]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/raid5.c
md/raid5: Change or of some order to improve efficiency.
[mirror_ubuntu-jammy-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <trace/events/block.h>
57
58 #include "md.h"
59 #include "raid5.h"
60 #include "raid0.h"
61 #include "bitmap.h"
62
63 /*
64 * Stripe cache
65 */
66
67 #define NR_STRIPES 256
68 #define STRIPE_SIZE PAGE_SIZE
69 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
70 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
71 #define IO_THRESHOLD 1
72 #define BYPASS_THRESHOLD 1
73 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
74 #define HASH_MASK (NR_HASH - 1)
75
76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 {
78 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79 return &conf->stripe_hashtbl[hash];
80 }
81
82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
83 * order without overlap. There may be several bio's per stripe+device, and
84 * a bio could span several devices.
85 * When walking this list for a particular stripe+device, we must never proceed
86 * beyond a bio that extends past this device, as the next bio might no longer
87 * be valid.
88 * This function is used to determine the 'next' bio in the list, given the sector
89 * of the current stripe+device
90 */
91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
92 {
93 int sectors = bio->bi_size >> 9;
94 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
95 return bio->bi_next;
96 else
97 return NULL;
98 }
99
100 /*
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 */
104 static inline int raid5_bi_processed_stripes(struct bio *bio)
105 {
106 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
107 return (atomic_read(segments) >> 16) & 0xffff;
108 }
109
110 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
111 {
112 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113 return atomic_sub_return(1, segments) & 0xffff;
114 }
115
116 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
117 {
118 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119 atomic_inc(segments);
120 }
121
122 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
123 unsigned int cnt)
124 {
125 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
126 int old, new;
127
128 do {
129 old = atomic_read(segments);
130 new = (old & 0xffff) | (cnt << 16);
131 } while (atomic_cmpxchg(segments, old, new) != old);
132 }
133
134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
135 {
136 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
137 atomic_set(segments, cnt);
138 }
139
140 /* Find first data disk in a raid6 stripe */
141 static inline int raid6_d0(struct stripe_head *sh)
142 {
143 if (sh->ddf_layout)
144 /* ddf always start from first device */
145 return 0;
146 /* md starts just after Q block */
147 if (sh->qd_idx == sh->disks - 1)
148 return 0;
149 else
150 return sh->qd_idx + 1;
151 }
152 static inline int raid6_next_disk(int disk, int raid_disks)
153 {
154 disk++;
155 return (disk < raid_disks) ? disk : 0;
156 }
157
158 /* When walking through the disks in a raid5, starting at raid6_d0,
159 * We need to map each disk to a 'slot', where the data disks are slot
160 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
161 * is raid_disks-1. This help does that mapping.
162 */
163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
164 int *count, int syndrome_disks)
165 {
166 int slot = *count;
167
168 if (sh->ddf_layout)
169 (*count)++;
170 if (idx == sh->pd_idx)
171 return syndrome_disks;
172 if (idx == sh->qd_idx)
173 return syndrome_disks + 1;
174 if (!sh->ddf_layout)
175 (*count)++;
176 return slot;
177 }
178
179 static void return_io(struct bio *return_bi)
180 {
181 struct bio *bi = return_bi;
182 while (bi) {
183
184 return_bi = bi->bi_next;
185 bi->bi_next = NULL;
186 bi->bi_size = 0;
187 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
188 bi, 0);
189 bio_endio(bi, 0);
190 bi = return_bi;
191 }
192 }
193
194 static void print_raid5_conf (struct r5conf *conf);
195
196 static int stripe_operations_active(struct stripe_head *sh)
197 {
198 return sh->check_state || sh->reconstruct_state ||
199 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
200 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
201 }
202
203 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
204 {
205 BUG_ON(!list_empty(&sh->lru));
206 BUG_ON(atomic_read(&conf->active_stripes)==0);
207 if (test_bit(STRIPE_HANDLE, &sh->state)) {
208 if (test_bit(STRIPE_DELAYED, &sh->state) &&
209 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
210 list_add_tail(&sh->lru, &conf->delayed_list);
211 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
212 sh->bm_seq - conf->seq_write > 0)
213 list_add_tail(&sh->lru, &conf->bitmap_list);
214 else {
215 clear_bit(STRIPE_DELAYED, &sh->state);
216 clear_bit(STRIPE_BIT_DELAY, &sh->state);
217 list_add_tail(&sh->lru, &conf->handle_list);
218 }
219 md_wakeup_thread(conf->mddev->thread);
220 } else {
221 BUG_ON(stripe_operations_active(sh));
222 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
223 if (atomic_dec_return(&conf->preread_active_stripes)
224 < IO_THRESHOLD)
225 md_wakeup_thread(conf->mddev->thread);
226 atomic_dec(&conf->active_stripes);
227 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
228 list_add_tail(&sh->lru, &conf->inactive_list);
229 wake_up(&conf->wait_for_stripe);
230 if (conf->retry_read_aligned)
231 md_wakeup_thread(conf->mddev->thread);
232 }
233 }
234 }
235
236 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
237 {
238 if (atomic_dec_and_test(&sh->count))
239 do_release_stripe(conf, sh);
240 }
241
242 static void release_stripe(struct stripe_head *sh)
243 {
244 struct r5conf *conf = sh->raid_conf;
245 unsigned long flags;
246
247 local_irq_save(flags);
248 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
249 do_release_stripe(conf, sh);
250 spin_unlock(&conf->device_lock);
251 }
252 local_irq_restore(flags);
253 }
254
255 static inline void remove_hash(struct stripe_head *sh)
256 {
257 pr_debug("remove_hash(), stripe %llu\n",
258 (unsigned long long)sh->sector);
259
260 hlist_del_init(&sh->hash);
261 }
262
263 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
264 {
265 struct hlist_head *hp = stripe_hash(conf, sh->sector);
266
267 pr_debug("insert_hash(), stripe %llu\n",
268 (unsigned long long)sh->sector);
269
270 hlist_add_head(&sh->hash, hp);
271 }
272
273
274 /* find an idle stripe, make sure it is unhashed, and return it. */
275 static struct stripe_head *get_free_stripe(struct r5conf *conf)
276 {
277 struct stripe_head *sh = NULL;
278 struct list_head *first;
279
280 if (list_empty(&conf->inactive_list))
281 goto out;
282 first = conf->inactive_list.next;
283 sh = list_entry(first, struct stripe_head, lru);
284 list_del_init(first);
285 remove_hash(sh);
286 atomic_inc(&conf->active_stripes);
287 out:
288 return sh;
289 }
290
291 static void shrink_buffers(struct stripe_head *sh)
292 {
293 struct page *p;
294 int i;
295 int num = sh->raid_conf->pool_size;
296
297 for (i = 0; i < num ; i++) {
298 p = sh->dev[i].page;
299 if (!p)
300 continue;
301 sh->dev[i].page = NULL;
302 put_page(p);
303 }
304 }
305
306 static int grow_buffers(struct stripe_head *sh)
307 {
308 int i;
309 int num = sh->raid_conf->pool_size;
310
311 for (i = 0; i < num; i++) {
312 struct page *page;
313
314 if (!(page = alloc_page(GFP_KERNEL))) {
315 return 1;
316 }
317 sh->dev[i].page = page;
318 }
319 return 0;
320 }
321
322 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
323 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
324 struct stripe_head *sh);
325
326 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
327 {
328 struct r5conf *conf = sh->raid_conf;
329 int i;
330
331 BUG_ON(atomic_read(&sh->count) != 0);
332 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
333 BUG_ON(stripe_operations_active(sh));
334
335 pr_debug("init_stripe called, stripe %llu\n",
336 (unsigned long long)sh->sector);
337
338 remove_hash(sh);
339
340 sh->generation = conf->generation - previous;
341 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
342 sh->sector = sector;
343 stripe_set_idx(sector, conf, previous, sh);
344 sh->state = 0;
345
346
347 for (i = sh->disks; i--; ) {
348 struct r5dev *dev = &sh->dev[i];
349
350 if (dev->toread || dev->read || dev->towrite || dev->written ||
351 test_bit(R5_LOCKED, &dev->flags)) {
352 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
353 (unsigned long long)sh->sector, i, dev->toread,
354 dev->read, dev->towrite, dev->written,
355 test_bit(R5_LOCKED, &dev->flags));
356 WARN_ON(1);
357 }
358 dev->flags = 0;
359 raid5_build_block(sh, i, previous);
360 }
361 insert_hash(conf, sh);
362 }
363
364 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
365 short generation)
366 {
367 struct stripe_head *sh;
368
369 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
370 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
371 if (sh->sector == sector && sh->generation == generation)
372 return sh;
373 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
374 return NULL;
375 }
376
377 /*
378 * Need to check if array has failed when deciding whether to:
379 * - start an array
380 * - remove non-faulty devices
381 * - add a spare
382 * - allow a reshape
383 * This determination is simple when no reshape is happening.
384 * However if there is a reshape, we need to carefully check
385 * both the before and after sections.
386 * This is because some failed devices may only affect one
387 * of the two sections, and some non-in_sync devices may
388 * be insync in the section most affected by failed devices.
389 */
390 static int calc_degraded(struct r5conf *conf)
391 {
392 int degraded, degraded2;
393 int i;
394
395 rcu_read_lock();
396 degraded = 0;
397 for (i = 0; i < conf->previous_raid_disks; i++) {
398 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
399 if (rdev && test_bit(Faulty, &rdev->flags))
400 rdev = rcu_dereference(conf->disks[i].replacement);
401 if (!rdev || test_bit(Faulty, &rdev->flags))
402 degraded++;
403 else if (test_bit(In_sync, &rdev->flags))
404 ;
405 else
406 /* not in-sync or faulty.
407 * If the reshape increases the number of devices,
408 * this is being recovered by the reshape, so
409 * this 'previous' section is not in_sync.
410 * If the number of devices is being reduced however,
411 * the device can only be part of the array if
412 * we are reverting a reshape, so this section will
413 * be in-sync.
414 */
415 if (conf->raid_disks >= conf->previous_raid_disks)
416 degraded++;
417 }
418 rcu_read_unlock();
419 if (conf->raid_disks == conf->previous_raid_disks)
420 return degraded;
421 rcu_read_lock();
422 degraded2 = 0;
423 for (i = 0; i < conf->raid_disks; i++) {
424 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
425 if (rdev && test_bit(Faulty, &rdev->flags))
426 rdev = rcu_dereference(conf->disks[i].replacement);
427 if (!rdev || test_bit(Faulty, &rdev->flags))
428 degraded2++;
429 else if (test_bit(In_sync, &rdev->flags))
430 ;
431 else
432 /* not in-sync or faulty.
433 * If reshape increases the number of devices, this
434 * section has already been recovered, else it
435 * almost certainly hasn't.
436 */
437 if (conf->raid_disks <= conf->previous_raid_disks)
438 degraded2++;
439 }
440 rcu_read_unlock();
441 if (degraded2 > degraded)
442 return degraded2;
443 return degraded;
444 }
445
446 static int has_failed(struct r5conf *conf)
447 {
448 int degraded;
449
450 if (conf->mddev->reshape_position == MaxSector)
451 return conf->mddev->degraded > conf->max_degraded;
452
453 degraded = calc_degraded(conf);
454 if (degraded > conf->max_degraded)
455 return 1;
456 return 0;
457 }
458
459 static struct stripe_head *
460 get_active_stripe(struct r5conf *conf, sector_t sector,
461 int previous, int noblock, int noquiesce)
462 {
463 struct stripe_head *sh;
464
465 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
466
467 spin_lock_irq(&conf->device_lock);
468
469 do {
470 wait_event_lock_irq(conf->wait_for_stripe,
471 conf->quiesce == 0 || noquiesce,
472 conf->device_lock);
473 sh = __find_stripe(conf, sector, conf->generation - previous);
474 if (!sh) {
475 if (!conf->inactive_blocked)
476 sh = get_free_stripe(conf);
477 if (noblock && sh == NULL)
478 break;
479 if (!sh) {
480 conf->inactive_blocked = 1;
481 wait_event_lock_irq(conf->wait_for_stripe,
482 !list_empty(&conf->inactive_list) &&
483 (atomic_read(&conf->active_stripes)
484 < (conf->max_nr_stripes *3/4)
485 || !conf->inactive_blocked),
486 conf->device_lock);
487 conf->inactive_blocked = 0;
488 } else
489 init_stripe(sh, sector, previous);
490 } else {
491 if (atomic_read(&sh->count)) {
492 BUG_ON(!list_empty(&sh->lru)
493 && !test_bit(STRIPE_EXPANDING, &sh->state)
494 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
495 } else {
496 if (!test_bit(STRIPE_HANDLE, &sh->state))
497 atomic_inc(&conf->active_stripes);
498 if (list_empty(&sh->lru) &&
499 !test_bit(STRIPE_EXPANDING, &sh->state))
500 BUG();
501 list_del_init(&sh->lru);
502 }
503 }
504 } while (sh == NULL);
505
506 if (sh)
507 atomic_inc(&sh->count);
508
509 spin_unlock_irq(&conf->device_lock);
510 return sh;
511 }
512
513 /* Determine if 'data_offset' or 'new_data_offset' should be used
514 * in this stripe_head.
515 */
516 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
517 {
518 sector_t progress = conf->reshape_progress;
519 /* Need a memory barrier to make sure we see the value
520 * of conf->generation, or ->data_offset that was set before
521 * reshape_progress was updated.
522 */
523 smp_rmb();
524 if (progress == MaxSector)
525 return 0;
526 if (sh->generation == conf->generation - 1)
527 return 0;
528 /* We are in a reshape, and this is a new-generation stripe,
529 * so use new_data_offset.
530 */
531 return 1;
532 }
533
534 static void
535 raid5_end_read_request(struct bio *bi, int error);
536 static void
537 raid5_end_write_request(struct bio *bi, int error);
538
539 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
540 {
541 struct r5conf *conf = sh->raid_conf;
542 int i, disks = sh->disks;
543
544 might_sleep();
545
546 for (i = disks; i--; ) {
547 int rw;
548 int replace_only = 0;
549 struct bio *bi, *rbi;
550 struct md_rdev *rdev, *rrdev = NULL;
551 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
552 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
553 rw = WRITE_FUA;
554 else
555 rw = WRITE;
556 if (test_bit(R5_Discard, &sh->dev[i].flags))
557 rw |= REQ_DISCARD;
558 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
559 rw = READ;
560 else if (test_and_clear_bit(R5_WantReplace,
561 &sh->dev[i].flags)) {
562 rw = WRITE;
563 replace_only = 1;
564 } else
565 continue;
566 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
567 rw |= REQ_SYNC;
568
569 bi = &sh->dev[i].req;
570 rbi = &sh->dev[i].rreq; /* For writing to replacement */
571
572 bi->bi_rw = rw;
573 rbi->bi_rw = rw;
574 if (rw & WRITE) {
575 bi->bi_end_io = raid5_end_write_request;
576 rbi->bi_end_io = raid5_end_write_request;
577 } else
578 bi->bi_end_io = raid5_end_read_request;
579
580 rcu_read_lock();
581 rrdev = rcu_dereference(conf->disks[i].replacement);
582 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
583 rdev = rcu_dereference(conf->disks[i].rdev);
584 if (!rdev) {
585 rdev = rrdev;
586 rrdev = NULL;
587 }
588 if (rw & WRITE) {
589 if (replace_only)
590 rdev = NULL;
591 if (rdev == rrdev)
592 /* We raced and saw duplicates */
593 rrdev = NULL;
594 } else {
595 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
596 rdev = rrdev;
597 rrdev = NULL;
598 }
599
600 if (rdev && test_bit(Faulty, &rdev->flags))
601 rdev = NULL;
602 if (rdev)
603 atomic_inc(&rdev->nr_pending);
604 if (rrdev && test_bit(Faulty, &rrdev->flags))
605 rrdev = NULL;
606 if (rrdev)
607 atomic_inc(&rrdev->nr_pending);
608 rcu_read_unlock();
609
610 /* We have already checked bad blocks for reads. Now
611 * need to check for writes. We never accept write errors
612 * on the replacement, so we don't to check rrdev.
613 */
614 while ((rw & WRITE) && rdev &&
615 test_bit(WriteErrorSeen, &rdev->flags)) {
616 sector_t first_bad;
617 int bad_sectors;
618 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
619 &first_bad, &bad_sectors);
620 if (!bad)
621 break;
622
623 if (bad < 0) {
624 set_bit(BlockedBadBlocks, &rdev->flags);
625 if (!conf->mddev->external &&
626 conf->mddev->flags) {
627 /* It is very unlikely, but we might
628 * still need to write out the
629 * bad block log - better give it
630 * a chance*/
631 md_check_recovery(conf->mddev);
632 }
633 /*
634 * Because md_wait_for_blocked_rdev
635 * will dec nr_pending, we must
636 * increment it first.
637 */
638 atomic_inc(&rdev->nr_pending);
639 md_wait_for_blocked_rdev(rdev, conf->mddev);
640 } else {
641 /* Acknowledged bad block - skip the write */
642 rdev_dec_pending(rdev, conf->mddev);
643 rdev = NULL;
644 }
645 }
646
647 if (rdev) {
648 if (s->syncing || s->expanding || s->expanded
649 || s->replacing)
650 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
651
652 set_bit(STRIPE_IO_STARTED, &sh->state);
653
654 bi->bi_bdev = rdev->bdev;
655 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
656 __func__, (unsigned long long)sh->sector,
657 bi->bi_rw, i);
658 atomic_inc(&sh->count);
659 if (use_new_offset(conf, sh))
660 bi->bi_sector = (sh->sector
661 + rdev->new_data_offset);
662 else
663 bi->bi_sector = (sh->sector
664 + rdev->data_offset);
665 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
666 bi->bi_rw |= REQ_FLUSH;
667
668 bi->bi_flags = 1 << BIO_UPTODATE;
669 bi->bi_idx = 0;
670 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
671 bi->bi_io_vec[0].bv_offset = 0;
672 bi->bi_size = STRIPE_SIZE;
673 bi->bi_next = NULL;
674 if (rrdev)
675 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
676
677 if (conf->mddev->gendisk)
678 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
679 bi, disk_devt(conf->mddev->gendisk),
680 sh->dev[i].sector);
681 generic_make_request(bi);
682 }
683 if (rrdev) {
684 if (s->syncing || s->expanding || s->expanded
685 || s->replacing)
686 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
687
688 set_bit(STRIPE_IO_STARTED, &sh->state);
689
690 rbi->bi_bdev = rrdev->bdev;
691 pr_debug("%s: for %llu schedule op %ld on "
692 "replacement disc %d\n",
693 __func__, (unsigned long long)sh->sector,
694 rbi->bi_rw, i);
695 atomic_inc(&sh->count);
696 if (use_new_offset(conf, sh))
697 rbi->bi_sector = (sh->sector
698 + rrdev->new_data_offset);
699 else
700 rbi->bi_sector = (sh->sector
701 + rrdev->data_offset);
702 rbi->bi_flags = 1 << BIO_UPTODATE;
703 rbi->bi_idx = 0;
704 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
705 rbi->bi_io_vec[0].bv_offset = 0;
706 rbi->bi_size = STRIPE_SIZE;
707 rbi->bi_next = NULL;
708 if (conf->mddev->gendisk)
709 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
710 rbi, disk_devt(conf->mddev->gendisk),
711 sh->dev[i].sector);
712 generic_make_request(rbi);
713 }
714 if (!rdev && !rrdev) {
715 if (rw & WRITE)
716 set_bit(STRIPE_DEGRADED, &sh->state);
717 pr_debug("skip op %ld on disc %d for sector %llu\n",
718 bi->bi_rw, i, (unsigned long long)sh->sector);
719 clear_bit(R5_LOCKED, &sh->dev[i].flags);
720 set_bit(STRIPE_HANDLE, &sh->state);
721 }
722 }
723 }
724
725 static struct dma_async_tx_descriptor *
726 async_copy_data(int frombio, struct bio *bio, struct page *page,
727 sector_t sector, struct dma_async_tx_descriptor *tx)
728 {
729 struct bio_vec *bvl;
730 struct page *bio_page;
731 int i;
732 int page_offset;
733 struct async_submit_ctl submit;
734 enum async_tx_flags flags = 0;
735
736 if (bio->bi_sector >= sector)
737 page_offset = (signed)(bio->bi_sector - sector) * 512;
738 else
739 page_offset = (signed)(sector - bio->bi_sector) * -512;
740
741 if (frombio)
742 flags |= ASYNC_TX_FENCE;
743 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
744
745 bio_for_each_segment(bvl, bio, i) {
746 int len = bvl->bv_len;
747 int clen;
748 int b_offset = 0;
749
750 if (page_offset < 0) {
751 b_offset = -page_offset;
752 page_offset += b_offset;
753 len -= b_offset;
754 }
755
756 if (len > 0 && page_offset + len > STRIPE_SIZE)
757 clen = STRIPE_SIZE - page_offset;
758 else
759 clen = len;
760
761 if (clen > 0) {
762 b_offset += bvl->bv_offset;
763 bio_page = bvl->bv_page;
764 if (frombio)
765 tx = async_memcpy(page, bio_page, page_offset,
766 b_offset, clen, &submit);
767 else
768 tx = async_memcpy(bio_page, page, b_offset,
769 page_offset, clen, &submit);
770 }
771 /* chain the operations */
772 submit.depend_tx = tx;
773
774 if (clen < len) /* hit end of page */
775 break;
776 page_offset += len;
777 }
778
779 return tx;
780 }
781
782 static void ops_complete_biofill(void *stripe_head_ref)
783 {
784 struct stripe_head *sh = stripe_head_ref;
785 struct bio *return_bi = NULL;
786 int i;
787
788 pr_debug("%s: stripe %llu\n", __func__,
789 (unsigned long long)sh->sector);
790
791 /* clear completed biofills */
792 for (i = sh->disks; i--; ) {
793 struct r5dev *dev = &sh->dev[i];
794
795 /* acknowledge completion of a biofill operation */
796 /* and check if we need to reply to a read request,
797 * new R5_Wantfill requests are held off until
798 * !STRIPE_BIOFILL_RUN
799 */
800 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
801 struct bio *rbi, *rbi2;
802
803 BUG_ON(!dev->read);
804 rbi = dev->read;
805 dev->read = NULL;
806 while (rbi && rbi->bi_sector <
807 dev->sector + STRIPE_SECTORS) {
808 rbi2 = r5_next_bio(rbi, dev->sector);
809 if (!raid5_dec_bi_active_stripes(rbi)) {
810 rbi->bi_next = return_bi;
811 return_bi = rbi;
812 }
813 rbi = rbi2;
814 }
815 }
816 }
817 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
818
819 return_io(return_bi);
820
821 set_bit(STRIPE_HANDLE, &sh->state);
822 release_stripe(sh);
823 }
824
825 static void ops_run_biofill(struct stripe_head *sh)
826 {
827 struct dma_async_tx_descriptor *tx = NULL;
828 struct async_submit_ctl submit;
829 int i;
830
831 pr_debug("%s: stripe %llu\n", __func__,
832 (unsigned long long)sh->sector);
833
834 for (i = sh->disks; i--; ) {
835 struct r5dev *dev = &sh->dev[i];
836 if (test_bit(R5_Wantfill, &dev->flags)) {
837 struct bio *rbi;
838 spin_lock_irq(&sh->stripe_lock);
839 dev->read = rbi = dev->toread;
840 dev->toread = NULL;
841 spin_unlock_irq(&sh->stripe_lock);
842 while (rbi && rbi->bi_sector <
843 dev->sector + STRIPE_SECTORS) {
844 tx = async_copy_data(0, rbi, dev->page,
845 dev->sector, tx);
846 rbi = r5_next_bio(rbi, dev->sector);
847 }
848 }
849 }
850
851 atomic_inc(&sh->count);
852 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
853 async_trigger_callback(&submit);
854 }
855
856 static void mark_target_uptodate(struct stripe_head *sh, int target)
857 {
858 struct r5dev *tgt;
859
860 if (target < 0)
861 return;
862
863 tgt = &sh->dev[target];
864 set_bit(R5_UPTODATE, &tgt->flags);
865 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
866 clear_bit(R5_Wantcompute, &tgt->flags);
867 }
868
869 static void ops_complete_compute(void *stripe_head_ref)
870 {
871 struct stripe_head *sh = stripe_head_ref;
872
873 pr_debug("%s: stripe %llu\n", __func__,
874 (unsigned long long)sh->sector);
875
876 /* mark the computed target(s) as uptodate */
877 mark_target_uptodate(sh, sh->ops.target);
878 mark_target_uptodate(sh, sh->ops.target2);
879
880 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
881 if (sh->check_state == check_state_compute_run)
882 sh->check_state = check_state_compute_result;
883 set_bit(STRIPE_HANDLE, &sh->state);
884 release_stripe(sh);
885 }
886
887 /* return a pointer to the address conversion region of the scribble buffer */
888 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
889 struct raid5_percpu *percpu)
890 {
891 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
892 }
893
894 static struct dma_async_tx_descriptor *
895 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
896 {
897 int disks = sh->disks;
898 struct page **xor_srcs = percpu->scribble;
899 int target = sh->ops.target;
900 struct r5dev *tgt = &sh->dev[target];
901 struct page *xor_dest = tgt->page;
902 int count = 0;
903 struct dma_async_tx_descriptor *tx;
904 struct async_submit_ctl submit;
905 int i;
906
907 pr_debug("%s: stripe %llu block: %d\n",
908 __func__, (unsigned long long)sh->sector, target);
909 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
910
911 for (i = disks; i--; )
912 if (i != target)
913 xor_srcs[count++] = sh->dev[i].page;
914
915 atomic_inc(&sh->count);
916
917 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
918 ops_complete_compute, sh, to_addr_conv(sh, percpu));
919 if (unlikely(count == 1))
920 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
921 else
922 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
923
924 return tx;
925 }
926
927 /* set_syndrome_sources - populate source buffers for gen_syndrome
928 * @srcs - (struct page *) array of size sh->disks
929 * @sh - stripe_head to parse
930 *
931 * Populates srcs in proper layout order for the stripe and returns the
932 * 'count' of sources to be used in a call to async_gen_syndrome. The P
933 * destination buffer is recorded in srcs[count] and the Q destination
934 * is recorded in srcs[count+1]].
