]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/md/raid5.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-zesty-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74 * Stripe cache
75 */
76
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
137 */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 int sectors = bio_sectors(bio);
141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 return bio->bi_next;
143 else
144 return NULL;
145 }
146
147 /*
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150 */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
171 {
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
174
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
212 {
213 int slot = *count;
214
215 if (sh->ddf_layout)
216 (*count)++;
217 if (idx == sh->pd_idx)
218 return syndrome_disks;
219 if (idx == sh->qd_idx)
220 return syndrome_disks + 1;
221 if (!sh->ddf_layout)
222 (*count)++;
223 return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228 struct bio *bi;
229 while ((bi = bio_list_pop(return_bi)) != NULL) {
230 bi->bi_iter.bi_size = 0;
231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 bi, 0);
233 bio_endio(bi);
234 }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241 return sh->check_state || sh->reconstruct_state ||
242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248 struct r5conf *conf = sh->raid_conf;
249 struct r5worker_group *group;
250 int thread_cnt;
251 int i, cpu = sh->cpu;
252
253 if (!cpu_online(cpu)) {
254 cpu = cpumask_any(cpu_online_mask);
255 sh->cpu = cpu;
256 }
257
258 if (list_empty(&sh->lru)) {
259 struct r5worker_group *group;
260 group = conf->worker_groups + cpu_to_group(cpu);
261 list_add_tail(&sh->lru, &group->handle_list);
262 group->stripes_cnt++;
263 sh->group = group;
264 }
265
266 if (conf->worker_cnt_per_group == 0) {
267 md_wakeup_thread(conf->mddev->thread);
268 return;
269 }
270
271 group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273 group->workers[0].working = true;
274 /* at least one worker should run to avoid race */
275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 /* wakeup more workers */
279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 if (group->workers[i].working == false) {
281 group->workers[i].working = true;
282 queue_work_on(sh->cpu, raid5_wq,
283 &group->workers[i].work);
284 thread_cnt--;
285 }
286 }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 struct list_head *temp_inactive_list)
291 {
292 BUG_ON(!list_empty(&sh->lru));
293 BUG_ON(atomic_read(&conf->active_stripes)==0);
294 if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297 list_add_tail(&sh->lru, &conf->delayed_list);
298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299 sh->bm_seq - conf->seq_write > 0)
300 list_add_tail(&sh->lru, &conf->bitmap_list);
301 else {
302 clear_bit(STRIPE_DELAYED, &sh->state);
303 clear_bit(STRIPE_BIT_DELAY, &sh->state);
304 if (conf->worker_cnt_per_group == 0) {
305 list_add_tail(&sh->lru, &conf->handle_list);
306 } else {
307 raid5_wakeup_stripe_thread(sh);
308 return;
309 }
310 }
311 md_wakeup_thread(conf->mddev->thread);
312 } else {
313 BUG_ON(stripe_operations_active(sh));
314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 if (atomic_dec_return(&conf->preread_active_stripes)
316 < IO_THRESHOLD)
317 md_wakeup_thread(conf->mddev->thread);
318 atomic_dec(&conf->active_stripes);
319 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 list_add_tail(&sh->lru, temp_inactive_list);
321 }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 struct list_head *temp_inactive_list)
326 {
327 if (atomic_dec_and_test(&sh->count))
328 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333 *
334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335 * given time. Adding stripes only takes device lock, while deleting stripes
336 * only takes hash lock.
337 */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339 struct list_head *temp_inactive_list,
340 int hash)
341 {
342 int size;
343 unsigned long do_wakeup = 0;
344 int i = 0;
345 unsigned long flags;
346
347 if (hash == NR_STRIPE_HASH_LOCKS) {
348 size = NR_STRIPE_HASH_LOCKS;
349 hash = NR_STRIPE_HASH_LOCKS - 1;
350 } else
351 size = 1;
352 while (size) {
353 struct list_head *list = &temp_inactive_list[size - 1];
354
355 /*
356 * We don't hold any lock here yet, raid5_get_active_stripe() might
357 * remove stripes from the list
358 */
359 if (!list_empty_careful(list)) {
360 spin_lock_irqsave(conf->hash_locks + hash, flags);
361 if (list_empty(conf->inactive_list + hash) &&
362 !list_empty(list))
363 atomic_dec(&conf->empty_inactive_list_nr);
364 list_splice_tail_init(list, conf->inactive_list + hash);
365 do_wakeup |= 1 << hash;
366 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367 }
368 size--;
369 hash--;
370 }
371
372 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373 if (do_wakeup & (1 << i))
374 wake_up(&conf->wait_for_stripe[i]);
375 }
376
377 if (do_wakeup) {
378 if (atomic_read(&conf->active_stripes) == 0)
379 wake_up(&conf->wait_for_quiescent);
380 if (conf->retry_read_aligned)
381 md_wakeup_thread(conf->mddev->thread);
382 }
383 }
384
385 /* should hold conf->device_lock already */
386 static int release_stripe_list(struct r5conf *conf,
387 struct list_head *temp_inactive_list)
388 {
389 struct stripe_head *sh;
390 int count = 0;
391 struct llist_node *head;
392
393 head = llist_del_all(&conf->released_stripes);
394 head = llist_reverse_order(head);
395 while (head) {
396 int hash;
397
398 sh = llist_entry(head, struct stripe_head, release_list);
399 head = llist_next(head);
400 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401 smp_mb();
402 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403 /*
404 * Don't worry the bit is set here, because if the bit is set
405 * again, the count is always > 1. This is true for
406 * STRIPE_ON_UNPLUG_LIST bit too.
407 */
408 hash = sh->hash_lock_index;
409 __release_stripe(conf, sh, &temp_inactive_list[hash]);
410 count++;
411 }
412
413 return count;
414 }
415
416 void raid5_release_stripe(struct stripe_head *sh)
417 {
418 struct r5conf *conf = sh->raid_conf;
419 unsigned long flags;
420 struct list_head list;
421 int hash;
422 bool wakeup;
423
424 /* Avoid release_list until the last reference.
425 */
426 if (atomic_add_unless(&sh->count, -1, 1))
427 return;
428
429 if (unlikely(!conf->mddev->thread) ||
430 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
431 goto slow_path;
432 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433 if (wakeup)
434 md_wakeup_thread(conf->mddev->thread);
435 return;
436 slow_path:
437 local_irq_save(flags);
438 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
440 INIT_LIST_HEAD(&list);
441 hash = sh->hash_lock_index;
442 do_release_stripe(conf, sh, &list);
443 spin_unlock(&conf->device_lock);
444 release_inactive_stripe_list(conf, &list, hash);
445 }
446 local_irq_restore(flags);
447 }
448
449 static inline void remove_hash(struct stripe_head *sh)
450 {
451 pr_debug("remove_hash(), stripe %llu\n",
452 (unsigned long long)sh->sector);
453
454 hlist_del_init(&sh->hash);
455 }
456
457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
458 {
459 struct hlist_head *hp = stripe_hash(conf, sh->sector);
460
461 pr_debug("insert_hash(), stripe %llu\n",
462 (unsigned long long)sh->sector);
463
464 hlist_add_head(&sh->hash, hp);
465 }
466
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 {
470 struct stripe_head *sh = NULL;
471 struct list_head *first;
472
473 if (list_empty(conf->inactive_list + hash))
474 goto out;
475 first = (conf->inactive_list + hash)->next;
476 sh = list_entry(first, struct stripe_head, lru);
477 list_del_init(first);
478 remove_hash(sh);
479 atomic_inc(&conf->active_stripes);
480 BUG_ON(hash != sh->hash_lock_index);
481 if (list_empty(conf->inactive_list + hash))
482 atomic_inc(&conf->empty_inactive_list_nr);
483 out:
484 return sh;
485 }
486
487 static void shrink_buffers(struct stripe_head *sh)
488 {
489 struct page *p;
490 int i;
491 int num = sh->raid_conf->pool_size;
492
493 for (i = 0; i < num ; i++) {
494 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
495 p = sh->dev[i].page;
496 if (!p)
497 continue;
498 sh->dev[i].page = NULL;
499 put_page(p);
500 }
501 }
502
503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
504 {
505 int i;
506 int num = sh->raid_conf->pool_size;
507
508 for (i = 0; i < num; i++) {
509 struct page *page;
510
511 if (!(page = alloc_page(gfp))) {
512 return 1;
513 }
514 sh->dev[i].page = page;
515 sh->dev[i].orig_page = page;
516 }
517 return 0;
518 }
519
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522 struct stripe_head *sh);
523
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526 struct r5conf *conf = sh->raid_conf;
527 int i, seq;
528
529 BUG_ON(atomic_read(&sh->count) != 0);
530 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531 BUG_ON(stripe_operations_active(sh));
532 BUG_ON(sh->batch_head);
533
534 pr_debug("init_stripe called, stripe %llu\n",
535 (unsigned long long)sector);
536 retry:
537 seq = read_seqcount_begin(&conf->gen_lock);
538 sh->generation = conf->generation - previous;
539 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
540 sh->sector = sector;
541 stripe_set_idx(sector, conf, previous, sh);
542 sh->state = 0;
543
544 for (i = sh->disks; i--; ) {
545 struct r5dev *dev = &sh->dev[i];
546
547 if (dev->toread || dev->read || dev->towrite || dev->written ||
548 test_bit(R5_LOCKED, &dev->flags)) {
549 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
550 (unsigned long long)sh->sector, i, dev->toread,
551 dev->read, dev->towrite, dev->written,
552 test_bit(R5_LOCKED, &dev->flags));
553 WARN_ON(1);
554 }
555 dev->flags = 0;
556 raid5_build_block(sh, i, previous);
557 }
558 if (read_seqcount_retry(&conf->gen_lock, seq))
559 goto retry;
560 sh->overwrite_disks = 0;
561 insert_hash(conf, sh);
562 sh->cpu = smp_processor_id();
563 set_bit(STRIPE_BATCH_READY, &sh->state);
564 }
565
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567 short generation)
568 {
569 struct stripe_head *sh;
570
571 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573 if (sh->sector == sector && sh->generation == generation)
574 return sh;
575 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576 return NULL;
577 }
578
579 /*
580 * Need to check if array has failed when deciding whether to:
581 * - start an array
582 * - remove non-faulty devices
583 * - add a spare
584 * - allow a reshape
585 * This determination is simple when no reshape is happening.
586 * However if there is a reshape, we need to carefully check
587 * both the before and after sections.
588 * This is because some failed devices may only affect one
589 * of the two sections, and some non-in_sync devices may
590 * be insync in the section most affected by failed devices.
591 */
592 static int calc_degraded(struct r5conf *conf)
593 {
594 int degraded, degraded2;
595 int i;
596
597 rcu_read_lock();
598 degraded = 0;
599 for (i = 0; i < conf->previous_raid_disks; i++) {
600 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601 if (rdev && test_bit(Faulty, &rdev->flags))
602 rdev = rcu_dereference(conf->disks[i].replacement);
603 if (!rdev || test_bit(Faulty, &rdev->flags))
604 degraded++;
605 else if (test_bit(In_sync, &rdev->flags))
606 ;
607 else
608 /* not in-sync or faulty.
609 * If the reshape increases the number of devices,
610 * this is being recovered by the reshape, so
611 * this 'previous' section is not in_sync.
612 * If the number of devices is being reduced however,
613 * the device can only be part of the array if
614 * we are reverting a reshape, so this section will
615 * be in-sync.
616 */
617 if (conf->raid_disks >= conf->previous_raid_disks)
618 degraded++;
619 }
620 rcu_read_unlock();
621 if (conf->raid_disks == conf->previous_raid_disks)
622 return degraded;
623 rcu_read_lock();
624 degraded2 = 0;
625 for (i = 0; i < conf->raid_disks; i++) {
626 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627 if (rdev && test_bit(Faulty, &rdev->flags))
628 rdev = rcu_dereference(conf->disks[i].replacement);
629 if (!rdev || test_bit(Faulty, &rdev->flags))
630 degraded2++;
631 else if (test_bit(In_sync, &rdev->flags))
632 ;
633 else
634 /* not in-sync or faulty.
635 * If reshape increases the number of devices, this
636 * section has already been recovered, else it
637 * almost certainly hasn't.
