]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/md/raid5.c
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58
59 #include <trace/events/block.h>
60 #include <linux/list_sort.h>
61
62 #include "md.h"
63 #include "raid5.h"
64 #include "raid0.h"
65 #include "md-bitmap.h"
66 #include "raid5-log.h"
67
68 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
69
70 #define cpu_to_group(cpu) cpu_to_node(cpu)
71 #define ANY_GROUP NUMA_NO_NODE
72
73 static bool devices_handle_discard_safely = false;
74 module_param(devices_handle_discard_safely, bool, 0644);
75 MODULE_PARM_DESC(devices_handle_discard_safely,
76 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
77 static struct workqueue_struct *raid5_wq;
78
79 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
80 {
81 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
82 return &conf->stripe_hashtbl[hash];
83 }
84
85 static inline int stripe_hash_locks_hash(sector_t sect)
86 {
87 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
88 }
89
90 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
91 {
92 spin_lock_irq(conf->hash_locks + hash);
93 spin_lock(&conf->device_lock);
94 }
95
96 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
97 {
98 spin_unlock(&conf->device_lock);
99 spin_unlock_irq(conf->hash_locks + hash);
100 }
101
102 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104 int i;
105 spin_lock_irq(conf->hash_locks);
106 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 spin_lock(&conf->device_lock);
109 }
110
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
112 {
113 int i;
114 spin_unlock(&conf->device_lock);
115 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
116 spin_unlock(conf->hash_locks + i);
117 spin_unlock_irq(conf->hash_locks);
118 }
119
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head *sh)
122 {
123 if (sh->ddf_layout)
124 /* ddf always start from first device */
125 return 0;
126 /* md starts just after Q block */
127 if (sh->qd_idx == sh->disks - 1)
128 return 0;
129 else
130 return sh->qd_idx + 1;
131 }
132 static inline int raid6_next_disk(int disk, int raid_disks)
133 {
134 disk++;
135 return (disk < raid_disks) ? disk : 0;
136 }
137
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139 * We need to map each disk to a 'slot', where the data disks are slot
140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141 * is raid_disks-1. This help does that mapping.
142 */
143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 int *count, int syndrome_disks)
145 {
146 int slot = *count;
147
148 if (sh->ddf_layout)
149 (*count)++;
150 if (idx == sh->pd_idx)
151 return syndrome_disks;
152 if (idx == sh->qd_idx)
153 return syndrome_disks + 1;
154 if (!sh->ddf_layout)
155 (*count)++;
156 return slot;
157 }
158
159 static void print_raid5_conf (struct r5conf *conf);
160
161 static int stripe_operations_active(struct stripe_head *sh)
162 {
163 return sh->check_state || sh->reconstruct_state ||
164 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
165 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
166 }
167
168 static bool stripe_is_lowprio(struct stripe_head *sh)
169 {
170 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
171 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
172 !test_bit(STRIPE_R5C_CACHING, &sh->state);
173 }
174
175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
176 {
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
179 int thread_cnt;
180 int i, cpu = sh->cpu;
181
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
184 sh->cpu = cpu;
185 }
186
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
190 if (stripe_is_lowprio(sh))
191 list_add_tail(&sh->lru, &group->loprio_list);
192 else
193 list_add_tail(&sh->lru, &group->handle_list);
194 group->stripes_cnt++;
195 sh->group = group;
196 }
197
198 if (conf->worker_cnt_per_group == 0) {
199 md_wakeup_thread(conf->mddev->thread);
200 return;
201 }
202
203 group = conf->worker_groups + cpu_to_group(sh->cpu);
204
205 group->workers[0].working = true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208
209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 /* wakeup more workers */
211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 if (group->workers[i].working == false) {
213 group->workers[i].working = true;
214 queue_work_on(sh->cpu, raid5_wq,
215 &group->workers[i].work);
216 thread_cnt--;
217 }
218 }
219 }
220
221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 struct list_head *temp_inactive_list)
223 {
224 int i;
225 int injournal = 0; /* number of date pages with R5_InJournal */
226
227 BUG_ON(!list_empty(&sh->lru));
228 BUG_ON(atomic_read(&conf->active_stripes)==0);
229
230 if (r5c_is_writeback(conf->log))
231 for (i = sh->disks; i--; )
232 if (test_bit(R5_InJournal, &sh->dev[i].flags))
233 injournal++;
234 /*
235 * In the following cases, the stripe cannot be released to cached
236 * lists. Therefore, we make the stripe write out and set
237 * STRIPE_HANDLE:
238 * 1. when quiesce in r5c write back;
239 * 2. when resync is requested fot the stripe.
240 */
241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
242 (conf->quiesce && r5c_is_writeback(conf->log) &&
243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
244 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
245 r5c_make_stripe_write_out(sh);
246 set_bit(STRIPE_HANDLE, &sh->state);
247 }
248
249 if (test_bit(STRIPE_HANDLE, &sh->state)) {
250 if (test_bit(STRIPE_DELAYED, &sh->state) &&
251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
252 list_add_tail(&sh->lru, &conf->delayed_list);
253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
254 sh->bm_seq - conf->seq_write > 0)
255 list_add_tail(&sh->lru, &conf->bitmap_list);
256 else {
257 clear_bit(STRIPE_DELAYED, &sh->state);
258 clear_bit(STRIPE_BIT_DELAY, &sh->state);
259 if (conf->worker_cnt_per_group == 0) {
260 if (stripe_is_lowprio(sh))
261 list_add_tail(&sh->lru,
262 &conf->loprio_list);
263 else
264 list_add_tail(&sh->lru,
265 &conf->handle_list);
266 } else {
267 raid5_wakeup_stripe_thread(sh);
268 return;
269 }
270 }
271 md_wakeup_thread(conf->mddev->thread);
272 } else {
273 BUG_ON(stripe_operations_active(sh));
274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
275 if (atomic_dec_return(&conf->preread_active_stripes)
276 < IO_THRESHOLD)
277 md_wakeup_thread(conf->mddev->thread);
278 atomic_dec(&conf->active_stripes);
279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
280 if (!r5c_is_writeback(conf->log))
281 list_add_tail(&sh->lru, temp_inactive_list);
282 else {
283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
284 if (injournal == 0)
285 list_add_tail(&sh->lru, temp_inactive_list);
286 else if (injournal == conf->raid_disks - conf->max_degraded) {
287 /* full stripe */
288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
289 atomic_inc(&conf->r5c_cached_full_stripes);
290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
291 atomic_dec(&conf->r5c_cached_partial_stripes);
292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
293 r5c_check_cached_full_stripe(conf);
294 } else
295 /*
296 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 * r5c_try_caching_write(). No need to
298 * set it again.
299 */
300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
301 }
302 }
303 }
304 }
305
306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
307 struct list_head *temp_inactive_list)
308 {
309 if (atomic_dec_and_test(&sh->count))
310 do_release_stripe(conf, sh, temp_inactive_list);
311 }
312
313 /*
314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
315 *
316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317 * given time. Adding stripes only takes device lock, while deleting stripes
318 * only takes hash lock.
319 */
320 static void release_inactive_stripe_list(struct r5conf *conf,
321 struct list_head *temp_inactive_list,
322 int hash)
323 {
324 int size;
325 bool do_wakeup = false;
326 unsigned long flags;
327
328 if (hash == NR_STRIPE_HASH_LOCKS) {
329 size = NR_STRIPE_HASH_LOCKS;
330 hash = NR_STRIPE_HASH_LOCKS - 1;
331 } else
332 size = 1;
333 while (size) {
334 struct list_head *list = &temp_inactive_list[size - 1];
335
336 /*
337 * We don't hold any lock here yet, raid5_get_active_stripe() might
338 * remove stripes from the list
339 */
340 if (!list_empty_careful(list)) {
341 spin_lock_irqsave(conf->hash_locks + hash, flags);
342 if (list_empty(conf->inactive_list + hash) &&
343 !list_empty(list))
344 atomic_dec(&conf->empty_inactive_list_nr);
345 list_splice_tail_init(list, conf->inactive_list + hash);
346 do_wakeup = true;
347 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
348 }
349 size--;
350 hash--;
351 }
352
353 if (do_wakeup) {
354 wake_up(&conf->wait_for_stripe);
355 if (atomic_read(&conf->active_stripes) == 0)
356 wake_up(&conf->wait_for_quiescent);
357 if (conf->retry_read_aligned)
358 md_wakeup_thread(conf->mddev->thread);
359 }
360 }
361
362 /* should hold conf->device_lock already */
363 static int release_stripe_list(struct r5conf *conf,
364 struct list_head *temp_inactive_list)
365 {
366 struct stripe_head *sh, *t;
367 int count = 0;
368 struct llist_node *head;
369
370 head = llist_del_all(&conf->released_stripes);
371 head = llist_reverse_order(head);
372 llist_for_each_entry_safe(sh, t, head, release_list) {
373 int hash;
374
375 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
376 smp_mb();
377 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
378 /*
379 * Don't worry the bit is set here, because if the bit is set
380 * again, the count is always > 1. This is true for
381 * STRIPE_ON_UNPLUG_LIST bit too.
382 */
383 hash = sh->hash_lock_index;
384 __release_stripe(conf, sh, &temp_inactive_list[hash]);
385 count++;
386 }
387
388 return count;
389 }
390
391 void raid5_release_stripe(struct stripe_head *sh)
392 {
393 struct r5conf *conf = sh->raid_conf;
394 unsigned long flags;
395 struct list_head list;
396 int hash;
397 bool wakeup;
398
399 /* Avoid release_list until the last reference.
400 */
401 if (atomic_add_unless(&sh->count, -1, 1))
402 return;
403
404 if (unlikely(!conf->mddev->thread) ||
405 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
406 goto slow_path;
407 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
408 if (wakeup)
409 md_wakeup_thread(conf->mddev->thread);
410 return;
411 slow_path:
412 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
413 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
414 INIT_LIST_HEAD(&list);
415 hash = sh->hash_lock_index;
416 do_release_stripe(conf, sh, &list);
417 spin_unlock_irqrestore(&conf->device_lock, flags);
418 release_inactive_stripe_list(conf, &list, hash);
419 }
420 }
421
422 static inline void remove_hash(struct stripe_head *sh)
423 {
424 pr_debug("remove_hash(), stripe %llu\n",
425 (unsigned long long)sh->sector);
426
427 hlist_del_init(&sh->hash);
428 }
429
430 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
431 {
432 struct hlist_head *hp = stripe_hash(conf, sh->sector);
433
434 pr_debug("insert_hash(), stripe %llu\n",
435 (unsigned long long)sh->sector);
436
437 hlist_add_head(&sh->hash, hp);
438 }
439
440 /* find an idle stripe, make sure it is unhashed, and return it. */
441 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
442 {
443 struct stripe_head *sh = NULL;
444 struct list_head *first;
445
446 if (list_empty(conf->inactive_list + hash))
447 goto out;
448 first = (conf->inactive_list + hash)->next;
449 sh = list_entry(first, struct stripe_head, lru);
450 list_del_init(first);
451 remove_hash(sh);
452 atomic_inc(&conf->active_stripes);
453 BUG_ON(hash != sh->hash_lock_index);
454 if (list_empty(conf->inactive_list + hash))
455 atomic_inc(&conf->empty_inactive_list_nr);
456 out:
457 return sh;
458 }
459
460 static void shrink_buffers(struct stripe_head *sh)
461 {
462 struct page *p;
463 int i;
464 int num = sh->raid_conf->pool_size;
465
466 for (i = 0; i < num ; i++) {
467 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
468 p = sh->dev[i].page;
469 if (!p)
470 continue;
471 sh->dev[i].page = NULL;
472 put_page(p);
473 }
474 }
475
476 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
477 {
478 int i;
479 int num = sh->raid_conf->pool_size;
480
481 for (i = 0; i < num; i++) {
482 struct page *page;
483
484 if (!(page = alloc_page(gfp))) {
485 return 1;
486 }
487 sh->dev[i].page = page;
488 sh->dev[i].orig_page = page;
489 }
490
491 return 0;
492 }
493
494 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
495 struct stripe_head *sh);
496
497 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
498 {
499 struct r5conf *conf = sh->raid_conf;
500 int i, seq;
501
502 BUG_ON(atomic_read(&sh->count) != 0);
503 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
504 BUG_ON(stripe_operations_active(sh));
505 BUG_ON(sh->batch_head);
506
507 pr_debug("init_stripe called, stripe %llu\n",
508 (unsigned long long)sector);
509 retry:
510 seq = read_seqcount_begin(&conf->gen_lock);
511 sh->generation = conf->generation - previous;
512 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
513 sh->sector = sector;
514 stripe_set_idx(sector, conf, previous, sh);
515 sh->state = 0;
516
517 for (i = sh->disks; i--; ) {
518 struct r5dev *dev = &sh->dev[i];
519
520 if (dev->toread || dev->read || dev->towrite || dev->written ||
521 test_bit(R5_LOCKED, &dev->flags)) {
522 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
523 (unsigned long long)sh->sector, i, dev->toread,
524 dev->read, dev->towrite, dev->written,
525 test_bit(R5_LOCKED, &dev->flags));
526 WARN_ON(1);
527 }
528 dev->flags = 0;
529 dev->sector = raid5_compute_blocknr(sh, i, previous);
530 }
531 if (read_seqcount_retry(&conf->gen_lock, seq))
532 goto retry;
533 sh->overwrite_disks = 0;
534 insert_hash(conf, sh);
535 sh->cpu = smp_processor_id();
536 set_bit(STRIPE_BATCH_READY, &sh->state);
537 }
538
539 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
540 short generation)
541 {
542 struct stripe_head *sh;
543
544 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
545 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
546 if (sh->sector == sector && sh->generation == generation)
547 return sh;
548 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
549 return NULL;
550 }
551
552 /*
553 * Need to check if array has failed when deciding whether to:
554 * - start an array
555 * - remove non-faulty devices
556 * - add a spare
557 * - allow a reshape
558 * This determination is simple when no reshape is happening.
559 * However if there is a reshape, we need to carefully check
560 * both the before and after sections.
561 * This is because some failed devices may only affect one
562 * of the two sections, and some non-in_sync devices may
563 * be insync in the section most affected by failed devices.
564 */
565 int raid5_calc_degraded(struct r5conf *conf)
566 {
567 int degraded, degraded2;
568 int i;
569
570 rcu_read_lock();
571 degraded = 0;
572 for (i = 0; i < conf->previous_raid_disks; i++) {
573 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
574 if (rdev && test_bit(Faulty, &rdev->flags))
575 rdev = rcu_dereference(conf->disks[i].replacement);
576 if (!rdev || test_bit(Faulty, &rdev->flags))
577 degraded++;
578 else if (test_bit(In_sync, &rdev->flags))
579 ;
580 else
581 /* not in-sync or faulty.
582 * If the reshape increases the number of devices,
583 * this is being recovered by the reshape, so
584 * this 'previous' section is not in_sync.
585 * If the number of devices is being reduced however,
586 * the device can only be part of the array if
587 * we are reverting a reshape, so this section will
588 * be in-sync.
589 */
590 if (conf->raid_disks >= conf->previous_raid_disks)
591 degraded++;
592 }
593 rcu_read_unlock();
594 if (conf->raid_disks == conf->previous_raid_disks)
595 return degraded;
596 rcu_read_lock();
597 degraded2 = 0;
598 for (i = 0; i < conf->raid_disks; i++) {
599 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
600 if (rdev && test_bit(Faulty, &rdev->flags))
601 rdev = rcu_dereference(conf->disks[i].replacement);
602 if (!rdev || test_bit(Faulty, &rdev->flags))
603 degraded2++;
604 else if (test_bit(In_sync, &rdev->flags))
605 ;
606 else
607 /* not in-sync or faulty.
608 * If reshape increases the number of devices, this
609 * section has already been recovered, else it
610 * almost certainly hasn't.
611 */
612 if (conf->raid_disks <= conf->previous_raid_disks)
613 degraded2++;
614 }
615 rcu_read_unlock();
616 if (degraded2 > degraded)
617 return degraded2;
618 return degraded;
619 }
620
621 static int has_failed(struct r5conf *conf)
622 {
623 int degraded;
624
625 if (conf->mddev->reshape_position == MaxSector)
626 return conf->mddev->degraded > conf->max_degraded;
627
628 degraded = raid5_calc_degraded(conf);
629 if (degraded > conf->max_degraded)
630 return 1;
631 return 0;
632 }
633
634 struct stripe_head *
635 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
636 int previous, int noblock, int noquiesce)
637 {
638 struct stripe_head *sh;
639 int hash = stripe_hash_locks_hash(sector);
640 int inc_empty_inactive_list_flag;
641
642 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
643
644 spin_lock_irq(conf->hash_locks + hash);
645
646 do {
647 wait_event_lock_irq(conf->wait_for_quiescent,
648 conf->quiesce == 0 || noquiesce,
649 *(conf->hash_locks + hash));
650 sh = __find_stripe(conf, sector, conf->generation - previous);
651 if (!sh) {
652 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
653 sh = get_free_stripe(conf, hash);
654 if (!sh && !test_bit(R5_DID_ALLOC,
655 &conf->cache_state))
656 set_bit(R5_ALLOC_MORE,
657 &conf->cache_state);
658 }
659 if (noblock && sh == NULL)
660 break;
661
662 r5c_check_stripe_cache_usage(conf);
663 if (!sh) {
664 set_bit(R5_INACTIVE_BLOCKED,
665 &conf->cache_state);
666 r5l_wake_reclaim(conf->log, 0);
667 wait_event_lock_irq(
668 conf->wait_for_stripe,
669 !list_empty(conf->inactive_list + hash) &&
670 (atomic_read(&conf->active_stripes)
671 < (conf->max_nr_stripes * 3 / 4)
672 || !test_bit(R5_INACTIVE_BLOCKED,
673 &conf->cache_state)),
674 *(conf->hash_locks + hash));
675 clear_bit(R5_INACTIVE_BLOCKED,
676 &conf->cache_state);
677 } else {
678 init_stripe(sh, sector, previous);
679 atomic_inc(&sh->count);
680 }
681 } else if (!atomic_inc_not_zero(&sh->count)) {
682 spin_lock(&conf->device_lock);
683 if (!atomic_read(&sh->count)) {
684 if (!test_bit(STRIPE_HANDLE, &sh->state))
685 atomic_inc(&conf->active_stripes);
686 BUG_ON(list_empty(&sh->lru) &&
687 !test_bit(STRIPE_EXPANDING, &sh->state));
688 inc_empty_inactive_list_flag = 0;
689 if (!list_empty(conf->inactive_list + hash))
690 inc_empty_inactive_list_flag = 1;
691 list_del_init(&sh->lru);
692 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
693 atomic_inc(&conf->empty_inactive_list_nr);
694 if (sh->group) {
695 sh->group->stripes_cnt--;
696 sh->group = NULL;
697 }
698 }
699 atomic_inc(&sh->count);
700 spin_unlock(&conf->device_lock);
701 }
702 } while (sh == NULL);
703
704 spin_unlock_irq(conf->hash_locks + hash);
705 return sh;
706 }
707
708 static bool is_full_stripe_write(struct stripe_head *sh)
709 {
710 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
711 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
712 }
713
714 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
715 {
716 if (sh1 > sh2) {
717 spin_lock_irq(&sh2->stripe_lock);
718 spin_lock_nested(&sh1->stripe_lock, 1);
719 } else {
720 spin_lock_irq(&sh1->stripe_lock);
721 spin_lock_nested(&sh2->stripe_lock, 1);
722 }
723 }
724
725 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
726 {
727 spin_unlock(&sh1->stripe_lock);
728 spin_unlock_irq(&sh2->stripe_lock);
729 }
730
731 /* Only freshly new full stripe normal write stripe can be added to a batch list */
732 static bool stripe_can_batch(struct stripe_head *sh)
733 {
734 struct r5conf *conf = sh->raid_conf;
735
736 if (raid5_has_log(conf) || raid5_has_ppl(conf))
737 return false;
738 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
739 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
740 is_full_stripe_write(sh);
741 }
742
743 /* we only do back search */
744 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
745 {
746 struct stripe_head *head;
747 sector_t head_sector, tmp_sec;
748 int hash;
749 int dd_idx;
750 int inc_empty_inactive_list_flag;
751
752 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
753 tmp_sec = sh->sector;
754 if (!sector_div(tmp_sec, conf->chunk_sectors))
755 return;
756 head_sector = sh->sector - STRIPE_SECTORS;
757
758 hash = stripe_hash_locks_hash(head_sector);
759 spin_lock_irq(conf->hash_locks + hash);
760 head = __find_stripe(conf, head_sector, conf->generation);
761 if (head && !atomic_inc_not_zero(&head->count)) {
762 spin_lock(&conf->device_lock);
763 if (!atomic_read(&head->count)) {
764 if (!test_bit(STRIPE_HANDLE, &head->state))
765 atomic_inc(&conf->active_stripes);
766 BUG_ON(list_empty(&head->lru) &&
767 !test_bit(STRIPE_EXPANDING, &head->state));
768 inc_empty_inactive_list_flag = 0;
769 if (!list_empty(conf->inactive_list + hash))
770 inc_empty_inactive_list_flag = 1;
771 list_del_init(&head->lru);
772 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
773 atomic_inc(&conf->empty_inactive_list_nr);
774 if (head->group) {
775 head->group->stripes_cnt--;
776 head->group = NULL;
777 }
778 }
779 atomic_inc(&head->count);
780 spin_unlock(&conf->device_lock);
781 }
782 spin_unlock_irq(conf->hash_locks + hash);
783
784 if (!head)
785 return;
786 if (!stripe_can_batch(head))
787 goto out;
788
789 lock_two_stripes(head, sh);
790 /* clear_batch_ready clear the flag */
791 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
792 goto unlock_out;
793
794 if (sh->batch_head)
795 goto unlock_out;
796
797 dd_idx = 0;
798 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
799 dd_idx++;
800 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
801 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
802 goto unlock_out;
803
804 if (head->batch_head) {
805 spin_lock(&head->batch_head->batch_lock);
806 /* This batch list is already running */
807 if (!stripe_can_batch(head)) {
808 spin_unlock(&head->batch_head->batch_lock);
809 goto unlock_out;
810 }
811 /*
812 * We must assign batch_head of this stripe within the
813 * batch_lock, otherwise clear_batch_ready of batch head
814 * stripe could clear BATCH_READY bit of this stripe and
815 * this stripe->batch_head doesn't get assigned, which
816 * could confuse clear_batch_ready for this stripe
817 */
818 sh->batch_head = head->batch_head;
819
820 /*
821 * at this point, head's BATCH_READY could be cleared, but we
822 * can still add the stripe to batch list
823 */
824 list_add(&sh->batch_list, &head->batch_list);
825 spin_unlock(&head->batch_head->batch_lock);
826 } else {
827 head->batch_head = head;
828 sh->batch_head = head->batch_head;
829 spin_lock(&head->batch_lock);
830 list_add_tail(&sh->batch_list, &head->batch_list);
831 spin_unlock(&head->batch_lock);
832 }
833
834 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
835 if (atomic_dec_return(&conf->preread_active_stripes)
836 < IO_THRESHOLD)
837 md_wakeup_thread(conf->mddev->thread);
838
839 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
840 int seq = sh->bm_seq;
841 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
842 sh->batch_head->bm_seq > seq)
843 seq = sh->batch_head->bm_seq;
844 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
845 sh->batch_head->bm_seq = seq;
846 }
847
848 atomic_inc(&sh->count);
849 unlock_out:
850 unlock_two_stripes(head, sh);
851 out:
852 raid5_release_stripe(head);
853 }
854
855 /* Determine if 'data_offset' or 'new_data_offset' should be used
856 * in this stripe_head.
857 */
858 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
859 {
860 sector_t progress = conf->reshape_progress;
861 /* Need a memory barrier to make sure we see the value
862 * of conf->generation, or ->data_offset that was set before
863 * reshape_progress was updated.
864 */
865 smp_rmb();
866 if (progress == MaxSector)
867 return 0;
868 if (sh->generation == conf->generation - 1)
869 return 0;
870 /* We are in a reshape, and this is a new-generation stripe,
871 * so use new_data_offset.
872 */
873 return 1;
874 }
875
876 static void dispatch_bio_list(struct bio_list *tmp)
877 {
878 struct bio *bio;
879
880 while ((bio = bio_list_pop(tmp)))
881 generic_make_request(bio);
882 }
883
884 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
885 {
886 const struct r5pending_data *da = list_entry(a,
887 struct r5pending_data, sibling);
888 const struct r5pending_data *db = list_entry(b,
889 struct r5pending_data, sibling);
890 if (da->sector > db->sector)
891 return 1;
892 if (da->sector < db->sector)
893 return -1;
894 return 0;
895 }
896
897 static void dispatch_defer_bios(struct r5conf *conf, int target,
898 struct bio_list *list)
899 {
900 struct r5pending_data *data;
901 struct list_head *first, *next = NULL;
902 int cnt = 0;
903
904 if (conf->pending_data_cnt == 0)
905 return;
906
907 list_sort(NULL, &conf->pending_list, cmp_stripe);
908
909 first = conf->pending_list.next;
910
911 /* temporarily move the head */
912 if (conf->next_pending_data)
913 list_move_tail(&conf->pending_list,
914 &conf->next_pending_data->sibling);
915
916 while (!list_empty(&conf->pending_list)) {
917 data = list_first_entry(&conf->pending_list,
918 struct r5pending_data, sibling);
919 if (&data->sibling == first)
920 first = data->sibling.next;
921 next = data->sibling.next;
922
923 bio_list_merge(list, &data->bios);
924 list_move(&data->sibling, &conf->free_list);
925 cnt++;
926 if (cnt >= target)
927 break;
928 }
929 conf->pending_data_cnt -= cnt;
930 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
931
932 if (next != &conf->pending_list)
933 conf->next_pending_data = list_entry(next,
934 struct r5pending_data, sibling);
935 else
936 conf->next_pending_data = NULL;
937 /* list isn't empty */
938 if (first != &conf->pending_list)
939 list_move_tail(&conf->pending_list, first);
940 }
941
942 static void flush_deferred_bios(struct r5conf *conf)
943 {
944 struct bio_list tmp = BIO_EMPTY_LIST;
945
946 if (conf->pending_data_cnt == 0)
947 return;
948
949 spin_lock(&conf->pending_bios_lock);
950 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
951 BUG_ON(conf->pending_data_cnt != 0);
952 spin_unlock(&conf->pending_bios_lock);
953
954 dispatch_bio_list(&tmp);
955 }
956
957 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
958 struct bio_list *bios)
959 {
960 struct bio_list tmp = BIO_EMPTY_LIST;
961 struct r5pending_data *ent;
962
963 spin_lock(&conf->pending_bios_lock);
964 ent = list_first_entry(&conf->free_list, struct r5pending_data,
965 sibling);
966 list_move_tail(&ent->sibling, &conf->pending_list);
967 ent->sector = sector;
968 bio_list_init(&ent->bios);
969 bio_list_merge(&ent->bios, bios);
970 conf->pending_data_cnt++;
971 if (conf->pending_data_cnt >= PENDING_IO_MAX)
972 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
973
974 spin_unlock(&conf->pending_bios_lock);
975
976 dispatch_bio_list(&tmp);
977 }
978
979 static void
980 raid5_end_read_request(struct bio *bi);
981 static void
982 raid5_end_write_request(struct bio *bi);
983
984 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
985 {
986 struct r5conf *conf = sh->raid_conf;
987 int i, disks = sh->disks;
988 struct stripe_head *head_sh = sh;
989 struct bio_list pending_bios = BIO_EMPTY_LIST;
990 bool should_defer;
991
992 might_sleep();
993
994 if (log_stripe(sh, s) == 0)
995 return;
996
997 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
998
999 for (i = disks; i--; ) {
1000 int op, op_flags = 0;
1001 int replace_only = 0;
1002 struct bio *bi, *rbi;
1003 struct md_rdev *rdev, *rrdev = NULL;
1004
1005 sh = head_sh;
1006 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1007 op = REQ_OP_WRITE;
1008 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1009 op_flags = REQ_FUA;
1010 if (test_bit(R5_Discard, &sh->dev[i].flags))
1011 op = REQ_OP_DISCARD;
1012 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1013 op = REQ_OP_READ;
1014 else if (test_and_clear_bit(R5_WantReplace,
1015 &sh->dev[i].flags)) {
1016 op = REQ_OP_WRITE;
1017 replace_only = 1;
1018 } else
1019 continue;
1020 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1021 op_flags |= REQ_SYNC;
1022
1023 again:
1024 bi = &sh->dev[i].req;
1025 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1026
1027 rcu_read_lock();
1028 rrdev = rcu_dereference(conf->disks[i].replacement);
1029 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1030 rdev = rcu_dereference(conf->disks[i].rdev);
1031 if (!rdev) {
1032 rdev = rrdev;
1033 rrdev = NULL;
1034 }
1035 if (op_is_write(op)) {
1036 if (replace_only)
1037 rdev = NULL;
1038 if (rdev == rrdev)
1039 /* We raced and saw duplicates */
1040 rrdev = NULL;
1041 } else {
1042 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1043 rdev = rrdev;
1044 rrdev = NULL;
1045 }
1046
1047 if (rdev && test_bit(Faulty, &rdev->flags))
1048 rdev = NULL;
1049 if (rdev)
1050 atomic_inc(&rdev->nr_pending);
1051 if (rrdev && test_bit(Faulty, &rrdev->flags))
1052 rrdev = NULL;
1053 if (rrdev)
1054 atomic_inc(&rrdev->nr_pending);
1055 rcu_read_unlock();
1056
1057 /* We have already checked bad blocks for reads. Now
1058 * need to check for writes. We never accept write errors
1059 * on the replacement, so we don't to check rrdev.
1060 */
1061 while (op_is_write(op) && rdev &&
1062 test_bit(WriteErrorSeen, &rdev->flags)) {
1063 sector_t first_bad;
1064 int bad_sectors;
1065 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1066 &first_bad, &bad_sectors);
1067 if (!bad)
1068 break;
1069
1070 if (bad < 0) {
1071 set_bit(BlockedBadBlocks, &rdev->flags);
1072 if (!conf->mddev->external &&
1073 conf->mddev->sb_flags) {
1074 /* It is very unlikely, but we might
1075 * still need to write out the
1076 * bad block log - better give it
1077 * a chance*/
1078 md_check_recovery(conf->mddev);
1079 }
1080 /*
1081 * Because md_wait_for_blocked_rdev
1082 * will dec nr_pending, we must
1083 * increment it first.