935 */
936 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
937 {
938 int disks = sh->disks;
939 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
940 int d0_idx = raid6_d0(sh);
941 int count;
942 int i;
943
944 for (i = 0; i < disks; i++)
945 srcs[i] = NULL;
946
947 count = 0;
948 i = d0_idx;
949 do {
950 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
951
952 srcs[slot] = sh->dev[i].page;
953 i = raid6_next_disk(i, disks);
954 } while (i != d0_idx);
955
956 return syndrome_disks;
957 }
958
959 static struct dma_async_tx_descriptor *
960 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
961 {
962 int disks = sh->disks;
963 struct page **blocks = percpu->scribble;
964 int target;
965 int qd_idx = sh->qd_idx;
966 struct dma_async_tx_descriptor *tx;
967 struct async_submit_ctl submit;
968 struct r5dev *tgt;
969 struct page *dest;
970 int i;
971 int count;
972
973 if (sh->ops.target < 0)
974 target = sh->ops.target2;
975 else if (sh->ops.target2 < 0)
976 target = sh->ops.target;
977 else
978 /* we should only have one valid target */
979 BUG();
980 BUG_ON(target < 0);
981 pr_debug("%s: stripe %llu block: %d\n",
982 __func__, (unsigned long long)sh->sector, target);
983
984 tgt = &sh->dev[target];
985 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
986 dest = tgt->page;
987
988 atomic_inc(&sh->count);
989
990 if (target == qd_idx) {
991 count = set_syndrome_sources(blocks, sh);
992 blocks[count] = NULL; /* regenerating p is not necessary */
993 BUG_ON(blocks[count+1] != dest); /* q should already be set */
994 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
995 ops_complete_compute, sh,
996 to_addr_conv(sh, percpu));
997 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
998 } else {
999 /* Compute any data- or p-drive using XOR */
1000 count = 0;
1001 for (i = disks; i-- ; ) {
1002 if (i == target || i == qd_idx)
1003 continue;
1004 blocks[count++] = sh->dev[i].page;
1005 }
1006
1007 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1008 NULL, ops_complete_compute, sh,
1009 to_addr_conv(sh, percpu));
1010 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1011 }
1012
1013 return tx;
1014 }
1015
1016 static struct dma_async_tx_descriptor *
1017 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1018 {
1019 int i, count, disks = sh->disks;
1020 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1021 int d0_idx = raid6_d0(sh);
1022 int faila = -1, failb = -1;
1023 int target = sh->ops.target;
1024 int target2 = sh->ops.target2;
1025 struct r5dev *tgt = &sh->dev[target];
1026 struct r5dev *tgt2 = &sh->dev[target2];
1027 struct dma_async_tx_descriptor *tx;
1028 struct page **blocks = percpu->scribble;
1029 struct async_submit_ctl submit;
1030
1031 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1032 __func__, (unsigned long long)sh->sector, target, target2);
1033 BUG_ON(target < 0 || target2 < 0);
1034 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1035 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1036
1037 /* we need to open-code set_syndrome_sources to handle the
1038 * slot number conversion for 'faila' and 'failb'
1039 */
1040 for (i = 0; i < disks ; i++)
1041 blocks[i] = NULL;
1042 count = 0;
1043 i = d0_idx;
1044 do {
1045 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1046
1047 blocks[slot] = sh->dev[i].page;
1048
1049 if (i == target)
1050 faila = slot;
1051 if (i == target2)
1052 failb = slot;
1053 i = raid6_next_disk(i, disks);
1054 } while (i != d0_idx);
1055
1056 BUG_ON(faila == failb);
1057 if (failb < faila)
1058 swap(faila, failb);
1059 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1060 __func__, (unsigned long long)sh->sector, faila, failb);
1061
1062 atomic_inc(&sh->count);
1063
1064 if (failb == syndrome_disks+1) {
1065 /* Q disk is one of the missing disks */
1066 if (faila == syndrome_disks) {
1067 /* Missing P+Q, just recompute */
1068 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1069 ops_complete_compute, sh,
1070 to_addr_conv(sh, percpu));
1071 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1072 STRIPE_SIZE, &submit);
1073 } else {
1074 struct page *dest;
1075 int data_target;
1076 int qd_idx = sh->qd_idx;
1077
1078 /* Missing D+Q: recompute D from P, then recompute Q */
1079 if (target == qd_idx)
1080 data_target = target2;
1081 else
1082 data_target = target;
1083
1084 count = 0;
1085 for (i = disks; i-- ; ) {
1086 if (i == data_target || i == qd_idx)
1087 continue;
1088 blocks[count++] = sh->dev[i].page;
1089 }
1090 dest = sh->dev[data_target].page;
1091 init_async_submit(&submit,
1092 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1093 NULL, NULL, NULL,
1094 to_addr_conv(sh, percpu));
1095 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1096 &submit);
1097
1098 count = set_syndrome_sources(blocks, sh);
1099 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1100 ops_complete_compute, sh,
1101 to_addr_conv(sh, percpu));
1102 return async_gen_syndrome(blocks, 0, count+2,
1103 STRIPE_SIZE, &submit);
1104 }
1105 } else {
1106 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1107 ops_complete_compute, sh,
1108 to_addr_conv(sh, percpu));
1109 if (failb == syndrome_disks) {
1110 /* We're missing D+P. */
1111 return async_raid6_datap_recov(syndrome_disks+2,
1112 STRIPE_SIZE, faila,
1113 blocks, &submit);
1114 } else {
1115 /* We're missing D+D. */
1116 return async_raid6_2data_recov(syndrome_disks+2,
1117 STRIPE_SIZE, faila, failb,
1118 blocks, &submit);
1119 }
1120 }
1121 }
1122
1123
1124 static void ops_complete_prexor(void *stripe_head_ref)
1125 {
1126 struct stripe_head *sh = stripe_head_ref;
1127
1128 pr_debug("%s: stripe %llu\n", __func__,
1129 (unsigned long long)sh->sector);
1130 }
1131
1132 static struct dma_async_tx_descriptor *
1133 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1134 struct dma_async_tx_descriptor *tx)
1135 {
1136 int disks = sh->disks;
1137 struct page **xor_srcs = percpu->scribble;
1138 int count = 0, pd_idx = sh->pd_idx, i;
1139 struct async_submit_ctl submit;
1140
1141 /* existing parity data subtracted */
1142 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1143
1144 pr_debug("%s: stripe %llu\n", __func__,
1145 (unsigned long long)sh->sector);
1146
1147 for (i = disks; i--; ) {
1148 struct r5dev *dev = &sh->dev[i];
1149 /* Only process blocks that are known to be uptodate */
1150 if (test_bit(R5_Wantdrain, &dev->flags))
1151 xor_srcs[count++] = dev->page;
1152 }
1153
1154 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1155 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1156 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1157
1158 return tx;
1159 }
1160
1161 static struct dma_async_tx_descriptor *
1162 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1163 {
1164 int disks = sh->disks;
1165 int i;
1166
1167 pr_debug("%s: stripe %llu\n", __func__,
1168 (unsigned long long)sh->sector);
1169
1170 for (i = disks; i--; ) {
1171 struct r5dev *dev = &sh->dev[i];
1172 struct bio *chosen;
1173
1174 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1175 struct bio *wbi;
1176
1177 spin_lock_irq(&sh->stripe_lock);
1178 chosen = dev->towrite;
1179 dev->towrite = NULL;
1180 BUG_ON(dev->written);
1181 wbi = dev->written = chosen;
1182 spin_unlock_irq(&sh->stripe_lock);
1183
1184 while (wbi && wbi->bi_sector <
1185 dev->sector + STRIPE_SECTORS) {
1186 if (wbi->bi_rw & REQ_FUA)
1187 set_bit(R5_WantFUA, &dev->flags);
1188 if (wbi->bi_rw & REQ_SYNC)
1189 set_bit(R5_SyncIO, &dev->flags);
1190 if (wbi->bi_rw & REQ_DISCARD)
1191 set_bit(R5_Discard, &dev->flags);
1192 else
1193 tx = async_copy_data(1, wbi, dev->page,
1194 dev->sector, tx);
1195 wbi = r5_next_bio(wbi, dev->sector);
1196 }
1197 }
1198 }
1199
1200 return tx;
1201 }
1202
1203 static void ops_complete_reconstruct(void *stripe_head_ref)
1204 {
1205 struct stripe_head *sh = stripe_head_ref;
1206 int disks = sh->disks;
1207 int pd_idx = sh->pd_idx;
1208 int qd_idx = sh->qd_idx;
1209 int i;
1210 bool fua = false, sync = false, discard = false;
1211
1212 pr_debug("%s: stripe %llu\n", __func__,
1213 (unsigned long long)sh->sector);
1214
1215 for (i = disks; i--; ) {
1216 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1217 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1218 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1219 }
1220
1221 for (i = disks; i--; ) {
1222 struct r5dev *dev = &sh->dev[i];
1223
1224 if (dev->written || i == pd_idx || i == qd_idx) {
1225 if (!discard)
1226 set_bit(R5_UPTODATE, &dev->flags);
1227 if (fua)
1228 set_bit(R5_WantFUA, &dev->flags);
1229 if (sync)
1230 set_bit(R5_SyncIO, &dev->flags);
1231 }
1232 }
1233
1234 if (sh->reconstruct_state == reconstruct_state_drain_run)
1235 sh->reconstruct_state = reconstruct_state_drain_result;
1236 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1237 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1238 else {
1239 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1240 sh->reconstruct_state = reconstruct_state_result;
1241 }
1242
1243 set_bit(STRIPE_HANDLE, &sh->state);
1244 release_stripe(sh);
1245 }
1246
1247 static void
1248 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1249 struct dma_async_tx_descriptor *tx)
1250 {
1251 int disks = sh->disks;
1252 struct page **xor_srcs = percpu->scribble;
1253 struct async_submit_ctl submit;
1254 int count = 0, pd_idx = sh->pd_idx, i;
1255 struct page *xor_dest;
1256 int prexor = 0;
1257 unsigned long flags;
1258
1259 pr_debug("%s: stripe %llu\n", __func__,
1260 (unsigned long long)sh->sector);
1261
1262 for (i = 0; i < sh->disks; i++) {
1263 if (pd_idx == i)
1264 continue;
1265 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1266 break;
1267 }
1268 if (i >= sh->disks) {
1269 atomic_inc(&sh->count);
1270 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1271 ops_complete_reconstruct(sh);
1272 return;
1273 }
1274 /* check if prexor is active which means only process blocks
1275 * that are part of a read-modify-write (written)
1276 */
1277 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1278 prexor = 1;
1279 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1280 for (i = disks; i--; ) {
1281 struct r5dev *dev = &sh->dev[i];
1282 if (dev->written)
1283 xor_srcs[count++] = dev->page;
1284 }
1285 } else {
1286 xor_dest = sh->dev[pd_idx].page;
1287 for (i = disks; i--; ) {
1288 struct r5dev *dev = &sh->dev[i];
1289 if (i != pd_idx)
1290 xor_srcs[count++] = dev->page;
1291 }
1292 }
1293
1294 /* 1/ if we prexor'd then the dest is reused as a source
1295 * 2/ if we did not prexor then we are redoing the parity
1296 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1297 * for the synchronous xor case
1298 */
1299 flags = ASYNC_TX_ACK |
1300 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1301
1302 atomic_inc(&sh->count);
1303
1304 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1305 to_addr_conv(sh, percpu));
1306 if (unlikely(count == 1))
1307 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1308 else
1309 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1310 }
1311
1312 static void
1313 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1314 struct dma_async_tx_descriptor *tx)
1315 {
1316 struct async_submit_ctl submit;
1317 struct page **blocks = percpu->scribble;
1318 int count, i;
1319
1320 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1321
1322 for (i = 0; i < sh->disks; i++) {
1323 if (sh->pd_idx == i || sh->qd_idx == i)
1324 continue;
1325 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1326 break;
1327 }
1328 if (i >= sh->disks) {
1329 atomic_inc(&sh->count);
1330 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1331 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1332 ops_complete_reconstruct(sh);
1333 return;
1334 }
1335
1336 count = set_syndrome_sources(blocks, sh);
1337
1338 atomic_inc(&sh->count);
1339
1340 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1341 sh, to_addr_conv(sh, percpu));
1342 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1343 }
1344
1345 static void ops_complete_check(void *stripe_head_ref)
1346 {
1347 struct stripe_head *sh = stripe_head_ref;
1348
1349 pr_debug("%s: stripe %llu\n", __func__,
1350 (unsigned long long)sh->sector);
1351
1352 sh->check_state = check_state_check_result;
1353 set_bit(STRIPE_HANDLE, &sh->state);
1354 release_stripe(sh);
1355 }
1356
1357 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1358 {
1359 int disks = sh->disks;
1360 int pd_idx = sh->pd_idx;
1361 int qd_idx = sh->qd_idx;
1362 struct page *xor_dest;
1363 struct page **xor_srcs = percpu->scribble;
1364 struct dma_async_tx_descriptor *tx;
1365 struct async_submit_ctl submit;
1366 int count;
1367 int i;
1368
1369 pr_debug("%s: stripe %llu\n", __func__,
1370 (unsigned long long)sh->sector);
1371
1372 count = 0;
1373 xor_dest = sh->dev[pd_idx].page;
1374 xor_srcs[count++] = xor_dest;
1375 for (i = disks; i--; ) {
1376 if (i == pd_idx || i == qd_idx)
1377 continue;
1378 xor_srcs[count++] = sh->dev[i].page;
1379 }
1380
1381 init_async_submit(&submit, 0, NULL, NULL, NULL,
1382 to_addr_conv(sh, percpu));
1383 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1384 &sh->ops.zero_sum_result, &submit);
1385
1386 atomic_inc(&sh->count);
1387 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1388 tx = async_trigger_callback(&submit);
1389 }
1390
1391 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1392 {
1393 struct page **srcs = percpu->scribble;
1394 struct async_submit_ctl submit;
1395 int count;
1396
1397 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1398 (unsigned long long)sh->sector, checkp);
1399
1400 count = set_syndrome_sources(srcs, sh);
1401 if (!checkp)
1402 srcs[count] = NULL;
1403
1404 atomic_inc(&sh->count);
1405 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1406 sh, to_addr_conv(sh, percpu));
1407 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1408 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1409 }
1410
1411 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1412 {
1413 int overlap_clear = 0, i, disks = sh->disks;
1414 struct dma_async_tx_descriptor *tx = NULL;
1415 struct r5conf *conf = sh->raid_conf;
1416 int level = conf->level;
1417 struct raid5_percpu *percpu;
1418 unsigned long cpu;
1419
1420 cpu = get_cpu();
1421 percpu = per_cpu_ptr(conf->percpu, cpu);
1422 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1423 ops_run_biofill(sh);
1424 overlap_clear++;
1425 }
1426
1427 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1428 if (level < 6)
1429 tx = ops_run_compute5(sh, percpu);
1430 else {
1431 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1432 tx = ops_run_compute6_1(sh, percpu);
1433 else
1434 tx = ops_run_compute6_2(sh, percpu);
1435 }
1436 /* terminate the chain if reconstruct is not set to be run */
1437 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1438 async_tx_ack(tx);
1439 }
1440
1441 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1442 tx = ops_run_prexor(sh, percpu, tx);
1443
1444 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1445 tx = ops_run_biodrain(sh, tx);
1446 overlap_clear++;
1447 }
1448
1449 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1450 if (level < 6)
1451 ops_run_reconstruct5(sh, percpu, tx);
1452 else
1453 ops_run_reconstruct6(sh, percpu, tx);
1454 }
1455
1456 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1457 if (sh->check_state == check_state_run)
1458 ops_run_check_p(sh, percpu);
1459 else if (sh->check_state == check_state_run_q)
1460 ops_run_check_pq(sh, percpu, 0);
1461 else if (sh->check_state == check_state_run_pq)
1462 ops_run_check_pq(sh, percpu, 1);
1463 else
1464 BUG();
1465 }
1466
1467 if (overlap_clear)
1468 for (i = disks; i--; ) {
1469 struct r5dev *dev = &sh->dev[i];
1470 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1471 wake_up(&sh->raid_conf->wait_for_overlap);
1472 }
1473 put_cpu();
1474 }
1475
1476 static int grow_one_stripe(struct r5conf *conf)
1477 {
1478 struct stripe_head *sh;
1479 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1480 if (!sh)
1481 return 0;
1482
1483 sh->raid_conf = conf;
1484
1485 spin_lock_init(&sh->stripe_lock);
1486
1487 if (grow_buffers(sh)) {
1488 shrink_buffers(sh);
1489 kmem_cache_free(conf->slab_cache, sh);
1490 return 0;
1491 }
1492 /* we just created an active stripe so... */
1493 atomic_set(&sh->count, 1);
1494 atomic_inc(&conf->active_stripes);
1495 INIT_LIST_HEAD(&sh->lru);
1496 release_stripe(sh);
1497 return 1;
1498 }
1499
1500 static int grow_stripes(struct r5conf *conf, int num)
1501 {
1502 struct kmem_cache *sc;
1503 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1504
1505 if (conf->mddev->gendisk)
1506 sprintf(conf->cache_name[0],
1507 "raid%d-%s", conf->level, mdname(conf->mddev));
1508 else
1509 sprintf(conf->cache_name[0],
1510 "raid%d-%p", conf->level, conf->mddev);
1511 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1512
1513 conf->active_name = 0;
1514 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1515 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1516 0, 0, NULL);
1517 if (!sc)
1518 return 1;
1519 conf->slab_cache = sc;
1520 conf->pool_size = devs;
1521 while (num--)
1522 if (!grow_one_stripe(conf))
1523 return 1;
1524 return 0;
1525 }
1526
1527 /**
1528 * scribble_len - return the required size of the scribble region
1529 * @num - total number of disks in the array
1530 *
1531 * The size must be enough to contain:
1532 * 1/ a struct page pointer for each device in the array +2
1533 * 2/ room to convert each entry in (1) to its corresponding dma
1534 * (dma_map_page()) or page (page_address()) address.
1535 *
1536 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1537 * calculate over all devices (not just the data blocks), using zeros in place
1538 * of the P and Q blocks.
1539 */
1540 static size_t scribble_len(int num)
1541 {
1542 size_t len;
1543
1544 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1545
1546 return len;
1547 }
1548
1549 static int resize_stripes(struct r5conf *conf, int newsize)
1550 {
1551 /* Make all the stripes able to hold 'newsize' devices.
1552 * New slots in each stripe get 'page' set to a new page.
1553 *
1554 * This happens in stages:
1555 * 1/ create a new kmem_cache and allocate the required number of
1556 * stripe_heads.
1557 * 2/ gather all the old stripe_heads and transfer the pages across
1558 * to the new stripe_heads. This will have the side effect of
1559 * freezing the array as once all stripe_heads have been collected,
1560 * no IO will be possible. Old stripe heads are freed once their
1561 * pages have been transferred over, and the old kmem_cache is
1562 * freed when all stripes are done.
1563 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1564 * we simple return a failre status - no need to clean anything up.
1565 * 4/ allocate new pages for the new slots in the new stripe_heads.
1566 * If this fails, we don't bother trying the shrink the
1567 * stripe_heads down again, we just leave them as they are.
1568 * As each stripe_head is processed the new one is released into
1569 * active service.
1570 *
1571 * Once step2 is started, we cannot afford to wait for a write,
1572 * so we use GFP_NOIO allocations.
1573 */
1574 struct stripe_head *osh, *nsh;
1575 LIST_HEAD(newstripes);
1576 struct disk_info *ndisks;
1577 unsigned long cpu;
1578 int err;
1579 struct kmem_cache *sc;
1580 int i;
1581
1582 if (newsize <= conf->pool_size)
1583 return 0; /* never bother to shrink */
1584
1585 err = md_allow_write(conf->mddev);
1586 if (err)
1587 return err;
1588
1589 /* Step 1 */
1590 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1591 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1592 0, 0, NULL);
1593 if (!sc)
1594 return -ENOMEM;
1595
1596 for (i = conf->max_nr_stripes; i; i--) {
1597 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1598 if (!nsh)
1599 break;
1600
1601 nsh->raid_conf = conf;
1602 spin_lock_init(&nsh->stripe_lock);
1603
1604 list_add(&nsh->lru, &newstripes);
1605 }
1606 if (i) {
1607 /* didn't get enough, give up */
1608 while (!list_empty(&newstripes)) {
1609 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1610 list_del(&nsh->lru);
1611 kmem_cache_free(sc, nsh);
1612 }
1613 kmem_cache_destroy(sc);
1614 return -ENOMEM;
1615 }
1616 /* Step 2 - Must use GFP_NOIO now.
1617 * OK, we have enough stripes, start collecting inactive
1618 * stripes and copying them over
1619 */
1620 list_for_each_entry(nsh, &newstripes, lru) {
1621 spin_lock_irq(&conf->device_lock);
1622 wait_event_lock_irq(conf->wait_for_stripe,
1623 !list_empty(&conf->inactive_list),
1624 conf->device_lock);
1625 osh = get_free_stripe(conf);
1626 spin_unlock_irq(&conf->device_lock);
1627 atomic_set(&nsh->count, 1);
1628 for(i=0; i<conf->pool_size; i++)
1629 nsh->dev[i].page = osh->dev[i].page;
1630 for( ; i<newsize; i++)
1631 nsh->dev[i].page = NULL;
1632 kmem_cache_free(conf->slab_cache, osh);
1633 }
1634 kmem_cache_destroy(conf->slab_cache);
1635
1636 /* Step 3.
1637 * At this point, we are holding all the stripes so the array
1638 * is completely stalled, so now is a good time to resize
1639 * conf->disks and the scribble region
1640 */
1641 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1642 if (ndisks) {
1643 for (i=0; i<conf->raid_disks; i++)
1644 ndisks[i] = conf->disks[i];
1645 kfree(conf->disks);
1646 conf->disks = ndisks;
1647 } else
1648 err = -ENOMEM;
1649
1650 get_online_cpus();
1651 conf->scribble_len = scribble_len(newsize);
1652 for_each_present_cpu(cpu) {
1653 struct raid5_percpu *percpu;
1654 void *scribble;
1655
1656 percpu = per_cpu_ptr(conf->percpu, cpu);
1657 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1658
1659 if (scribble) {
1660 kfree(percpu->scribble);
1661 percpu->scribble = scribble;
1662 } else {
1663 err = -ENOMEM;
1664 break;
1665 }
1666 }
1667 put_online_cpus();
1668
1669 /* Step 4, return new stripes to service */
1670 while(!list_empty(&newstripes)) {
1671 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1672 list_del_init(&nsh->lru);
1673
1674 for (i=conf->raid_disks; i < newsize; i++)
1675 if (nsh->dev[i].page == NULL) {
1676 struct page *p = alloc_page(GFP_NOIO);
1677 nsh->dev[i].page = p;
1678 if (!p)
1679 err = -ENOMEM;
1680 }
1681 release_stripe(nsh);
1682 }
1683 /* critical section pass, GFP_NOIO no longer needed */
1684
1685 conf->slab_cache = sc;
1686 conf->active_name = 1-conf->active_name;
1687 conf->pool_size = newsize;
1688 return err;
1689 }
1690
1691 static int drop_one_stripe(struct r5conf *conf)
1692 {
1693 struct stripe_head *sh;
1694
1695 spin_lock_irq(&conf->device_lock);
1696 sh = get_free_stripe(conf);
1697 spin_unlock_irq(&conf->device_lock);
1698 if (!sh)
1699 return 0;
1700 BUG_ON(atomic_read(&sh->count));
1701 shrink_buffers(sh);
1702 kmem_cache_free(conf->slab_cache, sh);
1703 atomic_dec(&conf->active_stripes);
1704 return 1;
1705 }
1706
1707 static void shrink_stripes(struct r5conf *conf)
1708 {
1709 while (drop_one_stripe(conf))
1710 ;
1711
1712 if (conf->slab_cache)
1713 kmem_cache_destroy(conf->slab_cache);
1714 conf->slab_cache = NULL;
1715 }
1716
1717 static void raid5_end_read_request(struct bio * bi, int error)
1718 {
1719 struct stripe_head *sh = bi->bi_private;
1720 struct r5conf *conf = sh->raid_conf;
1721 int disks = sh->disks, i;
1722 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1723 char b[BDEVNAME_SIZE];
1724 struct md_rdev *rdev = NULL;
1725 sector_t s;
1726
1727 for (i=0 ; i<disks; i++)
1728 if (bi == &sh->dev[i].req)
1729 break;
1730
1731 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1732 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1733 uptodate);
1734 if (i == disks) {
1735 BUG();
1736 return;
1737 }
1738 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1739 /* If replacement finished while this request was outstanding,
1740 * 'replacement' might be NULL already.
1741 * In that case it moved down to 'rdev'.
1742 * rdev is not removed until all requests are finished.
