]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid5.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livep...
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <linux/sched/signal.h>
59
60 #include <trace/events/block.h>
61 #include <linux/list_sort.h>
62
63 #include "md.h"
64 #include "raid5.h"
65 #include "raid0.h"
66 #include "bitmap.h"
67 #include "raid5-log.h"
68
69 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
70
71 #define cpu_to_group(cpu) cpu_to_node(cpu)
72 #define ANY_GROUP NUMA_NO_NODE
73
74 static bool devices_handle_discard_safely = false;
75 module_param(devices_handle_discard_safely, bool, 0644);
76 MODULE_PARM_DESC(devices_handle_discard_safely,
77 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
78 static struct workqueue_struct *raid5_wq;
79
80 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
81 {
82 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83 return &conf->stripe_hashtbl[hash];
84 }
85
86 static inline int stripe_hash_locks_hash(sector_t sect)
87 {
88 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
89 }
90
91 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92 {
93 spin_lock_irq(conf->hash_locks + hash);
94 spin_lock(&conf->device_lock);
95 }
96
97 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99 spin_unlock(&conf->device_lock);
100 spin_unlock_irq(conf->hash_locks + hash);
101 }
102
103 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104 {
105 int i;
106 spin_lock_irq(conf->hash_locks);
107 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
108 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
109 spin_lock(&conf->device_lock);
110 }
111
112 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
113 {
114 int i;
115 spin_unlock(&conf->device_lock);
116 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
117 spin_unlock(conf->hash_locks + i);
118 spin_unlock_irq(conf->hash_locks);
119 }
120
121 /* Find first data disk in a raid6 stripe */
122 static inline int raid6_d0(struct stripe_head *sh)
123 {
124 if (sh->ddf_layout)
125 /* ddf always start from first device */
126 return 0;
127 /* md starts just after Q block */
128 if (sh->qd_idx == sh->disks - 1)
129 return 0;
130 else
131 return sh->qd_idx + 1;
132 }
133 static inline int raid6_next_disk(int disk, int raid_disks)
134 {
135 disk++;
136 return (disk < raid_disks) ? disk : 0;
137 }
138
139 /* When walking through the disks in a raid5, starting at raid6_d0,
140 * We need to map each disk to a 'slot', where the data disks are slot
141 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
142 * is raid_disks-1. This help does that mapping.
143 */
144 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
145 int *count, int syndrome_disks)
146 {
147 int slot = *count;
148
149 if (sh->ddf_layout)
150 (*count)++;
151 if (idx == sh->pd_idx)
152 return syndrome_disks;
153 if (idx == sh->qd_idx)
154 return syndrome_disks + 1;
155 if (!sh->ddf_layout)
156 (*count)++;
157 return slot;
158 }
159
160 static void print_raid5_conf (struct r5conf *conf);
161
162 static int stripe_operations_active(struct stripe_head *sh)
163 {
164 return sh->check_state || sh->reconstruct_state ||
165 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
166 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
167 }
168
169 static bool stripe_is_lowprio(struct stripe_head *sh)
170 {
171 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
172 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
173 !test_bit(STRIPE_R5C_CACHING, &sh->state);
174 }
175
176 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
177 {
178 struct r5conf *conf = sh->raid_conf;
179 struct r5worker_group *group;
180 int thread_cnt;
181 int i, cpu = sh->cpu;
182
183 if (!cpu_online(cpu)) {
184 cpu = cpumask_any(cpu_online_mask);
185 sh->cpu = cpu;
186 }
187
188 if (list_empty(&sh->lru)) {
189 struct r5worker_group *group;
190 group = conf->worker_groups + cpu_to_group(cpu);
191 if (stripe_is_lowprio(sh))
192 list_add_tail(&sh->lru, &group->loprio_list);
193 else
194 list_add_tail(&sh->lru, &group->handle_list);
195 group->stripes_cnt++;
196 sh->group = group;
197 }
198
199 if (conf->worker_cnt_per_group == 0) {
200 md_wakeup_thread(conf->mddev->thread);
201 return;
202 }
203
204 group = conf->worker_groups + cpu_to_group(sh->cpu);
205
206 group->workers[0].working = true;
207 /* at least one worker should run to avoid race */
208 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209
210 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211 /* wakeup more workers */
212 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213 if (group->workers[i].working == false) {
214 group->workers[i].working = true;
215 queue_work_on(sh->cpu, raid5_wq,
216 &group->workers[i].work);
217 thread_cnt--;
218 }
219 }
220 }
221
222 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223 struct list_head *temp_inactive_list)
224 {
225 int i;
226 int injournal = 0; /* number of date pages with R5_InJournal */
227
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
230
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 injournal++;
235 /*
236 * In the following cases, the stripe cannot be released to cached
237 * lists. Therefore, we make the stripe write out and set
238 * STRIPE_HANDLE:
239 * 1. when quiesce in r5c write back;
240 * 2. when resync is requested fot the stripe.
241 */
242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 (conf->quiesce && r5c_is_writeback(conf->log) &&
244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 r5c_make_stripe_write_out(sh);
247 set_bit(STRIPE_HANDLE, &sh->state);
248 }
249
250 if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 list_add_tail(&sh->lru, &conf->delayed_list);
254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 sh->bm_seq - conf->seq_write > 0)
256 list_add_tail(&sh->lru, &conf->bitmap_list);
257 else {
258 clear_bit(STRIPE_DELAYED, &sh->state);
259 clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 if (conf->worker_cnt_per_group == 0) {
261 if (stripe_is_lowprio(sh))
262 list_add_tail(&sh->lru,
263 &conf->loprio_list);
264 else
265 list_add_tail(&sh->lru,
266 &conf->handle_list);
267 } else {
268 raid5_wakeup_stripe_thread(sh);
269 return;
270 }
271 }
272 md_wakeup_thread(conf->mddev->thread);
273 } else {
274 BUG_ON(stripe_operations_active(sh));
275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 if (atomic_dec_return(&conf->preread_active_stripes)
277 < IO_THRESHOLD)
278 md_wakeup_thread(conf->mddev->thread);
279 atomic_dec(&conf->active_stripes);
280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 if (!r5c_is_writeback(conf->log))
282 list_add_tail(&sh->lru, temp_inactive_list);
283 else {
284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 if (injournal == 0)
286 list_add_tail(&sh->lru, temp_inactive_list);
287 else if (injournal == conf->raid_disks - conf->max_degraded) {
288 /* full stripe */
289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 atomic_inc(&conf->r5c_cached_full_stripes);
291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 atomic_dec(&conf->r5c_cached_partial_stripes);
293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 r5c_check_cached_full_stripe(conf);
295 } else
296 /*
297 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 * r5c_try_caching_write(). No need to
299 * set it again.
300 */
301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302 }
303 }
304 }
305 }
306
307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 struct list_head *temp_inactive_list)
309 {
310 if (atomic_dec_and_test(&sh->count))
311 do_release_stripe(conf, sh, temp_inactive_list);
312 }
313
314 /*
315 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
316 *
317 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
318 * given time. Adding stripes only takes device lock, while deleting stripes
319 * only takes hash lock.
320 */
321 static void release_inactive_stripe_list(struct r5conf *conf,
322 struct list_head *temp_inactive_list,
323 int hash)
324 {
325 int size;
326 bool do_wakeup = false;
327 unsigned long flags;
328
329 if (hash == NR_STRIPE_HASH_LOCKS) {
330 size = NR_STRIPE_HASH_LOCKS;
331 hash = NR_STRIPE_HASH_LOCKS - 1;
332 } else
333 size = 1;
334 while (size) {
335 struct list_head *list = &temp_inactive_list[size - 1];
336
337 /*
338 * We don't hold any lock here yet, raid5_get_active_stripe() might
339 * remove stripes from the list
340 */
341 if (!list_empty_careful(list)) {
342 spin_lock_irqsave(conf->hash_locks + hash, flags);
343 if (list_empty(conf->inactive_list + hash) &&
344 !list_empty(list))
345 atomic_dec(&conf->empty_inactive_list_nr);
346 list_splice_tail_init(list, conf->inactive_list + hash);
347 do_wakeup = true;
348 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
349 }
350 size--;
351 hash--;
352 }
353
354 if (do_wakeup) {
355 wake_up(&conf->wait_for_stripe);
356 if (atomic_read(&conf->active_stripes) == 0)
357 wake_up(&conf->wait_for_quiescent);
358 if (conf->retry_read_aligned)
359 md_wakeup_thread(conf->mddev->thread);
360 }
361 }
362
363 /* should hold conf->device_lock already */
364 static int release_stripe_list(struct r5conf *conf,
365 struct list_head *temp_inactive_list)
366 {
367 struct stripe_head *sh, *t;
368 int count = 0;
369 struct llist_node *head;
370
371 head = llist_del_all(&conf->released_stripes);
372 head = llist_reverse_order(head);
373 llist_for_each_entry_safe(sh, t, head, release_list) {
374 int hash;
375
376 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
377 smp_mb();
378 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
379 /*
380 * Don't worry the bit is set here, because if the bit is set
381 * again, the count is always > 1. This is true for
382 * STRIPE_ON_UNPLUG_LIST bit too.
383 */
384 hash = sh->hash_lock_index;
385 __release_stripe(conf, sh, &temp_inactive_list[hash]);
386 count++;
387 }
388
389 return count;
390 }
391
392 void raid5_release_stripe(struct stripe_head *sh)
393 {
394 struct r5conf *conf = sh->raid_conf;
395 unsigned long flags;
396 struct list_head list;
397 int hash;
398 bool wakeup;
399
400 /* Avoid release_list until the last reference.
401 */
402 if (atomic_add_unless(&sh->count, -1, 1))
403 return;
404
405 if (unlikely(!conf->mddev->thread) ||
406 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
407 goto slow_path;
408 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
409 if (wakeup)
410 md_wakeup_thread(conf->mddev->thread);
411 return;
412 slow_path:
413 local_irq_save(flags);
414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
416 INIT_LIST_HEAD(&list);
417 hash = sh->hash_lock_index;
418 do_release_stripe(conf, sh, &list);
419 spin_unlock(&conf->device_lock);
420 release_inactive_stripe_list(conf, &list, hash);
421 }
422 local_irq_restore(flags);
423 }
424
425 static inline void remove_hash(struct stripe_head *sh)
426 {
427 pr_debug("remove_hash(), stripe %llu\n",
428 (unsigned long long)sh->sector);
429
430 hlist_del_init(&sh->hash);
431 }
432
433 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
434 {
435 struct hlist_head *hp = stripe_hash(conf, sh->sector);
436
437 pr_debug("insert_hash(), stripe %llu\n",
438 (unsigned long long)sh->sector);
439
440 hlist_add_head(&sh->hash, hp);
441 }
442
443 /* find an idle stripe, make sure it is unhashed, and return it. */
444 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
445 {
446 struct stripe_head *sh = NULL;
447 struct list_head *first;
448
449 if (list_empty(conf->inactive_list + hash))
450 goto out;
451 first = (conf->inactive_list + hash)->next;
452 sh = list_entry(first, struct stripe_head, lru);
453 list_del_init(first);
454 remove_hash(sh);
455 atomic_inc(&conf->active_stripes);
456 BUG_ON(hash != sh->hash_lock_index);
457 if (list_empty(conf->inactive_list + hash))
458 atomic_inc(&conf->empty_inactive_list_nr);
459 out:
460 return sh;
461 }
462
463 static void shrink_buffers(struct stripe_head *sh)
464 {
465 struct page *p;
466 int i;
467 int num = sh->raid_conf->pool_size;
468
469 for (i = 0; i < num ; i++) {
470 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
471 p = sh->dev[i].page;
472 if (!p)
473 continue;
474 sh->dev[i].page = NULL;
475 put_page(p);
476 }
477 }
478
479 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
480 {
481 int i;
482 int num = sh->raid_conf->pool_size;
483
484 for (i = 0; i < num; i++) {
485 struct page *page;
486
487 if (!(page = alloc_page(gfp))) {
488 return 1;
489 }
490 sh->dev[i].page = page;
491 sh->dev[i].orig_page = page;
492 }
493
494 return 0;
495 }
496
497 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
498 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
499 struct stripe_head *sh);
500
501 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
502 {
503 struct r5conf *conf = sh->raid_conf;
504 int i, seq;
505
506 BUG_ON(atomic_read(&sh->count) != 0);
507 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
508 BUG_ON(stripe_operations_active(sh));
509 BUG_ON(sh->batch_head);
510
511 pr_debug("init_stripe called, stripe %llu\n",
512 (unsigned long long)sector);
513 retry:
514 seq = read_seqcount_begin(&conf->gen_lock);
515 sh->generation = conf->generation - previous;
516 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
517 sh->sector = sector;
518 stripe_set_idx(sector, conf, previous, sh);
519 sh->state = 0;
520
521 for (i = sh->disks; i--; ) {
522 struct r5dev *dev = &sh->dev[i];
523
524 if (dev->toread || dev->read || dev->towrite || dev->written ||
525 test_bit(R5_LOCKED, &dev->flags)) {
526 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
527 (unsigned long long)sh->sector, i, dev->toread,
528 dev->read, dev->towrite, dev->written,
529 test_bit(R5_LOCKED, &dev->flags));
530 WARN_ON(1);
531 }
532 dev->flags = 0;
533 raid5_build_block(sh, i, previous);
534 }
535 if (read_seqcount_retry(&conf->gen_lock, seq))
536 goto retry;
537 sh->overwrite_disks = 0;
538 insert_hash(conf, sh);
539 sh->cpu = smp_processor_id();
540 set_bit(STRIPE_BATCH_READY, &sh->state);
541 }
542
543 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
544 short generation)
545 {
546 struct stripe_head *sh;
547
548 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
549 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
550 if (sh->sector == sector && sh->generation == generation)
551 return sh;
552 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
553 return NULL;
554 }
555
556 /*
557 * Need to check if array has failed when deciding whether to:
558 * - start an array
559 * - remove non-faulty devices
560 * - add a spare
561 * - allow a reshape
562 * This determination is simple when no reshape is happening.
563 * However if there is a reshape, we need to carefully check
564 * both the before and after sections.
565 * This is because some failed devices may only affect one
566 * of the two sections, and some non-in_sync devices may
567 * be insync in the section most affected by failed devices.
568 */
569 int raid5_calc_degraded(struct r5conf *conf)
570 {
571 int degraded, degraded2;
572 int i;
573
574 rcu_read_lock();
575 degraded = 0;
576 for (i = 0; i < conf->previous_raid_disks; i++) {
577 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
578 if (rdev && test_bit(Faulty, &rdev->flags))
579 rdev = rcu_dereference(conf->disks[i].replacement);
580 if (!rdev || test_bit(Faulty, &rdev->flags))
581 degraded++;
582 else if (test_bit(In_sync, &rdev->flags))
583 ;
584 else
585 /* not in-sync or faulty.
586 * If the reshape increases the number of devices,
587 * this is being recovered by the reshape, so
588 * this 'previous' section is not in_sync.
589 * If the number of devices is being reduced however,
590 * the device can only be part of the array if
591 * we are reverting a reshape, so this section will
592 * be in-sync.
593 */
594 if (conf->raid_disks >= conf->previous_raid_disks)
595 degraded++;
596 }
597 rcu_read_unlock();
598 if (conf->raid_disks == conf->previous_raid_disks)
599 return degraded;
600 rcu_read_lock();
601 degraded2 = 0;
602 for (i = 0; i < conf->raid_disks; i++) {
603 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
604 if (rdev && test_bit(Faulty, &rdev->flags))
605 rdev = rcu_dereference(conf->disks[i].replacement);
606 if (!rdev || test_bit(Faulty, &rdev->flags))
607 degraded2++;
608 else if (test_bit(In_sync, &rdev->flags))
609 ;
610 else
611 /* not in-sync or faulty.
612 * If reshape increases the number of devices, this
613 * section has already been recovered, else it
614 * almost certainly hasn't.
615 */
616 if (conf->raid_disks <= conf->previous_raid_disks)
617 degraded2++;
618 }
619 rcu_read_unlock();
620 if (degraded2 > degraded)
621 return degraded2;
622 return degraded;
623 }
624
625 static int has_failed(struct r5conf *conf)
626 {
627 int degraded;
628
629 if (conf->mddev->reshape_position == MaxSector)
630 return conf->mddev->degraded > conf->max_degraded;
631
632 degraded = raid5_calc_degraded(conf);
633 if (degraded > conf->max_degraded)
634 return 1;
635 return 0;
636 }
637
638 struct stripe_head *
639 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
640 int previous, int noblock, int noquiesce)
641 {
642 struct stripe_head *sh;
643 int hash = stripe_hash_locks_hash(sector);
644 int inc_empty_inactive_list_flag;
645
646 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
647
648 spin_lock_irq(conf->hash_locks + hash);
649
650 do {
651 wait_event_lock_irq(conf->wait_for_quiescent,
652 conf->quiesce == 0 || noquiesce,
653 *(conf->hash_locks + hash));
654 sh = __find_stripe(conf, sector, conf->generation - previous);
655 if (!sh) {
656 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
657 sh = get_free_stripe(conf, hash);
658 if (!sh && !test_bit(R5_DID_ALLOC,
659 &conf->cache_state))
660 set_bit(R5_ALLOC_MORE,
661 &conf->cache_state);
662 }
663 if (noblock && sh == NULL)
664 break;
665
666 r5c_check_stripe_cache_usage(conf);
667 if (!sh) {
668 set_bit(R5_INACTIVE_BLOCKED,
669 &conf->cache_state);
670 r5l_wake_reclaim(conf->log, 0);
671 wait_event_lock_irq(
672 conf->wait_for_stripe,
673 !list_empty(conf->inactive_list + hash) &&
674 (atomic_read(&conf->active_stripes)
675 < (conf->max_nr_stripes * 3 / 4)
676 || !test_bit(R5_INACTIVE_BLOCKED,
677 &conf->cache_state)),
678 *(conf->hash_locks + hash));
679 clear_bit(R5_INACTIVE_BLOCKED,
680 &conf->cache_state);
681 } else {
682 init_stripe(sh, sector, previous);
683 atomic_inc(&sh->count);
684 }
685 } else if (!atomic_inc_not_zero(&sh->count)) {
686 spin_lock(&conf->device_lock);
687 if (!atomic_read(&sh->count)) {
688 if (!test_bit(STRIPE_HANDLE, &sh->state))
689 atomic_inc(&conf->active_stripes);
690 BUG_ON(list_empty(&sh->lru) &&
691 !test_bit(STRIPE_EXPANDING, &sh->state));
692 inc_empty_inactive_list_flag = 0;
693 if (!list_empty(conf->inactive_list + hash))
694 inc_empty_inactive_list_flag = 1;
695 list_del_init(&sh->lru);
696 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
697 atomic_inc(&conf->empty_inactive_list_nr);
698 if (sh->group) {
699 sh->group->stripes_cnt--;
700 sh->group = NULL;
701 }
702 }
703 atomic_inc(&sh->count);
704 spin_unlock(&conf->device_lock);
705 }
706 } while (sh == NULL);
707
708 spin_unlock_irq(conf->hash_locks + hash);
709 return sh;
710 }
711
712 static bool is_full_stripe_write(struct stripe_head *sh)
713 {
714 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
715 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
716 }
717
718 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719 {
720 if (sh1 > sh2) {
721 spin_lock_irq(&sh2->stripe_lock);
722 spin_lock_nested(&sh1->stripe_lock, 1);
723 } else {
724 spin_lock_irq(&sh1->stripe_lock);
725 spin_lock_nested(&sh2->stripe_lock, 1);
726 }
727 }
728
729 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 {
731 spin_unlock(&sh1->stripe_lock);
732 spin_unlock_irq(&sh2->stripe_lock);
733 }
734
735 /* Only freshly new full stripe normal write stripe can be added to a batch list */
736 static bool stripe_can_batch(struct stripe_head *sh)
737 {
738 struct r5conf *conf = sh->raid_conf;
739
740 if (conf->log || raid5_has_ppl(conf))
741 return false;
742 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
743 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
744 is_full_stripe_write(sh);
745 }
746
747 /* we only do back search */
748 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
749 {
750 struct stripe_head *head;
751 sector_t head_sector, tmp_sec;
752 int hash;
753 int dd_idx;
754 int inc_empty_inactive_list_flag;
755
756 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
757 tmp_sec = sh->sector;
758 if (!sector_div(tmp_sec, conf->chunk_sectors))
759 return;
760 head_sector = sh->sector - STRIPE_SECTORS;
761
762 hash = stripe_hash_locks_hash(head_sector);
763 spin_lock_irq(conf->hash_locks + hash);
764 head = __find_stripe(conf, head_sector, conf->generation);
765 if (head && !atomic_inc_not_zero(&head->count)) {
766 spin_lock(&conf->device_lock);
767 if (!atomic_read(&head->count)) {
768 if (!test_bit(STRIPE_HANDLE, &head->state))
769 atomic_inc(&conf->active_stripes);
770 BUG_ON(list_empty(&head->lru) &&
771 !test_bit(STRIPE_EXPANDING, &head->state));
772 inc_empty_inactive_list_flag = 0;
773 if (!list_empty(conf->inactive_list + hash))
774 inc_empty_inactive_list_flag = 1;
775 list_del_init(&head->lru);
776 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
777 atomic_inc(&conf->empty_inactive_list_nr);
778 if (head->group) {
779 head->group->stripes_cnt--;
780 head->group = NULL;
781 }
782 }
783 atomic_inc(&head->count);
784 spin_unlock(&conf->device_lock);
785 }
786 spin_unlock_irq(conf->hash_locks + hash);
787
788 if (!head)
789 return;
790 if (!stripe_can_batch(head))
791 goto out;
792
793 lock_two_stripes(head, sh);
794 /* clear_batch_ready clear the flag */
795 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
796 goto unlock_out;
797
798 if (sh->batch_head)
799 goto unlock_out;
800
801 dd_idx = 0;
802 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
803 dd_idx++;
804 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
805 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
806 goto unlock_out;
807
808 if (head->batch_head) {
809 spin_lock(&head->batch_head->batch_lock);
810 /* This batch list is already running */
811 if (!stripe_can_batch(head)) {
812 spin_unlock(&head->batch_head->batch_lock);
813 goto unlock_out;
814 }
815
816 /*
817 * at this point, head's BATCH_READY could be cleared, but we
818 * can still add the stripe to batch list
819 */
820 list_add(&sh->batch_list, &head->batch_list);
821 spin_unlock(&head->batch_head->batch_lock);
822
823 sh->batch_head = head->batch_head;
824 } else {
825 head->batch_head = head;
826 sh->batch_head = head->batch_head;
827 spin_lock(&head->batch_lock);
828 list_add_tail(&sh->batch_list, &head->batch_list);
829 spin_unlock(&head->batch_lock);
830 }
831
832 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
833 if (atomic_dec_return(&conf->preread_active_stripes)
834 < IO_THRESHOLD)
835 md_wakeup_thread(conf->mddev->thread);
836
837 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
838 int seq = sh->bm_seq;
839 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
840 sh->batch_head->bm_seq > seq)
841 seq = sh->batch_head->bm_seq;
842 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
843 sh->batch_head->bm_seq = seq;
844 }
845
846 atomic_inc(&sh->count);
847 unlock_out:
848 unlock_two_stripes(head, sh);
849 out:
850 raid5_release_stripe(head);
851 }
852
853 /* Determine if 'data_offset' or 'new_data_offset' should be used
854 * in this stripe_head.
855 */
856 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
857 {
858 sector_t progress = conf->reshape_progress;
859 /* Need a memory barrier to make sure we see the value
860 * of conf->generation, or ->data_offset that was set before
861 * reshape_progress was updated.
862 */
863 smp_rmb();
864 if (progress == MaxSector)
865 return 0;
866 if (sh->generation == conf->generation - 1)
867 return 0;
868 /* We are in a reshape, and this is a new-generation stripe,
869 * so use new_data_offset.
870 */
871 return 1;
872 }
873
874 static void dispatch_bio_list(struct bio_list *tmp)
875 {
876 struct bio *bio;
877
878 while ((bio = bio_list_pop(tmp)))
879 generic_make_request(bio);
880 }
881
882 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
883 {
884 const struct r5pending_data *da = list_entry(a,
885 struct r5pending_data, sibling);
886 const struct r5pending_data *db = list_entry(b,
887 struct r5pending_data, sibling);
888 if (da->sector > db->sector)
889 return 1;
890 if (da->sector < db->sector)
891 return -1;
892 return 0;
893 }
894
895 static void dispatch_defer_bios(struct r5conf *conf, int target,
896 struct bio_list *list)
897 {
898 struct r5pending_data *data;
899 struct list_head *first, *next = NULL;
900 int cnt = 0;
901
902 if (conf->pending_data_cnt == 0)
903 return;
904
905 list_sort(NULL, &conf->pending_list, cmp_stripe);
906
907 first = conf->pending_list.next;
908
909 /* temporarily move the head */
910 if (conf->next_pending_data)
911 list_move_tail(&conf->pending_list,
912 &conf->next_pending_data->sibling);
913
914 while (!list_empty(&conf->pending_list)) {
915 data = list_first_entry(&conf->pending_list,
916 struct r5pending_data, sibling);
917 if (&data->sibling == first)
918 first = data->sibling.next;
919 next = data->sibling.next;
920
921 bio_list_merge(list, &data->bios);
922 list_move(&data->sibling, &conf->free_list);
923 cnt++;
924 if (cnt >= target)
925 break;
926 }
927 conf->pending_data_cnt -= cnt;
928 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
929
930 if (next != &conf->pending_list)
931 conf->next_pending_data = list_entry(next,
932 struct r5pending_data, sibling);
933 else
934 conf->next_pending_data = NULL;
935 /* list isn't empty */
936 if (first != &conf->pending_list)
937 list_move_tail(&conf->pending_list, first);
938 }
939
940 static void flush_deferred_bios(struct r5conf *conf)
941 {
942 struct bio_list tmp = BIO_EMPTY_LIST;
943
944 if (conf->pending_data_cnt == 0)
945 return;
946
947 spin_lock(&conf->pending_bios_lock);
948 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
949 BUG_ON(conf->pending_data_cnt != 0);
950 spin_unlock(&conf->pending_bios_lock);
951
952 dispatch_bio_list(&tmp);
953 }
954
955 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
956 struct bio_list *bios)
957 {
958 struct bio_list tmp = BIO_EMPTY_LIST;
959 struct r5pending_data *ent;
960
961 spin_lock(&conf->pending_bios_lock);
962 ent = list_first_entry(&conf->free_list, struct r5pending_data,
963 sibling);
964 list_move_tail(&ent->sibling, &conf->pending_list);
965 ent->sector = sector;
966 bio_list_init(&ent->bios);
967 bio_list_merge(&ent->bios, bios);
968 conf->pending_data_cnt++;
969 if (conf->pending_data_cnt >= PENDING_IO_MAX)
970 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
971
972 spin_unlock(&conf->pending_bios_lock);
973
974 dispatch_bio_list(&tmp);
975 }
976
977 static void
978 raid5_end_read_request(struct bio *bi);
979 static void
980 raid5_end_write_request(struct bio *bi);
981
982 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
983 {
984 struct r5conf *conf = sh->raid_conf;
985 int i, disks = sh->disks;
986 struct stripe_head *head_sh = sh;
987 struct bio_list pending_bios = BIO_EMPTY_LIST;
988 bool should_defer;
989
990 might_sleep();
991
992 if (log_stripe(sh, s) == 0)
993 return;
994
995 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
996
997 for (i = disks; i--; ) {
998 int op, op_flags = 0;
999 int replace_only = 0;
1000 struct bio *bi, *rbi;
1001 struct md_rdev *rdev, *rrdev = NULL;
1002
1003 sh = head_sh;
1004 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1005 op = REQ_OP_WRITE;
1006 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1007 op_flags = REQ_FUA;
1008 if (test_bit(R5_Discard, &sh->dev[i].flags))
1009 op = REQ_OP_DISCARD;
1010 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1011 op = REQ_OP_READ;
1012 else if (test_and_clear_bit(R5_WantReplace,
1013 &sh->dev[i].flags)) {
1014 op = REQ_OP_WRITE;
1015 replace_only = 1;
1016 } else
1017 continue;
1018 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1019 op_flags |= REQ_SYNC;
1020
1021 again:
1022 bi = &sh->dev[i].req;
1023 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1024
1025 rcu_read_lock();
1026 rrdev = rcu_dereference(conf->disks[i].replacement);
1027 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1028 rdev = rcu_dereference(conf->disks[i].rdev);
1029 if (!rdev) {
1030 rdev = rrdev;
1031 rrdev = NULL;
1032 }
1033 if (op_is_write(op)) {
1034 if (replace_only)
1035 rdev = NULL;
1036 if (rdev == rrdev)
1037 /* We raced and saw duplicates */
1038 rrdev = NULL;
1039 } else {
1040 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1041 rdev = rrdev;
1042 rrdev = NULL;
1043 }
1044
1045 if (rdev && test_bit(Faulty, &rdev->flags))
1046 rdev = NULL;
1047 if (rdev)
1048 atomic_inc(&rdev->nr_pending);
1049 if (rrdev && test_bit(Faulty, &rrdev->flags))
1050 rrdev = NULL;
1051 if (rrdev)
1052 atomic_inc(&rrdev->nr_pending);
1053 rcu_read_unlock();
1054
1055 /* We have already checked bad blocks for reads. Now
1056 * need to check for writes. We never accept write errors
1057 * on the replacement, so we don't to check rrdev.
1058 */
1059 while (op_is_write(op) && rdev &&
1060 test_bit(WriteErrorSeen, &rdev->flags)) {
1061 sector_t first_bad;
1062 int bad_sectors;
1063 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1064 &first_bad, &bad_sectors);
1065 if (!bad)
1066 break;
1067
1068 if (bad < 0) {
1069 set_bit(BlockedBadBlocks, &rdev->flags);
1070 if (!conf->mddev->external &&
1071 conf->mddev->sb_flags) {
1072 /* It is very unlikely, but we might
1073 * still need to write out the
1074 * bad block log - better give it
1075 * a chance*/
1076 md_check_recovery(conf->mddev);
1077 }
1078 /*
1079 * Because md_wait_for_blocked_rdev
1080 * will dec nr_pending, we must
1081 * increment it first.