1084 */
1085 atomic_inc(&rdev->nr_pending);
1086 md_wait_for_blocked_rdev(rdev, conf->mddev);
1087 } else {
1088 /* Acknowledged bad block - skip the write */
1089 rdev_dec_pending(rdev, conf->mddev);
1090 rdev = NULL;
1091 }
1092 }
1093
1094 if (rdev) {
1095 if (s->syncing || s->expanding || s->expanded
1096 || s->replacing)
1097 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1098
1099 set_bit(STRIPE_IO_STARTED, &sh->state);
1100
1101 bio_set_dev(bi, rdev->bdev);
1102 bio_set_op_attrs(bi, op, op_flags);
1103 bi->bi_end_io = op_is_write(op)
1104 ? raid5_end_write_request
1105 : raid5_end_read_request;
1106 bi->bi_private = sh;
1107
1108 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1109 __func__, (unsigned long long)sh->sector,
1110 bi->bi_opf, i);
1111 atomic_inc(&sh->count);
1112 if (sh != head_sh)
1113 atomic_inc(&head_sh->count);
1114 if (use_new_offset(conf, sh))
1115 bi->bi_iter.bi_sector = (sh->sector
1116 + rdev->new_data_offset);
1117 else
1118 bi->bi_iter.bi_sector = (sh->sector
1119 + rdev->data_offset);
1120 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1121 bi->bi_opf |= REQ_NOMERGE;
1122
1123 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1124 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1125
1126 if (!op_is_write(op) &&
1127 test_bit(R5_InJournal, &sh->dev[i].flags))
1128 /*
1129 * issuing read for a page in journal, this
1130 * must be preparing for prexor in rmw; read
1131 * the data into orig_page
1132 */
1133 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1134 else
1135 sh->dev[i].vec.bv_page = sh->dev[i].page;
1136 bi->bi_vcnt = 1;
1137 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1138 bi->bi_io_vec[0].bv_offset = 0;
1139 bi->bi_iter.bi_size = STRIPE_SIZE;
1140 bi->bi_write_hint = sh->dev[i].write_hint;
1141 if (!rrdev)
1142 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1143 /*
1144 * If this is discard request, set bi_vcnt 0. We don't
1145 * want to confuse SCSI because SCSI will replace payload
1146 */
1147 if (op == REQ_OP_DISCARD)
1148 bi->bi_vcnt = 0;
1149 if (rrdev)
1150 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1151
1152 if (conf->mddev->gendisk)
1153 trace_block_bio_remap(bi->bi_disk->queue,
1154 bi, disk_devt(conf->mddev->gendisk),
1155 sh->dev[i].sector);
1156 if (should_defer && op_is_write(op))
1157 bio_list_add(&pending_bios, bi);
1158 else
1159 generic_make_request(bi);
1160 }
1161 if (rrdev) {
1162 if (s->syncing || s->expanding || s->expanded
1163 || s->replacing)
1164 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1165
1166 set_bit(STRIPE_IO_STARTED, &sh->state);
1167
1168 bio_set_dev(rbi, rrdev->bdev);
1169 bio_set_op_attrs(rbi, op, op_flags);
1170 BUG_ON(!op_is_write(op));
1171 rbi->bi_end_io = raid5_end_write_request;
1172 rbi->bi_private = sh;
1173
1174 pr_debug("%s: for %llu schedule op %d on "
1175 "replacement disc %d\n",
1176 __func__, (unsigned long long)sh->sector,
1177 rbi->bi_opf, i);
1178 atomic_inc(&sh->count);
1179 if (sh != head_sh)
1180 atomic_inc(&head_sh->count);
1181 if (use_new_offset(conf, sh))
1182 rbi->bi_iter.bi_sector = (sh->sector
1183 + rrdev->new_data_offset);
1184 else
1185 rbi->bi_iter.bi_sector = (sh->sector
1186 + rrdev->data_offset);
1187 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1188 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1189 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1190 rbi->bi_vcnt = 1;
1191 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1192 rbi->bi_io_vec[0].bv_offset = 0;
1193 rbi->bi_iter.bi_size = STRIPE_SIZE;
1194 rbi->bi_write_hint = sh->dev[i].write_hint;
1195 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1196 /*
1197 * If this is discard request, set bi_vcnt 0. We don't
1198 * want to confuse SCSI because SCSI will replace payload
1199 */
1200 if (op == REQ_OP_DISCARD)
1201 rbi->bi_vcnt = 0;
1202 if (conf->mddev->gendisk)
1203 trace_block_bio_remap(rbi->bi_disk->queue,
1204 rbi, disk_devt(conf->mddev->gendisk),
1205 sh->dev[i].sector);
1206 if (should_defer && op_is_write(op))
1207 bio_list_add(&pending_bios, rbi);
1208 else
1209 generic_make_request(rbi);
1210 }
1211 if (!rdev && !rrdev) {
1212 if (op_is_write(op))
1213 set_bit(STRIPE_DEGRADED, &sh->state);
1214 pr_debug("skip op %d on disc %d for sector %llu\n",
1215 bi->bi_opf, i, (unsigned long long)sh->sector);
1216 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1217 set_bit(STRIPE_HANDLE, &sh->state);
1218 }
1219
1220 if (!head_sh->batch_head)
1221 continue;
1222 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1223 batch_list);
1224 if (sh != head_sh)
1225 goto again;
1226 }
1227
1228 if (should_defer && !bio_list_empty(&pending_bios))
1229 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1230 }
1231
1232 static struct dma_async_tx_descriptor *
1233 async_copy_data(int frombio, struct bio *bio, struct page **page,
1234 sector_t sector, struct dma_async_tx_descriptor *tx,
1235 struct stripe_head *sh, int no_skipcopy)
1236 {
1237 struct bio_vec bvl;
1238 struct bvec_iter iter;
1239 struct page *bio_page;
1240 int page_offset;
1241 struct async_submit_ctl submit;
1242 enum async_tx_flags flags = 0;
1243
1244 if (bio->bi_iter.bi_sector >= sector)
1245 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1246 else
1247 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1248
1249 if (frombio)
1250 flags |= ASYNC_TX_FENCE;
1251 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1252
1253 bio_for_each_segment(bvl, bio, iter) {
1254 int len = bvl.bv_len;
1255 int clen;
1256 int b_offset = 0;
1257
1258 if (page_offset < 0) {
1259 b_offset = -page_offset;
1260 page_offset += b_offset;
1261 len -= b_offset;
1262 }
1263
1264 if (len > 0 && page_offset + len > STRIPE_SIZE)
1265 clen = STRIPE_SIZE - page_offset;
1266 else
1267 clen = len;
1268
1269 if (clen > 0) {
1270 b_offset += bvl.bv_offset;
1271 bio_page = bvl.bv_page;
1272 if (frombio) {
1273 if (sh->raid_conf->skip_copy &&
1274 b_offset == 0 && page_offset == 0 &&
1275 clen == STRIPE_SIZE &&
1276 !no_skipcopy)
1277 *page = bio_page;
1278 else
1279 tx = async_memcpy(*page, bio_page, page_offset,
1280 b_offset, clen, &submit);
1281 } else
1282 tx = async_memcpy(bio_page, *page, b_offset,
1283 page_offset, clen, &submit);
1284 }
1285 /* chain the operations */
1286 submit.depend_tx = tx;
1287
1288 if (clen < len) /* hit end of page */
1289 break;
1290 page_offset += len;
1291 }
1292
1293 return tx;
1294 }
1295
1296 static void ops_complete_biofill(void *stripe_head_ref)
1297 {
1298 struct stripe_head *sh = stripe_head_ref;
1299 int i;
1300
1301 pr_debug("%s: stripe %llu\n", __func__,
1302 (unsigned long long)sh->sector);
1303
1304 /* clear completed biofills */
1305 for (i = sh->disks; i--; ) {
1306 struct r5dev *dev = &sh->dev[i];
1307
1308 /* acknowledge completion of a biofill operation */
1309 /* and check if we need to reply to a read request,
1310 * new R5_Wantfill requests are held off until
1311 * !STRIPE_BIOFILL_RUN
1312 */
1313 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1314 struct bio *rbi, *rbi2;
1315
1316 BUG_ON(!dev->read);
1317 rbi = dev->read;
1318 dev->read = NULL;
1319 while (rbi && rbi->bi_iter.bi_sector <
1320 dev->sector + STRIPE_SECTORS) {
1321 rbi2 = r5_next_bio(rbi, dev->sector);
1322 bio_endio(rbi);
1323 rbi = rbi2;
1324 }
1325 }
1326 }
1327 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1328
1329 set_bit(STRIPE_HANDLE, &sh->state);
1330 raid5_release_stripe(sh);
1331 }
1332
1333 static void ops_run_biofill(struct stripe_head *sh)
1334 {
1335 struct dma_async_tx_descriptor *tx = NULL;
1336 struct async_submit_ctl submit;
1337 int i;
1338
1339 BUG_ON(sh->batch_head);
1340 pr_debug("%s: stripe %llu\n", __func__,
1341 (unsigned long long)sh->sector);
1342
1343 for (i = sh->disks; i--; ) {
1344 struct r5dev *dev = &sh->dev[i];
1345 if (test_bit(R5_Wantfill, &dev->flags)) {
1346 struct bio *rbi;
1347 spin_lock_irq(&sh->stripe_lock);
1348 dev->read = rbi = dev->toread;
1349 dev->toread = NULL;
1350 spin_unlock_irq(&sh->stripe_lock);
1351 while (rbi && rbi->bi_iter.bi_sector <
1352 dev->sector + STRIPE_SECTORS) {
1353 tx = async_copy_data(0, rbi, &dev->page,
1354 dev->sector, tx, sh, 0);
1355 rbi = r5_next_bio(rbi, dev->sector);
1356 }
1357 }
1358 }
1359
1360 atomic_inc(&sh->count);
1361 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1362 async_trigger_callback(&submit);
1363 }
1364
1365 static void mark_target_uptodate(struct stripe_head *sh, int target)
1366 {
1367 struct r5dev *tgt;
1368
1369 if (target < 0)
1370 return;
1371
1372 tgt = &sh->dev[target];
1373 set_bit(R5_UPTODATE, &tgt->flags);
1374 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1375 clear_bit(R5_Wantcompute, &tgt->flags);
1376 }
1377
1378 static void ops_complete_compute(void *stripe_head_ref)
1379 {
1380 struct stripe_head *sh = stripe_head_ref;
1381
1382 pr_debug("%s: stripe %llu\n", __func__,
1383 (unsigned long long)sh->sector);
1384
1385 /* mark the computed target(s) as uptodate */
1386 mark_target_uptodate(sh, sh->ops.target);
1387 mark_target_uptodate(sh, sh->ops.target2);
1388
1389 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1390 if (sh->check_state == check_state_compute_run)
1391 sh->check_state = check_state_compute_result;
1392 set_bit(STRIPE_HANDLE, &sh->state);
1393 raid5_release_stripe(sh);
1394 }
1395
1396 /* return a pointer to the address conversion region of the scribble buffer */
1397 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1398 struct raid5_percpu *percpu, int i)
1399 {
1400 void *addr;
1401
1402 addr = flex_array_get(percpu->scribble, i);
1403 return addr + sizeof(struct page *) * (sh->disks + 2);
1404 }
1405
1406 /* return a pointer to the address conversion region of the scribble buffer */
1407 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1408 {
1409 void *addr;
1410
1411 addr = flex_array_get(percpu->scribble, i);
1412 return addr;
1413 }
1414
1415 static struct dma_async_tx_descriptor *
1416 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1417 {
1418 int disks = sh->disks;
1419 struct page **xor_srcs = to_addr_page(percpu, 0);
1420 int target = sh->ops.target;
1421 struct r5dev *tgt = &sh->dev[target];
1422 struct page *xor_dest = tgt->page;
1423 int count = 0;
1424 struct dma_async_tx_descriptor *tx;
1425 struct async_submit_ctl submit;
1426 int i;
1427
1428 BUG_ON(sh->batch_head);
1429
1430 pr_debug("%s: stripe %llu block: %d\n",
1431 __func__, (unsigned long long)sh->sector, target);
1432 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1433
1434 for (i = disks; i--; )
1435 if (i != target)
1436 xor_srcs[count++] = sh->dev[i].page;
1437
1438 atomic_inc(&sh->count);
1439
1440 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1441 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1442 if (unlikely(count == 1))
1443 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1444 else
1445 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1446
1447 return tx;
1448 }
1449
1450 /* set_syndrome_sources - populate source buffers for gen_syndrome
1451 * @srcs - (struct page *) array of size sh->disks
1452 * @sh - stripe_head to parse
1453 *
1454 * Populates srcs in proper layout order for the stripe and returns the
1455 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1456 * destination buffer is recorded in srcs[count] and the Q destination
1457 * is recorded in srcs[count+1]].
1458 */
1459 static int set_syndrome_sources(struct page **srcs,
1460 struct stripe_head *sh,
1461 int srctype)
1462 {
1463 int disks = sh->disks;
1464 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1465 int d0_idx = raid6_d0(sh);
1466 int count;
1467 int i;
1468
1469 for (i = 0; i < disks; i++)
1470 srcs[i] = NULL;
1471
1472 count = 0;
1473 i = d0_idx;
1474 do {
1475 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1476 struct r5dev *dev = &sh->dev[i];
1477
1478 if (i == sh->qd_idx || i == sh->pd_idx ||
1479 (srctype == SYNDROME_SRC_ALL) ||
1480 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1481 (test_bit(R5_Wantdrain, &dev->flags) ||
1482 test_bit(R5_InJournal, &dev->flags))) ||
1483 (srctype == SYNDROME_SRC_WRITTEN &&
1484 (dev->written ||
1485 test_bit(R5_InJournal, &dev->flags)))) {
1486 if (test_bit(R5_InJournal, &dev->flags))
1487 srcs[slot] = sh->dev[i].orig_page;
1488 else
1489 srcs[slot] = sh->dev[i].page;
1490 }
1491 i = raid6_next_disk(i, disks);
1492 } while (i != d0_idx);
1493
1494 return syndrome_disks;
1495 }
1496
1497 static struct dma_async_tx_descriptor *
1498 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1499 {
1500 int disks = sh->disks;
1501 struct page **blocks = to_addr_page(percpu, 0);
1502 int target;
1503 int qd_idx = sh->qd_idx;
1504 struct dma_async_tx_descriptor *tx;
1505 struct async_submit_ctl submit;
1506 struct r5dev *tgt;
1507 struct page *dest;
1508 int i;
1509 int count;
1510
1511 BUG_ON(sh->batch_head);
1512 if (sh->ops.target < 0)
1513 target = sh->ops.target2;
1514 else if (sh->ops.target2 < 0)
1515 target = sh->ops.target;
1516 else
1517 /* we should only have one valid target */
1518 BUG();
1519 BUG_ON(target < 0);
1520 pr_debug("%s: stripe %llu block: %d\n",
1521 __func__, (unsigned long long)sh->sector, target);
1522
1523 tgt = &sh->dev[target];
1524 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1525 dest = tgt->page;
1526
1527 atomic_inc(&sh->count);
1528
1529 if (target == qd_idx) {
1530 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1531 blocks[count] = NULL; /* regenerating p is not necessary */
1532 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1533 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1534 ops_complete_compute, sh,
1535 to_addr_conv(sh, percpu, 0));
1536 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1537 } else {
1538 /* Compute any data- or p-drive using XOR */
1539 count = 0;
1540 for (i = disks; i-- ; ) {
1541 if (i == target || i == qd_idx)
1542 continue;
1543 blocks[count++] = sh->dev[i].page;
1544 }
1545
1546 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1547 NULL, ops_complete_compute, sh,
1548 to_addr_conv(sh, percpu, 0));
1549 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1550 }
1551
1552 return tx;
1553 }
1554
1555 static struct dma_async_tx_descriptor *
1556 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1557 {
1558 int i, count, disks = sh->disks;
1559 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1560 int d0_idx = raid6_d0(sh);
1561 int faila = -1, failb = -1;
1562 int target = sh->ops.target;
1563 int target2 = sh->ops.target2;
1564 struct r5dev *tgt = &sh->dev[target];
1565 struct r5dev *tgt2 = &sh->dev[target2];
1566 struct dma_async_tx_descriptor *tx;
1567 struct page **blocks = to_addr_page(percpu, 0);
1568 struct async_submit_ctl submit;
1569
1570 BUG_ON(sh->batch_head);
1571 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1572 __func__, (unsigned long long)sh->sector, target, target2);
1573 BUG_ON(target < 0 || target2 < 0);
1574 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1575 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1576
1577 /* we need to open-code set_syndrome_sources to handle the
1578 * slot number conversion for 'faila' and 'failb'
1579 */
1580 for (i = 0; i < disks ; i++)
1581 blocks[i] = NULL;
1582 count = 0;
1583 i = d0_idx;
1584 do {
1585 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1586
1587 blocks[slot] = sh->dev[i].page;
1588
1589 if (i == target)
1590 faila = slot;
1591 if (i == target2)
1592 failb = slot;
1593 i = raid6_next_disk(i, disks);
1594 } while (i != d0_idx);
1595
1596 BUG_ON(faila == failb);
1597 if (failb < faila)
1598 swap(faila, failb);
1599 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1600 __func__, (unsigned long long)sh->sector, faila, failb);
1601
1602 atomic_inc(&sh->count);
1603
1604 if (failb == syndrome_disks+1) {
1605 /* Q disk is one of the missing disks */
1606 if (faila == syndrome_disks) {
1607 /* Missing P+Q, just recompute */
1608 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1609 ops_complete_compute, sh,
1610 to_addr_conv(sh, percpu, 0));
1611 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1612 STRIPE_SIZE, &submit);
1613 } else {
1614 struct page *dest;
1615 int data_target;
1616 int qd_idx = sh->qd_idx;
1617
1618 /* Missing D+Q: recompute D from P, then recompute Q */
1619 if (target == qd_idx)
1620 data_target = target2;
1621 else
1622 data_target = target;
1623
1624 count = 0;
1625 for (i = disks; i-- ; ) {
1626 if (i == data_target || i == qd_idx)
1627 continue;
1628 blocks[count++] = sh->dev[i].page;
1629 }
1630 dest = sh->dev[data_target].page;
1631 init_async_submit(&submit,
1632 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1633 NULL, NULL, NULL,
1634 to_addr_conv(sh, percpu, 0));
1635 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1636 &submit);
1637
1638 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1639 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1640 ops_complete_compute, sh,
1641 to_addr_conv(sh, percpu, 0));
1642 return async_gen_syndrome(blocks, 0, count+2,
1643 STRIPE_SIZE, &submit);
1644 }
1645 } else {
1646 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1647 ops_complete_compute, sh,
1648 to_addr_conv(sh, percpu, 0));
1649 if (failb == syndrome_disks) {
1650 /* We're missing D+P. */
1651 return async_raid6_datap_recov(syndrome_disks+2,
1652 STRIPE_SIZE, faila,
1653 blocks, &submit);
1654 } else {
1655 /* We're missing D+D. */
1656 return async_raid6_2data_recov(syndrome_disks+2,
1657 STRIPE_SIZE, faila, failb,
1658 blocks, &submit);
1659 }
1660 }
1661 }
1662
1663 static void ops_complete_prexor(void *stripe_head_ref)
1664 {
1665 struct stripe_head *sh = stripe_head_ref;
1666
1667 pr_debug("%s: stripe %llu\n", __func__,
1668 (unsigned long long)sh->sector);
1669
1670 if (r5c_is_writeback(sh->raid_conf->log))
1671 /*
1672 * raid5-cache write back uses orig_page during prexor.
1673 * After prexor, it is time to free orig_page
1674 */
1675 r5c_release_extra_page(sh);
1676 }
1677
1678 static struct dma_async_tx_descriptor *
1679 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1680 struct dma_async_tx_descriptor *tx)
1681 {
1682 int disks = sh->disks;
1683 struct page **xor_srcs = to_addr_page(percpu, 0);
1684 int count = 0, pd_idx = sh->pd_idx, i;
1685 struct async_submit_ctl submit;
1686
1687 /* existing parity data subtracted */
1688 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1689
1690 BUG_ON(sh->batch_head);
1691 pr_debug("%s: stripe %llu\n", __func__,
1692 (unsigned long long)sh->sector);
1693
1694 for (i = disks; i--; ) {
1695 struct r5dev *dev = &sh->dev[i];
1696 /* Only process blocks that are known to be uptodate */
1697 if (test_bit(R5_InJournal, &dev->flags))
1698 xor_srcs[count++] = dev->orig_page;
1699 else if (test_bit(R5_Wantdrain, &dev->flags))
1700 xor_srcs[count++] = dev->page;
1701 }
1702
1703 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1704 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1705 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1706
1707 return tx;
1708 }
1709
1710 static struct dma_async_tx_descriptor *
1711 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1712 struct dma_async_tx_descriptor *tx)
1713 {
1714 struct page **blocks = to_addr_page(percpu, 0);
1715 int count;
1716 struct async_submit_ctl submit;
1717
1718 pr_debug("%s: stripe %llu\n", __func__,
1719 (unsigned long long)sh->sector);
1720
1721 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1722
1723 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1724 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1725 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1726
1727 return tx;
1728 }
1729
1730 static struct dma_async_tx_descriptor *
1731 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1732 {
1733 struct r5conf *conf = sh->raid_conf;
1734 int disks = sh->disks;
1735 int i;
1736 struct stripe_head *head_sh = sh;
1737
1738 pr_debug("%s: stripe %llu\n", __func__,
1739 (unsigned long long)sh->sector);
1740
1741 for (i = disks; i--; ) {
1742 struct r5dev *dev;
1743 struct bio *chosen;
1744
1745 sh = head_sh;
1746 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1747 struct bio *wbi;
1748
1749 again:
1750 dev = &sh->dev[i];
1751 /*
1752 * clear R5_InJournal, so when rewriting a page in
1753 * journal, it is not skipped by r5l_log_stripe()
1754 */
1755 clear_bit(R5_InJournal, &dev->flags);
1756 spin_lock_irq(&sh->stripe_lock);
1757 chosen = dev->towrite;
1758 dev->towrite = NULL;
1759 sh->overwrite_disks = 0;
1760 BUG_ON(dev->written);
1761 wbi = dev->written = chosen;
1762 spin_unlock_irq(&sh->stripe_lock);
1763 WARN_ON(dev->page != dev->orig_page);
1764
1765 while (wbi && wbi->bi_iter.bi_sector <
1766 dev->sector + STRIPE_SECTORS) {
1767 if (wbi->bi_opf & REQ_FUA)
1768 set_bit(R5_WantFUA, &dev->flags);
1769 if (wbi->bi_opf & REQ_SYNC)
1770 set_bit(R5_SyncIO, &dev->flags);
1771 if (bio_op(wbi) == REQ_OP_DISCARD)
1772 set_bit(R5_Discard, &dev->flags);
1773 else {
1774 tx = async_copy_data(1, wbi, &dev->page,
1775 dev->sector, tx, sh,
1776 r5c_is_writeback(conf->log));
1777 if (dev->page != dev->orig_page &&
1778 !r5c_is_writeback(conf->log)) {
1779 set_bit(R5_SkipCopy, &dev->flags);
1780 clear_bit(R5_UPTODATE, &dev->flags);
1781 clear_bit(R5_OVERWRITE, &dev->flags);
1782 }
1783 }
1784 wbi = r5_next_bio(wbi, dev->sector);
1785 }
1786
1787 if (head_sh->batch_head) {
1788 sh = list_first_entry(&sh->batch_list,
1789 struct stripe_head,
1790 batch_list);
1791 if (sh == head_sh)
1792 continue;
1793 goto again;
1794 }
1795 }
1796 }
1797
1798 return tx;
1799 }
1800
1801 static void ops_complete_reconstruct(void *stripe_head_ref)
1802 {
1803 struct stripe_head *sh = stripe_head_ref;
1804 int disks = sh->disks;
1805 int pd_idx = sh->pd_idx;
1806 int qd_idx = sh->qd_idx;
1807 int i;
1808 bool fua = false, sync = false, discard = false;
1809
1810 pr_debug("%s: stripe %llu\n", __func__,
1811 (unsigned long long)sh->sector);
1812
1813 for (i = disks; i--; ) {
1814 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1815 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1816 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1817 }
1818
1819 for (i = disks; i--; ) {
1820 struct r5dev *dev = &sh->dev[i];
1821
1822 if (dev->written || i == pd_idx || i == qd_idx) {
1823 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1824 set_bit(R5_UPTODATE, &dev->flags);
1825 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1826 set_bit(R5_Expanded, &dev->flags);
1827 }
1828 if (fua)
1829 set_bit(R5_WantFUA, &dev->flags);
1830 if (sync)
1831 set_bit(R5_SyncIO, &dev->flags);
1832 }
1833 }
1834
1835 if (sh->reconstruct_state == reconstruct_state_drain_run)
1836 sh->reconstruct_state = reconstruct_state_drain_result;
1837 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1838 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1839 else {
1840 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1841 sh->reconstruct_state = reconstruct_state_result;
1842 }
1843
1844 set_bit(STRIPE_HANDLE, &sh->state);
1845 raid5_release_stripe(sh);
1846 }
1847
1848 static void
1849 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1850 struct dma_async_tx_descriptor *tx)
1851 {
1852 int disks = sh->disks;
1853 struct page **xor_srcs;
1854 struct async_submit_ctl submit;
1855 int count, pd_idx = sh->pd_idx, i;
1856 struct page *xor_dest;
1857 int prexor = 0;
1858 unsigned long flags;
1859 int j = 0;
1860 struct stripe_head *head_sh = sh;
1861 int last_stripe;
1862
1863 pr_debug("%s: stripe %llu\n", __func__,
1864 (unsigned long long)sh->sector);
1865
1866 for (i = 0; i < sh->disks; i++) {
1867 if (pd_idx == i)
1868 continue;
1869 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1870 break;
1871 }
1872 if (i >= sh->disks) {
1873 atomic_inc(&sh->count);
1874 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1875 ops_complete_reconstruct(sh);
1876 return;
1877 }
1878 again:
1879 count = 0;
1880 xor_srcs = to_addr_page(percpu, j);
1881 /* check if prexor is active which means only process blocks
1882 * that are part of a read-modify-write (written)
1883 */
1884 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1885 prexor = 1;
1886 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1887 for (i = disks; i--; ) {
1888 struct r5dev *dev = &sh->dev[i];
1889 if (head_sh->dev[i].written ||
1890 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1891 xor_srcs[count++] = dev->page;
1892 }
1893 } else {
1894 xor_dest = sh->dev[pd_idx].page;
1895 for (i = disks; i--; ) {
1896 struct r5dev *dev = &sh->dev[i];
1897 if (i != pd_idx)
1898 xor_srcs[count++] = dev->page;
1899 }
1900 }
1901
1902 /* 1/ if we prexor'd then the dest is reused as a source
1903 * 2/ if we did not prexor then we are redoing the parity
1904 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1905 * for the synchronous xor case
1906 */
1907 last_stripe = !head_sh->batch_head ||
1908 list_first_entry(&sh->batch_list,
1909 struct stripe_head, batch_list) == head_sh;
1910 if (last_stripe) {
1911 flags = ASYNC_TX_ACK |
1912 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1913
1914 atomic_inc(&head_sh->count);
1915 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1916 to_addr_conv(sh, percpu, j));
1917 } else {
1918 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1919 init_async_submit(&submit, flags, tx, NULL, NULL,
1920 to_addr_conv(sh, percpu, j));
1921 }
1922
1923 if (unlikely(count == 1))
1924 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1925 else
1926 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1927 if (!last_stripe) {
1928 j++;
1929 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1930 batch_list);
1931 goto again;
1932 }
1933 }
1934
1935 static void
1936 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1937 struct dma_async_tx_descriptor *tx)
1938 {
1939 struct async_submit_ctl submit;
1940 struct page **blocks;
1941 int count, i, j = 0;
1942 struct stripe_head *head_sh = sh;
1943 int last_stripe;
1944 int synflags;
1945 unsigned long txflags;
1946
1947 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1948
1949 for (i = 0; i < sh->disks; i++) {
1950 if (sh->pd_idx == i || sh->qd_idx == i)
1951 continue;
1952 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1953 break;
1954 }
1955 if (i >= sh->disks) {
1956 atomic_inc(&sh->count);
1957 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1958 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1959 ops_complete_reconstruct(sh);
1960 return;
1961 }
1962
1963 again:
1964 blocks = to_addr_page(percpu, j);
1965
1966 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1967 synflags = SYNDROME_SRC_WRITTEN;
1968 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1969 } else {
1970 synflags = SYNDROME_SRC_ALL;
1971 txflags = ASYNC_TX_ACK;
1972 }
1973
1974 count = set_syndrome_sources(blocks, sh, synflags);
1975 last_stripe = !head_sh->batch_head ||
1976 list_first_entry(&sh->batch_list,
1977 struct stripe_head, batch_list) == head_sh;
1978
1979 if (last_stripe) {
1980 atomic_inc(&head_sh->count);
1981 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1982 head_sh, to_addr_conv(sh, percpu, j));
1983 } else
1984 init_async_submit(&submit, 0, tx, NULL, NULL,
1985 to_addr_conv(sh, percpu, j));
1986 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1987 if (!last_stripe) {
1988 j++;
1989 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1990 batch_list);
1991 goto again;
1992 }
1993 }
1994
1995 static void ops_complete_check(void *stripe_head_ref)
1996 {
1997 struct stripe_head *sh = stripe_head_ref;
1998
1999 pr_debug("%s: stripe %llu\n", __func__,
2000 (unsigned long long)sh->sector);
2001
2002 sh->check_state = check_state_check_result;
2003 set_bit(STRIPE_HANDLE, &sh->state);
2004 raid5_release_stripe(sh);
2005 }
2006
2007 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2008 {
2009 int disks = sh->disks;
2010 int pd_idx = sh->pd_idx;
2011 int qd_idx = sh->qd_idx;
2012 struct page *xor_dest;
2013 struct page **xor_srcs = to_addr_page(percpu, 0);
2014 struct dma_async_tx_descriptor *tx;
2015 struct async_submit_ctl submit;
2016 int count;
2017 int i;
2018
2019 pr_debug("%s: stripe %llu\n", __func__,
2020 (unsigned long long)sh->sector);
2021
2022 BUG_ON(sh->batch_head);
2023 count = 0;
2024 xor_dest = sh->dev[pd_idx].page;
2025 xor_srcs[count++] = xor_dest;
2026 for (i = disks; i--; ) {
2027 if (i == pd_idx || i == qd_idx)
2028 continue;
2029 xor_srcs[count++] = sh->dev[i].page;
2030 }
2031
2032 init_async_submit(&submit, 0, NULL, NULL, NULL,
2033 to_addr_conv(sh, percpu, 0));
2034 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2035 &sh->ops.zero_sum_result, &submit);
2036
2037 atomic_inc(&sh->count);
2038 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2039 tx = async_trigger_callback(&submit);
2040 }
2041
2042 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2043 {
2044 struct page **srcs = to_addr_page(percpu, 0);
2045 struct async_submit_ctl submit;
2046 int count;
2047
2048 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2049 (unsigned long long)sh->sector, checkp);
2050
2051 BUG_ON(sh->batch_head);
2052 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2053 if (!checkp)
2054 srcs[count] = NULL;
2055
2056 atomic_inc(&sh->count);
2057 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2058 sh, to_addr_conv(sh, percpu, 0));
2059 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2060 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2061 }
2062
2063 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2064 {
2065 int overlap_clear = 0, i, disks = sh->disks;
2066 struct dma_async_tx_descriptor *tx = NULL;
2067 struct r5conf *conf = sh->raid_conf;
2068 int level = conf->level;
2069 struct raid5_percpu *percpu;
2070 unsigned long cpu;
2071
2072 cpu = get_cpu();
2073 percpu = per_cpu_ptr(conf->percpu, cpu);
2074 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2075 ops_run_biofill(sh);
2076 overlap_clear++;
2077 }
2078
2079 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2080 if (level < 6)
2081 tx = ops_run_compute5(sh, percpu);
2082 else {
2083 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2084 tx = ops_run_compute6_1(sh, percpu);
2085 else
2086 tx = ops_run_compute6_2(sh, percpu);
2087 }
2088 /* terminate the chain if reconstruct is not set to be run */
2089 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2090 async_tx_ack(tx);
2091 }
2092
2093 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2094 if (level < 6)
2095 tx = ops_run_prexor5(sh, percpu, tx);
2096 else
2097 tx = ops_run_prexor6(sh, percpu, tx);
2098 }
2099
2100 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2101 tx = ops_run_partial_parity(sh, percpu, tx);
2102
2103 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2104 tx = ops_run_biodrain(sh, tx);
2105 overlap_clear++;
2106 }
2107
2108 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2109 if (level < 6)
2110 ops_run_reconstruct5(sh, percpu, tx);
2111 else
2112 ops_run_reconstruct6(sh, percpu, tx);
2113 }
2114
2115 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2116 if (sh->check_state == check_state_run)
2117 ops_run_check_p(sh, percpu);
2118 else if (sh->check_state == check_state_run_q)
2119 ops_run_check_pq(sh, percpu, 0);
2120 else if (sh->check_state == check_state_run_pq)
2121 ops_run_check_pq(sh, percpu, 1);
2122 else
2123 BUG();
2124 }
2125
2126 if (overlap_clear && !sh->batch_head)
2127 for (i = disks; i--; ) {
2128 struct r5dev *dev = &sh->dev[i];
2129 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2130 wake_up(&sh->raid_conf->wait_for_overlap);
2131 }
2132 put_cpu();
2133 }
2134
2135 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2136 {
2137 if (sh->ppl_page)
2138 __free_page(sh->ppl_page);
2139 kmem_cache_free(sc, sh);
2140 }
2141
2142 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2143 int disks, struct r5conf *conf)
2144 {
2145 struct stripe_head *sh;
2146 int i;
2147
2148 sh = kmem_cache_zalloc(sc, gfp);
2149 if (sh) {
2150 spin_lock_init(&sh->stripe_lock);
2151 spin_lock_init(&sh->batch_lock);
2152 INIT_LIST_HEAD(&sh->batch_list);
2153 INIT_LIST_HEAD(&sh->lru);
2154 INIT_LIST_HEAD(&sh->r5c);
2155 INIT_LIST_HEAD(&sh->log_list);
2156 atomic_set(&sh->count, 1);
2157 sh->raid_conf = conf;
2158 sh->log_start = MaxSector;
2159 for (i = 0; i < disks; i++) {
2160 struct r5dev *dev = &sh->dev[i];
2161
2162 bio_init(&dev->req, &dev->vec, 1);
2163 bio_init(&dev->rreq, &dev->rvec, 1);
2164 }
2165
2166 if (raid5_has_ppl(conf)) {
2167 sh->ppl_page = alloc_page(gfp);
2168 if (!sh->ppl_page) {
2169 free_stripe(sc, sh);
2170 sh = NULL;
2171 }
2172 }
2173 }
2174 return sh;
2175 }
2176 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2177 {
2178 struct stripe_head *sh;
2179
2180 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2181 if (!sh)
2182 return 0;
2183
2184 if (grow_buffers(sh, gfp)) {
2185 shrink_buffers(sh);
2186 free_stripe(conf->slab_cache, sh);
2187 return 0;
2188 }
2189 sh->hash_lock_index =
2190 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2191 /* we just created an active stripe so... */
2192 atomic_inc(&conf->active_stripes);
2193
2194 raid5_release_stripe(sh);
2195 conf->max_nr_stripes++;
2196 return 1;
2197 }
2198
2199 static int grow_stripes(struct r5conf *conf, int num)
2200 {
2201 struct kmem_cache *sc;
2202 size_t namelen = sizeof(conf->cache_name[0]);
2203 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2204
2205 if (conf->mddev->gendisk)
2206 snprintf(conf->cache_name[0], namelen,
2207 "raid%d-%s", conf->level, mdname(conf->mddev));
2208 else
2209 snprintf(conf->cache_name[0], namelen,
2210 "raid%d-%p", conf->level, conf->mddev);
2211 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2212
2213 conf->active_name = 0;
2214 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2215 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2216 0, 0, NULL);
2217 if (!sc)
2218 return 1;
2219 conf->slab_cache = sc;
2220 conf->pool_size = devs;
2221 while (num--)
2222 if (!grow_one_stripe(conf, GFP_KERNEL))
2223 return 1;
2224
2225 return 0;
2226 }
2227
2228 /**
2229 * scribble_len - return the required size of the scribble region
2230 * @num - total number of disks in the array
2231 *
2232 * The size must be enough to contain:
2233 * 1/ a struct page pointer for each device in the array +2
2234 * 2/ room to convert each entry in (1) to its corresponding dma
2235 * (dma_map_page()) or page (page_address()) address.
2236 *
2237 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2238 * calculate over all devices (not just the data blocks), using zeros in place
2239 * of the P and Q blocks.
2240 */
2241 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2242 {
2243 struct flex_array *ret;
2244 size_t len;
2245
2246 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2247 ret = flex_array_alloc(len, cnt, flags);
2248 if (!ret)
2249 return NULL;
2250 /* always prealloc all elements, so no locking is required */
2251 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2252 flex_array_free(ret);
2253 return NULL;
2254 }
2255 return ret;
2256 }
2257
2258 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2259 {
2260 unsigned long cpu;
2261 int err = 0;
2262
2263 /*
2264 * Never shrink. And mddev_suspend() could deadlock if this is called
2265 * from raid5d. In that case, scribble_disks and scribble_sectors
2266 * should equal to new_disks and new_sectors
2267 */
2268 if (conf->scribble_disks >= new_disks &&
2269 conf->scribble_sectors >= new_sectors)
2270 return 0;
2271 mddev_suspend(conf->mddev);
2272 get_online_cpus();
2273 for_each_present_cpu(cpu) {
2274 struct raid5_percpu *percpu;
2275 struct flex_array *scribble;
2276
2277 percpu = per_cpu_ptr(conf->percpu, cpu);
2278 scribble = scribble_alloc(new_disks,
2279 new_sectors / STRIPE_SECTORS,
2280 GFP_NOIO);
2281
2282 if (scribble) {
2283 flex_array_free(percpu->scribble);
2284 percpu->scribble = scribble;
2285 } else {
2286 err = -ENOMEM;
2287 break;
2288 }
2289 }
2290 put_online_cpus();
2291 mddev_resume(conf->mddev);
2292 if (!err) {
2293 conf->scribble_disks = new_disks;
2294 conf->scribble_sectors = new_sectors;
2295 }
2296 return err;
2297 }
2298
2299 static int resize_stripes(struct r5conf *conf, int newsize)
2300 {
2301 /* Make all the stripes able to hold 'newsize' devices.