638 */
639 if (conf->raid_disks <= conf->previous_raid_disks)
640 degraded2++;
641 }
642 rcu_read_unlock();
643 if (degraded2 > degraded)
644 return degraded2;
645 return degraded;
646 }
647
648 static int has_failed(struct r5conf *conf)
649 {
650 int degraded;
651
652 if (conf->mddev->reshape_position == MaxSector)
653 return conf->mddev->degraded > conf->max_degraded;
654
655 degraded = calc_degraded(conf);
656 if (degraded > conf->max_degraded)
657 return 1;
658 return 0;
659 }
660
661 struct stripe_head *
662 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
663 int previous, int noblock, int noquiesce)
664 {
665 struct stripe_head *sh;
666 int hash = stripe_hash_locks_hash(sector);
667
668 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669
670 spin_lock_irq(conf->hash_locks + hash);
671
672 do {
673 wait_event_lock_irq(conf->wait_for_quiescent,
674 conf->quiesce == 0 || noquiesce,
675 *(conf->hash_locks + hash));
676 sh = __find_stripe(conf, sector, conf->generation - previous);
677 if (!sh) {
678 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
679 sh = get_free_stripe(conf, hash);
680 if (!sh && !test_bit(R5_DID_ALLOC,
681 &conf->cache_state))
682 set_bit(R5_ALLOC_MORE,
683 &conf->cache_state);
684 }
685 if (noblock && sh == NULL)
686 break;
687 if (!sh) {
688 set_bit(R5_INACTIVE_BLOCKED,
689 &conf->cache_state);
690 wait_event_exclusive_cmd(
691 conf->wait_for_stripe[hash],
692 !list_empty(conf->inactive_list + hash) &&
693 (atomic_read(&conf->active_stripes)
694 < (conf->max_nr_stripes * 3 / 4)
695 || !test_bit(R5_INACTIVE_BLOCKED,
696 &conf->cache_state)),
697 spin_unlock_irq(conf->hash_locks + hash),
698 spin_lock_irq(conf->hash_locks + hash));
699 clear_bit(R5_INACTIVE_BLOCKED,
700 &conf->cache_state);
701 } else {
702 init_stripe(sh, sector, previous);
703 atomic_inc(&sh->count);
704 }
705 } else if (!atomic_inc_not_zero(&sh->count)) {
706 spin_lock(&conf->device_lock);
707 if (!atomic_read(&sh->count)) {
708 if (!test_bit(STRIPE_HANDLE, &sh->state))
709 atomic_inc(&conf->active_stripes);
710 BUG_ON(list_empty(&sh->lru) &&
711 !test_bit(STRIPE_EXPANDING, &sh->state));
712 list_del_init(&sh->lru);
713 if (sh->group) {
714 sh->group->stripes_cnt--;
715 sh->group = NULL;
716 }
717 }
718 atomic_inc(&sh->count);
719 spin_unlock(&conf->device_lock);
720 }
721 } while (sh == NULL);
722
723 if (!list_empty(conf->inactive_list + hash))
724 wake_up(&conf->wait_for_stripe[hash]);
725
726 spin_unlock_irq(conf->hash_locks + hash);
727 return sh;
728 }
729
730 static bool is_full_stripe_write(struct stripe_head *sh)
731 {
732 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734 }
735
736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737 {
738 local_irq_disable();
739 if (sh1 > sh2) {
740 spin_lock(&sh2->stripe_lock);
741 spin_lock_nested(&sh1->stripe_lock, 1);
742 } else {
743 spin_lock(&sh1->stripe_lock);
744 spin_lock_nested(&sh2->stripe_lock, 1);
745 }
746 }
747
748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749 {
750 spin_unlock(&sh1->stripe_lock);
751 spin_unlock(&sh2->stripe_lock);
752 local_irq_enable();
753 }
754
755 /* Only freshly new full stripe normal write stripe can be added to a batch list */
756 static bool stripe_can_batch(struct stripe_head *sh)
757 {
758 struct r5conf *conf = sh->raid_conf;
759
760 if (conf->log)
761 return false;
762 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
763 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
764 is_full_stripe_write(sh);
765 }
766
767 /* we only do back search */
768 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769 {
770 struct stripe_head *head;
771 sector_t head_sector, tmp_sec;
772 int hash;
773 int dd_idx;
774
775 if (!stripe_can_batch(sh))
776 return;
777 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
778 tmp_sec = sh->sector;
779 if (!sector_div(tmp_sec, conf->chunk_sectors))
780 return;
781 head_sector = sh->sector - STRIPE_SECTORS;
782
783 hash = stripe_hash_locks_hash(head_sector);
784 spin_lock_irq(conf->hash_locks + hash);
785 head = __find_stripe(conf, head_sector, conf->generation);
786 if (head && !atomic_inc_not_zero(&head->count)) {
787 spin_lock(&conf->device_lock);
788 if (!atomic_read(&head->count)) {
789 if (!test_bit(STRIPE_HANDLE, &head->state))
790 atomic_inc(&conf->active_stripes);
791 BUG_ON(list_empty(&head->lru) &&
792 !test_bit(STRIPE_EXPANDING, &head->state));
793 list_del_init(&head->lru);
794 if (head->group) {
795 head->group->stripes_cnt--;
796 head->group = NULL;
797 }
798 }
799 atomic_inc(&head->count);
800 spin_unlock(&conf->device_lock);
801 }
802 spin_unlock_irq(conf->hash_locks + hash);
803
804 if (!head)
805 return;
806 if (!stripe_can_batch(head))
807 goto out;
808
809 lock_two_stripes(head, sh);
810 /* clear_batch_ready clear the flag */
811 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
812 goto unlock_out;
813
814 if (sh->batch_head)
815 goto unlock_out;
816
817 dd_idx = 0;
818 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
819 dd_idx++;
820 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
821 goto unlock_out;
822
823 if (head->batch_head) {
824 spin_lock(&head->batch_head->batch_lock);
825 /* This batch list is already running */
826 if (!stripe_can_batch(head)) {
827 spin_unlock(&head->batch_head->batch_lock);
828 goto unlock_out;
829 }
830
831 /*
832 * at this point, head's BATCH_READY could be cleared, but we
833 * can still add the stripe to batch list
834 */
835 list_add(&sh->batch_list, &head->batch_list);
836 spin_unlock(&head->batch_head->batch_lock);
837
838 sh->batch_head = head->batch_head;
839 } else {
840 head->batch_head = head;
841 sh->batch_head = head->batch_head;
842 spin_lock(&head->batch_lock);
843 list_add_tail(&sh->batch_list, &head->batch_list);
844 spin_unlock(&head->batch_lock);
845 }
846
847 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
848 if (atomic_dec_return(&conf->preread_active_stripes)
849 < IO_THRESHOLD)
850 md_wakeup_thread(conf->mddev->thread);
851
852 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
853 int seq = sh->bm_seq;
854 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
855 sh->batch_head->bm_seq > seq)
856 seq = sh->batch_head->bm_seq;
857 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
858 sh->batch_head->bm_seq = seq;
859 }
860
861 atomic_inc(&sh->count);
862 unlock_out:
863 unlock_two_stripes(head, sh);
864 out:
865 raid5_release_stripe(head);
866 }
867
868 /* Determine if 'data_offset' or 'new_data_offset' should be used
869 * in this stripe_head.
870 */
871 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
872 {
873 sector_t progress = conf->reshape_progress;
874 /* Need a memory barrier to make sure we see the value
875 * of conf->generation, or ->data_offset that was set before
876 * reshape_progress was updated.
877 */
878 smp_rmb();
879 if (progress == MaxSector)
880 return 0;
881 if (sh->generation == conf->generation - 1)
882 return 0;
883 /* We are in a reshape, and this is a new-generation stripe,
884 * so use new_data_offset.
885 */
886 return 1;
887 }
888
889 static void
890 raid5_end_read_request(struct bio *bi);
891 static void
892 raid5_end_write_request(struct bio *bi);
893
894 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
895 {
896 struct r5conf *conf = sh->raid_conf;
897 int i, disks = sh->disks;
898 struct stripe_head *head_sh = sh;
899
900 might_sleep();
901
902 if (r5l_write_stripe(conf->log, sh) == 0)
903 return;
904 for (i = disks; i--; ) {
905 int rw;
906 int replace_only = 0;
907 struct bio *bi, *rbi;
908 struct md_rdev *rdev, *rrdev = NULL;
909
910 sh = head_sh;
911 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
912 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
913 rw = WRITE_FUA;
914 else
915 rw = WRITE;
916 if (test_bit(R5_Discard, &sh->dev[i].flags))
917 rw |= REQ_DISCARD;
918 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
919 rw = READ;
920 else if (test_and_clear_bit(R5_WantReplace,
921 &sh->dev[i].flags)) {
922 rw = WRITE;
923 replace_only = 1;
924 } else
925 continue;
926 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
927 rw |= REQ_SYNC;
928
929 again:
930 bi = &sh->dev[i].req;
931 rbi = &sh->dev[i].rreq; /* For writing to replacement */
932
933 rcu_read_lock();
934 rrdev = rcu_dereference(conf->disks[i].replacement);
935 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
936 rdev = rcu_dereference(conf->disks[i].rdev);
937 if (!rdev) {
938 rdev = rrdev;
939 rrdev = NULL;
940 }
941 if (rw & WRITE) {
942 if (replace_only)
943 rdev = NULL;
944 if (rdev == rrdev)
945 /* We raced and saw duplicates */
946 rrdev = NULL;
947 } else {
948 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
949 rdev = rrdev;
950 rrdev = NULL;
951 }
952
953 if (rdev && test_bit(Faulty, &rdev->flags))
954 rdev = NULL;
955 if (rdev)
956 atomic_inc(&rdev->nr_pending);
957 if (rrdev && test_bit(Faulty, &rrdev->flags))
958 rrdev = NULL;
959 if (rrdev)
960 atomic_inc(&rrdev->nr_pending);
961 rcu_read_unlock();
962
963 /* We have already checked bad blocks for reads. Now
964 * need to check for writes. We never accept write errors
965 * on the replacement, so we don't to check rrdev.
966 */
967 while ((rw & WRITE) && rdev &&
968 test_bit(WriteErrorSeen, &rdev->flags)) {
969 sector_t first_bad;
970 int bad_sectors;
971 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
972 &first_bad, &bad_sectors);
973 if (!bad)
974 break;
975
976 if (bad < 0) {
977 set_bit(BlockedBadBlocks, &rdev->flags);
978 if (!conf->mddev->external &&
979 conf->mddev->flags) {
980 /* It is very unlikely, but we might
981 * still need to write out the
982 * bad block log - better give it
983 * a chance*/
984 md_check_recovery(conf->mddev);
985 }
986 /*
987 * Because md_wait_for_blocked_rdev
988 * will dec nr_pending, we must
989 * increment it first.
990 */
991 atomic_inc(&rdev->nr_pending);
992 md_wait_for_blocked_rdev(rdev, conf->mddev);
993 } else {
994 /* Acknowledged bad block - skip the write */
995 rdev_dec_pending(rdev, conf->mddev);
996 rdev = NULL;
997 }
998 }
999
1000 if (rdev) {
1001 if (s->syncing || s->expanding || s->expanded
1002 || s->replacing)
1003 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1004
1005 set_bit(STRIPE_IO_STARTED, &sh->state);
1006
1007 bio_reset(bi);
1008 bi->bi_bdev = rdev->bdev;
1009 bi->bi_rw = rw;
1010 bi->bi_end_io = (rw & WRITE)
1011 ? raid5_end_write_request
1012 : raid5_end_read_request;
1013 bi->bi_private = sh;
1014
1015 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1016 __func__, (unsigned long long)sh->sector,
1017 bi->bi_rw, i);
1018 atomic_inc(&sh->count);
1019 if (sh != head_sh)
1020 atomic_inc(&head_sh->count);
1021 if (use_new_offset(conf, sh))
1022 bi->bi_iter.bi_sector = (sh->sector
1023 + rdev->new_data_offset);
1024 else
1025 bi->bi_iter.bi_sector = (sh->sector
1026 + rdev->data_offset);
1027 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1028 bi->bi_rw |= REQ_NOMERGE;
1029
1030 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1031 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1032 sh->dev[i].vec.bv_page = sh->dev[i].page;
1033 bi->bi_vcnt = 1;
1034 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1035 bi->bi_io_vec[0].bv_offset = 0;
1036 bi->bi_iter.bi_size = STRIPE_SIZE;
1037 /*
1038 * If this is discard request, set bi_vcnt 0. We don't
1039 * want to confuse SCSI because SCSI will replace payload
1040 */
1041 if (rw & REQ_DISCARD)
1042 bi->bi_vcnt = 0;
1043 if (rrdev)
1044 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1045
1046 if (conf->mddev->gendisk)
1047 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1048 bi, disk_devt(conf->mddev->gendisk),
1049 sh->dev[i].sector);
1050 generic_make_request(bi);
1051 }
1052 if (rrdev) {
1053 if (s->syncing || s->expanding || s->expanded
1054 || s->replacing)
1055 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1056
1057 set_bit(STRIPE_IO_STARTED, &sh->state);
1058
1059 bio_reset(rbi);
1060 rbi->bi_bdev = rrdev->bdev;
1061 rbi->bi_rw = rw;
1062 BUG_ON(!(rw & WRITE));
1063 rbi->bi_end_io = raid5_end_write_request;
1064 rbi->bi_private = sh;
1065
1066 pr_debug("%s: for %llu schedule op %ld on "
1067 "replacement disc %d\n",
1068 __func__, (unsigned long long)sh->sector,
1069 rbi->bi_rw, i);
1070 atomic_inc(&sh->count);
1071 if (sh != head_sh)
1072 atomic_inc(&head_sh->count);
1073 if (use_new_offset(conf, sh))
1074 rbi->bi_iter.bi_sector = (sh->sector
1075 + rrdev->new_data_offset);
1076 else
1077 rbi->bi_iter.bi_sector = (sh->sector
1078 + rrdev->data_offset);
1079 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1080 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1081 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1082 rbi->bi_vcnt = 1;
1083 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1084 rbi->bi_io_vec[0].bv_offset = 0;
1085 rbi->bi_iter.bi_size = STRIPE_SIZE;
1086 /*
1087 * If this is discard request, set bi_vcnt 0. We don't
1088 * want to confuse SCSI because SCSI will replace payload
1089 */
1090 if (rw & REQ_DISCARD)
1091 rbi->bi_vcnt = 0;
1092 if (conf->mddev->gendisk)
1093 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1094 rbi, disk_devt(conf->mddev->gendisk),
1095 sh->dev[i].sector);
1096 generic_make_request(rbi);
1097 }
1098 if (!rdev && !rrdev) {
1099 if (rw & WRITE)
1100 set_bit(STRIPE_DEGRADED, &sh->state);
1101 pr_debug("skip op %ld on disc %d for sector %llu\n",
1102 bi->bi_rw, i, (unsigned long long)sh->sector);
1103 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1104 set_bit(STRIPE_HANDLE, &sh->state);
1105 }
1106
1107 if (!head_sh->batch_head)
1108 continue;
1109 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1110 batch_list);
1111 if (sh != head_sh)
1112 goto again;
1113 }
1114 }
1115
1116 static struct dma_async_tx_descriptor *
1117 async_copy_data(int frombio, struct bio *bio, struct page **page,
1118 sector_t sector, struct dma_async_tx_descriptor *tx,
1119 struct stripe_head *sh)
1120 {
1121 struct bio_vec bvl;
1122 struct bvec_iter iter;
1123 struct page *bio_page;
1124 int page_offset;
1125 struct async_submit_ctl submit;
1126 enum async_tx_flags flags = 0;
1127
1128 if (bio->bi_iter.bi_sector >= sector)
1129 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1130 else
1131 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1132
1133 if (frombio)
1134 flags |= ASYNC_TX_FENCE;
1135 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1136
1137 bio_for_each_segment(bvl, bio, iter) {