1743 */
1744 rdev = conf->disks[i].replacement;
1745 if (!rdev)
1746 rdev = conf->disks[i].rdev;
1747
1748 if (use_new_offset(conf, sh))
1749 s = sh->sector + rdev->new_data_offset;
1750 else
1751 s = sh->sector + rdev->data_offset;
1752 if (uptodate) {
1753 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1754 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1755 /* Note that this cannot happen on a
1756 * replacement device. We just fail those on
1757 * any error
1758 */
1759 printk_ratelimited(
1760 KERN_INFO
1761 "md/raid:%s: read error corrected"
1762 " (%lu sectors at %llu on %s)\n",
1763 mdname(conf->mddev), STRIPE_SECTORS,
1764 (unsigned long long)s,
1765 bdevname(rdev->bdev, b));
1766 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1767 clear_bit(R5_ReadError, &sh->dev[i].flags);
1768 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1769 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1770 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1771
1772 if (atomic_read(&rdev->read_errors))
1773 atomic_set(&rdev->read_errors, 0);
1774 } else {
1775 const char *bdn = bdevname(rdev->bdev, b);
1776 int retry = 0;
1777 int set_bad = 0;
1778
1779 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1780 atomic_inc(&rdev->read_errors);
1781 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1782 printk_ratelimited(
1783 KERN_WARNING
1784 "md/raid:%s: read error on replacement device "
1785 "(sector %llu on %s).\n",
1786 mdname(conf->mddev),
1787 (unsigned long long)s,
1788 bdn);
1789 else if (conf->mddev->degraded >= conf->max_degraded) {
1790 set_bad = 1;
1791 printk_ratelimited(
1792 KERN_WARNING
1793 "md/raid:%s: read error not correctable "
1794 "(sector %llu on %s).\n",
1795 mdname(conf->mddev),
1796 (unsigned long long)s,
1797 bdn);
1798 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1799 /* Oh, no!!! */
1800 set_bad = 1;
1801 printk_ratelimited(
1802 KERN_WARNING
1803 "md/raid:%s: read error NOT corrected!! "
1804 "(sector %llu on %s).\n",
1805 mdname(conf->mddev),
1806 (unsigned long long)s,
1807 bdn);
1808 } else if (atomic_read(&rdev->read_errors)
1809 > conf->max_nr_stripes)
1810 printk(KERN_WARNING
1811 "md/raid:%s: Too many read errors, failing device %s.\n",
1812 mdname(conf->mddev), bdn);
1813 else
1814 retry = 1;
1815 if (retry)
1816 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1817 set_bit(R5_ReadError, &sh->dev[i].flags);
1818 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1819 } else
1820 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1821 else {
1822 clear_bit(R5_ReadError, &sh->dev[i].flags);
1823 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1824 if (!(set_bad
1825 && test_bit(In_sync, &rdev->flags)
1826 && rdev_set_badblocks(
1827 rdev, sh->sector, STRIPE_SECTORS, 0)))
1828 md_error(conf->mddev, rdev);
1829 }
1830 }
1831 rdev_dec_pending(rdev, conf->mddev);
1832 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1833 set_bit(STRIPE_HANDLE, &sh->state);
1834 release_stripe(sh);
1835 }
1836
1837 static void raid5_end_write_request(struct bio *bi, int error)
1838 {
1839 struct stripe_head *sh = bi->bi_private;
1840 struct r5conf *conf = sh->raid_conf;
1841 int disks = sh->disks, i;
1842 struct md_rdev *uninitialized_var(rdev);
1843 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1844 sector_t first_bad;
1845 int bad_sectors;
1846 int replacement = 0;
1847
1848 for (i = 0 ; i < disks; i++) {
1849 if (bi == &sh->dev[i].req) {
1850 rdev = conf->disks[i].rdev;
1851 break;
1852 }
1853 if (bi == &sh->dev[i].rreq) {
1854 rdev = conf->disks[i].replacement;
1855 if (rdev)
1856 replacement = 1;
1857 else
1858 /* rdev was removed and 'replacement'
1859 * replaced it. rdev is not removed
1860 * until all requests are finished.
1861 */
1862 rdev = conf->disks[i].rdev;
1863 break;
1864 }
1865 }
1866 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1867 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1868 uptodate);
1869 if (i == disks) {
1870 BUG();
1871 return;
1872 }
1873
1874 if (replacement) {
1875 if (!uptodate)
1876 md_error(conf->mddev, rdev);
1877 else if (is_badblock(rdev, sh->sector,
1878 STRIPE_SECTORS,
1879 &first_bad, &bad_sectors))
1880 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1881 } else {
1882 if (!uptodate) {
1883 set_bit(WriteErrorSeen, &rdev->flags);
1884 set_bit(R5_WriteError, &sh->dev[i].flags);
1885 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1886 set_bit(MD_RECOVERY_NEEDED,
1887 &rdev->mddev->recovery);
1888 } else if (is_badblock(rdev, sh->sector,
1889 STRIPE_SECTORS,
1890 &first_bad, &bad_sectors))
1891 set_bit(R5_MadeGood, &sh->dev[i].flags);
1892 }
1893 rdev_dec_pending(rdev, conf->mddev);
1894
1895 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1896 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1897 set_bit(STRIPE_HANDLE, &sh->state);
1898 release_stripe(sh);
1899 }
1900
1901 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1902
1903 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1904 {
1905 struct r5dev *dev = &sh->dev[i];
1906
1907 bio_init(&dev->req);
1908 dev->req.bi_io_vec = &dev->vec;
1909 dev->req.bi_vcnt++;
1910 dev->req.bi_max_vecs++;
1911 dev->req.bi_private = sh;
1912 dev->vec.bv_page = dev->page;
1913
1914 bio_init(&dev->rreq);
1915 dev->rreq.bi_io_vec = &dev->rvec;
1916 dev->rreq.bi_vcnt++;
1917 dev->rreq.bi_max_vecs++;
1918 dev->rreq.bi_private = sh;
1919 dev->rvec.bv_page = dev->page;
1920
1921 dev->flags = 0;
1922 dev->sector = compute_blocknr(sh, i, previous);
1923 }
1924
1925 static void error(struct mddev *mddev, struct md_rdev *rdev)
1926 {
1927 char b[BDEVNAME_SIZE];
1928 struct r5conf *conf = mddev->private;
1929 unsigned long flags;
1930 pr_debug("raid456: error called\n");
1931
1932 spin_lock_irqsave(&conf->device_lock, flags);
1933 clear_bit(In_sync, &rdev->flags);
1934 mddev->degraded = calc_degraded(conf);
1935 spin_unlock_irqrestore(&conf->device_lock, flags);
1936 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1937
1938 set_bit(Blocked, &rdev->flags);
1939 set_bit(Faulty, &rdev->flags);
1940 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1941 printk(KERN_ALERT
1942 "md/raid:%s: Disk failure on %s, disabling device.\n"
1943 "md/raid:%s: Operation continuing on %d devices.\n",
1944 mdname(mddev),
1945 bdevname(rdev->bdev, b),
1946 mdname(mddev),
1947 conf->raid_disks - mddev->degraded);
1948 }
1949
1950 /*
1951 * Input: a 'big' sector number,
1952 * Output: index of the data and parity disk, and the sector # in them.
1953 */
1954 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1955 int previous, int *dd_idx,
1956 struct stripe_head *sh)
1957 {
1958 sector_t stripe, stripe2;
1959 sector_t chunk_number;
1960 unsigned int chunk_offset;
1961 int pd_idx, qd_idx;
1962 int ddf_layout = 0;
1963 sector_t new_sector;
1964 int algorithm = previous ? conf->prev_algo
1965 : conf->algorithm;
1966 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1967 : conf->chunk_sectors;
1968 int raid_disks = previous ? conf->previous_raid_disks
1969 : conf->raid_disks;
1970 int data_disks = raid_disks - conf->max_degraded;
1971
1972 /* First compute the information on this sector */
1973
1974 /*
1975 * Compute the chunk number and the sector offset inside the chunk
1976 */
1977 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1978 chunk_number = r_sector;
1979
1980 /*
1981 * Compute the stripe number
1982 */
1983 stripe = chunk_number;
1984 *dd_idx = sector_div(stripe, data_disks);
1985 stripe2 = stripe;
1986 /*
1987 * Select the parity disk based on the user selected algorithm.
1988 */
1989 pd_idx = qd_idx = -1;
1990 switch(conf->level) {
1991 case 4:
1992 pd_idx = data_disks;
1993 break;
1994 case 5:
1995 switch (algorithm) {
1996 case ALGORITHM_LEFT_ASYMMETRIC:
1997 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1998 if (*dd_idx >= pd_idx)
1999 (*dd_idx)++;
2000 break;
2001 case ALGORITHM_RIGHT_ASYMMETRIC:
2002 pd_idx = sector_div(stripe2, raid_disks);
2003 if (*dd_idx >= pd_idx)
2004 (*dd_idx)++;
2005 break;
2006 case ALGORITHM_LEFT_SYMMETRIC:
2007 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2008 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2009 break;
2010 case ALGORITHM_RIGHT_SYMMETRIC:
2011 pd_idx = sector_div(stripe2, raid_disks);
2012 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2013 break;
2014 case ALGORITHM_PARITY_0:
2015 pd_idx = 0;
2016 (*dd_idx)++;
2017 break;
2018 case ALGORITHM_PARITY_N:
2019 pd_idx = data_disks;
2020 break;
2021 default:
2022 BUG();
2023 }
2024 break;
2025 case 6:
2026
2027 switch (algorithm) {
2028 case ALGORITHM_LEFT_ASYMMETRIC:
2029 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2030 qd_idx = pd_idx + 1;
2031 if (pd_idx == raid_disks-1) {
2032 (*dd_idx)++; /* Q D D D P */
2033 qd_idx = 0;
2034 } else if (*dd_idx >= pd_idx)
2035 (*dd_idx) += 2; /* D D P Q D */
2036 break;
2037 case ALGORITHM_RIGHT_ASYMMETRIC:
2038 pd_idx = sector_div(stripe2, raid_disks);
2039 qd_idx = pd_idx + 1;
2040 if (pd_idx == raid_disks-1) {
2041 (*dd_idx)++; /* Q D D D P */
2042 qd_idx = 0;
2043 } else if (*dd_idx >= pd_idx)
2044 (*dd_idx) += 2; /* D D P Q D */
2045 break;
2046 case ALGORITHM_LEFT_SYMMETRIC:
2047 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2048 qd_idx = (pd_idx + 1) % raid_disks;
2049 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2050 break;
2051 case ALGORITHM_RIGHT_SYMMETRIC:
2052 pd_idx = sector_div(stripe2, raid_disks);
2053 qd_idx = (pd_idx + 1) % raid_disks;
2054 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2055 break;
2056
2057 case ALGORITHM_PARITY_0:
2058 pd_idx = 0;
2059 qd_idx = 1;
2060 (*dd_idx) += 2;
2061 break;
2062 case ALGORITHM_PARITY_N:
2063 pd_idx = data_disks;
2064 qd_idx = data_disks + 1;
2065 break;
2066
2067 case ALGORITHM_ROTATING_ZERO_RESTART:
2068 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2069 * of blocks for computing Q is different.
2070 */
2071 pd_idx = sector_div(stripe2, raid_disks);
2072 qd_idx = pd_idx + 1;
2073 if (pd_idx == raid_disks-1) {
2074 (*dd_idx)++; /* Q D D D P */
2075 qd_idx = 0;
2076 } else if (*dd_idx >= pd_idx)
2077 (*dd_idx) += 2; /* D D P Q D */
2078 ddf_layout = 1;
2079 break;
2080
2081 case ALGORITHM_ROTATING_N_RESTART:
2082 /* Same a left_asymmetric, by first stripe is
2083 * D D D P Q rather than
2084 * Q D D D P
2085 */
2086 stripe2 += 1;
2087 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2088 qd_idx = pd_idx + 1;
2089 if (pd_idx == raid_disks-1) {
2090 (*dd_idx)++; /* Q D D D P */
2091 qd_idx = 0;
2092 } else if (*dd_idx >= pd_idx)
2093 (*dd_idx) += 2; /* D D P Q D */
2094 ddf_layout = 1;
2095 break;
2096
2097 case ALGORITHM_ROTATING_N_CONTINUE:
2098 /* Same as left_symmetric but Q is before P */
2099 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2100 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2101 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2102 ddf_layout = 1;
2103 break;
2104
2105 case ALGORITHM_LEFT_ASYMMETRIC_6:
2106 /* RAID5 left_asymmetric, with Q on last device */
2107 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2108 if (*dd_idx >= pd_idx)
2109 (*dd_idx)++;
2110 qd_idx = raid_disks - 1;
2111 break;
2112
2113 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2114 pd_idx = sector_div(stripe2, raid_disks-1);
2115 if (*dd_idx >= pd_idx)
2116 (*dd_idx)++;
2117 qd_idx = raid_disks - 1;
2118 break;
2119
2120 case ALGORITHM_LEFT_SYMMETRIC_6:
2121 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2122 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2123 qd_idx = raid_disks - 1;
2124 break;
2125
2126 case ALGORITHM_RIGHT_SYMMETRIC_6:
2127 pd_idx = sector_div(stripe2, raid_disks-1);
2128 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2129 qd_idx = raid_disks - 1;
2130 break;
2131
2132 case ALGORITHM_PARITY_0_6:
2133 pd_idx = 0;
2134 (*dd_idx)++;
2135 qd_idx = raid_disks - 1;
2136 break;
2137
2138 default:
2139 BUG();
2140 }
2141 break;
2142 }
2143
2144 if (sh) {
2145 sh->pd_idx = pd_idx;
2146 sh->qd_idx = qd_idx;
2147 sh->ddf_layout = ddf_layout;
2148 }
2149 /*
2150 * Finally, compute the new sector number
2151 */
2152 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2153 return new_sector;
2154 }
2155
2156
2157 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2158 {
2159 struct r5conf *conf = sh->raid_conf;
2160 int raid_disks = sh->disks;
2161 int data_disks = raid_disks - conf->max_degraded;
2162 sector_t new_sector = sh->sector, check;
2163 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2164 : conf->chunk_sectors;
2165 int algorithm = previous ? conf->prev_algo
2166 : conf->algorithm;
2167 sector_t stripe;
2168 int chunk_offset;
2169 sector_t chunk_number;
2170 int dummy1, dd_idx = i;
2171 sector_t r_sector;
2172 struct stripe_head sh2;
2173
2174
2175 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2176 stripe = new_sector;
2177
2178 if (i == sh->pd_idx)
2179 return 0;
2180 switch(conf->level) {
2181 case 4: break;
2182 case 5:
2183 switch (algorithm) {
2184 case ALGORITHM_LEFT_ASYMMETRIC:
2185 case ALGORITHM_RIGHT_ASYMMETRIC:
2186 if (i > sh->pd_idx)
2187 i--;
2188 break;
2189 case ALGORITHM_LEFT_SYMMETRIC:
2190 case ALGORITHM_RIGHT_SYMMETRIC:
2191 if (i < sh->pd_idx)
2192 i += raid_disks;
2193 i -= (sh->pd_idx + 1);
2194 break;
2195 case ALGORITHM_PARITY_0:
2196 i -= 1;
2197 break;
2198 case ALGORITHM_PARITY_N:
2199 break;
2200 default:
2201 BUG();
2202 }
2203 break;
2204 case 6:
2205 if (i == sh->qd_idx)
2206 return 0; /* It is the Q disk */
2207 switch (algorithm) {
2208 case ALGORITHM_LEFT_ASYMMETRIC:
2209 case ALGORITHM_RIGHT_ASYMMETRIC:
2210 case ALGORITHM_ROTATING_ZERO_RESTART:
2211 case ALGORITHM_ROTATING_N_RESTART:
2212 if (sh->pd_idx == raid_disks-1)
2213 i--; /* Q D D D P */
2214 else if (i > sh->pd_idx)
2215 i -= 2; /* D D P Q D */
2216 break;
2217 case ALGORITHM_LEFT_SYMMETRIC:
2218 case ALGORITHM_RIGHT_SYMMETRIC:
2219 if (sh->pd_idx == raid_disks-1)
2220 i--; /* Q D D D P */
2221 else {
2222 /* D D P Q D */
2223 if (i < sh->pd_idx)
2224 i += raid_disks;
2225 i -= (sh->pd_idx + 2);
2226 }
2227 break;
2228 case ALGORITHM_PARITY_0:
2229 i -= 2;
2230 break;
2231 case ALGORITHM_PARITY_N:
2232 break;
2233 case ALGORITHM_ROTATING_N_CONTINUE:
2234 /* Like left_symmetric, but P is before Q */
2235 if (sh->pd_idx == 0)
2236 i--; /* P D D D Q */
2237 else {
2238 /* D D Q P D */
2239 if (i < sh->pd_idx)
2240 i += raid_disks;
2241 i -= (sh->pd_idx + 1);
2242 }
2243 break;
2244 case ALGORITHM_LEFT_ASYMMETRIC_6:
2245 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2246 if (i > sh->pd_idx)
2247 i--;
2248 break;
2249 case ALGORITHM_LEFT_SYMMETRIC_6:
2250 case ALGORITHM_RIGHT_SYMMETRIC_6:
2251 if (i < sh->pd_idx)
2252 i += data_disks + 1;
2253 i -= (sh->pd_idx + 1);
2254 break;
2255 case ALGORITHM_PARITY_0_6:
2256 i -= 1;
2257 break;
2258 default:
2259 BUG();
2260 }
2261 break;
2262 }
2263
2264 chunk_number = stripe * data_disks + i;
2265 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2266
2267 check = raid5_compute_sector(conf, r_sector,
2268 previous, &dummy1, &sh2);
2269 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2270 || sh2.qd_idx != sh->qd_idx) {
2271 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2272 mdname(conf->mddev));
2273 return 0;
2274 }
2275 return r_sector;
2276 }
2277
2278
2279 static void
2280 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2281 int rcw, int expand)
2282 {
2283 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2284 struct r5conf *conf = sh->raid_conf;
2285 int level = conf->level;
2286
2287 if (rcw) {
2288
2289 for (i = disks; i--; ) {
2290 struct r5dev *dev = &sh->dev[i];
2291
2292 if (dev->towrite) {
2293 set_bit(R5_LOCKED, &dev->flags);
2294 set_bit(R5_Wantdrain, &dev->flags);
2295 if (!expand)
2296 clear_bit(R5_UPTODATE, &dev->flags);
2297 s->locked++;
2298 }
2299 }
2300 /* if we are not expanding this is a proper write request, and
2301 * there will be bios with new data to be drained into the
2302 * stripe cache
2303 */
2304 if (!expand) {
2305 if (!s->locked)
2306 /* False alarm, nothing to do */
2307 return;
2308 sh->reconstruct_state = reconstruct_state_drain_run;
2309 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2310 } else
2311 sh->reconstruct_state = reconstruct_state_run;
2312
2313 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2314
2315 if (s->locked + conf->max_degraded == disks)
2316 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2317 atomic_inc(&conf->pending_full_writes);
2318 } else {
2319 BUG_ON(level == 6);
2320 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2321 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2322
2323 for (i = disks; i--; ) {
2324 struct r5dev *dev = &sh->dev[i];
2325 if (i == pd_idx)
2326 continue;
2327
2328 if (dev->towrite &&
2329 (test_bit(R5_UPTODATE, &dev->flags) ||
2330 test_bit(R5_Wantcompute, &dev->flags))) {
2331 set_bit(R5_Wantdrain, &dev->flags);
2332 set_bit(R5_LOCKED, &dev->flags);
2333 clear_bit(R5_UPTODATE, &dev->flags);
2334 s->locked++;
2335 }
2336 }
2337 if (!s->locked)
2338 /* False alarm - nothing to do */
2339 return;
2340 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2341 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2342 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2343 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2344 }
2345
2346 /* keep the parity disk(s) locked while asynchronous operations
2347 * are in flight
2348 */
2349 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2350 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2351 s->locked++;
2352
2353 if (level == 6) {
2354 int qd_idx = sh->qd_idx;
2355 struct r5dev *dev = &sh->dev[qd_idx];
2356
2357 set_bit(R5_LOCKED, &dev->flags);
2358 clear_bit(R5_UPTODATE, &dev->flags);
2359 s->locked++;
2360 }
2361
2362 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2363 __func__, (unsigned long long)sh->sector,
2364 s->locked, s->ops_request);
2365 }
2366
2367 /*
2368 * Each stripe/dev can have one or more bion attached.
2369 * toread/towrite point to the first in a chain.
2370 * The bi_next chain must be in order.
2371 */
2372 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2373 {
2374 struct bio **bip;
2375 struct r5conf *conf = sh->raid_conf;
2376 int firstwrite=0;
2377
2378 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2379 (unsigned long long)bi->bi_sector,
2380 (unsigned long long)sh->sector);
2381
2382 /*
2383 * If several bio share a stripe. The bio bi_phys_segments acts as a
2384 * reference count to avoid race. The reference count should already be
2385 * increased before this function is called (for example, in
2386 * make_request()), so other bio sharing this stripe will not free the
2387 * stripe. If a stripe is owned by one stripe, the stripe lock will
2388 * protect it.
2389 */
2390 spin_lock_irq(&sh->stripe_lock);
2391 if (forwrite) {
2392 bip = &sh->dev[dd_idx].towrite;
2393 if (*bip == NULL)
2394 firstwrite = 1;
2395 } else
2396 bip = &sh->dev[dd_idx].toread;
2397 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2398 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2399 goto overlap;
2400 bip = & (*bip)->bi_next;
2401 }
2402 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2403 goto overlap;
2404
2405 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2406 if (*bip)
2407 bi->bi_next = *bip;
2408 *bip = bi;
2409 raid5_inc_bi_active_stripes(bi);
2410
2411 if (forwrite) {
2412 /* check if page is covered */
2413 sector_t sector = sh->dev[dd_idx].sector;
2414 for (bi=sh->dev[dd_idx].towrite;
2415 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2416 bi && bi->bi_sector <= sector;
2417 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2418 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2419 sector = bi->bi_sector + (bi->bi_size>>9);
2420 }
2421 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2422 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2423 }
2424
2425 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2426 (unsigned long long)(*bip)->bi_sector,
2427 (unsigned long long)sh->sector, dd_idx);
2428 spin_unlock_irq(&sh->stripe_lock);
2429
2430 if (conf->mddev->bitmap && firstwrite) {
2431 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2432 STRIPE_SECTORS, 0);
2433 sh->bm_seq = conf->seq_flush+1;
2434 set_bit(STRIPE_BIT_DELAY, &sh->state);
2435 }
2436 return 1;
2437
2438 overlap:
2439 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2440 spin_unlock_irq(&sh->stripe_lock);
2441 return 0;
2442 }
2443
2444 static void end_reshape(struct r5conf *conf);
2445
2446 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2447 struct stripe_head *sh)
2448 {
2449 int sectors_per_chunk =
2450 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2451 int dd_idx;
2452 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2453 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2454
2455 raid5_compute_sector(conf,
2456 stripe * (disks - conf->max_degraded)
2457 *sectors_per_chunk + chunk_offset,
2458 previous,
2459 &dd_idx, sh);
2460 }
2461
2462 static void
2463 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2464 struct stripe_head_state *s, int disks,
2465 struct bio **return_bi)
2466 {
2467 int i;
2468 for (i = disks; i--; ) {
2469 struct bio *bi;
2470 int bitmap_end = 0;
2471
2472 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2473 struct md_rdev *rdev;
2474 rcu_read_lock();
2475 rdev = rcu_dereference(conf->disks[i].rdev);
2476 if (rdev && test_bit(In_sync, &rdev->flags))
2477 atomic_inc(&rdev->nr_pending);
2478 else
2479 rdev = NULL;
2480 rcu_read_unlock();
2481 if (rdev) {
2482 if (!rdev_set_badblocks(
2483 rdev,
2484 sh->sector,
2485 STRIPE_SECTORS, 0))
2486 md_error(conf->mddev, rdev);
2487 rdev_dec_pending(rdev, conf->mddev);
2488 }
2489 }
2490 spin_lock_irq(&sh->stripe_lock);
2491 /* fail all writes first */
2492 bi = sh->dev[i].towrite;
2493 sh->dev[i].towrite = NULL;
2494 spin_unlock_irq(&sh->stripe_lock);
2495 if (bi)
2496 bitmap_end = 1;
2497
2498 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2499 wake_up(&conf->wait_for_overlap);
2500
2501 while (bi && bi->bi_sector <
2502 sh->dev[i].sector + STRIPE_SECTORS) {
2503 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2504 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2505 if (!raid5_dec_bi_active_stripes(bi)) {
2506 md_write_end(conf->mddev);
2507 bi->bi_next = *return_bi;
2508 *return_bi = bi;
2509 }
2510 bi = nextbi;
2511 }
2512 if (bitmap_end)
2513 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2514 STRIPE_SECTORS, 0, 0);
2515 bitmap_end = 0;
2516 /* and fail all 'written' */
2517 bi = sh->dev[i].written;
2518 sh->dev[i].written = NULL;
2519 if (bi) bitmap_end = 1;
2520 while (bi && bi->bi_sector <
2521 sh->dev[i].sector + STRIPE_SECTORS) {
2522 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2523 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2524 if (!raid5_dec_bi_active_stripes(bi)) {
2525 md_write_end(conf->mddev);
2526 bi->bi_next = *return_bi;
2527 *return_bi = bi;
2528 }
2529 bi = bi2;
2530 }
2531
2532 /* fail any reads if this device is non-operational and
2533 * the data has not reached the cache yet.
2534 */
2535 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2536 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2537 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2538 spin_lock_irq(&sh->stripe_lock);
2539 bi = sh->dev[i].toread;
2540 sh->dev[i].toread = NULL;
2541 spin_unlock_irq(&sh->stripe_lock);
2542 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2543 wake_up(&conf->wait_for_overlap);
2544 while (bi && bi->bi_sector <
2545 sh->dev[i].sector + STRIPE_SECTORS) {
2546 struct bio *nextbi =
2547 r5_next_bio(bi, sh->dev[i].sector);
2548 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2549 if (!raid5_dec_bi_active_stripes(bi)) {
2550 bi->bi_next = *return_bi;
2551 *return_bi = bi;
2552 }
2553 bi = nextbi;
2554 }
2555 }
2556 if (bitmap_end)
2557 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2558 STRIPE_SECTORS, 0, 0);
2559 /* If we were in the middle of a write the parity block might
2560 * still be locked - so just clear all R5_LOCKED flags
2561 */
2562 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2563 }
2564
2565 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2566 if (atomic_dec_and_test(&conf->pending_full_writes))
2567 md_wakeup_thread(conf->mddev->thread);
2568 }
2569
2570 static void
2571 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2572 struct stripe_head_state *s)
2573 {
2574 int abort = 0;
2575 int i;
2576
2577 clear_bit(STRIPE_SYNCING, &sh->state);
2578 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2579 wake_up(&conf->wait_for_overlap);
2580 s->syncing = 0;
2581 s->replacing = 0;
2582 /* There is nothing more to do for sync/check/repair.
2583 * Don't even need to abort as that is handled elsewhere
2584 * if needed, and not always wanted e.g. if there is a known
2585 * bad block here.
