]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid5.c
Merge remote-tracking branches 'asoc/topic/rockchip', 'asoc/topic/rt5514', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <linux/sched/signal.h>
59
60 #include <trace/events/block.h>
61
62 #include "md.h"
63 #include "raid5.h"
64 #include "raid0.h"
65 #include "bitmap.h"
66
67 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
68
69 #define cpu_to_group(cpu) cpu_to_node(cpu)
70 #define ANY_GROUP NUMA_NO_NODE
71
72 static bool devices_handle_discard_safely = false;
73 module_param(devices_handle_discard_safely, bool, 0644);
74 MODULE_PARM_DESC(devices_handle_discard_safely,
75 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
76 static struct workqueue_struct *raid5_wq;
77
78 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
79 {
80 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
81 return &conf->stripe_hashtbl[hash];
82 }
83
84 static inline int stripe_hash_locks_hash(sector_t sect)
85 {
86 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
87 }
88
89 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
90 {
91 spin_lock_irq(conf->hash_locks + hash);
92 spin_lock(&conf->device_lock);
93 }
94
95 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
96 {
97 spin_unlock(&conf->device_lock);
98 spin_unlock_irq(conf->hash_locks + hash);
99 }
100
101 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
102 {
103 int i;
104 local_irq_disable();
105 spin_lock(conf->hash_locks);
106 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 spin_lock(&conf->device_lock);
109 }
110
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
112 {
113 int i;
114 spin_unlock(&conf->device_lock);
115 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
116 spin_unlock(conf->hash_locks + i - 1);
117 local_irq_enable();
118 }
119
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head *sh)
122 {
123 if (sh->ddf_layout)
124 /* ddf always start from first device */
125 return 0;
126 /* md starts just after Q block */
127 if (sh->qd_idx == sh->disks - 1)
128 return 0;
129 else
130 return sh->qd_idx + 1;
131 }
132 static inline int raid6_next_disk(int disk, int raid_disks)
133 {
134 disk++;
135 return (disk < raid_disks) ? disk : 0;
136 }
137
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139 * We need to map each disk to a 'slot', where the data disks are slot
140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141 * is raid_disks-1. This help does that mapping.
142 */
143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 int *count, int syndrome_disks)
145 {
146 int slot = *count;
147
148 if (sh->ddf_layout)
149 (*count)++;
150 if (idx == sh->pd_idx)
151 return syndrome_disks;
152 if (idx == sh->qd_idx)
153 return syndrome_disks + 1;
154 if (!sh->ddf_layout)
155 (*count)++;
156 return slot;
157 }
158
159 static void return_io(struct bio_list *return_bi)
160 {
161 struct bio *bi;
162 while ((bi = bio_list_pop(return_bi)) != NULL) {
163 bi->bi_iter.bi_size = 0;
164 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
165 bi, 0);
166 bio_endio(bi);
167 }
168 }
169
170 static void print_raid5_conf (struct r5conf *conf);
171
172 static int stripe_operations_active(struct stripe_head *sh)
173 {
174 return sh->check_state || sh->reconstruct_state ||
175 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
176 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
177 }
178
179 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
180 {
181 struct r5conf *conf = sh->raid_conf;
182 struct r5worker_group *group;
183 int thread_cnt;
184 int i, cpu = sh->cpu;
185
186 if (!cpu_online(cpu)) {
187 cpu = cpumask_any(cpu_online_mask);
188 sh->cpu = cpu;
189 }
190
191 if (list_empty(&sh->lru)) {
192 struct r5worker_group *group;
193 group = conf->worker_groups + cpu_to_group(cpu);
194 list_add_tail(&sh->lru, &group->handle_list);
195 group->stripes_cnt++;
196 sh->group = group;
197 }
198
199 if (conf->worker_cnt_per_group == 0) {
200 md_wakeup_thread(conf->mddev->thread);
201 return;
202 }
203
204 group = conf->worker_groups + cpu_to_group(sh->cpu);
205
206 group->workers[0].working = true;
207 /* at least one worker should run to avoid race */
208 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209
210 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211 /* wakeup more workers */
212 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213 if (group->workers[i].working == false) {
214 group->workers[i].working = true;
215 queue_work_on(sh->cpu, raid5_wq,
216 &group->workers[i].work);
217 thread_cnt--;
218 }
219 }
220 }
221
222 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223 struct list_head *temp_inactive_list)
224 {
225 int i;
226 int injournal = 0; /* number of date pages with R5_InJournal */
227
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
230
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 injournal++;
235 /*
236 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
237 * data in journal, so they are not released to cached lists
238 */
239 if (conf->quiesce && r5c_is_writeback(conf->log) &&
240 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) {
241 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
242 r5c_make_stripe_write_out(sh);
243 set_bit(STRIPE_HANDLE, &sh->state);
244 }
245
246 if (test_bit(STRIPE_HANDLE, &sh->state)) {
247 if (test_bit(STRIPE_DELAYED, &sh->state) &&
248 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
249 list_add_tail(&sh->lru, &conf->delayed_list);
250 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
251 sh->bm_seq - conf->seq_write > 0)
252 list_add_tail(&sh->lru, &conf->bitmap_list);
253 else {
254 clear_bit(STRIPE_DELAYED, &sh->state);
255 clear_bit(STRIPE_BIT_DELAY, &sh->state);
256 if (conf->worker_cnt_per_group == 0) {
257 list_add_tail(&sh->lru, &conf->handle_list);
258 } else {
259 raid5_wakeup_stripe_thread(sh);
260 return;
261 }
262 }
263 md_wakeup_thread(conf->mddev->thread);
264 } else {
265 BUG_ON(stripe_operations_active(sh));
266 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
267 if (atomic_dec_return(&conf->preread_active_stripes)
268 < IO_THRESHOLD)
269 md_wakeup_thread(conf->mddev->thread);
270 atomic_dec(&conf->active_stripes);
271 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
272 if (!r5c_is_writeback(conf->log))
273 list_add_tail(&sh->lru, temp_inactive_list);
274 else {
275 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
276 if (injournal == 0)
277 list_add_tail(&sh->lru, temp_inactive_list);
278 else if (injournal == conf->raid_disks - conf->max_degraded) {
279 /* full stripe */
280 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
281 atomic_inc(&conf->r5c_cached_full_stripes);
282 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
283 atomic_dec(&conf->r5c_cached_partial_stripes);
284 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
285 r5c_check_cached_full_stripe(conf);
286 } else
287 /*
288 * STRIPE_R5C_PARTIAL_STRIPE is set in
289 * r5c_try_caching_write(). No need to
290 * set it again.
291 */
292 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
293 }
294 }
295 }
296 }
297
298 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
299 struct list_head *temp_inactive_list)
300 {
301 if (atomic_dec_and_test(&sh->count))
302 do_release_stripe(conf, sh, temp_inactive_list);
303 }
304
305 /*
306 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
307 *
308 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
309 * given time. Adding stripes only takes device lock, while deleting stripes
310 * only takes hash lock.
311 */
312 static void release_inactive_stripe_list(struct r5conf *conf,
313 struct list_head *temp_inactive_list,
314 int hash)
315 {
316 int size;
317 bool do_wakeup = false;
318 unsigned long flags;
319
320 if (hash == NR_STRIPE_HASH_LOCKS) {
321 size = NR_STRIPE_HASH_LOCKS;
322 hash = NR_STRIPE_HASH_LOCKS - 1;
323 } else
324 size = 1;
325 while (size) {
326 struct list_head *list = &temp_inactive_list[size - 1];
327
328 /*
329 * We don't hold any lock here yet, raid5_get_active_stripe() might
330 * remove stripes from the list
331 */
332 if (!list_empty_careful(list)) {
333 spin_lock_irqsave(conf->hash_locks + hash, flags);
334 if (list_empty(conf->inactive_list + hash) &&
335 !list_empty(list))
336 atomic_dec(&conf->empty_inactive_list_nr);
337 list_splice_tail_init(list, conf->inactive_list + hash);
338 do_wakeup = true;
339 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
340 }
341 size--;
342 hash--;
343 }
344
345 if (do_wakeup) {
346 wake_up(&conf->wait_for_stripe);
347 if (atomic_read(&conf->active_stripes) == 0)
348 wake_up(&conf->wait_for_quiescent);
349 if (conf->retry_read_aligned)
350 md_wakeup_thread(conf->mddev->thread);
351 }
352 }
353
354 /* should hold conf->device_lock already */
355 static int release_stripe_list(struct r5conf *conf,
356 struct list_head *temp_inactive_list)
357 {
358 struct stripe_head *sh, *t;
359 int count = 0;
360 struct llist_node *head;
361
362 head = llist_del_all(&conf->released_stripes);
363 head = llist_reverse_order(head);
364 llist_for_each_entry_safe(sh, t, head, release_list) {
365 int hash;
366
367 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
368 smp_mb();
369 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
370 /*
371 * Don't worry the bit is set here, because if the bit is set
372 * again, the count is always > 1. This is true for
373 * STRIPE_ON_UNPLUG_LIST bit too.
374 */
375 hash = sh->hash_lock_index;
376 __release_stripe(conf, sh, &temp_inactive_list[hash]);
377 count++;
378 }
379
380 return count;
381 }
382
383 void raid5_release_stripe(struct stripe_head *sh)
384 {
385 struct r5conf *conf = sh->raid_conf;
386 unsigned long flags;
387 struct list_head list;
388 int hash;
389 bool wakeup;
390
391 /* Avoid release_list until the last reference.
392 */
393 if (atomic_add_unless(&sh->count, -1, 1))
394 return;
395
396 if (unlikely(!conf->mddev->thread) ||
397 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
398 goto slow_path;
399 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
400 if (wakeup)
401 md_wakeup_thread(conf->mddev->thread);
402 return;
403 slow_path:
404 local_irq_save(flags);
405 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
406 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
407 INIT_LIST_HEAD(&list);
408 hash = sh->hash_lock_index;
409 do_release_stripe(conf, sh, &list);
410 spin_unlock(&conf->device_lock);
411 release_inactive_stripe_list(conf, &list, hash);
412 }
413 local_irq_restore(flags);
414 }
415
416 static inline void remove_hash(struct stripe_head *sh)
417 {
418 pr_debug("remove_hash(), stripe %llu\n",
419 (unsigned long long)sh->sector);
420
421 hlist_del_init(&sh->hash);
422 }
423
424 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
425 {
426 struct hlist_head *hp = stripe_hash(conf, sh->sector);
427
428 pr_debug("insert_hash(), stripe %llu\n",
429 (unsigned long long)sh->sector);
430
431 hlist_add_head(&sh->hash, hp);
432 }
433
434 /* find an idle stripe, make sure it is unhashed, and return it. */
435 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
436 {
437 struct stripe_head *sh = NULL;
438 struct list_head *first;
439
440 if (list_empty(conf->inactive_list + hash))
441 goto out;
442 first = (conf->inactive_list + hash)->next;
443 sh = list_entry(first, struct stripe_head, lru);
444 list_del_init(first);
445 remove_hash(sh);
446 atomic_inc(&conf->active_stripes);
447 BUG_ON(hash != sh->hash_lock_index);
448 if (list_empty(conf->inactive_list + hash))
449 atomic_inc(&conf->empty_inactive_list_nr);
450 out:
451 return sh;
452 }
453
454 static void shrink_buffers(struct stripe_head *sh)
455 {
456 struct page *p;
457 int i;
458 int num = sh->raid_conf->pool_size;
459
460 for (i = 0; i < num ; i++) {
461 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
462 p = sh->dev[i].page;
463 if (!p)
464 continue;
465 sh->dev[i].page = NULL;
466 put_page(p);
467 }
468 }
469
470 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
471 {
472 int i;
473 int num = sh->raid_conf->pool_size;
474
475 for (i = 0; i < num; i++) {
476 struct page *page;
477
478 if (!(page = alloc_page(gfp))) {
479 return 1;
480 }
481 sh->dev[i].page = page;
482 sh->dev[i].orig_page = page;
483 }
484 return 0;
485 }
486
487 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
488 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
489 struct stripe_head *sh);
490
491 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
492 {
493 struct r5conf *conf = sh->raid_conf;
494 int i, seq;
495
496 BUG_ON(atomic_read(&sh->count) != 0);
497 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
498 BUG_ON(stripe_operations_active(sh));
499 BUG_ON(sh->batch_head);
500
501 pr_debug("init_stripe called, stripe %llu\n",
502 (unsigned long long)sector);
503 retry:
504 seq = read_seqcount_begin(&conf->gen_lock);
505 sh->generation = conf->generation - previous;
506 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
507 sh->sector = sector;
508 stripe_set_idx(sector, conf, previous, sh);
509 sh->state = 0;
510
511 for (i = sh->disks; i--; ) {
512 struct r5dev *dev = &sh->dev[i];
513
514 if (dev->toread || dev->read || dev->towrite || dev->written ||
515 test_bit(R5_LOCKED, &dev->flags)) {
516 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
517 (unsigned long long)sh->sector, i, dev->toread,
518 dev->read, dev->towrite, dev->written,
519 test_bit(R5_LOCKED, &dev->flags));
520 WARN_ON(1);
521 }
522 dev->flags = 0;
523 raid5_build_block(sh, i, previous);
524 }
525 if (read_seqcount_retry(&conf->gen_lock, seq))
526 goto retry;
527 sh->overwrite_disks = 0;
528 insert_hash(conf, sh);
529 sh->cpu = smp_processor_id();
530 set_bit(STRIPE_BATCH_READY, &sh->state);
531 }
532
533 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
534 short generation)
535 {
536 struct stripe_head *sh;
537
538 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
539 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
540 if (sh->sector == sector && sh->generation == generation)
541 return sh;
542 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
543 return NULL;
544 }
545
546 /*
547 * Need to check if array has failed when deciding whether to:
548 * - start an array
549 * - remove non-faulty devices
550 * - add a spare
551 * - allow a reshape
552 * This determination is simple when no reshape is happening.
553 * However if there is a reshape, we need to carefully check
554 * both the before and after sections.
555 * This is because some failed devices may only affect one
556 * of the two sections, and some non-in_sync devices may
557 * be insync in the section most affected by failed devices.
558 */
559 int raid5_calc_degraded(struct r5conf *conf)
560 {
561 int degraded, degraded2;
562 int i;
563
564 rcu_read_lock();
565 degraded = 0;
566 for (i = 0; i < conf->previous_raid_disks; i++) {
567 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
568 if (rdev && test_bit(Faulty, &rdev->flags))
569 rdev = rcu_dereference(conf->disks[i].replacement);
570 if (!rdev || test_bit(Faulty, &rdev->flags))
571 degraded++;
572 else if (test_bit(In_sync, &rdev->flags))
573 ;
574 else
575 /* not in-sync or faulty.
576 * If the reshape increases the number of devices,
577 * this is being recovered by the reshape, so
578 * this 'previous' section is not in_sync.
579 * If the number of devices is being reduced however,
580 * the device can only be part of the array if
581 * we are reverting a reshape, so this section will
582 * be in-sync.
583 */
584 if (conf->raid_disks >= conf->previous_raid_disks)
585 degraded++;
586 }
587 rcu_read_unlock();
588 if (conf->raid_disks == conf->previous_raid_disks)
589 return degraded;
590 rcu_read_lock();
591 degraded2 = 0;
592 for (i = 0; i < conf->raid_disks; i++) {
593 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
594 if (rdev && test_bit(Faulty, &rdev->flags))
595 rdev = rcu_dereference(conf->disks[i].replacement);
596 if (!rdev || test_bit(Faulty, &rdev->flags))
597 degraded2++;
598 else if (test_bit(In_sync, &rdev->flags))
599 ;
600 else
601 /* not in-sync or faulty.
602 * If reshape increases the number of devices, this
603 * section has already been recovered, else it
604 * almost certainly hasn't.
605 */
606 if (conf->raid_disks <= conf->previous_raid_disks)
607 degraded2++;
608 }
609 rcu_read_unlock();
610 if (degraded2 > degraded)
611 return degraded2;
612 return degraded;
613 }
614
615 static int has_failed(struct r5conf *conf)
616 {
617 int degraded;
618
619 if (conf->mddev->reshape_position == MaxSector)
620 return conf->mddev->degraded > conf->max_degraded;
621
622 degraded = raid5_calc_degraded(conf);
623 if (degraded > conf->max_degraded)
624 return 1;
625 return 0;
626 }
627
628 struct stripe_head *
629 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
630 int previous, int noblock, int noquiesce)
631 {
632 struct stripe_head *sh;
633 int hash = stripe_hash_locks_hash(sector);
634 int inc_empty_inactive_list_flag;
635
636 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
637
638 spin_lock_irq(conf->hash_locks + hash);
639
640 do {
641 wait_event_lock_irq(conf->wait_for_quiescent,
642 conf->quiesce == 0 || noquiesce,
643 *(conf->hash_locks + hash));
644 sh = __find_stripe(conf, sector, conf->generation - previous);
645 if (!sh) {
646 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
647 sh = get_free_stripe(conf, hash);
648 if (!sh && !test_bit(R5_DID_ALLOC,
649 &conf->cache_state))
650 set_bit(R5_ALLOC_MORE,
651 &conf->cache_state);
652 }
653 if (noblock && sh == NULL)
654 break;
655
656 r5c_check_stripe_cache_usage(conf);
657 if (!sh) {
658 set_bit(R5_INACTIVE_BLOCKED,
659 &conf->cache_state);
660 r5l_wake_reclaim(conf->log, 0);
661 wait_event_lock_irq(
662 conf->wait_for_stripe,
663 !list_empty(conf->inactive_list + hash) &&
664 (atomic_read(&conf->active_stripes)
665 < (conf->max_nr_stripes * 3 / 4)
666 || !test_bit(R5_INACTIVE_BLOCKED,
667 &conf->cache_state)),
668 *(conf->hash_locks + hash));
669 clear_bit(R5_INACTIVE_BLOCKED,
670 &conf->cache_state);
671 } else {
672 init_stripe(sh, sector, previous);
673 atomic_inc(&sh->count);
674 }
675 } else if (!atomic_inc_not_zero(&sh->count)) {
676 spin_lock(&conf->device_lock);
677 if (!atomic_read(&sh->count)) {
678 if (!test_bit(STRIPE_HANDLE, &sh->state))
679 atomic_inc(&conf->active_stripes);
680 BUG_ON(list_empty(&sh->lru) &&
681 !test_bit(STRIPE_EXPANDING, &sh->state));
682 inc_empty_inactive_list_flag = 0;
683 if (!list_empty(conf->inactive_list + hash))
684 inc_empty_inactive_list_flag = 1;
685 list_del_init(&sh->lru);
686 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
687 atomic_inc(&conf->empty_inactive_list_nr);
688 if (sh->group) {
689 sh->group->stripes_cnt--;
690 sh->group = NULL;
691 }
692 }
693 atomic_inc(&sh->count);
694 spin_unlock(&conf->device_lock);
695 }
696 } while (sh == NULL);
697
698 spin_unlock_irq(conf->hash_locks + hash);
699 return sh;
700 }
701
702 static bool is_full_stripe_write(struct stripe_head *sh)
703 {
704 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
705 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
706 }
707
708 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
709 {
710 local_irq_disable();
711 if (sh1 > sh2) {
712 spin_lock(&sh2->stripe_lock);
713 spin_lock_nested(&sh1->stripe_lock, 1);
714 } else {
715 spin_lock(&sh1->stripe_lock);
716 spin_lock_nested(&sh2->stripe_lock, 1);
717 }
718 }
719
720 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
721 {
722 spin_unlock(&sh1->stripe_lock);
723 spin_unlock(&sh2->stripe_lock);
724 local_irq_enable();
725 }
726
727 /* Only freshly new full stripe normal write stripe can be added to a batch list */
728 static bool stripe_can_batch(struct stripe_head *sh)
729 {
730 struct r5conf *conf = sh->raid_conf;
731
732 if (conf->log)
733 return false;
734 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
735 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
736 is_full_stripe_write(sh);
737 }
738
739 /* we only do back search */
740 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
741 {
742 struct stripe_head *head;
743 sector_t head_sector, tmp_sec;
744 int hash;
745 int dd_idx;
746 int inc_empty_inactive_list_flag;
747
748 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
749 tmp_sec = sh->sector;
750 if (!sector_div(tmp_sec, conf->chunk_sectors))
751 return;
752 head_sector = sh->sector - STRIPE_SECTORS;
753
754 hash = stripe_hash_locks_hash(head_sector);
755 spin_lock_irq(conf->hash_locks + hash);
756 head = __find_stripe(conf, head_sector, conf->generation);
757 if (head && !atomic_inc_not_zero(&head->count)) {
758 spin_lock(&conf->device_lock);
759 if (!atomic_read(&head->count)) {
760 if (!test_bit(STRIPE_HANDLE, &head->state))
761 atomic_inc(&conf->active_stripes);
762 BUG_ON(list_empty(&head->lru) &&
763 !test_bit(STRIPE_EXPANDING, &head->state));
764 inc_empty_inactive_list_flag = 0;
765 if (!list_empty(conf->inactive_list + hash))
766 inc_empty_inactive_list_flag = 1;
767 list_del_init(&head->lru);
768 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
769 atomic_inc(&conf->empty_inactive_list_nr);
770 if (head->group) {
771 head->group->stripes_cnt--;
772 head->group = NULL;
773 }
774 }
775 atomic_inc(&head->count);
776 spin_unlock(&conf->device_lock);
777 }
778 spin_unlock_irq(conf->hash_locks + hash);
779
780 if (!head)
781 return;
782 if (!stripe_can_batch(head))
783 goto out;
784
785 lock_two_stripes(head, sh);
786 /* clear_batch_ready clear the flag */
787 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
788 goto unlock_out;
789
790 if (sh->batch_head)
791 goto unlock_out;
792
793 dd_idx = 0;
794 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
795 dd_idx++;
796 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
797 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
798 goto unlock_out;
799
800 if (head->batch_head) {
801 spin_lock(&head->batch_head->batch_lock);
802 /* This batch list is already running */
803 if (!stripe_can_batch(head)) {
804 spin_unlock(&head->batch_head->batch_lock);
805 goto unlock_out;
806 }
807
808 /*
809 * at this point, head's BATCH_READY could be cleared, but we
810 * can still add the stripe to batch list
811 */
812 list_add(&sh->batch_list, &head->batch_list);
813 spin_unlock(&head->batch_head->batch_lock);
814
815 sh->batch_head = head->batch_head;
816 } else {
817 head->batch_head = head;
818 sh->batch_head = head->batch_head;
819 spin_lock(&head->batch_lock);
820 list_add_tail(&sh->batch_list, &head->batch_list);
821 spin_unlock(&head->batch_lock);
822 }
823
824 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
825 if (atomic_dec_return(&conf->preread_active_stripes)
826 < IO_THRESHOLD)
827 md_wakeup_thread(conf->mddev->thread);
828
829 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
830 int seq = sh->bm_seq;
831 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
832 sh->batch_head->bm_seq > seq)
833 seq = sh->batch_head->bm_seq;
834 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
835 sh->batch_head->bm_seq = seq;
836 }
837
838 atomic_inc(&sh->count);
839 unlock_out:
840 unlock_two_stripes(head, sh);
841 out:
842 raid5_release_stripe(head);
843 }
844
845 /* Determine if 'data_offset' or 'new_data_offset' should be used
846 * in this stripe_head.
847 */
848 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
849 {
850 sector_t progress = conf->reshape_progress;
851 /* Need a memory barrier to make sure we see the value
852 * of conf->generation, or ->data_offset that was set before
853 * reshape_progress was updated.
854 */
855 smp_rmb();
856 if (progress == MaxSector)
857 return 0;
858 if (sh->generation == conf->generation - 1)
859 return 0;
860 /* We are in a reshape, and this is a new-generation stripe,
861 * so use new_data_offset.
862 */
863 return 1;
864 }
865
866 static void flush_deferred_bios(struct r5conf *conf)
867 {
868 struct bio_list tmp;
869 struct bio *bio;
870
871 if (!conf->batch_bio_dispatch || !conf->group_cnt)
872 return;
873
874 bio_list_init(&tmp);
875 spin_lock(&conf->pending_bios_lock);
876 bio_list_merge(&tmp, &conf->pending_bios);
877 bio_list_init(&conf->pending_bios);
878 spin_unlock(&conf->pending_bios_lock);
879
880 while ((bio = bio_list_pop(&tmp)))
881 generic_make_request(bio);
882 }
883
884 static void defer_bio_issue(struct r5conf *conf, struct bio *bio)
885 {
886 /*
887 * change group_cnt will drain all bios, so this is safe
888 *
889 * A read generally means a read-modify-write, which usually means a
890 * randwrite, so we don't delay it
891 */
892 if (!conf->batch_bio_dispatch || !conf->group_cnt ||
893 bio_op(bio) == REQ_OP_READ) {
894 generic_make_request(bio);
895 return;
896 }
897 spin_lock(&conf->pending_bios_lock);
898 bio_list_add(&conf->pending_bios, bio);
899 spin_unlock(&conf->pending_bios_lock);
900 md_wakeup_thread(conf->mddev->thread);
901 }
902
903 static void
904 raid5_end_read_request(struct bio *bi);
905 static void
906 raid5_end_write_request(struct bio *bi);
907
908 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
909 {
910 struct r5conf *conf = sh->raid_conf;
911 int i, disks = sh->disks;
912 struct stripe_head *head_sh = sh;
913
914 might_sleep();
915
916 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
917 /* writing out phase */
918 if (s->waiting_extra_page)
919 return;
920 if (r5l_write_stripe(conf->log, sh) == 0)
921 return;
922 } else { /* caching phase */
923 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) {
924 r5c_cache_data(conf->log, sh, s);
925 return;
926 }
927 }
928
929 for (i = disks; i--; ) {
930 int op, op_flags = 0;
931 int replace_only = 0;
932 struct bio *bi, *rbi;
933 struct md_rdev *rdev, *rrdev = NULL;
934
935 sh = head_sh;
936 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
937 op = REQ_OP_WRITE;
938 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
939 op_flags = REQ_FUA;
940 if (test_bit(R5_Discard, &sh->dev[i].flags))
941 op = REQ_OP_DISCARD;
942 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
943 op = REQ_OP_READ;
944 else if (test_and_clear_bit(R5_WantReplace,
945 &sh->dev[i].flags)) {
946 op = REQ_OP_WRITE;
947 replace_only = 1;
948 } else
949 continue;
950 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
951 op_flags |= REQ_SYNC;
952
953 again:
954 bi = &sh->dev[i].req;
955 rbi = &sh->dev[i].rreq; /* For writing to replacement */
956
957 rcu_read_lock();
958 rrdev = rcu_dereference(conf->disks[i].replacement);
959 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
960 rdev = rcu_dereference(conf->disks[i].rdev);
961 if (!rdev) {
962 rdev = rrdev;
963 rrdev = NULL;
964 }
965 if (op_is_write(op)) {
966 if (replace_only)
967 rdev = NULL;
968 if (rdev == rrdev)
969 /* We raced and saw duplicates */
970 rrdev = NULL;
971 } else {
972 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
973 rdev = rrdev;
974 rrdev = NULL;
975 }
976
977 if (rdev && test_bit(Faulty, &rdev->flags))
978 rdev = NULL;
979 if (rdev)
980 atomic_inc(&rdev->nr_pending);
981 if (rrdev && test_bit(Faulty, &rrdev->flags))
982 rrdev = NULL;
983 if (rrdev)
984 atomic_inc(&rrdev->nr_pending);
985 rcu_read_unlock();
986
987 /* We have already checked bad blocks for reads. Now
988 * need to check for writes. We never accept write errors
989 * on the replacement, so we don't to check rrdev.
990 */
991 while (op_is_write(op) && rdev &&
992 test_bit(WriteErrorSeen, &rdev->flags)) {
993 sector_t first_bad;
994 int bad_sectors;
995 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
996 &first_bad, &bad_sectors);
997 if (!bad)
998 break;
999
1000 if (bad < 0) {
1001 set_bit(BlockedBadBlocks, &rdev->flags);
1002 if (!conf->mddev->external &&
1003 conf->mddev->sb_flags) {
1004 /* It is very unlikely, but we might
1005 * still need to write out the
1006 * bad block log - better give it
1007 * a chance*/
1008 md_check_recovery(conf->mddev);
1009 }
1010 /*
1011 * Because md_wait_for_blocked_rdev
1012 * will dec nr_pending, we must
1013 * increment it first.