2302 * New slots in each stripe get 'page' set to a new page.
2303 *
2304 * This happens in stages:
2305 * 1/ create a new kmem_cache and allocate the required number of
2306 * stripe_heads.
2307 * 2/ gather all the old stripe_heads and transfer the pages across
2308 * to the new stripe_heads. This will have the side effect of
2309 * freezing the array as once all stripe_heads have been collected,
2310 * no IO will be possible. Old stripe heads are freed once their
2311 * pages have been transferred over, and the old kmem_cache is
2312 * freed when all stripes are done.
2313 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2314 * we simple return a failure status - no need to clean anything up.
2315 * 4/ allocate new pages for the new slots in the new stripe_heads.
2316 * If this fails, we don't bother trying the shrink the
2317 * stripe_heads down again, we just leave them as they are.
2318 * As each stripe_head is processed the new one is released into
2319 * active service.
2320 *
2321 * Once step2 is started, we cannot afford to wait for a write,
2322 * so we use GFP_NOIO allocations.
2323 */
2324 struct stripe_head *osh, *nsh;
2325 LIST_HEAD(newstripes);
2326 struct disk_info *ndisks;
2327 int err = 0;
2328 struct kmem_cache *sc;
2329 int i;
2330 int hash, cnt;
2331
2332 md_allow_write(conf->mddev);
2333
2334 /* Step 1 */
2335 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2336 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2337 0, 0, NULL);
2338 if (!sc)
2339 return -ENOMEM;
2340
2341 /* Need to ensure auto-resizing doesn't interfere */
2342 mutex_lock(&conf->cache_size_mutex);
2343
2344 for (i = conf->max_nr_stripes; i; i--) {
2345 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2346 if (!nsh)
2347 break;
2348
2349 list_add(&nsh->lru, &newstripes);
2350 }
2351 if (i) {
2352 /* didn't get enough, give up */
2353 while (!list_empty(&newstripes)) {
2354 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2355 list_del(&nsh->lru);
2356 free_stripe(sc, nsh);
2357 }
2358 kmem_cache_destroy(sc);
2359 mutex_unlock(&conf->cache_size_mutex);
2360 return -ENOMEM;
2361 }
2362 /* Step 2 - Must use GFP_NOIO now.
2363 * OK, we have enough stripes, start collecting inactive
2364 * stripes and copying them over
2365 */
2366 hash = 0;
2367 cnt = 0;
2368 list_for_each_entry(nsh, &newstripes, lru) {
2369 lock_device_hash_lock(conf, hash);
2370 wait_event_cmd(conf->wait_for_stripe,
2371 !list_empty(conf->inactive_list + hash),
2372 unlock_device_hash_lock(conf, hash),
2373 lock_device_hash_lock(conf, hash));
2374 osh = get_free_stripe(conf, hash);
2375 unlock_device_hash_lock(conf, hash);
2376
2377 for(i=0; i<conf->pool_size; i++) {
2378 nsh->dev[i].page = osh->dev[i].page;
2379 nsh->dev[i].orig_page = osh->dev[i].page;
2380 }
2381 nsh->hash_lock_index = hash;
2382 free_stripe(conf->slab_cache, osh);
2383 cnt++;
2384 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2385 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2386 hash++;
2387 cnt = 0;
2388 }
2389 }
2390 kmem_cache_destroy(conf->slab_cache);
2391
2392 /* Step 3.
2393 * At this point, we are holding all the stripes so the array
2394 * is completely stalled, so now is a good time to resize
2395 * conf->disks and the scribble region
2396 */
2397 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2398 if (ndisks) {
2399 for (i = 0; i < conf->pool_size; i++)
2400 ndisks[i] = conf->disks[i];
2401
2402 for (i = conf->pool_size; i < newsize; i++) {
2403 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2404 if (!ndisks[i].extra_page)
2405 err = -ENOMEM;
2406 }
2407
2408 if (err) {
2409 for (i = conf->pool_size; i < newsize; i++)
2410 if (ndisks[i].extra_page)
2411 put_page(ndisks[i].extra_page);
2412 kfree(ndisks);
2413 } else {
2414 kfree(conf->disks);
2415 conf->disks = ndisks;
2416 }
2417 } else
2418 err = -ENOMEM;
2419
2420 mutex_unlock(&conf->cache_size_mutex);
2421
2422 conf->slab_cache = sc;
2423 conf->active_name = 1-conf->active_name;
2424
2425 /* Step 4, return new stripes to service */
2426 while(!list_empty(&newstripes)) {
2427 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2428 list_del_init(&nsh->lru);
2429
2430 for (i=conf->raid_disks; i < newsize; i++)
2431 if (nsh->dev[i].page == NULL) {
2432 struct page *p = alloc_page(GFP_NOIO);
2433 nsh->dev[i].page = p;
2434 nsh->dev[i].orig_page = p;
2435 if (!p)
2436 err = -ENOMEM;
2437 }
2438 raid5_release_stripe(nsh);
2439 }
2440 /* critical section pass, GFP_NOIO no longer needed */
2441
2442 if (!err)
2443 conf->pool_size = newsize;
2444 return err;
2445 }
2446
2447 static int drop_one_stripe(struct r5conf *conf)
2448 {
2449 struct stripe_head *sh;
2450 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2451
2452 spin_lock_irq(conf->hash_locks + hash);
2453 sh = get_free_stripe(conf, hash);
2454 spin_unlock_irq(conf->hash_locks + hash);
2455 if (!sh)
2456 return 0;
2457 BUG_ON(atomic_read(&sh->count));
2458 shrink_buffers(sh);
2459 free_stripe(conf->slab_cache, sh);
2460 atomic_dec(&conf->active_stripes);
2461 conf->max_nr_stripes--;
2462 return 1;
2463 }
2464
2465 static void shrink_stripes(struct r5conf *conf)
2466 {
2467 while (conf->max_nr_stripes &&
2468 drop_one_stripe(conf))
2469 ;
2470
2471 kmem_cache_destroy(conf->slab_cache);
2472 conf->slab_cache = NULL;
2473 }
2474
2475 static void raid5_end_read_request(struct bio * bi)
2476 {
2477 struct stripe_head *sh = bi->bi_private;
2478 struct r5conf *conf = sh->raid_conf;
2479 int disks = sh->disks, i;
2480 char b[BDEVNAME_SIZE];
2481 struct md_rdev *rdev = NULL;
2482 sector_t s;
2483
2484 for (i=0 ; i<disks; i++)
2485 if (bi == &sh->dev[i].req)
2486 break;
2487
2488 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2489 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2490 bi->bi_status);
2491 if (i == disks) {
2492 bio_reset(bi);
2493 BUG();
2494 return;
2495 }
2496 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2497 /* If replacement finished while this request was outstanding,
2498 * 'replacement' might be NULL already.
2499 * In that case it moved down to 'rdev'.
2500 * rdev is not removed until all requests are finished.
2501 */
2502 rdev = conf->disks[i].replacement;
2503 if (!rdev)
2504 rdev = conf->disks[i].rdev;
2505
2506 if (use_new_offset(conf, sh))
2507 s = sh->sector + rdev->new_data_offset;
2508 else
2509 s = sh->sector + rdev->data_offset;
2510 if (!bi->bi_status) {
2511 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2512 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2513 /* Note that this cannot happen on a
2514 * replacement device. We just fail those on
2515 * any error
2516 */
2517 pr_info_ratelimited(
2518 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2519 mdname(conf->mddev), STRIPE_SECTORS,
2520 (unsigned long long)s,
2521 bdevname(rdev->bdev, b));
2522 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2523 clear_bit(R5_ReadError, &sh->dev[i].flags);
2524 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2525 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2526 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2527
2528 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2529 /*
2530 * end read for a page in journal, this
2531 * must be preparing for prexor in rmw
2532 */
2533 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2534
2535 if (atomic_read(&rdev->read_errors))
2536 atomic_set(&rdev->read_errors, 0);
2537 } else {
2538 const char *bdn = bdevname(rdev->bdev, b);
2539 int retry = 0;
2540 int set_bad = 0;
2541
2542 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2543 atomic_inc(&rdev->read_errors);
2544 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2545 pr_warn_ratelimited(
2546 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2547 mdname(conf->mddev),
2548 (unsigned long long)s,
2549 bdn);
2550 else if (conf->mddev->degraded >= conf->max_degraded) {
2551 set_bad = 1;
2552 pr_warn_ratelimited(
2553 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2554 mdname(conf->mddev),
2555 (unsigned long long)s,
2556 bdn);
2557 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2558 /* Oh, no!!! */
2559 set_bad = 1;
2560 pr_warn_ratelimited(
2561 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2562 mdname(conf->mddev),
2563 (unsigned long long)s,
2564 bdn);
2565 } else if (atomic_read(&rdev->read_errors)
2566 > conf->max_nr_stripes)
2567 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2568 mdname(conf->mddev), bdn);
2569 else
2570 retry = 1;
2571 if (set_bad && test_bit(In_sync, &rdev->flags)
2572 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2573 retry = 1;
2574 if (retry)
2575 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2576 set_bit(R5_ReadError, &sh->dev[i].flags);
2577 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2578 } else
2579 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2580 else {
2581 clear_bit(R5_ReadError, &sh->dev[i].flags);
2582 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2583 if (!(set_bad
2584 && test_bit(In_sync, &rdev->flags)
2585 && rdev_set_badblocks(
2586 rdev, sh->sector, STRIPE_SECTORS, 0)))
2587 md_error(conf->mddev, rdev);
2588 }
2589 }
2590 rdev_dec_pending(rdev, conf->mddev);
2591 bio_reset(bi);
2592 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2593 set_bit(STRIPE_HANDLE, &sh->state);
2594 raid5_release_stripe(sh);
2595 }
2596
2597 static void raid5_end_write_request(struct bio *bi)
2598 {
2599 struct stripe_head *sh = bi->bi_private;
2600 struct r5conf *conf = sh->raid_conf;
2601 int disks = sh->disks, i;
2602 struct md_rdev *uninitialized_var(rdev);
2603 sector_t first_bad;
2604 int bad_sectors;
2605 int replacement = 0;
2606
2607 for (i = 0 ; i < disks; i++) {
2608 if (bi == &sh->dev[i].req) {
2609 rdev = conf->disks[i].rdev;
2610 break;
2611 }
2612 if (bi == &sh->dev[i].rreq) {
2613 rdev = conf->disks[i].replacement;
2614 if (rdev)
2615 replacement = 1;
2616 else
2617 /* rdev was removed and 'replacement'
2618 * replaced it. rdev is not removed
2619 * until all requests are finished.
2620 */
2621 rdev = conf->disks[i].rdev;
2622 break;
2623 }
2624 }
2625 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2626 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2627 bi->bi_status);
2628 if (i == disks) {
2629 bio_reset(bi);
2630 BUG();
2631 return;
2632 }
2633
2634 if (replacement) {
2635 if (bi->bi_status)
2636 md_error(conf->mddev, rdev);
2637 else if (is_badblock(rdev, sh->sector,
2638 STRIPE_SECTORS,
2639 &first_bad, &bad_sectors))
2640 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2641 } else {
2642 if (bi->bi_status) {
2643 set_bit(STRIPE_DEGRADED, &sh->state);
2644 set_bit(WriteErrorSeen, &rdev->flags);
2645 set_bit(R5_WriteError, &sh->dev[i].flags);
2646 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2647 set_bit(MD_RECOVERY_NEEDED,
2648 &rdev->mddev->recovery);
2649 } else if (is_badblock(rdev, sh->sector,
2650 STRIPE_SECTORS,
2651 &first_bad, &bad_sectors)) {
2652 set_bit(R5_MadeGood, &sh->dev[i].flags);
2653 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2654 /* That was a successful write so make
2655 * sure it looks like we already did
2656 * a re-write.
2657 */
2658 set_bit(R5_ReWrite, &sh->dev[i].flags);
2659 }
2660 }
2661 rdev_dec_pending(rdev, conf->mddev);
2662
2663 if (sh->batch_head && bi->bi_status && !replacement)
2664 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2665
2666 bio_reset(bi);
2667 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2668 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2669 set_bit(STRIPE_HANDLE, &sh->state);
2670 raid5_release_stripe(sh);
2671
2672 if (sh->batch_head && sh != sh->batch_head)
2673 raid5_release_stripe(sh->batch_head);
2674 }
2675
2676 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2677 {
2678 char b[BDEVNAME_SIZE];
2679 struct r5conf *conf = mddev->private;
2680 unsigned long flags;
2681 pr_debug("raid456: error called\n");
2682
2683 spin_lock_irqsave(&conf->device_lock, flags);
2684
2685 if (test_bit(In_sync, &rdev->flags) &&
2686 mddev->degraded == conf->max_degraded) {
2687 /*
2688 * Don't allow to achieve failed state
2689 * Don't try to recover this device
2690 */
2691 conf->recovery_disabled = mddev->recovery_disabled;
2692 spin_unlock_irqrestore(&conf->device_lock, flags);
2693 return;
2694 }
2695
2696 set_bit(Faulty, &rdev->flags);
2697 clear_bit(In_sync, &rdev->flags);
2698 mddev->degraded = raid5_calc_degraded(conf);
2699 spin_unlock_irqrestore(&conf->device_lock, flags);
2700 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2701
2702 set_bit(Blocked, &rdev->flags);
2703 set_mask_bits(&mddev->sb_flags, 0,
2704 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2705 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2706 "md/raid:%s: Operation continuing on %d devices.\n",
2707 mdname(mddev),
2708 bdevname(rdev->bdev, b),
2709 mdname(mddev),
2710 conf->raid_disks - mddev->degraded);
2711 r5c_update_on_rdev_error(mddev, rdev);
2712 }
2713
2714 /*
2715 * Input: a 'big' sector number,
2716 * Output: index of the data and parity disk, and the sector # in them.
2717 */
2718 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2719 int previous, int *dd_idx,
2720 struct stripe_head *sh)
2721 {
2722 sector_t stripe, stripe2;
2723 sector_t chunk_number;
2724 unsigned int chunk_offset;
2725 int pd_idx, qd_idx;
2726 int ddf_layout = 0;
2727 sector_t new_sector;
2728 int algorithm = previous ? conf->prev_algo
2729 : conf->algorithm;
2730 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2731 : conf->chunk_sectors;
2732 int raid_disks = previous ? conf->previous_raid_disks
2733 : conf->raid_disks;
2734 int data_disks = raid_disks - conf->max_degraded;
2735
2736 /* First compute the information on this sector */
2737
2738 /*
2739 * Compute the chunk number and the sector offset inside the chunk
2740 */
2741 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2742 chunk_number = r_sector;
2743
2744 /*
2745 * Compute the stripe number
2746 */
2747 stripe = chunk_number;
2748 *dd_idx = sector_div(stripe, data_disks);
2749 stripe2 = stripe;
2750 /*
2751 * Select the parity disk based on the user selected algorithm.
2752 */
2753 pd_idx = qd_idx = -1;
2754 switch(conf->level) {
2755 case 4:
2756 pd_idx = data_disks;
2757 break;
2758 case 5:
2759 switch (algorithm) {
2760 case ALGORITHM_LEFT_ASYMMETRIC:
2761 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2762 if (*dd_idx >= pd_idx)
2763 (*dd_idx)++;
2764 break;
2765 case ALGORITHM_RIGHT_ASYMMETRIC:
2766 pd_idx = sector_div(stripe2, raid_disks);
2767 if (*dd_idx >= pd_idx)
2768 (*dd_idx)++;
2769 break;
2770 case ALGORITHM_LEFT_SYMMETRIC:
2771 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2772 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2773 break;
2774 case ALGORITHM_RIGHT_SYMMETRIC:
2775 pd_idx = sector_div(stripe2, raid_disks);
2776 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2777 break;
2778 case ALGORITHM_PARITY_0:
2779 pd_idx = 0;
2780 (*dd_idx)++;
2781 break;
2782 case ALGORITHM_PARITY_N:
2783 pd_idx = data_disks;
2784 break;
2785 default:
2786 BUG();
2787 }
2788 break;
2789 case 6:
2790
2791 switch (algorithm) {
2792 case ALGORITHM_LEFT_ASYMMETRIC:
2793 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2794 qd_idx = pd_idx + 1;
2795 if (pd_idx == raid_disks-1) {
2796 (*dd_idx)++; /* Q D D D P */
2797 qd_idx = 0;
2798 } else if (*dd_idx >= pd_idx)
2799 (*dd_idx) += 2; /* D D P Q D */
2800 break;
2801 case ALGORITHM_RIGHT_ASYMMETRIC:
2802 pd_idx = sector_div(stripe2, raid_disks);
2803 qd_idx = pd_idx + 1;
2804 if (pd_idx == raid_disks-1) {
2805 (*dd_idx)++; /* Q D D D P */
2806 qd_idx = 0;
2807 } else if (*dd_idx >= pd_idx)
2808 (*dd_idx) += 2; /* D D P Q D */
2809 break;
2810 case ALGORITHM_LEFT_SYMMETRIC:
2811 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2812 qd_idx = (pd_idx + 1) % raid_disks;
2813 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2814 break;
2815 case ALGORITHM_RIGHT_SYMMETRIC:
2816 pd_idx = sector_div(stripe2, raid_disks);
2817 qd_idx = (pd_idx + 1) % raid_disks;
2818 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2819 break;
2820
2821 case ALGORITHM_PARITY_0:
2822 pd_idx = 0;
2823 qd_idx = 1;
2824 (*dd_idx) += 2;
2825 break;
2826 case ALGORITHM_PARITY_N:
2827 pd_idx = data_disks;
2828 qd_idx = data_disks + 1;
2829 break;
2830
2831 case ALGORITHM_ROTATING_ZERO_RESTART:
2832 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2833 * of blocks for computing Q is different.
2834 */
2835 pd_idx = sector_div(stripe2, raid_disks);
2836 qd_idx = pd_idx + 1;
2837 if (pd_idx == raid_disks-1) {
2838 (*dd_idx)++; /* Q D D D P */
2839 qd_idx = 0;
2840 } else if (*dd_idx >= pd_idx)
2841 (*dd_idx) += 2; /* D D P Q D */
2842 ddf_layout = 1;
2843 break;
2844
2845 case ALGORITHM_ROTATING_N_RESTART:
2846 /* Same a left_asymmetric, by first stripe is
2847 * D D D P Q rather than
2848 * Q D D D P
2849 */
2850 stripe2 += 1;
2851 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2852 qd_idx = pd_idx + 1;
2853 if (pd_idx == raid_disks-1) {
2854 (*dd_idx)++; /* Q D D D P */
2855 qd_idx = 0;
2856 } else if (*dd_idx >= pd_idx)
2857 (*dd_idx) += 2; /* D D P Q D */
2858 ddf_layout = 1;
2859 break;
2860
2861 case ALGORITHM_ROTATING_N_CONTINUE:
2862 /* Same as left_symmetric but Q is before P */
2863 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2864 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2865 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2866 ddf_layout = 1;
2867 break;
2868
2869 case ALGORITHM_LEFT_ASYMMETRIC_6:
2870 /* RAID5 left_asymmetric, with Q on last device */
2871 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2872 if (*dd_idx >= pd_idx)
2873 (*dd_idx)++;
2874 qd_idx = raid_disks - 1;
2875 break;
2876
2877 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2878 pd_idx = sector_div(stripe2, raid_disks-1);
2879 if (*dd_idx >= pd_idx)
2880 (*dd_idx)++;
2881 qd_idx = raid_disks - 1;
2882 break;
2883
2884 case ALGORITHM_LEFT_SYMMETRIC_6:
2885 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2886 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2887 qd_idx = raid_disks - 1;
2888 break;
2889
2890 case ALGORITHM_RIGHT_SYMMETRIC_6:
2891 pd_idx = sector_div(stripe2, raid_disks-1);
2892 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2893 qd_idx = raid_disks - 1;
2894 break;
2895
2896 case ALGORITHM_PARITY_0_6:
2897 pd_idx = 0;
2898 (*dd_idx)++;
2899 qd_idx = raid_disks - 1;
2900 break;
2901
2902 default:
2903 BUG();
2904 }
2905 break;
2906 }
2907
2908 if (sh) {
2909 sh->pd_idx = pd_idx;
2910 sh->qd_idx = qd_idx;
2911 sh->ddf_layout = ddf_layout;
2912 }
2913 /*
2914 * Finally, compute the new sector number
2915 */
2916 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2917 return new_sector;
2918 }
2919
2920 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2921 {
2922 struct r5conf *conf = sh->raid_conf;
2923 int raid_disks = sh->disks;
2924 int data_disks = raid_disks - conf->max_degraded;
2925 sector_t new_sector = sh->sector, check;
2926 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2927 : conf->chunk_sectors;
2928 int algorithm = previous ? conf->prev_algo
2929 : conf->algorithm;
2930 sector_t stripe;
2931 int chunk_offset;
2932 sector_t chunk_number;
2933 int dummy1, dd_idx = i;
2934 sector_t r_sector;
2935 struct stripe_head sh2;
2936
2937 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2938 stripe = new_sector;
2939
2940 if (i == sh->pd_idx)
2941 return 0;
2942 switch(conf->level) {
2943 case 4: break;
2944 case 5:
2945 switch (algorithm) {
2946 case ALGORITHM_LEFT_ASYMMETRIC:
2947 case ALGORITHM_RIGHT_ASYMMETRIC:
2948 if (i > sh->pd_idx)
2949 i--;
2950 break;
2951 case ALGORITHM_LEFT_SYMMETRIC:
2952 case ALGORITHM_RIGHT_SYMMETRIC:
2953 if (i < sh->pd_idx)
2954 i += raid_disks;
2955 i -= (sh->pd_idx + 1);
2956 break;
2957 case ALGORITHM_PARITY_0:
2958 i -= 1;
2959 break;
2960 case ALGORITHM_PARITY_N:
2961 break;
2962 default:
2963 BUG();
2964 }
2965 break;
2966 case 6:
2967 if (i == sh->qd_idx)
2968 return 0; /* It is the Q disk */
2969 switch (algorithm) {
2970 case ALGORITHM_LEFT_ASYMMETRIC:
2971 case ALGORITHM_RIGHT_ASYMMETRIC:
2972 case ALGORITHM_ROTATING_ZERO_RESTART:
2973 case ALGORITHM_ROTATING_N_RESTART:
2974 if (sh->pd_idx == raid_disks-1)
2975 i--; /* Q D D D P */
2976 else if (i > sh->pd_idx)
2977 i -= 2; /* D D P Q D */
2978 break;
2979 case ALGORITHM_LEFT_SYMMETRIC:
2980 case ALGORITHM_RIGHT_SYMMETRIC:
2981 if (sh->pd_idx == raid_disks-1)
2982 i--; /* Q D D D P */
2983 else {
2984 /* D D P Q D */
2985 if (i < sh->pd_idx)
2986 i += raid_disks;
2987 i -= (sh->pd_idx + 2);
2988 }
2989 break;
2990 case ALGORITHM_PARITY_0:
2991 i -= 2;
2992 break;
2993 case ALGORITHM_PARITY_N:
2994 break;
2995 case ALGORITHM_ROTATING_N_CONTINUE:
2996 /* Like left_symmetric, but P is before Q */
2997 if (sh->pd_idx == 0)
2998 i--; /* P D D D Q */
2999 else {
3000 /* D D Q P D */
3001 if (i < sh->pd_idx)
3002 i += raid_disks;
3003 i -= (sh->pd_idx + 1);
3004 }
3005 break;
3006 case ALGORITHM_LEFT_ASYMMETRIC_6:
3007 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3008 if (i > sh->pd_idx)
3009 i--;
3010 break;
3011 case ALGORITHM_LEFT_SYMMETRIC_6:
3012 case ALGORITHM_RIGHT_SYMMETRIC_6:
3013 if (i < sh->pd_idx)
3014 i += data_disks + 1;
3015 i -= (sh->pd_idx + 1);
3016 break;
3017 case ALGORITHM_PARITY_0_6:
3018 i -= 1;
3019 break;
3020 default:
3021 BUG();
3022 }
3023 break;
3024 }
3025
3026 chunk_number = stripe * data_disks + i;
3027 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3028
3029 check = raid5_compute_sector(conf, r_sector,
3030 previous, &dummy1, &sh2);
3031 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3032 || sh2.qd_idx != sh->qd_idx) {
3033 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3034 mdname(conf->mddev));
3035 return 0;
3036 }
3037 return r_sector;
3038 }
3039
3040 /*
3041 * There are cases where we want handle_stripe_dirtying() and
3042 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3043 *
3044 * This function checks whether we want to delay the towrite. Specifically,
3045 * we delay the towrite when:
3046 *
3047 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3048 * stripe has data in journal (for other devices).
3049 *
3050 * In this case, when reading data for the non-overwrite dev, it is
3051 * necessary to handle complex rmw of write back cache (prexor with
3052 * orig_page, and xor with page). To keep read path simple, we would
3053 * like to flush data in journal to RAID disks first, so complex rmw
3054 * is handled in the write patch (handle_stripe_dirtying).
3055 *
3056 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3057 *
3058 * It is important to be able to flush all stripes in raid5-cache.
3059 * Therefore, we need reserve some space on the journal device for
3060 * these flushes. If flush operation includes pending writes to the
3061 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3062 * for the flush out. If we exclude these pending writes from flush
3063 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3064 * Therefore, excluding pending writes in these cases enables more
3065 * efficient use of the journal device.
3066 *
3067 * Note: To make sure the stripe makes progress, we only delay
3068 * towrite for stripes with data already in journal (injournal > 0).
3069 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3070 * no_space_stripes list.
3071 *
3072 * 3. during journal failure
3073 * In journal failure, we try to flush all cached data to raid disks
3074 * based on data in stripe cache. The array is read-only to upper
3075 * layers, so we would skip all pending writes.
3076 *
3077 */
3078 static inline bool delay_towrite(struct r5conf *conf,
3079 struct r5dev *dev,
3080 struct stripe_head_state *s)
3081 {
3082 /* case 1 above */
3083 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3084 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3085 return true;
3086 /* case 2 above */
3087 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3088 s->injournal > 0)
3089 return true;
3090 /* case 3 above */
3091 if (s->log_failed && s->injournal)
3092 return true;
3093 return false;
3094 }
3095
3096 static void
3097 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3098 int rcw, int expand)
3099 {
3100 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3101 struct r5conf *conf = sh->raid_conf;
3102 int level = conf->level;
3103
3104 if (rcw) {
3105 /*
3106 * In some cases, handle_stripe_dirtying initially decided to
3107 * run rmw and allocates extra page for prexor. However, rcw is
3108 * cheaper later on. We need to free the extra page now,
3109 * because we won't be able to do that in ops_complete_prexor().
3110 */
3111 r5c_release_extra_page(sh);
3112
3113 for (i = disks; i--; ) {
3114 struct r5dev *dev = &sh->dev[i];
3115
3116 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3117 set_bit(R5_LOCKED, &dev->flags);
3118 set_bit(R5_Wantdrain, &dev->flags);
3119 if (!expand)
3120 clear_bit(R5_UPTODATE, &dev->flags);
3121 s->locked++;
3122 } else if (test_bit(R5_InJournal, &dev->flags)) {
3123 set_bit(R5_LOCKED, &dev->flags);
3124 s->locked++;
3125 }
3126 }
3127 /* if we are not expanding this is a proper write request, and
3128 * there will be bios with new data to be drained into the
3129 * stripe cache
3130 */
3131 if (!expand) {
3132 if (!s->locked)
3133 /* False alarm, nothing to do */
3134 return;
3135 sh->reconstruct_state = reconstruct_state_drain_run;
3136 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3137 } else
3138 sh->reconstruct_state = reconstruct_state_run;
3139
3140 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3141
3142 if (s->locked + conf->max_degraded == disks)
3143 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3144 atomic_inc(&conf->pending_full_writes);
3145 } else {
3146 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3147 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3148 BUG_ON(level == 6 &&
3149 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3150 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3151
3152 for (i = disks; i--; ) {
3153 struct r5dev *dev = &sh->dev[i];
3154 if (i == pd_idx || i == qd_idx)
3155 continue;
3156
3157 if (dev->towrite &&
3158 (test_bit(R5_UPTODATE, &dev->flags) ||
3159 test_bit(R5_Wantcompute, &dev->flags))) {
3160 set_bit(R5_Wantdrain, &dev->flags);
3161 set_bit(R5_LOCKED, &dev->flags);
3162 clear_bit(R5_UPTODATE, &dev->flags);
3163 s->locked++;
3164 } else if (test_bit(R5_InJournal, &dev->flags)) {
3165 set_bit(R5_LOCKED, &dev->flags);
3166 s->locked++;
3167 }
3168 }
3169 if (!s->locked)
3170 /* False alarm - nothing to do */
3171 return;
3172 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3173 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3174 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3175 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3176 }
3177
3178 /* keep the parity disk(s) locked while asynchronous operations
3179 * are in flight
3180 */
3181 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3182 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3183 s->locked++;
3184
3185 if (level == 6) {
3186 int qd_idx = sh->qd_idx;
3187 struct r5dev *dev = &sh->dev[qd_idx];
3188
3189 set_bit(R5_LOCKED, &dev->flags);
3190 clear_bit(R5_UPTODATE, &dev->flags);
3191 s->locked++;
3192 }
3193
3194 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3195 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3196 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3197 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3198 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3199
3200 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3201 __func__, (unsigned long long)sh->sector,
3202 s->locked, s->ops_request);
3203 }
3204
3205 /*
3206 * Each stripe/dev can have one or more bion attached.
3207 * toread/towrite point to the first in a chain.
3208 * The bi_next chain must be in order.
3209 */
3210 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3211 int forwrite, int previous)
3212 {
3213 struct bio **bip;
3214 struct r5conf *conf = sh->raid_conf;
3215 int firstwrite=0;
3216
3217 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3218 (unsigned long long)bi->bi_iter.bi_sector,
3219 (unsigned long long)sh->sector);
3220
3221 spin_lock_irq(&sh->stripe_lock);
3222 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3223 /* Don't allow new IO added to stripes in batch list */
3224 if (sh->batch_head)
3225 goto overlap;
3226 if (forwrite) {
3227 bip = &sh->dev[dd_idx].towrite;
3228 if (*bip == NULL)
3229 firstwrite = 1;
3230 } else
3231 bip = &sh->dev[dd_idx].toread;
3232 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3233 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3234 goto overlap;
3235 bip = & (*bip)->bi_next;
3236 }
3237 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3238 goto overlap;
3239
3240 if (forwrite && raid5_has_ppl(conf)) {
3241 /*
3242 * With PPL only writes to consecutive data chunks within a
3243 * stripe are allowed because for a single stripe_head we can
3244 * only have one PPL entry at a time, which describes one data
3245 * range. Not really an overlap, but wait_for_overlap can be
3246 * used to handle this.
3247 */
3248 sector_t sector;
3249 sector_t first = 0;
3250 sector_t last = 0;
3251 int count = 0;
3252 int i;
3253
3254 for (i = 0; i < sh->disks; i++) {
3255 if (i != sh->pd_idx &&
3256 (i == dd_idx || sh->dev[i].towrite)) {
3257 sector = sh->dev[i].sector;
3258 if (count == 0 || sector < first)
3259 first = sector;
3260 if (sector > last)
3261 last = sector;
3262 count++;
3263 }
3264 }
3265
3266 if (first + conf->chunk_sectors * (count - 1) != last)
3267 goto overlap;
3268 }
3269
3270 if (!forwrite || previous)
3271 clear_bit(STRIPE_BATCH_READY, &sh->state);
3272
3273 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3274 if (*bip)
3275 bi->bi_next = *bip;
3276 *bip = bi;
3277 bio_inc_remaining(bi);
3278 md_write_inc(conf->mddev, bi);
3279
3280 if (forwrite) {
3281 /* check if page is covered */
3282 sector_t sector = sh->dev[dd_idx].sector;
3283 for (bi=sh->dev[dd_idx].towrite;
3284 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3285 bi && bi->bi_iter.bi_sector <= sector;
3286 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3287 if (bio_end_sector(bi) >= sector)
3288 sector = bio_end_sector(bi);
3289 }
3290 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3291 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3292 sh->overwrite_disks++;
3293 }
3294
3295 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3296 (unsigned long long)(*bip)->bi_iter.bi_sector,
3297 (unsigned long long)sh->sector, dd_idx);
3298
3299 if (conf->mddev->bitmap && firstwrite) {
3300 /* Cannot hold spinlock over bitmap_startwrite,
3301 * but must ensure this isn't added to a batch until
3302 * we have added to the bitmap and set bm_seq.
3303 * So set STRIPE_BITMAP_PENDING to prevent
3304 * batching.
3305 * If multiple add_stripe_bio() calls race here they
3306 * much all set STRIPE_BITMAP_PENDING. So only the first one
3307 * to complete "bitmap_startwrite" gets to set
3308 * STRIPE_BIT_DELAY. This is important as once a stripe
3309 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3310 * any more.
