]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/raid5.c
Merge branch 'for-4.10-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[mirror_ubuntu-zesty-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
66
67 #define cpu_to_group(cpu) cpu_to_node(cpu)
68 #define ANY_GROUP NUMA_NO_NODE
69
70 static bool devices_handle_discard_safely = false;
71 module_param(devices_handle_discard_safely, bool, 0644);
72 MODULE_PARM_DESC(devices_handle_discard_safely,
73 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
74 static struct workqueue_struct *raid5_wq;
75
76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 {
78 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79 return &conf->stripe_hashtbl[hash];
80 }
81
82 static inline int stripe_hash_locks_hash(sector_t sect)
83 {
84 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
85 }
86
87 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
88 {
89 spin_lock_irq(conf->hash_locks + hash);
90 spin_lock(&conf->device_lock);
91 }
92
93 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95 spin_unlock(&conf->device_lock);
96 spin_unlock_irq(conf->hash_locks + hash);
97 }
98
99 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
100 {
101 int i;
102 local_irq_disable();
103 spin_lock(conf->hash_locks);
104 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106 spin_lock(&conf->device_lock);
107 }
108
109 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
110 {
111 int i;
112 spin_unlock(&conf->device_lock);
113 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
114 spin_unlock(conf->hash_locks + i - 1);
115 local_irq_enable();
116 }
117
118 /* Find first data disk in a raid6 stripe */
119 static inline int raid6_d0(struct stripe_head *sh)
120 {
121 if (sh->ddf_layout)
122 /* ddf always start from first device */
123 return 0;
124 /* md starts just after Q block */
125 if (sh->qd_idx == sh->disks - 1)
126 return 0;
127 else
128 return sh->qd_idx + 1;
129 }
130 static inline int raid6_next_disk(int disk, int raid_disks)
131 {
132 disk++;
133 return (disk < raid_disks) ? disk : 0;
134 }
135
136 /* When walking through the disks in a raid5, starting at raid6_d0,
137 * We need to map each disk to a 'slot', where the data disks are slot
138 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
139 * is raid_disks-1. This help does that mapping.
140 */
141 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
142 int *count, int syndrome_disks)
143 {
144 int slot = *count;
145
146 if (sh->ddf_layout)
147 (*count)++;
148 if (idx == sh->pd_idx)
149 return syndrome_disks;
150 if (idx == sh->qd_idx)
151 return syndrome_disks + 1;
152 if (!sh->ddf_layout)
153 (*count)++;
154 return slot;
155 }
156
157 static void return_io(struct bio_list *return_bi)
158 {
159 struct bio *bi;
160 while ((bi = bio_list_pop(return_bi)) != NULL) {
161 bi->bi_iter.bi_size = 0;
162 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
163 bi, 0);
164 bio_endio(bi);
165 }
166 }
167
168 static void print_raid5_conf (struct r5conf *conf);
169
170 static int stripe_operations_active(struct stripe_head *sh)
171 {
172 return sh->check_state || sh->reconstruct_state ||
173 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
174 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
175 }
176
177 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
178 {
179 struct r5conf *conf = sh->raid_conf;
180 struct r5worker_group *group;
181 int thread_cnt;
182 int i, cpu = sh->cpu;
183
184 if (!cpu_online(cpu)) {
185 cpu = cpumask_any(cpu_online_mask);
186 sh->cpu = cpu;
187 }
188
189 if (list_empty(&sh->lru)) {
190 struct r5worker_group *group;
191 group = conf->worker_groups + cpu_to_group(cpu);
192 list_add_tail(&sh->lru, &group->handle_list);
193 group->stripes_cnt++;
194 sh->group = group;
195 }
196
197 if (conf->worker_cnt_per_group == 0) {
198 md_wakeup_thread(conf->mddev->thread);
199 return;
200 }
201
202 group = conf->worker_groups + cpu_to_group(sh->cpu);
203
204 group->workers[0].working = true;
205 /* at least one worker should run to avoid race */
206 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
207
208 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
209 /* wakeup more workers */
210 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
211 if (group->workers[i].working == false) {
212 group->workers[i].working = true;
213 queue_work_on(sh->cpu, raid5_wq,
214 &group->workers[i].work);
215 thread_cnt--;
216 }
217 }
218 }
219
220 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
221 struct list_head *temp_inactive_list)
222 {
223 int i;
224 int injournal = 0; /* number of date pages with R5_InJournal */
225
226 BUG_ON(!list_empty(&sh->lru));
227 BUG_ON(atomic_read(&conf->active_stripes)==0);
228
229 if (r5c_is_writeback(conf->log))
230 for (i = sh->disks; i--; )
231 if (test_bit(R5_InJournal, &sh->dev[i].flags))
232 injournal++;
233 /*
234 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
235 * data in journal, so they are not released to cached lists
236 */
237 if (conf->quiesce && r5c_is_writeback(conf->log) &&
238 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) {
239 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
240 r5c_make_stripe_write_out(sh);
241 set_bit(STRIPE_HANDLE, &sh->state);
242 }
243
244 if (test_bit(STRIPE_HANDLE, &sh->state)) {
245 if (test_bit(STRIPE_DELAYED, &sh->state) &&
246 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
247 list_add_tail(&sh->lru, &conf->delayed_list);
248 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
249 sh->bm_seq - conf->seq_write > 0)
250 list_add_tail(&sh->lru, &conf->bitmap_list);
251 else {
252 clear_bit(STRIPE_DELAYED, &sh->state);
253 clear_bit(STRIPE_BIT_DELAY, &sh->state);
254 if (conf->worker_cnt_per_group == 0) {
255 list_add_tail(&sh->lru, &conf->handle_list);
256 } else {
257 raid5_wakeup_stripe_thread(sh);
258 return;
259 }
260 }
261 md_wakeup_thread(conf->mddev->thread);
262 } else {
263 BUG_ON(stripe_operations_active(sh));
264 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
265 if (atomic_dec_return(&conf->preread_active_stripes)
266 < IO_THRESHOLD)
267 md_wakeup_thread(conf->mddev->thread);
268 atomic_dec(&conf->active_stripes);
269 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
270 if (!r5c_is_writeback(conf->log))
271 list_add_tail(&sh->lru, temp_inactive_list);
272 else {
273 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
274 if (injournal == 0)
275 list_add_tail(&sh->lru, temp_inactive_list);
276 else if (injournal == conf->raid_disks - conf->max_degraded) {
277 /* full stripe */
278 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
279 atomic_inc(&conf->r5c_cached_full_stripes);
280 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
281 atomic_dec(&conf->r5c_cached_partial_stripes);
282 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
283 r5c_check_cached_full_stripe(conf);
284 } else {
285 /* partial stripe */
286 if (!test_and_set_bit(STRIPE_R5C_PARTIAL_STRIPE,
287 &sh->state))
288 atomic_inc(&conf->r5c_cached_partial_stripes);
289 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
290 }
291 }
292 }
293 }
294 }
295
296 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
297 struct list_head *temp_inactive_list)
298 {
299 if (atomic_dec_and_test(&sh->count))
300 do_release_stripe(conf, sh, temp_inactive_list);
301 }
302
303 /*
304 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
305 *
306 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
307 * given time. Adding stripes only takes device lock, while deleting stripes
308 * only takes hash lock.
309 */
310 static void release_inactive_stripe_list(struct r5conf *conf,
311 struct list_head *temp_inactive_list,
312 int hash)
313 {
314 int size;
315 bool do_wakeup = false;
316 unsigned long flags;
317
318 if (hash == NR_STRIPE_HASH_LOCKS) {
319 size = NR_STRIPE_HASH_LOCKS;
320 hash = NR_STRIPE_HASH_LOCKS - 1;
321 } else
322 size = 1;
323 while (size) {
324 struct list_head *list = &temp_inactive_list[size - 1];
325
326 /*
327 * We don't hold any lock here yet, raid5_get_active_stripe() might
328 * remove stripes from the list
329 */
330 if (!list_empty_careful(list)) {
331 spin_lock_irqsave(conf->hash_locks + hash, flags);
332 if (list_empty(conf->inactive_list + hash) &&
333 !list_empty(list))
334 atomic_dec(&conf->empty_inactive_list_nr);
335 list_splice_tail_init(list, conf->inactive_list + hash);
336 do_wakeup = true;
337 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
338 }
339 size--;
340 hash--;
341 }
342
343 if (do_wakeup) {
344 wake_up(&conf->wait_for_stripe);
345 if (atomic_read(&conf->active_stripes) == 0)
346 wake_up(&conf->wait_for_quiescent);
347 if (conf->retry_read_aligned)
348 md_wakeup_thread(conf->mddev->thread);
349 }
350 }
351
352 /* should hold conf->device_lock already */
353 static int release_stripe_list(struct r5conf *conf,
354 struct list_head *temp_inactive_list)
355 {
356 struct stripe_head *sh;
357 int count = 0;
358 struct llist_node *head;
359
360 head = llist_del_all(&conf->released_stripes);
361 head = llist_reverse_order(head);
362 while (head) {
363 int hash;
364
365 sh = llist_entry(head, struct stripe_head, release_list);
366 head = llist_next(head);
367 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
368 smp_mb();
369 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
370 /*
371 * Don't worry the bit is set here, because if the bit is set
372 * again, the count is always > 1. This is true for
373 * STRIPE_ON_UNPLUG_LIST bit too.
374 */
375 hash = sh->hash_lock_index;
376 __release_stripe(conf, sh, &temp_inactive_list[hash]);
377 count++;
378 }
379
380 return count;
381 }
382
383 void raid5_release_stripe(struct stripe_head *sh)
384 {
385 struct r5conf *conf = sh->raid_conf;
386 unsigned long flags;
387 struct list_head list;
388 int hash;
389 bool wakeup;
390
391 /* Avoid release_list until the last reference.
392 */
393 if (atomic_add_unless(&sh->count, -1, 1))
394 return;
395
396 if (unlikely(!conf->mddev->thread) ||
397 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
398 goto slow_path;
399 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
400 if (wakeup)
401 md_wakeup_thread(conf->mddev->thread);
402 return;
403 slow_path:
404 local_irq_save(flags);
405 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
406 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
407 INIT_LIST_HEAD(&list);
408 hash = sh->hash_lock_index;
409 do_release_stripe(conf, sh, &list);
410 spin_unlock(&conf->device_lock);
411 release_inactive_stripe_list(conf, &list, hash);
412 }
413 local_irq_restore(flags);
414 }
415
416 static inline void remove_hash(struct stripe_head *sh)
417 {
418 pr_debug("remove_hash(), stripe %llu\n",
419 (unsigned long long)sh->sector);
420
421 hlist_del_init(&sh->hash);
422 }
423
424 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
425 {
426 struct hlist_head *hp = stripe_hash(conf, sh->sector);
427
428 pr_debug("insert_hash(), stripe %llu\n",
429 (unsigned long long)sh->sector);
430
431 hlist_add_head(&sh->hash, hp);
432 }
433
434 /* find an idle stripe, make sure it is unhashed, and return it. */
435 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
436 {
437 struct stripe_head *sh = NULL;
438 struct list_head *first;
439
440 if (list_empty(conf->inactive_list + hash))
441 goto out;
442 first = (conf->inactive_list + hash)->next;
443 sh = list_entry(first, struct stripe_head, lru);
444 list_del_init(first);
445 remove_hash(sh);
446 atomic_inc(&conf->active_stripes);
447 BUG_ON(hash != sh->hash_lock_index);
448 if (list_empty(conf->inactive_list + hash))
449 atomic_inc(&conf->empty_inactive_list_nr);
450 out:
451 return sh;
452 }
453
454 static void shrink_buffers(struct stripe_head *sh)
455 {
456 struct page *p;
457 int i;
458 int num = sh->raid_conf->pool_size;
459
460 for (i = 0; i < num ; i++) {
461 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
462 p = sh->dev[i].page;
463 if (!p)
464 continue;
465 sh->dev[i].page = NULL;
466 put_page(p);
467 }
468 }
469
470 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
471 {
472 int i;
473 int num = sh->raid_conf->pool_size;
474
475 for (i = 0; i < num; i++) {
476 struct page *page;
477
478 if (!(page = alloc_page(gfp))) {
479 return 1;
480 }
481 sh->dev[i].page = page;
482 sh->dev[i].orig_page = page;
483 }
484 return 0;
485 }
486
487 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
488 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
489 struct stripe_head *sh);
490
491 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
492 {
493 struct r5conf *conf = sh->raid_conf;
494 int i, seq;
495
496 BUG_ON(atomic_read(&sh->count) != 0);
497 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
498 BUG_ON(stripe_operations_active(sh));
499 BUG_ON(sh->batch_head);
500
501 pr_debug("init_stripe called, stripe %llu\n",
502 (unsigned long long)sector);
503 retry:
504 seq = read_seqcount_begin(&conf->gen_lock);
505 sh->generation = conf->generation - previous;
506 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
507 sh->sector = sector;
508 stripe_set_idx(sector, conf, previous, sh);
509 sh->state = 0;
510
511 for (i = sh->disks; i--; ) {
512 struct r5dev *dev = &sh->dev[i];
513
514 if (dev->toread || dev->read || dev->towrite || dev->written ||
515 test_bit(R5_LOCKED, &dev->flags)) {
516 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
517 (unsigned long long)sh->sector, i, dev->toread,
518 dev->read, dev->towrite, dev->written,
519 test_bit(R5_LOCKED, &dev->flags));
520 WARN_ON(1);
521 }
522 dev->flags = 0;
523 raid5_build_block(sh, i, previous);
524 }
525 if (read_seqcount_retry(&conf->gen_lock, seq))
526 goto retry;
527 sh->overwrite_disks = 0;
528 insert_hash(conf, sh);
529 sh->cpu = smp_processor_id();
530 set_bit(STRIPE_BATCH_READY, &sh->state);
531 }
532
533 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
534 short generation)
535 {
536 struct stripe_head *sh;
537
538 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
539 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
540 if (sh->sector == sector && sh->generation == generation)
541 return sh;
542 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
543 return NULL;
544 }
545
546 /*
547 * Need to check if array has failed when deciding whether to:
548 * - start an array
549 * - remove non-faulty devices
550 * - add a spare
551 * - allow a reshape
552 * This determination is simple when no reshape is happening.
553 * However if there is a reshape, we need to carefully check
554 * both the before and after sections.
555 * This is because some failed devices may only affect one
556 * of the two sections, and some non-in_sync devices may
557 * be insync in the section most affected by failed devices.
558 */
559 int raid5_calc_degraded(struct r5conf *conf)
560 {
561 int degraded, degraded2;
562 int i;
563
564 rcu_read_lock();
565 degraded = 0;
566 for (i = 0; i < conf->previous_raid_disks; i++) {
567 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
568 if (rdev && test_bit(Faulty, &rdev->flags))
569 rdev = rcu_dereference(conf->disks[i].replacement);
570 if (!rdev || test_bit(Faulty, &rdev->flags))
571 degraded++;
572 else if (test_bit(In_sync, &rdev->flags))
573 ;
574 else
575 /* not in-sync or faulty.
576 * If the reshape increases the number of devices,
577 * this is being recovered by the reshape, so
578 * this 'previous' section is not in_sync.
579 * If the number of devices is being reduced however,
580 * the device can only be part of the array if
581 * we are reverting a reshape, so this section will
582 * be in-sync.
583 */
584 if (conf->raid_disks >= conf->previous_raid_disks)
585 degraded++;
586 }
587 rcu_read_unlock();
588 if (conf->raid_disks == conf->previous_raid_disks)
589 return degraded;
590 rcu_read_lock();
591 degraded2 = 0;
592 for (i = 0; i < conf->raid_disks; i++) {
593 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
594 if (rdev && test_bit(Faulty, &rdev->flags))
595 rdev = rcu_dereference(conf->disks[i].replacement);
596 if (!rdev || test_bit(Faulty, &rdev->flags))
597 degraded2++;
598 else if (test_bit(In_sync, &rdev->flags))
599 ;
600 else
601 /* not in-sync or faulty.
602 * If reshape increases the number of devices, this
603 * section has already been recovered, else it
604 * almost certainly hasn't.
605 */
606 if (conf->raid_disks <= conf->previous_raid_disks)
607 degraded2++;
608 }
609 rcu_read_unlock();
610 if (degraded2 > degraded)
611 return degraded2;
612 return degraded;
613 }
614
615 static int has_failed(struct r5conf *conf)
616 {
617 int degraded;
618
619 if (conf->mddev->reshape_position == MaxSector)
620 return conf->mddev->degraded > conf->max_degraded;
621
622 degraded = raid5_calc_degraded(conf);
623 if (degraded > conf->max_degraded)
624 return 1;
625 return 0;
626 }
627
628 struct stripe_head *
629 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
630 int previous, int noblock, int noquiesce)
631 {
632 struct stripe_head *sh;
633 int hash = stripe_hash_locks_hash(sector);
634 int inc_empty_inactive_list_flag;
635
636 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
637
638 spin_lock_irq(conf->hash_locks + hash);
639
640 do {
641 wait_event_lock_irq(conf->wait_for_quiescent,
642 conf->quiesce == 0 || noquiesce,
643 *(conf->hash_locks + hash));
644 sh = __find_stripe(conf, sector, conf->generation - previous);
645 if (!sh) {
646 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
647 sh = get_free_stripe(conf, hash);
648 if (!sh && !test_bit(R5_DID_ALLOC,
649 &conf->cache_state))
650 set_bit(R5_ALLOC_MORE,
651 &conf->cache_state);
652 }
653 if (noblock && sh == NULL)
654 break;
655
656 r5c_check_stripe_cache_usage(conf);
657 if (!sh) {
658 set_bit(R5_INACTIVE_BLOCKED,
659 &conf->cache_state);
660 r5l_wake_reclaim(conf->log, 0);
661 wait_event_lock_irq(
662 conf->wait_for_stripe,
663 !list_empty(conf->inactive_list + hash) &&
664 (atomic_read(&conf->active_stripes)
665 < (conf->max_nr_stripes * 3 / 4)
666 || !test_bit(R5_INACTIVE_BLOCKED,
667 &conf->cache_state)),
668 *(conf->hash_locks + hash));
669 clear_bit(R5_INACTIVE_BLOCKED,
670 &conf->cache_state);
671 } else {
672 init_stripe(sh, sector, previous);
673 atomic_inc(&sh->count);
674 }
675 } else if (!atomic_inc_not_zero(&sh->count)) {
676 spin_lock(&conf->device_lock);
677 if (!atomic_read(&sh->count)) {
678 if (!test_bit(STRIPE_HANDLE, &sh->state))
679 atomic_inc(&conf->active_stripes);
680 BUG_ON(list_empty(&sh->lru) &&
681 !test_bit(STRIPE_EXPANDING, &sh->state));
682 inc_empty_inactive_list_flag = 0;
683 if (!list_empty(conf->inactive_list + hash))
684 inc_empty_inactive_list_flag = 1;
685 list_del_init(&sh->lru);
686 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
687 atomic_inc(&conf->empty_inactive_list_nr);
688 if (sh->group) {
689 sh->group->stripes_cnt--;
690 sh->group = NULL;
691 }
692 }
693 atomic_inc(&sh->count);
694 spin_unlock(&conf->device_lock);
695 }
696 } while (sh == NULL);
697
698 spin_unlock_irq(conf->hash_locks + hash);
699 return sh;
700 }
701
702 static bool is_full_stripe_write(struct stripe_head *sh)
703 {
704 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
705 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
706 }
707
708 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
709 {
710 local_irq_disable();
711 if (sh1 > sh2) {
712 spin_lock(&sh2->stripe_lock);
713 spin_lock_nested(&sh1->stripe_lock, 1);
714 } else {
715 spin_lock(&sh1->stripe_lock);
716 spin_lock_nested(&sh2->stripe_lock, 1);
717 }
718 }
719
720 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
721 {
722 spin_unlock(&sh1->stripe_lock);
723 spin_unlock(&sh2->stripe_lock);
724 local_irq_enable();
725 }
726
727 /* Only freshly new full stripe normal write stripe can be added to a batch list */
728 static bool stripe_can_batch(struct stripe_head *sh)
729 {
730 struct r5conf *conf = sh->raid_conf;
731
732 if (conf->log)
733 return false;
734 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
735 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
736 is_full_stripe_write(sh);
737 }
738
739 /* we only do back search */
740 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
741 {
742 struct stripe_head *head;
743 sector_t head_sector, tmp_sec;
744 int hash;
745 int dd_idx;
746 int inc_empty_inactive_list_flag;
747
748 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
749 tmp_sec = sh->sector;
750 if (!sector_div(tmp_sec, conf->chunk_sectors))
751 return;
752 head_sector = sh->sector - STRIPE_SECTORS;
753
754 hash = stripe_hash_locks_hash(head_sector);
755 spin_lock_irq(conf->hash_locks + hash);
756 head = __find_stripe(conf, head_sector, conf->generation);
757 if (head && !atomic_inc_not_zero(&head->count)) {
758 spin_lock(&conf->device_lock);
759 if (!atomic_read(&head->count)) {
760 if (!test_bit(STRIPE_HANDLE, &head->state))
761 atomic_inc(&conf->active_stripes);
762 BUG_ON(list_empty(&head->lru) &&
763 !test_bit(STRIPE_EXPANDING, &head->state));
764 inc_empty_inactive_list_flag = 0;
765 if (!list_empty(conf->inactive_list + hash))
766 inc_empty_inactive_list_flag = 1;
767 list_del_init(&head->lru);
768 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
769 atomic_inc(&conf->empty_inactive_list_nr);
770 if (head->group) {
771 head->group->stripes_cnt--;
772 head->group = NULL;
773 }
774 }
775 atomic_inc(&head->count);
776 spin_unlock(&conf->device_lock);
777 }
778 spin_unlock_irq(conf->hash_locks + hash);
779
780 if (!head)
781 return;
782 if (!stripe_can_batch(head))
783 goto out;
784
785 lock_two_stripes(head, sh);
786 /* clear_batch_ready clear the flag */
787 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
788 goto unlock_out;
789
790 if (sh->batch_head)
791 goto unlock_out;
792
793 dd_idx = 0;
794 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
795 dd_idx++;
796 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
797 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
798 goto unlock_out;
799
800 if (head->batch_head) {
801 spin_lock(&head->batch_head->batch_lock);
802 /* This batch list is already running */
803 if (!stripe_can_batch(head)) {
804 spin_unlock(&head->batch_head->batch_lock);
805 goto unlock_out;
806 }
807
808 /*
809 * at this point, head's BATCH_READY could be cleared, but we
810 * can still add the stripe to batch list
811 */
812 list_add(&sh->batch_list, &head->batch_list);
813 spin_unlock(&head->batch_head->batch_lock);
814
815 sh->batch_head = head->batch_head;
816 } else {
817 head->batch_head = head;
818 sh->batch_head = head->batch_head;
819 spin_lock(&head->batch_lock);
820 list_add_tail(&sh->batch_list, &head->batch_list);
821 spin_unlock(&head->batch_lock);
822 }
823
824 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
825 if (atomic_dec_return(&conf->preread_active_stripes)
826 < IO_THRESHOLD)
827 md_wakeup_thread(conf->mddev->thread);
828
829 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
830 int seq = sh->bm_seq;
831 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
832 sh->batch_head->bm_seq > seq)
833 seq = sh->batch_head->bm_seq;
834 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
835 sh->batch_head->bm_seq = seq;
836 }
837
838 atomic_inc(&sh->count);
839 unlock_out:
840 unlock_two_stripes(head, sh);
841 out:
842 raid5_release_stripe(head);
843 }
844
845 /* Determine if 'data_offset' or 'new_data_offset' should be used
846 * in this stripe_head.
847 */
848 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
849 {
850 sector_t progress = conf->reshape_progress;
851 /* Need a memory barrier to make sure we see the value
852 * of conf->generation, or ->data_offset that was set before
853 * reshape_progress was updated.
854 */
855 smp_rmb();
856 if (progress == MaxSector)
857 return 0;
858 if (sh->generation == conf->generation - 1)
859 return 0;
860 /* We are in a reshape, and this is a new-generation stripe,
861 * so use new_data_offset.
862 */
863 return 1;
864 }
865
866 static void
867 raid5_end_read_request(struct bio *bi);
868 static void
869 raid5_end_write_request(struct bio *bi);
870
871 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
872 {
873 struct r5conf *conf = sh->raid_conf;
874 int i, disks = sh->disks;
875 struct stripe_head *head_sh = sh;
876
877 might_sleep();
878
879 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
880 /* writing out phase */
881 if (s->waiting_extra_page)
882 return;
883 if (r5l_write_stripe(conf->log, sh) == 0)
884 return;
885 } else { /* caching phase */
886 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) {
887 r5c_cache_data(conf->log, sh, s);
888 return;
889 }
890 }
891
892 for (i = disks; i--; ) {
893 int op, op_flags = 0;
894 int replace_only = 0;
895 struct bio *bi, *rbi;
896 struct md_rdev *rdev, *rrdev = NULL;
897
898 sh = head_sh;
899 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
900 op = REQ_OP_WRITE;
901 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
902 op_flags = REQ_FUA;
903 if (test_bit(R5_Discard, &sh->dev[i].flags))
904 op = REQ_OP_DISCARD;
905 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
906 op = REQ_OP_READ;
907 else if (test_and_clear_bit(R5_WantReplace,
908 &sh->dev[i].flags)) {
909 op = REQ_OP_WRITE;
910 replace_only = 1;
911 } else
912 continue;
913 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
914 op_flags |= REQ_SYNC;
915
916 again:
917 bi = &sh->dev[i].req;
918 rbi = &sh->dev[i].rreq; /* For writing to replacement */
919
920 rcu_read_lock();
921 rrdev = rcu_dereference(conf->disks[i].replacement);
922 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
923 rdev = rcu_dereference(conf->disks[i].rdev);
924 if (!rdev) {
925 rdev = rrdev;
926 rrdev = NULL;
927 }
928 if (op_is_write(op)) {
929 if (replace_only)
930 rdev = NULL;
931 if (rdev == rrdev)
932 /* We raced and saw duplicates */
933 rrdev = NULL;
934 } else {
935 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
936 rdev = rrdev;
937 rrdev = NULL;
938 }
939
940 if (rdev && test_bit(Faulty, &rdev->flags))
941 rdev = NULL;
942 if (rdev)
943 atomic_inc(&rdev->nr_pending);
944 if (rrdev && test_bit(Faulty, &rrdev->flags))
945 rrdev = NULL;
946 if (rrdev)
947 atomic_inc(&rrdev->nr_pending);
948 rcu_read_unlock();
949
950 /* We have already checked bad blocks for reads. Now
951 * need to check for writes. We never accept write errors
952 * on the replacement, so we don't to check rrdev.
953 */
954 while (op_is_write(op) && rdev &&
955 test_bit(WriteErrorSeen, &rdev->flags)) {
956 sector_t first_bad;
957 int bad_sectors;
958 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
959 &first_bad, &bad_sectors);
960 if (!bad)
961 break;
962
963 if (bad < 0) {
964 set_bit(BlockedBadBlocks, &rdev->flags);
965 if (!conf->mddev->external &&
966 conf->mddev->sb_flags) {
967 /* It is very unlikely, but we might
968 * still need to write out the
969 * bad block log - better give it
970 * a chance*/
971 md_check_recovery(conf->mddev);
972 }
973 /*
974 * Because md_wait_for_blocked_rdev
975 * will dec nr_pending, we must
976 * increment it first.