1014 */
1015 atomic_inc(&rdev->nr_pending);
1016 md_wait_for_blocked_rdev(rdev, conf->mddev);
1017 } else {
1018 /* Acknowledged bad block - skip the write */
1019 rdev_dec_pending(rdev, conf->mddev);
1020 rdev = NULL;
1021 }
1022 }
1023
1024 if (rdev) {
1025 if (s->syncing || s->expanding || s->expanded
1026 || s->replacing)
1027 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1028
1029 set_bit(STRIPE_IO_STARTED, &sh->state);
1030
1031 bi->bi_bdev = rdev->bdev;
1032 bio_set_op_attrs(bi, op, op_flags);
1033 bi->bi_end_io = op_is_write(op)
1034 ? raid5_end_write_request
1035 : raid5_end_read_request;
1036 bi->bi_private = sh;
1037
1038 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1039 __func__, (unsigned long long)sh->sector,
1040 bi->bi_opf, i);
1041 atomic_inc(&sh->count);
1042 if (sh != head_sh)
1043 atomic_inc(&head_sh->count);
1044 if (use_new_offset(conf, sh))
1045 bi->bi_iter.bi_sector = (sh->sector
1046 + rdev->new_data_offset);
1047 else
1048 bi->bi_iter.bi_sector = (sh->sector
1049 + rdev->data_offset);
1050 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1051 bi->bi_opf |= REQ_NOMERGE;
1052
1053 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1054 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1055
1056 if (!op_is_write(op) &&
1057 test_bit(R5_InJournal, &sh->dev[i].flags))
1058 /*
1059 * issuing read for a page in journal, this
1060 * must be preparing for prexor in rmw; read
1061 * the data into orig_page
1062 */
1063 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1064 else
1065 sh->dev[i].vec.bv_page = sh->dev[i].page;
1066 bi->bi_vcnt = 1;
1067 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1068 bi->bi_io_vec[0].bv_offset = 0;
1069 bi->bi_iter.bi_size = STRIPE_SIZE;
1070 /*
1071 * If this is discard request, set bi_vcnt 0. We don't
1072 * want to confuse SCSI because SCSI will replace payload
1073 */
1074 if (op == REQ_OP_DISCARD)
1075 bi->bi_vcnt = 0;
1076 if (rrdev)
1077 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1078
1079 if (conf->mddev->gendisk)
1080 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1081 bi, disk_devt(conf->mddev->gendisk),
1082 sh->dev[i].sector);
1083 defer_bio_issue(conf, bi);
1084 }
1085 if (rrdev) {
1086 if (s->syncing || s->expanding || s->expanded
1087 || s->replacing)
1088 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1089
1090 set_bit(STRIPE_IO_STARTED, &sh->state);
1091
1092 rbi->bi_bdev = rrdev->bdev;
1093 bio_set_op_attrs(rbi, op, op_flags);
1094 BUG_ON(!op_is_write(op));
1095 rbi->bi_end_io = raid5_end_write_request;
1096 rbi->bi_private = sh;
1097
1098 pr_debug("%s: for %llu schedule op %d on "
1099 "replacement disc %d\n",
1100 __func__, (unsigned long long)sh->sector,
1101 rbi->bi_opf, i);
1102 atomic_inc(&sh->count);
1103 if (sh != head_sh)
1104 atomic_inc(&head_sh->count);
1105 if (use_new_offset(conf, sh))
1106 rbi->bi_iter.bi_sector = (sh->sector
1107 + rrdev->new_data_offset);
1108 else
1109 rbi->bi_iter.bi_sector = (sh->sector
1110 + rrdev->data_offset);
1111 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1112 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1113 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1114 rbi->bi_vcnt = 1;
1115 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1116 rbi->bi_io_vec[0].bv_offset = 0;
1117 rbi->bi_iter.bi_size = STRIPE_SIZE;
1118 /*
1119 * If this is discard request, set bi_vcnt 0. We don't
1120 * want to confuse SCSI because SCSI will replace payload
1121 */
1122 if (op == REQ_OP_DISCARD)
1123 rbi->bi_vcnt = 0;
1124 if (conf->mddev->gendisk)
1125 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1126 rbi, disk_devt(conf->mddev->gendisk),
1127 sh->dev[i].sector);
1128 defer_bio_issue(conf, rbi);
1129 }
1130 if (!rdev && !rrdev) {
1131 if (op_is_write(op))
1132 set_bit(STRIPE_DEGRADED, &sh->state);
1133 pr_debug("skip op %d on disc %d for sector %llu\n",
1134 bi->bi_opf, i, (unsigned long long)sh->sector);
1135 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1136 set_bit(STRIPE_HANDLE, &sh->state);
1137 }
1138
1139 if (!head_sh->batch_head)
1140 continue;
1141 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1142 batch_list);
1143 if (sh != head_sh)
1144 goto again;
1145 }
1146 }
1147
1148 static struct dma_async_tx_descriptor *
1149 async_copy_data(int frombio, struct bio *bio, struct page **page,
1150 sector_t sector, struct dma_async_tx_descriptor *tx,
1151 struct stripe_head *sh, int no_skipcopy)
1152 {
1153 struct bio_vec bvl;
1154 struct bvec_iter iter;
1155 struct page *bio_page;
1156 int page_offset;
1157 struct async_submit_ctl submit;
1158 enum async_tx_flags flags = 0;
1159
1160 if (bio->bi_iter.bi_sector >= sector)
1161 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1162 else
1163 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1164
1165 if (frombio)
1166 flags |= ASYNC_TX_FENCE;
1167 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1168
1169 bio_for_each_segment(bvl, bio, iter) {
1170 int len = bvl.bv_len;
1171 int clen;
1172 int b_offset = 0;
1173
1174 if (page_offset < 0) {
1175 b_offset = -page_offset;
1176 page_offset += b_offset;
1177 len -= b_offset;
1178 }
1179
1180 if (len > 0 && page_offset + len > STRIPE_SIZE)
1181 clen = STRIPE_SIZE - page_offset;
1182 else
1183 clen = len;
1184
1185 if (clen > 0) {
1186 b_offset += bvl.bv_offset;
1187 bio_page = bvl.bv_page;
1188 if (frombio) {
1189 if (sh->raid_conf->skip_copy &&
1190 b_offset == 0 && page_offset == 0 &&
1191 clen == STRIPE_SIZE &&
1192 !no_skipcopy)
1193 *page = bio_page;
1194 else
1195 tx = async_memcpy(*page, bio_page, page_offset,
1196 b_offset, clen, &submit);
1197 } else
1198 tx = async_memcpy(bio_page, *page, b_offset,
1199 page_offset, clen, &submit);
1200 }
1201 /* chain the operations */
1202 submit.depend_tx = tx;
1203
1204 if (clen < len) /* hit end of page */
1205 break;
1206 page_offset += len;
1207 }
1208
1209 return tx;
1210 }
1211
1212 static void ops_complete_biofill(void *stripe_head_ref)
1213 {
1214 struct stripe_head *sh = stripe_head_ref;
1215 struct bio_list return_bi = BIO_EMPTY_LIST;
1216 int i;
1217
1218 pr_debug("%s: stripe %llu\n", __func__,
1219 (unsigned long long)sh->sector);
1220
1221 /* clear completed biofills */
1222 for (i = sh->disks; i--; ) {
1223 struct r5dev *dev = &sh->dev[i];
1224
1225 /* acknowledge completion of a biofill operation */
1226 /* and check if we need to reply to a read request,
1227 * new R5_Wantfill requests are held off until
1228 * !STRIPE_BIOFILL_RUN
1229 */
1230 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1231 struct bio *rbi, *rbi2;
1232
1233 BUG_ON(!dev->read);
1234 rbi = dev->read;
1235 dev->read = NULL;
1236 while (rbi && rbi->bi_iter.bi_sector <
1237 dev->sector + STRIPE_SECTORS) {
1238 rbi2 = r5_next_bio(rbi, dev->sector);
1239 if (!raid5_dec_bi_active_stripes(rbi))
1240 bio_list_add(&return_bi, rbi);
1241 rbi = rbi2;
1242 }
1243 }
1244 }
1245 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1246
1247 return_io(&return_bi);
1248
1249 set_bit(STRIPE_HANDLE, &sh->state);
1250 raid5_release_stripe(sh);
1251 }
1252
1253 static void ops_run_biofill(struct stripe_head *sh)
1254 {
1255 struct dma_async_tx_descriptor *tx = NULL;
1256 struct async_submit_ctl submit;
1257 int i;
1258
1259 BUG_ON(sh->batch_head);
1260 pr_debug("%s: stripe %llu\n", __func__,
1261 (unsigned long long)sh->sector);
1262
1263 for (i = sh->disks; i--; ) {
1264 struct r5dev *dev = &sh->dev[i];
1265 if (test_bit(R5_Wantfill, &dev->flags)) {
1266 struct bio *rbi;
1267 spin_lock_irq(&sh->stripe_lock);
1268 dev->read = rbi = dev->toread;
1269 dev->toread = NULL;
1270 spin_unlock_irq(&sh->stripe_lock);
1271 while (rbi && rbi->bi_iter.bi_sector <
1272 dev->sector + STRIPE_SECTORS) {
1273 tx = async_copy_data(0, rbi, &dev->page,
1274 dev->sector, tx, sh, 0);
1275 rbi = r5_next_bio(rbi, dev->sector);
1276 }
1277 }
1278 }
1279
1280 atomic_inc(&sh->count);
1281 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1282 async_trigger_callback(&submit);
1283 }
1284
1285 static void mark_target_uptodate(struct stripe_head *sh, int target)
1286 {
1287 struct r5dev *tgt;
1288
1289 if (target < 0)
1290 return;
1291
1292 tgt = &sh->dev[target];
1293 set_bit(R5_UPTODATE, &tgt->flags);
1294 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1295 clear_bit(R5_Wantcompute, &tgt->flags);
1296 }
1297
1298 static void ops_complete_compute(void *stripe_head_ref)
1299 {
1300 struct stripe_head *sh = stripe_head_ref;
1301
1302 pr_debug("%s: stripe %llu\n", __func__,
1303 (unsigned long long)sh->sector);
1304
1305 /* mark the computed target(s) as uptodate */
1306 mark_target_uptodate(sh, sh->ops.target);
1307 mark_target_uptodate(sh, sh->ops.target2);
1308
1309 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1310 if (sh->check_state == check_state_compute_run)
1311 sh->check_state = check_state_compute_result;
1312 set_bit(STRIPE_HANDLE, &sh->state);
1313 raid5_release_stripe(sh);
1314 }
1315
1316 /* return a pointer to the address conversion region of the scribble buffer */
1317 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1318 struct raid5_percpu *percpu, int i)
1319 {
1320 void *addr;
1321
1322 addr = flex_array_get(percpu->scribble, i);
1323 return addr + sizeof(struct page *) * (sh->disks + 2);
1324 }
1325
1326 /* return a pointer to the address conversion region of the scribble buffer */
1327 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1328 {
1329 void *addr;
1330
1331 addr = flex_array_get(percpu->scribble, i);
1332 return addr;
1333 }
1334
1335 static struct dma_async_tx_descriptor *
1336 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1337 {
1338 int disks = sh->disks;
1339 struct page **xor_srcs = to_addr_page(percpu, 0);
1340 int target = sh->ops.target;
1341 struct r5dev *tgt = &sh->dev[target];
1342 struct page *xor_dest = tgt->page;
1343 int count = 0;
1344 struct dma_async_tx_descriptor *tx;
1345 struct async_submit_ctl submit;
1346 int i;
1347
1348 BUG_ON(sh->batch_head);
1349
1350 pr_debug("%s: stripe %llu block: %d\n",
1351 __func__, (unsigned long long)sh->sector, target);
1352 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1353
1354 for (i = disks; i--; )
1355 if (i != target)
1356 xor_srcs[count++] = sh->dev[i].page;
1357
1358 atomic_inc(&sh->count);
1359
1360 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1361 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1362 if (unlikely(count == 1))
1363 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1364 else
1365 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1366
1367 return tx;
1368 }
1369
1370 /* set_syndrome_sources - populate source buffers for gen_syndrome
1371 * @srcs - (struct page *) array of size sh->disks
1372 * @sh - stripe_head to parse
1373 *
1374 * Populates srcs in proper layout order for the stripe and returns the
1375 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1376 * destination buffer is recorded in srcs[count] and the Q destination
1377 * is recorded in srcs[count+1]].
1378 */
1379 static int set_syndrome_sources(struct page **srcs,
1380 struct stripe_head *sh,
1381 int srctype)
1382 {
1383 int disks = sh->disks;
1384 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1385 int d0_idx = raid6_d0(sh);
1386 int count;
1387 int i;
1388
1389 for (i = 0; i < disks; i++)
1390 srcs[i] = NULL;
1391
1392 count = 0;
1393 i = d0_idx;
1394 do {
1395 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1396 struct r5dev *dev = &sh->dev[i];
1397
1398 if (i == sh->qd_idx || i == sh->pd_idx ||
1399 (srctype == SYNDROME_SRC_ALL) ||
1400 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1401 (test_bit(R5_Wantdrain, &dev->flags) ||
1402 test_bit(R5_InJournal, &dev->flags))) ||
1403 (srctype == SYNDROME_SRC_WRITTEN &&
1404 (dev->written ||
1405 test_bit(R5_InJournal, &dev->flags)))) {
1406 if (test_bit(R5_InJournal, &dev->flags))
1407 srcs[slot] = sh->dev[i].orig_page;
1408 else
1409 srcs[slot] = sh->dev[i].page;
1410 }
1411 i = raid6_next_disk(i, disks);
1412 } while (i != d0_idx);
1413
1414 return syndrome_disks;
1415 }
1416
1417 static struct dma_async_tx_descriptor *
1418 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1419 {
1420 int disks = sh->disks;
1421 struct page **blocks = to_addr_page(percpu, 0);
1422 int target;
1423 int qd_idx = sh->qd_idx;
1424 struct dma_async_tx_descriptor *tx;
1425 struct async_submit_ctl submit;
1426 struct r5dev *tgt;
1427 struct page *dest;
1428 int i;
1429 int count;
1430
1431 BUG_ON(sh->batch_head);
1432 if (sh->ops.target < 0)
1433 target = sh->ops.target2;
1434 else if (sh->ops.target2 < 0)
1435 target = sh->ops.target;
1436 else
1437 /* we should only have one valid target */
1438 BUG();
1439 BUG_ON(target < 0);
1440 pr_debug("%s: stripe %llu block: %d\n",
1441 __func__, (unsigned long long)sh->sector, target);
1442
1443 tgt = &sh->dev[target];
1444 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445 dest = tgt->page;
1446
1447 atomic_inc(&sh->count);
1448
1449 if (target == qd_idx) {
1450 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1451 blocks[count] = NULL; /* regenerating p is not necessary */
1452 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1453 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1454 ops_complete_compute, sh,
1455 to_addr_conv(sh, percpu, 0));
1456 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1457 } else {
1458 /* Compute any data- or p-drive using XOR */
1459 count = 0;
1460 for (i = disks; i-- ; ) {
1461 if (i == target || i == qd_idx)
1462 continue;
1463 blocks[count++] = sh->dev[i].page;
1464 }
1465
1466 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1467 NULL, ops_complete_compute, sh,
1468 to_addr_conv(sh, percpu, 0));
1469 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1470 }
1471
1472 return tx;
1473 }
1474
1475 static struct dma_async_tx_descriptor *
1476 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1477 {
1478 int i, count, disks = sh->disks;
1479 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1480 int d0_idx = raid6_d0(sh);
1481 int faila = -1, failb = -1;
1482 int target = sh->ops.target;
1483 int target2 = sh->ops.target2;
1484 struct r5dev *tgt = &sh->dev[target];
1485 struct r5dev *tgt2 = &sh->dev[target2];
1486 struct dma_async_tx_descriptor *tx;
1487 struct page **blocks = to_addr_page(percpu, 0);
1488 struct async_submit_ctl submit;
1489
1490 BUG_ON(sh->batch_head);
1491 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1492 __func__, (unsigned long long)sh->sector, target, target2);
1493 BUG_ON(target < 0 || target2 < 0);
1494 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1495 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1496
1497 /* we need to open-code set_syndrome_sources to handle the
1498 * slot number conversion for 'faila' and 'failb'
1499 */
1500 for (i = 0; i < disks ; i++)
1501 blocks[i] = NULL;
1502 count = 0;
1503 i = d0_idx;
1504 do {
1505 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1506
1507 blocks[slot] = sh->dev[i].page;
1508
1509 if (i == target)
1510 faila = slot;
1511 if (i == target2)
1512 failb = slot;
1513 i = raid6_next_disk(i, disks);
1514 } while (i != d0_idx);
1515
1516 BUG_ON(faila == failb);
1517 if (failb < faila)
1518 swap(faila, failb);
1519 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1520 __func__, (unsigned long long)sh->sector, faila, failb);
1521
1522 atomic_inc(&sh->count);
1523
1524 if (failb == syndrome_disks+1) {
1525 /* Q disk is one of the missing disks */
1526 if (faila == syndrome_disks) {
1527 /* Missing P+Q, just recompute */
1528 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1529 ops_complete_compute, sh,
1530 to_addr_conv(sh, percpu, 0));
1531 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1532 STRIPE_SIZE, &submit);
1533 } else {
1534 struct page *dest;
1535 int data_target;
1536 int qd_idx = sh->qd_idx;
1537
1538 /* Missing D+Q: recompute D from P, then recompute Q */
1539 if (target == qd_idx)
1540 data_target = target2;
1541 else
1542 data_target = target;
1543
1544 count = 0;
1545 for (i = disks; i-- ; ) {
1546 if (i == data_target || i == qd_idx)
1547 continue;
1548 blocks[count++] = sh->dev[i].page;
1549 }
1550 dest = sh->dev[data_target].page;
1551 init_async_submit(&submit,
1552 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1553 NULL, NULL, NULL,
1554 to_addr_conv(sh, percpu, 0));
1555 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1556 &submit);
1557
1558 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1559 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1560 ops_complete_compute, sh,
1561 to_addr_conv(sh, percpu, 0));
1562 return async_gen_syndrome(blocks, 0, count+2,
1563 STRIPE_SIZE, &submit);
1564 }
1565 } else {
1566 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1567 ops_complete_compute, sh,
1568 to_addr_conv(sh, percpu, 0));
1569 if (failb == syndrome_disks) {
1570 /* We're missing D+P. */
1571 return async_raid6_datap_recov(syndrome_disks+2,
1572 STRIPE_SIZE, faila,
1573 blocks, &submit);
1574 } else {
1575 /* We're missing D+D. */
1576 return async_raid6_2data_recov(syndrome_disks+2,
1577 STRIPE_SIZE, faila, failb,
1578 blocks, &submit);
1579 }
1580 }
1581 }
1582
1583 static void ops_complete_prexor(void *stripe_head_ref)
1584 {
1585 struct stripe_head *sh = stripe_head_ref;
1586
1587 pr_debug("%s: stripe %llu\n", __func__,
1588 (unsigned long long)sh->sector);
1589
1590 if (r5c_is_writeback(sh->raid_conf->log))
1591 /*
1592 * raid5-cache write back uses orig_page during prexor.
1593 * After prexor, it is time to free orig_page
1594 */
1595 r5c_release_extra_page(sh);
1596 }
1597
1598 static struct dma_async_tx_descriptor *
1599 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1600 struct dma_async_tx_descriptor *tx)
1601 {
1602 int disks = sh->disks;
1603 struct page **xor_srcs = to_addr_page(percpu, 0);
1604 int count = 0, pd_idx = sh->pd_idx, i;
1605 struct async_submit_ctl submit;
1606
1607 /* existing parity data subtracted */
1608 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1609
1610 BUG_ON(sh->batch_head);
1611 pr_debug("%s: stripe %llu\n", __func__,
1612 (unsigned long long)sh->sector);
1613
1614 for (i = disks; i--; ) {
1615 struct r5dev *dev = &sh->dev[i];
1616 /* Only process blocks that are known to be uptodate */
1617 if (test_bit(R5_InJournal, &dev->flags))
1618 xor_srcs[count++] = dev->orig_page;
1619 else if (test_bit(R5_Wantdrain, &dev->flags))
1620 xor_srcs[count++] = dev->page;
1621 }
1622
1623 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1624 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1625 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1626
1627 return tx;
1628 }
1629
1630 static struct dma_async_tx_descriptor *
1631 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1632 struct dma_async_tx_descriptor *tx)
1633 {
1634 struct page **blocks = to_addr_page(percpu, 0);
1635 int count;
1636 struct async_submit_ctl submit;
1637
1638 pr_debug("%s: stripe %llu\n", __func__,
1639 (unsigned long long)sh->sector);
1640
1641 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1642
1643 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1644 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1645 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1646
1647 return tx;
1648 }
1649
1650 static struct dma_async_tx_descriptor *
1651 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1652 {
1653 struct r5conf *conf = sh->raid_conf;
1654 int disks = sh->disks;
1655 int i;
1656 struct stripe_head *head_sh = sh;
1657
1658 pr_debug("%s: stripe %llu\n", __func__,
1659 (unsigned long long)sh->sector);
1660
1661 for (i = disks; i--; ) {
1662 struct r5dev *dev;
1663 struct bio *chosen;
1664
1665 sh = head_sh;
1666 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1667 struct bio *wbi;
1668
1669 again:
1670 dev = &sh->dev[i];
1671 /*
1672 * clear R5_InJournal, so when rewriting a page in
1673 * journal, it is not skipped by r5l_log_stripe()
1674 */
1675 clear_bit(R5_InJournal, &dev->flags);
1676 spin_lock_irq(&sh->stripe_lock);
1677 chosen = dev->towrite;
1678 dev->towrite = NULL;
1679 sh->overwrite_disks = 0;
1680 BUG_ON(dev->written);
1681 wbi = dev->written = chosen;
1682 spin_unlock_irq(&sh->stripe_lock);
1683 WARN_ON(dev->page != dev->orig_page);
1684
1685 while (wbi && wbi->bi_iter.bi_sector <
1686 dev->sector + STRIPE_SECTORS) {
1687 if (wbi->bi_opf & REQ_FUA)
1688 set_bit(R5_WantFUA, &dev->flags);
1689 if (wbi->bi_opf & REQ_SYNC)
1690 set_bit(R5_SyncIO, &dev->flags);
1691 if (bio_op(wbi) == REQ_OP_DISCARD)
1692 set_bit(R5_Discard, &dev->flags);
1693 else {
1694 tx = async_copy_data(1, wbi, &dev->page,
1695 dev->sector, tx, sh,
1696 r5c_is_writeback(conf->log));
1697 if (dev->page != dev->orig_page &&
1698 !r5c_is_writeback(conf->log)) {
1699 set_bit(R5_SkipCopy, &dev->flags);
1700 clear_bit(R5_UPTODATE, &dev->flags);
1701 clear_bit(R5_OVERWRITE, &dev->flags);
1702 }
1703 }
1704 wbi = r5_next_bio(wbi, dev->sector);
1705 }
1706
1707 if (head_sh->batch_head) {
1708 sh = list_first_entry(&sh->batch_list,
1709 struct stripe_head,
1710 batch_list);
1711 if (sh == head_sh)
1712 continue;
1713 goto again;
1714 }
1715 }
1716 }
1717
1718 return tx;
1719 }
1720
1721 static void ops_complete_reconstruct(void *stripe_head_ref)
1722 {
1723 struct stripe_head *sh = stripe_head_ref;
1724 int disks = sh->disks;
1725 int pd_idx = sh->pd_idx;
1726 int qd_idx = sh->qd_idx;
1727 int i;
1728 bool fua = false, sync = false, discard = false;
1729
1730 pr_debug("%s: stripe %llu\n", __func__,
1731 (unsigned long long)sh->sector);
1732
1733 for (i = disks; i--; ) {
1734 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1735 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1736 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1737 }
1738
1739 for (i = disks; i--; ) {
1740 struct r5dev *dev = &sh->dev[i];
1741
1742 if (dev->written || i == pd_idx || i == qd_idx) {
1743 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1744 set_bit(R5_UPTODATE, &dev->flags);
1745 if (fua)
1746 set_bit(R5_WantFUA, &dev->flags);
1747 if (sync)
1748 set_bit(R5_SyncIO, &dev->flags);
1749 }
1750 }
1751
1752 if (sh->reconstruct_state == reconstruct_state_drain_run)
1753 sh->reconstruct_state = reconstruct_state_drain_result;
1754 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1755 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1756 else {
1757 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1758 sh->reconstruct_state = reconstruct_state_result;
1759 }
1760
1761 set_bit(STRIPE_HANDLE, &sh->state);
1762 raid5_release_stripe(sh);
1763 }
1764
1765 static void
1766 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1767 struct dma_async_tx_descriptor *tx)
1768 {
1769 int disks = sh->disks;
1770 struct page **xor_srcs;
1771 struct async_submit_ctl submit;
1772 int count, pd_idx = sh->pd_idx, i;
1773 struct page *xor_dest;
1774 int prexor = 0;
1775 unsigned long flags;
1776 int j = 0;
1777 struct stripe_head *head_sh = sh;
1778 int last_stripe;
1779
1780 pr_debug("%s: stripe %llu\n", __func__,
1781 (unsigned long long)sh->sector);
1782
1783 for (i = 0; i < sh->disks; i++) {
1784 if (pd_idx == i)
1785 continue;
1786 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1787 break;
1788 }
1789 if (i >= sh->disks) {
1790 atomic_inc(&sh->count);
1791 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1792 ops_complete_reconstruct(sh);
1793 return;
1794 }
1795 again:
1796 count = 0;
1797 xor_srcs = to_addr_page(percpu, j);
1798 /* check if prexor is active which means only process blocks
1799 * that are part of a read-modify-write (written)
1800 */
1801 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1802 prexor = 1;
1803 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1804 for (i = disks; i--; ) {
1805 struct r5dev *dev = &sh->dev[i];
1806 if (head_sh->dev[i].written ||
1807 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1808 xor_srcs[count++] = dev->page;
1809 }
1810 } else {
1811 xor_dest = sh->dev[pd_idx].page;
1812 for (i = disks; i--; ) {
1813 struct r5dev *dev = &sh->dev[i];
1814 if (i != pd_idx)
1815 xor_srcs[count++] = dev->page;
1816 }
1817 }
1818
1819 /* 1/ if we prexor'd then the dest is reused as a source
1820 * 2/ if we did not prexor then we are redoing the parity
1821 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1822 * for the synchronous xor case
1823 */
1824 last_stripe = !head_sh->batch_head ||
1825 list_first_entry(&sh->batch_list,
1826 struct stripe_head, batch_list) == head_sh;
1827 if (last_stripe) {
1828 flags = ASYNC_TX_ACK |
1829 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1830
1831 atomic_inc(&head_sh->count);
1832 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1833 to_addr_conv(sh, percpu, j));
1834 } else {
1835 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1836 init_async_submit(&submit, flags, tx, NULL, NULL,
1837 to_addr_conv(sh, percpu, j));
1838 }
1839
1840 if (unlikely(count == 1))
1841 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1842 else
1843 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1844 if (!last_stripe) {
1845 j++;
1846 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1847 batch_list);
1848 goto again;
1849 }
1850 }
1851
1852 static void
1853 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1854 struct dma_async_tx_descriptor *tx)
1855 {
1856 struct async_submit_ctl submit;
1857 struct page **blocks;
1858 int count, i, j = 0;
1859 struct stripe_head *head_sh = sh;
1860 int last_stripe;
1861 int synflags;
1862 unsigned long txflags;
1863
1864 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1865
1866 for (i = 0; i < sh->disks; i++) {
1867 if (sh->pd_idx == i || sh->qd_idx == i)
1868 continue;
1869 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1870 break;
1871 }
1872 if (i >= sh->disks) {
1873 atomic_inc(&sh->count);
1874 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1875 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1876 ops_complete_reconstruct(sh);
1877 return;
1878 }
1879
1880 again:
1881 blocks = to_addr_page(percpu, j);
1882
1883 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1884 synflags = SYNDROME_SRC_WRITTEN;
1885 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1886 } else {
1887 synflags = SYNDROME_SRC_ALL;
1888 txflags = ASYNC_TX_ACK;
1889 }
1890
1891 count = set_syndrome_sources(blocks, sh, synflags);
1892 last_stripe = !head_sh->batch_head ||
1893 list_first_entry(&sh->batch_list,
1894 struct stripe_head, batch_list) == head_sh;
1895
1896 if (last_stripe) {
1897 atomic_inc(&head_sh->count);
1898 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1899 head_sh, to_addr_conv(sh, percpu, j));
1900 } else
1901 init_async_submit(&submit, 0, tx, NULL, NULL,
1902 to_addr_conv(sh, percpu, j));
1903 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1904 if (!last_stripe) {
1905 j++;
1906 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1907 batch_list);
1908 goto again;
1909 }
1910 }
1911
1912 static void ops_complete_check(void *stripe_head_ref)
1913 {
1914 struct stripe_head *sh = stripe_head_ref;
1915
1916 pr_debug("%s: stripe %llu\n", __func__,
1917 (unsigned long long)sh->sector);
1918
1919 sh->check_state = check_state_check_result;
1920 set_bit(STRIPE_HANDLE, &sh->state);
1921 raid5_release_stripe(sh);
1922 }
1923
1924 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1925 {
1926 int disks = sh->disks;
1927 int pd_idx = sh->pd_idx;
1928 int qd_idx = sh->qd_idx;
1929 struct page *xor_dest;
1930 struct page **xor_srcs = to_addr_page(percpu, 0);
1931 struct dma_async_tx_descriptor *tx;
1932 struct async_submit_ctl submit;
1933 int count;
1934 int i;
1935
1936 pr_debug("%s: stripe %llu\n", __func__,
1937 (unsigned long long)sh->sector);
1938
1939 BUG_ON(sh->batch_head);
1940 count = 0;
1941 xor_dest = sh->dev[pd_idx].page;
1942 xor_srcs[count++] = xor_dest;
1943 for (i = disks; i--; ) {
1944 if (i == pd_idx || i == qd_idx)
1945 continue;
1946 xor_srcs[count++] = sh->dev[i].page;
1947 }
1948
1949 init_async_submit(&submit, 0, NULL, NULL, NULL,
1950 to_addr_conv(sh, percpu, 0));
1951 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1952 &sh->ops.zero_sum_result, &submit);
1953
1954 atomic_inc(&sh->count);
1955 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1956 tx = async_trigger_callback(&submit);
1957 }
1958
1959 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1960 {
1961 struct page **srcs = to_addr_page(percpu, 0);
1962 struct async_submit_ctl submit;
1963 int count;
1964
1965 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1966 (unsigned long long)sh->sector, checkp);
1967
1968 BUG_ON(sh->batch_head);
1969 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1970 if (!checkp)
1971 srcs[count] = NULL;
1972
1973 atomic_inc(&sh->count);
1974 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1975 sh, to_addr_conv(sh, percpu, 0));
1976 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1977 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1978 }
1979
1980 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1981 {
1982 int overlap_clear = 0, i, disks = sh->disks;
1983 struct dma_async_tx_descriptor *tx = NULL;
1984 struct r5conf *conf = sh->raid_conf;
1985 int level = conf->level;
1986 struct raid5_percpu *percpu;
1987 unsigned long cpu;
1988
1989 cpu = get_cpu();
1990 percpu = per_cpu_ptr(conf->percpu, cpu);
1991 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1992 ops_run_biofill(sh);
1993 overlap_clear++;
1994 }
1995
1996 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1997 if (level < 6)
1998 tx = ops_run_compute5(sh, percpu);
1999 else {
2000 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2001 tx = ops_run_compute6_1(sh, percpu);
2002 else
2003 tx = ops_run_compute6_2(sh, percpu);
2004 }
2005 /* terminate the chain if reconstruct is not set to be run */
2006 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2007 async_tx_ack(tx);
2008 }
2009
2010 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2011 if (level < 6)
2012 tx = ops_run_prexor5(sh, percpu, tx);
2013 else
2014 tx = ops_run_prexor6(sh, percpu, tx);
2015 }
2016
2017 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2018 tx = ops_run_biodrain(sh, tx);
2019 overlap_clear++;
2020 }
2021
2022 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2023 if (level < 6)
2024 ops_run_reconstruct5(sh, percpu, tx);
2025 else
2026 ops_run_reconstruct6(sh, percpu, tx);
2027 }
2028
2029 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2030 if (sh->check_state == check_state_run)
2031 ops_run_check_p(sh, percpu);
2032 else if (sh->check_state == check_state_run_q)
2033 ops_run_check_pq(sh, percpu, 0);
2034 else if (sh->check_state == check_state_run_pq)
2035 ops_run_check_pq(sh, percpu, 1);
2036 else
2037 BUG();
2038 }
2039
2040 if (overlap_clear && !sh->batch_head)
2041 for (i = disks; i--; ) {
2042 struct r5dev *dev = &sh->dev[i];
2043 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2044 wake_up(&sh->raid_conf->wait_for_overlap);
2045 }
2046 put_cpu();
2047 }
2048
2049 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2050 int disks)
2051 {
2052 struct stripe_head *sh;
2053 int i;
2054
2055 sh = kmem_cache_zalloc(sc, gfp);
2056 if (sh) {
2057 spin_lock_init(&sh->stripe_lock);
2058 spin_lock_init(&sh->batch_lock);
2059 INIT_LIST_HEAD(&sh->batch_list);
2060 INIT_LIST_HEAD(&sh->lru);
2061 INIT_LIST_HEAD(&sh->r5c);
2062 INIT_LIST_HEAD(&sh->log_list);
2063 atomic_set(&sh->count, 1);
2064 sh->log_start = MaxSector;
2065 for (i = 0; i < disks; i++) {
2066 struct r5dev *dev = &sh->dev[i];
2067
2068 bio_init(&dev->req, &dev->vec, 1);
2069 bio_init(&dev->rreq, &dev->rvec, 1);
2070 }
2071 }
2072 return sh;
2073 }
2074 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2075 {
2076 struct stripe_head *sh;
2077
2078 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
2079 if (!sh)
2080 return 0;
2081
2082 sh->raid_conf = conf;
2083
2084 if (grow_buffers(sh, gfp)) {
2085 shrink_buffers(sh);
2086 kmem_cache_free(conf->slab_cache, sh);
2087 return 0;
2088 }
2089 sh->hash_lock_index =
2090 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2091 /* we just created an active stripe so... */
2092 atomic_inc(&conf->active_stripes);
2093
2094 raid5_release_stripe(sh);
2095 conf->max_nr_stripes++;
2096 return 1;
2097 }
2098
2099 static int grow_stripes(struct r5conf *conf, int num)
2100 {
2101 struct kmem_cache *sc;
2102 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2103
2104 if (conf->mddev->gendisk)
2105 sprintf(conf->cache_name[0],
2106 "raid%d-%s", conf->level, mdname(conf->mddev));
2107 else
2108 sprintf(conf->cache_name[0],
2109 "raid%d-%p", conf->level, conf->mddev);
2110 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2111
2112 conf->active_name = 0;
2113 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2114 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2115 0, 0, NULL);
2116 if (!sc)
2117 return 1;
2118 conf->slab_cache = sc;
2119 conf->pool_size = devs;
2120 while (num--)
2121 if (!grow_one_stripe(conf, GFP_KERNEL))
2122 return 1;
2123
2124 return 0;
2125 }
2126
2127 /**
2128 * scribble_len - return the required size of the scribble region
2129 * @num - total number of disks in the array
2130 *
2131 * The size must be enough to contain:
2132 * 1/ a struct page pointer for each device in the array +2
2133 * 2/ room to convert each entry in (1) to its corresponding dma
2134 * (dma_map_page()) or page (page_address()) address.
2135 *
2136 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2137 * calculate over all devices (not just the data blocks), using zeros in place
2138 * of the P and Q blocks.
2139 */
2140 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2141 {
2142 struct flex_array *ret;
2143 size_t len;
2144
2145 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2146 ret = flex_array_alloc(len, cnt, flags);
2147 if (!ret)
2148 return NULL;
2149 /* always prealloc all elements, so no locking is required */
2150 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2151 flex_array_free(ret);
2152 return NULL;
2153 }
2154 return ret;
2155 }
2156
2157 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2158 {
2159 unsigned long cpu;
2160 int err = 0;
2161
2162 /*
2163 * Never shrink. And mddev_suspend() could deadlock if this is called
2164 * from raid5d. In that case, scribble_disks and scribble_sectors
2165 * should equal to new_disks and new_sectors
2166 */
2167 if (conf->scribble_disks >= new_disks &&
2168 conf->scribble_sectors >= new_sectors)
2169 return 0;
2170 mddev_suspend(conf->mddev);
2171 get_online_cpus();
2172 for_each_present_cpu(cpu) {
2173 struct raid5_percpu *percpu;
2174 struct flex_array *scribble;
2175
2176 percpu = per_cpu_ptr(conf->percpu, cpu);
2177 scribble = scribble_alloc(new_disks,
2178 new_sectors / STRIPE_SECTORS,
2179 GFP_NOIO);
2180
2181 if (scribble) {
2182 flex_array_free(percpu->scribble);
2183 percpu->scribble = scribble;
2184 } else {
2185 err = -ENOMEM;
2186 break;
2187 }
2188 }
2189 put_online_cpus();
2190 mddev_resume(conf->mddev);
2191 if (!err) {
2192 conf->scribble_disks = new_disks;
2193 conf->scribble_sectors = new_sectors;
2194 }
2195 return err;
2196 }
2197
2198 static int resize_stripes(struct r5conf *conf, int newsize)
2199 {
2200 /* Make all the stripes able to hold 'newsize' devices.
2201 * New slots in each stripe get 'page' set to a new page.
2202 *
2203 * This happens in stages:
2204 * 1/ create a new kmem_cache and allocate the required number of
2205 * stripe_heads.
2206 * 2/ gather all the old stripe_heads and transfer the pages across
2207 * to the new stripe_heads. This will have the side effect of
2208 * freezing the array as once all stripe_heads have been collected,
2209 * no IO will be possible. Old stripe heads are freed once their
2210 * pages have been transferred over, and the old kmem_cache is
2211 * freed when all stripes are done.
2212 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2213 * we simple return a failre status - no need to clean anything up.
2214 * 4/ allocate new pages for the new slots in the new stripe_heads.