1082 */
1083 atomic_inc(&rdev->nr_pending);
1084 md_wait_for_blocked_rdev(rdev, conf->mddev);
1085 } else {
1086 /* Acknowledged bad block - skip the write */
1087 rdev_dec_pending(rdev, conf->mddev);
1088 rdev = NULL;
1089 }
1090 }
1091
1092 if (rdev) {
1093 if (s->syncing || s->expanding || s->expanded
1094 || s->replacing)
1095 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1096
1097 set_bit(STRIPE_IO_STARTED, &sh->state);
1098
1099 bi->bi_bdev = rdev->bdev;
1100 bio_set_op_attrs(bi, op, op_flags);
1101 bi->bi_end_io = op_is_write(op)
1102 ? raid5_end_write_request
1103 : raid5_end_read_request;
1104 bi->bi_private = sh;
1105
1106 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1107 __func__, (unsigned long long)sh->sector,
1108 bi->bi_opf, i);
1109 atomic_inc(&sh->count);
1110 if (sh != head_sh)
1111 atomic_inc(&head_sh->count);
1112 if (use_new_offset(conf, sh))
1113 bi->bi_iter.bi_sector = (sh->sector
1114 + rdev->new_data_offset);
1115 else
1116 bi->bi_iter.bi_sector = (sh->sector
1117 + rdev->data_offset);
1118 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1119 bi->bi_opf |= REQ_NOMERGE;
1120
1121 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1122 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1123
1124 if (!op_is_write(op) &&
1125 test_bit(R5_InJournal, &sh->dev[i].flags))
1126 /*
1127 * issuing read for a page in journal, this
1128 * must be preparing for prexor in rmw; read
1129 * the data into orig_page
1130 */
1131 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1132 else
1133 sh->dev[i].vec.bv_page = sh->dev[i].page;
1134 bi->bi_vcnt = 1;
1135 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1136 bi->bi_io_vec[0].bv_offset = 0;
1137 bi->bi_iter.bi_size = STRIPE_SIZE;
1138 /*
1139 * If this is discard request, set bi_vcnt 0. We don't
1140 * want to confuse SCSI because SCSI will replace payload
1141 */
1142 if (op == REQ_OP_DISCARD)
1143 bi->bi_vcnt = 0;
1144 if (rrdev)
1145 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146
1147 if (conf->mddev->gendisk)
1148 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1149 bi, disk_devt(conf->mddev->gendisk),
1150 sh->dev[i].sector);
1151 if (should_defer && op_is_write(op))
1152 bio_list_add(&pending_bios, bi);
1153 else
1154 generic_make_request(bi);
1155 }
1156 if (rrdev) {
1157 if (s->syncing || s->expanding || s->expanded
1158 || s->replacing)
1159 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160
1161 set_bit(STRIPE_IO_STARTED, &sh->state);
1162
1163 rbi->bi_bdev = rrdev->bdev;
1164 bio_set_op_attrs(rbi, op, op_flags);
1165 BUG_ON(!op_is_write(op));
1166 rbi->bi_end_io = raid5_end_write_request;
1167 rbi->bi_private = sh;
1168
1169 pr_debug("%s: for %llu schedule op %d on "
1170 "replacement disc %d\n",
1171 __func__, (unsigned long long)sh->sector,
1172 rbi->bi_opf, i);
1173 atomic_inc(&sh->count);
1174 if (sh != head_sh)
1175 atomic_inc(&head_sh->count);
1176 if (use_new_offset(conf, sh))
1177 rbi->bi_iter.bi_sector = (sh->sector
1178 + rrdev->new_data_offset);
1179 else
1180 rbi->bi_iter.bi_sector = (sh->sector
1181 + rrdev->data_offset);
1182 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185 rbi->bi_vcnt = 1;
1186 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187 rbi->bi_io_vec[0].bv_offset = 0;
1188 rbi->bi_iter.bi_size = STRIPE_SIZE;
1189 /*
1190 * If this is discard request, set bi_vcnt 0. We don't
1191 * want to confuse SCSI because SCSI will replace payload
1192 */
1193 if (op == REQ_OP_DISCARD)
1194 rbi->bi_vcnt = 0;
1195 if (conf->mddev->gendisk)
1196 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1197 rbi, disk_devt(conf->mddev->gendisk),
1198 sh->dev[i].sector);
1199 if (should_defer && op_is_write(op))
1200 bio_list_add(&pending_bios, rbi);
1201 else
1202 generic_make_request(rbi);
1203 }
1204 if (!rdev && !rrdev) {
1205 if (op_is_write(op))
1206 set_bit(STRIPE_DEGRADED, &sh->state);
1207 pr_debug("skip op %d on disc %d for sector %llu\n",
1208 bi->bi_opf, i, (unsigned long long)sh->sector);
1209 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1210 set_bit(STRIPE_HANDLE, &sh->state);
1211 }
1212
1213 if (!head_sh->batch_head)
1214 continue;
1215 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1216 batch_list);
1217 if (sh != head_sh)
1218 goto again;
1219 }
1220
1221 if (should_defer && !bio_list_empty(&pending_bios))
1222 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1223 }
1224
1225 static struct dma_async_tx_descriptor *
1226 async_copy_data(int frombio, struct bio *bio, struct page **page,
1227 sector_t sector, struct dma_async_tx_descriptor *tx,
1228 struct stripe_head *sh, int no_skipcopy)
1229 {
1230 struct bio_vec bvl;
1231 struct bvec_iter iter;
1232 struct page *bio_page;
1233 int page_offset;
1234 struct async_submit_ctl submit;
1235 enum async_tx_flags flags = 0;
1236
1237 if (bio->bi_iter.bi_sector >= sector)
1238 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1239 else
1240 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1241
1242 if (frombio)
1243 flags |= ASYNC_TX_FENCE;
1244 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1245
1246 bio_for_each_segment(bvl, bio, iter) {
1247 int len = bvl.bv_len;
1248 int clen;
1249 int b_offset = 0;
1250
1251 if (page_offset < 0) {
1252 b_offset = -page_offset;
1253 page_offset += b_offset;
1254 len -= b_offset;
1255 }
1256
1257 if (len > 0 && page_offset + len > STRIPE_SIZE)
1258 clen = STRIPE_SIZE - page_offset;
1259 else
1260 clen = len;
1261
1262 if (clen > 0) {
1263 b_offset += bvl.bv_offset;
1264 bio_page = bvl.bv_page;
1265 if (frombio) {
1266 if (sh->raid_conf->skip_copy &&
1267 b_offset == 0 && page_offset == 0 &&
1268 clen == STRIPE_SIZE &&
1269 !no_skipcopy)
1270 *page = bio_page;
1271 else
1272 tx = async_memcpy(*page, bio_page, page_offset,
1273 b_offset, clen, &submit);
1274 } else
1275 tx = async_memcpy(bio_page, *page, b_offset,
1276 page_offset, clen, &submit);
1277 }
1278 /* chain the operations */
1279 submit.depend_tx = tx;
1280
1281 if (clen < len) /* hit end of page */
1282 break;
1283 page_offset += len;
1284 }
1285
1286 return tx;
1287 }
1288
1289 static void ops_complete_biofill(void *stripe_head_ref)
1290 {
1291 struct stripe_head *sh = stripe_head_ref;
1292 int i;
1293
1294 pr_debug("%s: stripe %llu\n", __func__,
1295 (unsigned long long)sh->sector);
1296
1297 /* clear completed biofills */
1298 for (i = sh->disks; i--; ) {
1299 struct r5dev *dev = &sh->dev[i];
1300
1301 /* acknowledge completion of a biofill operation */
1302 /* and check if we need to reply to a read request,
1303 * new R5_Wantfill requests are held off until
1304 * !STRIPE_BIOFILL_RUN
1305 */
1306 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1307 struct bio *rbi, *rbi2;
1308
1309 BUG_ON(!dev->read);
1310 rbi = dev->read;
1311 dev->read = NULL;
1312 while (rbi && rbi->bi_iter.bi_sector <
1313 dev->sector + STRIPE_SECTORS) {
1314 rbi2 = r5_next_bio(rbi, dev->sector);
1315 bio_endio(rbi);
1316 rbi = rbi2;
1317 }
1318 }
1319 }
1320 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1321
1322 set_bit(STRIPE_HANDLE, &sh->state);
1323 raid5_release_stripe(sh);
1324 }
1325
1326 static void ops_run_biofill(struct stripe_head *sh)
1327 {
1328 struct dma_async_tx_descriptor *tx = NULL;
1329 struct async_submit_ctl submit;
1330 int i;
1331
1332 BUG_ON(sh->batch_head);
1333 pr_debug("%s: stripe %llu\n", __func__,
1334 (unsigned long long)sh->sector);
1335
1336 for (i = sh->disks; i--; ) {
1337 struct r5dev *dev = &sh->dev[i];
1338 if (test_bit(R5_Wantfill, &dev->flags)) {
1339 struct bio *rbi;
1340 spin_lock_irq(&sh->stripe_lock);
1341 dev->read = rbi = dev->toread;
1342 dev->toread = NULL;
1343 spin_unlock_irq(&sh->stripe_lock);
1344 while (rbi && rbi->bi_iter.bi_sector <
1345 dev->sector + STRIPE_SECTORS) {
1346 tx = async_copy_data(0, rbi, &dev->page,
1347 dev->sector, tx, sh, 0);
1348 rbi = r5_next_bio(rbi, dev->sector);
1349 }
1350 }
1351 }
1352
1353 atomic_inc(&sh->count);
1354 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1355 async_trigger_callback(&submit);
1356 }
1357
1358 static void mark_target_uptodate(struct stripe_head *sh, int target)
1359 {
1360 struct r5dev *tgt;
1361
1362 if (target < 0)
1363 return;
1364
1365 tgt = &sh->dev[target];
1366 set_bit(R5_UPTODATE, &tgt->flags);
1367 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1368 clear_bit(R5_Wantcompute, &tgt->flags);
1369 }
1370
1371 static void ops_complete_compute(void *stripe_head_ref)
1372 {
1373 struct stripe_head *sh = stripe_head_ref;
1374
1375 pr_debug("%s: stripe %llu\n", __func__,
1376 (unsigned long long)sh->sector);
1377
1378 /* mark the computed target(s) as uptodate */
1379 mark_target_uptodate(sh, sh->ops.target);
1380 mark_target_uptodate(sh, sh->ops.target2);
1381
1382 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1383 if (sh->check_state == check_state_compute_run)
1384 sh->check_state = check_state_compute_result;
1385 set_bit(STRIPE_HANDLE, &sh->state);
1386 raid5_release_stripe(sh);
1387 }
1388
1389 /* return a pointer to the address conversion region of the scribble buffer */
1390 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1391 struct raid5_percpu *percpu, int i)
1392 {
1393 void *addr;
1394
1395 addr = flex_array_get(percpu->scribble, i);
1396 return addr + sizeof(struct page *) * (sh->disks + 2);
1397 }
1398
1399 /* return a pointer to the address conversion region of the scribble buffer */
1400 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1401 {
1402 void *addr;
1403
1404 addr = flex_array_get(percpu->scribble, i);
1405 return addr;
1406 }
1407
1408 static struct dma_async_tx_descriptor *
1409 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1410 {
1411 int disks = sh->disks;
1412 struct page **xor_srcs = to_addr_page(percpu, 0);
1413 int target = sh->ops.target;
1414 struct r5dev *tgt = &sh->dev[target];
1415 struct page *xor_dest = tgt->page;
1416 int count = 0;
1417 struct dma_async_tx_descriptor *tx;
1418 struct async_submit_ctl submit;
1419 int i;
1420
1421 BUG_ON(sh->batch_head);
1422
1423 pr_debug("%s: stripe %llu block: %d\n",
1424 __func__, (unsigned long long)sh->sector, target);
1425 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1426
1427 for (i = disks; i--; )
1428 if (i != target)
1429 xor_srcs[count++] = sh->dev[i].page;
1430
1431 atomic_inc(&sh->count);
1432
1433 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1434 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1435 if (unlikely(count == 1))
1436 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1437 else
1438 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1439
1440 return tx;
1441 }
1442
1443 /* set_syndrome_sources - populate source buffers for gen_syndrome
1444 * @srcs - (struct page *) array of size sh->disks
1445 * @sh - stripe_head to parse
1446 *
1447 * Populates srcs in proper layout order for the stripe and returns the
1448 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1449 * destination buffer is recorded in srcs[count] and the Q destination
1450 * is recorded in srcs[count+1]].
1451 */
1452 static int set_syndrome_sources(struct page **srcs,
1453 struct stripe_head *sh,
1454 int srctype)
1455 {
1456 int disks = sh->disks;
1457 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1458 int d0_idx = raid6_d0(sh);
1459 int count;
1460 int i;
1461
1462 for (i = 0; i < disks; i++)
1463 srcs[i] = NULL;
1464
1465 count = 0;
1466 i = d0_idx;
1467 do {
1468 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1469 struct r5dev *dev = &sh->dev[i];
1470
1471 if (i == sh->qd_idx || i == sh->pd_idx ||
1472 (srctype == SYNDROME_SRC_ALL) ||
1473 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1474 (test_bit(R5_Wantdrain, &dev->flags) ||
1475 test_bit(R5_InJournal, &dev->flags))) ||
1476 (srctype == SYNDROME_SRC_WRITTEN &&
1477 (dev->written ||
1478 test_bit(R5_InJournal, &dev->flags)))) {
1479 if (test_bit(R5_InJournal, &dev->flags))
1480 srcs[slot] = sh->dev[i].orig_page;
1481 else
1482 srcs[slot] = sh->dev[i].page;
1483 }
1484 i = raid6_next_disk(i, disks);
1485 } while (i != d0_idx);
1486
1487 return syndrome_disks;
1488 }
1489
1490 static struct dma_async_tx_descriptor *
1491 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1492 {
1493 int disks = sh->disks;
1494 struct page **blocks = to_addr_page(percpu, 0);
1495 int target;
1496 int qd_idx = sh->qd_idx;
1497 struct dma_async_tx_descriptor *tx;
1498 struct async_submit_ctl submit;
1499 struct r5dev *tgt;
1500 struct page *dest;
1501 int i;
1502 int count;
1503
1504 BUG_ON(sh->batch_head);
1505 if (sh->ops.target < 0)
1506 target = sh->ops.target2;
1507 else if (sh->ops.target2 < 0)
1508 target = sh->ops.target;
1509 else
1510 /* we should only have one valid target */
1511 BUG();
1512 BUG_ON(target < 0);
1513 pr_debug("%s: stripe %llu block: %d\n",
1514 __func__, (unsigned long long)sh->sector, target);
1515
1516 tgt = &sh->dev[target];
1517 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1518 dest = tgt->page;
1519
1520 atomic_inc(&sh->count);
1521
1522 if (target == qd_idx) {
1523 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1524 blocks[count] = NULL; /* regenerating p is not necessary */
1525 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1526 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1527 ops_complete_compute, sh,
1528 to_addr_conv(sh, percpu, 0));
1529 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1530 } else {
1531 /* Compute any data- or p-drive using XOR */
1532 count = 0;
1533 for (i = disks; i-- ; ) {
1534 if (i == target || i == qd_idx)
1535 continue;
1536 blocks[count++] = sh->dev[i].page;
1537 }
1538
1539 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1540 NULL, ops_complete_compute, sh,
1541 to_addr_conv(sh, percpu, 0));
1542 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1543 }
1544
1545 return tx;
1546 }
1547
1548 static struct dma_async_tx_descriptor *
1549 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1550 {
1551 int i, count, disks = sh->disks;
1552 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1553 int d0_idx = raid6_d0(sh);
1554 int faila = -1, failb = -1;
1555 int target = sh->ops.target;
1556 int target2 = sh->ops.target2;
1557 struct r5dev *tgt = &sh->dev[target];
1558 struct r5dev *tgt2 = &sh->dev[target2];
1559 struct dma_async_tx_descriptor *tx;
1560 struct page **blocks = to_addr_page(percpu, 0);
1561 struct async_submit_ctl submit;
1562
1563 BUG_ON(sh->batch_head);
1564 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1565 __func__, (unsigned long long)sh->sector, target, target2);
1566 BUG_ON(target < 0 || target2 < 0);
1567 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1568 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1569
1570 /* we need to open-code set_syndrome_sources to handle the
1571 * slot number conversion for 'faila' and 'failb'
1572 */
1573 for (i = 0; i < disks ; i++)
1574 blocks[i] = NULL;
1575 count = 0;
1576 i = d0_idx;
1577 do {
1578 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1579
1580 blocks[slot] = sh->dev[i].page;
1581
1582 if (i == target)
1583 faila = slot;
1584 if (i == target2)
1585 failb = slot;
1586 i = raid6_next_disk(i, disks);
1587 } while (i != d0_idx);
1588
1589 BUG_ON(faila == failb);
1590 if (failb < faila)
1591 swap(faila, failb);
1592 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1593 __func__, (unsigned long long)sh->sector, faila, failb);
1594
1595 atomic_inc(&sh->count);
1596
1597 if (failb == syndrome_disks+1) {
1598 /* Q disk is one of the missing disks */
1599 if (faila == syndrome_disks) {
1600 /* Missing P+Q, just recompute */
1601 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1602 ops_complete_compute, sh,
1603 to_addr_conv(sh, percpu, 0));
1604 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1605 STRIPE_SIZE, &submit);
1606 } else {
1607 struct page *dest;
1608 int data_target;
1609 int qd_idx = sh->qd_idx;
1610
1611 /* Missing D+Q: recompute D from P, then recompute Q */
1612 if (target == qd_idx)
1613 data_target = target2;
1614 else
1615 data_target = target;
1616
1617 count = 0;
1618 for (i = disks; i-- ; ) {
1619 if (i == data_target || i == qd_idx)
1620 continue;
1621 blocks[count++] = sh->dev[i].page;
1622 }
1623 dest = sh->dev[data_target].page;
1624 init_async_submit(&submit,
1625 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1626 NULL, NULL, NULL,
1627 to_addr_conv(sh, percpu, 0));
1628 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1629 &submit);
1630
1631 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1632 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1633 ops_complete_compute, sh,
1634 to_addr_conv(sh, percpu, 0));
1635 return async_gen_syndrome(blocks, 0, count+2,
1636 STRIPE_SIZE, &submit);
1637 }
1638 } else {
1639 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1640 ops_complete_compute, sh,
1641 to_addr_conv(sh, percpu, 0));
1642 if (failb == syndrome_disks) {
1643 /* We're missing D+P. */
1644 return async_raid6_datap_recov(syndrome_disks+2,
1645 STRIPE_SIZE, faila,
1646 blocks, &submit);
1647 } else {
1648 /* We're missing D+D. */
1649 return async_raid6_2data_recov(syndrome_disks+2,
1650 STRIPE_SIZE, faila, failb,
1651 blocks, &submit);
1652 }
1653 }
1654 }
1655
1656 static void ops_complete_prexor(void *stripe_head_ref)
1657 {
1658 struct stripe_head *sh = stripe_head_ref;
1659
1660 pr_debug("%s: stripe %llu\n", __func__,
1661 (unsigned long long)sh->sector);
1662
1663 if (r5c_is_writeback(sh->raid_conf->log))
1664 /*
1665 * raid5-cache write back uses orig_page during prexor.
1666 * After prexor, it is time to free orig_page
1667 */
1668 r5c_release_extra_page(sh);
1669 }
1670
1671 static struct dma_async_tx_descriptor *
1672 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1673 struct dma_async_tx_descriptor *tx)
1674 {
1675 int disks = sh->disks;
1676 struct page **xor_srcs = to_addr_page(percpu, 0);
1677 int count = 0, pd_idx = sh->pd_idx, i;
1678 struct async_submit_ctl submit;
1679
1680 /* existing parity data subtracted */
1681 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1682
1683 BUG_ON(sh->batch_head);
1684 pr_debug("%s: stripe %llu\n", __func__,
1685 (unsigned long long)sh->sector);
1686
1687 for (i = disks; i--; ) {
1688 struct r5dev *dev = &sh->dev[i];
1689 /* Only process blocks that are known to be uptodate */
1690 if (test_bit(R5_InJournal, &dev->flags))
1691 xor_srcs[count++] = dev->orig_page;
1692 else if (test_bit(R5_Wantdrain, &dev->flags))
1693 xor_srcs[count++] = dev->page;
1694 }
1695
1696 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1697 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1698 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1699
1700 return tx;
1701 }
1702
1703 static struct dma_async_tx_descriptor *
1704 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1705 struct dma_async_tx_descriptor *tx)
1706 {
1707 struct page **blocks = to_addr_page(percpu, 0);
1708 int count;
1709 struct async_submit_ctl submit;
1710
1711 pr_debug("%s: stripe %llu\n", __func__,
1712 (unsigned long long)sh->sector);
1713
1714 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1715
1716 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1717 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1718 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1719
1720 return tx;
1721 }
1722
1723 static struct dma_async_tx_descriptor *
1724 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1725 {
1726 struct r5conf *conf = sh->raid_conf;
1727 int disks = sh->disks;
1728 int i;
1729 struct stripe_head *head_sh = sh;
1730
1731 pr_debug("%s: stripe %llu\n", __func__,
1732 (unsigned long long)sh->sector);
1733
1734 for (i = disks; i--; ) {
1735 struct r5dev *dev;
1736 struct bio *chosen;
1737
1738 sh = head_sh;
1739 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1740 struct bio *wbi;
1741
1742 again:
1743 dev = &sh->dev[i];
1744 /*
1745 * clear R5_InJournal, so when rewriting a page in
1746 * journal, it is not skipped by r5l_log_stripe()
1747 */
1748 clear_bit(R5_InJournal, &dev->flags);
1749 spin_lock_irq(&sh->stripe_lock);
1750 chosen = dev->towrite;
1751 dev->towrite = NULL;
1752 sh->overwrite_disks = 0;
1753 BUG_ON(dev->written);
1754 wbi = dev->written = chosen;
1755 spin_unlock_irq(&sh->stripe_lock);
1756 WARN_ON(dev->page != dev->orig_page);
1757
1758 while (wbi && wbi->bi_iter.bi_sector <
1759 dev->sector + STRIPE_SECTORS) {
1760 if (wbi->bi_opf & REQ_FUA)
1761 set_bit(R5_WantFUA, &dev->flags);
1762 if (wbi->bi_opf & REQ_SYNC)
1763 set_bit(R5_SyncIO, &dev->flags);
1764 if (bio_op(wbi) == REQ_OP_DISCARD)
1765 set_bit(R5_Discard, &dev->flags);
1766 else {
1767 tx = async_copy_data(1, wbi, &dev->page,
1768 dev->sector, tx, sh,
1769 r5c_is_writeback(conf->log));
1770 if (dev->page != dev->orig_page &&
1771 !r5c_is_writeback(conf->log)) {
1772 set_bit(R5_SkipCopy, &dev->flags);
1773 clear_bit(R5_UPTODATE, &dev->flags);
1774 clear_bit(R5_OVERWRITE, &dev->flags);
1775 }
1776 }
1777 wbi = r5_next_bio(wbi, dev->sector);
1778 }
1779
1780 if (head_sh->batch_head) {
1781 sh = list_first_entry(&sh->batch_list,
1782 struct stripe_head,
1783 batch_list);
1784 if (sh == head_sh)
1785 continue;
1786 goto again;
1787 }
1788 }
1789 }
1790
1791 return tx;
1792 }
1793
1794 static void ops_complete_reconstruct(void *stripe_head_ref)
1795 {
1796 struct stripe_head *sh = stripe_head_ref;
1797 int disks = sh->disks;
1798 int pd_idx = sh->pd_idx;
1799 int qd_idx = sh->qd_idx;
1800 int i;
1801 bool fua = false, sync = false, discard = false;
1802
1803 pr_debug("%s: stripe %llu\n", __func__,
1804 (unsigned long long)sh->sector);
1805
1806 for (i = disks; i--; ) {
1807 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1808 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1809 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1810 }
1811
1812 for (i = disks; i--; ) {
1813 struct r5dev *dev = &sh->dev[i];
1814
1815 if (dev->written || i == pd_idx || i == qd_idx) {
1816 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1817 set_bit(R5_UPTODATE, &dev->flags);
1818 if (fua)
1819 set_bit(R5_WantFUA, &dev->flags);
1820 if (sync)
1821 set_bit(R5_SyncIO, &dev->flags);
1822 }
1823 }
1824
1825 if (sh->reconstruct_state == reconstruct_state_drain_run)
1826 sh->reconstruct_state = reconstruct_state_drain_result;
1827 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1828 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1829 else {
1830 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1831 sh->reconstruct_state = reconstruct_state_result;
1832 }
1833
1834 set_bit(STRIPE_HANDLE, &sh->state);
1835 raid5_release_stripe(sh);
1836 }
1837
1838 static void
1839 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1840 struct dma_async_tx_descriptor *tx)
1841 {
1842 int disks = sh->disks;
1843 struct page **xor_srcs;
1844 struct async_submit_ctl submit;
1845 int count, pd_idx = sh->pd_idx, i;
1846 struct page *xor_dest;
1847 int prexor = 0;
1848 unsigned long flags;
1849 int j = 0;
1850 struct stripe_head *head_sh = sh;
1851 int last_stripe;
1852
1853 pr_debug("%s: stripe %llu\n", __func__,
1854 (unsigned long long)sh->sector);
1855
1856 for (i = 0; i < sh->disks; i++) {
1857 if (pd_idx == i)
1858 continue;
1859 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1860 break;
1861 }
1862 if (i >= sh->disks) {
1863 atomic_inc(&sh->count);
1864 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1865 ops_complete_reconstruct(sh);
1866 return;
1867 }
1868 again:
1869 count = 0;
1870 xor_srcs = to_addr_page(percpu, j);
1871 /* check if prexor is active which means only process blocks
1872 * that are part of a read-modify-write (written)
1873 */
1874 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1875 prexor = 1;
1876 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1877 for (i = disks; i--; ) {
1878 struct r5dev *dev = &sh->dev[i];
1879 if (head_sh->dev[i].written ||
1880 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1881 xor_srcs[count++] = dev->page;
1882 }
1883 } else {
1884 xor_dest = sh->dev[pd_idx].page;
1885 for (i = disks; i--; ) {
1886 struct r5dev *dev = &sh->dev[i];
1887 if (i != pd_idx)
1888 xor_srcs[count++] = dev->page;
1889 }
1890 }
1891
1892 /* 1/ if we prexor'd then the dest is reused as a source
1893 * 2/ if we did not prexor then we are redoing the parity
1894 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1895 * for the synchronous xor case
1896 */
1897 last_stripe = !head_sh->batch_head ||
1898 list_first_entry(&sh->batch_list,
1899 struct stripe_head, batch_list) == head_sh;
1900 if (last_stripe) {
1901 flags = ASYNC_TX_ACK |
1902 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1903
1904 atomic_inc(&head_sh->count);
1905 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1906 to_addr_conv(sh, percpu, j));
1907 } else {
1908 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1909 init_async_submit(&submit, flags, tx, NULL, NULL,
1910 to_addr_conv(sh, percpu, j));
1911 }
1912
1913 if (unlikely(count == 1))
1914 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1915 else
1916 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1917 if (!last_stripe) {
1918 j++;
1919 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1920 batch_list);
1921 goto again;
1922 }
1923 }
1924
1925 static void
1926 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1927 struct dma_async_tx_descriptor *tx)
1928 {
1929 struct async_submit_ctl submit;
1930 struct page **blocks;
1931 int count, i, j = 0;
1932 struct stripe_head *head_sh = sh;
1933 int last_stripe;
1934 int synflags;
1935 unsigned long txflags;
1936
1937 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1938
1939 for (i = 0; i < sh->disks; i++) {
1940 if (sh->pd_idx == i || sh->qd_idx == i)
1941 continue;
1942 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1943 break;
1944 }
1945 if (i >= sh->disks) {
1946 atomic_inc(&sh->count);
1947 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1948 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1949 ops_complete_reconstruct(sh);
1950 return;
1951 }
1952
1953 again:
1954 blocks = to_addr_page(percpu, j);
1955
1956 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1957 synflags = SYNDROME_SRC_WRITTEN;
1958 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1959 } else {
1960 synflags = SYNDROME_SRC_ALL;
1961 txflags = ASYNC_TX_ACK;
1962 }
1963
1964 count = set_syndrome_sources(blocks, sh, synflags);
1965 last_stripe = !head_sh->batch_head ||
1966 list_first_entry(&sh->batch_list,
1967 struct stripe_head, batch_list) == head_sh;
1968
1969 if (last_stripe) {
1970 atomic_inc(&head_sh->count);
1971 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1972 head_sh, to_addr_conv(sh, percpu, j));
1973 } else
1974 init_async_submit(&submit, 0, tx, NULL, NULL,
1975 to_addr_conv(sh, percpu, j));
1976 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1977 if (!last_stripe) {
1978 j++;
1979 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1980 batch_list);
1981 goto again;
1982 }
1983 }
1984
1985 static void ops_complete_check(void *stripe_head_ref)
1986 {
1987 struct stripe_head *sh = stripe_head_ref;
1988
1989 pr_debug("%s: stripe %llu\n", __func__,
1990 (unsigned long long)sh->sector);
1991
1992 sh->check_state = check_state_check_result;
1993 set_bit(STRIPE_HANDLE, &sh->state);
1994 raid5_release_stripe(sh);
1995 }
1996
1997 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1998 {
1999 int disks = sh->disks;
2000 int pd_idx = sh->pd_idx;
2001 int qd_idx = sh->qd_idx;
2002 struct page *xor_dest;
2003 struct page **xor_srcs = to_addr_page(percpu, 0);
2004 struct dma_async_tx_descriptor *tx;
2005 struct async_submit_ctl submit;
2006 int count;
2007 int i;
2008
2009 pr_debug("%s: stripe %llu\n", __func__,
2010 (unsigned long long)sh->sector);
2011
2012 BUG_ON(sh->batch_head);
2013 count = 0;
2014 xor_dest = sh->dev[pd_idx].page;
2015 xor_srcs[count++] = xor_dest;
2016 for (i = disks; i--; ) {
2017 if (i == pd_idx || i == qd_idx)
2018 continue;
2019 xor_srcs[count++] = sh->dev[i].page;
2020 }
2021
2022 init_async_submit(&submit, 0, NULL, NULL, NULL,
2023 to_addr_conv(sh, percpu, 0));
2024 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2025 &sh->ops.zero_sum_result, &submit);
2026
2027 atomic_inc(&sh->count);
2028 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2029 tx = async_trigger_callback(&submit);
2030 }
2031
2032 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2033 {
2034 struct page **srcs = to_addr_page(percpu, 0);
2035 struct async_submit_ctl submit;
2036 int count;
2037
2038 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2039 (unsigned long long)sh->sector, checkp);
2040
2041 BUG_ON(sh->batch_head);
2042 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2043 if (!checkp)
2044 srcs[count] = NULL;
2045
2046 atomic_inc(&sh->count);
2047 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2048 sh, to_addr_conv(sh, percpu, 0));
2049 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2050 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2051 }
2052
2053 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2054 {
2055 int overlap_clear = 0, i, disks = sh->disks;
2056 struct dma_async_tx_descriptor *tx = NULL;
2057 struct r5conf *conf = sh->raid_conf;
2058 int level = conf->level;
2059 struct raid5_percpu *percpu;
2060 unsigned long cpu;
2061
2062 cpu = get_cpu();
2063 percpu = per_cpu_ptr(conf->percpu, cpu);
2064 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2065 ops_run_biofill(sh);
2066 overlap_clear++;
2067 }
2068
2069 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2070 if (level < 6)
2071 tx = ops_run_compute5(sh, percpu);
2072 else {
2073 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2074 tx = ops_run_compute6_1(sh, percpu);
2075 else
2076 tx = ops_run_compute6_2(sh, percpu);
2077 }
2078 /* terminate the chain if reconstruct is not set to be run */
2079 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2080 async_tx_ack(tx);
2081 }
2082
2083 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2084 if (level < 6)
2085 tx = ops_run_prexor5(sh, percpu, tx);
2086 else
2087 tx = ops_run_prexor6(sh, percpu, tx);
2088 }
2089
2090 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2091 tx = ops_run_partial_parity(sh, percpu, tx);
2092
2093 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2094 tx = ops_run_biodrain(sh, tx);
2095 overlap_clear++;
2096 }
2097
2098 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2099 if (level < 6)
2100 ops_run_reconstruct5(sh, percpu, tx);
2101 else
2102 ops_run_reconstruct6(sh, percpu, tx);
2103 }
2104
2105 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2106 if (sh->check_state == check_state_run)
2107 ops_run_check_p(sh, percpu);
2108 else if (sh->check_state == check_state_run_q)
2109 ops_run_check_pq(sh, percpu, 0);
2110 else if (sh->check_state == check_state_run_pq)
2111 ops_run_check_pq(sh, percpu, 1);
2112 else
2113 BUG();
2114 }
2115
2116 if (overlap_clear && !sh->batch_head)
2117 for (i = disks; i--; ) {
2118 struct r5dev *dev = &sh->dev[i];
2119 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2120 wake_up(&sh->raid_conf->wait_for_overlap);
2121 }
2122 put_cpu();
2123 }
2124
2125 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2126 {
2127 if (sh->ppl_page)
2128 __free_page(sh->ppl_page);
2129 kmem_cache_free(sc, sh);
2130 }
2131
2132 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2133 int disks, struct r5conf *conf)
2134 {
2135 struct stripe_head *sh;
2136 int i;
2137
2138 sh = kmem_cache_zalloc(sc, gfp);
2139 if (sh) {
2140 spin_lock_init(&sh->stripe_lock);
2141 spin_lock_init(&sh->batch_lock);
2142 INIT_LIST_HEAD(&sh->batch_list);
2143 INIT_LIST_HEAD(&sh->lru);
2144 INIT_LIST_HEAD(&sh->r5c);
2145 INIT_LIST_HEAD(&sh->log_list);
2146 atomic_set(&sh->count, 1);
2147 sh->raid_conf = conf;
2148 sh->log_start = MaxSector;
2149 for (i = 0; i < disks; i++) {
2150 struct r5dev *dev = &sh->dev[i];
2151
2152 bio_init(&dev->req, &dev->vec, 1);
2153 bio_init(&dev->rreq, &dev->rvec, 1);
2154 }
2155
2156 if (raid5_has_ppl(conf)) {
2157 sh->ppl_page = alloc_page(gfp);
2158 if (!sh->ppl_page) {
2159 free_stripe(sc, sh);
2160 sh = NULL;
2161 }
2162 }
2163 }
2164 return sh;
2165 }
2166 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2167 {
2168 struct stripe_head *sh;
2169
2170 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2171 if (!sh)
2172 return 0;
2173
2174 if (grow_buffers(sh, gfp)) {
2175 shrink_buffers(sh);
2176 free_stripe(conf->slab_cache, sh);
2177 return 0;
2178 }
2179 sh->hash_lock_index =
2180 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2181 /* we just created an active stripe so... */
2182 atomic_inc(&conf->active_stripes);
2183
2184 raid5_release_stripe(sh);
2185 conf->max_nr_stripes++;
2186 return 1;
2187 }
2188
2189 static int grow_stripes(struct r5conf *conf, int num)
2190 {
2191 struct kmem_cache *sc;
2192 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2193
2194 if (conf->mddev->gendisk)
2195 sprintf(conf->cache_name[0],
2196 "raid%d-%s", conf->level, mdname(conf->mddev));
2197 else
2198 sprintf(conf->cache_name[0],
2199 "raid%d-%p", conf->level, conf->mddev);
2200 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2201
2202 conf->active_name = 0;
2203 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2205 0, 0, NULL);
2206 if (!sc)
2207 return 1;
2208 conf->slab_cache = sc;
2209 conf->pool_size = devs;
2210 while (num--)
2211 if (!grow_one_stripe(conf, GFP_KERNEL))
2212 return 1;
2213
2214 return 0;
2215 }
2216
2217 /**
2218 * scribble_len - return the required size of the scribble region
2219 * @num - total number of disks in the array
2220 *
2221 * The size must be enough to contain:
2222 * 1/ a struct page pointer for each device in the array +2
2223 * 2/ room to convert each entry in (1) to its corresponding dma
2224 * (dma_map_page()) or page (page_address()) address.
2225 *
2226 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2227 * calculate over all devices (not just the data blocks), using zeros in place
2228 * of the P and Q blocks.
2229 */
2230 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2231 {
2232 struct flex_array *ret;
2233 size_t len;
2234
2235 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2236 ret = flex_array_alloc(len, cnt, flags);
2237 if (!ret)
2238 return NULL;
2239 /* always prealloc all elements, so no locking is required */
2240 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2241 flex_array_free(ret);
2242 return NULL;
2243 }
2244 return ret;
2245 }
2246
2247 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2248 {
2249 unsigned long cpu;
2250 int err = 0;
2251
2252 /*
2253 * Never shrink. And mddev_suspend() could deadlock if this is called
2254 * from raid5d. In that case, scribble_disks and scribble_sectors
2255 * should equal to new_disks and new_sectors
2256 */
2257 if (conf->scribble_disks >= new_disks &&
2258 conf->scribble_sectors >= new_sectors)
2259 return 0;
2260 mddev_suspend(conf->mddev);
2261 get_online_cpus();
2262 for_each_present_cpu(cpu) {
2263 struct raid5_percpu *percpu;
2264 struct flex_array *scribble;
2265
2266 percpu = per_cpu_ptr(conf->percpu, cpu);
2267 scribble = scribble_alloc(new_disks,
2268 new_sectors / STRIPE_SECTORS,
2269 GFP_NOIO);
2270
2271 if (scribble) {
2272 flex_array_free(percpu->scribble);
2273 percpu->scribble = scribble;
2274 } else {
2275 err = -ENOMEM;
2276 break;
2277 }
2278 }
2279 put_online_cpus();
2280 mddev_resume(conf->mddev);
2281 if (!err) {
2282 conf->scribble_disks = new_disks;
2283 conf->scribble_sectors = new_sectors;
2284 }
2285 return err;
2286 }
2287
2288 static int resize_stripes(struct r5conf *conf, int newsize)
2289 {
2290 /* Make all the stripes able to hold 'newsize' devices.