977 */
978 atomic_inc(&rdev->nr_pending);
979 md_wait_for_blocked_rdev(rdev, conf->mddev);
980 } else {
981 /* Acknowledged bad block - skip the write */
982 rdev_dec_pending(rdev, conf->mddev);
983 rdev = NULL;
984 }
985 }
986
987 if (rdev) {
988 if (s->syncing || s->expanding || s->expanded
989 || s->replacing)
990 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
991
992 set_bit(STRIPE_IO_STARTED, &sh->state);
993
994 bi->bi_bdev = rdev->bdev;
995 bio_set_op_attrs(bi, op, op_flags);
996 bi->bi_end_io = op_is_write(op)
997 ? raid5_end_write_request
998 : raid5_end_read_request;
999 bi->bi_private = sh;
1000
1001 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1002 __func__, (unsigned long long)sh->sector,
1003 bi->bi_opf, i);
1004 atomic_inc(&sh->count);
1005 if (sh != head_sh)
1006 atomic_inc(&head_sh->count);
1007 if (use_new_offset(conf, sh))
1008 bi->bi_iter.bi_sector = (sh->sector
1009 + rdev->new_data_offset);
1010 else
1011 bi->bi_iter.bi_sector = (sh->sector
1012 + rdev->data_offset);
1013 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1014 bi->bi_opf |= REQ_NOMERGE;
1015
1016 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1017 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1018
1019 if (!op_is_write(op) &&
1020 test_bit(R5_InJournal, &sh->dev[i].flags))
1021 /*
1022 * issuing read for a page in journal, this
1023 * must be preparing for prexor in rmw; read
1024 * the data into orig_page
1025 */
1026 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1027 else
1028 sh->dev[i].vec.bv_page = sh->dev[i].page;
1029 bi->bi_vcnt = 1;
1030 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1031 bi->bi_io_vec[0].bv_offset = 0;
1032 bi->bi_iter.bi_size = STRIPE_SIZE;
1033 /*
1034 * If this is discard request, set bi_vcnt 0. We don't
1035 * want to confuse SCSI because SCSI will replace payload
1036 */
1037 if (op == REQ_OP_DISCARD)
1038 bi->bi_vcnt = 0;
1039 if (rrdev)
1040 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1041
1042 if (conf->mddev->gendisk)
1043 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1044 bi, disk_devt(conf->mddev->gendisk),
1045 sh->dev[i].sector);
1046 generic_make_request(bi);
1047 }
1048 if (rrdev) {
1049 if (s->syncing || s->expanding || s->expanded
1050 || s->replacing)
1051 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1052
1053 set_bit(STRIPE_IO_STARTED, &sh->state);
1054
1055 rbi->bi_bdev = rrdev->bdev;
1056 bio_set_op_attrs(rbi, op, op_flags);
1057 BUG_ON(!op_is_write(op));
1058 rbi->bi_end_io = raid5_end_write_request;
1059 rbi->bi_private = sh;
1060
1061 pr_debug("%s: for %llu schedule op %d on "
1062 "replacement disc %d\n",
1063 __func__, (unsigned long long)sh->sector,
1064 rbi->bi_opf, i);
1065 atomic_inc(&sh->count);
1066 if (sh != head_sh)
1067 atomic_inc(&head_sh->count);
1068 if (use_new_offset(conf, sh))
1069 rbi->bi_iter.bi_sector = (sh->sector
1070 + rrdev->new_data_offset);
1071 else
1072 rbi->bi_iter.bi_sector = (sh->sector
1073 + rrdev->data_offset);
1074 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1075 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1076 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1077 rbi->bi_vcnt = 1;
1078 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1079 rbi->bi_io_vec[0].bv_offset = 0;
1080 rbi->bi_iter.bi_size = STRIPE_SIZE;
1081 /*
1082 * If this is discard request, set bi_vcnt 0. We don't
1083 * want to confuse SCSI because SCSI will replace payload
1084 */
1085 if (op == REQ_OP_DISCARD)
1086 rbi->bi_vcnt = 0;
1087 if (conf->mddev->gendisk)
1088 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1089 rbi, disk_devt(conf->mddev->gendisk),
1090 sh->dev[i].sector);
1091 generic_make_request(rbi);
1092 }
1093 if (!rdev && !rrdev) {
1094 if (op_is_write(op))
1095 set_bit(STRIPE_DEGRADED, &sh->state);
1096 pr_debug("skip op %d on disc %d for sector %llu\n",
1097 bi->bi_opf, i, (unsigned long long)sh->sector);
1098 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1099 set_bit(STRIPE_HANDLE, &sh->state);
1100 }
1101
1102 if (!head_sh->batch_head)
1103 continue;
1104 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1105 batch_list);
1106 if (sh != head_sh)
1107 goto again;
1108 }
1109 }
1110
1111 static struct dma_async_tx_descriptor *
1112 async_copy_data(int frombio, struct bio *bio, struct page **page,
1113 sector_t sector, struct dma_async_tx_descriptor *tx,
1114 struct stripe_head *sh, int no_skipcopy)
1115 {
1116 struct bio_vec bvl;
1117 struct bvec_iter iter;
1118 struct page *bio_page;
1119 int page_offset;
1120 struct async_submit_ctl submit;
1121 enum async_tx_flags flags = 0;
1122
1123 if (bio->bi_iter.bi_sector >= sector)
1124 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1125 else
1126 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1127
1128 if (frombio)
1129 flags |= ASYNC_TX_FENCE;
1130 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1131
1132 bio_for_each_segment(bvl, bio, iter) {
1133 int len = bvl.bv_len;
1134 int clen;
1135 int b_offset = 0;
1136
1137 if (page_offset < 0) {
1138 b_offset = -page_offset;
1139 page_offset += b_offset;
1140 len -= b_offset;
1141 }
1142
1143 if (len > 0 && page_offset + len > STRIPE_SIZE)
1144 clen = STRIPE_SIZE - page_offset;
1145 else
1146 clen = len;
1147
1148 if (clen > 0) {
1149 b_offset += bvl.bv_offset;
1150 bio_page = bvl.bv_page;
1151 if (frombio) {
1152 if (sh->raid_conf->skip_copy &&
1153 b_offset == 0 && page_offset == 0 &&
1154 clen == STRIPE_SIZE &&
1155 !no_skipcopy)
1156 *page = bio_page;
1157 else
1158 tx = async_memcpy(*page, bio_page, page_offset,
1159 b_offset, clen, &submit);
1160 } else
1161 tx = async_memcpy(bio_page, *page, b_offset,
1162 page_offset, clen, &submit);
1163 }
1164 /* chain the operations */
1165 submit.depend_tx = tx;
1166
1167 if (clen < len) /* hit end of page */
1168 break;
1169 page_offset += len;
1170 }
1171
1172 return tx;
1173 }
1174
1175 static void ops_complete_biofill(void *stripe_head_ref)
1176 {
1177 struct stripe_head *sh = stripe_head_ref;
1178 struct bio_list return_bi = BIO_EMPTY_LIST;
1179 int i;
1180
1181 pr_debug("%s: stripe %llu\n", __func__,
1182 (unsigned long long)sh->sector);
1183
1184 /* clear completed biofills */
1185 for (i = sh->disks; i--; ) {
1186 struct r5dev *dev = &sh->dev[i];
1187
1188 /* acknowledge completion of a biofill operation */
1189 /* and check if we need to reply to a read request,
1190 * new R5_Wantfill requests are held off until
1191 * !STRIPE_BIOFILL_RUN
1192 */
1193 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1194 struct bio *rbi, *rbi2;
1195
1196 BUG_ON(!dev->read);
1197 rbi = dev->read;
1198 dev->read = NULL;
1199 while (rbi && rbi->bi_iter.bi_sector <
1200 dev->sector + STRIPE_SECTORS) {
1201 rbi2 = r5_next_bio(rbi, dev->sector);
1202 if (!raid5_dec_bi_active_stripes(rbi))
1203 bio_list_add(&return_bi, rbi);
1204 rbi = rbi2;
1205 }
1206 }
1207 }
1208 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1209
1210 return_io(&return_bi);
1211
1212 set_bit(STRIPE_HANDLE, &sh->state);
1213 raid5_release_stripe(sh);
1214 }
1215
1216 static void ops_run_biofill(struct stripe_head *sh)
1217 {
1218 struct dma_async_tx_descriptor *tx = NULL;
1219 struct async_submit_ctl submit;
1220 int i;
1221
1222 BUG_ON(sh->batch_head);
1223 pr_debug("%s: stripe %llu\n", __func__,
1224 (unsigned long long)sh->sector);
1225
1226 for (i = sh->disks; i--; ) {
1227 struct r5dev *dev = &sh->dev[i];
1228 if (test_bit(R5_Wantfill, &dev->flags)) {
1229 struct bio *rbi;
1230 spin_lock_irq(&sh->stripe_lock);
1231 dev->read = rbi = dev->toread;
1232 dev->toread = NULL;
1233 spin_unlock_irq(&sh->stripe_lock);
1234 while (rbi && rbi->bi_iter.bi_sector <
1235 dev->sector + STRIPE_SECTORS) {
1236 tx = async_copy_data(0, rbi, &dev->page,
1237 dev->sector, tx, sh, 0);
1238 rbi = r5_next_bio(rbi, dev->sector);
1239 }
1240 }
1241 }
1242
1243 atomic_inc(&sh->count);
1244 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1245 async_trigger_callback(&submit);
1246 }
1247
1248 static void mark_target_uptodate(struct stripe_head *sh, int target)
1249 {
1250 struct r5dev *tgt;
1251
1252 if (target < 0)
1253 return;
1254
1255 tgt = &sh->dev[target];
1256 set_bit(R5_UPTODATE, &tgt->flags);
1257 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1258 clear_bit(R5_Wantcompute, &tgt->flags);
1259 }
1260
1261 static void ops_complete_compute(void *stripe_head_ref)
1262 {
1263 struct stripe_head *sh = stripe_head_ref;
1264
1265 pr_debug("%s: stripe %llu\n", __func__,
1266 (unsigned long long)sh->sector);
1267
1268 /* mark the computed target(s) as uptodate */
1269 mark_target_uptodate(sh, sh->ops.target);
1270 mark_target_uptodate(sh, sh->ops.target2);
1271
1272 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1273 if (sh->check_state == check_state_compute_run)
1274 sh->check_state = check_state_compute_result;
1275 set_bit(STRIPE_HANDLE, &sh->state);
1276 raid5_release_stripe(sh);
1277 }
1278
1279 /* return a pointer to the address conversion region of the scribble buffer */
1280 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1281 struct raid5_percpu *percpu, int i)
1282 {
1283 void *addr;
1284
1285 addr = flex_array_get(percpu->scribble, i);
1286 return addr + sizeof(struct page *) * (sh->disks + 2);
1287 }
1288
1289 /* return a pointer to the address conversion region of the scribble buffer */
1290 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1291 {
1292 void *addr;
1293
1294 addr = flex_array_get(percpu->scribble, i);
1295 return addr;
1296 }
1297
1298 static struct dma_async_tx_descriptor *
1299 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1300 {
1301 int disks = sh->disks;
1302 struct page **xor_srcs = to_addr_page(percpu, 0);
1303 int target = sh->ops.target;
1304 struct r5dev *tgt = &sh->dev[target];
1305 struct page *xor_dest = tgt->page;
1306 int count = 0;
1307 struct dma_async_tx_descriptor *tx;
1308 struct async_submit_ctl submit;
1309 int i;
1310
1311 BUG_ON(sh->batch_head);
1312
1313 pr_debug("%s: stripe %llu block: %d\n",
1314 __func__, (unsigned long long)sh->sector, target);
1315 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1316
1317 for (i = disks; i--; )
1318 if (i != target)
1319 xor_srcs[count++] = sh->dev[i].page;
1320
1321 atomic_inc(&sh->count);
1322
1323 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1324 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1325 if (unlikely(count == 1))
1326 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1327 else
1328 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1329
1330 return tx;
1331 }
1332
1333 /* set_syndrome_sources - populate source buffers for gen_syndrome
1334 * @srcs - (struct page *) array of size sh->disks
1335 * @sh - stripe_head to parse
1336 *
1337 * Populates srcs in proper layout order for the stripe and returns the
1338 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1339 * destination buffer is recorded in srcs[count] and the Q destination
1340 * is recorded in srcs[count+1]].
1341 */
1342 static int set_syndrome_sources(struct page **srcs,
1343 struct stripe_head *sh,
1344 int srctype)
1345 {
1346 int disks = sh->disks;
1347 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1348 int d0_idx = raid6_d0(sh);
1349 int count;
1350 int i;
1351
1352 for (i = 0; i < disks; i++)
1353 srcs[i] = NULL;
1354
1355 count = 0;
1356 i = d0_idx;
1357 do {
1358 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1359 struct r5dev *dev = &sh->dev[i];
1360
1361 if (i == sh->qd_idx || i == sh->pd_idx ||
1362 (srctype == SYNDROME_SRC_ALL) ||
1363 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1364 (test_bit(R5_Wantdrain, &dev->flags) ||
1365 test_bit(R5_InJournal, &dev->flags))) ||
1366 (srctype == SYNDROME_SRC_WRITTEN &&
1367 dev->written)) {
1368 if (test_bit(R5_InJournal, &dev->flags))
1369 srcs[slot] = sh->dev[i].orig_page;
1370 else
1371 srcs[slot] = sh->dev[i].page;
1372 }
1373 i = raid6_next_disk(i, disks);
1374 } while (i != d0_idx);
1375
1376 return syndrome_disks;
1377 }
1378
1379 static struct dma_async_tx_descriptor *
1380 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1381 {
1382 int disks = sh->disks;
1383 struct page **blocks = to_addr_page(percpu, 0);
1384 int target;
1385 int qd_idx = sh->qd_idx;
1386 struct dma_async_tx_descriptor *tx;
1387 struct async_submit_ctl submit;
1388 struct r5dev *tgt;
1389 struct page *dest;
1390 int i;
1391 int count;
1392
1393 BUG_ON(sh->batch_head);
1394 if (sh->ops.target < 0)
1395 target = sh->ops.target2;
1396 else if (sh->ops.target2 < 0)
1397 target = sh->ops.target;
1398 else
1399 /* we should only have one valid target */
1400 BUG();
1401 BUG_ON(target < 0);
1402 pr_debug("%s: stripe %llu block: %d\n",
1403 __func__, (unsigned long long)sh->sector, target);
1404
1405 tgt = &sh->dev[target];
1406 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1407 dest = tgt->page;
1408
1409 atomic_inc(&sh->count);
1410
1411 if (target == qd_idx) {
1412 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1413 blocks[count] = NULL; /* regenerating p is not necessary */
1414 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1415 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1416 ops_complete_compute, sh,
1417 to_addr_conv(sh, percpu, 0));
1418 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1419 } else {
1420 /* Compute any data- or p-drive using XOR */
1421 count = 0;
1422 for (i = disks; i-- ; ) {
1423 if (i == target || i == qd_idx)
1424 continue;
1425 blocks[count++] = sh->dev[i].page;
1426 }
1427
1428 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1429 NULL, ops_complete_compute, sh,
1430 to_addr_conv(sh, percpu, 0));
1431 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1432 }
1433
1434 return tx;
1435 }
1436
1437 static struct dma_async_tx_descriptor *
1438 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1439 {
1440 int i, count, disks = sh->disks;
1441 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1442 int d0_idx = raid6_d0(sh);
1443 int faila = -1, failb = -1;
1444 int target = sh->ops.target;
1445 int target2 = sh->ops.target2;
1446 struct r5dev *tgt = &sh->dev[target];
1447 struct r5dev *tgt2 = &sh->dev[target2];
1448 struct dma_async_tx_descriptor *tx;
1449 struct page **blocks = to_addr_page(percpu, 0);
1450 struct async_submit_ctl submit;
1451
1452 BUG_ON(sh->batch_head);
1453 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1454 __func__, (unsigned long long)sh->sector, target, target2);
1455 BUG_ON(target < 0 || target2 < 0);
1456 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1457 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1458
1459 /* we need to open-code set_syndrome_sources to handle the
1460 * slot number conversion for 'faila' and 'failb'
1461 */
1462 for (i = 0; i < disks ; i++)
1463 blocks[i] = NULL;
1464 count = 0;
1465 i = d0_idx;
1466 do {
1467 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1468
1469 blocks[slot] = sh->dev[i].page;
1470
1471 if (i == target)
1472 faila = slot;
1473 if (i == target2)
1474 failb = slot;
1475 i = raid6_next_disk(i, disks);
1476 } while (i != d0_idx);
1477
1478 BUG_ON(faila == failb);
1479 if (failb < faila)
1480 swap(faila, failb);
1481 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1482 __func__, (unsigned long long)sh->sector, faila, failb);
1483
1484 atomic_inc(&sh->count);
1485
1486 if (failb == syndrome_disks+1) {
1487 /* Q disk is one of the missing disks */
1488 if (faila == syndrome_disks) {
1489 /* Missing P+Q, just recompute */
1490 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1491 ops_complete_compute, sh,
1492 to_addr_conv(sh, percpu, 0));
1493 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1494 STRIPE_SIZE, &submit);
1495 } else {
1496 struct page *dest;
1497 int data_target;
1498 int qd_idx = sh->qd_idx;
1499
1500 /* Missing D+Q: recompute D from P, then recompute Q */
1501 if (target == qd_idx)
1502 data_target = target2;
1503 else
1504 data_target = target;
1505
1506 count = 0;
1507 for (i = disks; i-- ; ) {
1508 if (i == data_target || i == qd_idx)
1509 continue;
1510 blocks[count++] = sh->dev[i].page;
1511 }
1512 dest = sh->dev[data_target].page;
1513 init_async_submit(&submit,
1514 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1515 NULL, NULL, NULL,
1516 to_addr_conv(sh, percpu, 0));
1517 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1518 &submit);
1519
1520 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1521 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1522 ops_complete_compute, sh,
1523 to_addr_conv(sh, percpu, 0));
1524 return async_gen_syndrome(blocks, 0, count+2,
1525 STRIPE_SIZE, &submit);
1526 }
1527 } else {
1528 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1529 ops_complete_compute, sh,
1530 to_addr_conv(sh, percpu, 0));
1531 if (failb == syndrome_disks) {
1532 /* We're missing D+P. */
1533 return async_raid6_datap_recov(syndrome_disks+2,
1534 STRIPE_SIZE, faila,
1535 blocks, &submit);
1536 } else {
1537 /* We're missing D+D. */
1538 return async_raid6_2data_recov(syndrome_disks+2,
1539 STRIPE_SIZE, faila, failb,
1540 blocks, &submit);
1541 }
1542 }
1543 }
1544
1545 static void ops_complete_prexor(void *stripe_head_ref)
1546 {
1547 struct stripe_head *sh = stripe_head_ref;
1548
1549 pr_debug("%s: stripe %llu\n", __func__,
1550 (unsigned long long)sh->sector);
1551
1552 if (r5c_is_writeback(sh->raid_conf->log))
1553 /*
1554 * raid5-cache write back uses orig_page during prexor.
1555 * After prexor, it is time to free orig_page
1556 */
1557 r5c_release_extra_page(sh);
1558 }
1559
1560 static struct dma_async_tx_descriptor *
1561 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1562 struct dma_async_tx_descriptor *tx)
1563 {
1564 int disks = sh->disks;
1565 struct page **xor_srcs = to_addr_page(percpu, 0);
1566 int count = 0, pd_idx = sh->pd_idx, i;
1567 struct async_submit_ctl submit;
1568
1569 /* existing parity data subtracted */
1570 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1571
1572 BUG_ON(sh->batch_head);
1573 pr_debug("%s: stripe %llu\n", __func__,
1574 (unsigned long long)sh->sector);
1575
1576 for (i = disks; i--; ) {
1577 struct r5dev *dev = &sh->dev[i];
1578 /* Only process blocks that are known to be uptodate */
1579 if (test_bit(R5_InJournal, &dev->flags))
1580 xor_srcs[count++] = dev->orig_page;
1581 else if (test_bit(R5_Wantdrain, &dev->flags))
1582 xor_srcs[count++] = dev->page;
1583 }
1584
1585 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1586 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1587 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1588
1589 return tx;
1590 }
1591
1592 static struct dma_async_tx_descriptor *
1593 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1594 struct dma_async_tx_descriptor *tx)
1595 {
1596 struct page **blocks = to_addr_page(percpu, 0);
1597 int count;
1598 struct async_submit_ctl submit;
1599
1600 pr_debug("%s: stripe %llu\n", __func__,
1601 (unsigned long long)sh->sector);
1602
1603 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1604
1605 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1606 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1607 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1608
1609 return tx;
1610 }
1611
1612 static struct dma_async_tx_descriptor *
1613 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1614 {
1615 struct r5conf *conf = sh->raid_conf;
1616 int disks = sh->disks;
1617 int i;
1618 struct stripe_head *head_sh = sh;
1619
1620 pr_debug("%s: stripe %llu\n", __func__,
1621 (unsigned long long)sh->sector);
1622
1623 for (i = disks; i--; ) {
1624 struct r5dev *dev;
1625 struct bio *chosen;
1626
1627 sh = head_sh;
1628 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1629 struct bio *wbi;
1630
1631 again:
1632 dev = &sh->dev[i];
1633 /*
1634 * clear R5_InJournal, so when rewriting a page in
1635 * journal, it is not skipped by r5l_log_stripe()
1636 */
1637 clear_bit(R5_InJournal, &dev->flags);
1638 spin_lock_irq(&sh->stripe_lock);
1639 chosen = dev->towrite;
1640 dev->towrite = NULL;
1641 sh->overwrite_disks = 0;
1642 BUG_ON(dev->written);
1643 wbi = dev->written = chosen;
1644 spin_unlock_irq(&sh->stripe_lock);
1645 WARN_ON(dev->page != dev->orig_page);
1646
1647 while (wbi && wbi->bi_iter.bi_sector <
1648 dev->sector + STRIPE_SECTORS) {
1649 if (wbi->bi_opf & REQ_FUA)
1650 set_bit(R5_WantFUA, &dev->flags);
1651 if (wbi->bi_opf & REQ_SYNC)
1652 set_bit(R5_SyncIO, &dev->flags);
1653 if (bio_op(wbi) == REQ_OP_DISCARD)
1654 set_bit(R5_Discard, &dev->flags);
1655 else {
1656 tx = async_copy_data(1, wbi, &dev->page,
1657 dev->sector, tx, sh,
1658 r5c_is_writeback(conf->log));
1659 if (dev->page != dev->orig_page &&
1660 !r5c_is_writeback(conf->log)) {
1661 set_bit(R5_SkipCopy, &dev->flags);
1662 clear_bit(R5_UPTODATE, &dev->flags);
1663 clear_bit(R5_OVERWRITE, &dev->flags);
1664 }
1665 }
1666 wbi = r5_next_bio(wbi, dev->sector);
1667 }
1668
1669 if (head_sh->batch_head) {
1670 sh = list_first_entry(&sh->batch_list,
1671 struct stripe_head,
1672 batch_list);
1673 if (sh == head_sh)
1674 continue;
1675 goto again;
1676 }
1677 }
1678 }
1679
1680 return tx;
1681 }
1682
1683 static void ops_complete_reconstruct(void *stripe_head_ref)
1684 {
1685 struct stripe_head *sh = stripe_head_ref;
1686 int disks = sh->disks;
1687 int pd_idx = sh->pd_idx;
1688 int qd_idx = sh->qd_idx;
1689 int i;
1690 bool fua = false, sync = false, discard = false;
1691
1692 pr_debug("%s: stripe %llu\n", __func__,
1693 (unsigned long long)sh->sector);
1694
1695 for (i = disks; i--; ) {
1696 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1697 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1698 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1699 }
1700
1701 for (i = disks; i--; ) {
1702 struct r5dev *dev = &sh->dev[i];
1703
1704 if (dev->written || i == pd_idx || i == qd_idx) {
1705 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1706 set_bit(R5_UPTODATE, &dev->flags);
1707 if (fua)
1708 set_bit(R5_WantFUA, &dev->flags);
1709 if (sync)
1710 set_bit(R5_SyncIO, &dev->flags);
1711 }
1712 }
1713
1714 if (sh->reconstruct_state == reconstruct_state_drain_run)
1715 sh->reconstruct_state = reconstruct_state_drain_result;
1716 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1717 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1718 else {
1719 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1720 sh->reconstruct_state = reconstruct_state_result;
1721 }
1722
1723 set_bit(STRIPE_HANDLE, &sh->state);
1724 raid5_release_stripe(sh);
1725 }
1726
1727 static void
1728 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1729 struct dma_async_tx_descriptor *tx)
1730 {
1731 int disks = sh->disks;
1732 struct page **xor_srcs;
1733 struct async_submit_ctl submit;
1734 int count, pd_idx = sh->pd_idx, i;
1735 struct page *xor_dest;
1736 int prexor = 0;
1737 unsigned long flags;
1738 int j = 0;
1739 struct stripe_head *head_sh = sh;
1740 int last_stripe;
1741
1742 pr_debug("%s: stripe %llu\n", __func__,
1743 (unsigned long long)sh->sector);
1744
1745 for (i = 0; i < sh->disks; i++) {
1746 if (pd_idx == i)
1747 continue;
1748 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1749 break;
1750 }
1751 if (i >= sh->disks) {
1752 atomic_inc(&sh->count);
1753 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1754 ops_complete_reconstruct(sh);
1755 return;
1756 }
1757 again:
1758 count = 0;
1759 xor_srcs = to_addr_page(percpu, j);
1760 /* check if prexor is active which means only process blocks
1761 * that are part of a read-modify-write (written)
1762 */
1763 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1764 prexor = 1;
1765 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1766 for (i = disks; i--; ) {
1767 struct r5dev *dev = &sh->dev[i];
1768 if (head_sh->dev[i].written ||
1769 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1770 xor_srcs[count++] = dev->page;
1771 }
1772 } else {
1773 xor_dest = sh->dev[pd_idx].page;
1774 for (i = disks; i--; ) {
1775 struct r5dev *dev = &sh->dev[i];
1776 if (i != pd_idx)
1777 xor_srcs[count++] = dev->page;
1778 }
1779 }
1780
1781 /* 1/ if we prexor'd then the dest is reused as a source
1782 * 2/ if we did not prexor then we are redoing the parity
1783 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1784 * for the synchronous xor case
1785 */
1786 last_stripe = !head_sh->batch_head ||
1787 list_first_entry(&sh->batch_list,
1788 struct stripe_head, batch_list) == head_sh;
1789 if (last_stripe) {
1790 flags = ASYNC_TX_ACK |
1791 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1792
1793 atomic_inc(&head_sh->count);
1794 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1795 to_addr_conv(sh, percpu, j));
1796 } else {
1797 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1798 init_async_submit(&submit, flags, tx, NULL, NULL,
1799 to_addr_conv(sh, percpu, j));
1800 }
1801
1802 if (unlikely(count == 1))
1803 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1804 else
1805 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1806 if (!last_stripe) {
1807 j++;
1808 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1809 batch_list);
1810 goto again;
1811 }
1812 }
1813
1814 static void
1815 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1816 struct dma_async_tx_descriptor *tx)
1817 {
1818 struct async_submit_ctl submit;
1819 struct page **blocks;
1820 int count, i, j = 0;
1821 struct stripe_head *head_sh = sh;
1822 int last_stripe;
1823 int synflags;
1824 unsigned long txflags;
1825
1826 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1827
1828 for (i = 0; i < sh->disks; i++) {
1829 if (sh->pd_idx == i || sh->qd_idx == i)
1830 continue;
1831 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1832 break;
1833 }
1834 if (i >= sh->disks) {
1835 atomic_inc(&sh->count);
1836 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1837 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1838 ops_complete_reconstruct(sh);
1839 return;
1840 }
1841
1842 again:
1843 blocks = to_addr_page(percpu, j);
1844
1845 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1846 synflags = SYNDROME_SRC_WRITTEN;
1847 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1848 } else {
1849 synflags = SYNDROME_SRC_ALL;
1850 txflags = ASYNC_TX_ACK;
1851 }
1852
1853 count = set_syndrome_sources(blocks, sh, synflags);
1854 last_stripe = !head_sh->batch_head ||
1855 list_first_entry(&sh->batch_list,
1856 struct stripe_head, batch_list) == head_sh;
1857
1858 if (last_stripe) {
1859 atomic_inc(&head_sh->count);
1860 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1861 head_sh, to_addr_conv(sh, percpu, j));
1862 } else
1863 init_async_submit(&submit, 0, tx, NULL, NULL,
1864 to_addr_conv(sh, percpu, j));
1865 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1866 if (!last_stripe) {
1867 j++;
1868 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1869 batch_list);
1870 goto again;
1871 }
1872 }
1873
1874 static void ops_complete_check(void *stripe_head_ref)
1875 {
1876 struct stripe_head *sh = stripe_head_ref;
1877
1878 pr_debug("%s: stripe %llu\n", __func__,
1879 (unsigned long long)sh->sector);
1880
1881 sh->check_state = check_state_check_result;
1882 set_bit(STRIPE_HANDLE, &sh->state);
1883 raid5_release_stripe(sh);
1884 }
1885
1886 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1887 {
1888 int disks = sh->disks;
1889 int pd_idx = sh->pd_idx;
1890 int qd_idx = sh->qd_idx;
1891 struct page *xor_dest;
1892 struct page **xor_srcs = to_addr_page(percpu, 0);
1893 struct dma_async_tx_descriptor *tx;
1894 struct async_submit_ctl submit;
1895 int count;
1896 int i;
1897
1898 pr_debug("%s: stripe %llu\n", __func__,
1899 (unsigned long long)sh->sector);
1900
1901 BUG_ON(sh->batch_head);
1902 count = 0;
1903 xor_dest = sh->dev[pd_idx].page;
1904 xor_srcs[count++] = xor_dest;
1905 for (i = disks; i--; ) {
1906 if (i == pd_idx || i == qd_idx)
1907 continue;
1908 xor_srcs[count++] = sh->dev[i].page;
1909 }
1910
1911 init_async_submit(&submit, 0, NULL, NULL, NULL,
1912 to_addr_conv(sh, percpu, 0));
1913 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1914 &sh->ops.zero_sum_result, &submit);
1915
1916 atomic_inc(&sh->count);
1917 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1918 tx = async_trigger_callback(&submit);
1919 }
1920
1921 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1922 {
1923 struct page **srcs = to_addr_page(percpu, 0);
1924 struct async_submit_ctl submit;
1925 int count;
1926
1927 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1928 (unsigned long long)sh->sector, checkp);
1929
1930 BUG_ON(sh->batch_head);
1931 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1932 if (!checkp)
1933 srcs[count] = NULL;
1934
1935 atomic_inc(&sh->count);
1936 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1937 sh, to_addr_conv(sh, percpu, 0));
1938 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1939 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1940 }
1941
1942 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1943 {
1944 int overlap_clear = 0, i, disks = sh->disks;
1945 struct dma_async_tx_descriptor *tx = NULL;
1946 struct r5conf *conf = sh->raid_conf;
1947 int level = conf->level;
1948 struct raid5_percpu *percpu;
1949 unsigned long cpu;
1950
1951 cpu = get_cpu();
1952 percpu = per_cpu_ptr(conf->percpu, cpu);
1953 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1954 ops_run_biofill(sh);
1955 overlap_clear++;
1956 }
1957
1958 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1959 if (level < 6)
1960 tx = ops_run_compute5(sh, percpu);
1961 else {
1962 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1963 tx = ops_run_compute6_1(sh, percpu);
1964 else
1965 tx = ops_run_compute6_2(sh, percpu);
1966 }
1967 /* terminate the chain if reconstruct is not set to be run */
1968 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1969 async_tx_ack(tx);
1970 }
1971
1972 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1973 if (level < 6)
1974 tx = ops_run_prexor5(sh, percpu, tx);
1975 else
1976 tx = ops_run_prexor6(sh, percpu, tx);
1977 }
1978
1979 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1980 tx = ops_run_biodrain(sh, tx);
1981 overlap_clear++;
1982 }
1983
1984 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1985 if (level < 6)
1986 ops_run_reconstruct5(sh, percpu, tx);
1987 else
1988 ops_run_reconstruct6(sh, percpu, tx);
1989 }
1990
1991 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1992 if (sh->check_state == check_state_run)
1993 ops_run_check_p(sh, percpu);
1994 else if (sh->check_state == check_state_run_q)
1995 ops_run_check_pq(sh, percpu, 0);
1996 else if (sh->check_state == check_state_run_pq)
1997 ops_run_check_pq(sh, percpu, 1);
1998 else
1999 BUG();
2000 }
2001
2002 if (overlap_clear && !sh->batch_head)
2003 for (i = disks; i--; ) {
2004 struct r5dev *dev = &sh->dev[i];
2005 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2006 wake_up(&sh->raid_conf->wait_for_overlap);
2007 }
2008 put_cpu();
2009 }
2010
2011 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2012 int disks)
2013 {
2014 struct stripe_head *sh;
2015 int i;
2016
2017 sh = kmem_cache_zalloc(sc, gfp);
2018 if (sh) {
2019 spin_lock_init(&sh->stripe_lock);
2020 spin_lock_init(&sh->batch_lock);
2021 INIT_LIST_HEAD(&sh->batch_list);
2022 INIT_LIST_HEAD(&sh->lru);
2023 INIT_LIST_HEAD(&sh->r5c);
2024 INIT_LIST_HEAD(&sh->log_list);
2025 atomic_set(&sh->count, 1);
2026 sh->log_start = MaxSector;
2027 for (i = 0; i < disks; i++) {
2028 struct r5dev *dev = &sh->dev[i];
2029
2030 bio_init(&dev->req, &dev->vec, 1);
2031 bio_init(&dev->rreq, &dev->rvec, 1);
2032 }
2033 }
2034 return sh;
2035 }
2036 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2037 {
2038 struct stripe_head *sh;
2039
2040 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
2041 if (!sh)
2042 return 0;
2043
2044 sh->raid_conf = conf;
2045
2046 if (grow_buffers(sh, gfp)) {
2047 shrink_buffers(sh);
2048 kmem_cache_free(conf->slab_cache, sh);
2049 return 0;
2050 }
2051 sh->hash_lock_index =
2052 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2053 /* we just created an active stripe so... */
2054 atomic_inc(&conf->active_stripes);
2055
2056 raid5_release_stripe(sh);
2057 conf->max_nr_stripes++;
2058 return 1;
2059 }
2060
2061 static int grow_stripes(struct r5conf *conf, int num)
2062 {
2063 struct kmem_cache *sc;
2064 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2065
2066 if (conf->mddev->gendisk)
2067 sprintf(conf->cache_name[0],
2068 "raid%d-%s", conf->level, mdname(conf->mddev));
2069 else
2070 sprintf(conf->cache_name[0],
2071 "raid%d-%p", conf->level, conf->mddev);
2072 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2073
2074 conf->active_name = 0;
2075 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2076 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2077 0, 0, NULL);
2078 if (!sc)
2079 return 1;
2080 conf->slab_cache = sc;
2081 conf->pool_size = devs;
2082 while (num--)
2083 if (!grow_one_stripe(conf, GFP_KERNEL))
2084 return 1;
2085
2086 return 0;
2087 }
2088
2089 /**
2090 * scribble_len - return the required size of the scribble region
2091 * @num - total number of disks in the array
2092 *
2093 * The size must be enough to contain:
2094 * 1/ a struct page pointer for each device in the array +2
2095 * 2/ room to convert each entry in (1) to its corresponding dma
2096 * (dma_map_page()) or page (page_address()) address.
2097 *
2098 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2099 * calculate over all devices (not just the data blocks), using zeros in place
2100 * of the P and Q blocks.
2101 */
2102 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2103 {
2104 struct flex_array *ret;
2105 size_t len;
2106
2107 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2108 ret = flex_array_alloc(len, cnt, flags);
2109 if (!ret)
2110 return NULL;
2111 /* always prealloc all elements, so no locking is required */
2112 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2113 flex_array_free(ret);
2114 return NULL;
2115 }
2116 return ret;
2117 }
2118
2119 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2120 {
2121 unsigned long cpu;
2122 int err = 0;
2123
2124 /*
2125 * Never shrink. And mddev_suspend() could deadlock if this is called
2126 * from raid5d. In that case, scribble_disks and scribble_sectors
2127 * should equal to new_disks and new_sectors
2128 */
2129 if (conf->scribble_disks >= new_disks &&
2130 conf->scribble_sectors >= new_sectors)
2131 return 0;
2132 mddev_suspend(conf->mddev);
2133 get_online_cpus();
2134 for_each_present_cpu(cpu) {
2135 struct raid5_percpu *percpu;
2136 struct flex_array *scribble;
2137
2138 percpu = per_cpu_ptr(conf->percpu, cpu);
2139 scribble = scribble_alloc(new_disks,
2140 new_sectors / STRIPE_SECTORS,
2141 GFP_NOIO);
2142
2143 if (scribble) {
2144 flex_array_free(percpu->scribble);
2145 percpu->scribble = scribble;
2146 } else {
2147 err = -ENOMEM;
2148 break;
2149 }
2150 }
2151 put_online_cpus();
2152 mddev_resume(conf->mddev);
2153 if (!err) {
2154 conf->scribble_disks = new_disks;
2155 conf->scribble_sectors = new_sectors;
2156 }
2157 return err;
2158 }
2159
2160 static int resize_stripes(struct r5conf *conf, int newsize)
2161 {
2162 /* Make all the stripes able to hold 'newsize' devices.
2163 * New slots in each stripe get 'page' set to a new page.
2164 *
2165 * This happens in stages:
2166 * 1/ create a new kmem_cache and allocate the required number of
2167 * stripe_heads.
2168 * 2/ gather all the old stripe_heads and transfer the pages across
2169 * to the new stripe_heads. This will have the side effect of
2170 * freezing the array as once all stripe_heads have been collected,
2171 * no IO will be possible. Old stripe heads are freed once their
2172 * pages have been transferred over, and the old kmem_cache is
2173 * freed when all stripes are done.
2174 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2175 * we simple return a failre status - no need to clean anything up.
2176 * 4/ allocate new pages for the new slots in the new stripe_heads.
2177 * If this fails, we don't bother trying the shrink the
2178 * stripe_heads down again, we just leave them as they are.
2179 * As each stripe_head is processed the new one is released into
2180 * active service.
2181 *
2182 * Once step2 is started, we cannot afford to wait for a write,
2183 * so we use GFP_NOIO allocations.
