percpu->scribble);
6406 percpu->spare_page = NULL;
6407 percpu->scribble = NULL;
6408 }
6409
6410 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6411 {
6412 if (conf->level == 6 && !percpu->spare_page)
6413 percpu->spare_page = alloc_page(GFP_KERNEL);
6414 if (!percpu->scribble)
6415 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6416 conf->previous_raid_disks),
6417 max(conf->chunk_sectors,
6418 conf->prev_chunk_sectors)
6419 / STRIPE_SECTORS,
6420 GFP_KERNEL);
6421
6422 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6423 free_scratch_buffer(conf, percpu);
6424 return -ENOMEM;
6425 }
6426
6427 return 0;
6428 }
6429
6430 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6431 {
6432 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6433
6434 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6435 return 0;
6436 }
6437
6438 static void raid5_free_percpu(struct r5conf *conf)
6439 {
6440 if (!conf->percpu)
6441 return;
6442
6443 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6444 free_percpu(conf->percpu);
6445 }
6446
6447 static void free_conf(struct r5conf *conf)
6448 {
6449 if (conf->log)
6450 r5l_exit_log(conf->log);
6451 if (conf->shrinker.nr_deferred)
6452 unregister_shrinker(&conf->shrinker);
6453
6454 free_thread_groups(conf);
6455 shrink_stripes(conf);
6456 raid5_free_percpu(conf);
6457 kfree(conf->disks);
6458 kfree(conf->stripe_hashtbl);
6459 kfree(conf);
6460 }
6461
6462 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6463 {
6464 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6465 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6466
6467 if (alloc_scratch_buffer(conf, percpu)) {
6468 pr_warn("%s: failed memory allocation for cpu%u\n",
6469 __func__, cpu);
6470 return -ENOMEM;
6471 }
6472 return 0;
6473 }
6474
6475 static int raid5_alloc_percpu(struct r5conf *conf)
6476 {
6477 int err = 0;
6478
6479 conf->percpu = alloc_percpu(struct raid5_percpu);
6480 if (!conf->percpu)
6481 return -ENOMEM;
6482
6483 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6484 if (!err) {
6485 conf->scribble_disks = max(conf->raid_disks,
6486 conf->previous_raid_disks);
6487 conf->scribble_sectors = max(conf->chunk_sectors,
6488 conf->prev_chunk_sectors);
6489 }
6490 return err;
6491 }
6492
6493 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6494 struct shrink_control *sc)
6495 {
6496 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6497 unsigned long ret = SHRINK_STOP;
6498
6499 if (mutex_trylock(&conf->cache_size_mutex)) {
6500 ret= 0;
6501 while (ret < sc->nr_to_scan &&
6502 conf->max_nr_stripes > conf->min_nr_stripes) {
6503 if (drop_one_stripe(conf) == 0) {
6504 ret = SHRINK_STOP;
6505 break;
6506 }
6507 ret++;
6508 }
6509 mutex_unlock(&conf->cache_size_mutex);
6510 }
6511 return ret;
6512 }
6513
6514 static unsigned long raid5_cache_count(struct shrinker *shrink,
6515 struct shrink_control *sc)
6516 {
6517 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6518
6519 if (conf->max_nr_stripes < conf->min_nr_stripes)
6520 /* unlikely, but not impossible */
6521 return 0;
6522 return conf->max_nr_stripes - conf->min_nr_stripes;
6523 }
6524
6525 static struct r5conf *setup_conf(struct mddev *mddev)
6526 {
6527 struct r5conf *conf;
6528 int raid_disk, memory, max_disks;
6529 struct md_rdev *rdev;
6530 struct disk_info *disk;
6531 char pers_name[6];
6532 int i;
6533 int group_cnt, worker_cnt_per_group;
6534 struct r5worker_group *new_group;
6535
6536 if (mddev->new_level != 5
6537 && mddev->new_level != 4
6538 && mddev->new_level != 6) {
6539 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6540 mdname(mddev), mddev->new_level);
6541 return ERR_PTR(-EIO);
6542 }
6543 if ((mddev->new_level == 5
6544 && !algorithm_valid_raid5(mddev->new_layout)) ||
6545 (mddev->new_level == 6
6546 && !algorithm_valid_raid6(mddev->new_layout))) {
6547 pr_warn("md/raid:%s: layout %d not supported\n",
6548 mdname(mddev), mddev->new_layout);
6549 return ERR_PTR(-EIO);
6550 }
6551 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6552 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6553 mdname(mddev), mddev->raid_disks);
6554 return ERR_PTR(-EINVAL);
6555 }
6556
6557 if (!mddev->new_chunk_sectors ||
6558 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6559 !is_power_of_2(mddev->new_chunk_sectors)) {
6560 pr_warn("md/raid:%s: invalid chunk size %d\n",
6561 mdname(mddev), mddev->new_chunk_sectors << 9);
6562 return ERR_PTR(-EINVAL);
6563 }
6564
6565 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6566 if (conf == NULL)
6567 goto abort;
6568 /* Don't enable multi-threading by default*/
6569 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6570 &new_group)) {
6571 conf->group_cnt = group_cnt;
6572 conf->worker_cnt_per_group = worker_cnt_per_group;
6573 conf->worker_groups = new_group;
6574 } else
6575 goto abort;
6576 spin_lock_init(&conf->device_lock);
6577 seqcount_init(&conf->gen_lock);
6578 mutex_init(&conf->cache_size_mutex);
6579 init_waitqueue_head(&conf->wait_for_quiescent);
6580 init_waitqueue_head(&conf->wait_for_stripe);
6581 init_waitqueue_head(&conf->wait_for_overlap);
6582 INIT_LIST_HEAD(&conf->handle_list);
6583 INIT_LIST_HEAD(&conf->hold_list);
6584 INIT_LIST_HEAD(&conf->delayed_list);
6585 INIT_LIST_HEAD(&conf->bitmap_list);
6586 bio_list_init(&conf->return_bi);
6587 init_llist_head(&conf->released_stripes);
6588 atomic_set(&conf->active_stripes, 0);
6589 atomic_set(&conf->preread_active_stripes, 0);
6590 atomic_set(&conf->active_aligned_reads, 0);
6591 conf->bypass_threshold = BYPASS_THRESHOLD;
6592 conf->recovery_disabled = mddev->recovery_disabled - 1;
6593
6594 conf->raid_disks = mddev->raid_disks;
6595 if (mddev->reshape_position == MaxSector)
6596 conf->previous_raid_disks = mddev->raid_disks;
6597 else
6598 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6599 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6600
6601 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6602 GFP_KERNEL);
6603 if (!conf->disks)
6604 goto abort;
6605
6606 conf->mddev = mddev;
6607
6608 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6609 goto abort;
6610
6611 /* We init hash_locks[0] separately to that it can be used
6612 * as the reference lock in the spin_lock_nest_lock() call
6613 * in lock_all_device_hash_locks_irq in order to convince
6614 * lockdep that we know what we are doing.