1138 int len = bvl.bv_len;
1139 int clen;
1140 int b_offset = 0;
1141
1142 if (page_offset < 0) {
1143 b_offset = -page_offset;
1144 page_offset += b_offset;
1145 len -= b_offset;
1146 }
1147
1148 if (len > 0 && page_offset + len > STRIPE_SIZE)
1149 clen = STRIPE_SIZE - page_offset;
1150 else
1151 clen = len;
1152
1153 if (clen > 0) {
1154 b_offset += bvl.bv_offset;
1155 bio_page = bvl.bv_page;
1156 if (frombio) {
1157 if (sh->raid_conf->skip_copy &&
1158 b_offset == 0 && page_offset == 0 &&
1159 clen == STRIPE_SIZE)
1160 *page = bio_page;
1161 else
1162 tx = async_memcpy(*page, bio_page, page_offset,
1163 b_offset, clen, &submit);
1164 } else
1165 tx = async_memcpy(bio_page, *page, b_offset,
1166 page_offset, clen, &submit);
1167 }
1168 /* chain the operations */
1169 submit.depend_tx = tx;
1170
1171 if (clen < len) /* hit end of page */
1172 break;
1173 page_offset += len;
1174 }
1175
1176 return tx;
1177 }
1178
1179 static void ops_complete_biofill(void *stripe_head_ref)
1180 {
1181 struct stripe_head *sh = stripe_head_ref;
1182 struct bio_list return_bi = BIO_EMPTY_LIST;
1183 int i;
1184
1185 pr_debug("%s: stripe %llu\n", __func__,
1186 (unsigned long long)sh->sector);
1187
1188 /* clear completed biofills */
1189 for (i = sh->disks; i--; ) {
1190 struct r5dev *dev = &sh->dev[i];
1191
1192 /* acknowledge completion of a biofill operation */
1193 /* and check if we need to reply to a read request,
1194 * new R5_Wantfill requests are held off until
1195 * !STRIPE_BIOFILL_RUN
1196 */
1197 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1198 struct bio *rbi, *rbi2;
1199
1200 BUG_ON(!dev->read);
1201 rbi = dev->read;
1202 dev->read = NULL;
1203 while (rbi && rbi->bi_iter.bi_sector <
1204 dev->sector + STRIPE_SECTORS) {
1205 rbi2 = r5_next_bio(rbi, dev->sector);
1206 if (!raid5_dec_bi_active_stripes(rbi))
1207 bio_list_add(&return_bi, rbi);
1208 rbi = rbi2;
1209 }
1210 }
1211 }
1212 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1213
1214 return_io(&return_bi);
1215
1216 set_bit(STRIPE_HANDLE, &sh->state);
1217 raid5_release_stripe(sh);
1218 }
1219
1220 static void ops_run_biofill(struct stripe_head *sh)
1221 {
1222 struct dma_async_tx_descriptor *tx = NULL;
1223 struct async_submit_ctl submit;
1224 int i;
1225
1226 BUG_ON(sh->batch_head);
1227 pr_debug("%s: stripe %llu\n", __func__,
1228 (unsigned long long)sh->sector);
1229
1230 for (i = sh->disks; i--; ) {
1231 struct r5dev *dev = &sh->dev[i];
1232 if (test_bit(R5_Wantfill, &dev->flags)) {
1233 struct bio *rbi;
1234 spin_lock_irq(&sh->stripe_lock);
1235 dev->read = rbi = dev->toread;
1236 dev->toread = NULL;
1237 spin_unlock_irq(&sh->stripe_lock);
1238 while (rbi && rbi->bi_iter.bi_sector <
1239 dev->sector + STRIPE_SECTORS) {
1240 tx = async_copy_data(0, rbi, &dev->page,
1241 dev->sector, tx, sh);
1242 rbi = r5_next_bio(rbi, dev->sector);
1243 }
1244 }
1245 }
1246
1247 atomic_inc(&sh->count);
1248 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1249 async_trigger_callback(&submit);
1250 }
1251
1252 static void mark_target_uptodate(struct stripe_head *sh, int target)
1253 {
1254 struct r5dev *tgt;
1255
1256 if (target < 0)
1257 return;
1258
1259 tgt = &sh->dev[target];
1260 set_bit(R5_UPTODATE, &tgt->flags);
1261 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1262 clear_bit(R5_Wantcompute, &tgt->flags);
1263 }
1264
1265 static void ops_complete_compute(void *stripe_head_ref)
1266 {
1267 struct stripe_head *sh = stripe_head_ref;
1268
1269 pr_debug("%s: stripe %llu\n", __func__,
1270 (unsigned long long)sh->sector);
1271
1272 /* mark the computed target(s) as uptodate */
1273 mark_target_uptodate(sh, sh->ops.target);
1274 mark_target_uptodate(sh, sh->ops.target2);
1275
1276 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1277 if (sh->check_state == check_state_compute_run)
1278 sh->check_state = check_state_compute_result;
1279 set_bit(STRIPE_HANDLE, &sh->state);
1280 raid5_release_stripe(sh);
1281 }
1282
1283 /* return a pointer to the address conversion region of the scribble buffer */
1284 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1285 struct raid5_percpu *percpu, int i)
1286 {
1287 void *addr;
1288
1289 addr = flex_array_get(percpu->scribble, i);
1290 return addr + sizeof(struct page *) * (sh->disks + 2);
1291 }
1292
1293 /* return a pointer to the address conversion region of the scribble buffer */
1294 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1295 {
1296 void *addr;
1297
1298 addr = flex_array_get(percpu->scribble, i);
1299 return addr;
1300 }
1301
1302 static struct dma_async_tx_descriptor *
1303 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1304 {
1305 int disks = sh->disks;
1306 struct page **xor_srcs = to_addr_page(percpu, 0);
1307 int target = sh->ops.target;
1308 struct r5dev *tgt = &sh->dev[target];
1309 struct page *xor_dest = tgt->page;
1310 int count = 0;
1311 struct dma_async_tx_descriptor *tx;
1312 struct async_submit_ctl submit;
1313 int i;
1314
1315 BUG_ON(sh->batch_head);
1316
1317 pr_debug("%s: stripe %llu block: %d\n",
1318 __func__, (unsigned long long)sh->sector, target);
1319 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1320
1321 for (i = disks; i--; )
1322 if (i != target)
1323 xor_srcs[count++] = sh->dev[i].page;
1324
1325 atomic_inc(&sh->count);
1326
1327 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1328 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1329 if (unlikely(count == 1))
1330 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1331 else
1332 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1333
1334 return tx;
1335 }
1336
1337 /* set_syndrome_sources - populate source buffers for gen_syndrome
1338 * @srcs - (struct page *) array of size sh->disks
1339 * @sh - stripe_head to parse
1340 *
1341 * Populates srcs in proper layout order for the stripe and returns the
1342 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1343 * destination buffer is recorded in srcs[count] and the Q destination
1344 * is recorded in srcs[count+1]].
1345 */
1346 static int set_syndrome_sources(struct page **srcs,
1347 struct stripe_head *sh,
1348 int srctype)
1349 {
1350 int disks = sh->disks;
1351 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1352 int d0_idx = raid6_d0(sh);
1353 int count;
1354 int i;
1355
1356 for (i = 0; i < disks; i++)
1357 srcs[i] = NULL;
1358
1359 count = 0;
1360 i = d0_idx;
1361 do {
1362 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1363 struct r5dev *dev = &sh->dev[i];
1364
1365 if (i == sh->qd_idx || i == sh->pd_idx ||
1366 (srctype == SYNDROME_SRC_ALL) ||
1367 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1368 test_bit(R5_Wantdrain, &dev->flags)) ||
1369 (srctype == SYNDROME_SRC_WRITTEN &&
1370 dev->written))
1371 srcs[slot] = sh->dev[i].page;
1372 i = raid6_next_disk(i, disks);
1373 } while (i != d0_idx);
1374
1375 return syndrome_disks;
1376 }
1377
1378 static struct dma_async_tx_descriptor *
1379 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1380 {
1381 int disks = sh->disks;
1382 struct page **blocks = to_addr_page(percpu, 0);
1383 int target;
1384 int qd_idx = sh->qd_idx;
1385 struct dma_async_tx_descriptor *tx;
1386 struct async_submit_ctl submit;
1387 struct r5dev *tgt;
1388 struct page *dest;
1389 int i;
1390 int count;
1391
1392 BUG_ON(sh->batch_head);
1393 if (sh->ops.target < 0)
1394 target = sh->ops.target2;
1395 else if (sh->ops.target2 < 0)
1396 target = sh->ops.target;
1397 else
1398 /* we should only have one valid target */
1399 BUG();
1400 BUG_ON(target < 0);
1401 pr_debug("%s: stripe %llu block: %d\n",
1402 __func__, (unsigned long long)sh->sector, target);
1403
1404 tgt = &sh->dev[target];
1405 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1406 dest = tgt->page;
1407
1408 atomic_inc(&sh->count);
1409
1410 if (target == qd_idx) {
1411 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1412 blocks[count] = NULL; /* regenerating p is not necessary */
1413 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1414 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1415 ops_complete_compute, sh,
1416 to_addr_conv(sh, percpu, 0));
1417 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1418 } else {
1419 /* Compute any data- or p-drive using XOR */
1420 count = 0;
1421 for (i = disks; i-- ; ) {
1422 if (i == target || i == qd_idx)
1423 continue;
1424 blocks[count++] = sh->dev[i].page;
1425 }
1426
1427 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1428 NULL, ops_complete_compute, sh,
1429 to_addr_conv(sh, percpu, 0));
1430 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1431 }
1432
1433 return tx;
1434 }
1435
1436 static struct dma_async_tx_descriptor *
1437 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1438 {
1439 int i, count, disks = sh->disks;
1440 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1441 int d0_idx = raid6_d0(sh);
1442 int faila = -1, failb = -1;
1443 int target = sh->ops.target;
1444 int target2 = sh->ops.target2;
1445 struct r5dev *tgt = &sh->dev[target];
1446 struct r5dev *tgt2 = &sh->dev[target2];
1447 struct dma_async_tx_descriptor *tx;
1448 struct page **blocks = to_addr_page(percpu, 0);
1449 struct async_submit_ctl submit;
1450
1451 BUG_ON(sh->batch_head);
1452 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1453 __func__, (unsigned long long)sh->sector, target, target2);
1454 BUG_ON(target < 0 || target2 < 0);
1455 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1456 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1457
1458 /* we need to open-code set_syndrome_sources to handle the
1459 * slot number conversion for 'faila' and 'failb'
1460 */
1461 for (i = 0; i < disks ; i++)
1462 blocks[i] = NULL;
1463 count = 0;
1464 i = d0_idx;
1465 do {
1466 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1467
1468 blocks[slot] = sh->dev[i].page;
1469
1470 if (i == target)
1471 faila = slot;
1472 if (i == target2)
1473 failb = slot;
1474 i = raid6_next_disk(i, disks);
1475 } while (i != d0_idx);
1476
1477 BUG_ON(faila == failb);
1478 if (failb < faila)
1479 swap(faila, failb);
1480 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1481 __func__, (unsigned long long)sh->sector, faila, failb);
1482
1483 atomic_inc(&sh->count);
1484
1485 if (failb == syndrome_disks+1) {
1486 /* Q disk is one of the missing disks */
1487 if (faila == syndrome_disks) {
1488 /* Missing P+Q, just recompute */
1489 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1490 ops_complete_compute, sh,
1491 to_addr_conv(sh, percpu, 0));
1492 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1493 STRIPE_SIZE, &submit);
1494 } else {
1495 struct page *dest;
1496 int data_target;
1497 int qd_idx = sh->qd_idx;
1498
1499 /* Missing D+Q: recompute D from P, then recompute Q */
1500 if (target == qd_idx)
1501 data_target = target2;
1502 else
1503 data_target = target;
1504
1505 count = 0;
1506 for (i = disks; i-- ; ) {
1507 if (i == data_target || i == qd_idx)
1508 continue;
1509 blocks[count++] = sh->dev[i].page;
1510 }
1511 dest = sh->dev[data_target].page;
1512 init_async_submit(&submit,
1513 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1514 NULL, NULL, NULL,
1515 to_addr_conv(sh, percpu, 0));
1516 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1517 &submit);
1518
1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1521 ops_complete_compute, sh,
1522 to_addr_conv(sh, percpu, 0));
1523 return async_gen_syndrome(blocks, 0, count+2,
1524 STRIPE_SIZE, &submit);
1525 }
1526 } else {
1527 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528 ops_complete_compute, sh,
1529 to_addr_conv(sh, percpu, 0));
1530 if (failb == syndrome_disks) {
1531 /* We're missing D+P. */
1532 return async_raid6_datap_recov(syndrome_disks+2,
1533 STRIPE_SIZE, faila,
1534 blocks, &submit);
1535 } else {
1536 /* We're missing D+D. */
1537 return async_raid6_2data_recov(syndrome_disks+2,
1538 STRIPE_SIZE, faila, failb,
1539 blocks, &submit);
1540 }
1541 }
1542 }
1543
1544 static void ops_complete_prexor(void *stripe_head_ref)
1545 {
1546 struct stripe_head *sh = stripe_head_ref;
1547
1548 pr_debug("%s: stripe %llu\n", __func__,
1549 (unsigned long long)sh->sector);
1550 }
1551
1552 static struct dma_async_tx_descriptor *
1553 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1554 struct dma_async_tx_descriptor *tx)
1555 {
1556 int disks = sh->disks;
1557 struct page **xor_srcs = to_addr_page(percpu, 0);
1558 int count = 0, pd_idx = sh->pd_idx, i;
1559 struct async_submit_ctl submit;
1560
1561 /* existing parity data subtracted */
1562 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1563
1564 BUG_ON(sh->batch_head);
1565 pr_debug("%s: stripe %llu\n", __func__,
1566 (unsigned long long)sh->sector);
1567
1568 for (i = disks; i--; ) {
1569 struct r5dev *dev = &sh->dev[i];
1570 /* Only process blocks that are known to be uptodate */
1571 if (test_bit(R5_Wantdrain, &dev->flags))
1572 xor_srcs[count++] = dev->page;
1573 }
1574
1575 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1576 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1577 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1578
1579 return tx;
1580 }
1581
1582 static struct dma_async_tx_descriptor *
1583 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1584 struct dma_async_tx_descriptor *tx)
1585 {
1586 struct page **blocks = to_addr_page(percpu, 0);
1587 int count;
1588 struct async_submit_ctl submit;
1589
1590 pr_debug("%s: stripe %llu\n", __func__,
1591 (unsigned long long)sh->sector);
1592
1593 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1594
1595 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1596 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1597 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1598
1599 return tx;
1600 }
1601
1602 static struct dma_async_tx_descriptor *
1603 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1604 {
1605 int disks = sh->disks;
1606 int i;
1607 struct stripe_head *head_sh = sh;
1608
1609 pr_debug("%s: stripe %llu\n", __func__,
1610 (unsigned long long)sh->sector);
1611
1612 for (i = disks; i--; ) {
1613 struct r5dev *dev;
1614 struct bio *chosen;
1615
1616 sh = head_sh;
1617 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1618 struct bio *wbi;
1619
1620 again:
1621 dev = &sh->dev[i];
1622 spin_lock_irq(&sh->stripe_lock);
1623 chosen = dev->towrite;
1624 dev->towrite = NULL;
1625 sh->overwrite_disks = 0;
1626 BUG_ON(dev->written);
1627 wbi = dev->written = chosen;