2184 */
2185 struct stripe_head *osh, *nsh;
2186 LIST_HEAD(newstripes);
2187 struct disk_info *ndisks;
2188 int err;
2189 struct kmem_cache *sc;
2190 int i;
2191 int hash, cnt;
2192
2193 if (newsize <= conf->pool_size)
2194 return 0; /* never bother to shrink */
2195
2196 err = md_allow_write(conf->mddev);
2197 if (err)
2198 return err;
2199
2200 /* Step 1 */
2201 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2202 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2203 0, 0, NULL);
2204 if (!sc)
2205 return -ENOMEM;
2206
2207 /* Need to ensure auto-resizing doesn't interfere */
2208 mutex_lock(&conf->cache_size_mutex);
2209
2210 for (i = conf->max_nr_stripes; i; i--) {
2211 nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
2212 if (!nsh)
2213 break;
2214
2215 nsh->raid_conf = conf;
2216 list_add(&nsh->lru, &newstripes);
2217 }
2218 if (i) {
2219 /* didn't get enough, give up */
2220 while (!list_empty(&newstripes)) {
2221 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2222 list_del(&nsh->lru);
2223 kmem_cache_free(sc, nsh);
2224 }
2225 kmem_cache_destroy(sc);
2226 mutex_unlock(&conf->cache_size_mutex);
2227 return -ENOMEM;
2228 }
2229 /* Step 2 - Must use GFP_NOIO now.
2230 * OK, we have enough stripes, start collecting inactive
2231 * stripes and copying them over
2232 */
2233 hash = 0;
2234 cnt = 0;
2235 list_for_each_entry(nsh, &newstripes, lru) {
2236 lock_device_hash_lock(conf, hash);
2237 wait_event_cmd(conf->wait_for_stripe,
2238 !list_empty(conf->inactive_list + hash),
2239 unlock_device_hash_lock(conf, hash),
2240 lock_device_hash_lock(conf, hash));
2241 osh = get_free_stripe(conf, hash);
2242 unlock_device_hash_lock(conf, hash);
2243
2244 for(i=0; i<conf->pool_size; i++) {
2245 nsh->dev[i].page = osh->dev[i].page;
2246 nsh->dev[i].orig_page = osh->dev[i].page;
2247 }
2248 nsh->hash_lock_index = hash;
2249 kmem_cache_free(conf->slab_cache, osh);
2250 cnt++;
2251 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2252 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2253 hash++;
2254 cnt = 0;
2255 }
2256 }
2257 kmem_cache_destroy(conf->slab_cache);
2258
2259 /* Step 3.
2260 * At this point, we are holding all the stripes so the array
2261 * is completely stalled, so now is a good time to resize
2262 * conf->disks and the scribble region
2263 */
2264 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2265 if (ndisks) {
2266 for (i = 0; i < conf->pool_size; i++)
2267 ndisks[i] = conf->disks[i];
2268
2269 for (i = conf->pool_size; i < newsize; i++) {
2270 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2271 if (!ndisks[i].extra_page)
2272 err = -ENOMEM;
2273 }
2274
2275 if (err) {
2276 for (i = conf->pool_size; i < newsize; i++)
2277 if (ndisks[i].extra_page)
2278 put_page(ndisks[i].extra_page);
2279 kfree(ndisks);
2280 } else {
2281 kfree(conf->disks);
2282 conf->disks = ndisks;
2283 }
2284 } else
2285 err = -ENOMEM;
2286
2287 mutex_unlock(&conf->cache_size_mutex);
2288 /* Step 4, return new stripes to service */
2289 while(!list_empty(&newstripes)) {
2290 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2291 list_del_init(&nsh->lru);
2292
2293 for (i=conf->raid_disks; i < newsize; i++)
2294 if (nsh->dev[i].page == NULL) {
2295 struct page *p = alloc_page(GFP_NOIO);
2296 nsh->dev[i].page = p;
2297 nsh->dev[i].orig_page = p;
2298 if (!p)
2299 err = -ENOMEM;
2300 }
2301 raid5_release_stripe(nsh);
2302 }
2303 /* critical section pass, GFP_NOIO no longer needed */
2304
2305 conf->slab_cache = sc;
2306 conf->active_name = 1-conf->active_name;
2307 if (!err)
2308 conf->pool_size = newsize;
2309 return err;
2310 }
2311
2312 static int drop_one_stripe(struct r5conf *conf)
2313 {
2314 struct stripe_head *sh;
2315 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2316
2317 spin_lock_irq(conf->hash_locks + hash);
2318 sh = get_free_stripe(conf, hash);
2319 spin_unlock_irq(conf->hash_locks + hash);
2320 if (!sh)
2321 return 0;
2322 BUG_ON(atomic_read(&sh->count));
2323 shrink_buffers(sh);
2324 kmem_cache_free(conf->slab_cache, sh);
2325 atomic_dec(&conf->active_stripes);
2326 conf->max_nr_stripes--;
2327 return 1;
2328 }
2329
2330 static void shrink_stripes(struct r5conf *conf)
2331 {
2332 while (conf->max_nr_stripes &&
2333 drop_one_stripe(conf))
2334 ;
2335
2336 kmem_cache_destroy(conf->slab_cache);
2337 conf->slab_cache = NULL;
2338 }
2339
2340 static void raid5_end_read_request(struct bio * bi)
2341 {
2342 struct stripe_head *sh = bi->bi_private;
2343 struct r5conf *conf = sh->raid_conf;
2344 int disks = sh->disks, i;
2345 char b[BDEVNAME_SIZE];
2346 struct md_rdev *rdev = NULL;
2347 sector_t s;
2348
2349 for (i=0 ; i<disks; i++)
2350 if (bi == &sh->dev[i].req)
2351 break;
2352
2353 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2354 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2355 bi->bi_error);
2356 if (i == disks) {
2357 bio_reset(bi);
2358 BUG();
2359 return;
2360 }
2361 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2362 /* If replacement finished while this request was outstanding,
2363 * 'replacement' might be NULL already.
2364 * In that case it moved down to 'rdev'.
2365 * rdev is not removed until all requests are finished.
2366 */
2367 rdev = conf->disks[i].replacement;
2368 if (!rdev)
2369 rdev = conf->disks[i].rdev;
2370
2371 if (use_new_offset(conf, sh))
2372 s = sh->sector + rdev->new_data_offset;
2373 else
2374 s = sh->sector + rdev->data_offset;
2375 if (!bi->bi_error) {
2376 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2377 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2378 /* Note that this cannot happen on a
2379 * replacement device. We just fail those on
2380 * any error
2381 */
2382 pr_info_ratelimited(
2383 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2384 mdname(conf->mddev), STRIPE_SECTORS,
2385 (unsigned long long)s,
2386 bdevname(rdev->bdev, b));
2387 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2388 clear_bit(R5_ReadError, &sh->dev[i].flags);
2389 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2390 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2391 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2392
2393 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2394 /*
2395 * end read for a page in journal, this
2396 * must be preparing for prexor in rmw
2397 */
2398 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2399
2400 if (atomic_read(&rdev->read_errors))
2401 atomic_set(&rdev->read_errors, 0);
2402 } else {
2403 const char *bdn = bdevname(rdev->bdev, b);
2404 int retry = 0;
2405 int set_bad = 0;
2406
2407 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2408 atomic_inc(&rdev->read_errors);
2409 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2410 pr_warn_ratelimited(
2411 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2412 mdname(conf->mddev),
2413 (unsigned long long)s,
2414 bdn);
2415 else if (conf->mddev->degraded >= conf->max_degraded) {
2416 set_bad = 1;
2417 pr_warn_ratelimited(
2418 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2419 mdname(conf->mddev),
2420 (unsigned long long)s,
2421 bdn);
2422 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2423 /* Oh, no!!! */
2424 set_bad = 1;
2425 pr_warn_ratelimited(
2426 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2427 mdname(conf->mddev),
2428 (unsigned long long)s,
2429 bdn);
2430 } else if (atomic_read(&rdev->read_errors)
2431 > conf->max_nr_stripes)
2432 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2433 mdname(conf->mddev), bdn);
2434 else
2435 retry = 1;
2436 if (set_bad && test_bit(In_sync, &rdev->flags)
2437 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2438 retry = 1;
2439 if (retry)
2440 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2441 set_bit(R5_ReadError, &sh->dev[i].flags);
2442 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2443 } else
2444 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2445 else {
2446 clear_bit(R5_ReadError, &sh->dev[i].flags);
2447 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2448 if (!(set_bad
2449 && test_bit(In_sync, &rdev->flags)
2450 && rdev_set_badblocks(
2451 rdev, sh->sector, STRIPE_SECTORS, 0)))
2452 md_error(conf->mddev, rdev);
2453 }
2454 }
2455 rdev_dec_pending(rdev, conf->mddev);
2456 bio_reset(bi);
2457 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2458 set_bit(STRIPE_HANDLE, &sh->state);
2459 raid5_release_stripe(sh);
2460 }
2461
2462 static void raid5_end_write_request(struct bio *bi)
2463 {
2464 struct stripe_head *sh = bi->bi_private;
2465 struct r5conf *conf = sh->raid_conf;
2466 int disks = sh->disks, i;
2467 struct md_rdev *uninitialized_var(rdev);
2468 sector_t first_bad;
2469 int bad_sectors;
2470 int replacement = 0;
2471
2472 for (i = 0 ; i < disks; i++) {
2473 if (bi == &sh->dev[i].req) {
2474 rdev = conf->disks[i].rdev;
2475 break;
2476 }
2477 if (bi == &sh->dev[i].rreq) {
2478 rdev = conf->disks[i].replacement;
2479 if (rdev)
2480 replacement = 1;
2481 else
2482 /* rdev was removed and 'replacement'
2483 * replaced it. rdev is not removed
2484 * until all requests are finished.
2485 */
2486 rdev = conf->disks[i].rdev;
2487 break;
2488 }
2489 }
2490 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2491 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2492 bi->bi_error);
2493 if (i == disks) {
2494 bio_reset(bi);
2495 BUG();
2496 return;
2497 }
2498
2499 if (replacement) {
2500 if (bi->bi_error)
2501 md_error(conf->mddev, rdev);
2502 else if (is_badblock(rdev, sh->sector,
2503 STRIPE_SECTORS,
2504 &first_bad, &bad_sectors))
2505 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2506 } else {
2507 if (bi->bi_error) {
2508 set_bit(STRIPE_DEGRADED, &sh->state);
2509 set_bit(WriteErrorSeen, &rdev->flags);
2510 set_bit(R5_WriteError, &sh->dev[i].flags);
2511 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2512 set_bit(MD_RECOVERY_NEEDED,
2513 &rdev->mddev->recovery);
2514 } else if (is_badblock(rdev, sh->sector,
2515 STRIPE_SECTORS,
2516 &first_bad, &bad_sectors)) {
2517 set_bit(R5_MadeGood, &sh->dev[i].flags);
2518 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2519 /* That was a successful write so make
2520 * sure it looks like we already did
2521 * a re-write.
2522 */
2523 set_bit(R5_ReWrite, &sh->dev[i].flags);
2524 }
2525 }
2526 rdev_dec_pending(rdev, conf->mddev);
2527
2528 if (sh->batch_head && bi->bi_error && !replacement)
2529 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2530
2531 bio_reset(bi);
2532 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2533 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2534 set_bit(STRIPE_HANDLE, &sh->state);
2535 raid5_release_stripe(sh);
2536
2537 if (sh->batch_head && sh != sh->batch_head)
2538 raid5_release_stripe(sh->batch_head);
2539 }
2540
2541 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2542 {
2543 struct r5dev *dev = &sh->dev[i];
2544
2545 dev->flags = 0;
2546 dev->sector = raid5_compute_blocknr(sh, i, previous);
2547 }
2548
2549 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2550 {
2551 char b[BDEVNAME_SIZE];
2552 struct r5conf *conf = mddev->private;
2553 unsigned long flags;
2554 pr_debug("raid456: error called\n");
2555
2556 spin_lock_irqsave(&conf->device_lock, flags);
2557 clear_bit(In_sync, &rdev->flags);
2558 mddev->degraded = raid5_calc_degraded(conf);
2559 spin_unlock_irqrestore(&conf->device_lock, flags);
2560 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2561
2562 set_bit(Blocked, &rdev->flags);
2563 set_bit(Faulty, &rdev->flags);
2564 set_mask_bits(&mddev->sb_flags, 0,
2565 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2566 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2567 "md/raid:%s: Operation continuing on %d devices.\n",
2568 mdname(mddev),
2569 bdevname(rdev->bdev, b),
2570 mdname(mddev),
2571 conf->raid_disks - mddev->degraded);
2572 r5c_update_on_rdev_error(mddev);
2573 }
2574
2575 /*
2576 * Input: a 'big' sector number,
2577 * Output: index of the data and parity disk, and the sector # in them.
2578 */
2579 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2580 int previous, int *dd_idx,
2581 struct stripe_head *sh)
2582 {
2583 sector_t stripe, stripe2;
2584 sector_t chunk_number;
2585 unsigned int chunk_offset;
2586 int pd_idx, qd_idx;
2587 int ddf_layout = 0;
2588 sector_t new_sector;
2589 int algorithm = previous ? conf->prev_algo
2590 : conf->algorithm;
2591 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2592 : conf->chunk_sectors;
2593 int raid_disks = previous ? conf->previous_raid_disks
2594 : conf->raid_disks;
2595 int data_disks = raid_disks - conf->max_degraded;
2596
2597 /* First compute the information on this sector */
2598
2599 /*
2600 * Compute the chunk number and the sector offset inside the chunk
2601 */
2602 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2603 chunk_number = r_sector;
2604
2605 /*
2606 * Compute the stripe number
2607 */
2608 stripe = chunk_number;
2609 *dd_idx = sector_div(stripe, data_disks);
2610 stripe2 = stripe;
2611 /*
2612 * Select the parity disk based on the user selected algorithm.
2613 */
2614 pd_idx = qd_idx = -1;
2615 switch(conf->level) {
2616 case 4:
2617 pd_idx = data_disks;
2618 break;
2619 case 5:
2620 switch (algorithm) {
2621 case ALGORITHM_LEFT_ASYMMETRIC:
2622 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2623 if (*dd_idx >= pd_idx)
2624 (*dd_idx)++;
2625 break;
2626 case ALGORITHM_RIGHT_ASYMMETRIC:
2627 pd_idx = sector_div(stripe2, raid_disks);
2628 if (*dd_idx >= pd_idx)
2629 (*dd_idx)++;
2630 break;
2631 case ALGORITHM_LEFT_SYMMETRIC:
2632 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2633 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2634 break;
2635 case ALGORITHM_RIGHT_SYMMETRIC:
2636 pd_idx = sector_div(stripe2, raid_disks);
2637 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2638 break;
2639 case ALGORITHM_PARITY_0:
2640 pd_idx = 0;
2641 (*dd_idx)++;
2642 break;
2643 case ALGORITHM_PARITY_N:
2644 pd_idx = data_disks;
2645 break;
2646 default:
2647 BUG();
2648 }
2649 break;
2650 case 6:
2651
2652 switch (algorithm) {
2653 case ALGORITHM_LEFT_ASYMMETRIC:
2654 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2655 qd_idx = pd_idx + 1;
2656 if (pd_idx == raid_disks-1) {
2657 (*dd_idx)++; /* Q D D D P */
2658 qd_idx = 0;
2659 } else if (*dd_idx >= pd_idx)
2660 (*dd_idx) += 2; /* D D P Q D */
2661 break;
2662 case ALGORITHM_RIGHT_ASYMMETRIC:
2663 pd_idx = sector_div(stripe2, raid_disks);
2664 qd_idx = pd_idx + 1;
2665 if (pd_idx == raid_disks-1) {
2666 (*dd_idx)++; /* Q D D D P */
2667 qd_idx = 0;
2668 } else if (*dd_idx >= pd_idx)
2669 (*dd_idx) += 2; /* D D P Q D */
2670 break;
2671 case ALGORITHM_LEFT_SYMMETRIC:
2672 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2673 qd_idx = (pd_idx + 1) % raid_disks;
2674 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2675 break;
2676 case ALGORITHM_RIGHT_SYMMETRIC:
2677 pd_idx = sector_div(stripe2, raid_disks);
2678 qd_idx = (pd_idx + 1) % raid_disks;
2679 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2680 break;
2681
2682 case ALGORITHM_PARITY_0:
2683 pd_idx = 0;
2684 qd_idx = 1;
2685 (*dd_idx) += 2;
2686 break;
2687 case ALGORITHM_PARITY_N:
2688 pd_idx = data_disks;
2689 qd_idx = data_disks + 1;
2690 break;
2691
2692 case ALGORITHM_ROTATING_ZERO_RESTART:
2693 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2694 * of blocks for computing Q is different.
2695 */
2696 pd_idx = sector_div(stripe2, raid_disks);
2697 qd_idx = pd_idx + 1;
2698 if (pd_idx == raid_disks-1) {
2699 (*dd_idx)++; /* Q D D D P */
2700 qd_idx = 0;
2701 } else if (*dd_idx >= pd_idx)
2702 (*dd_idx) += 2; /* D D P Q D */
2703 ddf_layout = 1;
2704 break;
2705
2706 case ALGORITHM_ROTATING_N_RESTART:
2707 /* Same a left_asymmetric, by first stripe is
2708 * D D D P Q rather than
2709 * Q D D D P
2710 */
2711 stripe2 += 1;
2712 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2713 qd_idx = pd_idx + 1;
2714 if (pd_idx == raid_disks-1) {
2715 (*dd_idx)++; /* Q D D D P */
2716 qd_idx = 0;
2717 } else if (*dd_idx >= pd_idx)
2718 (*dd_idx) += 2; /* D D P Q D */
2719 ddf_layout = 1;
2720 break;
2721
2722 case ALGORITHM_ROTATING_N_CONTINUE:
2723 /* Same as left_symmetric but Q is before P */
2724 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2725 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2726 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2727 ddf_layout = 1;
2728 break;
2729
2730 case ALGORITHM_LEFT_ASYMMETRIC_6:
2731 /* RAID5 left_asymmetric, with Q on last device */
2732 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2733 if (*dd_idx >= pd_idx)
2734 (*dd_idx)++;
2735 qd_idx = raid_disks - 1;
2736 break;
2737
2738 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2739 pd_idx = sector_div(stripe2, raid_disks-1);
2740 if (*dd_idx >= pd_idx)
2741 (*dd_idx)++;
2742 qd_idx = raid_disks - 1;
2743 break;
2744
2745 case ALGORITHM_LEFT_SYMMETRIC_6:
2746 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2747 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2748 qd_idx = raid_disks - 1;
2749 break;
2750
2751 case ALGORITHM_RIGHT_SYMMETRIC_6:
2752 pd_idx = sector_div(stripe2, raid_disks-1);
2753 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2754 qd_idx = raid_disks - 1;
2755 break;
2756
2757 case ALGORITHM_PARITY_0_6:
2758 pd_idx = 0;
2759 (*dd_idx)++;
2760 qd_idx = raid_disks - 1;
2761 break;
2762
2763 default:
2764 BUG();
2765 }
2766 break;
2767 }
2768
2769 if (sh) {
2770 sh->pd_idx = pd_idx;
2771 sh->qd_idx = qd_idx;
2772 sh->ddf_layout = ddf_layout;
2773 }
2774 /*
2775 * Finally, compute the new sector number
2776 */
2777 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2778 return new_sector;
2779 }
2780
2781 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2782 {
2783 struct r5conf *conf = sh->raid_conf;
2784 int raid_disks = sh->disks;
2785 int data_disks = raid_disks - conf->max_degraded;
2786 sector_t new_sector = sh->sector, check;
2787 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2788 : conf->chunk_sectors;
2789 int algorithm = previous ? conf->prev_algo
2790 : conf->algorithm;
2791 sector_t stripe;
2792 int chunk_offset;
2793 sector_t chunk_number;
2794 int dummy1, dd_idx = i;
2795 sector_t r_sector;
2796 struct stripe_head sh2;
2797
2798 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2799 stripe = new_sector;
2800
2801 if (i == sh->pd_idx)
2802 return 0;
2803 switch(conf->level) {
2804 case 4: break;
2805 case 5:
2806 switch (algorithm) {
2807 case ALGORITHM_LEFT_ASYMMETRIC:
2808 case ALGORITHM_RIGHT_ASYMMETRIC:
2809 if (i > sh->pd_idx)
2810 i--;
2811 break;
2812 case ALGORITHM_LEFT_SYMMETRIC:
2813 case ALGORITHM_RIGHT_SYMMETRIC:
2814 if (i < sh->pd_idx)
2815 i += raid_disks;
2816 i -= (sh->pd_idx + 1);
2817 break;
2818 case ALGORITHM_PARITY_0:
2819 i -= 1;
2820 break;
2821 case ALGORITHM_PARITY_N:
2822 break;
2823 default:
2824 BUG();
2825 }
2826 break;
2827 case 6:
2828 if (i == sh->qd_idx)
2829 return 0; /* It is the Q disk */
2830 switch (algorithm) {
2831 case ALGORITHM_LEFT_ASYMMETRIC:
2832 case ALGORITHM_RIGHT_ASYMMETRIC:
2833 case ALGORITHM_ROTATING_ZERO_RESTART:
2834 case ALGORITHM_ROTATING_N_RESTART:
2835 if (sh->pd_idx == raid_disks-1)
2836 i--; /* Q D D D P */
2837 else if (i > sh->pd_idx)
2838 i -= 2; /* D D P Q D */
2839 break;
2840 case ALGORITHM_LEFT_SYMMETRIC:
2841 case ALGORITHM_RIGHT_SYMMETRIC:
2842 if (sh->pd_idx == raid_disks-1)
2843 i--; /* Q D D D P */
2844 else {
2845 /* D D P Q D */
2846 if (i < sh->pd_idx)
2847 i += raid_disks;
2848 i -= (sh->pd_idx + 2);
2849 }
2850 break;
2851 case ALGORITHM_PARITY_0:
2852 i -= 2;
2853 break;
2854 case ALGORITHM_PARITY_N:
2855 break;
2856 case ALGORITHM_ROTATING_N_CONTINUE:
2857 /* Like left_symmetric, but P is before Q */
2858 if (sh->pd_idx == 0)
2859 i--; /* P D D D Q */
2860 else {
2861 /* D D Q P D */
2862 if (i < sh->pd_idx)
2863 i += raid_disks;
2864 i -= (sh->pd_idx + 1);
2865 }
2866 break;
2867 case ALGORITHM_LEFT_ASYMMETRIC_6:
2868 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2869 if (i > sh->pd_idx)
2870 i--;
2871 break;
2872 case ALGORITHM_LEFT_SYMMETRIC_6:
2873 case ALGORITHM_RIGHT_SYMMETRIC_6:
2874 if (i < sh->pd_idx)
2875 i += data_disks + 1;
2876 i -= (sh->pd_idx + 1);
2877 break;
2878 case ALGORITHM_PARITY_0_6:
2879 i -= 1;
2880 break;
2881 default:
2882 BUG();
2883 }
2884 break;
2885 }
2886
2887 chunk_number = stripe * data_disks + i;
2888 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2889
2890 check = raid5_compute_sector(conf, r_sector,
2891 previous, &dummy1, &sh2);
2892 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2893 || sh2.qd_idx != sh->qd_idx) {
2894 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
2895 mdname(conf->mddev));
2896 return 0;
2897 }
2898 return r_sector;
2899 }
2900
2901 /*
2902 * There are cases where we want handle_stripe_dirtying() and
2903 * schedule_reconstruction() to delay towrite to some dev of a stripe.
2904 *
2905 * This function checks whether we want to delay the towrite. Specifically,
2906 * we delay the towrite when:
2907 *
2908 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
2909 * stripe has data in journal (for other devices).
2910 *
2911 * In this case, when reading data for the non-overwrite dev, it is
2912 * necessary to handle complex rmw of write back cache (prexor with
2913 * orig_page, and xor with page). To keep read path simple, we would
2914 * like to flush data in journal to RAID disks first, so complex rmw
2915 * is handled in the write patch (handle_stripe_dirtying).
2916 *
2917 */
2918 static inline bool delay_towrite(struct r5dev *dev,
2919 struct stripe_head_state *s)
2920 {
2921 return !test_bit(R5_OVERWRITE, &dev->flags) &&
2922 !test_bit(R5_Insync, &dev->flags) && s->injournal;
2923 }
2924
2925 static void
2926 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2927 int rcw, int expand)
2928 {
2929 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2930 struct r5conf *conf = sh->raid_conf;
2931 int level = conf->level;
2932
2933 if (rcw) {
2934 /*
2935 * In some cases, handle_stripe_dirtying initially decided to
2936 * run rmw and allocates extra page for prexor. However, rcw is
2937 * cheaper later on. We need to free the extra page now,
2938 * because we won't be able to do that in ops_complete_prexor().
2939 */
2940 r5c_release_extra_page(sh);
2941
2942 for (i = disks; i--; ) {
2943 struct r5dev *dev = &sh->dev[i];
2944
2945 if (dev->towrite && !delay_towrite(dev, s)) {
2946 set_bit(R5_LOCKED, &dev->flags);
2947 set_bit(R5_Wantdrain, &dev->flags);
2948 if (!expand)
2949 clear_bit(R5_UPTODATE, &dev->flags);
2950 s->locked++;
2951 } else if (test_bit(R5_InJournal, &dev->flags)) {
2952 set_bit(R5_LOCKED, &dev->flags);
2953 s->locked++;
2954 }
2955 }
2956 /* if we are not expanding this is a proper write request, and
2957 * there will be bios with new data to be drained into the
2958 * stripe cache
2959 */
2960 if (!expand) {
2961 if (!s->locked)
2962 /* False alarm, nothing to do */
2963 return;
2964 sh->reconstruct_state = reconstruct_state_drain_run;
2965 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2966 } else
2967 sh->reconstruct_state = reconstruct_state_run;
2968
2969 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2970
2971 if (s->locked + conf->max_degraded == disks)
2972 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2973 atomic_inc(&conf->pending_full_writes);
2974 } else {
2975 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2976 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2977 BUG_ON(level == 6 &&
2978 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2979 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2980
2981 for (i = disks; i--; ) {
2982 struct r5dev *dev = &sh->dev[i];
2983 if (i == pd_idx || i == qd_idx)
2984 continue;
2985
2986 if (dev->towrite &&
2987 (test_bit(R5_UPTODATE, &dev->flags) ||
2988 test_bit(R5_Wantcompute, &dev->flags))) {
2989 set_bit(R5_Wantdrain, &dev->flags);
2990 set_bit(R5_LOCKED, &dev->flags);
2991 clear_bit(R5_UPTODATE, &dev->flags);
2992 s->locked++;
2993 } else if (test_bit(R5_InJournal, &dev->flags)) {
2994 set_bit(R5_LOCKED, &dev->flags);
2995 s->locked++;
2996 }
2997 }
2998 if (!s->locked)
2999 /* False alarm - nothing to do */
3000 return;
3001 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3002 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3003 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3004 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3005 }
3006
3007 /* keep the parity disk(s) locked while asynchronous operations
3008 * are in flight
3009 */
3010 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3011 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3012 s->locked++;
3013
3014 if (level == 6) {
3015 int qd_idx = sh->qd_idx;
3016 struct r5dev *dev = &sh->dev[qd_idx];
3017
3018 set_bit(R5_LOCKED, &dev->flags);
3019 clear_bit(R5_UPTODATE, &dev->flags);
3020 s->locked++;
3021 }
3022
3023 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3024 __func__, (unsigned long long)sh->sector,
3025 s->locked, s->ops_request);
3026 }
3027
3028 /*
3029 * Each stripe/dev can have one or more bion attached.
3030 * toread/towrite point to the first in a chain.
3031 * The bi_next chain must be in order.
3032 */
3033 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3034 int forwrite, int previous)
3035 {
3036 struct bio **bip;
3037 struct r5conf *conf = sh->raid_conf;
3038 int firstwrite=0;
3039
3040 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3041 (unsigned long long)bi->bi_iter.bi_sector,
3042 (unsigned long long)sh->sector);
3043
3044 /*
3045 * If several bio share a stripe. The bio bi_phys_segments acts as a
3046 * reference count to avoid race. The reference count should already be
3047 * increased before this function is called (for example, in
3048 * raid5_make_request()), so other bio sharing this stripe will not free the
3049 * stripe. If a stripe is owned by one stripe, the stripe lock will
3050 * protect it.
3051 */
3052 spin_lock_irq(&sh->stripe_lock);
3053 /* Don't allow new IO added to stripes in batch list */
3054 if (sh->batch_head)
3055 goto overlap;
3056 if (forwrite) {
3057 bip = &sh->dev[dd_idx].towrite;
3058 if (*bip == NULL)
3059 firstwrite = 1;
3060 } else
3061 bip = &sh->dev[dd_idx].toread;
3062 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3063 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3064 goto overlap;
3065 bip = & (*bip)->bi_next;
3066 }
3067 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3068 goto overlap;
3069
3070 if (!forwrite || previous)
3071 clear_bit(STRIPE_BATCH_READY, &sh->state);
3072
3073 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3074 if (*bip)
3075 bi->bi_next = *bip;
3076 *bip = bi;
3077 raid5_inc_bi_active_stripes(bi);
3078
3079 if (forwrite) {
3080 /* check if page is covered */
3081 sector_t sector = sh->dev[dd_idx].sector;
3082 for (bi=sh->dev[dd_idx].towrite;
3083 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3084 bi && bi->bi_iter.bi_sector <= sector;
3085 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3086 if (bio_end_sector(bi) >= sector)
3087 sector = bio_end_sector(bi);
3088 }
3089 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3090 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3091 sh->overwrite_disks++;
3092 }
3093
3094 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3095 (unsigned long long)(*bip)->bi_iter.bi_sector,
3096 (unsigned long long)sh->sector, dd_idx);
3097
3098 if (conf->mddev->bitmap && firstwrite) {
3099 /* Cannot hold spinlock over bitmap_startwrite,
3100 * but must ensure this isn't added to a batch until
3101 * we have added to the bitmap and set bm_seq.
3102 * So set STRIPE_BITMAP_PENDING to prevent
3103 * batching.
3104 * If multiple add_stripe_bio() calls race here they
3105 * much all set STRIPE_BITMAP_PENDING. So only the first one
3106 * to complete "bitmap_startwrite" gets to set
3107 * STRIPE_BIT_DELAY. This is important as once a stripe
3108 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3109 * any more.
3110 */
3111 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3112 spin_unlock_irq(&sh->stripe_lock);
3113 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3114 STRIPE_SECTORS, 0);
3115 spin_lock_irq(&sh->stripe_lock);
3116 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3117 if (!sh->batch_head) {
3118 sh->bm_seq = conf->seq_flush+1;
3119 set_bit(STRIPE_BIT_DELAY, &sh->state);
3120 }
3121 }
3122 spin_unlock_irq(&sh->stripe_lock);
3123
3124 if (stripe_can_batch(sh))
3125 stripe_add_to_batch_list(conf, sh);
3126 return 1;
3127
3128 overlap:
3129 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3130 spin_unlock_irq(&sh->stripe_lock);
3131 return 0;
3132 }
3133
3134 static void end_reshape(struct r5conf *conf);
3135
3136 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3137 struct stripe_head *sh)
3138 {
3139 int sectors_per_chunk =
3140 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3141 int dd_idx;
3142 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3143 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3144
3145 raid5_compute_sector(conf,
3146 stripe * (disks - conf->max_degraded)
3147 *sectors_per_chunk + chunk_offset,
3148 previous,
3149 &dd_idx, sh);
3150 }
3151
3152 static void
3153 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3154 struct stripe_head_state *s, int disks,
3155 struct bio_list *return_bi)
3156 {
3157 int i;
3158 BUG_ON(sh->batch_head);
3159 for (i = disks; i--; ) {
3160 struct bio *bi;
3161 int bitmap_end = 0;
3162
3163 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3164 struct md_rdev *rdev;
3165 rcu_read_lock();
3166 rdev = rcu_dereference(conf->disks[i].rdev);
3167 if (rdev && test_bit(In_sync, &rdev->flags) &&
3168 !test_bit(Faulty, &rdev->flags))
3169 atomic_inc(&rdev->nr_pending);
3170 else
3171 rdev = NULL;
3172 rcu_read_unlock();
3173 if (rdev) {
3174 if (!rdev_set_badblocks(
3175 rdev,
3176 sh->sector,
3177 STRIPE_SECTORS, 0))
3178 md_error(conf->mddev, rdev);
3179 rdev_dec_pending(rdev, conf->mddev);
3180 }
3181 }
3182 spin_lock_irq(&sh->stripe_lock);
3183 /* fail all writes first */
3184 bi = sh->dev[i].towrite;
3185 sh->dev[i].towrite = NULL;
3186 sh->overwrite_disks = 0;
3187 spin_unlock_irq(&sh->stripe_lock);
3188 if (bi)
3189 bitmap_end = 1;
3190
3191 r5l_stripe_write_finished(sh);
3192
3193 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3194 wake_up(&conf->wait_for_overlap);
3195
3196 while (bi && bi->bi_iter.bi_sector <
3197 sh->dev[i].sector + STRIPE_SECTORS) {
3198 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3199
3200 bi->bi_error = -EIO;
3201 if (!raid5_dec_bi_active_stripes(bi)) {
3202 md_write_end(conf->mddev);
3203 bio_list_add(return_bi, bi);
3204 }
3205 bi = nextbi;
3206 }
3207 if (bitmap_end)
3208 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3209 STRIPE_SECTORS, 0, 0);
3210 bitmap_end = 0;
3211 /* and fail all 'written' */
3212 bi = sh->dev[i].written;
3213 sh->dev[i].written = NULL;
3214 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3215 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3216 sh->dev[i].page = sh->dev[i].orig_page;
3217 }
3218
3219 if (bi) bitmap_end = 1;
3220 while (bi && bi->bi_iter.bi_sector <
3221 sh->dev[i].sector + STRIPE_SECTORS) {
3222 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3223
3224 bi->bi_error = -EIO;
3225 if (!raid5_dec_bi_active_stripes(bi)) {
3226 md_write_end(conf->mddev);
3227 bio_list_add(return_bi, bi);
3228 }
3229 bi = bi2;
3230 }
3231
3232 /* fail any reads if this device is non-operational and
3233 * the data has not reached the cache yet.