2586 * For recover/replace we need to record a bad block on all
2587 * non-sync devices, or abort the recovery
2588 */
2589 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2590 /* During recovery devices cannot be removed, so
2591 * locking and refcounting of rdevs is not needed
2592 */
2593 for (i = 0; i < conf->raid_disks; i++) {
2594 struct md_rdev *rdev = conf->disks[i].rdev;
2595 if (rdev
2596 && !test_bit(Faulty, &rdev->flags)
2597 && !test_bit(In_sync, &rdev->flags)
2598 && !rdev_set_badblocks(rdev, sh->sector,
2599 STRIPE_SECTORS, 0))
2600 abort = 1;
2601 rdev = conf->disks[i].replacement;
2602 if (rdev
2603 && !test_bit(Faulty, &rdev->flags)
2604 && !test_bit(In_sync, &rdev->flags)
2605 && !rdev_set_badblocks(rdev, sh->sector,
2606 STRIPE_SECTORS, 0))
2607 abort = 1;
2608 }
2609 if (abort)
2610 conf->recovery_disabled =
2611 conf->mddev->recovery_disabled;
2612 }
2613 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2614 }
2615
2616 static int want_replace(struct stripe_head *sh, int disk_idx)
2617 {
2618 struct md_rdev *rdev;
2619 int rv = 0;
2620 /* Doing recovery so rcu locking not required */
2621 rdev = sh->raid_conf->disks[disk_idx].replacement;
2622 if (rdev
2623 && !test_bit(Faulty, &rdev->flags)
2624 && !test_bit(In_sync, &rdev->flags)
2625 && (rdev->recovery_offset <= sh->sector
2626 || rdev->mddev->recovery_cp <= sh->sector))
2627 rv = 1;
2628
2629 return rv;
2630 }
2631
2632 /* fetch_block - checks the given member device to see if its data needs
2633 * to be read or computed to satisfy a request.
2634 *
2635 * Returns 1 when no more member devices need to be checked, otherwise returns
2636 * 0 to tell the loop in handle_stripe_fill to continue
2637 */
2638 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2639 int disk_idx, int disks)
2640 {
2641 struct r5dev *dev = &sh->dev[disk_idx];
2642 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2643 &sh->dev[s->failed_num[1]] };
2644
2645 /* is the data in this block needed, and can we get it? */
2646 if (!test_bit(R5_LOCKED, &dev->flags) &&
2647 !test_bit(R5_UPTODATE, &dev->flags) &&
2648 (dev->toread ||
2649 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2650 s->syncing || s->expanding ||
2651 (s->replacing && want_replace(sh, disk_idx)) ||
2652 (s->failed >= 1 && fdev[0]->toread) ||
2653 (s->failed >= 2 && fdev[1]->toread) ||
2654 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2655 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2656 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2657 /* we would like to get this block, possibly by computing it,
2658 * otherwise read it if the backing disk is insync
2659 */
2660 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2661 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2662 if ((s->uptodate == disks - 1) &&
2663 (s->failed && (disk_idx == s->failed_num[0] ||
2664 disk_idx == s->failed_num[1]))) {
2665 /* have disk failed, and we're requested to fetch it;
2666 * do compute it
2667 */
2668 pr_debug("Computing stripe %llu block %d\n",
2669 (unsigned long long)sh->sector, disk_idx);
2670 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2671 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2672 set_bit(R5_Wantcompute, &dev->flags);
2673 sh->ops.target = disk_idx;
2674 sh->ops.target2 = -1; /* no 2nd target */
2675 s->req_compute = 1;
2676 /* Careful: from this point on 'uptodate' is in the eye
2677 * of raid_run_ops which services 'compute' operations
2678 * before writes. R5_Wantcompute flags a block that will
2679 * be R5_UPTODATE by the time it is needed for a
2680 * subsequent operation.
2681 */
2682 s->uptodate++;
2683 return 1;
2684 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2685 /* Computing 2-failure is *very* expensive; only
2686 * do it if failed >= 2
2687 */
2688 int other;
2689 for (other = disks; other--; ) {
2690 if (other == disk_idx)
2691 continue;
2692 if (!test_bit(R5_UPTODATE,
2693 &sh->dev[other].flags))
2694 break;
2695 }
2696 BUG_ON(other < 0);
2697 pr_debug("Computing stripe %llu blocks %d,%d\n",
2698 (unsigned long long)sh->sector,
2699 disk_idx, other);
2700 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2701 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2702 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2703 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2704 sh->ops.target = disk_idx;
2705 sh->ops.target2 = other;
2706 s->uptodate += 2;
2707 s->req_compute = 1;
2708 return 1;
2709 } else if (test_bit(R5_Insync, &dev->flags)) {
2710 set_bit(R5_LOCKED, &dev->flags);
2711 set_bit(R5_Wantread, &dev->flags);
2712 s->locked++;
2713 pr_debug("Reading block %d (sync=%d)\n",
2714 disk_idx, s->syncing);
2715 }
2716 }
2717
2718 return 0;
2719 }
2720
2721 /**
2722 * handle_stripe_fill - read or compute data to satisfy pending requests.
2723 */
2724 static void handle_stripe_fill(struct stripe_head *sh,
2725 struct stripe_head_state *s,
2726 int disks)
2727 {
2728 int i;
2729
2730 /* look for blocks to read/compute, skip this if a compute
2731 * is already in flight, or if the stripe contents are in the
2732 * midst of changing due to a write
2733 */
2734 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2735 !sh->reconstruct_state)
2736 for (i = disks; i--; )
2737 if (fetch_block(sh, s, i, disks))
2738 break;
2739 set_bit(STRIPE_HANDLE, &sh->state);
2740 }
2741
2742
2743 /* handle_stripe_clean_event
2744 * any written block on an uptodate or failed drive can be returned.
2745 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2746 * never LOCKED, so we don't need to test 'failed' directly.
2747 */
2748 static void handle_stripe_clean_event(struct r5conf *conf,
2749 struct stripe_head *sh, int disks, struct bio **return_bi)
2750 {
2751 int i;
2752 struct r5dev *dev;
2753 int discard_pending = 0;
2754
2755 for (i = disks; i--; )
2756 if (sh->dev[i].written) {
2757 dev = &sh->dev[i];
2758 if (!test_bit(R5_LOCKED, &dev->flags) &&
2759 (test_bit(R5_UPTODATE, &dev->flags) ||
2760 test_bit(R5_Discard, &dev->flags))) {
2761 /* We can return any write requests */
2762 struct bio *wbi, *wbi2;
2763 pr_debug("Return write for disc %d\n", i);
2764 if (test_and_clear_bit(R5_Discard, &dev->flags))
2765 clear_bit(R5_UPTODATE, &dev->flags);
2766 wbi = dev->written;
2767 dev->written = NULL;
2768 while (wbi && wbi->bi_sector <
2769 dev->sector + STRIPE_SECTORS) {
2770 wbi2 = r5_next_bio(wbi, dev->sector);
2771 if (!raid5_dec_bi_active_stripes(wbi)) {
2772 md_write_end(conf->mddev);
2773 wbi->bi_next = *return_bi;
2774 *return_bi = wbi;
2775 }
2776 wbi = wbi2;
2777 }
2778 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2779 STRIPE_SECTORS,
2780 !test_bit(STRIPE_DEGRADED, &sh->state),
2781 0);
2782 } else if (test_bit(R5_Discard, &dev->flags))
2783 discard_pending = 1;
2784 }
2785 if (!discard_pending &&
2786 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
2787 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2788 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2789 if (sh->qd_idx >= 0) {
2790 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2791 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
2792 }
2793 /* now that discard is done we can proceed with any sync */
2794 clear_bit(STRIPE_DISCARD, &sh->state);
2795 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2796 set_bit(STRIPE_HANDLE, &sh->state);
2797
2798 }
2799
2800 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2801 if (atomic_dec_and_test(&conf->pending_full_writes))
2802 md_wakeup_thread(conf->mddev->thread);
2803 }
2804
2805 static void handle_stripe_dirtying(struct r5conf *conf,
2806 struct stripe_head *sh,
2807 struct stripe_head_state *s,
2808 int disks)
2809 {
2810 int rmw = 0, rcw = 0, i;
2811 sector_t recovery_cp = conf->mddev->recovery_cp;
2812
2813 /* RAID6 requires 'rcw' in current implementation.
2814 * Otherwise, check whether resync is now happening or should start.
2815 * If yes, then the array is dirty (after unclean shutdown or
2816 * initial creation), so parity in some stripes might be inconsistent.
2817 * In this case, we need to always do reconstruct-write, to ensure
2818 * that in case of drive failure or read-error correction, we
2819 * generate correct data from the parity.
2820 */
2821 if (conf->max_degraded == 2 ||
2822 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2823 /* Calculate the real rcw later - for now make it
2824 * look like rcw is cheaper
2825 */
2826 rcw = 1; rmw = 2;
2827 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2828 conf->max_degraded, (unsigned long long)recovery_cp,
2829 (unsigned long long)sh->sector);
2830 } else for (i = disks; i--; ) {
2831 /* would I have to read this buffer for read_modify_write */
2832 struct r5dev *dev = &sh->dev[i];
2833 if ((dev->towrite || i == sh->pd_idx) &&
2834 !test_bit(R5_LOCKED, &dev->flags) &&
2835 !(test_bit(R5_UPTODATE, &dev->flags) ||
2836 test_bit(R5_Wantcompute, &dev->flags))) {
2837 if (test_bit(R5_Insync, &dev->flags))
2838 rmw++;
2839 else
2840 rmw += 2*disks; /* cannot read it */
2841 }
2842 /* Would I have to read this buffer for reconstruct_write */
2843 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2844 !test_bit(R5_LOCKED, &dev->flags) &&
2845 !(test_bit(R5_UPTODATE, &dev->flags) ||
2846 test_bit(R5_Wantcompute, &dev->flags))) {
2847 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2848 else
2849 rcw += 2*disks;
2850 }
2851 }
2852 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2853 (unsigned long long)sh->sector, rmw, rcw);
2854 set_bit(STRIPE_HANDLE, &sh->state);
2855 if (rmw < rcw && rmw > 0) {
2856 /* prefer read-modify-write, but need to get some data */
2857 if (conf->mddev->queue)
2858 blk_add_trace_msg(conf->mddev->queue,
2859 "raid5 rmw %llu %d",
2860 (unsigned long long)sh->sector, rmw);
2861 for (i = disks; i--; ) {
2862 struct r5dev *dev = &sh->dev[i];
2863 if ((dev->towrite || i == sh->pd_idx) &&
2864 !test_bit(R5_LOCKED, &dev->flags) &&
2865 !(test_bit(R5_UPTODATE, &dev->flags) ||
2866 test_bit(R5_Wantcompute, &dev->flags)) &&
2867 test_bit(R5_Insync, &dev->flags)) {
2868 if (
2869 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2870 pr_debug("Read_old block "
2871 "%d for r-m-w\n", i);
2872 set_bit(R5_LOCKED, &dev->flags);
2873 set_bit(R5_Wantread, &dev->flags);
2874 s->locked++;
2875 } else {
2876 set_bit(STRIPE_DELAYED, &sh->state);
2877 set_bit(STRIPE_HANDLE, &sh->state);
2878 }
2879 }
2880 }
2881 }
2882 if (rcw <= rmw && rcw > 0) {
2883 /* want reconstruct write, but need to get some data */
2884 int qread =0;
2885 rcw = 0;
2886 for (i = disks; i--; ) {
2887 struct r5dev *dev = &sh->dev[i];
2888 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2889 i != sh->pd_idx && i != sh->qd_idx &&
2890 !test_bit(R5_LOCKED, &dev->flags) &&
2891 !(test_bit(R5_UPTODATE, &dev->flags) ||
2892 test_bit(R5_Wantcompute, &dev->flags))) {
2893 rcw++;
2894 if (!test_bit(R5_Insync, &dev->flags))
2895 continue; /* it's a failed drive */
2896 if (
2897 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2898 pr_debug("Read_old block "
2899 "%d for Reconstruct\n", i);
2900 set_bit(R5_LOCKED, &dev->flags);
2901 set_bit(R5_Wantread, &dev->flags);
2902 s->locked++;
2903 qread++;
2904 } else {
2905 set_bit(STRIPE_DELAYED, &sh->state);
2906 set_bit(STRIPE_HANDLE, &sh->state);
2907 }
2908 }
2909 }
2910 if (rcw && conf->mddev->queue)
2911 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2912 (unsigned long long)sh->sector,
2913 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2914 }
2915 /* now if nothing is locked, and if we have enough data,
2916 * we can start a write request
2917 */
2918 /* since handle_stripe can be called at any time we need to handle the
2919 * case where a compute block operation has been submitted and then a
2920 * subsequent call wants to start a write request. raid_run_ops only
2921 * handles the case where compute block and reconstruct are requested
2922 * simultaneously. If this is not the case then new writes need to be
2923 * held off until the compute completes.
2924 */
2925 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2926 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2927 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2928 schedule_reconstruction(sh, s, rcw == 0, 0);
2929 }
2930
2931 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2932 struct stripe_head_state *s, int disks)
2933 {
2934 struct r5dev *dev = NULL;
2935
2936 set_bit(STRIPE_HANDLE, &sh->state);
2937
2938 switch (sh->check_state) {
2939 case check_state_idle:
2940 /* start a new check operation if there are no failures */
2941 if (s->failed == 0) {
2942 BUG_ON(s->uptodate != disks);
2943 sh->check_state = check_state_run;
2944 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2945 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2946 s->uptodate--;
2947 break;
2948 }
2949 dev = &sh->dev[s->failed_num[0]];
2950 /* fall through */
2951 case check_state_compute_result:
2952 sh->check_state = check_state_idle;
2953 if (!dev)
2954 dev = &sh->dev[sh->pd_idx];
2955
2956 /* check that a write has not made the stripe insync */
2957 if (test_bit(STRIPE_INSYNC, &sh->state))
2958 break;
2959
2960 /* either failed parity check, or recovery is happening */
2961 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2962 BUG_ON(s->uptodate != disks);
2963
2964 set_bit(R5_LOCKED, &dev->flags);
2965 s->locked++;
2966 set_bit(R5_Wantwrite, &dev->flags);
2967
2968 clear_bit(STRIPE_DEGRADED, &sh->state);
2969 set_bit(STRIPE_INSYNC, &sh->state);
2970 break;
2971 case check_state_run:
2972 break; /* we will be called again upon completion */
2973 case check_state_check_result:
2974 sh->check_state = check_state_idle;
2975
2976 /* if a failure occurred during the check operation, leave
2977 * STRIPE_INSYNC not set and let the stripe be handled again
2978 */
2979 if (s->failed)
2980 break;
2981
2982 /* handle a successful check operation, if parity is correct
2983 * we are done. Otherwise update the mismatch count and repair
2984 * parity if !MD_RECOVERY_CHECK
2985 */
2986 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2987 /* parity is correct (on disc,
2988 * not in buffer any more)
2989 */
2990 set_bit(STRIPE_INSYNC, &sh->state);
2991 else {
2992 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
2993 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2994 /* don't try to repair!! */
2995 set_bit(STRIPE_INSYNC, &sh->state);
2996 else {
2997 sh->check_state = check_state_compute_run;
2998 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2999 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3000 set_bit(R5_Wantcompute,
3001 &sh->dev[sh->pd_idx].flags);
3002 sh->ops.target = sh->pd_idx;
3003 sh->ops.target2 = -1;
3004 s->uptodate++;
3005 }
3006 }
3007 break;
3008 case check_state_compute_run:
3009 break;
3010 default:
3011 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3012 __func__, sh->check_state,
3013 (unsigned long long) sh->sector);
3014 BUG();
3015 }
3016 }
3017
3018
3019 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3020 struct stripe_head_state *s,
3021 int disks)
3022 {
3023 int pd_idx = sh->pd_idx;
3024 int qd_idx = sh->qd_idx;
3025 struct r5dev *dev;
3026
3027 set_bit(STRIPE_HANDLE, &sh->state);
3028
3029 BUG_ON(s->failed > 2);
3030
3031 /* Want to check and possibly repair P and Q.
3032 * However there could be one 'failed' device, in which
3033 * case we can only check one of them, possibly using the
3034 * other to generate missing data
3035 */
3036
3037 switch (sh->check_state) {
3038 case check_state_idle:
3039 /* start a new check operation if there are < 2 failures */
3040 if (s->failed == s->q_failed) {
3041 /* The only possible failed device holds Q, so it
3042 * makes sense to check P (If anything else were failed,
3043 * we would have used P to recreate it).
3044 */
3045 sh->check_state = check_state_run;
3046 }
3047 if (!s->q_failed && s->failed < 2) {
3048 /* Q is not failed, and we didn't use it to generate
3049 * anything, so it makes sense to check it
3050 */
3051 if (sh->check_state == check_state_run)
3052 sh->check_state = check_state_run_pq;
3053 else
3054 sh->check_state = check_state_run_q;
3055 }
3056
3057 /* discard potentially stale zero_sum_result */
3058 sh->ops.zero_sum_result = 0;
3059
3060 if (sh->check_state == check_state_run) {
3061 /* async_xor_zero_sum destroys the contents of P */
3062 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3063 s->uptodate--;
3064 }
3065 if (sh->check_state >= check_state_run &&
3066 sh->check_state <= check_state_run_pq) {
3067 /* async_syndrome_zero_sum preserves P and Q, so
3068 * no need to mark them !uptodate here
3069 */
3070 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3071 break;
3072 }
3073
3074 /* we have 2-disk failure */
3075 BUG_ON(s->failed != 2);
3076 /* fall through */
3077 case check_state_compute_result:
3078 sh->check_state = check_state_idle;
3079
3080 /* check that a write has not made the stripe insync */
3081 if (test_bit(STRIPE_INSYNC, &sh->state))
3082 break;
3083
3084 /* now write out any block on a failed drive,
3085 * or P or Q if they were recomputed
3086 */
3087 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3088 if (s->failed == 2) {
3089 dev = &sh->dev[s->failed_num[1]];
3090 s->locked++;
3091 set_bit(R5_LOCKED, &dev->flags);
3092 set_bit(R5_Wantwrite, &dev->flags);
3093 }
3094 if (s->failed >= 1) {
3095 dev = &sh->dev[s->failed_num[0]];
3096 s->locked++;
3097 set_bit(R5_LOCKED, &dev->flags);
3098 set_bit(R5_Wantwrite, &dev->flags);
3099 }
3100 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3101 dev = &sh->dev[pd_idx];
3102 s->locked++;
3103 set_bit(R5_LOCKED, &dev->flags);
3104 set_bit(R5_Wantwrite, &dev->flags);
3105 }
3106 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3107 dev = &sh->dev[qd_idx];
3108 s->locked++;
3109 set_bit(R5_LOCKED, &dev->flags);
3110 set_bit(R5_Wantwrite, &dev->flags);
3111 }
3112 clear_bit(STRIPE_DEGRADED, &sh->state);
3113
3114 set_bit(STRIPE_INSYNC, &sh->state);
3115 break;
3116 case check_state_run:
3117 case check_state_run_q:
3118 case check_state_run_pq:
3119 break; /* we will be called again upon completion */
3120 case check_state_check_result:
3121 sh->check_state = check_state_idle;
3122
3123 /* handle a successful check operation, if parity is correct
3124 * we are done. Otherwise update the mismatch count and repair
3125 * parity if !MD_RECOVERY_CHECK
3126 */
3127 if (sh->ops.zero_sum_result == 0) {
3128 /* both parities are correct */
3129 if (!s->failed)
3130 set_bit(STRIPE_INSYNC, &sh->state);
3131 else {
3132 /* in contrast to the raid5 case we can validate
3133 * parity, but still have a failure to write
3134 * back
3135 */
3136 sh->check_state = check_state_compute_result;
3137 /* Returning at this point means that we may go
3138 * off and bring p and/or q uptodate again so
3139 * we make sure to check zero_sum_result again
3140 * to verify if p or q need writeback
3141 */
3142 }
3143 } else {
3144 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3145 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3146 /* don't try to repair!! */
3147 set_bit(STRIPE_INSYNC, &sh->state);
3148 else {
3149 int *target = &sh->ops.target;
3150
3151 sh->ops.target = -1;
3152 sh->ops.target2 = -1;
3153 sh->check_state = check_state_compute_run;
3154 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3155 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3156 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3157 set_bit(R5_Wantcompute,
3158 &sh->dev[pd_idx].flags);
3159 *target = pd_idx;
3160 target = &sh->ops.target2;
3161 s->uptodate++;
3162 }
3163 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3164 set_bit(R5_Wantcompute,
3165 &sh->dev[qd_idx].flags);
3166 *target = qd_idx;
3167 s->uptodate++;
3168 }
3169 }
3170 }
3171 break;
3172 case check_state_compute_run:
3173 break;
3174 default:
3175 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3176 __func__, sh->check_state,
3177 (unsigned long long) sh->sector);
3178 BUG();
3179 }
3180 }
3181
3182 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3183 {
3184 int i;
3185
3186 /* We have read all the blocks in this stripe and now we need to
3187 * copy some of them into a target stripe for expand.
3188 */
3189 struct dma_async_tx_descriptor *tx = NULL;
3190 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3191 for (i = 0; i < sh->disks; i++)
3192 if (i != sh->pd_idx && i != sh->qd_idx) {
3193 int dd_idx, j;
3194 struct stripe_head *sh2;
3195 struct async_submit_ctl submit;
3196
3197 sector_t bn = compute_blocknr(sh, i, 1);
3198 sector_t s = raid5_compute_sector(conf, bn, 0,
3199 &dd_idx, NULL);
3200 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3201 if (sh2 == NULL)
3202 /* so far only the early blocks of this stripe
3203 * have been requested. When later blocks
3204 * get requested, we will try again
3205 */
3206 continue;
3207 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3208 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3209 /* must have already done this block */
3210 release_stripe(sh2);
3211 continue;
3212 }
3213
3214 /* place all the copies on one channel */
3215 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3216 tx = async_memcpy(sh2->dev[dd_idx].page,
3217 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3218 &submit);
3219
3220 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3221 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3222 for (j = 0; j < conf->raid_disks; j++)
3223 if (j != sh2->pd_idx &&
3224 j != sh2->qd_idx &&
3225 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3226 break;
3227 if (j == conf->raid_disks) {
3228 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3229 set_bit(STRIPE_HANDLE, &sh2->state);
3230 }
3231 release_stripe(sh2);
3232
3233 }
3234 /* done submitting copies, wait for them to complete */
3235 async_tx_quiesce(&tx);
3236 }
3237
3238 /*
3239 * handle_stripe - do things to a stripe.
3240 *
3241 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3242 * state of various bits to see what needs to be done.
3243 * Possible results:
3244 * return some read requests which now have data
3245 * return some write requests which are safely on storage
3246 * schedule a read on some buffers
3247 * schedule a write of some buffers
3248 * return confirmation of parity correctness
3249 *
3250 */
3251
3252 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3253 {
3254 struct r5conf *conf = sh->raid_conf;
3255 int disks = sh->disks;
3256 struct r5dev *dev;
3257 int i;
3258 int do_recovery = 0;
3259
3260 memset(s, 0, sizeof(*s));
3261
3262 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3263 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3264 s->failed_num[0] = -1;
3265 s->failed_num[1] = -1;
3266
3267 /* Now to look around and see what can be done */
3268 rcu_read_lock();
3269 for (i=disks; i--; ) {
3270 struct md_rdev *rdev;
3271 sector_t first_bad;
3272 int bad_sectors;
3273 int is_bad = 0;
3274
3275 dev = &sh->dev[i];
3276
3277 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3278 i, dev->flags,
3279 dev->toread, dev->towrite, dev->written);
3280 /* maybe we can reply to a read
3281 *
3282 * new wantfill requests are only permitted while
3283 * ops_complete_biofill is guaranteed to be inactive
3284 */
3285 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3286 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3287 set_bit(R5_Wantfill, &dev->flags);
3288
3289 /* now count some things */
3290 if (test_bit(R5_LOCKED, &dev->flags))
3291 s->locked++;
3292 if (test_bit(R5_UPTODATE, &dev->flags))
3293 s->uptodate++;
3294 if (test_bit(R5_Wantcompute, &dev->flags)) {
3295 s->compute++;
3296 BUG_ON(s->compute > 2);
3297 }
3298
3299 if (test_bit(R5_Wantfill, &dev->flags))
3300 s->to_fill++;
3301 else if (dev->toread)
3302 s->to_read++;
3303 if (dev->towrite) {
3304 s->to_write++;
3305 if (!test_bit(R5_OVERWRITE, &dev->flags))
3306 s->non_overwrite++;
3307 }
3308 if (dev->written)
3309 s->written++;
3310 /* Prefer to use the replacement for reads, but only
3311 * if it is recovered enough and has no bad blocks.
3312 */
3313 rdev = rcu_dereference(conf->disks[i].replacement);
3314 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3315 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3316 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3317 &first_bad, &bad_sectors))
3318 set_bit(R5_ReadRepl, &dev->flags);
3319 else {
3320 if (rdev)
3321 set_bit(R5_NeedReplace, &dev->flags);
3322 rdev = rcu_dereference(conf->disks[i].rdev);
3323 clear_bit(R5_ReadRepl, &dev->flags);
3324 }
3325 if (rdev && test_bit(Faulty, &rdev->flags))
3326 rdev = NULL;
3327 if (rdev) {
3328 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3329 &first_bad, &bad_sectors);
3330 if (s->blocked_rdev == NULL
3331 && (test_bit(Blocked, &rdev->flags)
3332 || is_bad < 0)) {
3333 if (is_bad < 0)
3334 set_bit(BlockedBadBlocks,
3335 &rdev->flags);
3336 s->blocked_rdev = rdev;
3337 atomic_inc(&rdev->nr_pending);
3338 }
3339 }
3340 clear_bit(R5_Insync, &dev->flags);
3341 if (!rdev)
3342 /* Not in-sync */;
3343 else if (is_bad) {
3344 /* also not in-sync */
3345 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3346 test_bit(R5_UPTODATE, &dev->flags)) {
3347 /* treat as in-sync, but with a read error
3348 * which we can now try to correct
3349 */
3350 set_bit(R5_Insync, &dev->flags);
3351 set_bit(R5_ReadError, &dev->flags);
3352 }
3353 } else if (test_bit(In_sync, &rdev->flags))
3354 set_bit(R5_Insync, &dev->flags);
3355 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3356 /* in sync if before recovery_offset */
3357 set_bit(R5_Insync, &dev->flags);
3358 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3359 test_bit(R5_Expanded, &dev->flags))
3360 /* If we've reshaped into here, we assume it is Insync.