2291 * New slots in each stripe get 'page' set to a new page.
2292 *
2293 * This happens in stages:
2294 * 1/ create a new kmem_cache and allocate the required number of
2295 * stripe_heads.
2296 * 2/ gather all the old stripe_heads and transfer the pages across
2297 * to the new stripe_heads. This will have the side effect of
2298 * freezing the array as once all stripe_heads have been collected,
2299 * no IO will be possible. Old stripe heads are freed once their
2300 * pages have been transferred over, and the old kmem_cache is
2301 * freed when all stripes are done.
2302 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2303 * we simple return a failure status - no need to clean anything up.
2304 * 4/ allocate new pages for the new slots in the new stripe_heads.
2305 * If this fails, we don't bother trying the shrink the
2306 * stripe_heads down again, we just leave them as they are.
2307 * As each stripe_head is processed the new one is released into
2308 * active service.
2309 *
2310 * Once step2 is started, we cannot afford to wait for a write,
2311 * so we use GFP_NOIO allocations.
2312 */
2313 struct stripe_head *osh, *nsh;
2314 LIST_HEAD(newstripes);
2315 struct disk_info *ndisks;
2316 int err = 0;
2317 struct kmem_cache *sc;
2318 int i;
2319 int hash, cnt;
2320
2321 md_allow_write(conf->mddev);
2322
2323 /* Step 1 */
2324 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2325 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2326 0, 0, NULL);
2327 if (!sc)
2328 return -ENOMEM;
2329
2330 /* Need to ensure auto-resizing doesn't interfere */
2331 mutex_lock(&conf->cache_size_mutex);
2332
2333 for (i = conf->max_nr_stripes; i; i--) {
2334 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2335 if (!nsh)
2336 break;
2337
2338 list_add(&nsh->lru, &newstripes);
2339 }
2340 if (i) {
2341 /* didn't get enough, give up */
2342 while (!list_empty(&newstripes)) {
2343 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2344 list_del(&nsh->lru);
2345 free_stripe(sc, nsh);
2346 }
2347 kmem_cache_destroy(sc);
2348 mutex_unlock(&conf->cache_size_mutex);
2349 return -ENOMEM;
2350 }
2351 /* Step 2 - Must use GFP_NOIO now.
2352 * OK, we have enough stripes, start collecting inactive
2353 * stripes and copying them over
2354 */
2355 hash = 0;
2356 cnt = 0;
2357 list_for_each_entry(nsh, &newstripes, lru) {
2358 lock_device_hash_lock(conf, hash);
2359 wait_event_cmd(conf->wait_for_stripe,
2360 !list_empty(conf->inactive_list + hash),
2361 unlock_device_hash_lock(conf, hash),
2362 lock_device_hash_lock(conf, hash));
2363 osh = get_free_stripe(conf, hash);
2364 unlock_device_hash_lock(conf, hash);
2365
2366 for(i=0; i<conf->pool_size; i++) {
2367 nsh->dev[i].page = osh->dev[i].page;
2368 nsh->dev[i].orig_page = osh->dev[i].page;
2369 }
2370 nsh->hash_lock_index = hash;
2371 free_stripe(conf->slab_cache, osh);
2372 cnt++;
2373 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2374 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2375 hash++;
2376 cnt = 0;
2377 }
2378 }
2379 kmem_cache_destroy(conf->slab_cache);
2380
2381 /* Step 3.
2382 * At this point, we are holding all the stripes so the array
2383 * is completely stalled, so now is a good time to resize
2384 * conf->disks and the scribble region
2385 */
2386 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2387 if (ndisks) {
2388 for (i = 0; i < conf->pool_size; i++)
2389 ndisks[i] = conf->disks[i];
2390
2391 for (i = conf->pool_size; i < newsize; i++) {
2392 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2393 if (!ndisks[i].extra_page)
2394 err = -ENOMEM;
2395 }
2396
2397 if (err) {
2398 for (i = conf->pool_size; i < newsize; i++)
2399 if (ndisks[i].extra_page)
2400 put_page(ndisks[i].extra_page);
2401 kfree(ndisks);
2402 } else {
2403 kfree(conf->disks);
2404 conf->disks = ndisks;
2405 }
2406 } else
2407 err = -ENOMEM;
2408
2409 mutex_unlock(&conf->cache_size_mutex);
2410
2411 conf->slab_cache = sc;
2412 conf->active_name = 1-conf->active_name;
2413
2414 /* Step 4, return new stripes to service */
2415 while(!list_empty(&newstripes)) {
2416 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2417 list_del_init(&nsh->lru);
2418
2419 for (i=conf->raid_disks; i < newsize; i++)
2420 if (nsh->dev[i].page == NULL) {
2421 struct page *p = alloc_page(GFP_NOIO);
2422 nsh->dev[i].page = p;
2423 nsh->dev[i].orig_page = p;
2424 if (!p)
2425 err = -ENOMEM;
2426 }
2427 raid5_release_stripe(nsh);
2428 }
2429 /* critical section pass, GFP_NOIO no longer needed */
2430
2431 if (!err)
2432 conf->pool_size = newsize;
2433 return err;
2434 }
2435
2436 static int drop_one_stripe(struct r5conf *conf)
2437 {
2438 struct stripe_head *sh;
2439 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2440
2441 spin_lock_irq(conf->hash_locks + hash);
2442 sh = get_free_stripe(conf, hash);
2443 spin_unlock_irq(conf->hash_locks + hash);
2444 if (!sh)
2445 return 0;
2446 BUG_ON(atomic_read(&sh->count));
2447 shrink_buffers(sh);
2448 free_stripe(conf->slab_cache, sh);
2449 atomic_dec(&conf->active_stripes);
2450 conf->max_nr_stripes--;
2451 return 1;
2452 }
2453
2454 static void shrink_stripes(struct r5conf *conf)
2455 {
2456 while (conf->max_nr_stripes &&
2457 drop_one_stripe(conf))
2458 ;
2459
2460 kmem_cache_destroy(conf->slab_cache);
2461 conf->slab_cache = NULL;
2462 }
2463
2464 static void raid5_end_read_request(struct bio * bi)
2465 {
2466 struct stripe_head *sh = bi->bi_private;
2467 struct r5conf *conf = sh->raid_conf;
2468 int disks = sh->disks, i;
2469 char b[BDEVNAME_SIZE];
2470 struct md_rdev *rdev = NULL;
2471 sector_t s;
2472
2473 for (i=0 ; i<disks; i++)
2474 if (bi == &sh->dev[i].req)
2475 break;
2476
2477 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2478 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2479 bi->bi_error);
2480 if (i == disks) {
2481 bio_reset(bi);
2482 BUG();
2483 return;
2484 }
2485 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2486 /* If replacement finished while this request was outstanding,
2487 * 'replacement' might be NULL already.
2488 * In that case it moved down to 'rdev'.
2489 * rdev is not removed until all requests are finished.
2490 */
2491 rdev = conf->disks[i].replacement;
2492 if (!rdev)
2493 rdev = conf->disks[i].rdev;
2494
2495 if (use_new_offset(conf, sh))
2496 s = sh->sector + rdev->new_data_offset;
2497 else
2498 s = sh->sector + rdev->data_offset;
2499 if (!bi->bi_error) {
2500 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2501 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2502 /* Note that this cannot happen on a
2503 * replacement device. We just fail those on
2504 * any error
2505 */
2506 pr_info_ratelimited(
2507 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2508 mdname(conf->mddev), STRIPE_SECTORS,
2509 (unsigned long long)s,
2510 bdevname(rdev->bdev, b));
2511 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2512 clear_bit(R5_ReadError, &sh->dev[i].flags);
2513 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2514 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2515 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2516
2517 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2518 /*
2519 * end read for a page in journal, this
2520 * must be preparing for prexor in rmw
2521 */
2522 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2523
2524 if (atomic_read(&rdev->read_errors))
2525 atomic_set(&rdev->read_errors, 0);
2526 } else {
2527 const char *bdn = bdevname(rdev->bdev, b);
2528 int retry = 0;
2529 int set_bad = 0;
2530
2531 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2532 atomic_inc(&rdev->read_errors);
2533 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2534 pr_warn_ratelimited(
2535 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2536 mdname(conf->mddev),
2537 (unsigned long long)s,
2538 bdn);
2539 else if (conf->mddev->degraded >= conf->max_degraded) {
2540 set_bad = 1;
2541 pr_warn_ratelimited(
2542 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2543 mdname(conf->mddev),
2544 (unsigned long long)s,
2545 bdn);
2546 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2547 /* Oh, no!!! */
2548 set_bad = 1;
2549 pr_warn_ratelimited(
2550 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2551 mdname(conf->mddev),
2552 (unsigned long long)s,
2553 bdn);
2554 } else if (atomic_read(&rdev->read_errors)
2555 > conf->max_nr_stripes)
2556 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2557 mdname(conf->mddev), bdn);
2558 else
2559 retry = 1;
2560 if (set_bad && test_bit(In_sync, &rdev->flags)
2561 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2562 retry = 1;
2563 if (retry)
2564 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2565 set_bit(R5_ReadError, &sh->dev[i].flags);
2566 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2567 } else
2568 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2569 else {
2570 clear_bit(R5_ReadError, &sh->dev[i].flags);
2571 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2572 if (!(set_bad
2573 && test_bit(In_sync, &rdev->flags)
2574 && rdev_set_badblocks(
2575 rdev, sh->sector, STRIPE_SECTORS, 0)))
2576 md_error(conf->mddev, rdev);
2577 }
2578 }
2579 rdev_dec_pending(rdev, conf->mddev);
2580 bio_reset(bi);
2581 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2582 set_bit(STRIPE_HANDLE, &sh->state);
2583 raid5_release_stripe(sh);
2584 }
2585
2586 static void raid5_end_write_request(struct bio *bi)
2587 {
2588 struct stripe_head *sh = bi->bi_private;
2589 struct r5conf *conf = sh->raid_conf;
2590 int disks = sh->disks, i;
2591 struct md_rdev *uninitialized_var(rdev);
2592 sector_t first_bad;
2593 int bad_sectors;
2594 int replacement = 0;
2595
2596 for (i = 0 ; i < disks; i++) {
2597 if (bi == &sh->dev[i].req) {
2598 rdev = conf->disks[i].rdev;
2599 break;
2600 }
2601 if (bi == &sh->dev[i].rreq) {
2602 rdev = conf->disks[i].replacement;
2603 if (rdev)
2604 replacement = 1;
2605 else
2606 /* rdev was removed and 'replacement'
2607 * replaced it. rdev is not removed
2608 * until all requests are finished.
2609 */
2610 rdev = conf->disks[i].rdev;
2611 break;
2612 }
2613 }
2614 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2615 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2616 bi->bi_error);
2617 if (i == disks) {
2618 bio_reset(bi);
2619 BUG();
2620 return;
2621 }
2622
2623 if (replacement) {
2624 if (bi->bi_error)
2625 md_error(conf->mddev, rdev);
2626 else if (is_badblock(rdev, sh->sector,
2627 STRIPE_SECTORS,
2628 &first_bad, &bad_sectors))
2629 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2630 } else {
2631 if (bi->bi_error) {
2632 set_bit(STRIPE_DEGRADED, &sh->state);
2633 set_bit(WriteErrorSeen, &rdev->flags);
2634 set_bit(R5_WriteError, &sh->dev[i].flags);
2635 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2636 set_bit(MD_RECOVERY_NEEDED,
2637 &rdev->mddev->recovery);
2638 } else if (is_badblock(rdev, sh->sector,
2639 STRIPE_SECTORS,
2640 &first_bad, &bad_sectors)) {
2641 set_bit(R5_MadeGood, &sh->dev[i].flags);
2642 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2643 /* That was a successful write so make
2644 * sure it looks like we already did
2645 * a re-write.
2646 */
2647 set_bit(R5_ReWrite, &sh->dev[i].flags);
2648 }
2649 }
2650 rdev_dec_pending(rdev, conf->mddev);
2651
2652 if (sh->batch_head && bi->bi_error && !replacement)
2653 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2654
2655 bio_reset(bi);
2656 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2657 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2658 set_bit(STRIPE_HANDLE, &sh->state);
2659 raid5_release_stripe(sh);
2660
2661 if (sh->batch_head && sh != sh->batch_head)
2662 raid5_release_stripe(sh->batch_head);
2663 }
2664
2665 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2666 {
2667 struct r5dev *dev = &sh->dev[i];
2668
2669 dev->flags = 0;
2670 dev->sector = raid5_compute_blocknr(sh, i, previous);
2671 }
2672
2673 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2674 {
2675 char b[BDEVNAME_SIZE];
2676 struct r5conf *conf = mddev->private;
2677 unsigned long flags;
2678 pr_debug("raid456: error called\n");
2679
2680 spin_lock_irqsave(&conf->device_lock, flags);
2681 clear_bit(In_sync, &rdev->flags);
2682 mddev->degraded = raid5_calc_degraded(conf);
2683 spin_unlock_irqrestore(&conf->device_lock, flags);
2684 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2685
2686 set_bit(Blocked, &rdev->flags);
2687 set_bit(Faulty, &rdev->flags);
2688 set_mask_bits(&mddev->sb_flags, 0,
2689 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2690 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2691 "md/raid:%s: Operation continuing on %d devices.\n",
2692 mdname(mddev),
2693 bdevname(rdev->bdev, b),
2694 mdname(mddev),
2695 conf->raid_disks - mddev->degraded);
2696 r5c_update_on_rdev_error(mddev, rdev);
2697 }
2698
2699 /*
2700 * Input: a 'big' sector number,
2701 * Output: index of the data and parity disk, and the sector # in them.
2702 */
2703 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2704 int previous, int *dd_idx,
2705 struct stripe_head *sh)
2706 {
2707 sector_t stripe, stripe2;
2708 sector_t chunk_number;
2709 unsigned int chunk_offset;
2710 int pd_idx, qd_idx;
2711 int ddf_layout = 0;
2712 sector_t new_sector;
2713 int algorithm = previous ? conf->prev_algo
2714 : conf->algorithm;
2715 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2716 : conf->chunk_sectors;
2717 int raid_disks = previous ? conf->previous_raid_disks
2718 : conf->raid_disks;
2719 int data_disks = raid_disks - conf->max_degraded;
2720
2721 /* First compute the information on this sector */
2722
2723 /*
2724 * Compute the chunk number and the sector offset inside the chunk
2725 */
2726 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2727 chunk_number = r_sector;
2728
2729 /*
2730 * Compute the stripe number
2731 */
2732 stripe = chunk_number;
2733 *dd_idx = sector_div(stripe, data_disks);
2734 stripe2 = stripe;
2735 /*
2736 * Select the parity disk based on the user selected algorithm.
2737 */
2738 pd_idx = qd_idx = -1;
2739 switch(conf->level) {
2740 case 4:
2741 pd_idx = data_disks;
2742 break;
2743 case 5:
2744 switch (algorithm) {
2745 case ALGORITHM_LEFT_ASYMMETRIC:
2746 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2747 if (*dd_idx >= pd_idx)
2748 (*dd_idx)++;
2749 break;
2750 case ALGORITHM_RIGHT_ASYMMETRIC:
2751 pd_idx = sector_div(stripe2, raid_disks);
2752 if (*dd_idx >= pd_idx)
2753 (*dd_idx)++;
2754 break;
2755 case ALGORITHM_LEFT_SYMMETRIC:
2756 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2757 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2758 break;
2759 case ALGORITHM_RIGHT_SYMMETRIC:
2760 pd_idx = sector_div(stripe2, raid_disks);
2761 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2762 break;
2763 case ALGORITHM_PARITY_0:
2764 pd_idx = 0;
2765 (*dd_idx)++;
2766 break;
2767 case ALGORITHM_PARITY_N:
2768 pd_idx = data_disks;
2769 break;
2770 default:
2771 BUG();
2772 }
2773 break;
2774 case 6:
2775
2776 switch (algorithm) {
2777 case ALGORITHM_LEFT_ASYMMETRIC:
2778 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2779 qd_idx = pd_idx + 1;
2780 if (pd_idx == raid_disks-1) {
2781 (*dd_idx)++; /* Q D D D P */
2782 qd_idx = 0;
2783 } else if (*dd_idx >= pd_idx)
2784 (*dd_idx) += 2; /* D D P Q D */
2785 break;
2786 case ALGORITHM_RIGHT_ASYMMETRIC:
2787 pd_idx = sector_div(stripe2, raid_disks);
2788 qd_idx = pd_idx + 1;
2789 if (pd_idx == raid_disks-1) {
2790 (*dd_idx)++; /* Q D D D P */
2791 qd_idx = 0;
2792 } else if (*dd_idx >= pd_idx)
2793 (*dd_idx) += 2; /* D D P Q D */
2794 break;
2795 case ALGORITHM_LEFT_SYMMETRIC:
2796 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2797 qd_idx = (pd_idx + 1) % raid_disks;
2798 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2799 break;
2800 case ALGORITHM_RIGHT_SYMMETRIC:
2801 pd_idx = sector_div(stripe2, raid_disks);
2802 qd_idx = (pd_idx + 1) % raid_disks;
2803 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2804 break;
2805
2806 case ALGORITHM_PARITY_0:
2807 pd_idx = 0;
2808 qd_idx = 1;
2809 (*dd_idx) += 2;
2810 break;
2811 case ALGORITHM_PARITY_N:
2812 pd_idx = data_disks;
2813 qd_idx = data_disks + 1;
2814 break;
2815
2816 case ALGORITHM_ROTATING_ZERO_RESTART:
2817 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2818 * of blocks for computing Q is different.
2819 */
2820 pd_idx = sector_div(stripe2, raid_disks);
2821 qd_idx = pd_idx + 1;
2822 if (pd_idx == raid_disks-1) {
2823 (*dd_idx)++; /* Q D D D P */
2824 qd_idx = 0;
2825 } else if (*dd_idx >= pd_idx)
2826 (*dd_idx) += 2; /* D D P Q D */
2827 ddf_layout = 1;
2828 break;
2829
2830 case ALGORITHM_ROTATING_N_RESTART:
2831 /* Same a left_asymmetric, by first stripe is
2832 * D D D P Q rather than
2833 * Q D D D P
2834 */
2835 stripe2 += 1;
2836 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2837 qd_idx = pd_idx + 1;
2838 if (pd_idx == raid_disks-1) {
2839 (*dd_idx)++; /* Q D D D P */
2840 qd_idx = 0;
2841 } else if (*dd_idx >= pd_idx)
2842 (*dd_idx) += 2; /* D D P Q D */
2843 ddf_layout = 1;
2844 break;
2845
2846 case ALGORITHM_ROTATING_N_CONTINUE:
2847 /* Same as left_symmetric but Q is before P */
2848 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2849 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2850 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2851 ddf_layout = 1;
2852 break;
2853
2854 case ALGORITHM_LEFT_ASYMMETRIC_6:
2855 /* RAID5 left_asymmetric, with Q on last device */
2856 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2857 if (*dd_idx >= pd_idx)
2858 (*dd_idx)++;
2859 qd_idx = raid_disks - 1;
2860 break;
2861
2862 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2863 pd_idx = sector_div(stripe2, raid_disks-1);
2864 if (*dd_idx >= pd_idx)
2865 (*dd_idx)++;
2866 qd_idx = raid_disks - 1;
2867 break;
2868
2869 case ALGORITHM_LEFT_SYMMETRIC_6:
2870 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2871 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2872 qd_idx = raid_disks - 1;
2873 break;
2874
2875 case ALGORITHM_RIGHT_SYMMETRIC_6:
2876 pd_idx = sector_div(stripe2, raid_disks-1);
2877 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2878 qd_idx = raid_disks - 1;
2879 break;
2880
2881 case ALGORITHM_PARITY_0_6:
2882 pd_idx = 0;
2883 (*dd_idx)++;
2884 qd_idx = raid_disks - 1;
2885 break;
2886
2887 default:
2888 BUG();
2889 }
2890 break;
2891 }
2892
2893 if (sh) {
2894 sh->pd_idx = pd_idx;
2895 sh->qd_idx = qd_idx;
2896 sh->ddf_layout = ddf_layout;
2897 }
2898 /*
2899 * Finally, compute the new sector number
2900 */
2901 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2902 return new_sector;
2903 }
2904
2905 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2906 {
2907 struct r5conf *conf = sh->raid_conf;
2908 int raid_disks = sh->disks;
2909 int data_disks = raid_disks - conf->max_degraded;
2910 sector_t new_sector = sh->sector, check;
2911 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2912 : conf->chunk_sectors;
2913 int algorithm = previous ? conf->prev_algo
2914 : conf->algorithm;
2915 sector_t stripe;
2916 int chunk_offset;
2917 sector_t chunk_number;
2918 int dummy1, dd_idx = i;
2919 sector_t r_sector;
2920 struct stripe_head sh2;
2921
2922 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2923 stripe = new_sector;
2924
2925 if (i == sh->pd_idx)
2926 return 0;
2927 switch(conf->level) {
2928 case 4: break;
2929 case 5:
2930 switch (algorithm) {
2931 case ALGORITHM_LEFT_ASYMMETRIC:
2932 case ALGORITHM_RIGHT_ASYMMETRIC:
2933 if (i > sh->pd_idx)
2934 i--;
2935 break;
2936 case ALGORITHM_LEFT_SYMMETRIC:
2937 case ALGORITHM_RIGHT_SYMMETRIC:
2938 if (i < sh->pd_idx)
2939 i += raid_disks;
2940 i -= (sh->pd_idx + 1);
2941 break;
2942 case ALGORITHM_PARITY_0:
2943 i -= 1;
2944 break;
2945 case ALGORITHM_PARITY_N:
2946 break;
2947 default:
2948 BUG();
2949 }
2950 break;
2951 case 6:
2952 if (i == sh->qd_idx)
2953 return 0; /* It is the Q disk */
2954 switch (algorithm) {
2955 case ALGORITHM_LEFT_ASYMMETRIC:
2956 case ALGORITHM_RIGHT_ASYMMETRIC:
2957 case ALGORITHM_ROTATING_ZERO_RESTART:
2958 case ALGORITHM_ROTATING_N_RESTART:
2959 if (sh->pd_idx == raid_disks-1)
2960 i--; /* Q D D D P */
2961 else if (i > sh->pd_idx)
2962 i -= 2; /* D D P Q D */
2963 break;
2964 case ALGORITHM_LEFT_SYMMETRIC:
2965 case ALGORITHM_RIGHT_SYMMETRIC:
2966 if (sh->pd_idx == raid_disks-1)
2967 i--; /* Q D D D P */
2968 else {
2969 /* D D P Q D */
2970 if (i < sh->pd_idx)
2971 i += raid_disks;
2972 i -= (sh->pd_idx + 2);
2973 }
2974 break;
2975 case ALGORITHM_PARITY_0:
2976 i -= 2;
2977 break;
2978 case ALGORITHM_PARITY_N:
2979 break;
2980 case ALGORITHM_ROTATING_N_CONTINUE:
2981 /* Like left_symmetric, but P is before Q */
2982 if (sh->pd_idx == 0)
2983 i--; /* P D D D Q */
2984 else {
2985 /* D D Q P D */
2986 if (i < sh->pd_idx)
2987 i += raid_disks;
2988 i -= (sh->pd_idx + 1);
2989 }
2990 break;
2991 case ALGORITHM_LEFT_ASYMMETRIC_6:
2992 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2993 if (i > sh->pd_idx)
2994 i--;
2995 break;
2996 case ALGORITHM_LEFT_SYMMETRIC_6:
2997 case ALGORITHM_RIGHT_SYMMETRIC_6:
2998 if (i < sh->pd_idx)
2999 i += data_disks + 1;
3000 i -= (sh->pd_idx + 1);
3001 break;
3002 case ALGORITHM_PARITY_0_6:
3003 i -= 1;
3004 break;
3005 default:
3006 BUG();
3007 }
3008 break;
3009 }
3010
3011 chunk_number = stripe * data_disks + i;
3012 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3013
3014 check = raid5_compute_sector(conf, r_sector,
3015 previous, &dummy1, &sh2);
3016 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3017 || sh2.qd_idx != sh->qd_idx) {
3018 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3019 mdname(conf->mddev));
3020 return 0;
3021 }
3022 return r_sector;
3023 }
3024
3025 /*
3026 * There are cases where we want handle_stripe_dirtying() and
3027 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3028 *
3029 * This function checks whether we want to delay the towrite. Specifically,
3030 * we delay the towrite when:
3031 *
3032 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3033 * stripe has data in journal (for other devices).
3034 *
3035 * In this case, when reading data for the non-overwrite dev, it is
3036 * necessary to handle complex rmw of write back cache (prexor with
3037 * orig_page, and xor with page). To keep read path simple, we would
3038 * like to flush data in journal to RAID disks first, so complex rmw
3039 * is handled in the write patch (handle_stripe_dirtying).
3040 *
3041 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3042 *
3043 * It is important to be able to flush all stripes in raid5-cache.
3044 * Therefore, we need reserve some space on the journal device for
3045 * these flushes. If flush operation includes pending writes to the
3046 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3047 * for the flush out. If we exclude these pending writes from flush
3048 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3049 * Therefore, excluding pending writes in these cases enables more
3050 * efficient use of the journal device.
3051 *
3052 * Note: To make sure the stripe makes progress, we only delay
3053 * towrite for stripes with data already in journal (injournal > 0).
3054 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3055 * no_space_stripes list.
3056 *
3057 * 3. during journal failure
3058 * In journal failure, we try to flush all cached data to raid disks
3059 * based on data in stripe cache. The array is read-only to upper
3060 * layers, so we would skip all pending writes.
3061 *
3062 */
3063 static inline bool delay_towrite(struct r5conf *conf,
3064 struct r5dev *dev,
3065 struct stripe_head_state *s)
3066 {
3067 /* case 1 above */
3068 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3069 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3070 return true;
3071 /* case 2 above */
3072 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3073 s->injournal > 0)
3074 return true;
3075 /* case 3 above */
3076 if (s->log_failed && s->injournal)
3077 return true;
3078 return false;
3079 }
3080
3081 static void
3082 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3083 int rcw, int expand)
3084 {
3085 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3086 struct r5conf *conf = sh->raid_conf;
3087 int level = conf->level;
3088
3089 if (rcw) {
3090 /*
3091 * In some cases, handle_stripe_dirtying initially decided to
3092 * run rmw and allocates extra page for prexor. However, rcw is
3093 * cheaper later on. We need to free the extra page now,
3094 * because we won't be able to do that in ops_complete_prexor().
3095 */
3096 r5c_release_extra_page(sh);
3097
3098 for (i = disks; i--; ) {
3099 struct r5dev *dev = &sh->dev[i];
3100
3101 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3102 set_bit(R5_LOCKED, &dev->flags);
3103 set_bit(R5_Wantdrain, &dev->flags);
3104 if (!expand)
3105 clear_bit(R5_UPTODATE, &dev->flags);
3106 s->locked++;
3107 } else if (test_bit(R5_InJournal, &dev->flags)) {
3108 set_bit(R5_LOCKED, &dev->flags);
3109 s->locked++;
3110 }
3111 }
3112 /* if we are not expanding this is a proper write request, and
3113 * there will be bios with new data to be drained into the
3114 * stripe cache
3115 */
3116 if (!expand) {
3117 if (!s->locked)
3118 /* False alarm, nothing to do */
3119 return;
3120 sh->reconstruct_state = reconstruct_state_drain_run;
3121 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3122 } else
3123 sh->reconstruct_state = reconstruct_state_run;
3124
3125 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3126
3127 if (s->locked + conf->max_degraded == disks)
3128 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3129 atomic_inc(&conf->pending_full_writes);
3130 } else {
3131 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3132 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3133 BUG_ON(level == 6 &&
3134 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3135 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3136
3137 for (i = disks; i--; ) {
3138 struct r5dev *dev = &sh->dev[i];
3139 if (i == pd_idx || i == qd_idx)
3140 continue;
3141
3142 if (dev->towrite &&
3143 (test_bit(R5_UPTODATE, &dev->flags) ||
3144 test_bit(R5_Wantcompute, &dev->flags))) {
3145 set_bit(R5_Wantdrain, &dev->flags);
3146 set_bit(R5_LOCKED, &dev->flags);
3147 clear_bit(R5_UPTODATE, &dev->flags);
3148 s->locked++;
3149 } else if (test_bit(R5_InJournal, &dev->flags)) {
3150 set_bit(R5_LOCKED, &dev->flags);
3151 s->locked++;
3152 }
3153 }
3154 if (!s->locked)
3155 /* False alarm - nothing to do */
3156 return;
3157 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3158 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3159 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3160 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3161 }
3162
3163 /* keep the parity disk(s) locked while asynchronous operations
3164 * are in flight
3165 */
3166 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3167 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3168 s->locked++;
3169
3170 if (level == 6) {
3171 int qd_idx = sh->qd_idx;
3172 struct r5dev *dev = &sh->dev[qd_idx];
3173
3174 set_bit(R5_LOCKED, &dev->flags);
3175 clear_bit(R5_UPTODATE, &dev->flags);
3176 s->locked++;
3177 }
3178
3179 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3180 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3181 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3182 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3183 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3184
3185 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3186 __func__, (unsigned long long)sh->sector,
3187 s->locked, s->ops_request);
3188 }
3189
3190 /*
3191 * Each stripe/dev can have one or more bion attached.
3192 * toread/towrite point to the first in a chain.
3193 * The bi_next chain must be in order.
3194 */
3195 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3196 int forwrite, int previous)
3197 {
3198 struct bio **bip;
3199 struct r5conf *conf = sh->raid_conf;
3200 int firstwrite=0;
3201
3202 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3203 (unsigned long long)bi->bi_iter.bi_sector,
3204 (unsigned long long)sh->sector);
3205
3206 spin_lock_irq(&sh->stripe_lock);
3207 /* Don't allow new IO added to stripes in batch list */
3208 if (sh->batch_head)
3209 goto overlap;
3210 if (forwrite) {
3211 bip = &sh->dev[dd_idx].towrite;
3212 if (*bip == NULL)
3213 firstwrite = 1;
3214 } else
3215 bip = &sh->dev[dd_idx].toread;
3216 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3217 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3218 goto overlap;
3219 bip = & (*bip)->bi_next;
3220 }
3221 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3222 goto overlap;
3223
3224 if (forwrite && raid5_has_ppl(conf)) {
3225 /*
3226 * With PPL only writes to consecutive data chunks within a
3227 * stripe are allowed because for a single stripe_head we can
3228 * only have one PPL entry at a time, which describes one data
3229 * range. Not really an overlap, but wait_for_overlap can be
3230 * used to handle this.
3231 */
3232 sector_t sector;
3233 sector_t first = 0;
3234 sector_t last = 0;
3235 int count = 0;
3236 int i;
3237
3238 for (i = 0; i < sh->disks; i++) {
3239 if (i != sh->pd_idx &&
3240 (i == dd_idx || sh->dev[i].towrite)) {
3241 sector = sh->dev[i].sector;
3242 if (count == 0 || sector < first)
3243 first = sector;
3244 if (sector > last)
3245 last = sector;
3246 count++;
3247 }
3248 }
3249
3250 if (first + conf->chunk_sectors * (count - 1) != last)
3251 goto overlap;
3252 }
3253
3254 if (!forwrite || previous)
3255 clear_bit(STRIPE_BATCH_READY, &sh->state);
3256
3257 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3258 if (*bip)
3259 bi->bi_next = *bip;
3260 *bip = bi;
3261 bio_inc_remaining(bi);
3262 md_write_inc(conf->mddev, bi);
3263
3264 if (forwrite) {
3265 /* check if page is covered */
3266 sector_t sector = sh->dev[dd_idx].sector;
3267 for (bi=sh->dev[dd_idx].towrite;
3268 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3269 bi && bi->bi_iter.bi_sector <= sector;
3270 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3271 if (bio_end_sector(bi) >= sector)
3272 sector = bio_end_sector(bi);
3273 }
3274 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3275 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3276 sh->overwrite_disks++;
3277 }
3278
3279 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3280 (unsigned long long)(*bip)->bi_iter.bi_sector,
3281 (unsigned long long)sh->sector, dd_idx);
3282
3283 if (conf->mddev->bitmap && firstwrite) {
3284 /* Cannot hold spinlock over bitmap_startwrite,
3285 * but must ensure this isn't added to a batch until
3286 * we have added to the bitmap and set bm_seq.
3287 * So set STRIPE_BITMAP_PENDING to prevent
3288 * batching.
3289 * If multiple add_stripe_bio() calls race here they
3290 * much all set STRIPE_BITMAP_PENDING. So only the first one
3291 * to complete "bitmap_startwrite" gets to set
3292 * STRIPE_BIT_DELAY. This is important as once a stripe
3293 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3294 * any more.