6615 */
6616 spin_lock_init(conf->hash_locks);
6617 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6618 spin_lock_init(conf->hash_locks + i);
6619
6620 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6621 INIT_LIST_HEAD(conf->inactive_list + i);
6622
6623 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6624 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6625
6626 atomic_set(&conf->r5c_cached_full_stripes, 0);
6627 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6628 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6629 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6630
6631 conf->level = mddev->new_level;
6632 conf->chunk_sectors = mddev->new_chunk_sectors;
6633 if (raid5_alloc_percpu(conf) != 0)
6634 goto abort;
6635
6636 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6637
6638 rdev_for_each(rdev, mddev) {
6639 raid_disk = rdev->raid_disk;
6640 if (raid_disk >= max_disks
6641 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6642 continue;
6643 disk = conf->disks + raid_disk;
6644
6645 if (test_bit(Replacement, &rdev->flags)) {
6646 if (disk->replacement)
6647 goto abort;
6648 disk->replacement = rdev;
6649 } else {
6650 if (disk->rdev)
6651 goto abort;
6652 disk->rdev = rdev;
6653 }
6654
6655 if (test_bit(In_sync, &rdev->flags)) {
6656 char b[BDEVNAME_SIZE];
6657 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6658 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6659 } else if (rdev->saved_raid_disk != raid_disk)
6660 /* Cannot rely on bitmap to complete recovery */
6661 conf->fullsync = 1;
6662 }
6663
6664 conf->level = mddev->new_level;
6665 if (conf->level == 6) {
6666 conf->max_degraded = 2;
6667 if (raid6_call.xor_syndrome)
6668 conf->rmw_level = PARITY_ENABLE_RMW;
6669 else
6670 conf->rmw_level = PARITY_DISABLE_RMW;
6671 } else {
6672 conf->max_degraded = 1;
6673 conf->rmw_level = PARITY_ENABLE_RMW;
6674 }
6675 conf->algorithm = mddev->new_layout;
6676 conf->reshape_progress = mddev->reshape_position;
6677 if (conf->reshape_progress != MaxSector) {
6678 conf->prev_chunk_sectors = mddev->chunk_sectors;
6679 conf->prev_algo = mddev->layout;
6680 } else {
6681 conf->prev_chunk_sectors = conf->chunk_sectors;
6682 conf->prev_algo = conf->algorithm;
6683 }
6684
6685 conf->min_nr_stripes = NR_STRIPES;
6686 if (mddev->reshape_position != MaxSector) {
6687 int stripes = max_t(int,
6688 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
6689 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
6690 conf->min_nr_stripes = max(NR_STRIPES, stripes);
6691 if (conf->min_nr_stripes != NR_STRIPES)
6692 pr_info("md/raid:%s: force stripe size %d for reshape\n",
6693 mdname(mddev), conf->min_nr_stripes);
6694 }
6695 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6696 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6697 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6698 if (grow_stripes(conf, conf->min_nr_stripes)) {
6699 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
6700 mdname(mddev), memory);
6701 goto abort;
6702 } else
6703 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
6704 /*
6705 * Losing a stripe head costs more than the time to refill it,
6706 * it reduces the queue depth and so can hurt throughput.
6707 * So set it rather large, scaled by number of devices.
6708 */
6709 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6710 conf->shrinker.scan_objects = raid5_cache_scan;
6711 conf->shrinker.count_objects = raid5_cache_count;
6712 conf->shrinker.batch = 128;
6713 conf->shrinker.flags = 0;
6714 if (register_shrinker(&conf->shrinker)) {
6715 pr_warn("md/raid:%s: couldn't register shrinker.\n",
6716 mdname(mddev));
6717 goto abort;
6718 }
6719
6720 sprintf(pers_name, "raid%d", mddev->new_level);
6721 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6722 if (!conf->thread) {
6723 pr_warn("md/raid:%s: couldn't allocate thread.\n",
6724 mdname(mddev));
6725 goto abort;
6726 }
6727
6728 return conf;
6729
6730 abort:
6731 if (conf) {
6732 free_conf(conf);
6733 return ERR_PTR(-EIO);
6734 } else
6735 return ERR_PTR(-ENOMEM);
6736 }
6737
6738 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6739 {
6740 switch (algo) {
6741 case ALGORITHM_PARITY_0:
6742 if (raid_disk < max_degraded)
6743 return 1;
6744 break;
6745 case ALGORITHM_PARITY_N:
6746 if (raid_disk >= raid_disks - max_degraded)
6747 return 1;
6748 break;
6749 case ALGORITHM_PARITY_0_6:
6750 if (raid_disk == 0 ||
6751 raid_disk == raid_disks - 1)
6752 return 1;
6753 break;
6754 case ALGORITHM_LEFT_ASYMMETRIC_6:
6755 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6756 case ALGORITHM_LEFT_SYMMETRIC_6:
6757 case ALGORITHM_RIGHT_SYMMETRIC_6:
6758 if (raid_disk == raid_disks - 1)
6759 return 1;
6760 }
6761 return 0;
6762 }
6763
6764 static int raid5_run(struct mddev *mddev)
6765 {
6766 struct r5conf *conf;
6767 int working_disks = 0;
6768 int dirty_parity_disks = 0;
6769 struct md_rdev *rdev;
6770 struct md_rdev *journal_dev = NULL;
6771 sector_t reshape_offset = 0;
6772 int i;
6773 long long min_offset_diff = 0;
6774 int first = 1;
6775
6776 if (mddev->recovery_cp != MaxSector)
6777 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
6778 mdname(mddev));
6779
6780 rdev_for_each(rdev, mddev) {
6781 long long diff;
6782
6783 if (test_bit(Journal, &rdev->flags)) {
6784 journal_dev = rdev;
6785 continue;
6786 }
6787 if (rdev->raid_disk < 0)
6788 continue;
6789 diff = (rdev->new_data_offset - rdev->data_offset);
6790 if (first) {
6791 min_offset_diff = diff;
6792 first = 0;
6793 } else if (mddev->reshape_backwards &&
6794 diff < min_offset_diff)
6795 min_offset_diff = diff;
6796 else if (!mddev->reshape_backwards &&
6797 diff > min_offset_diff)
6798 min_offset_diff = diff;
6799 }
6800
6801 if (mddev->reshape_position != MaxSector) {
6802 /* Check that we can continue the reshape.
6803 * Difficulties arise if the stripe we would write to
6804 * next is at or after the stripe we would read from next.
6805 * For a reshape that changes the number of devices, this
6806 * is only possible for a very short time, and mdadm makes
6807 * sure that time appears to have past before assembling
6808 * the array. So we fail if that time hasn't passed.
6809 * For a reshape that keeps the number of devices the same
6810 * mdadm must be monitoring the reshape can keeping the
6811 * critical areas read-only and backed up. It will start
6812 * the array in read-only mode, so we check for that.
6813 */
6814 sector_t here_new, here_old;
6815 int old_disks;
6816 int max_degraded = (mddev->level == 6 ? 2 : 1);
6817 int chunk_sectors;
6818 int new_data_disks;
6819
6820 if (journal_dev) {
6821 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
6822 mdname(mddev));
6823 return -EINVAL;
6824 }
6825
6826 if (mddev->new_level != mddev->level) {
6827 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
6828 mdname(mddev));
6829 return -EINVAL;
6830 }
6831 old_disks = mddev->raid_disks - mddev->delta_disks;
6832 /* reshape_position must be on a new-stripe boundary, and one
6833 * further up in new geometry must map after here in old
6834 * geometry.