3361 * We will shortly update recovery_offset to make
3362 * it official.
3363 */
3364 set_bit(R5_Insync, &dev->flags);
3365
3366 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3367 /* This flag does not apply to '.replacement'
3368 * only to .rdev, so make sure to check that*/
3369 struct md_rdev *rdev2 = rcu_dereference(
3370 conf->disks[i].rdev);
3371 if (rdev2 == rdev)
3372 clear_bit(R5_Insync, &dev->flags);
3373 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3374 s->handle_bad_blocks = 1;
3375 atomic_inc(&rdev2->nr_pending);
3376 } else
3377 clear_bit(R5_WriteError, &dev->flags);
3378 }
3379 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3380 /* This flag does not apply to '.replacement'
3381 * only to .rdev, so make sure to check that*/
3382 struct md_rdev *rdev2 = rcu_dereference(
3383 conf->disks[i].rdev);
3384 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3385 s->handle_bad_blocks = 1;
3386 atomic_inc(&rdev2->nr_pending);
3387 } else
3388 clear_bit(R5_MadeGood, &dev->flags);
3389 }
3390 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3391 struct md_rdev *rdev2 = rcu_dereference(
3392 conf->disks[i].replacement);
3393 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3394 s->handle_bad_blocks = 1;
3395 atomic_inc(&rdev2->nr_pending);
3396 } else
3397 clear_bit(R5_MadeGoodRepl, &dev->flags);
3398 }
3399 if (!test_bit(R5_Insync, &dev->flags)) {
3400 /* The ReadError flag will just be confusing now */
3401 clear_bit(R5_ReadError, &dev->flags);
3402 clear_bit(R5_ReWrite, &dev->flags);
3403 }
3404 if (test_bit(R5_ReadError, &dev->flags))
3405 clear_bit(R5_Insync, &dev->flags);
3406 if (!test_bit(R5_Insync, &dev->flags)) {
3407 if (s->failed < 2)
3408 s->failed_num[s->failed] = i;
3409 s->failed++;
3410 if (rdev && !test_bit(Faulty, &rdev->flags))
3411 do_recovery = 1;
3412 }
3413 }
3414 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3415 /* If there is a failed device being replaced,
3416 * we must be recovering.
3417 * else if we are after recovery_cp, we must be syncing
3418 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3419 * else we can only be replacing
3420 * sync and recovery both need to read all devices, and so
3421 * use the same flag.
3422 */
3423 if (do_recovery ||
3424 sh->sector >= conf->mddev->recovery_cp ||
3425 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3426 s->syncing = 1;
3427 else
3428 s->replacing = 1;
3429 }
3430 rcu_read_unlock();
3431 }
3432
3433 static void handle_stripe(struct stripe_head *sh)
3434 {
3435 struct stripe_head_state s;
3436 struct r5conf *conf = sh->raid_conf;
3437 int i;
3438 int prexor;
3439 int disks = sh->disks;
3440 struct r5dev *pdev, *qdev;
3441
3442 clear_bit(STRIPE_HANDLE, &sh->state);
3443 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3444 /* already being handled, ensure it gets handled
3445 * again when current action finishes */
3446 set_bit(STRIPE_HANDLE, &sh->state);
3447 return;
3448 }
3449
3450 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3451 spin_lock(&sh->stripe_lock);
3452 /* Cannot process 'sync' concurrently with 'discard' */
3453 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3454 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3455 set_bit(STRIPE_SYNCING, &sh->state);
3456 clear_bit(STRIPE_INSYNC, &sh->state);
3457 }
3458 spin_unlock(&sh->stripe_lock);
3459 }
3460 clear_bit(STRIPE_DELAYED, &sh->state);
3461
3462 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3463 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3464 (unsigned long long)sh->sector, sh->state,
3465 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3466 sh->check_state, sh->reconstruct_state);
3467
3468 analyse_stripe(sh, &s);
3469
3470 if (s.handle_bad_blocks) {
3471 set_bit(STRIPE_HANDLE, &sh->state);
3472 goto finish;
3473 }
3474
3475 if (unlikely(s.blocked_rdev)) {
3476 if (s.syncing || s.expanding || s.expanded ||
3477 s.replacing || s.to_write || s.written) {
3478 set_bit(STRIPE_HANDLE, &sh->state);
3479 goto finish;
3480 }
3481 /* There is nothing for the blocked_rdev to block */
3482 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3483 s.blocked_rdev = NULL;
3484 }
3485
3486 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3487 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3488 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3489 }
3490
3491 pr_debug("locked=%d uptodate=%d to_read=%d"
3492 " to_write=%d failed=%d failed_num=%d,%d\n",
3493 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3494 s.failed_num[0], s.failed_num[1]);
3495 /* check if the array has lost more than max_degraded devices and,
3496 * if so, some requests might need to be failed.
3497 */
3498 if (s.failed > conf->max_degraded) {
3499 sh->check_state = 0;
3500 sh->reconstruct_state = 0;
3501 if (s.to_read+s.to_write+s.written)
3502 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3503 if (s.syncing + s.replacing)
3504 handle_failed_sync(conf, sh, &s);
3505 }
3506
3507 /* Now we check to see if any write operations have recently
3508 * completed
3509 */
3510 prexor = 0;
3511 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3512 prexor = 1;
3513 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3514 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3515 sh->reconstruct_state = reconstruct_state_idle;
3516
3517 /* All the 'written' buffers and the parity block are ready to
3518 * be written back to disk
3519 */
3520 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3521 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3522 BUG_ON(sh->qd_idx >= 0 &&
3523 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3524 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3525 for (i = disks; i--; ) {
3526 struct r5dev *dev = &sh->dev[i];
3527 if (test_bit(R5_LOCKED, &dev->flags) &&
3528 (i == sh->pd_idx || i == sh->qd_idx ||
3529 dev->written)) {
3530 pr_debug("Writing block %d\n", i);
3531 set_bit(R5_Wantwrite, &dev->flags);
3532 if (prexor)
3533 continue;
3534 if (!test_bit(R5_Insync, &dev->flags) ||
3535 ((i == sh->pd_idx || i == sh->qd_idx) &&
3536 s.failed == 0))
3537 set_bit(STRIPE_INSYNC, &sh->state);
3538 }
3539 }
3540 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3541 s.dec_preread_active = 1;
3542 }
3543
3544 /*
3545 * might be able to return some write requests if the parity blocks
3546 * are safe, or on a failed drive
3547 */
3548 pdev = &sh->dev[sh->pd_idx];
3549 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3550 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3551 qdev = &sh->dev[sh->qd_idx];
3552 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3553 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3554 || conf->level < 6;
3555
3556 if (s.written &&
3557 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3558 && !test_bit(R5_LOCKED, &pdev->flags)
3559 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3560 test_bit(R5_Discard, &pdev->flags))))) &&
3561 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3562 && !test_bit(R5_LOCKED, &qdev->flags)
3563 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3564 test_bit(R5_Discard, &qdev->flags))))))
3565 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3566
3567 /* Now we might consider reading some blocks, either to check/generate
3568 * parity, or to satisfy requests
3569 * or to load a block that is being partially written.
3570 */
3571 if (s.to_read || s.non_overwrite
3572 || (conf->level == 6 && s.to_write && s.failed)
3573 || (s.syncing && (s.uptodate + s.compute < disks))
3574 || s.replacing
3575 || s.expanding)
3576 handle_stripe_fill(sh, &s, disks);
3577
3578 /* Now to consider new write requests and what else, if anything
3579 * should be read. We do not handle new writes when:
3580 * 1/ A 'write' operation (copy+xor) is already in flight.
3581 * 2/ A 'check' operation is in flight, as it may clobber the parity
3582 * block.
3583 */
3584 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3585 handle_stripe_dirtying(conf, sh, &s, disks);
3586
3587 /* maybe we need to check and possibly fix the parity for this stripe
3588 * Any reads will already have been scheduled, so we just see if enough
3589 * data is available. The parity check is held off while parity
3590 * dependent operations are in flight.
3591 */
3592 if (sh->check_state ||
3593 (s.syncing && s.locked == 0 &&
3594 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3595 !test_bit(STRIPE_INSYNC, &sh->state))) {
3596 if (conf->level == 6)
3597 handle_parity_checks6(conf, sh, &s, disks);
3598 else
3599 handle_parity_checks5(conf, sh, &s, disks);
3600 }
3601
3602 if (s.replacing && s.locked == 0
3603 && !test_bit(STRIPE_INSYNC, &sh->state)) {
3604 /* Write out to replacement devices where possible */
3605 for (i = 0; i < conf->raid_disks; i++)
3606 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3607 test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3608 set_bit(R5_WantReplace, &sh->dev[i].flags);
3609 set_bit(R5_LOCKED, &sh->dev[i].flags);
3610 s.locked++;
3611 }
3612 set_bit(STRIPE_INSYNC, &sh->state);
3613 }
3614 if ((s.syncing || s.replacing) && s.locked == 0 &&
3615 test_bit(STRIPE_INSYNC, &sh->state)) {
3616 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3617 clear_bit(STRIPE_SYNCING, &sh->state);
3618 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3619 wake_up(&conf->wait_for_overlap);
3620 }
3621
3622 /* If the failed drives are just a ReadError, then we might need
3623 * to progress the repair/check process
3624 */
3625 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3626 for (i = 0; i < s.failed; i++) {
3627 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3628 if (test_bit(R5_ReadError, &dev->flags)
3629 && !test_bit(R5_LOCKED, &dev->flags)
3630 && test_bit(R5_UPTODATE, &dev->flags)
3631 ) {
3632 if (!test_bit(R5_ReWrite, &dev->flags)) {
3633 set_bit(R5_Wantwrite, &dev->flags);
3634 set_bit(R5_ReWrite, &dev->flags);
3635 set_bit(R5_LOCKED, &dev->flags);
3636 s.locked++;
3637 } else {
3638 /* let's read it back */
3639 set_bit(R5_Wantread, &dev->flags);
3640 set_bit(R5_LOCKED, &dev->flags);
3641 s.locked++;
3642 }
3643 }
3644 }
3645
3646
3647 /* Finish reconstruct operations initiated by the expansion process */
3648 if (sh->reconstruct_state == reconstruct_state_result) {
3649 struct stripe_head *sh_src
3650 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3651 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3652 /* sh cannot be written until sh_src has been read.
3653 * so arrange for sh to be delayed a little
3654 */
3655 set_bit(STRIPE_DELAYED, &sh->state);
3656 set_bit(STRIPE_HANDLE, &sh->state);
3657 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3658 &sh_src->state))
3659 atomic_inc(&conf->preread_active_stripes);
3660 release_stripe(sh_src);
3661 goto finish;
3662 }
3663 if (sh_src)
3664 release_stripe(sh_src);
3665
3666 sh->reconstruct_state = reconstruct_state_idle;
3667 clear_bit(STRIPE_EXPANDING, &sh->state);
3668 for (i = conf->raid_disks; i--; ) {
3669 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3670 set_bit(R5_LOCKED, &sh->dev[i].flags);
3671 s.locked++;
3672 }
3673 }
3674
3675 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3676 !sh->reconstruct_state) {
3677 /* Need to write out all blocks after computing parity */
3678 sh->disks = conf->raid_disks;
3679 stripe_set_idx(sh->sector, conf, 0, sh);
3680 schedule_reconstruction(sh, &s, 1, 1);
3681 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3682 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3683 atomic_dec(&conf->reshape_stripes);
3684 wake_up(&conf->wait_for_overlap);
3685 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3686 }
3687
3688 if (s.expanding && s.locked == 0 &&
3689 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3690 handle_stripe_expansion(conf, sh);
3691
3692 finish:
3693 /* wait for this device to become unblocked */
3694 if (unlikely(s.blocked_rdev)) {
3695 if (conf->mddev->external)
3696 md_wait_for_blocked_rdev(s.blocked_rdev,
3697 conf->mddev);
3698 else
3699 /* Internal metadata will immediately
3700 * be written by raid5d, so we don't
3701 * need to wait here.
3702 */
3703 rdev_dec_pending(s.blocked_rdev,
3704 conf->mddev);
3705 }
3706
3707 if (s.handle_bad_blocks)
3708 for (i = disks; i--; ) {
3709 struct md_rdev *rdev;
3710 struct r5dev *dev = &sh->dev[i];
3711 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3712 /* We own a safe reference to the rdev */
3713 rdev = conf->disks[i].rdev;
3714 if (!rdev_set_badblocks(rdev, sh->sector,
3715 STRIPE_SECTORS, 0))
3716 md_error(conf->mddev, rdev);
3717 rdev_dec_pending(rdev, conf->mddev);
3718 }
3719 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3720 rdev = conf->disks[i].rdev;
3721 rdev_clear_badblocks(rdev, sh->sector,
3722 STRIPE_SECTORS, 0);
3723 rdev_dec_pending(rdev, conf->mddev);
3724 }
3725 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3726 rdev = conf->disks[i].replacement;
3727 if (!rdev)
3728 /* rdev have been moved down */
3729 rdev = conf->disks[i].rdev;
3730 rdev_clear_badblocks(rdev, sh->sector,
3731 STRIPE_SECTORS, 0);
3732 rdev_dec_pending(rdev, conf->mddev);
3733 }
3734 }
3735
3736 if (s.ops_request)
3737 raid_run_ops(sh, s.ops_request);
3738
3739 ops_run_io(sh, &s);
3740
3741 if (s.dec_preread_active) {
3742 /* We delay this until after ops_run_io so that if make_request
3743 * is waiting on a flush, it won't continue until the writes
3744 * have actually been submitted.
3745 */
3746 atomic_dec(&conf->preread_active_stripes);
3747 if (atomic_read(&conf->preread_active_stripes) <
3748 IO_THRESHOLD)
3749 md_wakeup_thread(conf->mddev->thread);
3750 }
3751
3752 return_io(s.return_bi);
3753
3754 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3755 }
3756
3757 static void raid5_activate_delayed(struct r5conf *conf)
3758 {
3759 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3760 while (!list_empty(&conf->delayed_list)) {
3761 struct list_head *l = conf->delayed_list.next;
3762 struct stripe_head *sh;
3763 sh = list_entry(l, struct stripe_head, lru);
3764 list_del_init(l);
3765 clear_bit(STRIPE_DELAYED, &sh->state);
3766 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3767 atomic_inc(&conf->preread_active_stripes);
3768 list_add_tail(&sh->lru, &conf->hold_list);
3769 }
3770 }
3771 }
3772
3773 static void activate_bit_delay(struct r5conf *conf)
3774 {
3775 /* device_lock is held */
3776 struct list_head head;
3777 list_add(&head, &conf->bitmap_list);
3778 list_del_init(&conf->bitmap_list);
3779 while (!list_empty(&head)) {
3780 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3781 list_del_init(&sh->lru);
3782 atomic_inc(&sh->count);
3783 __release_stripe(conf, sh);
3784 }
3785 }
3786
3787 int md_raid5_congested(struct mddev *mddev, int bits)
3788 {
3789 struct r5conf *conf = mddev->private;
3790
3791 /* No difference between reads and writes. Just check
3792 * how busy the stripe_cache is
3793 */
3794
3795 if (conf->inactive_blocked)
3796 return 1;
3797 if (conf->quiesce)
3798 return 1;
3799 if (list_empty_careful(&conf->inactive_list))
3800 return 1;
3801
3802 return 0;
3803 }
3804 EXPORT_SYMBOL_GPL(md_raid5_congested);
3805
3806 static int raid5_congested(void *data, int bits)
3807 {
3808 struct mddev *mddev = data;
3809
3810 return mddev_congested(mddev, bits) ||
3811 md_raid5_congested(mddev, bits);
3812 }
3813
3814 /* We want read requests to align with chunks where possible,
3815 * but write requests don't need to.
3816 */
3817 static int raid5_mergeable_bvec(struct request_queue *q,
3818 struct bvec_merge_data *bvm,
3819 struct bio_vec *biovec)
3820 {
3821 struct mddev *mddev = q->queuedata;
3822 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3823 int max;
3824 unsigned int chunk_sectors = mddev->chunk_sectors;
3825 unsigned int bio_sectors = bvm->bi_size >> 9;
3826
3827 if ((bvm->bi_rw & 1) == WRITE)
3828 return biovec->bv_len; /* always allow writes to be mergeable */
3829
3830 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3831 chunk_sectors = mddev->new_chunk_sectors;
3832 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3833 if (max < 0) max = 0;
3834 if (max <= biovec->bv_len && bio_sectors == 0)
3835 return biovec->bv_len;
3836 else
3837 return max;
3838 }
3839
3840
3841 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3842 {
3843 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3844 unsigned int chunk_sectors = mddev->chunk_sectors;
3845 unsigned int bio_sectors = bio->bi_size >> 9;
3846
3847 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3848 chunk_sectors = mddev->new_chunk_sectors;
3849 return chunk_sectors >=
3850 ((sector & (chunk_sectors - 1)) + bio_sectors);
3851 }
3852
3853 /*
3854 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3855 * later sampled by raid5d.
3856 */
3857 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3858 {
3859 unsigned long flags;
3860
3861 spin_lock_irqsave(&conf->device_lock, flags);
3862
3863 bi->bi_next = conf->retry_read_aligned_list;
3864 conf->retry_read_aligned_list = bi;
3865
3866 spin_unlock_irqrestore(&conf->device_lock, flags);
3867 md_wakeup_thread(conf->mddev->thread);
3868 }
3869
3870
3871 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3872 {
3873 struct bio *bi;
3874
3875 bi = conf->retry_read_aligned;
3876 if (bi) {
3877 conf->retry_read_aligned = NULL;
3878 return bi;
3879 }
3880 bi = conf->retry_read_aligned_list;
3881 if(bi) {
3882 conf->retry_read_aligned_list = bi->bi_next;
3883 bi->bi_next = NULL;
3884 /*
3885 * this sets the active strip count to 1 and the processed
3886 * strip count to zero (upper 8 bits)
3887 */
3888 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3889 }
3890
3891 return bi;
3892 }
3893
3894
3895 /*
3896 * The "raid5_align_endio" should check if the read succeeded and if it
3897 * did, call bio_endio on the original bio (having bio_put the new bio
3898 * first).
3899 * If the read failed..
3900 */
3901 static void raid5_align_endio(struct bio *bi, int error)
3902 {
3903 struct bio* raid_bi = bi->bi_private;
3904 struct mddev *mddev;
3905 struct r5conf *conf;
3906 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3907 struct md_rdev *rdev;
3908
3909 bio_put(bi);
3910
3911 rdev = (void*)raid_bi->bi_next;
3912 raid_bi->bi_next = NULL;
3913 mddev = rdev->mddev;
3914 conf = mddev->private;
3915
3916 rdev_dec_pending(rdev, conf->mddev);
3917
3918 if (!error && uptodate) {
3919 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
3920 raid_bi, 0);
3921 bio_endio(raid_bi, 0);
3922 if (atomic_dec_and_test(&conf->active_aligned_reads))
3923 wake_up(&conf->wait_for_stripe);
3924 return;
3925 }
3926
3927
3928 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3929
3930 add_bio_to_retry(raid_bi, conf);
3931 }
3932
3933 static int bio_fits_rdev(struct bio *bi)
3934 {
3935 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3936
3937 if ((bi->bi_size>>9) > queue_max_sectors(q))
3938 return 0;
3939 blk_recount_segments(q, bi);
3940 if (bi->bi_phys_segments > queue_max_segments(q))
3941 return 0;
3942
3943 if (q->merge_bvec_fn)
3944 /* it's too hard to apply the merge_bvec_fn at this stage,
3945 * just just give up
3946 */
3947 return 0;
3948
3949 return 1;
3950 }
3951
3952
3953 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3954 {
3955 struct r5conf *conf = mddev->private;
3956 int dd_idx;
3957 struct bio* align_bi;
3958 struct md_rdev *rdev;
3959 sector_t end_sector;
3960
3961 if (!in_chunk_boundary(mddev, raid_bio)) {
3962 pr_debug("chunk_aligned_read : non aligned\n");
3963 return 0;
3964 }
3965 /*
3966 * use bio_clone_mddev to make a copy of the bio
3967 */
3968 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3969 if (!align_bi)
3970 return 0;
3971 /*
3972 * set bi_end_io to a new function, and set bi_private to the
3973 * original bio.
3974 */
3975 align_bi->bi_end_io = raid5_align_endio;
3976 align_bi->bi_private = raid_bio;
3977 /*
3978 * compute position
3979 */
3980 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3981 0,
3982 &dd_idx, NULL);
3983
3984 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3985 rcu_read_lock();
3986 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3987 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3988 rdev->recovery_offset < end_sector) {
3989 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3990 if (rdev &&
3991 (test_bit(Faulty, &rdev->flags) ||
3992 !(test_bit(In_sync, &rdev->flags) ||
3993 rdev->recovery_offset >= end_sector)))
3994 rdev = NULL;
3995 }
3996 if (rdev) {
3997 sector_t first_bad;
3998 int bad_sectors;
3999
4000 atomic_inc(&rdev->nr_pending);
4001 rcu_read_unlock();
4002 raid_bio->bi_next = (void*)rdev;
4003 align_bi->bi_bdev = rdev->bdev;
4004 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4005
4006 if (!bio_fits_rdev(align_bi) ||
4007 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
4008 &first_bad, &bad_sectors)) {
4009 /* too big in some way, or has a known bad block */
4010 bio_put(align_bi);
4011 rdev_dec_pending(rdev, mddev);
4012 return 0;
4013 }
4014
4015 /* No reshape active, so we can trust rdev->data_offset */
4016 align_bi->bi_sector += rdev->data_offset;
4017
4018 spin_lock_irq(&conf->device_lock);
4019 wait_event_lock_irq(conf->wait_for_stripe,
4020 conf->quiesce == 0,
4021 conf->device_lock);
4022 atomic_inc(&conf->active_aligned_reads);
4023 spin_unlock_irq(&conf->device_lock);
4024
4025 if (mddev->gendisk)
4026 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4027 align_bi, disk_devt(mddev->gendisk),
4028 raid_bio->bi_sector);
4029 generic_make_request(align_bi);
4030 return 1;
4031 } else {
4032 rcu_read_unlock();
4033 bio_put(align_bi);
4034 return 0;
4035 }
4036 }
4037
4038 /* __get_priority_stripe - get the next stripe to process
4039 *
4040 * Full stripe writes are allowed to pass preread active stripes up until
4041 * the bypass_threshold is exceeded. In general the bypass_count
4042 * increments when the handle_list is handled before the hold_list; however, it
4043 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4044 * stripe with in flight i/o. The bypass_count will be reset when the
4045 * head of the hold_list has changed, i.e. the head was promoted to the
4046 * handle_list.