3295 */
3296 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3297 spin_unlock_irq(&sh->stripe_lock);
3298 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3299 STRIPE_SECTORS, 0);
3300 spin_lock_irq(&sh->stripe_lock);
3301 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3302 if (!sh->batch_head) {
3303 sh->bm_seq = conf->seq_flush+1;
3304 set_bit(STRIPE_BIT_DELAY, &sh->state);
3305 }
3306 }
3307 spin_unlock_irq(&sh->stripe_lock);
3308
3309 if (stripe_can_batch(sh))
3310 stripe_add_to_batch_list(conf, sh);
3311 return 1;
3312
3313 overlap:
3314 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3315 spin_unlock_irq(&sh->stripe_lock);
3316 return 0;
3317 }
3318
3319 static void end_reshape(struct r5conf *conf);
3320
3321 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3322 struct stripe_head *sh)
3323 {
3324 int sectors_per_chunk =
3325 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3326 int dd_idx;
3327 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3328 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3329
3330 raid5_compute_sector(conf,
3331 stripe * (disks - conf->max_degraded)
3332 *sectors_per_chunk + chunk_offset,
3333 previous,
3334 &dd_idx, sh);
3335 }
3336
3337 static void
3338 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3339 struct stripe_head_state *s, int disks)
3340 {
3341 int i;
3342 BUG_ON(sh->batch_head);
3343 for (i = disks; i--; ) {
3344 struct bio *bi;
3345 int bitmap_end = 0;
3346
3347 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3348 struct md_rdev *rdev;
3349 rcu_read_lock();
3350 rdev = rcu_dereference(conf->disks[i].rdev);
3351 if (rdev && test_bit(In_sync, &rdev->flags) &&
3352 !test_bit(Faulty, &rdev->flags))
3353 atomic_inc(&rdev->nr_pending);
3354 else
3355 rdev = NULL;
3356 rcu_read_unlock();
3357 if (rdev) {
3358 if (!rdev_set_badblocks(
3359 rdev,
3360 sh->sector,
3361 STRIPE_SECTORS, 0))
3362 md_error(conf->mddev, rdev);
3363 rdev_dec_pending(rdev, conf->mddev);
3364 }
3365 }
3366 spin_lock_irq(&sh->stripe_lock);
3367 /* fail all writes first */
3368 bi = sh->dev[i].towrite;
3369 sh->dev[i].towrite = NULL;
3370 sh->overwrite_disks = 0;
3371 spin_unlock_irq(&sh->stripe_lock);
3372 if (bi)
3373 bitmap_end = 1;
3374
3375 log_stripe_write_finished(sh);
3376
3377 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3378 wake_up(&conf->wait_for_overlap);
3379
3380 while (bi && bi->bi_iter.bi_sector <
3381 sh->dev[i].sector + STRIPE_SECTORS) {
3382 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3383
3384 bi->bi_error = -EIO;
3385 md_write_end(conf->mddev);
3386 bio_endio(bi);
3387 bi = nextbi;
3388 }
3389 if (bitmap_end)
3390 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3391 STRIPE_SECTORS, 0, 0);
3392 bitmap_end = 0;
3393 /* and fail all 'written' */
3394 bi = sh->dev[i].written;
3395 sh->dev[i].written = NULL;
3396 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3397 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3398 sh->dev[i].page = sh->dev[i].orig_page;
3399 }
3400
3401 if (bi) bitmap_end = 1;
3402 while (bi && bi->bi_iter.bi_sector <
3403 sh->dev[i].sector + STRIPE_SECTORS) {
3404 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3405
3406 bi->bi_error = -EIO;
3407 md_write_end(conf->mddev);
3408 bio_endio(bi);
3409 bi = bi2;
3410 }
3411
3412 /* fail any reads if this device is non-operational and
3413 * the data has not reached the cache yet.
3414 */
3415 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3416 s->failed > conf->max_degraded &&
3417 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3418 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3419 spin_lock_irq(&sh->stripe_lock);
3420 bi = sh->dev[i].toread;
3421 sh->dev[i].toread = NULL;
3422 spin_unlock_irq(&sh->stripe_lock);
3423 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3424 wake_up(&conf->wait_for_overlap);
3425 if (bi)
3426 s->to_read--;
3427 while (bi && bi->bi_iter.bi_sector <
3428 sh->dev[i].sector + STRIPE_SECTORS) {
3429 struct bio *nextbi =
3430 r5_next_bio(bi, sh->dev[i].sector);
3431
3432 bi->bi_error = -EIO;
3433 bio_endio(bi);
3434 bi = nextbi;
3435 }
3436 }
3437 if (bitmap_end)
3438 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3439 STRIPE_SECTORS, 0, 0);
3440 /* If we were in the middle of a write the parity block might
3441 * still be locked - so just clear all R5_LOCKED flags
3442 */
3443 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3444 }
3445 s->to_write = 0;
3446 s->written = 0;
3447
3448 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3449 if (atomic_dec_and_test(&conf->pending_full_writes))
3450 md_wakeup_thread(conf->mddev->thread);
3451 }
3452
3453 static void
3454 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3455 struct stripe_head_state *s)
3456 {
3457 int abort = 0;
3458 int i;
3459
3460 BUG_ON(sh->batch_head);
3461 clear_bit(STRIPE_SYNCING, &sh->state);
3462 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3463 wake_up(&conf->wait_for_overlap);
3464 s->syncing = 0;
3465 s->replacing = 0;
3466 /* There is nothing more to do for sync/check/repair.
3467 * Don't even need to abort as that is handled elsewhere
3468 * if needed, and not always wanted e.g. if there is a known
3469 * bad block here.
3470 * For recover/replace we need to record a bad block on all
3471 * non-sync devices, or abort the recovery
3472 */
3473 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3474 /* During recovery devices cannot be removed, so
3475 * locking and refcounting of rdevs is not needed
3476 */
3477 rcu_read_lock();
3478 for (i = 0; i < conf->raid_disks; i++) {
3479 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3480 if (rdev
3481 && !test_bit(Faulty, &rdev->flags)
3482 && !test_bit(In_sync, &rdev->flags)
3483 && !rdev_set_badblocks(rdev, sh->sector,
3484 STRIPE_SECTORS, 0))
3485 abort = 1;
3486 rdev = rcu_dereference(conf->disks[i].replacement);
3487 if (rdev
3488 && !test_bit(Faulty, &rdev->flags)
3489 && !test_bit(In_sync, &rdev->flags)
3490 && !rdev_set_badblocks(rdev, sh->sector,
3491 STRIPE_SECTORS, 0))
3492 abort = 1;
3493 }
3494 rcu_read_unlock();
3495 if (abort)
3496 conf->recovery_disabled =
3497 conf->mddev->recovery_disabled;
3498 }
3499 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3500 }
3501
3502 static int want_replace(struct stripe_head *sh, int disk_idx)
3503 {
3504 struct md_rdev *rdev;
3505 int rv = 0;
3506
3507 rcu_read_lock();
3508 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3509 if (rdev
3510 && !test_bit(Faulty, &rdev->flags)
3511 && !test_bit(In_sync, &rdev->flags)
3512 && (rdev->recovery_offset <= sh->sector
3513 || rdev->mddev->recovery_cp <= sh->sector))
3514 rv = 1;
3515 rcu_read_unlock();
3516 return rv;
3517 }
3518
3519 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3520 int disk_idx, int disks)
3521 {
3522 struct r5dev *dev = &sh->dev[disk_idx];
3523 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3524 &sh->dev[s->failed_num[1]] };
3525 int i;
3526
3527
3528 if (test_bit(R5_LOCKED, &dev->flags) ||
3529 test_bit(R5_UPTODATE, &dev->flags))
3530 /* No point reading this as we already have it or have
3531 * decided to get it.
3532 */
3533 return 0;
3534
3535 if (dev->toread ||
3536 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3537 /* We need this block to directly satisfy a request */
3538 return 1;
3539
3540 if (s->syncing || s->expanding ||
3541 (s->replacing && want_replace(sh, disk_idx)))
3542 /* When syncing, or expanding we read everything.
3543 * When replacing, we need the replaced block.
3544 */
3545 return 1;
3546
3547 if ((s->failed >= 1 && fdev[0]->toread) ||
3548 (s->failed >= 2 && fdev[1]->toread))
3549 /* If we want to read from a failed device, then
3550 * we need to actually read every other device.
3551 */
3552 return 1;
3553
3554 /* Sometimes neither read-modify-write nor reconstruct-write
3555 * cycles can work. In those cases we read every block we
3556 * can. Then the parity-update is certain to have enough to
3557 * work with.
3558 * This can only be a problem when we need to write something,
3559 * and some device has failed. If either of those tests
3560 * fail we need look no further.
3561 */
3562 if (!s->failed || !s->to_write)
3563 return 0;
3564
3565 if (test_bit(R5_Insync, &dev->flags) &&
3566 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3567 /* Pre-reads at not permitted until after short delay
3568 * to gather multiple requests. However if this
3569 * device is no Insync, the block could only be computed
3570 * and there is no need to delay that.
3571 */
3572 return 0;
3573
3574 for (i = 0; i < s->failed && i < 2; i++) {
3575 if (fdev[i]->towrite &&
3576 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3577 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3578 /* If we have a partial write to a failed
3579 * device, then we will need to reconstruct
3580 * the content of that device, so all other
3581 * devices must be read.
3582 */
3583 return 1;
3584 }
3585
3586 /* If we are forced to do a reconstruct-write, either because
3587 * the current RAID6 implementation only supports that, or
3588 * because parity cannot be trusted and we are currently
3589 * recovering it, there is extra need to be careful.
3590 * If one of the devices that we would need to read, because
3591 * it is not being overwritten (and maybe not written at all)
3592 * is missing/faulty, then we need to read everything we can.
3593 */
3594 if (sh->raid_conf->level != 6 &&
3595 sh->sector < sh->raid_conf->mddev->recovery_cp)
3596 /* reconstruct-write isn't being forced */
3597 return 0;
3598 for (i = 0; i < s->failed && i < 2; i++) {
3599 if (s->failed_num[i] != sh->pd_idx &&
3600 s->failed_num[i] != sh->qd_idx &&
3601 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3602 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3603 return 1;
3604 }
3605
3606 return 0;
3607 }
3608
3609 /* fetch_block - checks the given member device to see if its data needs
3610 * to be read or computed to satisfy a request.
3611 *
3612 * Returns 1 when no more member devices need to be checked, otherwise returns
3613 * 0 to tell the loop in handle_stripe_fill to continue
3614 */
3615 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3616 int disk_idx, int disks)
3617 {
3618 struct r5dev *dev = &sh->dev[disk_idx];
3619
3620 /* is the data in this block needed, and can we get it? */
3621 if (need_this_block(sh, s, disk_idx, disks)) {
3622 /* we would like to get this block, possibly by computing it,
3623 * otherwise read it if the backing disk is insync
3624 */
3625 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3626 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3627 BUG_ON(sh->batch_head);
3628
3629 /*
3630 * In the raid6 case if the only non-uptodate disk is P
3631 * then we already trusted P to compute the other failed
3632 * drives. It is safe to compute rather than re-read P.
3633 * In other cases we only compute blocks from failed
3634 * devices, otherwise check/repair might fail to detect
3635 * a real inconsistency.
3636 */
3637
3638 if ((s->uptodate == disks - 1) &&
3639 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3640 (s->failed && (disk_idx == s->failed_num[0] ||
3641 disk_idx == s->failed_num[1])))) {
3642 /* have disk failed, and we're requested to fetch it;
3643 * do compute it
3644 */
3645 pr_debug("Computing stripe %llu block %d\n",
3646 (unsigned long long)sh->sector, disk_idx);
3647 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3648 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3649 set_bit(R5_Wantcompute, &dev->flags);
3650 sh->ops.target = disk_idx;
3651 sh->ops.target2 = -1; /* no 2nd target */
3652 s->req_compute = 1;
3653 /* Careful: from this point on 'uptodate' is in the eye
3654 * of raid_run_ops which services 'compute' operations
3655 * before writes. R5_Wantcompute flags a block that will
3656 * be R5_UPTODATE by the time it is needed for a
3657 * subsequent operation.
3658 */
3659 s->uptodate++;
3660 return 1;
3661 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3662 /* Computing 2-failure is *very* expensive; only
3663 * do it if failed >= 2
3664 */
3665 int other;
3666 for (other = disks; other--; ) {
3667 if (other == disk_idx)
3668 continue;
3669 if (!test_bit(R5_UPTODATE,
3670 &sh->dev[other].flags))
3671 break;
3672 }
3673 BUG_ON(other < 0);
3674 pr_debug("Computing stripe %llu blocks %d,%d\n",
3675 (unsigned long long)sh->sector,
3676 disk_idx, other);
3677 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3678 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3679 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3680 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3681 sh->ops.target = disk_idx;
3682 sh->ops.target2 = other;
3683 s->uptodate += 2;
3684 s->req_compute = 1;
3685 return 1;
3686 } else if (test_bit(R5_Insync, &dev->flags)) {
3687 set_bit(R5_LOCKED, &dev->flags);
3688 set_bit(R5_Wantread, &dev->flags);
3689 s->locked++;
3690 pr_debug("Reading block %d (sync=%d)\n",
3691 disk_idx, s->syncing);
3692 }
3693 }
3694
3695 return 0;
3696 }
3697
3698 /**
3699 * handle_stripe_fill - read or compute data to satisfy pending requests.
3700 */
3701 static void handle_stripe_fill(struct stripe_head *sh,
3702 struct stripe_head_state *s,
3703 int disks)
3704 {
3705 int i;
3706
3707 /* look for blocks to read/compute, skip this if a compute
3708 * is already in flight, or if the stripe contents are in the
3709 * midst of changing due to a write
3710 */
3711 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3712 !sh->reconstruct_state) {
3713
3714 /*
3715 * For degraded stripe with data in journal, do not handle
3716 * read requests yet, instead, flush the stripe to raid
3717 * disks first, this avoids handling complex rmw of write
3718 * back cache (prexor with orig_page, and then xor with
3719 * page) in the read path
3720 */
3721 if (s->injournal && s->failed) {
3722 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3723 r5c_make_stripe_write_out(sh);
3724 goto out;
3725 }
3726
3727 for (i = disks; i--; )
3728 if (fetch_block(sh, s, i, disks))
3729 break;
3730 }
3731 out:
3732 set_bit(STRIPE_HANDLE, &sh->state);
3733 }
3734
3735 static void break_stripe_batch_list(struct stripe_head *head_sh,
3736 unsigned long handle_flags);
3737 /* handle_stripe_clean_event
3738 * any written block on an uptodate or failed drive can be returned.
3739 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3740 * never LOCKED, so we don't need to test 'failed' directly.
3741 */
3742 static void handle_stripe_clean_event(struct r5conf *conf,
3743 struct stripe_head *sh, int disks)
3744 {
3745 int i;
3746 struct r5dev *dev;
3747 int discard_pending = 0;
3748 struct stripe_head *head_sh = sh;
3749 bool do_endio = false;
3750
3751 for (i = disks; i--; )
3752 if (sh->dev[i].written) {
3753 dev = &sh->dev[i];
3754 if (!test_bit(R5_LOCKED, &dev->flags) &&
3755 (test_bit(R5_UPTODATE, &dev->flags) ||
3756 test_bit(R5_Discard, &dev->flags) ||
3757 test_bit(R5_SkipCopy, &dev->flags))) {
3758 /* We can return any write requests */
3759 struct bio *wbi, *wbi2;
3760 pr_debug("Return write for disc %d\n", i);
3761 if (test_and_clear_bit(R5_Discard, &dev->flags))
3762 clear_bit(R5_UPTODATE, &dev->flags);
3763 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3764 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3765 }
3766 do_endio = true;
3767
3768 returnbi:
3769 dev->page = dev->orig_page;
3770 wbi = dev->written;
3771 dev->written = NULL;
3772 while (wbi && wbi->bi_iter.bi_sector <
3773 dev->sector + STRIPE_SECTORS) {
3774 wbi2 = r5_next_bio(wbi, dev->sector);
3775 md_write_end(conf->mddev);
3776 bio_endio(wbi);
3777 wbi = wbi2;
3778 }
3779 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3780 STRIPE_SECTORS,
3781 !test_bit(STRIPE_DEGRADED, &sh->state),
3782 0);
3783 if (head_sh->batch_head) {
3784 sh = list_first_entry(&sh->batch_list,
3785 struct stripe_head,
3786 batch_list);
3787 if (sh != head_sh) {
3788 dev = &sh->dev[i];
3789 goto returnbi;
3790 }
3791 }
3792 sh = head_sh;
3793 dev = &sh->dev[i];
3794 } else if (test_bit(R5_Discard, &dev->flags))
3795 discard_pending = 1;
3796 }
3797
3798 log_stripe_write_finished(sh);
3799
3800 if (!discard_pending &&
3801 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3802 int hash;
3803 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3804 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3805 if (sh->qd_idx >= 0) {
3806 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3807 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3808 }
3809 /* now that discard is done we can proceed with any sync */
3810 clear_bit(STRIPE_DISCARD, &sh->state);
3811 /*
3812 * SCSI discard will change some bio fields and the stripe has
3813 * no updated data, so remove it from hash list and the stripe
3814 * will be reinitialized
3815 */
3816 unhash:
3817 hash = sh->hash_lock_index;
3818 spin_lock_irq(conf->hash_locks + hash);
3819 remove_hash(sh);
3820 spin_unlock_irq(conf->hash_locks + hash);
3821 if (head_sh->batch_head) {
3822 sh = list_first_entry(&sh->batch_list,
3823 struct stripe_head, batch_list);
3824 if (sh != head_sh)
3825 goto unhash;
3826 }
3827 sh = head_sh;
3828
3829 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3830 set_bit(STRIPE_HANDLE, &sh->state);
3831
3832 }
3833
3834 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3835 if (atomic_dec_and_test(&conf->pending_full_writes))
3836 md_wakeup_thread(conf->mddev->thread);
3837
3838 if (head_sh->batch_head && do_endio)
3839 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3840 }
3841
3842 /*
3843 * For RMW in write back cache, we need extra page in prexor to store the
3844 * old data. This page is stored in dev->orig_page.
3845 *
3846 * This function checks whether we have data for prexor. The exact logic
3847 * is:
3848 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3849 */
3850 static inline bool uptodate_for_rmw(struct r5dev *dev)
3851 {
3852 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3853 (!test_bit(R5_InJournal, &dev->flags) ||
3854 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3855 }
3856
3857 static int handle_stripe_dirtying(struct r5conf *conf,
3858 struct stripe_head *sh,
3859 struct stripe_head_state *s,
3860 int disks)
3861 {
3862 int rmw = 0, rcw = 0, i;
3863 sector_t recovery_cp = conf->mddev->recovery_cp;
3864
3865 /* Check whether resync is now happening or should start.
3866 * If yes, then the array is dirty (after unclean shutdown or
3867 * initial creation), so parity in some stripes might be inconsistent.
3868 * In this case, we need to always do reconstruct-write, to ensure
3869 * that in case of drive failure or read-error correction, we
3870 * generate correct data from the parity.
3871 */
3872 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3873 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3874 s->failed == 0)) {
3875 /* Calculate the real rcw later - for now make it
3876 * look like rcw is cheaper
3877 */
3878 rcw = 1; rmw = 2;
3879 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3880 conf->rmw_level, (unsigned long long)recovery_cp,
3881 (unsigned long long)sh->sector);
3882 } else for (i = disks; i--; ) {
3883 /* would I have to read this buffer for read_modify_write */
3884 struct r5dev *dev = &sh->dev[i];
3885 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3886 i == sh->pd_idx || i == sh->qd_idx ||
3887 test_bit(R5_InJournal, &dev->flags)) &&
3888 !test_bit(R5_LOCKED, &dev->flags) &&
3889 !(uptodate_for_rmw(dev) ||
3890 test_bit(R5_Wantcompute, &dev->flags))) {
3891 if (test_bit(R5_Insync, &dev->flags))
3892 rmw++;
3893 else
3894 rmw += 2*disks; /* cannot read it */
3895 }
3896 /* Would I have to read this buffer for reconstruct_write */
3897 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3898 i != sh->pd_idx && i != sh->qd_idx &&
3899 !test_bit(R5_LOCKED, &dev->flags) &&
3900 !(test_bit(R5_UPTODATE, &dev->flags) ||
3901 test_bit(R5_Wantcompute, &dev->flags))) {
3902 if (test_bit(R5_Insync, &dev->flags))
3903 rcw++;
3904 else
3905 rcw += 2*disks;
3906 }
3907 }
3908
3909 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3910 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3911 set_bit(STRIPE_HANDLE, &sh->state);
3912 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3913 /* prefer read-modify-write, but need to get some data */
3914 if (conf->mddev->queue)
3915 blk_add_trace_msg(conf->mddev->queue,
3916 "raid5 rmw %llu %d",
3917 (unsigned long long)sh->sector, rmw);
3918 for (i = disks; i--; ) {
3919 struct r5dev *dev = &sh->dev[i];
3920 if (test_bit(R5_InJournal, &dev->flags) &&
3921 dev->page == dev->orig_page &&
3922 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3923 /* alloc page for prexor */
3924 struct page *p = alloc_page(GFP_NOIO);
3925
3926 if (p) {
3927 dev->orig_page = p;
3928 continue;
3929 }
3930
3931 /*
3932 * alloc_page() failed, try use
3933 * disk_info->extra_page
3934 */
3935 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3936 &conf->cache_state)) {
3937 r5c_use_extra_page(sh);
3938 break;
3939 }
3940
3941 /* extra_page in use, add to delayed_list */
3942 set_bit(STRIPE_DELAYED, &sh->state);
3943 s->waiting_extra_page = 1;
3944 return -EAGAIN;
3945 }
3946 }
3947
3948 for (i = disks; i--; ) {
3949 struct r5dev *dev = &sh->dev[i];
3950 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3951 i == sh->pd_idx || i == sh->qd_idx ||
3952 test_bit(R5_InJournal, &dev->flags)) &&
3953 !test_bit(R5_LOCKED, &dev->flags) &&
3954 !(uptodate_for_rmw(dev) ||
3955 test_bit(R5_Wantcompute, &dev->flags)) &&
3956 test_bit(R5_Insync, &dev->flags)) {
3957 if (test_bit(STRIPE_PREREAD_ACTIVE,
3958 &sh->state)) {
3959 pr_debug("Read_old block %d for r-m-w\n",
3960 i);
3961 set_bit(R5_LOCKED, &dev->flags);
3962 set_bit(R5_Wantread, &dev->flags);
3963 s->locked++;
3964 } else {
3965 set_bit(STRIPE_DELAYED, &sh->state);
3966 set_bit(STRIPE_HANDLE, &sh->state);
3967 }
3968 }
3969 }
3970 }
3971 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3972 /* want reconstruct write, but need to get some data */
3973 int qread =0;
3974 rcw = 0;
3975 for (i = disks; i--; ) {
3976 struct r5dev *dev = &sh->dev[i];
3977 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3978 i != sh->pd_idx && i != sh->qd_idx &&
3979 !test_bit(R5_LOCKED, &dev->flags) &&
3980 !(test_bit(R5_UPTODATE, &dev->flags) ||
3981 test_bit(R5_Wantcompute, &dev->flags))) {
3982 rcw++;
3983 if (test_bit(R5_Insync, &dev->flags) &&
3984 test_bit(STRIPE_PREREAD_ACTIVE,
3985 &sh->state)) {
3986 pr_debug("Read_old block "
3987 "%d for Reconstruct\n", i);
3988 set_bit(R5_LOCKED, &dev->flags);
3989 set_bit(R5_Wantread, &dev->flags);
3990 s->locked++;
3991 qread++;
3992 } else {
3993 set_bit(STRIPE_DELAYED, &sh->state);
3994 set_bit(STRIPE_HANDLE, &sh->state);
3995 }
3996 }
3997 }
3998 if (rcw && conf->mddev->queue)
3999 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4000 (unsigned long long)sh->sector,
4001 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4002 }
4003
4004 if (rcw > disks && rmw > disks &&
4005 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4006 set_bit(STRIPE_DELAYED, &sh->state);
4007
4008 /* now if nothing is locked, and if we have enough data,
4009 * we can start a write request
4010 */
4011 /* since handle_stripe can be called at any time we need to handle the
4012 * case where a compute block operation has been submitted and then a
4013 * subsequent call wants to start a write request. raid_run_ops only
4014 * handles the case where compute block and reconstruct are requested
4015 * simultaneously. If this is not the case then new writes need to be
4016 * held off until the compute completes.
4017 */
4018 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4019 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4020 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4021 schedule_reconstruction(sh, s, rcw == 0, 0);
4022 return 0;
4023 }
4024
4025 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4026 struct stripe_head_state *s, int disks)
4027 {
4028 struct r5dev *dev = NULL;
4029
4030 BUG_ON(sh->batch_head);
4031 set_bit(STRIPE_HANDLE, &sh->state);
4032
4033 switch (sh->check_state) {
4034 case check_state_idle:
4035 /* start a new check operation if there are no failures */
4036 if (s->failed == 0) {
4037 BUG_ON(s->uptodate != disks);
4038 sh->check_state = check_state_run;
4039 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4040 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4041 s->uptodate--;
4042 break;
4043 }
4044 dev = &sh->dev[s->failed_num[0]];
4045 /* fall through */
4046 case check_state_compute_result:
4047 sh->check_state = check_state_idle;
4048 if (!dev)
4049 dev = &sh->dev[sh->pd_idx];
4050
4051 /* check that a write has not made the stripe insync */
4052 if (test_bit(STRIPE_INSYNC, &sh->state))
4053 break;
4054
4055 /* either failed parity check, or recovery is happening */
4056 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4057 BUG_ON(s->uptodate != disks);
4058
4059 set_bit(R5_LOCKED, &dev->flags);
4060 s->locked++;
4061 set_bit(R5_Wantwrite, &dev->flags);
4062
4063 clear_bit(STRIPE_DEGRADED, &sh->state);
4064 set_bit(STRIPE_INSYNC, &sh->state);
4065 break;
4066 case check_state_run:
4067 break; /* we will be called again upon completion */
4068 case check_state_check_result:
4069 sh->check_state = check_state_idle;
4070
4071 /* if a failure occurred during the check operation, leave
4072 * STRIPE_INSYNC not set and let the stripe be handled again
4073 */
4074 if (s->failed)
4075 break;
4076
4077 /* handle a successful check operation, if parity is correct
4078 * we are done. Otherwise update the mismatch count and repair
4079 * parity if !MD_RECOVERY_CHECK
4080 */
4081 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4082 /* parity is correct (on disc,
4083 * not in buffer any more)
4084 */
4085 set_bit(STRIPE_INSYNC, &sh->state);
4086 else {
4087 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4088 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4089 /* don't try to repair!! */
4090 set_bit(STRIPE_INSYNC, &sh->state);
4091 else {
4092 sh->check_state = check_state_compute_run;
4093 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4094 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4095 set_bit(R5_Wantcompute,
4096 &sh->dev[sh->pd_idx].flags);
4097 sh->ops.target = sh->pd_idx;
4098 sh->ops.target2 = -1;
4099 s->uptodate++;
4100 }
4101 }
4102 break;
4103 case check_state_compute_run:
4104 break;
4105 default:
4106 pr_err("%s: unknown check_state: %d sector: %llu\n",
4107 __func__, sh->check_state,
4108 (unsigned long long) sh->sector);
4109 BUG();
4110 }
4111 }
4112
4113 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4114 struct stripe_head_state *s,
4115 int disks)
4116 {
4117 int pd_idx = sh->pd_idx;
4118 int qd_idx = sh->qd_idx;
4119 struct r5dev *dev;
4120
4121 BUG_ON(sh->batch_head);
4122 set_bit(STRIPE_HANDLE, &sh->state);
4123
4124 BUG_ON(s->failed > 2);
4125
4126 /* Want to check and possibly repair P and Q.
4127 * However there could be one 'failed' device, in which
4128 * case we can only check one of them, possibly using the
4129 * other to generate missing data
4130 */
4131
4132 switch (sh->check_state) {
4133 case check_state_idle:
4134 /* start a new check operation if there are < 2 failures */
4135 if (s->failed == s->q_failed) {
4136 /* The only possible failed device holds Q, so it
4137 * makes sense to check P (If anything else were failed,
4138 * we would have used P to recreate it).
4139 */
4140 sh->check_state = check_state_run;
4141 }
4142 if (!s->q_failed && s->failed < 2) {
4143 /* Q is not failed, and we didn't use it to generate
4144 * anything, so it makes sense to check it
4145 */
4146 if (sh->check_state == check_state_run)
4147 sh->check_state = check_state_run_pq;
4148 else
4149 sh->check_state = check_state_run_q;
4150 }
4151
4152 /* discard potentially stale zero_sum_result */
4153 sh->ops.zero_sum_result = 0;
4154
4155 if (sh->check_state == check_state_run) {
4156 /* async_xor_zero_sum destroys the contents of P */
4157 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4158 s->uptodate--;
4159 }
4160 if (sh->check_state >= check_state_run &&
4161 sh->check_state <= check_state_run_pq) {
4162 /* async_syndrome_zero_sum preserves P and Q, so
4163 * no need to mark them !uptodate here
4164 */
4165 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4166 break;
4167 }
4168
4169 /* we have 2-disk failure */
4170 BUG_ON(s->failed != 2);
4171 /* fall through */
4172 case check_state_compute_result:
4173 sh->check_state = check_state_idle;
4174
4175 /* check that a write has not made the stripe insync */
4176 if (test_bit(STRIPE_INSYNC, &sh->state))
4177 break;
4178
4179 /* now write out any block on a failed drive,
4180 * or P or Q if they were recomputed
4181 */
4182 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4183 if (s->failed == 2) {
4184 dev = &sh->dev[s->failed_num[1]];
4185 s->locked++;
4186 set_bit(R5_LOCKED, &dev->flags);
4187 set_bit(R5_Wantwrite, &dev->flags);
4188 }
4189 if (s->failed >= 1) {
4190 dev = &sh->dev[s->failed_num[0]];
4191 s->locked++;
4192 set_bit(R5_LOCKED, &dev->flags);
4193 set_bit(R5_Wantwrite, &dev->flags);
4194 }
4195 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4196 dev = &sh->dev[pd_idx];
4197 s->locked++;
4198 set_bit(R5_LOCKED, &dev->flags);
4199 set_bit(R5_Wantwrite, &dev->flags);
4200 }
4201 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4202 dev = &sh->dev[qd_idx];
4203 s->locked++;
4204 set_bit(R5_LOCKED, &dev->flags);
4205 set_bit(R5_Wantwrite, &dev->flags);
4206 }
4207 clear_bit(STRIPE_DEGRADED, &sh->state);
4208
4209 set_bit(STRIPE_INSYNC, &sh->state);
4210 break;
4211 case check_state_run:
4212 case check_state_run_q:
4213 case check_state_run_pq:
4214 break; /* we will be called again upon completion */
4215 case check_state_check_result:
4216 sh->check_state = check_state_idle;
4217
4218 /* handle a successful check operation, if parity is correct
4219 * we are done. Otherwise update the mismatch count and repair
4220 * parity if !MD_RECOVERY_CHECK
4221 */
4222 if (sh->ops.zero_sum_result == 0) {
4223 /* both parities are correct */
4224 if (!s->failed)
4225 set_bit(STRIPE_INSYNC, &sh->state);
4226 else {
4227 /* in contrast to the raid5 case we can validate
4228 * parity, but still have a failure to write
4229 * back
4230 */
4231 sh->check_state = check_state_compute_result;
4232 /* Returning at this point means that we may go
4233 * off and bring p and/or q uptodate again so
4234 * we make sure to check zero_sum_result again
4235 * to verify if p or q need writeback
4236 */
4237 }
4238 } else {
4239 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4240 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4241 /* don't try to repair!! */
4242 set_bit(STRIPE_INSYNC, &sh->state);
4243 else {
4244 int *target = &sh->ops.target;
4245
4246 sh->ops.target = -1;
4247 sh->ops.target2 = -1;
4248 sh->check_state = check_state_compute_run;
4249 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4250 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4251 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4252 set_bit(R5_Wantcompute,
4253 &sh->dev[pd_idx].flags);
4254 *target = pd_idx;
4255 target = &sh->ops.target2;
4256 s->uptodate++;
4257 }
4258 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4259 set_bit(R5_Wantcompute,
4260 &sh->dev[qd_idx].flags);
4261 *target = qd_idx;
4262 s->uptodate++;
4263 }
4264 }
4265 }
4266 break;
4267 case check_state_compute_run:
4268 break;
4269 default:
4270 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4271 __func__, sh->check_state,
4272 (unsigned long long) sh->sector);
4273 BUG();
4274 }
4275 }
4276
4277 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4278 {
4279 int i;
4280
4281 /* We have read all the blocks in this stripe and now we need to
4282 * copy some of them into a target stripe for expand.
4283 */
4284 struct dma_async_tx_descriptor *tx = NULL;
4285 BUG_ON(sh->batch_head);
4286 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4287 for (i = 0; i < sh->disks; i++)
4288 if (i != sh->pd_idx && i != sh->qd_idx) {
4289 int dd_idx, j;
4290 struct stripe_head *sh2;
4291 struct async_submit_ctl submit;
4292
4293 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4294 sector_t s = raid5_compute_sector(conf, bn, 0,
4295 &dd_idx, NULL);
4296 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4297 if (sh2 == NULL)
4298 /* so far only the early blocks of this stripe
4299 * have been requested. When later blocks
4300 * get requested, we will try again
4301 */
4302 continue;
4303 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4304 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4305 /* must have already done this block */
4306 raid5_release_stripe(sh2);
4307 continue;
4308 }
4309
4310 /* place all the copies on one channel */
4311 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4312 tx = async_memcpy(sh2->dev[dd_idx].page,
4313 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4314 &submit);
4315
4316 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4317 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4318 for (j = 0; j < conf->raid_disks; j++)
4319 if (j != sh2->pd_idx &&
4320 j != sh2->qd_idx &&
4321 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4322 break;
4323 if (j == conf->raid_disks) {
4324 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4325 set_bit(STRIPE_HANDLE, &sh2->state);
4326 }
4327 raid5_release_stripe(sh2);
4328
4329 }
4330 /* done submitting copies, wait for them to complete */
4331 async_tx_quiesce(&tx);
4332 }
4333
4334 /*
4335 * handle_stripe - do things to a stripe.