6835 * If the chunk sizes are different, then as we perform reshape
6836 * in units of the largest of the two, reshape_position needs
6837 * be a multiple of the largest chunk size times new data disks.
6838 */
6839 here_new = mddev->reshape_position;
6840 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6841 new_data_disks = mddev->raid_disks - max_degraded;
6842 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6843 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
6844 mdname(mddev));
6845 return -EINVAL;
6846 }
6847 reshape_offset = here_new * chunk_sectors;
6848 /* here_new is the stripe we will write to */
6849 here_old = mddev->reshape_position;
6850 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6851 /* here_old is the first stripe that we might need to read
6852 * from */
6853 if (mddev->delta_disks == 0) {
6854 /* We cannot be sure it is safe to start an in-place
6855 * reshape. It is only safe if user-space is monitoring
6856 * and taking constant backups.
6857 * mdadm always starts a situation like this in
6858 * readonly mode so it can take control before
6859 * allowing any writes. So just check for that.
6860 */
6861 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6862 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6863 /* not really in-place - so OK */;
6864 else if (mddev->ro == 0) {
6865 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
6866 mdname(mddev));
6867 return -EINVAL;
6868 }
6869 } else if (mddev->reshape_backwards
6870 ? (here_new * chunk_sectors + min_offset_diff <=
6871 here_old * chunk_sectors)
6872 : (here_new * chunk_sectors >=
6873 here_old * chunk_sectors + (-min_offset_diff))) {
6874 /* Reading from the same stripe as writing to - bad */
6875 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
6876 mdname(mddev));
6877 return -EINVAL;
6878 }
6879 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
6880 /* OK, we should be able to continue; */
6881 } else {
6882 BUG_ON(mddev->level != mddev->new_level);
6883 BUG_ON(mddev->layout != mddev->new_layout);
6884 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6885 BUG_ON(mddev->delta_disks != 0);
6886 }
6887
6888 if (mddev->private == NULL)
6889 conf = setup_conf(mddev);
6890 else
6891 conf = mddev->private;
6892
6893 if (IS_ERR(conf))
6894 return PTR_ERR(conf);
6895
6896 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
6897 if (!journal_dev) {
6898 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
6899 mdname(mddev));
6900 mddev->ro = 1;
6901 set_disk_ro(mddev->gendisk, 1);
6902 } else if (mddev->recovery_cp == MaxSector)
6903 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
6904 }
6905
6906 conf->min_offset_diff = min_offset_diff;
6907 mddev->thread = conf->thread;
6908 conf->thread = NULL;
6909 mddev->private = conf;
6910
6911 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6912 i++) {
6913 rdev = conf->disks[i].rdev;
6914 if (!rdev && conf->disks[i].replacement) {
6915 /* The replacement is all we have yet */
6916 rdev = conf->disks[i].replacement;
6917 conf->disks[i].replacement = NULL;
6918 clear_bit(Replacement, &rdev->flags);
6919 conf->disks[i].rdev = rdev;
6920 }
6921 if (!rdev)
6922 continue;
6923 if (conf->disks[i].replacement &&
6924 conf->reshape_progress != MaxSector) {
6925 /* replacements and reshape simply do not mix. */
6926 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
6927 goto abort;
6928 }
6929 if (test_bit(In_sync, &rdev->flags)) {
6930 working_disks++;
6931 continue;
6932 }
6933 /* This disc is not fully in-sync. However if it
6934 * just stored parity (beyond the recovery_offset),
6935 * when we don't need to be concerned about the
6936 * array being dirty.
6937 * When reshape goes 'backwards', we never have
6938 * partially completed devices, so we only need
6939 * to worry about reshape going forwards.
6940 */
6941 /* Hack because v0.91 doesn't store recovery_offset properly. */
6942 if (mddev->major_version == 0 &&
6943 mddev->minor_version > 90)
6944 rdev->recovery_offset = reshape_offset;
6945
6946 if (rdev->recovery_offset < reshape_offset) {
6947 /* We need to check old and new layout */
6948 if (!only_parity(rdev->raid_disk,
6949 conf->algorithm,
6950 conf->raid_disks,
6951 conf->max_degraded))
6952 continue;
6953 }
6954 if (!only_parity(rdev->raid_disk,
6955 conf->prev_algo,
6956 conf->previous_raid_disks,
6957 conf->max_degraded))
6958 continue;
6959 dirty_parity_disks++;
6960 }
6961
6962 /*
6963 * 0 for a fully functional array, 1 or 2 for a degraded array.
6964 */
6965 mddev->degraded = calc_degraded(conf);
6966
6967 if (has_failed(conf)) {
6968 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
6969 mdname(mddev), mddev->degraded, conf->raid_disks);
6970 goto abort;
6971 }
6972
6973 /* device size must be a multiple of chunk size */
6974 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6975 mddev->resync_max_sectors = mddev->dev_sectors;
6976
6977 if (mddev->degraded > dirty_parity_disks &&
6978 mddev->recovery_cp != MaxSector) {
6979 if (mddev->ok_start_degraded)
6980 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
6981 mdname(mddev));
6982 else {
6983 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
6984 mdname(mddev));
6985 goto abort;
6986 }
6987 }
6988
6989 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
6990 mdname(mddev), conf->level,
6991 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6992 mddev->new_layout);
6993
6994 print_raid5_conf(conf);
6995
6996 if (conf->reshape_progress != MaxSector) {
6997 conf->reshape_safe = conf->reshape_progress;
6998 atomic_set(&conf->reshape_stripes, 0);
6999 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7000 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7001 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7002 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7003 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7004 "reshape");
7005 }
7006
7007 /* Ok, everything is just fine now */
7008 if (mddev->to_remove == &raid5_attrs_group)
7009 mddev->to_remove = NULL;
7010 else if (mddev->kobj.sd &&
7011 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7012 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7013 mdname(mddev));
7014 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7015
7016 if (mddev->queue) {
7017 int chunk_size;
7018 bool discard_supported = true;
7019 /* read-ahead size must cover two whole stripes, which
7020 * is 2 * (datadisks) * chunksize where 'n' is the
7021 * number of raid devices
7022 */
7023 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7024 int stripe = data_disks *
7025 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7026 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7027 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7028
7029 chunk_size = mddev->chunk_sectors << 9;
7030 blk_queue_io_min(mddev->queue, chunk_size);
7031 blk_queue_io_opt(mddev->queue, chunk_size *
7032 (conf->raid_disks - conf->max_degraded));
7033 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7034 /*
7035 * We can only discard a whole stripe. It doesn't make sense to
7036 * discard data disk but write parity disk
7037 */
7038 stripe = stripe * PAGE_SIZE;
7039 /* Round up to power of 2, as discard handling
7040 * currently assumes that */
7041 while ((stripe-1) & stripe)
7042 stripe = (stripe | (stripe-1)) + 1;
7043 mddev->queue->limits.discard_alignment = stripe;
7044 mddev->queue->limits.discard_granularity = stripe;
7045 /*
7046 * unaligned part of discard request will be ignored, so can't
7047 * guarantee discard_zeroes_data
7048 */
7049 mddev->queue->limits.discard_zeroes_data = 0;
7050
7051 blk_queue_max_write_same_sectors(mddev->queue, 0);
7052
7053 rdev_for_each(rdev, mddev) {
7054 disk_stack_limits(mddev->gendisk, rdev->bdev,
7055 rdev->data_offset << 9);
7056 disk_stack_limits(mddev->gendisk, rdev->bdev,
7057 rdev->new_data_offset << 9);
7058 /*
7059 * discard_zeroes_data is required, otherwise data
7060 * could be lost. Consider a scenario: discard a stripe
7061 * (the stripe could be inconsistent if
7062 * discard_zeroes_data is 0); write one disk of the
7063 * stripe (the stripe could be inconsistent again
7064 * depending on which disks are used to calculate
7065 * parity); the disk is broken; The stripe data of this
7066 * disk is lost.