2215 * If this fails, we don't bother trying the shrink the
2216 * stripe_heads down again, we just leave them as they are.
2217 * As each stripe_head is processed the new one is released into
2218 * active service.
2219 *
2220 * Once step2 is started, we cannot afford to wait for a write,
2221 * so we use GFP_NOIO allocations.
2222 */
2223 struct stripe_head *osh, *nsh;
2224 LIST_HEAD(newstripes);
2225 struct disk_info *ndisks;
2226 int err;
2227 struct kmem_cache *sc;
2228 int i;
2229 int hash, cnt;
2230
2231 if (newsize <= conf->pool_size)
2232 return 0; /* never bother to shrink */
2233
2234 err = md_allow_write(conf->mddev);
2235 if (err)
2236 return err;
2237
2238 /* Step 1 */
2239 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2240 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2241 0, 0, NULL);
2242 if (!sc)
2243 return -ENOMEM;
2244
2245 /* Need to ensure auto-resizing doesn't interfere */
2246 mutex_lock(&conf->cache_size_mutex);
2247
2248 for (i = conf->max_nr_stripes; i; i--) {
2249 nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
2250 if (!nsh)
2251 break;
2252
2253 nsh->raid_conf = conf;
2254 list_add(&nsh->lru, &newstripes);
2255 }
2256 if (i) {
2257 /* didn't get enough, give up */
2258 while (!list_empty(&newstripes)) {
2259 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2260 list_del(&nsh->lru);
2261 kmem_cache_free(sc, nsh);
2262 }
2263 kmem_cache_destroy(sc);
2264 mutex_unlock(&conf->cache_size_mutex);
2265 return -ENOMEM;
2266 }
2267 /* Step 2 - Must use GFP_NOIO now.
2268 * OK, we have enough stripes, start collecting inactive
2269 * stripes and copying them over
2270 */
2271 hash = 0;
2272 cnt = 0;
2273 list_for_each_entry(nsh, &newstripes, lru) {
2274 lock_device_hash_lock(conf, hash);
2275 wait_event_cmd(conf->wait_for_stripe,
2276 !list_empty(conf->inactive_list + hash),
2277 unlock_device_hash_lock(conf, hash),
2278 lock_device_hash_lock(conf, hash));
2279 osh = get_free_stripe(conf, hash);
2280 unlock_device_hash_lock(conf, hash);
2281
2282 for(i=0; i<conf->pool_size; i++) {
2283 nsh->dev[i].page = osh->dev[i].page;
2284 nsh->dev[i].orig_page = osh->dev[i].page;
2285 }
2286 nsh->hash_lock_index = hash;
2287 kmem_cache_free(conf->slab_cache, osh);
2288 cnt++;
2289 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2290 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2291 hash++;
2292 cnt = 0;
2293 }
2294 }
2295 kmem_cache_destroy(conf->slab_cache);
2296
2297 /* Step 3.
2298 * At this point, we are holding all the stripes so the array
2299 * is completely stalled, so now is a good time to resize
2300 * conf->disks and the scribble region
2301 */
2302 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2303 if (ndisks) {
2304 for (i = 0; i < conf->pool_size; i++)
2305 ndisks[i] = conf->disks[i];
2306
2307 for (i = conf->pool_size; i < newsize; i++) {
2308 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2309 if (!ndisks[i].extra_page)
2310 err = -ENOMEM;
2311 }
2312
2313 if (err) {
2314 for (i = conf->pool_size; i < newsize; i++)
2315 if (ndisks[i].extra_page)
2316 put_page(ndisks[i].extra_page);
2317 kfree(ndisks);
2318 } else {
2319 kfree(conf->disks);
2320 conf->disks = ndisks;
2321 }
2322 } else
2323 err = -ENOMEM;
2324
2325 mutex_unlock(&conf->cache_size_mutex);
2326 /* Step 4, return new stripes to service */
2327 while(!list_empty(&newstripes)) {
2328 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2329 list_del_init(&nsh->lru);
2330
2331 for (i=conf->raid_disks; i < newsize; i++)
2332 if (nsh->dev[i].page == NULL) {
2333 struct page *p = alloc_page(GFP_NOIO);
2334 nsh->dev[i].page = p;
2335 nsh->dev[i].orig_page = p;
2336 if (!p)
2337 err = -ENOMEM;
2338 }
2339 raid5_release_stripe(nsh);
2340 }
2341 /* critical section pass, GFP_NOIO no longer needed */
2342
2343 conf->slab_cache = sc;
2344 conf->active_name = 1-conf->active_name;
2345 if (!err)
2346 conf->pool_size = newsize;
2347 return err;
2348 }
2349
2350 static int drop_one_stripe(struct r5conf *conf)
2351 {
2352 struct stripe_head *sh;
2353 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2354
2355 spin_lock_irq(conf->hash_locks + hash);
2356 sh = get_free_stripe(conf, hash);
2357 spin_unlock_irq(conf->hash_locks + hash);
2358 if (!sh)
2359 return 0;
2360 BUG_ON(atomic_read(&sh->count));
2361 shrink_buffers(sh);
2362 kmem_cache_free(conf->slab_cache, sh);
2363 atomic_dec(&conf->active_stripes);
2364 conf->max_nr_stripes--;
2365 return 1;
2366 }
2367
2368 static void shrink_stripes(struct r5conf *conf)
2369 {
2370 while (conf->max_nr_stripes &&
2371 drop_one_stripe(conf))
2372 ;
2373
2374 kmem_cache_destroy(conf->slab_cache);
2375 conf->slab_cache = NULL;
2376 }
2377
2378 static void raid5_end_read_request(struct bio * bi)
2379 {
2380 struct stripe_head *sh = bi->bi_private;
2381 struct r5conf *conf = sh->raid_conf;
2382 int disks = sh->disks, i;
2383 char b[BDEVNAME_SIZE];
2384 struct md_rdev *rdev = NULL;
2385 sector_t s;
2386
2387 for (i=0 ; i<disks; i++)
2388 if (bi == &sh->dev[i].req)
2389 break;
2390
2391 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2392 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2393 bi->bi_error);
2394 if (i == disks) {
2395 bio_reset(bi);
2396 BUG();
2397 return;
2398 }
2399 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2400 /* If replacement finished while this request was outstanding,
2401 * 'replacement' might be NULL already.
2402 * In that case it moved down to 'rdev'.
2403 * rdev is not removed until all requests are finished.
2404 */
2405 rdev = conf->disks[i].replacement;
2406 if (!rdev)
2407 rdev = conf->disks[i].rdev;
2408
2409 if (use_new_offset(conf, sh))
2410 s = sh->sector + rdev->new_data_offset;
2411 else
2412 s = sh->sector + rdev->data_offset;
2413 if (!bi->bi_error) {
2414 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2415 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2416 /* Note that this cannot happen on a
2417 * replacement device. We just fail those on
2418 * any error
2419 */
2420 pr_info_ratelimited(
2421 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2422 mdname(conf->mddev), STRIPE_SECTORS,
2423 (unsigned long long)s,
2424 bdevname(rdev->bdev, b));
2425 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2426 clear_bit(R5_ReadError, &sh->dev[i].flags);
2427 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2428 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2429 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2430
2431 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2432 /*
2433 * end read for a page in journal, this
2434 * must be preparing for prexor in rmw
2435 */
2436 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2437
2438 if (atomic_read(&rdev->read_errors))
2439 atomic_set(&rdev->read_errors, 0);
2440 } else {
2441 const char *bdn = bdevname(rdev->bdev, b);
2442 int retry = 0;
2443 int set_bad = 0;
2444
2445 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2446 atomic_inc(&rdev->read_errors);
2447 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2448 pr_warn_ratelimited(
2449 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2450 mdname(conf->mddev),
2451 (unsigned long long)s,
2452 bdn);
2453 else if (conf->mddev->degraded >= conf->max_degraded) {
2454 set_bad = 1;
2455 pr_warn_ratelimited(
2456 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2457 mdname(conf->mddev),
2458 (unsigned long long)s,
2459 bdn);
2460 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2461 /* Oh, no!!! */
2462 set_bad = 1;
2463 pr_warn_ratelimited(
2464 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2465 mdname(conf->mddev),
2466 (unsigned long long)s,
2467 bdn);
2468 } else if (atomic_read(&rdev->read_errors)
2469 > conf->max_nr_stripes)
2470 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2471 mdname(conf->mddev), bdn);
2472 else
2473 retry = 1;
2474 if (set_bad && test_bit(In_sync, &rdev->flags)
2475 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2476 retry = 1;
2477 if (retry)
2478 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2479 set_bit(R5_ReadError, &sh->dev[i].flags);
2480 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2481 } else
2482 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2483 else {
2484 clear_bit(R5_ReadError, &sh->dev[i].flags);
2485 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2486 if (!(set_bad
2487 && test_bit(In_sync, &rdev->flags)
2488 && rdev_set_badblocks(
2489 rdev, sh->sector, STRIPE_SECTORS, 0)))
2490 md_error(conf->mddev, rdev);
2491 }
2492 }
2493 rdev_dec_pending(rdev, conf->mddev);
2494 bio_reset(bi);
2495 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2496 set_bit(STRIPE_HANDLE, &sh->state);
2497 raid5_release_stripe(sh);
2498 }
2499
2500 static void raid5_end_write_request(struct bio *bi)
2501 {
2502 struct stripe_head *sh = bi->bi_private;
2503 struct r5conf *conf = sh->raid_conf;
2504 int disks = sh->disks, i;
2505 struct md_rdev *uninitialized_var(rdev);
2506 sector_t first_bad;
2507 int bad_sectors;
2508 int replacement = 0;
2509
2510 for (i = 0 ; i < disks; i++) {
2511 if (bi == &sh->dev[i].req) {
2512 rdev = conf->disks[i].rdev;
2513 break;
2514 }
2515 if (bi == &sh->dev[i].rreq) {
2516 rdev = conf->disks[i].replacement;
2517 if (rdev)
2518 replacement = 1;
2519 else
2520 /* rdev was removed and 'replacement'
2521 * replaced it. rdev is not removed
2522 * until all requests are finished.
2523 */
2524 rdev = conf->disks[i].rdev;
2525 break;
2526 }
2527 }
2528 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2529 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2530 bi->bi_error);
2531 if (i == disks) {
2532 bio_reset(bi);
2533 BUG();
2534 return;
2535 }
2536
2537 if (replacement) {
2538 if (bi->bi_error)
2539 md_error(conf->mddev, rdev);
2540 else if (is_badblock(rdev, sh->sector,
2541 STRIPE_SECTORS,
2542 &first_bad, &bad_sectors))
2543 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2544 } else {
2545 if (bi->bi_error) {
2546 set_bit(STRIPE_DEGRADED, &sh->state);
2547 set_bit(WriteErrorSeen, &rdev->flags);
2548 set_bit(R5_WriteError, &sh->dev[i].flags);
2549 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2550 set_bit(MD_RECOVERY_NEEDED,
2551 &rdev->mddev->recovery);
2552 } else if (is_badblock(rdev, sh->sector,
2553 STRIPE_SECTORS,
2554 &first_bad, &bad_sectors)) {
2555 set_bit(R5_MadeGood, &sh->dev[i].flags);
2556 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2557 /* That was a successful write so make
2558 * sure it looks like we already did
2559 * a re-write.
2560 */
2561 set_bit(R5_ReWrite, &sh->dev[i].flags);
2562 }
2563 }
2564 rdev_dec_pending(rdev, conf->mddev);
2565
2566 if (sh->batch_head && bi->bi_error && !replacement)
2567 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2568
2569 bio_reset(bi);
2570 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2571 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2572 set_bit(STRIPE_HANDLE, &sh->state);
2573 raid5_release_stripe(sh);
2574
2575 if (sh->batch_head && sh != sh->batch_head)
2576 raid5_release_stripe(sh->batch_head);
2577 }
2578
2579 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2580 {
2581 struct r5dev *dev = &sh->dev[i];
2582
2583 dev->flags = 0;
2584 dev->sector = raid5_compute_blocknr(sh, i, previous);
2585 }
2586
2587 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2588 {
2589 char b[BDEVNAME_SIZE];
2590 struct r5conf *conf = mddev->private;
2591 unsigned long flags;
2592 pr_debug("raid456: error called\n");
2593
2594 spin_lock_irqsave(&conf->device_lock, flags);
2595 clear_bit(In_sync, &rdev->flags);
2596 mddev->degraded = raid5_calc_degraded(conf);
2597 spin_unlock_irqrestore(&conf->device_lock, flags);
2598 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2599
2600 set_bit(Blocked, &rdev->flags);
2601 set_bit(Faulty, &rdev->flags);
2602 set_mask_bits(&mddev->sb_flags, 0,
2603 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2604 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2605 "md/raid:%s: Operation continuing on %d devices.\n",
2606 mdname(mddev),
2607 bdevname(rdev->bdev, b),
2608 mdname(mddev),
2609 conf->raid_disks - mddev->degraded);
2610 r5c_update_on_rdev_error(mddev);
2611 }
2612
2613 /*
2614 * Input: a 'big' sector number,
2615 * Output: index of the data and parity disk, and the sector # in them.
2616 */
2617 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2618 int previous, int *dd_idx,
2619 struct stripe_head *sh)
2620 {
2621 sector_t stripe, stripe2;
2622 sector_t chunk_number;
2623 unsigned int chunk_offset;
2624 int pd_idx, qd_idx;
2625 int ddf_layout = 0;
2626 sector_t new_sector;
2627 int algorithm = previous ? conf->prev_algo
2628 : conf->algorithm;
2629 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2630 : conf->chunk_sectors;
2631 int raid_disks = previous ? conf->previous_raid_disks
2632 : conf->raid_disks;
2633 int data_disks = raid_disks - conf->max_degraded;
2634
2635 /* First compute the information on this sector */
2636
2637 /*
2638 * Compute the chunk number and the sector offset inside the chunk
2639 */
2640 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2641 chunk_number = r_sector;
2642
2643 /*
2644 * Compute the stripe number
2645 */
2646 stripe = chunk_number;
2647 *dd_idx = sector_div(stripe, data_disks);
2648 stripe2 = stripe;
2649 /*
2650 * Select the parity disk based on the user selected algorithm.
2651 */
2652 pd_idx = qd_idx = -1;
2653 switch(conf->level) {
2654 case 4:
2655 pd_idx = data_disks;
2656 break;
2657 case 5:
2658 switch (algorithm) {
2659 case ALGORITHM_LEFT_ASYMMETRIC:
2660 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2661 if (*dd_idx >= pd_idx)
2662 (*dd_idx)++;
2663 break;
2664 case ALGORITHM_RIGHT_ASYMMETRIC:
2665 pd_idx = sector_div(stripe2, raid_disks);
2666 if (*dd_idx >= pd_idx)
2667 (*dd_idx)++;
2668 break;
2669 case ALGORITHM_LEFT_SYMMETRIC:
2670 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2671 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2672 break;
2673 case ALGORITHM_RIGHT_SYMMETRIC:
2674 pd_idx = sector_div(stripe2, raid_disks);
2675 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2676 break;
2677 case ALGORITHM_PARITY_0:
2678 pd_idx = 0;
2679 (*dd_idx)++;
2680 break;
2681 case ALGORITHM_PARITY_N:
2682 pd_idx = data_disks;
2683 break;
2684 default:
2685 BUG();
2686 }
2687 break;
2688 case 6:
2689
2690 switch (algorithm) {
2691 case ALGORITHM_LEFT_ASYMMETRIC:
2692 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2693 qd_idx = pd_idx + 1;
2694 if (pd_idx == raid_disks-1) {
2695 (*dd_idx)++; /* Q D D D P */
2696 qd_idx = 0;
2697 } else if (*dd_idx >= pd_idx)
2698 (*dd_idx) += 2; /* D D P Q D */
2699 break;
2700 case ALGORITHM_RIGHT_ASYMMETRIC:
2701 pd_idx = sector_div(stripe2, raid_disks);
2702 qd_idx = pd_idx + 1;
2703 if (pd_idx == raid_disks-1) {
2704 (*dd_idx)++; /* Q D D D P */
2705 qd_idx = 0;
2706 } else if (*dd_idx >= pd_idx)
2707 (*dd_idx) += 2; /* D D P Q D */
2708 break;
2709 case ALGORITHM_LEFT_SYMMETRIC:
2710 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2711 qd_idx = (pd_idx + 1) % raid_disks;
2712 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2713 break;
2714 case ALGORITHM_RIGHT_SYMMETRIC:
2715 pd_idx = sector_div(stripe2, raid_disks);
2716 qd_idx = (pd_idx + 1) % raid_disks;
2717 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2718 break;
2719
2720 case ALGORITHM_PARITY_0:
2721 pd_idx = 0;
2722 qd_idx = 1;
2723 (*dd_idx) += 2;
2724 break;
2725 case ALGORITHM_PARITY_N:
2726 pd_idx = data_disks;
2727 qd_idx = data_disks + 1;
2728 break;
2729
2730 case ALGORITHM_ROTATING_ZERO_RESTART:
2731 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2732 * of blocks for computing Q is different.
2733 */
2734 pd_idx = sector_div(stripe2, raid_disks);
2735 qd_idx = pd_idx + 1;
2736 if (pd_idx == raid_disks-1) {
2737 (*dd_idx)++; /* Q D D D P */
2738 qd_idx = 0;
2739 } else if (*dd_idx >= pd_idx)
2740 (*dd_idx) += 2; /* D D P Q D */
2741 ddf_layout = 1;
2742 break;
2743
2744 case ALGORITHM_ROTATING_N_RESTART:
2745 /* Same a left_asymmetric, by first stripe is
2746 * D D D P Q rather than
2747 * Q D D D P
2748 */
2749 stripe2 += 1;
2750 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2751 qd_idx = pd_idx + 1;
2752 if (pd_idx == raid_disks-1) {
2753 (*dd_idx)++; /* Q D D D P */
2754 qd_idx = 0;
2755 } else if (*dd_idx >= pd_idx)
2756 (*dd_idx) += 2; /* D D P Q D */
2757 ddf_layout = 1;
2758 break;
2759
2760 case ALGORITHM_ROTATING_N_CONTINUE:
2761 /* Same as left_symmetric but Q is before P */
2762 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2763 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2764 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2765 ddf_layout = 1;
2766 break;
2767
2768 case ALGORITHM_LEFT_ASYMMETRIC_6:
2769 /* RAID5 left_asymmetric, with Q on last device */
2770 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2771 if (*dd_idx >= pd_idx)
2772 (*dd_idx)++;
2773 qd_idx = raid_disks - 1;
2774 break;
2775
2776 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2777 pd_idx = sector_div(stripe2, raid_disks-1);
2778 if (*dd_idx >= pd_idx)
2779 (*dd_idx)++;
2780 qd_idx = raid_disks - 1;
2781 break;
2782
2783 case ALGORITHM_LEFT_SYMMETRIC_6:
2784 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2785 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2786 qd_idx = raid_disks - 1;
2787 break;
2788
2789 case ALGORITHM_RIGHT_SYMMETRIC_6:
2790 pd_idx = sector_div(stripe2, raid_disks-1);
2791 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2792 qd_idx = raid_disks - 1;
2793 break;
2794
2795 case ALGORITHM_PARITY_0_6:
2796 pd_idx = 0;
2797 (*dd_idx)++;
2798 qd_idx = raid_disks - 1;
2799 break;
2800
2801 default:
2802 BUG();
2803 }
2804 break;
2805 }
2806
2807 if (sh) {
2808 sh->pd_idx = pd_idx;
2809 sh->qd_idx = qd_idx;
2810 sh->ddf_layout = ddf_layout;
2811 }
2812 /*
2813 * Finally, compute the new sector number
2814 */
2815 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2816 return new_sector;
2817 }
2818
2819 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2820 {
2821 struct r5conf *conf = sh->raid_conf;
2822 int raid_disks = sh->disks;
2823 int data_disks = raid_disks - conf->max_degraded;
2824 sector_t new_sector = sh->sector, check;
2825 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2826 : conf->chunk_sectors;
2827 int algorithm = previous ? conf->prev_algo
2828 : conf->algorithm;
2829 sector_t stripe;
2830 int chunk_offset;
2831 sector_t chunk_number;
2832 int dummy1, dd_idx = i;
2833 sector_t r_sector;
2834 struct stripe_head sh2;
2835
2836 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2837 stripe = new_sector;
2838
2839 if (i == sh->pd_idx)
2840 return 0;
2841 switch(conf->level) {
2842 case 4: break;
2843 case 5:
2844 switch (algorithm) {
2845 case ALGORITHM_LEFT_ASYMMETRIC:
2846 case ALGORITHM_RIGHT_ASYMMETRIC:
2847 if (i > sh->pd_idx)
2848 i--;
2849 break;
2850 case ALGORITHM_LEFT_SYMMETRIC:
2851 case ALGORITHM_RIGHT_SYMMETRIC:
2852 if (i < sh->pd_idx)
2853 i += raid_disks;
2854 i -= (sh->pd_idx + 1);
2855 break;
2856 case ALGORITHM_PARITY_0:
2857 i -= 1;
2858 break;
2859 case ALGORITHM_PARITY_N:
2860 break;
2861 default:
2862 BUG();
2863 }
2864 break;
2865 case 6:
2866 if (i == sh->qd_idx)
2867 return 0; /* It is the Q disk */
2868 switch (algorithm) {
2869 case ALGORITHM_LEFT_ASYMMETRIC:
2870 case ALGORITHM_RIGHT_ASYMMETRIC:
2871 case ALGORITHM_ROTATING_ZERO_RESTART:
2872 case ALGORITHM_ROTATING_N_RESTART:
2873 if (sh->pd_idx == raid_disks-1)
2874 i--; /* Q D D D P */
2875 else if (i > sh->pd_idx)
2876 i -= 2; /* D D P Q D */
2877 break;
2878 case ALGORITHM_LEFT_SYMMETRIC:
2879 case ALGORITHM_RIGHT_SYMMETRIC:
2880 if (sh->pd_idx == raid_disks-1)
2881 i--; /* Q D D D P */
2882 else {
2883 /* D D P Q D */
2884 if (i < sh->pd_idx)
2885 i += raid_disks;
2886 i -= (sh->pd_idx + 2);
2887 }
2888 break;
2889 case ALGORITHM_PARITY_0:
2890 i -= 2;
2891 break;
2892 case ALGORITHM_PARITY_N:
2893 break;
2894 case ALGORITHM_ROTATING_N_CONTINUE:
2895 /* Like left_symmetric, but P is before Q */
2896 if (sh->pd_idx == 0)
2897 i--; /* P D D D Q */
2898 else {
2899 /* D D Q P D */
2900 if (i < sh->pd_idx)
2901 i += raid_disks;
2902 i -= (sh->pd_idx + 1);
2903 }
2904 break;
2905 case ALGORITHM_LEFT_ASYMMETRIC_6:
2906 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2907 if (i > sh->pd_idx)
2908 i--;
2909 break;
2910 case ALGORITHM_LEFT_SYMMETRIC_6:
2911 case ALGORITHM_RIGHT_SYMMETRIC_6:
2912 if (i < sh->pd_idx)
2913 i += data_disks + 1;
2914 i -= (sh->pd_idx + 1);
2915 break;
2916 case ALGORITHM_PARITY_0_6:
2917 i -= 1;
2918 break;
2919 default:
2920 BUG();
2921 }
2922 break;
2923 }
2924
2925 chunk_number = stripe * data_disks + i;
2926 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2927
2928 check = raid5_compute_sector(conf, r_sector,
2929 previous, &dummy1, &sh2);
2930 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2931 || sh2.qd_idx != sh->qd_idx) {
2932 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
2933 mdname(conf->mddev));
2934 return 0;
2935 }
2936 return r_sector;
2937 }
2938
2939 /*
2940 * There are cases where we want handle_stripe_dirtying() and
2941 * schedule_reconstruction() to delay towrite to some dev of a stripe.
2942 *
2943 * This function checks whether we want to delay the towrite. Specifically,
2944 * we delay the towrite when:
2945 *
2946 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
2947 * stripe has data in journal (for other devices).
2948 *
2949 * In this case, when reading data for the non-overwrite dev, it is
2950 * necessary to handle complex rmw of write back cache (prexor with
2951 * orig_page, and xor with page). To keep read path simple, we would
2952 * like to flush data in journal to RAID disks first, so complex rmw
2953 * is handled in the write patch (handle_stripe_dirtying).
2954 *
2955 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
2956 *
2957 * It is important to be able to flush all stripes in raid5-cache.
2958 * Therefore, we need reserve some space on the journal device for
2959 * these flushes. If flush operation includes pending writes to the
2960 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
2961 * for the flush out. If we exclude these pending writes from flush
2962 * operation, we only need (conf->max_degraded + 1) pages per stripe.
2963 * Therefore, excluding pending writes in these cases enables more
2964 * efficient use of the journal device.
2965 *
2966 * Note: To make sure the stripe makes progress, we only delay
2967 * towrite for stripes with data already in journal (injournal > 0).
2968 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
2969 * no_space_stripes list.
2970 *
2971 */
2972 static inline bool delay_towrite(struct r5conf *conf,
2973 struct r5dev *dev,
2974 struct stripe_head_state *s)
2975 {
2976 /* case 1 above */
2977 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2978 !test_bit(R5_Insync, &dev->flags) && s->injournal)
2979 return true;
2980 /* case 2 above */
2981 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2982 s->injournal > 0)
2983 return true;
2984 return false;
2985 }
2986
2987 static void
2988 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2989 int rcw, int expand)
2990 {
2991 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2992 struct r5conf *conf = sh->raid_conf;
2993 int level = conf->level;
2994
2995 if (rcw) {
2996 /*
2997 * In some cases, handle_stripe_dirtying initially decided to
2998 * run rmw and allocates extra page for prexor. However, rcw is
2999 * cheaper later on. We need to free the extra page now,
3000 * because we won't be able to do that in ops_complete_prexor().
3001 */
3002 r5c_release_extra_page(sh);
3003
3004 for (i = disks; i--; ) {
3005 struct r5dev *dev = &sh->dev[i];
3006
3007 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3008 set_bit(R5_LOCKED, &dev->flags);
3009 set_bit(R5_Wantdrain, &dev->flags);
3010 if (!expand)
3011 clear_bit(R5_UPTODATE, &dev->flags);
3012 s->locked++;
3013 } else if (test_bit(R5_InJournal, &dev->flags)) {
3014 set_bit(R5_LOCKED, &dev->flags);
3015 s->locked++;
3016 }
3017 }
3018 /* if we are not expanding this is a proper write request, and
3019 * there will be bios with new data to be drained into the
3020 * stripe cache
3021 */
3022 if (!expand) {
3023 if (!s->locked)
3024 /* False alarm, nothing to do */
3025 return;
3026 sh->reconstruct_state = reconstruct_state_drain_run;
3027 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3028 } else
3029 sh->reconstruct_state = reconstruct_state_run;
3030
3031 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3032
3033 if (s->locked + conf->max_degraded == disks)
3034 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3035 atomic_inc(&conf->pending_full_writes);
3036 } else {
3037 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3038 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3039 BUG_ON(level == 6 &&
3040 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3041 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3042
3043 for (i = disks; i--; ) {
3044 struct r5dev *dev = &sh->dev[i];
3045 if (i == pd_idx || i == qd_idx)
3046 continue;
3047
3048 if (dev->towrite &&
3049 (test_bit(R5_UPTODATE, &dev->flags) ||
3050 test_bit(R5_Wantcompute, &dev->flags))) {
3051 set_bit(R5_Wantdrain, &dev->flags);
3052 set_bit(R5_LOCKED, &dev->flags);
3053 clear_bit(R5_UPTODATE, &dev->flags);
3054 s->locked++;
3055 } else if (test_bit(R5_InJournal, &dev->flags)) {
3056 set_bit(R5_LOCKED, &dev->flags);
3057 s->locked++;
3058 }
3059 }
3060 if (!s->locked)
3061 /* False alarm - nothing to do */
3062 return;
3063 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3064 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3065 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3066 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3067 }
3068
3069 /* keep the parity disk(s) locked while asynchronous operations
3070 * are in flight
3071 */
3072 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3073 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3074 s->locked++;
3075
3076 if (level == 6) {
3077 int qd_idx = sh->qd_idx;
3078 struct r5dev *dev = &sh->dev[qd_idx];
3079
3080 set_bit(R5_LOCKED, &dev->flags);
3081 clear_bit(R5_UPTODATE, &dev->flags);
3082 s->locked++;
3083 }
3084
3085 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3086 __func__, (unsigned long long)sh->sector,
3087 s->locked, s->ops_request);
3088 }
3089
3090 /*
3091 * Each stripe/dev can have one or more bion attached.
3092 * toread/towrite point to the first in a chain.
3093 * The bi_next chain must be in order.
3094 */
3095 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3096 int forwrite, int previous)
3097 {
3098 struct bio **bip;
3099 struct r5conf *conf = sh->raid_conf;
3100 int firstwrite=0;
3101
3102 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3103 (unsigned long long)bi->bi_iter.bi_sector,
3104 (unsigned long long)sh->sector);
3105
3106 /*
3107 * If several bio share a stripe. The bio bi_phys_segments acts as a
3108 * reference count to avoid race. The reference count should already be
3109 * increased before this function is called (for example, in
3110 * raid5_make_request()), so other bio sharing this stripe will not free the
3111 * stripe. If a stripe is owned by one stripe, the stripe lock will
3112 * protect it.
3113 */
3114 spin_lock_irq(&sh->stripe_lock);
3115 /* Don't allow new IO added to stripes in batch list */
3116 if (sh->batch_head)
3117 goto overlap;
3118 if (forwrite) {
3119 bip = &sh->dev[dd_idx].towrite;
3120 if (*bip == NULL)
3121 firstwrite = 1;
3122 } else
3123 bip = &sh->dev[dd_idx].toread;
3124 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3125 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3126 goto overlap;
3127 bip = & (*bip)->bi_next;
3128 }
3129 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3130 goto overlap;
3131
3132 if (!forwrite || previous)
3133 clear_bit(STRIPE_BATCH_READY, &sh->state);
3134
3135 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3136 if (*bip)
3137 bi->bi_next = *bip;
3138 *bip = bi;
3139 raid5_inc_bi_active_stripes(bi);
3140
3141 if (forwrite) {
3142 /* check if page is covered */
3143 sector_t sector = sh->dev[dd_idx].sector;
3144 for (bi=sh->dev[dd_idx].towrite;
3145 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3146 bi && bi->bi_iter.bi_sector <= sector;
3147 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3148 if (bio_end_sector(bi) >= sector)
3149 sector = bio_end_sector(bi);
3150 }
3151 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3152 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3153 sh->overwrite_disks++;
3154 }
3155
3156 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3157 (unsigned long long)(*bip)->bi_iter.bi_sector,
3158 (unsigned long long)sh->sector, dd_idx);
3159
3160 if (conf->mddev->bitmap && firstwrite) {
3161 /* Cannot hold spinlock over bitmap_startwrite,
3162 * but must ensure this isn't added to a batch until
3163 * we have added to the bitmap and set bm_seq.
3164 * So set STRIPE_BITMAP_PENDING to prevent
3165 * batching.
3166 * If multiple add_stripe_bio() calls race here they
3167 * much all set STRIPE_BITMAP_PENDING. So only the first one
3168 * to complete "bitmap_startwrite" gets to set
3169 * STRIPE_BIT_DELAY. This is important as once a stripe
3170 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3171 * any more.