4336 *
4337 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4338 * state of various bits to see what needs to be done.
4339 * Possible results:
4340 * return some read requests which now have data
4341 * return some write requests which are safely on storage
4342 * schedule a read on some buffers
4343 * schedule a write of some buffers
4344 * return confirmation of parity correctness
4345 *
4346 */
4347
4348 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4349 {
4350 struct r5conf *conf = sh->raid_conf;
4351 int disks = sh->disks;
4352 struct r5dev *dev;
4353 int i;
4354 int do_recovery = 0;
4355
4356 memset(s, 0, sizeof(*s));
4357
4358 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4359 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4360 s->failed_num[0] = -1;
4361 s->failed_num[1] = -1;
4362 s->log_failed = r5l_log_disk_error(conf);
4363
4364 /* Now to look around and see what can be done */
4365 rcu_read_lock();
4366 for (i=disks; i--; ) {
4367 struct md_rdev *rdev;
4368 sector_t first_bad;
4369 int bad_sectors;
4370 int is_bad = 0;
4371
4372 dev = &sh->dev[i];
4373
4374 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4375 i, dev->flags,
4376 dev->toread, dev->towrite, dev->written);
4377 /* maybe we can reply to a read
4378 *
4379 * new wantfill requests are only permitted while
4380 * ops_complete_biofill is guaranteed to be inactive
4381 */
4382 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4383 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4384 set_bit(R5_Wantfill, &dev->flags);
4385
4386 /* now count some things */
4387 if (test_bit(R5_LOCKED, &dev->flags))
4388 s->locked++;
4389 if (test_bit(R5_UPTODATE, &dev->flags))
4390 s->uptodate++;
4391 if (test_bit(R5_Wantcompute, &dev->flags)) {
4392 s->compute++;
4393 BUG_ON(s->compute > 2);
4394 }
4395
4396 if (test_bit(R5_Wantfill, &dev->flags))
4397 s->to_fill++;
4398 else if (dev->toread)
4399 s->to_read++;
4400 if (dev->towrite) {
4401 s->to_write++;
4402 if (!test_bit(R5_OVERWRITE, &dev->flags))
4403 s->non_overwrite++;
4404 }
4405 if (dev->written)
4406 s->written++;
4407 /* Prefer to use the replacement for reads, but only
4408 * if it is recovered enough and has no bad blocks.
4409 */
4410 rdev = rcu_dereference(conf->disks[i].replacement);
4411 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4412 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4413 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4414 &first_bad, &bad_sectors))
4415 set_bit(R5_ReadRepl, &dev->flags);
4416 else {
4417 if (rdev && !test_bit(Faulty, &rdev->flags))
4418 set_bit(R5_NeedReplace, &dev->flags);
4419 else
4420 clear_bit(R5_NeedReplace, &dev->flags);
4421 rdev = rcu_dereference(conf->disks[i].rdev);
4422 clear_bit(R5_ReadRepl, &dev->flags);
4423 }
4424 if (rdev && test_bit(Faulty, &rdev->flags))
4425 rdev = NULL;
4426 if (rdev) {
4427 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4428 &first_bad, &bad_sectors);
4429 if (s->blocked_rdev == NULL
4430 && (test_bit(Blocked, &rdev->flags)
4431 || is_bad < 0)) {
4432 if (is_bad < 0)
4433 set_bit(BlockedBadBlocks,
4434 &rdev->flags);
4435 s->blocked_rdev = rdev;
4436 atomic_inc(&rdev->nr_pending);
4437 }
4438 }
4439 clear_bit(R5_Insync, &dev->flags);
4440 if (!rdev)
4441 /* Not in-sync */;
4442 else if (is_bad) {
4443 /* also not in-sync */
4444 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4445 test_bit(R5_UPTODATE, &dev->flags)) {
4446 /* treat as in-sync, but with a read error
4447 * which we can now try to correct
4448 */
4449 set_bit(R5_Insync, &dev->flags);
4450 set_bit(R5_ReadError, &dev->flags);
4451 }
4452 } else if (test_bit(In_sync, &rdev->flags))
4453 set_bit(R5_Insync, &dev->flags);
4454 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4455 /* in sync if before recovery_offset */
4456 set_bit(R5_Insync, &dev->flags);
4457 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4458 test_bit(R5_Expanded, &dev->flags))
4459 /* If we've reshaped into here, we assume it is Insync.
4460 * We will shortly update recovery_offset to make
4461 * it official.
4462 */
4463 set_bit(R5_Insync, &dev->flags);
4464
4465 if (test_bit(R5_WriteError, &dev->flags)) {
4466 /* This flag does not apply to '.replacement'
4467 * only to .rdev, so make sure to check that*/
4468 struct md_rdev *rdev2 = rcu_dereference(
4469 conf->disks[i].rdev);
4470 if (rdev2 == rdev)
4471 clear_bit(R5_Insync, &dev->flags);
4472 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4473 s->handle_bad_blocks = 1;
4474 atomic_inc(&rdev2->nr_pending);
4475 } else
4476 clear_bit(R5_WriteError, &dev->flags);
4477 }
4478 if (test_bit(R5_MadeGood, &dev->flags)) {
4479 /* This flag does not apply to '.replacement'
4480 * only to .rdev, so make sure to check that*/
4481 struct md_rdev *rdev2 = rcu_dereference(
4482 conf->disks[i].rdev);
4483 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4484 s->handle_bad_blocks = 1;
4485 atomic_inc(&rdev2->nr_pending);
4486 } else
4487 clear_bit(R5_MadeGood, &dev->flags);
4488 }
4489 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4490 struct md_rdev *rdev2 = rcu_dereference(
4491 conf->disks[i].replacement);
4492 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4493 s->handle_bad_blocks = 1;
4494 atomic_inc(&rdev2->nr_pending);
4495 } else
4496 clear_bit(R5_MadeGoodRepl, &dev->flags);
4497 }
4498 if (!test_bit(R5_Insync, &dev->flags)) {
4499 /* The ReadError flag will just be confusing now */
4500 clear_bit(R5_ReadError, &dev->flags);
4501 clear_bit(R5_ReWrite, &dev->flags);
4502 }
4503 if (test_bit(R5_ReadError, &dev->flags))
4504 clear_bit(R5_Insync, &dev->flags);
4505 if (!test_bit(R5_Insync, &dev->flags)) {
4506 if (s->failed < 2)
4507 s->failed_num[s->failed] = i;
4508 s->failed++;
4509 if (rdev && !test_bit(Faulty, &rdev->flags))
4510 do_recovery = 1;
4511 }
4512
4513 if (test_bit(R5_InJournal, &dev->flags))
4514 s->injournal++;
4515 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4516 s->just_cached++;
4517 }
4518 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4519 /* If there is a failed device being replaced,
4520 * we must be recovering.
4521 * else if we are after recovery_cp, we must be syncing
4522 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4523 * else we can only be replacing
4524 * sync and recovery both need to read all devices, and so
4525 * use the same flag.
4526 */
4527 if (do_recovery ||
4528 sh->sector >= conf->mddev->recovery_cp ||
4529 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4530 s->syncing = 1;
4531 else
4532 s->replacing = 1;
4533 }
4534 rcu_read_unlock();
4535 }
4536
4537 static int clear_batch_ready(struct stripe_head *sh)
4538 {
4539 /* Return '1' if this is a member of batch, or
4540 * '0' if it is a lone stripe or a head which can now be
4541 * handled.
4542 */
4543 struct stripe_head *tmp;
4544 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4545 return (sh->batch_head && sh->batch_head != sh);
4546 spin_lock(&sh->stripe_lock);
4547 if (!sh->batch_head) {
4548 spin_unlock(&sh->stripe_lock);
4549 return 0;
4550 }
4551
4552 /*
4553 * this stripe could be added to a batch list before we check
4554 * BATCH_READY, skips it
4555 */
4556 if (sh->batch_head != sh) {
4557 spin_unlock(&sh->stripe_lock);
4558 return 1;
4559 }
4560 spin_lock(&sh->batch_lock);
4561 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4562 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4563 spin_unlock(&sh->batch_lock);
4564 spin_unlock(&sh->stripe_lock);
4565
4566 /*
4567 * BATCH_READY is cleared, no new stripes can be added.
4568 * batch_list can be accessed without lock
4569 */
4570 return 0;
4571 }
4572
4573 static void break_stripe_batch_list(struct stripe_head *head_sh,
4574 unsigned long handle_flags)
4575 {
4576 struct stripe_head *sh, *next;
4577 int i;
4578 int do_wakeup = 0;
4579
4580 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4581
4582 list_del_init(&sh->batch_list);
4583
4584 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4585 (1 << STRIPE_SYNCING) |
4586 (1 << STRIPE_REPLACED) |
4587 (1 << STRIPE_DELAYED) |
4588 (1 << STRIPE_BIT_DELAY) |
4589 (1 << STRIPE_FULL_WRITE) |
4590 (1 << STRIPE_BIOFILL_RUN) |
4591 (1 << STRIPE_COMPUTE_RUN) |
4592 (1 << STRIPE_OPS_REQ_PENDING) |
4593 (1 << STRIPE_DISCARD) |
4594 (1 << STRIPE_BATCH_READY) |
4595 (1 << STRIPE_BATCH_ERR) |
4596 (1 << STRIPE_BITMAP_PENDING)),
4597 "stripe state: %lx\n", sh->state);
4598 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4599 (1 << STRIPE_REPLACED)),
4600 "head stripe state: %lx\n", head_sh->state);
4601
4602 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4603 (1 << STRIPE_PREREAD_ACTIVE) |
4604 (1 << STRIPE_DEGRADED)),
4605 head_sh->state & (1 << STRIPE_INSYNC));
4606
4607 sh->check_state = head_sh->check_state;
4608 sh->reconstruct_state = head_sh->reconstruct_state;
4609 for (i = 0; i < sh->disks; i++) {
4610 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4611 do_wakeup = 1;
4612 sh->dev[i].flags = head_sh->dev[i].flags &
4613 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4614 }
4615 spin_lock_irq(&sh->stripe_lock);
4616 sh->batch_head = NULL;
4617 spin_unlock_irq(&sh->stripe_lock);
4618 if (handle_flags == 0 ||
4619 sh->state & handle_flags)
4620 set_bit(STRIPE_HANDLE, &sh->state);
4621 raid5_release_stripe(sh);
4622 }
4623 spin_lock_irq(&head_sh->stripe_lock);
4624 head_sh->batch_head = NULL;
4625 spin_unlock_irq(&head_sh->stripe_lock);
4626 for (i = 0; i < head_sh->disks; i++)
4627 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4628 do_wakeup = 1;
4629 if (head_sh->state & handle_flags)
4630 set_bit(STRIPE_HANDLE, &head_sh->state);
4631
4632 if (do_wakeup)
4633 wake_up(&head_sh->raid_conf->wait_for_overlap);
4634 }
4635
4636 static void handle_stripe(struct stripe_head *sh)
4637 {
4638 struct stripe_head_state s;
4639 struct r5conf *conf = sh->raid_conf;
4640 int i;
4641 int prexor;
4642 int disks = sh->disks;
4643 struct r5dev *pdev, *qdev;
4644
4645 clear_bit(STRIPE_HANDLE, &sh->state);
4646 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4647 /* already being handled, ensure it gets handled
4648 * again when current action finishes */
4649 set_bit(STRIPE_HANDLE, &sh->state);
4650 return;
4651 }
4652
4653 if (clear_batch_ready(sh) ) {
4654 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4655 return;
4656 }
4657
4658 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4659 break_stripe_batch_list(sh, 0);
4660
4661 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4662 spin_lock(&sh->stripe_lock);
4663 /*
4664 * Cannot process 'sync' concurrently with 'discard'.
4665 * Flush data in r5cache before 'sync'.
4666 */
4667 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4668 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4669 !test_bit(STRIPE_DISCARD, &sh->state) &&
4670 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4671 set_bit(STRIPE_SYNCING, &sh->state);
4672 clear_bit(STRIPE_INSYNC, &sh->state);
4673 clear_bit(STRIPE_REPLACED, &sh->state);
4674 }
4675 spin_unlock(&sh->stripe_lock);
4676 }
4677 clear_bit(STRIPE_DELAYED, &sh->state);
4678
4679 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4680 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4681 (unsigned long long)sh->sector, sh->state,
4682 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4683 sh->check_state, sh->reconstruct_state);
4684
4685 analyse_stripe(sh, &s);
4686
4687 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4688 goto finish;
4689
4690 if (s.handle_bad_blocks ||
4691 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4692 set_bit(STRIPE_HANDLE, &sh->state);
4693 goto finish;
4694 }
4695
4696 if (unlikely(s.blocked_rdev)) {
4697 if (s.syncing || s.expanding || s.expanded ||
4698 s.replacing || s.to_write || s.written) {
4699 set_bit(STRIPE_HANDLE, &sh->state);
4700 goto finish;
4701 }
4702 /* There is nothing for the blocked_rdev to block */
4703 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4704 s.blocked_rdev = NULL;
4705 }
4706
4707 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4708 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4709 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4710 }
4711
4712 pr_debug("locked=%d uptodate=%d to_read=%d"
4713 " to_write=%d failed=%d failed_num=%d,%d\n",
4714 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4715 s.failed_num[0], s.failed_num[1]);
4716 /*
4717 * check if the array has lost more than max_degraded devices and,
4718 * if so, some requests might need to be failed.
4719 *
4720 * When journal device failed (log_failed), we will only process
4721 * the stripe if there is data need write to raid disks
4722 */
4723 if (s.failed > conf->max_degraded ||
4724 (s.log_failed && s.injournal == 0)) {
4725 sh->check_state = 0;
4726 sh->reconstruct_state = 0;
4727 break_stripe_batch_list(sh, 0);
4728 if (s.to_read+s.to_write+s.written)
4729 handle_failed_stripe(conf, sh, &s, disks);
4730 if (s.syncing + s.replacing)
4731 handle_failed_sync(conf, sh, &s);
4732 }
4733
4734 /* Now we check to see if any write operations have recently
4735 * completed
4736 */
4737 prexor = 0;
4738 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4739 prexor = 1;
4740 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4741 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4742 sh->reconstruct_state = reconstruct_state_idle;
4743
4744 /* All the 'written' buffers and the parity block are ready to
4745 * be written back to disk
4746 */
4747 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4748 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4749 BUG_ON(sh->qd_idx >= 0 &&
4750 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4751 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4752 for (i = disks; i--; ) {
4753 struct r5dev *dev = &sh->dev[i];
4754 if (test_bit(R5_LOCKED, &dev->flags) &&
4755 (i == sh->pd_idx || i == sh->qd_idx ||
4756 dev->written || test_bit(R5_InJournal,
4757 &dev->flags))) {
4758 pr_debug("Writing block %d\n", i);
4759 set_bit(R5_Wantwrite, &dev->flags);
4760 if (prexor)
4761 continue;
4762 if (s.failed > 1)
4763 continue;
4764 if (!test_bit(R5_Insync, &dev->flags) ||
4765 ((i == sh->pd_idx || i == sh->qd_idx) &&
4766 s.failed == 0))
4767 set_bit(STRIPE_INSYNC, &sh->state);
4768 }
4769 }
4770 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4771 s.dec_preread_active = 1;
4772 }
4773
4774 /*
4775 * might be able to return some write requests if the parity blocks
4776 * are safe, or on a failed drive
4777 */
4778 pdev = &sh->dev[sh->pd_idx];
4779 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4780 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4781 qdev = &sh->dev[sh->qd_idx];
4782 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4783 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4784 || conf->level < 6;
4785
4786 if (s.written &&
4787 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4788 && !test_bit(R5_LOCKED, &pdev->flags)
4789 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4790 test_bit(R5_Discard, &pdev->flags))))) &&
4791 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4792 && !test_bit(R5_LOCKED, &qdev->flags)
4793 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4794 test_bit(R5_Discard, &qdev->flags))))))
4795 handle_stripe_clean_event(conf, sh, disks);
4796
4797 if (s.just_cached)
4798 r5c_handle_cached_data_endio(conf, sh, disks);
4799 log_stripe_write_finished(sh);
4800
4801 /* Now we might consider reading some blocks, either to check/generate
4802 * parity, or to satisfy requests
4803 * or to load a block that is being partially written.
4804 */
4805 if (s.to_read || s.non_overwrite
4806 || (conf->level == 6 && s.to_write && s.failed)
4807 || (s.syncing && (s.uptodate + s.compute < disks))
4808 || s.replacing
4809 || s.expanding)
4810 handle_stripe_fill(sh, &s, disks);
4811
4812 /*
4813 * When the stripe finishes full journal write cycle (write to journal
4814 * and raid disk), this is the clean up procedure so it is ready for
4815 * next operation.
4816 */
4817 r5c_finish_stripe_write_out(conf, sh, &s);
4818
4819 /*
4820 * Now to consider new write requests, cache write back and what else,
4821 * if anything should be read. We do not handle new writes when:
4822 * 1/ A 'write' operation (copy+xor) is already in flight.
4823 * 2/ A 'check' operation is in flight, as it may clobber the parity
4824 * block.
4825 * 3/ A r5c cache log write is in flight.
4826 */
4827
4828 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4829 if (!r5c_is_writeback(conf->log)) {
4830 if (s.to_write)
4831 handle_stripe_dirtying(conf, sh, &s, disks);
4832 } else { /* write back cache */
4833 int ret = 0;
4834
4835 /* First, try handle writes in caching phase */
4836 if (s.to_write)
4837 ret = r5c_try_caching_write(conf, sh, &s,
4838 disks);
4839 /*
4840 * If caching phase failed: ret == -EAGAIN
4841 * OR
4842 * stripe under reclaim: !caching && injournal
4843 *
4844 * fall back to handle_stripe_dirtying()
4845 */
4846 if (ret == -EAGAIN ||
4847 /* stripe under reclaim: !caching && injournal */
4848 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4849 s.injournal > 0)) {
4850 ret = handle_stripe_dirtying(conf, sh, &s,
4851 disks);
4852 if (ret == -EAGAIN)
4853 goto finish;
4854 }
4855 }
4856 }
4857
4858 /* maybe we need to check and possibly fix the parity for this stripe
4859 * Any reads will already have been scheduled, so we just see if enough
4860 * data is available. The parity check is held off while parity
4861 * dependent operations are in flight.
4862 */
4863 if (sh->check_state ||
4864 (s.syncing && s.locked == 0 &&
4865 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4866 !test_bit(STRIPE_INSYNC, &sh->state))) {
4867 if (conf->level == 6)
4868 handle_parity_checks6(conf, sh, &s, disks);
4869 else
4870 handle_parity_checks5(conf, sh, &s, disks);
4871 }
4872
4873 if ((s.replacing || s.syncing) && s.locked == 0
4874 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4875 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4876 /* Write out to replacement devices where possible */
4877 for (i = 0; i < conf->raid_disks; i++)
4878 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4879 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4880 set_bit(R5_WantReplace, &sh->dev[i].flags);
4881 set_bit(R5_LOCKED, &sh->dev[i].flags);
4882 s.locked++;
4883 }
4884 if (s.replacing)
4885 set_bit(STRIPE_INSYNC, &sh->state);
4886 set_bit(STRIPE_REPLACED, &sh->state);
4887 }
4888 if ((s.syncing || s.replacing) && s.locked == 0 &&
4889 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4890 test_bit(STRIPE_INSYNC, &sh->state)) {
4891 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4892 clear_bit(STRIPE_SYNCING, &sh->state);
4893 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4894 wake_up(&conf->wait_for_overlap);
4895 }
4896
4897 /* If the failed drives are just a ReadError, then we might need
4898 * to progress the repair/check process
4899 */
4900 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4901 for (i = 0; i < s.failed; i++) {
4902 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4903 if (test_bit(R5_ReadError, &dev->flags)
4904 && !test_bit(R5_LOCKED, &dev->flags)
4905 && test_bit(R5_UPTODATE, &dev->flags)
4906 ) {
4907 if (!test_bit(R5_ReWrite, &dev->flags)) {
4908 set_bit(R5_Wantwrite, &dev->flags);
4909 set_bit(R5_ReWrite, &dev->flags);
4910 set_bit(R5_LOCKED, &dev->flags);
4911 s.locked++;
4912 } else {
4913 /* let's read it back */
4914 set_bit(R5_Wantread, &dev->flags);
4915 set_bit(R5_LOCKED, &dev->flags);
4916 s.locked++;
4917 }
4918 }
4919 }
4920
4921 /* Finish reconstruct operations initiated by the expansion process */
4922 if (sh->reconstruct_state == reconstruct_state_result) {
4923 struct stripe_head *sh_src
4924 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4925 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4926 /* sh cannot be written until sh_src has been read.
4927 * so arrange for sh to be delayed a little
4928 */
4929 set_bit(STRIPE_DELAYED, &sh->state);
4930 set_bit(STRIPE_HANDLE, &sh->state);
4931 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4932 &sh_src->state))
4933 atomic_inc(&conf->preread_active_stripes);
4934 raid5_release_stripe(sh_src);
4935 goto finish;
4936 }
4937 if (sh_src)
4938 raid5_release_stripe(sh_src);
4939
4940 sh->reconstruct_state = reconstruct_state_idle;
4941 clear_bit(STRIPE_EXPANDING, &sh->state);
4942 for (i = conf->raid_disks; i--; ) {
4943 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4944 set_bit(R5_LOCKED, &sh->dev[i].flags);
4945 s.locked++;
4946 }
4947 }
4948
4949 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4950 !sh->reconstruct_state) {
4951 /* Need to write out all blocks after computing parity */
4952 sh->disks = conf->raid_disks;
4953 stripe_set_idx(sh->sector, conf, 0, sh);
4954 schedule_reconstruction(sh, &s, 1, 1);
4955 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4956 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4957 atomic_dec(&conf->reshape_stripes);
4958 wake_up(&conf->wait_for_overlap);
4959 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4960 }
4961
4962 if (s.expanding && s.locked == 0 &&
4963 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4964 handle_stripe_expansion(conf, sh);
4965
4966 finish:
4967 /* wait for this device to become unblocked */
4968 if (unlikely(s.blocked_rdev)) {
4969 if (conf->mddev->external)
4970 md_wait_for_blocked_rdev(s.blocked_rdev,
4971 conf->mddev);
4972 else
4973 /* Internal metadata will immediately
4974 * be written by raid5d, so we don't
4975 * need to wait here.
4976 */
4977 rdev_dec_pending(s.blocked_rdev,
4978 conf->mddev);
4979 }
4980
4981 if (s.handle_bad_blocks)
4982 for (i = disks; i--; ) {
4983 struct md_rdev *rdev;
4984 struct r5dev *dev = &sh->dev[i];
4985 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4986 /* We own a safe reference to the rdev */
4987 rdev = conf->disks[i].rdev;
4988 if (!rdev_set_badblocks(rdev, sh->sector,
4989 STRIPE_SECTORS, 0))
4990 md_error(conf->mddev, rdev);
4991 rdev_dec_pending(rdev, conf->mddev);
4992 }
4993 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4994 rdev = conf->disks[i].rdev;
4995 rdev_clear_badblocks(rdev, sh->sector,
4996 STRIPE_SECTORS, 0);
4997 rdev_dec_pending(rdev, conf->mddev);
4998 }
4999 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5000 rdev = conf->disks[i].replacement;
5001 if (!rdev)
5002 /* rdev have been moved down */
5003 rdev = conf->disks[i].rdev;
5004 rdev_clear_badblocks(rdev, sh->sector,
5005 STRIPE_SECTORS, 0);
5006 rdev_dec_pending(rdev, conf->mddev);
5007 }
5008 }
5009
5010 if (s.ops_request)
5011 raid_run_ops(sh, s.ops_request);
5012
5013 ops_run_io(sh, &s);
5014
5015 if (s.dec_preread_active) {
5016 /* We delay this until after ops_run_io so that if make_request
5017 * is waiting on a flush, it won't continue until the writes
5018 * have actually been submitted.
5019 */
5020 atomic_dec(&conf->preread_active_stripes);
5021 if (atomic_read(&conf->preread_active_stripes) <
5022 IO_THRESHOLD)
5023 md_wakeup_thread(conf->mddev->thread);
5024 }
5025
5026 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5027 }
5028
5029 static void raid5_activate_delayed(struct r5conf *conf)
5030 {
5031 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5032 while (!list_empty(&conf->delayed_list)) {
5033 struct list_head *l = conf->delayed_list.next;
5034 struct stripe_head *sh;
5035 sh = list_entry(l, struct stripe_head, lru);
5036 list_del_init(l);
5037 clear_bit(STRIPE_DELAYED, &sh->state);
5038 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5039 atomic_inc(&conf->preread_active_stripes);
5040 list_add_tail(&sh->lru, &conf->hold_list);
5041 raid5_wakeup_stripe_thread(sh);
5042 }
5043 }
5044 }
5045
5046 static void activate_bit_delay(struct r5conf *conf,
5047 struct list_head *temp_inactive_list)
5048 {
5049 /* device_lock is held */
5050 struct list_head head;
5051 list_add(&head, &conf->bitmap_list);
5052 list_del_init(&conf->bitmap_list);
5053 while (!list_empty(&head)) {
5054 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5055 int hash;
5056 list_del_init(&sh->lru);
5057 atomic_inc(&sh->count);
5058 hash = sh->hash_lock_index;
5059 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5060 }
5061 }
5062
5063 static int raid5_congested(struct mddev *mddev, int bits)
5064 {
5065 struct r5conf *conf = mddev->private;
5066
5067 /* No difference between reads and writes. Just check
5068 * how busy the stripe_cache is
5069 */
5070
5071 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5072 return 1;
5073
5074 /* Also checks whether there is pressure on r5cache log space */
5075 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5076 return 1;
5077 if (conf->quiesce)
5078 return 1;
5079 if (atomic_read(&conf->empty_inactive_list_nr))
5080 return 1;
5081
5082 return 0;
5083 }
5084
5085 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5086 {
5087 struct r5conf *conf = mddev->private;
5088 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
5089 unsigned int chunk_sectors;
5090 unsigned int bio_sectors = bio_sectors(bio);
5091
5092 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5093 return chunk_sectors >=
5094 ((sector & (chunk_sectors - 1)) + bio_sectors);
5095 }
5096
5097 /*
5098 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5099 * later sampled by raid5d.
5100 */
5101 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5102 {
5103 unsigned long flags;
5104
5105 spin_lock_irqsave(&conf->device_lock, flags);
5106
5107 bi->bi_next = conf->retry_read_aligned_list;
5108 conf->retry_read_aligned_list = bi;
5109
5110 spin_unlock_irqrestore(&conf->device_lock, flags);
5111 md_wakeup_thread(conf->mddev->thread);
5112 }
5113
5114 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5115 unsigned int *offset)
5116 {
5117 struct bio *bi;
5118
5119 bi = conf->retry_read_aligned;
5120 if (bi) {
5121 *offset = conf->retry_read_offset;
5122 conf->retry_read_aligned = NULL;
5123 return bi;
5124 }
5125 bi = conf->retry_read_aligned_list;
5126 if(bi) {
5127 conf->retry_read_aligned_list = bi->bi_next;
5128 bi->bi_next = NULL;
5129 *offset = 0;
5130 }
5131
5132 return bi;
5133 }
5134
5135 /*
5136 * The "raid5_align_endio" should check if the read succeeded and if it
5137 * did, call bio_endio on the original bio (having bio_put the new bio
5138 * first).
5139 * If the read failed..
5140 */
5141 static void raid5_align_endio(struct bio *bi)
5142 {
5143 struct bio* raid_bi = bi->bi_private;
5144 struct mddev *mddev;
5145 struct r5conf *conf;
5146 struct md_rdev *rdev;
5147 int error = bi->bi_error;
5148
5149 bio_put(bi);
5150
5151 rdev = (void*)raid_bi->bi_next;
5152 raid_bi->bi_next = NULL;
5153 mddev = rdev->mddev;
5154 conf = mddev->private;
5155
5156 rdev_dec_pending(rdev, conf->mddev);
5157
5158 if (!error) {
5159 bio_endio(raid_bi);
5160 if (atomic_dec_and_test(&conf->active_aligned_reads))
5161 wake_up(&conf->wait_for_quiescent);
5162 return;
5163 }
5164
5165 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5166
5167 add_bio_to_retry(raid_bi, conf);
5168 }
5169
5170 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5171 {
5172 struct r5conf *conf = mddev->private;
5173 int dd_idx;
5174 struct bio* align_bi;
5175 struct md_rdev *rdev;
5176 sector_t end_sector;
5177
5178 if (!in_chunk_boundary(mddev, raid_bio)) {
5179 pr_debug("%s: non aligned\n", __func__);
5180 return 0;
5181 }
5182 /*
5183 * use bio_clone_fast to make a copy of the bio
5184 */
5185 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5186 if (!align_bi)
5187 return 0;
5188 /*
5189 * set bi_end_io to a new function, and set bi_private to the
5190 * original bio.
5191 */
5192 align_bi->bi_end_io = raid5_align_endio;
5193 align_bi->bi_private = raid_bio;
5194 /*
5195 * compute position
5196 */
5197 align_bi->bi_iter.bi_sector =
5198 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5199 0, &dd_idx, NULL);
5200
5201 end_sector = bio_end_sector(align_bi);
5202 rcu_read_lock();
5203 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5204 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5205 rdev->recovery_offset < end_sector) {
5206 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5207 if (rdev &&
5208 (test_bit(Faulty, &rdev->flags) ||
5209 !(test_bit(In_sync, &rdev->flags) ||
5210 rdev->recovery_offset >= end_sector)))
5211 rdev = NULL;
5212 }
5213
5214 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5215 rcu_read_unlock();
5216 bio_put(align_bi);
5217 return 0;
5218 }
5219
5220 if (rdev) {
5221 sector_t first_bad;
5222 int bad_sectors;
5223
5224 atomic_inc(&rdev->nr_pending);
5225 rcu_read_unlock();
5226 raid_bio->bi_next = (void*)rdev;
5227 align_bi->bi_bdev = rdev->bdev;
5228 bio_clear_flag(align_bi, BIO_SEG_VALID);
5229
5230 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5231 bio_sectors(align_bi),
5232 &first_bad, &bad_sectors)) {
5233 bio_put(align_bi);
5234 rdev_dec_pending(rdev, mddev);
5235 return 0;
5236 }
5237
5238 /* No reshape active, so we can trust rdev->data_offset */
5239 align_bi->bi_iter.bi_sector += rdev->data_offset;
5240
5241 spin_lock_irq(&conf->device_lock);
5242 wait_event_lock_irq(conf->wait_for_quiescent,
5243 conf->quiesce == 0,
5244 conf->device_lock);
5245 atomic_inc(&conf->active_aligned_reads);
5246 spin_unlock_irq(&conf->device_lock);
5247
5248 if (mddev->gendisk)
5249 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5250 align_bi, disk_devt(mddev->gendisk),
5251 raid_bio->bi_iter.bi_sector);
5252 generic_make_request(align_bi);
5253 return 1;
5254 } else {
5255 rcu_read_unlock();
5256 bio_put(align_bi);
5257 return 0;
5258 }
5259 }
5260
5261 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5262 {
5263 struct bio *split;
5264 sector_t sector = raid_bio->bi_iter.bi_sector;
5265 unsigned chunk_sects = mddev->chunk_sectors;
5266 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5267
5268 if (sectors < bio_sectors(raid_bio)) {
5269 struct r5conf *conf = mddev->private;
5270 split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5271 bio_chain(split, raid_bio);
5272 generic_make_request(raid_bio);
5273 raid_bio = split;
5274 }
5275
5276 if (!raid5_read_one_chunk(mddev, raid_bio))
5277 return raid_bio;
5278
5279 return NULL;
5280 }
5281
5282 /* __get_priority_stripe - get the next stripe to process
5283 *
5284 * Full stripe writes are allowed to pass preread active stripes up until
5285 * the bypass_threshold is exceeded. In general the bypass_count
5286 * increments when the handle_list is handled before the hold_list; however, it
5287 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5288 * stripe with in flight i/o. The bypass_count will be reset when the
5289 * head of the hold_list has changed, i.e. the head was promoted to the
5290 * handle_list.