7067 */
7068 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7069 !bdev_get_queue(rdev->bdev)->
7070 limits.discard_zeroes_data)
7071 discard_supported = false;
7072 /* Unfortunately, discard_zeroes_data is not currently
7073 * a guarantee - just a hint. So we only allow DISCARD
7074 * if the sysadmin has confirmed that only safe devices
7075 * are in use by setting a module parameter.
7076 */
7077 if (!devices_handle_discard_safely) {
7078 if (discard_supported) {
7079 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7080 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7081 }
7082 discard_supported = false;
7083 }
7084 }
7085
7086 if (discard_supported &&
7087 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7088 mddev->queue->limits.discard_granularity >= stripe)
7089 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7090 mddev->queue);
7091 else
7092 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7093 mddev->queue);
7094
7095 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7096 }
7097
7098 if (journal_dev) {
7099 char b[BDEVNAME_SIZE];
7100
7101 pr_debug("md/raid:%s: using device %s as journal\n",
7102 mdname(mddev), bdevname(journal_dev->bdev, b));
7103 if (r5l_init_log(conf, journal_dev))
7104 goto abort;
7105 }
7106
7107 return 0;
7108 abort:
7109 md_unregister_thread(&mddev->thread);
7110 print_raid5_conf(conf);
7111 free_conf(conf);
7112 mddev->private = NULL;
7113 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7114 return -EIO;
7115 }
7116
7117 static void raid5_free(struct mddev *mddev, void *priv)
7118 {
7119 struct r5conf *conf = priv;
7120
7121 free_conf(conf);
7122 mddev->to_remove = &raid5_attrs_group;
7123 }
7124
7125 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7126 {
7127 struct r5conf *conf = mddev->private;
7128 int i;
7129
7130 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7131 conf->chunk_sectors / 2, mddev->layout);
7132 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7133 rcu_read_lock();
7134 for (i = 0; i < conf->raid_disks; i++) {
7135 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7136 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7137 }
7138 rcu_read_unlock();
7139 seq_printf (seq, "]");
7140 }
7141
7142 static void print_raid5_conf (struct r5conf *conf)
7143 {
7144 int i;
7145 struct disk_info *tmp;
7146
7147 pr_debug("RAID conf printout:\n");
7148 if (!conf) {
7149 pr_debug("(conf==NULL)\n");
7150 return;
7151 }
7152 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7153 conf->raid_disks,
7154 conf->raid_disks - conf->mddev->degraded);
7155
7156 for (i = 0; i < conf->raid_disks; i++) {
7157 char b[BDEVNAME_SIZE];
7158 tmp = conf->disks + i;
7159 if (tmp->rdev)
7160 pr_debug(" disk %d, o:%d, dev:%s\n",
7161 i, !test_bit(Faulty, &tmp->rdev->flags),
7162 bdevname(tmp->rdev->bdev, b));
7163 }
7164 }
7165
7166 static int raid5_spare_active(struct mddev *mddev)
7167 {
7168 int i;
7169 struct r5conf *conf = mddev->private;
7170 struct disk_info *tmp;
7171 int count = 0;
7172 unsigned long flags;
7173
7174 for (i = 0; i < conf->raid_disks; i++) {
7175 tmp = conf->disks + i;
7176 if (tmp->replacement
7177 && tmp->replacement->recovery_offset == MaxSector
7178 && !test_bit(Faulty, &tmp->replacement->flags)
7179 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7180 /* Replacement has just become active. */
7181 if (!tmp->rdev
7182 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7183 count++;
7184 if (tmp->rdev) {
7185 /* Replaced device not technically faulty,
7186 * but we need to be sure it gets removed
7187 * and never re-added.
7188 */
7189 set_bit(Faulty, &tmp->rdev->flags);
7190 sysfs_notify_dirent_safe(
7191 tmp->rdev->sysfs_state);
7192 }
7193 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7194 } else if (tmp->rdev
7195 && tmp->rdev->recovery_offset == MaxSector
7196 && !test_bit(Faulty, &tmp->rdev->flags)
7197 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7198 count++;
7199 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7200 }
7201 }
7202 spin_lock_irqsave(&conf->device_lock, flags);
7203 mddev->degraded = calc_degraded(conf);
7204 spin_unlock_irqrestore(&conf->device_lock, flags);
7205 print_raid5_conf(conf);
7206 return count;
7207 }
7208
7209 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7210 {
7211 struct r5conf *conf = mddev->private;
7212 int err = 0;
7213 int number = rdev->raid_disk;
7214 struct md_rdev **rdevp;
7215 struct disk_info *p = conf->disks + number;
7216
7217 print_raid5_conf(conf);
7218 if (test_bit(Journal, &rdev->flags) && conf->log) {
7219 struct r5l_log *log;
7220 /*
7221 * we can't wait pending write here, as this is called in
7222 * raid5d, wait will deadlock.
7223 */
7224 if (atomic_read(&mddev->writes_pending))
7225 return -EBUSY;
7226 log = conf->log;
7227 conf->log = NULL;
7228 synchronize_rcu();
7229 r5l_exit_log(log);
7230 return 0;
7231 }
7232 if (rdev == p->rdev)
7233 rdevp = &p->rdev;
7234 else if (rdev == p->replacement)
7235 rdevp = &p->replacement;
7236 else
7237 return 0;
7238
7239 if (number >= conf->raid_disks &&
7240 conf->reshape_progress == MaxSector)
7241 clear_bit(In_sync, &rdev->flags);
7242
7243 if (test_bit(In_sync, &rdev->flags) ||
7244 atomic_read(&rdev->nr_pending)) {
7245 err = -EBUSY;
7246 goto abort;
7247 }
7248 /* Only remove non-faulty devices if recovery
7249 * isn't possible.