1628 spin_unlock_irq(&sh->stripe_lock);
1629 WARN_ON(dev->page != dev->orig_page);
1630
1631 while (wbi && wbi->bi_iter.bi_sector <
1632 dev->sector + STRIPE_SECTORS) {
1633 if (wbi->bi_rw & REQ_FUA)
1634 set_bit(R5_WantFUA, &dev->flags);
1635 if (wbi->bi_rw & REQ_SYNC)
1636 set_bit(R5_SyncIO, &dev->flags);
1637 if (wbi->bi_rw & REQ_DISCARD)
1638 set_bit(R5_Discard, &dev->flags);
1639 else {
1640 tx = async_copy_data(1, wbi, &dev->page,
1641 dev->sector, tx, sh);
1642 if (dev->page != dev->orig_page) {
1643 set_bit(R5_SkipCopy, &dev->flags);
1644 clear_bit(R5_UPTODATE, &dev->flags);
1645 clear_bit(R5_OVERWRITE, &dev->flags);
1646 }
1647 }
1648 wbi = r5_next_bio(wbi, dev->sector);
1649 }
1650
1651 if (head_sh->batch_head) {
1652 sh = list_first_entry(&sh->batch_list,
1653 struct stripe_head,
1654 batch_list);
1655 if (sh == head_sh)
1656 continue;
1657 goto again;
1658 }
1659 }
1660 }
1661
1662 return tx;
1663 }
1664
1665 static void ops_complete_reconstruct(void *stripe_head_ref)
1666 {
1667 struct stripe_head *sh = stripe_head_ref;
1668 int disks = sh->disks;
1669 int pd_idx = sh->pd_idx;
1670 int qd_idx = sh->qd_idx;
1671 int i;
1672 bool fua = false, sync = false, discard = false;
1673
1674 pr_debug("%s: stripe %llu\n", __func__,
1675 (unsigned long long)sh->sector);
1676
1677 for (i = disks; i--; ) {
1678 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1679 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1680 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1681 }
1682
1683 for (i = disks; i--; ) {
1684 struct r5dev *dev = &sh->dev[i];
1685
1686 if (dev->written || i == pd_idx || i == qd_idx) {
1687 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1688 set_bit(R5_UPTODATE, &dev->flags);
1689 if (fua)
1690 set_bit(R5_WantFUA, &dev->flags);
1691 if (sync)
1692 set_bit(R5_SyncIO, &dev->flags);
1693 }
1694 }
1695
1696 if (sh->reconstruct_state == reconstruct_state_drain_run)
1697 sh->reconstruct_state = reconstruct_state_drain_result;
1698 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1699 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1700 else {
1701 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1702 sh->reconstruct_state = reconstruct_state_result;
1703 }
1704
1705 set_bit(STRIPE_HANDLE, &sh->state);
1706 raid5_release_stripe(sh);
1707 }
1708
1709 static void
1710 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1711 struct dma_async_tx_descriptor *tx)
1712 {
1713 int disks = sh->disks;
1714 struct page **xor_srcs;
1715 struct async_submit_ctl submit;
1716 int count, pd_idx = sh->pd_idx, i;
1717 struct page *xor_dest;
1718 int prexor = 0;
1719 unsigned long flags;
1720 int j = 0;
1721 struct stripe_head *head_sh = sh;
1722 int last_stripe;
1723
1724 pr_debug("%s: stripe %llu\n", __func__,
1725 (unsigned long long)sh->sector);
1726
1727 for (i = 0; i < sh->disks; i++) {
1728 if (pd_idx == i)
1729 continue;
1730 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1731 break;
1732 }
1733 if (i >= sh->disks) {
1734 atomic_inc(&sh->count);
1735 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1736 ops_complete_reconstruct(sh);
1737 return;
1738 }
1739 again:
1740 count = 0;
1741 xor_srcs = to_addr_page(percpu, j);
1742 /* check if prexor is active which means only process blocks
1743 * that are part of a read-modify-write (written)
1744 */
1745 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1746 prexor = 1;
1747 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1748 for (i = disks; i--; ) {
1749 struct r5dev *dev = &sh->dev[i];
1750 if (head_sh->dev[i].written)
1751 xor_srcs[count++] = dev->page;
1752 }
1753 } else {
1754 xor_dest = sh->dev[pd_idx].page;
1755 for (i = disks; i--; ) {
1756 struct r5dev *dev = &sh->dev[i];
1757 if (i != pd_idx)
1758 xor_srcs[count++] = dev->page;
1759 }
1760 }
1761
1762 /* 1/ if we prexor'd then the dest is reused as a source
1763 * 2/ if we did not prexor then we are redoing the parity
1764 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1765 * for the synchronous xor case
1766 */
1767 last_stripe = !head_sh->batch_head ||
1768 list_first_entry(&sh->batch_list,
1769 struct stripe_head, batch_list) == head_sh;
1770 if (last_stripe) {
1771 flags = ASYNC_TX_ACK |
1772 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1773
1774 atomic_inc(&head_sh->count);
1775 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1776 to_addr_conv(sh, percpu, j));
1777 } else {
1778 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1779 init_async_submit(&submit, flags, tx, NULL, NULL,
1780 to_addr_conv(sh, percpu, j));
1781 }
1782
1783 if (unlikely(count == 1))
1784 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1785 else
1786 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1787 if (!last_stripe) {
1788 j++;
1789 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1790 batch_list);
1791 goto again;
1792 }
1793 }
1794
1795 static void
1796 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1797 struct dma_async_tx_descriptor *tx)
1798 {
1799 struct async_submit_ctl submit;
1800 struct page **blocks;
1801 int count, i, j = 0;
1802 struct stripe_head *head_sh = sh;
1803 int last_stripe;
1804 int synflags;
1805 unsigned long txflags;
1806
1807 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1808
1809 for (i = 0; i < sh->disks; i++) {
1810 if (sh->pd_idx == i || sh->qd_idx == i)
1811 continue;
1812 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1813 break;
1814 }
1815 if (i >= sh->disks) {
1816 atomic_inc(&sh->count);
1817 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1818 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1819 ops_complete_reconstruct(sh);
1820 return;
1821 }
1822
1823 again:
1824 blocks = to_addr_page(percpu, j);
1825
1826 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1827 synflags = SYNDROME_SRC_WRITTEN;
1828 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1829 } else {
1830 synflags = SYNDROME_SRC_ALL;
1831 txflags = ASYNC_TX_ACK;
1832 }
1833
1834 count = set_syndrome_sources(blocks, sh, synflags);
1835 last_stripe = !head_sh->batch_head ||
1836 list_first_entry(&sh->batch_list,
1837 struct stripe_head, batch_list) == head_sh;
1838
1839 if (last_stripe) {
1840 atomic_inc(&head_sh->count);
1841 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1842 head_sh, to_addr_conv(sh, percpu, j));
1843 } else
1844 init_async_submit(&submit, 0, tx, NULL, NULL,
1845 to_addr_conv(sh, percpu, j));
1846 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1847 if (!last_stripe) {
1848 j++;
1849 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1850 batch_list);
1851 goto again;
1852 }
1853 }
1854
1855 static void ops_complete_check(void *stripe_head_ref)
1856 {
1857 struct stripe_head *sh = stripe_head_ref;
1858
1859 pr_debug("%s: stripe %llu\n", __func__,
1860 (unsigned long long)sh->sector);
1861
1862 sh->check_state = check_state_check_result;
1863 set_bit(STRIPE_HANDLE, &sh->state);
1864 raid5_release_stripe(sh);
1865 }
1866
1867 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1868 {
1869 int disks = sh->disks;
1870 int pd_idx = sh->pd_idx;
1871 int qd_idx = sh->qd_idx;
1872 struct page *xor_dest;
1873 struct page **xor_srcs = to_addr_page(percpu, 0);
1874 struct dma_async_tx_descriptor *tx;
1875 struct async_submit_ctl submit;
1876 int count;
1877 int i;
1878
1879 pr_debug("%s: stripe %llu\n", __func__,
1880 (unsigned long long)sh->sector);
1881
1882 BUG_ON(sh->batch_head);
1883 count = 0;
1884 xor_dest = sh->dev[pd_idx].page;
1885 xor_srcs[count++] = xor_dest;
1886 for (i = disks; i--; ) {
1887 if (i == pd_idx || i == qd_idx)
1888 continue;
1889 xor_srcs[count++] = sh->dev[i].page;
1890 }
1891
1892 init_async_submit(&submit, 0, NULL, NULL, NULL,
1893 to_addr_conv(sh, percpu, 0));
1894 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1895 &sh->ops.zero_sum_result, &submit);
1896
1897 atomic_inc(&sh->count);
1898 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1899 tx = async_trigger_callback(&submit);
1900 }
1901
1902 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1903 {
1904 struct page **srcs = to_addr_page(percpu, 0);
1905 struct async_submit_ctl submit;
1906 int count;
1907
1908 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1909 (unsigned long long)sh->sector, checkp);
1910
1911 BUG_ON(sh->batch_head);
1912 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1913 if (!checkp)
1914 srcs[count] = NULL;
1915
1916 atomic_inc(&sh->count);
1917 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1918 sh, to_addr_conv(sh, percpu, 0));
1919 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1920 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1921 }
1922
1923 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1924 {
1925 int overlap_clear = 0, i, disks = sh->disks;
1926 struct dma_async_tx_descriptor *tx = NULL;
1927 struct r5conf *conf = sh->raid_conf;
1928 int level = conf->level;
1929 struct raid5_percpu *percpu;
1930 unsigned long cpu;
1931
1932 cpu = get_cpu();
1933 percpu = per_cpu_ptr(conf->percpu, cpu);
1934 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1935 ops_run_biofill(sh);
1936 overlap_clear++;
1937 }
1938
1939 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1940 if (level < 6)
1941 tx = ops_run_compute5(sh, percpu);
1942 else {
1943 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1944 tx = ops_run_compute6_1(sh, percpu);
1945 else
1946 tx = ops_run_compute6_2(sh, percpu);
1947 }
1948 /* terminate the chain if reconstruct is not set to be run */
1949 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1950 async_tx_ack(tx);
1951 }
1952
1953 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1954 if (level < 6)
1955 tx = ops_run_prexor5(sh, percpu, tx);
1956 else
1957 tx = ops_run_prexor6(sh, percpu, tx);
1958 }
1959
1960 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1961 tx = ops_run_biodrain(sh, tx);
1962 overlap_clear++;
1963 }
1964
1965 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1966 if (level < 6)
1967 ops_run_reconstruct5(sh, percpu, tx);
1968 else
1969 ops_run_reconstruct6(sh, percpu, tx);
1970 }
1971
1972 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1973 if (sh->check_state == check_state_run)
1974 ops_run_check_p(sh, percpu);
1975 else if (sh->check_state == check_state_run_q)
1976 ops_run_check_pq(sh, percpu, 0);
1977 else if (sh->check_state == check_state_run_pq)
1978 ops_run_check_pq(sh, percpu, 1);
1979 else
1980 BUG();
1981 }
1982
1983 if (overlap_clear && !sh->batch_head)
1984 for (i = disks; i--; ) {
1985 struct r5dev *dev = &sh->dev[i];
1986 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1987 wake_up(&sh->raid_conf->wait_for_overlap);
1988 }
1989 put_cpu();
1990 }
1991
1992 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1993 {
1994 struct stripe_head *sh;
1995
1996 sh = kmem_cache_zalloc(sc, gfp);
1997 if (sh) {
1998 spin_lock_init(&sh->stripe_lock);
1999 spin_lock_init(&sh->batch_lock);
2000 INIT_LIST_HEAD(&sh->batch_list);
2001 INIT_LIST_HEAD(&sh->lru);
2002 atomic_set(&sh->count, 1);
2003 }
2004 return sh;
2005 }
2006 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2007 {
2008 struct stripe_head *sh;
2009
2010 sh = alloc_stripe(conf->slab_cache, gfp);
2011 if (!sh)
2012 return 0;
2013
2014 sh->raid_conf = conf;
2015
2016 if (grow_buffers(sh, gfp)) {
2017 shrink_buffers(sh);
2018 kmem_cache_free(conf->slab_cache, sh);
2019 return 0;
2020 }
2021 sh->hash_lock_index =
2022 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2023 /* we just created an active stripe so... */
2024 atomic_inc(&conf->active_stripes);
2025
2026 raid5_release_stripe(sh);
2027 conf->max_nr_stripes++;
2028 return 1;
2029 }
2030
2031 static int grow_stripes(struct r5conf *conf, int num)
2032 {
2033 struct kmem_cache *sc;
2034 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2035
2036 if (conf->mddev->gendisk)
2037 sprintf(conf->cache_name[0],
2038 "raid%d-%s", conf->level, mdname(conf->mddev));
2039 else
2040 sprintf(conf->cache_name[0],
2041 "raid%d-%p", conf->level, conf->mddev);
2042 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2043
2044 conf->active_name = 0;
2045 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2046 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2047 0, 0, NULL);
2048 if (!sc)
2049 return 1;
2050 conf->slab_cache = sc;
2051 conf->pool_size = devs;
2052 while (num--)
2053 if (!grow_one_stripe(conf, GFP_KERNEL))
2054 return 1;
2055
2056 return 0;
2057 }
2058
2059 /**
2060 * scribble_len - return the required size of the scribble region
2061 * @num - total number of disks in the array
2062 *
2063 * The size must be enough to contain:
2064 * 1/ a struct page pointer for each device in the array +2
2065 * 2/ room to convert each entry in (1) to its corresponding dma
2066 * (dma_map_page()) or page (page_address()) address.
2067 *
2068 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2069 * calculate over all devices (not just the data blocks), using zeros in place
2070 * of the P and Q blocks.
2071 */
2072 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2073 {
2074 struct flex_array *ret;
2075 size_t len;
2076
2077 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2078 ret = flex_array_alloc(len, cnt, flags);
2079 if (!ret)
2080 return NULL;
2081 /* always prealloc all elements, so no locking is required */
2082 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2083 flex_array_free(ret);
2084 return NULL;
2085 }
2086 return ret;
2087 }
2088
2089 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2090 {
2091 unsigned long cpu;
2092 int err = 0;
2093
2094 mddev_suspend(conf->mddev);
2095 get_online_cpus();
2096 for_each_present_cpu(cpu) {
2097 struct raid5_percpu *percpu;
2098 struct flex_array *scribble;
2099
2100 percpu = per_cpu_ptr(conf->percpu, cpu);
2101 scribble = scribble_alloc(new_disks,
2102 new_sectors / STRIPE_SECTORS,
2103 GFP_NOIO);
2104
2105 if (scribble) {
2106 flex_array_free(percpu->scribble);
2107 percpu->scribble = scribble;
2108 } else {
2109 err = -ENOMEM;
2110 break;
2111 }
2112 }
2113 put_online_cpus();
2114 mddev_resume(conf->mddev);
2115 return err;
2116 }
2117
2118 static int resize_stripes(struct r5conf *conf, int newsize)
2119 {
2120 /* Make all the stripes able to hold 'newsize' devices.
2121 * New slots in each stripe get 'page' set to a new page.
2122 *
2123 * This happens in stages:
2124 * 1/ create a new kmem_cache and allocate the required number of
2125 * stripe_heads.