5291 */
5292 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5293 {
5294 struct stripe_head *sh, *tmp;
5295 struct list_head *handle_list = NULL;
5296 struct r5worker_group *wg;
5297 bool second_try = !r5c_is_writeback(conf->log) &&
5298 !r5l_log_disk_error(conf);
5299 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5300 r5l_log_disk_error(conf);
5301
5302 again:
5303 wg = NULL;
5304 sh = NULL;
5305 if (conf->worker_cnt_per_group == 0) {
5306 handle_list = try_loprio ? &conf->loprio_list :
5307 &conf->handle_list;
5308 } else if (group != ANY_GROUP) {
5309 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5310 &conf->worker_groups[group].handle_list;
5311 wg = &conf->worker_groups[group];
5312 } else {
5313 int i;
5314 for (i = 0; i < conf->group_cnt; i++) {
5315 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5316 &conf->worker_groups[i].handle_list;
5317 wg = &conf->worker_groups[i];
5318 if (!list_empty(handle_list))
5319 break;
5320 }
5321 }
5322
5323 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5324 __func__,
5325 list_empty(handle_list) ? "empty" : "busy",
5326 list_empty(&conf->hold_list) ? "empty" : "busy",
5327 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5328
5329 if (!list_empty(handle_list)) {
5330 sh = list_entry(handle_list->next, typeof(*sh), lru);
5331
5332 if (list_empty(&conf->hold_list))
5333 conf->bypass_count = 0;
5334 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5335 if (conf->hold_list.next == conf->last_hold)
5336 conf->bypass_count++;
5337 else {
5338 conf->last_hold = conf->hold_list.next;
5339 conf->bypass_count -= conf->bypass_threshold;
5340 if (conf->bypass_count < 0)
5341 conf->bypass_count = 0;
5342 }
5343 }
5344 } else if (!list_empty(&conf->hold_list) &&
5345 ((conf->bypass_threshold &&
5346 conf->bypass_count > conf->bypass_threshold) ||
5347 atomic_read(&conf->pending_full_writes) == 0)) {
5348
5349 list_for_each_entry(tmp, &conf->hold_list, lru) {
5350 if (conf->worker_cnt_per_group == 0 ||
5351 group == ANY_GROUP ||
5352 !cpu_online(tmp->cpu) ||
5353 cpu_to_group(tmp->cpu) == group) {
5354 sh = tmp;
5355 break;
5356 }
5357 }
5358
5359 if (sh) {
5360 conf->bypass_count -= conf->bypass_threshold;
5361 if (conf->bypass_count < 0)
5362 conf->bypass_count = 0;
5363 }
5364 wg = NULL;
5365 }
5366
5367 if (!sh) {
5368 if (second_try)
5369 return NULL;
5370 second_try = true;
5371 try_loprio = !try_loprio;
5372 goto again;
5373 }
5374
5375 if (wg) {
5376 wg->stripes_cnt--;
5377 sh->group = NULL;
5378 }
5379 list_del_init(&sh->lru);
5380 BUG_ON(atomic_inc_return(&sh->count) != 1);
5381 return sh;
5382 }
5383
5384 struct raid5_plug_cb {
5385 struct blk_plug_cb cb;
5386 struct list_head list;
5387 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5388 };
5389
5390 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5391 {
5392 struct raid5_plug_cb *cb = container_of(
5393 blk_cb, struct raid5_plug_cb, cb);
5394 struct stripe_head *sh;
5395 struct mddev *mddev = cb->cb.data;
5396 struct r5conf *conf = mddev->private;
5397 int cnt = 0;
5398 int hash;
5399
5400 if (cb->list.next && !list_empty(&cb->list)) {
5401 spin_lock_irq(&conf->device_lock);
5402 while (!list_empty(&cb->list)) {
5403 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5404 list_del_init(&sh->lru);
5405 /*
5406 * avoid race release_stripe_plug() sees
5407 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5408 * is still in our list
5409 */
5410 smp_mb__before_atomic();
5411 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5412 /*
5413 * STRIPE_ON_RELEASE_LIST could be set here. In that
5414 * case, the count is always > 1 here
5415 */
5416 hash = sh->hash_lock_index;
5417 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5418 cnt++;
5419 }
5420 spin_unlock_irq(&conf->device_lock);
5421 }
5422 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5423 NR_STRIPE_HASH_LOCKS);
5424 if (mddev->queue)
5425 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5426 kfree(cb);
5427 }
5428
5429 static void release_stripe_plug(struct mddev *mddev,
5430 struct stripe_head *sh)
5431 {
5432 struct blk_plug_cb *blk_cb = blk_check_plugged(
5433 raid5_unplug, mddev,
5434 sizeof(struct raid5_plug_cb));
5435 struct raid5_plug_cb *cb;
5436
5437 if (!blk_cb) {
5438 raid5_release_stripe(sh);
5439 return;
5440 }
5441
5442 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5443
5444 if (cb->list.next == NULL) {
5445 int i;
5446 INIT_LIST_HEAD(&cb->list);
5447 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5448 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5449 }
5450
5451 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5452 list_add_tail(&sh->lru, &cb->list);
5453 else
5454 raid5_release_stripe(sh);
5455 }
5456
5457 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5458 {
5459 struct r5conf *conf = mddev->private;
5460 sector_t logical_sector, last_sector;
5461 struct stripe_head *sh;
5462 int stripe_sectors;
5463
5464 if (mddev->reshape_position != MaxSector)
5465 /* Skip discard while reshape is happening */
5466 return;
5467
5468 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5469 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5470
5471 bi->bi_next = NULL;
5472 md_write_start(mddev, bi);
5473
5474 stripe_sectors = conf->chunk_sectors *
5475 (conf->raid_disks - conf->max_degraded);
5476 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5477 stripe_sectors);
5478 sector_div(last_sector, stripe_sectors);
5479
5480 logical_sector *= conf->chunk_sectors;
5481 last_sector *= conf->chunk_sectors;
5482
5483 for (; logical_sector < last_sector;
5484 logical_sector += STRIPE_SECTORS) {
5485 DEFINE_WAIT(w);
5486 int d;
5487 again:
5488 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5489 prepare_to_wait(&conf->wait_for_overlap, &w,
5490 TASK_UNINTERRUPTIBLE);
5491 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5492 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5493 raid5_release_stripe(sh);
5494 schedule();
5495 goto again;
5496 }
5497 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5498 spin_lock_irq(&sh->stripe_lock);
5499 for (d = 0; d < conf->raid_disks; d++) {
5500 if (d == sh->pd_idx || d == sh->qd_idx)
5501 continue;
5502 if (sh->dev[d].towrite || sh->dev[d].toread) {
5503 set_bit(R5_Overlap, &sh->dev[d].flags);
5504 spin_unlock_irq(&sh->stripe_lock);
5505 raid5_release_stripe(sh);
5506 schedule();
5507 goto again;
5508 }
5509 }
5510 set_bit(STRIPE_DISCARD, &sh->state);
5511 finish_wait(&conf->wait_for_overlap, &w);
5512 sh->overwrite_disks = 0;
5513 for (d = 0; d < conf->raid_disks; d++) {
5514 if (d == sh->pd_idx || d == sh->qd_idx)
5515 continue;
5516 sh->dev[d].towrite = bi;
5517 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5518 bio_inc_remaining(bi);
5519 md_write_inc(mddev, bi);
5520 sh->overwrite_disks++;
5521 }
5522 spin_unlock_irq(&sh->stripe_lock);
5523 if (conf->mddev->bitmap) {
5524 for (d = 0;
5525 d < conf->raid_disks - conf->max_degraded;
5526 d++)
5527 bitmap_startwrite(mddev->bitmap,
5528 sh->sector,
5529 STRIPE_SECTORS,
5530 0);
5531 sh->bm_seq = conf->seq_flush + 1;
5532 set_bit(STRIPE_BIT_DELAY, &sh->state);
5533 }
5534
5535 set_bit(STRIPE_HANDLE, &sh->state);
5536 clear_bit(STRIPE_DELAYED, &sh->state);
5537 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5538 atomic_inc(&conf->preread_active_stripes);
5539 release_stripe_plug(mddev, sh);
5540 }
5541
5542 md_write_end(mddev);
5543 bio_endio(bi);
5544 }
5545
5546 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5547 {
5548 struct r5conf *conf = mddev->private;
5549 int dd_idx;
5550 sector_t new_sector;
5551 sector_t logical_sector, last_sector;
5552 struct stripe_head *sh;
5553 const int rw = bio_data_dir(bi);
5554 DEFINE_WAIT(w);
5555 bool do_prepare;
5556 bool do_flush = false;
5557
5558 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5559 int ret = r5l_handle_flush_request(conf->log, bi);
5560
5561 if (ret == 0)
5562 return;
5563 if (ret == -ENODEV) {
5564 md_flush_request(mddev, bi);
5565 return;
5566 }
5567 /* ret == -EAGAIN, fallback */
5568 /*
5569 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5570 * we need to flush journal device
5571 */
5572 do_flush = bi->bi_opf & REQ_PREFLUSH;
5573 }
5574
5575 /*
5576 * If array is degraded, better not do chunk aligned read because
5577 * later we might have to read it again in order to reconstruct
5578 * data on failed drives.
5579 */
5580 if (rw == READ && mddev->degraded == 0 &&
5581 mddev->reshape_position == MaxSector) {
5582 bi = chunk_aligned_read(mddev, bi);
5583 if (!bi)
5584 return;
5585 }
5586
5587 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5588 make_discard_request(mddev, bi);
5589 return;
5590 }
5591
5592 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5593 last_sector = bio_end_sector(bi);
5594 bi->bi_next = NULL;
5595 md_write_start(mddev, bi);
5596
5597 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5598 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5599 int previous;
5600 int seq;
5601
5602 do_prepare = false;
5603 retry:
5604 seq = read_seqcount_begin(&conf->gen_lock);
5605 previous = 0;
5606 if (do_prepare)
5607 prepare_to_wait(&conf->wait_for_overlap, &w,
5608 TASK_UNINTERRUPTIBLE);
5609 if (unlikely(conf->reshape_progress != MaxSector)) {
5610 /* spinlock is needed as reshape_progress may be
5611 * 64bit on a 32bit platform, and so it might be
5612 * possible to see a half-updated value
5613 * Of course reshape_progress could change after
5614 * the lock is dropped, so once we get a reference
5615 * to the stripe that we think it is, we will have
5616 * to check again.
5617 */
5618 spin_lock_irq(&conf->device_lock);
5619 if (mddev->reshape_backwards
5620 ? logical_sector < conf->reshape_progress
5621 : logical_sector >= conf->reshape_progress) {
5622 previous = 1;
5623 } else {
5624 if (mddev->reshape_backwards
5625 ? logical_sector < conf->reshape_safe
5626 : logical_sector >= conf->reshape_safe) {
5627 spin_unlock_irq(&conf->device_lock);
5628 schedule();
5629 do_prepare = true;
5630 goto retry;
5631 }
5632 }
5633 spin_unlock_irq(&conf->device_lock);
5634 }
5635
5636 new_sector = raid5_compute_sector(conf, logical_sector,
5637 previous,
5638 &dd_idx, NULL);
5639 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5640 (unsigned long long)new_sector,
5641 (unsigned long long)logical_sector);
5642
5643 sh = raid5_get_active_stripe(conf, new_sector, previous,
5644 (bi->bi_opf & REQ_RAHEAD), 0);
5645 if (sh) {
5646 if (unlikely(previous)) {
5647 /* expansion might have moved on while waiting for a
5648 * stripe, so we must do the range check again.
5649 * Expansion could still move past after this
5650 * test, but as we are holding a reference to
5651 * 'sh', we know that if that happens,
5652 * STRIPE_EXPANDING will get set and the expansion
5653 * won't proceed until we finish with the stripe.
5654 */
5655 int must_retry = 0;
5656 spin_lock_irq(&conf->device_lock);
5657 if (mddev->reshape_backwards
5658 ? logical_sector >= conf->reshape_progress
5659 : logical_sector < conf->reshape_progress)
5660 /* mismatch, need to try again */
5661 must_retry = 1;
5662 spin_unlock_irq(&conf->device_lock);
5663 if (must_retry) {
5664 raid5_release_stripe(sh);
5665 schedule();
5666 do_prepare = true;
5667 goto retry;
5668 }
5669 }
5670 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5671 /* Might have got the wrong stripe_head
5672 * by accident
5673 */
5674 raid5_release_stripe(sh);
5675 goto retry;
5676 }
5677
5678 if (rw == WRITE &&
5679 logical_sector >= mddev->suspend_lo &&
5680 logical_sector < mddev->suspend_hi) {
5681 raid5_release_stripe(sh);
5682 /* As the suspend_* range is controlled by
5683 * userspace, we want an interruptible
5684 * wait.
5685 */
5686 flush_signals(current);
5687 prepare_to_wait(&conf->wait_for_overlap,
5688 &w, TASK_INTERRUPTIBLE);
5689 if (logical_sector >= mddev->suspend_lo &&
5690 logical_sector < mddev->suspend_hi) {
5691 schedule();
5692 do_prepare = true;
5693 }
5694 goto retry;
5695 }
5696
5697 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5698 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5699 /* Stripe is busy expanding or
5700 * add failed due to overlap. Flush everything
5701 * and wait a while
5702 */
5703 md_wakeup_thread(mddev->thread);
5704 raid5_release_stripe(sh);
5705 schedule();
5706 do_prepare = true;
5707 goto retry;
5708 }
5709 if (do_flush) {
5710 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5711 /* we only need flush for one stripe */
5712 do_flush = false;
5713 }
5714
5715 set_bit(STRIPE_HANDLE, &sh->state);
5716 clear_bit(STRIPE_DELAYED, &sh->state);
5717 if ((!sh->batch_head || sh == sh->batch_head) &&
5718 (bi->bi_opf & REQ_SYNC) &&
5719 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5720 atomic_inc(&conf->preread_active_stripes);
5721 release_stripe_plug(mddev, sh);
5722 } else {
5723 /* cannot get stripe for read-ahead, just give-up */
5724 bi->bi_error = -EIO;
5725 break;
5726 }
5727 }
5728 finish_wait(&conf->wait_for_overlap, &w);
5729
5730 if (rw == WRITE)
5731 md_write_end(mddev);
5732 bio_endio(bi);
5733 }
5734
5735 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5736
5737 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5738 {
5739 /* reshaping is quite different to recovery/resync so it is
5740 * handled quite separately ... here.
5741 *
5742 * On each call to sync_request, we gather one chunk worth of
5743 * destination stripes and flag them as expanding.
5744 * Then we find all the source stripes and request reads.
5745 * As the reads complete, handle_stripe will copy the data
5746 * into the destination stripe and release that stripe.
5747 */
5748 struct r5conf *conf = mddev->private;
5749 struct stripe_head *sh;
5750 sector_t first_sector, last_sector;
5751 int raid_disks = conf->previous_raid_disks;
5752 int data_disks = raid_disks - conf->max_degraded;
5753 int new_data_disks = conf->raid_disks - conf->max_degraded;
5754 int i;
5755 int dd_idx;
5756 sector_t writepos, readpos, safepos;
5757 sector_t stripe_addr;
5758 int reshape_sectors;
5759 struct list_head stripes;
5760 sector_t retn;
5761
5762 if (sector_nr == 0) {
5763 /* If restarting in the middle, skip the initial sectors */
5764 if (mddev->reshape_backwards &&
5765 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5766 sector_nr = raid5_size(mddev, 0, 0)
5767 - conf->reshape_progress;
5768 } else if (mddev->reshape_backwards &&
5769 conf->reshape_progress == MaxSector) {
5770 /* shouldn't happen, but just in case, finish up.*/
5771 sector_nr = MaxSector;
5772 } else if (!mddev->reshape_backwards &&
5773 conf->reshape_progress > 0)
5774 sector_nr = conf->reshape_progress;
5775 sector_div(sector_nr, new_data_disks);
5776 if (sector_nr) {
5777 mddev->curr_resync_completed = sector_nr;
5778 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5779 *skipped = 1;
5780 retn = sector_nr;
5781 goto finish;
5782 }
5783 }
5784
5785 /* We need to process a full chunk at a time.
5786 * If old and new chunk sizes differ, we need to process the
5787 * largest of these
5788 */
5789
5790 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5791
5792 /* We update the metadata at least every 10 seconds, or when
5793 * the data about to be copied would over-write the source of
5794 * the data at the front of the range. i.e. one new_stripe
5795 * along from reshape_progress new_maps to after where
5796 * reshape_safe old_maps to
5797 */
5798 writepos = conf->reshape_progress;
5799 sector_div(writepos, new_data_disks);
5800 readpos = conf->reshape_progress;
5801 sector_div(readpos, data_disks);
5802 safepos = conf->reshape_safe;
5803 sector_div(safepos, data_disks);
5804 if (mddev->reshape_backwards) {
5805 BUG_ON(writepos < reshape_sectors);
5806 writepos -= reshape_sectors;
5807 readpos += reshape_sectors;
5808 safepos += reshape_sectors;
5809 } else {
5810 writepos += reshape_sectors;
5811 /* readpos and safepos are worst-case calculations.
5812 * A negative number is overly pessimistic, and causes
5813 * obvious problems for unsigned storage. So clip to 0.
5814 */
5815 readpos -= min_t(sector_t, reshape_sectors, readpos);
5816 safepos -= min_t(sector_t, reshape_sectors, safepos);
5817 }
5818
5819 /* Having calculated the 'writepos' possibly use it
5820 * to set 'stripe_addr' which is where we will write to.
5821 */
5822 if (mddev->reshape_backwards) {
5823 BUG_ON(conf->reshape_progress == 0);
5824 stripe_addr = writepos;
5825 BUG_ON((mddev->dev_sectors &
5826 ~((sector_t)reshape_sectors - 1))
5827 - reshape_sectors - stripe_addr
5828 != sector_nr);
5829 } else {
5830 BUG_ON(writepos != sector_nr + reshape_sectors);
5831 stripe_addr = sector_nr;
5832 }
5833
5834 /* 'writepos' is the most advanced device address we might write.
5835 * 'readpos' is the least advanced device address we might read.
5836 * 'safepos' is the least address recorded in the metadata as having
5837 * been reshaped.
5838 * If there is a min_offset_diff, these are adjusted either by
5839 * increasing the safepos/readpos if diff is negative, or
5840 * increasing writepos if diff is positive.
5841 * If 'readpos' is then behind 'writepos', there is no way that we can
5842 * ensure safety in the face of a crash - that must be done by userspace
5843 * making a backup of the data. So in that case there is no particular
5844 * rush to update metadata.
5845 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5846 * update the metadata to advance 'safepos' to match 'readpos' so that
5847 * we can be safe in the event of a crash.
5848 * So we insist on updating metadata if safepos is behind writepos and
5849 * readpos is beyond writepos.
5850 * In any case, update the metadata every 10 seconds.
5851 * Maybe that number should be configurable, but I'm not sure it is
5852 * worth it.... maybe it could be a multiple of safemode_delay???
5853 */
5854 if (conf->min_offset_diff < 0) {
5855 safepos += -conf->min_offset_diff;
5856 readpos += -conf->min_offset_diff;
5857 } else
5858 writepos += conf->min_offset_diff;
5859
5860 if ((mddev->reshape_backwards
5861 ? (safepos > writepos && readpos < writepos)
5862 : (safepos < writepos && readpos > writepos)) ||
5863 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5864 /* Cannot proceed until we've updated the superblock... */
5865 wait_event(conf->wait_for_overlap,
5866 atomic_read(&conf->reshape_stripes)==0
5867 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5868 if (atomic_read(&conf->reshape_stripes) != 0)
5869 return 0;
5870 mddev->reshape_position = conf->reshape_progress;
5871 mddev->curr_resync_completed = sector_nr;
5872 conf->reshape_checkpoint = jiffies;
5873 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5874 md_wakeup_thread(mddev->thread);
5875 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5876 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5877 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5878 return 0;
5879 spin_lock_irq(&conf->device_lock);
5880 conf->reshape_safe = mddev->reshape_position;
5881 spin_unlock_irq(&conf->device_lock);
5882 wake_up(&conf->wait_for_overlap);
5883 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5884 }
5885
5886 INIT_LIST_HEAD(&stripes);
5887 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5888 int j;
5889 int skipped_disk = 0;
5890 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5891 set_bit(STRIPE_EXPANDING, &sh->state);
5892 atomic_inc(&conf->reshape_stripes);
5893 /* If any of this stripe is beyond the end of the old
5894 * array, then we need to zero those blocks
5895 */
5896 for (j=sh->disks; j--;) {
5897 sector_t s;
5898 if (j == sh->pd_idx)
5899 continue;
5900 if (conf->level == 6 &&
5901 j == sh->qd_idx)
5902 continue;
5903 s = raid5_compute_blocknr(sh, j, 0);
5904 if (s < raid5_size(mddev, 0, 0)) {
5905 skipped_disk = 1;
5906 continue;
5907 }
5908 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5909 set_bit(R5_Expanded, &sh->dev[j].flags);
5910 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5911 }
5912 if (!skipped_disk) {
5913 set_bit(STRIPE_EXPAND_READY, &sh->state);
5914 set_bit(STRIPE_HANDLE, &sh->state);
5915 }
5916 list_add(&sh->lru, &stripes);
5917 }
5918 spin_lock_irq(&conf->device_lock);
5919 if (mddev->reshape_backwards)
5920 conf->reshape_progress -= reshape_sectors * new_data_disks;
5921 else
5922 conf->reshape_progress += reshape_sectors * new_data_disks;
5923 spin_unlock_irq(&conf->device_lock);
5924 /* Ok, those stripe are ready. We can start scheduling
5925 * reads on the source stripes.
5926 * The source stripes are determined by mapping the first and last
5927 * block on the destination stripes.
5928 */
5929 first_sector =
5930 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5931 1, &dd_idx, NULL);
5932 last_sector =
5933 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5934 * new_data_disks - 1),
5935 1, &dd_idx, NULL);
5936 if (last_sector >= mddev->dev_sectors)
5937 last_sector = mddev->dev_sectors - 1;
5938 while (first_sector <= last_sector) {
5939 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5940 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5941 set_bit(STRIPE_HANDLE, &sh->state);
5942 raid5_release_stripe(sh);
5943 first_sector += STRIPE_SECTORS;
5944 }
5945 /* Now that the sources are clearly marked, we can release
5946 * the destination stripes
5947 */
5948 while (!list_empty(&stripes)) {
5949 sh = list_entry(stripes.next, struct stripe_head, lru);
5950 list_del_init(&sh->lru);
5951 raid5_release_stripe(sh);
5952 }
5953 /* If this takes us to the resync_max point where we have to pause,
5954 * then we need to write out the superblock.
5955 */
5956 sector_nr += reshape_sectors;
5957 retn = reshape_sectors;
5958 finish:
5959 if (mddev->curr_resync_completed > mddev->resync_max ||
5960 (sector_nr - mddev->curr_resync_completed) * 2
5961 >= mddev->resync_max - mddev->curr_resync_completed) {
5962 /* Cannot proceed until we've updated the superblock... */
5963 wait_event(conf->wait_for_overlap,
5964 atomic_read(&conf->reshape_stripes) == 0
5965 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5966 if (atomic_read(&conf->reshape_stripes) != 0)
5967 goto ret;
5968 mddev->reshape_position = conf->reshape_progress;
5969 mddev->curr_resync_completed = sector_nr;
5970 conf->reshape_checkpoint = jiffies;
5971 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5972 md_wakeup_thread(mddev->thread);
5973 wait_event(mddev->sb_wait,
5974 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5975 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5976 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5977 goto ret;
5978 spin_lock_irq(&conf->device_lock);
5979 conf->reshape_safe = mddev->reshape_position;
5980 spin_unlock_irq(&conf->device_lock);
5981 wake_up(&conf->wait_for_overlap);
5982 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5983 }
5984 ret:
5985 return retn;
5986 }
5987
5988 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5989 int *skipped)
5990 {
5991 struct r5conf *conf = mddev->private;
5992 struct stripe_head *sh;
5993 sector_t max_sector = mddev->dev_sectors;
5994 sector_t sync_blocks;
5995 int still_degraded = 0;
5996 int i;
5997
5998 if (sector_nr >= max_sector) {
5999 /* just being told to finish up .. nothing much to do */
6000
6001 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6002 end_reshape(conf);
6003 return 0;
6004 }
6005
6006 if (mddev->curr_resync < max_sector) /* aborted */
6007 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6008 &sync_blocks, 1);
6009 else /* completed sync */
6010 conf->fullsync = 0;
6011 bitmap_close_sync(mddev->bitmap);
6012
6013 return 0;
6014 }
6015
6016 /* Allow raid5_quiesce to complete */
6017 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6018
6019 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6020 return reshape_request(mddev, sector_nr, skipped);
6021
6022 /* No need to check resync_max as we never do more than one
6023 * stripe, and as resync_max will always be on a chunk boundary,
6024 * if the check in md_do_sync didn't fire, there is no chance
6025 * of overstepping resync_max here
6026 */
6027
6028 /* if there is too many failed drives and we are trying
6029 * to resync, then assert that we are finished, because there is
6030 * nothing we can do.
6031 */
6032 if (mddev->degraded >= conf->max_degraded &&
6033 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6034 sector_t rv = mddev->dev_sectors - sector_nr;
6035 *skipped = 1;
6036 return rv;
6037 }
6038 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6039 !conf->fullsync &&
6040 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6041 sync_blocks >= STRIPE_SECTORS) {
6042 /* we can skip this block, and probably more */
6043 sync_blocks /= STRIPE_SECTORS;
6044 *skipped = 1;
6045 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6046 }
6047
6048 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6049
6050 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6051 if (sh == NULL) {
6052 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6053 /* make sure we don't swamp the stripe cache if someone else
6054 * is trying to get access
6055 */
6056 schedule_timeout_uninterruptible(1);
6057 }
6058 /* Need to check if array will still be degraded after recovery/resync
6059 * Note in case of > 1 drive failures it's possible we're rebuilding
6060 * one drive while leaving another faulty drive in array.
6061 */
6062 rcu_read_lock();
6063 for (i = 0; i < conf->raid_disks; i++) {
6064 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6065
6066 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6067 still_degraded = 1;
6068 }
6069 rcu_read_unlock();
6070
6071 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6072
6073 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6074 set_bit(STRIPE_HANDLE, &sh->state);
6075
6076 raid5_release_stripe(sh);
6077
6078 return STRIPE_SECTORS;
6079 }
6080
6081 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6082 unsigned int offset)
6083 {
6084 /* We may not be able to submit a whole bio at once as there
6085 * may not be enough stripe_heads available.
6086 * We cannot pre-allocate enough stripe_heads as we may need
6087 * more than exist in the cache (if we allow ever large chunks).
6088 * So we do one stripe head at a time and record in
6089 * ->bi_hw_segments how many have been done.
6090 *
6091 * We *know* that this entire raid_bio is in one chunk, so
6092 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6093 */
6094 struct stripe_head *sh;
6095 int dd_idx;
6096 sector_t sector, logical_sector, last_sector;
6097 int scnt = 0;
6098 int handled = 0;
6099
6100 logical_sector = raid_bio->bi_iter.bi_sector &
6101 ~((sector_t)STRIPE_SECTORS-1);
6102 sector = raid5_compute_sector(conf, logical_sector,
6103 0, &dd_idx, NULL);
6104 last_sector = bio_end_sector(raid_bio);
6105
6106 for (; logical_sector < last_sector;
6107 logical_sector += STRIPE_SECTORS,
6108 sector += STRIPE_SECTORS,
6109 scnt++) {
6110
6111 if (scnt < offset)
6112 /* already done this stripe */
6113 continue;
6114
6115 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6116
6117 if (!sh) {
6118 /* failed to get a stripe - must wait */
6119 conf->retry_read_aligned = raid_bio;
6120 conf->retry_read_offset = scnt;
6121 return handled;
6122 }
6123
6124 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6125 raid5_release_stripe(sh);
6126 conf->retry_read_aligned = raid_bio;
6127 conf->retry_read_offset = scnt;
6128 return handled;
6129 }
6130
6131 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6132 handle_stripe(sh);
6133 raid5_release_stripe(sh);
6134 handled++;
6135 }
6136
6137 bio_endio(raid_bio);
6138
6139 if (atomic_dec_and_test(&conf->active_aligned_reads))
6140 wake_up(&conf->wait_for_quiescent);
6141 return handled;
6142 }
6143
6144 static int handle_active_stripes(struct r5conf *conf, int group,
6145 struct r5worker *worker,
6146 struct list_head *temp_inactive_list)
6147 {
6148 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6149 int i, batch_size = 0, hash;
6150 bool release_inactive = false;
6151
6152 while (batch_size < MAX_STRIPE_BATCH &&
6153 (sh = __get_priority_stripe(conf, group)) != NULL)
6154 batch[batch_size++] = sh;
6155
6156 if (batch_size == 0) {
6157 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6158 if (!list_empty(temp_inactive_list + i))
6159 break;
6160 if (i == NR_STRIPE_HASH_LOCKS) {
6161 spin_unlock_irq(&conf->device_lock);
6162 r5l_flush_stripe_to_raid(conf->log);
6163 spin_lock_irq(&conf->device_lock);
6164 return batch_size;
6165 }
6166 release_inactive = true;
6167 }
6168 spin_unlock_irq(&conf->device_lock);
6169
6170 release_inactive_stripe_list(conf, temp_inactive_list,
6171 NR_STRIPE_HASH_LOCKS);
6172
6173 r5l_flush_stripe_to_raid(conf->log);
6174 if (release_inactive) {
6175 spin_lock_irq(&conf->device_lock);
6176 return 0;
6177 }
6178
6179 for (i = 0; i < batch_size; i++)
6180 handle_stripe(batch[i]);
6181 log_write_stripe_run(conf);
6182
6183 cond_resched();
6184
6185 spin_lock_irq(&conf->device_lock);
6186 for (i = 0; i < batch_size; i++) {
6187 hash = batch[i]->hash_lock_index;
6188 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6189 }
6190 return batch_size;
6191 }
6192
6193 static void raid5_do_work(struct work_struct *work)
6194 {
6195 struct r5worker *worker = container_of(work, struct r5worker, work);
6196 struct r5worker_group *group = worker->group;
6197 struct r5conf *conf = group->conf;
6198 struct mddev *mddev = conf->mddev;
6199 int group_id = group - conf->worker_groups;
6200 int handled;
6201 struct blk_plug plug;
6202
6203 pr_debug("+++ raid5worker active\n");
6204
6205 blk_start_plug(&plug);
6206 handled = 0;
6207 spin_lock_irq(&conf->device_lock);
6208 while (1) {
6209 int batch_size, released;
6210
6211 released = release_stripe_list(conf, worker->temp_inactive_list);
6212
6213 batch_size = handle_active_stripes(conf, group_id, worker,
6214 worker->temp_inactive_list);
6215 worker->working = false;
6216 if (!batch_size && !released)
6217 break;
6218 handled += batch_size;
6219 wait_event_lock_irq(mddev->sb_wait,
6220 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6221 conf->device_lock);
6222 }
6223 pr_debug("%d stripes handled\n", handled);
6224
6225 spin_unlock_irq(&conf->device_lock);
6226 blk_finish_plug(&plug);
6227
6228 pr_debug("--- raid5worker inactive\n");
6229 }
6230
6231 /*
6232 * This is our raid5 kernel thread.
6233 *
6234 * We scan the hash table for stripes which can be handled now.
6235 * During the scan, completed stripes are saved for us by the interrupt
6236 * handler, so that they will not have to wait for our next wakeup.