7250 */
7251 if (!test_bit(Faulty, &rdev->flags) &&
7252 mddev->recovery_disabled != conf->recovery_disabled &&
7253 !has_failed(conf) &&
7254 (!p->replacement || p->replacement == rdev) &&
7255 number < conf->raid_disks) {
7256 err = -EBUSY;
7257 goto abort;
7258 }
7259 *rdevp = NULL;
7260 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7261 synchronize_rcu();
7262 if (atomic_read(&rdev->nr_pending)) {
7263 /* lost the race, try later */
7264 err = -EBUSY;
7265 *rdevp = rdev;
7266 }
7267 }
7268 if (p->replacement) {
7269 /* We must have just cleared 'rdev' */
7270 p->rdev = p->replacement;
7271 clear_bit(Replacement, &p->replacement->flags);
7272 smp_mb(); /* Make sure other CPUs may see both as identical
7273 * but will never see neither - if they are careful
7274 */
7275 p->replacement = NULL;
7276 clear_bit(WantReplacement, &rdev->flags);
7277 } else
7278 /* We might have just removed the Replacement as faulty-
7279 * clear the bit just in case
7280 */
7281 clear_bit(WantReplacement, &rdev->flags);
7282 abort:
7283
7284 print_raid5_conf(conf);
7285 return err;
7286 }
7287
7288 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7289 {
7290 struct r5conf *conf = mddev->private;
7291 int err = -EEXIST;
7292 int disk;
7293 struct disk_info *p;
7294 int first = 0;
7295 int last = conf->raid_disks - 1;
7296
7297 if (test_bit(Journal, &rdev->flags)) {
7298 char b[BDEVNAME_SIZE];
7299 if (conf->log)
7300 return -EBUSY;
7301
7302 rdev->raid_disk = 0;
7303 /*
7304 * The array is in readonly mode if journal is missing, so no
7305 * write requests running. We should be safe
7306 */
7307 r5l_init_log(conf, rdev);
7308 pr_debug("md/raid:%s: using device %s as journal\n",
7309 mdname(mddev), bdevname(rdev->bdev, b));
7310 return 0;
7311 }
7312 if (mddev->recovery_disabled == conf->recovery_disabled)
7313 return -EBUSY;
7314
7315 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7316 /* no point adding a device */
7317 return -EINVAL;
7318
7319 if (rdev->raid_disk >= 0)
7320 first = last = rdev->raid_disk;
7321
7322 /*
7323 * find the disk ... but prefer rdev->saved_raid_disk
7324 * if possible.
7325 */
7326 if (rdev->saved_raid_disk >= 0 &&
7327 rdev->saved_raid_disk >= first &&
7328 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7329 first = rdev->saved_raid_disk;
7330
7331 for (disk = first; disk <= last; disk++) {
7332 p = conf->disks + disk;
7333 if (p->rdev == NULL) {
7334 clear_bit(In_sync, &rdev->flags);
7335 rdev->raid_disk = disk;
7336 err = 0;
7337 if (rdev->saved_raid_disk != disk)
7338 conf->fullsync = 1;
7339 rcu_assign_pointer(p->rdev, rdev);
7340 goto out;
7341 }
7342 }
7343 for (disk = first; disk <= last; disk++) {
7344 p = conf->disks + disk;
7345 if (test_bit(WantReplacement, &p->rdev->flags) &&
7346 p->replacement == NULL) {
7347 clear_bit(In_sync, &rdev->flags);
7348 set_bit(Replacement, &rdev->flags);
7349 rdev->raid_disk = disk;
7350 err = 0;
7351 conf->fullsync = 1;
7352 rcu_assign_pointer(p->replacement, rdev);
7353 break;
7354 }
7355 }
7356 out:
7357 print_raid5_conf(conf);
7358 return err;
7359 }
7360
7361 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7362 {
7363 /* no resync is happening, and there is enough space
7364 * on all devices, so we can resize.
7365 * We need to make sure resync covers any new space.
7366 * If the array is shrinking we should possibly wait until
7367 * any io in the removed space completes, but it hardly seems
7368 * worth it.
7369 */
7370 sector_t newsize;
7371 struct r5conf *conf = mddev->private;
7372
7373 if (conf->log)
7374 return -EINVAL;
7375 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7376 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7377 if (mddev->external_size &&
7378 mddev->array_sectors > newsize)
7379 return -EINVAL;
7380 if (mddev->bitmap) {
7381 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7382 if (ret)
7383 return ret;
7384 }
7385 md_set_array_sectors(mddev, newsize);
7386 set_capacity(mddev->gendisk, mddev->array_sectors);
7387 revalidate_disk(mddev->gendisk);
7388 if (sectors > mddev->dev_sectors &&
7389 mddev->recovery_cp > mddev->dev_sectors) {
7390 mddev->recovery_cp = mddev->dev_sectors;
7391 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7392 }
7393 mddev->dev_sectors = sectors;
7394 mddev->resync_max_sectors = sectors;
7395 return 0;
7396 }
7397
7398 static int check_stripe_cache(struct mddev *mddev)
7399 {
7400 /* Can only proceed if there are plenty of stripe_heads.
7401 * We need a minimum of one full stripe,, and for sensible progress
7402 * it is best to have about 4 times that.
7403 * If we require 4 times, then the default 256 4K stripe_heads will
7404 * allow for chunk sizes up to 256K, which is probably OK.
7405 * If the chunk size is greater, user-space should request more
7406 * stripe_heads first.
7407 */
7408 struct r5conf *conf = mddev->private;
7409 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7410 > conf->min_nr_stripes ||
7411 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7412 > conf->min_nr_stripes) {
7413 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7414 mdname(mddev),
7415 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7416 / STRIPE_SIZE)*4);
7417 return 0;
7418 }
7419 return 1;
7420 }
7421
7422 static int check_reshape(struct mddev *mddev)
7423 {
7424 struct r5conf *conf = mddev->private;
7425
7426 if (conf->log)
7427 return -EINVAL;
7428 if (mddev->delta_disks == 0 &&
7429 mddev->new_layout == mddev->layout &&
7430 mddev->new_chunk_sectors == mddev->chunk_sectors)
7431 return 0; /* nothing to do */
7432 if (has_failed(conf))
7433 return -EINVAL;
7434 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7435 /* We might be able to shrink, but the devices must
7436 * be made bigger first.
7437 * For raid6, 4 is the minimum size.
7438 * Otherwise 2 is the minimum
7439 */
7440 int min = 2;
7441 if (mddev->level == 6)
7442 min = 4;
7443 if (mddev->raid_disks + mddev->delta_disks < min)
7444 return -EINVAL;
7445 }
7446
7447 if (!check_stripe_cache(mddev))
7448 return -ENOSPC;
7449
7450 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7451 mddev->delta_disks > 0)
7452 if (resize_chunks(conf,
7453 conf->previous_raid_disks
7454 + max(0, mddev->delta_disks),
7455 max(mddev->new_chunk_sectors,
7456 mddev->chunk_sectors)
7457 ) < 0)
7458 return -ENOMEM;
7459 return resize_stripes(conf, (conf->previous_raid_disks
7460 + mddev->delta_disks));
7461 }
7462
7463 static int raid5_start_reshape(struct mddev *mddev)
7464 {
7465 struct r5conf *conf = mddev->private;
7466 struct md_rdev *rdev;
7467 int spares = 0;
7468 unsigned long flags;
7469
7470 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7471 return -EBUSY;
7472
7473 if (!check_stripe_cache(mddev))
7474 return -ENOSPC;
7475
7476 if (has_failed(conf))
7477 return -EINVAL;
7478
7479 rdev_for_each(rdev, mddev) {
7480 if (!test_bit(In_sync, &rdev->flags)
7481 && !test_bit(Faulty, &rdev->flags))
7482 spares++;
7483 }
7484
7485 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7486 /* Not enough devices even to make a degraded array
7487 * of that size
7488 */
7489 return -EINVAL;
7490
7491 /* Refuse to reduce size of the array. Any reductions in
7492 * array size must be through explicit setting of array_size
7493 * attribute.