4047 */
4048 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4049 {
4050 struct stripe_head *sh;
4051
4052 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4053 __func__,
4054 list_empty(&conf->handle_list) ? "empty" : "busy",
4055 list_empty(&conf->hold_list) ? "empty" : "busy",
4056 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4057
4058 if (!list_empty(&conf->handle_list)) {
4059 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4060
4061 if (list_empty(&conf->hold_list))
4062 conf->bypass_count = 0;
4063 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4064 if (conf->hold_list.next == conf->last_hold)
4065 conf->bypass_count++;
4066 else {
4067 conf->last_hold = conf->hold_list.next;
4068 conf->bypass_count -= conf->bypass_threshold;
4069 if (conf->bypass_count < 0)
4070 conf->bypass_count = 0;
4071 }
4072 }
4073 } else if (!list_empty(&conf->hold_list) &&
4074 ((conf->bypass_threshold &&
4075 conf->bypass_count > conf->bypass_threshold) ||
4076 atomic_read(&conf->pending_full_writes) == 0)) {
4077 sh = list_entry(conf->hold_list.next,
4078 typeof(*sh), lru);
4079 conf->bypass_count -= conf->bypass_threshold;
4080 if (conf->bypass_count < 0)
4081 conf->bypass_count = 0;
4082 } else
4083 return NULL;
4084
4085 list_del_init(&sh->lru);
4086 atomic_inc(&sh->count);
4087 BUG_ON(atomic_read(&sh->count) != 1);
4088 return sh;
4089 }
4090
4091 struct raid5_plug_cb {
4092 struct blk_plug_cb cb;
4093 struct list_head list;
4094 };
4095
4096 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4097 {
4098 struct raid5_plug_cb *cb = container_of(
4099 blk_cb, struct raid5_plug_cb, cb);
4100 struct stripe_head *sh;
4101 struct mddev *mddev = cb->cb.data;
4102 struct r5conf *conf = mddev->private;
4103 int cnt = 0;
4104
4105 if (cb->list.next && !list_empty(&cb->list)) {
4106 spin_lock_irq(&conf->device_lock);
4107 while (!list_empty(&cb->list)) {
4108 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4109 list_del_init(&sh->lru);
4110 /*
4111 * avoid race release_stripe_plug() sees
4112 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4113 * is still in our list
4114 */
4115 smp_mb__before_clear_bit();
4116 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4117 __release_stripe(conf, sh);
4118 cnt++;
4119 }
4120 spin_unlock_irq(&conf->device_lock);
4121 }
4122 if (mddev->queue)
4123 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4124 kfree(cb);
4125 }
4126
4127 static void release_stripe_plug(struct mddev *mddev,
4128 struct stripe_head *sh)
4129 {
4130 struct blk_plug_cb *blk_cb = blk_check_plugged(
4131 raid5_unplug, mddev,
4132 sizeof(struct raid5_plug_cb));
4133 struct raid5_plug_cb *cb;
4134
4135 if (!blk_cb) {
4136 release_stripe(sh);
4137 return;
4138 }
4139
4140 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4141
4142 if (cb->list.next == NULL)
4143 INIT_LIST_HEAD(&cb->list);
4144
4145 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4146 list_add_tail(&sh->lru, &cb->list);
4147 else
4148 release_stripe(sh);
4149 }
4150
4151 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4152 {
4153 struct r5conf *conf = mddev->private;
4154 sector_t logical_sector, last_sector;
4155 struct stripe_head *sh;
4156 int remaining;
4157 int stripe_sectors;
4158
4159 if (mddev->reshape_position != MaxSector)
4160 /* Skip discard while reshape is happening */
4161 return;
4162
4163 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4164 last_sector = bi->bi_sector + (bi->bi_size>>9);
4165
4166 bi->bi_next = NULL;
4167 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4168
4169 stripe_sectors = conf->chunk_sectors *
4170 (conf->raid_disks - conf->max_degraded);
4171 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4172 stripe_sectors);
4173 sector_div(last_sector, stripe_sectors);
4174
4175 logical_sector *= conf->chunk_sectors;
4176 last_sector *= conf->chunk_sectors;
4177
4178 for (; logical_sector < last_sector;
4179 logical_sector += STRIPE_SECTORS) {
4180 DEFINE_WAIT(w);
4181 int d;
4182 again:
4183 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4184 prepare_to_wait(&conf->wait_for_overlap, &w,
4185 TASK_UNINTERRUPTIBLE);
4186 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4187 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4188 release_stripe(sh);
4189 schedule();
4190 goto again;
4191 }
4192 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4193 spin_lock_irq(&sh->stripe_lock);
4194 for (d = 0; d < conf->raid_disks; d++) {
4195 if (d == sh->pd_idx || d == sh->qd_idx)
4196 continue;
4197 if (sh->dev[d].towrite || sh->dev[d].toread) {
4198 set_bit(R5_Overlap, &sh->dev[d].flags);
4199 spin_unlock_irq(&sh->stripe_lock);
4200 release_stripe(sh);
4201 schedule();
4202 goto again;
4203 }
4204 }
4205 set_bit(STRIPE_DISCARD, &sh->state);
4206 finish_wait(&conf->wait_for_overlap, &w);
4207 for (d = 0; d < conf->raid_disks; d++) {
4208 if (d == sh->pd_idx || d == sh->qd_idx)
4209 continue;
4210 sh->dev[d].towrite = bi;
4211 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4212 raid5_inc_bi_active_stripes(bi);
4213 }
4214 spin_unlock_irq(&sh->stripe_lock);
4215 if (conf->mddev->bitmap) {
4216 for (d = 0;
4217 d < conf->raid_disks - conf->max_degraded;
4218 d++)
4219 bitmap_startwrite(mddev->bitmap,
4220 sh->sector,
4221 STRIPE_SECTORS,
4222 0);
4223 sh->bm_seq = conf->seq_flush + 1;
4224 set_bit(STRIPE_BIT_DELAY, &sh->state);
4225 }
4226
4227 set_bit(STRIPE_HANDLE, &sh->state);
4228 clear_bit(STRIPE_DELAYED, &sh->state);
4229 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4230 atomic_inc(&conf->preread_active_stripes);
4231 release_stripe_plug(mddev, sh);
4232 }
4233
4234 remaining = raid5_dec_bi_active_stripes(bi);
4235 if (remaining == 0) {
4236 md_write_end(mddev);
4237 bio_endio(bi, 0);
4238 }
4239 }
4240
4241 static void make_request(struct mddev *mddev, struct bio * bi)
4242 {
4243 struct r5conf *conf = mddev->private;
4244 int dd_idx;
4245 sector_t new_sector;
4246 sector_t logical_sector, last_sector;
4247 struct stripe_head *sh;
4248 const int rw = bio_data_dir(bi);
4249 int remaining;
4250
4251 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4252 md_flush_request(mddev, bi);
4253 return;
4254 }
4255
4256 md_write_start(mddev, bi);
4257
4258 if (rw == READ &&
4259 mddev->reshape_position == MaxSector &&
4260 chunk_aligned_read(mddev,bi))
4261 return;
4262
4263 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4264 make_discard_request(mddev, bi);
4265 return;
4266 }
4267
4268 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4269 last_sector = bi->bi_sector + (bi->bi_size>>9);
4270 bi->bi_next = NULL;
4271 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4272
4273 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4274 DEFINE_WAIT(w);
4275 int previous;
4276
4277 retry:
4278 previous = 0;
4279 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4280 if (unlikely(conf->reshape_progress != MaxSector)) {
4281 /* spinlock is needed as reshape_progress may be
4282 * 64bit on a 32bit platform, and so it might be
4283 * possible to see a half-updated value
4284 * Of course reshape_progress could change after
4285 * the lock is dropped, so once we get a reference
4286 * to the stripe that we think it is, we will have
4287 * to check again.
4288 */
4289 spin_lock_irq(&conf->device_lock);
4290 if (mddev->reshape_backwards
4291 ? logical_sector < conf->reshape_progress
4292 : logical_sector >= conf->reshape_progress) {
4293 previous = 1;
4294 } else {
4295 if (mddev->reshape_backwards
4296 ? logical_sector < conf->reshape_safe
4297 : logical_sector >= conf->reshape_safe) {
4298 spin_unlock_irq(&conf->device_lock);
4299 schedule();
4300 goto retry;
4301 }
4302 }
4303 spin_unlock_irq(&conf->device_lock);
4304 }
4305
4306 new_sector = raid5_compute_sector(conf, logical_sector,
4307 previous,
4308 &dd_idx, NULL);
4309 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4310 (unsigned long long)new_sector,
4311 (unsigned long long)logical_sector);
4312
4313 sh = get_active_stripe(conf, new_sector, previous,
4314 (bi->bi_rw&RWA_MASK), 0);
4315 if (sh) {
4316 if (unlikely(previous)) {
4317 /* expansion might have moved on while waiting for a
4318 * stripe, so we must do the range check again.
4319 * Expansion could still move past after this
4320 * test, but as we are holding a reference to
4321 * 'sh', we know that if that happens,
4322 * STRIPE_EXPANDING will get set and the expansion
4323 * won't proceed until we finish with the stripe.
4324 */
4325 int must_retry = 0;
4326 spin_lock_irq(&conf->device_lock);
4327 if (mddev->reshape_backwards
4328 ? logical_sector >= conf->reshape_progress
4329 : logical_sector < conf->reshape_progress)
4330 /* mismatch, need to try again */
4331 must_retry = 1;
4332 spin_unlock_irq(&conf->device_lock);
4333 if (must_retry) {
4334 release_stripe(sh);
4335 schedule();
4336 goto retry;
4337 }
4338 }
4339
4340 if (rw == WRITE &&
4341 logical_sector >= mddev->suspend_lo &&
4342 logical_sector < mddev->suspend_hi) {
4343 release_stripe(sh);
4344 /* As the suspend_* range is controlled by
4345 * userspace, we want an interruptible
4346 * wait.
4347 */
4348 flush_signals(current);
4349 prepare_to_wait(&conf->wait_for_overlap,
4350 &w, TASK_INTERRUPTIBLE);
4351 if (logical_sector >= mddev->suspend_lo &&
4352 logical_sector < mddev->suspend_hi)
4353 schedule();
4354 goto retry;
4355 }
4356
4357 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4358 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4359 /* Stripe is busy expanding or
4360 * add failed due to overlap. Flush everything
4361 * and wait a while
4362 */
4363 md_wakeup_thread(mddev->thread);
4364 release_stripe(sh);
4365 schedule();
4366 goto retry;
4367 }
4368 finish_wait(&conf->wait_for_overlap, &w);
4369 set_bit(STRIPE_HANDLE, &sh->state);
4370 clear_bit(STRIPE_DELAYED, &sh->state);
4371 if ((bi->bi_rw & REQ_SYNC) &&
4372 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4373 atomic_inc(&conf->preread_active_stripes);
4374 release_stripe_plug(mddev, sh);
4375 } else {
4376 /* cannot get stripe for read-ahead, just give-up */
4377 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4378 finish_wait(&conf->wait_for_overlap, &w);
4379 break;
4380 }
4381 }
4382
4383 remaining = raid5_dec_bi_active_stripes(bi);
4384 if (remaining == 0) {
4385
4386 if ( rw == WRITE )
4387 md_write_end(mddev);
4388
4389 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4390 bi, 0);
4391 bio_endio(bi, 0);
4392 }
4393 }
4394
4395 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4396
4397 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4398 {
4399 /* reshaping is quite different to recovery/resync so it is
4400 * handled quite separately ... here.
4401 *
4402 * On each call to sync_request, we gather one chunk worth of
4403 * destination stripes and flag them as expanding.
4404 * Then we find all the source stripes and request reads.
4405 * As the reads complete, handle_stripe will copy the data
4406 * into the destination stripe and release that stripe.
4407 */
4408 struct r5conf *conf = mddev->private;
4409 struct stripe_head *sh;
4410 sector_t first_sector, last_sector;
4411 int raid_disks = conf->previous_raid_disks;
4412 int data_disks = raid_disks - conf->max_degraded;
4413 int new_data_disks = conf->raid_disks - conf->max_degraded;
4414 int i;
4415 int dd_idx;
4416 sector_t writepos, readpos, safepos;
4417 sector_t stripe_addr;
4418 int reshape_sectors;
4419 struct list_head stripes;
4420
4421 if (sector_nr == 0) {
4422 /* If restarting in the middle, skip the initial sectors */
4423 if (mddev->reshape_backwards &&
4424 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4425 sector_nr = raid5_size(mddev, 0, 0)
4426 - conf->reshape_progress;
4427 } else if (!mddev->reshape_backwards &&
4428 conf->reshape_progress > 0)
4429 sector_nr = conf->reshape_progress;
4430 sector_div(sector_nr, new_data_disks);
4431 if (sector_nr) {
4432 mddev->curr_resync_completed = sector_nr;
4433 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4434 *skipped = 1;
4435 return sector_nr;
4436 }
4437 }
4438
4439 /* We need to process a full chunk at a time.
4440 * If old and new chunk sizes differ, we need to process the
4441 * largest of these
4442 */
4443 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4444 reshape_sectors = mddev->new_chunk_sectors;
4445 else
4446 reshape_sectors = mddev->chunk_sectors;
4447
4448 /* We update the metadata at least every 10 seconds, or when
4449 * the data about to be copied would over-write the source of
4450 * the data at the front of the range. i.e. one new_stripe
4451 * along from reshape_progress new_maps to after where
4452 * reshape_safe old_maps to
4453 */
4454 writepos = conf->reshape_progress;
4455 sector_div(writepos, new_data_disks);
4456 readpos = conf->reshape_progress;
4457 sector_div(readpos, data_disks);
4458 safepos = conf->reshape_safe;
4459 sector_div(safepos, data_disks);
4460 if (mddev->reshape_backwards) {
4461 writepos -= min_t(sector_t, reshape_sectors, writepos);
4462 readpos += reshape_sectors;
4463 safepos += reshape_sectors;
4464 } else {
4465 writepos += reshape_sectors;
4466 readpos -= min_t(sector_t, reshape_sectors, readpos);
4467 safepos -= min_t(sector_t, reshape_sectors, safepos);
4468 }
4469
4470 /* Having calculated the 'writepos' possibly use it
4471 * to set 'stripe_addr' which is where we will write to.
4472 */
4473 if (mddev->reshape_backwards) {
4474 BUG_ON(conf->reshape_progress == 0);
4475 stripe_addr = writepos;
4476 BUG_ON((mddev->dev_sectors &
4477 ~((sector_t)reshape_sectors - 1))
4478 - reshape_sectors - stripe_addr
4479 != sector_nr);
4480 } else {
4481 BUG_ON(writepos != sector_nr + reshape_sectors);
4482 stripe_addr = sector_nr;
4483 }
4484
4485 /* 'writepos' is the most advanced device address we might write.
4486 * 'readpos' is the least advanced device address we might read.
4487 * 'safepos' is the least address recorded in the metadata as having
4488 * been reshaped.
4489 * If there is a min_offset_diff, these are adjusted either by
4490 * increasing the safepos/readpos if diff is negative, or
4491 * increasing writepos if diff is positive.
4492 * If 'readpos' is then behind 'writepos', there is no way that we can
4493 * ensure safety in the face of a crash - that must be done by userspace
4494 * making a backup of the data. So in that case there is no particular
4495 * rush to update metadata.
4496 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4497 * update the metadata to advance 'safepos' to match 'readpos' so that
4498 * we can be safe in the event of a crash.
4499 * So we insist on updating metadata if safepos is behind writepos and
4500 * readpos is beyond writepos.
4501 * In any case, update the metadata every 10 seconds.
4502 * Maybe that number should be configurable, but I'm not sure it is
4503 * worth it.... maybe it could be a multiple of safemode_delay???
4504 */
4505 if (conf->min_offset_diff < 0) {
4506 safepos += -conf->min_offset_diff;
4507 readpos += -conf->min_offset_diff;
4508 } else
4509 writepos += conf->min_offset_diff;
4510
4511 if ((mddev->reshape_backwards
4512 ? (safepos > writepos && readpos < writepos)
4513 : (safepos < writepos && readpos > writepos)) ||
4514 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4515 /* Cannot proceed until we've updated the superblock... */
4516 wait_event(conf->wait_for_overlap,
4517 atomic_read(&conf->reshape_stripes)==0);
4518 mddev->reshape_position = conf->reshape_progress;
4519 mddev->curr_resync_completed = sector_nr;
4520 conf->reshape_checkpoint = jiffies;
4521 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4522 md_wakeup_thread(mddev->thread);
4523 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4524 kthread_should_stop());
4525 spin_lock_irq(&conf->device_lock);
4526 conf->reshape_safe = mddev->reshape_position;
4527 spin_unlock_irq(&conf->device_lock);
4528 wake_up(&conf->wait_for_overlap);
4529 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4530 }
4531
4532 INIT_LIST_HEAD(&stripes);
4533 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4534 int j;
4535 int skipped_disk = 0;
4536 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4537 set_bit(STRIPE_EXPANDING, &sh->state);
4538 atomic_inc(&conf->reshape_stripes);
4539 /* If any of this stripe is beyond the end of the old
4540 * array, then we need to zero those blocks
4541 */
4542 for (j=sh->disks; j--;) {
4543 sector_t s;
4544 if (j == sh->pd_idx)
4545 continue;
4546 if (conf->level == 6 &&
4547 j == sh->qd_idx)
4548 continue;
4549 s = compute_blocknr(sh, j, 0);
4550 if (s < raid5_size(mddev, 0, 0)) {
4551 skipped_disk = 1;
4552 continue;
4553 }
4554 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4555 set_bit(R5_Expanded, &sh->dev[j].flags);
4556 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4557 }
4558 if (!skipped_disk) {
4559 set_bit(STRIPE_EXPAND_READY, &sh->state);
4560 set_bit(STRIPE_HANDLE, &sh->state);
4561 }
4562 list_add(&sh->lru, &stripes);
4563 }
4564 spin_lock_irq(&conf->device_lock);
4565 if (mddev->reshape_backwards)
4566 conf->reshape_progress -= reshape_sectors * new_data_disks;
4567 else
4568 conf->reshape_progress += reshape_sectors * new_data_disks;
4569 spin_unlock_irq(&conf->device_lock);
4570 /* Ok, those stripe are ready. We can start scheduling
4571 * reads on the source stripes.
4572 * The source stripes are determined by mapping the first and last
4573 * block on the destination stripes.
4574 */
4575 first_sector =
4576 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4577 1, &dd_idx, NULL);
4578 last_sector =
4579 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4580 * new_data_disks - 1),
4581 1, &dd_idx, NULL);
4582 if (last_sector >= mddev->dev_sectors)
4583 last_sector = mddev->dev_sectors - 1;
4584 while (first_sector <= last_sector) {
4585 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4586 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4587 set_bit(STRIPE_HANDLE, &sh->state);
4588 release_stripe(sh);
4589 first_sector += STRIPE_SECTORS;
4590 }
4591 /* Now that the sources are clearly marked, we can release
4592 * the destination stripes
4593 */
4594 while (!list_empty(&stripes)) {
4595 sh = list_entry(stripes.next, struct stripe_head, lru);
4596 list_del_init(&sh->lru);
4597 release_stripe(sh);
4598 }
4599 /* If this takes us to the resync_max point where we have to pause,
4600 * then we need to write out the superblock.
4601 */
4602 sector_nr += reshape_sectors;
4603 if ((sector_nr - mddev->curr_resync_completed) * 2
4604 >= mddev->resync_max - mddev->curr_resync_completed) {
4605 /* Cannot proceed until we've updated the superblock... */
4606 wait_event(conf->wait_for_overlap,
4607 atomic_read(&conf->reshape_stripes) == 0);
4608 mddev->reshape_position = conf->reshape_progress;
4609 mddev->curr_resync_completed = sector_nr;
4610 conf->reshape_checkpoint = jiffies;
4611 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4612 md_wakeup_thread(mddev->thread);
4613 wait_event(mddev->sb_wait,
4614 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4615 || kthread_should_stop());
4616 spin_lock_irq(&conf->device_lock);
4617 conf->reshape_safe = mddev->reshape_position;
4618 spin_unlock_irq(&conf->device_lock);
4619 wake_up(&conf->wait_for_overlap);
4620 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4621 }
4622 return reshape_sectors;
4623 }
4624
4625 /* FIXME go_faster isn't used */
4626 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4627 {
4628 struct r5conf *conf = mddev->private;
4629 struct stripe_head *sh;
4630 sector_t max_sector = mddev->dev_sectors;
4631 sector_t sync_blocks;
4632 int still_degraded = 0;
4633 int i;
4634
4635 if (sector_nr >= max_sector) {
4636 /* just being told to finish up .. nothing much to do */
4637
4638 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4639 end_reshape(conf);
4640 return 0;
4641 }
4642
4643 if (mddev->curr_resync < max_sector) /* aborted */
4644 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4645 &sync_blocks, 1);
4646 else /* completed sync */
4647 conf->fullsync = 0;
4648 bitmap_close_sync(mddev->bitmap);
4649
4650 return 0;
4651 }
4652
4653 /* Allow raid5_quiesce to complete */
4654 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4655
4656 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4657 return reshape_request(mddev, sector_nr, skipped);
4658
4659 /* No need to check resync_max as we never do more than one
4660 * stripe, and as resync_max will always be on a chunk boundary,
4661 * if the check in md_do_sync didn't fire, there is no chance
4662 * of overstepping resync_max here
4663 */
4664
4665 /* if there is too many failed drives and we are trying
4666 * to resync, then assert that we are finished, because there is
4667 * nothing we can do.
4668 */
4669 if (mddev->degraded >= conf->max_degraded &&
4670 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4671 sector_t rv = mddev->dev_sectors - sector_nr;
4672 *skipped = 1;
4673 return rv;
4674 }
4675 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4676 !conf->fullsync &&
4677 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4678 sync_blocks >= STRIPE_SECTORS) {
4679 /* we can skip this block, and probably more */
4680 sync_blocks /= STRIPE_SECTORS;
4681 *skipped = 1;
4682 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4683 }
4684
4685 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4686
4687 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4688 if (sh == NULL) {
4689 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4690 /* make sure we don't swamp the stripe cache if someone else
4691 * is trying to get access
4692 */
4693 schedule_timeout_uninterruptible(1);
4694 }
4695 /* Need to check if array will still be degraded after recovery/resync
4696 * We don't need to check the 'failed' flag as when that gets set,
4697 * recovery aborts.
4698 */
4699 for (i = 0; i < conf->raid_disks; i++)
4700 if (conf->disks[i].rdev == NULL)
4701 still_degraded = 1;
4702
4703 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4704
4705 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4706
4707 handle_stripe(sh);
4708 release_stripe(sh);
4709
4710 return STRIPE_SECTORS;
4711 }
4712
4713 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4714 {
4715 /* We may not be able to submit a whole bio at once as there
4716 * may not be enough stripe_heads available.
4717 * We cannot pre-allocate enough stripe_heads as we may need
4718 * more than exist in the cache (if we allow ever large chunks).
4719 * So we do one stripe head at a time and record in
4720 * ->bi_hw_segments how many have been done.
4721 *
4722 * We *know* that this entire raid_bio is in one chunk, so
4723 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4724 */
4725 struct stripe_head *sh;
4726 int dd_idx;
4727 sector_t sector, logical_sector, last_sector;
4728 int scnt = 0;
4729 int remaining;
4730 int handled = 0;
4731
4732 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4733 sector = raid5_compute_sector(conf, logical_sector,
4734 0, &dd_idx, NULL);
4735 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4736
4737 for (; logical_sector < last_sector;
4738 logical_sector += STRIPE_SECTORS,
4739 sector += STRIPE_SECTORS,
4740 scnt++) {
4741
4742 if (scnt < raid5_bi_processed_stripes(raid_bio))
4743 /* already done this stripe */
4744 continue;
4745
4746 sh = get_active_stripe(conf, sector, 0, 1, 0);
4747
4748 if (!sh) {
4749 /* failed to get a stripe - must wait */
4750 raid5_set_bi_processed_stripes(raid_bio, scnt);
4751 conf->retry_read_aligned = raid_bio;
4752 return handled;
4753 }
4754
4755 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4756 release_stripe(sh);
4757 raid5_set_bi_processed_stripes(raid_bio, scnt);
4758 conf->retry_read_aligned = raid_bio;
4759 return handled;
4760 }
4761
4762 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4763 handle_stripe(sh);
4764 release_stripe(sh);
4765 handled++;
4766 }
4767 remaining = raid5_dec_bi_active_stripes(raid_bio);
4768 if (remaining == 0) {
4769 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4770 raid_bio, 0);
4771 bio_endio(raid_bio, 0);
4772 }
4773 if (atomic_dec_and_test(&conf->active_aligned_reads))
4774 wake_up(&conf->wait_for_stripe);
4775 return handled;
4776 }
4777
4778 #define MAX_STRIPE_BATCH 8
4779 static int handle_active_stripes(struct r5conf *conf)
4780 {
4781 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4782 int i, batch_size = 0;
4783
4784 while (batch_size < MAX_STRIPE_BATCH &&
4785 (sh = __get_priority_stripe(conf)) != NULL)
4786 batch[batch_size++] = sh;
4787
4788 if (batch_size == 0)
4789 return batch_size;
4790 spin_unlock_irq(&conf->device_lock);
4791
4792 for (i = 0; i < batch_size; i++)
4793 handle_stripe(batch[i]);
4794
4795 cond_resched();
4796
4797 spin_lock_irq(&conf->device_lock);
4798 for (i = 0; i < batch_size; i++)
4799 __release_stripe(conf, batch[i]);
4800 return batch_size;
4801 }
4802
4803 /*
4804 * This is our raid5 kernel thread.
4805 *
4806 * We scan the hash table for stripes which can be handled now.
4807 * During the scan, completed stripes are saved for us by the interrupt
4808 * handler, so that they will not have to wait for our next wakeup.