3234 */
3235 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3236 s->failed > conf->max_degraded &&
3237 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3238 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3239 spin_lock_irq(&sh->stripe_lock);
3240 bi = sh->dev[i].toread;
3241 sh->dev[i].toread = NULL;
3242 spin_unlock_irq(&sh->stripe_lock);
3243 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3244 wake_up(&conf->wait_for_overlap);
3245 if (bi)
3246 s->to_read--;
3247 while (bi && bi->bi_iter.bi_sector <
3248 sh->dev[i].sector + STRIPE_SECTORS) {
3249 struct bio *nextbi =
3250 r5_next_bio(bi, sh->dev[i].sector);
3251
3252 bi->bi_error = -EIO;
3253 if (!raid5_dec_bi_active_stripes(bi))
3254 bio_list_add(return_bi, bi);
3255 bi = nextbi;
3256 }
3257 }
3258 if (bitmap_end)
3259 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3260 STRIPE_SECTORS, 0, 0);
3261 /* If we were in the middle of a write the parity block might
3262 * still be locked - so just clear all R5_LOCKED flags
3263 */
3264 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3265 }
3266 s->to_write = 0;
3267 s->written = 0;
3268
3269 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3270 if (atomic_dec_and_test(&conf->pending_full_writes))
3271 md_wakeup_thread(conf->mddev->thread);
3272 }
3273
3274 static void
3275 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3276 struct stripe_head_state *s)
3277 {
3278 int abort = 0;
3279 int i;
3280
3281 BUG_ON(sh->batch_head);
3282 clear_bit(STRIPE_SYNCING, &sh->state);
3283 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3284 wake_up(&conf->wait_for_overlap);
3285 s->syncing = 0;
3286 s->replacing = 0;
3287 /* There is nothing more to do for sync/check/repair.
3288 * Don't even need to abort as that is handled elsewhere
3289 * if needed, and not always wanted e.g. if there is a known
3290 * bad block here.
3291 * For recover/replace we need to record a bad block on all
3292 * non-sync devices, or abort the recovery
3293 */
3294 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3295 /* During recovery devices cannot be removed, so
3296 * locking and refcounting of rdevs is not needed
3297 */
3298 rcu_read_lock();
3299 for (i = 0; i < conf->raid_disks; i++) {
3300 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3301 if (rdev
3302 && !test_bit(Faulty, &rdev->flags)
3303 && !test_bit(In_sync, &rdev->flags)
3304 && !rdev_set_badblocks(rdev, sh->sector,
3305 STRIPE_SECTORS, 0))
3306 abort = 1;
3307 rdev = rcu_dereference(conf->disks[i].replacement);
3308 if (rdev
3309 && !test_bit(Faulty, &rdev->flags)
3310 && !test_bit(In_sync, &rdev->flags)
3311 && !rdev_set_badblocks(rdev, sh->sector,
3312 STRIPE_SECTORS, 0))
3313 abort = 1;
3314 }
3315 rcu_read_unlock();
3316 if (abort)
3317 conf->recovery_disabled =
3318 conf->mddev->recovery_disabled;
3319 }
3320 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3321 }
3322
3323 static int want_replace(struct stripe_head *sh, int disk_idx)
3324 {
3325 struct md_rdev *rdev;
3326 int rv = 0;
3327
3328 rcu_read_lock();
3329 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3330 if (rdev
3331 && !test_bit(Faulty, &rdev->flags)
3332 && !test_bit(In_sync, &rdev->flags)
3333 && (rdev->recovery_offset <= sh->sector
3334 || rdev->mddev->recovery_cp <= sh->sector))
3335 rv = 1;
3336 rcu_read_unlock();
3337 return rv;
3338 }
3339
3340 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3341 int disk_idx, int disks)
3342 {
3343 struct r5dev *dev = &sh->dev[disk_idx];
3344 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3345 &sh->dev[s->failed_num[1]] };
3346 int i;
3347
3348
3349 if (test_bit(R5_LOCKED, &dev->flags) ||
3350 test_bit(R5_UPTODATE, &dev->flags))
3351 /* No point reading this as we already have it or have
3352 * decided to get it.
3353 */
3354 return 0;
3355
3356 if (dev->toread ||
3357 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3358 /* We need this block to directly satisfy a request */
3359 return 1;
3360
3361 if (s->syncing || s->expanding ||
3362 (s->replacing && want_replace(sh, disk_idx)))
3363 /* When syncing, or expanding we read everything.
3364 * When replacing, we need the replaced block.
3365 */
3366 return 1;
3367
3368 if ((s->failed >= 1 && fdev[0]->toread) ||
3369 (s->failed >= 2 && fdev[1]->toread))
3370 /* If we want to read from a failed device, then
3371 * we need to actually read every other device.
3372 */
3373 return 1;
3374
3375 /* Sometimes neither read-modify-write nor reconstruct-write
3376 * cycles can work. In those cases we read every block we
3377 * can. Then the parity-update is certain to have enough to
3378 * work with.
3379 * This can only be a problem when we need to write something,
3380 * and some device has failed. If either of those tests
3381 * fail we need look no further.
3382 */
3383 if (!s->failed || !s->to_write)
3384 return 0;
3385
3386 if (test_bit(R5_Insync, &dev->flags) &&
3387 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3388 /* Pre-reads at not permitted until after short delay
3389 * to gather multiple requests. However if this
3390 * device is no Insync, the block could only be be computed
3391 * and there is no need to delay that.
3392 */
3393 return 0;
3394
3395 for (i = 0; i < s->failed && i < 2; i++) {
3396 if (fdev[i]->towrite &&
3397 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3398 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3399 /* If we have a partial write to a failed
3400 * device, then we will need to reconstruct
3401 * the content of that device, so all other
3402 * devices must be read.
3403 */
3404 return 1;
3405 }
3406
3407 /* If we are forced to do a reconstruct-write, either because
3408 * the current RAID6 implementation only supports that, or
3409 * or because parity cannot be trusted and we are currently
3410 * recovering it, there is extra need to be careful.
3411 * If one of the devices that we would need to read, because
3412 * it is not being overwritten (and maybe not written at all)
3413 * is missing/faulty, then we need to read everything we can.
3414 */
3415 if (sh->raid_conf->level != 6 &&
3416 sh->sector < sh->raid_conf->mddev->recovery_cp)
3417 /* reconstruct-write isn't being forced */
3418 return 0;
3419 for (i = 0; i < s->failed && i < 2; i++) {
3420 if (s->failed_num[i] != sh->pd_idx &&
3421 s->failed_num[i] != sh->qd_idx &&
3422 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3423 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3424 return 1;
3425 }
3426
3427 return 0;
3428 }
3429
3430 /* fetch_block - checks the given member device to see if its data needs
3431 * to be read or computed to satisfy a request.
3432 *
3433 * Returns 1 when no more member devices need to be checked, otherwise returns
3434 * 0 to tell the loop in handle_stripe_fill to continue
3435 */
3436 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3437 int disk_idx, int disks)
3438 {
3439 struct r5dev *dev = &sh->dev[disk_idx];
3440
3441 /* is the data in this block needed, and can we get it? */
3442 if (need_this_block(sh, s, disk_idx, disks)) {
3443 /* we would like to get this block, possibly by computing it,
3444 * otherwise read it if the backing disk is insync
3445 */
3446 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3447 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3448 BUG_ON(sh->batch_head);
3449 if ((s->uptodate == disks - 1) &&
3450 (s->failed && (disk_idx == s->failed_num[0] ||
3451 disk_idx == s->failed_num[1]))) {
3452 /* have disk failed, and we're requested to fetch it;
3453 * do compute it
3454 */
3455 pr_debug("Computing stripe %llu block %d\n",
3456 (unsigned long long)sh->sector, disk_idx);
3457 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3458 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3459 set_bit(R5_Wantcompute, &dev->flags);
3460 sh->ops.target = disk_idx;
3461 sh->ops.target2 = -1; /* no 2nd target */
3462 s->req_compute = 1;
3463 /* Careful: from this point on 'uptodate' is in the eye
3464 * of raid_run_ops which services 'compute' operations
3465 * before writes. R5_Wantcompute flags a block that will
3466 * be R5_UPTODATE by the time it is needed for a
3467 * subsequent operation.
3468 */
3469 s->uptodate++;
3470 return 1;
3471 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3472 /* Computing 2-failure is *very* expensive; only
3473 * do it if failed >= 2
3474 */
3475 int other;
3476 for (other = disks; other--; ) {
3477 if (other == disk_idx)
3478 continue;
3479 if (!test_bit(R5_UPTODATE,
3480 &sh->dev[other].flags))
3481 break;
3482 }
3483 BUG_ON(other < 0);
3484 pr_debug("Computing stripe %llu blocks %d,%d\n",
3485 (unsigned long long)sh->sector,
3486 disk_idx, other);
3487 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3488 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3489 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3490 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3491 sh->ops.target = disk_idx;
3492 sh->ops.target2 = other;
3493 s->uptodate += 2;
3494 s->req_compute = 1;
3495 return 1;
3496 } else if (test_bit(R5_Insync, &dev->flags)) {
3497 set_bit(R5_LOCKED, &dev->flags);
3498 set_bit(R5_Wantread, &dev->flags);
3499 s->locked++;
3500 pr_debug("Reading block %d (sync=%d)\n",
3501 disk_idx, s->syncing);
3502 }
3503 }
3504
3505 return 0;
3506 }
3507
3508 /**
3509 * handle_stripe_fill - read or compute data to satisfy pending requests.
3510 */
3511 static void handle_stripe_fill(struct stripe_head *sh,
3512 struct stripe_head_state *s,
3513 int disks)
3514 {
3515 int i;
3516
3517 /* look for blocks to read/compute, skip this if a compute
3518 * is already in flight, or if the stripe contents are in the
3519 * midst of changing due to a write
3520 */
3521 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3522 !sh->reconstruct_state) {
3523
3524 /*
3525 * For degraded stripe with data in journal, do not handle
3526 * read requests yet, instead, flush the stripe to raid
3527 * disks first, this avoids handling complex rmw of write
3528 * back cache (prexor with orig_page, and then xor with
3529 * page) in the read path
3530 */
3531 if (s->injournal && s->failed) {
3532 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3533 r5c_make_stripe_write_out(sh);
3534 goto out;
3535 }
3536
3537 for (i = disks; i--; )
3538 if (fetch_block(sh, s, i, disks))
3539 break;
3540 }
3541 out:
3542 set_bit(STRIPE_HANDLE, &sh->state);
3543 }
3544
3545 static void break_stripe_batch_list(struct stripe_head *head_sh,
3546 unsigned long handle_flags);
3547 /* handle_stripe_clean_event
3548 * any written block on an uptodate or failed drive can be returned.
3549 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3550 * never LOCKED, so we don't need to test 'failed' directly.
3551 */
3552 static void handle_stripe_clean_event(struct r5conf *conf,
3553 struct stripe_head *sh, int disks, struct bio_list *return_bi)
3554 {
3555 int i;
3556 struct r5dev *dev;
3557 int discard_pending = 0;
3558 struct stripe_head *head_sh = sh;
3559 bool do_endio = false;
3560
3561 for (i = disks; i--; )
3562 if (sh->dev[i].written) {
3563 dev = &sh->dev[i];
3564 if (!test_bit(R5_LOCKED, &dev->flags) &&
3565 (test_bit(R5_UPTODATE, &dev->flags) ||
3566 test_bit(R5_Discard, &dev->flags) ||
3567 test_bit(R5_SkipCopy, &dev->flags))) {
3568 /* We can return any write requests */
3569 struct bio *wbi, *wbi2;
3570 pr_debug("Return write for disc %d\n", i);
3571 if (test_and_clear_bit(R5_Discard, &dev->flags))
3572 clear_bit(R5_UPTODATE, &dev->flags);
3573 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3574 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3575 }
3576 do_endio = true;
3577
3578 returnbi:
3579 dev->page = dev->orig_page;
3580 wbi = dev->written;
3581 dev->written = NULL;
3582 while (wbi && wbi->bi_iter.bi_sector <
3583 dev->sector + STRIPE_SECTORS) {
3584 wbi2 = r5_next_bio(wbi, dev->sector);
3585 if (!raid5_dec_bi_active_stripes(wbi)) {
3586 md_write_end(conf->mddev);
3587 bio_list_add(return_bi, wbi);
3588 }
3589 wbi = wbi2;
3590 }
3591 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3592 STRIPE_SECTORS,
3593 !test_bit(STRIPE_DEGRADED, &sh->state),
3594 0);
3595 if (head_sh->batch_head) {
3596 sh = list_first_entry(&sh->batch_list,
3597 struct stripe_head,
3598 batch_list);
3599 if (sh != head_sh) {
3600 dev = &sh->dev[i];
3601 goto returnbi;
3602 }
3603 }
3604 sh = head_sh;
3605 dev = &sh->dev[i];
3606 } else if (test_bit(R5_Discard, &dev->flags))
3607 discard_pending = 1;
3608 }
3609
3610 r5l_stripe_write_finished(sh);
3611
3612 if (!discard_pending &&
3613 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3614 int hash;
3615 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3616 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3617 if (sh->qd_idx >= 0) {
3618 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3619 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3620 }
3621 /* now that discard is done we can proceed with any sync */
3622 clear_bit(STRIPE_DISCARD, &sh->state);
3623 /*
3624 * SCSI discard will change some bio fields and the stripe has
3625 * no updated data, so remove it from hash list and the stripe
3626 * will be reinitialized
3627 */
3628 unhash:
3629 hash = sh->hash_lock_index;
3630 spin_lock_irq(conf->hash_locks + hash);
3631 remove_hash(sh);
3632 spin_unlock_irq(conf->hash_locks + hash);
3633 if (head_sh->batch_head) {
3634 sh = list_first_entry(&sh->batch_list,
3635 struct stripe_head, batch_list);
3636 if (sh != head_sh)
3637 goto unhash;
3638 }
3639 sh = head_sh;
3640
3641 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3642 set_bit(STRIPE_HANDLE, &sh->state);
3643
3644 }
3645
3646 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3647 if (atomic_dec_and_test(&conf->pending_full_writes))
3648 md_wakeup_thread(conf->mddev->thread);
3649
3650 if (head_sh->batch_head && do_endio)
3651 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3652 }
3653
3654 /*
3655 * For RMW in write back cache, we need extra page in prexor to store the
3656 * old data. This page is stored in dev->orig_page.
3657 *
3658 * This function checks whether we have data for prexor. The exact logic
3659 * is:
3660 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3661 */
3662 static inline bool uptodate_for_rmw(struct r5dev *dev)
3663 {
3664 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3665 (!test_bit(R5_InJournal, &dev->flags) ||
3666 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3667 }
3668
3669 static int handle_stripe_dirtying(struct r5conf *conf,
3670 struct stripe_head *sh,
3671 struct stripe_head_state *s,
3672 int disks)
3673 {
3674 int rmw = 0, rcw = 0, i;
3675 sector_t recovery_cp = conf->mddev->recovery_cp;
3676
3677 /* Check whether resync is now happening or should start.
3678 * If yes, then the array is dirty (after unclean shutdown or
3679 * initial creation), so parity in some stripes might be inconsistent.
3680 * In this case, we need to always do reconstruct-write, to ensure
3681 * that in case of drive failure or read-error correction, we
3682 * generate correct data from the parity.
3683 */
3684 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3685 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3686 s->failed == 0)) {
3687 /* Calculate the real rcw later - for now make it
3688 * look like rcw is cheaper
3689 */
3690 rcw = 1; rmw = 2;
3691 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3692 conf->rmw_level, (unsigned long long)recovery_cp,
3693 (unsigned long long)sh->sector);
3694 } else for (i = disks; i--; ) {
3695 /* would I have to read this buffer for read_modify_write */
3696 struct r5dev *dev = &sh->dev[i];
3697 if (((dev->towrite && !delay_towrite(dev, s)) ||
3698 i == sh->pd_idx || i == sh->qd_idx ||
3699 test_bit(R5_InJournal, &dev->flags)) &&
3700 !test_bit(R5_LOCKED, &dev->flags) &&
3701 !(uptodate_for_rmw(dev) ||
3702 test_bit(R5_Wantcompute, &dev->flags))) {
3703 if (test_bit(R5_Insync, &dev->flags))
3704 rmw++;
3705 else
3706 rmw += 2*disks; /* cannot read it */
3707 }
3708 /* Would I have to read this buffer for reconstruct_write */
3709 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3710 i != sh->pd_idx && i != sh->qd_idx &&
3711 !test_bit(R5_LOCKED, &dev->flags) &&
3712 !(test_bit(R5_UPTODATE, &dev->flags) ||
3713 test_bit(R5_Wantcompute, &dev->flags))) {
3714 if (test_bit(R5_Insync, &dev->flags))
3715 rcw++;
3716 else
3717 rcw += 2*disks;
3718 }
3719 }
3720
3721 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3722 (unsigned long long)sh->sector, rmw, rcw);
3723 set_bit(STRIPE_HANDLE, &sh->state);
3724 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3725 /* prefer read-modify-write, but need to get some data */
3726 if (conf->mddev->queue)
3727 blk_add_trace_msg(conf->mddev->queue,
3728 "raid5 rmw %llu %d",
3729 (unsigned long long)sh->sector, rmw);
3730 for (i = disks; i--; ) {
3731 struct r5dev *dev = &sh->dev[i];
3732 if (test_bit(R5_InJournal, &dev->flags) &&
3733 dev->page == dev->orig_page &&
3734 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3735 /* alloc page for prexor */
3736 struct page *p = alloc_page(GFP_NOIO);
3737
3738 if (p) {
3739 dev->orig_page = p;
3740 continue;
3741 }
3742
3743 /*
3744 * alloc_page() failed, try use
3745 * disk_info->extra_page
3746 */
3747 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3748 &conf->cache_state)) {
3749 r5c_use_extra_page(sh);
3750 break;
3751 }
3752
3753 /* extra_page in use, add to delayed_list */
3754 set_bit(STRIPE_DELAYED, &sh->state);
3755 s->waiting_extra_page = 1;
3756 return -EAGAIN;
3757 }
3758 }
3759
3760 for (i = disks; i--; ) {
3761 struct r5dev *dev = &sh->dev[i];
3762 if (((dev->towrite && !delay_towrite(dev, s)) ||
3763 i == sh->pd_idx || i == sh->qd_idx ||
3764 test_bit(R5_InJournal, &dev->flags)) &&
3765 !test_bit(R5_LOCKED, &dev->flags) &&
3766 !(uptodate_for_rmw(dev) ||
3767 test_bit(R5_Wantcompute, &dev->flags)) &&
3768 test_bit(R5_Insync, &dev->flags)) {
3769 if (test_bit(STRIPE_PREREAD_ACTIVE,
3770 &sh->state)) {
3771 pr_debug("Read_old block %d for r-m-w\n",
3772 i);
3773 set_bit(R5_LOCKED, &dev->flags);
3774 set_bit(R5_Wantread, &dev->flags);
3775 s->locked++;
3776 } else {
3777 set_bit(STRIPE_DELAYED, &sh->state);
3778 set_bit(STRIPE_HANDLE, &sh->state);
3779 }
3780 }
3781 }
3782 }
3783 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3784 /* want reconstruct write, but need to get some data */
3785 int qread =0;
3786 rcw = 0;
3787 for (i = disks; i--; ) {
3788 struct r5dev *dev = &sh->dev[i];
3789 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3790 i != sh->pd_idx && i != sh->qd_idx &&
3791 !test_bit(R5_LOCKED, &dev->flags) &&
3792 !(test_bit(R5_UPTODATE, &dev->flags) ||
3793 test_bit(R5_Wantcompute, &dev->flags))) {
3794 rcw++;
3795 if (test_bit(R5_Insync, &dev->flags) &&
3796 test_bit(STRIPE_PREREAD_ACTIVE,
3797 &sh->state)) {
3798 pr_debug("Read_old block "
3799 "%d for Reconstruct\n", i);
3800 set_bit(R5_LOCKED, &dev->flags);
3801 set_bit(R5_Wantread, &dev->flags);
3802 s->locked++;
3803 qread++;
3804 } else {
3805 set_bit(STRIPE_DELAYED, &sh->state);
3806 set_bit(STRIPE_HANDLE, &sh->state);
3807 }
3808 }
3809 }
3810 if (rcw && conf->mddev->queue)
3811 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3812 (unsigned long long)sh->sector,
3813 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3814 }
3815
3816 if (rcw > disks && rmw > disks &&
3817 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3818 set_bit(STRIPE_DELAYED, &sh->state);
3819
3820 /* now if nothing is locked, and if we have enough data,
3821 * we can start a write request
3822 */
3823 /* since handle_stripe can be called at any time we need to handle the
3824 * case where a compute block operation has been submitted and then a
3825 * subsequent call wants to start a write request. raid_run_ops only
3826 * handles the case where compute block and reconstruct are requested
3827 * simultaneously. If this is not the case then new writes need to be
3828 * held off until the compute completes.
3829 */
3830 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3831 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3832 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3833 schedule_reconstruction(sh, s, rcw == 0, 0);
3834 return 0;
3835 }
3836
3837 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3838 struct stripe_head_state *s, int disks)
3839 {
3840 struct r5dev *dev = NULL;
3841
3842 BUG_ON(sh->batch_head);
3843 set_bit(STRIPE_HANDLE, &sh->state);
3844
3845 switch (sh->check_state) {
3846 case check_state_idle:
3847 /* start a new check operation if there are no failures */
3848 if (s->failed == 0) {
3849 BUG_ON(s->uptodate != disks);
3850 sh->check_state = check_state_run;
3851 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3852 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3853 s->uptodate--;
3854 break;
3855 }
3856 dev = &sh->dev[s->failed_num[0]];
3857 /* fall through */
3858 case check_state_compute_result:
3859 sh->check_state = check_state_idle;
3860 if (!dev)
3861 dev = &sh->dev[sh->pd_idx];
3862
3863 /* check that a write has not made the stripe insync */
3864 if (test_bit(STRIPE_INSYNC, &sh->state))
3865 break;
3866
3867 /* either failed parity check, or recovery is happening */
3868 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3869 BUG_ON(s->uptodate != disks);
3870
3871 set_bit(R5_LOCKED, &dev->flags);
3872 s->locked++;
3873 set_bit(R5_Wantwrite, &dev->flags);
3874
3875 clear_bit(STRIPE_DEGRADED, &sh->state);
3876 set_bit(STRIPE_INSYNC, &sh->state);
3877 break;
3878 case check_state_run:
3879 break; /* we will be called again upon completion */
3880 case check_state_check_result:
3881 sh->check_state = check_state_idle;
3882
3883 /* if a failure occurred during the check operation, leave
3884 * STRIPE_INSYNC not set and let the stripe be handled again
3885 */
3886 if (s->failed)
3887 break;
3888
3889 /* handle a successful check operation, if parity is correct
3890 * we are done. Otherwise update the mismatch count and repair
3891 * parity if !MD_RECOVERY_CHECK
3892 */
3893 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3894 /* parity is correct (on disc,
3895 * not in buffer any more)
3896 */
3897 set_bit(STRIPE_INSYNC, &sh->state);
3898 else {
3899 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3900 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3901 /* don't try to repair!! */
3902 set_bit(STRIPE_INSYNC, &sh->state);
3903 else {
3904 sh->check_state = check_state_compute_run;
3905 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3906 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3907 set_bit(R5_Wantcompute,
3908 &sh->dev[sh->pd_idx].flags);
3909 sh->ops.target = sh->pd_idx;
3910 sh->ops.target2 = -1;
3911 s->uptodate++;
3912 }
3913 }
3914 break;
3915 case check_state_compute_run:
3916 break;
3917 default:
3918 pr_err("%s: unknown check_state: %d sector: %llu\n",
3919 __func__, sh->check_state,
3920 (unsigned long long) sh->sector);
3921 BUG();
3922 }
3923 }
3924
3925 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3926 struct stripe_head_state *s,
3927 int disks)
3928 {
3929 int pd_idx = sh->pd_idx;
3930 int qd_idx = sh->qd_idx;
3931 struct r5dev *dev;
3932
3933 BUG_ON(sh->batch_head);
3934 set_bit(STRIPE_HANDLE, &sh->state);
3935
3936 BUG_ON(s->failed > 2);
3937
3938 /* Want to check and possibly repair P and Q.
3939 * However there could be one 'failed' device, in which
3940 * case we can only check one of them, possibly using the
3941 * other to generate missing data
3942 */
3943
3944 switch (sh->check_state) {
3945 case check_state_idle:
3946 /* start a new check operation if there are < 2 failures */
3947 if (s->failed == s->q_failed) {
3948 /* The only possible failed device holds Q, so it
3949 * makes sense to check P (If anything else were failed,
3950 * we would have used P to recreate it).
3951 */
3952 sh->check_state = check_state_run;
3953 }
3954 if (!s->q_failed && s->failed < 2) {
3955 /* Q is not failed, and we didn't use it to generate
3956 * anything, so it makes sense to check it
3957 */
3958 if (sh->check_state == check_state_run)
3959 sh->check_state = check_state_run_pq;
3960 else
3961 sh->check_state = check_state_run_q;
3962 }
3963
3964 /* discard potentially stale zero_sum_result */
3965 sh->ops.zero_sum_result = 0;
3966
3967 if (sh->check_state == check_state_run) {
3968 /* async_xor_zero_sum destroys the contents of P */
3969 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3970 s->uptodate--;
3971 }
3972 if (sh->check_state >= check_state_run &&
3973 sh->check_state <= check_state_run_pq) {
3974 /* async_syndrome_zero_sum preserves P and Q, so
3975 * no need to mark them !uptodate here
3976 */
3977 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3978 break;
3979 }
3980
3981 /* we have 2-disk failure */
3982 BUG_ON(s->failed != 2);
3983 /* fall through */
3984 case check_state_compute_result:
3985 sh->check_state = check_state_idle;
3986
3987 /* check that a write has not made the stripe insync */
3988 if (test_bit(STRIPE_INSYNC, &sh->state))
3989 break;
3990
3991 /* now write out any block on a failed drive,
3992 * or P or Q if they were recomputed
3993 */
3994 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3995 if (s->failed == 2) {
3996 dev = &sh->dev[s->failed_num[1]];
3997 s->locked++;
3998 set_bit(R5_LOCKED, &dev->flags);
3999 set_bit(R5_Wantwrite, &dev->flags);
4000 }
4001 if (s->failed >= 1) {
4002 dev = &sh->dev[s->failed_num[0]];
4003 s->locked++;
4004 set_bit(R5_LOCKED, &dev->flags);
4005 set_bit(R5_Wantwrite, &dev->flags);
4006 }
4007 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4008 dev = &sh->dev[pd_idx];
4009 s->locked++;
4010 set_bit(R5_LOCKED, &dev->flags);
4011 set_bit(R5_Wantwrite, &dev->flags);
4012 }
4013 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4014 dev = &sh->dev[qd_idx];
4015 s->locked++;
4016 set_bit(R5_LOCKED, &dev->flags);
4017 set_bit(R5_Wantwrite, &dev->flags);
4018 }
4019 clear_bit(STRIPE_DEGRADED, &sh->state);
4020
4021 set_bit(STRIPE_INSYNC, &sh->state);
4022 break;
4023 case check_state_run:
4024 case check_state_run_q:
4025 case check_state_run_pq:
4026 break; /* we will be called again upon completion */
4027 case check_state_check_result:
4028 sh->check_state = check_state_idle;
4029
4030 /* handle a successful check operation, if parity is correct
4031 * we are done. Otherwise update the mismatch count and repair
4032 * parity if !MD_RECOVERY_CHECK
4033 */
4034 if (sh->ops.zero_sum_result == 0) {
4035 /* both parities are correct */
4036 if (!s->failed)
4037 set_bit(STRIPE_INSYNC, &sh->state);
4038 else {
4039 /* in contrast to the raid5 case we can validate
4040 * parity, but still have a failure to write
4041 * back
4042 */
4043 sh->check_state = check_state_compute_result;
4044 /* Returning at this point means that we may go
4045 * off and bring p and/or q uptodate again so
4046 * we make sure to check zero_sum_result again
4047 * to verify if p or q need writeback
4048 */
4049 }
4050 } else {
4051 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4052 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4053 /* don't try to repair!! */
4054 set_bit(STRIPE_INSYNC, &sh->state);
4055 else {
4056 int *target = &sh->ops.target;
4057
4058 sh->ops.target = -1;
4059 sh->ops.target2 = -1;
4060 sh->check_state = check_state_compute_run;
4061 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4062 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4063 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4064 set_bit(R5_Wantcompute,
4065 &sh->dev[pd_idx].flags);
4066 *target = pd_idx;
4067 target = &sh->ops.target2;
4068 s->uptodate++;
4069 }
4070 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4071 set_bit(R5_Wantcompute,
4072 &sh->dev[qd_idx].flags);
4073 *target = qd_idx;
4074 s->uptodate++;
4075 }
4076 }
4077 }
4078 break;
4079 case check_state_compute_run:
4080 break;
4081 default:
4082 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4083 __func__, sh->check_state,
4084 (unsigned long long) sh->sector);
4085 BUG();
4086 }
4087 }
4088
4089 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4090 {
4091 int i;
4092
4093 /* We have read all the blocks in this stripe and now we need to
4094 * copy some of them into a target stripe for expand.
4095 */
4096 struct dma_async_tx_descriptor *tx = NULL;
4097 BUG_ON(sh->batch_head);
4098 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4099 for (i = 0; i < sh->disks; i++)
4100 if (i != sh->pd_idx && i != sh->qd_idx) {
4101 int dd_idx, j;
4102 struct stripe_head *sh2;
4103 struct async_submit_ctl submit;
4104
4105 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4106 sector_t s = raid5_compute_sector(conf, bn, 0,
4107 &dd_idx, NULL);
4108 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4109 if (sh2 == NULL)
4110 /* so far only the early blocks of this stripe
4111 * have been requested. When later blocks
4112 * get requested, we will try again
4113 */
4114 continue;
4115 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4116 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4117 /* must have already done this block */
4118 raid5_release_stripe(sh2);
4119 continue;
4120 }
4121
4122 /* place all the copies on one channel */
4123 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4124 tx = async_memcpy(sh2->dev[dd_idx].page,
4125 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4126 &submit);
4127
4128 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4129 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4130 for (j = 0; j < conf->raid_disks; j++)
4131 if (j != sh2->pd_idx &&
4132 j != sh2->qd_idx &&
4133 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4134 break;
4135 if (j == conf->raid_disks) {
4136 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4137 set_bit(STRIPE_HANDLE, &sh2->state);
4138 }
4139 raid5_release_stripe(sh2);
4140
4141 }
4142 /* done submitting copies, wait for them to complete */
4143 async_tx_quiesce(&tx);
4144 }
4145
4146 /*
4147 * handle_stripe - do things to a stripe.
4148 *
4149 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4150 * state of various bits to see what needs to be done.
4151 * Possible results:
4152 * return some read requests which now have data
4153 * return some write requests which are safely on storage
4154 * schedule a read on some buffers
4155 * schedule a write of some buffers
4156 * return confirmation of parity correctness
4157 *
4158 */
4159
4160 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4161 {
4162 struct r5conf *conf = sh->raid_conf;
4163 int disks = sh->disks;
4164 struct r5dev *dev;
4165 int i;
4166 int do_recovery = 0;
4167
4168 memset(s, 0, sizeof(*s));
4169
4170 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4171 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4172 s->failed_num[0] = -1;
4173 s->failed_num[1] = -1;
4174 s->log_failed = r5l_log_disk_error(conf);
4175
4176 /* Now to look around and see what can be done */
4177 rcu_read_lock();
4178 for (i=disks; i--; ) {
4179 struct md_rdev *rdev;
4180 sector_t first_bad;
4181 int bad_sectors;
4182 int is_bad = 0;
4183
4184 dev = &sh->dev[i];
4185
4186 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4187 i, dev->flags,
4188 dev->toread, dev->towrite, dev->written);
4189 /* maybe we can reply to a read
4190 *
4191 * new wantfill requests are only permitted while
4192 * ops_complete_biofill is guaranteed to be inactive
4193 */
4194 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4195 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4196 set_bit(R5_Wantfill, &dev->flags);
4197
4198 /* now count some things */
4199 if (test_bit(R5_LOCKED, &dev->flags))
4200 s->locked++;
4201 if (test_bit(R5_UPTODATE, &dev->flags))
4202 s->uptodate++;
4203 if (test_bit(R5_Wantcompute, &dev->flags)) {
4204 s->compute++;
4205 BUG_ON(s->compute > 2);
4206 }
4207
4208 if (test_bit(R5_Wantfill, &dev->flags))
4209 s->to_fill++;
4210 else if (dev->toread)
4211 s->to_read++;
4212 if (dev->towrite) {
4213 s->to_write++;
4214 if (!test_bit(R5_OVERWRITE, &dev->flags))
4215 s->non_overwrite++;
4216 }
4217 if (dev->written)
4218 s->written++;
4219 /* Prefer to use the replacement for reads, but only
4220 * if it is recovered enough and has no bad blocks.