7494 */
7495 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7496 < mddev->array_sectors) {
7497 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7498 mdname(mddev));
7499 return -EINVAL;
7500 }
7501
7502 atomic_set(&conf->reshape_stripes, 0);
7503 spin_lock_irq(&conf->device_lock);
7504 write_seqcount_begin(&conf->gen_lock);
7505 conf->previous_raid_disks = conf->raid_disks;
7506 conf->raid_disks += mddev->delta_disks;
7507 conf->prev_chunk_sectors = conf->chunk_sectors;
7508 conf->chunk_sectors = mddev->new_chunk_sectors;
7509 conf->prev_algo = conf->algorithm;
7510 conf->algorithm = mddev->new_layout;
7511 conf->generation++;
7512 /* Code that selects data_offset needs to see the generation update
7513 * if reshape_progress has been set - so a memory barrier needed.
7514 */
7515 smp_mb();
7516 if (mddev->reshape_backwards)
7517 conf->reshape_progress = raid5_size(mddev, 0, 0);
7518 else
7519 conf->reshape_progress = 0;
7520 conf->reshape_safe = conf->reshape_progress;
7521 write_seqcount_end(&conf->gen_lock);
7522 spin_unlock_irq(&conf->device_lock);
7523
7524 /* Now make sure any requests that proceeded on the assumption
7525 * the reshape wasn't running - like Discard or Read - have
7526 * completed.
7527 */
7528 mddev_suspend(mddev);
7529 mddev_resume(mddev);
7530
7531 /* Add some new drives, as many as will fit.
7532 * We know there are enough to make the newly sized array work.
7533 * Don't add devices if we are reducing the number of
7534 * devices in the array. This is because it is not possible
7535 * to correctly record the "partially reconstructed" state of
7536 * such devices during the reshape and confusion could result.
7537 */
7538 if (mddev->delta_disks >= 0) {
7539 rdev_for_each(rdev, mddev)
7540 if (rdev->raid_disk < 0 &&
7541 !test_bit(Faulty, &rdev->flags)) {
7542 if (raid5_add_disk(mddev, rdev) == 0) {
7543 if (rdev->raid_disk
7544 >= conf->previous_raid_disks)
7545 set_bit(In_sync, &rdev->flags);
7546 else
7547 rdev->recovery_offset = 0;
7548
7549 if (sysfs_link_rdev(mddev, rdev))
7550 /* Failure here is OK */;
7551 }
7552 } else if (rdev->raid_disk >= conf->previous_raid_disks
7553 && !test_bit(Faulty, &rdev->flags)) {
7554 /* This is a spare that was manually added */
7555 set_bit(In_sync, &rdev->flags);
7556 }
7557
7558 /* When a reshape changes the number of devices,
7559 * ->degraded is measured against the larger of the
7560 * pre and post number of devices.
7561 */
7562 spin_lock_irqsave(&conf->device_lock, flags);
7563 mddev->degraded = calc_degraded(conf);
7564 spin_unlock_irqrestore(&conf->device_lock, flags);
7565 }
7566 mddev->raid_disks = conf->raid_disks;
7567 mddev->reshape_position = conf->reshape_progress;
7568 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7569
7570 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7571 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7572 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7573 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7574 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7575 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7576 "reshape");
7577 if (!mddev->sync_thread) {
7578 mddev->recovery = 0;
7579 spin_lock_irq(&conf->device_lock);
7580 write_seqcount_begin(&conf->gen_lock);
7581 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7582 mddev->new_chunk_sectors =
7583 conf->chunk_sectors = conf->prev_chunk_sectors;
7584 mddev->new_layout = conf->algorithm = conf->prev_algo;
7585 rdev_for_each(rdev, mddev)
7586 rdev->new_data_offset = rdev->data_offset;
7587 smp_wmb();
7588 conf->generation --;
7589 conf->reshape_progress = MaxSector;
7590 mddev->reshape_position = MaxSector;
7591 write_seqcount_end(&conf->gen_lock);
7592 spin_unlock_irq(&conf->device_lock);
7593 return -EAGAIN;
7594 }
7595 conf->reshape_checkpoint = jiffies;
7596 md_wakeup_thread(mddev->sync_thread);
7597 md_new_event(mddev);
7598 return 0;
7599 }
7600
7601 /* This is called from the reshape thread and should make any
7602 * changes needed in 'conf'
7603 */
7604 static void end_reshape(struct r5conf *conf)
7605 {
7606
7607 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7608 struct md_rdev *rdev;
7609
7610 spin_lock_irq(&conf->device_lock);
7611 conf->previous_raid_disks = conf->raid_disks;
7612 rdev_for_each(rdev, conf->mddev)
7613 rdev->data_offset = rdev->new_data_offset;
7614 smp_wmb();
7615 conf->reshape_progress = MaxSector;
7616 conf->mddev->reshape_position = MaxSector;
7617 spin_unlock_irq(&conf->device_lock);
7618 wake_up(&conf->wait_for_overlap);
7619
7620 /* read-ahead size must cover two whole stripes, which is
7621 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7622 */
7623 if (conf->mddev->queue) {
7624 int data_disks = conf->raid_disks - conf->max_degraded;
7625 int stripe = data_disks * ((conf->chunk_sectors << 9)
7626 / PAGE_SIZE);
7627 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7628 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7629 }
7630 }
7631 }
7632
7633 /* This is called from the raid5d thread with mddev_lock held.
7634 * It makes config changes to the device.