3311 */
3312 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3313 spin_unlock_irq(&sh->stripe_lock);
3314 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3315 STRIPE_SECTORS, 0);
3316 spin_lock_irq(&sh->stripe_lock);
3317 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3318 if (!sh->batch_head) {
3319 sh->bm_seq = conf->seq_flush+1;
3320 set_bit(STRIPE_BIT_DELAY, &sh->state);
3321 }
3322 }
3323 spin_unlock_irq(&sh->stripe_lock);
3324
3325 if (stripe_can_batch(sh))
3326 stripe_add_to_batch_list(conf, sh);
3327 return 1;
3328
3329 overlap:
3330 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3331 spin_unlock_irq(&sh->stripe_lock);
3332 return 0;
3333 }
3334
3335 static void end_reshape(struct r5conf *conf);
3336
3337 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3338 struct stripe_head *sh)
3339 {
3340 int sectors_per_chunk =
3341 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3342 int dd_idx;
3343 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3344 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3345
3346 raid5_compute_sector(conf,
3347 stripe * (disks - conf->max_degraded)
3348 *sectors_per_chunk + chunk_offset,
3349 previous,
3350 &dd_idx, sh);
3351 }
3352
3353 static void
3354 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3355 struct stripe_head_state *s, int disks)
3356 {
3357 int i;
3358 BUG_ON(sh->batch_head);
3359 for (i = disks; i--; ) {
3360 struct bio *bi;
3361 int bitmap_end = 0;
3362
3363 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3364 struct md_rdev *rdev;
3365 rcu_read_lock();
3366 rdev = rcu_dereference(conf->disks[i].rdev);
3367 if (rdev && test_bit(In_sync, &rdev->flags) &&
3368 !test_bit(Faulty, &rdev->flags))
3369 atomic_inc(&rdev->nr_pending);
3370 else
3371 rdev = NULL;
3372 rcu_read_unlock();
3373 if (rdev) {
3374 if (!rdev_set_badblocks(
3375 rdev,
3376 sh->sector,
3377 STRIPE_SECTORS, 0))
3378 md_error(conf->mddev, rdev);
3379 rdev_dec_pending(rdev, conf->mddev);
3380 }
3381 }
3382 spin_lock_irq(&sh->stripe_lock);
3383 /* fail all writes first */
3384 bi = sh->dev[i].towrite;
3385 sh->dev[i].towrite = NULL;
3386 sh->overwrite_disks = 0;
3387 spin_unlock_irq(&sh->stripe_lock);
3388 if (bi)
3389 bitmap_end = 1;
3390
3391 log_stripe_write_finished(sh);
3392
3393 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3394 wake_up(&conf->wait_for_overlap);
3395
3396 while (bi && bi->bi_iter.bi_sector <
3397 sh->dev[i].sector + STRIPE_SECTORS) {
3398 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3399
3400 md_write_end(conf->mddev);
3401 bio_io_error(bi);
3402 bi = nextbi;
3403 }
3404 if (bitmap_end)
3405 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3406 STRIPE_SECTORS, 0, 0);
3407 bitmap_end = 0;
3408 /* and fail all 'written' */
3409 bi = sh->dev[i].written;
3410 sh->dev[i].written = NULL;
3411 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3412 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3413 sh->dev[i].page = sh->dev[i].orig_page;
3414 }
3415
3416 if (bi) bitmap_end = 1;
3417 while (bi && bi->bi_iter.bi_sector <
3418 sh->dev[i].sector + STRIPE_SECTORS) {
3419 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3420
3421 md_write_end(conf->mddev);
3422 bio_io_error(bi);
3423 bi = bi2;
3424 }
3425
3426 /* fail any reads if this device is non-operational and
3427 * the data has not reached the cache yet.
3428 */
3429 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3430 s->failed > conf->max_degraded &&
3431 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3432 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3433 spin_lock_irq(&sh->stripe_lock);
3434 bi = sh->dev[i].toread;
3435 sh->dev[i].toread = NULL;
3436 spin_unlock_irq(&sh->stripe_lock);
3437 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3438 wake_up(&conf->wait_for_overlap);
3439 if (bi)
3440 s->to_read--;
3441 while (bi && bi->bi_iter.bi_sector <
3442 sh->dev[i].sector + STRIPE_SECTORS) {
3443 struct bio *nextbi =
3444 r5_next_bio(bi, sh->dev[i].sector);
3445
3446 bio_io_error(bi);
3447 bi = nextbi;
3448 }
3449 }
3450 if (bitmap_end)
3451 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3452 STRIPE_SECTORS, 0, 0);
3453 /* If we were in the middle of a write the parity block might
3454 * still be locked - so just clear all R5_LOCKED flags
3455 */
3456 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3457 }
3458 s->to_write = 0;
3459 s->written = 0;
3460
3461 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3462 if (atomic_dec_and_test(&conf->pending_full_writes))
3463 md_wakeup_thread(conf->mddev->thread);
3464 }
3465
3466 static void
3467 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3468 struct stripe_head_state *s)
3469 {
3470 int abort = 0;
3471 int i;
3472
3473 BUG_ON(sh->batch_head);
3474 clear_bit(STRIPE_SYNCING, &sh->state);
3475 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3476 wake_up(&conf->wait_for_overlap);
3477 s->syncing = 0;
3478 s->replacing = 0;
3479 /* There is nothing more to do for sync/check/repair.
3480 * Don't even need to abort as that is handled elsewhere
3481 * if needed, and not always wanted e.g. if there is a known
3482 * bad block here.
3483 * For recover/replace we need to record a bad block on all
3484 * non-sync devices, or abort the recovery
3485 */
3486 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3487 /* During recovery devices cannot be removed, so
3488 * locking and refcounting of rdevs is not needed
3489 */
3490 rcu_read_lock();
3491 for (i = 0; i < conf->raid_disks; i++) {
3492 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3493 if (rdev
3494 && !test_bit(Faulty, &rdev->flags)
3495 && !test_bit(In_sync, &rdev->flags)
3496 && !rdev_set_badblocks(rdev, sh->sector,
3497 STRIPE_SECTORS, 0))
3498 abort = 1;
3499 rdev = rcu_dereference(conf->disks[i].replacement);
3500 if (rdev
3501 && !test_bit(Faulty, &rdev->flags)
3502 && !test_bit(In_sync, &rdev->flags)
3503 && !rdev_set_badblocks(rdev, sh->sector,
3504 STRIPE_SECTORS, 0))
3505 abort = 1;
3506 }
3507 rcu_read_unlock();
3508 if (abort)
3509 conf->recovery_disabled =
3510 conf->mddev->recovery_disabled;
3511 }
3512 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3513 }
3514
3515 static int want_replace(struct stripe_head *sh, int disk_idx)
3516 {
3517 struct md_rdev *rdev;
3518 int rv = 0;
3519
3520 rcu_read_lock();
3521 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3522 if (rdev
3523 && !test_bit(Faulty, &rdev->flags)
3524 && !test_bit(In_sync, &rdev->flags)
3525 && (rdev->recovery_offset <= sh->sector
3526 || rdev->mddev->recovery_cp <= sh->sector))
3527 rv = 1;
3528 rcu_read_unlock();
3529 return rv;
3530 }
3531
3532 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3533 int disk_idx, int disks)
3534 {
3535 struct r5dev *dev = &sh->dev[disk_idx];
3536 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3537 &sh->dev[s->failed_num[1]] };
3538 int i;
3539
3540
3541 if (test_bit(R5_LOCKED, &dev->flags) ||
3542 test_bit(R5_UPTODATE, &dev->flags))
3543 /* No point reading this as we already have it or have
3544 * decided to get it.
3545 */
3546 return 0;
3547
3548 if (dev->toread ||
3549 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3550 /* We need this block to directly satisfy a request */
3551 return 1;
3552
3553 if (s->syncing || s->expanding ||
3554 (s->replacing && want_replace(sh, disk_idx)))
3555 /* When syncing, or expanding we read everything.
3556 * When replacing, we need the replaced block.
3557 */
3558 return 1;
3559
3560 if ((s->failed >= 1 && fdev[0]->toread) ||
3561 (s->failed >= 2 && fdev[1]->toread))
3562 /* If we want to read from a failed device, then
3563 * we need to actually read every other device.
3564 */
3565 return 1;
3566
3567 /* Sometimes neither read-modify-write nor reconstruct-write
3568 * cycles can work. In those cases we read every block we
3569 * can. Then the parity-update is certain to have enough to
3570 * work with.
3571 * This can only be a problem when we need to write something,
3572 * and some device has failed. If either of those tests
3573 * fail we need look no further.
3574 */
3575 if (!s->failed || !s->to_write)
3576 return 0;
3577
3578 if (test_bit(R5_Insync, &dev->flags) &&
3579 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3580 /* Pre-reads at not permitted until after short delay
3581 * to gather multiple requests. However if this
3582 * device is no Insync, the block could only be computed
3583 * and there is no need to delay that.
3584 */
3585 return 0;
3586
3587 for (i = 0; i < s->failed && i < 2; i++) {
3588 if (fdev[i]->towrite &&
3589 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3590 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3591 /* If we have a partial write to a failed
3592 * device, then we will need to reconstruct
3593 * the content of that device, so all other
3594 * devices must be read.
3595 */
3596 return 1;
3597 }
3598
3599 /* If we are forced to do a reconstruct-write, either because
3600 * the current RAID6 implementation only supports that, or
3601 * because parity cannot be trusted and we are currently
3602 * recovering it, there is extra need to be careful.
3603 * If one of the devices that we would need to read, because
3604 * it is not being overwritten (and maybe not written at all)
3605 * is missing/faulty, then we need to read everything we can.
3606 */
3607 if (sh->raid_conf->level != 6 &&
3608 sh->sector < sh->raid_conf->mddev->recovery_cp)
3609 /* reconstruct-write isn't being forced */
3610 return 0;
3611 for (i = 0; i < s->failed && i < 2; i++) {
3612 if (s->failed_num[i] != sh->pd_idx &&
3613 s->failed_num[i] != sh->qd_idx &&
3614 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3615 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3616 return 1;
3617 }
3618
3619 return 0;
3620 }
3621
3622 /* fetch_block - checks the given member device to see if its data needs
3623 * to be read or computed to satisfy a request.
3624 *
3625 * Returns 1 when no more member devices need to be checked, otherwise returns
3626 * 0 to tell the loop in handle_stripe_fill to continue
3627 */
3628 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3629 int disk_idx, int disks)
3630 {
3631 struct r5dev *dev = &sh->dev[disk_idx];
3632
3633 /* is the data in this block needed, and can we get it? */
3634 if (need_this_block(sh, s, disk_idx, disks)) {
3635 /* we would like to get this block, possibly by computing it,
3636 * otherwise read it if the backing disk is insync
3637 */
3638 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3639 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3640 BUG_ON(sh->batch_head);
3641
3642 /*
3643 * In the raid6 case if the only non-uptodate disk is P
3644 * then we already trusted P to compute the other failed
3645 * drives. It is safe to compute rather than re-read P.
3646 * In other cases we only compute blocks from failed
3647 * devices, otherwise check/repair might fail to detect
3648 * a real inconsistency.
3649 */
3650
3651 if ((s->uptodate == disks - 1) &&
3652 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3653 (s->failed && (disk_idx == s->failed_num[0] ||
3654 disk_idx == s->failed_num[1])))) {
3655 /* have disk failed, and we're requested to fetch it;
3656 * do compute it
3657 */
3658 pr_debug("Computing stripe %llu block %d\n",
3659 (unsigned long long)sh->sector, disk_idx);
3660 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3661 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3662 set_bit(R5_Wantcompute, &dev->flags);
3663 sh->ops.target = disk_idx;
3664 sh->ops.target2 = -1; /* no 2nd target */
3665 s->req_compute = 1;
3666 /* Careful: from this point on 'uptodate' is in the eye
3667 * of raid_run_ops which services 'compute' operations
3668 * before writes. R5_Wantcompute flags a block that will
3669 * be R5_UPTODATE by the time it is needed for a
3670 * subsequent operation.
3671 */
3672 s->uptodate++;
3673 return 1;
3674 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3675 /* Computing 2-failure is *very* expensive; only
3676 * do it if failed >= 2
3677 */
3678 int other;
3679 for (other = disks; other--; ) {
3680 if (other == disk_idx)
3681 continue;
3682 if (!test_bit(R5_UPTODATE,
3683 &sh->dev[other].flags))
3684 break;
3685 }
3686 BUG_ON(other < 0);
3687 pr_debug("Computing stripe %llu blocks %d,%d\n",
3688 (unsigned long long)sh->sector,
3689 disk_idx, other);
3690 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3691 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3692 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3693 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3694 sh->ops.target = disk_idx;
3695 sh->ops.target2 = other;
3696 s->uptodate += 2;
3697 s->req_compute = 1;
3698 return 1;
3699 } else if (test_bit(R5_Insync, &dev->flags)) {
3700 set_bit(R5_LOCKED, &dev->flags);
3701 set_bit(R5_Wantread, &dev->flags);
3702 s->locked++;
3703 pr_debug("Reading block %d (sync=%d)\n",
3704 disk_idx, s->syncing);
3705 }
3706 }
3707
3708 return 0;
3709 }
3710
3711 /**
3712 * handle_stripe_fill - read or compute data to satisfy pending requests.
3713 */
3714 static void handle_stripe_fill(struct stripe_head *sh,
3715 struct stripe_head_state *s,
3716 int disks)
3717 {
3718 int i;
3719
3720 /* look for blocks to read/compute, skip this if a compute
3721 * is already in flight, or if the stripe contents are in the
3722 * midst of changing due to a write
3723 */
3724 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3725 !sh->reconstruct_state) {
3726
3727 /*
3728 * For degraded stripe with data in journal, do not handle
3729 * read requests yet, instead, flush the stripe to raid
3730 * disks first, this avoids handling complex rmw of write
3731 * back cache (prexor with orig_page, and then xor with
3732 * page) in the read path
3733 */
3734 if (s->injournal && s->failed) {
3735 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3736 r5c_make_stripe_write_out(sh);
3737 goto out;
3738 }
3739
3740 for (i = disks; i--; )
3741 if (fetch_block(sh, s, i, disks))
3742 break;
3743 }
3744 out:
3745 set_bit(STRIPE_HANDLE, &sh->state);
3746 }
3747
3748 static void break_stripe_batch_list(struct stripe_head *head_sh,
3749 unsigned long handle_flags);
3750 /* handle_stripe_clean_event
3751 * any written block on an uptodate or failed drive can be returned.
3752 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3753 * never LOCKED, so we don't need to test 'failed' directly.
3754 */
3755 static void handle_stripe_clean_event(struct r5conf *conf,
3756 struct stripe_head *sh, int disks)
3757 {
3758 int i;
3759 struct r5dev *dev;
3760 int discard_pending = 0;
3761 struct stripe_head *head_sh = sh;
3762 bool do_endio = false;
3763
3764 for (i = disks; i--; )
3765 if (sh->dev[i].written) {
3766 dev = &sh->dev[i];
3767 if (!test_bit(R5_LOCKED, &dev->flags) &&
3768 (test_bit(R5_UPTODATE, &dev->flags) ||
3769 test_bit(R5_Discard, &dev->flags) ||
3770 test_bit(R5_SkipCopy, &dev->flags))) {
3771 /* We can return any write requests */
3772 struct bio *wbi, *wbi2;
3773 pr_debug("Return write for disc %d\n", i);
3774 if (test_and_clear_bit(R5_Discard, &dev->flags))
3775 clear_bit(R5_UPTODATE, &dev->flags);
3776 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3777 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3778 }
3779 do_endio = true;
3780
3781 returnbi:
3782 dev->page = dev->orig_page;
3783 wbi = dev->written;
3784 dev->written = NULL;
3785 while (wbi && wbi->bi_iter.bi_sector <
3786 dev->sector + STRIPE_SECTORS) {
3787 wbi2 = r5_next_bio(wbi, dev->sector);
3788 md_write_end(conf->mddev);
3789 bio_endio(wbi);
3790 wbi = wbi2;
3791 }
3792 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3793 STRIPE_SECTORS,
3794 !test_bit(STRIPE_DEGRADED, &sh->state),
3795 0);
3796 if (head_sh->batch_head) {
3797 sh = list_first_entry(&sh->batch_list,
3798 struct stripe_head,
3799 batch_list);
3800 if (sh != head_sh) {
3801 dev = &sh->dev[i];
3802 goto returnbi;
3803 }
3804 }
3805 sh = head_sh;
3806 dev = &sh->dev[i];
3807 } else if (test_bit(R5_Discard, &dev->flags))
3808 discard_pending = 1;
3809 }
3810
3811 log_stripe_write_finished(sh);
3812
3813 if (!discard_pending &&
3814 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3815 int hash;
3816 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3817 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3818 if (sh->qd_idx >= 0) {
3819 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3820 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3821 }
3822 /* now that discard is done we can proceed with any sync */
3823 clear_bit(STRIPE_DISCARD, &sh->state);
3824 /*
3825 * SCSI discard will change some bio fields and the stripe has
3826 * no updated data, so remove it from hash list and the stripe
3827 * will be reinitialized
3828 */
3829 unhash:
3830 hash = sh->hash_lock_index;
3831 spin_lock_irq(conf->hash_locks + hash);
3832 remove_hash(sh);
3833 spin_unlock_irq(conf->hash_locks + hash);
3834 if (head_sh->batch_head) {
3835 sh = list_first_entry(&sh->batch_list,
3836 struct stripe_head, batch_list);
3837 if (sh != head_sh)
3838 goto unhash;
3839 }
3840 sh = head_sh;
3841
3842 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3843 set_bit(STRIPE_HANDLE, &sh->state);
3844
3845 }
3846
3847 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3848 if (atomic_dec_and_test(&conf->pending_full_writes))
3849 md_wakeup_thread(conf->mddev->thread);
3850
3851 if (head_sh->batch_head && do_endio)
3852 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3853 }
3854
3855 /*
3856 * For RMW in write back cache, we need extra page in prexor to store the
3857 * old data. This page is stored in dev->orig_page.
3858 *
3859 * This function checks whether we have data for prexor. The exact logic
3860 * is:
3861 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3862 */
3863 static inline bool uptodate_for_rmw(struct r5dev *dev)
3864 {
3865 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3866 (!test_bit(R5_InJournal, &dev->flags) ||
3867 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3868 }
3869
3870 static int handle_stripe_dirtying(struct r5conf *conf,
3871 struct stripe_head *sh,
3872 struct stripe_head_state *s,
3873 int disks)
3874 {
3875 int rmw = 0, rcw = 0, i;
3876 sector_t recovery_cp = conf->mddev->recovery_cp;
3877
3878 /* Check whether resync is now happening or should start.
3879 * If yes, then the array is dirty (after unclean shutdown or
3880 * initial creation), so parity in some stripes might be inconsistent.
3881 * In this case, we need to always do reconstruct-write, to ensure
3882 * that in case of drive failure or read-error correction, we
3883 * generate correct data from the parity.
3884 */
3885 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3886 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3887 s->failed == 0)) {
3888 /* Calculate the real rcw later - for now make it
3889 * look like rcw is cheaper
3890 */
3891 rcw = 1; rmw = 2;
3892 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3893 conf->rmw_level, (unsigned long long)recovery_cp,
3894 (unsigned long long)sh->sector);
3895 } else for (i = disks; i--; ) {
3896 /* would I have to read this buffer for read_modify_write */
3897 struct r5dev *dev = &sh->dev[i];
3898 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3899 i == sh->pd_idx || i == sh->qd_idx ||
3900 test_bit(R5_InJournal, &dev->flags)) &&
3901 !test_bit(R5_LOCKED, &dev->flags) &&
3902 !(uptodate_for_rmw(dev) ||
3903 test_bit(R5_Wantcompute, &dev->flags))) {
3904 if (test_bit(R5_Insync, &dev->flags))
3905 rmw++;
3906 else
3907 rmw += 2*disks; /* cannot read it */
3908 }
3909 /* Would I have to read this buffer for reconstruct_write */
3910 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3911 i != sh->pd_idx && i != sh->qd_idx &&
3912 !test_bit(R5_LOCKED, &dev->flags) &&
3913 !(test_bit(R5_UPTODATE, &dev->flags) ||
3914 test_bit(R5_Wantcompute, &dev->flags))) {
3915 if (test_bit(R5_Insync, &dev->flags))
3916 rcw++;
3917 else
3918 rcw += 2*disks;
3919 }
3920 }
3921
3922 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3923 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3924 set_bit(STRIPE_HANDLE, &sh->state);
3925 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3926 /* prefer read-modify-write, but need to get some data */
3927 if (conf->mddev->queue)
3928 blk_add_trace_msg(conf->mddev->queue,
3929 "raid5 rmw %llu %d",
3930 (unsigned long long)sh->sector, rmw);
3931 for (i = disks; i--; ) {
3932 struct r5dev *dev = &sh->dev[i];
3933 if (test_bit(R5_InJournal, &dev->flags) &&
3934 dev->page == dev->orig_page &&
3935 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3936 /* alloc page for prexor */
3937 struct page *p = alloc_page(GFP_NOIO);
3938
3939 if (p) {
3940 dev->orig_page = p;
3941 continue;
3942 }
3943
3944 /*
3945 * alloc_page() failed, try use
3946 * disk_info->extra_page
3947 */
3948 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3949 &conf->cache_state)) {
3950 r5c_use_extra_page(sh);
3951 break;
3952 }
3953
3954 /* extra_page in use, add to delayed_list */
3955 set_bit(STRIPE_DELAYED, &sh->state);
3956 s->waiting_extra_page = 1;
3957 return -EAGAIN;
3958 }
3959 }
3960
3961 for (i = disks; i--; ) {
3962 struct r5dev *dev = &sh->dev[i];
3963 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3964 i == sh->pd_idx || i == sh->qd_idx ||
3965 test_bit(R5_InJournal, &dev->flags)) &&
3966 !test_bit(R5_LOCKED, &dev->flags) &&
3967 !(uptodate_for_rmw(dev) ||
3968 test_bit(R5_Wantcompute, &dev->flags)) &&
3969 test_bit(R5_Insync, &dev->flags)) {
3970 if (test_bit(STRIPE_PREREAD_ACTIVE,
3971 &sh->state)) {
3972 pr_debug("Read_old block %d for r-m-w\n",
3973 i);
3974 set_bit(R5_LOCKED, &dev->flags);
3975 set_bit(R5_Wantread, &dev->flags);
3976 s->locked++;
3977 } else {
3978 set_bit(STRIPE_DELAYED, &sh->state);
3979 set_bit(STRIPE_HANDLE, &sh->state);
3980 }
3981 }
3982 }
3983 }
3984 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3985 /* want reconstruct write, but need to get some data */
3986 int qread =0;
3987 rcw = 0;
3988 for (i = disks; i--; ) {
3989 struct r5dev *dev = &sh->dev[i];
3990 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3991 i != sh->pd_idx && i != sh->qd_idx &&
3992 !test_bit(R5_LOCKED, &dev->flags) &&
3993 !(test_bit(R5_UPTODATE, &dev->flags) ||
3994 test_bit(R5_Wantcompute, &dev->flags))) {
3995 rcw++;
3996 if (test_bit(R5_Insync, &dev->flags) &&
3997 test_bit(STRIPE_PREREAD_ACTIVE,
3998 &sh->state)) {
3999 pr_debug("Read_old block "
4000 "%d for Reconstruct\n", i);
4001 set_bit(R5_LOCKED, &dev->flags);
4002 set_bit(R5_Wantread, &dev->flags);
4003 s->locked++;
4004 qread++;
4005 } else {
4006 set_bit(STRIPE_DELAYED, &sh->state);
4007 set_bit(STRIPE_HANDLE, &sh->state);
4008 }
4009 }
4010 }
4011 if (rcw && conf->mddev->queue)
4012 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4013 (unsigned long long)sh->sector,
4014 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4015 }
4016
4017 if (rcw > disks && rmw > disks &&
4018 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4019 set_bit(STRIPE_DELAYED, &sh->state);
4020
4021 /* now if nothing is locked, and if we have enough data,
4022 * we can start a write request
4023 */
4024 /* since handle_stripe can be called at any time we need to handle the
4025 * case where a compute block operation has been submitted and then a
4026 * subsequent call wants to start a write request. raid_run_ops only
4027 * handles the case where compute block and reconstruct are requested
4028 * simultaneously. If this is not the case then new writes need to be
4029 * held off until the compute completes.
4030 */
4031 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4032 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4033 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4034 schedule_reconstruction(sh, s, rcw == 0, 0);
4035 return 0;
4036 }
4037
4038 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4039 struct stripe_head_state *s, int disks)
4040 {
4041 struct r5dev *dev = NULL;
4042
4043 BUG_ON(sh->batch_head);
4044 set_bit(STRIPE_HANDLE, &sh->state);
4045
4046 switch (sh->check_state) {
4047 case check_state_idle:
4048 /* start a new check operation if there are no failures */
4049 if (s->failed == 0) {
4050 BUG_ON(s->uptodate != disks);
4051 sh->check_state = check_state_run;
4052 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4053 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4054 s->uptodate--;
4055 break;
4056 }
4057 dev = &sh->dev[s->failed_num[0]];
4058 /* fall through */
4059 case check_state_compute_result:
4060 sh->check_state = check_state_idle;
4061 if (!dev)
4062 dev = &sh->dev[sh->pd_idx];
4063
4064 /* check that a write has not made the stripe insync */
4065 if (test_bit(STRIPE_INSYNC, &sh->state))
4066 break;
4067
4068 /* either failed parity check, or recovery is happening */
4069 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4070 BUG_ON(s->uptodate != disks);
4071
4072 set_bit(R5_LOCKED, &dev->flags);
4073 s->locked++;
4074 set_bit(R5_Wantwrite, &dev->flags);
4075
4076 clear_bit(STRIPE_DEGRADED, &sh->state);
4077 set_bit(STRIPE_INSYNC, &sh->state);
4078 break;
4079 case check_state_run:
4080 break; /* we will be called again upon completion */
4081 case check_state_check_result:
4082 sh->check_state = check_state_idle;
4083
4084 /* if a failure occurred during the check operation, leave
4085 * STRIPE_INSYNC not set and let the stripe be handled again
4086 */
4087 if (s->failed)
4088 break;
4089
4090 /* handle a successful check operation, if parity is correct
4091 * we are done. Otherwise update the mismatch count and repair
4092 * parity if !MD_RECOVERY_CHECK
4093 */
4094 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4095 /* parity is correct (on disc,
4096 * not in buffer any more)
4097 */
4098 set_bit(STRIPE_INSYNC, &sh->state);
4099 else {
4100 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4101 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4102 /* don't try to repair!! */
4103 set_bit(STRIPE_INSYNC, &sh->state);
4104 pr_warn_ratelimited("%s: mismatch sector in range "
4105 "%llu-%llu\n", mdname(conf->mddev),
4106 (unsigned long long) sh->sector,
4107 (unsigned long long) sh->sector +
4108 STRIPE_SECTORS);
4109 } else {
4110 sh->check_state = check_state_compute_run;
4111 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4112 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4113 set_bit(R5_Wantcompute,
4114 &sh->dev[sh->pd_idx].flags);
4115 sh->ops.target = sh->pd_idx;
4116 sh->ops.target2 = -1;
4117 s->uptodate++;
4118 }
4119 }
4120 break;
4121 case check_state_compute_run:
4122 break;
4123 default:
4124 pr_err("%s: unknown check_state: %d sector: %llu\n",
4125 __func__, sh->check_state,
4126 (unsigned long long) sh->sector);
4127 BUG();
4128 }
4129 }
4130
4131 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4132 struct stripe_head_state *s,
4133 int disks)
4134 {
4135 int pd_idx = sh->pd_idx;
4136 int qd_idx = sh->qd_idx;
4137 struct r5dev *dev;
4138
4139 BUG_ON(sh->batch_head);
4140 set_bit(STRIPE_HANDLE, &sh->state);
4141
4142 BUG_ON(s->failed > 2);
4143
4144 /* Want to check and possibly repair P and Q.
4145 * However there could be one 'failed' device, in which
4146 * case we can only check one of them, possibly using the
4147 * other to generate missing data
4148 */
4149
4150 switch (sh->check_state) {
4151 case check_state_idle:
4152 /* start a new check operation if there are < 2 failures */
4153 if (s->failed == s->q_failed) {
4154 /* The only possible failed device holds Q, so it
4155 * makes sense to check P (If anything else were failed,
4156 * we would have used P to recreate it).
4157 */
4158 sh->check_state = check_state_run;
4159 }
4160 if (!s->q_failed && s->failed < 2) {
4161 /* Q is not failed, and we didn't use it to generate
4162 * anything, so it makes sense to check it
4163 */
4164 if (sh->check_state == check_state_run)
4165 sh->check_state = check_state_run_pq;
4166 else
4167 sh->check_state = check_state_run_q;
4168 }
4169
4170 /* discard potentially stale zero_sum_result */
4171 sh->ops.zero_sum_result = 0;
4172
4173 if (sh->check_state == check_state_run) {
4174 /* async_xor_zero_sum destroys the contents of P */
4175 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4176 s->uptodate--;
4177 }
4178 if (sh->check_state >= check_state_run &&
4179 sh->check_state <= check_state_run_pq) {
4180 /* async_syndrome_zero_sum preserves P and Q, so
4181 * no need to mark them !uptodate here
4182 */
4183 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4184 break;
4185 }
4186
4187 /* we have 2-disk failure */
4188 BUG_ON(s->failed != 2);
4189 /* fall through */
4190 case check_state_compute_result:
4191 sh->check_state = check_state_idle;
4192
4193 /* check that a write has not made the stripe insync */
4194 if (test_bit(STRIPE_INSYNC, &sh->state))
4195 break;
4196
4197 /* now write out any block on a failed drive,
4198 * or P or Q if they were recomputed
4199 */
4200 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4201 if (s->failed == 2) {
4202 dev = &sh->dev[s->failed_num[1]];
4203 s->locked++;
4204 set_bit(R5_LOCKED, &dev->flags);
4205 set_bit(R5_Wantwrite, &dev->flags);
4206 }
4207 if (s->failed >= 1) {
4208 dev = &sh->dev[s->failed_num[0]];
4209 s->locked++;
4210 set_bit(R5_LOCKED, &dev->flags);
4211 set_bit(R5_Wantwrite, &dev->flags);
4212 }
4213 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4214 dev = &sh->dev[pd_idx];
4215 s->locked++;
4216 set_bit(R5_LOCKED, &dev->flags);
4217 set_bit(R5_Wantwrite, &dev->flags);
4218 }
4219 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4220 dev = &sh->dev[qd_idx];
4221 s->locked++;
4222 set_bit(R5_LOCKED, &dev->flags);
4223 set_bit(R5_Wantwrite, &dev->flags);
4224 }
4225 clear_bit(STRIPE_DEGRADED, &sh->state);
4226
4227 set_bit(STRIPE_INSYNC, &sh->state);
4228 break;
4229 case check_state_run:
4230 case check_state_run_q:
4231 case check_state_run_pq:
4232 break; /* we will be called again upon completion */
4233 case check_state_check_result:
4234 sh->check_state = check_state_idle;
4235
4236 /* handle a successful check operation, if parity is correct
4237 * we are done. Otherwise update the mismatch count and repair
4238 * parity if !MD_RECOVERY_CHECK
4239 */
4240 if (sh->ops.zero_sum_result == 0) {
4241 /* both parities are correct */
4242 if (!s->failed)
4243 set_bit(STRIPE_INSYNC, &sh->state);
4244 else {
4245 /* in contrast to the raid5 case we can validate
4246 * parity, but still have a failure to write
4247 * back
4248 */
4249 sh->check_state = check_state_compute_result;
4250 /* Returning at this point means that we may go
4251 * off and bring p and/or q uptodate again so
4252 * we make sure to check zero_sum_result again
4253 * to verify if p or q need writeback
4254 */
4255 }
4256 } else {
4257 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4258 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4259 /* don't try to repair!! */
4260 set_bit(STRIPE_INSYNC, &sh->state);
4261 pr_warn_ratelimited("%s: mismatch sector in range "
4262 "%llu-%llu\n", mdname(conf->mddev),
4263 (unsigned long long) sh->sector,
4264 (unsigned long long) sh->sector +
4265 STRIPE_SECTORS);
4266 } else {
4267 int *target = &sh->ops.target;
4268
4269 sh->ops.target = -1;
4270 sh->ops.target2 = -1;
4271 sh->check_state = check_state_compute_run;
4272 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4273 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4274 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4275 set_bit(R5_Wantcompute,
4276 &sh->dev[pd_idx].flags);
4277 *target = pd_idx;
4278 target = &sh->ops.target2;
4279 s->uptodate++;
4280 }
4281 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4282 set_bit(R5_Wantcompute,
4283 &sh->dev[qd_idx].flags);
4284 *target = qd_idx;
4285 s->uptodate++;
4286 }
4287 }
4288 }
4289 break;
4290 case check_state_compute_run:
4291 break;
4292 default:
4293 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4294 __func__, sh->check_state,
4295 (unsigned long long) sh->sector);
4296 BUG();
4297 }
4298 }
4299
4300 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4301 {
4302 int i;
4303
4304 /* We have read all the blocks in this stripe and now we need to
4305 * copy some of them into a target stripe for expand.
4306 */
4307 struct dma_async_tx_descriptor *tx = NULL;
4308 BUG_ON(sh->batch_head);
4309 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4310 for (i = 0; i < sh->disks; i++)
4311 if (i != sh->pd_idx && i != sh->qd_idx) {
4312 int dd_idx, j;
4313 struct stripe_head *sh2;
4314 struct async_submit_ctl submit;
4315
4316 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4317 sector_t s = raid5_compute_sector(conf, bn, 0,
4318 &dd_idx, NULL);
4319 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4320 if (sh2 == NULL)
4321 /* so far only the early blocks of this stripe
4322 * have been requested. When later blocks
4323 * get requested, we will try again
4324 */
4325 continue;
4326 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4327 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4328 /* must have already done this block */
4329 raid5_release_stripe(sh2);
4330 continue;
4331 }
4332
4333 /* place all the copies on one channel */
4334 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4335 tx = async_memcpy(sh2->dev[dd_idx].page,
4336 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4337 &submit);
4338
4339 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4340 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4341 for (j = 0; j < conf->raid_disks; j++)
4342 if (j != sh2->pd_idx &&
4343 j != sh2->qd_idx &&
4344 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4345 break;
4346 if (j == conf->raid_disks) {
4347 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4348 set_bit(STRIPE_HANDLE, &sh2->state);
4349 }
4350 raid5_release_stripe(sh2);
4351
4352 }
4353 /* done submitting copies, wait for them to complete */
4354 async_tx_quiesce(&tx);
4355 }
4356
4357 /*
4358 * handle_stripe - do things to a stripe.