4221 */
4222 rdev = rcu_dereference(conf->disks[i].replacement);
4223 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4224 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4225 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4226 &first_bad, &bad_sectors))
4227 set_bit(R5_ReadRepl, &dev->flags);
4228 else {
4229 if (rdev && !test_bit(Faulty, &rdev->flags))
4230 set_bit(R5_NeedReplace, &dev->flags);
4231 else
4232 clear_bit(R5_NeedReplace, &dev->flags);
4233 rdev = rcu_dereference(conf->disks[i].rdev);
4234 clear_bit(R5_ReadRepl, &dev->flags);
4235 }
4236 if (rdev && test_bit(Faulty, &rdev->flags))
4237 rdev = NULL;
4238 if (rdev) {
4239 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4240 &first_bad, &bad_sectors);
4241 if (s->blocked_rdev == NULL
4242 && (test_bit(Blocked, &rdev->flags)
4243 || is_bad < 0)) {
4244 if (is_bad < 0)
4245 set_bit(BlockedBadBlocks,
4246 &rdev->flags);
4247 s->blocked_rdev = rdev;
4248 atomic_inc(&rdev->nr_pending);
4249 }
4250 }
4251 clear_bit(R5_Insync, &dev->flags);
4252 if (!rdev)
4253 /* Not in-sync */;
4254 else if (is_bad) {
4255 /* also not in-sync */
4256 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4257 test_bit(R5_UPTODATE, &dev->flags)) {
4258 /* treat as in-sync, but with a read error
4259 * which we can now try to correct
4260 */
4261 set_bit(R5_Insync, &dev->flags);
4262 set_bit(R5_ReadError, &dev->flags);
4263 }
4264 } else if (test_bit(In_sync, &rdev->flags))
4265 set_bit(R5_Insync, &dev->flags);
4266 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4267 /* in sync if before recovery_offset */
4268 set_bit(R5_Insync, &dev->flags);
4269 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4270 test_bit(R5_Expanded, &dev->flags))
4271 /* If we've reshaped into here, we assume it is Insync.
4272 * We will shortly update recovery_offset to make
4273 * it official.
4274 */
4275 set_bit(R5_Insync, &dev->flags);
4276
4277 if (test_bit(R5_WriteError, &dev->flags)) {
4278 /* This flag does not apply to '.replacement'
4279 * only to .rdev, so make sure to check that*/
4280 struct md_rdev *rdev2 = rcu_dereference(
4281 conf->disks[i].rdev);
4282 if (rdev2 == rdev)
4283 clear_bit(R5_Insync, &dev->flags);
4284 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4285 s->handle_bad_blocks = 1;
4286 atomic_inc(&rdev2->nr_pending);
4287 } else
4288 clear_bit(R5_WriteError, &dev->flags);
4289 }
4290 if (test_bit(R5_MadeGood, &dev->flags)) {
4291 /* This flag does not apply to '.replacement'
4292 * only to .rdev, so make sure to check that*/
4293 struct md_rdev *rdev2 = rcu_dereference(
4294 conf->disks[i].rdev);
4295 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4296 s->handle_bad_blocks = 1;
4297 atomic_inc(&rdev2->nr_pending);
4298 } else
4299 clear_bit(R5_MadeGood, &dev->flags);
4300 }
4301 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4302 struct md_rdev *rdev2 = rcu_dereference(
4303 conf->disks[i].replacement);
4304 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4305 s->handle_bad_blocks = 1;
4306 atomic_inc(&rdev2->nr_pending);
4307 } else
4308 clear_bit(R5_MadeGoodRepl, &dev->flags);
4309 }
4310 if (!test_bit(R5_Insync, &dev->flags)) {
4311 /* The ReadError flag will just be confusing now */
4312 clear_bit(R5_ReadError, &dev->flags);
4313 clear_bit(R5_ReWrite, &dev->flags);
4314 }
4315 if (test_bit(R5_ReadError, &dev->flags))
4316 clear_bit(R5_Insync, &dev->flags);
4317 if (!test_bit(R5_Insync, &dev->flags)) {
4318 if (s->failed < 2)
4319 s->failed_num[s->failed] = i;
4320 s->failed++;
4321 if (rdev && !test_bit(Faulty, &rdev->flags))
4322 do_recovery = 1;
4323 }
4324
4325 if (test_bit(R5_InJournal, &dev->flags))
4326 s->injournal++;
4327 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4328 s->just_cached++;
4329 }
4330 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4331 /* If there is a failed device being replaced,
4332 * we must be recovering.
4333 * else if we are after recovery_cp, we must be syncing
4334 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4335 * else we can only be replacing
4336 * sync and recovery both need to read all devices, and so
4337 * use the same flag.
4338 */
4339 if (do_recovery ||
4340 sh->sector >= conf->mddev->recovery_cp ||
4341 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4342 s->syncing = 1;
4343 else
4344 s->replacing = 1;
4345 }
4346 rcu_read_unlock();
4347 }
4348
4349 static int clear_batch_ready(struct stripe_head *sh)
4350 {
4351 /* Return '1' if this is a member of batch, or
4352 * '0' if it is a lone stripe or a head which can now be
4353 * handled.
4354 */
4355 struct stripe_head *tmp;
4356 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4357 return (sh->batch_head && sh->batch_head != sh);
4358 spin_lock(&sh->stripe_lock);
4359 if (!sh->batch_head) {
4360 spin_unlock(&sh->stripe_lock);
4361 return 0;
4362 }
4363
4364 /*
4365 * this stripe could be added to a batch list before we check
4366 * BATCH_READY, skips it
4367 */
4368 if (sh->batch_head != sh) {
4369 spin_unlock(&sh->stripe_lock);
4370 return 1;
4371 }
4372 spin_lock(&sh->batch_lock);
4373 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4374 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4375 spin_unlock(&sh->batch_lock);
4376 spin_unlock(&sh->stripe_lock);
4377
4378 /*
4379 * BATCH_READY is cleared, no new stripes can be added.
4380 * batch_list can be accessed without lock
4381 */
4382 return 0;
4383 }
4384
4385 static void break_stripe_batch_list(struct stripe_head *head_sh,
4386 unsigned long handle_flags)
4387 {
4388 struct stripe_head *sh, *next;
4389 int i;
4390 int do_wakeup = 0;
4391
4392 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4393
4394 list_del_init(&sh->batch_list);
4395
4396 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4397 (1 << STRIPE_SYNCING) |
4398 (1 << STRIPE_REPLACED) |
4399 (1 << STRIPE_DELAYED) |
4400 (1 << STRIPE_BIT_DELAY) |
4401 (1 << STRIPE_FULL_WRITE) |
4402 (1 << STRIPE_BIOFILL_RUN) |
4403 (1 << STRIPE_COMPUTE_RUN) |
4404 (1 << STRIPE_OPS_REQ_PENDING) |
4405 (1 << STRIPE_DISCARD) |
4406 (1 << STRIPE_BATCH_READY) |
4407 (1 << STRIPE_BATCH_ERR) |
4408 (1 << STRIPE_BITMAP_PENDING)),
4409 "stripe state: %lx\n", sh->state);
4410 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4411 (1 << STRIPE_REPLACED)),
4412 "head stripe state: %lx\n", head_sh->state);
4413
4414 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4415 (1 << STRIPE_PREREAD_ACTIVE) |
4416 (1 << STRIPE_DEGRADED)),
4417 head_sh->state & (1 << STRIPE_INSYNC));
4418
4419 sh->check_state = head_sh->check_state;
4420 sh->reconstruct_state = head_sh->reconstruct_state;
4421 for (i = 0; i < sh->disks; i++) {
4422 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4423 do_wakeup = 1;
4424 sh->dev[i].flags = head_sh->dev[i].flags &
4425 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4426 }
4427 spin_lock_irq(&sh->stripe_lock);
4428 sh->batch_head = NULL;
4429 spin_unlock_irq(&sh->stripe_lock);
4430 if (handle_flags == 0 ||
4431 sh->state & handle_flags)
4432 set_bit(STRIPE_HANDLE, &sh->state);
4433 raid5_release_stripe(sh);
4434 }
4435 spin_lock_irq(&head_sh->stripe_lock);
4436 head_sh->batch_head = NULL;
4437 spin_unlock_irq(&head_sh->stripe_lock);
4438 for (i = 0; i < head_sh->disks; i++)
4439 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4440 do_wakeup = 1;
4441 if (head_sh->state & handle_flags)
4442 set_bit(STRIPE_HANDLE, &head_sh->state);
4443
4444 if (do_wakeup)
4445 wake_up(&head_sh->raid_conf->wait_for_overlap);
4446 }
4447
4448 static void handle_stripe(struct stripe_head *sh)
4449 {
4450 struct stripe_head_state s;
4451 struct r5conf *conf = sh->raid_conf;
4452 int i;
4453 int prexor;
4454 int disks = sh->disks;
4455 struct r5dev *pdev, *qdev;
4456
4457 clear_bit(STRIPE_HANDLE, &sh->state);
4458 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4459 /* already being handled, ensure it gets handled
4460 * again when current action finishes */
4461 set_bit(STRIPE_HANDLE, &sh->state);
4462 return;
4463 }
4464
4465 if (clear_batch_ready(sh) ) {
4466 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4467 return;
4468 }
4469
4470 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4471 break_stripe_batch_list(sh, 0);
4472
4473 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4474 spin_lock(&sh->stripe_lock);
4475 /* Cannot process 'sync' concurrently with 'discard' */
4476 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4477 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4478 set_bit(STRIPE_SYNCING, &sh->state);
4479 clear_bit(STRIPE_INSYNC, &sh->state);
4480 clear_bit(STRIPE_REPLACED, &sh->state);
4481 }
4482 spin_unlock(&sh->stripe_lock);
4483 }
4484 clear_bit(STRIPE_DELAYED, &sh->state);
4485
4486 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4487 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4488 (unsigned long long)sh->sector, sh->state,
4489 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4490 sh->check_state, sh->reconstruct_state);
4491
4492 analyse_stripe(sh, &s);
4493
4494 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4495 goto finish;
4496
4497 if (s.handle_bad_blocks) {
4498 set_bit(STRIPE_HANDLE, &sh->state);
4499 goto finish;
4500 }
4501
4502 if (unlikely(s.blocked_rdev)) {
4503 if (s.syncing || s.expanding || s.expanded ||
4504 s.replacing || s.to_write || s.written) {
4505 set_bit(STRIPE_HANDLE, &sh->state);
4506 goto finish;
4507 }
4508 /* There is nothing for the blocked_rdev to block */
4509 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4510 s.blocked_rdev = NULL;
4511 }
4512
4513 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4514 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4515 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4516 }
4517
4518 pr_debug("locked=%d uptodate=%d to_read=%d"
4519 " to_write=%d failed=%d failed_num=%d,%d\n",
4520 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4521 s.failed_num[0], s.failed_num[1]);
4522 /* check if the array has lost more than max_degraded devices and,
4523 * if so, some requests might need to be failed.
4524 */
4525 if (s.failed > conf->max_degraded || s.log_failed) {
4526 sh->check_state = 0;
4527 sh->reconstruct_state = 0;
4528 break_stripe_batch_list(sh, 0);
4529 if (s.to_read+s.to_write+s.written)
4530 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4531 if (s.syncing + s.replacing)
4532 handle_failed_sync(conf, sh, &s);
4533 }
4534
4535 /* Now we check to see if any write operations have recently
4536 * completed
4537 */
4538 prexor = 0;
4539 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4540 prexor = 1;
4541 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4542 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4543 sh->reconstruct_state = reconstruct_state_idle;
4544
4545 /* All the 'written' buffers and the parity block are ready to
4546 * be written back to disk
4547 */
4548 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4549 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4550 BUG_ON(sh->qd_idx >= 0 &&
4551 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4552 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4553 for (i = disks; i--; ) {
4554 struct r5dev *dev = &sh->dev[i];
4555 if (test_bit(R5_LOCKED, &dev->flags) &&
4556 (i == sh->pd_idx || i == sh->qd_idx ||
4557 dev->written || test_bit(R5_InJournal,
4558 &dev->flags))) {
4559 pr_debug("Writing block %d\n", i);
4560 set_bit(R5_Wantwrite, &dev->flags);
4561 if (prexor)
4562 continue;
4563 if (s.failed > 1)
4564 continue;
4565 if (!test_bit(R5_Insync, &dev->flags) ||
4566 ((i == sh->pd_idx || i == sh->qd_idx) &&
4567 s.failed == 0))
4568 set_bit(STRIPE_INSYNC, &sh->state);
4569 }
4570 }
4571 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4572 s.dec_preread_active = 1;
4573 }
4574
4575 /*
4576 * might be able to return some write requests if the parity blocks
4577 * are safe, or on a failed drive
4578 */
4579 pdev = &sh->dev[sh->pd_idx];
4580 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4581 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4582 qdev = &sh->dev[sh->qd_idx];
4583 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4584 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4585 || conf->level < 6;
4586
4587 if (s.written &&
4588 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4589 && !test_bit(R5_LOCKED, &pdev->flags)
4590 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4591 test_bit(R5_Discard, &pdev->flags))))) &&
4592 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4593 && !test_bit(R5_LOCKED, &qdev->flags)
4594 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4595 test_bit(R5_Discard, &qdev->flags))))))
4596 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4597
4598 if (s.just_cached)
4599 r5c_handle_cached_data_endio(conf, sh, disks, &s.return_bi);
4600 r5l_stripe_write_finished(sh);
4601
4602 /* Now we might consider reading some blocks, either to check/generate
4603 * parity, or to satisfy requests
4604 * or to load a block that is being partially written.
4605 */
4606 if (s.to_read || s.non_overwrite
4607 || (conf->level == 6 && s.to_write && s.failed)
4608 || (s.syncing && (s.uptodate + s.compute < disks))
4609 || s.replacing
4610 || s.expanding)
4611 handle_stripe_fill(sh, &s, disks);
4612
4613 /*
4614 * When the stripe finishes full journal write cycle (write to journal
4615 * and raid disk), this is the clean up procedure so it is ready for
4616 * next operation.
4617 */
4618 r5c_finish_stripe_write_out(conf, sh, &s);
4619
4620 /*
4621 * Now to consider new write requests, cache write back and what else,
4622 * if anything should be read. We do not handle new writes when:
4623 * 1/ A 'write' operation (copy+xor) is already in flight.
4624 * 2/ A 'check' operation is in flight, as it may clobber the parity
4625 * block.
4626 * 3/ A r5c cache log write is in flight.
4627 */
4628
4629 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4630 if (!r5c_is_writeback(conf->log)) {
4631 if (s.to_write)
4632 handle_stripe_dirtying(conf, sh, &s, disks);
4633 } else { /* write back cache */
4634 int ret = 0;
4635
4636 /* First, try handle writes in caching phase */
4637 if (s.to_write)
4638 ret = r5c_try_caching_write(conf, sh, &s,
4639 disks);
4640 /*
4641 * If caching phase failed: ret == -EAGAIN
4642 * OR
4643 * stripe under reclaim: !caching && injournal
4644 *
4645 * fall back to handle_stripe_dirtying()
4646 */
4647 if (ret == -EAGAIN ||
4648 /* stripe under reclaim: !caching && injournal */
4649 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4650 s.injournal > 0)) {
4651 ret = handle_stripe_dirtying(conf, sh, &s,
4652 disks);
4653 if (ret == -EAGAIN)
4654 goto finish;
4655 }
4656 }
4657 }
4658
4659 /* maybe we need to check and possibly fix the parity for this stripe
4660 * Any reads will already have been scheduled, so we just see if enough
4661 * data is available. The parity check is held off while parity
4662 * dependent operations are in flight.
4663 */
4664 if (sh->check_state ||
4665 (s.syncing && s.locked == 0 &&
4666 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4667 !test_bit(STRIPE_INSYNC, &sh->state))) {
4668 if (conf->level == 6)
4669 handle_parity_checks6(conf, sh, &s, disks);
4670 else
4671 handle_parity_checks5(conf, sh, &s, disks);
4672 }
4673
4674 if ((s.replacing || s.syncing) && s.locked == 0
4675 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4676 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4677 /* Write out to replacement devices where possible */
4678 for (i = 0; i < conf->raid_disks; i++)
4679 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4680 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4681 set_bit(R5_WantReplace, &sh->dev[i].flags);
4682 set_bit(R5_LOCKED, &sh->dev[i].flags);
4683 s.locked++;
4684 }
4685 if (s.replacing)
4686 set_bit(STRIPE_INSYNC, &sh->state);
4687 set_bit(STRIPE_REPLACED, &sh->state);
4688 }
4689 if ((s.syncing || s.replacing) && s.locked == 0 &&
4690 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4691 test_bit(STRIPE_INSYNC, &sh->state)) {
4692 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4693 clear_bit(STRIPE_SYNCING, &sh->state);
4694 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4695 wake_up(&conf->wait_for_overlap);
4696 }
4697
4698 /* If the failed drives are just a ReadError, then we might need
4699 * to progress the repair/check process
4700 */
4701 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4702 for (i = 0; i < s.failed; i++) {
4703 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4704 if (test_bit(R5_ReadError, &dev->flags)
4705 && !test_bit(R5_LOCKED, &dev->flags)
4706 && test_bit(R5_UPTODATE, &dev->flags)
4707 ) {
4708 if (!test_bit(R5_ReWrite, &dev->flags)) {
4709 set_bit(R5_Wantwrite, &dev->flags);
4710 set_bit(R5_ReWrite, &dev->flags);
4711 set_bit(R5_LOCKED, &dev->flags);
4712 s.locked++;
4713 } else {
4714 /* let's read it back */
4715 set_bit(R5_Wantread, &dev->flags);
4716 set_bit(R5_LOCKED, &dev->flags);
4717 s.locked++;
4718 }
4719 }
4720 }
4721
4722 /* Finish reconstruct operations initiated by the expansion process */
4723 if (sh->reconstruct_state == reconstruct_state_result) {
4724 struct stripe_head *sh_src
4725 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4726 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4727 /* sh cannot be written until sh_src has been read.
4728 * so arrange for sh to be delayed a little
4729 */
4730 set_bit(STRIPE_DELAYED, &sh->state);
4731 set_bit(STRIPE_HANDLE, &sh->state);
4732 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4733 &sh_src->state))
4734 atomic_inc(&conf->preread_active_stripes);
4735 raid5_release_stripe(sh_src);
4736 goto finish;
4737 }
4738 if (sh_src)
4739 raid5_release_stripe(sh_src);
4740
4741 sh->reconstruct_state = reconstruct_state_idle;
4742 clear_bit(STRIPE_EXPANDING, &sh->state);
4743 for (i = conf->raid_disks; i--; ) {
4744 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4745 set_bit(R5_LOCKED, &sh->dev[i].flags);
4746 s.locked++;
4747 }
4748 }
4749
4750 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4751 !sh->reconstruct_state) {
4752 /* Need to write out all blocks after computing parity */
4753 sh->disks = conf->raid_disks;
4754 stripe_set_idx(sh->sector, conf, 0, sh);
4755 schedule_reconstruction(sh, &s, 1, 1);
4756 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4757 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4758 atomic_dec(&conf->reshape_stripes);
4759 wake_up(&conf->wait_for_overlap);
4760 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4761 }
4762
4763 if (s.expanding && s.locked == 0 &&
4764 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4765 handle_stripe_expansion(conf, sh);
4766
4767 finish:
4768 /* wait for this device to become unblocked */
4769 if (unlikely(s.blocked_rdev)) {
4770 if (conf->mddev->external)
4771 md_wait_for_blocked_rdev(s.blocked_rdev,
4772 conf->mddev);
4773 else
4774 /* Internal metadata will immediately
4775 * be written by raid5d, so we don't
4776 * need to wait here.
4777 */
4778 rdev_dec_pending(s.blocked_rdev,
4779 conf->mddev);
4780 }
4781
4782 if (s.handle_bad_blocks)
4783 for (i = disks; i--; ) {
4784 struct md_rdev *rdev;
4785 struct r5dev *dev = &sh->dev[i];
4786 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4787 /* We own a safe reference to the rdev */
4788 rdev = conf->disks[i].rdev;
4789 if (!rdev_set_badblocks(rdev, sh->sector,
4790 STRIPE_SECTORS, 0))
4791 md_error(conf->mddev, rdev);
4792 rdev_dec_pending(rdev, conf->mddev);
4793 }
4794 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4795 rdev = conf->disks[i].rdev;
4796 rdev_clear_badblocks(rdev, sh->sector,
4797 STRIPE_SECTORS, 0);
4798 rdev_dec_pending(rdev, conf->mddev);
4799 }
4800 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4801 rdev = conf->disks[i].replacement;
4802 if (!rdev)
4803 /* rdev have been moved down */
4804 rdev = conf->disks[i].rdev;
4805 rdev_clear_badblocks(rdev, sh->sector,
4806 STRIPE_SECTORS, 0);
4807 rdev_dec_pending(rdev, conf->mddev);
4808 }
4809 }
4810
4811 if (s.ops_request)
4812 raid_run_ops(sh, s.ops_request);
4813
4814 ops_run_io(sh, &s);
4815
4816 if (s.dec_preread_active) {
4817 /* We delay this until after ops_run_io so that if make_request
4818 * is waiting on a flush, it won't continue until the writes
4819 * have actually been submitted.
4820 */
4821 atomic_dec(&conf->preread_active_stripes);
4822 if (atomic_read(&conf->preread_active_stripes) <
4823 IO_THRESHOLD)
4824 md_wakeup_thread(conf->mddev->thread);
4825 }
4826
4827 if (!bio_list_empty(&s.return_bi)) {
4828 if (test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4829 spin_lock_irq(&conf->device_lock);
4830 bio_list_merge(&conf->return_bi, &s.return_bi);
4831 spin_unlock_irq(&conf->device_lock);
4832 md_wakeup_thread(conf->mddev->thread);
4833 } else
4834 return_io(&s.return_bi);
4835 }
4836
4837 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4838 }
4839
4840 static void raid5_activate_delayed(struct r5conf *conf)
4841 {
4842 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4843 while (!list_empty(&conf->delayed_list)) {
4844 struct list_head *l = conf->delayed_list.next;
4845 struct stripe_head *sh;
4846 sh = list_entry(l, struct stripe_head, lru);
4847 list_del_init(l);
4848 clear_bit(STRIPE_DELAYED, &sh->state);
4849 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4850 atomic_inc(&conf->preread_active_stripes);
4851 list_add_tail(&sh->lru, &conf->hold_list);
4852 raid5_wakeup_stripe_thread(sh);
4853 }
4854 }
4855 }
4856
4857 static void activate_bit_delay(struct r5conf *conf,
4858 struct list_head *temp_inactive_list)
4859 {
4860 /* device_lock is held */
4861 struct list_head head;
4862 list_add(&head, &conf->bitmap_list);
4863 list_del_init(&conf->bitmap_list);
4864 while (!list_empty(&head)) {
4865 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4866 int hash;
4867 list_del_init(&sh->lru);
4868 atomic_inc(&sh->count);
4869 hash = sh->hash_lock_index;
4870 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4871 }
4872 }
4873
4874 static int raid5_congested(struct mddev *mddev, int bits)
4875 {
4876 struct r5conf *conf = mddev->private;
4877
4878 /* No difference between reads and writes. Just check
4879 * how busy the stripe_cache is
4880 */
4881
4882 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4883 return 1;
4884
4885 /* Also checks whether there is pressure on r5cache log space */
4886 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
4887 return 1;
4888 if (conf->quiesce)
4889 return 1;
4890 if (atomic_read(&conf->empty_inactive_list_nr))
4891 return 1;
4892
4893 return 0;
4894 }
4895
4896 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4897 {
4898 struct r5conf *conf = mddev->private;
4899 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4900 unsigned int chunk_sectors;
4901 unsigned int bio_sectors = bio_sectors(bio);
4902
4903 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4904 return chunk_sectors >=
4905 ((sector & (chunk_sectors - 1)) + bio_sectors);
4906 }
4907
4908 /*
4909 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4910 * later sampled by raid5d.
4911 */
4912 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4913 {
4914 unsigned long flags;
4915
4916 spin_lock_irqsave(&conf->device_lock, flags);
4917
4918 bi->bi_next = conf->retry_read_aligned_list;
4919 conf->retry_read_aligned_list = bi;
4920
4921 spin_unlock_irqrestore(&conf->device_lock, flags);
4922 md_wakeup_thread(conf->mddev->thread);
4923 }
4924
4925 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4926 {
4927 struct bio *bi;
4928
4929 bi = conf->retry_read_aligned;
4930 if (bi) {
4931 conf->retry_read_aligned = NULL;
4932 return bi;
4933 }
4934 bi = conf->retry_read_aligned_list;
4935 if(bi) {
4936 conf->retry_read_aligned_list = bi->bi_next;
4937 bi->bi_next = NULL;
4938 /*
4939 * this sets the active strip count to 1 and the processed
4940 * strip count to zero (upper 8 bits)
4941 */
4942 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4943 }
4944
4945 return bi;
4946 }
4947
4948 /*
4949 * The "raid5_align_endio" should check if the read succeeded and if it
4950 * did, call bio_endio on the original bio (having bio_put the new bio
4951 * first).
4952 * If the read failed..
4953 */
4954 static void raid5_align_endio(struct bio *bi)
4955 {
4956 struct bio* raid_bi = bi->bi_private;
4957 struct mddev *mddev;
4958 struct r5conf *conf;
4959 struct md_rdev *rdev;
4960 int error = bi->bi_error;
4961
4962 bio_put(bi);
4963
4964 rdev = (void*)raid_bi->bi_next;
4965 raid_bi->bi_next = NULL;
4966 mddev = rdev->mddev;
4967 conf = mddev->private;
4968
4969 rdev_dec_pending(rdev, conf->mddev);
4970
4971 if (!error) {
4972 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4973 raid_bi, 0);
4974 bio_endio(raid_bi);
4975 if (atomic_dec_and_test(&conf->active_aligned_reads))
4976 wake_up(&conf->wait_for_quiescent);
4977 return;
4978 }
4979
4980 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4981
4982 add_bio_to_retry(raid_bi, conf);
4983 }
4984
4985 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4986 {
4987 struct r5conf *conf = mddev->private;
4988 int dd_idx;
4989 struct bio* align_bi;
4990 struct md_rdev *rdev;
4991 sector_t end_sector;
4992
4993 if (!in_chunk_boundary(mddev, raid_bio)) {
4994 pr_debug("%s: non aligned\n", __func__);
4995 return 0;
4996 }
4997 /*
4998 * use bio_clone_mddev to make a copy of the bio
4999 */
5000 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
5001 if (!align_bi)
5002 return 0;
5003 /*
5004 * set bi_end_io to a new function, and set bi_private to the
5005 * original bio.
5006 */
5007 align_bi->bi_end_io = raid5_align_endio;
5008 align_bi->bi_private = raid_bio;
5009 /*
5010 * compute position
5011 */
5012 align_bi->bi_iter.bi_sector =
5013 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5014 0, &dd_idx, NULL);
5015
5016 end_sector = bio_end_sector(align_bi);
5017 rcu_read_lock();
5018 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5019 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5020 rdev->recovery_offset < end_sector) {
5021 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5022 if (rdev &&
5023 (test_bit(Faulty, &rdev->flags) ||
5024 !(test_bit(In_sync, &rdev->flags) ||
5025 rdev->recovery_offset >= end_sector)))
5026 rdev = NULL;
5027 }
5028 if (rdev) {
5029 sector_t first_bad;
5030 int bad_sectors;
5031
5032 atomic_inc(&rdev->nr_pending);
5033 rcu_read_unlock();
5034 raid_bio->bi_next = (void*)rdev;
5035 align_bi->bi_bdev = rdev->bdev;
5036 bio_clear_flag(align_bi, BIO_SEG_VALID);
5037
5038 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5039 bio_sectors(align_bi),
5040 &first_bad, &bad_sectors)) {
5041 bio_put(align_bi);
5042 rdev_dec_pending(rdev, mddev);
5043 return 0;
5044 }
5045
5046 /* No reshape active, so we can trust rdev->data_offset */
5047 align_bi->bi_iter.bi_sector += rdev->data_offset;
5048
5049 spin_lock_irq(&conf->device_lock);
5050 wait_event_lock_irq(conf->wait_for_quiescent,
5051 conf->quiesce == 0,
5052 conf->device_lock);
5053 atomic_inc(&conf->active_aligned_reads);
5054 spin_unlock_irq(&conf->device_lock);
5055
5056 if (mddev->gendisk)
5057 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5058 align_bi, disk_devt(mddev->gendisk),
5059 raid_bio->bi_iter.bi_sector);
5060 generic_make_request(align_bi);
5061 return 1;
5062 } else {
5063 rcu_read_unlock();
5064 bio_put(align_bi);
5065 return 0;
5066 }
5067 }
5068
5069 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5070 {
5071 struct bio *split;
5072
5073 do {
5074 sector_t sector = raid_bio->bi_iter.bi_sector;
5075 unsigned chunk_sects = mddev->chunk_sectors;
5076 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5077
5078 if (sectors < bio_sectors(raid_bio)) {
5079 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
5080 bio_chain(split, raid_bio);
5081 } else
5082 split = raid_bio;
5083
5084 if (!raid5_read_one_chunk(mddev, split)) {
5085 if (split != raid_bio)
5086 generic_make_request(raid_bio);
5087 return split;
5088 }
5089 } while (split != raid_bio);
5090
5091 return NULL;
5092 }
5093
5094 /* __get_priority_stripe - get the next stripe to process
5095 *
5096 * Full stripe writes are allowed to pass preread active stripes up until
5097 * the bypass_threshold is exceeded. In general the bypass_count
5098 * increments when the handle_list is handled before the hold_list; however, it
5099 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5100 * stripe with in flight i/o. The bypass_count will be reset when the
5101 * head of the hold_list has changed, i.e. the head was promoted to the
5102 * handle_list.