7635 */
7636 static void raid5_finish_reshape(struct mddev *mddev)
7637 {
7638 struct r5conf *conf = mddev->private;
7639
7640 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7641
7642 if (mddev->delta_disks > 0) {
7643 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7644 if (mddev->queue) {
7645 set_capacity(mddev->gendisk, mddev->array_sectors);
7646 revalidate_disk(mddev->gendisk);
7647 }
7648 } else {
7649 int d;
7650 spin_lock_irq(&conf->device_lock);
7651 mddev->degraded = calc_degraded(conf);
7652 spin_unlock_irq(&conf->device_lock);
7653 for (d = conf->raid_disks ;
7654 d < conf->raid_disks - mddev->delta_disks;
7655 d++) {
7656 struct md_rdev *rdev = conf->disks[d].rdev;
7657 if (rdev)
7658 clear_bit(In_sync, &rdev->flags);
7659 rdev = conf->disks[d].replacement;
7660 if (rdev)
7661 clear_bit(In_sync, &rdev->flags);
7662 }
7663 }
7664 mddev->layout = conf->algorithm;
7665 mddev->chunk_sectors = conf->chunk_sectors;
7666 mddev->reshape_position = MaxSector;
7667 mddev->delta_disks = 0;
7668 mddev->reshape_backwards = 0;
7669 }
7670 }
7671
7672 static void raid5_quiesce(struct mddev *mddev, int state)
7673 {
7674 struct r5conf *conf = mddev->private;
7675
7676 switch(state) {
7677 case 2: /* resume for a suspend */
7678 wake_up(&conf->wait_for_overlap);
7679 break;
7680
7681 case 1: /* stop all writes */
7682 lock_all_device_hash_locks_irq(conf);
7683 /* '2' tells resync/reshape to pause so that all
7684 * active stripes can drain
7685 */
7686 r5c_flush_cache(conf, INT_MAX);
7687 conf->quiesce = 2;
7688 wait_event_cmd(conf->wait_for_quiescent,
7689 atomic_read(&conf->active_stripes) == 0 &&
7690 atomic_read(&conf->active_aligned_reads) == 0,
7691 unlock_all_device_hash_locks_irq(conf),
7692 lock_all_device_hash_locks_irq(conf));
7693 conf->quiesce = 1;
7694 unlock_all_device_hash_locks_irq(conf);
7695 /* allow reshape to continue */
7696 wake_up(&conf->wait_for_overlap);
7697 break;
7698
7699 case 0: /* re-enable writes */
7700 lock_all_device_hash_locks_irq(conf);
7701 conf->quiesce = 0;
7702 wake_up(&conf->wait_for_quiescent);
7703 wake_up(&conf->wait_for_overlap);
7704 unlock_all_device_hash_locks_irq(conf);
7705 break;
7706 }
7707 r5l_quiesce(conf->log, state);
7708 }
7709
7710 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7711 {
7712 struct r0conf *raid0_conf = mddev->private;
7713 sector_t sectors;
7714
7715 /* for raid0 takeover only one zone is supported */
7716 if (raid0_conf->nr_strip_zones > 1) {
7717 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7718 mdname(mddev));
7719 return ERR_PTR(-EINVAL);
7720 }
7721
7722 sectors = raid0_conf->strip_zone[0].zone_end;
7723 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7724 mddev->dev_sectors = sectors;
7725 mddev->new_level = level;
7726 mddev->new_layout = ALGORITHM_PARITY_N;
7727 mddev->new_chunk_sectors = mddev->chunk_sectors;
7728 mddev->raid_disks += 1;
7729 mddev->delta_disks = 1;
7730 /* make sure it will be not marked as dirty */
7731 mddev->recovery_cp = MaxSector;
7732
7733 return setup_conf(mddev);
7734 }
7735
7736 static void *raid5_takeover_raid1(struct mddev *mddev)
7737 {
7738 int chunksect;
7739
7740 if (mddev->raid_disks != 2 ||
7741 mddev->degraded > 1)
7742 return ERR_PTR(-EINVAL);
7743
7744 /* Should check if there are write-behind devices? */
7745
7746 chunksect = 64*2; /* 64K by default */
7747
7748 /* The array must be an exact multiple of chunksize */
7749 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7750 chunksect >>= 1;
7751
7752 if ((chunksect<<9) < STRIPE_SIZE)
7753 /* array size does not allow a suitable chunk size */
7754 return ERR_PTR(-EINVAL);
7755
7756 mddev->new_level = 5;
7757 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7758 mddev->new_chunk_sectors = chunksect;
7759
7760 return setup_conf(mddev);
7761 }
7762
7763 static void *raid5_takeover_raid6(struct mddev *mddev)
7764 {
7765 int new_layout;
7766
7767 switch (mddev->layout) {
7768 case ALGORITHM_LEFT_ASYMMETRIC_6:
7769 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7770 break;
7771 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7772 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7773 break;
7774 case ALGORITHM_LEFT_SYMMETRIC_6:
7775 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7776 break;
7777 case ALGORITHM_RIGHT_SYMMETRIC_6:
7778 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7779 break;
7780 case ALGORITHM_PARITY_0_6:
7781 new_layout = ALGORITHM_PARITY_0;
7782 break;
7783 case ALGORITHM_PARITY_N:
7784 new_layout = ALGORITHM_PARITY_N;
7785 break;
7786 default:
7787 return ERR_PTR(-EINVAL);
7788 }
7789 mddev->new_level = 5;
7790 mddev->new_layout = new_layout;
7791 mddev->delta_disks = -1;
7792 mddev->raid_disks -= 1;
7793 return setup_conf(mddev);
7794 }
7795
7796 static int raid5_check_reshape(struct mddev *mddev)
7797 {
7798 /* For a 2-drive array, the layout and chunk size can be changed
7799 * immediately as not restriping is needed.
7800 * For larger arrays we record the new value - after validation
7801 * to be used by a reshape pass.
7802 */
7803 struct r5conf *conf = mddev->private;
7804 int new_chunk = mddev->new_chunk_sectors;
7805
7806 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7807 return -EINVAL;
7808 if (new_chunk > 0) {
7809 if (!is_power_of_2(new_chunk))
7810 return -EINVAL;
7811 if (new_chunk < (PAGE_SIZE>>9))
7812 return -EINVAL;
7813 if (mddev->array_sectors & (new_chunk-1))
7814 /* not factor of array size */
7815 return -EINVAL;
7816 }
7817
7818 /* They look valid */
7819
7820 if (mddev->raid_disks == 2) {
7821 /* can make the change immediately */
7822 if (mddev->new_layout >= 0) {
7823 conf->algorithm = mddev->new_layout;
7824 mddev->layout = mddev->new_layout;
7825 }
7826 if (new_chunk > 0) {
7827 conf->chunk_sectors = new_chunk ;
7828 mddev->chunk_sectors = new_chunk;
7829 }
7830 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7831 md_wakeup_thread(mddev->thread);
7832 }
7833 return check_reshape(mddev);
7834 }
7835
7836 static int raid6_check_reshape(struct mddev *mddev)
7837 {
7838 int new_chunk = mddev->new_chunk_sectors;
7839
7840 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7841 return -EINVAL;
7842 if (new_chunk > 0) {
7843 if (!is_power_of_2(new_chunk))
7844 return -EINVAL;
7845 if (new_chunk < (PAGE_SIZE >> 9))
7846 return -EINVAL;
7847 if (mddev->array_sectors & (new_chunk-1))
7848 /* not factor of array size */
7849 return -EINVAL;
7850 }
7851
7852 /* They look valid */
7853 return check_reshape(mddev);
7854 }
7855
7856 static void *raid5_takeover(struct mddev *mddev)
7857 {
7858 /* raid5 can take over:
7859 * raid0 - if there is only one strip zone - make it a raid4 layout
7860 * raid1 - if there are two drives. We need to know the chunk size
7861 * raid4 - trivial - just use a raid4 layout.