4359 *
4360 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4361 * state of various bits to see what needs to be done.
4362 * Possible results:
4363 * return some read requests which now have data
4364 * return some write requests which are safely on storage
4365 * schedule a read on some buffers
4366 * schedule a write of some buffers
4367 * return confirmation of parity correctness
4368 *
4369 */
4370
4371 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4372 {
4373 struct r5conf *conf = sh->raid_conf;
4374 int disks = sh->disks;
4375 struct r5dev *dev;
4376 int i;
4377 int do_recovery = 0;
4378
4379 memset(s, 0, sizeof(*s));
4380
4381 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4382 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4383 s->failed_num[0] = -1;
4384 s->failed_num[1] = -1;
4385 s->log_failed = r5l_log_disk_error(conf);
4386
4387 /* Now to look around and see what can be done */
4388 rcu_read_lock();
4389 for (i=disks; i--; ) {
4390 struct md_rdev *rdev;
4391 sector_t first_bad;
4392 int bad_sectors;
4393 int is_bad = 0;
4394
4395 dev = &sh->dev[i];
4396
4397 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4398 i, dev->flags,
4399 dev->toread, dev->towrite, dev->written);
4400 /* maybe we can reply to a read
4401 *
4402 * new wantfill requests are only permitted while
4403 * ops_complete_biofill is guaranteed to be inactive
4404 */
4405 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4406 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4407 set_bit(R5_Wantfill, &dev->flags);
4408
4409 /* now count some things */
4410 if (test_bit(R5_LOCKED, &dev->flags))
4411 s->locked++;
4412 if (test_bit(R5_UPTODATE, &dev->flags))
4413 s->uptodate++;
4414 if (test_bit(R5_Wantcompute, &dev->flags)) {
4415 s->compute++;
4416 BUG_ON(s->compute > 2);
4417 }
4418
4419 if (test_bit(R5_Wantfill, &dev->flags))
4420 s->to_fill++;
4421 else if (dev->toread)
4422 s->to_read++;
4423 if (dev->towrite) {
4424 s->to_write++;
4425 if (!test_bit(R5_OVERWRITE, &dev->flags))
4426 s->non_overwrite++;
4427 }
4428 if (dev->written)
4429 s->written++;
4430 /* Prefer to use the replacement for reads, but only
4431 * if it is recovered enough and has no bad blocks.
4432 */
4433 rdev = rcu_dereference(conf->disks[i].replacement);
4434 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4435 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4436 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4437 &first_bad, &bad_sectors))
4438 set_bit(R5_ReadRepl, &dev->flags);
4439 else {
4440 if (rdev && !test_bit(Faulty, &rdev->flags))
4441 set_bit(R5_NeedReplace, &dev->flags);
4442 else
4443 clear_bit(R5_NeedReplace, &dev->flags);
4444 rdev = rcu_dereference(conf->disks[i].rdev);
4445 clear_bit(R5_ReadRepl, &dev->flags);
4446 }
4447 if (rdev && test_bit(Faulty, &rdev->flags))
4448 rdev = NULL;
4449 if (rdev) {
4450 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4451 &first_bad, &bad_sectors);
4452 if (s->blocked_rdev == NULL
4453 && (test_bit(Blocked, &rdev->flags)
4454 || is_bad < 0)) {
4455 if (is_bad < 0)
4456 set_bit(BlockedBadBlocks,
4457 &rdev->flags);
4458 s->blocked_rdev = rdev;
4459 atomic_inc(&rdev->nr_pending);
4460 }
4461 }
4462 clear_bit(R5_Insync, &dev->flags);
4463 if (!rdev)
4464 /* Not in-sync */;
4465 else if (is_bad) {
4466 /* also not in-sync */
4467 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4468 test_bit(R5_UPTODATE, &dev->flags)) {
4469 /* treat as in-sync, but with a read error
4470 * which we can now try to correct
4471 */
4472 set_bit(R5_Insync, &dev->flags);
4473 set_bit(R5_ReadError, &dev->flags);
4474 }
4475 } else if (test_bit(In_sync, &rdev->flags))
4476 set_bit(R5_Insync, &dev->flags);
4477 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4478 /* in sync if before recovery_offset */
4479 set_bit(R5_Insync, &dev->flags);
4480 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4481 test_bit(R5_Expanded, &dev->flags))
4482 /* If we've reshaped into here, we assume it is Insync.
4483 * We will shortly update recovery_offset to make
4484 * it official.
4485 */
4486 set_bit(R5_Insync, &dev->flags);
4487
4488 if (test_bit(R5_WriteError, &dev->flags)) {
4489 /* This flag does not apply to '.replacement'
4490 * only to .rdev, so make sure to check that*/
4491 struct md_rdev *rdev2 = rcu_dereference(
4492 conf->disks[i].rdev);
4493 if (rdev2 == rdev)
4494 clear_bit(R5_Insync, &dev->flags);
4495 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4496 s->handle_bad_blocks = 1;
4497 atomic_inc(&rdev2->nr_pending);
4498 } else
4499 clear_bit(R5_WriteError, &dev->flags);
4500 }
4501 if (test_bit(R5_MadeGood, &dev->flags)) {
4502 /* This flag does not apply to '.replacement'
4503 * only to .rdev, so make sure to check that*/
4504 struct md_rdev *rdev2 = rcu_dereference(
4505 conf->disks[i].rdev);
4506 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4507 s->handle_bad_blocks = 1;
4508 atomic_inc(&rdev2->nr_pending);
4509 } else
4510 clear_bit(R5_MadeGood, &dev->flags);
4511 }
4512 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4513 struct md_rdev *rdev2 = rcu_dereference(
4514 conf->disks[i].replacement);
4515 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4516 s->handle_bad_blocks = 1;
4517 atomic_inc(&rdev2->nr_pending);
4518 } else
4519 clear_bit(R5_MadeGoodRepl, &dev->flags);
4520 }
4521 if (!test_bit(R5_Insync, &dev->flags)) {
4522 /* The ReadError flag will just be confusing now */
4523 clear_bit(R5_ReadError, &dev->flags);
4524 clear_bit(R5_ReWrite, &dev->flags);
4525 }
4526 if (test_bit(R5_ReadError, &dev->flags))
4527 clear_bit(R5_Insync, &dev->flags);
4528 if (!test_bit(R5_Insync, &dev->flags)) {
4529 if (s->failed < 2)
4530 s->failed_num[s->failed] = i;
4531 s->failed++;
4532 if (rdev && !test_bit(Faulty, &rdev->flags))
4533 do_recovery = 1;
4534 else if (!rdev) {
4535 rdev = rcu_dereference(
4536 conf->disks[i].replacement);
4537 if (rdev && !test_bit(Faulty, &rdev->flags))
4538 do_recovery = 1;
4539 }
4540 }
4541
4542 if (test_bit(R5_InJournal, &dev->flags))
4543 s->injournal++;
4544 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4545 s->just_cached++;
4546 }
4547 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4548 /* If there is a failed device being replaced,
4549 * we must be recovering.
4550 * else if we are after recovery_cp, we must be syncing
4551 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4552 * else we can only be replacing
4553 * sync and recovery both need to read all devices, and so
4554 * use the same flag.
4555 */
4556 if (do_recovery ||
4557 sh->sector >= conf->mddev->recovery_cp ||
4558 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4559 s->syncing = 1;
4560 else
4561 s->replacing = 1;
4562 }
4563 rcu_read_unlock();
4564 }
4565
4566 static int clear_batch_ready(struct stripe_head *sh)
4567 {
4568 /* Return '1' if this is a member of batch, or
4569 * '0' if it is a lone stripe or a head which can now be
4570 * handled.
4571 */
4572 struct stripe_head *tmp;
4573 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4574 return (sh->batch_head && sh->batch_head != sh);
4575 spin_lock(&sh->stripe_lock);
4576 if (!sh->batch_head) {
4577 spin_unlock(&sh->stripe_lock);
4578 return 0;
4579 }
4580
4581 /*
4582 * this stripe could be added to a batch list before we check
4583 * BATCH_READY, skips it
4584 */
4585 if (sh->batch_head != sh) {
4586 spin_unlock(&sh->stripe_lock);
4587 return 1;
4588 }
4589 spin_lock(&sh->batch_lock);
4590 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4591 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4592 spin_unlock(&sh->batch_lock);
4593 spin_unlock(&sh->stripe_lock);
4594
4595 /*
4596 * BATCH_READY is cleared, no new stripes can be added.
4597 * batch_list can be accessed without lock
4598 */
4599 return 0;
4600 }
4601
4602 static void break_stripe_batch_list(struct stripe_head *head_sh,
4603 unsigned long handle_flags)
4604 {
4605 struct stripe_head *sh, *next;
4606 int i;
4607 int do_wakeup = 0;
4608
4609 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4610
4611 list_del_init(&sh->batch_list);
4612
4613 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4614 (1 << STRIPE_SYNCING) |
4615 (1 << STRIPE_REPLACED) |
4616 (1 << STRIPE_DELAYED) |
4617 (1 << STRIPE_BIT_DELAY) |
4618 (1 << STRIPE_FULL_WRITE) |
4619 (1 << STRIPE_BIOFILL_RUN) |
4620 (1 << STRIPE_COMPUTE_RUN) |
4621 (1 << STRIPE_OPS_REQ_PENDING) |
4622 (1 << STRIPE_DISCARD) |
4623 (1 << STRIPE_BATCH_READY) |
4624 (1 << STRIPE_BATCH_ERR) |
4625 (1 << STRIPE_BITMAP_PENDING)),
4626 "stripe state: %lx\n", sh->state);
4627 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4628 (1 << STRIPE_REPLACED)),
4629 "head stripe state: %lx\n", head_sh->state);
4630
4631 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4632 (1 << STRIPE_PREREAD_ACTIVE) |
4633 (1 << STRIPE_DEGRADED) |
4634 (1 << STRIPE_ON_UNPLUG_LIST)),
4635 head_sh->state & (1 << STRIPE_INSYNC));
4636
4637 sh->check_state = head_sh->check_state;
4638 sh->reconstruct_state = head_sh->reconstruct_state;
4639 spin_lock_irq(&sh->stripe_lock);
4640 sh->batch_head = NULL;
4641 spin_unlock_irq(&sh->stripe_lock);
4642 for (i = 0; i < sh->disks; i++) {
4643 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4644 do_wakeup = 1;
4645 sh->dev[i].flags = head_sh->dev[i].flags &
4646 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4647 }
4648 if (handle_flags == 0 ||
4649 sh->state & handle_flags)
4650 set_bit(STRIPE_HANDLE, &sh->state);
4651 raid5_release_stripe(sh);
4652 }
4653 spin_lock_irq(&head_sh->stripe_lock);
4654 head_sh->batch_head = NULL;
4655 spin_unlock_irq(&head_sh->stripe_lock);
4656 for (i = 0; i < head_sh->disks; i++)
4657 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4658 do_wakeup = 1;
4659 if (head_sh->state & handle_flags)
4660 set_bit(STRIPE_HANDLE, &head_sh->state);
4661
4662 if (do_wakeup)
4663 wake_up(&head_sh->raid_conf->wait_for_overlap);
4664 }
4665
4666 static void handle_stripe(struct stripe_head *sh)
4667 {
4668 struct stripe_head_state s;
4669 struct r5conf *conf = sh->raid_conf;
4670 int i;
4671 int prexor;
4672 int disks = sh->disks;
4673 struct r5dev *pdev, *qdev;
4674
4675 clear_bit(STRIPE_HANDLE, &sh->state);
4676 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4677 /* already being handled, ensure it gets handled
4678 * again when current action finishes */
4679 set_bit(STRIPE_HANDLE, &sh->state);
4680 return;
4681 }
4682
4683 if (clear_batch_ready(sh) ) {
4684 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4685 return;
4686 }
4687
4688 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4689 break_stripe_batch_list(sh, 0);
4690
4691 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4692 spin_lock(&sh->stripe_lock);
4693 /*
4694 * Cannot process 'sync' concurrently with 'discard'.
4695 * Flush data in r5cache before 'sync'.
4696 */
4697 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4698 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4699 !test_bit(STRIPE_DISCARD, &sh->state) &&
4700 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4701 set_bit(STRIPE_SYNCING, &sh->state);
4702 clear_bit(STRIPE_INSYNC, &sh->state);
4703 clear_bit(STRIPE_REPLACED, &sh->state);
4704 }
4705 spin_unlock(&sh->stripe_lock);
4706 }
4707 clear_bit(STRIPE_DELAYED, &sh->state);
4708
4709 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4710 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4711 (unsigned long long)sh->sector, sh->state,
4712 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4713 sh->check_state, sh->reconstruct_state);
4714
4715 analyse_stripe(sh, &s);
4716
4717 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4718 goto finish;
4719
4720 if (s.handle_bad_blocks ||
4721 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4722 set_bit(STRIPE_HANDLE, &sh->state);
4723 goto finish;
4724 }
4725
4726 if (unlikely(s.blocked_rdev)) {
4727 if (s.syncing || s.expanding || s.expanded ||
4728 s.replacing || s.to_write || s.written) {
4729 set_bit(STRIPE_HANDLE, &sh->state);
4730 goto finish;
4731 }
4732 /* There is nothing for the blocked_rdev to block */
4733 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4734 s.blocked_rdev = NULL;
4735 }
4736
4737 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4738 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4739 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4740 }
4741
4742 pr_debug("locked=%d uptodate=%d to_read=%d"
4743 " to_write=%d failed=%d failed_num=%d,%d\n",
4744 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4745 s.failed_num[0], s.failed_num[1]);
4746 /*
4747 * check if the array has lost more than max_degraded devices and,
4748 * if so, some requests might need to be failed.
4749 *
4750 * When journal device failed (log_failed), we will only process
4751 * the stripe if there is data need write to raid disks
4752 */
4753 if (s.failed > conf->max_degraded ||
4754 (s.log_failed && s.injournal == 0)) {
4755 sh->check_state = 0;
4756 sh->reconstruct_state = 0;
4757 break_stripe_batch_list(sh, 0);
4758 if (s.to_read+s.to_write+s.written)
4759 handle_failed_stripe(conf, sh, &s, disks);
4760 if (s.syncing + s.replacing)
4761 handle_failed_sync(conf, sh, &s);
4762 }
4763
4764 /* Now we check to see if any write operations have recently
4765 * completed
4766 */
4767 prexor = 0;
4768 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4769 prexor = 1;
4770 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4771 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4772 sh->reconstruct_state = reconstruct_state_idle;
4773
4774 /* All the 'written' buffers and the parity block are ready to
4775 * be written back to disk
4776 */
4777 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4778 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4779 BUG_ON(sh->qd_idx >= 0 &&
4780 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4781 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4782 for (i = disks; i--; ) {
4783 struct r5dev *dev = &sh->dev[i];
4784 if (test_bit(R5_LOCKED, &dev->flags) &&
4785 (i == sh->pd_idx || i == sh->qd_idx ||
4786 dev->written || test_bit(R5_InJournal,
4787 &dev->flags))) {
4788 pr_debug("Writing block %d\n", i);
4789 set_bit(R5_Wantwrite, &dev->flags);
4790 if (prexor)
4791 continue;
4792 if (s.failed > 1)
4793 continue;
4794 if (!test_bit(R5_Insync, &dev->flags) ||
4795 ((i == sh->pd_idx || i == sh->qd_idx) &&
4796 s.failed == 0))
4797 set_bit(STRIPE_INSYNC, &sh->state);
4798 }
4799 }
4800 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4801 s.dec_preread_active = 1;
4802 }
4803
4804 /*
4805 * might be able to return some write requests if the parity blocks
4806 * are safe, or on a failed drive
4807 */
4808 pdev = &sh->dev[sh->pd_idx];
4809 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4810 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4811 qdev = &sh->dev[sh->qd_idx];
4812 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4813 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4814 || conf->level < 6;
4815
4816 if (s.written &&
4817 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4818 && !test_bit(R5_LOCKED, &pdev->flags)
4819 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4820 test_bit(R5_Discard, &pdev->flags))))) &&
4821 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4822 && !test_bit(R5_LOCKED, &qdev->flags)
4823 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4824 test_bit(R5_Discard, &qdev->flags))))))
4825 handle_stripe_clean_event(conf, sh, disks);
4826
4827 if (s.just_cached)
4828 r5c_handle_cached_data_endio(conf, sh, disks);
4829 log_stripe_write_finished(sh);
4830
4831 /* Now we might consider reading some blocks, either to check/generate
4832 * parity, or to satisfy requests
4833 * or to load a block that is being partially written.
4834 */
4835 if (s.to_read || s.non_overwrite
4836 || (conf->level == 6 && s.to_write && s.failed)
4837 || (s.syncing && (s.uptodate + s.compute < disks))
4838 || s.replacing
4839 || s.expanding)
4840 handle_stripe_fill(sh, &s, disks);
4841
4842 /*
4843 * When the stripe finishes full journal write cycle (write to journal
4844 * and raid disk), this is the clean up procedure so it is ready for
4845 * next operation.
4846 */
4847 r5c_finish_stripe_write_out(conf, sh, &s);
4848
4849 /*
4850 * Now to consider new write requests, cache write back and what else,
4851 * if anything should be read. We do not handle new writes when:
4852 * 1/ A 'write' operation (copy+xor) is already in flight.
4853 * 2/ A 'check' operation is in flight, as it may clobber the parity
4854 * block.
4855 * 3/ A r5c cache log write is in flight.
4856 */
4857
4858 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4859 if (!r5c_is_writeback(conf->log)) {
4860 if (s.to_write)
4861 handle_stripe_dirtying(conf, sh, &s, disks);
4862 } else { /* write back cache */
4863 int ret = 0;
4864
4865 /* First, try handle writes in caching phase */
4866 if (s.to_write)
4867 ret = r5c_try_caching_write(conf, sh, &s,
4868 disks);
4869 /*
4870 * If caching phase failed: ret == -EAGAIN
4871 * OR
4872 * stripe under reclaim: !caching && injournal
4873 *
4874 * fall back to handle_stripe_dirtying()
4875 */
4876 if (ret == -EAGAIN ||
4877 /* stripe under reclaim: !caching && injournal */
4878 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4879 s.injournal > 0)) {
4880 ret = handle_stripe_dirtying(conf, sh, &s,
4881 disks);
4882 if (ret == -EAGAIN)
4883 goto finish;
4884 }
4885 }
4886 }
4887
4888 /* maybe we need to check and possibly fix the parity for this stripe
4889 * Any reads will already have been scheduled, so we just see if enough
4890 * data is available. The parity check is held off while parity
4891 * dependent operations are in flight.
4892 */
4893 if (sh->check_state ||
4894 (s.syncing && s.locked == 0 &&
4895 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4896 !test_bit(STRIPE_INSYNC, &sh->state))) {
4897 if (conf->level == 6)
4898 handle_parity_checks6(conf, sh, &s, disks);
4899 else
4900 handle_parity_checks5(conf, sh, &s, disks);
4901 }
4902
4903 if ((s.replacing || s.syncing) && s.locked == 0
4904 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4905 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4906 /* Write out to replacement devices where possible */
4907 for (i = 0; i < conf->raid_disks; i++)
4908 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4909 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4910 set_bit(R5_WantReplace, &sh->dev[i].flags);
4911 set_bit(R5_LOCKED, &sh->dev[i].flags);
4912 s.locked++;
4913 }
4914 if (s.replacing)
4915 set_bit(STRIPE_INSYNC, &sh->state);
4916 set_bit(STRIPE_REPLACED, &sh->state);
4917 }
4918 if ((s.syncing || s.replacing) && s.locked == 0 &&
4919 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4920 test_bit(STRIPE_INSYNC, &sh->state)) {
4921 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4922 clear_bit(STRIPE_SYNCING, &sh->state);
4923 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4924 wake_up(&conf->wait_for_overlap);
4925 }
4926
4927 /* If the failed drives are just a ReadError, then we might need
4928 * to progress the repair/check process
4929 */
4930 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4931 for (i = 0; i < s.failed; i++) {
4932 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4933 if (test_bit(R5_ReadError, &dev->flags)
4934 && !test_bit(R5_LOCKED, &dev->flags)
4935 && test_bit(R5_UPTODATE, &dev->flags)
4936 ) {
4937 if (!test_bit(R5_ReWrite, &dev->flags)) {
4938 set_bit(R5_Wantwrite, &dev->flags);
4939 set_bit(R5_ReWrite, &dev->flags);
4940 set_bit(R5_LOCKED, &dev->flags);
4941 s.locked++;
4942 } else {
4943 /* let's read it back */
4944 set_bit(R5_Wantread, &dev->flags);
4945 set_bit(R5_LOCKED, &dev->flags);
4946 s.locked++;
4947 }
4948 }
4949 }
4950
4951 /* Finish reconstruct operations initiated by the expansion process */
4952 if (sh->reconstruct_state == reconstruct_state_result) {
4953 struct stripe_head *sh_src
4954 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4955 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4956 /* sh cannot be written until sh_src has been read.
4957 * so arrange for sh to be delayed a little
4958 */
4959 set_bit(STRIPE_DELAYED, &sh->state);
4960 set_bit(STRIPE_HANDLE, &sh->state);
4961 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4962 &sh_src->state))
4963 atomic_inc(&conf->preread_active_stripes);
4964 raid5_release_stripe(sh_src);
4965 goto finish;
4966 }
4967 if (sh_src)
4968 raid5_release_stripe(sh_src);
4969
4970 sh->reconstruct_state = reconstruct_state_idle;
4971 clear_bit(STRIPE_EXPANDING, &sh->state);
4972 for (i = conf->raid_disks; i--; ) {
4973 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4974 set_bit(R5_LOCKED, &sh->dev[i].flags);
4975 s.locked++;
4976 }
4977 }
4978
4979 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4980 !sh->reconstruct_state) {
4981 /* Need to write out all blocks after computing parity */
4982 sh->disks = conf->raid_disks;
4983 stripe_set_idx(sh->sector, conf, 0, sh);
4984 schedule_reconstruction(sh, &s, 1, 1);
4985 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4986 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4987 atomic_dec(&conf->reshape_stripes);
4988 wake_up(&conf->wait_for_overlap);
4989 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4990 }
4991
4992 if (s.expanding && s.locked == 0 &&
4993 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4994 handle_stripe_expansion(conf, sh);
4995
4996 finish:
4997 /* wait for this device to become unblocked */
4998 if (unlikely(s.blocked_rdev)) {
4999 if (conf->mddev->external)
5000 md_wait_for_blocked_rdev(s.blocked_rdev,
5001 conf->mddev);
5002 else
5003 /* Internal metadata will immediately
5004 * be written by raid5d, so we don't
5005 * need to wait here.
5006 */
5007 rdev_dec_pending(s.blocked_rdev,
5008 conf->mddev);
5009 }
5010
5011 if (s.handle_bad_blocks)
5012 for (i = disks; i--; ) {
5013 struct md_rdev *rdev;
5014 struct r5dev *dev = &sh->dev[i];
5015 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5016 /* We own a safe reference to the rdev */
5017 rdev = conf->disks[i].rdev;
5018 if (!rdev_set_badblocks(rdev, sh->sector,
5019 STRIPE_SECTORS, 0))
5020 md_error(conf->mddev, rdev);
5021 rdev_dec_pending(rdev, conf->mddev);
5022 }
5023 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5024 rdev = conf->disks[i].rdev;
5025 rdev_clear_badblocks(rdev, sh->sector,
5026 STRIPE_SECTORS, 0);
5027 rdev_dec_pending(rdev, conf->mddev);
5028 }
5029 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5030 rdev = conf->disks[i].replacement;
5031 if (!rdev)
5032 /* rdev have been moved down */
5033 rdev = conf->disks[i].rdev;
5034 rdev_clear_badblocks(rdev, sh->sector,
5035 STRIPE_SECTORS, 0);
5036 rdev_dec_pending(rdev, conf->mddev);
5037 }
5038 }
5039
5040 if (s.ops_request)
5041 raid_run_ops(sh, s.ops_request);
5042
5043 ops_run_io(sh, &s);
5044
5045 if (s.dec_preread_active) {
5046 /* We delay this until after ops_run_io so that if make_request
5047 * is waiting on a flush, it won't continue until the writes
5048 * have actually been submitted.
5049 */
5050 atomic_dec(&conf->preread_active_stripes);
5051 if (atomic_read(&conf->preread_active_stripes) <
5052 IO_THRESHOLD)
5053 md_wakeup_thread(conf->mddev->thread);
5054 }
5055
5056 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5057 }
5058
5059 static void raid5_activate_delayed(struct r5conf *conf)
5060 {
5061 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5062 while (!list_empty(&conf->delayed_list)) {
5063 struct list_head *l = conf->delayed_list.next;
5064 struct stripe_head *sh;
5065 sh = list_entry(l, struct stripe_head, lru);
5066 list_del_init(l);
5067 clear_bit(STRIPE_DELAYED, &sh->state);
5068 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5069 atomic_inc(&conf->preread_active_stripes);
5070 list_add_tail(&sh->lru, &conf->hold_list);
5071 raid5_wakeup_stripe_thread(sh);
5072 }
5073 }
5074 }
5075
5076 static void activate_bit_delay(struct r5conf *conf,
5077 struct list_head *temp_inactive_list)
5078 {
5079 /* device_lock is held */
5080 struct list_head head;
5081 list_add(&head, &conf->bitmap_list);
5082 list_del_init(&conf->bitmap_list);
5083 while (!list_empty(&head)) {
5084 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5085 int hash;
5086 list_del_init(&sh->lru);
5087 atomic_inc(&sh->count);
5088 hash = sh->hash_lock_index;
5089 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5090 }
5091 }
5092
5093 static int raid5_congested(struct mddev *mddev, int bits)
5094 {
5095 struct r5conf *conf = mddev->private;
5096
5097 /* No difference between reads and writes. Just check
5098 * how busy the stripe_cache is
5099 */
5100
5101 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5102 return 1;
5103
5104 /* Also checks whether there is pressure on r5cache log space */
5105 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5106 return 1;
5107 if (conf->quiesce)
5108 return 1;
5109 if (atomic_read(&conf->empty_inactive_list_nr))
5110 return 1;
5111
5112 return 0;
5113 }
5114
5115 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5116 {
5117 struct r5conf *conf = mddev->private;
5118 sector_t sector = bio->bi_iter.bi_sector;
5119 unsigned int chunk_sectors;
5120 unsigned int bio_sectors = bio_sectors(bio);
5121
5122 WARN_ON_ONCE(bio->bi_partno);
5123
5124 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5125 return chunk_sectors >=
5126 ((sector & (chunk_sectors - 1)) + bio_sectors);
5127 }
5128
5129 /*
5130 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5131 * later sampled by raid5d.
5132 */
5133 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5134 {
5135 unsigned long flags;
5136
5137 spin_lock_irqsave(&conf->device_lock, flags);
5138
5139 bi->bi_next = conf->retry_read_aligned_list;
5140 conf->retry_read_aligned_list = bi;
5141
5142 spin_unlock_irqrestore(&conf->device_lock, flags);
5143 md_wakeup_thread(conf->mddev->thread);
5144 }
5145
5146 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5147 unsigned int *offset)
5148 {
5149 struct bio *bi;
5150
5151 bi = conf->retry_read_aligned;
5152 if (bi) {
5153 *offset = conf->retry_read_offset;
5154 conf->retry_read_aligned = NULL;
5155 return bi;
5156 }
5157 bi = conf->retry_read_aligned_list;
5158 if(bi) {
5159 conf->retry_read_aligned_list = bi->bi_next;
5160 bi->bi_next = NULL;
5161 *offset = 0;
5162 }
5163
5164 return bi;
5165 }
5166
5167 /*
5168 * The "raid5_align_endio" should check if the read succeeded and if it
5169 * did, call bio_endio on the original bio (having bio_put the new bio
5170 * first).
5171 * If the read failed..
5172 */
5173 static void raid5_align_endio(struct bio *bi)
5174 {
5175 struct bio* raid_bi = bi->bi_private;
5176 struct mddev *mddev;
5177 struct r5conf *conf;
5178 struct md_rdev *rdev;
5179 blk_status_t error = bi->bi_status;
5180
5181 bio_put(bi);
5182
5183 rdev = (void*)raid_bi->bi_next;
5184 raid_bi->bi_next = NULL;
5185 mddev = rdev->mddev;
5186 conf = mddev->private;
5187
5188 rdev_dec_pending(rdev, conf->mddev);
5189
5190 if (!error) {
5191 bio_endio(raid_bi);
5192 if (atomic_dec_and_test(&conf->active_aligned_reads))
5193 wake_up(&conf->wait_for_quiescent);
5194 return;
5195 }
5196
5197 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5198
5199 add_bio_to_retry(raid_bi, conf);
5200 }
5201
5202 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5203 {
5204 struct r5conf *conf = mddev->private;
5205 int dd_idx;
5206 struct bio* align_bi;
5207 struct md_rdev *rdev;
5208 sector_t end_sector;
5209
5210 if (!in_chunk_boundary(mddev, raid_bio)) {
5211 pr_debug("%s: non aligned\n", __func__);
5212 return 0;
5213 }
5214 /*
5215 * use bio_clone_fast to make a copy of the bio
5216 */
5217 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5218 if (!align_bi)
5219 return 0;
5220 /*
5221 * set bi_end_io to a new function, and set bi_private to the
5222 * original bio.
5223 */
5224 align_bi->bi_end_io = raid5_align_endio;
5225 align_bi->bi_private = raid_bio;
5226 /*
5227 * compute position
5228 */
5229 align_bi->bi_iter.bi_sector =
5230 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5231 0, &dd_idx, NULL);
5232
5233 end_sector = bio_end_sector(align_bi);
5234 rcu_read_lock();
5235 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5236 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5237 rdev->recovery_offset < end_sector) {
5238 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5239 if (rdev &&
5240 (test_bit(Faulty, &rdev->flags) ||
5241 !(test_bit(In_sync, &rdev->flags) ||
5242 rdev->recovery_offset >= end_sector)))
5243 rdev = NULL;
5244 }
5245
5246 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5247 rcu_read_unlock();
5248 bio_put(align_bi);
5249 return 0;
5250 }
5251
5252 if (rdev) {
5253 sector_t first_bad;
5254 int bad_sectors;
5255
5256 atomic_inc(&rdev->nr_pending);
5257 rcu_read_unlock();
5258 raid_bio->bi_next = (void*)rdev;
5259 bio_set_dev(align_bi, rdev->bdev);
5260 bio_clear_flag(align_bi, BIO_SEG_VALID);
5261
5262 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5263 bio_sectors(align_bi),
5264 &first_bad, &bad_sectors)) {
5265 bio_put(align_bi);
5266 rdev_dec_pending(rdev, mddev);
5267 return 0;
5268 }
5269
5270 /* No reshape active, so we can trust rdev->data_offset */
5271 align_bi->bi_iter.bi_sector += rdev->data_offset;
5272
5273 spin_lock_irq(&conf->device_lock);
5274 wait_event_lock_irq(conf->wait_for_quiescent,
5275 conf->quiesce == 0,
5276 conf->device_lock);
5277 atomic_inc(&conf->active_aligned_reads);
5278 spin_unlock_irq(&conf->device_lock);
5279
5280 if (mddev->gendisk)
5281 trace_block_bio_remap(align_bi->bi_disk->queue,
5282 align_bi, disk_devt(mddev->gendisk),
5283 raid_bio->bi_iter.bi_sector);
5284 generic_make_request(align_bi);
5285 return 1;
5286 } else {
5287 rcu_read_unlock();
5288 bio_put(align_bi);
5289 return 0;
5290 }
5291 }
5292
5293 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5294 {
5295 struct bio *split;
5296 sector_t sector = raid_bio->bi_iter.bi_sector;
5297 unsigned chunk_sects = mddev->chunk_sectors;
5298 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5299
5300 if (sectors < bio_sectors(raid_bio)) {
5301 struct r5conf *conf = mddev->private;
5302 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5303 bio_chain(split, raid_bio);
5304 generic_make_request(raid_bio);
5305 raid_bio = split;
5306 }
5307
5308 if (!raid5_read_one_chunk(mddev, raid_bio))
5309 return raid_bio;
5310
5311 return NULL;
5312 }
5313
5314 /* __get_priority_stripe - get the next stripe to process
5315 *
5316 * Full stripe writes are allowed to pass preread active stripes up until
5317 * the bypass_threshold is exceeded. In general the bypass_count
5318 * increments when the handle_list is handled before the hold_list; however, it
5319 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5320 * stripe with in flight i/o. The bypass_count will be reset when the
5321 * head of the hold_list has changed, i.e. the head was promoted to the
5322 * handle_list.