2126 * 2/ gather all the old stripe_heads and transfer the pages across
2127 * to the new stripe_heads. This will have the side effect of
2128 * freezing the array as once all stripe_heads have been collected,
2129 * no IO will be possible. Old stripe heads are freed once their
2130 * pages have been transferred over, and the old kmem_cache is
2131 * freed when all stripes are done.
2132 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2133 * we simple return a failre status - no need to clean anything up.
2134 * 4/ allocate new pages for the new slots in the new stripe_heads.
2135 * If this fails, we don't bother trying the shrink the
2136 * stripe_heads down again, we just leave them as they are.
2137 * As each stripe_head is processed the new one is released into
2138 * active service.
2139 *
2140 * Once step2 is started, we cannot afford to wait for a write,
2141 * so we use GFP_NOIO allocations.
2142 */
2143 struct stripe_head *osh, *nsh;
2144 LIST_HEAD(newstripes);
2145 struct disk_info *ndisks;
2146 int err;
2147 struct kmem_cache *sc;
2148 int i;
2149 int hash, cnt;
2150
2151 if (newsize <= conf->pool_size)
2152 return 0; /* never bother to shrink */
2153
2154 err = md_allow_write(conf->mddev);
2155 if (err)
2156 return err;
2157
2158 /* Step 1 */
2159 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2160 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2161 0, 0, NULL);
2162 if (!sc)
2163 return -ENOMEM;
2164
2165 /* Need to ensure auto-resizing doesn't interfere */
2166 mutex_lock(&conf->cache_size_mutex);
2167
2168 for (i = conf->max_nr_stripes; i; i--) {
2169 nsh = alloc_stripe(sc, GFP_KERNEL);
2170 if (!nsh)
2171 break;
2172
2173 nsh->raid_conf = conf;
2174 list_add(&nsh->lru, &newstripes);
2175 }
2176 if (i) {
2177 /* didn't get enough, give up */
2178 while (!list_empty(&newstripes)) {
2179 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2180 list_del(&nsh->lru);
2181 kmem_cache_free(sc, nsh);
2182 }
2183 kmem_cache_destroy(sc);
2184 mutex_unlock(&conf->cache_size_mutex);
2185 return -ENOMEM;
2186 }
2187 /* Step 2 - Must use GFP_NOIO now.
2188 * OK, we have enough stripes, start collecting inactive
2189 * stripes and copying them over
2190 */
2191 hash = 0;
2192 cnt = 0;
2193 list_for_each_entry(nsh, &newstripes, lru) {
2194 lock_device_hash_lock(conf, hash);
2195 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2196 !list_empty(conf->inactive_list + hash),
2197 unlock_device_hash_lock(conf, hash),
2198 lock_device_hash_lock(conf, hash));
2199 osh = get_free_stripe(conf, hash);
2200 unlock_device_hash_lock(conf, hash);
2201
2202 for(i=0; i<conf->pool_size; i++) {
2203 nsh->dev[i].page = osh->dev[i].page;
2204 nsh->dev[i].orig_page = osh->dev[i].page;
2205 }
2206 nsh->hash_lock_index = hash;
2207 kmem_cache_free(conf->slab_cache, osh);
2208 cnt++;
2209 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2210 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2211 hash++;
2212 cnt = 0;
2213 }
2214 }
2215 kmem_cache_destroy(conf->slab_cache);
2216
2217 /* Step 3.
2218 * At this point, we are holding all the stripes so the array
2219 * is completely stalled, so now is a good time to resize
2220 * conf->disks and the scribble region
2221 */
2222 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2223 if (ndisks) {
2224 for (i=0; i<conf->raid_disks; i++)
2225 ndisks[i] = conf->disks[i];
2226 kfree(conf->disks);
2227 conf->disks = ndisks;
2228 } else
2229 err = -ENOMEM;
2230
2231 mutex_unlock(&conf->cache_size_mutex);
2232 /* Step 4, return new stripes to service */
2233 while(!list_empty(&newstripes)) {
2234 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2235 list_del_init(&nsh->lru);
2236
2237 for (i=conf->raid_disks; i < newsize; i++)
2238 if (nsh->dev[i].page == NULL) {
2239 struct page *p = alloc_page(GFP_NOIO);
2240 nsh->dev[i].page = p;
2241 nsh->dev[i].orig_page = p;
2242 if (!p)
2243 err = -ENOMEM;
2244 }
2245 raid5_release_stripe(nsh);
2246 }
2247 /* critical section pass, GFP_NOIO no longer needed */
2248
2249 conf->slab_cache = sc;
2250 conf->active_name = 1-conf->active_name;
2251 if (!err)
2252 conf->pool_size = newsize;
2253 return err;
2254 }
2255
2256 static int drop_one_stripe(struct r5conf *conf)
2257 {
2258 struct stripe_head *sh;
2259 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2260
2261 spin_lock_irq(conf->hash_locks + hash);
2262 sh = get_free_stripe(conf, hash);
2263 spin_unlock_irq(conf->hash_locks + hash);
2264 if (!sh)
2265 return 0;
2266 BUG_ON(atomic_read(&sh->count));
2267 shrink_buffers(sh);
2268 kmem_cache_free(conf->slab_cache, sh);
2269 atomic_dec(&conf->active_stripes);
2270 conf->max_nr_stripes--;
2271 return 1;
2272 }
2273
2274 static void shrink_stripes(struct r5conf *conf)
2275 {
2276 while (conf->max_nr_stripes &&
2277 drop_one_stripe(conf))
2278 ;
2279
2280 kmem_cache_destroy(conf->slab_cache);
2281 conf->slab_cache = NULL;
2282 }
2283
2284 static void raid5_end_read_request(struct bio * bi)
2285 {
2286 struct stripe_head *sh = bi->bi_private;
2287 struct r5conf *conf = sh->raid_conf;
2288 int disks = sh->disks, i;
2289 char b[BDEVNAME_SIZE];
2290 struct md_rdev *rdev = NULL;
2291 sector_t s;
2292
2293 for (i=0 ; i<disks; i++)
2294 if (bi == &sh->dev[i].req)
2295 break;
2296
2297 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2298 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2299 bi->bi_error);
2300 if (i == disks) {
2301 BUG();
2302 return;
2303 }
2304 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2305 /* If replacement finished while this request was outstanding,
2306 * 'replacement' might be NULL already.
2307 * In that case it moved down to 'rdev'.
2308 * rdev is not removed until all requests are finished.
2309 */
2310 rdev = conf->disks[i].replacement;
2311 if (!rdev)
2312 rdev = conf->disks[i].rdev;
2313
2314 if (use_new_offset(conf, sh))
2315 s = sh->sector + rdev->new_data_offset;
2316 else
2317 s = sh->sector + rdev->data_offset;
2318 if (!bi->bi_error) {
2319 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2320 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2321 /* Note that this cannot happen on a
2322 * replacement device. We just fail those on
2323 * any error
2324 */
2325 printk_ratelimited(
2326 KERN_INFO
2327 "md/raid:%s: read error corrected"
2328 " (%lu sectors at %llu on %s)\n",
2329 mdname(conf->mddev), STRIPE_SECTORS,
2330 (unsigned long long)s,
2331 bdevname(rdev->bdev, b));
2332 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2333 clear_bit(R5_ReadError, &sh->dev[i].flags);
2334 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2335 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2336 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2337
2338 if (atomic_read(&rdev->read_errors))
2339 atomic_set(&rdev->read_errors, 0);
2340 } else {
2341 const char *bdn = bdevname(rdev->bdev, b);
2342 int retry = 0;
2343 int set_bad = 0;
2344
2345 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2346 atomic_inc(&rdev->read_errors);
2347 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2348 printk_ratelimited(
2349 KERN_WARNING
2350 "md/raid:%s: read error on replacement device "
2351 "(sector %llu on %s).\n",
2352 mdname(conf->mddev),
2353 (unsigned long long)s,
2354 bdn);
2355 else if (conf->mddev->degraded >= conf->max_degraded) {
2356 set_bad = 1;
2357 printk_ratelimited(
2358 KERN_WARNING
2359 "md/raid:%s: read error not correctable "
2360 "(sector %llu on %s).\n",
2361 mdname(conf->mddev),
2362 (unsigned long long)s,
2363 bdn);
2364 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2365 /* Oh, no!!! */
2366 set_bad = 1;
2367 printk_ratelimited(
2368 KERN_WARNING
2369 "md/raid:%s: read error NOT corrected!! "
2370 "(sector %llu on %s).\n",
2371 mdname(conf->mddev),
2372 (unsigned long long)s,
2373 bdn);
2374 } else if (atomic_read(&rdev->read_errors)
2375 > conf->max_nr_stripes)
2376 printk(KERN_WARNING
2377 "md/raid:%s: Too many read errors, failing device %s.\n",
2378 mdname(conf->mddev), bdn);
2379 else
2380 retry = 1;
2381 if (set_bad && test_bit(In_sync, &rdev->flags)
2382 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2383 retry = 1;
2384 if (retry)
2385 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2386 set_bit(R5_ReadError, &sh->dev[i].flags);
2387 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2388 } else
2389 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2390 else {
2391 clear_bit(R5_ReadError, &sh->dev[i].flags);
2392 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2393 if (!(set_bad
2394 && test_bit(In_sync, &rdev->flags)
2395 && rdev_set_badblocks(
2396 rdev, sh->sector, STRIPE_SECTORS, 0)))
2397 md_error(conf->mddev, rdev);
2398 }
2399 }
2400 rdev_dec_pending(rdev, conf->mddev);
2401 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2402 set_bit(STRIPE_HANDLE, &sh->state);
2403 raid5_release_stripe(sh);
2404 }
2405
2406 static void raid5_end_write_request(struct bio *bi)
2407 {
2408 struct stripe_head *sh = bi->bi_private;
2409 struct r5conf *conf = sh->raid_conf;
2410 int disks = sh->disks, i;
2411 struct md_rdev *uninitialized_var(rdev);
2412 sector_t first_bad;
2413 int bad_sectors;
2414 int replacement = 0;
2415
2416 for (i = 0 ; i < disks; i++) {
2417 if (bi == &sh->dev[i].req) {
2418 rdev = conf->disks[i].rdev;
2419 break;
2420 }
2421 if (bi == &sh->dev[i].rreq) {
2422 rdev = conf->disks[i].replacement;
2423 if (rdev)
2424 replacement = 1;
2425 else
2426 /* rdev was removed and 'replacement'
2427 * replaced it. rdev is not removed
2428 * until all requests are finished.
2429 */
2430 rdev = conf->disks[i].rdev;
2431 break;
2432 }
2433 }
2434 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2435 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2436 bi->bi_error);
2437 if (i == disks) {
2438 BUG();
2439 return;
2440 }
2441
2442 if (replacement) {
2443 if (bi->bi_error)
2444 md_error(conf->mddev, rdev);
2445 else if (is_badblock(rdev, sh->sector,
2446 STRIPE_SECTORS,
2447 &first_bad, &bad_sectors))
2448 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2449 } else {
2450 if (bi->bi_error) {
2451 set_bit(STRIPE_DEGRADED, &sh->state);
2452 set_bit(WriteErrorSeen, &rdev->flags);
2453 set_bit(R5_WriteError, &sh->dev[i].flags);
2454 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2455 set_bit(MD_RECOVERY_NEEDED,
2456 &rdev->mddev->recovery);
2457 } else if (is_badblock(rdev, sh->sector,
2458 STRIPE_SECTORS,
2459 &first_bad, &bad_sectors)) {
2460 set_bit(R5_MadeGood, &sh->dev[i].flags);
2461 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2462 /* That was a successful write so make
2463 * sure it looks like we already did
2464 * a re-write.
2465 */
2466 set_bit(R5_ReWrite, &sh->dev[i].flags);
2467 }
2468 }
2469 rdev_dec_pending(rdev, conf->mddev);
2470
2471 if (sh->batch_head && bi->bi_error && !replacement)
2472 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2473
2474 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2475 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2476 set_bit(STRIPE_HANDLE, &sh->state);
2477 raid5_release_stripe(sh);
2478
2479 if (sh->batch_head && sh != sh->batch_head)
2480 raid5_release_stripe(sh->batch_head);
2481 }
2482
2483 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2484 {
2485 struct r5dev *dev = &sh->dev[i];
2486
2487 bio_init(&dev->req);
2488 dev->req.bi_io_vec = &dev->vec;
2489 dev->req.bi_max_vecs = 1;
2490 dev->req.bi_private = sh;
2491
2492 bio_init(&dev->rreq);
2493 dev->rreq.bi_io_vec = &dev->rvec;
2494 dev->rreq.bi_max_vecs = 1;
2495 dev->rreq.bi_private = sh;
2496
2497 dev->flags = 0;
2498 dev->sector = raid5_compute_blocknr(sh, i, previous);
2499 }
2500
2501 static void error(struct mddev *mddev, struct md_rdev *rdev)
2502 {
2503 char b[BDEVNAME_SIZE];
2504 struct r5conf *conf = mddev->private;
2505 unsigned long flags;
2506 pr_debug("raid456: error called\n");
2507
2508 spin_lock_irqsave(&conf->device_lock, flags);
2509 clear_bit(In_sync, &rdev->flags);
2510 mddev->degraded = calc_degraded(conf);
2511 spin_unlock_irqrestore(&conf->device_lock, flags);
2512 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2513
2514 set_bit(Blocked, &rdev->flags);
2515 set_bit(Faulty, &rdev->flags);
2516 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2517 set_bit(MD_CHANGE_PENDING, &mddev->flags);
2518 printk(KERN_ALERT
2519 "md/raid:%s: Disk failure on %s, disabling device.\n"
2520 "md/raid:%s: Operation continuing on %d devices.\n",
2521 mdname(mddev),
2522 bdevname(rdev->bdev, b),
2523 mdname(mddev),
2524 conf->raid_disks - mddev->degraded);
2525 }
2526
2527 /*
2528 * Input: a 'big' sector number,
2529 * Output: index of the data and parity disk, and the sector # in them.
2530 */
2531 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2532 int previous, int *dd_idx,
2533 struct stripe_head *sh)
2534 {
2535 sector_t stripe, stripe2;
2536 sector_t chunk_number;
2537 unsigned int chunk_offset;
2538 int pd_idx, qd_idx;
2539 int ddf_layout = 0;
2540 sector_t new_sector;
2541 int algorithm = previous ? conf->prev_algo
2542 : conf->algorithm;
2543 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2544 : conf->chunk_sectors;
2545 int raid_disks = previous ? conf->previous_raid_disks
2546 : conf->raid_disks;
2547 int data_disks = raid_disks - conf->max_degraded;
2548
2549 /* First compute the information on this sector */
2550
2551 /*
2552 * Compute the chunk number and the sector offset inside the chunk
2553 */
2554 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2555 chunk_number = r_sector;
2556
2557 /*
2558 * Compute the stripe number
2559 */
2560 stripe = chunk_number;
2561 *dd_idx = sector_div(stripe, data_disks);
2562 stripe2 = stripe;
2563 /*
2564 * Select the parity disk based on the user selected algorithm.