5103 */
5104 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5105 {
5106 struct stripe_head *sh = NULL, *tmp;
5107 struct list_head *handle_list = NULL;
5108 struct r5worker_group *wg = NULL;
5109
5110 if (conf->worker_cnt_per_group == 0) {
5111 handle_list = &conf->handle_list;
5112 } else if (group != ANY_GROUP) {
5113 handle_list = &conf->worker_groups[group].handle_list;
5114 wg = &conf->worker_groups[group];
5115 } else {
5116 int i;
5117 for (i = 0; i < conf->group_cnt; i++) {
5118 handle_list = &conf->worker_groups[i].handle_list;
5119 wg = &conf->worker_groups[i];
5120 if (!list_empty(handle_list))
5121 break;
5122 }
5123 }
5124
5125 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5126 __func__,
5127 list_empty(handle_list) ? "empty" : "busy",
5128 list_empty(&conf->hold_list) ? "empty" : "busy",
5129 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5130
5131 if (!list_empty(handle_list)) {
5132 sh = list_entry(handle_list->next, typeof(*sh), lru);
5133
5134 if (list_empty(&conf->hold_list))
5135 conf->bypass_count = 0;
5136 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5137 if (conf->hold_list.next == conf->last_hold)
5138 conf->bypass_count++;
5139 else {
5140 conf->last_hold = conf->hold_list.next;
5141 conf->bypass_count -= conf->bypass_threshold;
5142 if (conf->bypass_count < 0)
5143 conf->bypass_count = 0;
5144 }
5145 }
5146 } else if (!list_empty(&conf->hold_list) &&
5147 ((conf->bypass_threshold &&
5148 conf->bypass_count > conf->bypass_threshold) ||
5149 atomic_read(&conf->pending_full_writes) == 0)) {
5150
5151 list_for_each_entry(tmp, &conf->hold_list, lru) {
5152 if (conf->worker_cnt_per_group == 0 ||
5153 group == ANY_GROUP ||
5154 !cpu_online(tmp->cpu) ||
5155 cpu_to_group(tmp->cpu) == group) {
5156 sh = tmp;
5157 break;
5158 }
5159 }
5160
5161 if (sh) {
5162 conf->bypass_count -= conf->bypass_threshold;
5163 if (conf->bypass_count < 0)
5164 conf->bypass_count = 0;
5165 }
5166 wg = NULL;
5167 }
5168
5169 if (!sh)
5170 return NULL;
5171
5172 if (wg) {
5173 wg->stripes_cnt--;
5174 sh->group = NULL;
5175 }
5176 list_del_init(&sh->lru);
5177 BUG_ON(atomic_inc_return(&sh->count) != 1);
5178 return sh;
5179 }
5180
5181 struct raid5_plug_cb {
5182 struct blk_plug_cb cb;
5183 struct list_head list;
5184 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5185 };
5186
5187 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5188 {
5189 struct raid5_plug_cb *cb = container_of(
5190 blk_cb, struct raid5_plug_cb, cb);
5191 struct stripe_head *sh;
5192 struct mddev *mddev = cb->cb.data;
5193 struct r5conf *conf = mddev->private;
5194 int cnt = 0;
5195 int hash;
5196
5197 if (cb->list.next && !list_empty(&cb->list)) {
5198 spin_lock_irq(&conf->device_lock);
5199 while (!list_empty(&cb->list)) {
5200 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5201 list_del_init(&sh->lru);
5202 /*
5203 * avoid race release_stripe_plug() sees
5204 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5205 * is still in our list
5206 */
5207 smp_mb__before_atomic();
5208 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5209 /*
5210 * STRIPE_ON_RELEASE_LIST could be set here. In that
5211 * case, the count is always > 1 here
5212 */
5213 hash = sh->hash_lock_index;
5214 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5215 cnt++;
5216 }
5217 spin_unlock_irq(&conf->device_lock);
5218 }
5219 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5220 NR_STRIPE_HASH_LOCKS);
5221 if (mddev->queue)
5222 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5223 kfree(cb);
5224 }
5225
5226 static void release_stripe_plug(struct mddev *mddev,
5227 struct stripe_head *sh)
5228 {
5229 struct blk_plug_cb *blk_cb = blk_check_plugged(
5230 raid5_unplug, mddev,
5231 sizeof(struct raid5_plug_cb));
5232 struct raid5_plug_cb *cb;
5233
5234 if (!blk_cb) {
5235 raid5_release_stripe(sh);
5236 return;
5237 }
5238
5239 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5240
5241 if (cb->list.next == NULL) {
5242 int i;
5243 INIT_LIST_HEAD(&cb->list);
5244 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5245 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5246 }
5247
5248 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5249 list_add_tail(&sh->lru, &cb->list);
5250 else
5251 raid5_release_stripe(sh);
5252 }
5253
5254 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5255 {
5256 struct r5conf *conf = mddev->private;
5257 sector_t logical_sector, last_sector;
5258 struct stripe_head *sh;
5259 int remaining;
5260 int stripe_sectors;
5261
5262 if (mddev->reshape_position != MaxSector)
5263 /* Skip discard while reshape is happening */
5264 return;
5265
5266 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5267 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5268
5269 bi->bi_next = NULL;
5270 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5271
5272 stripe_sectors = conf->chunk_sectors *
5273 (conf->raid_disks - conf->max_degraded);
5274 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5275 stripe_sectors);
5276 sector_div(last_sector, stripe_sectors);
5277
5278 logical_sector *= conf->chunk_sectors;
5279 last_sector *= conf->chunk_sectors;
5280
5281 for (; logical_sector < last_sector;
5282 logical_sector += STRIPE_SECTORS) {
5283 DEFINE_WAIT(w);
5284 int d;
5285 again:
5286 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5287 prepare_to_wait(&conf->wait_for_overlap, &w,
5288 TASK_UNINTERRUPTIBLE);
5289 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5290 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5291 raid5_release_stripe(sh);
5292 schedule();
5293 goto again;
5294 }
5295 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5296 spin_lock_irq(&sh->stripe_lock);
5297 for (d = 0; d < conf->raid_disks; d++) {
5298 if (d == sh->pd_idx || d == sh->qd_idx)
5299 continue;
5300 if (sh->dev[d].towrite || sh->dev[d].toread) {
5301 set_bit(R5_Overlap, &sh->dev[d].flags);
5302 spin_unlock_irq(&sh->stripe_lock);
5303 raid5_release_stripe(sh);
5304 schedule();
5305 goto again;
5306 }
5307 }
5308 set_bit(STRIPE_DISCARD, &sh->state);
5309 finish_wait(&conf->wait_for_overlap, &w);
5310 sh->overwrite_disks = 0;
5311 for (d = 0; d < conf->raid_disks; d++) {
5312 if (d == sh->pd_idx || d == sh->qd_idx)
5313 continue;
5314 sh->dev[d].towrite = bi;
5315 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5316 raid5_inc_bi_active_stripes(bi);
5317 sh->overwrite_disks++;
5318 }
5319 spin_unlock_irq(&sh->stripe_lock);
5320 if (conf->mddev->bitmap) {
5321 for (d = 0;
5322 d < conf->raid_disks - conf->max_degraded;
5323 d++)
5324 bitmap_startwrite(mddev->bitmap,
5325 sh->sector,
5326 STRIPE_SECTORS,
5327 0);
5328 sh->bm_seq = conf->seq_flush + 1;
5329 set_bit(STRIPE_BIT_DELAY, &sh->state);
5330 }
5331
5332 set_bit(STRIPE_HANDLE, &sh->state);
5333 clear_bit(STRIPE_DELAYED, &sh->state);
5334 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5335 atomic_inc(&conf->preread_active_stripes);
5336 release_stripe_plug(mddev, sh);
5337 }
5338
5339 remaining = raid5_dec_bi_active_stripes(bi);
5340 if (remaining == 0) {
5341 md_write_end(mddev);
5342 bio_endio(bi);
5343 }
5344 }
5345
5346 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5347 {
5348 struct r5conf *conf = mddev->private;
5349 int dd_idx;
5350 sector_t new_sector;
5351 sector_t logical_sector, last_sector;
5352 struct stripe_head *sh;
5353 const int rw = bio_data_dir(bi);
5354 int remaining;
5355 DEFINE_WAIT(w);
5356 bool do_prepare;
5357 bool do_flush = false;
5358
5359 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5360 int ret = r5l_handle_flush_request(conf->log, bi);
5361
5362 if (ret == 0)
5363 return;
5364 if (ret == -ENODEV) {
5365 md_flush_request(mddev, bi);
5366 return;
5367 }
5368 /* ret == -EAGAIN, fallback */
5369 /*
5370 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5371 * we need to flush journal device
5372 */
5373 do_flush = bi->bi_opf & REQ_PREFLUSH;
5374 }
5375
5376 md_write_start(mddev, bi);
5377
5378 /*
5379 * If array is degraded, better not do chunk aligned read because
5380 * later we might have to read it again in order to reconstruct
5381 * data on failed drives.
5382 */
5383 if (rw == READ && mddev->degraded == 0 &&
5384 !r5c_is_writeback(conf->log) &&
5385 mddev->reshape_position == MaxSector) {
5386 bi = chunk_aligned_read(mddev, bi);
5387 if (!bi)
5388 return;
5389 }
5390
5391 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5392 make_discard_request(mddev, bi);
5393 return;
5394 }
5395
5396 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5397 last_sector = bio_end_sector(bi);
5398 bi->bi_next = NULL;
5399 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5400
5401 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5402 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5403 int previous;
5404 int seq;
5405
5406 do_prepare = false;
5407 retry:
5408 seq = read_seqcount_begin(&conf->gen_lock);
5409 previous = 0;
5410 if (do_prepare)
5411 prepare_to_wait(&conf->wait_for_overlap, &w,
5412 TASK_UNINTERRUPTIBLE);
5413 if (unlikely(conf->reshape_progress != MaxSector)) {
5414 /* spinlock is needed as reshape_progress may be
5415 * 64bit on a 32bit platform, and so it might be
5416 * possible to see a half-updated value
5417 * Of course reshape_progress could change after
5418 * the lock is dropped, so once we get a reference
5419 * to the stripe that we think it is, we will have
5420 * to check again.
5421 */
5422 spin_lock_irq(&conf->device_lock);
5423 if (mddev->reshape_backwards
5424 ? logical_sector < conf->reshape_progress
5425 : logical_sector >= conf->reshape_progress) {
5426 previous = 1;
5427 } else {
5428 if (mddev->reshape_backwards
5429 ? logical_sector < conf->reshape_safe
5430 : logical_sector >= conf->reshape_safe) {
5431 spin_unlock_irq(&conf->device_lock);
5432 schedule();
5433 do_prepare = true;
5434 goto retry;
5435 }
5436 }
5437 spin_unlock_irq(&conf->device_lock);
5438 }
5439
5440 new_sector = raid5_compute_sector(conf, logical_sector,
5441 previous,
5442 &dd_idx, NULL);
5443 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5444 (unsigned long long)new_sector,
5445 (unsigned long long)logical_sector);
5446
5447 sh = raid5_get_active_stripe(conf, new_sector, previous,
5448 (bi->bi_opf & REQ_RAHEAD), 0);
5449 if (sh) {
5450 if (unlikely(previous)) {
5451 /* expansion might have moved on while waiting for a
5452 * stripe, so we must do the range check again.
5453 * Expansion could still move past after this
5454 * test, but as we are holding a reference to
5455 * 'sh', we know that if that happens,
5456 * STRIPE_EXPANDING will get set and the expansion
5457 * won't proceed until we finish with the stripe.
5458 */
5459 int must_retry = 0;
5460 spin_lock_irq(&conf->device_lock);
5461 if (mddev->reshape_backwards
5462 ? logical_sector >= conf->reshape_progress
5463 : logical_sector < conf->reshape_progress)
5464 /* mismatch, need to try again */
5465 must_retry = 1;
5466 spin_unlock_irq(&conf->device_lock);
5467 if (must_retry) {
5468 raid5_release_stripe(sh);
5469 schedule();
5470 do_prepare = true;
5471 goto retry;
5472 }
5473 }
5474 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5475 /* Might have got the wrong stripe_head
5476 * by accident
5477 */
5478 raid5_release_stripe(sh);
5479 goto retry;
5480 }
5481
5482 if (rw == WRITE &&
5483 logical_sector >= mddev->suspend_lo &&
5484 logical_sector < mddev->suspend_hi) {
5485 raid5_release_stripe(sh);
5486 /* As the suspend_* range is controlled by
5487 * userspace, we want an interruptible
5488 * wait.
5489 */
5490 flush_signals(current);
5491 prepare_to_wait(&conf->wait_for_overlap,
5492 &w, TASK_INTERRUPTIBLE);
5493 if (logical_sector >= mddev->suspend_lo &&
5494 logical_sector < mddev->suspend_hi) {
5495 schedule();
5496 do_prepare = true;
5497 }
5498 goto retry;
5499 }
5500
5501 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5502 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5503 /* Stripe is busy expanding or
5504 * add failed due to overlap. Flush everything
5505 * and wait a while
5506 */
5507 md_wakeup_thread(mddev->thread);
5508 raid5_release_stripe(sh);
5509 schedule();
5510 do_prepare = true;
5511 goto retry;
5512 }
5513 if (do_flush) {
5514 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5515 /* we only need flush for one stripe */
5516 do_flush = false;
5517 }
5518
5519 set_bit(STRIPE_HANDLE, &sh->state);
5520 clear_bit(STRIPE_DELAYED, &sh->state);
5521 if ((!sh->batch_head || sh == sh->batch_head) &&
5522 (bi->bi_opf & REQ_SYNC) &&
5523 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5524 atomic_inc(&conf->preread_active_stripes);
5525 release_stripe_plug(mddev, sh);
5526 } else {
5527 /* cannot get stripe for read-ahead, just give-up */
5528 bi->bi_error = -EIO;
5529 break;
5530 }
5531 }
5532 finish_wait(&conf->wait_for_overlap, &w);
5533
5534 remaining = raid5_dec_bi_active_stripes(bi);
5535 if (remaining == 0) {
5536
5537 if ( rw == WRITE )
5538 md_write_end(mddev);
5539
5540 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5541 bi, 0);
5542 bio_endio(bi);
5543 }
5544 }
5545
5546 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5547
5548 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5549 {
5550 /* reshaping is quite different to recovery/resync so it is
5551 * handled quite separately ... here.
5552 *
5553 * On each call to sync_request, we gather one chunk worth of
5554 * destination stripes and flag them as expanding.
5555 * Then we find all the source stripes and request reads.
5556 * As the reads complete, handle_stripe will copy the data
5557 * into the destination stripe and release that stripe.
5558 */
5559 struct r5conf *conf = mddev->private;
5560 struct stripe_head *sh;
5561 sector_t first_sector, last_sector;
5562 int raid_disks = conf->previous_raid_disks;
5563 int data_disks = raid_disks - conf->max_degraded;
5564 int new_data_disks = conf->raid_disks - conf->max_degraded;
5565 int i;
5566 int dd_idx;
5567 sector_t writepos, readpos, safepos;
5568 sector_t stripe_addr;
5569 int reshape_sectors;
5570 struct list_head stripes;
5571 sector_t retn;
5572
5573 if (sector_nr == 0) {
5574 /* If restarting in the middle, skip the initial sectors */
5575 if (mddev->reshape_backwards &&
5576 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5577 sector_nr = raid5_size(mddev, 0, 0)
5578 - conf->reshape_progress;
5579 } else if (mddev->reshape_backwards &&
5580 conf->reshape_progress == MaxSector) {
5581 /* shouldn't happen, but just in case, finish up.*/
5582 sector_nr = MaxSector;
5583 } else if (!mddev->reshape_backwards &&
5584 conf->reshape_progress > 0)
5585 sector_nr = conf->reshape_progress;
5586 sector_div(sector_nr, new_data_disks);
5587 if (sector_nr) {
5588 mddev->curr_resync_completed = sector_nr;
5589 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5590 *skipped = 1;
5591 retn = sector_nr;
5592 goto finish;
5593 }
5594 }
5595
5596 /* We need to process a full chunk at a time.
5597 * If old and new chunk sizes differ, we need to process the
5598 * largest of these
5599 */
5600
5601 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5602
5603 /* We update the metadata at least every 10 seconds, or when
5604 * the data about to be copied would over-write the source of
5605 * the data at the front of the range. i.e. one new_stripe
5606 * along from reshape_progress new_maps to after where
5607 * reshape_safe old_maps to
5608 */
5609 writepos = conf->reshape_progress;
5610 sector_div(writepos, new_data_disks);
5611 readpos = conf->reshape_progress;
5612 sector_div(readpos, data_disks);
5613 safepos = conf->reshape_safe;
5614 sector_div(safepos, data_disks);
5615 if (mddev->reshape_backwards) {
5616 BUG_ON(writepos < reshape_sectors);
5617 writepos -= reshape_sectors;
5618 readpos += reshape_sectors;
5619 safepos += reshape_sectors;
5620 } else {
5621 writepos += reshape_sectors;
5622 /* readpos and safepos are worst-case calculations.
5623 * A negative number is overly pessimistic, and causes
5624 * obvious problems for unsigned storage. So clip to 0.
5625 */
5626 readpos -= min_t(sector_t, reshape_sectors, readpos);
5627 safepos -= min_t(sector_t, reshape_sectors, safepos);
5628 }
5629
5630 /* Having calculated the 'writepos' possibly use it
5631 * to set 'stripe_addr' which is where we will write to.
5632 */
5633 if (mddev->reshape_backwards) {
5634 BUG_ON(conf->reshape_progress == 0);
5635 stripe_addr = writepos;
5636 BUG_ON((mddev->dev_sectors &
5637 ~((sector_t)reshape_sectors - 1))
5638 - reshape_sectors - stripe_addr
5639 != sector_nr);
5640 } else {
5641 BUG_ON(writepos != sector_nr + reshape_sectors);
5642 stripe_addr = sector_nr;
5643 }
5644
5645 /* 'writepos' is the most advanced device address we might write.
5646 * 'readpos' is the least advanced device address we might read.
5647 * 'safepos' is the least address recorded in the metadata as having
5648 * been reshaped.
5649 * If there is a min_offset_diff, these are adjusted either by
5650 * increasing the safepos/readpos if diff is negative, or
5651 * increasing writepos if diff is positive.
5652 * If 'readpos' is then behind 'writepos', there is no way that we can
5653 * ensure safety in the face of a crash - that must be done by userspace
5654 * making a backup of the data. So in that case there is no particular
5655 * rush to update metadata.
5656 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5657 * update the metadata to advance 'safepos' to match 'readpos' so that
5658 * we can be safe in the event of a crash.
5659 * So we insist on updating metadata if safepos is behind writepos and
5660 * readpos is beyond writepos.
5661 * In any case, update the metadata every 10 seconds.
5662 * Maybe that number should be configurable, but I'm not sure it is
5663 * worth it.... maybe it could be a multiple of safemode_delay???
5664 */
5665 if (conf->min_offset_diff < 0) {
5666 safepos += -conf->min_offset_diff;
5667 readpos += -conf->min_offset_diff;
5668 } else
5669 writepos += conf->min_offset_diff;
5670
5671 if ((mddev->reshape_backwards
5672 ? (safepos > writepos && readpos < writepos)
5673 : (safepos < writepos && readpos > writepos)) ||
5674 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5675 /* Cannot proceed until we've updated the superblock... */
5676 wait_event(conf->wait_for_overlap,
5677 atomic_read(&conf->reshape_stripes)==0
5678 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5679 if (atomic_read(&conf->reshape_stripes) != 0)
5680 return 0;
5681 mddev->reshape_position = conf->reshape_progress;
5682 mddev->curr_resync_completed = sector_nr;
5683 conf->reshape_checkpoint = jiffies;
5684 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5685 md_wakeup_thread(mddev->thread);
5686 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5687 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5688 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5689 return 0;
5690 spin_lock_irq(&conf->device_lock);
5691 conf->reshape_safe = mddev->reshape_position;
5692 spin_unlock_irq(&conf->device_lock);
5693 wake_up(&conf->wait_for_overlap);
5694 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5695 }
5696
5697 INIT_LIST_HEAD(&stripes);
5698 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5699 int j;
5700 int skipped_disk = 0;
5701 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5702 set_bit(STRIPE_EXPANDING, &sh->state);
5703 atomic_inc(&conf->reshape_stripes);
5704 /* If any of this stripe is beyond the end of the old
5705 * array, then we need to zero those blocks
5706 */
5707 for (j=sh->disks; j--;) {
5708 sector_t s;
5709 if (j == sh->pd_idx)
5710 continue;
5711 if (conf->level == 6 &&
5712 j == sh->qd_idx)
5713 continue;
5714 s = raid5_compute_blocknr(sh, j, 0);
5715 if (s < raid5_size(mddev, 0, 0)) {
5716 skipped_disk = 1;
5717 continue;
5718 }
5719 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5720 set_bit(R5_Expanded, &sh->dev[j].flags);
5721 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5722 }
5723 if (!skipped_disk) {
5724 set_bit(STRIPE_EXPAND_READY, &sh->state);
5725 set_bit(STRIPE_HANDLE, &sh->state);
5726 }
5727 list_add(&sh->lru, &stripes);
5728 }
5729 spin_lock_irq(&conf->device_lock);
5730 if (mddev->reshape_backwards)
5731 conf->reshape_progress -= reshape_sectors * new_data_disks;
5732 else
5733 conf->reshape_progress += reshape_sectors * new_data_disks;
5734 spin_unlock_irq(&conf->device_lock);
5735 /* Ok, those stripe are ready. We can start scheduling
5736 * reads on the source stripes.
5737 * The source stripes are determined by mapping the first and last
5738 * block on the destination stripes.
5739 */
5740 first_sector =
5741 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5742 1, &dd_idx, NULL);
5743 last_sector =
5744 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5745 * new_data_disks - 1),
5746 1, &dd_idx, NULL);
5747 if (last_sector >= mddev->dev_sectors)
5748 last_sector = mddev->dev_sectors - 1;
5749 while (first_sector <= last_sector) {
5750 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5751 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5752 set_bit(STRIPE_HANDLE, &sh->state);
5753 raid5_release_stripe(sh);
5754 first_sector += STRIPE_SECTORS;
5755 }
5756 /* Now that the sources are clearly marked, we can release
5757 * the destination stripes
5758 */
5759 while (!list_empty(&stripes)) {
5760 sh = list_entry(stripes.next, struct stripe_head, lru);
5761 list_del_init(&sh->lru);
5762 raid5_release_stripe(sh);
5763 }
5764 /* If this takes us to the resync_max point where we have to pause,
5765 * then we need to write out the superblock.
5766 */
5767 sector_nr += reshape_sectors;
5768 retn = reshape_sectors;
5769 finish:
5770 if (mddev->curr_resync_completed > mddev->resync_max ||
5771 (sector_nr - mddev->curr_resync_completed) * 2
5772 >= mddev->resync_max - mddev->curr_resync_completed) {
5773 /* Cannot proceed until we've updated the superblock... */
5774 wait_event(conf->wait_for_overlap,
5775 atomic_read(&conf->reshape_stripes) == 0
5776 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5777 if (atomic_read(&conf->reshape_stripes) != 0)
5778 goto ret;
5779 mddev->reshape_position = conf->reshape_progress;
5780 mddev->curr_resync_completed = sector_nr;
5781 conf->reshape_checkpoint = jiffies;
5782 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5783 md_wakeup_thread(mddev->thread);
5784 wait_event(mddev->sb_wait,
5785 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5786 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5787 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5788 goto ret;
5789 spin_lock_irq(&conf->device_lock);
5790 conf->reshape_safe = mddev->reshape_position;
5791 spin_unlock_irq(&conf->device_lock);
5792 wake_up(&conf->wait_for_overlap);
5793 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5794 }
5795 ret:
5796 return retn;
5797 }
5798
5799 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5800 int *skipped)
5801 {
5802 struct r5conf *conf = mddev->private;
5803 struct stripe_head *sh;
5804 sector_t max_sector = mddev->dev_sectors;
5805 sector_t sync_blocks;
5806 int still_degraded = 0;
5807 int i;
5808
5809 if (sector_nr >= max_sector) {
5810 /* just being told to finish up .. nothing much to do */
5811
5812 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5813 end_reshape(conf);
5814 return 0;
5815 }
5816
5817 if (mddev->curr_resync < max_sector) /* aborted */
5818 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5819 &sync_blocks, 1);
5820 else /* completed sync */
5821 conf->fullsync = 0;
5822 bitmap_close_sync(mddev->bitmap);
5823
5824 return 0;
5825 }
5826
5827 /* Allow raid5_quiesce to complete */
5828 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5829
5830 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5831 return reshape_request(mddev, sector_nr, skipped);
5832
5833 /* No need to check resync_max as we never do more than one
5834 * stripe, and as resync_max will always be on a chunk boundary,
5835 * if the check in md_do_sync didn't fire, there is no chance
5836 * of overstepping resync_max here
5837 */
5838
5839 /* if there is too many failed drives and we are trying
5840 * to resync, then assert that we are finished, because there is
5841 * nothing we can do.
5842 */
5843 if (mddev->degraded >= conf->max_degraded &&
5844 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5845 sector_t rv = mddev->dev_sectors - sector_nr;
5846 *skipped = 1;
5847 return rv;
5848 }
5849 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5850 !conf->fullsync &&
5851 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5852 sync_blocks >= STRIPE_SECTORS) {
5853 /* we can skip this block, and probably more */
5854 sync_blocks /= STRIPE_SECTORS;
5855 *skipped = 1;
5856 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5857 }
5858
5859 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5860
5861 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5862 if (sh == NULL) {
5863 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5864 /* make sure we don't swamp the stripe cache if someone else
5865 * is trying to get access
5866 */
5867 schedule_timeout_uninterruptible(1);
5868 }
5869 /* Need to check if array will still be degraded after recovery/resync
5870 * Note in case of > 1 drive failures it's possible we're rebuilding
5871 * one drive while leaving another faulty drive in array.
5872 */
5873 rcu_read_lock();
5874 for (i = 0; i < conf->raid_disks; i++) {
5875 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5876
5877 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5878 still_degraded = 1;
5879 }
5880 rcu_read_unlock();
5881
5882 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5883
5884 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5885 set_bit(STRIPE_HANDLE, &sh->state);
5886
5887 raid5_release_stripe(sh);
5888
5889 return STRIPE_SECTORS;
5890 }
5891
5892 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5893 {
5894 /* We may not be able to submit a whole bio at once as there
5895 * may not be enough stripe_heads available.
5896 * We cannot pre-allocate enough stripe_heads as we may need
5897 * more than exist in the cache (if we allow ever large chunks).
5898 * So we do one stripe head at a time and record in
5899 * ->bi_hw_segments how many have been done.
5900 *
5901 * We *know* that this entire raid_bio is in one chunk, so
5902 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5903 */
5904 struct stripe_head *sh;
5905 int dd_idx;
5906 sector_t sector, logical_sector, last_sector;
5907 int scnt = 0;
5908 int remaining;
5909 int handled = 0;
5910
5911 logical_sector = raid_bio->bi_iter.bi_sector &
5912 ~((sector_t)STRIPE_SECTORS-1);
5913 sector = raid5_compute_sector(conf, logical_sector,
5914 0, &dd_idx, NULL);
5915 last_sector = bio_end_sector(raid_bio);
5916
5917 for (; logical_sector < last_sector;
5918 logical_sector += STRIPE_SECTORS,
5919 sector += STRIPE_SECTORS,
5920 scnt++) {
5921
5922 if (scnt < raid5_bi_processed_stripes(raid_bio))
5923 /* already done this stripe */
5924 continue;
5925
5926 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5927
5928 if (!sh) {
5929 /* failed to get a stripe - must wait */
5930 raid5_set_bi_processed_stripes(raid_bio, scnt);
5931 conf->retry_read_aligned = raid_bio;
5932 return handled;
5933 }
5934
5935 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5936 raid5_release_stripe(sh);
5937 raid5_set_bi_processed_stripes(raid_bio, scnt);
5938 conf->retry_read_aligned = raid_bio;
5939 return handled;
5940 }
5941
5942 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5943 handle_stripe(sh);
5944 raid5_release_stripe(sh);
5945 handled++;
5946 }
5947 remaining = raid5_dec_bi_active_stripes(raid_bio);
5948 if (remaining == 0) {
5949 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5950 raid_bio, 0);
5951 bio_endio(raid_bio);
5952 }
5953 if (atomic_dec_and_test(&conf->active_aligned_reads))
5954 wake_up(&conf->wait_for_quiescent);
5955 return handled;
5956 }
5957
5958 static int handle_active_stripes(struct r5conf *conf, int group,
5959 struct r5worker *worker,
5960 struct list_head *temp_inactive_list)
5961 {
5962 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5963 int i, batch_size = 0, hash;
5964 bool release_inactive = false;
5965
5966 while (batch_size < MAX_STRIPE_BATCH &&
5967 (sh = __get_priority_stripe(conf, group)) != NULL)
5968 batch[batch_size++] = sh;
5969
5970 if (batch_size == 0) {
5971 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5972 if (!list_empty(temp_inactive_list + i))
5973 break;
5974 if (i == NR_STRIPE_HASH_LOCKS) {
5975 spin_unlock_irq(&conf->device_lock);
5976 r5l_flush_stripe_to_raid(conf->log);
5977 spin_lock_irq(&conf->device_lock);
5978 return batch_size;
5979 }
5980 release_inactive = true;
5981 }
5982 spin_unlock_irq(&conf->device_lock);
5983
5984 release_inactive_stripe_list(conf, temp_inactive_list,
5985 NR_STRIPE_HASH_LOCKS);
5986
5987 r5l_flush_stripe_to_raid(conf->log);
5988 if (release_inactive) {
5989 spin_lock_irq(&conf->device_lock);
5990 return 0;
5991 }
5992
5993 for (i = 0; i < batch_size; i++)
5994 handle_stripe(batch[i]);
5995 r5l_write_stripe_run(conf->log);
5996
5997 cond_resched();
5998
5999 spin_lock_irq(&conf->device_lock);
6000 for (i = 0; i < batch_size; i++) {
6001 hash = batch[i]->hash_lock_index;
6002 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6003 }
6004 return batch_size;
6005 }
6006
6007 static void raid5_do_work(struct work_struct *work)
6008 {
6009 struct r5worker *worker = container_of(work, struct r5worker, work);
6010 struct r5worker_group *group = worker->group;
6011 struct r5conf *conf = group->conf;
6012 int group_id = group - conf->worker_groups;
6013 int handled;
6014 struct blk_plug plug;
6015
6016 pr_debug("+++ raid5worker active\n");
6017
6018 blk_start_plug(&plug);
6019 handled = 0;
6020 spin_lock_irq(&conf->device_lock);
6021 while (1) {
6022 int batch_size, released;
6023
6024 released = release_stripe_list(conf, worker->temp_inactive_list);
6025
6026 batch_size = handle_active_stripes(conf, group_id, worker,
6027 worker->temp_inactive_list);
6028 worker->working = false;
6029 if (!batch_size && !released)
6030 break;
6031 handled += batch_size;
6032 }
6033 pr_debug("%d stripes handled\n", handled);
6034
6035 spin_unlock_irq(&conf->device_lock);
6036 blk_finish_plug(&plug);
6037
6038 pr_debug("--- raid5worker inactive\n");
6039 }
6040
6041 /*
6042 * This is our raid5 kernel thread.
6043 *
6044 * We scan the hash table for stripes which can be handled now.
6045 * During the scan, completed stripes are saved for us by the interrupt
6046 * handler, so that they will not have to wait for our next wakeup.