6237 */
6238 static void raid5d(struct md_thread *thread)
6239 {
6240 struct mddev *mddev = thread->mddev;
6241 struct r5conf *conf = mddev->private;
6242 int handled;
6243 struct blk_plug plug;
6244
6245 pr_debug("+++ raid5d active\n");
6246
6247 md_check_recovery(mddev);
6248
6249 blk_start_plug(&plug);
6250 handled = 0;
6251 spin_lock_irq(&conf->device_lock);
6252 while (1) {
6253 struct bio *bio;
6254 int batch_size, released;
6255 unsigned int offset;
6256
6257 released = release_stripe_list(conf, conf->temp_inactive_list);
6258 if (released)
6259 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6260
6261 if (
6262 !list_empty(&conf->bitmap_list)) {
6263 /* Now is a good time to flush some bitmap updates */
6264 conf->seq_flush++;
6265 spin_unlock_irq(&conf->device_lock);
6266 bitmap_unplug(mddev->bitmap);
6267 spin_lock_irq(&conf->device_lock);
6268 conf->seq_write = conf->seq_flush;
6269 activate_bit_delay(conf, conf->temp_inactive_list);
6270 }
6271 raid5_activate_delayed(conf);
6272
6273 while ((bio = remove_bio_from_retry(conf, &offset))) {
6274 int ok;
6275 spin_unlock_irq(&conf->device_lock);
6276 ok = retry_aligned_read(conf, bio, offset);
6277 spin_lock_irq(&conf->device_lock);
6278 if (!ok)
6279 break;
6280 handled++;
6281 }
6282
6283 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6284 conf->temp_inactive_list);
6285 if (!batch_size && !released)
6286 break;
6287 handled += batch_size;
6288
6289 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6290 spin_unlock_irq(&conf->device_lock);
6291 md_check_recovery(mddev);
6292 spin_lock_irq(&conf->device_lock);
6293 }
6294 }
6295 pr_debug("%d stripes handled\n", handled);
6296
6297 spin_unlock_irq(&conf->device_lock);
6298 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6299 mutex_trylock(&conf->cache_size_mutex)) {
6300 grow_one_stripe(conf, __GFP_NOWARN);
6301 /* Set flag even if allocation failed. This helps
6302 * slow down allocation requests when mem is short
6303 */
6304 set_bit(R5_DID_ALLOC, &conf->cache_state);
6305 mutex_unlock(&conf->cache_size_mutex);
6306 }
6307
6308 flush_deferred_bios(conf);
6309
6310 r5l_flush_stripe_to_raid(conf->log);
6311
6312 async_tx_issue_pending_all();
6313 blk_finish_plug(&plug);
6314
6315 pr_debug("--- raid5d inactive\n");
6316 }
6317
6318 static ssize_t
6319 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6320 {
6321 struct r5conf *conf;
6322 int ret = 0;
6323 spin_lock(&mddev->lock);
6324 conf = mddev->private;
6325 if (conf)
6326 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6327 spin_unlock(&mddev->lock);
6328 return ret;
6329 }
6330
6331 int
6332 raid5_set_cache_size(struct mddev *mddev, int size)
6333 {
6334 struct r5conf *conf = mddev->private;
6335
6336 if (size <= 16 || size > 32768)
6337 return -EINVAL;
6338
6339 conf->min_nr_stripes = size;
6340 mutex_lock(&conf->cache_size_mutex);
6341 while (size < conf->max_nr_stripes &&
6342 drop_one_stripe(conf))
6343 ;
6344 mutex_unlock(&conf->cache_size_mutex);
6345
6346 md_allow_write(mddev);
6347
6348 mutex_lock(&conf->cache_size_mutex);
6349 while (size > conf->max_nr_stripes)
6350 if (!grow_one_stripe(conf, GFP_KERNEL))
6351 break;
6352 mutex_unlock(&conf->cache_size_mutex);
6353
6354 return 0;
6355 }
6356 EXPORT_SYMBOL(raid5_set_cache_size);
6357
6358 static ssize_t
6359 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6360 {
6361 struct r5conf *conf;
6362 unsigned long new;
6363 int err;
6364
6365 if (len >= PAGE_SIZE)
6366 return -EINVAL;
6367 if (kstrtoul(page, 10, &new))
6368 return -EINVAL;
6369 err = mddev_lock(mddev);
6370 if (err)
6371 return err;
6372 conf = mddev->private;
6373 if (!conf)
6374 err = -ENODEV;
6375 else
6376 err = raid5_set_cache_size(mddev, new);
6377 mddev_unlock(mddev);
6378
6379 return err ?: len;
6380 }
6381
6382 static struct md_sysfs_entry
6383 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6384 raid5_show_stripe_cache_size,
6385 raid5_store_stripe_cache_size);
6386
6387 static ssize_t
6388 raid5_show_rmw_level(struct mddev *mddev, char *page)
6389 {
6390 struct r5conf *conf = mddev->private;
6391 if (conf)
6392 return sprintf(page, "%d\n", conf->rmw_level);
6393 else
6394 return 0;
6395 }
6396
6397 static ssize_t
6398 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6399 {
6400 struct r5conf *conf = mddev->private;
6401 unsigned long new;
6402
6403 if (!conf)
6404 return -ENODEV;
6405
6406 if (len >= PAGE_SIZE)
6407 return -EINVAL;
6408
6409 if (kstrtoul(page, 10, &new))
6410 return -EINVAL;
6411
6412 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6413 return -EINVAL;
6414
6415 if (new != PARITY_DISABLE_RMW &&
6416 new != PARITY_ENABLE_RMW &&
6417 new != PARITY_PREFER_RMW)
6418 return -EINVAL;
6419
6420 conf->rmw_level = new;
6421 return len;
6422 }
6423
6424 static struct md_sysfs_entry
6425 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6426 raid5_show_rmw_level,
6427 raid5_store_rmw_level);
6428
6429
6430 static ssize_t
6431 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6432 {
6433 struct r5conf *conf;
6434 int ret = 0;
6435 spin_lock(&mddev->lock);
6436 conf = mddev->private;
6437 if (conf)
6438 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6439 spin_unlock(&mddev->lock);
6440 return ret;
6441 }
6442
6443 static ssize_t
6444 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6445 {
6446 struct r5conf *conf;
6447 unsigned long new;
6448 int err;
6449
6450 if (len >= PAGE_SIZE)
6451 return -EINVAL;
6452 if (kstrtoul(page, 10, &new))
6453 return -EINVAL;
6454
6455 err = mddev_lock(mddev);
6456 if (err)
6457 return err;
6458 conf = mddev->private;
6459 if (!conf)
6460 err = -ENODEV;
6461 else if (new > conf->min_nr_stripes)
6462 err = -EINVAL;
6463 else
6464 conf->bypass_threshold = new;
6465 mddev_unlock(mddev);
6466 return err ?: len;
6467 }
6468
6469 static struct md_sysfs_entry
6470 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6471 S_IRUGO | S_IWUSR,
6472 raid5_show_preread_threshold,
6473 raid5_store_preread_threshold);
6474
6475 static ssize_t
6476 raid5_show_skip_copy(struct mddev *mddev, char *page)
6477 {
6478 struct r5conf *conf;
6479 int ret = 0;
6480 spin_lock(&mddev->lock);
6481 conf = mddev->private;
6482 if (conf)
6483 ret = sprintf(page, "%d\n", conf->skip_copy);
6484 spin_unlock(&mddev->lock);
6485 return ret;
6486 }
6487
6488 static ssize_t
6489 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6490 {
6491 struct r5conf *conf;
6492 unsigned long new;
6493 int err;
6494
6495 if (len >= PAGE_SIZE)
6496 return -EINVAL;
6497 if (kstrtoul(page, 10, &new))
6498 return -EINVAL;
6499 new = !!new;
6500
6501 err = mddev_lock(mddev);
6502 if (err)
6503 return err;
6504 conf = mddev->private;
6505 if (!conf)
6506 err = -ENODEV;
6507 else if (new != conf->skip_copy) {
6508 mddev_suspend(mddev);
6509 conf->skip_copy = new;
6510 if (new)
6511 mddev->queue->backing_dev_info->capabilities |=
6512 BDI_CAP_STABLE_WRITES;
6513 else
6514 mddev->queue->backing_dev_info->capabilities &=
6515 ~BDI_CAP_STABLE_WRITES;
6516 mddev_resume(mddev);
6517 }
6518 mddev_unlock(mddev);
6519 return err ?: len;
6520 }
6521
6522 static struct md_sysfs_entry
6523 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6524 raid5_show_skip_copy,
6525 raid5_store_skip_copy);
6526
6527 static ssize_t
6528 stripe_cache_active_show(struct mddev *mddev, char *page)
6529 {
6530 struct r5conf *conf = mddev->private;
6531 if (conf)
6532 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6533 else
6534 return 0;
6535 }
6536
6537 static struct md_sysfs_entry
6538 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6539
6540 static ssize_t
6541 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6542 {
6543 struct r5conf *conf;
6544 int ret = 0;
6545 spin_lock(&mddev->lock);
6546 conf = mddev->private;
6547 if (conf)
6548 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6549 spin_unlock(&mddev->lock);
6550 return ret;
6551 }
6552
6553 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6554 int *group_cnt,
6555 int *worker_cnt_per_group,
6556 struct r5worker_group **worker_groups);
6557 static ssize_t
6558 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6559 {
6560 struct r5conf *conf;
6561 unsigned long new;
6562 int err;
6563 struct r5worker_group *new_groups, *old_groups;
6564 int group_cnt, worker_cnt_per_group;
6565
6566 if (len >= PAGE_SIZE)
6567 return -EINVAL;
6568 if (kstrtoul(page, 10, &new))
6569 return -EINVAL;
6570
6571 err = mddev_lock(mddev);
6572 if (err)
6573 return err;
6574 conf = mddev->private;
6575 if (!conf)
6576 err = -ENODEV;
6577 else if (new != conf->worker_cnt_per_group) {
6578 mddev_suspend(mddev);
6579
6580 old_groups = conf->worker_groups;
6581 if (old_groups)
6582 flush_workqueue(raid5_wq);
6583
6584 err = alloc_thread_groups(conf, new,
6585 &group_cnt, &worker_cnt_per_group,
6586 &new_groups);
6587 if (!err) {
6588 spin_lock_irq(&conf->device_lock);
6589 conf->group_cnt = group_cnt;
6590 conf->worker_cnt_per_group = worker_cnt_per_group;
6591 conf->worker_groups = new_groups;
6592 spin_unlock_irq(&conf->device_lock);
6593
6594 if (old_groups)
6595 kfree(old_groups[0].workers);
6596 kfree(old_groups);
6597 }
6598 mddev_resume(mddev);
6599 }
6600 mddev_unlock(mddev);
6601
6602 return err ?: len;
6603 }
6604
6605 static struct md_sysfs_entry
6606 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6607 raid5_show_group_thread_cnt,
6608 raid5_store_group_thread_cnt);
6609
6610 static struct attribute *raid5_attrs[] = {
6611 &raid5_stripecache_size.attr,
6612 &raid5_stripecache_active.attr,
6613 &raid5_preread_bypass_threshold.attr,
6614 &raid5_group_thread_cnt.attr,
6615 &raid5_skip_copy.attr,
6616 &raid5_rmw_level.attr,
6617 &r5c_journal_mode.attr,
6618 NULL,
6619 };
6620 static struct attribute_group raid5_attrs_group = {
6621 .name = NULL,
6622 .attrs = raid5_attrs,
6623 };
6624
6625 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6626 int *group_cnt,
6627 int *worker_cnt_per_group,
6628 struct r5worker_group **worker_groups)
6629 {
6630 int i, j, k;
6631 ssize_t size;
6632 struct r5worker *workers;
6633
6634 *worker_cnt_per_group = cnt;
6635 if (cnt == 0) {
6636 *group_cnt = 0;
6637 *worker_groups = NULL;
6638 return 0;
6639 }
6640 *group_cnt = num_possible_nodes();
6641 size = sizeof(struct r5worker) * cnt;
6642 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6643 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6644 *group_cnt, GFP_NOIO);
6645 if (!*worker_groups || !workers) {
6646 kfree(workers);
6647 kfree(*worker_groups);
6648 return -ENOMEM;
6649 }
6650
6651 for (i = 0; i < *group_cnt; i++) {
6652 struct r5worker_group *group;
6653
6654 group = &(*worker_groups)[i];
6655 INIT_LIST_HEAD(&group->handle_list);
6656 INIT_LIST_HEAD(&group->loprio_list);
6657 group->conf = conf;
6658 group->workers = workers + i * cnt;
6659
6660 for (j = 0; j < cnt; j++) {
6661 struct r5worker *worker = group->workers + j;
6662 worker->group = group;
6663 INIT_WORK(&worker->work, raid5_do_work);
6664
6665 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6666 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6667 }
6668 }
6669
6670 return 0;
6671 }
6672
6673 static void free_thread_groups(struct r5conf *conf)
6674 {
6675 if (conf->worker_groups)
6676 kfree(conf->worker_groups[0].workers);
6677 kfree(conf->worker_groups);
6678 conf->worker_groups = NULL;
6679 }
6680
6681 static sector_t
6682 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6683 {
6684 struct r5conf *conf = mddev->private;
6685
6686 if (!sectors)
6687 sectors = mddev->dev_sectors;
6688 if (!raid_disks)
6689 /* size is defined by the smallest of previous and new size */
6690 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6691
6692 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6693 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6694 return sectors * (raid_disks - conf->max_degraded);
6695 }
6696
6697 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6698 {
6699 safe_put_page(percpu->spare_page);
6700 if (percpu->scribble)
6701 flex_array_free(percpu->scribble);
6702 percpu->spare_page = NULL;
6703 percpu->scribble = NULL;
6704 }
6705
6706 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6707 {
6708 if (conf->level == 6 && !percpu->spare_page)
6709 percpu->spare_page = alloc_page(GFP_KERNEL);
6710 if (!percpu->scribble)
6711 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6712 conf->previous_raid_disks),
6713 max(conf->chunk_sectors,
6714 conf->prev_chunk_sectors)
6715 / STRIPE_SECTORS,
6716 GFP_KERNEL);
6717
6718 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6719 free_scratch_buffer(conf, percpu);
6720 return -ENOMEM;
6721 }
6722
6723 return 0;
6724 }
6725
6726 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6727 {
6728 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6729
6730 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6731 return 0;
6732 }
6733
6734 static void raid5_free_percpu(struct r5conf *conf)
6735 {
6736 if (!conf->percpu)
6737 return;
6738
6739 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6740 free_percpu(conf->percpu);
6741 }
6742
6743 static void free_conf(struct r5conf *conf)
6744 {
6745 int i;
6746
6747 log_exit(conf);
6748
6749 if (conf->shrinker.nr_deferred)
6750 unregister_shrinker(&conf->shrinker);
6751
6752 free_thread_groups(conf);
6753 shrink_stripes(conf);
6754 raid5_free_percpu(conf);
6755 for (i = 0; i < conf->pool_size; i++)
6756 if (conf->disks[i].extra_page)
6757 put_page(conf->disks[i].extra_page);
6758 kfree(conf->disks);
6759 if (conf->bio_split)
6760 bioset_free(conf->bio_split);
6761 kfree(conf->stripe_hashtbl);
6762 kfree(conf->pending_data);
6763 kfree(conf);
6764 }
6765
6766 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6767 {
6768 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6769 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6770
6771 if (alloc_scratch_buffer(conf, percpu)) {
6772 pr_warn("%s: failed memory allocation for cpu%u\n",
6773 __func__, cpu);
6774 return -ENOMEM;
6775 }
6776 return 0;
6777 }
6778
6779 static int raid5_alloc_percpu(struct r5conf *conf)
6780 {
6781 int err = 0;
6782
6783 conf->percpu = alloc_percpu(struct raid5_percpu);
6784 if (!conf->percpu)
6785 return -ENOMEM;
6786
6787 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6788 if (!err) {
6789 conf->scribble_disks = max(conf->raid_disks,
6790 conf->previous_raid_disks);
6791 conf->scribble_sectors = max(conf->chunk_sectors,
6792 conf->prev_chunk_sectors);
6793 }
6794 return err;
6795 }
6796
6797 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6798 struct shrink_control *sc)
6799 {
6800 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6801 unsigned long ret = SHRINK_STOP;
6802
6803 if (mutex_trylock(&conf->cache_size_mutex)) {
6804 ret= 0;
6805 while (ret < sc->nr_to_scan &&
6806 conf->max_nr_stripes > conf->min_nr_stripes) {
6807 if (drop_one_stripe(conf) == 0) {
6808 ret = SHRINK_STOP;
6809 break;
6810 }
6811 ret++;
6812 }
6813 mutex_unlock(&conf->cache_size_mutex);
6814 }
6815 return ret;
6816 }
6817
6818 static unsigned long raid5_cache_count(struct shrinker *shrink,
6819 struct shrink_control *sc)
6820 {
6821 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6822
6823 if (conf->max_nr_stripes < conf->min_nr_stripes)
6824 /* unlikely, but not impossible */
6825 return 0;
6826 return conf->max_nr_stripes - conf->min_nr_stripes;
6827 }
6828
6829 static struct r5conf *setup_conf(struct mddev *mddev)
6830 {
6831 struct r5conf *conf;
6832 int raid_disk, memory, max_disks;
6833 struct md_rdev *rdev;
6834 struct disk_info *disk;
6835 char pers_name[6];
6836 int i;
6837 int group_cnt, worker_cnt_per_group;
6838 struct r5worker_group *new_group;
6839
6840 if (mddev->new_level != 5
6841 && mddev->new_level != 4
6842 && mddev->new_level != 6) {
6843 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6844 mdname(mddev), mddev->new_level);
6845 return ERR_PTR(-EIO);
6846 }
6847 if ((mddev->new_level == 5
6848 && !algorithm_valid_raid5(mddev->new_layout)) ||
6849 (mddev->new_level == 6
6850 && !algorithm_valid_raid6(mddev->new_layout))) {
6851 pr_warn("md/raid:%s: layout %d not supported\n",
6852 mdname(mddev), mddev->new_layout);
6853 return ERR_PTR(-EIO);
6854 }
6855 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6856 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6857 mdname(mddev), mddev->raid_disks);
6858 return ERR_PTR(-EINVAL);
6859 }
6860
6861 if (!mddev->new_chunk_sectors ||
6862 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6863 !is_power_of_2(mddev->new_chunk_sectors)) {
6864 pr_warn("md/raid:%s: invalid chunk size %d\n",
6865 mdname(mddev), mddev->new_chunk_sectors << 9);
6866 return ERR_PTR(-EINVAL);
6867 }
6868
6869 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6870 if (conf == NULL)
6871 goto abort;
6872 INIT_LIST_HEAD(&conf->free_list);
6873 INIT_LIST_HEAD(&conf->pending_list);
6874 conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6875 PENDING_IO_MAX, GFP_KERNEL);
6876 if (!conf->pending_data)
6877 goto abort;
6878 for (i = 0; i < PENDING_IO_MAX; i++)
6879 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6880 /* Don't enable multi-threading by default*/
6881 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6882 &new_group)) {
6883 conf->group_cnt = group_cnt;
6884 conf->worker_cnt_per_group = worker_cnt_per_group;
6885 conf->worker_groups = new_group;
6886 } else
6887 goto abort;
6888 spin_lock_init(&conf->device_lock);
6889 seqcount_init(&conf->gen_lock);
6890 mutex_init(&conf->cache_size_mutex);
6891 init_waitqueue_head(&conf->wait_for_quiescent);
6892 init_waitqueue_head(&conf->wait_for_stripe);
6893 init_waitqueue_head(&conf->wait_for_overlap);
6894 INIT_LIST_HEAD(&conf->handle_list);
6895 INIT_LIST_HEAD(&conf->loprio_list);
6896 INIT_LIST_HEAD(&conf->hold_list);
6897 INIT_LIST_HEAD(&conf->delayed_list);
6898 INIT_LIST_HEAD(&conf->bitmap_list);
6899 init_llist_head(&conf->released_stripes);
6900 atomic_set(&conf->active_stripes, 0);
6901 atomic_set(&conf->preread_active_stripes, 0);
6902 atomic_set(&conf->active_aligned_reads, 0);
6903 spin_lock_init(&conf->pending_bios_lock);
6904 conf->batch_bio_dispatch = true;
6905 rdev_for_each(rdev, mddev) {
6906 if (test_bit(Journal, &rdev->flags))
6907 continue;
6908 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6909 conf->batch_bio_dispatch = false;
6910 break;
6911 }
6912 }
6913
6914 conf->bypass_threshold = BYPASS_THRESHOLD;
6915 conf->recovery_disabled = mddev->recovery_disabled - 1;
6916
6917 conf->raid_disks = mddev->raid_disks;
6918 if (mddev->reshape_position == MaxSector)
6919 conf->previous_raid_disks = mddev->raid_disks;
6920 else
6921 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6922 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6923
6924 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6925 GFP_KERNEL);
6926
6927 if (!conf->disks)
6928 goto abort;
6929
6930 for (i = 0; i < max_disks; i++) {
6931 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6932 if (!conf->disks[i].extra_page)
6933 goto abort;
6934 }
6935
6936 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
6937 if (!conf->bio_split)
6938 goto abort;
6939 conf->mddev = mddev;
6940
6941 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6942 goto abort;
6943
6944 /* We init hash_locks[0] separately to that it can be used
6945 * as the reference lock in the spin_lock_nest_lock() call
6946 * in lock_all_device_hash_locks_irq in order to convince
6947 * lockdep that we know what we are doing.
6948 */
6949 spin_lock_init(conf->hash_locks);
6950 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6951 spin_lock_init(conf->hash_locks + i);
6952
6953 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6954 INIT_LIST_HEAD(conf->inactive_list + i);
6955
6956 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6957 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6958
6959 atomic_set(&conf->r5c_cached_full_stripes, 0);
6960 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6961 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6962 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6963 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6964 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6965
6966 conf->level = mddev->new_level;
6967 conf->chunk_sectors = mddev->new_chunk_sectors;
6968 if (raid5_alloc_percpu(conf) != 0)
6969 goto abort;
6970
6971 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6972
6973 rdev_for_each(rdev, mddev) {
6974 raid_disk = rdev->raid_disk;
6975 if (raid_disk >= max_disks
6976 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6977 continue;
6978 disk = conf->disks + raid_disk;
6979
6980 if (test_bit(Replacement, &rdev->flags)) {
6981 if (disk->replacement)
6982 goto abort;
6983 disk->replacement = rdev;
6984 } else {
6985 if (disk->rdev)
6986 goto abort;
6987 disk->rdev = rdev;
6988 }
6989
6990 if (test_bit(In_sync, &rdev->flags)) {
6991 char b[BDEVNAME_SIZE];
6992 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6993 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6994 } else if (rdev->saved_raid_disk != raid_disk)
6995 /* Cannot rely on bitmap to complete recovery */
6996 conf->fullsync = 1;
6997 }
6998
6999 conf->level = mddev->new_level;
7000 if (conf->level == 6) {
7001 conf->max_degraded = 2;
7002 if (raid6_call.xor_syndrome)
7003 conf->rmw_level = PARITY_ENABLE_RMW;
7004 else
7005 conf->rmw_level = PARITY_DISABLE_RMW;
7006 } else {
7007 conf->max_degraded = 1;
7008 conf->rmw_level = PARITY_ENABLE_RMW;
7009 }
7010 conf->algorithm = mddev->new_layout;
7011 conf->reshape_progress = mddev->reshape_position;
7012 if (conf->reshape_progress != MaxSector) {
7013 conf->prev_chunk_sectors = mddev->chunk_sectors;
7014 conf->prev_algo = mddev->layout;
7015 } else {
7016 conf->prev_chunk_sectors = conf->chunk_sectors;
7017 conf->prev_algo = conf->algorithm;
7018 }
7019
7020 conf->min_nr_stripes = NR_STRIPES;
7021 if (mddev->reshape_position != MaxSector) {
7022 int stripes = max_t(int,
7023 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7024 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7025 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7026 if (conf->min_nr_stripes != NR_STRIPES)
7027 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7028 mdname(mddev), conf->min_nr_stripes);
7029 }
7030 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7031 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7032 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7033 if (grow_stripes(conf, conf->min_nr_stripes)) {
7034 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7035 mdname(mddev), memory);
7036 goto abort;
7037 } else
7038 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7039 /*
7040 * Losing a stripe head costs more than the time to refill it,
7041 * it reduces the queue depth and so can hurt throughput.
7042 * So set it rather large, scaled by number of devices.
7043 */
7044 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7045 conf->shrinker.scan_objects = raid5_cache_scan;
7046 conf->shrinker.count_objects = raid5_cache_count;
7047 conf->shrinker.batch = 128;
7048 conf->shrinker.flags = 0;
7049 if (register_shrinker(&conf->shrinker)) {
7050 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7051 mdname(mddev));
7052 goto abort;
7053 }
7054
7055 sprintf(pers_name, "raid%d", mddev->new_level);
7056 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7057 if (!conf->thread) {
7058 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7059 mdname(mddev));
7060 goto abort;
7061 }
7062
7063 return conf;
7064
7065 abort:
7066 if (conf) {
7067 free_conf(conf);
7068 return ERR_PTR(-EIO);
7069 } else
7070 return ERR_PTR(-ENOMEM);
7071 }
7072
7073 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7074 {
7075 switch (algo) {
7076 case ALGORITHM_PARITY_0:
7077 if (raid_disk < max_degraded)
7078 return 1;
7079 break;
7080 case ALGORITHM_PARITY_N:
7081 if (raid_disk >= raid_disks - max_degraded)
7082 return 1;
7083 break;
7084 case ALGORITHM_PARITY_0_6:
7085 if (raid_disk == 0 ||
7086 raid_disk == raid_disks - 1)
7087 return 1;
7088 break;
7089 case ALGORITHM_LEFT_ASYMMETRIC_6:
7090 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7091 case ALGORITHM_LEFT_SYMMETRIC_6:
7092 case ALGORITHM_RIGHT_SYMMETRIC_6:
7093 if (raid_disk == raid_disks - 1)
7094 return 1;
7095 }
7096 return 0;
7097 }
7098
7099 static int raid5_run(struct mddev *mddev)
7100 {
7101 struct r5conf *conf;
7102 int working_disks = 0;
7103 int dirty_parity_disks = 0;
7104 struct md_rdev *rdev;
7105 struct md_rdev *journal_dev = NULL;
7106 sector_t reshape_offset = 0;
7107 int i;
7108 long long min_offset_diff = 0;
7109 int first = 1;
7110
7111 if (mddev->recovery_cp != MaxSector)
7112 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7113 mdname(mddev));
7114
7115 rdev_for_each(rdev, mddev) {
7116 long long diff;
7117
7118 if (test_bit(Journal, &rdev->flags)) {
7119 journal_dev = rdev;
7120 continue;
7121 }
7122 if (rdev->raid_disk < 0)
7123 continue;
7124 diff = (rdev->new_data_offset - rdev->data_offset);
7125 if (first) {
7126 min_offset_diff = diff;
7127 first = 0;
7128 } else if (mddev->reshape_backwards &&
7129 diff < min_offset_diff)
7130 min_offset_diff = diff;
7131 else if (!mddev->reshape_backwards &&
7132 diff > min_offset_diff)
7133 min_offset_diff = diff;
7134 }
7135
7136 if (mddev->reshape_position != MaxSector) {
7137 /* Check that we can continue the reshape.
7138 * Difficulties arise if the stripe we would write to
7139 * next is at or after the stripe we would read from next.
7140 * For a reshape that changes the number of devices, this
7141 * is only possible for a very short time, and mdadm makes
7142 * sure that time appears to have past before assembling
7143 * the array. So we fail if that time hasn't passed.
7144 * For a reshape that keeps the number of devices the same
7145 * mdadm must be monitoring the reshape can keeping the
7146 * critical areas read-only and backed up. It will start
7147 * the array in read-only mode, so we check for that.
7148 */
7149 sector_t here_new, here_old;
7150 int old_disks;
7151 int max_degraded = (mddev->level == 6 ? 2 : 1);
7152 int chunk_sectors;
7153 int new_data_disks;
7154
7155 if (journal_dev) {
7156 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7157 mdname(mddev));
7158 return -EINVAL;
7159 }
7160
7161 if (mddev->new_level != mddev->level) {
7162 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7163 mdname(mddev));
7164 return -EINVAL;
7165 }
7166 old_disks = mddev->raid_disks - mddev->delta_disks;
7167 /* reshape_position must be on a new-stripe boundary, and one
7168 * further up in new geometry must map after here in old
7169 * geometry.
7170 * If the chunk sizes are different, then as we perform reshape
7171 * in units of the largest of the two, reshape_position needs
7172 * be a multiple of the largest chunk size times new data disks.
7173 */
7174 here_new = mddev->reshape_position;
7175 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7176 new_data_disks = mddev->raid_disks - max_degraded;
7177 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7178 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7179 mdname(mddev));
7180 return -EINVAL;
7181 }
7182 reshape_offset = here_new * chunk_sectors;
7183 /* here_new is the stripe we will write to */
7184 here_old = mddev->reshape_position;
7185 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7186 /* here_old is the first stripe that we might need to read
7187 * from */
7188 if (mddev->delta_disks == 0) {
7189 /* We cannot be sure it is safe to start an in-place
7190 * reshape. It is only safe if user-space is monitoring
7191 * and taking constant backups.
7192 * mdadm always starts a situation like this in
7193 * readonly mode so it can take control before
7194 * allowing any writes. So just check for that.
7195 */
7196 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7197 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7198 /* not really in-place - so OK */;
7199 else if (mddev->ro == 0) {
7200 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7201 mdname(mddev));
7202 return -EINVAL;
7203 }
7204 } else if (mddev->reshape_backwards
7205 ? (here_new * chunk_sectors + min_offset_diff <=
7206 here_old * chunk_sectors)
7207 : (here_new * chunk_sectors >=
7208 here_old * chunk_sectors + (-min_offset_diff))) {
7209 /* Reading from the same stripe as writing to - bad */
7210 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7211 mdname(mddev));
7212 return -EINVAL;
7213 }
7214 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7215 /* OK, we should be able to continue; */
7216 } else {
7217 BUG_ON(mddev->level != mddev->new_level);
7218 BUG_ON(mddev->layout != mddev->new_layout);
7219 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7220 BUG_ON(mddev->delta_disks != 0);
7221 }
7222
7223 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7224 test_bit(MD_HAS_PPL, &mddev->flags)) {
7225 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7226 mdname(mddev));
7227 clear_bit(MD_HAS_PPL, &mddev->flags);
7228 }
7229
7230 if (mddev->private == NULL)
7231 conf = setup_conf(mddev);
7232 else
7233 conf = mddev->private;
7234
7235 if (IS_ERR(conf))
7236 return PTR_ERR(conf);
7237
7238 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7239 if (!journal_dev) {
7240 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7241 mdname(mddev));
7242 mddev->ro = 1;
7243 set_disk_ro(mddev->gendisk, 1);
7244 } else if (mddev->recovery_cp == MaxSector)
7245 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7246 }
7247
7248 conf->min_offset_diff = min_offset_diff;
7249 mddev->thread = conf->thread;
7250 conf->thread = NULL;
7251 mddev->private = conf;
7252
7253 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7254 i++) {
7255 rdev = conf->disks[i].rdev;
7256 if (!rdev && conf->disks[i].replacement) {
7257 /* The replacement is all we have yet */
7258 rdev = conf->disks[i].replacement;
7259 conf->disks[i].replacement = NULL;
7260 clear_bit(Replacement, &rdev->flags);
7261 conf->disks[i].rdev = rdev;
7262 }
7263 if (!rdev)
7264 continue;
7265 if (conf->disks[i].replacement &&
7266 conf->reshape_progress != MaxSector) {
7267 /* replacements and reshape simply do not mix. */
7268 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7269 goto abort;
7270 }
7271 if (test_bit(In_sync, &rdev->flags)) {
7272 working_disks++;
7273 continue;
7274 }
7275 /* This disc is not fully in-sync. However if it
7276 * just stored parity (beyond the recovery_offset),
7277 * when we don't need to be concerned about the
7278 * array being dirty.
7279 * When reshape goes 'backwards', we never have
7280 * partially completed devices, so we only need
7281 * to worry about reshape going forwards.
7282 */
7283 /* Hack because v0.91 doesn't store recovery_offset properly. */
7284 if (mddev->major_version == 0 &&
7285 mddev->minor_version > 90)
7286 rdev->recovery_offset = reshape_offset;
7287
7288 if (rdev->recovery_offset < reshape_offset) {
7289 /* We need to check old and new layout */
7290 if (!only_parity(rdev->raid_disk,
7291 conf->algorithm,
7292 conf->raid_disks,
7293 conf->max_degraded))
7294 continue;
7295 }
7296 if (!only_parity(rdev->raid_disk,
7297 conf->prev_algo,
7298 conf->previous_raid_disks,
7299 conf->max_degraded))
7300 continue;
7301 dirty_parity_disks++;
7302 }
7303
7304 /*
7305 * 0 for a fully functional array, 1 or 2 for a degraded array.
7306 */
7307 mddev->degraded = raid5_calc_degraded(conf);
7308
7309 if (has_failed(conf)) {
7310 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7311 mdname(mddev), mddev->degraded, conf->raid_disks);
7312 goto abort;
7313 }
7314
7315 /* device size must be a multiple of chunk size */
7316 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7317 mddev->resync_max_sectors = mddev->dev_sectors;
7318
7319 if (mddev->degraded > dirty_parity_disks &&
7320 mddev->recovery_cp != MaxSector) {
7321 if (test_bit(MD_HAS_PPL, &mddev->flags))
7322 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7323 mdname(mddev));
7324 else if (mddev->ok_start_degraded)
7325 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7326 mdname(mddev));
7327 else {
7328 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7329 mdname(mddev));
7330 goto abort;
7331 }
7332 }
7333
7334 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7335 mdname(mddev), conf->level,
7336 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7337 mddev->new_layout);
7338
7339 print_raid5_conf(conf);
7340
7341 if (conf->reshape_progress != MaxSector) {
7342 conf->reshape_safe = conf->reshape_progress;
7343 atomic_set(&conf->reshape_stripes, 0);
7344 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7345 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7346 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7347 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7348 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7349 "reshape");
7350 }
7351
7352 /* Ok, everything is just fine now */
7353 if (mddev->to_remove == &raid5_attrs_group)
7354 mddev->to_remove = NULL;
7355 else if (mddev->kobj.sd &&
7356 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7357 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7358 mdname(mddev));
7359 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7360
7361 if (mddev->queue) {
7362 int chunk_size;
7363 /* read-ahead size must cover two whole stripes, which
7364 * is 2 * (datadisks) * chunksize where 'n' is the
7365 * number of raid devices
7366 */
7367 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7368 int stripe = data_disks *
7369 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7370 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7371 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7372
7373 chunk_size = mddev->chunk_sectors << 9;
7374 blk_queue_io_min(mddev->queue, chunk_size);
7375 blk_queue_io_opt(mddev->queue, chunk_size *
7376 (conf->raid_disks - conf->max_degraded));
7377 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7378 /*
7379 * We can only discard a whole stripe. It doesn't make sense to
7380 * discard data disk but write parity disk
7381 */
7382 stripe = stripe * PAGE_SIZE;
7383 /* Round up to power of 2, as discard handling
7384 * currently assumes that */
7385 while ((stripe-1) & stripe)
7386 stripe = (stripe | (stripe-1)) + 1;
7387 mddev->queue->limits.discard_alignment = stripe;
7388 mddev->queue->limits.discard_granularity = stripe;
7389
7390 blk_queue_max_write_same_sectors(mddev->queue, 0);
7391 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7392
7393 rdev_for_each(rdev, mddev) {
7394 disk_stack_limits(mddev->gendisk, rdev->bdev,
7395 rdev->data_offset << 9);
7396 disk_stack_limits(mddev->gendisk, rdev->bdev,
7397 rdev->new_data_offset << 9);
7398 }
7399
7400 /*
7401 * zeroing is required, otherwise data
7402 * could be lost. Consider a scenario: discard a stripe
7403 * (the stripe could be inconsistent if
7404 * discard_zeroes_data is 0); write one disk of the
7405 * stripe (the stripe could be inconsistent again
7406 * depending on which disks are used to calculate
7407 * parity); the disk is broken; The stripe data of this
7408 * disk is lost.
7409 *
7410 * We only allow DISCARD if the sysadmin has confirmed that
7411 * only safe devices are in use by setting a module parameter.
7412 * A better idea might be to turn DISCARD into WRITE_ZEROES
7413 * requests, as that is required to be safe.