4809 */
4810 static void raid5d(struct md_thread *thread)
4811 {
4812 struct mddev *mddev = thread->mddev;
4813 struct r5conf *conf = mddev->private;
4814 int handled;
4815 struct blk_plug plug;
4816
4817 pr_debug("+++ raid5d active\n");
4818
4819 md_check_recovery(mddev);
4820
4821 blk_start_plug(&plug);
4822 handled = 0;
4823 spin_lock_irq(&conf->device_lock);
4824 while (1) {
4825 struct bio *bio;
4826 int batch_size;
4827
4828 if (
4829 !list_empty(&conf->bitmap_list)) {
4830 /* Now is a good time to flush some bitmap updates */
4831 conf->seq_flush++;
4832 spin_unlock_irq(&conf->device_lock);
4833 bitmap_unplug(mddev->bitmap);
4834 spin_lock_irq(&conf->device_lock);
4835 conf->seq_write = conf->seq_flush;
4836 activate_bit_delay(conf);
4837 }
4838 raid5_activate_delayed(conf);
4839
4840 while ((bio = remove_bio_from_retry(conf))) {
4841 int ok;
4842 spin_unlock_irq(&conf->device_lock);
4843 ok = retry_aligned_read(conf, bio);
4844 spin_lock_irq(&conf->device_lock);
4845 if (!ok)
4846 break;
4847 handled++;
4848 }
4849
4850 batch_size = handle_active_stripes(conf);
4851 if (!batch_size)
4852 break;
4853 handled += batch_size;
4854
4855 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4856 spin_unlock_irq(&conf->device_lock);
4857 md_check_recovery(mddev);
4858 spin_lock_irq(&conf->device_lock);
4859 }
4860 }
4861 pr_debug("%d stripes handled\n", handled);
4862
4863 spin_unlock_irq(&conf->device_lock);
4864
4865 async_tx_issue_pending_all();
4866 blk_finish_plug(&plug);
4867
4868 pr_debug("--- raid5d inactive\n");
4869 }
4870
4871 static ssize_t
4872 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4873 {
4874 struct r5conf *conf = mddev->private;
4875 if (conf)
4876 return sprintf(page, "%d\n", conf->max_nr_stripes);
4877 else
4878 return 0;
4879 }
4880
4881 int
4882 raid5_set_cache_size(struct mddev *mddev, int size)
4883 {
4884 struct r5conf *conf = mddev->private;
4885 int err;
4886
4887 if (size <= 16 || size > 32768)
4888 return -EINVAL;
4889 while (size < conf->max_nr_stripes) {
4890 if (drop_one_stripe(conf))
4891 conf->max_nr_stripes--;
4892 else
4893 break;
4894 }
4895 err = md_allow_write(mddev);
4896 if (err)
4897 return err;
4898 while (size > conf->max_nr_stripes) {
4899 if (grow_one_stripe(conf))
4900 conf->max_nr_stripes++;
4901 else break;
4902 }
4903 return 0;
4904 }
4905 EXPORT_SYMBOL(raid5_set_cache_size);
4906
4907 static ssize_t
4908 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4909 {
4910 struct r5conf *conf = mddev->private;
4911 unsigned long new;
4912 int err;
4913
4914 if (len >= PAGE_SIZE)
4915 return -EINVAL;
4916 if (!conf)
4917 return -ENODEV;
4918
4919 if (strict_strtoul(page, 10, &new))
4920 return -EINVAL;
4921 err = raid5_set_cache_size(mddev, new);
4922 if (err)
4923 return err;
4924 return len;
4925 }
4926
4927 static struct md_sysfs_entry
4928 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4929 raid5_show_stripe_cache_size,
4930 raid5_store_stripe_cache_size);
4931
4932 static ssize_t
4933 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4934 {
4935 struct r5conf *conf = mddev->private;
4936 if (conf)
4937 return sprintf(page, "%d\n", conf->bypass_threshold);
4938 else
4939 return 0;
4940 }
4941
4942 static ssize_t
4943 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4944 {
4945 struct r5conf *conf = mddev->private;
4946 unsigned long new;
4947 if (len >= PAGE_SIZE)
4948 return -EINVAL;
4949 if (!conf)
4950 return -ENODEV;
4951
4952 if (strict_strtoul(page, 10, &new))
4953 return -EINVAL;
4954 if (new > conf->max_nr_stripes)
4955 return -EINVAL;
4956 conf->bypass_threshold = new;
4957 return len;
4958 }
4959
4960 static struct md_sysfs_entry
4961 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4962 S_IRUGO | S_IWUSR,
4963 raid5_show_preread_threshold,
4964 raid5_store_preread_threshold);
4965
4966 static ssize_t
4967 stripe_cache_active_show(struct mddev *mddev, char *page)
4968 {
4969 struct r5conf *conf = mddev->private;
4970 if (conf)
4971 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4972 else
4973 return 0;
4974 }
4975
4976 static struct md_sysfs_entry
4977 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4978
4979 static struct attribute *raid5_attrs[] = {
4980 &raid5_stripecache_size.attr,
4981 &raid5_stripecache_active.attr,
4982 &raid5_preread_bypass_threshold.attr,
4983 NULL,
4984 };
4985 static struct attribute_group raid5_attrs_group = {
4986 .name = NULL,
4987 .attrs = raid5_attrs,
4988 };
4989
4990 static sector_t
4991 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4992 {
4993 struct r5conf *conf = mddev->private;
4994
4995 if (!sectors)
4996 sectors = mddev->dev_sectors;
4997 if (!raid_disks)
4998 /* size is defined by the smallest of previous and new size */
4999 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5000
5001 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5002 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5003 return sectors * (raid_disks - conf->max_degraded);
5004 }
5005
5006 static void raid5_free_percpu(struct r5conf *conf)
5007 {
5008 struct raid5_percpu *percpu;
5009 unsigned long cpu;
5010
5011 if (!conf->percpu)
5012 return;
5013
5014 get_online_cpus();
5015 for_each_possible_cpu(cpu) {
5016 percpu = per_cpu_ptr(conf->percpu, cpu);
5017 safe_put_page(percpu->spare_page);
5018 kfree(percpu->scribble);
5019 }
5020 #ifdef CONFIG_HOTPLUG_CPU
5021 unregister_cpu_notifier(&conf->cpu_notify);
5022 #endif
5023 put_online_cpus();
5024
5025 free_percpu(conf->percpu);
5026 }
5027
5028 static void free_conf(struct r5conf *conf)
5029 {
5030 shrink_stripes(conf);
5031 raid5_free_percpu(conf);
5032 kfree(conf->disks);
5033 kfree(conf->stripe_hashtbl);
5034 kfree(conf);
5035 }
5036
5037 #ifdef CONFIG_HOTPLUG_CPU
5038 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5039 void *hcpu)
5040 {
5041 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5042 long cpu = (long)hcpu;
5043 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5044
5045 switch (action) {
5046 case CPU_UP_PREPARE:
5047 case CPU_UP_PREPARE_FROZEN:
5048 if (conf->level == 6 && !percpu->spare_page)
5049 percpu->spare_page = alloc_page(GFP_KERNEL);
5050 if (!percpu->scribble)
5051 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5052
5053 if (!percpu->scribble ||
5054 (conf->level == 6 && !percpu->spare_page)) {
5055 safe_put_page(percpu->spare_page);
5056 kfree(percpu->scribble);
5057 pr_err("%s: failed memory allocation for cpu%ld\n",
5058 __func__, cpu);
5059 return notifier_from_errno(-ENOMEM);
5060 }
5061 break;
5062 case CPU_DEAD:
5063 case CPU_DEAD_FROZEN:
5064 safe_put_page(percpu->spare_page);
5065 kfree(percpu->scribble);
5066 percpu->spare_page = NULL;
5067 percpu->scribble = NULL;
5068 break;
5069 default:
5070 break;
5071 }
5072 return NOTIFY_OK;
5073 }
5074 #endif
5075
5076 static int raid5_alloc_percpu(struct r5conf *conf)
5077 {
5078 unsigned long cpu;
5079 struct page *spare_page;
5080 struct raid5_percpu __percpu *allcpus;
5081 void *scribble;
5082 int err;
5083
5084 allcpus = alloc_percpu(struct raid5_percpu);
5085 if (!allcpus)
5086 return -ENOMEM;
5087 conf->percpu = allcpus;
5088
5089 get_online_cpus();
5090 err = 0;
5091 for_each_present_cpu(cpu) {
5092 if (conf->level == 6) {
5093 spare_page = alloc_page(GFP_KERNEL);
5094 if (!spare_page) {
5095 err = -ENOMEM;
5096 break;
5097 }
5098 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5099 }
5100 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5101 if (!scribble) {
5102 err = -ENOMEM;
5103 break;
5104 }
5105 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5106 }
5107 #ifdef CONFIG_HOTPLUG_CPU
5108 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5109 conf->cpu_notify.priority = 0;
5110 if (err == 0)
5111 err = register_cpu_notifier(&conf->cpu_notify);
5112 #endif
5113 put_online_cpus();
5114
5115 return err;
5116 }
5117
5118 static struct r5conf *setup_conf(struct mddev *mddev)
5119 {
5120 struct r5conf *conf;
5121 int raid_disk, memory, max_disks;
5122 struct md_rdev *rdev;
5123 struct disk_info *disk;
5124 char pers_name[6];
5125
5126 if (mddev->new_level != 5
5127 && mddev->new_level != 4
5128 && mddev->new_level != 6) {
5129 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5130 mdname(mddev), mddev->new_level);
5131 return ERR_PTR(-EIO);
5132 }
5133 if ((mddev->new_level == 5
5134 && !algorithm_valid_raid5(mddev->new_layout)) ||
5135 (mddev->new_level == 6
5136 && !algorithm_valid_raid6(mddev->new_layout))) {
5137 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5138 mdname(mddev), mddev->new_layout);
5139 return ERR_PTR(-EIO);
5140 }
5141 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5142 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5143 mdname(mddev), mddev->raid_disks);
5144 return ERR_PTR(-EINVAL);
5145 }
5146
5147 if (!mddev->new_chunk_sectors ||
5148 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5149 !is_power_of_2(mddev->new_chunk_sectors)) {
5150 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5151 mdname(mddev), mddev->new_chunk_sectors << 9);
5152 return ERR_PTR(-EINVAL);
5153 }
5154
5155 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5156 if (conf == NULL)
5157 goto abort;
5158 spin_lock_init(&conf->device_lock);
5159 init_waitqueue_head(&conf->wait_for_stripe);
5160 init_waitqueue_head(&conf->wait_for_overlap);
5161 INIT_LIST_HEAD(&conf->handle_list);
5162 INIT_LIST_HEAD(&conf->hold_list);
5163 INIT_LIST_HEAD(&conf->delayed_list);
5164 INIT_LIST_HEAD(&conf->bitmap_list);
5165 INIT_LIST_HEAD(&conf->inactive_list);
5166 atomic_set(&conf->active_stripes, 0);
5167 atomic_set(&conf->preread_active_stripes, 0);
5168 atomic_set(&conf->active_aligned_reads, 0);
5169 conf->bypass_threshold = BYPASS_THRESHOLD;
5170 conf->recovery_disabled = mddev->recovery_disabled - 1;
5171
5172 conf->raid_disks = mddev->raid_disks;
5173 if (mddev->reshape_position == MaxSector)
5174 conf->previous_raid_disks = mddev->raid_disks;
5175 else
5176 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5177 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5178 conf->scribble_len = scribble_len(max_disks);
5179
5180 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5181 GFP_KERNEL);
5182 if (!conf->disks)
5183 goto abort;
5184
5185 conf->mddev = mddev;
5186
5187 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5188 goto abort;
5189
5190 conf->level = mddev->new_level;
5191 if (raid5_alloc_percpu(conf) != 0)
5192 goto abort;
5193
5194 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5195
5196 rdev_for_each(rdev, mddev) {
5197 raid_disk = rdev->raid_disk;
5198 if (raid_disk >= max_disks
5199 || raid_disk < 0)
5200 continue;
5201 disk = conf->disks + raid_disk;
5202
5203 if (test_bit(Replacement, &rdev->flags)) {
5204 if (disk->replacement)
5205 goto abort;
5206 disk->replacement = rdev;
5207 } else {
5208 if (disk->rdev)
5209 goto abort;
5210 disk->rdev = rdev;
5211 }
5212
5213 if (test_bit(In_sync, &rdev->flags)) {
5214 char b[BDEVNAME_SIZE];
5215 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5216 " disk %d\n",
5217 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5218 } else if (rdev->saved_raid_disk != raid_disk)
5219 /* Cannot rely on bitmap to complete recovery */
5220 conf->fullsync = 1;
5221 }
5222
5223 conf->chunk_sectors = mddev->new_chunk_sectors;
5224 conf->level = mddev->new_level;
5225 if (conf->level == 6)
5226 conf->max_degraded = 2;
5227 else
5228 conf->max_degraded = 1;
5229 conf->algorithm = mddev->new_layout;
5230 conf->max_nr_stripes = NR_STRIPES;
5231 conf->reshape_progress = mddev->reshape_position;
5232 if (conf->reshape_progress != MaxSector) {
5233 conf->prev_chunk_sectors = mddev->chunk_sectors;
5234 conf->prev_algo = mddev->layout;
5235 }
5236
5237 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5238 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5239 if (grow_stripes(conf, conf->max_nr_stripes)) {
5240 printk(KERN_ERR
5241 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5242 mdname(mddev), memory);
5243 goto abort;
5244 } else
5245 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5246 mdname(mddev), memory);
5247
5248 sprintf(pers_name, "raid%d", mddev->new_level);
5249 conf->thread = md_register_thread(raid5d, mddev, pers_name);
5250 if (!conf->thread) {
5251 printk(KERN_ERR
5252 "md/raid:%s: couldn't allocate thread.\n",
5253 mdname(mddev));
5254 goto abort;
5255 }
5256
5257 return conf;
5258
5259 abort:
5260 if (conf) {
5261 free_conf(conf);
5262 return ERR_PTR(-EIO);
5263 } else
5264 return ERR_PTR(-ENOMEM);
5265 }
5266
5267
5268 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5269 {
5270 switch (algo) {
5271 case ALGORITHM_PARITY_0:
5272 if (raid_disk < max_degraded)
5273 return 1;
5274 break;
5275 case ALGORITHM_PARITY_N:
5276 if (raid_disk >= raid_disks - max_degraded)
5277 return 1;
5278 break;
5279 case ALGORITHM_PARITY_0_6:
5280 if (raid_disk == 0 ||
5281 raid_disk == raid_disks - 1)
5282 return 1;
5283 break;
5284 case ALGORITHM_LEFT_ASYMMETRIC_6:
5285 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5286 case ALGORITHM_LEFT_SYMMETRIC_6:
5287 case ALGORITHM_RIGHT_SYMMETRIC_6:
5288 if (raid_disk == raid_disks - 1)
5289 return 1;
5290 }
5291 return 0;
5292 }
5293
5294 static int run(struct mddev *mddev)
5295 {
5296 struct r5conf *conf;
5297 int working_disks = 0;
5298 int dirty_parity_disks = 0;
5299 struct md_rdev *rdev;
5300 sector_t reshape_offset = 0;
5301 int i;
5302 long long min_offset_diff = 0;
5303 int first = 1;
5304
5305 if (mddev->recovery_cp != MaxSector)
5306 printk(KERN_NOTICE "md/raid:%s: not clean"
5307 " -- starting background reconstruction\n",
5308 mdname(mddev));
5309
5310 rdev_for_each(rdev, mddev) {
5311 long long diff;
5312 if (rdev->raid_disk < 0)
5313 continue;
5314 diff = (rdev->new_data_offset - rdev->data_offset);
5315 if (first) {
5316 min_offset_diff = diff;
5317 first = 0;
5318 } else if (mddev->reshape_backwards &&
5319 diff < min_offset_diff)
5320 min_offset_diff = diff;
5321 else if (!mddev->reshape_backwards &&
5322 diff > min_offset_diff)
5323 min_offset_diff = diff;
5324 }
5325
5326 if (mddev->reshape_position != MaxSector) {
5327 /* Check that we can continue the reshape.
5328 * Difficulties arise if the stripe we would write to
5329 * next is at or after the stripe we would read from next.
5330 * For a reshape that changes the number of devices, this
5331 * is only possible for a very short time, and mdadm makes
5332 * sure that time appears to have past before assembling
5333 * the array. So we fail if that time hasn't passed.
5334 * For a reshape that keeps the number of devices the same
5335 * mdadm must be monitoring the reshape can keeping the
5336 * critical areas read-only and backed up. It will start
5337 * the array in read-only mode, so we check for that.
5338 */
5339 sector_t here_new, here_old;
5340 int old_disks;
5341 int max_degraded = (mddev->level == 6 ? 2 : 1);
5342
5343 if (mddev->new_level != mddev->level) {
5344 printk(KERN_ERR "md/raid:%s: unsupported reshape "
5345 "required - aborting.\n",
5346 mdname(mddev));
5347 return -EINVAL;
5348 }
5349 old_disks = mddev->raid_disks - mddev->delta_disks;
5350 /* reshape_position must be on a new-stripe boundary, and one
5351 * further up in new geometry must map after here in old
5352 * geometry.
5353 */
5354 here_new = mddev->reshape_position;
5355 if (sector_div(here_new, mddev->new_chunk_sectors *
5356 (mddev->raid_disks - max_degraded))) {
5357 printk(KERN_ERR "md/raid:%s: reshape_position not "
5358 "on a stripe boundary\n", mdname(mddev));
5359 return -EINVAL;
5360 }
5361 reshape_offset = here_new * mddev->new_chunk_sectors;
5362 /* here_new is the stripe we will write to */
5363 here_old = mddev->reshape_position;
5364 sector_div(here_old, mddev->chunk_sectors *
5365 (old_disks-max_degraded));
5366 /* here_old is the first stripe that we might need to read
5367 * from */
5368 if (mddev->delta_disks == 0) {
5369 if ((here_new * mddev->new_chunk_sectors !=
5370 here_old * mddev->chunk_sectors)) {
5371 printk(KERN_ERR "md/raid:%s: reshape position is"
5372 " confused - aborting\n", mdname(mddev));
5373 return -EINVAL;
5374 }
5375 /* We cannot be sure it is safe to start an in-place
5376 * reshape. It is only safe if user-space is monitoring
5377 * and taking constant backups.
5378 * mdadm always starts a situation like this in
5379 * readonly mode so it can take control before
5380 * allowing any writes. So just check for that.
5381 */
5382 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5383 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5384 /* not really in-place - so OK */;
5385 else if (mddev->ro == 0) {
5386 printk(KERN_ERR "md/raid:%s: in-place reshape "
5387 "must be started in read-only mode "
5388 "- aborting\n",
5389 mdname(mddev));
5390 return -EINVAL;
5391 }
5392 } else if (mddev->reshape_backwards
5393 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5394 here_old * mddev->chunk_sectors)
5395 : (here_new * mddev->new_chunk_sectors >=
5396 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5397 /* Reading from the same stripe as writing to - bad */
5398 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5399 "auto-recovery - aborting.\n",
5400 mdname(mddev));
5401 return -EINVAL;
5402 }
5403 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5404 mdname(mddev));
5405 /* OK, we should be able to continue; */
5406 } else {
5407 BUG_ON(mddev->level != mddev->new_level);
5408 BUG_ON(mddev->layout != mddev->new_layout);
5409 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5410 BUG_ON(mddev->delta_disks != 0);
5411 }
5412
5413 if (mddev->private == NULL)
5414 conf = setup_conf(mddev);
5415 else
5416 conf = mddev->private;
5417
5418 if (IS_ERR(conf))
5419 return PTR_ERR(conf);
5420
5421 conf->min_offset_diff = min_offset_diff;
5422 mddev->thread = conf->thread;
5423 conf->thread = NULL;
5424 mddev->private = conf;
5425
5426 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5427 i++) {
5428 rdev = conf->disks[i].rdev;
5429 if (!rdev && conf->disks[i].replacement) {
5430 /* The replacement is all we have yet */
5431 rdev = conf->disks[i].replacement;
5432 conf->disks[i].replacement = NULL;
5433 clear_bit(Replacement, &rdev->flags);
5434 conf->disks[i].rdev = rdev;
5435 }
5436 if (!rdev)
5437 continue;
5438 if (conf->disks[i].replacement &&
5439 conf->reshape_progress != MaxSector) {
5440 /* replacements and reshape simply do not mix. */
5441 printk(KERN_ERR "md: cannot handle concurrent "
5442 "replacement and reshape.\n");
5443 goto abort;
5444 }
5445 if (test_bit(In_sync, &rdev->flags)) {
5446 working_disks++;
5447 continue;
5448 }
5449 /* This disc is not fully in-sync. However if it
5450 * just stored parity (beyond the recovery_offset),
5451 * when we don't need to be concerned about the
5452 * array being dirty.
5453 * When reshape goes 'backwards', we never have
5454 * partially completed devices, so we only need
5455 * to worry about reshape going forwards.
5456 */
5457 /* Hack because v0.91 doesn't store recovery_offset properly. */
5458 if (mddev->major_version == 0 &&
5459 mddev->minor_version > 90)
5460 rdev->recovery_offset = reshape_offset;
5461
5462 if (rdev->recovery_offset < reshape_offset) {
5463 /* We need to check old and new layout */
5464 if (!only_parity(rdev->raid_disk,
5465 conf->algorithm,
5466 conf->raid_disks,
5467 conf->max_degraded))
5468 continue;
5469 }
5470 if (!only_parity(rdev->raid_disk,
5471 conf->prev_algo,
5472 conf->previous_raid_disks,
5473 conf->max_degraded))
5474 continue;
5475 dirty_parity_disks++;
5476 }
5477
5478 /*
5479 * 0 for a fully functional array, 1 or 2 for a degraded array.
5480 */
5481 mddev->degraded = calc_degraded(conf);
5482
5483 if (has_failed(conf)) {
5484 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5485 " (%d/%d failed)\n",
5486 mdname(mddev), mddev->degraded, conf->raid_disks);
5487 goto abort;
5488 }
5489
5490 /* device size must be a multiple of chunk size */
5491 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5492 mddev->resync_max_sectors = mddev->dev_sectors;
5493
5494 if (mddev->degraded > dirty_parity_disks &&
5495 mddev->recovery_cp != MaxSector) {
5496 if (mddev->ok_start_degraded)
5497 printk(KERN_WARNING
5498 "md/raid:%s: starting dirty degraded array"
5499 " - data corruption possible.\n",
5500 mdname(mddev));
5501 else {
5502 printk(KERN_ERR
5503 "md/raid:%s: cannot start dirty degraded array.\n",
5504 mdname(mddev));
5505 goto abort;
5506 }
5507 }
5508
5509 if (mddev->degraded == 0)
5510 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5511 " devices, algorithm %d\n", mdname(mddev), conf->level,
5512 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5513 mddev->new_layout);
5514 else
5515 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5516 " out of %d devices, algorithm %d\n",
5517 mdname(mddev), conf->level,
5518 mddev->raid_disks - mddev->degraded,
5519 mddev->raid_disks, mddev->new_layout);
5520
5521 print_raid5_conf(conf);
5522
5523 if (conf->reshape_progress != MaxSector) {
5524 conf->reshape_safe = conf->reshape_progress;
5525 atomic_set(&conf->reshape_stripes, 0);
5526 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5527 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5528 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5529 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5530 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5531 "reshape");
5532 }
5533
5534
5535 /* Ok, everything is just fine now */
5536 if (mddev->to_remove == &raid5_attrs_group)
5537 mddev->to_remove = NULL;
5538 else if (mddev->kobj.sd &&
5539 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5540 printk(KERN_WARNING
5541 "raid5: failed to create sysfs attributes for %s\n",
5542 mdname(mddev));
5543 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5544
5545 if (mddev->queue) {
5546 int chunk_size;
5547 bool discard_supported = true;
5548 /* read-ahead size must cover two whole stripes, which
5549 * is 2 * (datadisks) * chunksize where 'n' is the
5550 * number of raid devices
5551 */
5552 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5553 int stripe = data_disks *
5554 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5555 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5556 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5557
5558 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5559
5560 mddev->queue->backing_dev_info.congested_data = mddev;
5561 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5562
5563 chunk_size = mddev->chunk_sectors << 9;
5564 blk_queue_io_min(mddev->queue, chunk_size);
5565 blk_queue_io_opt(mddev->queue, chunk_size *
5566 (conf->raid_disks - conf->max_degraded));
5567 /*
5568 * We can only discard a whole stripe. It doesn't make sense to
5569 * discard data disk but write parity disk
5570 */
5571 stripe = stripe * PAGE_SIZE;
5572 /* Round up to power of 2, as discard handling
5573 * currently assumes that */
5574 while ((stripe-1) & stripe)
5575 stripe = (stripe | (stripe-1)) + 1;
5576 mddev->queue->limits.discard_alignment = stripe;
5577 mddev->queue->limits.discard_granularity = stripe;
5578 /*
5579 * unaligned part of discard request will be ignored, so can't
5580 * guarantee discard_zerors_data
5581 */
5582 mddev->queue->limits.discard_zeroes_data = 0;
5583
5584 rdev_for_each(rdev, mddev) {
5585 disk_stack_limits(mddev->gendisk, rdev->bdev,
5586 rdev->data_offset << 9);
5587 disk_stack_limits(mddev->gendisk, rdev->bdev,
5588 rdev->new_data_offset << 9);
5589 /*
5590 * discard_zeroes_data is required, otherwise data
5591 * could be lost. Consider a scenario: discard a stripe
5592 * (the stripe could be inconsistent if
5593 * discard_zeroes_data is 0); write one disk of the
5594 * stripe (the stripe could be inconsistent again
5595 * depending on which disks are used to calculate
5596 * parity); the disk is broken; The stripe data of this
5597 * disk is lost.
5598 */
5599 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5600 !bdev_get_queue(rdev->bdev)->
5601 limits.discard_zeroes_data)
5602 discard_supported = false;
5603 }
5604
5605 if (discard_supported &&
5606 mddev->queue->limits.max_discard_sectors >= stripe &&
5607 mddev->queue->limits.discard_granularity >= stripe)
5608 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5609 mddev->queue);
5610 else
5611 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5612 mddev->queue);
5613 }
5614
5615 return 0;
5616 abort:
5617 md_unregister_thread(&mddev->thread);
5618 print_raid5_conf(conf);
5619 free_conf(conf);
5620 mddev->private = NULL;
5621 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5622 return -EIO;
5623 }
5624
5625 static int stop(struct mddev *mddev)
5626 {
5627 struct r5conf *conf = mddev->private;
5628
5629 md_unregister_thread(&mddev->thread);
5630 if (mddev->queue)
5631 mddev->queue->backing_dev_info.congested_fn = NULL;
5632 free_conf(conf);
5633 mddev->private = NULL;
5634 mddev->to_remove = &raid5_attrs_group;
5635 return 0;
5636 }
5637
5638 static void status(struct seq_file *seq, struct mddev *mddev)
5639 {
5640 struct r5conf *conf = mddev->private;
5641 int i;
5642
5643 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5644 mddev->chunk_sectors / 2, mddev->layout);
5645 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5646 for (i = 0; i < conf->raid_disks; i++)
5647 seq_printf (seq, "%s",
5648 conf->disks[i].rdev &&
5649 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5650 seq_printf (seq, "]");
5651 }
5652
5653 static void print_raid5_conf (struct r5conf *conf)
5654 {
5655 int i;
5656 struct disk_info *tmp;
5657
5658 printk(KERN_DEBUG "RAID conf printout:\n");
5659 if (!conf) {
5660 printk("(conf==NULL)\n");
5661 return;
5662 }
5663 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5664 conf->raid_disks,
5665 conf->raid_disks - conf->mddev->degraded);
5666
5667 for (i = 0; i < conf->raid_disks; i++) {
5668 char b[BDEVNAME_SIZE];
5669 tmp = conf->disks + i;
5670 if (tmp->rdev)
5671 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5672 i, !test_bit(Faulty, &tmp->rdev->flags),
5673 bdevname(tmp->rdev->bdev, b));
5674 }
5675 }
5676
5677 static int raid5_spare_active(struct mddev *mddev)
5678 {
5679 int i;
5680 struct r5conf *conf = mddev->private;
5681 struct disk_info *tmp;
5682 int count = 0;
5683 unsigned long flags;
5684
5685 for (i = 0; i < conf->raid_disks; i++) {
5686 tmp = conf->disks + i;
5687 if (tmp->replacement
5688 && tmp->replacement->recovery_offset == MaxSector
5689 && !test_bit(Faulty, &tmp->replacement->flags)
5690 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5691 /* Replacement has just become active. */
5692 if (!tmp->rdev
5693 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5694 count++;
5695 if (tmp->rdev) {
5696 /* Replaced device not technically faulty,
5697 * but we need to be sure it gets removed
5698 * and never re-added.
5699 */
5700 set_bit(Faulty, &tmp->rdev->flags);
5701 sysfs_notify_dirent_safe(
5702 tmp->rdev->sysfs_state);
5703 }
5704 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5705 } else if (tmp->rdev
5706 && tmp->rdev->recovery_offset == MaxSector
5707 && !test_bit(Faulty, &tmp->rdev->flags)
5708 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5709 count++;
5710 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5711 }
5712 }
5713 spin_lock_irqsave(&conf->device_lock, flags);
5714 mddev->degraded = calc_degraded(conf);
5715 spin_unlock_irqrestore(&conf->device_lock, flags);
5716 print_raid5_conf(conf);
5717 return count;
5718 }
5719
5720 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5721 {
5722 struct r5conf *conf = mddev->private;
5723 int err = 0;
5724 int number = rdev->raid_disk;
5725 struct md_rdev **rdevp;
5726 struct disk_info *p = conf->disks + number;
5727
5728 print_raid5_conf(conf);
5729 if (rdev == p->rdev)
5730 rdevp = &p->rdev;
5731 else if (rdev == p->replacement)
5732 rdevp = &p->replacement;
5733 else
5734 return 0;
5735
5736 if (number >= conf->raid_disks &&
5737 conf->reshape_progress == MaxSector)
5738 clear_bit(In_sync, &rdev->flags);
5739
5740 if (test_bit(In_sync, &rdev->flags) ||
5741 atomic_read(&rdev->nr_pending)) {
5742 err = -EBUSY;
5743 goto abort;
5744 }
5745 /* Only remove non-faulty devices if recovery
5746 * isn't possible.