5323 */
5324 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5325 {
5326 struct stripe_head *sh, *tmp;
5327 struct list_head *handle_list = NULL;
5328 struct r5worker_group *wg;
5329 bool second_try = !r5c_is_writeback(conf->log) &&
5330 !r5l_log_disk_error(conf);
5331 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5332 r5l_log_disk_error(conf);
5333
5334 again:
5335 wg = NULL;
5336 sh = NULL;
5337 if (conf->worker_cnt_per_group == 0) {
5338 handle_list = try_loprio ? &conf->loprio_list :
5339 &conf->handle_list;
5340 } else if (group != ANY_GROUP) {
5341 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5342 &conf->worker_groups[group].handle_list;
5343 wg = &conf->worker_groups[group];
5344 } else {
5345 int i;
5346 for (i = 0; i < conf->group_cnt; i++) {
5347 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5348 &conf->worker_groups[i].handle_list;
5349 wg = &conf->worker_groups[i];
5350 if (!list_empty(handle_list))
5351 break;
5352 }
5353 }
5354
5355 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5356 __func__,
5357 list_empty(handle_list) ? "empty" : "busy",
5358 list_empty(&conf->hold_list) ? "empty" : "busy",
5359 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5360
5361 if (!list_empty(handle_list)) {
5362 sh = list_entry(handle_list->next, typeof(*sh), lru);
5363
5364 if (list_empty(&conf->hold_list))
5365 conf->bypass_count = 0;
5366 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5367 if (conf->hold_list.next == conf->last_hold)
5368 conf->bypass_count++;
5369 else {
5370 conf->last_hold = conf->hold_list.next;
5371 conf->bypass_count -= conf->bypass_threshold;
5372 if (conf->bypass_count < 0)
5373 conf->bypass_count = 0;
5374 }
5375 }
5376 } else if (!list_empty(&conf->hold_list) &&
5377 ((conf->bypass_threshold &&
5378 conf->bypass_count > conf->bypass_threshold) ||
5379 atomic_read(&conf->pending_full_writes) == 0)) {
5380
5381 list_for_each_entry(tmp, &conf->hold_list, lru) {
5382 if (conf->worker_cnt_per_group == 0 ||
5383 group == ANY_GROUP ||
5384 !cpu_online(tmp->cpu) ||
5385 cpu_to_group(tmp->cpu) == group) {
5386 sh = tmp;
5387 break;
5388 }
5389 }
5390
5391 if (sh) {
5392 conf->bypass_count -= conf->bypass_threshold;
5393 if (conf->bypass_count < 0)
5394 conf->bypass_count = 0;
5395 }
5396 wg = NULL;
5397 }
5398
5399 if (!sh) {
5400 if (second_try)
5401 return NULL;
5402 second_try = true;
5403 try_loprio = !try_loprio;
5404 goto again;
5405 }
5406
5407 if (wg) {
5408 wg->stripes_cnt--;
5409 sh->group = NULL;
5410 }
5411 list_del_init(&sh->lru);
5412 BUG_ON(atomic_inc_return(&sh->count) != 1);
5413 return sh;
5414 }
5415
5416 struct raid5_plug_cb {
5417 struct blk_plug_cb cb;
5418 struct list_head list;
5419 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5420 };
5421
5422 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5423 {
5424 struct raid5_plug_cb *cb = container_of(
5425 blk_cb, struct raid5_plug_cb, cb);
5426 struct stripe_head *sh;
5427 struct mddev *mddev = cb->cb.data;
5428 struct r5conf *conf = mddev->private;
5429 int cnt = 0;
5430 int hash;
5431
5432 if (cb->list.next && !list_empty(&cb->list)) {
5433 spin_lock_irq(&conf->device_lock);
5434 while (!list_empty(&cb->list)) {
5435 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5436 list_del_init(&sh->lru);
5437 /*
5438 * avoid race release_stripe_plug() sees
5439 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5440 * is still in our list
5441 */
5442 smp_mb__before_atomic();
5443 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5444 /*
5445 * STRIPE_ON_RELEASE_LIST could be set here. In that
5446 * case, the count is always > 1 here
5447 */
5448 hash = sh->hash_lock_index;
5449 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5450 cnt++;
5451 }
5452 spin_unlock_irq(&conf->device_lock);
5453 }
5454 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5455 NR_STRIPE_HASH_LOCKS);
5456 if (mddev->queue)
5457 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5458 kfree(cb);
5459 }
5460
5461 static void release_stripe_plug(struct mddev *mddev,
5462 struct stripe_head *sh)
5463 {
5464 struct blk_plug_cb *blk_cb = blk_check_plugged(
5465 raid5_unplug, mddev,
5466 sizeof(struct raid5_plug_cb));
5467 struct raid5_plug_cb *cb;
5468
5469 if (!blk_cb) {
5470 raid5_release_stripe(sh);
5471 return;
5472 }
5473
5474 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5475
5476 if (cb->list.next == NULL) {
5477 int i;
5478 INIT_LIST_HEAD(&cb->list);
5479 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5480 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5481 }
5482
5483 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5484 list_add_tail(&sh->lru, &cb->list);
5485 else
5486 raid5_release_stripe(sh);
5487 }
5488
5489 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5490 {
5491 struct r5conf *conf = mddev->private;
5492 sector_t logical_sector, last_sector;
5493 struct stripe_head *sh;
5494 int stripe_sectors;
5495
5496 if (mddev->reshape_position != MaxSector)
5497 /* Skip discard while reshape is happening */
5498 return;
5499
5500 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5501 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5502
5503 bi->bi_next = NULL;
5504
5505 stripe_sectors = conf->chunk_sectors *
5506 (conf->raid_disks - conf->max_degraded);
5507 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5508 stripe_sectors);
5509 sector_div(last_sector, stripe_sectors);
5510
5511 logical_sector *= conf->chunk_sectors;
5512 last_sector *= conf->chunk_sectors;
5513
5514 for (; logical_sector < last_sector;
5515 logical_sector += STRIPE_SECTORS) {
5516 DEFINE_WAIT(w);
5517 int d;
5518 again:
5519 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5520 prepare_to_wait(&conf->wait_for_overlap, &w,
5521 TASK_UNINTERRUPTIBLE);
5522 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5523 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5524 raid5_release_stripe(sh);
5525 schedule();
5526 goto again;
5527 }
5528 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5529 spin_lock_irq(&sh->stripe_lock);
5530 for (d = 0; d < conf->raid_disks; d++) {
5531 if (d == sh->pd_idx || d == sh->qd_idx)
5532 continue;
5533 if (sh->dev[d].towrite || sh->dev[d].toread) {
5534 set_bit(R5_Overlap, &sh->dev[d].flags);
5535 spin_unlock_irq(&sh->stripe_lock);
5536 raid5_release_stripe(sh);
5537 schedule();
5538 goto again;
5539 }
5540 }
5541 set_bit(STRIPE_DISCARD, &sh->state);
5542 finish_wait(&conf->wait_for_overlap, &w);
5543 sh->overwrite_disks = 0;
5544 for (d = 0; d < conf->raid_disks; d++) {
5545 if (d == sh->pd_idx || d == sh->qd_idx)
5546 continue;
5547 sh->dev[d].towrite = bi;
5548 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5549 bio_inc_remaining(bi);
5550 md_write_inc(mddev, bi);
5551 sh->overwrite_disks++;
5552 }
5553 spin_unlock_irq(&sh->stripe_lock);
5554 if (conf->mddev->bitmap) {
5555 for (d = 0;
5556 d < conf->raid_disks - conf->max_degraded;
5557 d++)
5558 md_bitmap_startwrite(mddev->bitmap,
5559 sh->sector,
5560 STRIPE_SECTORS,
5561 0);
5562 sh->bm_seq = conf->seq_flush + 1;
5563 set_bit(STRIPE_BIT_DELAY, &sh->state);
5564 }
5565
5566 set_bit(STRIPE_HANDLE, &sh->state);
5567 clear_bit(STRIPE_DELAYED, &sh->state);
5568 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5569 atomic_inc(&conf->preread_active_stripes);
5570 release_stripe_plug(mddev, sh);
5571 }
5572
5573 bio_endio(bi);
5574 }
5575
5576 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5577 {
5578 struct r5conf *conf = mddev->private;
5579 int dd_idx;
5580 sector_t new_sector;
5581 sector_t logical_sector, last_sector;
5582 struct stripe_head *sh;
5583 const int rw = bio_data_dir(bi);
5584 DEFINE_WAIT(w);
5585 bool do_prepare;
5586 bool do_flush = false;
5587
5588 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5589 int ret = log_handle_flush_request(conf, bi);
5590
5591 if (ret == 0)
5592 return true;
5593 if (ret == -ENODEV) {
5594 md_flush_request(mddev, bi);
5595 return true;
5596 }
5597 /* ret == -EAGAIN, fallback */
5598 /*
5599 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5600 * we need to flush journal device
5601 */
5602 do_flush = bi->bi_opf & REQ_PREFLUSH;
5603 }
5604
5605 if (!md_write_start(mddev, bi))
5606 return false;
5607 /*
5608 * If array is degraded, better not do chunk aligned read because
5609 * later we might have to read it again in order to reconstruct
5610 * data on failed drives.
5611 */
5612 if (rw == READ && mddev->degraded == 0 &&
5613 mddev->reshape_position == MaxSector) {
5614 bi = chunk_aligned_read(mddev, bi);
5615 if (!bi)
5616 return true;
5617 }
5618
5619 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5620 make_discard_request(mddev, bi);
5621 md_write_end(mddev);
5622 return true;
5623 }
5624
5625 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5626 last_sector = bio_end_sector(bi);
5627 bi->bi_next = NULL;
5628
5629 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5630 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5631 int previous;
5632 int seq;
5633
5634 do_prepare = false;
5635 retry:
5636 seq = read_seqcount_begin(&conf->gen_lock);
5637 previous = 0;
5638 if (do_prepare)
5639 prepare_to_wait(&conf->wait_for_overlap, &w,
5640 TASK_UNINTERRUPTIBLE);
5641 if (unlikely(conf->reshape_progress != MaxSector)) {
5642 /* spinlock is needed as reshape_progress may be
5643 * 64bit on a 32bit platform, and so it might be
5644 * possible to see a half-updated value
5645 * Of course reshape_progress could change after
5646 * the lock is dropped, so once we get a reference
5647 * to the stripe that we think it is, we will have
5648 * to check again.
5649 */
5650 spin_lock_irq(&conf->device_lock);
5651 if (mddev->reshape_backwards
5652 ? logical_sector < conf->reshape_progress
5653 : logical_sector >= conf->reshape_progress) {
5654 previous = 1;
5655 } else {
5656 if (mddev->reshape_backwards
5657 ? logical_sector < conf->reshape_safe
5658 : logical_sector >= conf->reshape_safe) {
5659 spin_unlock_irq(&conf->device_lock);
5660 schedule();
5661 do_prepare = true;
5662 goto retry;
5663 }
5664 }
5665 spin_unlock_irq(&conf->device_lock);
5666 }
5667
5668 new_sector = raid5_compute_sector(conf, logical_sector,
5669 previous,
5670 &dd_idx, NULL);
5671 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5672 (unsigned long long)new_sector,
5673 (unsigned long long)logical_sector);
5674
5675 sh = raid5_get_active_stripe(conf, new_sector, previous,
5676 (bi->bi_opf & REQ_RAHEAD), 0);
5677 if (sh) {
5678 if (unlikely(previous)) {
5679 /* expansion might have moved on while waiting for a
5680 * stripe, so we must do the range check again.
5681 * Expansion could still move past after this
5682 * test, but as we are holding a reference to
5683 * 'sh', we know that if that happens,
5684 * STRIPE_EXPANDING will get set and the expansion
5685 * won't proceed until we finish with the stripe.
5686 */
5687 int must_retry = 0;
5688 spin_lock_irq(&conf->device_lock);
5689 if (mddev->reshape_backwards
5690 ? logical_sector >= conf->reshape_progress
5691 : logical_sector < conf->reshape_progress)
5692 /* mismatch, need to try again */
5693 must_retry = 1;
5694 spin_unlock_irq(&conf->device_lock);
5695 if (must_retry) {
5696 raid5_release_stripe(sh);
5697 schedule();
5698 do_prepare = true;
5699 goto retry;
5700 }
5701 }
5702 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5703 /* Might have got the wrong stripe_head
5704 * by accident
5705 */
5706 raid5_release_stripe(sh);
5707 goto retry;
5708 }
5709
5710 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5711 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5712 /* Stripe is busy expanding or
5713 * add failed due to overlap. Flush everything
5714 * and wait a while
5715 */
5716 md_wakeup_thread(mddev->thread);
5717 raid5_release_stripe(sh);
5718 schedule();
5719 do_prepare = true;
5720 goto retry;
5721 }
5722 if (do_flush) {
5723 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5724 /* we only need flush for one stripe */
5725 do_flush = false;
5726 }
5727
5728 set_bit(STRIPE_HANDLE, &sh->state);
5729 clear_bit(STRIPE_DELAYED, &sh->state);
5730 if ((!sh->batch_head || sh == sh->batch_head) &&
5731 (bi->bi_opf & REQ_SYNC) &&
5732 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5733 atomic_inc(&conf->preread_active_stripes);
5734 release_stripe_plug(mddev, sh);
5735 } else {
5736 /* cannot get stripe for read-ahead, just give-up */
5737 bi->bi_status = BLK_STS_IOERR;
5738 break;
5739 }
5740 }
5741 finish_wait(&conf->wait_for_overlap, &w);
5742
5743 if (rw == WRITE)
5744 md_write_end(mddev);
5745 bio_endio(bi);
5746 return true;
5747 }
5748
5749 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5750
5751 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5752 {
5753 /* reshaping is quite different to recovery/resync so it is
5754 * handled quite separately ... here.
5755 *
5756 * On each call to sync_request, we gather one chunk worth of
5757 * destination stripes and flag them as expanding.
5758 * Then we find all the source stripes and request reads.
5759 * As the reads complete, handle_stripe will copy the data
5760 * into the destination stripe and release that stripe.
5761 */
5762 struct r5conf *conf = mddev->private;
5763 struct stripe_head *sh;
5764 struct md_rdev *rdev;
5765 sector_t first_sector, last_sector;
5766 int raid_disks = conf->previous_raid_disks;
5767 int data_disks = raid_disks - conf->max_degraded;
5768 int new_data_disks = conf->raid_disks - conf->max_degraded;
5769 int i;
5770 int dd_idx;
5771 sector_t writepos, readpos, safepos;
5772 sector_t stripe_addr;
5773 int reshape_sectors;
5774 struct list_head stripes;
5775 sector_t retn;
5776
5777 if (sector_nr == 0) {
5778 /* If restarting in the middle, skip the initial sectors */
5779 if (mddev->reshape_backwards &&
5780 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5781 sector_nr = raid5_size(mddev, 0, 0)
5782 - conf->reshape_progress;
5783 } else if (mddev->reshape_backwards &&
5784 conf->reshape_progress == MaxSector) {
5785 /* shouldn't happen, but just in case, finish up.*/
5786 sector_nr = MaxSector;
5787 } else if (!mddev->reshape_backwards &&
5788 conf->reshape_progress > 0)
5789 sector_nr = conf->reshape_progress;
5790 sector_div(sector_nr, new_data_disks);
5791 if (sector_nr) {
5792 mddev->curr_resync_completed = sector_nr;
5793 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5794 *skipped = 1;
5795 retn = sector_nr;
5796 goto finish;
5797 }
5798 }
5799
5800 /* We need to process a full chunk at a time.
5801 * If old and new chunk sizes differ, we need to process the
5802 * largest of these
5803 */
5804
5805 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5806
5807 /* We update the metadata at least every 10 seconds, or when
5808 * the data about to be copied would over-write the source of
5809 * the data at the front of the range. i.e. one new_stripe
5810 * along from reshape_progress new_maps to after where
5811 * reshape_safe old_maps to
5812 */
5813 writepos = conf->reshape_progress;
5814 sector_div(writepos, new_data_disks);
5815 readpos = conf->reshape_progress;
5816 sector_div(readpos, data_disks);
5817 safepos = conf->reshape_safe;
5818 sector_div(safepos, data_disks);
5819 if (mddev->reshape_backwards) {
5820 BUG_ON(writepos < reshape_sectors);
5821 writepos -= reshape_sectors;
5822 readpos += reshape_sectors;
5823 safepos += reshape_sectors;
5824 } else {
5825 writepos += reshape_sectors;
5826 /* readpos and safepos are worst-case calculations.
5827 * A negative number is overly pessimistic, and causes
5828 * obvious problems for unsigned storage. So clip to 0.
5829 */
5830 readpos -= min_t(sector_t, reshape_sectors, readpos);
5831 safepos -= min_t(sector_t, reshape_sectors, safepos);
5832 }
5833
5834 /* Having calculated the 'writepos' possibly use it
5835 * to set 'stripe_addr' which is where we will write to.
5836 */
5837 if (mddev->reshape_backwards) {
5838 BUG_ON(conf->reshape_progress == 0);
5839 stripe_addr = writepos;
5840 BUG_ON((mddev->dev_sectors &
5841 ~((sector_t)reshape_sectors - 1))
5842 - reshape_sectors - stripe_addr
5843 != sector_nr);
5844 } else {
5845 BUG_ON(writepos != sector_nr + reshape_sectors);
5846 stripe_addr = sector_nr;
5847 }
5848
5849 /* 'writepos' is the most advanced device address we might write.
5850 * 'readpos' is the least advanced device address we might read.
5851 * 'safepos' is the least address recorded in the metadata as having
5852 * been reshaped.
5853 * If there is a min_offset_diff, these are adjusted either by
5854 * increasing the safepos/readpos if diff is negative, or
5855 * increasing writepos if diff is positive.
5856 * If 'readpos' is then behind 'writepos', there is no way that we can
5857 * ensure safety in the face of a crash - that must be done by userspace
5858 * making a backup of the data. So in that case there is no particular
5859 * rush to update metadata.
5860 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5861 * update the metadata to advance 'safepos' to match 'readpos' so that
5862 * we can be safe in the event of a crash.
5863 * So we insist on updating metadata if safepos is behind writepos and
5864 * readpos is beyond writepos.
5865 * In any case, update the metadata every 10 seconds.
5866 * Maybe that number should be configurable, but I'm not sure it is
5867 * worth it.... maybe it could be a multiple of safemode_delay???
5868 */
5869 if (conf->min_offset_diff < 0) {
5870 safepos += -conf->min_offset_diff;
5871 readpos += -conf->min_offset_diff;
5872 } else
5873 writepos += conf->min_offset_diff;
5874
5875 if ((mddev->reshape_backwards
5876 ? (safepos > writepos && readpos < writepos)
5877 : (safepos < writepos && readpos > writepos)) ||
5878 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5879 /* Cannot proceed until we've updated the superblock... */
5880 wait_event(conf->wait_for_overlap,
5881 atomic_read(&conf->reshape_stripes)==0
5882 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5883 if (atomic_read(&conf->reshape_stripes) != 0)
5884 return 0;
5885 mddev->reshape_position = conf->reshape_progress;
5886 mddev->curr_resync_completed = sector_nr;
5887 if (!mddev->reshape_backwards)
5888 /* Can update recovery_offset */
5889 rdev_for_each(rdev, mddev)
5890 if (rdev->raid_disk >= 0 &&
5891 !test_bit(Journal, &rdev->flags) &&
5892 !test_bit(In_sync, &rdev->flags) &&
5893 rdev->recovery_offset < sector_nr)
5894 rdev->recovery_offset = sector_nr;
5895
5896 conf->reshape_checkpoint = jiffies;
5897 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5898 md_wakeup_thread(mddev->thread);
5899 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5900 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5901 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5902 return 0;
5903 spin_lock_irq(&conf->device_lock);
5904 conf->reshape_safe = mddev->reshape_position;
5905 spin_unlock_irq(&conf->device_lock);
5906 wake_up(&conf->wait_for_overlap);
5907 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5908 }
5909
5910 INIT_LIST_HEAD(&stripes);
5911 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5912 int j;
5913 int skipped_disk = 0;
5914 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5915 set_bit(STRIPE_EXPANDING, &sh->state);
5916 atomic_inc(&conf->reshape_stripes);
5917 /* If any of this stripe is beyond the end of the old
5918 * array, then we need to zero those blocks
5919 */
5920 for (j=sh->disks; j--;) {
5921 sector_t s;
5922 if (j == sh->pd_idx)
5923 continue;
5924 if (conf->level == 6 &&
5925 j == sh->qd_idx)
5926 continue;
5927 s = raid5_compute_blocknr(sh, j, 0);
5928 if (s < raid5_size(mddev, 0, 0)) {
5929 skipped_disk = 1;
5930 continue;
5931 }
5932 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5933 set_bit(R5_Expanded, &sh->dev[j].flags);
5934 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5935 }
5936 if (!skipped_disk) {
5937 set_bit(STRIPE_EXPAND_READY, &sh->state);
5938 set_bit(STRIPE_HANDLE, &sh->state);
5939 }
5940 list_add(&sh->lru, &stripes);
5941 }
5942 spin_lock_irq(&conf->device_lock);
5943 if (mddev->reshape_backwards)
5944 conf->reshape_progress -= reshape_sectors * new_data_disks;
5945 else
5946 conf->reshape_progress += reshape_sectors * new_data_disks;
5947 spin_unlock_irq(&conf->device_lock);
5948 /* Ok, those stripe are ready. We can start scheduling
5949 * reads on the source stripes.
5950 * The source stripes are determined by mapping the first and last
5951 * block on the destination stripes.
5952 */
5953 first_sector =
5954 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5955 1, &dd_idx, NULL);
5956 last_sector =
5957 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5958 * new_data_disks - 1),
5959 1, &dd_idx, NULL);
5960 if (last_sector >= mddev->dev_sectors)
5961 last_sector = mddev->dev_sectors - 1;
5962 while (first_sector <= last_sector) {
5963 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5964 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5965 set_bit(STRIPE_HANDLE, &sh->state);
5966 raid5_release_stripe(sh);
5967 first_sector += STRIPE_SECTORS;
5968 }
5969 /* Now that the sources are clearly marked, we can release
5970 * the destination stripes
5971 */
5972 while (!list_empty(&stripes)) {
5973 sh = list_entry(stripes.next, struct stripe_head, lru);
5974 list_del_init(&sh->lru);
5975 raid5_release_stripe(sh);
5976 }
5977 /* If this takes us to the resync_max point where we have to pause,
5978 * then we need to write out the superblock.
5979 */
5980 sector_nr += reshape_sectors;
5981 retn = reshape_sectors;
5982 finish:
5983 if (mddev->curr_resync_completed > mddev->resync_max ||
5984 (sector_nr - mddev->curr_resync_completed) * 2
5985 >= mddev->resync_max - mddev->curr_resync_completed) {
5986 /* Cannot proceed until we've updated the superblock... */
5987 wait_event(conf->wait_for_overlap,
5988 atomic_read(&conf->reshape_stripes) == 0
5989 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5990 if (atomic_read(&conf->reshape_stripes) != 0)
5991 goto ret;
5992 mddev->reshape_position = conf->reshape_progress;
5993 mddev->curr_resync_completed = sector_nr;
5994 if (!mddev->reshape_backwards)
5995 /* Can update recovery_offset */
5996 rdev_for_each(rdev, mddev)
5997 if (rdev->raid_disk >= 0 &&
5998 !test_bit(Journal, &rdev->flags) &&
5999 !test_bit(In_sync, &rdev->flags) &&
6000 rdev->recovery_offset < sector_nr)
6001 rdev->recovery_offset = sector_nr;
6002 conf->reshape_checkpoint = jiffies;
6003 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6004 md_wakeup_thread(mddev->thread);
6005 wait_event(mddev->sb_wait,
6006 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6007 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6008 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6009 goto ret;
6010 spin_lock_irq(&conf->device_lock);
6011 conf->reshape_safe = mddev->reshape_position;
6012 spin_unlock_irq(&conf->device_lock);
6013 wake_up(&conf->wait_for_overlap);
6014 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6015 }
6016 ret:
6017 return retn;
6018 }
6019
6020 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6021 int *skipped)
6022 {
6023 struct r5conf *conf = mddev->private;
6024 struct stripe_head *sh;
6025 sector_t max_sector = mddev->dev_sectors;
6026 sector_t sync_blocks;
6027 int still_degraded = 0;
6028 int i;
6029
6030 if (sector_nr >= max_sector) {
6031 /* just being told to finish up .. nothing much to do */
6032
6033 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6034 end_reshape(conf);
6035 return 0;
6036 }
6037
6038 if (mddev->curr_resync < max_sector) /* aborted */
6039 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6040 &sync_blocks, 1);
6041 else /* completed sync */
6042 conf->fullsync = 0;
6043 md_bitmap_close_sync(mddev->bitmap);
6044
6045 return 0;
6046 }
6047
6048 /* Allow raid5_quiesce to complete */
6049 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6050
6051 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6052 return reshape_request(mddev, sector_nr, skipped);
6053
6054 /* No need to check resync_max as we never do more than one
6055 * stripe, and as resync_max will always be on a chunk boundary,
6056 * if the check in md_do_sync didn't fire, there is no chance
6057 * of overstepping resync_max here
6058 */
6059
6060 /* if there is too many failed drives and we are trying
6061 * to resync, then assert that we are finished, because there is
6062 * nothing we can do.
6063 */
6064 if (mddev->degraded >= conf->max_degraded &&
6065 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6066 sector_t rv = mddev->dev_sectors - sector_nr;
6067 *skipped = 1;
6068 return rv;
6069 }
6070 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6071 !conf->fullsync &&
6072 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6073 sync_blocks >= STRIPE_SECTORS) {
6074 /* we can skip this block, and probably more */
6075 sync_blocks /= STRIPE_SECTORS;
6076 *skipped = 1;
6077 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6078 }
6079
6080 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6081
6082 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6083 if (sh == NULL) {
6084 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6085 /* make sure we don't swamp the stripe cache if someone else
6086 * is trying to get access
6087 */
6088 schedule_timeout_uninterruptible(1);
6089 }
6090 /* Need to check if array will still be degraded after recovery/resync
6091 * Note in case of > 1 drive failures it's possible we're rebuilding
6092 * one drive while leaving another faulty drive in array.
6093 */
6094 rcu_read_lock();
6095 for (i = 0; i < conf->raid_disks; i++) {
6096 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6097
6098 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6099 still_degraded = 1;
6100 }
6101 rcu_read_unlock();
6102
6103 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6104
6105 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6106 set_bit(STRIPE_HANDLE, &sh->state);
6107
6108 raid5_release_stripe(sh);
6109
6110 return STRIPE_SECTORS;
6111 }
6112
6113 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6114 unsigned int offset)
6115 {
6116 /* We may not be able to submit a whole bio at once as there
6117 * may not be enough stripe_heads available.
6118 * We cannot pre-allocate enough stripe_heads as we may need
6119 * more than exist in the cache (if we allow ever large chunks).
6120 * So we do one stripe head at a time and record in
6121 * ->bi_hw_segments how many have been done.
6122 *
6123 * We *know* that this entire raid_bio is in one chunk, so
6124 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6125 */
6126 struct stripe_head *sh;
6127 int dd_idx;
6128 sector_t sector, logical_sector, last_sector;
6129 int scnt = 0;
6130 int handled = 0;
6131
6132 logical_sector = raid_bio->bi_iter.bi_sector &
6133 ~((sector_t)STRIPE_SECTORS-1);
6134 sector = raid5_compute_sector(conf, logical_sector,
6135 0, &dd_idx, NULL);
6136 last_sector = bio_end_sector(raid_bio);
6137
6138 for (; logical_sector < last_sector;
6139 logical_sector += STRIPE_SECTORS,
6140 sector += STRIPE_SECTORS,
6141 scnt++) {
6142
6143 if (scnt < offset)
6144 /* already done this stripe */
6145 continue;
6146
6147 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6148
6149 if (!sh) {
6150 /* failed to get a stripe - must wait */
6151 conf->retry_read_aligned = raid_bio;
6152 conf->retry_read_offset = scnt;
6153 return handled;
6154 }
6155
6156 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6157 raid5_release_stripe(sh);
6158 conf->retry_read_aligned = raid_bio;
6159 conf->retry_read_offset = scnt;
6160 return handled;
6161 }
6162
6163 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6164 handle_stripe(sh);
6165 raid5_release_stripe(sh);
6166 handled++;
6167 }
6168
6169 bio_endio(raid_bio);
6170
6171 if (atomic_dec_and_test(&conf->active_aligned_reads))
6172 wake_up(&conf->wait_for_quiescent);
6173 return handled;
6174 }
6175
6176 static int handle_active_stripes(struct r5conf *conf, int group,
6177 struct r5worker *worker,
6178 struct list_head *temp_inactive_list)
6179 {
6180 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6181 int i, batch_size = 0, hash;
6182 bool release_inactive = false;
6183
6184 while (batch_size < MAX_STRIPE_BATCH &&
6185 (sh = __get_priority_stripe(conf, group)) != NULL)
6186 batch[batch_size++] = sh;
6187
6188 if (batch_size == 0) {
6189 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6190 if (!list_empty(temp_inactive_list + i))
6191 break;
6192 if (i == NR_STRIPE_HASH_LOCKS) {
6193 spin_unlock_irq(&conf->device_lock);
6194 log_flush_stripe_to_raid(conf);
6195 spin_lock_irq(&conf->device_lock);
6196 return batch_size;
6197 }
6198 release_inactive = true;
6199 }
6200 spin_unlock_irq(&conf->device_lock);
6201
6202 release_inactive_stripe_list(conf, temp_inactive_list,
6203 NR_STRIPE_HASH_LOCKS);
6204
6205 r5l_flush_stripe_to_raid(conf->log);
6206 if (release_inactive) {
6207 spin_lock_irq(&conf->device_lock);
6208 return 0;
6209 }
6210
6211 for (i = 0; i < batch_size; i++)
6212 handle_stripe(batch[i]);
6213 log_write_stripe_run(conf);
6214
6215 cond_resched();
6216
6217 spin_lock_irq(&conf->device_lock);
6218 for (i = 0; i < batch_size; i++) {
6219 hash = batch[i]->hash_lock_index;
6220 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6221 }
6222 return batch_size;
6223 }
6224
6225 static void raid5_do_work(struct work_struct *work)
6226 {
6227 struct r5worker *worker = container_of(work, struct r5worker, work);
6228 struct r5worker_group *group = worker->group;
6229 struct r5conf *conf = group->conf;
6230 struct mddev *mddev = conf->mddev;
6231 int group_id = group - conf->worker_groups;
6232 int handled;
6233 struct blk_plug plug;
6234
6235 pr_debug("+++ raid5worker active\n");
6236
6237 blk_start_plug(&plug);
6238 handled = 0;
6239 spin_lock_irq(&conf->device_lock);
6240 while (1) {
6241 int batch_size, released;
6242
6243 released = release_stripe_list(conf, worker->temp_inactive_list);
6244
6245 batch_size = handle_active_stripes(conf, group_id, worker,
6246 worker->temp_inactive_list);
6247 worker->working = false;
6248 if (!batch_size && !released)
6249 break;
6250 handled += batch_size;
6251 wait_event_lock_irq(mddev->sb_wait,
6252 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6253 conf->device_lock);
6254 }
6255 pr_debug("%d stripes handled\n", handled);
6256
6257 spin_unlock_irq(&conf->device_lock);
6258
6259 flush_deferred_bios(conf);
6260
6261 r5l_flush_stripe_to_raid(conf->log);
6262
6263 async_tx_issue_pending_all();
6264 blk_finish_plug(&plug);
6265
6266 pr_debug("--- raid5worker inactive\n");
6267 }
6268
6269 /*
6270 * This is our raid5 kernel thread.
6271 *
6272 * We scan the hash table for stripes which can be handled now.
6273 * During the scan, completed stripes are saved for us by the interrupt
6274 * handler, so that they will not have to wait for our next wakeup.