6047 */
6048 static void raid5d(struct md_thread *thread)
6049 {
6050 struct mddev *mddev = thread->mddev;
6051 struct r5conf *conf = mddev->private;
6052 int handled;
6053 struct blk_plug plug;
6054
6055 pr_debug("+++ raid5d active\n");
6056
6057 md_check_recovery(mddev);
6058
6059 if (!bio_list_empty(&conf->return_bi) &&
6060 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
6061 struct bio_list tmp = BIO_EMPTY_LIST;
6062 spin_lock_irq(&conf->device_lock);
6063 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
6064 bio_list_merge(&tmp, &conf->return_bi);
6065 bio_list_init(&conf->return_bi);
6066 }
6067 spin_unlock_irq(&conf->device_lock);
6068 return_io(&tmp);
6069 }
6070
6071 blk_start_plug(&plug);
6072 handled = 0;
6073 spin_lock_irq(&conf->device_lock);
6074 while (1) {
6075 struct bio *bio;
6076 int batch_size, released;
6077
6078 released = release_stripe_list(conf, conf->temp_inactive_list);
6079 if (released)
6080 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6081
6082 if (
6083 !list_empty(&conf->bitmap_list)) {
6084 /* Now is a good time to flush some bitmap updates */
6085 conf->seq_flush++;
6086 spin_unlock_irq(&conf->device_lock);
6087 bitmap_unplug(mddev->bitmap);
6088 spin_lock_irq(&conf->device_lock);
6089 conf->seq_write = conf->seq_flush;
6090 activate_bit_delay(conf, conf->temp_inactive_list);
6091 }
6092 raid5_activate_delayed(conf);
6093
6094 while ((bio = remove_bio_from_retry(conf))) {
6095 int ok;
6096 spin_unlock_irq(&conf->device_lock);
6097 ok = retry_aligned_read(conf, bio);
6098 spin_lock_irq(&conf->device_lock);
6099 if (!ok)
6100 break;
6101 handled++;
6102 }
6103
6104 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6105 conf->temp_inactive_list);
6106 if (!batch_size && !released)
6107 break;
6108 handled += batch_size;
6109
6110 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6111 spin_unlock_irq(&conf->device_lock);
6112 md_check_recovery(mddev);
6113 spin_lock_irq(&conf->device_lock);
6114 }
6115 }
6116 pr_debug("%d stripes handled\n", handled);
6117
6118 spin_unlock_irq(&conf->device_lock);
6119 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6120 mutex_trylock(&conf->cache_size_mutex)) {
6121 grow_one_stripe(conf, __GFP_NOWARN);
6122 /* Set flag even if allocation failed. This helps
6123 * slow down allocation requests when mem is short
6124 */
6125 set_bit(R5_DID_ALLOC, &conf->cache_state);
6126 mutex_unlock(&conf->cache_size_mutex);
6127 }
6128
6129 r5l_flush_stripe_to_raid(conf->log);
6130
6131 async_tx_issue_pending_all();
6132 blk_finish_plug(&plug);
6133
6134 pr_debug("--- raid5d inactive\n");
6135 }
6136
6137 static ssize_t
6138 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6139 {
6140 struct r5conf *conf;
6141 int ret = 0;
6142 spin_lock(&mddev->lock);
6143 conf = mddev->private;
6144 if (conf)
6145 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6146 spin_unlock(&mddev->lock);
6147 return ret;
6148 }
6149
6150 int
6151 raid5_set_cache_size(struct mddev *mddev, int size)
6152 {
6153 struct r5conf *conf = mddev->private;
6154 int err;
6155
6156 if (size <= 16 || size > 32768)
6157 return -EINVAL;
6158
6159 conf->min_nr_stripes = size;
6160 mutex_lock(&conf->cache_size_mutex);
6161 while (size < conf->max_nr_stripes &&
6162 drop_one_stripe(conf))
6163 ;
6164 mutex_unlock(&conf->cache_size_mutex);
6165
6166
6167 err = md_allow_write(mddev);
6168 if (err)
6169 return err;
6170
6171 mutex_lock(&conf->cache_size_mutex);
6172 while (size > conf->max_nr_stripes)
6173 if (!grow_one_stripe(conf, GFP_KERNEL))
6174 break;
6175 mutex_unlock(&conf->cache_size_mutex);
6176
6177 return 0;
6178 }
6179 EXPORT_SYMBOL(raid5_set_cache_size);
6180
6181 static ssize_t
6182 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6183 {
6184 struct r5conf *conf;
6185 unsigned long new;
6186 int err;
6187
6188 if (len >= PAGE_SIZE)
6189 return -EINVAL;
6190 if (kstrtoul(page, 10, &new))
6191 return -EINVAL;
6192 err = mddev_lock(mddev);
6193 if (err)
6194 return err;
6195 conf = mddev->private;
6196 if (!conf)
6197 err = -ENODEV;
6198 else
6199 err = raid5_set_cache_size(mddev, new);
6200 mddev_unlock(mddev);
6201
6202 return err ?: len;
6203 }
6204
6205 static struct md_sysfs_entry
6206 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6207 raid5_show_stripe_cache_size,
6208 raid5_store_stripe_cache_size);
6209
6210 static ssize_t
6211 raid5_show_rmw_level(struct mddev *mddev, char *page)
6212 {
6213 struct r5conf *conf = mddev->private;
6214 if (conf)
6215 return sprintf(page, "%d\n", conf->rmw_level);
6216 else
6217 return 0;
6218 }
6219
6220 static ssize_t
6221 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6222 {
6223 struct r5conf *conf = mddev->private;
6224 unsigned long new;
6225
6226 if (!conf)
6227 return -ENODEV;
6228
6229 if (len >= PAGE_SIZE)
6230 return -EINVAL;
6231
6232 if (kstrtoul(page, 10, &new))
6233 return -EINVAL;
6234
6235 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6236 return -EINVAL;
6237
6238 if (new != PARITY_DISABLE_RMW &&
6239 new != PARITY_ENABLE_RMW &&
6240 new != PARITY_PREFER_RMW)
6241 return -EINVAL;
6242
6243 conf->rmw_level = new;
6244 return len;
6245 }
6246
6247 static struct md_sysfs_entry
6248 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6249 raid5_show_rmw_level,
6250 raid5_store_rmw_level);
6251
6252
6253 static ssize_t
6254 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6255 {
6256 struct r5conf *conf;
6257 int ret = 0;
6258 spin_lock(&mddev->lock);
6259 conf = mddev->private;
6260 if (conf)
6261 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6262 spin_unlock(&mddev->lock);
6263 return ret;
6264 }
6265
6266 static ssize_t
6267 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6268 {
6269 struct r5conf *conf;
6270 unsigned long new;
6271 int err;
6272
6273 if (len >= PAGE_SIZE)
6274 return -EINVAL;
6275 if (kstrtoul(page, 10, &new))
6276 return -EINVAL;
6277
6278 err = mddev_lock(mddev);
6279 if (err)
6280 return err;
6281 conf = mddev->private;
6282 if (!conf)
6283 err = -ENODEV;
6284 else if (new > conf->min_nr_stripes)
6285 err = -EINVAL;
6286 else
6287 conf->bypass_threshold = new;
6288 mddev_unlock(mddev);
6289 return err ?: len;
6290 }
6291
6292 static struct md_sysfs_entry
6293 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6294 S_IRUGO | S_IWUSR,
6295 raid5_show_preread_threshold,
6296 raid5_store_preread_threshold);
6297
6298 static ssize_t
6299 raid5_show_skip_copy(struct mddev *mddev, char *page)
6300 {
6301 struct r5conf *conf;
6302 int ret = 0;
6303 spin_lock(&mddev->lock);
6304 conf = mddev->private;
6305 if (conf)
6306 ret = sprintf(page, "%d\n", conf->skip_copy);
6307 spin_unlock(&mddev->lock);
6308 return ret;
6309 }
6310
6311 static ssize_t
6312 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6313 {
6314 struct r5conf *conf;
6315 unsigned long new;
6316 int err;
6317
6318 if (len >= PAGE_SIZE)
6319 return -EINVAL;
6320 if (kstrtoul(page, 10, &new))
6321 return -EINVAL;
6322 new = !!new;
6323
6324 err = mddev_lock(mddev);
6325 if (err)
6326 return err;
6327 conf = mddev->private;
6328 if (!conf)
6329 err = -ENODEV;
6330 else if (new != conf->skip_copy) {
6331 mddev_suspend(mddev);
6332 conf->skip_copy = new;
6333 if (new)
6334 mddev->queue->backing_dev_info.capabilities |=
6335 BDI_CAP_STABLE_WRITES;
6336 else
6337 mddev->queue->backing_dev_info.capabilities &=
6338 ~BDI_CAP_STABLE_WRITES;
6339 mddev_resume(mddev);
6340 }
6341 mddev_unlock(mddev);
6342 return err ?: len;
6343 }
6344
6345 static struct md_sysfs_entry
6346 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6347 raid5_show_skip_copy,
6348 raid5_store_skip_copy);
6349
6350 static ssize_t
6351 stripe_cache_active_show(struct mddev *mddev, char *page)
6352 {
6353 struct r5conf *conf = mddev->private;
6354 if (conf)
6355 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6356 else
6357 return 0;
6358 }
6359
6360 static struct md_sysfs_entry
6361 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6362
6363 static ssize_t
6364 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6365 {
6366 struct r5conf *conf;
6367 int ret = 0;
6368 spin_lock(&mddev->lock);
6369 conf = mddev->private;
6370 if (conf)
6371 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6372 spin_unlock(&mddev->lock);
6373 return ret;
6374 }
6375
6376 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6377 int *group_cnt,
6378 int *worker_cnt_per_group,
6379 struct r5worker_group **worker_groups);
6380 static ssize_t
6381 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6382 {
6383 struct r5conf *conf;
6384 unsigned long new;
6385 int err;
6386 struct r5worker_group *new_groups, *old_groups;
6387 int group_cnt, worker_cnt_per_group;
6388
6389 if (len >= PAGE_SIZE)
6390 return -EINVAL;
6391 if (kstrtoul(page, 10, &new))
6392 return -EINVAL;
6393
6394 err = mddev_lock(mddev);
6395 if (err)
6396 return err;
6397 conf = mddev->private;
6398 if (!conf)
6399 err = -ENODEV;
6400 else if (new != conf->worker_cnt_per_group) {
6401 mddev_suspend(mddev);
6402
6403 old_groups = conf->worker_groups;
6404 if (old_groups)
6405 flush_workqueue(raid5_wq);
6406
6407 err = alloc_thread_groups(conf, new,
6408 &group_cnt, &worker_cnt_per_group,
6409 &new_groups);
6410 if (!err) {
6411 spin_lock_irq(&conf->device_lock);
6412 conf->group_cnt = group_cnt;
6413 conf->worker_cnt_per_group = worker_cnt_per_group;
6414 conf->worker_groups = new_groups;
6415 spin_unlock_irq(&conf->device_lock);
6416
6417 if (old_groups)
6418 kfree(old_groups[0].workers);
6419 kfree(old_groups);
6420 }
6421 mddev_resume(mddev);
6422 }
6423 mddev_unlock(mddev);
6424
6425 return err ?: len;
6426 }
6427
6428 static struct md_sysfs_entry
6429 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6430 raid5_show_group_thread_cnt,
6431 raid5_store_group_thread_cnt);
6432
6433 static struct attribute *raid5_attrs[] = {
6434 &raid5_stripecache_size.attr,
6435 &raid5_stripecache_active.attr,
6436 &raid5_preread_bypass_threshold.attr,
6437 &raid5_group_thread_cnt.attr,
6438 &raid5_skip_copy.attr,
6439 &raid5_rmw_level.attr,
6440 &r5c_journal_mode.attr,
6441 NULL,
6442 };
6443 static struct attribute_group raid5_attrs_group = {
6444 .name = NULL,
6445 .attrs = raid5_attrs,
6446 };
6447
6448 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6449 int *group_cnt,
6450 int *worker_cnt_per_group,
6451 struct r5worker_group **worker_groups)
6452 {
6453 int i, j, k;
6454 ssize_t size;
6455 struct r5worker *workers;
6456
6457 *worker_cnt_per_group = cnt;
6458 if (cnt == 0) {
6459 *group_cnt = 0;
6460 *worker_groups = NULL;
6461 return 0;
6462 }
6463 *group_cnt = num_possible_nodes();
6464 size = sizeof(struct r5worker) * cnt;
6465 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6466 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6467 *group_cnt, GFP_NOIO);
6468 if (!*worker_groups || !workers) {
6469 kfree(workers);
6470 kfree(*worker_groups);
6471 return -ENOMEM;
6472 }
6473
6474 for (i = 0; i < *group_cnt; i++) {
6475 struct r5worker_group *group;
6476
6477 group = &(*worker_groups)[i];
6478 INIT_LIST_HEAD(&group->handle_list);
6479 group->conf = conf;
6480 group->workers = workers + i * cnt;
6481
6482 for (j = 0; j < cnt; j++) {
6483 struct r5worker *worker = group->workers + j;
6484 worker->group = group;
6485 INIT_WORK(&worker->work, raid5_do_work);
6486
6487 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6488 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6489 }
6490 }
6491
6492 return 0;
6493 }
6494
6495 static void free_thread_groups(struct r5conf *conf)
6496 {
6497 if (conf->worker_groups)
6498 kfree(conf->worker_groups[0].workers);
6499 kfree(conf->worker_groups);
6500 conf->worker_groups = NULL;
6501 }
6502
6503 static sector_t
6504 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6505 {
6506 struct r5conf *conf = mddev->private;
6507
6508 if (!sectors)
6509 sectors = mddev->dev_sectors;
6510 if (!raid_disks)
6511 /* size is defined by the smallest of previous and new size */
6512 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6513
6514 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6515 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6516 return sectors * (raid_disks - conf->max_degraded);
6517 }
6518
6519 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6520 {
6521 safe_put_page(percpu->spare_page);
6522 if (percpu->scribble)
6523 flex_array_free(percpu->scribble);
6524 percpu->spare_page = NULL;
6525 percpu->scribble = NULL;
6526 }
6527
6528 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6529 {
6530 if (conf->level == 6 && !percpu->spare_page)
6531 percpu->spare_page = alloc_page(GFP_KERNEL);
6532 if (!percpu->scribble)
6533 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6534 conf->previous_raid_disks),
6535 max(conf->chunk_sectors,
6536 conf->prev_chunk_sectors)
6537 / STRIPE_SECTORS,
6538 GFP_KERNEL);
6539
6540 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6541 free_scratch_buffer(conf, percpu);
6542 return -ENOMEM;
6543 }
6544
6545 return 0;
6546 }
6547
6548 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6549 {
6550 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6551
6552 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6553 return 0;
6554 }
6555
6556 static void raid5_free_percpu(struct r5conf *conf)
6557 {
6558 if (!conf->percpu)
6559 return;
6560
6561 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6562 free_percpu(conf->percpu);
6563 }
6564
6565 static void free_conf(struct r5conf *conf)
6566 {
6567 int i;
6568
6569 if (conf->log)
6570 r5l_exit_log(conf->log);
6571 if (conf->shrinker.nr_deferred)
6572 unregister_shrinker(&conf->shrinker);
6573
6574 free_thread_groups(conf);
6575 shrink_stripes(conf);
6576 raid5_free_percpu(conf);
6577 for (i = 0; i < conf->pool_size; i++)
6578 if (conf->disks[i].extra_page)
6579 put_page(conf->disks[i].extra_page);
6580 kfree(conf->disks);
6581 kfree(conf->stripe_hashtbl);
6582 kfree(conf);
6583 }
6584
6585 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6586 {
6587 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6588 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6589
6590 if (alloc_scratch_buffer(conf, percpu)) {
6591 pr_warn("%s: failed memory allocation for cpu%u\n",
6592 __func__, cpu);
6593 return -ENOMEM;
6594 }
6595 return 0;
6596 }
6597
6598 static int raid5_alloc_percpu(struct r5conf *conf)
6599 {
6600 int err = 0;
6601
6602 conf->percpu = alloc_percpu(struct raid5_percpu);
6603 if (!conf->percpu)
6604 return -ENOMEM;
6605
6606 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6607 if (!err) {
6608 conf->scribble_disks = max(conf->raid_disks,
6609 conf->previous_raid_disks);
6610 conf->scribble_sectors = max(conf->chunk_sectors,
6611 conf->prev_chunk_sectors);
6612 }
6613 return err;
6614 }
6615
6616 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6617 struct shrink_control *sc)
6618 {
6619 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6620 unsigned long ret = SHRINK_STOP;
6621
6622 if (mutex_trylock(&conf->cache_size_mutex)) {
6623 ret= 0;
6624 while (ret < sc->nr_to_scan &&
6625 conf->max_nr_stripes > conf->min_nr_stripes) {
6626 if (drop_one_stripe(conf) == 0) {
6627 ret = SHRINK_STOP;
6628 break;
6629 }
6630 ret++;
6631 }
6632 mutex_unlock(&conf->cache_size_mutex);
6633 }
6634 return ret;
6635 }
6636
6637 static unsigned long raid5_cache_count(struct shrinker *shrink,
6638 struct shrink_control *sc)
6639 {
6640 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6641
6642 if (conf->max_nr_stripes < conf->min_nr_stripes)
6643 /* unlikely, but not impossible */
6644 return 0;
6645 return conf->max_nr_stripes - conf->min_nr_stripes;
6646 }
6647
6648 static struct r5conf *setup_conf(struct mddev *mddev)
6649 {
6650 struct r5conf *conf;
6651 int raid_disk, memory, max_disks;
6652 struct md_rdev *rdev;
6653 struct disk_info *disk;
6654 char pers_name[6];
6655 int i;
6656 int group_cnt, worker_cnt_per_group;
6657 struct r5worker_group *new_group;
6658
6659 if (mddev->new_level != 5
6660 && mddev->new_level != 4
6661 && mddev->new_level != 6) {
6662 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6663 mdname(mddev), mddev->new_level);
6664 return ERR_PTR(-EIO);
6665 }
6666 if ((mddev->new_level == 5
6667 && !algorithm_valid_raid5(mddev->new_layout)) ||
6668 (mddev->new_level == 6
6669 && !algorithm_valid_raid6(mddev->new_layout))) {
6670 pr_warn("md/raid:%s: layout %d not supported\n",
6671 mdname(mddev), mddev->new_layout);
6672 return ERR_PTR(-EIO);
6673 }
6674 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6675 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6676 mdname(mddev), mddev->raid_disks);
6677 return ERR_PTR(-EINVAL);
6678 }
6679
6680 if (!mddev->new_chunk_sectors ||
6681 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6682 !is_power_of_2(mddev->new_chunk_sectors)) {
6683 pr_warn("md/raid:%s: invalid chunk size %d\n",
6684 mdname(mddev), mddev->new_chunk_sectors << 9);
6685 return ERR_PTR(-EINVAL);
6686 }
6687
6688 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6689 if (conf == NULL)
6690 goto abort;
6691 /* Don't enable multi-threading by default*/
6692 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6693 &new_group)) {
6694 conf->group_cnt = group_cnt;
6695 conf->worker_cnt_per_group = worker_cnt_per_group;
6696 conf->worker_groups = new_group;
6697 } else
6698 goto abort;
6699 spin_lock_init(&conf->device_lock);
6700 seqcount_init(&conf->gen_lock);
6701 mutex_init(&conf->cache_size_mutex);
6702 init_waitqueue_head(&conf->wait_for_quiescent);
6703 init_waitqueue_head(&conf->wait_for_stripe);
6704 init_waitqueue_head(&conf->wait_for_overlap);
6705 INIT_LIST_HEAD(&conf->handle_list);
6706 INIT_LIST_HEAD(&conf->hold_list);
6707 INIT_LIST_HEAD(&conf->delayed_list);
6708 INIT_LIST_HEAD(&conf->bitmap_list);
6709 bio_list_init(&conf->return_bi);
6710 init_llist_head(&conf->released_stripes);
6711 atomic_set(&conf->active_stripes, 0);
6712 atomic_set(&conf->preread_active_stripes, 0);
6713 atomic_set(&conf->active_aligned_reads, 0);
6714 conf->bypass_threshold = BYPASS_THRESHOLD;
6715 conf->recovery_disabled = mddev->recovery_disabled - 1;
6716
6717 conf->raid_disks = mddev->raid_disks;
6718 if (mddev->reshape_position == MaxSector)
6719 conf->previous_raid_disks = mddev->raid_disks;
6720 else
6721 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6722 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6723
6724 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6725 GFP_KERNEL);
6726
6727 if (!conf->disks)
6728 goto abort;
6729
6730 for (i = 0; i < max_disks; i++) {
6731 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6732 if (!conf->disks[i].extra_page)
6733 goto abort;
6734 }
6735
6736 conf->mddev = mddev;
6737
6738 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6739 goto abort;
6740
6741 /* We init hash_locks[0] separately to that it can be used
6742 * as the reference lock in the spin_lock_nest_lock() call
6743 * in lock_all_device_hash_locks_irq in order to convince
6744 * lockdep that we know what we are doing.
6745 */
6746 spin_lock_init(conf->hash_locks);
6747 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6748 spin_lock_init(conf->hash_locks + i);
6749
6750 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6751 INIT_LIST_HEAD(conf->inactive_list + i);
6752
6753 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6754 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6755
6756 atomic_set(&conf->r5c_cached_full_stripes, 0);
6757 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6758 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6759 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6760
6761 conf->level = mddev->new_level;
6762 conf->chunk_sectors = mddev->new_chunk_sectors;
6763 if (raid5_alloc_percpu(conf) != 0)
6764 goto abort;
6765
6766 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6767
6768 rdev_for_each(rdev, mddev) {
6769 raid_disk = rdev->raid_disk;
6770 if (raid_disk >= max_disks
6771 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6772 continue;
6773 disk = conf->disks + raid_disk;
6774
6775 if (test_bit(Replacement, &rdev->flags)) {
6776 if (disk->replacement)
6777 goto abort;
6778 disk->replacement = rdev;
6779 } else {
6780 if (disk->rdev)
6781 goto abort;
6782 disk->rdev = rdev;
6783 }
6784
6785 if (test_bit(In_sync, &rdev->flags)) {
6786 char b[BDEVNAME_SIZE];
6787 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6788 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6789 } else if (rdev->saved_raid_disk != raid_disk)
6790 /* Cannot rely on bitmap to complete recovery */
6791 conf->fullsync = 1;
6792 }
6793
6794 conf->level = mddev->new_level;
6795 if (conf->level == 6) {
6796 conf->max_degraded = 2;
6797 if (raid6_call.xor_syndrome)
6798 conf->rmw_level = PARITY_ENABLE_RMW;
6799 else
6800 conf->rmw_level = PARITY_DISABLE_RMW;
6801 } else {
6802 conf->max_degraded = 1;
6803 conf->rmw_level = PARITY_ENABLE_RMW;
6804 }
6805 conf->algorithm = mddev->new_layout;
6806 conf->reshape_progress = mddev->reshape_position;
6807 if (conf->reshape_progress != MaxSector) {
6808 conf->prev_chunk_sectors = mddev->chunk_sectors;
6809 conf->prev_algo = mddev->layout;
6810 } else {
6811 conf->prev_chunk_sectors = conf->chunk_sectors;
6812 conf->prev_algo = conf->algorithm;
6813 }
6814
6815 conf->min_nr_stripes = NR_STRIPES;
6816 if (mddev->reshape_position != MaxSector) {
6817 int stripes = max_t(int,
6818 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
6819 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
6820 conf->min_nr_stripes = max(NR_STRIPES, stripes);
6821 if (conf->min_nr_stripes != NR_STRIPES)
6822 pr_info("md/raid:%s: force stripe size %d for reshape\n",
6823 mdname(mddev), conf->min_nr_stripes);
6824 }
6825 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6826 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6827 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6828 if (grow_stripes(conf, conf->min_nr_stripes)) {
6829 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
6830 mdname(mddev), memory);
6831 goto abort;
6832 } else
6833 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
6834 /*
6835 * Losing a stripe head costs more than the time to refill it,
6836 * it reduces the queue depth and so can hurt throughput.
6837 * So set it rather large, scaled by number of devices.
6838 */
6839 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6840 conf->shrinker.scan_objects = raid5_cache_scan;
6841 conf->shrinker.count_objects = raid5_cache_count;
6842 conf->shrinker.batch = 128;
6843 conf->shrinker.flags = 0;
6844 if (register_shrinker(&conf->shrinker)) {
6845 pr_warn("md/raid:%s: couldn't register shrinker.\n",
6846 mdname(mddev));
6847 goto abort;
6848 }
6849
6850 sprintf(pers_name, "raid%d", mddev->new_level);
6851 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6852 if (!conf->thread) {
6853 pr_warn("md/raid:%s: couldn't allocate thread.\n",
6854 mdname(mddev));
6855 goto abort;
6856 }
6857
6858 return conf;
6859
6860 abort:
6861 if (conf) {
6862 free_conf(conf);
6863 return ERR_PTR(-EIO);
6864 } else
6865 return ERR_PTR(-ENOMEM);
6866 }
6867
6868 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6869 {
6870 switch (algo) {
6871 case ALGORITHM_PARITY_0:
6872 if (raid_disk < max_degraded)
6873 return 1;
6874 break;
6875 case ALGORITHM_PARITY_N:
6876 if (raid_disk >= raid_disks - max_degraded)
6877 return 1;
6878 break;
6879 case ALGORITHM_PARITY_0_6:
6880 if (raid_disk == 0 ||
6881 raid_disk == raid_disks - 1)
6882 return 1;
6883 break;
6884 case ALGORITHM_LEFT_ASYMMETRIC_6:
6885 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6886 case ALGORITHM_LEFT_SYMMETRIC_6:
6887 case ALGORITHM_RIGHT_SYMMETRIC_6:
6888 if (raid_disk == raid_disks - 1)
6889 return 1;
6890 }
6891 return 0;
6892 }
6893
6894 static int raid5_run(struct mddev *mddev)
6895 {
6896 struct r5conf *conf;
6897 int working_disks = 0;
6898 int dirty_parity_disks = 0;
6899 struct md_rdev *rdev;
6900 struct md_rdev *journal_dev = NULL;
6901 sector_t reshape_offset = 0;
6902 int i;
6903 long long min_offset_diff = 0;
6904 int first = 1;
6905
6906 if (mddev->recovery_cp != MaxSector)
6907 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
6908 mdname(mddev));
6909
6910 rdev_for_each(rdev, mddev) {
6911 long long diff;
6912
6913 if (test_bit(Journal, &rdev->flags)) {
6914 journal_dev = rdev;
6915 continue;
6916 }
6917 if (rdev->raid_disk < 0)
6918 continue;
6919 diff = (rdev->new_data_offset - rdev->data_offset);
6920 if (first) {
6921 min_offset_diff = diff;
6922 first = 0;
6923 } else if (mddev->reshape_backwards &&
6924 diff < min_offset_diff)
6925 min_offset_diff = diff;
6926 else if (!mddev->reshape_backwards &&
6927 diff > min_offset_diff)
6928 min_offset_diff = diff;
6929 }
6930
6931 if (mddev->reshape_position != MaxSector) {
6932 /* Check that we can continue the reshape.
6933 * Difficulties arise if the stripe we would write to
6934 * next is at or after the stripe we would read from next.
6935 * For a reshape that changes the number of devices, this
6936 * is only possible for a very short time, and mdadm makes
6937 * sure that time appears to have past before assembling
6938 * the array. So we fail if that time hasn't passed.
6939 * For a reshape that keeps the number of devices the same
6940 * mdadm must be monitoring the reshape can keeping the
6941 * critical areas read-only and backed up. It will start
6942 * the array in read-only mode, so we check for that.
6943 */
6944 sector_t here_new, here_old;
6945 int old_disks;
6946 int max_degraded = (mddev->level == 6 ? 2 : 1);
6947 int chunk_sectors;
6948 int new_data_disks;
6949
6950 if (journal_dev) {
6951 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
6952 mdname(mddev));
6953 return -EINVAL;
6954 }
6955
6956 if (mddev->new_level != mddev->level) {
6957 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
6958 mdname(mddev));
6959 return -EINVAL;
6960 }
6961 old_disks = mddev->raid_disks - mddev->delta_disks;
6962 /* reshape_position must be on a new-stripe boundary, and one
6963 * further up in new geometry must map after here in old
6964 * geometry.
6965 * If the chunk sizes are different, then as we perform reshape
6966 * in units of the largest of the two, reshape_position needs
6967 * be a multiple of the largest chunk size times new data disks.
6968 */
6969 here_new = mddev->reshape_position;
6970 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6971 new_data_disks = mddev->raid_disks - max_degraded;
6972 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6973 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
6974 mdname(mddev));
6975 return -EINVAL;
6976 }
6977 reshape_offset = here_new * chunk_sectors;
6978 /* here_new is the stripe we will write to */
6979 here_old = mddev->reshape_position;
6980 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6981 /* here_old is the first stripe that we might need to read
6982 * from */
6983 if (mddev->delta_disks == 0) {
6984 /* We cannot be sure it is safe to start an in-place
6985 * reshape. It is only safe if user-space is monitoring
6986 * and taking constant backups.
6987 * mdadm always starts a situation like this in
6988 * readonly mode so it can take control before
6989 * allowing any writes. So just check for that.
6990 */
6991 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6992 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6993 /* not really in-place - so OK */;
6994 else if (mddev->ro == 0) {
6995 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
6996 mdname(mddev));
6997 return -EINVAL;
6998 }
6999 } else if (mddev->reshape_backwards
7000 ? (here_new * chunk_sectors + min_offset_diff <=
7001 here_old * chunk_sectors)
7002 : (here_new * chunk_sectors >=
7003 here_old * chunk_sectors + (-min_offset_diff))) {
7004 /* Reading from the same stripe as writing to - bad */
7005 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7006 mdname(mddev));
7007 return -EINVAL;
7008 }
7009 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7010 /* OK, we should be able to continue; */
7011 } else {
7012 BUG_ON(mddev->level != mddev->new_level);
7013 BUG_ON(mddev->layout != mddev->new_layout);
7014 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7015 BUG_ON(mddev->delta_disks != 0);
7016 }
7017
7018 if (mddev->private == NULL)
7019 conf = setup_conf(mddev);
7020 else
7021 conf = mddev->private;
7022
7023 if (IS_ERR(conf))
7024 return PTR_ERR(conf);
7025
7026 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7027 if (!journal_dev) {
7028 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7029 mdname(mddev));
7030 mddev->ro = 1;
7031 set_disk_ro(mddev->gendisk, 1);
7032 } else if (mddev->recovery_cp == MaxSector)
7033 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7034 }
7035
7036 conf->min_offset_diff = min_offset_diff;
7037 mddev->thread = conf->thread;
7038 conf->thread = NULL;
7039 mddev->private = conf;
7040
7041 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7042 i++) {
7043 rdev = conf->disks[i].rdev;
7044 if (!rdev && conf->disks[i].replacement) {
7045 /* The replacement is all we have yet */
7046 rdev = conf->disks[i].replacement;
7047 conf->disks[i].replacement = NULL;
7048 clear_bit(Replacement, &rdev->flags);
7049 conf->disks[i].rdev = rdev;
7050 }
7051 if (!rdev)
7052 continue;
7053 if (conf->disks[i].replacement &&
7054 conf->reshape_progress != MaxSector) {
7055 /* replacements and reshape simply do not mix. */
7056 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7057 goto abort;
7058 }
7059 if (test_bit(In_sync, &rdev->flags)) {
7060 working_disks++;
7061 continue;
7062 }
7063 /* This disc is not fully in-sync. However if it
7064 * just stored parity (beyond the recovery_offset),
7065 * when we don't need to be concerned about the
7066 * array being dirty.
7067 * When reshape goes 'backwards', we never have
7068 * partially completed devices, so we only need
7069 * to worry about reshape going forwards.
7070 */
7071 /* Hack because v0.91 doesn't store recovery_offset properly. */
7072 if (mddev->major_version == 0 &&
7073 mddev->minor_version > 90)
7074 rdev->recovery_offset = reshape_offset;
7075
7076 if (rdev->recovery_offset < reshape_offset) {
7077 /* We need to check old and new layout */
7078 if (!only_parity(rdev->raid_disk,
7079 conf->algorithm,
7080 conf->raid_disks,
7081 conf->max_degraded))
7082 continue;
7083 }
7084 if (!only_parity(rdev->raid_disk,
7085 conf->prev_algo,
7086 conf->previous_raid_disks,
7087 conf->max_degraded))
7088 continue;
7089 dirty_parity_disks++;
7090 }
7091
7092 /*
7093 * 0 for a fully functional array, 1 or 2 for a degraded array.
7094 */
7095 mddev->degraded = raid5_calc_degraded(conf);
7096
7097 if (has_failed(conf)) {
7098 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7099 mdname(mddev), mddev->degraded, conf->raid_disks);
7100 goto abort;
7101 }
7102
7103 /* device size must be a multiple of chunk size */
7104 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7105 mddev->resync_max_sectors = mddev->dev_sectors;
7106
7107 if (mddev->degraded > dirty_parity_disks &&
7108 mddev->recovery_cp != MaxSector) {
7109 if (mddev->ok_start_degraded)
7110 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7111 mdname(mddev));
7112 else {
7113 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7114 mdname(mddev));
7115 goto abort;
7116 }
7117 }
7118
7119 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7120 mdname(mddev), conf->level,
7121 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7122 mddev->new_layout);
7123
7124 print_raid5_conf(conf);
7125
7126 if (conf->reshape_progress != MaxSector) {
7127 conf->reshape_safe = conf->reshape_progress;
7128 atomic_set(&conf->reshape_stripes, 0);
7129 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7130 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7131 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7132 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7133 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7134 "reshape");
7135 }
7136
7137 /* Ok, everything is just fine now */
7138 if (mddev->to_remove == &raid5_attrs_group)
7139 mddev->to_remove = NULL;
7140 else if (mddev->kobj.sd &&
7141 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7142 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7143 mdname(mddev));
7144 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7145
7146 if (mddev->queue) {
7147 int chunk_size;
7148 bool discard_supported = true;
7149 /* read-ahead size must cover two whole stripes, which
7150 * is 2 * (datadisks) * chunksize where 'n' is the
7151 * number of raid devices
7152 */
7153 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7154 int stripe = data_disks *
7155 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7156 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7157 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7158
7159 chunk_size = mddev->chunk_sectors << 9;
7160 blk_queue_io_min(mddev->queue, chunk_size);
7161 blk_queue_io_opt(mddev->queue, chunk_size *
7162 (conf->raid_disks - conf->max_degraded));
7163 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7164 /*
7165 * We can only discard a whole stripe. It doesn't make sense to
7166 * discard data disk but write parity disk
7167 */
7168 stripe = stripe * PAGE_SIZE;
7169 /* Round up to power of 2, as discard handling
7170 * currently assumes that */
7171 while ((stripe-1) & stripe)
7172 stripe = (stripe | (stripe-1)) + 1;
7173 mddev->queue->limits.discard_alignment = stripe;
7174 mddev->queue->limits.discard_granularity = stripe;
7175
7176 /*
7177 * We use 16-bit counter of active stripes in bi_phys_segments
7178 * (minus one for over-loaded initialization)
7179 */
7180 blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS);
7181 blk_queue_max_discard_sectors(mddev->queue,
7182 0xfffe * STRIPE_SECTORS);
7183
7184 /*
7185 * unaligned part of discard request will be ignored, so can't
7186 * guarantee discard_zeroes_data
7187 */
7188 mddev->queue->limits.discard_zeroes_data = 0;
7189
7190 blk_queue_max_write_same_sectors(mddev->queue, 0);
7191
7192 rdev_for_each(rdev, mddev) {
7193 disk_stack_limits(mddev->gendisk, rdev->bdev,
7194 rdev->data_offset << 9);
7195 disk_stack_limits(mddev->gendisk, rdev->bdev,
7196 rdev->new_data_offset << 9);
7197 /*
7198 * discard_zeroes_data is required, otherwise data
7199 * could be lost. Consider a scenario: discard a stripe
7200 * (the stripe could be inconsistent if
7201 * discard_zeroes_data is 0); write one disk of the
7202 * stripe (the stripe could be inconsistent again
7203 * depending on which disks are used to calculate
7204 * parity); the disk is broken; The stripe data of this
7205 * disk is lost.
7206 */
7207 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7208 !bdev_get_queue(rdev->bdev)->
7209 limits.discard_zeroes_data)
7210 discard_supported = false;
7211 /* Unfortunately, discard_zeroes_data is not currently
7212 * a guarantee - just a hint. So we only allow DISCARD
7213 * if the sysadmin has confirmed that only safe devices
7214 * are in use by setting a module parameter.