2565 */
2566 pd_idx = qd_idx = -1;
2567 switch(conf->level) {
2568 case 4:
2569 pd_idx = data_disks;
2570 break;
2571 case 5:
2572 switch (algorithm) {
2573 case ALGORITHM_LEFT_ASYMMETRIC:
2574 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2575 if (*dd_idx >= pd_idx)
2576 (*dd_idx)++;
2577 break;
2578 case ALGORITHM_RIGHT_ASYMMETRIC:
2579 pd_idx = sector_div(stripe2, raid_disks);
2580 if (*dd_idx >= pd_idx)
2581 (*dd_idx)++;
2582 break;
2583 case ALGORITHM_LEFT_SYMMETRIC:
2584 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2585 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2586 break;
2587 case ALGORITHM_RIGHT_SYMMETRIC:
2588 pd_idx = sector_div(stripe2, raid_disks);
2589 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2590 break;
2591 case ALGORITHM_PARITY_0:
2592 pd_idx = 0;
2593 (*dd_idx)++;
2594 break;
2595 case ALGORITHM_PARITY_N:
2596 pd_idx = data_disks;
2597 break;
2598 default:
2599 BUG();
2600 }
2601 break;
2602 case 6:
2603
2604 switch (algorithm) {
2605 case ALGORITHM_LEFT_ASYMMETRIC:
2606 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2607 qd_idx = pd_idx + 1;
2608 if (pd_idx == raid_disks-1) {
2609 (*dd_idx)++; /* Q D D D P */
2610 qd_idx = 0;
2611 } else if (*dd_idx >= pd_idx)
2612 (*dd_idx) += 2; /* D D P Q D */
2613 break;
2614 case ALGORITHM_RIGHT_ASYMMETRIC:
2615 pd_idx = sector_div(stripe2, raid_disks);
2616 qd_idx = pd_idx + 1;
2617 if (pd_idx == raid_disks-1) {
2618 (*dd_idx)++; /* Q D D D P */
2619 qd_idx = 0;
2620 } else if (*dd_idx >= pd_idx)
2621 (*dd_idx) += 2; /* D D P Q D */
2622 break;
2623 case ALGORITHM_LEFT_SYMMETRIC:
2624 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2625 qd_idx = (pd_idx + 1) % raid_disks;
2626 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2627 break;
2628 case ALGORITHM_RIGHT_SYMMETRIC:
2629 pd_idx = sector_div(stripe2, raid_disks);
2630 qd_idx = (pd_idx + 1) % raid_disks;
2631 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2632 break;
2633
2634 case ALGORITHM_PARITY_0:
2635 pd_idx = 0;
2636 qd_idx = 1;
2637 (*dd_idx) += 2;
2638 break;
2639 case ALGORITHM_PARITY_N:
2640 pd_idx = data_disks;
2641 qd_idx = data_disks + 1;
2642 break;
2643
2644 case ALGORITHM_ROTATING_ZERO_RESTART:
2645 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2646 * of blocks for computing Q is different.
2647 */
2648 pd_idx = sector_div(stripe2, raid_disks);
2649 qd_idx = pd_idx + 1;
2650 if (pd_idx == raid_disks-1) {
2651 (*dd_idx)++; /* Q D D D P */
2652 qd_idx = 0;
2653 } else if (*dd_idx >= pd_idx)
2654 (*dd_idx) += 2; /* D D P Q D */
2655 ddf_layout = 1;
2656 break;
2657
2658 case ALGORITHM_ROTATING_N_RESTART:
2659 /* Same a left_asymmetric, by first stripe is
2660 * D D D P Q rather than
2661 * Q D D D P
2662 */
2663 stripe2 += 1;
2664 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2665 qd_idx = pd_idx + 1;
2666 if (pd_idx == raid_disks-1) {
2667 (*dd_idx)++; /* Q D D D P */
2668 qd_idx = 0;
2669 } else if (*dd_idx >= pd_idx)
2670 (*dd_idx) += 2; /* D D P Q D */
2671 ddf_layout = 1;
2672 break;
2673
2674 case ALGORITHM_ROTATING_N_CONTINUE:
2675 /* Same as left_symmetric but Q is before P */
2676 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2677 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2678 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2679 ddf_layout = 1;
2680 break;
2681
2682 case ALGORITHM_LEFT_ASYMMETRIC_6:
2683 /* RAID5 left_asymmetric, with Q on last device */
2684 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2685 if (*dd_idx >= pd_idx)
2686 (*dd_idx)++;
2687 qd_idx = raid_disks - 1;
2688 break;
2689
2690 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2691 pd_idx = sector_div(stripe2, raid_disks-1);
2692 if (*dd_idx >= pd_idx)
2693 (*dd_idx)++;
2694 qd_idx = raid_disks - 1;
2695 break;
2696
2697 case ALGORITHM_LEFT_SYMMETRIC_6:
2698 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2699 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2700 qd_idx = raid_disks - 1;
2701 break;
2702
2703 case ALGORITHM_RIGHT_SYMMETRIC_6:
2704 pd_idx = sector_div(stripe2, raid_disks-1);
2705 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2706 qd_idx = raid_disks - 1;
2707 break;
2708
2709 case ALGORITHM_PARITY_0_6:
2710 pd_idx = 0;
2711 (*dd_idx)++;
2712 qd_idx = raid_disks - 1;
2713 break;
2714
2715 default:
2716 BUG();
2717 }
2718 break;
2719 }
2720
2721 if (sh) {
2722 sh->pd_idx = pd_idx;
2723 sh->qd_idx = qd_idx;
2724 sh->ddf_layout = ddf_layout;
2725 }
2726 /*
2727 * Finally, compute the new sector number
2728 */
2729 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2730 return new_sector;
2731 }
2732
2733 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2734 {
2735 struct r5conf *conf = sh->raid_conf;
2736 int raid_disks = sh->disks;
2737 int data_disks = raid_disks - conf->max_degraded;
2738 sector_t new_sector = sh->sector, check;
2739 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2740 : conf->chunk_sectors;
2741 int algorithm = previous ? conf->prev_algo
2742 : conf->algorithm;
2743 sector_t stripe;
2744 int chunk_offset;
2745 sector_t chunk_number;
2746 int dummy1, dd_idx = i;
2747 sector_t r_sector;
2748 struct stripe_head sh2;
2749
2750 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2751 stripe = new_sector;
2752
2753 if (i == sh->pd_idx)
2754 return 0;
2755 switch(conf->level) {
2756 case 4: break;
2757 case 5:
2758 switch (algorithm) {
2759 case ALGORITHM_LEFT_ASYMMETRIC:
2760 case ALGORITHM_RIGHT_ASYMMETRIC:
2761 if (i > sh->pd_idx)
2762 i--;
2763 break;
2764 case ALGORITHM_LEFT_SYMMETRIC:
2765 case ALGORITHM_RIGHT_SYMMETRIC:
2766 if (i < sh->pd_idx)
2767 i += raid_disks;
2768 i -= (sh->pd_idx + 1);
2769 break;
2770 case ALGORITHM_PARITY_0:
2771 i -= 1;
2772 break;
2773 case ALGORITHM_PARITY_N:
2774 break;
2775 default:
2776 BUG();
2777 }
2778 break;
2779 case 6:
2780 if (i == sh->qd_idx)
2781 return 0; /* It is the Q disk */
2782 switch (algorithm) {
2783 case ALGORITHM_LEFT_ASYMMETRIC:
2784 case ALGORITHM_RIGHT_ASYMMETRIC:
2785 case ALGORITHM_ROTATING_ZERO_RESTART:
2786 case ALGORITHM_ROTATING_N_RESTART:
2787 if (sh->pd_idx == raid_disks-1)
2788 i--; /* Q D D D P */
2789 else if (i > sh->pd_idx)
2790 i -= 2; /* D D P Q D */
2791 break;
2792 case ALGORITHM_LEFT_SYMMETRIC:
2793 case ALGORITHM_RIGHT_SYMMETRIC:
2794 if (sh->pd_idx == raid_disks-1)
2795 i--; /* Q D D D P */
2796 else {
2797 /* D D P Q D */
2798 if (i < sh->pd_idx)
2799 i += raid_disks;
2800 i -= (sh->pd_idx + 2);
2801 }
2802 break;
2803 case ALGORITHM_PARITY_0:
2804 i -= 2;
2805 break;
2806 case ALGORITHM_PARITY_N:
2807 break;
2808 case ALGORITHM_ROTATING_N_CONTINUE:
2809 /* Like left_symmetric, but P is before Q */
2810 if (sh->pd_idx == 0)
2811 i--; /* P D D D Q */
2812 else {
2813 /* D D Q P D */
2814 if (i < sh->pd_idx)
2815 i += raid_disks;
2816 i -= (sh->pd_idx + 1);
2817 }
2818 break;
2819 case ALGORITHM_LEFT_ASYMMETRIC_6:
2820 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2821 if (i > sh->pd_idx)
2822 i--;
2823 break;
2824 case ALGORITHM_LEFT_SYMMETRIC_6:
2825 case ALGORITHM_RIGHT_SYMMETRIC_6:
2826 if (i < sh->pd_idx)
2827 i += data_disks + 1;
2828 i -= (sh->pd_idx + 1);
2829 break;
2830 case ALGORITHM_PARITY_0_6:
2831 i -= 1;
2832 break;
2833 default:
2834 BUG();
2835 }
2836 break;
2837 }
2838
2839 chunk_number = stripe * data_disks + i;
2840 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2841
2842 check = raid5_compute_sector(conf, r_sector,
2843 previous, &dummy1, &sh2);
2844 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2845 || sh2.qd_idx != sh->qd_idx) {
2846 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2847 mdname(conf->mddev));
2848 return 0;
2849 }
2850 return r_sector;
2851 }
2852
2853 static void
2854 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2855 int rcw, int expand)
2856 {
2857 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2858 struct r5conf *conf = sh->raid_conf;
2859 int level = conf->level;
2860
2861 if (rcw) {
2862
2863 for (i = disks; i--; ) {
2864 struct r5dev *dev = &sh->dev[i];
2865
2866 if (dev->towrite) {
2867 set_bit(R5_LOCKED, &dev->flags);
2868 set_bit(R5_Wantdrain, &dev->flags);
2869 if (!expand)
2870 clear_bit(R5_UPTODATE, &dev->flags);
2871 s->locked++;
2872 }
2873 }
2874 /* if we are not expanding this is a proper write request, and
2875 * there will be bios with new data to be drained into the
2876 * stripe cache
2877 */
2878 if (!expand) {
2879 if (!s->locked)
2880 /* False alarm, nothing to do */
2881 return;
2882 sh->reconstruct_state = reconstruct_state_drain_run;
2883 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2884 } else
2885 sh->reconstruct_state = reconstruct_state_run;
2886
2887 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2888
2889 if (s->locked + conf->max_degraded == disks)
2890 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2891 atomic_inc(&conf->pending_full_writes);
2892 } else {
2893 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2894 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2895 BUG_ON(level == 6 &&
2896 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2897 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2898
2899 for (i = disks; i--; ) {
2900 struct r5dev *dev = &sh->dev[i];
2901 if (i == pd_idx || i == qd_idx)
2902 continue;
2903
2904 if (dev->towrite &&
2905 (test_bit(R5_UPTODATE, &dev->flags) ||
2906 test_bit(R5_Wantcompute, &dev->flags))) {
2907 set_bit(R5_Wantdrain, &dev->flags);
2908 set_bit(R5_LOCKED, &dev->flags);
2909 clear_bit(R5_UPTODATE, &dev->flags);
2910 s->locked++;
2911 }
2912 }
2913 if (!s->locked)
2914 /* False alarm - nothing to do */
2915 return;
2916 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2917 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2918 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2919 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2920 }
2921
2922 /* keep the parity disk(s) locked while asynchronous operations
2923 * are in flight
2924 */
2925 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2926 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2927 s->locked++;
2928
2929 if (level == 6) {
2930 int qd_idx = sh->qd_idx;
2931 struct r5dev *dev = &sh->dev[qd_idx];
2932
2933 set_bit(R5_LOCKED, &dev->flags);
2934 clear_bit(R5_UPTODATE, &dev->flags);
2935 s->locked++;
2936 }
2937
2938 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2939 __func__, (unsigned long long)sh->sector,
2940 s->locked, s->ops_request);
2941 }
2942
2943 /*
2944 * Each stripe/dev can have one or more bion attached.
2945 * toread/towrite point to the first in a chain.
2946 * The bi_next chain must be in order.
2947 */
2948 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2949 int forwrite, int previous)
2950 {
2951 struct bio **bip;
2952 struct r5conf *conf = sh->raid_conf;
2953 int firstwrite=0;
2954
2955 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2956 (unsigned long long)bi->bi_iter.bi_sector,
2957 (unsigned long long)sh->sector);
2958
2959 /*
2960 * If several bio share a stripe. The bio bi_phys_segments acts as a
2961 * reference count to avoid race. The reference count should already be
2962 * increased before this function is called (for example, in
2963 * make_request()), so other bio sharing this stripe will not free the
2964 * stripe. If a stripe is owned by one stripe, the stripe lock will
2965 * protect it.
2966 */
2967 spin_lock_irq(&sh->stripe_lock);
2968 /* Don't allow new IO added to stripes in batch list */
2969 if (sh->batch_head)
2970 goto overlap;
2971 if (forwrite) {
2972 bip = &sh->dev[dd_idx].towrite;
2973 if (*bip == NULL)
2974 firstwrite = 1;
2975 } else
2976 bip = &sh->dev[dd_idx].toread;
2977 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2978 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2979 goto overlap;
2980 bip = & (*bip)->bi_next;
2981 }
2982 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2983 goto overlap;
2984
2985 if (!forwrite || previous)
2986 clear_bit(STRIPE_BATCH_READY, &sh->state);
2987
2988 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2989 if (*bip)
2990 bi->bi_next = *bip;
2991 *bip = bi;
2992 raid5_inc_bi_active_stripes(bi);
2993
2994 if (forwrite) {
2995 /* check if page is covered */
2996 sector_t sector = sh->dev[dd_idx].sector;
2997 for (bi=sh->dev[dd_idx].towrite;
2998 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2999 bi && bi->bi_iter.bi_sector <= sector;
3000 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3001 if (bio_end_sector(bi) >= sector)
3002 sector = bio_end_sector(bi);
3003 }
3004 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3005 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3006 sh->overwrite_disks++;
3007 }
3008
3009 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3010 (unsigned long long)(*bip)->bi_iter.bi_sector,
3011 (unsigned long long)sh->sector, dd_idx);
3012
3013 if (conf->mddev->bitmap && firstwrite) {
3014 /* Cannot hold spinlock over bitmap_startwrite,
3015 * but must ensure this isn't added to a batch until
3016 * we have added to the bitmap and set bm_seq.