7414 */
7415 if (devices_handle_discard_safely &&
7416 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7417 mddev->queue->limits.discard_granularity >= stripe)
7418 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7419 mddev->queue);
7420 else
7421 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7422 mddev->queue);
7423
7424 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7425 }
7426
7427 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7428 goto abort;
7429
7430 return 0;
7431 abort:
7432 md_unregister_thread(&mddev->thread);
7433 print_raid5_conf(conf);
7434 free_conf(conf);
7435 mddev->private = NULL;
7436 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7437 return -EIO;
7438 }
7439
7440 static void raid5_free(struct mddev *mddev, void *priv)
7441 {
7442 struct r5conf *conf = priv;
7443
7444 free_conf(conf);
7445 mddev->to_remove = &raid5_attrs_group;
7446 }
7447
7448 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7449 {
7450 struct r5conf *conf = mddev->private;
7451 int i;
7452
7453 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7454 conf->chunk_sectors / 2, mddev->layout);
7455 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7456 rcu_read_lock();
7457 for (i = 0; i < conf->raid_disks; i++) {
7458 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7459 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7460 }
7461 rcu_read_unlock();
7462 seq_printf (seq, "]");
7463 }
7464
7465 static void print_raid5_conf (struct r5conf *conf)
7466 {
7467 int i;
7468 struct disk_info *tmp;
7469
7470 pr_debug("RAID conf printout:\n");
7471 if (!conf) {
7472 pr_debug("(conf==NULL)\n");
7473 return;
7474 }
7475 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7476 conf->raid_disks,
7477 conf->raid_disks - conf->mddev->degraded);
7478
7479 for (i = 0; i < conf->raid_disks; i++) {
7480 char b[BDEVNAME_SIZE];
7481 tmp = conf->disks + i;
7482 if (tmp->rdev)
7483 pr_debug(" disk %d, o:%d, dev:%s\n",
7484 i, !test_bit(Faulty, &tmp->rdev->flags),
7485 bdevname(tmp->rdev->bdev, b));
7486 }
7487 }
7488
7489 static int raid5_spare_active(struct mddev *mddev)
7490 {
7491 int i;
7492 struct r5conf *conf = mddev->private;
7493 struct disk_info *tmp;
7494 int count = 0;
7495 unsigned long flags;
7496
7497 for (i = 0; i < conf->raid_disks; i++) {
7498 tmp = conf->disks + i;
7499 if (tmp->replacement
7500 && tmp->replacement->recovery_offset == MaxSector
7501 && !test_bit(Faulty, &tmp->replacement->flags)
7502 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7503 /* Replacement has just become active. */
7504 if (!tmp->rdev
7505 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7506 count++;
7507 if (tmp->rdev) {
7508 /* Replaced device not technically faulty,
7509 * but we need to be sure it gets removed
7510 * and never re-added.
7511 */
7512 set_bit(Faulty, &tmp->rdev->flags);
7513 sysfs_notify_dirent_safe(
7514 tmp->rdev->sysfs_state);
7515 }
7516 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7517 } else if (tmp->rdev
7518 && tmp->rdev->recovery_offset == MaxSector
7519 && !test_bit(Faulty, &tmp->rdev->flags)
7520 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7521 count++;
7522 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7523 }
7524 }
7525 spin_lock_irqsave(&conf->device_lock, flags);
7526 mddev->degraded = raid5_calc_degraded(conf);
7527 spin_unlock_irqrestore(&conf->device_lock, flags);
7528 print_raid5_conf(conf);
7529 return count;
7530 }
7531
7532 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7533 {
7534 struct r5conf *conf = mddev->private;
7535 int err = 0;
7536 int number = rdev->raid_disk;
7537 struct md_rdev **rdevp;
7538 struct disk_info *p = conf->disks + number;
7539
7540 print_raid5_conf(conf);
7541 if (test_bit(Journal, &rdev->flags) && conf->log) {
7542 /*
7543 * we can't wait pending write here, as this is called in
7544 * raid5d, wait will deadlock.
7545 * neilb: there is no locking about new writes here,
7546 * so this cannot be safe.
7547 */
7548 if (atomic_read(&conf->active_stripes) ||
7549 atomic_read(&conf->r5c_cached_full_stripes) ||
7550 atomic_read(&conf->r5c_cached_partial_stripes)) {
7551 return -EBUSY;
7552 }
7553 log_exit(conf);
7554 return 0;
7555 }
7556 if (rdev == p->rdev)
7557 rdevp = &p->rdev;
7558 else if (rdev == p->replacement)
7559 rdevp = &p->replacement;
7560 else
7561 return 0;
7562
7563 if (number >= conf->raid_disks &&
7564 conf->reshape_progress == MaxSector)
7565 clear_bit(In_sync, &rdev->flags);
7566
7567 if (test_bit(In_sync, &rdev->flags) ||
7568 atomic_read(&rdev->nr_pending)) {
7569 err = -EBUSY;
7570 goto abort;
7571 }
7572 /* Only remove non-faulty devices if recovery
7573 * isn't possible.
7574 */
7575 if (!test_bit(Faulty, &rdev->flags) &&
7576 mddev->recovery_disabled != conf->recovery_disabled &&
7577 !has_failed(conf) &&
7578 (!p->replacement || p->replacement == rdev) &&
7579 number < conf->raid_disks) {
7580 err = -EBUSY;
7581 goto abort;
7582 }
7583 *rdevp = NULL;
7584 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7585 synchronize_rcu();
7586 if (atomic_read(&rdev->nr_pending)) {
7587 /* lost the race, try later */
7588 err = -EBUSY;
7589 *rdevp = rdev;
7590 }
7591 }
7592 if (!err) {
7593 err = log_modify(conf, rdev, false);
7594 if (err)
7595 goto abort;
7596 }
7597 if (p->replacement) {
7598 /* We must have just cleared 'rdev' */
7599 p->rdev = p->replacement;
7600 clear_bit(Replacement, &p->replacement->flags);
7601 smp_mb(); /* Make sure other CPUs may see both as identical
7602 * but will never see neither - if they are careful
7603 */
7604 p->replacement = NULL;
7605
7606 if (!err)
7607 err = log_modify(conf, p->rdev, true);
7608 }
7609
7610 clear_bit(WantReplacement, &rdev->flags);
7611 abort:
7612
7613 print_raid5_conf(conf);
7614 return err;
7615 }
7616
7617 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7618 {
7619 struct r5conf *conf = mddev->private;
7620 int err = -EEXIST;
7621 int disk;
7622 struct disk_info *p;
7623 int first = 0;
7624 int last = conf->raid_disks - 1;
7625
7626 if (test_bit(Journal, &rdev->flags)) {
7627 if (conf->log)
7628 return -EBUSY;
7629
7630 rdev->raid_disk = 0;
7631 /*
7632 * The array is in readonly mode if journal is missing, so no
7633 * write requests running. We should be safe
7634 */
7635 log_init(conf, rdev, false);
7636 return 0;
7637 }
7638 if (mddev->recovery_disabled == conf->recovery_disabled)
7639 return -EBUSY;
7640
7641 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7642 /* no point adding a device */
7643 return -EINVAL;
7644
7645 if (rdev->raid_disk >= 0)
7646 first = last = rdev->raid_disk;
7647
7648 /*
7649 * find the disk ... but prefer rdev->saved_raid_disk
7650 * if possible.
7651 */
7652 if (rdev->saved_raid_disk >= 0 &&
7653 rdev->saved_raid_disk >= first &&
7654 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7655 first = rdev->saved_raid_disk;
7656
7657 for (disk = first; disk <= last; disk++) {
7658 p = conf->disks + disk;
7659 if (p->rdev == NULL) {
7660 clear_bit(In_sync, &rdev->flags);
7661 rdev->raid_disk = disk;
7662 if (rdev->saved_raid_disk != disk)
7663 conf->fullsync = 1;
7664 rcu_assign_pointer(p->rdev, rdev);
7665
7666 err = log_modify(conf, rdev, true);
7667
7668 goto out;
7669 }
7670 }
7671 for (disk = first; disk <= last; disk++) {
7672 p = conf->disks + disk;
7673 if (test_bit(WantReplacement, &p->rdev->flags) &&
7674 p->replacement == NULL) {
7675 clear_bit(In_sync, &rdev->flags);
7676 set_bit(Replacement, &rdev->flags);
7677 rdev->raid_disk = disk;
7678 err = 0;
7679 conf->fullsync = 1;
7680 rcu_assign_pointer(p->replacement, rdev);
7681 break;
7682 }
7683 }
7684 out:
7685 print_raid5_conf(conf);
7686 return err;
7687 }
7688
7689 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7690 {
7691 /* no resync is happening, and there is enough space
7692 * on all devices, so we can resize.
7693 * We need to make sure resync covers any new space.
7694 * If the array is shrinking we should possibly wait until
7695 * any io in the removed space completes, but it hardly seems
7696 * worth it.
7697 */
7698 sector_t newsize;
7699 struct r5conf *conf = mddev->private;
7700
7701 if (conf->log || raid5_has_ppl(conf))
7702 return -EINVAL;
7703 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7704 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7705 if (mddev->external_size &&
7706 mddev->array_sectors > newsize)
7707 return -EINVAL;
7708 if (mddev->bitmap) {
7709 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7710 if (ret)
7711 return ret;
7712 }
7713 md_set_array_sectors(mddev, newsize);
7714 if (sectors > mddev->dev_sectors &&
7715 mddev->recovery_cp > mddev->dev_sectors) {
7716 mddev->recovery_cp = mddev->dev_sectors;
7717 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7718 }
7719 mddev->dev_sectors = sectors;
7720 mddev->resync_max_sectors = sectors;
7721 return 0;
7722 }
7723
7724 static int check_stripe_cache(struct mddev *mddev)
7725 {
7726 /* Can only proceed if there are plenty of stripe_heads.
7727 * We need a minimum of one full stripe,, and for sensible progress
7728 * it is best to have about 4 times that.
7729 * If we require 4 times, then the default 256 4K stripe_heads will
7730 * allow for chunk sizes up to 256K, which is probably OK.
7731 * If the chunk size is greater, user-space should request more
7732 * stripe_heads first.
7733 */
7734 struct r5conf *conf = mddev->private;
7735 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7736 > conf->min_nr_stripes ||
7737 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7738 > conf->min_nr_stripes) {
7739 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7740 mdname(mddev),
7741 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7742 / STRIPE_SIZE)*4);
7743 return 0;
7744 }
7745 return 1;
7746 }
7747
7748 static int check_reshape(struct mddev *mddev)
7749 {
7750 struct r5conf *conf = mddev->private;
7751
7752 if (conf->log || raid5_has_ppl(conf))
7753 return -EINVAL;
7754 if (mddev->delta_disks == 0 &&
7755 mddev->new_layout == mddev->layout &&
7756 mddev->new_chunk_sectors == mddev->chunk_sectors)
7757 return 0; /* nothing to do */
7758 if (has_failed(conf))
7759 return -EINVAL;
7760 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7761 /* We might be able to shrink, but the devices must
7762 * be made bigger first.
7763 * For raid6, 4 is the minimum size.
7764 * Otherwise 2 is the minimum
7765 */
7766 int min = 2;
7767 if (mddev->level == 6)
7768 min = 4;
7769 if (mddev->raid_disks + mddev->delta_disks < min)
7770 return -EINVAL;
7771 }
7772
7773 if (!check_stripe_cache(mddev))
7774 return -ENOSPC;
7775
7776 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7777 mddev->delta_disks > 0)
7778 if (resize_chunks(conf,
7779 conf->previous_raid_disks
7780 + max(0, mddev->delta_disks),
7781 max(mddev->new_chunk_sectors,
7782 mddev->chunk_sectors)
7783 ) < 0)
7784 return -ENOMEM;
7785
7786 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7787 return 0; /* never bother to shrink */
7788 return resize_stripes(conf, (conf->previous_raid_disks
7789 + mddev->delta_disks));
7790 }
7791
7792 static int raid5_start_reshape(struct mddev *mddev)
7793 {
7794 struct r5conf *conf = mddev->private;
7795 struct md_rdev *rdev;
7796 int spares = 0;
7797 unsigned long flags;
7798
7799 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7800 return -EBUSY;
7801
7802 if (!check_stripe_cache(mddev))
7803 return -ENOSPC;
7804
7805 if (has_failed(conf))
7806 return -EINVAL;
7807
7808 rdev_for_each(rdev, mddev) {
7809 if (!test_bit(In_sync, &rdev->flags)
7810 && !test_bit(Faulty, &rdev->flags))
7811 spares++;
7812 }
7813
7814 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7815 /* Not enough devices even to make a degraded array
7816 * of that size
7817 */
7818 return -EINVAL;
7819
7820 /* Refuse to reduce size of the array. Any reductions in
7821 * array size must be through explicit setting of array_size
7822 * attribute.
7823 */
7824 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7825 < mddev->array_sectors) {
7826 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7827 mdname(mddev));
7828 return -EINVAL;
7829 }
7830
7831 atomic_set(&conf->reshape_stripes, 0);
7832 spin_lock_irq(&conf->device_lock);
7833 write_seqcount_begin(&conf->gen_lock);
7834 conf->previous_raid_disks = conf->raid_disks;
7835 conf->raid_disks += mddev->delta_disks;
7836 conf->prev_chunk_sectors = conf->chunk_sectors;
7837 conf->chunk_sectors = mddev->new_chunk_sectors;
7838 conf->prev_algo = conf->algorithm;
7839 conf->algorithm = mddev->new_layout;
7840 conf->generation++;
7841 /* Code that selects data_offset needs to see the generation update
7842 * if reshape_progress has been set - so a memory barrier needed.
7843 */
7844 smp_mb();
7845 if (mddev->reshape_backwards)
7846 conf->reshape_progress = raid5_size(mddev, 0, 0);
7847 else
7848 conf->reshape_progress = 0;
7849 conf->reshape_safe = conf->reshape_progress;
7850 write_seqcount_end(&conf->gen_lock);
7851 spin_unlock_irq(&conf->device_lock);
7852
7853 /* Now make sure any requests that proceeded on the assumption
7854 * the reshape wasn't running - like Discard or Read - have
7855 * completed.
7856 */
7857 mddev_suspend(mddev);
7858 mddev_resume(mddev);
7859
7860 /* Add some new drives, as many as will fit.
7861 * We know there are enough to make the newly sized array work.
7862 * Don't add devices if we are reducing the number of
7863 * devices in the array. This is because it is not possible
7864 * to correctly record the "partially reconstructed" state of
7865 * such devices during the reshape and confusion could result.
7866 */
7867 if (mddev->delta_disks >= 0) {
7868 rdev_for_each(rdev, mddev)
7869 if (rdev->raid_disk < 0 &&
7870 !test_bit(Faulty, &rdev->flags)) {
7871 if (raid5_add_disk(mddev, rdev) == 0) {
7872 if (rdev->raid_disk
7873 >= conf->previous_raid_disks)
7874 set_bit(In_sync, &rdev->flags);
7875 else
7876 rdev->recovery_offset = 0;
7877
7878 if (sysfs_link_rdev(mddev, rdev))
7879 /* Failure here is OK */;
7880 }
7881 } else if (rdev->raid_disk >= conf->previous_raid_disks
7882 && !test_bit(Faulty, &rdev->flags)) {
7883 /* This is a spare that was manually added */
7884 set_bit(In_sync, &rdev->flags);
7885 }
7886
7887 /* When a reshape changes the number of devices,
7888 * ->degraded is measured against the larger of the
7889 * pre and post number of devices.
7890 */
7891 spin_lock_irqsave(&conf->device_lock, flags);
7892 mddev->degraded = raid5_calc_degraded(conf);
7893 spin_unlock_irqrestore(&conf->device_lock, flags);
7894 }
7895 mddev->raid_disks = conf->raid_disks;
7896 mddev->reshape_position = conf->reshape_progress;
7897 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7898
7899 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7900 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7901 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7902 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7903 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7904 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7905 "reshape");
7906 if (!mddev->sync_thread) {
7907 mddev->recovery = 0;
7908 spin_lock_irq(&conf->device_lock);
7909 write_seqcount_begin(&conf->gen_lock);
7910 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7911 mddev->new_chunk_sectors =
7912 conf->chunk_sectors = conf->prev_chunk_sectors;
7913 mddev->new_layout = conf->algorithm = conf->prev_algo;
7914 rdev_for_each(rdev, mddev)
7915 rdev->new_data_offset = rdev->data_offset;
7916 smp_wmb();
7917 conf->generation --;
7918 conf->reshape_progress = MaxSector;
7919 mddev->reshape_position = MaxSector;
7920 write_seqcount_end(&conf->gen_lock);
7921 spin_unlock_irq(&conf->device_lock);
7922 return -EAGAIN;
7923 }
7924 conf->reshape_checkpoint = jiffies;
7925 md_wakeup_thread(mddev->sync_thread);
7926 md_new_event(mddev);
7927 return 0;
7928 }
7929
7930 /* This is called from the reshape thread and should make any
7931 * changes needed in 'conf'
7932 */
7933 static void end_reshape(struct r5conf *conf)
7934 {
7935
7936 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7937 struct md_rdev *rdev;
7938
7939 spin_lock_irq(&conf->device_lock);
7940 conf->previous_raid_disks = conf->raid_disks;
7941 rdev_for_each(rdev, conf->mddev)
7942 rdev->data_offset = rdev->new_data_offset;
7943 smp_wmb();
7944 conf->reshape_progress = MaxSector;
7945 conf->mddev->reshape_position = MaxSector;
7946 spin_unlock_irq(&conf->device_lock);
7947 wake_up(&conf->wait_for_overlap);
7948
7949 /* read-ahead size must cover two whole stripes, which is
7950 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7951 */
7952 if (conf->mddev->queue) {
7953 int data_disks = conf->raid_disks - conf->max_degraded;
7954 int stripe = data_disks * ((conf->chunk_sectors << 9)
7955 / PAGE_SIZE);
7956 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7957 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7958 }
7959 }
7960 }
7961
7962 /* This is called from the raid5d thread with mddev_lock held.
7963 * It makes config changes to the device.
7964 */
7965 static void raid5_finish_reshape(struct mddev *mddev)
7966 {
7967 struct r5conf *conf = mddev->private;
7968
7969 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7970
7971 if (mddev->delta_disks > 0) {
7972 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7973 if (mddev->queue) {
7974 set_capacity(mddev->gendisk, mddev->array_sectors);
7975 revalidate_disk(mddev->gendisk);
7976 }
7977 } else {
7978 int d;
7979 spin_lock_irq(&conf->device_lock);
7980 mddev->degraded = raid5_calc_degraded(conf);
7981 spin_unlock_irq(&conf->device_lock);
7982 for (d = conf->raid_disks ;
7983 d < conf->raid_disks - mddev->delta_disks;
7984 d++) {
7985 struct md_rdev *rdev = conf->disks[d].rdev;
7986 if (rdev)
7987 clear_bit(In_sync, &rdev->flags);
7988 rdev = conf->disks[d].replacement;
7989 if (rdev)
7990 clear_bit(In_sync, &rdev->flags);
7991 }
7992 }
7993 mddev->layout = conf->algorithm;
7994 mddev->chunk_sectors = conf->chunk_sectors;
7995 mddev->reshape_position = MaxSector;
7996 mddev->delta_disks = 0;
7997 mddev->reshape_backwards = 0;
7998 }
7999 }
8000
8001 static void raid5_quiesce(struct mddev *mddev, int state)
8002 {
8003 struct r5conf *conf = mddev->private;
8004
8005 switch(state) {
8006 case 2: /* resume for a suspend */
8007 wake_up(&conf->wait_for_overlap);
8008 break;
8009
8010 case 1: /* stop all writes */
8011 lock_all_device_hash_locks_irq(conf);
8012 /* '2' tells resync/reshape to pause so that all
8013 * active stripes can drain
8014 */
8015 r5c_flush_cache(conf, INT_MAX);
8016 conf->quiesce = 2;
8017 wait_event_cmd(conf->wait_for_quiescent,
8018 atomic_read(&conf->active_stripes) == 0 &&
8019 atomic_read(&conf->active_aligned_reads) == 0,
8020 unlock_all_device_hash_locks_irq(conf),
8021 lock_all_device_hash_locks_irq(conf));
8022 conf->quiesce = 1;
8023 unlock_all_device_hash_locks_irq(conf);
8024 /* allow reshape to continue */
8025 wake_up(&conf->wait_for_overlap);
8026 break;
8027
8028 case 0: /* re-enable writes */
8029 lock_all_device_hash_locks_irq(conf);
8030 conf->quiesce = 0;
8031 wake_up(&conf->wait_for_quiescent);
8032 wake_up(&conf->wait_for_overlap);
8033 unlock_all_device_hash_locks_irq(conf);
8034 break;
8035 }
8036 r5l_quiesce(conf->log, state);
8037 }
8038
8039 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8040 {
8041 struct r0conf *raid0_conf = mddev->private;
8042 sector_t sectors;
8043
8044 /* for raid0 takeover only one zone is supported */
8045 if (raid0_conf->nr_strip_zones > 1) {
8046 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8047 mdname(mddev));
8048 return ERR_PTR(-EINVAL);
8049 }
8050
8051 sectors = raid0_conf->strip_zone[0].zone_end;
8052 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8053 mddev->dev_sectors = sectors;
8054 mddev->new_level = level;
8055 mddev->new_layout = ALGORITHM_PARITY_N;
8056 mddev->new_chunk_sectors = mddev->chunk_sectors;
8057 mddev->raid_disks += 1;
8058 mddev->delta_disks = 1;
8059 /* make sure it will be not marked as dirty */
8060 mddev->recovery_cp = MaxSector;
8061
8062 return setup_conf(mddev);
8063 }
8064
8065 static void *raid5_takeover_raid1(struct mddev *mddev)
8066 {
8067 int chunksect;
8068 void *ret;
8069
8070 if (mddev->raid_disks != 2 ||
8071 mddev->degraded > 1)
8072 return ERR_PTR(-EINVAL);
8073
8074 /* Should check if there are write-behind devices? */
8075
8076 chunksect = 64*2; /* 64K by default */
8077
8078 /* The array must be an exact multiple of chunksize */
8079 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8080 chunksect >>= 1;
8081
8082 if ((chunksect<<9) < STRIPE_SIZE)
8083 /* array size does not allow a suitable chunk size */
8084 return ERR_PTR(-EINVAL);
8085
8086 mddev->new_level = 5;
8087 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8088 mddev->new_chunk_sectors = chunksect;
8089
8090 ret = setup_conf(mddev);
8091 if (!IS_ERR(ret))
8092 mddev_clear_unsupported_flags(mddev,
8093 UNSUPPORTED_MDDEV_FLAGS);
8094 return ret;
8095 }
8096
8097 static void *raid5_takeover_raid6(struct mddev *mddev)
8098 {
8099 int new_layout;
8100
8101 switch (mddev->layout) {
8102 case ALGORITHM_LEFT_ASYMMETRIC_6:
8103 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8104 break;
8105 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8106 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8107 break;
8108 case ALGORITHM_LEFT_SYMMETRIC_6:
8109 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8110 break;
8111 case ALGORITHM_RIGHT_SYMMETRIC_6:
8112 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8113 break;
8114 case ALGORITHM_PARITY_0_6:
8115 new_layout = ALGORITHM_PARITY_0;
8116 break;
8117 case ALGORITHM_PARITY_N:
8118 new_layout = ALGORITHM_PARITY_N;
8119 break;
8120 default:
8121 return ERR_PTR(-EINVAL);
8122 }
8123 mddev->new_level = 5;
8124 mddev->new_layout = new_layout;
8125 mddev->delta_disks = -1;
8126 mddev->raid_disks -= 1;
8127 return setup_conf(mddev);
8128 }
8129
8130 static int raid5_check_reshape(struct mddev *mddev)
8131 {
8132 /* For a 2-drive array, the layout and chunk size can be changed
8133 * immediately as not restriping is needed.
8134 * For larger arrays we record the new value - after validation
8135 * to be used by a reshape pass.
8136 */
8137 struct r5conf *conf = mddev->private;
8138 int new_chunk = mddev->new_chunk_sectors;
8139
8140 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8141 return -EINVAL;
8142 if (new_chunk > 0) {
8143 if (!is_power_of_2(new_chunk))
8144 return -EINVAL;
8145 if (new_chunk < (PAGE_SIZE>>9))
8146 return -EINVAL;
8147 if (mddev->array_sectors & (new_chunk-1))
8148 /* not factor of array size */
8149 return -EINVAL;
8150 }
8151
8152 /* They look valid */
8153
8154 if (mddev->raid_disks == 2) {
8155 /* can make the change immediately */
8156 if (mddev->new_layout >= 0) {
8157 conf->algorithm = mddev->new_layout;
8158 mddev->layout = mddev->new_layout;
8159 }
8160 if (new_chunk > 0) {
8161 conf->chunk_sectors = new_chunk ;
8162 mddev->chunk_sectors = new_chunk;
8163 }
8164 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8165 md_wakeup_thread(mddev->thread);
8166 }
8167 return check_reshape(mddev);
8168 }
8169
8170 static int raid6_check_reshape(struct mddev *mddev)
8171 {
8172 int new_chunk = mddev->new_chunk_sectors;
8173
8174 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8175 return -EINVAL;
8176 if (new_chunk > 0) {
8177 if (!is_power_of_2(new_chunk))
8178 return -EINVAL;
8179 if (new_chunk < (PAGE_SIZE >> 9))
8180 return -EINVAL;
8181 if (mddev->array_sectors & (new_chunk-1))
8182 /* not factor of array size */
8183 return -EINVAL;
8184 }
8185
8186 /* They look valid */
8187 return check_reshape(mddev);
8188 }
8189
8190 static void *raid5_takeover(struct mddev *mddev)
8191 {
8192 /* raid5 can take over:
8193 * raid0 - if there is only one strip zone - make it a raid4 layout
8194 * raid1 - if there are two drives. We need to know the chunk size
8195 * raid4 - trivial - just use a raid4 layout.
8196 * raid6 - Providing it is a *_6 layout
8197 */
8198 if (mddev->level == 0)
8199 return raid45_takeover_raid0(mddev, 5);
8200 if (mddev->level == 1)
8201 return raid5_takeover_raid1(mddev);
8202 if (mddev->level == 4) {
8203 mddev->new_layout = ALGORITHM_PARITY_N;
8204 mddev->new_level = 5;
8205 return setup_conf(mddev);
8206 }
8207 if (mddev->level == 6)
8208 return raid5_takeover_raid6(mddev);
8209
8210 return ERR_PTR(-EINVAL);
8211 }
8212
8213 static void *raid4_takeover(struct mddev *mddev)
8214 {
8215 /* raid4 can take over:
8216 * raid0 - if there is only one strip zone
8217 * raid5 - if layout is right
8218 */
8219 if (mddev->level == 0)
8220 return raid45_takeover_raid0(mddev, 4);
8221 if (mddev->level == 5 &&
8222 mddev->layout == ALGORITHM_PARITY_N) {
8223 mddev->new_layout = 0;
8224 mddev->new_level = 4;
8225 return setup_conf(mddev);
8226 }
8227 return ERR_PTR(-EINVAL);
8228 }
8229
8230 static struct md_personality raid5_personality;
8231
8232 static void *raid6_takeover(struct mddev *mddev)
8233 {
8234 /* Currently can only take over a raid5. We map the
8235 * personality to an equivalent raid6 personality
8236 * with the Q block at the end.
8237 */
8238 int new_layout;
8239
8240 if (mddev->pers != &raid5_personality)
8241 return ERR_PTR(-EINVAL);
8242 if (mddev->degraded > 1)
8243 return ERR_PTR(-EINVAL);
8244 if (mddev->raid_disks > 253)
8245 return ERR_PTR(-EINVAL);
8246 if (mddev->raid_disks < 3)
8247 return ERR_PTR(-EINVAL);
8248
8249 switch (mddev->layout) {
8250 case ALGORITHM_LEFT_ASYMMETRIC:
8251 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8252 break;
8253 case ALGORITHM_RIGHT_ASYMMETRIC:
8254 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8255 break;
8256 case ALGORITHM_LEFT_SYMMETRIC:
8257 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8258 break;
8259 case ALGORITHM_RIGHT_SYMMETRIC:
8260 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8261 break;
8262 case ALGORITHM_PARITY_0:
8263 new_layout = ALGORITHM_PARITY_0_6;
8264 break;
8265 case ALGORITHM_PARITY_N:
8266 new_layout = ALGORITHM_PARITY_N;
8267 break;
8268 default:
8269 return ERR_PTR(-EINVAL);
8270 }
8271 mddev->new_level = 6;
8272 mddev->new_layout = new_layout;
8273 mddev->delta_disks = 1;
8274 mddev->raid_disks += 1;
8275 return setup_conf(mddev);
8276 }
8277
8278 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8279 {
8280 struct r5conf *conf;
8281 int err;
8282
8283 err = mddev_lock(mddev);
8284 if (err)
8285 return err;
8286 conf = mddev->private;
8287 if (!conf) {
8288 mddev_unlock(mddev);
8289 return -ENODEV;
8290 }
8291
8292 if (strncmp(buf, "ppl", 3) == 0) {
8293 /* ppl only works with RAID 5 */
8294 if (!raid5_has_ppl(conf) && conf->level == 5) {
8295 err = log_init(conf, NULL, true);
8296 if (!err) {
8297 err = resize_stripes(conf, conf->pool_size);
8298 if (err)
8299 log_exit(conf);
8300 }
8301 } else
8302 err = -EINVAL;
8303 } else if (strncmp(buf, "resync", 6) == 0) {
8304 if (raid5_has_ppl(conf)) {
8305 mddev_suspend(mddev);
8306 log_exit(conf);
8307 mddev_resume(mddev);
8308 err = resize_stripes(conf, conf->pool_size);
8309 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8310 r5l_log_disk_error(conf)) {
8311 bool journal_dev_exists = false;
8312 struct md_rdev *rdev;
8313
8314 rdev_for_each(rdev, mddev)
8315 if (test_bit(Journal, &rdev->flags)) {
8316 journal_dev_exists = true;
8317 break;
8318 }
8319
8320 if (!journal_dev_exists) {
8321 mddev_suspend(mddev);
8322 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8323 mddev_resume(mddev);
8324 } else /* need remove journal device first */
8325 err = -EBUSY;
8326 } else
8327 err = -EINVAL;
8328 } else {
8329 err = -EINVAL;
8330 }
8331
8332 if (!err)
8333 md_update_sb(mddev, 1);
8334
8335 mddev_unlock(mddev);
8336
8337 return err;
8338 }
8339
8340 static struct md_personality raid6_personality =
8341 {
8342 .name = "raid6",
8343 .level = 6,
8344 .owner = THIS_MODULE,
8345 .make_request = raid5_make_request,
8346 .run = raid5_run,
8347 .free = raid5_free,
8348 .status = raid5_status,
8349 .error_handler = raid5_error,
8350 .hot_add_disk = raid5_add_disk,
8351 .hot_remove_disk= raid5_remove_disk,
8352 .spare_active = raid5_spare_active,
8353 .sync_request = raid5_sync_request,
8354 .resize = raid5_resize,
8355 .size = raid5_size,
8356 .check_reshape = raid6_check_reshape,
8357 .start_reshape = raid5_start_reshape,
8358 .finish_reshape = raid5_finish_reshape,
8359 .quiesce = raid5_quiesce,
8360 .takeover = raid6_takeover,
8361 .congested = raid5_congested,
8362 .change_consistency_policy = raid5_change_consistency_policy,
8363 };
8364 static struct md_personality raid5_personality =
8365 {
8366 .name = "raid5",
8367 .level = 5,
8368 .owner = THIS_MODULE,
8369 .make_request = raid5_make_request,
8370 .run = raid5_run,
8371 .free = raid5_free,
8372 .status = raid5_status,
8373 .error_handler = raid5_error,
8374 .hot_add_disk = raid5_add_disk,
8375 .hot_remove_disk= raid5_remove_disk,
8376 .spare_active = raid5_spare_active,
8377 .sync_request = raid5_sync_request,
8378 .resize = raid5_resize,
8379 .size = raid5_size,
8380 .check_reshape = raid5_check_reshape,
8381 .start_reshape = raid5_start_reshape,
8382 .finish_reshape = raid5_finish_reshape,
8383 .quiesce = raid5_quiesce,
8384 .takeover = raid5_takeover,
8385 .congested = raid5_congested,
8386 .change_consistency_policy = raid5_change_consistency_policy,
8387 };
8388
8389 static struct md_personality raid4_personality =
8390 {
8391 .name = "raid4",
8392 .level = 4,
8393 .owner = THIS_MODULE,
8394 .make_request = raid5_make_request,
8395 .run = raid5_run,
8396 .free = raid5_free,
8397 .status = raid5_status,
8398 .error_handler = raid5_error,
8399 .hot_add_disk = raid5_add_disk,
8400 .hot_remove_disk= raid5_remove_disk,
8401 .spare_active = raid5_spare_active,
8402 .sync_request = raid5_sync_request,
8403 .resize = raid5_resize,
8404 .size = raid5_size,
8405 .check_reshape = raid5_check_reshape,
8406 .start_reshape = raid5_start_reshape,
8407 .finish_reshape = raid5_finish_reshape,
8408 .quiesce = raid5_quiesce,
8409 .takeover = raid4_takeover,
8410 .congested = raid5_congested,
8411 .change_consistency_policy = raid5_change_consistency_policy,
8412 };
8413
8414 static int __init raid5_init(void)
8415 {
8416 int ret;
8417
8418 raid5_wq = alloc_workqueue("raid5wq",
8419 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8420 if (!raid5_wq)
8421 return -ENOMEM;
8422
8423 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8424 "md/raid5:prepare",
8425 raid456_cpu_up_prepare,
8426 raid456_cpu_dead);
8427 if (ret) {
8428 destroy_workqueue(raid5_wq);
8429 return ret;
8430 }
8431 register_md_personality(&raid6_personality);
8432 register_md_personality(&raid5_personality);
8433 register_md_personality(&raid4_personality);
8434 return 0;
8435 }
8436
8437 static void raid5_exit(void)
8438 {
8439 unregister_md_personality(&raid6_personality);
8440 unregister_md_personality(&raid5_personality);
8441 unregister_md_personality(&raid4_personality);
8442 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8443 destroy_workqueue(raid5_wq);
8444 }
8445
8446 module_init(raid5_init);
8447 module_exit(raid5_exit);
8448 MODULE_LICENSE("GPL");
8449 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8450 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8451 MODULE_ALIAS("md-raid5");
8452 MODULE_ALIAS("md-raid4");
8453 MODULE_ALIAS("md-level-5");
8454 MODULE_ALIAS("md-level-4");
8455 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8456 MODULE_ALIAS("md-raid6");
8457 MODULE_ALIAS("md-level-6");
8458
8459 /* This used to be two separate modules, they were: */
8460 MODULE_ALIAS("raid5");
8461 MODULE_ALIAS("raid6");