6275 */
6276 static void raid5d(struct md_thread *thread)
6277 {
6278 struct mddev *mddev = thread->mddev;
6279 struct r5conf *conf = mddev->private;
6280 int handled;
6281 struct blk_plug plug;
6282
6283 pr_debug("+++ raid5d active\n");
6284
6285 md_check_recovery(mddev);
6286
6287 blk_start_plug(&plug);
6288 handled = 0;
6289 spin_lock_irq(&conf->device_lock);
6290 while (1) {
6291 struct bio *bio;
6292 int batch_size, released;
6293 unsigned int offset;
6294
6295 released = release_stripe_list(conf, conf->temp_inactive_list);
6296 if (released)
6297 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6298
6299 if (
6300 !list_empty(&conf->bitmap_list)) {
6301 /* Now is a good time to flush some bitmap updates */
6302 conf->seq_flush++;
6303 spin_unlock_irq(&conf->device_lock);
6304 md_bitmap_unplug(mddev->bitmap);
6305 spin_lock_irq(&conf->device_lock);
6306 conf->seq_write = conf->seq_flush;
6307 activate_bit_delay(conf, conf->temp_inactive_list);
6308 }
6309 raid5_activate_delayed(conf);
6310
6311 while ((bio = remove_bio_from_retry(conf, &offset))) {
6312 int ok;
6313 spin_unlock_irq(&conf->device_lock);
6314 ok = retry_aligned_read(conf, bio, offset);
6315 spin_lock_irq(&conf->device_lock);
6316 if (!ok)
6317 break;
6318 handled++;
6319 }
6320
6321 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6322 conf->temp_inactive_list);
6323 if (!batch_size && !released)
6324 break;
6325 handled += batch_size;
6326
6327 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6328 spin_unlock_irq(&conf->device_lock);
6329 md_check_recovery(mddev);
6330 spin_lock_irq(&conf->device_lock);
6331 }
6332 }
6333 pr_debug("%d stripes handled\n", handled);
6334
6335 spin_unlock_irq(&conf->device_lock);
6336 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6337 mutex_trylock(&conf->cache_size_mutex)) {
6338 grow_one_stripe(conf, __GFP_NOWARN);
6339 /* Set flag even if allocation failed. This helps
6340 * slow down allocation requests when mem is short
6341 */
6342 set_bit(R5_DID_ALLOC, &conf->cache_state);
6343 mutex_unlock(&conf->cache_size_mutex);
6344 }
6345
6346 flush_deferred_bios(conf);
6347
6348 r5l_flush_stripe_to_raid(conf->log);
6349
6350 async_tx_issue_pending_all();
6351 blk_finish_plug(&plug);
6352
6353 pr_debug("--- raid5d inactive\n");
6354 }
6355
6356 static ssize_t
6357 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6358 {
6359 struct r5conf *conf;
6360 int ret = 0;
6361 spin_lock(&mddev->lock);
6362 conf = mddev->private;
6363 if (conf)
6364 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6365 spin_unlock(&mddev->lock);
6366 return ret;
6367 }
6368
6369 int
6370 raid5_set_cache_size(struct mddev *mddev, int size)
6371 {
6372 int result = 0;
6373 struct r5conf *conf = mddev->private;
6374
6375 if (size <= 16 || size > 32768)
6376 return -EINVAL;
6377
6378 conf->min_nr_stripes = size;
6379 mutex_lock(&conf->cache_size_mutex);
6380 while (size < conf->max_nr_stripes &&
6381 drop_one_stripe(conf))
6382 ;
6383 mutex_unlock(&conf->cache_size_mutex);
6384
6385 md_allow_write(mddev);
6386
6387 mutex_lock(&conf->cache_size_mutex);
6388 while (size > conf->max_nr_stripes)
6389 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6390 conf->min_nr_stripes = conf->max_nr_stripes;
6391 result = -ENOMEM;
6392 break;
6393 }
6394 mutex_unlock(&conf->cache_size_mutex);
6395
6396 return result;
6397 }
6398 EXPORT_SYMBOL(raid5_set_cache_size);
6399
6400 static ssize_t
6401 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6402 {
6403 struct r5conf *conf;
6404 unsigned long new;
6405 int err;
6406
6407 if (len >= PAGE_SIZE)
6408 return -EINVAL;
6409 if (kstrtoul(page, 10, &new))
6410 return -EINVAL;
6411 err = mddev_lock(mddev);
6412 if (err)
6413 return err;
6414 conf = mddev->private;
6415 if (!conf)
6416 err = -ENODEV;
6417 else
6418 err = raid5_set_cache_size(mddev, new);
6419 mddev_unlock(mddev);
6420
6421 return err ?: len;
6422 }
6423
6424 static struct md_sysfs_entry
6425 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6426 raid5_show_stripe_cache_size,
6427 raid5_store_stripe_cache_size);
6428
6429 static ssize_t
6430 raid5_show_rmw_level(struct mddev *mddev, char *page)
6431 {
6432 struct r5conf *conf = mddev->private;
6433 if (conf)
6434 return sprintf(page, "%d\n", conf->rmw_level);
6435 else
6436 return 0;
6437 }
6438
6439 static ssize_t
6440 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6441 {
6442 struct r5conf *conf = mddev->private;
6443 unsigned long new;
6444
6445 if (!conf)
6446 return -ENODEV;
6447
6448 if (len >= PAGE_SIZE)
6449 return -EINVAL;
6450
6451 if (kstrtoul(page, 10, &new))
6452 return -EINVAL;
6453
6454 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6455 return -EINVAL;
6456
6457 if (new != PARITY_DISABLE_RMW &&
6458 new != PARITY_ENABLE_RMW &&
6459 new != PARITY_PREFER_RMW)
6460 return -EINVAL;
6461
6462 conf->rmw_level = new;
6463 return len;
6464 }
6465
6466 static struct md_sysfs_entry
6467 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6468 raid5_show_rmw_level,
6469 raid5_store_rmw_level);
6470
6471
6472 static ssize_t
6473 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6474 {
6475 struct r5conf *conf;
6476 int ret = 0;
6477 spin_lock(&mddev->lock);
6478 conf = mddev->private;
6479 if (conf)
6480 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6481 spin_unlock(&mddev->lock);
6482 return ret;
6483 }
6484
6485 static ssize_t
6486 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6487 {
6488 struct r5conf *conf;
6489 unsigned long new;
6490 int err;
6491
6492 if (len >= PAGE_SIZE)
6493 return -EINVAL;
6494 if (kstrtoul(page, 10, &new))
6495 return -EINVAL;
6496
6497 err = mddev_lock(mddev);
6498 if (err)
6499 return err;
6500 conf = mddev->private;
6501 if (!conf)
6502 err = -ENODEV;
6503 else if (new > conf->min_nr_stripes)
6504 err = -EINVAL;
6505 else
6506 conf->bypass_threshold = new;
6507 mddev_unlock(mddev);
6508 return err ?: len;
6509 }
6510
6511 static struct md_sysfs_entry
6512 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6513 S_IRUGO | S_IWUSR,
6514 raid5_show_preread_threshold,
6515 raid5_store_preread_threshold);
6516
6517 static ssize_t
6518 raid5_show_skip_copy(struct mddev *mddev, char *page)
6519 {
6520 struct r5conf *conf;
6521 int ret = 0;
6522 spin_lock(&mddev->lock);
6523 conf = mddev->private;
6524 if (conf)
6525 ret = sprintf(page, "%d\n", conf->skip_copy);
6526 spin_unlock(&mddev->lock);
6527 return ret;
6528 }
6529
6530 static ssize_t
6531 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6532 {
6533 struct r5conf *conf;
6534 unsigned long new;
6535 int err;
6536
6537 if (len >= PAGE_SIZE)
6538 return -EINVAL;
6539 if (kstrtoul(page, 10, &new))
6540 return -EINVAL;
6541 new = !!new;
6542
6543 err = mddev_lock(mddev);
6544 if (err)
6545 return err;
6546 conf = mddev->private;
6547 if (!conf)
6548 err = -ENODEV;
6549 else if (new != conf->skip_copy) {
6550 mddev_suspend(mddev);
6551 conf->skip_copy = new;
6552 if (new)
6553 mddev->queue->backing_dev_info->capabilities |=
6554 BDI_CAP_STABLE_WRITES;
6555 else
6556 mddev->queue->backing_dev_info->capabilities &=
6557 ~BDI_CAP_STABLE_WRITES;
6558 mddev_resume(mddev);
6559 }
6560 mddev_unlock(mddev);
6561 return err ?: len;
6562 }
6563
6564 static struct md_sysfs_entry
6565 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6566 raid5_show_skip_copy,
6567 raid5_store_skip_copy);
6568
6569 static ssize_t
6570 stripe_cache_active_show(struct mddev *mddev, char *page)
6571 {
6572 struct r5conf *conf = mddev->private;
6573 if (conf)
6574 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6575 else
6576 return 0;
6577 }
6578
6579 static struct md_sysfs_entry
6580 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6581
6582 static ssize_t
6583 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6584 {
6585 struct r5conf *conf;
6586 int ret = 0;
6587 spin_lock(&mddev->lock);
6588 conf = mddev->private;
6589 if (conf)
6590 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6591 spin_unlock(&mddev->lock);
6592 return ret;
6593 }
6594
6595 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6596 int *group_cnt,
6597 int *worker_cnt_per_group,
6598 struct r5worker_group **worker_groups);
6599 static ssize_t
6600 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6601 {
6602 struct r5conf *conf;
6603 unsigned int new;
6604 int err;
6605 struct r5worker_group *new_groups, *old_groups;
6606 int group_cnt, worker_cnt_per_group;
6607
6608 if (len >= PAGE_SIZE)
6609 return -EINVAL;
6610 if (kstrtouint(page, 10, &new))
6611 return -EINVAL;
6612 /* 8192 should be big enough */
6613 if (new > 8192)
6614 return -EINVAL;
6615
6616 err = mddev_lock(mddev);
6617 if (err)
6618 return err;
6619 conf = mddev->private;
6620 if (!conf)
6621 err = -ENODEV;
6622 else if (new != conf->worker_cnt_per_group) {
6623 mddev_suspend(mddev);
6624
6625 old_groups = conf->worker_groups;
6626 if (old_groups)
6627 flush_workqueue(raid5_wq);
6628
6629 err = alloc_thread_groups(conf, new,
6630 &group_cnt, &worker_cnt_per_group,
6631 &new_groups);
6632 if (!err) {
6633 spin_lock_irq(&conf->device_lock);
6634 conf->group_cnt = group_cnt;
6635 conf->worker_cnt_per_group = worker_cnt_per_group;
6636 conf->worker_groups = new_groups;
6637 spin_unlock_irq(&conf->device_lock);
6638
6639 if (old_groups)
6640 kfree(old_groups[0].workers);
6641 kfree(old_groups);
6642 }
6643 mddev_resume(mddev);
6644 }
6645 mddev_unlock(mddev);
6646
6647 return err ?: len;
6648 }
6649
6650 static struct md_sysfs_entry
6651 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6652 raid5_show_group_thread_cnt,
6653 raid5_store_group_thread_cnt);
6654
6655 static struct attribute *raid5_attrs[] = {
6656 &raid5_stripecache_size.attr,
6657 &raid5_stripecache_active.attr,
6658 &raid5_preread_bypass_threshold.attr,
6659 &raid5_group_thread_cnt.attr,
6660 &raid5_skip_copy.attr,
6661 &raid5_rmw_level.attr,
6662 &r5c_journal_mode.attr,
6663 NULL,
6664 };
6665 static struct attribute_group raid5_attrs_group = {
6666 .name = NULL,
6667 .attrs = raid5_attrs,
6668 };
6669
6670 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6671 int *group_cnt,
6672 int *worker_cnt_per_group,
6673 struct r5worker_group **worker_groups)
6674 {
6675 int i, j, k;
6676 ssize_t size;
6677 struct r5worker *workers;
6678
6679 *worker_cnt_per_group = cnt;
6680 if (cnt == 0) {
6681 *group_cnt = 0;
6682 *worker_groups = NULL;
6683 return 0;
6684 }
6685 *group_cnt = num_possible_nodes();
6686 size = sizeof(struct r5worker) * cnt;
6687 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6688 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6689 GFP_NOIO);
6690 if (!*worker_groups || !workers) {
6691 kfree(workers);
6692 kfree(*worker_groups);
6693 return -ENOMEM;
6694 }
6695
6696 for (i = 0; i < *group_cnt; i++) {
6697 struct r5worker_group *group;
6698
6699 group = &(*worker_groups)[i];
6700 INIT_LIST_HEAD(&group->handle_list);
6701 INIT_LIST_HEAD(&group->loprio_list);
6702 group->conf = conf;
6703 group->workers = workers + i * cnt;
6704
6705 for (j = 0; j < cnt; j++) {
6706 struct r5worker *worker = group->workers + j;
6707 worker->group = group;
6708 INIT_WORK(&worker->work, raid5_do_work);
6709
6710 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6711 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6712 }
6713 }
6714
6715 return 0;
6716 }
6717
6718 static void free_thread_groups(struct r5conf *conf)
6719 {
6720 if (conf->worker_groups)
6721 kfree(conf->worker_groups[0].workers);
6722 kfree(conf->worker_groups);
6723 conf->worker_groups = NULL;
6724 }
6725
6726 static sector_t
6727 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6728 {
6729 struct r5conf *conf = mddev->private;
6730
6731 if (!sectors)
6732 sectors = mddev->dev_sectors;
6733 if (!raid_disks)
6734 /* size is defined by the smallest of previous and new size */
6735 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6736
6737 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6738 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6739 return sectors * (raid_disks - conf->max_degraded);
6740 }
6741
6742 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6743 {
6744 safe_put_page(percpu->spare_page);
6745 if (percpu->scribble)
6746 flex_array_free(percpu->scribble);
6747 percpu->spare_page = NULL;
6748 percpu->scribble = NULL;
6749 }
6750
6751 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6752 {
6753 if (conf->level == 6 && !percpu->spare_page)
6754 percpu->spare_page = alloc_page(GFP_KERNEL);
6755 if (!percpu->scribble)
6756 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6757 conf->previous_raid_disks),
6758 max(conf->chunk_sectors,
6759 conf->prev_chunk_sectors)
6760 / STRIPE_SECTORS,
6761 GFP_KERNEL);
6762
6763 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6764 free_scratch_buffer(conf, percpu);
6765 return -ENOMEM;
6766 }
6767
6768 return 0;
6769 }
6770
6771 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6772 {
6773 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6774
6775 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6776 return 0;
6777 }
6778
6779 static void raid5_free_percpu(struct r5conf *conf)
6780 {
6781 if (!conf->percpu)
6782 return;
6783
6784 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6785 free_percpu(conf->percpu);
6786 }
6787
6788 static void free_conf(struct r5conf *conf)
6789 {
6790 int i;
6791
6792 log_exit(conf);
6793
6794 unregister_shrinker(&conf->shrinker);
6795 free_thread_groups(conf);
6796 shrink_stripes(conf);
6797 raid5_free_percpu(conf);
6798 for (i = 0; i < conf->pool_size; i++)
6799 if (conf->disks[i].extra_page)
6800 put_page(conf->disks[i].extra_page);
6801 kfree(conf->disks);
6802 bioset_exit(&conf->bio_split);
6803 kfree(conf->stripe_hashtbl);
6804 kfree(conf->pending_data);
6805 kfree(conf);
6806 }
6807
6808 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6809 {
6810 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6811 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6812
6813 if (alloc_scratch_buffer(conf, percpu)) {
6814 pr_warn("%s: failed memory allocation for cpu%u\n",
6815 __func__, cpu);
6816 return -ENOMEM;
6817 }
6818 return 0;
6819 }
6820
6821 static int raid5_alloc_percpu(struct r5conf *conf)
6822 {
6823 int err = 0;
6824
6825 conf->percpu = alloc_percpu(struct raid5_percpu);
6826 if (!conf->percpu)
6827 return -ENOMEM;
6828
6829 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6830 if (!err) {
6831 conf->scribble_disks = max(conf->raid_disks,
6832 conf->previous_raid_disks);
6833 conf->scribble_sectors = max(conf->chunk_sectors,
6834 conf->prev_chunk_sectors);
6835 }
6836 return err;
6837 }
6838
6839 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6840 struct shrink_control *sc)
6841 {
6842 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6843 unsigned long ret = SHRINK_STOP;
6844
6845 if (mutex_trylock(&conf->cache_size_mutex)) {
6846 ret= 0;
6847 while (ret < sc->nr_to_scan &&
6848 conf->max_nr_stripes > conf->min_nr_stripes) {
6849 if (drop_one_stripe(conf) == 0) {
6850 ret = SHRINK_STOP;
6851 break;
6852 }
6853 ret++;
6854 }
6855 mutex_unlock(&conf->cache_size_mutex);
6856 }
6857 return ret;
6858 }
6859
6860 static unsigned long raid5_cache_count(struct shrinker *shrink,
6861 struct shrink_control *sc)
6862 {
6863 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6864
6865 if (conf->max_nr_stripes < conf->min_nr_stripes)
6866 /* unlikely, but not impossible */
6867 return 0;
6868 return conf->max_nr_stripes - conf->min_nr_stripes;
6869 }
6870
6871 static struct r5conf *setup_conf(struct mddev *mddev)
6872 {
6873 struct r5conf *conf;
6874 int raid_disk, memory, max_disks;
6875 struct md_rdev *rdev;
6876 struct disk_info *disk;
6877 char pers_name[6];
6878 int i;
6879 int group_cnt, worker_cnt_per_group;
6880 struct r5worker_group *new_group;
6881 int ret;
6882
6883 if (mddev->new_level != 5
6884 && mddev->new_level != 4
6885 && mddev->new_level != 6) {
6886 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6887 mdname(mddev), mddev->new_level);
6888 return ERR_PTR(-EIO);
6889 }
6890 if ((mddev->new_level == 5
6891 && !algorithm_valid_raid5(mddev->new_layout)) ||
6892 (mddev->new_level == 6
6893 && !algorithm_valid_raid6(mddev->new_layout))) {
6894 pr_warn("md/raid:%s: layout %d not supported\n",
6895 mdname(mddev), mddev->new_layout);
6896 return ERR_PTR(-EIO);
6897 }
6898 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6899 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6900 mdname(mddev), mddev->raid_disks);
6901 return ERR_PTR(-EINVAL);
6902 }
6903
6904 if (!mddev->new_chunk_sectors ||
6905 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6906 !is_power_of_2(mddev->new_chunk_sectors)) {
6907 pr_warn("md/raid:%s: invalid chunk size %d\n",
6908 mdname(mddev), mddev->new_chunk_sectors << 9);
6909 return ERR_PTR(-EINVAL);
6910 }
6911
6912 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6913 if (conf == NULL)
6914 goto abort;
6915 INIT_LIST_HEAD(&conf->free_list);
6916 INIT_LIST_HEAD(&conf->pending_list);
6917 conf->pending_data = kcalloc(PENDING_IO_MAX,
6918 sizeof(struct r5pending_data),
6919 GFP_KERNEL);
6920 if (!conf->pending_data)
6921 goto abort;
6922 for (i = 0; i < PENDING_IO_MAX; i++)
6923 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6924 /* Don't enable multi-threading by default*/
6925 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6926 &new_group)) {
6927 conf->group_cnt = group_cnt;
6928 conf->worker_cnt_per_group = worker_cnt_per_group;
6929 conf->worker_groups = new_group;
6930 } else
6931 goto abort;
6932 spin_lock_init(&conf->device_lock);
6933 seqcount_init(&conf->gen_lock);
6934 mutex_init(&conf->cache_size_mutex);
6935 init_waitqueue_head(&conf->wait_for_quiescent);
6936 init_waitqueue_head(&conf->wait_for_stripe);
6937 init_waitqueue_head(&conf->wait_for_overlap);
6938 INIT_LIST_HEAD(&conf->handle_list);
6939 INIT_LIST_HEAD(&conf->loprio_list);
6940 INIT_LIST_HEAD(&conf->hold_list);
6941 INIT_LIST_HEAD(&conf->delayed_list);
6942 INIT_LIST_HEAD(&conf->bitmap_list);
6943 init_llist_head(&conf->released_stripes);
6944 atomic_set(&conf->active_stripes, 0);
6945 atomic_set(&conf->preread_active_stripes, 0);
6946 atomic_set(&conf->active_aligned_reads, 0);
6947 spin_lock_init(&conf->pending_bios_lock);
6948 conf->batch_bio_dispatch = true;
6949 rdev_for_each(rdev, mddev) {
6950 if (test_bit(Journal, &rdev->flags))
6951 continue;
6952 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6953 conf->batch_bio_dispatch = false;
6954 break;
6955 }
6956 }
6957
6958 conf->bypass_threshold = BYPASS_THRESHOLD;
6959 conf->recovery_disabled = mddev->recovery_disabled - 1;
6960
6961 conf->raid_disks = mddev->raid_disks;
6962 if (mddev->reshape_position == MaxSector)
6963 conf->previous_raid_disks = mddev->raid_disks;
6964 else
6965 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6966 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6967
6968 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6969 GFP_KERNEL);
6970
6971 if (!conf->disks)
6972 goto abort;
6973
6974 for (i = 0; i < max_disks; i++) {
6975 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6976 if (!conf->disks[i].extra_page)
6977 goto abort;
6978 }
6979
6980 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6981 if (ret)
6982 goto abort;
6983 conf->mddev = mddev;
6984
6985 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6986 goto abort;
6987
6988 /* We init hash_locks[0] separately to that it can be used
6989 * as the reference lock in the spin_lock_nest_lock() call
6990 * in lock_all_device_hash_locks_irq in order to convince
6991 * lockdep that we know what we are doing.
6992 */
6993 spin_lock_init(conf->hash_locks);
6994 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6995 spin_lock_init(conf->hash_locks + i);
6996
6997 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6998 INIT_LIST_HEAD(conf->inactive_list + i);
6999
7000 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7001 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7002
7003 atomic_set(&conf->r5c_cached_full_stripes, 0);
7004 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7005 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7006 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7007 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7008 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7009
7010 conf->level = mddev->new_level;
7011 conf->chunk_sectors = mddev->new_chunk_sectors;
7012 if (raid5_alloc_percpu(conf) != 0)
7013 goto abort;
7014
7015 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7016
7017 rdev_for_each(rdev, mddev) {
7018 raid_disk = rdev->raid_disk;
7019 if (raid_disk >= max_disks
7020 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7021 continue;
7022 disk = conf->disks + raid_disk;
7023
7024 if (test_bit(Replacement, &rdev->flags)) {
7025 if (disk->replacement)
7026 goto abort;
7027 disk->replacement = rdev;
7028 } else {
7029 if (disk->rdev)
7030 goto abort;
7031 disk->rdev = rdev;
7032 }
7033
7034 if (test_bit(In_sync, &rdev->flags)) {
7035 char b[BDEVNAME_SIZE];
7036 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7037 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7038 } else if (rdev->saved_raid_disk != raid_disk)
7039 /* Cannot rely on bitmap to complete recovery */
7040 conf->fullsync = 1;
7041 }
7042
7043 conf->level = mddev->new_level;
7044 if (conf->level == 6) {
7045 conf->max_degraded = 2;
7046 if (raid6_call.xor_syndrome)
7047 conf->rmw_level = PARITY_ENABLE_RMW;
7048 else
7049 conf->rmw_level = PARITY_DISABLE_RMW;
7050 } else {
7051 conf->max_degraded = 1;
7052 conf->rmw_level = PARITY_ENABLE_RMW;
7053 }
7054 conf->algorithm = mddev->new_layout;
7055 conf->reshape_progress = mddev->reshape_position;
7056 if (conf->reshape_progress != MaxSector) {
7057 conf->prev_chunk_sectors = mddev->chunk_sectors;
7058 conf->prev_algo = mddev->layout;
7059 } else {
7060 conf->prev_chunk_sectors = conf->chunk_sectors;
7061 conf->prev_algo = conf->algorithm;
7062 }
7063
7064 conf->min_nr_stripes = NR_STRIPES;
7065 if (mddev->reshape_position != MaxSector) {
7066 int stripes = max_t(int,
7067 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7068 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7069 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7070 if (conf->min_nr_stripes != NR_STRIPES)
7071 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7072 mdname(mddev), conf->min_nr_stripes);
7073 }
7074 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7075 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7076 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7077 if (grow_stripes(conf, conf->min_nr_stripes)) {
7078 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7079 mdname(mddev), memory);
7080 goto abort;
7081 } else
7082 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7083 /*
7084 * Losing a stripe head costs more than the time to refill it,
7085 * it reduces the queue depth and so can hurt throughput.
7086 * So set it rather large, scaled by number of devices.
7087 */
7088 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7089 conf->shrinker.scan_objects = raid5_cache_scan;
7090 conf->shrinker.count_objects = raid5_cache_count;
7091 conf->shrinker.batch = 128;
7092 conf->shrinker.flags = 0;
7093 if (register_shrinker(&conf->shrinker)) {
7094 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7095 mdname(mddev));
7096 goto abort;
7097 }
7098
7099 sprintf(pers_name, "raid%d", mddev->new_level);
7100 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7101 if (!conf->thread) {
7102 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7103 mdname(mddev));
7104 goto abort;
7105 }
7106
7107 return conf;
7108
7109 abort:
7110 if (conf) {
7111 free_conf(conf);
7112 return ERR_PTR(-EIO);
7113 } else
7114 return ERR_PTR(-ENOMEM);
7115 }
7116
7117 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7118 {
7119 switch (algo) {
7120 case ALGORITHM_PARITY_0:
7121 if (raid_disk < max_degraded)
7122 return 1;
7123 break;
7124 case ALGORITHM_PARITY_N:
7125 if (raid_disk >= raid_disks - max_degraded)
7126 return 1;
7127 break;
7128 case ALGORITHM_PARITY_0_6:
7129 if (raid_disk == 0 ||
7130 raid_disk == raid_disks - 1)
7131 return 1;
7132 break;
7133 case ALGORITHM_LEFT_ASYMMETRIC_6:
7134 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7135 case ALGORITHM_LEFT_SYMMETRIC_6:
7136 case ALGORITHM_RIGHT_SYMMETRIC_6:
7137 if (raid_disk == raid_disks - 1)
7138 return 1;
7139 }
7140 return 0;
7141 }
7142
7143 static int raid5_run(struct mddev *mddev)
7144 {
7145 struct r5conf *conf;
7146 int working_disks = 0;
7147 int dirty_parity_disks = 0;
7148 struct md_rdev *rdev;
7149 struct md_rdev *journal_dev = NULL;
7150 sector_t reshape_offset = 0;
7151 int i;
7152 long long min_offset_diff = 0;
7153 int first = 1;
7154
7155 if (mddev_init_writes_pending(mddev) < 0)
7156 return -ENOMEM;
7157
7158 if (mddev->recovery_cp != MaxSector)
7159 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7160 mdname(mddev));
7161
7162 rdev_for_each(rdev, mddev) {
7163 long long diff;
7164
7165 if (test_bit(Journal, &rdev->flags)) {
7166 journal_dev = rdev;
7167 continue;
7168 }
7169 if (rdev->raid_disk < 0)
7170 continue;
7171 diff = (rdev->new_data_offset - rdev->data_offset);
7172 if (first) {
7173 min_offset_diff = diff;
7174 first = 0;
7175 } else if (mddev->reshape_backwards &&
7176 diff < min_offset_diff)
7177 min_offset_diff = diff;
7178 else if (!mddev->reshape_backwards &&
7179 diff > min_offset_diff)
7180 min_offset_diff = diff;
7181 }
7182
7183 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7184 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7185 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7186 mdname(mddev));
7187 return -EINVAL;
7188 }
7189
7190 if (mddev->reshape_position != MaxSector) {
7191 /* Check that we can continue the reshape.
7192 * Difficulties arise if the stripe we would write to
7193 * next is at or after the stripe we would read from next.
7194 * For a reshape that changes the number of devices, this
7195 * is only possible for a very short time, and mdadm makes
7196 * sure that time appears to have past before assembling
7197 * the array. So we fail if that time hasn't passed.
7198 * For a reshape that keeps the number of devices the same
7199 * mdadm must be monitoring the reshape can keeping the
7200 * critical areas read-only and backed up. It will start
7201 * the array in read-only mode, so we check for that.
7202 */
7203 sector_t here_new, here_old;
7204 int old_disks;
7205 int max_degraded = (mddev->level == 6 ? 2 : 1);
7206 int chunk_sectors;
7207 int new_data_disks;
7208
7209 if (journal_dev) {
7210 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7211 mdname(mddev));
7212 return -EINVAL;
7213 }
7214
7215 if (mddev->new_level != mddev->level) {
7216 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7217 mdname(mddev));
7218 return -EINVAL;
7219 }
7220 old_disks = mddev->raid_disks - mddev->delta_disks;
7221 /* reshape_position must be on a new-stripe boundary, and one
7222 * further up in new geometry must map after here in old
7223 * geometry.
7224 * If the chunk sizes are different, then as we perform reshape
7225 * in units of the largest of the two, reshape_position needs
7226 * be a multiple of the largest chunk size times new data disks.
7227 */
7228 here_new = mddev->reshape_position;
7229 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7230 new_data_disks = mddev->raid_disks - max_degraded;
7231 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7232 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7233 mdname(mddev));
7234 return -EINVAL;
7235 }
7236 reshape_offset = here_new * chunk_sectors;
7237 /* here_new is the stripe we will write to */
7238 here_old = mddev->reshape_position;
7239 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7240 /* here_old is the first stripe that we might need to read
7241 * from */
7242 if (mddev->delta_disks == 0) {
7243 /* We cannot be sure it is safe to start an in-place
7244 * reshape. It is only safe if user-space is monitoring
7245 * and taking constant backups.
7246 * mdadm always starts a situation like this in
7247 * readonly mode so it can take control before
7248 * allowing any writes. So just check for that.
7249 */
7250 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7251 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7252 /* not really in-place - so OK */;
7253 else if (mddev->ro == 0) {
7254 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7255 mdname(mddev));
7256 return -EINVAL;
7257 }
7258 } else if (mddev->reshape_backwards
7259 ? (here_new * chunk_sectors + min_offset_diff <=
7260 here_old * chunk_sectors)
7261 : (here_new * chunk_sectors >=
7262 here_old * chunk_sectors + (-min_offset_diff))) {
7263 /* Reading from the same stripe as writing to - bad */
7264 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7265 mdname(mddev));
7266 return -EINVAL;
7267 }
7268 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7269 /* OK, we should be able to continue; */
7270 } else {
7271 BUG_ON(mddev->level != mddev->new_level);
7272 BUG_ON(mddev->layout != mddev->new_layout);
7273 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7274 BUG_ON(mddev->delta_disks != 0);
7275 }
7276
7277 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7278 test_bit(MD_HAS_PPL, &mddev->flags)) {
7279 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7280 mdname(mddev));
7281 clear_bit(MD_HAS_PPL, &mddev->flags);
7282 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7283 }
7284
7285 if (mddev->private == NULL)
7286 conf = setup_conf(mddev);
7287 else
7288 conf = mddev->private;
7289
7290 if (IS_ERR(conf))
7291 return PTR_ERR(conf);
7292
7293 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7294 if (!journal_dev) {
7295 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7296 mdname(mddev));
7297 mddev->ro = 1;
7298 set_disk_ro(mddev->gendisk, 1);
7299 } else if (mddev->recovery_cp == MaxSector)
7300 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7301 }
7302
7303 conf->min_offset_diff = min_offset_diff;
7304 mddev->thread = conf->thread;
7305 conf->thread = NULL;
7306 mddev->private = conf;
7307
7308 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7309 i++) {
7310 rdev = conf->disks[i].rdev;
7311 if (!rdev && conf->disks[i].replacement) {
7312 /* The replacement is all we have yet */
7313 rdev = conf->disks[i].replacement;
7314 conf->disks[i].replacement = NULL;
7315 clear_bit(Replacement, &rdev->flags);
7316 conf->disks[i].rdev = rdev;
7317 }
7318 if (!rdev)
7319 continue;
7320 if (conf->disks[i].replacement &&
7321 conf->reshape_progress != MaxSector) {
7322 /* replacements and reshape simply do not mix. */
7323 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7324 goto abort;
7325 }
7326 if (test_bit(In_sync, &rdev->flags)) {
7327 working_disks++;
7328 continue;
7329 }
7330 /* This disc is not fully in-sync. However if it
7331 * just stored parity (beyond the recovery_offset),
7332 * when we don't need to be concerned about the
7333 * array being dirty.
7334 * When reshape goes 'backwards', we never have
7335 * partially completed devices, so we only need
7336 * to worry about reshape going forwards.
7337 */
7338 /* Hack because v0.91 doesn't store recovery_offset properly. */
7339 if (mddev->major_version == 0 &&
7340 mddev->minor_version > 90)
7341 rdev->recovery_offset = reshape_offset;
7342
7343 if (rdev->recovery_offset < reshape_offset) {
7344 /* We need to check old and new layout */
7345 if (!only_parity(rdev->raid_disk,
7346 conf->algorithm,
7347 conf->raid_disks,
7348 conf->max_degraded))
7349 continue;
7350 }
7351 if (!only_parity(rdev->raid_disk,
7352 conf->prev_algo,
7353 conf->previous_raid_disks,
7354 conf->max_degraded))
7355 continue;
7356 dirty_parity_disks++;
7357 }
7358
7359 /*
7360 * 0 for a fully functional array, 1 or 2 for a degraded array.
7361 */
7362 mddev->degraded = raid5_calc_degraded(conf);
7363
7364 if (has_failed(conf)) {
7365 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7366 mdname(mddev), mddev->degraded, conf->raid_disks);
7367 goto abort;
7368 }
7369
7370 /* device size must be a multiple of chunk size */
7371 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7372 mddev->resync_max_sectors = mddev->dev_sectors;
7373
7374 if (mddev->degraded > dirty_parity_disks &&
7375 mddev->recovery_cp != MaxSector) {
7376 if (test_bit(MD_HAS_PPL, &mddev->flags))
7377 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7378 mdname(mddev));
7379 else if (mddev->ok_start_degraded)
7380 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7381 mdname(mddev));
7382 else {
7383 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7384 mdname(mddev));
7385 goto abort;
7386 }
7387 }
7388
7389 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7390 mdname(mddev), conf->level,
7391 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7392 mddev->new_layout);
7393
7394 print_raid5_conf(conf);
7395
7396 if (conf->reshape_progress != MaxSector) {
7397 conf->reshape_safe = conf->reshape_progress;
7398 atomic_set(&conf->reshape_stripes, 0);
7399 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7400 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7401 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7402 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7403 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7404 "reshape");
7405 }
7406
7407 /* Ok, everything is just fine now */
7408 if (mddev->to_remove == &raid5_attrs_group)
7409 mddev->to_remove = NULL;
7410 else if (mddev->kobj.sd &&
7411 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7412 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7413 mdname(mddev));
7414 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7415
7416 if (mddev->queue) {
7417 int chunk_size;
7418 /* read-ahead size must cover two whole stripes, which
7419 * is 2 * (datadisks) * chunksize where 'n' is the
7420 * number of raid devices
7421 */
7422 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7423 int stripe = data_disks *
7424 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7425 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7426 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7427
7428 chunk_size = mddev->chunk_sectors << 9;
7429 blk_queue_io_min(mddev->queue, chunk_size);
7430 blk_queue_io_opt(mddev->queue, chunk_size *
7431 (conf->raid_disks - conf->max_degraded));
7432 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7433 /*
7434 * We can only discard a whole stripe. It doesn't make sense to
7435 * discard data disk but write parity disk
7436 */
7437 stripe = stripe * PAGE_SIZE;
7438 /* Round up to power of 2, as discard handling
7439 * currently assumes that */
7440 while ((stripe-1) & stripe)
7441 stripe = (stripe | (stripe-1)) + 1;
7442 mddev->queue->limits.discard_alignment = stripe;
7443 mddev->queue->limits.discard_granularity = stripe;
7444
7445 blk_queue_max_write_same_sectors(mddev->queue, 0);
7446 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7447
7448 rdev_for_each(rdev, mddev) {
7449 disk_stack_limits(mddev->gendisk, rdev->bdev,
7450 rdev->data_offset << 9);
7451 disk_stack_limits(mddev->gendisk, rdev->bdev,
7452 rdev->new_data_offset << 9);
7453 }
7454
7455 /*
7456 * zeroing is required, otherwise data
7457 * could be lost. Consider a scenario: discard a stripe
7458 * (the stripe could be inconsistent if
7459 * discard_zeroes_data is 0); write one disk of the
7460 * stripe (the stripe could be inconsistent again
7461 * depending on which disks are used to calculate
7462 * parity); the disk is broken; The stripe data of this
7463 * disk is lost.
7464 *
7465 * We only allow DISCARD if the sysadmin has confirmed that
7466 * only safe devices are in use by setting a module parameter.
7467 * A better idea might be to turn DISCARD into WRITE_ZEROES
7468 * requests, as that is required to be safe.