3172 */
3173 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3174 spin_unlock_irq(&sh->stripe_lock);
3175 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3176 STRIPE_SECTORS, 0);
3177 spin_lock_irq(&sh->stripe_lock);
3178 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3179 if (!sh->batch_head) {
3180 sh->bm_seq = conf->seq_flush+1;
3181 set_bit(STRIPE_BIT_DELAY, &sh->state);
3182 }
3183 }
3184 spin_unlock_irq(&sh->stripe_lock);
3185
3186 if (stripe_can_batch(sh))
3187 stripe_add_to_batch_list(conf, sh);
3188 return 1;
3189
3190 overlap:
3191 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3192 spin_unlock_irq(&sh->stripe_lock);
3193 return 0;
3194 }
3195
3196 static void end_reshape(struct r5conf *conf);
3197
3198 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3199 struct stripe_head *sh)
3200 {
3201 int sectors_per_chunk =
3202 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3203 int dd_idx;
3204 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3205 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3206
3207 raid5_compute_sector(conf,
3208 stripe * (disks - conf->max_degraded)
3209 *sectors_per_chunk + chunk_offset,
3210 previous,
3211 &dd_idx, sh);
3212 }
3213
3214 static void
3215 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3216 struct stripe_head_state *s, int disks,
3217 struct bio_list *return_bi)
3218 {
3219 int i;
3220 BUG_ON(sh->batch_head);
3221 for (i = disks; i--; ) {
3222 struct bio *bi;
3223 int bitmap_end = 0;
3224
3225 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3226 struct md_rdev *rdev;
3227 rcu_read_lock();
3228 rdev = rcu_dereference(conf->disks[i].rdev);
3229 if (rdev && test_bit(In_sync, &rdev->flags) &&
3230 !test_bit(Faulty, &rdev->flags))
3231 atomic_inc(&rdev->nr_pending);
3232 else
3233 rdev = NULL;
3234 rcu_read_unlock();
3235 if (rdev) {
3236 if (!rdev_set_badblocks(
3237 rdev,
3238 sh->sector,
3239 STRIPE_SECTORS, 0))
3240 md_error(conf->mddev, rdev);
3241 rdev_dec_pending(rdev, conf->mddev);
3242 }
3243 }
3244 spin_lock_irq(&sh->stripe_lock);
3245 /* fail all writes first */
3246 bi = sh->dev[i].towrite;
3247 sh->dev[i].towrite = NULL;
3248 sh->overwrite_disks = 0;
3249 spin_unlock_irq(&sh->stripe_lock);
3250 if (bi)
3251 bitmap_end = 1;
3252
3253 r5l_stripe_write_finished(sh);
3254
3255 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3256 wake_up(&conf->wait_for_overlap);
3257
3258 while (bi && bi->bi_iter.bi_sector <
3259 sh->dev[i].sector + STRIPE_SECTORS) {
3260 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3261
3262 bi->bi_error = -EIO;
3263 if (!raid5_dec_bi_active_stripes(bi)) {
3264 md_write_end(conf->mddev);
3265 bio_list_add(return_bi, bi);
3266 }
3267 bi = nextbi;
3268 }
3269 if (bitmap_end)
3270 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3271 STRIPE_SECTORS, 0, 0);
3272 bitmap_end = 0;
3273 /* and fail all 'written' */
3274 bi = sh->dev[i].written;
3275 sh->dev[i].written = NULL;
3276 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3277 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3278 sh->dev[i].page = sh->dev[i].orig_page;
3279 }
3280
3281 if (bi) bitmap_end = 1;
3282 while (bi && bi->bi_iter.bi_sector <
3283 sh->dev[i].sector + STRIPE_SECTORS) {
3284 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3285
3286 bi->bi_error = -EIO;
3287 if (!raid5_dec_bi_active_stripes(bi)) {
3288 md_write_end(conf->mddev);
3289 bio_list_add(return_bi, bi);
3290 }
3291 bi = bi2;
3292 }
3293
3294 /* fail any reads if this device is non-operational and
3295 * the data has not reached the cache yet.
3296 */
3297 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3298 s->failed > conf->max_degraded &&
3299 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3300 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3301 spin_lock_irq(&sh->stripe_lock);
3302 bi = sh->dev[i].toread;
3303 sh->dev[i].toread = NULL;
3304 spin_unlock_irq(&sh->stripe_lock);
3305 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3306 wake_up(&conf->wait_for_overlap);
3307 if (bi)
3308 s->to_read--;
3309 while (bi && bi->bi_iter.bi_sector <
3310 sh->dev[i].sector + STRIPE_SECTORS) {
3311 struct bio *nextbi =
3312 r5_next_bio(bi, sh->dev[i].sector);
3313
3314 bi->bi_error = -EIO;
3315 if (!raid5_dec_bi_active_stripes(bi))
3316 bio_list_add(return_bi, bi);
3317 bi = nextbi;
3318 }
3319 }
3320 if (bitmap_end)
3321 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3322 STRIPE_SECTORS, 0, 0);
3323 /* If we were in the middle of a write the parity block might
3324 * still be locked - so just clear all R5_LOCKED flags
3325 */
3326 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3327 }
3328 s->to_write = 0;
3329 s->written = 0;
3330
3331 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3332 if (atomic_dec_and_test(&conf->pending_full_writes))
3333 md_wakeup_thread(conf->mddev->thread);
3334 }
3335
3336 static void
3337 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3338 struct stripe_head_state *s)
3339 {
3340 int abort = 0;
3341 int i;
3342
3343 BUG_ON(sh->batch_head);
3344 clear_bit(STRIPE_SYNCING, &sh->state);
3345 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3346 wake_up(&conf->wait_for_overlap);
3347 s->syncing = 0;
3348 s->replacing = 0;
3349 /* There is nothing more to do for sync/check/repair.
3350 * Don't even need to abort as that is handled elsewhere
3351 * if needed, and not always wanted e.g. if there is a known
3352 * bad block here.
3353 * For recover/replace we need to record a bad block on all
3354 * non-sync devices, or abort the recovery
3355 */
3356 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3357 /* During recovery devices cannot be removed, so
3358 * locking and refcounting of rdevs is not needed
3359 */
3360 rcu_read_lock();
3361 for (i = 0; i < conf->raid_disks; i++) {
3362 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3363 if (rdev
3364 && !test_bit(Faulty, &rdev->flags)
3365 && !test_bit(In_sync, &rdev->flags)
3366 && !rdev_set_badblocks(rdev, sh->sector,
3367 STRIPE_SECTORS, 0))
3368 abort = 1;
3369 rdev = rcu_dereference(conf->disks[i].replacement);
3370 if (rdev
3371 && !test_bit(Faulty, &rdev->flags)
3372 && !test_bit(In_sync, &rdev->flags)
3373 && !rdev_set_badblocks(rdev, sh->sector,
3374 STRIPE_SECTORS, 0))
3375 abort = 1;
3376 }
3377 rcu_read_unlock();
3378 if (abort)
3379 conf->recovery_disabled =
3380 conf->mddev->recovery_disabled;
3381 }
3382 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3383 }
3384
3385 static int want_replace(struct stripe_head *sh, int disk_idx)
3386 {
3387 struct md_rdev *rdev;
3388 int rv = 0;
3389
3390 rcu_read_lock();
3391 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3392 if (rdev
3393 && !test_bit(Faulty, &rdev->flags)
3394 && !test_bit(In_sync, &rdev->flags)
3395 && (rdev->recovery_offset <= sh->sector
3396 || rdev->mddev->recovery_cp <= sh->sector))
3397 rv = 1;
3398 rcu_read_unlock();
3399 return rv;
3400 }
3401
3402 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3403 int disk_idx, int disks)
3404 {
3405 struct r5dev *dev = &sh->dev[disk_idx];
3406 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3407 &sh->dev[s->failed_num[1]] };
3408 int i;
3409
3410
3411 if (test_bit(R5_LOCKED, &dev->flags) ||
3412 test_bit(R5_UPTODATE, &dev->flags))
3413 /* No point reading this as we already have it or have
3414 * decided to get it.
3415 */
3416 return 0;
3417
3418 if (dev->toread ||
3419 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3420 /* We need this block to directly satisfy a request */
3421 return 1;
3422
3423 if (s->syncing || s->expanding ||
3424 (s->replacing && want_replace(sh, disk_idx)))
3425 /* When syncing, or expanding we read everything.
3426 * When replacing, we need the replaced block.
3427 */
3428 return 1;
3429
3430 if ((s->failed >= 1 && fdev[0]->toread) ||
3431 (s->failed >= 2 && fdev[1]->toread))
3432 /* If we want to read from a failed device, then
3433 * we need to actually read every other device.
3434 */
3435 return 1;
3436
3437 /* Sometimes neither read-modify-write nor reconstruct-write
3438 * cycles can work. In those cases we read every block we
3439 * can. Then the parity-update is certain to have enough to
3440 * work with.
3441 * This can only be a problem when we need to write something,
3442 * and some device has failed. If either of those tests
3443 * fail we need look no further.
3444 */
3445 if (!s->failed || !s->to_write)
3446 return 0;
3447
3448 if (test_bit(R5_Insync, &dev->flags) &&
3449 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3450 /* Pre-reads at not permitted until after short delay
3451 * to gather multiple requests. However if this
3452 * device is no Insync, the block could only be be computed
3453 * and there is no need to delay that.
3454 */
3455 return 0;
3456
3457 for (i = 0; i < s->failed && i < 2; i++) {
3458 if (fdev[i]->towrite &&
3459 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3460 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3461 /* If we have a partial write to a failed
3462 * device, then we will need to reconstruct
3463 * the content of that device, so all other
3464 * devices must be read.
3465 */
3466 return 1;
3467 }
3468
3469 /* If we are forced to do a reconstruct-write, either because
3470 * the current RAID6 implementation only supports that, or
3471 * or because parity cannot be trusted and we are currently
3472 * recovering it, there is extra need to be careful.
3473 * If one of the devices that we would need to read, because
3474 * it is not being overwritten (and maybe not written at all)
3475 * is missing/faulty, then we need to read everything we can.
3476 */
3477 if (sh->raid_conf->level != 6 &&
3478 sh->sector < sh->raid_conf->mddev->recovery_cp)
3479 /* reconstruct-write isn't being forced */
3480 return 0;
3481 for (i = 0; i < s->failed && i < 2; i++) {
3482 if (s->failed_num[i] != sh->pd_idx &&
3483 s->failed_num[i] != sh->qd_idx &&
3484 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3485 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3486 return 1;
3487 }
3488
3489 return 0;
3490 }
3491
3492 /* fetch_block - checks the given member device to see if its data needs
3493 * to be read or computed to satisfy a request.
3494 *
3495 * Returns 1 when no more member devices need to be checked, otherwise returns
3496 * 0 to tell the loop in handle_stripe_fill to continue
3497 */
3498 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3499 int disk_idx, int disks)
3500 {
3501 struct r5dev *dev = &sh->dev[disk_idx];
3502
3503 /* is the data in this block needed, and can we get it? */
3504 if (need_this_block(sh, s, disk_idx, disks)) {
3505 /* we would like to get this block, possibly by computing it,
3506 * otherwise read it if the backing disk is insync
3507 */
3508 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3509 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3510 BUG_ON(sh->batch_head);
3511 if ((s->uptodate == disks - 1) &&
3512 (s->failed && (disk_idx == s->failed_num[0] ||
3513 disk_idx == s->failed_num[1]))) {
3514 /* have disk failed, and we're requested to fetch it;
3515 * do compute it
3516 */
3517 pr_debug("Computing stripe %llu block %d\n",
3518 (unsigned long long)sh->sector, disk_idx);
3519 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3520 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3521 set_bit(R5_Wantcompute, &dev->flags);
3522 sh->ops.target = disk_idx;
3523 sh->ops.target2 = -1; /* no 2nd target */
3524 s->req_compute = 1;
3525 /* Careful: from this point on 'uptodate' is in the eye
3526 * of raid_run_ops which services 'compute' operations
3527 * before writes. R5_Wantcompute flags a block that will
3528 * be R5_UPTODATE by the time it is needed for a
3529 * subsequent operation.
3530 */
3531 s->uptodate++;
3532 return 1;
3533 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3534 /* Computing 2-failure is *very* expensive; only
3535 * do it if failed >= 2
3536 */
3537 int other;
3538 for (other = disks; other--; ) {
3539 if (other == disk_idx)
3540 continue;
3541 if (!test_bit(R5_UPTODATE,
3542 &sh->dev[other].flags))
3543 break;
3544 }
3545 BUG_ON(other < 0);
3546 pr_debug("Computing stripe %llu blocks %d,%d\n",
3547 (unsigned long long)sh->sector,
3548 disk_idx, other);
3549 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3550 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3551 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3552 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3553 sh->ops.target = disk_idx;
3554 sh->ops.target2 = other;
3555 s->uptodate += 2;
3556 s->req_compute = 1;
3557 return 1;
3558 } else if (test_bit(R5_Insync, &dev->flags)) {
3559 set_bit(R5_LOCKED, &dev->flags);
3560 set_bit(R5_Wantread, &dev->flags);
3561 s->locked++;
3562 pr_debug("Reading block %d (sync=%d)\n",
3563 disk_idx, s->syncing);
3564 }
3565 }
3566
3567 return 0;
3568 }
3569
3570 /**
3571 * handle_stripe_fill - read or compute data to satisfy pending requests.
3572 */
3573 static void handle_stripe_fill(struct stripe_head *sh,
3574 struct stripe_head_state *s,
3575 int disks)
3576 {
3577 int i;
3578
3579 /* look for blocks to read/compute, skip this if a compute
3580 * is already in flight, or if the stripe contents are in the
3581 * midst of changing due to a write
3582 */
3583 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3584 !sh->reconstruct_state) {
3585
3586 /*
3587 * For degraded stripe with data in journal, do not handle
3588 * read requests yet, instead, flush the stripe to raid
3589 * disks first, this avoids handling complex rmw of write
3590 * back cache (prexor with orig_page, and then xor with
3591 * page) in the read path
3592 */
3593 if (s->injournal && s->failed) {
3594 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3595 r5c_make_stripe_write_out(sh);
3596 goto out;
3597 }
3598
3599 for (i = disks; i--; )
3600 if (fetch_block(sh, s, i, disks))
3601 break;
3602 }
3603 out:
3604 set_bit(STRIPE_HANDLE, &sh->state);
3605 }
3606
3607 static void break_stripe_batch_list(struct stripe_head *head_sh,
3608 unsigned long handle_flags);
3609 /* handle_stripe_clean_event
3610 * any written block on an uptodate or failed drive can be returned.
3611 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3612 * never LOCKED, so we don't need to test 'failed' directly.
3613 */
3614 static void handle_stripe_clean_event(struct r5conf *conf,
3615 struct stripe_head *sh, int disks, struct bio_list *return_bi)
3616 {
3617 int i;
3618 struct r5dev *dev;
3619 int discard_pending = 0;
3620 struct stripe_head *head_sh = sh;
3621 bool do_endio = false;
3622
3623 for (i = disks; i--; )
3624 if (sh->dev[i].written) {
3625 dev = &sh->dev[i];
3626 if (!test_bit(R5_LOCKED, &dev->flags) &&
3627 (test_bit(R5_UPTODATE, &dev->flags) ||
3628 test_bit(R5_Discard, &dev->flags) ||
3629 test_bit(R5_SkipCopy, &dev->flags))) {
3630 /* We can return any write requests */
3631 struct bio *wbi, *wbi2;
3632 pr_debug("Return write for disc %d\n", i);
3633 if (test_and_clear_bit(R5_Discard, &dev->flags))
3634 clear_bit(R5_UPTODATE, &dev->flags);
3635 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3636 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3637 }
3638 do_endio = true;
3639
3640 returnbi:
3641 dev->page = dev->orig_page;
3642 wbi = dev->written;
3643 dev->written = NULL;
3644 while (wbi && wbi->bi_iter.bi_sector <
3645 dev->sector + STRIPE_SECTORS) {
3646 wbi2 = r5_next_bio(wbi, dev->sector);
3647 if (!raid5_dec_bi_active_stripes(wbi)) {
3648 md_write_end(conf->mddev);
3649 bio_list_add(return_bi, wbi);
3650 }
3651 wbi = wbi2;
3652 }
3653 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3654 STRIPE_SECTORS,
3655 !test_bit(STRIPE_DEGRADED, &sh->state),
3656 0);
3657 if (head_sh->batch_head) {
3658 sh = list_first_entry(&sh->batch_list,
3659 struct stripe_head,
3660 batch_list);
3661 if (sh != head_sh) {
3662 dev = &sh->dev[i];
3663 goto returnbi;
3664 }
3665 }
3666 sh = head_sh;
3667 dev = &sh->dev[i];
3668 } else if (test_bit(R5_Discard, &dev->flags))
3669 discard_pending = 1;
3670 }
3671
3672 r5l_stripe_write_finished(sh);
3673
3674 if (!discard_pending &&
3675 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3676 int hash;
3677 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3678 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3679 if (sh->qd_idx >= 0) {
3680 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3681 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3682 }
3683 /* now that discard is done we can proceed with any sync */
3684 clear_bit(STRIPE_DISCARD, &sh->state);
3685 /*
3686 * SCSI discard will change some bio fields and the stripe has
3687 * no updated data, so remove it from hash list and the stripe
3688 * will be reinitialized
3689 */
3690 unhash:
3691 hash = sh->hash_lock_index;
3692 spin_lock_irq(conf->hash_locks + hash);
3693 remove_hash(sh);
3694 spin_unlock_irq(conf->hash_locks + hash);
3695 if (head_sh->batch_head) {
3696 sh = list_first_entry(&sh->batch_list,
3697 struct stripe_head, batch_list);
3698 if (sh != head_sh)
3699 goto unhash;
3700 }
3701 sh = head_sh;
3702
3703 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3704 set_bit(STRIPE_HANDLE, &sh->state);
3705
3706 }
3707
3708 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3709 if (atomic_dec_and_test(&conf->pending_full_writes))
3710 md_wakeup_thread(conf->mddev->thread);
3711
3712 if (head_sh->batch_head && do_endio)
3713 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3714 }
3715
3716 /*
3717 * For RMW in write back cache, we need extra page in prexor to store the
3718 * old data. This page is stored in dev->orig_page.
3719 *
3720 * This function checks whether we have data for prexor. The exact logic
3721 * is:
3722 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3723 */
3724 static inline bool uptodate_for_rmw(struct r5dev *dev)
3725 {
3726 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3727 (!test_bit(R5_InJournal, &dev->flags) ||
3728 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3729 }
3730
3731 static int handle_stripe_dirtying(struct r5conf *conf,
3732 struct stripe_head *sh,
3733 struct stripe_head_state *s,
3734 int disks)
3735 {
3736 int rmw = 0, rcw = 0, i;
3737 sector_t recovery_cp = conf->mddev->recovery_cp;
3738
3739 /* Check whether resync is now happening or should start.
3740 * If yes, then the array is dirty (after unclean shutdown or
3741 * initial creation), so parity in some stripes might be inconsistent.
3742 * In this case, we need to always do reconstruct-write, to ensure
3743 * that in case of drive failure or read-error correction, we
3744 * generate correct data from the parity.
3745 */
3746 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3747 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3748 s->failed == 0)) {
3749 /* Calculate the real rcw later - for now make it
3750 * look like rcw is cheaper
3751 */
3752 rcw = 1; rmw = 2;
3753 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3754 conf->rmw_level, (unsigned long long)recovery_cp,
3755 (unsigned long long)sh->sector);
3756 } else for (i = disks; i--; ) {
3757 /* would I have to read this buffer for read_modify_write */
3758 struct r5dev *dev = &sh->dev[i];
3759 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3760 i == sh->pd_idx || i == sh->qd_idx ||
3761 test_bit(R5_InJournal, &dev->flags)) &&
3762 !test_bit(R5_LOCKED, &dev->flags) &&
3763 !(uptodate_for_rmw(dev) ||
3764 test_bit(R5_Wantcompute, &dev->flags))) {
3765 if (test_bit(R5_Insync, &dev->flags))
3766 rmw++;
3767 else
3768 rmw += 2*disks; /* cannot read it */
3769 }
3770 /* Would I have to read this buffer for reconstruct_write */
3771 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3772 i != sh->pd_idx && i != sh->qd_idx &&
3773 !test_bit(R5_LOCKED, &dev->flags) &&
3774 !(test_bit(R5_UPTODATE, &dev->flags) ||
3775 test_bit(R5_Wantcompute, &dev->flags))) {
3776 if (test_bit(R5_Insync, &dev->flags))
3777 rcw++;
3778 else
3779 rcw += 2*disks;
3780 }
3781 }
3782
3783 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3784 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3785 set_bit(STRIPE_HANDLE, &sh->state);
3786 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3787 /* prefer read-modify-write, but need to get some data */
3788 if (conf->mddev->queue)
3789 blk_add_trace_msg(conf->mddev->queue,
3790 "raid5 rmw %llu %d",
3791 (unsigned long long)sh->sector, rmw);
3792 for (i = disks; i--; ) {
3793 struct r5dev *dev = &sh->dev[i];
3794 if (test_bit(R5_InJournal, &dev->flags) &&
3795 dev->page == dev->orig_page &&
3796 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3797 /* alloc page for prexor */
3798 struct page *p = alloc_page(GFP_NOIO);
3799
3800 if (p) {
3801 dev->orig_page = p;
3802 continue;
3803 }
3804
3805 /*
3806 * alloc_page() failed, try use
3807 * disk_info->extra_page
3808 */
3809 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3810 &conf->cache_state)) {
3811 r5c_use_extra_page(sh);
3812 break;
3813 }
3814
3815 /* extra_page in use, add to delayed_list */
3816 set_bit(STRIPE_DELAYED, &sh->state);
3817 s->waiting_extra_page = 1;
3818 return -EAGAIN;
3819 }
3820 }
3821
3822 for (i = disks; i--; ) {
3823 struct r5dev *dev = &sh->dev[i];
3824 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3825 i == sh->pd_idx || i == sh->qd_idx ||
3826 test_bit(R5_InJournal, &dev->flags)) &&
3827 !test_bit(R5_LOCKED, &dev->flags) &&
3828 !(uptodate_for_rmw(dev) ||
3829 test_bit(R5_Wantcompute, &dev->flags)) &&
3830 test_bit(R5_Insync, &dev->flags)) {
3831 if (test_bit(STRIPE_PREREAD_ACTIVE,
3832 &sh->state)) {
3833 pr_debug("Read_old block %d for r-m-w\n",
3834 i);
3835 set_bit(R5_LOCKED, &dev->flags);
3836 set_bit(R5_Wantread, &dev->flags);
3837 s->locked++;
3838 } else {
3839 set_bit(STRIPE_DELAYED, &sh->state);
3840 set_bit(STRIPE_HANDLE, &sh->state);
3841 }
3842 }
3843 }
3844 }
3845 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3846 /* want reconstruct write, but need to get some data */
3847 int qread =0;
3848 rcw = 0;
3849 for (i = disks; i--; ) {
3850 struct r5dev *dev = &sh->dev[i];
3851 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3852 i != sh->pd_idx && i != sh->qd_idx &&
3853 !test_bit(R5_LOCKED, &dev->flags) &&
3854 !(test_bit(R5_UPTODATE, &dev->flags) ||
3855 test_bit(R5_Wantcompute, &dev->flags))) {
3856 rcw++;
3857 if (test_bit(R5_Insync, &dev->flags) &&
3858 test_bit(STRIPE_PREREAD_ACTIVE,
3859 &sh->state)) {
3860 pr_debug("Read_old block "
3861 "%d for Reconstruct\n", i);
3862 set_bit(R5_LOCKED, &dev->flags);
3863 set_bit(R5_Wantread, &dev->flags);
3864 s->locked++;
3865 qread++;
3866 } else {
3867 set_bit(STRIPE_DELAYED, &sh->state);
3868 set_bit(STRIPE_HANDLE, &sh->state);
3869 }
3870 }
3871 }
3872 if (rcw && conf->mddev->queue)
3873 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3874 (unsigned long long)sh->sector,
3875 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3876 }
3877
3878 if (rcw > disks && rmw > disks &&
3879 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3880 set_bit(STRIPE_DELAYED, &sh->state);
3881
3882 /* now if nothing is locked, and if we have enough data,
3883 * we can start a write request
3884 */
3885 /* since handle_stripe can be called at any time we need to handle the
3886 * case where a compute block operation has been submitted and then a
3887 * subsequent call wants to start a write request. raid_run_ops only
3888 * handles the case where compute block and reconstruct are requested
3889 * simultaneously. If this is not the case then new writes need to be
3890 * held off until the compute completes.
3891 */
3892 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3893 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3894 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3895 schedule_reconstruction(sh, s, rcw == 0, 0);
3896 return 0;
3897 }
3898
3899 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3900 struct stripe_head_state *s, int disks)
3901 {
3902 struct r5dev *dev = NULL;
3903
3904 BUG_ON(sh->batch_head);
3905 set_bit(STRIPE_HANDLE, &sh->state);
3906
3907 switch (sh->check_state) {
3908 case check_state_idle:
3909 /* start a new check operation if there are no failures */
3910 if (s->failed == 0) {
3911 BUG_ON(s->uptodate != disks);
3912 sh->check_state = check_state_run;
3913 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3914 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3915 s->uptodate--;
3916 break;
3917 }
3918 dev = &sh->dev[s->failed_num[0]];
3919 /* fall through */
3920 case check_state_compute_result:
3921 sh->check_state = check_state_idle;
3922 if (!dev)
3923 dev = &sh->dev[sh->pd_idx];
3924
3925 /* check that a write has not made the stripe insync */
3926 if (test_bit(STRIPE_INSYNC, &sh->state))
3927 break;
3928
3929 /* either failed parity check, or recovery is happening */
3930 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3931 BUG_ON(s->uptodate != disks);
3932
3933 set_bit(R5_LOCKED, &dev->flags);
3934 s->locked++;
3935 set_bit(R5_Wantwrite, &dev->flags);
3936
3937 clear_bit(STRIPE_DEGRADED, &sh->state);
3938 set_bit(STRIPE_INSYNC, &sh->state);
3939 break;
3940 case check_state_run:
3941 break; /* we will be called again upon completion */
3942 case check_state_check_result:
3943 sh->check_state = check_state_idle;
3944
3945 /* if a failure occurred during the check operation, leave
3946 * STRIPE_INSYNC not set and let the stripe be handled again
3947 */
3948 if (s->failed)
3949 break;
3950
3951 /* handle a successful check operation, if parity is correct
3952 * we are done. Otherwise update the mismatch count and repair
3953 * parity if !MD_RECOVERY_CHECK
3954 */
3955 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3956 /* parity is correct (on disc,
3957 * not in buffer any more)
3958 */
3959 set_bit(STRIPE_INSYNC, &sh->state);
3960 else {
3961 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3962 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3963 /* don't try to repair!! */
3964 set_bit(STRIPE_INSYNC, &sh->state);
3965 else {
3966 sh->check_state = check_state_compute_run;
3967 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3968 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3969 set_bit(R5_Wantcompute,
3970 &sh->dev[sh->pd_idx].flags);
3971 sh->ops.target = sh->pd_idx;
3972 sh->ops.target2 = -1;
3973 s->uptodate++;
3974 }
3975 }
3976 break;
3977 case check_state_compute_run:
3978 break;
3979 default:
3980 pr_err("%s: unknown check_state: %d sector: %llu\n",
3981 __func__, sh->check_state,
3982 (unsigned long long) sh->sector);
3983 BUG();
3984 }
3985 }
3986
3987 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3988 struct stripe_head_state *s,
3989 int disks)
3990 {
3991 int pd_idx = sh->pd_idx;
3992 int qd_idx = sh->qd_idx;
3993 struct r5dev *dev;
3994
3995 BUG_ON(sh->batch_head);
3996 set_bit(STRIPE_HANDLE, &sh->state);
3997
3998 BUG_ON(s->failed > 2);
3999
4000 /* Want to check and possibly repair P and Q.
4001 * However there could be one 'failed' device, in which
4002 * case we can only check one of them, possibly using the
4003 * other to generate missing data
4004 */
4005
4006 switch (sh->check_state) {
4007 case check_state_idle:
4008 /* start a new check operation if there are < 2 failures */
4009 if (s->failed == s->q_failed) {
4010 /* The only possible failed device holds Q, so it
4011 * makes sense to check P (If anything else were failed,
4012 * we would have used P to recreate it).
4013 */
4014 sh->check_state = check_state_run;
4015 }
4016 if (!s->q_failed && s->failed < 2) {
4017 /* Q is not failed, and we didn't use it to generate
4018 * anything, so it makes sense to check it
4019 */
4020 if (sh->check_state == check_state_run)
4021 sh->check_state = check_state_run_pq;
4022 else
4023 sh->check_state = check_state_run_q;
4024 }
4025
4026 /* discard potentially stale zero_sum_result */
4027 sh->ops.zero_sum_result = 0;
4028
4029 if (sh->check_state == check_state_run) {
4030 /* async_xor_zero_sum destroys the contents of P */
4031 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4032 s->uptodate--;
4033 }
4034 if (sh->check_state >= check_state_run &&
4035 sh->check_state <= check_state_run_pq) {
4036 /* async_syndrome_zero_sum preserves P and Q, so
4037 * no need to mark them !uptodate here
4038 */
4039 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4040 break;
4041 }
4042
4043 /* we have 2-disk failure */
4044 BUG_ON(s->failed != 2);
4045 /* fall through */
4046 case check_state_compute_result:
4047 sh->check_state = check_state_idle;
4048
4049 /* check that a write has not made the stripe insync */
4050 if (test_bit(STRIPE_INSYNC, &sh->state))
4051 break;
4052
4053 /* now write out any block on a failed drive,
4054 * or P or Q if they were recomputed
4055 */
4056 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4057 if (s->failed == 2) {
4058 dev = &sh->dev[s->failed_num[1]];
4059 s->locked++;
4060 set_bit(R5_LOCKED, &dev->flags);
4061 set_bit(R5_Wantwrite, &dev->flags);
4062 }
4063 if (s->failed >= 1) {
4064 dev = &sh->dev[s->failed_num[0]];
4065 s->locked++;
4066 set_bit(R5_LOCKED, &dev->flags);
4067 set_bit(R5_Wantwrite, &dev->flags);
4068 }
4069 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4070 dev = &sh->dev[pd_idx];
4071 s->locked++;
4072 set_bit(R5_LOCKED, &dev->flags);
4073 set_bit(R5_Wantwrite, &dev->flags);
4074 }
4075 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4076 dev = &sh->dev[qd_idx];
4077 s->locked++;
4078 set_bit(R5_LOCKED, &dev->flags);
4079 set_bit(R5_Wantwrite, &dev->flags);
4080 }
4081 clear_bit(STRIPE_DEGRADED, &sh->state);
4082
4083 set_bit(STRIPE_INSYNC, &sh->state);
4084 break;
4085 case check_state_run:
4086 case check_state_run_q:
4087 case check_state_run_pq:
4088 break; /* we will be called again upon completion */
4089 case check_state_check_result:
4090 sh->check_state = check_state_idle;
4091
4092 /* handle a successful check operation, if parity is correct
4093 * we are done. Otherwise update the mismatch count and repair
4094 * parity if !MD_RECOVERY_CHECK
4095 */
4096 if (sh->ops.zero_sum_result == 0) {
4097 /* both parities are correct */
4098 if (!s->failed)
4099 set_bit(STRIPE_INSYNC, &sh->state);
4100 else {
4101 /* in contrast to the raid5 case we can validate
4102 * parity, but still have a failure to write
4103 * back
4104 */
4105 sh->check_state = check_state_compute_result;
4106 /* Returning at this point means that we may go
4107 * off and bring p and/or q uptodate again so
4108 * we make sure to check zero_sum_result again
4109 * to verify if p or q need writeback
4110 */
4111 }
4112 } else {
4113 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4114 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4115 /* don't try to repair!! */
4116 set_bit(STRIPE_INSYNC, &sh->state);
4117 else {
4118 int *target = &sh->ops.target;
4119
4120 sh->ops.target = -1;
4121 sh->ops.target2 = -1;
4122 sh->check_state = check_state_compute_run;
4123 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4124 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4125 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4126 set_bit(R5_Wantcompute,
4127 &sh->dev[pd_idx].flags);
4128 *target = pd_idx;
4129 target = &sh->ops.target2;
4130 s->uptodate++;
4131 }
4132 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4133 set_bit(R5_Wantcompute,
4134 &sh->dev[qd_idx].flags);
4135 *target = qd_idx;
4136 s->uptodate++;
4137 }
4138 }
4139 }
4140 break;
4141 case check_state_compute_run:
4142 break;
4143 default:
4144 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4145 __func__, sh->check_state,
4146 (unsigned long long) sh->sector);
4147 BUG();
4148 }
4149 }
4150
4151 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4152 {
4153 int i;
4154
4155 /* We have read all the blocks in this stripe and now we need to
4156 * copy some of them into a target stripe for expand.
4157 */
4158 struct dma_async_tx_descriptor *tx = NULL;
4159 BUG_ON(sh->batch_head);
4160 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4161 for (i = 0; i < sh->disks; i++)
4162 if (i != sh->pd_idx && i != sh->qd_idx) {
4163 int dd_idx, j;
4164 struct stripe_head *sh2;
4165 struct async_submit_ctl submit;
4166
4167 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4168 sector_t s = raid5_compute_sector(conf, bn, 0,
4169 &dd_idx, NULL);
4170 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4171 if (sh2 == NULL)
4172 /* so far only the early blocks of this stripe
4173 * have been requested. When later blocks
4174 * get requested, we will try again
4175 */
4176 continue;
4177 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4178 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4179 /* must have already done this block */
4180 raid5_release_stripe(sh2);
4181 continue;
4182 }
4183
4184 /* place all the copies on one channel */
4185 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4186 tx = async_memcpy(sh2->dev[dd_idx].page,
4187 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4188 &submit);
4189
4190 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4191 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4192 for (j = 0; j < conf->raid_disks; j++)
4193 if (j != sh2->pd_idx &&
4194 j != sh2->qd_idx &&
4195 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4196 break;
4197 if (j == conf->raid_disks) {
4198 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4199 set_bit(STRIPE_HANDLE, &sh2->state);
4200 }
4201 raid5_release_stripe(sh2);
4202
4203 }
4204 /* done submitting copies, wait for them to complete */
4205 async_tx_quiesce(&tx);
4206 }
4207
4208 /*
4209 * handle_stripe - do things to a stripe.
4210 *
4211 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4212 * state of various bits to see what needs to be done.