5747 */
5748 if (!test_bit(Faulty, &rdev->flags) &&
5749 mddev->recovery_disabled != conf->recovery_disabled &&
5750 !has_failed(conf) &&
5751 (!p->replacement || p->replacement == rdev) &&
5752 number < conf->raid_disks) {
5753 err = -EBUSY;
5754 goto abort;
5755 }
5756 *rdevp = NULL;
5757 synchronize_rcu();
5758 if (atomic_read(&rdev->nr_pending)) {
5759 /* lost the race, try later */
5760 err = -EBUSY;
5761 *rdevp = rdev;
5762 } else if (p->replacement) {
5763 /* We must have just cleared 'rdev' */
5764 p->rdev = p->replacement;
5765 clear_bit(Replacement, &p->replacement->flags);
5766 smp_mb(); /* Make sure other CPUs may see both as identical
5767 * but will never see neither - if they are careful
5768 */
5769 p->replacement = NULL;
5770 clear_bit(WantReplacement, &rdev->flags);
5771 } else
5772 /* We might have just removed the Replacement as faulty-
5773 * clear the bit just in case
5774 */
5775 clear_bit(WantReplacement, &rdev->flags);
5776 abort:
5777
5778 print_raid5_conf(conf);
5779 return err;
5780 }
5781
5782 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5783 {
5784 struct r5conf *conf = mddev->private;
5785 int err = -EEXIST;
5786 int disk;
5787 struct disk_info *p;
5788 int first = 0;
5789 int last = conf->raid_disks - 1;
5790
5791 if (mddev->recovery_disabled == conf->recovery_disabled)
5792 return -EBUSY;
5793
5794 if (rdev->saved_raid_disk < 0 && has_failed(conf))
5795 /* no point adding a device */
5796 return -EINVAL;
5797
5798 if (rdev->raid_disk >= 0)
5799 first = last = rdev->raid_disk;
5800
5801 /*
5802 * find the disk ... but prefer rdev->saved_raid_disk
5803 * if possible.
5804 */
5805 if (rdev->saved_raid_disk >= 0 &&
5806 rdev->saved_raid_disk >= first &&
5807 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5808 first = rdev->saved_raid_disk;
5809
5810 for (disk = first; disk <= last; disk++) {
5811 p = conf->disks + disk;
5812 if (p->rdev == NULL) {
5813 clear_bit(In_sync, &rdev->flags);
5814 rdev->raid_disk = disk;
5815 err = 0;
5816 if (rdev->saved_raid_disk != disk)
5817 conf->fullsync = 1;
5818 rcu_assign_pointer(p->rdev, rdev);
5819 goto out;
5820 }
5821 }
5822 for (disk = first; disk <= last; disk++) {
5823 p = conf->disks + disk;
5824 if (test_bit(WantReplacement, &p->rdev->flags) &&
5825 p->replacement == NULL) {
5826 clear_bit(In_sync, &rdev->flags);
5827 set_bit(Replacement, &rdev->flags);
5828 rdev->raid_disk = disk;
5829 err = 0;
5830 conf->fullsync = 1;
5831 rcu_assign_pointer(p->replacement, rdev);
5832 break;
5833 }
5834 }
5835 out:
5836 print_raid5_conf(conf);
5837 return err;
5838 }
5839
5840 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5841 {
5842 /* no resync is happening, and there is enough space
5843 * on all devices, so we can resize.
5844 * We need to make sure resync covers any new space.
5845 * If the array is shrinking we should possibly wait until
5846 * any io in the removed space completes, but it hardly seems
5847 * worth it.
5848 */
5849 sector_t newsize;
5850 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5851 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5852 if (mddev->external_size &&
5853 mddev->array_sectors > newsize)
5854 return -EINVAL;
5855 if (mddev->bitmap) {
5856 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5857 if (ret)
5858 return ret;
5859 }
5860 md_set_array_sectors(mddev, newsize);
5861 set_capacity(mddev->gendisk, mddev->array_sectors);
5862 revalidate_disk(mddev->gendisk);
5863 if (sectors > mddev->dev_sectors &&
5864 mddev->recovery_cp > mddev->dev_sectors) {
5865 mddev->recovery_cp = mddev->dev_sectors;
5866 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5867 }
5868 mddev->dev_sectors = sectors;
5869 mddev->resync_max_sectors = sectors;
5870 return 0;
5871 }
5872
5873 static int check_stripe_cache(struct mddev *mddev)
5874 {
5875 /* Can only proceed if there are plenty of stripe_heads.
5876 * We need a minimum of one full stripe,, and for sensible progress
5877 * it is best to have about 4 times that.
5878 * If we require 4 times, then the default 256 4K stripe_heads will
5879 * allow for chunk sizes up to 256K, which is probably OK.
5880 * If the chunk size is greater, user-space should request more
5881 * stripe_heads first.
5882 */
5883 struct r5conf *conf = mddev->private;
5884 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5885 > conf->max_nr_stripes ||
5886 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5887 > conf->max_nr_stripes) {
5888 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5889 mdname(mddev),
5890 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5891 / STRIPE_SIZE)*4);
5892 return 0;
5893 }
5894 return 1;
5895 }
5896
5897 static int check_reshape(struct mddev *mddev)
5898 {
5899 struct r5conf *conf = mddev->private;
5900
5901 if (mddev->delta_disks == 0 &&
5902 mddev->new_layout == mddev->layout &&
5903 mddev->new_chunk_sectors == mddev->chunk_sectors)
5904 return 0; /* nothing to do */
5905 if (has_failed(conf))
5906 return -EINVAL;
5907 if (mddev->delta_disks < 0) {
5908 /* We might be able to shrink, but the devices must
5909 * be made bigger first.
5910 * For raid6, 4 is the minimum size.
5911 * Otherwise 2 is the minimum
5912 */
5913 int min = 2;
5914 if (mddev->level == 6)
5915 min = 4;
5916 if (mddev->raid_disks + mddev->delta_disks < min)
5917 return -EINVAL;
5918 }
5919
5920 if (!check_stripe_cache(mddev))
5921 return -ENOSPC;
5922
5923 return resize_stripes(conf, (conf->previous_raid_disks
5924 + mddev->delta_disks));
5925 }
5926
5927 static int raid5_start_reshape(struct mddev *mddev)
5928 {
5929 struct r5conf *conf = mddev->private;
5930 struct md_rdev *rdev;
5931 int spares = 0;
5932 unsigned long flags;
5933
5934 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5935 return -EBUSY;
5936
5937 if (!check_stripe_cache(mddev))
5938 return -ENOSPC;
5939
5940 if (has_failed(conf))
5941 return -EINVAL;
5942
5943 rdev_for_each(rdev, mddev) {
5944 if (!test_bit(In_sync, &rdev->flags)
5945 && !test_bit(Faulty, &rdev->flags))
5946 spares++;
5947 }
5948
5949 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5950 /* Not enough devices even to make a degraded array
5951 * of that size
5952 */
5953 return -EINVAL;
5954
5955 /* Refuse to reduce size of the array. Any reductions in
5956 * array size must be through explicit setting of array_size
5957 * attribute.
5958 */
5959 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5960 < mddev->array_sectors) {
5961 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5962 "before number of disks\n", mdname(mddev));
5963 return -EINVAL;
5964 }
5965
5966 atomic_set(&conf->reshape_stripes, 0);
5967 spin_lock_irq(&conf->device_lock);
5968 conf->previous_raid_disks = conf->raid_disks;
5969 conf->raid_disks += mddev->delta_disks;
5970 conf->prev_chunk_sectors = conf->chunk_sectors;
5971 conf->chunk_sectors = mddev->new_chunk_sectors;
5972 conf->prev_algo = conf->algorithm;
5973 conf->algorithm = mddev->new_layout;
5974 conf->generation++;
5975 /* Code that selects data_offset needs to see the generation update
5976 * if reshape_progress has been set - so a memory barrier needed.
5977 */
5978 smp_mb();
5979 if (mddev->reshape_backwards)
5980 conf->reshape_progress = raid5_size(mddev, 0, 0);
5981 else
5982 conf->reshape_progress = 0;
5983 conf->reshape_safe = conf->reshape_progress;
5984 spin_unlock_irq(&conf->device_lock);
5985
5986 /* Add some new drives, as many as will fit.
5987 * We know there are enough to make the newly sized array work.
5988 * Don't add devices if we are reducing the number of
5989 * devices in the array. This is because it is not possible
5990 * to correctly record the "partially reconstructed" state of
5991 * such devices during the reshape and confusion could result.
5992 */
5993 if (mddev->delta_disks >= 0) {
5994 rdev_for_each(rdev, mddev)
5995 if (rdev->raid_disk < 0 &&
5996 !test_bit(Faulty, &rdev->flags)) {
5997 if (raid5_add_disk(mddev, rdev) == 0) {
5998 if (rdev->raid_disk
5999 >= conf->previous_raid_disks)
6000 set_bit(In_sync, &rdev->flags);
6001 else
6002 rdev->recovery_offset = 0;
6003
6004 if (sysfs_link_rdev(mddev, rdev))
6005 /* Failure here is OK */;
6006 }
6007 } else if (rdev->raid_disk >= conf->previous_raid_disks
6008 && !test_bit(Faulty, &rdev->flags)) {
6009 /* This is a spare that was manually added */
6010 set_bit(In_sync, &rdev->flags);
6011 }
6012
6013 /* When a reshape changes the number of devices,
6014 * ->degraded is measured against the larger of the
6015 * pre and post number of devices.
6016 */
6017 spin_lock_irqsave(&conf->device_lock, flags);
6018 mddev->degraded = calc_degraded(conf);
6019 spin_unlock_irqrestore(&conf->device_lock, flags);
6020 }
6021 mddev->raid_disks = conf->raid_disks;
6022 mddev->reshape_position = conf->reshape_progress;
6023 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6024
6025 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6026 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6027 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6028 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6029 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6030 "reshape");
6031 if (!mddev->sync_thread) {
6032 mddev->recovery = 0;
6033 spin_lock_irq(&conf->device_lock);
6034 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6035 rdev_for_each(rdev, mddev)
6036 rdev->new_data_offset = rdev->data_offset;
6037 smp_wmb();
6038 conf->reshape_progress = MaxSector;
6039 mddev->reshape_position = MaxSector;
6040 spin_unlock_irq(&conf->device_lock);
6041 return -EAGAIN;
6042 }
6043 conf->reshape_checkpoint = jiffies;
6044 md_wakeup_thread(mddev->sync_thread);
6045 md_new_event(mddev);
6046 return 0;
6047 }
6048
6049 /* This is called from the reshape thread and should make any
6050 * changes needed in 'conf'
6051 */
6052 static void end_reshape(struct r5conf *conf)
6053 {
6054
6055 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6056 struct md_rdev *rdev;
6057
6058 spin_lock_irq(&conf->device_lock);
6059 conf->previous_raid_disks = conf->raid_disks;
6060 rdev_for_each(rdev, conf->mddev)
6061 rdev->data_offset = rdev->new_data_offset;
6062 smp_wmb();
6063 conf->reshape_progress = MaxSector;
6064 spin_unlock_irq(&conf->device_lock);
6065 wake_up(&conf->wait_for_overlap);
6066
6067 /* read-ahead size must cover two whole stripes, which is
6068 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6069 */
6070 if (conf->mddev->queue) {
6071 int data_disks = conf->raid_disks - conf->max_degraded;
6072 int stripe = data_disks * ((conf->chunk_sectors << 9)
6073 / PAGE_SIZE);
6074 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6075 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6076 }
6077 }
6078 }
6079
6080 /* This is called from the raid5d thread with mddev_lock held.
6081 * It makes config changes to the device.
6082 */
6083 static void raid5_finish_reshape(struct mddev *mddev)
6084 {
6085 struct r5conf *conf = mddev->private;
6086
6087 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6088
6089 if (mddev->delta_disks > 0) {
6090 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6091 set_capacity(mddev->gendisk, mddev->array_sectors);
6092 revalidate_disk(mddev->gendisk);
6093 } else {
6094 int d;
6095 spin_lock_irq(&conf->device_lock);
6096 mddev->degraded = calc_degraded(conf);
6097 spin_unlock_irq(&conf->device_lock);
6098 for (d = conf->raid_disks ;
6099 d < conf->raid_disks - mddev->delta_disks;
6100 d++) {
6101 struct md_rdev *rdev = conf->disks[d].rdev;
6102 if (rdev)
6103 clear_bit(In_sync, &rdev->flags);
6104 rdev = conf->disks[d].replacement;
6105 if (rdev)
6106 clear_bit(In_sync, &rdev->flags);
6107 }
6108 }
6109 mddev->layout = conf->algorithm;
6110 mddev->chunk_sectors = conf->chunk_sectors;
6111 mddev->reshape_position = MaxSector;
6112 mddev->delta_disks = 0;
6113 mddev->reshape_backwards = 0;
6114 }
6115 }
6116
6117 static void raid5_quiesce(struct mddev *mddev, int state)
6118 {
6119 struct r5conf *conf = mddev->private;
6120
6121 switch(state) {
6122 case 2: /* resume for a suspend */
6123 wake_up(&conf->wait_for_overlap);
6124 break;
6125
6126 case 1: /* stop all writes */
6127 spin_lock_irq(&conf->device_lock);
6128 /* '2' tells resync/reshape to pause so that all
6129 * active stripes can drain
6130 */
6131 conf->quiesce = 2;
6132 wait_event_lock_irq(conf->wait_for_stripe,
6133 atomic_read(&conf->active_stripes) == 0 &&
6134 atomic_read(&conf->active_aligned_reads) == 0,
6135 conf->device_lock);
6136 conf->quiesce = 1;
6137 spin_unlock_irq(&conf->device_lock);
6138 /* allow reshape to continue */
6139 wake_up(&conf->wait_for_overlap);
6140 break;
6141
6142 case 0: /* re-enable writes */
6143 spin_lock_irq(&conf->device_lock);
6144 conf->quiesce = 0;
6145 wake_up(&conf->wait_for_stripe);
6146 wake_up(&conf->wait_for_overlap);
6147 spin_unlock_irq(&conf->device_lock);
6148 break;
6149 }
6150 }
6151
6152
6153 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6154 {
6155 struct r0conf *raid0_conf = mddev->private;
6156 sector_t sectors;
6157
6158 /* for raid0 takeover only one zone is supported */
6159 if (raid0_conf->nr_strip_zones > 1) {
6160 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6161 mdname(mddev));
6162 return ERR_PTR(-EINVAL);
6163 }
6164
6165 sectors = raid0_conf->strip_zone[0].zone_end;
6166 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6167 mddev->dev_sectors = sectors;
6168 mddev->new_level = level;
6169 mddev->new_layout = ALGORITHM_PARITY_N;
6170 mddev->new_chunk_sectors = mddev->chunk_sectors;
6171 mddev->raid_disks += 1;
6172 mddev->delta_disks = 1;
6173 /* make sure it will be not marked as dirty */
6174 mddev->recovery_cp = MaxSector;
6175
6176 return setup_conf(mddev);
6177 }
6178
6179
6180 static void *raid5_takeover_raid1(struct mddev *mddev)
6181 {
6182 int chunksect;
6183
6184 if (mddev->raid_disks != 2 ||
6185 mddev->degraded > 1)
6186 return ERR_PTR(-EINVAL);
6187
6188 /* Should check if there are write-behind devices? */
6189
6190 chunksect = 64*2; /* 64K by default */
6191
6192 /* The array must be an exact multiple of chunksize */
6193 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6194 chunksect >>= 1;
6195
6196 if ((chunksect<<9) < STRIPE_SIZE)
6197 /* array size does not allow a suitable chunk size */
6198 return ERR_PTR(-EINVAL);
6199
6200 mddev->new_level = 5;
6201 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6202 mddev->new_chunk_sectors = chunksect;
6203
6204 return setup_conf(mddev);
6205 }
6206
6207 static void *raid5_takeover_raid6(struct mddev *mddev)
6208 {
6209 int new_layout;
6210
6211 switch (mddev->layout) {
6212 case ALGORITHM_LEFT_ASYMMETRIC_6:
6213 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6214 break;
6215 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6216 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6217 break;
6218 case ALGORITHM_LEFT_SYMMETRIC_6:
6219 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6220 break;
6221 case ALGORITHM_RIGHT_SYMMETRIC_6:
6222 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6223 break;
6224 case ALGORITHM_PARITY_0_6:
6225 new_layout = ALGORITHM_PARITY_0;
6226 break;
6227 case ALGORITHM_PARITY_N:
6228 new_layout = ALGORITHM_PARITY_N;
6229 break;
6230 default:
6231 return ERR_PTR(-EINVAL);
6232 }
6233 mddev->new_level = 5;
6234 mddev->new_layout = new_layout;
6235 mddev->delta_disks = -1;
6236 mddev->raid_disks -= 1;
6237 return setup_conf(mddev);
6238 }
6239
6240
6241 static int raid5_check_reshape(struct mddev *mddev)
6242 {
6243 /* For a 2-drive array, the layout and chunk size can be changed
6244 * immediately as not restriping is needed.
6245 * For larger arrays we record the new value - after validation
6246 * to be used by a reshape pass.
6247 */
6248 struct r5conf *conf = mddev->private;
6249 int new_chunk = mddev->new_chunk_sectors;
6250
6251 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6252 return -EINVAL;
6253 if (new_chunk > 0) {
6254 if (!is_power_of_2(new_chunk))
6255 return -EINVAL;
6256 if (new_chunk < (PAGE_SIZE>>9))
6257 return -EINVAL;
6258 if (mddev->array_sectors & (new_chunk-1))
6259 /* not factor of array size */
6260 return -EINVAL;
6261 }
6262
6263 /* They look valid */
6264
6265 if (mddev->raid_disks == 2) {
6266 /* can make the change immediately */
6267 if (mddev->new_layout >= 0) {
6268 conf->algorithm = mddev->new_layout;
6269 mddev->layout = mddev->new_layout;
6270 }
6271 if (new_chunk > 0) {
6272 conf->chunk_sectors = new_chunk ;
6273 mddev->chunk_sectors = new_chunk;
6274 }
6275 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6276 md_wakeup_thread(mddev->thread);
6277 }
6278 return check_reshape(mddev);
6279 }
6280
6281 static int raid6_check_reshape(struct mddev *mddev)
6282 {
6283 int new_chunk = mddev->new_chunk_sectors;
6284
6285 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6286 return -EINVAL;
6287 if (new_chunk > 0) {
6288 if (!is_power_of_2(new_chunk))
6289 return -EINVAL;
6290 if (new_chunk < (PAGE_SIZE >> 9))
6291 return -EINVAL;
6292 if (mddev->array_sectors & (new_chunk-1))
6293 /* not factor of array size */
6294 return -EINVAL;
6295 }
6296
6297 /* They look valid */
6298 return check_reshape(mddev);
6299 }
6300
6301 static void *raid5_takeover(struct mddev *mddev)
6302 {
6303 /* raid5 can take over:
6304 * raid0 - if there is only one strip zone - make it a raid4 layout
6305 * raid1 - if there are two drives. We need to know the chunk size
6306 * raid4 - trivial - just use a raid4 layout.
6307 * raid6 - Providing it is a *_6 layout
6308 */
6309 if (mddev->level == 0)
6310 return raid45_takeover_raid0(mddev, 5);
6311 if (mddev->level == 1)
6312 return raid5_takeover_raid1(mddev);
6313 if (mddev->level == 4) {
6314 mddev->new_layout = ALGORITHM_PARITY_N;
6315 mddev->new_level = 5;
6316 return setup_conf(mddev);
6317 }
6318 if (mddev->level == 6)
6319 return raid5_takeover_raid6(mddev);
6320
6321 return ERR_PTR(-EINVAL);
6322 }
6323
6324 static void *raid4_takeover(struct mddev *mddev)
6325 {
6326 /* raid4 can take over:
6327 * raid0 - if there is only one strip zone
6328 * raid5 - if layout is right
6329 */
6330 if (mddev->level == 0)
6331 return raid45_takeover_raid0(mddev, 4);
6332 if (mddev->level == 5 &&
6333 mddev->layout == ALGORITHM_PARITY_N) {
6334 mddev->new_layout = 0;
6335 mddev->new_level = 4;
6336 return setup_conf(mddev);
6337 }
6338 return ERR_PTR(-EINVAL);
6339 }
6340
6341 static struct md_personality raid5_personality;
6342
6343 static void *raid6_takeover(struct mddev *mddev)
6344 {
6345 /* Currently can only take over a raid5. We map the
6346 * personality to an equivalent raid6 personality
6347 * with the Q block at the end.
6348 */
6349 int new_layout;
6350
6351 if (mddev->pers != &raid5_personality)
6352 return ERR_PTR(-EINVAL);
6353 if (mddev->degraded > 1)
6354 return ERR_PTR(-EINVAL);
6355 if (mddev->raid_disks > 253)
6356 return ERR_PTR(-EINVAL);
6357 if (mddev->raid_disks < 3)
6358 return ERR_PTR(-EINVAL);
6359
6360 switch (mddev->layout) {
6361 case ALGORITHM_LEFT_ASYMMETRIC:
6362 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6363 break;
6364 case ALGORITHM_RIGHT_ASYMMETRIC:
6365 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6366 break;
6367 case ALGORITHM_LEFT_SYMMETRIC:
6368 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6369 break;
6370 case ALGORITHM_RIGHT_SYMMETRIC:
6371 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6372 break;
6373 case ALGORITHM_PARITY_0:
6374 new_layout = ALGORITHM_PARITY_0_6;
6375 break;
6376 case ALGORITHM_PARITY_N:
6377 new_layout = ALGORITHM_PARITY_N;
6378 break;
6379 default:
6380 return ERR_PTR(-EINVAL);
6381 }
6382 mddev->new_level = 6;
6383 mddev->new_layout = new_layout;
6384 mddev->delta_disks = 1;
6385 mddev->raid_disks += 1;
6386 return setup_conf(mddev);
6387 }
6388
6389
6390 static struct md_personality raid6_personality =
6391 {
6392 .name = "raid6",
6393 .level = 6,
6394 .owner = THIS_MODULE,
6395 .make_request = make_request,
6396 .run = run,
6397 .stop = stop,
6398 .status = status,
6399 .error_handler = error,
6400 .hot_add_disk = raid5_add_disk,
6401 .hot_remove_disk= raid5_remove_disk,
6402 .spare_active = raid5_spare_active,
6403 .sync_request = sync_request,
6404 .resize = raid5_resize,
6405 .size = raid5_size,
6406 .check_reshape = raid6_check_reshape,
6407 .start_reshape = raid5_start_reshape,
6408 .finish_reshape = raid5_finish_reshape,
6409 .quiesce = raid5_quiesce,
6410 .takeover = raid6_takeover,
6411 };
6412 static struct md_personality raid5_personality =
6413 {
6414 .name = "raid5",
6415 .level = 5,
6416 .owner = THIS_MODULE,
6417 .make_request = make_request,
6418 .run = run,
6419 .stop = stop,
6420 .status = status,
6421 .error_handler = error,
6422 .hot_add_disk = raid5_add_disk,
6423 .hot_remove_disk= raid5_remove_disk,
6424 .spare_active = raid5_spare_active,
6425 .sync_request = sync_request,
6426 .resize = raid5_resize,
6427 .size = raid5_size,
6428 .check_reshape = raid5_check_reshape,
6429 .start_reshape = raid5_start_reshape,
6430 .finish_reshape = raid5_finish_reshape,
6431 .quiesce = raid5_quiesce,
6432 .takeover = raid5_takeover,
6433 };
6434
6435 static struct md_personality raid4_personality =
6436 {
6437 .name = "raid4",
6438 .level = 4,
6439 .owner = THIS_MODULE,
6440 .make_request = make_request,
6441 .run = run,
6442 .stop = stop,
6443 .status = status,
6444 .error_handler = error,
6445 .hot_add_disk = raid5_add_disk,
6446 .hot_remove_disk= raid5_remove_disk,
6447 .spare_active = raid5_spare_active,
6448 .sync_request = sync_request,
6449 .resize = raid5_resize,
6450 .size = raid5_size,
6451 .check_reshape = raid5_check_reshape,
6452 .start_reshape = raid5_start_reshape,
6453 .finish_reshape = raid5_finish_reshape,
6454 .quiesce = raid5_quiesce,
6455 .takeover = raid4_takeover,
6456 };
6457
6458 static int __init raid5_init(void)
6459 {
6460 register_md_personality(&raid6_personality);
6461 register_md_personality(&raid5_personality);
6462 register_md_personality(&raid4_personality);
6463 return 0;
6464 }
6465
6466 static void raid5_exit(void)
6467 {
6468 unregister_md_personality(&raid6_personality);
6469 unregister_md_personality(&raid5_personality);
6470 unregister_md_personality(&raid4_personality);
6471 }
6472
6473 module_init(raid5_init);
6474 module_exit(raid5_exit);
6475 MODULE_LICENSE("GPL");
6476 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6477 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6478 MODULE_ALIAS("md-raid5");
6479 MODULE_ALIAS("md-raid4");
6480 MODULE_ALIAS("md-level-5");
6481 MODULE_ALIAS("md-level-4");
6482 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6483 MODULE_ALIAS("md-raid6");
6484 MODULE_ALIAS("md-level-6");
6485
6486 /* This used to be two separate modules, they were: */
6487 MODULE_ALIAS("raid5");
6488 MODULE_ALIAS("raid6");