7215 */
7216 if (!devices_handle_discard_safely) {
7217 if (discard_supported) {
7218 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7219 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7220 }
7221 discard_supported = false;
7222 }
7223 }
7224
7225 if (discard_supported &&
7226 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7227 mddev->queue->limits.discard_granularity >= stripe)
7228 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7229 mddev->queue);
7230 else
7231 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7232 mddev->queue);
7233
7234 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7235 }
7236
7237 if (journal_dev) {
7238 char b[BDEVNAME_SIZE];
7239
7240 pr_debug("md/raid:%s: using device %s as journal\n",
7241 mdname(mddev), bdevname(journal_dev->bdev, b));
7242 if (r5l_init_log(conf, journal_dev))
7243 goto abort;
7244 }
7245
7246 return 0;
7247 abort:
7248 md_unregister_thread(&mddev->thread);
7249 print_raid5_conf(conf);
7250 free_conf(conf);
7251 mddev->private = NULL;
7252 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7253 return -EIO;
7254 }
7255
7256 static void raid5_free(struct mddev *mddev, void *priv)
7257 {
7258 struct r5conf *conf = priv;
7259
7260 free_conf(conf);
7261 mddev->to_remove = &raid5_attrs_group;
7262 }
7263
7264 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7265 {
7266 struct r5conf *conf = mddev->private;
7267 int i;
7268
7269 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7270 conf->chunk_sectors / 2, mddev->layout);
7271 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7272 rcu_read_lock();
7273 for (i = 0; i < conf->raid_disks; i++) {
7274 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7275 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7276 }
7277 rcu_read_unlock();
7278 seq_printf (seq, "]");
7279 }
7280
7281 static void print_raid5_conf (struct r5conf *conf)
7282 {
7283 int i;
7284 struct disk_info *tmp;
7285
7286 pr_debug("RAID conf printout:\n");
7287 if (!conf) {
7288 pr_debug("(conf==NULL)\n");
7289 return;
7290 }
7291 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7292 conf->raid_disks,
7293 conf->raid_disks - conf->mddev->degraded);
7294
7295 for (i = 0; i < conf->raid_disks; i++) {
7296 char b[BDEVNAME_SIZE];
7297 tmp = conf->disks + i;
7298 if (tmp->rdev)
7299 pr_debug(" disk %d, o:%d, dev:%s\n",
7300 i, !test_bit(Faulty, &tmp->rdev->flags),
7301 bdevname(tmp->rdev->bdev, b));
7302 }
7303 }
7304
7305 static int raid5_spare_active(struct mddev *mddev)
7306 {
7307 int i;
7308 struct r5conf *conf = mddev->private;
7309 struct disk_info *tmp;
7310 int count = 0;
7311 unsigned long flags;
7312
7313 for (i = 0; i < conf->raid_disks; i++) {
7314 tmp = conf->disks + i;
7315 if (tmp->replacement
7316 && tmp->replacement->recovery_offset == MaxSector
7317 && !test_bit(Faulty, &tmp->replacement->flags)
7318 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7319 /* Replacement has just become active. */
7320 if (!tmp->rdev
7321 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7322 count++;
7323 if (tmp->rdev) {
7324 /* Replaced device not technically faulty,
7325 * but we need to be sure it gets removed
7326 * and never re-added.
7327 */
7328 set_bit(Faulty, &tmp->rdev->flags);
7329 sysfs_notify_dirent_safe(
7330 tmp->rdev->sysfs_state);
7331 }
7332 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7333 } else if (tmp->rdev
7334 && tmp->rdev->recovery_offset == MaxSector
7335 && !test_bit(Faulty, &tmp->rdev->flags)
7336 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7337 count++;
7338 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7339 }
7340 }
7341 spin_lock_irqsave(&conf->device_lock, flags);
7342 mddev->degraded = raid5_calc_degraded(conf);
7343 spin_unlock_irqrestore(&conf->device_lock, flags);
7344 print_raid5_conf(conf);
7345 return count;
7346 }
7347
7348 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7349 {
7350 struct r5conf *conf = mddev->private;
7351 int err = 0;
7352 int number = rdev->raid_disk;
7353 struct md_rdev **rdevp;
7354 struct disk_info *p = conf->disks + number;
7355
7356 print_raid5_conf(conf);
7357 if (test_bit(Journal, &rdev->flags) && conf->log) {
7358 struct r5l_log *log;
7359 /*
7360 * we can't wait pending write here, as this is called in
7361 * raid5d, wait will deadlock.
7362 */
7363 if (atomic_read(&mddev->writes_pending))
7364 return -EBUSY;
7365 log = conf->log;
7366 conf->log = NULL;
7367 synchronize_rcu();
7368 r5l_exit_log(log);
7369 return 0;
7370 }
7371 if (rdev == p->rdev)
7372 rdevp = &p->rdev;
7373 else if (rdev == p->replacement)
7374 rdevp = &p->replacement;
7375 else
7376 return 0;
7377
7378 if (number >= conf->raid_disks &&
7379 conf->reshape_progress == MaxSector)
7380 clear_bit(In_sync, &rdev->flags);
7381
7382 if (test_bit(In_sync, &rdev->flags) ||
7383 atomic_read(&rdev->nr_pending)) {
7384 err = -EBUSY;
7385 goto abort;
7386 }
7387 /* Only remove non-faulty devices if recovery
7388 * isn't possible.
7389 */
7390 if (!test_bit(Faulty, &rdev->flags) &&
7391 mddev->recovery_disabled != conf->recovery_disabled &&
7392 !has_failed(conf) &&
7393 (!p->replacement || p->replacement == rdev) &&
7394 number < conf->raid_disks) {
7395 err = -EBUSY;
7396 goto abort;
7397 }
7398 *rdevp = NULL;
7399 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7400 synchronize_rcu();
7401 if (atomic_read(&rdev->nr_pending)) {
7402 /* lost the race, try later */
7403 err = -EBUSY;
7404 *rdevp = rdev;
7405 }
7406 }
7407 if (p->replacement) {
7408 /* We must have just cleared 'rdev' */
7409 p->rdev = p->replacement;
7410 clear_bit(Replacement, &p->replacement->flags);
7411 smp_mb(); /* Make sure other CPUs may see both as identical
7412 * but will never see neither - if they are careful
7413 */
7414 p->replacement = NULL;
7415 clear_bit(WantReplacement, &rdev->flags);
7416 } else
7417 /* We might have just removed the Replacement as faulty-
7418 * clear the bit just in case
7419 */
7420 clear_bit(WantReplacement, &rdev->flags);
7421 abort:
7422
7423 print_raid5_conf(conf);
7424 return err;
7425 }
7426
7427 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7428 {
7429 struct r5conf *conf = mddev->private;
7430 int err = -EEXIST;
7431 int disk;
7432 struct disk_info *p;
7433 int first = 0;
7434 int last = conf->raid_disks - 1;
7435
7436 if (test_bit(Journal, &rdev->flags)) {
7437 char b[BDEVNAME_SIZE];
7438 if (conf->log)
7439 return -EBUSY;
7440
7441 rdev->raid_disk = 0;
7442 /*
7443 * The array is in readonly mode if journal is missing, so no
7444 * write requests running. We should be safe
7445 */
7446 r5l_init_log(conf, rdev);
7447 pr_debug("md/raid:%s: using device %s as journal\n",
7448 mdname(mddev), bdevname(rdev->bdev, b));
7449 return 0;
7450 }
7451 if (mddev->recovery_disabled == conf->recovery_disabled)
7452 return -EBUSY;
7453
7454 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7455 /* no point adding a device */
7456 return -EINVAL;
7457
7458 if (rdev->raid_disk >= 0)
7459 first = last = rdev->raid_disk;
7460
7461 /*
7462 * find the disk ... but prefer rdev->saved_raid_disk
7463 * if possible.
7464 */
7465 if (rdev->saved_raid_disk >= 0 &&
7466 rdev->saved_raid_disk >= first &&
7467 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7468 first = rdev->saved_raid_disk;
7469
7470 for (disk = first; disk <= last; disk++) {
7471 p = conf->disks + disk;
7472 if (p->rdev == NULL) {
7473 clear_bit(In_sync, &rdev->flags);
7474 rdev->raid_disk = disk;
7475 err = 0;
7476 if (rdev->saved_raid_disk != disk)
7477 conf->fullsync = 1;
7478 rcu_assign_pointer(p->rdev, rdev);
7479 goto out;
7480 }
7481 }
7482 for (disk = first; disk <= last; disk++) {
7483 p = conf->disks + disk;
7484 if (test_bit(WantReplacement, &p->rdev->flags) &&
7485 p->replacement == NULL) {
7486 clear_bit(In_sync, &rdev->flags);
7487 set_bit(Replacement, &rdev->flags);
7488 rdev->raid_disk = disk;
7489 err = 0;
7490 conf->fullsync = 1;
7491 rcu_assign_pointer(p->replacement, rdev);
7492 break;
7493 }
7494 }
7495 out:
7496 print_raid5_conf(conf);
7497 return err;
7498 }
7499
7500 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7501 {
7502 /* no resync is happening, and there is enough space
7503 * on all devices, so we can resize.
7504 * We need to make sure resync covers any new space.
7505 * If the array is shrinking we should possibly wait until
7506 * any io in the removed space completes, but it hardly seems
7507 * worth it.
7508 */
7509 sector_t newsize;
7510 struct r5conf *conf = mddev->private;
7511
7512 if (conf->log)
7513 return -EINVAL;
7514 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7515 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7516 if (mddev->external_size &&
7517 mddev->array_sectors > newsize)
7518 return -EINVAL;
7519 if (mddev->bitmap) {
7520 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7521 if (ret)
7522 return ret;
7523 }
7524 md_set_array_sectors(mddev, newsize);
7525 set_capacity(mddev->gendisk, mddev->array_sectors);
7526 revalidate_disk(mddev->gendisk);
7527 if (sectors > mddev->dev_sectors &&
7528 mddev->recovery_cp > mddev->dev_sectors) {
7529 mddev->recovery_cp = mddev->dev_sectors;
7530 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7531 }
7532 mddev->dev_sectors = sectors;
7533 mddev->resync_max_sectors = sectors;
7534 return 0;
7535 }
7536
7537 static int check_stripe_cache(struct mddev *mddev)
7538 {
7539 /* Can only proceed if there are plenty of stripe_heads.
7540 * We need a minimum of one full stripe,, and for sensible progress
7541 * it is best to have about 4 times that.
7542 * If we require 4 times, then the default 256 4K stripe_heads will
7543 * allow for chunk sizes up to 256K, which is probably OK.
7544 * If the chunk size is greater, user-space should request more
7545 * stripe_heads first.
7546 */
7547 struct r5conf *conf = mddev->private;
7548 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7549 > conf->min_nr_stripes ||
7550 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7551 > conf->min_nr_stripes) {
7552 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7553 mdname(mddev),
7554 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7555 / STRIPE_SIZE)*4);
7556 return 0;
7557 }
7558 return 1;
7559 }
7560
7561 static int check_reshape(struct mddev *mddev)
7562 {
7563 struct r5conf *conf = mddev->private;
7564
7565 if (conf->log)
7566 return -EINVAL;
7567 if (mddev->delta_disks == 0 &&
7568 mddev->new_layout == mddev->layout &&
7569 mddev->new_chunk_sectors == mddev->chunk_sectors)
7570 return 0; /* nothing to do */
7571 if (has_failed(conf))
7572 return -EINVAL;
7573 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7574 /* We might be able to shrink, but the devices must
7575 * be made bigger first.
7576 * For raid6, 4 is the minimum size.
7577 * Otherwise 2 is the minimum
7578 */
7579 int min = 2;
7580 if (mddev->level == 6)
7581 min = 4;
7582 if (mddev->raid_disks + mddev->delta_disks < min)
7583 return -EINVAL;
7584 }
7585
7586 if (!check_stripe_cache(mddev))
7587 return -ENOSPC;
7588
7589 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7590 mddev->delta_disks > 0)
7591 if (resize_chunks(conf,
7592 conf->previous_raid_disks
7593 + max(0, mddev->delta_disks),
7594 max(mddev->new_chunk_sectors,
7595 mddev->chunk_sectors)
7596 ) < 0)
7597 return -ENOMEM;
7598 return resize_stripes(conf, (conf->previous_raid_disks
7599 + mddev->delta_disks));
7600 }
7601
7602 static int raid5_start_reshape(struct mddev *mddev)
7603 {
7604 struct r5conf *conf = mddev->private;
7605 struct md_rdev *rdev;
7606 int spares = 0;
7607 unsigned long flags;
7608
7609 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7610 return -EBUSY;
7611
7612 if (!check_stripe_cache(mddev))
7613 return -ENOSPC;
7614
7615 if (has_failed(conf))
7616 return -EINVAL;
7617
7618 rdev_for_each(rdev, mddev) {
7619 if (!test_bit(In_sync, &rdev->flags)
7620 && !test_bit(Faulty, &rdev->flags))
7621 spares++;
7622 }
7623
7624 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7625 /* Not enough devices even to make a degraded array
7626 * of that size
7627 */
7628 return -EINVAL;
7629
7630 /* Refuse to reduce size of the array. Any reductions in
7631 * array size must be through explicit setting of array_size
7632 * attribute.
7633 */
7634 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7635 < mddev->array_sectors) {
7636 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7637 mdname(mddev));
7638 return -EINVAL;
7639 }
7640
7641 atomic_set(&conf->reshape_stripes, 0);
7642 spin_lock_irq(&conf->device_lock);
7643 write_seqcount_begin(&conf->gen_lock);
7644 conf->previous_raid_disks = conf->raid_disks;
7645 conf->raid_disks += mddev->delta_disks;
7646 conf->prev_chunk_sectors = conf->chunk_sectors;
7647 conf->chunk_sectors = mddev->new_chunk_sectors;
7648 conf->prev_algo = conf->algorithm;
7649 conf->algorithm = mddev->new_layout;
7650 conf->generation++;
7651 /* Code that selects data_offset needs to see the generation update
7652 * if reshape_progress has been set - so a memory barrier needed.
7653 */
7654 smp_mb();
7655 if (mddev->reshape_backwards)
7656 conf->reshape_progress = raid5_size(mddev, 0, 0);
7657 else
7658 conf->reshape_progress = 0;
7659 conf->reshape_safe = conf->reshape_progress;
7660 write_seqcount_end(&conf->gen_lock);
7661 spin_unlock_irq(&conf->device_lock);
7662
7663 /* Now make sure any requests that proceeded on the assumption
7664 * the reshape wasn't running - like Discard or Read - have
7665 * completed.
7666 */
7667 mddev_suspend(mddev);
7668 mddev_resume(mddev);
7669
7670 /* Add some new drives, as many as will fit.
7671 * We know there are enough to make the newly sized array work.
7672 * Don't add devices if we are reducing the number of
7673 * devices in the array. This is because it is not possible
7674 * to correctly record the "partially reconstructed" state of
7675 * such devices during the reshape and confusion could result.
7676 */
7677 if (mddev->delta_disks >= 0) {
7678 rdev_for_each(rdev, mddev)
7679 if (rdev->raid_disk < 0 &&
7680 !test_bit(Faulty, &rdev->flags)) {
7681 if (raid5_add_disk(mddev, rdev) == 0) {
7682 if (rdev->raid_disk
7683 >= conf->previous_raid_disks)
7684 set_bit(In_sync, &rdev->flags);
7685 else
7686 rdev->recovery_offset = 0;
7687
7688 if (sysfs_link_rdev(mddev, rdev))
7689 /* Failure here is OK */;
7690 }
7691 } else if (rdev->raid_disk >= conf->previous_raid_disks
7692 && !test_bit(Faulty, &rdev->flags)) {
7693 /* This is a spare that was manually added */
7694 set_bit(In_sync, &rdev->flags);
7695 }
7696
7697 /* When a reshape changes the number of devices,
7698 * ->degraded is measured against the larger of the
7699 * pre and post number of devices.
7700 */
7701 spin_lock_irqsave(&conf->device_lock, flags);
7702 mddev->degraded = raid5_calc_degraded(conf);
7703 spin_unlock_irqrestore(&conf->device_lock, flags);
7704 }
7705 mddev->raid_disks = conf->raid_disks;
7706 mddev->reshape_position = conf->reshape_progress;
7707 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7708
7709 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7710 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7711 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7712 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7713 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7714 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7715 "reshape");
7716 if (!mddev->sync_thread) {
7717 mddev->recovery = 0;
7718 spin_lock_irq(&conf->device_lock);
7719 write_seqcount_begin(&conf->gen_lock);
7720 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7721 mddev->new_chunk_sectors =
7722 conf->chunk_sectors = conf->prev_chunk_sectors;
7723 mddev->new_layout = conf->algorithm = conf->prev_algo;
7724 rdev_for_each(rdev, mddev)
7725 rdev->new_data_offset = rdev->data_offset;
7726 smp_wmb();
7727 conf->generation --;
7728 conf->reshape_progress = MaxSector;
7729 mddev->reshape_position = MaxSector;
7730 write_seqcount_end(&conf->gen_lock);
7731 spin_unlock_irq(&conf->device_lock);
7732 return -EAGAIN;
7733 }
7734 conf->reshape_checkpoint = jiffies;
7735 md_wakeup_thread(mddev->sync_thread);
7736 md_new_event(mddev);
7737 return 0;
7738 }
7739
7740 /* This is called from the reshape thread and should make any
7741 * changes needed in 'conf'
7742 */
7743 static void end_reshape(struct r5conf *conf)
7744 {
7745
7746 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7747 struct md_rdev *rdev;
7748
7749 spin_lock_irq(&conf->device_lock);
7750 conf->previous_raid_disks = conf->raid_disks;
7751 rdev_for_each(rdev, conf->mddev)
7752 rdev->data_offset = rdev->new_data_offset;
7753 smp_wmb();
7754 conf->reshape_progress = MaxSector;
7755 conf->mddev->reshape_position = MaxSector;
7756 spin_unlock_irq(&conf->device_lock);
7757 wake_up(&conf->wait_for_overlap);
7758
7759 /* read-ahead size must cover two whole stripes, which is
7760 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7761 */
7762 if (conf->mddev->queue) {
7763 int data_disks = conf->raid_disks - conf->max_degraded;
7764 int stripe = data_disks * ((conf->chunk_sectors << 9)
7765 / PAGE_SIZE);
7766 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7767 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7768 }
7769 }
7770 }
7771
7772 /* This is called from the raid5d thread with mddev_lock held.
7773 * It makes config changes to the device.
7774 */
7775 static void raid5_finish_reshape(struct mddev *mddev)
7776 {
7777 struct r5conf *conf = mddev->private;
7778
7779 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7780
7781 if (mddev->delta_disks > 0) {
7782 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7783 if (mddev->queue) {
7784 set_capacity(mddev->gendisk, mddev->array_sectors);
7785 revalidate_disk(mddev->gendisk);
7786 }
7787 } else {
7788 int d;
7789 spin_lock_irq(&conf->device_lock);
7790 mddev->degraded = raid5_calc_degraded(conf);
7791 spin_unlock_irq(&conf->device_lock);
7792 for (d = conf->raid_disks ;
7793 d < conf->raid_disks - mddev->delta_disks;
7794 d++) {
7795 struct md_rdev *rdev = conf->disks[d].rdev;
7796 if (rdev)
7797 clear_bit(In_sync, &rdev->flags);
7798 rdev = conf->disks[d].replacement;
7799 if (rdev)
7800 clear_bit(In_sync, &rdev->flags);
7801 }
7802 }
7803 mddev->layout = conf->algorithm;
7804 mddev->chunk_sectors = conf->chunk_sectors;
7805 mddev->reshape_position = MaxSector;
7806 mddev->delta_disks = 0;
7807 mddev->reshape_backwards = 0;
7808 }
7809 }
7810
7811 static void raid5_quiesce(struct mddev *mddev, int state)
7812 {
7813 struct r5conf *conf = mddev->private;
7814
7815 switch(state) {
7816 case 2: /* resume for a suspend */
7817 wake_up(&conf->wait_for_overlap);
7818 break;
7819
7820 case 1: /* stop all writes */
7821 lock_all_device_hash_locks_irq(conf);
7822 /* '2' tells resync/reshape to pause so that all
7823 * active stripes can drain
7824 */
7825 r5c_flush_cache(conf, INT_MAX);
7826 conf->quiesce = 2;
7827 wait_event_cmd(conf->wait_for_quiescent,
7828 atomic_read(&conf->active_stripes) == 0 &&
7829 atomic_read(&conf->active_aligned_reads) == 0,
7830 unlock_all_device_hash_locks_irq(conf),
7831 lock_all_device_hash_locks_irq(conf));
7832 conf->quiesce = 1;
7833 unlock_all_device_hash_locks_irq(conf);
7834 /* allow reshape to continue */
7835 wake_up(&conf->wait_for_overlap);
7836 break;
7837
7838 case 0: /* re-enable writes */
7839 lock_all_device_hash_locks_irq(conf);
7840 conf->quiesce = 0;
7841 wake_up(&conf->wait_for_quiescent);
7842 wake_up(&conf->wait_for_overlap);
7843 unlock_all_device_hash_locks_irq(conf);
7844 break;
7845 }
7846 r5l_quiesce(conf->log, state);
7847 }
7848
7849 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7850 {
7851 struct r0conf *raid0_conf = mddev->private;
7852 sector_t sectors;
7853
7854 /* for raid0 takeover only one zone is supported */
7855 if (raid0_conf->nr_strip_zones > 1) {
7856 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7857 mdname(mddev));
7858 return ERR_PTR(-EINVAL);
7859 }
7860
7861 sectors = raid0_conf->strip_zone[0].zone_end;
7862 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7863 mddev->dev_sectors = sectors;
7864 mddev->new_level = level;
7865 mddev->new_layout = ALGORITHM_PARITY_N;
7866 mddev->new_chunk_sectors = mddev->chunk_sectors;
7867 mddev->raid_disks += 1;
7868 mddev->delta_disks = 1;
7869 /* make sure it will be not marked as dirty */
7870 mddev->recovery_cp = MaxSector;
7871
7872 return setup_conf(mddev);
7873 }
7874
7875 static void *raid5_takeover_raid1(struct mddev *mddev)
7876 {
7877 int chunksect;
7878 void *ret;
7879
7880 if (mddev->raid_disks != 2 ||
7881 mddev->degraded > 1)
7882 return ERR_PTR(-EINVAL);
7883
7884 /* Should check if there are write-behind devices? */
7885
7886 chunksect = 64*2; /* 64K by default */
7887
7888 /* The array must be an exact multiple of chunksize */
7889 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7890 chunksect >>= 1;
7891
7892 if ((chunksect<<9) < STRIPE_SIZE)
7893 /* array size does not allow a suitable chunk size */
7894 return ERR_PTR(-EINVAL);
7895
7896 mddev->new_level = 5;
7897 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7898 mddev->new_chunk_sectors = chunksect;
7899
7900 ret = setup_conf(mddev);
7901 if (!IS_ERR(ret))
7902 mddev_clear_unsupported_flags(mddev,
7903 UNSUPPORTED_MDDEV_FLAGS);
7904 return ret;
7905 }
7906
7907 static void *raid5_takeover_raid6(struct mddev *mddev)
7908 {
7909 int new_layout;
7910
7911 switch (mddev->layout) {
7912 case ALGORITHM_LEFT_ASYMMETRIC_6:
7913 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7914 break;
7915 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7916 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7917 break;
7918 case ALGORITHM_LEFT_SYMMETRIC_6:
7919 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7920 break;
7921 case ALGORITHM_RIGHT_SYMMETRIC_6:
7922 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7923 break;
7924 case ALGORITHM_PARITY_0_6:
7925 new_layout = ALGORITHM_PARITY_0;
7926 break;
7927 case ALGORITHM_PARITY_N:
7928 new_layout = ALGORITHM_PARITY_N;
7929 break;
7930 default:
7931 return ERR_PTR(-EINVAL);
7932 }
7933 mddev->new_level = 5;
7934 mddev->new_layout = new_layout;
7935 mddev->delta_disks = -1;
7936 mddev->raid_disks -= 1;
7937 return setup_conf(mddev);
7938 }
7939
7940 static int raid5_check_reshape(struct mddev *mddev)
7941 {
7942 /* For a 2-drive array, the layout and chunk size can be changed
7943 * immediately as not restriping is needed.
7944 * For larger arrays we record the new value - after validation
7945 * to be used by a reshape pass.
7946 */
7947 struct r5conf *conf = mddev->private;
7948 int new_chunk = mddev->new_chunk_sectors;
7949
7950 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7951 return -EINVAL;
7952 if (new_chunk > 0) {
7953 if (!is_power_of_2(new_chunk))
7954 return -EINVAL;
7955 if (new_chunk < (PAGE_SIZE>>9))
7956 return -EINVAL;
7957 if (mddev->array_sectors & (new_chunk-1))
7958 /* not factor of array size */
7959 return -EINVAL;
7960 }
7961
7962 /* They look valid */
7963
7964 if (mddev->raid_disks == 2) {
7965 /* can make the change immediately */
7966 if (mddev->new_layout >= 0) {
7967 conf->algorithm = mddev->new_layout;
7968 mddev->layout = mddev->new_layout;
7969 }
7970 if (new_chunk > 0) {
7971 conf->chunk_sectors = new_chunk ;
7972 mddev->chunk_sectors = new_chunk;
7973 }
7974 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7975 md_wakeup_thread(mddev->thread);
7976 }
7977 return check_reshape(mddev);
7978 }
7979
7980 static int raid6_check_reshape(struct mddev *mddev)
7981 {
7982 int new_chunk = mddev->new_chunk_sectors;
7983
7984 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7985 return -EINVAL;
7986 if (new_chunk > 0) {
7987 if (!is_power_of_2(new_chunk))
7988 return -EINVAL;
7989 if (new_chunk < (PAGE_SIZE >> 9))
7990 return -EINVAL;
7991 if (mddev->array_sectors & (new_chunk-1))
7992 /* not factor of array size */
7993 return -EINVAL;
7994 }
7995
7996 /* They look valid */
7997 return check_reshape(mddev);
7998 }
7999
8000 static void *raid5_takeover(struct mddev *mddev)
8001 {
8002 /* raid5 can take over:
8003 * raid0 - if there is only one strip zone - make it a raid4 layout
8004 * raid1 - if there are two drives. We need to know the chunk size
8005 * raid4 - trivial - just use a raid4 layout.
8006 * raid6 - Providing it is a *_6 layout
8007 */
8008 if (mddev->level == 0)
8009 return raid45_takeover_raid0(mddev, 5);
8010 if (mddev->level == 1)
8011 return raid5_takeover_raid1(mddev);
8012 if (mddev->level == 4) {
8013 mddev->new_layout = ALGORITHM_PARITY_N;
8014 mddev->new_level = 5;
8015 return setup_conf(mddev);
8016 }
8017 if (mddev->level == 6)
8018 return raid5_takeover_raid6(mddev);
8019
8020 return ERR_PTR(-EINVAL);
8021 }
8022
8023 static void *raid4_takeover(struct mddev *mddev)
8024 {
8025 /* raid4 can take over:
8026 * raid0 - if there is only one strip zone
8027 * raid5 - if layout is right
8028 */
8029 if (mddev->level == 0)
8030 return raid45_takeover_raid0(mddev, 4);
8031 if (mddev->level == 5 &&
8032 mddev->layout == ALGORITHM_PARITY_N) {
8033 mddev->new_layout = 0;
8034 mddev->new_level = 4;
8035 return setup_conf(mddev);
8036 }
8037 return ERR_PTR(-EINVAL);
8038 }
8039
8040 static struct md_personality raid5_personality;
8041
8042 static void *raid6_takeover(struct mddev *mddev)
8043 {
8044 /* Currently can only take over a raid5. We map the
8045 * personality to an equivalent raid6 personality
8046 * with the Q block at the end.
8047 */
8048 int new_layout;
8049
8050 if (mddev->pers != &raid5_personality)
8051 return ERR_PTR(-EINVAL);
8052 if (mddev->degraded > 1)
8053 return ERR_PTR(-EINVAL);
8054 if (mddev->raid_disks > 253)
8055 return ERR_PTR(-EINVAL);
8056 if (mddev->raid_disks < 3)
8057 return ERR_PTR(-EINVAL);
8058
8059 switch (mddev->layout) {
8060 case ALGORITHM_LEFT_ASYMMETRIC:
8061 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8062 break;
8063 case ALGORITHM_RIGHT_ASYMMETRIC:
8064 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8065 break;
8066 case ALGORITHM_LEFT_SYMMETRIC:
8067 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8068 break;
8069 case ALGORITHM_RIGHT_SYMMETRIC:
8070 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8071 break;
8072 case ALGORITHM_PARITY_0:
8073 new_layout = ALGORITHM_PARITY_0_6;
8074 break;
8075 case ALGORITHM_PARITY_N:
8076 new_layout = ALGORITHM_PARITY_N;
8077 break;
8078 default:
8079 return ERR_PTR(-EINVAL);
8080 }
8081 mddev->new_level = 6;
8082 mddev->new_layout = new_layout;
8083 mddev->delta_disks = 1;
8084 mddev->raid_disks += 1;
8085 return setup_conf(mddev);
8086 }
8087
8088 static struct md_personality raid6_personality =
8089 {
8090 .name = "raid6",
8091 .level = 6,
8092 .owner = THIS_MODULE,
8093 .make_request = raid5_make_request,
8094 .run = raid5_run,
8095 .free = raid5_free,
8096 .status = raid5_status,
8097 .error_handler = raid5_error,
8098 .hot_add_disk = raid5_add_disk,
8099 .hot_remove_disk= raid5_remove_disk,
8100 .spare_active = raid5_spare_active,
8101 .sync_request = raid5_sync_request,
8102 .resize = raid5_resize,
8103 .size = raid5_size,
8104 .check_reshape = raid6_check_reshape,
8105 .start_reshape = raid5_start_reshape,
8106 .finish_reshape = raid5_finish_reshape,
8107 .quiesce = raid5_quiesce,
8108 .takeover = raid6_takeover,
8109 .congested = raid5_congested,
8110 };
8111 static struct md_personality raid5_personality =
8112 {
8113 .name = "raid5",
8114 .level = 5,
8115 .owner = THIS_MODULE,
8116 .make_request = raid5_make_request,
8117 .run = raid5_run,
8118 .free = raid5_free,
8119 .status = raid5_status,
8120 .error_handler = raid5_error,
8121 .hot_add_disk = raid5_add_disk,
8122 .hot_remove_disk= raid5_remove_disk,
8123 .spare_active = raid5_spare_active,
8124 .sync_request = raid5_sync_request,
8125 .resize = raid5_resize,
8126 .size = raid5_size,
8127 .check_reshape = raid5_check_reshape,
8128 .start_reshape = raid5_start_reshape,
8129 .finish_reshape = raid5_finish_reshape,
8130 .quiesce = raid5_quiesce,
8131 .takeover = raid5_takeover,
8132 .congested = raid5_congested,
8133 };
8134
8135 static struct md_personality raid4_personality =
8136 {
8137 .name = "raid4",
8138 .level = 4,
8139 .owner = THIS_MODULE,
8140 .make_request = raid5_make_request,
8141 .run = raid5_run,
8142 .free = raid5_free,
8143 .status = raid5_status,
8144 .error_handler = raid5_error,
8145 .hot_add_disk = raid5_add_disk,
8146 .hot_remove_disk= raid5_remove_disk,
8147 .spare_active = raid5_spare_active,
8148 .sync_request = raid5_sync_request,
8149 .resize = raid5_resize,
8150 .size = raid5_size,
8151 .check_reshape = raid5_check_reshape,
8152 .start_reshape = raid5_start_reshape,
8153 .finish_reshape = raid5_finish_reshape,
8154 .quiesce = raid5_quiesce,
8155 .takeover = raid4_takeover,
8156 .congested = raid5_congested,
8157 };
8158
8159 static int __init raid5_init(void)
8160 {
8161 int ret;
8162
8163 raid5_wq = alloc_workqueue("raid5wq",
8164 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8165 if (!raid5_wq)
8166 return -ENOMEM;
8167
8168 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8169 "md/raid5:prepare",
8170 raid456_cpu_up_prepare,
8171 raid456_cpu_dead);
8172 if (ret) {
8173 destroy_workqueue(raid5_wq);
8174 return ret;
8175 }
8176 register_md_personality(&raid6_personality);
8177 register_md_personality(&raid5_personality);
8178 register_md_personality(&raid4_personality);
8179 return 0;
8180 }
8181
8182 static void raid5_exit(void)
8183 {
8184 unregister_md_personality(&raid6_personality);
8185 unregister_md_personality(&raid5_personality);
8186 unregister_md_personality(&raid4_personality);
8187 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8188 destroy_workqueue(raid5_wq);
8189 }
8190
8191 module_init(raid5_init);
8192 module_exit(raid5_exit);
8193 MODULE_LICENSE("GPL");
8194 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8195 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8196 MODULE_ALIAS("md-raid5");
8197 MODULE_ALIAS("md-raid4");
8198 MODULE_ALIAS("md-level-5");
8199 MODULE_ALIAS("md-level-4");
8200 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8201 MODULE_ALIAS("md-raid6");
8202 MODULE_ALIAS("md-level-6");
8203
8204 /* This used to be two separate modules, they were: */
8205 MODULE_ALIAS("raid5");
8206 MODULE_ALIAS("raid6");