4213 * Possible results:
4214 * return some read requests which now have data
4215 * return some write requests which are safely on storage
4216 * schedule a read on some buffers
4217 * schedule a write of some buffers
4218 * return confirmation of parity correctness
4219 *
4220 */
4221
4222 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4223 {
4224 struct r5conf *conf = sh->raid_conf;
4225 int disks = sh->disks;
4226 struct r5dev *dev;
4227 int i;
4228 int do_recovery = 0;
4229
4230 memset(s, 0, sizeof(*s));
4231
4232 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4233 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4234 s->failed_num[0] = -1;
4235 s->failed_num[1] = -1;
4236 s->log_failed = r5l_log_disk_error(conf);
4237
4238 /* Now to look around and see what can be done */
4239 rcu_read_lock();
4240 for (i=disks; i--; ) {
4241 struct md_rdev *rdev;
4242 sector_t first_bad;
4243 int bad_sectors;
4244 int is_bad = 0;
4245
4246 dev = &sh->dev[i];
4247
4248 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4249 i, dev->flags,
4250 dev->toread, dev->towrite, dev->written);
4251 /* maybe we can reply to a read
4252 *
4253 * new wantfill requests are only permitted while
4254 * ops_complete_biofill is guaranteed to be inactive
4255 */
4256 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4257 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4258 set_bit(R5_Wantfill, &dev->flags);
4259
4260 /* now count some things */
4261 if (test_bit(R5_LOCKED, &dev->flags))
4262 s->locked++;
4263 if (test_bit(R5_UPTODATE, &dev->flags))
4264 s->uptodate++;
4265 if (test_bit(R5_Wantcompute, &dev->flags)) {
4266 s->compute++;
4267 BUG_ON(s->compute > 2);
4268 }
4269
4270 if (test_bit(R5_Wantfill, &dev->flags))
4271 s->to_fill++;
4272 else if (dev->toread)
4273 s->to_read++;
4274 if (dev->towrite) {
4275 s->to_write++;
4276 if (!test_bit(R5_OVERWRITE, &dev->flags))
4277 s->non_overwrite++;
4278 }
4279 if (dev->written)
4280 s->written++;
4281 /* Prefer to use the replacement for reads, but only
4282 * if it is recovered enough and has no bad blocks.
4283 */
4284 rdev = rcu_dereference(conf->disks[i].replacement);
4285 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4286 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4287 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4288 &first_bad, &bad_sectors))
4289 set_bit(R5_ReadRepl, &dev->flags);
4290 else {
4291 if (rdev && !test_bit(Faulty, &rdev->flags))
4292 set_bit(R5_NeedReplace, &dev->flags);
4293 else
4294 clear_bit(R5_NeedReplace, &dev->flags);
4295 rdev = rcu_dereference(conf->disks[i].rdev);
4296 clear_bit(R5_ReadRepl, &dev->flags);
4297 }
4298 if (rdev && test_bit(Faulty, &rdev->flags))
4299 rdev = NULL;
4300 if (rdev) {
4301 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4302 &first_bad, &bad_sectors);
4303 if (s->blocked_rdev == NULL
4304 && (test_bit(Blocked, &rdev->flags)
4305 || is_bad < 0)) {
4306 if (is_bad < 0)
4307 set_bit(BlockedBadBlocks,
4308 &rdev->flags);
4309 s->blocked_rdev = rdev;
4310 atomic_inc(&rdev->nr_pending);
4311 }
4312 }
4313 clear_bit(R5_Insync, &dev->flags);
4314 if (!rdev)
4315 /* Not in-sync */;
4316 else if (is_bad) {
4317 /* also not in-sync */
4318 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4319 test_bit(R5_UPTODATE, &dev->flags)) {
4320 /* treat as in-sync, but with a read error
4321 * which we can now try to correct
4322 */
4323 set_bit(R5_Insync, &dev->flags);
4324 set_bit(R5_ReadError, &dev->flags);
4325 }
4326 } else if (test_bit(In_sync, &rdev->flags))
4327 set_bit(R5_Insync, &dev->flags);
4328 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4329 /* in sync if before recovery_offset */
4330 set_bit(R5_Insync, &dev->flags);
4331 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4332 test_bit(R5_Expanded, &dev->flags))
4333 /* If we've reshaped into here, we assume it is Insync.
4334 * We will shortly update recovery_offset to make
4335 * it official.
4336 */
4337 set_bit(R5_Insync, &dev->flags);
4338
4339 if (test_bit(R5_WriteError, &dev->flags)) {
4340 /* This flag does not apply to '.replacement'
4341 * only to .rdev, so make sure to check that*/
4342 struct md_rdev *rdev2 = rcu_dereference(
4343 conf->disks[i].rdev);
4344 if (rdev2 == rdev)
4345 clear_bit(R5_Insync, &dev->flags);
4346 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4347 s->handle_bad_blocks = 1;
4348 atomic_inc(&rdev2->nr_pending);
4349 } else
4350 clear_bit(R5_WriteError, &dev->flags);
4351 }
4352 if (test_bit(R5_MadeGood, &dev->flags)) {
4353 /* This flag does not apply to '.replacement'
4354 * only to .rdev, so make sure to check that*/
4355 struct md_rdev *rdev2 = rcu_dereference(
4356 conf->disks[i].rdev);
4357 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4358 s->handle_bad_blocks = 1;
4359 atomic_inc(&rdev2->nr_pending);
4360 } else
4361 clear_bit(R5_MadeGood, &dev->flags);
4362 }
4363 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4364 struct md_rdev *rdev2 = rcu_dereference(
4365 conf->disks[i].replacement);
4366 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4367 s->handle_bad_blocks = 1;
4368 atomic_inc(&rdev2->nr_pending);
4369 } else
4370 clear_bit(R5_MadeGoodRepl, &dev->flags);
4371 }
4372 if (!test_bit(R5_Insync, &dev->flags)) {
4373 /* The ReadError flag will just be confusing now */
4374 clear_bit(R5_ReadError, &dev->flags);
4375 clear_bit(R5_ReWrite, &dev->flags);
4376 }
4377 if (test_bit(R5_ReadError, &dev->flags))
4378 clear_bit(R5_Insync, &dev->flags);
4379 if (!test_bit(R5_Insync, &dev->flags)) {
4380 if (s->failed < 2)
4381 s->failed_num[s->failed] = i;
4382 s->failed++;
4383 if (rdev && !test_bit(Faulty, &rdev->flags))
4384 do_recovery = 1;
4385 }
4386
4387 if (test_bit(R5_InJournal, &dev->flags))
4388 s->injournal++;
4389 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4390 s->just_cached++;
4391 }
4392 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4393 /* If there is a failed device being replaced,
4394 * we must be recovering.
4395 * else if we are after recovery_cp, we must be syncing
4396 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4397 * else we can only be replacing
4398 * sync and recovery both need to read all devices, and so
4399 * use the same flag.
4400 */
4401 if (do_recovery ||
4402 sh->sector >= conf->mddev->recovery_cp ||
4403 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4404 s->syncing = 1;
4405 else
4406 s->replacing = 1;
4407 }
4408 rcu_read_unlock();
4409 }
4410
4411 static int clear_batch_ready(struct stripe_head *sh)
4412 {
4413 /* Return '1' if this is a member of batch, or
4414 * '0' if it is a lone stripe or a head which can now be
4415 * handled.
4416 */
4417 struct stripe_head *tmp;
4418 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4419 return (sh->batch_head && sh->batch_head != sh);
4420 spin_lock(&sh->stripe_lock);
4421 if (!sh->batch_head) {
4422 spin_unlock(&sh->stripe_lock);
4423 return 0;
4424 }
4425
4426 /*
4427 * this stripe could be added to a batch list before we check
4428 * BATCH_READY, skips it
4429 */
4430 if (sh->batch_head != sh) {
4431 spin_unlock(&sh->stripe_lock);
4432 return 1;
4433 }
4434 spin_lock(&sh->batch_lock);
4435 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4436 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4437 spin_unlock(&sh->batch_lock);
4438 spin_unlock(&sh->stripe_lock);
4439
4440 /*
4441 * BATCH_READY is cleared, no new stripes can be added.
4442 * batch_list can be accessed without lock
4443 */
4444 return 0;
4445 }
4446
4447 static void break_stripe_batch_list(struct stripe_head *head_sh,
4448 unsigned long handle_flags)
4449 {
4450 struct stripe_head *sh, *next;
4451 int i;
4452 int do_wakeup = 0;
4453
4454 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4455
4456 list_del_init(&sh->batch_list);
4457
4458 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4459 (1 << STRIPE_SYNCING) |
4460 (1 << STRIPE_REPLACED) |
4461 (1 << STRIPE_DELAYED) |
4462 (1 << STRIPE_BIT_DELAY) |
4463 (1 << STRIPE_FULL_WRITE) |
4464 (1 << STRIPE_BIOFILL_RUN) |
4465 (1 << STRIPE_COMPUTE_RUN) |
4466 (1 << STRIPE_OPS_REQ_PENDING) |
4467 (1 << STRIPE_DISCARD) |
4468 (1 << STRIPE_BATCH_READY) |
4469 (1 << STRIPE_BATCH_ERR) |
4470 (1 << STRIPE_BITMAP_PENDING)),
4471 "stripe state: %lx\n", sh->state);
4472 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4473 (1 << STRIPE_REPLACED)),
4474 "head stripe state: %lx\n", head_sh->state);
4475
4476 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4477 (1 << STRIPE_PREREAD_ACTIVE) |
4478 (1 << STRIPE_DEGRADED)),
4479 head_sh->state & (1 << STRIPE_INSYNC));
4480
4481 sh->check_state = head_sh->check_state;
4482 sh->reconstruct_state = head_sh->reconstruct_state;
4483 for (i = 0; i < sh->disks; i++) {
4484 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4485 do_wakeup = 1;
4486 sh->dev[i].flags = head_sh->dev[i].flags &
4487 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4488 }
4489 spin_lock_irq(&sh->stripe_lock);
4490 sh->batch_head = NULL;
4491 spin_unlock_irq(&sh->stripe_lock);
4492 if (handle_flags == 0 ||
4493 sh->state & handle_flags)
4494 set_bit(STRIPE_HANDLE, &sh->state);
4495 raid5_release_stripe(sh);
4496 }
4497 spin_lock_irq(&head_sh->stripe_lock);
4498 head_sh->batch_head = NULL;
4499 spin_unlock_irq(&head_sh->stripe_lock);
4500 for (i = 0; i < head_sh->disks; i++)
4501 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4502 do_wakeup = 1;
4503 if (head_sh->state & handle_flags)
4504 set_bit(STRIPE_HANDLE, &head_sh->state);
4505
4506 if (do_wakeup)
4507 wake_up(&head_sh->raid_conf->wait_for_overlap);
4508 }
4509
4510 static void handle_stripe(struct stripe_head *sh)
4511 {
4512 struct stripe_head_state s;
4513 struct r5conf *conf = sh->raid_conf;
4514 int i;
4515 int prexor;
4516 int disks = sh->disks;
4517 struct r5dev *pdev, *qdev;
4518
4519 clear_bit(STRIPE_HANDLE, &sh->state);
4520 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4521 /* already being handled, ensure it gets handled
4522 * again when current action finishes */
4523 set_bit(STRIPE_HANDLE, &sh->state);
4524 return;
4525 }
4526
4527 if (clear_batch_ready(sh) ) {
4528 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4529 return;
4530 }
4531
4532 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4533 break_stripe_batch_list(sh, 0);
4534
4535 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4536 spin_lock(&sh->stripe_lock);
4537 /* Cannot process 'sync' concurrently with 'discard' */
4538 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4539 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4540 set_bit(STRIPE_SYNCING, &sh->state);
4541 clear_bit(STRIPE_INSYNC, &sh->state);
4542 clear_bit(STRIPE_REPLACED, &sh->state);
4543 }
4544 spin_unlock(&sh->stripe_lock);
4545 }
4546 clear_bit(STRIPE_DELAYED, &sh->state);
4547
4548 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4549 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4550 (unsigned long long)sh->sector, sh->state,
4551 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4552 sh->check_state, sh->reconstruct_state);
4553
4554 analyse_stripe(sh, &s);
4555
4556 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4557 goto finish;
4558
4559 if (s.handle_bad_blocks) {
4560 set_bit(STRIPE_HANDLE, &sh->state);
4561 goto finish;
4562 }
4563
4564 if (unlikely(s.blocked_rdev)) {
4565 if (s.syncing || s.expanding || s.expanded ||
4566 s.replacing || s.to_write || s.written) {
4567 set_bit(STRIPE_HANDLE, &sh->state);
4568 goto finish;
4569 }
4570 /* There is nothing for the blocked_rdev to block */
4571 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4572 s.blocked_rdev = NULL;
4573 }
4574
4575 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4576 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4577 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4578 }
4579
4580 pr_debug("locked=%d uptodate=%d to_read=%d"
4581 " to_write=%d failed=%d failed_num=%d,%d\n",
4582 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4583 s.failed_num[0], s.failed_num[1]);
4584 /* check if the array has lost more than max_degraded devices and,
4585 * if so, some requests might need to be failed.
4586 */
4587 if (s.failed > conf->max_degraded || s.log_failed) {
4588 sh->check_state = 0;
4589 sh->reconstruct_state = 0;
4590 break_stripe_batch_list(sh, 0);
4591 if (s.to_read+s.to_write+s.written)
4592 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4593 if (s.syncing + s.replacing)
4594 handle_failed_sync(conf, sh, &s);
4595 }
4596
4597 /* Now we check to see if any write operations have recently
4598 * completed
4599 */
4600 prexor = 0;
4601 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4602 prexor = 1;
4603 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4604 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4605 sh->reconstruct_state = reconstruct_state_idle;
4606
4607 /* All the 'written' buffers and the parity block are ready to
4608 * be written back to disk
4609 */
4610 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4611 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4612 BUG_ON(sh->qd_idx >= 0 &&
4613 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4614 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4615 for (i = disks; i--; ) {
4616 struct r5dev *dev = &sh->dev[i];
4617 if (test_bit(R5_LOCKED, &dev->flags) &&
4618 (i == sh->pd_idx || i == sh->qd_idx ||
4619 dev->written || test_bit(R5_InJournal,
4620 &dev->flags))) {
4621 pr_debug("Writing block %d\n", i);
4622 set_bit(R5_Wantwrite, &dev->flags);
4623 if (prexor)
4624 continue;
4625 if (s.failed > 1)
4626 continue;
4627 if (!test_bit(R5_Insync, &dev->flags) ||
4628 ((i == sh->pd_idx || i == sh->qd_idx) &&
4629 s.failed == 0))
4630 set_bit(STRIPE_INSYNC, &sh->state);
4631 }
4632 }
4633 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4634 s.dec_preread_active = 1;
4635 }
4636
4637 /*
4638 * might be able to return some write requests if the parity blocks
4639 * are safe, or on a failed drive
4640 */
4641 pdev = &sh->dev[sh->pd_idx];
4642 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4643 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4644 qdev = &sh->dev[sh->qd_idx];
4645 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4646 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4647 || conf->level < 6;
4648
4649 if (s.written &&
4650 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4651 && !test_bit(R5_LOCKED, &pdev->flags)
4652 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4653 test_bit(R5_Discard, &pdev->flags))))) &&
4654 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4655 && !test_bit(R5_LOCKED, &qdev->flags)
4656 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4657 test_bit(R5_Discard, &qdev->flags))))))
4658 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4659
4660 if (s.just_cached)
4661 r5c_handle_cached_data_endio(conf, sh, disks, &s.return_bi);
4662 r5l_stripe_write_finished(sh);
4663
4664 /* Now we might consider reading some blocks, either to check/generate
4665 * parity, or to satisfy requests
4666 * or to load a block that is being partially written.
4667 */
4668 if (s.to_read || s.non_overwrite
4669 || (conf->level == 6 && s.to_write && s.failed)
4670 || (s.syncing && (s.uptodate + s.compute < disks))
4671 || s.replacing
4672 || s.expanding)
4673 handle_stripe_fill(sh, &s, disks);
4674
4675 /*
4676 * When the stripe finishes full journal write cycle (write to journal
4677 * and raid disk), this is the clean up procedure so it is ready for
4678 * next operation.
4679 */
4680 r5c_finish_stripe_write_out(conf, sh, &s);
4681
4682 /*
4683 * Now to consider new write requests, cache write back and what else,
4684 * if anything should be read. We do not handle new writes when:
4685 * 1/ A 'write' operation (copy+xor) is already in flight.
4686 * 2/ A 'check' operation is in flight, as it may clobber the parity
4687 * block.
4688 * 3/ A r5c cache log write is in flight.
4689 */
4690
4691 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4692 if (!r5c_is_writeback(conf->log)) {
4693 if (s.to_write)
4694 handle_stripe_dirtying(conf, sh, &s, disks);
4695 } else { /* write back cache */
4696 int ret = 0;
4697
4698 /* First, try handle writes in caching phase */
4699 if (s.to_write)
4700 ret = r5c_try_caching_write(conf, sh, &s,
4701 disks);
4702 /*
4703 * If caching phase failed: ret == -EAGAIN
4704 * OR
4705 * stripe under reclaim: !caching && injournal
4706 *
4707 * fall back to handle_stripe_dirtying()
4708 */
4709 if (ret == -EAGAIN ||
4710 /* stripe under reclaim: !caching && injournal */
4711 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4712 s.injournal > 0)) {
4713 ret = handle_stripe_dirtying(conf, sh, &s,
4714 disks);
4715 if (ret == -EAGAIN)
4716 goto finish;
4717 }
4718 }
4719 }
4720
4721 /* maybe we need to check and possibly fix the parity for this stripe
4722 * Any reads will already have been scheduled, so we just see if enough
4723 * data is available. The parity check is held off while parity
4724 * dependent operations are in flight.
4725 */
4726 if (sh->check_state ||
4727 (s.syncing && s.locked == 0 &&
4728 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4729 !test_bit(STRIPE_INSYNC, &sh->state))) {
4730 if (conf->level == 6)
4731 handle_parity_checks6(conf, sh, &s, disks);
4732 else
4733 handle_parity_checks5(conf, sh, &s, disks);
4734 }
4735
4736 if ((s.replacing || s.syncing) && s.locked == 0
4737 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4738 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4739 /* Write out to replacement devices where possible */
4740 for (i = 0; i < conf->raid_disks; i++)
4741 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4742 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4743 set_bit(R5_WantReplace, &sh->dev[i].flags);
4744 set_bit(R5_LOCKED, &sh->dev[i].flags);
4745 s.locked++;
4746 }
4747 if (s.replacing)
4748 set_bit(STRIPE_INSYNC, &sh->state);
4749 set_bit(STRIPE_REPLACED, &sh->state);
4750 }
4751 if ((s.syncing || s.replacing) && s.locked == 0 &&
4752 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4753 test_bit(STRIPE_INSYNC, &sh->state)) {
4754 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4755 clear_bit(STRIPE_SYNCING, &sh->state);
4756 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4757 wake_up(&conf->wait_for_overlap);
4758 }
4759
4760 /* If the failed drives are just a ReadError, then we might need
4761 * to progress the repair/check process
4762 */
4763 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4764 for (i = 0; i < s.failed; i++) {
4765 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4766 if (test_bit(R5_ReadError, &dev->flags)
4767 && !test_bit(R5_LOCKED, &dev->flags)
4768 && test_bit(R5_UPTODATE, &dev->flags)
4769 ) {
4770 if (!test_bit(R5_ReWrite, &dev->flags)) {
4771 set_bit(R5_Wantwrite, &dev->flags);
4772 set_bit(R5_ReWrite, &dev->flags);
4773 set_bit(R5_LOCKED, &dev->flags);
4774 s.locked++;
4775 } else {
4776 /* let's read it back */
4777 set_bit(R5_Wantread, &dev->flags);
4778 set_bit(R5_LOCKED, &dev->flags);
4779 s.locked++;
4780 }
4781 }
4782 }
4783
4784 /* Finish reconstruct operations initiated by the expansion process */
4785 if (sh->reconstruct_state == reconstruct_state_result) {
4786 struct stripe_head *sh_src
4787 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4788 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4789 /* sh cannot be written until sh_src has been read.
4790 * so arrange for sh to be delayed a little
4791 */
4792 set_bit(STRIPE_DELAYED, &sh->state);
4793 set_bit(STRIPE_HANDLE, &sh->state);
4794 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4795 &sh_src->state))
4796 atomic_inc(&conf->preread_active_stripes);
4797 raid5_release_stripe(sh_src);
4798 goto finish;
4799 }
4800 if (sh_src)
4801 raid5_release_stripe(sh_src);
4802
4803 sh->reconstruct_state = reconstruct_state_idle;
4804 clear_bit(STRIPE_EXPANDING, &sh->state);
4805 for (i = conf->raid_disks; i--; ) {
4806 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4807 set_bit(R5_LOCKED, &sh->dev[i].flags);
4808 s.locked++;
4809 }
4810 }
4811
4812 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4813 !sh->reconstruct_state) {
4814 /* Need to write out all blocks after computing parity */
4815 sh->disks = conf->raid_disks;
4816 stripe_set_idx(sh->sector, conf, 0, sh);
4817 schedule_reconstruction(sh, &s, 1, 1);
4818 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4819 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4820 atomic_dec(&conf->reshape_stripes);
4821 wake_up(&conf->wait_for_overlap);
4822 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4823 }
4824
4825 if (s.expanding && s.locked == 0 &&
4826 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4827 handle_stripe_expansion(conf, sh);
4828
4829 finish:
4830 /* wait for this device to become unblocked */
4831 if (unlikely(s.blocked_rdev)) {
4832 if (conf->mddev->external)
4833 md_wait_for_blocked_rdev(s.blocked_rdev,
4834 conf->mddev);
4835 else
4836 /* Internal metadata will immediately
4837 * be written by raid5d, so we don't
4838 * need to wait here.
4839 */
4840 rdev_dec_pending(s.blocked_rdev,
4841 conf->mddev);
4842 }
4843
4844 if (s.handle_bad_blocks)
4845 for (i = disks; i--; ) {
4846 struct md_rdev *rdev;
4847 struct r5dev *dev = &sh->dev[i];
4848 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4849 /* We own a safe reference to the rdev */
4850 rdev = conf->disks[i].rdev;
4851 if (!rdev_set_badblocks(rdev, sh->sector,
4852 STRIPE_SECTORS, 0))
4853 md_error(conf->mddev, rdev);
4854 rdev_dec_pending(rdev, conf->mddev);
4855 }
4856 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4857 rdev = conf->disks[i].rdev;
4858 rdev_clear_badblocks(rdev, sh->sector,
4859 STRIPE_SECTORS, 0);
4860 rdev_dec_pending(rdev, conf->mddev);
4861 }
4862 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4863 rdev = conf->disks[i].replacement;
4864 if (!rdev)
4865 /* rdev have been moved down */
4866 rdev = conf->disks[i].rdev;
4867 rdev_clear_badblocks(rdev, sh->sector,
4868 STRIPE_SECTORS, 0);
4869 rdev_dec_pending(rdev, conf->mddev);
4870 }
4871 }
4872
4873 if (s.ops_request)
4874 raid_run_ops(sh, s.ops_request);
4875
4876 ops_run_io(sh, &s);
4877
4878 if (s.dec_preread_active) {
4879 /* We delay this until after ops_run_io so that if make_request
4880 * is waiting on a flush, it won't continue until the writes
4881 * have actually been submitted.
4882 */
4883 atomic_dec(&conf->preread_active_stripes);
4884 if (atomic_read(&conf->preread_active_stripes) <
4885 IO_THRESHOLD)
4886 md_wakeup_thread(conf->mddev->thread);
4887 }
4888
4889 if (!bio_list_empty(&s.return_bi)) {
4890 if (test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4891 spin_lock_irq(&conf->device_lock);
4892 bio_list_merge(&conf->return_bi, &s.return_bi);
4893 spin_unlock_irq(&conf->device_lock);
4894 md_wakeup_thread(conf->mddev->thread);
4895 } else
4896 return_io(&s.return_bi);
4897 }
4898
4899 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4900 }
4901
4902 static void raid5_activate_delayed(struct r5conf *conf)
4903 {
4904 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4905 while (!list_empty(&conf->delayed_list)) {
4906 struct list_head *l = conf->delayed_list.next;
4907 struct stripe_head *sh;
4908 sh = list_entry(l, struct stripe_head, lru);
4909 list_del_init(l);
4910 clear_bit(STRIPE_DELAYED, &sh->state);
4911 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4912 atomic_inc(&conf->preread_active_stripes);
4913 list_add_tail(&sh->lru, &conf->hold_list);
4914 raid5_wakeup_stripe_thread(sh);
4915 }
4916 }
4917 }
4918
4919 static void activate_bit_delay(struct r5conf *conf,
4920 struct list_head *temp_inactive_list)
4921 {
4922 /* device_lock is held */
4923 struct list_head head;
4924 list_add(&head, &conf->bitmap_list);
4925 list_del_init(&conf->bitmap_list);
4926 while (!list_empty(&head)) {
4927 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4928 int hash;
4929 list_del_init(&sh->lru);
4930 atomic_inc(&sh->count);
4931 hash = sh->hash_lock_index;
4932 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4933 }
4934 }
4935
4936 static int raid5_congested(struct mddev *mddev, int bits)
4937 {
4938 struct r5conf *conf = mddev->private;
4939
4940 /* No difference between reads and writes. Just check
4941 * how busy the stripe_cache is
4942 */
4943
4944 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4945 return 1;
4946
4947 /* Also checks whether there is pressure on r5cache log space */
4948 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
4949 return 1;
4950 if (conf->quiesce)
4951 return 1;
4952 if (atomic_read(&conf->empty_inactive_list_nr))
4953 return 1;
4954
4955 return 0;
4956 }
4957
4958 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4959 {
4960 struct r5conf *conf = mddev->private;
4961 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4962 unsigned int chunk_sectors;
4963 unsigned int bio_sectors = bio_sectors(bio);
4964
4965 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4966 return chunk_sectors >=
4967 ((sector & (chunk_sectors - 1)) + bio_sectors);
4968 }
4969
4970 /*
4971 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4972 * later sampled by raid5d.
4973 */
4974 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4975 {
4976 unsigned long flags;
4977
4978 spin_lock_irqsave(&conf->device_lock, flags);
4979
4980 bi->bi_next = conf->retry_read_aligned_list;
4981 conf->retry_read_aligned_list = bi;
4982
4983 spin_unlock_irqrestore(&conf->device_lock, flags);
4984 md_wakeup_thread(conf->mddev->thread);
4985 }
4986
4987 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4988 {
4989 struct bio *bi;
4990
4991 bi = conf->retry_read_aligned;
4992 if (bi) {
4993 conf->retry_read_aligned = NULL;
4994 return bi;
4995 }
4996 bi = conf->retry_read_aligned_list;
4997 if(bi) {
4998 conf->retry_read_aligned_list = bi->bi_next;
4999 bi->bi_next = NULL;
5000 /*
5001 * this sets the active strip count to 1 and the processed
5002 * strip count to zero (upper 8 bits)
5003 */
5004 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
5005 }
5006
5007 return bi;
5008 }
5009
5010 /*
5011 * The "raid5_align_endio" should check if the read succeeded and if it
5012 * did, call bio_endio on the original bio (having bio_put the new bio
5013 * first).
5014 * If the read failed..
5015 */
5016 static void raid5_align_endio(struct bio *bi)
5017 {
5018 struct bio* raid_bi = bi->bi_private;
5019 struct mddev *mddev;
5020 struct r5conf *conf;
5021 struct md_rdev *rdev;
5022 int error = bi->bi_error;
5023
5024 bio_put(bi);
5025
5026 rdev = (void*)raid_bi->bi_next;
5027 raid_bi->bi_next = NULL;
5028 mddev = rdev->mddev;
5029 conf = mddev->private;
5030
5031 rdev_dec_pending(rdev, conf->mddev);
5032
5033 if (!error) {
5034 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
5035 raid_bi, 0);
5036 bio_endio(raid_bi);
5037 if (atomic_dec_and_test(&conf->active_aligned_reads))
5038 wake_up(&conf->wait_for_quiescent);
5039 return;
5040 }
5041
5042 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5043
5044 add_bio_to_retry(raid_bi, conf);
5045 }
5046
5047 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5048 {
5049 struct r5conf *conf = mddev->private;
5050 int dd_idx;
5051 struct bio* align_bi;
5052 struct md_rdev *rdev;
5053 sector_t end_sector;
5054
5055 if (!in_chunk_boundary(mddev, raid_bio)) {
5056 pr_debug("%s: non aligned\n", __func__);
5057 return 0;
5058 }
5059 /*
5060 * use bio_clone_fast to make a copy of the bio
5061 */
5062 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5063 if (!align_bi)
5064 return 0;
5065 /*
5066 * set bi_end_io to a new function, and set bi_private to the
5067 * original bio.
5068 */
5069 align_bi->bi_end_io = raid5_align_endio;
5070 align_bi->bi_private = raid_bio;
5071 /*
5072 * compute position
5073 */
5074 align_bi->bi_iter.bi_sector =
5075 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5076 0, &dd_idx, NULL);
5077
5078 end_sector = bio_end_sector(align_bi);
5079 rcu_read_lock();
5080 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5081 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5082 rdev->recovery_offset < end_sector) {
5083 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5084 if (rdev &&
5085 (test_bit(Faulty, &rdev->flags) ||
5086 !(test_bit(In_sync, &rdev->flags) ||
5087 rdev->recovery_offset >= end_sector)))
5088 rdev = NULL;
5089 }
5090
5091 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5092 rcu_read_unlock();
5093 bio_put(align_bi);
5094 return 0;
5095 }
5096
5097 if (rdev) {
5098 sector_t first_bad;
5099 int bad_sectors;
5100
5101 atomic_inc(&rdev->nr_pending);
5102 rcu_read_unlock();
5103 raid_bio->bi_next = (void*)rdev;
5104 align_bi->bi_bdev = rdev->bdev;
5105 bio_clear_flag(align_bi, BIO_SEG_VALID);
5106
5107 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5108 bio_sectors(align_bi),
5109 &first_bad, &bad_sectors)) {
5110 bio_put(align_bi);
5111 rdev_dec_pending(rdev, mddev);
5112 return 0;
5113 }
5114
5115 /* No reshape active, so we can trust rdev->data_offset */
5116 align_bi->bi_iter.bi_sector += rdev->data_offset;
5117
5118 spin_lock_irq(&conf->device_lock);
5119 wait_event_lock_irq(conf->wait_for_quiescent,
5120 conf->quiesce == 0,
5121 conf->device_lock);
5122 atomic_inc(&conf->active_aligned_reads);
5123 spin_unlock_irq(&conf->device_lock);
5124
5125 if (mddev->gendisk)
5126 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5127 align_bi, disk_devt(mddev->gendisk),
5128 raid_bio->bi_iter.bi_sector);
5129 generic_make_request(align_bi);
5130 return 1;
5131 } else {
5132 rcu_read_unlock();
5133 bio_put(align_bi);
5134 return 0;
5135 }
5136 }
5137
5138 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5139 {
5140 struct bio *split;
5141
5142 do {
5143 sector_t sector = raid_bio->bi_iter.bi_sector;
5144 unsigned chunk_sects = mddev->chunk_sectors;
5145 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5146
5147 if (sectors < bio_sectors(raid_bio)) {
5148 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
5149 bio_chain(split, raid_bio);
5150 } else
5151 split = raid_bio;
5152
5153 if (!raid5_read_one_chunk(mddev, split)) {
5154 if (split != raid_bio)
5155 generic_make_request(raid_bio);
5156 return split;
5157 }
5158 } while (split != raid_bio);
5159
5160 return NULL;
5161 }
5162
5163 /* __get_priority_stripe - get the next stripe to process
5164 *
5165 * Full stripe writes are allowed to pass preread active stripes up until
5166 * the bypass_threshold is exceeded. In general the bypass_count
5167 * increments when the handle_list is handled before the hold_list; however, it
5168 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5169 * stripe with in flight i/o. The bypass_count will be reset when the
5170 * head of the hold_list has changed, i.e. the head was promoted to the
5171 * handle_list.