7862 * raid6 - Providing it is a *_6 layout
7863 */
7864 if (mddev->level == 0)
7865 return raid45_takeover_raid0(mddev, 5);
7866 if (mddev->level == 1)
7867 return raid5_takeover_raid1(mddev);
7868 if (mddev->level == 4) {
7869 mddev->new_layout = ALGORITHM_PARITY_N;
7870 mddev->new_level = 5;
7871 return setup_conf(mddev);
7872 }
7873 if (mddev->level == 6)
7874 return raid5_takeover_raid6(mddev);
7875
7876 return ERR_PTR(-EINVAL);
7877 }
7878
7879 static void *raid4_takeover(struct mddev *mddev)
7880 {
7881 /* raid4 can take over:
7882 * raid0 - if there is only one strip zone
7883 * raid5 - if layout is right
7884 */
7885 if (mddev->level == 0)
7886 return raid45_takeover_raid0(mddev, 4);
7887 if (mddev->level == 5 &&
7888 mddev->layout == ALGORITHM_PARITY_N) {
7889 mddev->new_layout = 0;
7890 mddev->new_level = 4;
7891 return setup_conf(mddev);
7892 }
7893 return ERR_PTR(-EINVAL);
7894 }
7895
7896 static struct md_personality raid5_personality;
7897
7898 static void *raid6_takeover(struct mddev *mddev)
7899 {
7900 /* Currently can only take over a raid5. We map the
7901 * personality to an equivalent raid6 personality
7902 * with the Q block at the end.
7903 */
7904 int new_layout;
7905
7906 if (mddev->pers != &raid5_personality)
7907 return ERR_PTR(-EINVAL);
7908 if (mddev->degraded > 1)
7909 return ERR_PTR(-EINVAL);
7910 if (mddev->raid_disks > 253)
7911 return ERR_PTR(-EINVAL);
7912 if (mddev->raid_disks < 3)
7913 return ERR_PTR(-EINVAL);
7914
7915 switch (mddev->layout) {
7916 case ALGORITHM_LEFT_ASYMMETRIC:
7917 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7918 break;
7919 case ALGORITHM_RIGHT_ASYMMETRIC:
7920 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7921 break;
7922 case ALGORITHM_LEFT_SYMMETRIC:
7923 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7924 break;
7925 case ALGORITHM_RIGHT_SYMMETRIC:
7926 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7927 break;
7928 case ALGORITHM_PARITY_0:
7929 new_layout = ALGORITHM_PARITY_0_6;
7930 break;
7931 case ALGORITHM_PARITY_N:
7932 new_layout = ALGORITHM_PARITY_N;
7933 break;
7934 default:
7935 return ERR_PTR(-EINVAL);
7936 }
7937 mddev->new_level = 6;
7938 mddev->new_layout = new_layout;
7939 mddev->delta_disks = 1;
7940 mddev->raid_disks += 1;
7941 return setup_conf(mddev);
7942 }
7943
7944 static struct md_personality raid6_personality =
7945 {
7946 .name = "raid6",
7947 .level = 6,
7948 .owner = THIS_MODULE,
7949 .make_request = raid5_make_request,
7950 .run = raid5_run,
7951 .free = raid5_free,
7952 .status = raid5_status,
7953 .error_handler = raid5_error,
7954 .hot_add_disk = raid5_add_disk,
7955 .hot_remove_disk= raid5_remove_disk,
7956 .spare_active = raid5_spare_active,
7957 .sync_request = raid5_sync_request,
7958 .resize = raid5_resize,
7959 .size = raid5_size,
7960 .check_reshape = raid6_check_reshape,
7961 .start_reshape = raid5_start_reshape,
7962 .finish_reshape = raid5_finish_reshape,
7963 .quiesce = raid5_quiesce,
7964 .takeover = raid6_takeover,
7965 .congested = raid5_congested,
7966 };
7967 static struct md_personality raid5_personality =
7968 {
7969 .name = "raid5",
7970 .level = 5,
7971 .owner = THIS_MODULE,
7972 .make_request = raid5_make_request,
7973 .run = raid5_run,
7974 .free = raid5_free,
7975 .status = raid5_status,
7976 .error_handler = raid5_error,
7977 .hot_add_disk = raid5_add_disk,
7978 .hot_remove_disk= raid5_remove_disk,
7979 .spare_active = raid5_spare_active,
7980 .sync_request = raid5_sync_request,
7981 .resize = raid5_resize,
7982 .size = raid5_size,
7983 .check_reshape = raid5_check_reshape,
7984 .start_reshape = raid5_start_reshape,
7985 .finish_reshape = raid5_finish_reshape,
7986 .quiesce = raid5_quiesce,
7987 .takeover = raid5_takeover,
7988 .congested = raid5_congested,
7989 };
7990
7991 static struct md_personality raid4_personality =
7992 {
7993 .name = "raid4",
7994 .level = 4,
7995 .owner = THIS_MODULE,
7996 .make_request = raid5_make_request,
7997 .run = raid5_run,
7998 .free = raid5_free,
7999 .status = raid5_status,
8000 .error_handler = raid5_error,
8001 .hot_add_disk = raid5_add_disk,
8002 .hot_remove_disk= raid5_remove_disk,
8003 .spare_active = raid5_spare_active,
8004 .sync_request = raid5_sync_request,
8005 .resize = raid5_resize,
8006 .size = raid5_size,
8007 .check_reshape = raid5_check_reshape,
8008 .start_reshape = raid5_start_reshape,
8009 .finish_reshape = raid5_finish_reshape,
8010 .quiesce = raid5_quiesce,
8011 .takeover = raid4_takeover,
8012 .congested = raid5_congested,
8013 };
8014
8015 static int __init raid5_init(void)
8016 {
8017 int ret;
8018
8019 raid5_wq = alloc_workqueue("raid5wq",
8020 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8021 if (!raid5_wq)
8022 return -ENOMEM;
8023
8024 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8025 "md/raid5:prepare",
8026 raid456_cpu_up_prepare,
8027 raid456_cpu_dead);
8028 if (ret) {
8029 destroy_workqueue(raid5_wq);
8030 return ret;
8031 }
8032 register_md_personality(&raid6_personality);
8033 register_md_personality(&raid5_personality);
8034 register_md_personality(&raid4_personality);
8035 return 0;
8036 }
8037
8038 static void raid5_exit(void)
8039 {
8040 unregister_md_personality(&raid6_personality);
8041 unregister_md_personality(&raid5_personality);
8042 unregister_md_personality(&raid4_personality);
8043 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8044 destroy_workqueue(raid5_wq);
8045 }
8046
8047 module_init(raid5_init);
8048 module_exit(raid5_exit);
8049 MODULE_LICENSE("GPL");
8050 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8051 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8052 MODULE_ALIAS("md-raid5");
8053 MODULE_ALIAS("md-raid4");
8054 MODULE_ALIAS("md-level-5");
8055 MODULE_ALIAS("md-level-4");
8056 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8057 MODULE_ALIAS("md-raid6");
8058 MODULE_ALIAS("md-level-6");
8059
8060 /* This used to be two separate modules, they were: */
8061 MODULE_ALIAS("raid5");
8062 MODULE_ALIAS("raid6");