7469 */
7470 if (devices_handle_discard_safely &&
7471 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7472 mddev->queue->limits.discard_granularity >= stripe)
7473 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7474 mddev->queue);
7475 else
7476 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7477 mddev->queue);
7478
7479 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7480 }
7481
7482 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7483 goto abort;
7484
7485 return 0;
7486 abort:
7487 md_unregister_thread(&mddev->thread);
7488 print_raid5_conf(conf);
7489 free_conf(conf);
7490 mddev->private = NULL;
7491 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7492 return -EIO;
7493 }
7494
7495 static void raid5_free(struct mddev *mddev, void *priv)
7496 {
7497 struct r5conf *conf = priv;
7498
7499 free_conf(conf);
7500 mddev->to_remove = &raid5_attrs_group;
7501 }
7502
7503 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7504 {
7505 struct r5conf *conf = mddev->private;
7506 int i;
7507
7508 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7509 conf->chunk_sectors / 2, mddev->layout);
7510 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7511 rcu_read_lock();
7512 for (i = 0; i < conf->raid_disks; i++) {
7513 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7514 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7515 }
7516 rcu_read_unlock();
7517 seq_printf (seq, "]");
7518 }
7519
7520 static void print_raid5_conf (struct r5conf *conf)
7521 {
7522 int i;
7523 struct disk_info *tmp;
7524
7525 pr_debug("RAID conf printout:\n");
7526 if (!conf) {
7527 pr_debug("(conf==NULL)\n");
7528 return;
7529 }
7530 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7531 conf->raid_disks,
7532 conf->raid_disks - conf->mddev->degraded);
7533
7534 for (i = 0; i < conf->raid_disks; i++) {
7535 char b[BDEVNAME_SIZE];
7536 tmp = conf->disks + i;
7537 if (tmp->rdev)
7538 pr_debug(" disk %d, o:%d, dev:%s\n",
7539 i, !test_bit(Faulty, &tmp->rdev->flags),
7540 bdevname(tmp->rdev->bdev, b));
7541 }
7542 }
7543
7544 static int raid5_spare_active(struct mddev *mddev)
7545 {
7546 int i;
7547 struct r5conf *conf = mddev->private;
7548 struct disk_info *tmp;
7549 int count = 0;
7550 unsigned long flags;
7551
7552 for (i = 0; i < conf->raid_disks; i++) {
7553 tmp = conf->disks + i;
7554 if (tmp->replacement
7555 && tmp->replacement->recovery_offset == MaxSector
7556 && !test_bit(Faulty, &tmp->replacement->flags)
7557 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7558 /* Replacement has just become active. */
7559 if (!tmp->rdev
7560 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7561 count++;
7562 if (tmp->rdev) {
7563 /* Replaced device not technically faulty,
7564 * but we need to be sure it gets removed
7565 * and never re-added.
7566 */
7567 set_bit(Faulty, &tmp->rdev->flags);
7568 sysfs_notify_dirent_safe(
7569 tmp->rdev->sysfs_state);
7570 }
7571 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7572 } else if (tmp->rdev
7573 && tmp->rdev->recovery_offset == MaxSector
7574 && !test_bit(Faulty, &tmp->rdev->flags)
7575 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7576 count++;
7577 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7578 }
7579 }
7580 spin_lock_irqsave(&conf->device_lock, flags);
7581 mddev->degraded = raid5_calc_degraded(conf);
7582 spin_unlock_irqrestore(&conf->device_lock, flags);
7583 print_raid5_conf(conf);
7584 return count;
7585 }
7586
7587 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7588 {
7589 struct r5conf *conf = mddev->private;
7590 int err = 0;
7591 int number = rdev->raid_disk;
7592 struct md_rdev **rdevp;
7593 struct disk_info *p = conf->disks + number;
7594
7595 print_raid5_conf(conf);
7596 if (test_bit(Journal, &rdev->flags) && conf->log) {
7597 /*
7598 * we can't wait pending write here, as this is called in
7599 * raid5d, wait will deadlock.
7600 * neilb: there is no locking about new writes here,
7601 * so this cannot be safe.
7602 */
7603 if (atomic_read(&conf->active_stripes) ||
7604 atomic_read(&conf->r5c_cached_full_stripes) ||
7605 atomic_read(&conf->r5c_cached_partial_stripes)) {
7606 return -EBUSY;
7607 }
7608 log_exit(conf);
7609 return 0;
7610 }
7611 if (rdev == p->rdev)
7612 rdevp = &p->rdev;
7613 else if (rdev == p->replacement)
7614 rdevp = &p->replacement;
7615 else
7616 return 0;
7617
7618 if (number >= conf->raid_disks &&
7619 conf->reshape_progress == MaxSector)
7620 clear_bit(In_sync, &rdev->flags);
7621
7622 if (test_bit(In_sync, &rdev->flags) ||
7623 atomic_read(&rdev->nr_pending)) {
7624 err = -EBUSY;
7625 goto abort;
7626 }
7627 /* Only remove non-faulty devices if recovery
7628 * isn't possible.
7629 */
7630 if (!test_bit(Faulty, &rdev->flags) &&
7631 mddev->recovery_disabled != conf->recovery_disabled &&
7632 !has_failed(conf) &&
7633 (!p->replacement || p->replacement == rdev) &&
7634 number < conf->raid_disks) {
7635 err = -EBUSY;
7636 goto abort;
7637 }
7638 *rdevp = NULL;
7639 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7640 synchronize_rcu();
7641 if (atomic_read(&rdev->nr_pending)) {
7642 /* lost the race, try later */
7643 err = -EBUSY;
7644 *rdevp = rdev;
7645 }
7646 }
7647 if (!err) {
7648 err = log_modify(conf, rdev, false);
7649 if (err)
7650 goto abort;
7651 }
7652 if (p->replacement) {
7653 /* We must have just cleared 'rdev' */
7654 p->rdev = p->replacement;
7655 clear_bit(Replacement, &p->replacement->flags);
7656 smp_mb(); /* Make sure other CPUs may see both as identical
7657 * but will never see neither - if they are careful
7658 */
7659 p->replacement = NULL;
7660
7661 if (!err)
7662 err = log_modify(conf, p->rdev, true);
7663 }
7664
7665 clear_bit(WantReplacement, &rdev->flags);
7666 abort:
7667
7668 print_raid5_conf(conf);
7669 return err;
7670 }
7671
7672 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7673 {
7674 struct r5conf *conf = mddev->private;
7675 int err = -EEXIST;
7676 int disk;
7677 struct disk_info *p;
7678 int first = 0;
7679 int last = conf->raid_disks - 1;
7680
7681 if (test_bit(Journal, &rdev->flags)) {
7682 if (conf->log)
7683 return -EBUSY;
7684
7685 rdev->raid_disk = 0;
7686 /*
7687 * The array is in readonly mode if journal is missing, so no
7688 * write requests running. We should be safe
7689 */
7690 log_init(conf, rdev, false);
7691 return 0;
7692 }
7693 if (mddev->recovery_disabled == conf->recovery_disabled)
7694 return -EBUSY;
7695
7696 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7697 /* no point adding a device */
7698 return -EINVAL;
7699
7700 if (rdev->raid_disk >= 0)
7701 first = last = rdev->raid_disk;
7702
7703 /*
7704 * find the disk ... but prefer rdev->saved_raid_disk
7705 * if possible.
7706 */
7707 if (rdev->saved_raid_disk >= 0 &&
7708 rdev->saved_raid_disk >= first &&
7709 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7710 first = rdev->saved_raid_disk;
7711
7712 for (disk = first; disk <= last; disk++) {
7713 p = conf->disks + disk;
7714 if (p->rdev == NULL) {
7715 clear_bit(In_sync, &rdev->flags);
7716 rdev->raid_disk = disk;
7717 if (rdev->saved_raid_disk != disk)
7718 conf->fullsync = 1;
7719 rcu_assign_pointer(p->rdev, rdev);
7720
7721 err = log_modify(conf, rdev, true);
7722
7723 goto out;
7724 }
7725 }
7726 for (disk = first; disk <= last; disk++) {
7727 p = conf->disks + disk;
7728 if (test_bit(WantReplacement, &p->rdev->flags) &&
7729 p->replacement == NULL) {
7730 clear_bit(In_sync, &rdev->flags);
7731 set_bit(Replacement, &rdev->flags);
7732 rdev->raid_disk = disk;
7733 err = 0;
7734 conf->fullsync = 1;
7735 rcu_assign_pointer(p->replacement, rdev);
7736 break;
7737 }
7738 }
7739 out:
7740 print_raid5_conf(conf);
7741 return err;
7742 }
7743
7744 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7745 {
7746 /* no resync is happening, and there is enough space
7747 * on all devices, so we can resize.
7748 * We need to make sure resync covers any new space.
7749 * If the array is shrinking we should possibly wait until
7750 * any io in the removed space completes, but it hardly seems
7751 * worth it.
7752 */
7753 sector_t newsize;
7754 struct r5conf *conf = mddev->private;
7755
7756 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7757 return -EINVAL;
7758 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7759 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7760 if (mddev->external_size &&
7761 mddev->array_sectors > newsize)
7762 return -EINVAL;
7763 if (mddev->bitmap) {
7764 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7765 if (ret)
7766 return ret;
7767 }
7768 md_set_array_sectors(mddev, newsize);
7769 if (sectors > mddev->dev_sectors &&
7770 mddev->recovery_cp > mddev->dev_sectors) {
7771 mddev->recovery_cp = mddev->dev_sectors;
7772 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7773 }
7774 mddev->dev_sectors = sectors;
7775 mddev->resync_max_sectors = sectors;
7776 return 0;
7777 }
7778
7779 static int check_stripe_cache(struct mddev *mddev)
7780 {
7781 /* Can only proceed if there are plenty of stripe_heads.
7782 * We need a minimum of one full stripe,, and for sensible progress
7783 * it is best to have about 4 times that.
7784 * If we require 4 times, then the default 256 4K stripe_heads will
7785 * allow for chunk sizes up to 256K, which is probably OK.
7786 * If the chunk size is greater, user-space should request more
7787 * stripe_heads first.
7788 */
7789 struct r5conf *conf = mddev->private;
7790 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7791 > conf->min_nr_stripes ||
7792 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7793 > conf->min_nr_stripes) {
7794 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7795 mdname(mddev),
7796 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7797 / STRIPE_SIZE)*4);
7798 return 0;
7799 }
7800 return 1;
7801 }
7802
7803 static int check_reshape(struct mddev *mddev)
7804 {
7805 struct r5conf *conf = mddev->private;
7806
7807 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7808 return -EINVAL;
7809 if (mddev->delta_disks == 0 &&
7810 mddev->new_layout == mddev->layout &&
7811 mddev->new_chunk_sectors == mddev->chunk_sectors)
7812 return 0; /* nothing to do */
7813 if (has_failed(conf))
7814 return -EINVAL;
7815 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7816 /* We might be able to shrink, but the devices must
7817 * be made bigger first.
7818 * For raid6, 4 is the minimum size.
7819 * Otherwise 2 is the minimum
7820 */
7821 int min = 2;
7822 if (mddev->level == 6)
7823 min = 4;
7824 if (mddev->raid_disks + mddev->delta_disks < min)
7825 return -EINVAL;
7826 }
7827
7828 if (!check_stripe_cache(mddev))
7829 return -ENOSPC;
7830
7831 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7832 mddev->delta_disks > 0)
7833 if (resize_chunks(conf,
7834 conf->previous_raid_disks
7835 + max(0, mddev->delta_disks),
7836 max(mddev->new_chunk_sectors,
7837 mddev->chunk_sectors)
7838 ) < 0)
7839 return -ENOMEM;
7840
7841 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7842 return 0; /* never bother to shrink */
7843 return resize_stripes(conf, (conf->previous_raid_disks
7844 + mddev->delta_disks));
7845 }
7846
7847 static int raid5_start_reshape(struct mddev *mddev)
7848 {
7849 struct r5conf *conf = mddev->private;
7850 struct md_rdev *rdev;
7851 int spares = 0;
7852 unsigned long flags;
7853
7854 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7855 return -EBUSY;
7856
7857 if (!check_stripe_cache(mddev))
7858 return -ENOSPC;
7859
7860 if (has_failed(conf))
7861 return -EINVAL;
7862
7863 rdev_for_each(rdev, mddev) {
7864 if (!test_bit(In_sync, &rdev->flags)
7865 && !test_bit(Faulty, &rdev->flags))
7866 spares++;
7867 }
7868
7869 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7870 /* Not enough devices even to make a degraded array
7871 * of that size
7872 */
7873 return -EINVAL;
7874
7875 /* Refuse to reduce size of the array. Any reductions in
7876 * array size must be through explicit setting of array_size
7877 * attribute.
7878 */
7879 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7880 < mddev->array_sectors) {
7881 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7882 mdname(mddev));
7883 return -EINVAL;
7884 }
7885
7886 atomic_set(&conf->reshape_stripes, 0);
7887 spin_lock_irq(&conf->device_lock);
7888 write_seqcount_begin(&conf->gen_lock);
7889 conf->previous_raid_disks = conf->raid_disks;
7890 conf->raid_disks += mddev->delta_disks;
7891 conf->prev_chunk_sectors = conf->chunk_sectors;
7892 conf->chunk_sectors = mddev->new_chunk_sectors;
7893 conf->prev_algo = conf->algorithm;
7894 conf->algorithm = mddev->new_layout;
7895 conf->generation++;
7896 /* Code that selects data_offset needs to see the generation update
7897 * if reshape_progress has been set - so a memory barrier needed.
7898 */
7899 smp_mb();
7900 if (mddev->reshape_backwards)
7901 conf->reshape_progress = raid5_size(mddev, 0, 0);
7902 else
7903 conf->reshape_progress = 0;
7904 conf->reshape_safe = conf->reshape_progress;
7905 write_seqcount_end(&conf->gen_lock);
7906 spin_unlock_irq(&conf->device_lock);
7907
7908 /* Now make sure any requests that proceeded on the assumption
7909 * the reshape wasn't running - like Discard or Read - have
7910 * completed.
7911 */
7912 mddev_suspend(mddev);
7913 mddev_resume(mddev);
7914
7915 /* Add some new drives, as many as will fit.
7916 * We know there are enough to make the newly sized array work.
7917 * Don't add devices if we are reducing the number of
7918 * devices in the array. This is because it is not possible
7919 * to correctly record the "partially reconstructed" state of
7920 * such devices during the reshape and confusion could result.
7921 */
7922 if (mddev->delta_disks >= 0) {
7923 rdev_for_each(rdev, mddev)
7924 if (rdev->raid_disk < 0 &&
7925 !test_bit(Faulty, &rdev->flags)) {
7926 if (raid5_add_disk(mddev, rdev) == 0) {
7927 if (rdev->raid_disk
7928 >= conf->previous_raid_disks)
7929 set_bit(In_sync, &rdev->flags);
7930 else
7931 rdev->recovery_offset = 0;
7932
7933 if (sysfs_link_rdev(mddev, rdev))
7934 /* Failure here is OK */;
7935 }
7936 } else if (rdev->raid_disk >= conf->previous_raid_disks
7937 && !test_bit(Faulty, &rdev->flags)) {
7938 /* This is a spare that was manually added */
7939 set_bit(In_sync, &rdev->flags);
7940 }
7941
7942 /* When a reshape changes the number of devices,
7943 * ->degraded is measured against the larger of the
7944 * pre and post number of devices.
7945 */
7946 spin_lock_irqsave(&conf->device_lock, flags);
7947 mddev->degraded = raid5_calc_degraded(conf);
7948 spin_unlock_irqrestore(&conf->device_lock, flags);
7949 }
7950 mddev->raid_disks = conf->raid_disks;
7951 mddev->reshape_position = conf->reshape_progress;
7952 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7953
7954 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7955 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7956 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7957 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7958 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7959 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7960 "reshape");
7961 if (!mddev->sync_thread) {
7962 mddev->recovery = 0;
7963 spin_lock_irq(&conf->device_lock);
7964 write_seqcount_begin(&conf->gen_lock);
7965 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7966 mddev->new_chunk_sectors =
7967 conf->chunk_sectors = conf->prev_chunk_sectors;
7968 mddev->new_layout = conf->algorithm = conf->prev_algo;
7969 rdev_for_each(rdev, mddev)
7970 rdev->new_data_offset = rdev->data_offset;
7971 smp_wmb();
7972 conf->generation --;
7973 conf->reshape_progress = MaxSector;
7974 mddev->reshape_position = MaxSector;
7975 write_seqcount_end(&conf->gen_lock);
7976 spin_unlock_irq(&conf->device_lock);
7977 return -EAGAIN;
7978 }
7979 conf->reshape_checkpoint = jiffies;
7980 md_wakeup_thread(mddev->sync_thread);
7981 md_new_event(mddev);
7982 return 0;
7983 }
7984
7985 /* This is called from the reshape thread and should make any
7986 * changes needed in 'conf'
7987 */
7988 static void end_reshape(struct r5conf *conf)
7989 {
7990
7991 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7992 struct md_rdev *rdev;
7993
7994 spin_lock_irq(&conf->device_lock);
7995 conf->previous_raid_disks = conf->raid_disks;
7996 md_finish_reshape(conf->mddev);
7997 smp_wmb();
7998 conf->reshape_progress = MaxSector;
7999 conf->mddev->reshape_position = MaxSector;
8000 rdev_for_each(rdev, conf->mddev)
8001 if (rdev->raid_disk >= 0 &&
8002 !test_bit(Journal, &rdev->flags) &&
8003 !test_bit(In_sync, &rdev->flags))
8004 rdev->recovery_offset = MaxSector;
8005 spin_unlock_irq(&conf->device_lock);
8006 wake_up(&conf->wait_for_overlap);
8007
8008 /* read-ahead size must cover two whole stripes, which is
8009 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8010 */
8011 if (conf->mddev->queue) {
8012 int data_disks = conf->raid_disks - conf->max_degraded;
8013 int stripe = data_disks * ((conf->chunk_sectors << 9)
8014 / PAGE_SIZE);
8015 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8016 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8017 }
8018 }
8019 }
8020
8021 /* This is called from the raid5d thread with mddev_lock held.
8022 * It makes config changes to the device.
8023 */
8024 static void raid5_finish_reshape(struct mddev *mddev)
8025 {
8026 struct r5conf *conf = mddev->private;
8027
8028 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8029
8030 if (mddev->delta_disks <= 0) {
8031 int d;
8032 spin_lock_irq(&conf->device_lock);
8033 mddev->degraded = raid5_calc_degraded(conf);
8034 spin_unlock_irq(&conf->device_lock);
8035 for (d = conf->raid_disks ;
8036 d < conf->raid_disks - mddev->delta_disks;
8037 d++) {
8038 struct md_rdev *rdev = conf->disks[d].rdev;
8039 if (rdev)
8040 clear_bit(In_sync, &rdev->flags);
8041 rdev = conf->disks[d].replacement;
8042 if (rdev)
8043 clear_bit(In_sync, &rdev->flags);
8044 }
8045 }
8046 mddev->layout = conf->algorithm;
8047 mddev->chunk_sectors = conf->chunk_sectors;
8048 mddev->reshape_position = MaxSector;
8049 mddev->delta_disks = 0;
8050 mddev->reshape_backwards = 0;
8051 }
8052 }
8053
8054 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8055 {
8056 struct r5conf *conf = mddev->private;
8057
8058 if (quiesce) {
8059 /* stop all writes */
8060 lock_all_device_hash_locks_irq(conf);
8061 /* '2' tells resync/reshape to pause so that all
8062 * active stripes can drain
8063 */
8064 r5c_flush_cache(conf, INT_MAX);
8065 conf->quiesce = 2;
8066 wait_event_cmd(conf->wait_for_quiescent,
8067 atomic_read(&conf->active_stripes) == 0 &&
8068 atomic_read(&conf->active_aligned_reads) == 0,
8069 unlock_all_device_hash_locks_irq(conf),
8070 lock_all_device_hash_locks_irq(conf));
8071 conf->quiesce = 1;
8072 unlock_all_device_hash_locks_irq(conf);
8073 /* allow reshape to continue */
8074 wake_up(&conf->wait_for_overlap);
8075 } else {
8076 /* re-enable writes */
8077 lock_all_device_hash_locks_irq(conf);
8078 conf->quiesce = 0;
8079 wake_up(&conf->wait_for_quiescent);
8080 wake_up(&conf->wait_for_overlap);
8081 unlock_all_device_hash_locks_irq(conf);
8082 }
8083 log_quiesce(conf, quiesce);
8084 }
8085
8086 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8087 {
8088 struct r0conf *raid0_conf = mddev->private;
8089 sector_t sectors;
8090
8091 /* for raid0 takeover only one zone is supported */
8092 if (raid0_conf->nr_strip_zones > 1) {
8093 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8094 mdname(mddev));
8095 return ERR_PTR(-EINVAL);
8096 }
8097
8098 sectors = raid0_conf->strip_zone[0].zone_end;
8099 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8100 mddev->dev_sectors = sectors;
8101 mddev->new_level = level;
8102 mddev->new_layout = ALGORITHM_PARITY_N;
8103 mddev->new_chunk_sectors = mddev->chunk_sectors;
8104 mddev->raid_disks += 1;
8105 mddev->delta_disks = 1;
8106 /* make sure it will be not marked as dirty */
8107 mddev->recovery_cp = MaxSector;
8108
8109 return setup_conf(mddev);
8110 }
8111
8112 static void *raid5_takeover_raid1(struct mddev *mddev)
8113 {
8114 int chunksect;
8115 void *ret;
8116
8117 if (mddev->raid_disks != 2 ||
8118 mddev->degraded > 1)
8119 return ERR_PTR(-EINVAL);
8120
8121 /* Should check if there are write-behind devices? */
8122
8123 chunksect = 64*2; /* 64K by default */
8124
8125 /* The array must be an exact multiple of chunksize */
8126 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8127 chunksect >>= 1;
8128
8129 if ((chunksect<<9) < STRIPE_SIZE)
8130 /* array size does not allow a suitable chunk size */
8131 return ERR_PTR(-EINVAL);
8132
8133 mddev->new_level = 5;
8134 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8135 mddev->new_chunk_sectors = chunksect;
8136
8137 ret = setup_conf(mddev);
8138 if (!IS_ERR(ret))
8139 mddev_clear_unsupported_flags(mddev,
8140 UNSUPPORTED_MDDEV_FLAGS);
8141 return ret;
8142 }
8143
8144 static void *raid5_takeover_raid6(struct mddev *mddev)
8145 {
8146 int new_layout;
8147
8148 switch (mddev->layout) {
8149 case ALGORITHM_LEFT_ASYMMETRIC_6:
8150 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8151 break;
8152 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8153 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8154 break;
8155 case ALGORITHM_LEFT_SYMMETRIC_6:
8156 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8157 break;
8158 case ALGORITHM_RIGHT_SYMMETRIC_6:
8159 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8160 break;
8161 case ALGORITHM_PARITY_0_6:
8162 new_layout = ALGORITHM_PARITY_0;
8163 break;
8164 case ALGORITHM_PARITY_N:
8165 new_layout = ALGORITHM_PARITY_N;
8166 break;
8167 default:
8168 return ERR_PTR(-EINVAL);
8169 }
8170 mddev->new_level = 5;
8171 mddev->new_layout = new_layout;
8172 mddev->delta_disks = -1;
8173 mddev->raid_disks -= 1;
8174 return setup_conf(mddev);
8175 }
8176
8177 static int raid5_check_reshape(struct mddev *mddev)
8178 {
8179 /* For a 2-drive array, the layout and chunk size can be changed
8180 * immediately as not restriping is needed.
8181 * For larger arrays we record the new value - after validation
8182 * to be used by a reshape pass.
8183 */
8184 struct r5conf *conf = mddev->private;
8185 int new_chunk = mddev->new_chunk_sectors;
8186
8187 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8188 return -EINVAL;
8189 if (new_chunk > 0) {
8190 if (!is_power_of_2(new_chunk))
8191 return -EINVAL;
8192 if (new_chunk < (PAGE_SIZE>>9))
8193 return -EINVAL;
8194 if (mddev->array_sectors & (new_chunk-1))
8195 /* not factor of array size */
8196 return -EINVAL;
8197 }
8198
8199 /* They look valid */
8200
8201 if (mddev->raid_disks == 2) {
8202 /* can make the change immediately */
8203 if (mddev->new_layout >= 0) {
8204 conf->algorithm = mddev->new_layout;
8205 mddev->layout = mddev->new_layout;
8206 }
8207 if (new_chunk > 0) {
8208 conf->chunk_sectors = new_chunk ;
8209 mddev->chunk_sectors = new_chunk;
8210 }
8211 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8212 md_wakeup_thread(mddev->thread);
8213 }
8214 return check_reshape(mddev);
8215 }
8216
8217 static int raid6_check_reshape(struct mddev *mddev)
8218 {
8219 int new_chunk = mddev->new_chunk_sectors;
8220
8221 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8222 return -EINVAL;
8223 if (new_chunk > 0) {
8224 if (!is_power_of_2(new_chunk))
8225 return -EINVAL;
8226 if (new_chunk < (PAGE_SIZE >> 9))
8227 return -EINVAL;
8228 if (mddev->array_sectors & (new_chunk-1))
8229 /* not factor of array size */
8230 return -EINVAL;
8231 }
8232
8233 /* They look valid */
8234 return check_reshape(mddev);
8235 }
8236
8237 static void *raid5_takeover(struct mddev *mddev)
8238 {
8239 /* raid5 can take over:
8240 * raid0 - if there is only one strip zone - make it a raid4 layout
8241 * raid1 - if there are two drives. We need to know the chunk size
8242 * raid4 - trivial - just use a raid4 layout.
8243 * raid6 - Providing it is a *_6 layout
8244 */
8245 if (mddev->level == 0)
8246 return raid45_takeover_raid0(mddev, 5);
8247 if (mddev->level == 1)
8248 return raid5_takeover_raid1(mddev);
8249 if (mddev->level == 4) {
8250 mddev->new_layout = ALGORITHM_PARITY_N;
8251 mddev->new_level = 5;
8252 return setup_conf(mddev);
8253 }
8254 if (mddev->level == 6)
8255 return raid5_takeover_raid6(mddev);
8256
8257 return ERR_PTR(-EINVAL);
8258 }
8259
8260 static void *raid4_takeover(struct mddev *mddev)
8261 {
8262 /* raid4 can take over:
8263 * raid0 - if there is only one strip zone
8264 * raid5 - if layout is right
8265 */
8266 if (mddev->level == 0)
8267 return raid45_takeover_raid0(mddev, 4);
8268 if (mddev->level == 5 &&
8269 mddev->layout == ALGORITHM_PARITY_N) {
8270 mddev->new_layout = 0;
8271 mddev->new_level = 4;
8272 return setup_conf(mddev);
8273 }
8274 return ERR_PTR(-EINVAL);
8275 }
8276
8277 static struct md_personality raid5_personality;
8278
8279 static void *raid6_takeover(struct mddev *mddev)
8280 {
8281 /* Currently can only take over a raid5. We map the
8282 * personality to an equivalent raid6 personality
8283 * with the Q block at the end.
8284 */
8285 int new_layout;
8286
8287 if (mddev->pers != &raid5_personality)
8288 return ERR_PTR(-EINVAL);
8289 if (mddev->degraded > 1)
8290 return ERR_PTR(-EINVAL);
8291 if (mddev->raid_disks > 253)
8292 return ERR_PTR(-EINVAL);
8293 if (mddev->raid_disks < 3)
8294 return ERR_PTR(-EINVAL);
8295
8296 switch (mddev->layout) {
8297 case ALGORITHM_LEFT_ASYMMETRIC:
8298 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8299 break;
8300 case ALGORITHM_RIGHT_ASYMMETRIC:
8301 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8302 break;
8303 case ALGORITHM_LEFT_SYMMETRIC:
8304 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8305 break;
8306 case ALGORITHM_RIGHT_SYMMETRIC:
8307 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8308 break;
8309 case ALGORITHM_PARITY_0:
8310 new_layout = ALGORITHM_PARITY_0_6;
8311 break;
8312 case ALGORITHM_PARITY_N:
8313 new_layout = ALGORITHM_PARITY_N;
8314 break;
8315 default:
8316 return ERR_PTR(-EINVAL);
8317 }
8318 mddev->new_level = 6;
8319 mddev->new_layout = new_layout;
8320 mddev->delta_disks = 1;
8321 mddev->raid_disks += 1;
8322 return setup_conf(mddev);
8323 }
8324
8325 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8326 {
8327 struct r5conf *conf;
8328 int err;
8329
8330 err = mddev_lock(mddev);
8331 if (err)
8332 return err;
8333 conf = mddev->private;
8334 if (!conf) {
8335 mddev_unlock(mddev);
8336 return -ENODEV;
8337 }
8338
8339 if (strncmp(buf, "ppl", 3) == 0) {
8340 /* ppl only works with RAID 5 */
8341 if (!raid5_has_ppl(conf) && conf->level == 5) {
8342 err = log_init(conf, NULL, true);
8343 if (!err) {
8344 err = resize_stripes(conf, conf->pool_size);
8345 if (err)
8346 log_exit(conf);
8347 }
8348 } else
8349 err = -EINVAL;
8350 } else if (strncmp(buf, "resync", 6) == 0) {
8351 if (raid5_has_ppl(conf)) {
8352 mddev_suspend(mddev);
8353 log_exit(conf);
8354 mddev_resume(mddev);
8355 err = resize_stripes(conf, conf->pool_size);
8356 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8357 r5l_log_disk_error(conf)) {
8358 bool journal_dev_exists = false;
8359 struct md_rdev *rdev;
8360
8361 rdev_for_each(rdev, mddev)
8362 if (test_bit(Journal, &rdev->flags)) {
8363 journal_dev_exists = true;
8364 break;
8365 }
8366
8367 if (!journal_dev_exists) {
8368 mddev_suspend(mddev);
8369 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8370 mddev_resume(mddev);
8371 } else /* need remove journal device first */
8372 err = -EBUSY;
8373 } else
8374 err = -EINVAL;
8375 } else {
8376 err = -EINVAL;
8377 }
8378
8379 if (!err)
8380 md_update_sb(mddev, 1);
8381
8382 mddev_unlock(mddev);
8383
8384 return err;
8385 }
8386
8387 static int raid5_start(struct mddev *mddev)
8388 {
8389 struct r5conf *conf = mddev->private;
8390
8391 return r5l_start(conf->log);
8392 }
8393
8394 static struct md_personality raid6_personality =
8395 {
8396 .name = "raid6",
8397 .level = 6,
8398 .owner = THIS_MODULE,
8399 .make_request = raid5_make_request,
8400 .run = raid5_run,
8401 .start = raid5_start,
8402 .free = raid5_free,
8403 .status = raid5_status,
8404 .error_handler = raid5_error,
8405 .hot_add_disk = raid5_add_disk,
8406 .hot_remove_disk= raid5_remove_disk,
8407 .spare_active = raid5_spare_active,
8408 .sync_request = raid5_sync_request,
8409 .resize = raid5_resize,
8410 .size = raid5_size,
8411 .check_reshape = raid6_check_reshape,
8412 .start_reshape = raid5_start_reshape,
8413 .finish_reshape = raid5_finish_reshape,
8414 .quiesce = raid5_quiesce,
8415 .takeover = raid6_takeover,
8416 .congested = raid5_congested,
8417 .change_consistency_policy = raid5_change_consistency_policy,
8418 };
8419 static struct md_personality raid5_personality =
8420 {
8421 .name = "raid5",
8422 .level = 5,
8423 .owner = THIS_MODULE,
8424 .make_request = raid5_make_request,
8425 .run = raid5_run,
8426 .start = raid5_start,
8427 .free = raid5_free,
8428 .status = raid5_status,
8429 .error_handler = raid5_error,
8430 .hot_add_disk = raid5_add_disk,
8431 .hot_remove_disk= raid5_remove_disk,
8432 .spare_active = raid5_spare_active,
8433 .sync_request = raid5_sync_request,
8434 .resize = raid5_resize,
8435 .size = raid5_size,
8436 .check_reshape = raid5_check_reshape,
8437 .start_reshape = raid5_start_reshape,
8438 .finish_reshape = raid5_finish_reshape,
8439 .quiesce = raid5_quiesce,
8440 .takeover = raid5_takeover,
8441 .congested = raid5_congested,
8442 .change_consistency_policy = raid5_change_consistency_policy,
8443 };
8444
8445 static struct md_personality raid4_personality =
8446 {
8447 .name = "raid4",
8448 .level = 4,
8449 .owner = THIS_MODULE,
8450 .make_request = raid5_make_request,
8451 .run = raid5_run,
8452 .start = raid5_start,
8453 .free = raid5_free,
8454 .status = raid5_status,
8455 .error_handler = raid5_error,
8456 .hot_add_disk = raid5_add_disk,
8457 .hot_remove_disk= raid5_remove_disk,
8458 .spare_active = raid5_spare_active,
8459 .sync_request = raid5_sync_request,
8460 .resize = raid5_resize,
8461 .size = raid5_size,
8462 .check_reshape = raid5_check_reshape,
8463 .start_reshape = raid5_start_reshape,
8464 .finish_reshape = raid5_finish_reshape,
8465 .quiesce = raid5_quiesce,
8466 .takeover = raid4_takeover,
8467 .congested = raid5_congested,
8468 .change_consistency_policy = raid5_change_consistency_policy,
8469 };
8470
8471 static int __init raid5_init(void)
8472 {
8473 int ret;
8474
8475 raid5_wq = alloc_workqueue("raid5wq",
8476 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8477 if (!raid5_wq)
8478 return -ENOMEM;
8479
8480 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8481 "md/raid5:prepare",
8482 raid456_cpu_up_prepare,
8483 raid456_cpu_dead);
8484 if (ret) {
8485 destroy_workqueue(raid5_wq);
8486 return ret;
8487 }
8488 register_md_personality(&raid6_personality);
8489 register_md_personality(&raid5_personality);
8490 register_md_personality(&raid4_personality);
8491 return 0;
8492 }
8493
8494 static void raid5_exit(void)
8495 {
8496 unregister_md_personality(&raid6_personality);
8497 unregister_md_personality(&raid5_personality);
8498 unregister_md_personality(&raid4_personality);
8499 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8500 destroy_workqueue(raid5_wq);
8501 }
8502
8503 module_init(raid5_init);
8504 module_exit(raid5_exit);
8505 MODULE_LICENSE("GPL");
8506 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8507 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8508 MODULE_ALIAS("md-raid5");
8509 MODULE_ALIAS("md-raid4");
8510 MODULE_ALIAS("md-level-5");
8511 MODULE_ALIAS("md-level-4");
8512 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8513 MODULE_ALIAS("md-raid6");
8514 MODULE_ALIAS("md-level-6");
8515
8516 /* This used to be two separate modules, they were: */
8517 MODULE_ALIAS("raid5");
8518 MODULE_ALIAS("raid6");