5172 */
5173 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5174 {
5175 struct stripe_head *sh = NULL, *tmp;
5176 struct list_head *handle_list = NULL;
5177 struct r5worker_group *wg = NULL;
5178
5179 if (conf->worker_cnt_per_group == 0) {
5180 handle_list = &conf->handle_list;
5181 } else if (group != ANY_GROUP) {
5182 handle_list = &conf->worker_groups[group].handle_list;
5183 wg = &conf->worker_groups[group];
5184 } else {
5185 int i;
5186 for (i = 0; i < conf->group_cnt; i++) {
5187 handle_list = &conf->worker_groups[i].handle_list;
5188 wg = &conf->worker_groups[i];
5189 if (!list_empty(handle_list))
5190 break;
5191 }
5192 }
5193
5194 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5195 __func__,
5196 list_empty(handle_list) ? "empty" : "busy",
5197 list_empty(&conf->hold_list) ? "empty" : "busy",
5198 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5199
5200 if (!list_empty(handle_list)) {
5201 sh = list_entry(handle_list->next, typeof(*sh), lru);
5202
5203 if (list_empty(&conf->hold_list))
5204 conf->bypass_count = 0;
5205 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5206 if (conf->hold_list.next == conf->last_hold)
5207 conf->bypass_count++;
5208 else {
5209 conf->last_hold = conf->hold_list.next;
5210 conf->bypass_count -= conf->bypass_threshold;
5211 if (conf->bypass_count < 0)
5212 conf->bypass_count = 0;
5213 }
5214 }
5215 } else if (!list_empty(&conf->hold_list) &&
5216 ((conf->bypass_threshold &&
5217 conf->bypass_count > conf->bypass_threshold) ||
5218 atomic_read(&conf->pending_full_writes) == 0)) {
5219
5220 list_for_each_entry(tmp, &conf->hold_list, lru) {
5221 if (conf->worker_cnt_per_group == 0 ||
5222 group == ANY_GROUP ||
5223 !cpu_online(tmp->cpu) ||
5224 cpu_to_group(tmp->cpu) == group) {
5225 sh = tmp;
5226 break;
5227 }
5228 }
5229
5230 if (sh) {
5231 conf->bypass_count -= conf->bypass_threshold;
5232 if (conf->bypass_count < 0)
5233 conf->bypass_count = 0;
5234 }
5235 wg = NULL;
5236 }
5237
5238 if (!sh)
5239 return NULL;
5240
5241 if (wg) {
5242 wg->stripes_cnt--;
5243 sh->group = NULL;
5244 }
5245 list_del_init(&sh->lru);
5246 BUG_ON(atomic_inc_return(&sh->count) != 1);
5247 return sh;
5248 }
5249
5250 struct raid5_plug_cb {
5251 struct blk_plug_cb cb;
5252 struct list_head list;
5253 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5254 };
5255
5256 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5257 {
5258 struct raid5_plug_cb *cb = container_of(
5259 blk_cb, struct raid5_plug_cb, cb);
5260 struct stripe_head *sh;
5261 struct mddev *mddev = cb->cb.data;
5262 struct r5conf *conf = mddev->private;
5263 int cnt = 0;
5264 int hash;
5265
5266 if (cb->list.next && !list_empty(&cb->list)) {
5267 spin_lock_irq(&conf->device_lock);
5268 while (!list_empty(&cb->list)) {
5269 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5270 list_del_init(&sh->lru);
5271 /*
5272 * avoid race release_stripe_plug() sees
5273 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5274 * is still in our list
5275 */
5276 smp_mb__before_atomic();
5277 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5278 /*
5279 * STRIPE_ON_RELEASE_LIST could be set here. In that
5280 * case, the count is always > 1 here
5281 */
5282 hash = sh->hash_lock_index;
5283 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5284 cnt++;
5285 }
5286 spin_unlock_irq(&conf->device_lock);
5287 }
5288 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5289 NR_STRIPE_HASH_LOCKS);
5290 if (mddev->queue)
5291 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5292 kfree(cb);
5293 }
5294
5295 static void release_stripe_plug(struct mddev *mddev,
5296 struct stripe_head *sh)
5297 {
5298 struct blk_plug_cb *blk_cb = blk_check_plugged(
5299 raid5_unplug, mddev,
5300 sizeof(struct raid5_plug_cb));
5301 struct raid5_plug_cb *cb;
5302
5303 if (!blk_cb) {
5304 raid5_release_stripe(sh);
5305 return;
5306 }
5307
5308 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5309
5310 if (cb->list.next == NULL) {
5311 int i;
5312 INIT_LIST_HEAD(&cb->list);
5313 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5314 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5315 }
5316
5317 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5318 list_add_tail(&sh->lru, &cb->list);
5319 else
5320 raid5_release_stripe(sh);
5321 }
5322
5323 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5324 {
5325 struct r5conf *conf = mddev->private;
5326 sector_t logical_sector, last_sector;
5327 struct stripe_head *sh;
5328 int remaining;
5329 int stripe_sectors;
5330
5331 if (mddev->reshape_position != MaxSector)
5332 /* Skip discard while reshape is happening */
5333 return;
5334
5335 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5336 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5337
5338 bi->bi_next = NULL;
5339 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5340
5341 stripe_sectors = conf->chunk_sectors *
5342 (conf->raid_disks - conf->max_degraded);
5343 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5344 stripe_sectors);
5345 sector_div(last_sector, stripe_sectors);
5346
5347 logical_sector *= conf->chunk_sectors;
5348 last_sector *= conf->chunk_sectors;
5349
5350 for (; logical_sector < last_sector;
5351 logical_sector += STRIPE_SECTORS) {
5352 DEFINE_WAIT(w);
5353 int d;
5354 again:
5355 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5356 prepare_to_wait(&conf->wait_for_overlap, &w,
5357 TASK_UNINTERRUPTIBLE);
5358 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5359 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5360 raid5_release_stripe(sh);
5361 schedule();
5362 goto again;
5363 }
5364 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5365 spin_lock_irq(&sh->stripe_lock);
5366 for (d = 0; d < conf->raid_disks; d++) {
5367 if (d == sh->pd_idx || d == sh->qd_idx)
5368 continue;
5369 if (sh->dev[d].towrite || sh->dev[d].toread) {
5370 set_bit(R5_Overlap, &sh->dev[d].flags);
5371 spin_unlock_irq(&sh->stripe_lock);
5372 raid5_release_stripe(sh);
5373 schedule();
5374 goto again;
5375 }
5376 }
5377 set_bit(STRIPE_DISCARD, &sh->state);
5378 finish_wait(&conf->wait_for_overlap, &w);
5379 sh->overwrite_disks = 0;
5380 for (d = 0; d < conf->raid_disks; d++) {
5381 if (d == sh->pd_idx || d == sh->qd_idx)
5382 continue;
5383 sh->dev[d].towrite = bi;
5384 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5385 raid5_inc_bi_active_stripes(bi);
5386 sh->overwrite_disks++;
5387 }
5388 spin_unlock_irq(&sh->stripe_lock);
5389 if (conf->mddev->bitmap) {
5390 for (d = 0;
5391 d < conf->raid_disks - conf->max_degraded;
5392 d++)
5393 bitmap_startwrite(mddev->bitmap,
5394 sh->sector,
5395 STRIPE_SECTORS,
5396 0);
5397 sh->bm_seq = conf->seq_flush + 1;
5398 set_bit(STRIPE_BIT_DELAY, &sh->state);
5399 }
5400
5401 set_bit(STRIPE_HANDLE, &sh->state);
5402 clear_bit(STRIPE_DELAYED, &sh->state);
5403 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5404 atomic_inc(&conf->preread_active_stripes);
5405 release_stripe_plug(mddev, sh);
5406 }
5407
5408 remaining = raid5_dec_bi_active_stripes(bi);
5409 if (remaining == 0) {
5410 md_write_end(mddev);
5411 bio_endio(bi);
5412 }
5413 }
5414
5415 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5416 {
5417 struct r5conf *conf = mddev->private;
5418 int dd_idx;
5419 sector_t new_sector;
5420 sector_t logical_sector, last_sector;
5421 struct stripe_head *sh;
5422 const int rw = bio_data_dir(bi);
5423 int remaining;
5424 DEFINE_WAIT(w);
5425 bool do_prepare;
5426 bool do_flush = false;
5427
5428 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5429 int ret = r5l_handle_flush_request(conf->log, bi);
5430
5431 if (ret == 0)
5432 return;
5433 if (ret == -ENODEV) {
5434 md_flush_request(mddev, bi);
5435 return;
5436 }
5437 /* ret == -EAGAIN, fallback */
5438 /*
5439 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5440 * we need to flush journal device
5441 */
5442 do_flush = bi->bi_opf & REQ_PREFLUSH;
5443 }
5444
5445 md_write_start(mddev, bi);
5446
5447 /*
5448 * If array is degraded, better not do chunk aligned read because
5449 * later we might have to read it again in order to reconstruct
5450 * data on failed drives.
5451 */
5452 if (rw == READ && mddev->degraded == 0 &&
5453 mddev->reshape_position == MaxSector) {
5454 bi = chunk_aligned_read(mddev, bi);
5455 if (!bi)
5456 return;
5457 }
5458
5459 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5460 make_discard_request(mddev, bi);
5461 return;
5462 }
5463
5464 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5465 last_sector = bio_end_sector(bi);
5466 bi->bi_next = NULL;
5467 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5468
5469 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5470 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5471 int previous;
5472 int seq;
5473
5474 do_prepare = false;
5475 retry:
5476 seq = read_seqcount_begin(&conf->gen_lock);
5477 previous = 0;
5478 if (do_prepare)
5479 prepare_to_wait(&conf->wait_for_overlap, &w,
5480 TASK_UNINTERRUPTIBLE);
5481 if (unlikely(conf->reshape_progress != MaxSector)) {
5482 /* spinlock is needed as reshape_progress may be
5483 * 64bit on a 32bit platform, and so it might be
5484 * possible to see a half-updated value
5485 * Of course reshape_progress could change after
5486 * the lock is dropped, so once we get a reference
5487 * to the stripe that we think it is, we will have
5488 * to check again.
5489 */
5490 spin_lock_irq(&conf->device_lock);
5491 if (mddev->reshape_backwards
5492 ? logical_sector < conf->reshape_progress
5493 : logical_sector >= conf->reshape_progress) {
5494 previous = 1;
5495 } else {
5496 if (mddev->reshape_backwards
5497 ? logical_sector < conf->reshape_safe
5498 : logical_sector >= conf->reshape_safe) {
5499 spin_unlock_irq(&conf->device_lock);
5500 schedule();
5501 do_prepare = true;
5502 goto retry;
5503 }
5504 }
5505 spin_unlock_irq(&conf->device_lock);
5506 }
5507
5508 new_sector = raid5_compute_sector(conf, logical_sector,
5509 previous,
5510 &dd_idx, NULL);
5511 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5512 (unsigned long long)new_sector,
5513 (unsigned long long)logical_sector);
5514
5515 sh = raid5_get_active_stripe(conf, new_sector, previous,
5516 (bi->bi_opf & REQ_RAHEAD), 0);
5517 if (sh) {
5518 if (unlikely(previous)) {
5519 /* expansion might have moved on while waiting for a
5520 * stripe, so we must do the range check again.
5521 * Expansion could still move past after this
5522 * test, but as we are holding a reference to
5523 * 'sh', we know that if that happens,
5524 * STRIPE_EXPANDING will get set and the expansion
5525 * won't proceed until we finish with the stripe.
5526 */
5527 int must_retry = 0;
5528 spin_lock_irq(&conf->device_lock);
5529 if (mddev->reshape_backwards
5530 ? logical_sector >= conf->reshape_progress
5531 : logical_sector < conf->reshape_progress)
5532 /* mismatch, need to try again */
5533 must_retry = 1;
5534 spin_unlock_irq(&conf->device_lock);
5535 if (must_retry) {
5536 raid5_release_stripe(sh);
5537 schedule();
5538 do_prepare = true;
5539 goto retry;
5540 }
5541 }
5542 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5543 /* Might have got the wrong stripe_head
5544 * by accident
5545 */
5546 raid5_release_stripe(sh);
5547 goto retry;
5548 }
5549
5550 if (rw == WRITE &&
5551 logical_sector >= mddev->suspend_lo &&
5552 logical_sector < mddev->suspend_hi) {
5553 raid5_release_stripe(sh);
5554 /* As the suspend_* range is controlled by
5555 * userspace, we want an interruptible
5556 * wait.
5557 */
5558 flush_signals(current);
5559 prepare_to_wait(&conf->wait_for_overlap,
5560 &w, TASK_INTERRUPTIBLE);
5561 if (logical_sector >= mddev->suspend_lo &&
5562 logical_sector < mddev->suspend_hi) {
5563 schedule();
5564 do_prepare = true;
5565 }
5566 goto retry;
5567 }
5568
5569 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5570 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5571 /* Stripe is busy expanding or
5572 * add failed due to overlap. Flush everything
5573 * and wait a while
5574 */
5575 md_wakeup_thread(mddev->thread);
5576 raid5_release_stripe(sh);
5577 schedule();
5578 do_prepare = true;
5579 goto retry;
5580 }
5581 if (do_flush) {
5582 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5583 /* we only need flush for one stripe */
5584 do_flush = false;
5585 }
5586
5587 set_bit(STRIPE_HANDLE, &sh->state);
5588 clear_bit(STRIPE_DELAYED, &sh->state);
5589 if ((!sh->batch_head || sh == sh->batch_head) &&
5590 (bi->bi_opf & REQ_SYNC) &&
5591 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5592 atomic_inc(&conf->preread_active_stripes);
5593 release_stripe_plug(mddev, sh);
5594 } else {
5595 /* cannot get stripe for read-ahead, just give-up */
5596 bi->bi_error = -EIO;
5597 break;
5598 }
5599 }
5600 finish_wait(&conf->wait_for_overlap, &w);
5601
5602 remaining = raid5_dec_bi_active_stripes(bi);
5603 if (remaining == 0) {
5604
5605 if ( rw == WRITE )
5606 md_write_end(mddev);
5607
5608 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5609 bi, 0);
5610 bio_endio(bi);
5611 }
5612 }
5613
5614 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5615
5616 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5617 {
5618 /* reshaping is quite different to recovery/resync so it is
5619 * handled quite separately ... here.
5620 *
5621 * On each call to sync_request, we gather one chunk worth of
5622 * destination stripes and flag them as expanding.
5623 * Then we find all the source stripes and request reads.
5624 * As the reads complete, handle_stripe will copy the data
5625 * into the destination stripe and release that stripe.
5626 */
5627 struct r5conf *conf = mddev->private;
5628 struct stripe_head *sh;
5629 sector_t first_sector, last_sector;
5630 int raid_disks = conf->previous_raid_disks;
5631 int data_disks = raid_disks - conf->max_degraded;
5632 int new_data_disks = conf->raid_disks - conf->max_degraded;
5633 int i;
5634 int dd_idx;
5635 sector_t writepos, readpos, safepos;
5636 sector_t stripe_addr;
5637 int reshape_sectors;
5638 struct list_head stripes;
5639 sector_t retn;
5640
5641 if (sector_nr == 0) {
5642 /* If restarting in the middle, skip the initial sectors */
5643 if (mddev->reshape_backwards &&
5644 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5645 sector_nr = raid5_size(mddev, 0, 0)
5646 - conf->reshape_progress;
5647 } else if (mddev->reshape_backwards &&
5648 conf->reshape_progress == MaxSector) {
5649 /* shouldn't happen, but just in case, finish up.*/
5650 sector_nr = MaxSector;
5651 } else if (!mddev->reshape_backwards &&
5652 conf->reshape_progress > 0)
5653 sector_nr = conf->reshape_progress;
5654 sector_div(sector_nr, new_data_disks);
5655 if (sector_nr) {
5656 mddev->curr_resync_completed = sector_nr;
5657 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5658 *skipped = 1;
5659 retn = sector_nr;
5660 goto finish;
5661 }
5662 }
5663
5664 /* We need to process a full chunk at a time.
5665 * If old and new chunk sizes differ, we need to process the
5666 * largest of these
5667 */
5668
5669 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5670
5671 /* We update the metadata at least every 10 seconds, or when
5672 * the data about to be copied would over-write the source of
5673 * the data at the front of the range. i.e. one new_stripe
5674 * along from reshape_progress new_maps to after where
5675 * reshape_safe old_maps to
5676 */
5677 writepos = conf->reshape_progress;
5678 sector_div(writepos, new_data_disks);
5679 readpos = conf->reshape_progress;
5680 sector_div(readpos, data_disks);
5681 safepos = conf->reshape_safe;
5682 sector_div(safepos, data_disks);
5683 if (mddev->reshape_backwards) {
5684 BUG_ON(writepos < reshape_sectors);
5685 writepos -= reshape_sectors;
5686 readpos += reshape_sectors;
5687 safepos += reshape_sectors;
5688 } else {
5689 writepos += reshape_sectors;
5690 /* readpos and safepos are worst-case calculations.
5691 * A negative number is overly pessimistic, and causes
5692 * obvious problems for unsigned storage. So clip to 0.
5693 */
5694 readpos -= min_t(sector_t, reshape_sectors, readpos);
5695 safepos -= min_t(sector_t, reshape_sectors, safepos);
5696 }
5697
5698 /* Having calculated the 'writepos' possibly use it
5699 * to set 'stripe_addr' which is where we will write to.
5700 */
5701 if (mddev->reshape_backwards) {
5702 BUG_ON(conf->reshape_progress == 0);
5703 stripe_addr = writepos;
5704 BUG_ON((mddev->dev_sectors &
5705 ~((sector_t)reshape_sectors - 1))
5706 - reshape_sectors - stripe_addr
5707 != sector_nr);
5708 } else {
5709 BUG_ON(writepos != sector_nr + reshape_sectors);
5710 stripe_addr = sector_nr;
5711 }
5712
5713 /* 'writepos' is the most advanced device address we might write.
5714 * 'readpos' is the least advanced device address we might read.
5715 * 'safepos' is the least address recorded in the metadata as having
5716 * been reshaped.
5717 * If there is a min_offset_diff, these are adjusted either by
5718 * increasing the safepos/readpos if diff is negative, or
5719 * increasing writepos if diff is positive.
5720 * If 'readpos' is then behind 'writepos', there is no way that we can
5721 * ensure safety in the face of a crash - that must be done by userspace
5722 * making a backup of the data. So in that case there is no particular
5723 * rush to update metadata.
5724 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5725 * update the metadata to advance 'safepos' to match 'readpos' so that
5726 * we can be safe in the event of a crash.
5727 * So we insist on updating metadata if safepos is behind writepos and
5728 * readpos is beyond writepos.
5729 * In any case, update the metadata every 10 seconds.
5730 * Maybe that number should be configurable, but I'm not sure it is
5731 * worth it.... maybe it could be a multiple of safemode_delay???
5732 */
5733 if (conf->min_offset_diff < 0) {
5734 safepos += -conf->min_offset_diff;
5735 readpos += -conf->min_offset_diff;
5736 } else
5737 writepos += conf->min_offset_diff;
5738
5739 if ((mddev->reshape_backwards
5740 ? (safepos > writepos && readpos < writepos)
5741 : (safepos < writepos && readpos > writepos)) ||
5742 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5743 /* Cannot proceed until we've updated the superblock... */
5744 wait_event(conf->wait_for_overlap,
5745 atomic_read(&conf->reshape_stripes)==0
5746 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5747 if (atomic_read(&conf->reshape_stripes) != 0)
5748 return 0;
5749 mddev->reshape_position = conf->reshape_progress;
5750 mddev->curr_resync_completed = sector_nr;
5751 conf->reshape_checkpoint = jiffies;
5752 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5753 md_wakeup_thread(mddev->thread);
5754 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5755 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5756 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5757 return 0;
5758 spin_lock_irq(&conf->device_lock);
5759 conf->reshape_safe = mddev->reshape_position;
5760 spin_unlock_irq(&conf->device_lock);
5761 wake_up(&conf->wait_for_overlap);
5762 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5763 }
5764
5765 INIT_LIST_HEAD(&stripes);
5766 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5767 int j;
5768 int skipped_disk = 0;
5769 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5770 set_bit(STRIPE_EXPANDING, &sh->state);
5771 atomic_inc(&conf->reshape_stripes);
5772 /* If any of this stripe is beyond the end of the old
5773 * array, then we need to zero those blocks
5774 */
5775 for (j=sh->disks; j--;) {
5776 sector_t s;
5777 if (j == sh->pd_idx)
5778 continue;
5779 if (conf->level == 6 &&
5780 j == sh->qd_idx)
5781 continue;
5782 s = raid5_compute_blocknr(sh, j, 0);
5783 if (s < raid5_size(mddev, 0, 0)) {
5784 skipped_disk = 1;
5785 continue;
5786 }
5787 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5788 set_bit(R5_Expanded, &sh->dev[j].flags);
5789 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5790 }
5791 if (!skipped_disk) {
5792 set_bit(STRIPE_EXPAND_READY, &sh->state);
5793 set_bit(STRIPE_HANDLE, &sh->state);
5794 }
5795 list_add(&sh->lru, &stripes);
5796 }
5797 spin_lock_irq(&conf->device_lock);
5798 if (mddev->reshape_backwards)
5799 conf->reshape_progress -= reshape_sectors * new_data_disks;
5800 else
5801 conf->reshape_progress += reshape_sectors * new_data_disks;
5802 spin_unlock_irq(&conf->device_lock);
5803 /* Ok, those stripe are ready. We can start scheduling
5804 * reads on the source stripes.
5805 * The source stripes are determined by mapping the first and last
5806 * block on the destination stripes.
5807 */
5808 first_sector =
5809 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5810 1, &dd_idx, NULL);
5811 last_sector =
5812 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5813 * new_data_disks - 1),
5814 1, &dd_idx, NULL);
5815 if (last_sector >= mddev->dev_sectors)
5816 last_sector = mddev->dev_sectors - 1;
5817 while (first_sector <= last_sector) {
5818 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5819 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5820 set_bit(STRIPE_HANDLE, &sh->state);
5821 raid5_release_stripe(sh);
5822 first_sector += STRIPE_SECTORS;
5823 }
5824 /* Now that the sources are clearly marked, we can release
5825 * the destination stripes
5826 */
5827 while (!list_empty(&stripes)) {
5828 sh = list_entry(stripes.next, struct stripe_head, lru);
5829 list_del_init(&sh->lru);
5830 raid5_release_stripe(sh);
5831 }
5832 /* If this takes us to the resync_max point where we have to pause,
5833 * then we need to write out the superblock.
5834 */
5835 sector_nr += reshape_sectors;
5836 retn = reshape_sectors;
5837 finish:
5838 if (mddev->curr_resync_completed > mddev->resync_max ||
5839 (sector_nr - mddev->curr_resync_completed) * 2
5840 >= mddev->resync_max - mddev->curr_resync_completed) {
5841 /* Cannot proceed until we've updated the superblock... */
5842 wait_event(conf->wait_for_overlap,
5843 atomic_read(&conf->reshape_stripes) == 0
5844 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5845 if (atomic_read(&conf->reshape_stripes) != 0)
5846 goto ret;
5847 mddev->reshape_position = conf->reshape_progress;
5848 mddev->curr_resync_completed = sector_nr;
5849 conf->reshape_checkpoint = jiffies;
5850 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5851 md_wakeup_thread(mddev->thread);
5852 wait_event(mddev->sb_wait,
5853 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5854 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5855 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5856 goto ret;
5857 spin_lock_irq(&conf->device_lock);
5858 conf->reshape_safe = mddev->reshape_position;
5859 spin_unlock_irq(&conf->device_lock);
5860 wake_up(&conf->wait_for_overlap);
5861 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5862 }
5863 ret:
5864 return retn;
5865 }
5866
5867 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5868 int *skipped)
5869 {
5870 struct r5conf *conf = mddev->private;
5871 struct stripe_head *sh;
5872 sector_t max_sector = mddev->dev_sectors;
5873 sector_t sync_blocks;
5874 int still_degraded = 0;
5875 int i;
5876
5877 if (sector_nr >= max_sector) {
5878 /* just being told to finish up .. nothing much to do */
5879
5880 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5881 end_reshape(conf);
5882 return 0;
5883 }
5884
5885 if (mddev->curr_resync < max_sector) /* aborted */
5886 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5887 &sync_blocks, 1);
5888 else /* completed sync */
5889 conf->fullsync = 0;
5890 bitmap_close_sync(mddev->bitmap);
5891
5892 return 0;
5893 }
5894
5895 /* Allow raid5_quiesce to complete */
5896 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5897
5898 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5899 return reshape_request(mddev, sector_nr, skipped);
5900
5901 /* No need to check resync_max as we never do more than one
5902 * stripe, and as resync_max will always be on a chunk boundary,
5903 * if the check in md_do_sync didn't fire, there is no chance
5904 * of overstepping resync_max here
5905 */
5906
5907 /* if there is too many failed drives and we are trying
5908 * to resync, then assert that we are finished, because there is
5909 * nothing we can do.
5910 */
5911 if (mddev->degraded >= conf->max_degraded &&
5912 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5913 sector_t rv = mddev->dev_sectors - sector_nr;
5914 *skipped = 1;
5915 return rv;
5916 }
5917 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5918 !conf->fullsync &&
5919 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5920 sync_blocks >= STRIPE_SECTORS) {
5921 /* we can skip this block, and probably more */
5922 sync_blocks /= STRIPE_SECTORS;
5923 *skipped = 1;
5924 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5925 }
5926
5927 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5928
5929 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5930 if (sh == NULL) {
5931 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5932 /* make sure we don't swamp the stripe cache if someone else
5933 * is trying to get access
5934 */
5935 schedule_timeout_uninterruptible(1);
5936 }
5937 /* Need to check if array will still be degraded after recovery/resync
5938 * Note in case of > 1 drive failures it's possible we're rebuilding
5939 * one drive while leaving another faulty drive in array.
5940 */
5941 rcu_read_lock();
5942 for (i = 0; i < conf->raid_disks; i++) {
5943 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5944
5945 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5946 still_degraded = 1;
5947 }
5948 rcu_read_unlock();
5949
5950 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5951
5952 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5953 set_bit(STRIPE_HANDLE, &sh->state);
5954
5955 raid5_release_stripe(sh);
5956
5957 return STRIPE_SECTORS;
5958 }
5959
5960 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5961 {
5962 /* We may not be able to submit a whole bio at once as there
5963 * may not be enough stripe_heads available.
5964 * We cannot pre-allocate enough stripe_heads as we may need
5965 * more than exist in the cache (if we allow ever large chunks).
5966 * So we do one stripe head at a time and record in
5967 * ->bi_hw_segments how many have been done.
5968 *
5969 * We *know* that this entire raid_bio is in one chunk, so
5970 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5971 */
5972 struct stripe_head *sh;
5973 int dd_idx;
5974 sector_t sector, logical_sector, last_sector;
5975 int scnt = 0;
5976 int remaining;
5977 int handled = 0;
5978
5979 logical_sector = raid_bio->bi_iter.bi_sector &
5980 ~((sector_t)STRIPE_SECTORS-1);
5981 sector = raid5_compute_sector(conf, logical_sector,
5982 0, &dd_idx, NULL);
5983 last_sector = bio_end_sector(raid_bio);
5984
5985 for (; logical_sector < last_sector;
5986 logical_sector += STRIPE_SECTORS,
5987 sector += STRIPE_SECTORS,
5988 scnt++) {
5989
5990 if (scnt < raid5_bi_processed_stripes(raid_bio))
5991 /* already done this stripe */
5992 continue;
5993
5994 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5995
5996 if (!sh) {
5997 /* failed to get a stripe - must wait */
5998 raid5_set_bi_processed_stripes(raid_bio, scnt);
5999 conf->retry_read_aligned = raid_bio;
6000 return handled;
6001 }
6002
6003 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6004 raid5_release_stripe(sh);
6005 raid5_set_bi_processed_stripes(raid_bio, scnt);
6006 conf->retry_read_aligned = raid_bio;
6007 return handled;
6008 }
6009
6010 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6011 handle_stripe(sh);
6012 raid5_release_stripe(sh);
6013 handled++;
6014 }
6015 remaining = raid5_dec_bi_active_stripes(raid_bio);
6016 if (remaining == 0) {
6017 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
6018 raid_bio, 0);
6019 bio_endio(raid_bio);
6020 }
6021 if (atomic_dec_and_test(&conf->active_aligned_reads))
6022 wake_up(&conf->wait_for_quiescent);
6023 return handled;
6024 }
6025
6026 static int handle_active_stripes(struct r5conf *conf, int group,
6027 struct r5worker *worker,
6028 struct list_head *temp_inactive_list)
6029 {
6030 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6031 int i, batch_size = 0, hash;
6032 bool release_inactive = false;
6033
6034 while (batch_size < MAX_STRIPE_BATCH &&
6035 (sh = __get_priority_stripe(conf, group)) != NULL)
6036 batch[batch_size++] = sh;
6037
6038 if (batch_size == 0) {
6039 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6040 if (!list_empty(temp_inactive_list + i))
6041 break;
6042 if (i == NR_STRIPE_HASH_LOCKS) {
6043 spin_unlock_irq(&conf->device_lock);
6044 r5l_flush_stripe_to_raid(conf->log);
6045 spin_lock_irq(&conf->device_lock);
6046 return batch_size;
6047 }
6048 release_inactive = true;
6049 }
6050 spin_unlock_irq(&conf->device_lock);
6051
6052 release_inactive_stripe_list(conf, temp_inactive_list,
6053 NR_STRIPE_HASH_LOCKS);
6054
6055 r5l_flush_stripe_to_raid(conf->log);
6056 if (release_inactive) {
6057 spin_lock_irq(&conf->device_lock);
6058 return 0;
6059 }
6060
6061 for (i = 0; i < batch_size; i++)
6062 handle_stripe(batch[i]);
6063 r5l_write_stripe_run(conf->log);
6064
6065 cond_resched();
6066
6067 spin_lock_irq(&conf->device_lock);
6068 for (i = 0; i < batch_size; i++) {
6069 hash = batch[i]->hash_lock_index;
6070 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6071 }
6072 return batch_size;
6073 }
6074
6075 static void raid5_do_work(struct work_struct *work)
6076 {
6077 struct r5worker *worker = container_of(work, struct r5worker, work);
6078 struct r5worker_group *group = worker->group;
6079 struct r5conf *conf = group->conf;
6080 int group_id = group - conf->worker_groups;
6081 int handled;
6082 struct blk_plug plug;
6083
6084 pr_debug("+++ raid5worker active\n");
6085
6086 blk_start_plug(&plug);
6087 handled = 0;
6088 spin_lock_irq(&conf->device_lock);
6089 while (1) {
6090 int batch_size, released;
6091
6092 released = release_stripe_list(conf, worker->temp_inactive_list);
6093
6094 batch_size = handle_active_stripes(conf, group_id, worker,
6095 worker->temp_inactive_list);
6096 worker->working = false;
6097 if (!batch_size && !released)
6098 break;
6099 handled += batch_size;
6100 }
6101 pr_debug("%d stripes handled\n", handled);
6102
6103 spin_unlock_irq(&conf->device_lock);
6104 blk_finish_plug(&plug);
6105
6106 pr_debug("--- raid5worker inactive\n");
6107 }
6108
6109 /*
6110 * This is our raid5 kernel thread.
6111 *
6112 * We scan the hash table for stripes which can be handled now.
6113 * During the scan, completed stripes are saved for us by the interrupt
6114 * handler, so that they will not have to wait for our next wakeup.