3017 * So set STRIPE_BITMAP_PENDING to prevent
3018 * batching.
3019 * If multiple add_stripe_bio() calls race here they
3020 * much all set STRIPE_BITMAP_PENDING. So only the first one
3021 * to complete "bitmap_startwrite" gets to set
3022 * STRIPE_BIT_DELAY. This is important as once a stripe
3023 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3024 * any more.
3025 */
3026 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3027 spin_unlock_irq(&sh->stripe_lock);
3028 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3029 STRIPE_SECTORS, 0);
3030 spin_lock_irq(&sh->stripe_lock);
3031 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3032 if (!sh->batch_head) {
3033 sh->bm_seq = conf->seq_flush+1;
3034 set_bit(STRIPE_BIT_DELAY, &sh->state);
3035 }
3036 }
3037 spin_unlock_irq(&sh->stripe_lock);
3038
3039 if (stripe_can_batch(sh))
3040 stripe_add_to_batch_list(conf, sh);
3041 return 1;
3042
3043 overlap:
3044 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3045 spin_unlock_irq(&sh->stripe_lock);
3046 return 0;
3047 }
3048
3049 static void end_reshape(struct r5conf *conf);
3050
3051 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3052 struct stripe_head *sh)
3053 {
3054 int sectors_per_chunk =
3055 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3056 int dd_idx;
3057 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3058 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3059
3060 raid5_compute_sector(conf,
3061 stripe * (disks - conf->max_degraded)
3062 *sectors_per_chunk + chunk_offset,
3063 previous,
3064 &dd_idx, sh);
3065 }
3066
3067 static void
3068 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3069 struct stripe_head_state *s, int disks,
3070 struct bio_list *return_bi)
3071 {
3072 int i;
3073 BUG_ON(sh->batch_head);
3074 for (i = disks; i--; ) {
3075 struct bio *bi;
3076 int bitmap_end = 0;
3077
3078 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3079 struct md_rdev *rdev;
3080 rcu_read_lock();
3081 rdev = rcu_dereference(conf->disks[i].rdev);
3082 if (rdev && test_bit(In_sync, &rdev->flags))
3083 atomic_inc(&rdev->nr_pending);
3084 else
3085 rdev = NULL;
3086 rcu_read_unlock();
3087 if (rdev) {
3088 if (!rdev_set_badblocks(
3089 rdev,
3090 sh->sector,
3091 STRIPE_SECTORS, 0))
3092 md_error(conf->mddev, rdev);
3093 rdev_dec_pending(rdev, conf->mddev);
3094 }
3095 }
3096 spin_lock_irq(&sh->stripe_lock);
3097 /* fail all writes first */
3098 bi = sh->dev[i].towrite;
3099 sh->dev[i].towrite = NULL;
3100 sh->overwrite_disks = 0;
3101 spin_unlock_irq(&sh->stripe_lock);
3102 if (bi)
3103 bitmap_end = 1;
3104
3105 r5l_stripe_write_finished(sh);
3106
3107 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3108 wake_up(&conf->wait_for_overlap);
3109
3110 while (bi && bi->bi_iter.bi_sector <
3111 sh->dev[i].sector + STRIPE_SECTORS) {
3112 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3113
3114 bi->bi_error = -EIO;
3115 if (!raid5_dec_bi_active_stripes(bi)) {
3116 md_write_end(conf->mddev);
3117 bio_list_add(return_bi, bi);
3118 }
3119 bi = nextbi;
3120 }
3121 if (bitmap_end)
3122 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3123 STRIPE_SECTORS, 0, 0);
3124 bitmap_end = 0;
3125 /* and fail all 'written' */
3126 bi = sh->dev[i].written;
3127 sh->dev[i].written = NULL;
3128 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3129 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3130 sh->dev[i].page = sh->dev[i].orig_page;
3131 }
3132
3133 if (bi) bitmap_end = 1;
3134 while (bi && bi->bi_iter.bi_sector <
3135 sh->dev[i].sector + STRIPE_SECTORS) {
3136 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3137
3138 bi->bi_error = -EIO;
3139 if (!raid5_dec_bi_active_stripes(bi)) {
3140 md_write_end(conf->mddev);
3141 bio_list_add(return_bi, bi);
3142 }
3143 bi = bi2;
3144 }
3145
3146 /* fail any reads if this device is non-operational and
3147 * the data has not reached the cache yet.
3148 */
3149 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3150 s->failed > conf->max_degraded &&
3151 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3152 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3153 spin_lock_irq(&sh->stripe_lock);
3154 bi = sh->dev[i].toread;
3155 sh->dev[i].toread = NULL;
3156 spin_unlock_irq(&sh->stripe_lock);
3157 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3158 wake_up(&conf->wait_for_overlap);
3159 if (bi)
3160 s->to_read--;
3161 while (bi && bi->bi_iter.bi_sector <
3162 sh->dev[i].sector + STRIPE_SECTORS) {
3163 struct bio *nextbi =
3164 r5_next_bio(bi, sh->dev[i].sector);
3165
3166 bi->bi_error = -EIO;
3167 if (!raid5_dec_bi_active_stripes(bi))
3168 bio_list_add(return_bi, bi);
3169 bi = nextbi;
3170 }
3171 }
3172 if (bitmap_end)
3173 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3174 STRIPE_SECTORS, 0, 0);
3175 /* If we were in the middle of a write the parity block might
3176 * still be locked - so just clear all R5_LOCKED flags
3177 */
3178 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3179 }
3180 s->to_write = 0;
3181 s->written = 0;
3182
3183 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3184 if (atomic_dec_and_test(&conf->pending_full_writes))
3185 md_wakeup_thread(conf->mddev->thread);
3186 }
3187
3188 static void
3189 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3190 struct stripe_head_state *s)
3191 {
3192 int abort = 0;
3193 int i;
3194
3195 BUG_ON(sh->batch_head);
3196 clear_bit(STRIPE_SYNCING, &sh->state);
3197 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3198 wake_up(&conf->wait_for_overlap);
3199 s->syncing = 0;
3200 s->replacing = 0;
3201 /* There is nothing more to do for sync/check/repair.
3202 * Don't even need to abort as that is handled elsewhere
3203 * if needed, and not always wanted e.g. if there is a known
3204 * bad block here.
3205 * For recover/replace we need to record a bad block on all
3206 * non-sync devices, or abort the recovery
3207 */
3208 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3209 /* During recovery devices cannot be removed, so
3210 * locking and refcounting of rdevs is not needed
3211 */
3212 for (i = 0; i < conf->raid_disks; i++) {
3213 struct md_rdev *rdev = conf->disks[i].rdev;
3214 if (rdev
3215 && !test_bit(Faulty, &rdev->flags)
3216 && !test_bit(In_sync, &rdev->flags)
3217 && !rdev_set_badblocks(rdev, sh->sector,
3218 STRIPE_SECTORS, 0))
3219 abort = 1;
3220 rdev = conf->disks[i].replacement;
3221 if (rdev
3222 && !test_bit(Faulty, &rdev->flags)
3223 && !test_bit(In_sync, &rdev->flags)
3224 && !rdev_set_badblocks(rdev, sh->sector,
3225 STRIPE_SECTORS, 0))
3226 abort = 1;
3227 }
3228 if (abort)
3229 conf->recovery_disabled =
3230 conf->mddev->recovery_disabled;
3231 }
3232 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3233 }
3234
3235 static int want_replace(struct stripe_head *sh, int disk_idx)
3236 {
3237 struct md_rdev *rdev;
3238 int rv = 0;
3239 /* Doing recovery so rcu locking not required */
3240 rdev = sh->raid_conf->disks[disk_idx].replacement;
3241 if (rdev
3242 && !test_bit(Faulty, &rdev->flags)
3243 && !test_bit(In_sync, &rdev->flags)
3244 && (rdev->recovery_offset <= sh->sector
3245 || rdev->mddev->recovery_cp <= sh->sector))
3246 rv = 1;
3247
3248 return rv;
3249 }
3250
3251 /* fetch_block - checks the given member device to see if its data needs
3252 * to be read or computed to satisfy a request.
3253 *
3254 * Returns 1 when no more member devices need to be checked, otherwise returns
3255 * 0 to tell the loop in handle_stripe_fill to continue
3256 */
3257
3258 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3259 int disk_idx, int disks)
3260 {
3261 struct r5dev *dev = &sh->dev[disk_idx];
3262 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3263 &sh->dev[s->failed_num[1]] };
3264 int i;
3265
3266
3267 if (test_bit(R5_LOCKED, &dev->flags) ||
3268 test_bit(R5_UPTODATE, &dev->flags))
3269 /* No point reading this as we already have it or have
3270 * decided to get it.
3271 */
3272 return 0;
3273
3274 if (dev->toread ||
3275 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3276 /* We need this block to directly satisfy a request */
3277 return 1;
3278
3279 if (s->syncing || s->expanding ||
3280 (s->replacing && want_replace(sh, disk_idx)))
3281 /* When syncing, or expanding we read everything.
3282 * When replacing, we need the replaced block.
3283 */
3284 return 1;
3285
3286 if ((s->failed >= 1 && fdev[0]->toread) ||
3287 (s->failed >= 2 && fdev[1]->toread))
3288 /* If we want to read from a failed device, then
3289 * we need to actually read every other device.
3290 */
3291 return 1;
3292
3293 /* Sometimes neither read-modify-write nor reconstruct-write
3294 * cycles can work. In those cases we read every block we
3295 * can. Then the parity-update is certain to have enough to
3296 * work with.
3297 * This can only be a problem when we need to write something,
3298 * and some device has failed. If either of those tests
3299 * fail we need look no further.
3300 */
3301 if (!s->failed || !s->to_write)
3302 return 0;
3303
3304 if (test_bit(R5_Insync, &dev->flags) &&
3305 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3306 /* Pre-reads at not permitted until after short delay
3307 * to gather multiple requests. However if this
3308 * device is no Insync, the block could only be be computed
3309 * and there is no need to delay that.
3310 */
3311 return 0;
3312
3313 for (i = 0; i < s->failed && i < 2; i++) {
3314 if (fdev[i]->towrite &&
3315 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3316 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3317 /* If we have a partial write to a failed
3318 * device, then we will need to reconstruct
3319 * the content of that device, so all other
3320 * devices must be read.
3321 */
3322 return 1;
3323 }
3324
3325 /* If we are forced to do a reconstruct-write, either because
3326 * the current RAID6 implementation only supports that, or
3327 * or because parity cannot be trusted and we are currently
3328 * recovering it, there is extra need to be careful.
3329 * If one of the devices that we would need to read, because
3330 * it is not being overwritten (and maybe not written at all)
3331 * is missing/faulty, then we need to read everything we can.
3332 */
3333 if (sh->raid_conf->level != 6 &&
3334 sh->sector < sh->raid_conf->mddev->recovery_cp)
3335 /* reconstruct-write isn't being forced */
3336 return 0;
3337 for (i = 0; i < s->failed && i < 2; i++) {
3338 if (s->failed_num[i] != sh->pd_idx &&
3339 s->failed_num[i] != sh->qd_idx &&
3340 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3341 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3342 return 1;
3343 }
3344
3345 return 0;
3346 }
3347
3348 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3349 int disk_idx, int disks)
3350 {
3351 struct r5dev *dev = &sh->dev[disk_idx];
3352
3353 /* is the data in this block needed, and can we get it? */
3354 if (need_this_block(sh, s, disk_idx, disks)) {
3355 /* we would like to get this block, possibly by computing it,
3356 * otherwise read it if the backing disk is insync
3357 */
3358 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3359 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3360 BUG_ON(sh->batch_head);
3361 if ((s->uptodate == disks - 1) &&
3362 (s->failed && (disk_idx == s->failed_num[0] ||
3363 disk_idx == s->failed_num[1]))) {
3364 /* have disk failed, and we're requested to fetch it;
3365 * do compute it
3366 */
3367 pr_debug("Computing stripe %llu block %d\n",
3368 (unsigned long long)sh->sector, disk_idx);
3369 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3370 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3371 set_bit(R5_Wantcompute, &dev->flags);
3372 sh->ops.target = disk_idx;
3373 sh->ops.target2 = -1; /* no 2nd target */
3374 s->req_compute = 1;
3375 /* Careful: from this point on 'uptodate' is in the eye
3376 * of raid_run_ops which services 'compute' operations
3377 * before writes. R5_Wantcompute flags a block that will
3378 * be R5_UPTODATE by the time it is needed for a
3379 * subsequent operation.
3380 */
3381 s->uptodate++;
3382 return 1;
3383 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3384 /* Computing 2-failure is *very* expensive; only
3385 * do it if failed >= 2
3386 */
3387 int other;
3388 for (other = disks; other--; ) {
3389 if (other == disk_idx)
3390 continue;
3391 if (!test_bit(R5_UPTODATE,
3392 &sh->dev[other].flags))
3393 break;
3394 }
3395 BUG_ON(other < 0);
3396 pr_debug("Computing stripe %llu blocks %d,%d\n",
3397 (unsigned long long)sh->sector,
3398 disk_idx, other);
3399 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3400 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3401 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3402 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3403 sh->ops.target = disk_idx;
3404 sh->ops.target2 = other;
3405 s->uptodate += 2;
3406 s->req_compute = 1;
3407 return 1;
3408 } else if (test_bit(R5_Insync, &dev->flags)) {
3409 set_bit(R5_LOCKED, &dev->flags);
3410 set_bit(R5_Wantread, &dev->flags);
3411 s->locked++;
3412 pr_debug("Reading block %d (sync=%d)\n",
3413 disk_idx, s->syncing);
3414 }
3415 }
3416
3417 return 0;
3418 }
3419
3420 /**
3421 * handle_stripe_fill - read or compute data to satisfy pending requests.
3422 */
3423 static void handle_stripe_fill(struct stripe_head *sh,
3424 struct stripe_head_state *s,
3425 int disks)
3426 {
3427 int i;
3428
3429 /* look for blocks to read/compute, skip this if a compute
3430 * is already in flight, or if the stripe contents are in the
3431 * midst of changing due to a write
3432 */
3433 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3434 !sh->reconstruct_state)
3435 for (i = disks; i--; )
3436 if (fetch_block(sh, s, i, disks))
3437 break;
3438 set_bit(STRIPE_HANDLE, &sh->state);
3439 }
3440
3441 static void break_stripe_batch_list(struct stripe_head *head_sh,
3442 unsigned long handle_flags);
3443 /* handle_stripe_clean_event
3444 * any written block on an uptodate or failed drive can be returned.