6115 */
6116 static void raid5d(struct md_thread *thread)
6117 {
6118 struct mddev *mddev = thread->mddev;
6119 struct r5conf *conf = mddev->private;
6120 int handled;
6121 struct blk_plug plug;
6122
6123 pr_debug("+++ raid5d active\n");
6124
6125 md_check_recovery(mddev);
6126
6127 if (!bio_list_empty(&conf->return_bi) &&
6128 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
6129 struct bio_list tmp = BIO_EMPTY_LIST;
6130 spin_lock_irq(&conf->device_lock);
6131 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
6132 bio_list_merge(&tmp, &conf->return_bi);
6133 bio_list_init(&conf->return_bi);
6134 }
6135 spin_unlock_irq(&conf->device_lock);
6136 return_io(&tmp);
6137 }
6138
6139 blk_start_plug(&plug);
6140 handled = 0;
6141 spin_lock_irq(&conf->device_lock);
6142 while (1) {
6143 struct bio *bio;
6144 int batch_size, released;
6145
6146 released = release_stripe_list(conf, conf->temp_inactive_list);
6147 if (released)
6148 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6149
6150 if (
6151 !list_empty(&conf->bitmap_list)) {
6152 /* Now is a good time to flush some bitmap updates */
6153 conf->seq_flush++;
6154 spin_unlock_irq(&conf->device_lock);
6155 bitmap_unplug(mddev->bitmap);
6156 spin_lock_irq(&conf->device_lock);
6157 conf->seq_write = conf->seq_flush;
6158 activate_bit_delay(conf, conf->temp_inactive_list);
6159 }
6160 raid5_activate_delayed(conf);
6161
6162 while ((bio = remove_bio_from_retry(conf))) {
6163 int ok;
6164 spin_unlock_irq(&conf->device_lock);
6165 ok = retry_aligned_read(conf, bio);
6166 spin_lock_irq(&conf->device_lock);
6167 if (!ok)
6168 break;
6169 handled++;
6170 }
6171
6172 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6173 conf->temp_inactive_list);
6174 if (!batch_size && !released)
6175 break;
6176 handled += batch_size;
6177
6178 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6179 spin_unlock_irq(&conf->device_lock);
6180 md_check_recovery(mddev);
6181 spin_lock_irq(&conf->device_lock);
6182 }
6183 }
6184 pr_debug("%d stripes handled\n", handled);
6185
6186 spin_unlock_irq(&conf->device_lock);
6187 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6188 mutex_trylock(&conf->cache_size_mutex)) {
6189 grow_one_stripe(conf, __GFP_NOWARN);
6190 /* Set flag even if allocation failed. This helps
6191 * slow down allocation requests when mem is short
6192 */
6193 set_bit(R5_DID_ALLOC, &conf->cache_state);
6194 mutex_unlock(&conf->cache_size_mutex);
6195 }
6196
6197 flush_deferred_bios(conf);
6198
6199 r5l_flush_stripe_to_raid(conf->log);
6200
6201 async_tx_issue_pending_all();
6202 blk_finish_plug(&plug);
6203
6204 pr_debug("--- raid5d inactive\n");
6205 }
6206
6207 static ssize_t
6208 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6209 {
6210 struct r5conf *conf;
6211 int ret = 0;
6212 spin_lock(&mddev->lock);
6213 conf = mddev->private;
6214 if (conf)
6215 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6216 spin_unlock(&mddev->lock);
6217 return ret;
6218 }
6219
6220 int
6221 raid5_set_cache_size(struct mddev *mddev, int size)
6222 {
6223 struct r5conf *conf = mddev->private;
6224 int err;
6225
6226 if (size <= 16 || size > 32768)
6227 return -EINVAL;
6228
6229 conf->min_nr_stripes = size;
6230 mutex_lock(&conf->cache_size_mutex);
6231 while (size < conf->max_nr_stripes &&
6232 drop_one_stripe(conf))
6233 ;
6234 mutex_unlock(&conf->cache_size_mutex);
6235
6236
6237 err = md_allow_write(mddev);
6238 if (err)
6239 return err;
6240
6241 mutex_lock(&conf->cache_size_mutex);
6242 while (size > conf->max_nr_stripes)
6243 if (!grow_one_stripe(conf, GFP_KERNEL))
6244 break;
6245 mutex_unlock(&conf->cache_size_mutex);
6246
6247 return 0;
6248 }
6249 EXPORT_SYMBOL(raid5_set_cache_size);
6250
6251 static ssize_t
6252 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6253 {
6254 struct r5conf *conf;
6255 unsigned long new;
6256 int err;
6257
6258 if (len >= PAGE_SIZE)
6259 return -EINVAL;
6260 if (kstrtoul(page, 10, &new))
6261 return -EINVAL;
6262 err = mddev_lock(mddev);
6263 if (err)
6264 return err;
6265 conf = mddev->private;
6266 if (!conf)
6267 err = -ENODEV;
6268 else
6269 err = raid5_set_cache_size(mddev, new);
6270 mddev_unlock(mddev);
6271
6272 return err ?: len;
6273 }
6274
6275 static struct md_sysfs_entry
6276 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6277 raid5_show_stripe_cache_size,
6278 raid5_store_stripe_cache_size);
6279
6280 static ssize_t
6281 raid5_show_rmw_level(struct mddev *mddev, char *page)
6282 {
6283 struct r5conf *conf = mddev->private;
6284 if (conf)
6285 return sprintf(page, "%d\n", conf->rmw_level);
6286 else
6287 return 0;
6288 }
6289
6290 static ssize_t
6291 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6292 {
6293 struct r5conf *conf = mddev->private;
6294 unsigned long new;
6295
6296 if (!conf)
6297 return -ENODEV;
6298
6299 if (len >= PAGE_SIZE)
6300 return -EINVAL;
6301
6302 if (kstrtoul(page, 10, &new))
6303 return -EINVAL;
6304
6305 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6306 return -EINVAL;
6307
6308 if (new != PARITY_DISABLE_RMW &&
6309 new != PARITY_ENABLE_RMW &&
6310 new != PARITY_PREFER_RMW)
6311 return -EINVAL;
6312
6313 conf->rmw_level = new;
6314 return len;
6315 }
6316
6317 static struct md_sysfs_entry
6318 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6319 raid5_show_rmw_level,
6320 raid5_store_rmw_level);
6321
6322
6323 static ssize_t
6324 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6325 {
6326 struct r5conf *conf;
6327 int ret = 0;
6328 spin_lock(&mddev->lock);
6329 conf = mddev->private;
6330 if (conf)
6331 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6332 spin_unlock(&mddev->lock);
6333 return ret;
6334 }
6335
6336 static ssize_t
6337 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6338 {
6339 struct r5conf *conf;
6340 unsigned long new;
6341 int err;
6342
6343 if (len >= PAGE_SIZE)
6344 return -EINVAL;
6345 if (kstrtoul(page, 10, &new))
6346 return -EINVAL;
6347
6348 err = mddev_lock(mddev);
6349 if (err)
6350 return err;
6351 conf = mddev->private;
6352 if (!conf)
6353 err = -ENODEV;
6354 else if (new > conf->min_nr_stripes)
6355 err = -EINVAL;
6356 else
6357 conf->bypass_threshold = new;
6358 mddev_unlock(mddev);
6359 return err ?: len;
6360 }
6361
6362 static struct md_sysfs_entry
6363 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6364 S_IRUGO | S_IWUSR,
6365 raid5_show_preread_threshold,
6366 raid5_store_preread_threshold);
6367
6368 static ssize_t
6369 raid5_show_skip_copy(struct mddev *mddev, char *page)
6370 {
6371 struct r5conf *conf;
6372 int ret = 0;
6373 spin_lock(&mddev->lock);
6374 conf = mddev->private;
6375 if (conf)
6376 ret = sprintf(page, "%d\n", conf->skip_copy);
6377 spin_unlock(&mddev->lock);
6378 return ret;
6379 }
6380
6381 static ssize_t
6382 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6383 {
6384 struct r5conf *conf;
6385 unsigned long new;
6386 int err;
6387
6388 if (len >= PAGE_SIZE)
6389 return -EINVAL;
6390 if (kstrtoul(page, 10, &new))
6391 return -EINVAL;
6392 new = !!new;
6393
6394 err = mddev_lock(mddev);
6395 if (err)
6396 return err;
6397 conf = mddev->private;
6398 if (!conf)
6399 err = -ENODEV;
6400 else if (new != conf->skip_copy) {
6401 mddev_suspend(mddev);
6402 conf->skip_copy = new;
6403 if (new)
6404 mddev->queue->backing_dev_info->capabilities |=
6405 BDI_CAP_STABLE_WRITES;
6406 else
6407 mddev->queue->backing_dev_info->capabilities &=
6408 ~BDI_CAP_STABLE_WRITES;
6409 mddev_resume(mddev);
6410 }
6411 mddev_unlock(mddev);
6412 return err ?: len;
6413 }
6414
6415 static struct md_sysfs_entry
6416 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6417 raid5_show_skip_copy,
6418 raid5_store_skip_copy);
6419
6420 static ssize_t
6421 stripe_cache_active_show(struct mddev *mddev, char *page)
6422 {
6423 struct r5conf *conf = mddev->private;
6424 if (conf)
6425 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6426 else
6427 return 0;
6428 }
6429
6430 static struct md_sysfs_entry
6431 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6432
6433 static ssize_t
6434 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6435 {
6436 struct r5conf *conf;
6437 int ret = 0;
6438 spin_lock(&mddev->lock);
6439 conf = mddev->private;
6440 if (conf)
6441 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6442 spin_unlock(&mddev->lock);
6443 return ret;
6444 }
6445
6446 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6447 int *group_cnt,
6448 int *worker_cnt_per_group,
6449 struct r5worker_group **worker_groups);
6450 static ssize_t
6451 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6452 {
6453 struct r5conf *conf;
6454 unsigned long new;
6455 int err;
6456 struct r5worker_group *new_groups, *old_groups;
6457 int group_cnt, worker_cnt_per_group;
6458
6459 if (len >= PAGE_SIZE)
6460 return -EINVAL;
6461 if (kstrtoul(page, 10, &new))
6462 return -EINVAL;
6463
6464 err = mddev_lock(mddev);
6465 if (err)
6466 return err;
6467 conf = mddev->private;
6468 if (!conf)
6469 err = -ENODEV;
6470 else if (new != conf->worker_cnt_per_group) {
6471 mddev_suspend(mddev);
6472
6473 old_groups = conf->worker_groups;
6474 if (old_groups)
6475 flush_workqueue(raid5_wq);
6476
6477 err = alloc_thread_groups(conf, new,
6478 &group_cnt, &worker_cnt_per_group,
6479 &new_groups);
6480 if (!err) {
6481 spin_lock_irq(&conf->device_lock);
6482 conf->group_cnt = group_cnt;
6483 conf->worker_cnt_per_group = worker_cnt_per_group;
6484 conf->worker_groups = new_groups;
6485 spin_unlock_irq(&conf->device_lock);
6486
6487 if (old_groups)
6488 kfree(old_groups[0].workers);
6489 kfree(old_groups);
6490 }
6491 mddev_resume(mddev);
6492 }
6493 mddev_unlock(mddev);
6494
6495 return err ?: len;
6496 }
6497
6498 static struct md_sysfs_entry
6499 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6500 raid5_show_group_thread_cnt,
6501 raid5_store_group_thread_cnt);
6502
6503 static struct attribute *raid5_attrs[] = {
6504 &raid5_stripecache_size.attr,
6505 &raid5_stripecache_active.attr,
6506 &raid5_preread_bypass_threshold.attr,
6507 &raid5_group_thread_cnt.attr,
6508 &raid5_skip_copy.attr,
6509 &raid5_rmw_level.attr,
6510 &r5c_journal_mode.attr,
6511 NULL,
6512 };
6513 static struct attribute_group raid5_attrs_group = {
6514 .name = NULL,
6515 .attrs = raid5_attrs,
6516 };
6517
6518 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6519 int *group_cnt,
6520 int *worker_cnt_per_group,
6521 struct r5worker_group **worker_groups)
6522 {
6523 int i, j, k;
6524 ssize_t size;
6525 struct r5worker *workers;
6526
6527 *worker_cnt_per_group = cnt;
6528 if (cnt == 0) {
6529 *group_cnt = 0;
6530 *worker_groups = NULL;
6531 return 0;
6532 }
6533 *group_cnt = num_possible_nodes();
6534 size = sizeof(struct r5worker) * cnt;
6535 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6536 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6537 *group_cnt, GFP_NOIO);
6538 if (!*worker_groups || !workers) {
6539 kfree(workers);
6540 kfree(*worker_groups);
6541 return -ENOMEM;
6542 }
6543
6544 for (i = 0; i < *group_cnt; i++) {
6545 struct r5worker_group *group;
6546
6547 group = &(*worker_groups)[i];
6548 INIT_LIST_HEAD(&group->handle_list);
6549 group->conf = conf;
6550 group->workers = workers + i * cnt;
6551
6552 for (j = 0; j < cnt; j++) {
6553 struct r5worker *worker = group->workers + j;
6554 worker->group = group;
6555 INIT_WORK(&worker->work, raid5_do_work);
6556
6557 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6558 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6559 }
6560 }
6561
6562 return 0;
6563 }
6564
6565 static void free_thread_groups(struct r5conf *conf)
6566 {
6567 if (conf->worker_groups)
6568 kfree(conf->worker_groups[0].workers);
6569 kfree(conf->worker_groups);
6570 conf->worker_groups = NULL;
6571 }
6572
6573 static sector_t
6574 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6575 {
6576 struct r5conf *conf = mddev->private;
6577
6578 if (!sectors)
6579 sectors = mddev->dev_sectors;
6580 if (!raid_disks)
6581 /* size is defined by the smallest of previous and new size */
6582 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6583
6584 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6585 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6586 return sectors * (raid_disks - conf->max_degraded);
6587 }
6588
6589 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6590 {
6591 safe_put_page(percpu->spare_page);
6592 if (percpu->scribble)
6593 flex_array_free(percpu->scribble);
6594 percpu->spare_page = NULL;
6595 percpu->scribble = NULL;
6596 }
6597
6598 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6599 {
6600 if (conf->level == 6 && !percpu->spare_page)
6601 percpu->spare_page = alloc_page(GFP_KERNEL);
6602 if (!percpu->scribble)
6603 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6604 conf->previous_raid_disks),
6605 max(conf->chunk_sectors,
6606 conf->prev_chunk_sectors)
6607 / STRIPE_SECTORS,
6608 GFP_KERNEL);
6609
6610 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6611 free_scratch_buffer(conf, percpu);
6612 return -ENOMEM;
6613 }
6614
6615 return 0;
6616 }
6617
6618 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6619 {
6620 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6621
6622 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6623 return 0;
6624 }
6625
6626 static void raid5_free_percpu(struct r5conf *conf)
6627 {
6628 if (!conf->percpu)
6629 return;
6630
6631 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6632 free_percpu(conf->percpu);
6633 }
6634
6635 static void free_conf(struct r5conf *conf)
6636 {
6637 int i;
6638
6639 if (conf->log)
6640 r5l_exit_log(conf->log);
6641 if (conf->shrinker.nr_deferred)
6642 unregister_shrinker(&conf->shrinker);
6643
6644 free_thread_groups(conf);
6645 shrink_stripes(conf);
6646 raid5_free_percpu(conf);
6647 for (i = 0; i < conf->pool_size; i++)
6648 if (conf->disks[i].extra_page)
6649 put_page(conf->disks[i].extra_page);
6650 kfree(conf->disks);
6651 kfree(conf->stripe_hashtbl);
6652 kfree(conf);
6653 }
6654
6655 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6656 {
6657 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6658 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6659
6660 if (alloc_scratch_buffer(conf, percpu)) {
6661 pr_warn("%s: failed memory allocation for cpu%u\n",
6662 __func__, cpu);
6663 return -ENOMEM;
6664 }
6665 return 0;
6666 }
6667
6668 static int raid5_alloc_percpu(struct r5conf *conf)
6669 {
6670 int err = 0;
6671
6672 conf->percpu = alloc_percpu(struct raid5_percpu);
6673 if (!conf->percpu)
6674 return -ENOMEM;
6675
6676 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6677 if (!err) {
6678 conf->scribble_disks = max(conf->raid_disks,
6679 conf->previous_raid_disks);
6680 conf->scribble_sectors = max(conf->chunk_sectors,
6681 conf->prev_chunk_sectors);
6682 }
6683 return err;
6684 }
6685
6686 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6687 struct shrink_control *sc)
6688 {
6689 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6690 unsigned long ret = SHRINK_STOP;
6691
6692 if (mutex_trylock(&conf->cache_size_mutex)) {
6693 ret= 0;
6694 while (ret < sc->nr_to_scan &&
6695 conf->max_nr_stripes > conf->min_nr_stripes) {
6696 if (drop_one_stripe(conf) == 0) {
6697 ret = SHRINK_STOP;
6698 break;
6699 }
6700 ret++;
6701 }
6702 mutex_unlock(&conf->cache_size_mutex);
6703 }
6704 return ret;
6705 }
6706
6707 static unsigned long raid5_cache_count(struct shrinker *shrink,
6708 struct shrink_control *sc)
6709 {
6710 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6711
6712 if (conf->max_nr_stripes < conf->min_nr_stripes)
6713 /* unlikely, but not impossible */
6714 return 0;
6715 return conf->max_nr_stripes - conf->min_nr_stripes;
6716 }
6717
6718 static struct r5conf *setup_conf(struct mddev *mddev)
6719 {
6720 struct r5conf *conf;
6721 int raid_disk, memory, max_disks;
6722 struct md_rdev *rdev;
6723 struct disk_info *disk;
6724 char pers_name[6];
6725 int i;
6726 int group_cnt, worker_cnt_per_group;
6727 struct r5worker_group *new_group;
6728
6729 if (mddev->new_level != 5
6730 && mddev->new_level != 4
6731 && mddev->new_level != 6) {
6732 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6733 mdname(mddev), mddev->new_level);
6734 return ERR_PTR(-EIO);
6735 }
6736 if ((mddev->new_level == 5
6737 && !algorithm_valid_raid5(mddev->new_layout)) ||
6738 (mddev->new_level == 6
6739 && !algorithm_valid_raid6(mddev->new_layout))) {
6740 pr_warn("md/raid:%s: layout %d not supported\n",
6741 mdname(mddev), mddev->new_layout);
6742 return ERR_PTR(-EIO);
6743 }
6744 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6745 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6746 mdname(mddev), mddev->raid_disks);
6747 return ERR_PTR(-EINVAL);
6748 }
6749
6750 if (!mddev->new_chunk_sectors ||
6751 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6752 !is_power_of_2(mddev->new_chunk_sectors)) {
6753 pr_warn("md/raid:%s: invalid chunk size %d\n",
6754 mdname(mddev), mddev->new_chunk_sectors << 9);
6755 return ERR_PTR(-EINVAL);
6756 }
6757
6758 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6759 if (conf == NULL)
6760 goto abort;
6761 /* Don't enable multi-threading by default*/
6762 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6763 &new_group)) {
6764 conf->group_cnt = group_cnt;
6765 conf->worker_cnt_per_group = worker_cnt_per_group;
6766 conf->worker_groups = new_group;
6767 } else
6768 goto abort;
6769 spin_lock_init(&conf->device_lock);
6770 seqcount_init(&conf->gen_lock);
6771 mutex_init(&conf->cache_size_mutex);
6772 init_waitqueue_head(&conf->wait_for_quiescent);
6773 init_waitqueue_head(&conf->wait_for_stripe);
6774 init_waitqueue_head(&conf->wait_for_overlap);
6775 INIT_LIST_HEAD(&conf->handle_list);
6776 INIT_LIST_HEAD(&conf->hold_list);
6777 INIT_LIST_HEAD(&conf->delayed_list);
6778 INIT_LIST_HEAD(&conf->bitmap_list);
6779 bio_list_init(&conf->return_bi);
6780 init_llist_head(&conf->released_stripes);
6781 atomic_set(&conf->active_stripes, 0);
6782 atomic_set(&conf->preread_active_stripes, 0);
6783 atomic_set(&conf->active_aligned_reads, 0);
6784 bio_list_init(&conf->pending_bios);
6785 spin_lock_init(&conf->pending_bios_lock);
6786 conf->batch_bio_dispatch = true;
6787 rdev_for_each(rdev, mddev) {
6788 if (test_bit(Journal, &rdev->flags))
6789 continue;
6790 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6791 conf->batch_bio_dispatch = false;
6792 break;
6793 }
6794 }
6795
6796 conf->bypass_threshold = BYPASS_THRESHOLD;
6797 conf->recovery_disabled = mddev->recovery_disabled - 1;
6798
6799 conf->raid_disks = mddev->raid_disks;
6800 if (mddev->reshape_position == MaxSector)
6801 conf->previous_raid_disks = mddev->raid_disks;
6802 else
6803 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6804 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6805
6806 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6807 GFP_KERNEL);
6808
6809 if (!conf->disks)
6810 goto abort;
6811
6812 for (i = 0; i < max_disks; i++) {
6813 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6814 if (!conf->disks[i].extra_page)
6815 goto abort;
6816 }
6817
6818 conf->mddev = mddev;
6819
6820 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6821 goto abort;
6822
6823 /* We init hash_locks[0] separately to that it can be used
6824 * as the reference lock in the spin_lock_nest_lock() call
6825 * in lock_all_device_hash_locks_irq in order to convince
6826 * lockdep that we know what we are doing.
6827 */
6828 spin_lock_init(conf->hash_locks);
6829 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6830 spin_lock_init(conf->hash_locks + i);
6831
6832 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6833 INIT_LIST_HEAD(conf->inactive_list + i);
6834
6835 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6836 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6837
6838 atomic_set(&conf->r5c_cached_full_stripes, 0);
6839 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6840 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6841 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6842 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6843 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6844
6845 conf->level = mddev->new_level;
6846 conf->chunk_sectors = mddev->new_chunk_sectors;
6847 if (raid5_alloc_percpu(conf) != 0)
6848 goto abort;
6849
6850 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6851
6852 rdev_for_each(rdev, mddev) {
6853 raid_disk = rdev->raid_disk;
6854 if (raid_disk >= max_disks
6855 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6856 continue;
6857 disk = conf->disks + raid_disk;
6858
6859 if (test_bit(Replacement, &rdev->flags)) {
6860 if (disk->replacement)
6861 goto abort;
6862 disk->replacement = rdev;
6863 } else {
6864 if (disk->rdev)
6865 goto abort;
6866 disk->rdev = rdev;
6867 }
6868
6869 if (test_bit(In_sync, &rdev->flags)) {
6870 char b[BDEVNAME_SIZE];
6871 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6872 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6873 } else if (rdev->saved_raid_disk != raid_disk)
6874 /* Cannot rely on bitmap to complete recovery */
6875 conf->fullsync = 1;
6876 }
6877
6878 conf->level = mddev->new_level;
6879 if (conf->level == 6) {
6880 conf->max_degraded = 2;
6881 if (raid6_call.xor_syndrome)
6882 conf->rmw_level = PARITY_ENABLE_RMW;
6883 else
6884 conf->rmw_level = PARITY_DISABLE_RMW;
6885 } else {
6886 conf->max_degraded = 1;
6887 conf->rmw_level = PARITY_ENABLE_RMW;
6888 }
6889 conf->algorithm = mddev->new_layout;
6890 conf->reshape_progress = mddev->reshape_position;
6891 if (conf->reshape_progress != MaxSector) {
6892 conf->prev_chunk_sectors = mddev->chunk_sectors;
6893 conf->prev_algo = mddev->layout;
6894 } else {
6895 conf->prev_chunk_sectors = conf->chunk_sectors;
6896 conf->prev_algo = conf->algorithm;
6897 }
6898
6899 conf->min_nr_stripes = NR_STRIPES;
6900 if (mddev->reshape_position != MaxSector) {
6901 int stripes = max_t(int,
6902 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
6903 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
6904 conf->min_nr_stripes = max(NR_STRIPES, stripes);
6905 if (conf->min_nr_stripes != NR_STRIPES)
6906 pr_info("md/raid:%s: force stripe size %d for reshape\n",
6907 mdname(mddev), conf->min_nr_stripes);
6908 }
6909 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6910 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6911 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6912 if (grow_stripes(conf, conf->min_nr_stripes)) {
6913 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
6914 mdname(mddev), memory);
6915 goto abort;
6916 } else
6917 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
6918 /*
6919 * Losing a stripe head costs more than the time to refill it,
6920 * it reduces the queue depth and so can hurt throughput.
6921 * So set it rather large, scaled by number of devices.
6922 */
6923 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6924 conf->shrinker.scan_objects = raid5_cache_scan;
6925 conf->shrinker.count_objects = raid5_cache_count;
6926 conf->shrinker.batch = 128;
6927 conf->shrinker.flags = 0;
6928 if (register_shrinker(&conf->shrinker)) {
6929 pr_warn("md/raid:%s: couldn't register shrinker.\n",
6930 mdname(mddev));
6931 goto abort;
6932 }
6933
6934 sprintf(pers_name, "raid%d", mddev->new_level);
6935 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6936 if (!conf->thread) {
6937 pr_warn("md/raid:%s: couldn't allocate thread.\n",
6938 mdname(mddev));
6939 goto abort;
6940 }
6941
6942 return conf;
6943
6944 abort:
6945 if (conf) {
6946 free_conf(conf);
6947 return ERR_PTR(-EIO);
6948 } else
6949 return ERR_PTR(-ENOMEM);
6950 }
6951
6952 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6953 {
6954 switch (algo) {
6955 case ALGORITHM_PARITY_0:
6956 if (raid_disk < max_degraded)
6957 return 1;
6958 break;
6959 case ALGORITHM_PARITY_N:
6960 if (raid_disk >= raid_disks - max_degraded)
6961 return 1;
6962 break;
6963 case ALGORITHM_PARITY_0_6:
6964 if (raid_disk == 0 ||
6965 raid_disk == raid_disks - 1)
6966 return 1;
6967 break;
6968 case ALGORITHM_LEFT_ASYMMETRIC_6:
6969 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6970 case ALGORITHM_LEFT_SYMMETRIC_6:
6971 case ALGORITHM_RIGHT_SYMMETRIC_6:
6972 if (raid_disk == raid_disks - 1)
6973 return 1;
6974 }
6975 return 0;
6976 }
6977
6978 static int raid5_run(struct mddev *mddev)
6979 {
6980 struct r5conf *conf;
6981 int working_disks = 0;
6982 int dirty_parity_disks = 0;
6983 struct md_rdev *rdev;
6984 struct md_rdev *journal_dev = NULL;
6985 sector_t reshape_offset = 0;
6986 int i;
6987 long long min_offset_diff = 0;
6988 int first = 1;
6989
6990 if (mddev->recovery_cp != MaxSector)
6991 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
6992 mdname(mddev));
6993
6994 rdev_for_each(rdev, mddev) {
6995 long long diff;
6996
6997 if (test_bit(Journal, &rdev->flags)) {
6998 journal_dev = rdev;
6999 continue;
7000 }
7001 if (rdev->raid_disk < 0)
7002 continue;
7003 diff = (rdev->new_data_offset - rdev->data_offset);
7004 if (first) {
7005 min_offset_diff = diff;
7006 first = 0;
7007 } else if (mddev->reshape_backwards &&
7008 diff < min_offset_diff)
7009 min_offset_diff = diff;
7010 else if (!mddev->reshape_backwards &&
7011 diff > min_offset_diff)
7012 min_offset_diff = diff;
7013 }
7014
7015 if (mddev->reshape_position != MaxSector) {
7016 /* Check that we can continue the reshape.
7017 * Difficulties arise if the stripe we would write to
7018 * next is at or after the stripe we would read from next.
7019 * For a reshape that changes the number of devices, this
7020 * is only possible for a very short time, and mdadm makes
7021 * sure that time appears to have past before assembling
7022 * the array. So we fail if that time hasn't passed.
7023 * For a reshape that keeps the number of devices the same
7024 * mdadm must be monitoring the reshape can keeping the
7025 * critical areas read-only and backed up. It will start
7026 * the array in read-only mode, so we check for that.
7027 */
7028 sector_t here_new, here_old;
7029 int old_disks;
7030 int max_degraded = (mddev->level == 6 ? 2 : 1);
7031 int chunk_sectors;
7032 int new_data_disks;
7033
7034 if (journal_dev) {
7035 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7036 mdname(mddev));
7037 return -EINVAL;
7038 }
7039
7040 if (mddev->new_level != mddev->level) {
7041 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7042 mdname(mddev));
7043 return -EINVAL;
7044 }
7045 old_disks = mddev->raid_disks - mddev->delta_disks;
7046 /* reshape_position must be on a new-stripe boundary, and one
7047 * further up in new geometry must map after here in old
7048 * geometry.
7049 * If the chunk sizes are different, then as we perform reshape
7050 * in units of the largest of the two, reshape_position needs
7051 * be a multiple of the largest chunk size times new data disks.
7052 */
7053 here_new = mddev->reshape_position;
7054 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7055 new_data_disks = mddev->raid_disks - max_degraded;
7056 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7057 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7058 mdname(mddev));
7059 return -EINVAL;
7060 }
7061 reshape_offset = here_new * chunk_sectors;
7062 /* here_new is the stripe we will write to */
7063 here_old = mddev->reshape_position;
7064 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7065 /* here_old is the first stripe that we might need to read
7066 * from */
7067 if (mddev->delta_disks == 0) {
7068 /* We cannot be sure it is safe to start an in-place
7069 * reshape. It is only safe if user-space is monitoring
7070 * and taking constant backups.
7071 * mdadm always starts a situation like this in
7072 * readonly mode so it can take control before
7073 * allowing any writes. So just check for that.
7074 */
7075 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7076 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7077 /* not really in-place - so OK */;
7078 else if (mddev->ro == 0) {
7079 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7080 mdname(mddev));
7081 return -EINVAL;
7082 }
7083 } else if (mddev->reshape_backwards
7084 ? (here_new * chunk_sectors + min_offset_diff <=
7085 here_old * chunk_sectors)
7086 : (here_new * chunk_sectors >=
7087 here_old * chunk_sectors + (-min_offset_diff))) {
7088 /* Reading from the same stripe as writing to - bad */
7089 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7090 mdname(mddev));
7091 return -EINVAL;
7092 }
7093 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7094 /* OK, we should be able to continue; */
7095 } else {
7096 BUG_ON(mddev->level != mddev->new_level);
7097 BUG_ON(mddev->layout != mddev->new_layout);
7098 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7099 BUG_ON(mddev->delta_disks != 0);
7100 }
7101
7102 if (mddev->private == NULL)
7103 conf = setup_conf(mddev);
7104 else
7105 conf = mddev->private;
7106
7107 if (IS_ERR(conf))
7108 return PTR_ERR(conf);
7109
7110 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7111 if (!journal_dev) {
7112 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7113 mdname(mddev));
7114 mddev->ro = 1;
7115 set_disk_ro(mddev->gendisk, 1);
7116 } else if (mddev->recovery_cp == MaxSector)
7117 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7118 }
7119
7120 conf->min_offset_diff = min_offset_diff;
7121 mddev->thread = conf->thread;
7122 conf->thread = NULL;
7123 mddev->private = conf;
7124
7125 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7126 i++) {
7127 rdev = conf->disks[i].rdev;
7128 if (!rdev && conf->disks[i].replacement) {
7129 /* The replacement is all we have yet */
7130 rdev = conf->disks[i].replacement;
7131 conf->disks[i].replacement = NULL;
7132 clear_bit(Replacement, &rdev->flags);
7133 conf->disks[i].rdev = rdev;
7134 }
7135 if (!rdev)
7136 continue;
7137 if (conf->disks[i].replacement &&
7138 conf->reshape_progress != MaxSector) {
7139 /* replacements and reshape simply do not mix. */
7140 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7141 goto abort;
7142 }
7143 if (test_bit(In_sync, &rdev->flags)) {
7144 working_disks++;
7145 continue;
7146 }
7147 /* This disc is not fully in-sync. However if it
7148 * just stored parity (beyond the recovery_offset),
7149 * when we don't need to be concerned about the
7150 * array being dirty.
7151 * When reshape goes 'backwards', we never have
7152 * partially completed devices, so we only need
7153 * to worry about reshape going forwards.
7154 */
7155 /* Hack because v0.91 doesn't store recovery_offset properly. */
7156 if (mddev->major_version == 0 &&
7157 mddev->minor_version > 90)
7158 rdev->recovery_offset = reshape_offset;
7159
7160 if (rdev->recovery_offset < reshape_offset) {
7161 /* We need to check old and new layout */
7162 if (!only_parity(rdev->raid_disk,
7163 conf->algorithm,
7164 conf->raid_disks,
7165 conf->max_degraded))
7166 continue;
7167 }
7168 if (!only_parity(rdev->raid_disk,
7169 conf->prev_algo,
7170 conf->previous_raid_disks,
7171 conf->max_degraded))
7172 continue;
7173 dirty_parity_disks++;
7174 }
7175
7176 /*
7177 * 0 for a fully functional array, 1 or 2 for a degraded array.
7178 */
7179 mddev->degraded = raid5_calc_degraded(conf);
7180
7181 if (has_failed(conf)) {
7182 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7183 mdname(mddev), mddev->degraded, conf->raid_disks);
7184 goto abort;
7185 }
7186
7187 /* device size must be a multiple of chunk size */
7188 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7189 mddev->resync_max_sectors = mddev->dev_sectors;
7190
7191 if (mddev->degraded > dirty_parity_disks &&
7192 mddev->recovery_cp != MaxSector) {
7193 if (mddev->ok_start_degraded)
7194 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7195 mdname(mddev));
7196 else {
7197 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7198 mdname(mddev));
7199 goto abort;
7200 }
7201 }
7202
7203 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7204 mdname(mddev), conf->level,
7205 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7206 mddev->new_layout);
7207
7208 print_raid5_conf(conf);
7209
7210 if (conf->reshape_progress != MaxSector) {
7211 conf->reshape_safe = conf->reshape_progress;
7212 atomic_set(&conf->reshape_stripes, 0);
7213 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7214 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7215 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7216 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7217 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7218 "reshape");
7219 }
7220
7221 /* Ok, everything is just fine now */
7222 if (mddev->to_remove == &raid5_attrs_group)
7223 mddev->to_remove = NULL;
7224 else if (mddev->kobj.sd &&
7225 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7226 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7227 mdname(mddev));
7228 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7229
7230 if (mddev->queue) {
7231 int chunk_size;
7232 bool discard_supported = true;
7233 /* read-ahead size must cover two whole stripes, which
7234 * is 2 * (datadisks) * chunksize where 'n' is the
7235 * number of raid devices
7236 */
7237 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7238 int stripe = data_disks *
7239 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7240 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7241 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7242
7243 chunk_size = mddev->chunk_sectors << 9;
7244 blk_queue_io_min(mddev->queue, chunk_size);
7245 blk_queue_io_opt(mddev->queue, chunk_size *
7246 (conf->raid_disks - conf->max_degraded));
7247 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7248 /*
7249 * We can only discard a whole stripe. It doesn't make sense to
7250 * discard data disk but write parity disk
7251 */
7252 stripe = stripe * PAGE_SIZE;
7253 /* Round up to power of 2, as discard handling
7254 * currently assumes that */
7255 while ((stripe-1) & stripe)
7256 stripe = (stripe | (stripe-1)) + 1;
7257 mddev->queue->limits.discard_alignment = stripe;
7258 mddev->queue->limits.discard_granularity = stripe;
7259
7260 /*
7261 * We use 16-bit counter of active stripes in bi_phys_segments
7262 * (minus one for over-loaded initialization)
7263 */
7264 blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS);
7265 blk_queue_max_discard_sectors(mddev->queue,
7266 0xfffe * STRIPE_SECTORS);
7267
7268 /*
7269 * unaligned part of discard request will be ignored, so can't
7270 * guarantee discard_zeroes_data
7271 */
7272 mddev->queue->limits.discard_zeroes_data = 0;
7273
7274 blk_queue_max_write_same_sectors(mddev->queue, 0);
7275
7276 rdev_for_each(rdev, mddev) {
7277 disk_stack_limits(mddev->gendisk, rdev->bdev,
7278 rdev->data_offset << 9);
7279 disk_stack_limits(mddev->gendisk, rdev->bdev,
7280 rdev->new_data_offset << 9);
7281 /*
7282 * discard_zeroes_data is required, otherwise data
7283 * could be lost. Consider a scenario: discard a stripe
7284 * (the stripe could be inconsistent if
7285 * discard_zeroes_data is 0); write one disk of the
7286 * stripe (the stripe could be inconsistent again
7287 * depending on which disks are used to calculate
7288 * parity); the disk is broken; The stripe data of this
7289 * disk is lost.
7290 */
7291 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7292 !bdev_get_queue(rdev->bdev)->
7293 limits.discard_zeroes_data)
7294 discard_supported = false;
7295 /* Unfortunately, discard_zeroes_data is not currently
7296 * a guarantee - just a hint. So we only allow DISCARD
7297 * if the sysadmin has confirmed that only safe devices
7298 * are in use by setting a module parameter.
7299 */
7300 if (!devices_handle_discard_safely) {
7301 if (discard_supported) {
7302 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7303 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7304 }
7305 discard_supported = false;
7306 }
7307 }
7308
7309 if (discard_supported &&
7310 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7311 mddev->queue->limits.discard_granularity >= stripe)
7312 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7313 mddev->queue);
7314 else
7315 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7316 mddev->queue);
7317
7318 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7319 }
7320
7321 if (journal_dev) {
7322 char b[BDEVNAME_SIZE];
7323
7324 pr_debug("md/raid:%s: using device %s as journal\n",
7325 mdname(mddev), bdevname(journal_dev->bdev, b));
7326 if (r5l_init_log(conf, journal_dev))
7327 goto abort;
7328 }
7329
7330 return 0;
7331 abort:
7332 md_unregister_thread(&mddev->thread);
7333 print_raid5_conf(conf);
7334 free_conf(conf);
7335 mddev->private = NULL;
7336 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7337 return -EIO;
7338 }
7339
7340 static void raid5_free(struct mddev *mddev, void *priv)
7341 {
7342 struct r5conf *conf = priv;
7343
7344 free_conf(conf);
7345 mddev->to_remove = &raid5_attrs_group;
7346 }
7347
7348 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7349 {
7350 struct r5conf *conf = mddev->private;
7351 int i;
7352
7353 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7354 conf->chunk_sectors / 2, mddev->layout);
7355 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7356 rcu_read_lock();
7357 for (i = 0; i < conf->raid_disks; i++) {
7358 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7359 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7360 }
7361 rcu_read_unlock();
7362 seq_printf (seq, "]");
7363 }
7364
7365 static void print_raid5_conf (struct r5conf *conf)
7366 {
7367 int i;
7368 struct disk_info *tmp;
7369
7370 pr_debug("RAID conf printout:\n");
7371 if (!conf) {
7372 pr_debug("(conf==NULL)\n");
7373 return;
7374 }
7375 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7376 conf->raid_disks,
7377 conf->raid_disks - conf->mddev->degraded);
7378
7379 for (i = 0; i < conf->raid_disks; i++) {
7380 char b[BDEVNAME_SIZE];
7381 tmp = conf->disks + i;
7382 if (tmp->rdev)
7383 pr_debug(" disk %d, o:%d, dev:%s\n",
7384 i, !test_bit(Faulty, &tmp->rdev->flags),
7385 bdevname(tmp->rdev->bdev, b));
7386 }
7387 }
7388
7389 static int raid5_spare_active(struct mddev *mddev)
7390 {
7391 int i;
7392 struct r5conf *conf = mddev->private;
7393 struct disk_info *tmp;
7394 int count = 0;
7395 unsigned long flags;
7396
7397 for (i = 0; i < conf->raid_disks; i++) {
7398 tmp = conf->disks + i;
7399 if (tmp->replacement
7400 && tmp->replacement->recovery_offset == MaxSector
7401 && !test_bit(Faulty, &tmp->replacement->flags)
7402 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7403 /* Replacement has just become active. */
7404 if (!tmp->rdev
7405 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7406 count++;
7407 if (tmp->rdev) {
7408 /* Replaced device not technically faulty,
7409 * but we need to be sure it gets removed
7410 * and never re-added.
7411 */
7412 set_bit(Faulty, &tmp->rdev->flags);
7413 sysfs_notify_dirent_safe(
7414 tmp->rdev->sysfs_state);
7415 }
7416 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7417 } else if (tmp->rdev
7418 && tmp->rdev->recovery_offset == MaxSector
7419 && !test_bit(Faulty, &tmp->rdev->flags)
7420 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7421 count++;
7422 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7423 }
7424 }
7425 spin_lock_irqsave(&conf->device_lock, flags);
7426 mddev->degraded = raid5_calc_degraded(conf);
7427 spin_unlock_irqrestore(&conf->device_lock, flags);
7428 print_raid5_conf(conf);
7429 return count;
7430 }
7431
7432 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7433 {
7434 struct r5conf *conf = mddev->private;
7435 int err = 0;
7436 int number = rdev->raid_disk;
7437 struct md_rdev **rdevp;
7438 struct disk_info *p = conf->disks + number;
7439
7440 print_raid5_conf(conf);
7441 if (test_bit(Journal, &rdev->flags) && conf->log) {
7442 struct r5l_log *log;
7443 /*
7444 * we can't wait pending write here, as this is called in
7445 * raid5d, wait will deadlock.
7446 */
7447 if (atomic_read(&mddev->writes_pending))
7448 return -EBUSY;
7449 log = conf->log;
7450 conf->log = NULL;
7451 synchronize_rcu();
7452 r5l_exit_log(log);
7453 return 0;
7454 }
7455 if (rdev == p->rdev)
7456 rdevp = &p->rdev;
7457 else if (rdev == p->replacement)
7458 rdevp = &p->replacement;
7459 else
7460 return 0;
7461
7462 if (number >= conf->raid_disks &&
7463 conf->reshape_progress == MaxSector)
7464 clear_bit(In_sync, &rdev->flags);
7465
7466 if (test_bit(In_sync, &rdev->flags) ||
7467 atomic_read(&rdev->nr_pending)) {
7468 err = -EBUSY;
7469 goto abort;
7470 }
7471 /* Only remove non-faulty devices if recovery
7472 * isn't possible.
7473 */
7474 if (!test_bit(Faulty, &rdev->flags) &&
7475 mddev->recovery_disabled != conf->recovery_disabled &&
7476 !has_failed(conf) &&
7477 (!p->replacement || p->replacement == rdev) &&
7478 number < conf->raid_disks) {
7479 err = -EBUSY;
7480 goto abort;
7481 }
7482 *rdevp = NULL;
7483 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7484 synchronize_rcu();
7485 if (atomic_read(&rdev->nr_pending)) {
7486 /* lost the race, try later */
7487 err = -EBUSY;
7488 *rdevp = rdev;
7489 }
7490 }
7491 if (p->replacement) {
7492 /* We must have just cleared 'rdev' */
7493 p->rdev = p->replacement;
7494 clear_bit(Replacement, &p->replacement->flags);
7495 smp_mb(); /* Make sure other CPUs may see both as identical
7496 * but will never see neither - if they are careful
7497 */
7498 p->replacement = NULL;
7499 clear_bit(WantReplacement, &rdev->flags);
7500 } else
7501 /* We might have just removed the Replacement as faulty-
7502 * clear the bit just in case
7503 */
7504 clear_bit(WantReplacement, &rdev->flags);
7505 abort:
7506
7507 print_raid5_conf(conf);
7508 return err;
7509 }
7510
7511 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7512 {
7513 struct r5conf *conf = mddev->private;
7514 int err = -EEXIST;
7515 int disk;
7516 struct disk_info *p;
7517 int first = 0;
7518 int last = conf->raid_disks - 1;
7519
7520 if (test_bit(Journal, &rdev->flags)) {
7521 char b[BDEVNAME_SIZE];
7522 if (conf->log)
7523 return -EBUSY;
7524
7525 rdev->raid_disk = 0;
7526 /*
7527 * The array is in readonly mode if journal is missing, so no
7528 * write requests running. We should be safe
7529 */
7530 r5l_init_log(conf, rdev);
7531 pr_debug("md/raid:%s: using device %s as journal\n",
7532 mdname(mddev), bdevname(rdev->bdev, b));
7533 return 0;
7534 }
7535 if (mddev->recovery_disabled == conf->recovery_disabled)
7536 return -EBUSY;
7537
7538 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7539 /* no point adding a device */
7540 return -EINVAL;
7541
7542 if (rdev->raid_disk >= 0)
7543 first = last = rdev->raid_disk;
7544
7545 /*
7546 * find the disk ... but prefer rdev->saved_raid_disk
7547 * if possible.
7548 */
7549 if (rdev->saved_raid_disk >= 0 &&
7550 rdev->saved_raid_disk >= first &&
7551 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7552 first = rdev->saved_raid_disk;
7553
7554 for (disk = first; disk <= last; disk++) {
7555 p = conf->disks + disk;
7556 if (p->rdev == NULL) {
7557 clear_bit(In_sync, &rdev->flags);
7558 rdev->raid_disk = disk;
7559 err = 0;
7560 if (rdev->saved_raid_disk != disk)
7561 conf->fullsync = 1;
7562 rcu_assign_pointer(p->rdev, rdev);
7563 goto out;
7564 }
7565 }
7566 for (disk = first; disk <= last; disk++) {
7567 p = conf->disks + disk;
7568 if (test_bit(WantReplacement, &p->rdev->flags) &&
7569 p->replacement == NULL) {
7570 clear_bit(In_sync, &rdev->flags);
7571 set_bit(Replacement, &rdev->flags);
7572 rdev->raid_disk = disk;
7573 err = 0;
7574 conf->fullsync = 1;
7575 rcu_assign_pointer(p->replacement, rdev);
7576 break;
7577 }
7578 }
7579 out:
7580 print_raid5_conf(conf);
7581 return err;
7582 }
7583
7584 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7585 {
7586 /* no resync is happening, and there is enough space
7587 * on all devices, so we can resize.
7588 * We need to make sure resync covers any new space.
7589 * If the array is shrinking we should possibly wait until
7590 * any io in the removed space completes, but it hardly seems
7591 * worth it.
7592 */
7593 sector_t newsize;
7594 struct r5conf *conf = mddev->private;
7595
7596 if (conf->log)
7597 return -EINVAL;
7598 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7599 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7600 if (mddev->external_size &&
7601 mddev->array_sectors > newsize)
7602 return -EINVAL;
7603 if (mddev->bitmap) {
7604 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7605 if (ret)
7606 return ret;
7607 }
7608 md_set_array_sectors(mddev, newsize);
7609 if (sectors > mddev->dev_sectors &&
7610 mddev->recovery_cp > mddev->dev_sectors) {
7611 mddev->recovery_cp = mddev->dev_sectors;
7612 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7613 }
7614 mddev->dev_sectors = sectors;
7615 mddev->resync_max_sectors = sectors;
7616 return 0;
7617 }
7618
7619 static int check_stripe_cache(struct mddev *mddev)
7620 {
7621 /* Can only proceed if there are plenty of stripe_heads.
7622 * We need a minimum of one full stripe,, and for sensible progress
7623 * it is best to have about 4 times that.
7624 * If we require 4 times, then the default 256 4K stripe_heads will
7625 * allow for chunk sizes up to 256K, which is probably OK.
7626 * If the chunk size is greater, user-space should request more
7627 * stripe_heads first.
7628 */
7629 struct r5conf *conf = mddev->private;
7630 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7631 > conf->min_nr_stripes ||
7632 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7633 > conf->min_nr_stripes) {
7634 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7635 mdname(mddev),
7636 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7637 / STRIPE_SIZE)*4);
7638 return 0;
7639 }
7640 return 1;
7641 }
7642
7643 static int check_reshape(struct mddev *mddev)
7644 {
7645 struct r5conf *conf = mddev->private;
7646
7647 if (conf->log)
7648 return -EINVAL;
7649 if (mddev->delta_disks == 0 &&
7650 mddev->new_layout == mddev->layout &&
7651 mddev->new_chunk_sectors == mddev->chunk_sectors)
7652 return 0; /* nothing to do */
7653 if (has_failed(conf))
7654 return -EINVAL;
7655 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7656 /* We might be able to shrink, but the devices must
7657 * be made bigger first.
7658 * For raid6, 4 is the minimum size.
7659 * Otherwise 2 is the minimum
7660 */
7661 int min = 2;
7662 if (mddev->level == 6)
7663 min = 4;
7664 if (mddev->raid_disks + mddev->delta_disks < min)
7665 return -EINVAL;
7666 }
7667
7668 if (!check_stripe_cache(mddev))
7669 return -ENOSPC;
7670
7671 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7672 mddev->delta_disks > 0)
7673 if (resize_chunks(conf,
7674 conf->previous_raid_disks
7675 + max(0, mddev->delta_disks),
7676 max(mddev->new_chunk_sectors,
7677 mddev->chunk_sectors)
7678 ) < 0)
7679 return -ENOMEM;
7680 return resize_stripes(conf, (conf->previous_raid_disks
7681 + mddev->delta_disks));
7682 }
7683
7684 static int raid5_start_reshape(struct mddev *mddev)
7685 {
7686 struct r5conf *conf = mddev->private;
7687 struct md_rdev *rdev;
7688 int spares = 0;
7689 unsigned long flags;
7690
7691 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7692 return -EBUSY;
7693
7694 if (!check_stripe_cache(mddev))
7695 return -ENOSPC;
7696
7697 if (has_failed(conf))
7698 return -EINVAL;
7699
7700 rdev_for_each(rdev, mddev) {
7701 if (!test_bit(In_sync, &rdev->flags)
7702 && !test_bit(Faulty, &rdev->flags))
7703 spares++;
7704 }
7705
7706 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7707 /* Not enough devices even to make a degraded array
7708 * of that size
7709 */
7710 return -EINVAL;
7711
7712 /* Refuse to reduce size of the array. Any reductions in
7713 * array size must be through explicit setting of array_size
7714 * attribute.
7715 */
7716 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7717 < mddev->array_sectors) {
7718 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7719 mdname(mddev));
7720 return -EINVAL;
7721 }
7722
7723 atomic_set(&conf->reshape_stripes, 0);
7724 spin_lock_irq(&conf->device_lock);
7725 write_seqcount_begin(&conf->gen_lock);
7726 conf->previous_raid_disks = conf->raid_disks;
7727 conf->raid_disks += mddev->delta_disks;
7728 conf->prev_chunk_sectors = conf->chunk_sectors;
7729 conf->chunk_sectors = mddev->new_chunk_sectors;
7730 conf->prev_algo = conf->algorithm;
7731 conf->algorithm = mddev->new_layout;
7732 conf->generation++;
7733 /* Code that selects data_offset needs to see the generation update
7734 * if reshape_progress has been set - so a memory barrier needed.
7735 */
7736 smp_mb();
7737 if (mddev->reshape_backwards)
7738 conf->reshape_progress = raid5_size(mddev, 0, 0);
7739 else
7740 conf->reshape_progress = 0;
7741 conf->reshape_safe = conf->reshape_progress;
7742 write_seqcount_end(&conf->gen_lock);
7743 spin_unlock_irq(&conf->device_lock);
7744
7745 /* Now make sure any requests that proceeded on the assumption
7746 * the reshape wasn't running - like Discard or Read - have
7747 * completed.
7748 */
7749 mddev_suspend(mddev);
7750 mddev_resume(mddev);
7751
7752 /* Add some new drives, as many as will fit.
7753 * We know there are enough to make the newly sized array work.
7754 * Don't add devices if we are reducing the number of
7755 * devices in the array. This is because it is not possible
7756 * to correctly record the "partially reconstructed" state of
7757 * such devices during the reshape and confusion could result.
7758 */
7759 if (mddev->delta_disks >= 0) {
7760 rdev_for_each(rdev, mddev)
7761 if (rdev->raid_disk < 0 &&
7762 !test_bit(Faulty, &rdev->flags)) {
7763 if (raid5_add_disk(mddev, rdev) == 0) {
7764 if (rdev->raid_disk
7765 >= conf->previous_raid_disks)
7766 set_bit(In_sync, &rdev->flags);
7767 else
7768 rdev->recovery_offset = 0;
7769
7770 if (sysfs_link_rdev(mddev, rdev))
7771 /* Failure here is OK */;
7772 }
7773 } else if (rdev->raid_disk >= conf->previous_raid_disks
7774 && !test_bit(Faulty, &rdev->flags)) {
7775 /* This is a spare that was manually added */
7776 set_bit(In_sync, &rdev->flags);
7777 }
7778
7779 /* When a reshape changes the number of devices,
7780 * ->degraded is measured against the larger of the
7781 * pre and post number of devices.
7782 */
7783 spin_lock_irqsave(&conf->device_lock, flags);
7784 mddev->degraded = raid5_calc_degraded(conf);
7785 spin_unlock_irqrestore(&conf->device_lock, flags);
7786 }
7787 mddev->raid_disks = conf->raid_disks;
7788 mddev->reshape_position = conf->reshape_progress;
7789 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7790
7791 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7792 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7793 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7794 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7795 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7796 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7797 "reshape");
7798 if (!mddev->sync_thread) {
7799 mddev->recovery = 0;
7800 spin_lock_irq(&conf->device_lock);
7801 write_seqcount_begin(&conf->gen_lock);
7802 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7803 mddev->new_chunk_sectors =
7804 conf->chunk_sectors = conf->prev_chunk_sectors;
7805 mddev->new_layout = conf->algorithm = conf->prev_algo;
7806 rdev_for_each(rdev, mddev)
7807 rdev->new_data_offset = rdev->data_offset;
7808 smp_wmb();
7809 conf->generation --;
7810 conf->reshape_progress = MaxSector;
7811 mddev->reshape_position = MaxSector;
7812 write_seqcount_end(&conf->gen_lock);
7813 spin_unlock_irq(&conf->device_lock);
7814 return -EAGAIN;
7815 }
7816 conf->reshape_checkpoint = jiffies;
7817 md_wakeup_thread(mddev->sync_thread);
7818 md_new_event(mddev);
7819 return 0;
7820 }
7821
7822 /* This is called from the reshape thread and should make any
7823 * changes needed in 'conf'
7824 */
7825 static void end_reshape(struct r5conf *conf)
7826 {
7827
7828 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7829 struct md_rdev *rdev;
7830
7831 spin_lock_irq(&conf->device_lock);
7832 conf->previous_raid_disks = conf->raid_disks;
7833 rdev_for_each(rdev, conf->mddev)
7834 rdev->data_offset = rdev->new_data_offset;
7835 smp_wmb();
7836 conf->reshape_progress = MaxSector;
7837 conf->mddev->reshape_position = MaxSector;
7838 spin_unlock_irq(&conf->device_lock);
7839 wake_up(&conf->wait_for_overlap);
7840
7841 /* read-ahead size must cover two whole stripes, which is
7842 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7843 */
7844 if (conf->mddev->queue) {
7845 int data_disks = conf->raid_disks - conf->max_degraded;
7846 int stripe = data_disks * ((conf->chunk_sectors << 9)
7847 / PAGE_SIZE);
7848 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7849 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7850 }
7851 }
7852 }
7853
7854 /* This is called from the raid5d thread with mddev_lock held.
7855 * It makes config changes to the device.
7856 */
7857 static void raid5_finish_reshape(struct mddev *mddev)
7858 {
7859 struct r5conf *conf = mddev->private;
7860
7861 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7862
7863 if (mddev->delta_disks > 0) {
7864 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7865 if (mddev->queue) {
7866 set_capacity(mddev->gendisk, mddev->array_sectors);
7867 revalidate_disk(mddev->gendisk);
7868 }
7869 } else {
7870 int d;
7871 spin_lock_irq(&conf->device_lock);
7872 mddev->degraded = raid5_calc_degraded(conf);
7873 spin_unlock_irq(&conf->device_lock);
7874 for (d = conf->raid_disks ;
7875 d < conf->raid_disks - mddev->delta_disks;
7876 d++) {
7877 struct md_rdev *rdev = conf->disks[d].rdev;
7878 if (rdev)
7879 clear_bit(In_sync, &rdev->flags);
7880 rdev = conf->disks[d].replacement;
7881 if (rdev)
7882 clear_bit(In_sync, &rdev->flags);
7883 }
7884 }
7885 mddev->layout = conf->algorithm;
7886 mddev->chunk_sectors = conf->chunk_sectors;
7887 mddev->reshape_position = MaxSector;
7888 mddev->delta_disks = 0;
7889 mddev->reshape_backwards = 0;
7890 }
7891 }
7892
7893 static void raid5_quiesce(struct mddev *mddev, int state)
7894 {
7895 struct r5conf *conf = mddev->private;
7896
7897 switch(state) {
7898 case 2: /* resume for a suspend */
7899 wake_up(&conf->wait_for_overlap);
7900 break;
7901
7902 case 1: /* stop all writes */
7903 lock_all_device_hash_locks_irq(conf);
7904 /* '2' tells resync/reshape to pause so that all
7905 * active stripes can drain
7906 */
7907 r5c_flush_cache(conf, INT_MAX);
7908 conf->quiesce = 2;
7909 wait_event_cmd(conf->wait_for_quiescent,
7910 atomic_read(&conf->active_stripes) == 0 &&
7911 atomic_read(&conf->active_aligned_reads) == 0,
7912 unlock_all_device_hash_locks_irq(conf),
7913 lock_all_device_hash_locks_irq(conf));
7914 conf->quiesce = 1;
7915 unlock_all_device_hash_locks_irq(conf);
7916 /* allow reshape to continue */
7917 wake_up(&conf->wait_for_overlap);
7918 break;
7919
7920 case 0: /* re-enable writes */
7921 lock_all_device_hash_locks_irq(conf);
7922 conf->quiesce = 0;
7923 wake_up(&conf->wait_for_quiescent);
7924 wake_up(&conf->wait_for_overlap);
7925 unlock_all_device_hash_locks_irq(conf);
7926 break;
7927 }
7928 r5l_quiesce(conf->log, state);
7929 }
7930
7931 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7932 {
7933 struct r0conf *raid0_conf = mddev->private;
7934 sector_t sectors;
7935
7936 /* for raid0 takeover only one zone is supported */
7937 if (raid0_conf->nr_strip_zones > 1) {
7938 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7939 mdname(mddev));
7940 return ERR_PTR(-EINVAL);
7941 }
7942
7943 sectors = raid0_conf->strip_zone[0].zone_end;
7944 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7945 mddev->dev_sectors = sectors;
7946 mddev->new_level = level;
7947 mddev->new_layout = ALGORITHM_PARITY_N;
7948 mddev->new_chunk_sectors = mddev->chunk_sectors;
7949 mddev->raid_disks += 1;
7950 mddev->delta_disks = 1;
7951 /* make sure it will be not marked as dirty */
7952 mddev->recovery_cp = MaxSector;
7953
7954 return setup_conf(mddev);
7955 }
7956
7957 static void *raid5_takeover_raid1(struct mddev *mddev)
7958 {
7959 int chunksect;
7960 void *ret;
7961
7962 if (mddev->raid_disks != 2 ||
7963 mddev->degraded > 1)
7964 return ERR_PTR(-EINVAL);
7965
7966 /* Should check if there are write-behind devices? */
7967
7968 chunksect = 64*2; /* 64K by default */
7969
7970 /* The array must be an exact multiple of chunksize */
7971 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7972 chunksect >>= 1;
7973
7974 if ((chunksect<<9) < STRIPE_SIZE)
7975 /* array size does not allow a suitable chunk size */
7976 return ERR_PTR(-EINVAL);
7977
7978 mddev->new_level = 5;
7979 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7980 mddev->new_chunk_sectors = chunksect;
7981
7982 ret = setup_conf(mddev);
7983 if (!IS_ERR(ret))
7984 mddev_clear_unsupported_flags(mddev,
7985 UNSUPPORTED_MDDEV_FLAGS);
7986 return ret;
7987 }
7988
7989 static void *raid5_takeover_raid6(struct mddev *mddev)
7990 {
7991 int new_layout;
7992
7993 switch (mddev->layout) {
7994 case ALGORITHM_LEFT_ASYMMETRIC_6:
7995 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7996 break;
7997 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7998 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7999 break;
8000 case ALGORITHM_LEFT_SYMMETRIC_6:
8001 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8002 break;
8003 case ALGORITHM_RIGHT_SYMMETRIC_6:
8004 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8005 break;
8006 case ALGORITHM_PARITY_0_6:
8007 new_layout = ALGORITHM_PARITY_0;
8008 break;
8009 case ALGORITHM_PARITY_N:
8010 new_layout = ALGORITHM_PARITY_N;
8011 break;
8012 default:
8013 return ERR_PTR(-EINVAL);
8014 }
8015 mddev->new_level = 5;
8016 mddev->new_layout = new_layout;
8017 mddev->delta_disks = -1;
8018 mddev->raid_disks -= 1;
8019 return setup_conf(mddev);
8020 }
8021
8022 static int raid5_check_reshape(struct mddev *mddev)
8023 {
8024 /* For a 2-drive array, the layout and chunk size can be changed
8025 * immediately as not restriping is needed.
8026 * For larger arrays we record the new value - after validation
8027 * to be used by a reshape pass.
8028 */
8029 struct r5conf *conf = mddev->private;
8030 int new_chunk = mddev->new_chunk_sectors;
8031
8032 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8033 return -EINVAL;
8034 if (new_chunk > 0) {
8035 if (!is_power_of_2(new_chunk))
8036 return -EINVAL;
8037 if (new_chunk < (PAGE_SIZE>>9))
8038 return -EINVAL;
8039 if (mddev->array_sectors & (new_chunk-1))
8040 /* not factor of array size */
8041 return -EINVAL;
8042 }
8043
8044 /* They look valid */
8045
8046 if (mddev->raid_disks == 2) {
8047 /* can make the change immediately */
8048 if (mddev->new_layout >= 0) {
8049 conf->algorithm = mddev->new_layout;
8050 mddev->layout = mddev->new_layout;
8051 }
8052 if (new_chunk > 0) {
8053 conf->chunk_sectors = new_chunk ;
8054 mddev->chunk_sectors = new_chunk;
8055 }
8056 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8057 md_wakeup_thread(mddev->thread);
8058 }
8059 return check_reshape(mddev);
8060 }
8061
8062 static int raid6_check_reshape(struct mddev *mddev)
8063 {
8064 int new_chunk = mddev->new_chunk_sectors;
8065
8066 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8067 return -EINVAL;
8068 if (new_chunk > 0) {
8069 if (!is_power_of_2(new_chunk))
8070 return -EINVAL;
8071 if (new_chunk < (PAGE_SIZE >> 9))
8072 return -EINVAL;
8073 if (mddev->array_sectors & (new_chunk-1))
8074 /* not factor of array size */
8075 return -EINVAL;
8076 }
8077
8078 /* They look valid */
8079 return check_reshape(mddev);
8080 }
8081
8082 static void *raid5_takeover(struct mddev *mddev)
8083 {
8084 /* raid5 can take over:
8085 * raid0 - if there is only one strip zone - make it a raid4 layout
8086 * raid1 - if there are two drives. We need to know the chunk size
8087 * raid4 - trivial - just use a raid4 layout.
8088 * raid6 - Providing it is a *_6 layout
8089 */
8090 if (mddev->level == 0)
8091 return raid45_takeover_raid0(mddev, 5);
8092 if (mddev->level == 1)
8093 return raid5_takeover_raid1(mddev);
8094 if (mddev->level == 4) {
8095 mddev->new_layout = ALGORITHM_PARITY_N;
8096 mddev->new_level = 5;
8097 return setup_conf(mddev);
8098 }
8099 if (mddev->level == 6)
8100 return raid5_takeover_raid6(mddev);
8101
8102 return ERR_PTR(-EINVAL);
8103 }
8104
8105 static void *raid4_takeover(struct mddev *mddev)
8106 {
8107 /* raid4 can take over:
8108 * raid0 - if there is only one strip zone
8109 * raid5 - if layout is right
8110 */
8111 if (mddev->level == 0)
8112 return raid45_takeover_raid0(mddev, 4);
8113 if (mddev->level == 5 &&
8114 mddev->layout == ALGORITHM_PARITY_N) {
8115 mddev->new_layout = 0;
8116 mddev->new_level = 4;
8117 return setup_conf(mddev);
8118 }
8119 return ERR_PTR(-EINVAL);
8120 }
8121
8122 static struct md_personality raid5_personality;
8123
8124 static void *raid6_takeover(struct mddev *mddev)
8125 {
8126 /* Currently can only take over a raid5. We map the
8127 * personality to an equivalent raid6 personality
8128 * with the Q block at the end.
8129 */
8130 int new_layout;
8131
8132 if (mddev->pers != &raid5_personality)
8133 return ERR_PTR(-EINVAL);
8134 if (mddev->degraded > 1)
8135 return ERR_PTR(-EINVAL);
8136 if (mddev->raid_disks > 253)
8137 return ERR_PTR(-EINVAL);
8138 if (mddev->raid_disks < 3)
8139 return ERR_PTR(-EINVAL);
8140
8141 switch (mddev->layout) {
8142 case ALGORITHM_LEFT_ASYMMETRIC:
8143 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8144 break;
8145 case ALGORITHM_RIGHT_ASYMMETRIC:
8146 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8147 break;
8148 case ALGORITHM_LEFT_SYMMETRIC:
8149 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8150 break;
8151 case ALGORITHM_RIGHT_SYMMETRIC:
8152 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8153 break;
8154 case ALGORITHM_PARITY_0:
8155 new_layout = ALGORITHM_PARITY_0_6;
8156 break;
8157 case ALGORITHM_PARITY_N:
8158 new_layout = ALGORITHM_PARITY_N;
8159 break;
8160 default:
8161 return ERR_PTR(-EINVAL);
8162 }
8163 mddev->new_level = 6;
8164 mddev->new_layout = new_layout;
8165 mddev->delta_disks = 1;
8166 mddev->raid_disks += 1;
8167 return setup_conf(mddev);
8168 }
8169
8170 static struct md_personality raid6_personality =
8171 {
8172 .name = "raid6",
8173 .level = 6,
8174 .owner = THIS_MODULE,
8175 .make_request = raid5_make_request,
8176 .run = raid5_run,
8177 .free = raid5_free,
8178 .status = raid5_status,
8179 .error_handler = raid5_error,
8180 .hot_add_disk = raid5_add_disk,
8181 .hot_remove_disk= raid5_remove_disk,
8182 .spare_active = raid5_spare_active,
8183 .sync_request = raid5_sync_request,
8184 .resize = raid5_resize,
8185 .size = raid5_size,
8186 .check_reshape = raid6_check_reshape,
8187 .start_reshape = raid5_start_reshape,
8188 .finish_reshape = raid5_finish_reshape,
8189 .quiesce = raid5_quiesce,
8190 .takeover = raid6_takeover,
8191 .congested = raid5_congested,
8192 };
8193 static struct md_personality raid5_personality =
8194 {
8195 .name = "raid5",
8196 .level = 5,
8197 .owner = THIS_MODULE,
8198 .make_request = raid5_make_request,
8199 .run = raid5_run,
8200 .free = raid5_free,
8201 .status = raid5_status,
8202 .error_handler = raid5_error,
8203 .hot_add_disk = raid5_add_disk,
8204 .hot_remove_disk= raid5_remove_disk,
8205 .spare_active = raid5_spare_active,
8206 .sync_request = raid5_sync_request,
8207 .resize = raid5_resize,
8208 .size = raid5_size,
8209 .check_reshape = raid5_check_reshape,
8210 .start_reshape = raid5_start_reshape,
8211 .finish_reshape = raid5_finish_reshape,
8212 .quiesce = raid5_quiesce,
8213 .takeover = raid5_takeover,
8214 .congested = raid5_congested,
8215 };
8216
8217 static struct md_personality raid4_personality =
8218 {
8219 .name = "raid4",
8220 .level = 4,
8221 .owner = THIS_MODULE,
8222 .make_request = raid5_make_request,
8223 .run = raid5_run,
8224 .free = raid5_free,
8225 .status = raid5_status,
8226 .error_handler = raid5_error,
8227 .hot_add_disk = raid5_add_disk,
8228 .hot_remove_disk= raid5_remove_disk,
8229 .spare_active = raid5_spare_active,
8230 .sync_request = raid5_sync_request,
8231 .resize = raid5_resize,
8232 .size = raid5_size,
8233 .check_reshape = raid5_check_reshape,
8234 .start_reshape = raid5_start_reshape,
8235 .finish_reshape = raid5_finish_reshape,
8236 .quiesce = raid5_quiesce,
8237 .takeover = raid4_takeover,
8238 .congested = raid5_congested,
8239 };
8240
8241 static int __init raid5_init(void)
8242 {
8243 int ret;
8244
8245 raid5_wq = alloc_workqueue("raid5wq",
8246 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8247 if (!raid5_wq)
8248 return -ENOMEM;
8249
8250 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8251 "md/raid5:prepare",
8252 raid456_cpu_up_prepare,
8253 raid456_cpu_dead);
8254 if (ret) {
8255 destroy_workqueue(raid5_wq);
8256 return ret;
8257 }
8258 register_md_personality(&raid6_personality);
8259 register_md_personality(&raid5_personality);
8260 register_md_personality(&raid4_personality);
8261 return 0;
8262 }
8263
8264 static void raid5_exit(void)
8265 {
8266 unregister_md_personality(&raid6_personality);
8267 unregister_md_personality(&raid5_personality);
8268 unregister_md_personality(&raid4_personality);
8269 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8270 destroy_workqueue(raid5_wq);
8271 }
8272
8273 module_init(raid5_init);
8274 module_exit(raid5_exit);
8275 MODULE_LICENSE("GPL");
8276 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8277 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8278 MODULE_ALIAS("md-raid5");
8279 MODULE_ALIAS("md-raid4");
8280 MODULE_ALIAS("md-level-5");
8281 MODULE_ALIAS("md-level-4");
8282 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8283 MODULE_ALIAS("md-raid6");
8284 MODULE_ALIAS("md-level-6");
8285
8286 /* This used to be two separate modules, they were: */
8287 MODULE_ALIAS("raid5");
8288 MODULE_ALIAS("raid6");