3445 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3446 * never LOCKED, so we don't need to test 'failed' directly.
3447 */
3448 static void handle_stripe_clean_event(struct r5conf *conf,
3449 struct stripe_head *sh, int disks, struct bio_list *return_bi)
3450 {
3451 int i;
3452 struct r5dev *dev;
3453 int discard_pending = 0;
3454 struct stripe_head *head_sh = sh;
3455 bool do_endio = false;
3456
3457 for (i = disks; i--; )
3458 if (sh->dev[i].written) {
3459 dev = &sh->dev[i];
3460 if (!test_bit(R5_LOCKED, &dev->flags) &&
3461 (test_bit(R5_UPTODATE, &dev->flags) ||
3462 test_bit(R5_Discard, &dev->flags) ||
3463 test_bit(R5_SkipCopy, &dev->flags))) {
3464 /* We can return any write requests */
3465 struct bio *wbi, *wbi2;
3466 pr_debug("Return write for disc %d\n", i);
3467 if (test_and_clear_bit(R5_Discard, &dev->flags))
3468 clear_bit(R5_UPTODATE, &dev->flags);
3469 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3470 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3471 }
3472 do_endio = true;
3473
3474 returnbi:
3475 dev->page = dev->orig_page;
3476 wbi = dev->written;
3477 dev->written = NULL;
3478 while (wbi && wbi->bi_iter.bi_sector <
3479 dev->sector + STRIPE_SECTORS) {
3480 wbi2 = r5_next_bio(wbi, dev->sector);
3481 if (!raid5_dec_bi_active_stripes(wbi)) {
3482 md_write_end(conf->mddev);
3483 bio_list_add(return_bi, wbi);
3484 }
3485 wbi = wbi2;
3486 }
3487 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3488 STRIPE_SECTORS,
3489 !test_bit(STRIPE_DEGRADED, &sh->state),
3490 0);
3491 if (head_sh->batch_head) {
3492 sh = list_first_entry(&sh->batch_list,
3493 struct stripe_head,
3494 batch_list);
3495 if (sh != head_sh) {
3496 dev = &sh->dev[i];
3497 goto returnbi;
3498 }
3499 }
3500 sh = head_sh;
3501 dev = &sh->dev[i];
3502 } else if (test_bit(R5_Discard, &dev->flags))
3503 discard_pending = 1;
3504 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3505 WARN_ON(dev->page != dev->orig_page);
3506 }
3507
3508 r5l_stripe_write_finished(sh);
3509
3510 if (!discard_pending &&
3511 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3512 int hash;
3513 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3514 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3515 if (sh->qd_idx >= 0) {
3516 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3517 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3518 }
3519 /* now that discard is done we can proceed with any sync */
3520 clear_bit(STRIPE_DISCARD, &sh->state);
3521 /*
3522 * SCSI discard will change some bio fields and the stripe has
3523 * no updated data, so remove it from hash list and the stripe
3524 * will be reinitialized
3525 */
3526 unhash:
3527 hash = sh->hash_lock_index;
3528 spin_lock_irq(conf->hash_locks + hash);
3529 remove_hash(sh);
3530 spin_unlock_irq(conf->hash_locks + hash);
3531 if (head_sh->batch_head) {
3532 sh = list_first_entry(&sh->batch_list,
3533 struct stripe_head, batch_list);
3534 if (sh != head_sh)
3535 goto unhash;
3536 }
3537 sh = head_sh;
3538
3539 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3540 set_bit(STRIPE_HANDLE, &sh->state);
3541
3542 }
3543
3544 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3545 if (atomic_dec_and_test(&conf->pending_full_writes))
3546 md_wakeup_thread(conf->mddev->thread);
3547
3548 if (head_sh->batch_head && do_endio)
3549 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3550 }
3551
3552 static void handle_stripe_dirtying(struct r5conf *conf,
3553 struct stripe_head *sh,
3554 struct stripe_head_state *s,
3555 int disks)
3556 {
3557 int rmw = 0, rcw = 0, i;
3558 sector_t recovery_cp = conf->mddev->recovery_cp;
3559
3560 /* Check whether resync is now happening or should start.
3561 * If yes, then the array is dirty (after unclean shutdown or
3562 * initial creation), so parity in some stripes might be inconsistent.
3563 * In this case, we need to always do reconstruct-write, to ensure
3564 * that in case of drive failure or read-error correction, we
3565 * generate correct data from the parity.
3566 */
3567 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3568 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3569 s->failed == 0)) {
3570 /* Calculate the real rcw later - for now make it
3571 * look like rcw is cheaper
3572 */
3573 rcw = 1; rmw = 2;
3574 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3575 conf->rmw_level, (unsigned long long)recovery_cp,
3576 (unsigned long long)sh->sector);
3577 } else for (i = disks; i--; ) {
3578 /* would I have to read this buffer for read_modify_write */
3579 struct r5dev *dev = &sh->dev[i];
3580 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3581 !test_bit(R5_LOCKED, &dev->flags) &&
3582 !(test_bit(R5_UPTODATE, &dev->flags) ||
3583 test_bit(R5_Wantcompute, &dev->flags))) {
3584 if (test_bit(R5_Insync, &dev->flags))
3585 rmw++;
3586 else
3587 rmw += 2*disks; /* cannot read it */
3588 }
3589 /* Would I have to read this buffer for reconstruct_write */
3590 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3591 i != sh->pd_idx && i != sh->qd_idx &&
3592 !test_bit(R5_LOCKED, &dev->flags) &&
3593 !(test_bit(R5_UPTODATE, &dev->flags) ||
3594 test_bit(R5_Wantcompute, &dev->flags))) {
3595 if (test_bit(R5_Insync, &dev->flags))
3596 rcw++;
3597 else
3598 rcw += 2*disks;
3599 }
3600 }
3601 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3602 (unsigned long long)sh->sector, rmw, rcw);
3603 set_bit(STRIPE_HANDLE, &sh->state);
3604 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3605 /* prefer read-modify-write, but need to get some data */
3606 if (conf->mddev->queue)
3607 blk_add_trace_msg(conf->mddev->queue,
3608 "raid5 rmw %llu %d",
3609 (unsigned long long)sh->sector, rmw);
3610 for (i = disks; i--; ) {
3611 struct r5dev *dev = &sh->dev[i];
3612 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3613 !test_bit(R5_LOCKED, &dev->flags) &&
3614 !(test_bit(R5_UPTODATE, &dev->flags) ||
3615 test_bit(R5_Wantcompute, &dev->flags)) &&
3616 test_bit(R5_Insync, &dev->flags)) {
3617 if (test_bit(STRIPE_PREREAD_ACTIVE,
3618 &sh->state)) {
3619 pr_debug("Read_old block %d for r-m-w\n",
3620 i);
3621 set_bit(R5_LOCKED, &dev->flags);
3622 set_bit(R5_Wantread, &dev->flags);
3623 s->locked++;
3624 } else {
3625 set_bit(STRIPE_DELAYED, &sh->state);
3626 set_bit(STRIPE_HANDLE, &sh->state);
3627 }
3628 }
3629 }
3630 }
3631 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3632 /* want reconstruct write, but need to get some data */
3633 int qread =0;
3634 rcw = 0;
3635 for (i = disks; i--; ) {
3636 struct r5dev *dev = &sh->dev[i];
3637 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3638 i != sh->pd_idx && i != sh->qd_idx &&
3639 !test_bit(R5_LOCKED, &dev->flags) &&
3640 !(test_bit(R5_UPTODATE, &dev->flags) ||
3641 test_bit(R5_Wantcompute, &dev->flags))) {
3642 rcw++;
3643 if (test_bit(R5_Insync, &dev->flags) &&
3644 test_bit(STRIPE_PREREAD_ACTIVE,
3645 &sh->state)) {
3646 pr_debug("Read_old block "
3647 "%d for Reconstruct\n", i);
3648 set_bit(R5_LOCKED, &dev->flags);
3649 set_bit(R5_Wantread, &dev->flags);
3650 s->locked++;
3651 qread++;
3652 } else {
3653 set_bit(STRIPE_DELAYED, &sh->state);
3654 set_bit(STRIPE_HANDLE, &sh->state);
3655 }
3656 }
3657 }
3658 if (rcw && conf->mddev->queue)
3659 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3660 (unsigned long long)sh->sector,
3661 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3662 }
3663
3664 if (rcw > disks && rmw > disks &&
3665 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3666 set_bit(STRIPE_DELAYED, &sh->state);
3667
3668 /* now if nothing is locked, and if we have enough data,
3669 * we can start a write request
3670 */
3671 /* since handle_stripe can be called at any time we need to handle the
3672 * case where a compute block operation has been submitted and then a
3673 * subsequent call wants to start a write request. raid_run_ops only
3674 * handles the case where compute block and reconstruct are requested
3675 * simultaneously. If this is not the case then new writes need to be
3676 * held off until the compute completes.
3677 */
3678 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3679 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3680 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3681 schedule_reconstruction(sh, s, rcw == 0, 0);
3682 }
3683
3684 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3685 struct stripe_head_state *s, int disks)
3686 {
3687 struct r5dev *dev = NULL;
3688
3689 BUG_ON(sh->batch_head);
3690 set_bit(STRIPE_HANDLE, &sh->state);
3691
3692 switch (sh->check_state) {
3693 case check_state_idle:
3694 /* start a new check operation if there are no failures */
3695 if (s->failed == 0) {
3696 BUG_ON(s->uptodate != disks);
3697 sh->check_state = check_state_run;
3698 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3699 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3700 s->uptodate--;
3701 break;
3702 }
3703 dev = &sh->dev[s->failed_num[0]];
3704 /* fall through */
3705 case check_state_compute_result:
3706 sh->check_state = check_state_idle;
3707 if (!dev)
3708 dev = &sh->dev[sh->pd_idx];
3709
3710 /* check that a write has not made the stripe insync */
3711 if (test_bit(STRIPE_INSYNC, &sh->state))
3712 break;
3713
3714 /* either failed parity check, or recovery is happening */
3715 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3716 BUG_ON(s->uptodate != disks);
3717
3718 set_bit(R5_LOCKED, &dev->flags);
3719 s->locked++;
3720 set_bit(R5_Wantwrite, &dev->flags);
3721
3722 clear_bit(STRIPE_DEGRADED, &sh->state);
3723 set_bit(STRIPE_INSYNC, &sh->state);
3724 break;
3725 case check_state_run:
3726 break; /* we will be called again upon completion */
3727 case check_state_check_result:
3728 sh->check_state = check_state_idle;
3729
3730 /* if a failure occurred during the check operation, leave
3731 * STRIPE_INSYNC not set and let the stripe be handled again
3732 */
3733 if (s->failed)
3734 break;
3735
3736 /* handle a successful check operation, if parity is correct
3737 * we are done. Otherwise update the mismatch count and repair
3738 * parity if !MD_RECOVERY_CHECK
3739 */
3740 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3741 /* parity is correct (on disc,
3742 * not in buffer any more)
3743 */
3744 set_bit(STRIPE_INSYNC, &sh->state);
3745 else {
3746 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3747 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3748 /* don't try to repair!! */
3749 set_bit(STRIPE_INSYNC, &sh->state);
3750 else {
3751 sh->check_state = check_state_compute_run;
3752 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3753 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3754 set_bit(R5_Wantcompute,
3755 &sh->dev[sh->pd_idx].flags);
3756 sh->ops.target = sh->pd_idx;
3757 sh->ops.target2 = -1;
3758 s->uptodate++;
3759 }
3760 }
3761 break;
3762 case check_state_compute_run:
3763 break;
3764 default:
3765 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3766 __func__, sh->check_state,
3767 (unsigned long long) sh->sector);
3768 BUG();
3769 }
3770 }
3771
3772 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3773 struct stripe_head_state *s,
3774 int disks)
3775 {
3776 int pd_idx = sh->pd_idx;
3777 int qd_idx = sh->qd_idx;
3778 struct r5dev *dev;
3779
3780 BUG_ON(sh->batch_head);
3781 set_bit(STRIPE_HANDLE, &sh->state);
3782
3783 BUG_ON(s->failed > 2);
3784
3785 /* Want to check and possibly repair P and Q.
3786 * However there could be one 'failed' device, in which
3787 * case we can only check one of them, possibly using the
3788 * other to generate missing data
3789 */
3790
3791 switch (sh->check_state) {
3792 case check_state_idle:
3793 /* start a new check operation if there are < 2 failures */
3794 if (s->failed == s->q_failed) {
3795 /* The only possible failed device holds Q, so it
3796 * makes sense to check P (If anything else were failed,
3797 * we would have used P to recreate it).
3798 */
3799 sh->check_state = check_state_run;
3800 }
3801 if (!s->q_failed && s->failed < 2) {
3802 /* Q is not failed, and we didn't use it to generate
3803 * anything, so it makes sense to check it
3804 */
3805 if (sh->check_state == check_state_run)
3806 sh->check_state = check_state_run_pq;
3807 else
3808 sh->check_state = check_state_run_q;
3809 }
3810
3811 /* discard potentially stale zero_sum_result */
3812 sh->ops.zero_sum_result = 0;
3813
3814 if (sh->check_state == check_state_run) {
3815 /* async_xor_zero_sum destroys the contents of P */
3816 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3817 s->uptodate--;
3818 }
3819 if (sh->check_state >= check_state_run &&
3820 sh->check_state <= check_state_run_pq) {
3821 /* async_syndrome_zero_sum preserves P and Q, so
3822 * no need to mark them !uptodate here
3823 */
3824 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3825 break;
3826 }
3827
3828 /* we have 2-disk failure */
3829 BUG_ON(s->failed != 2);
3830 /* fall through */
3831 case check_state_compute_result:
3832 sh->check_state = check_state_idle;
3833
3834 /* check that a write has not made the stripe insync */
3835 if (test_bit(STRIPE_INSYNC, &sh->state))
3836 break;
3837
3838 /* now write out any block on a failed drive,
3839 * or P or Q if they were recomputed
3840 */
3841 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3842 if (s->failed == 2) {
3843 dev = &sh->dev[s->failed_num[1]];
3844 s->locked++;
3845 set_bit(R5_LOCKED, &dev->flags);
3846 set_bit(R5_Wantwrite, &dev->flags);
3847 }
3848 if (s->failed >= 1) {
3849 dev = &sh->dev[s->failed_num[0]];
3850 s->locked++;
3851 set_bit(R5_LOCKED, &dev->flags);
3852 set_bit(R5_Wantwrite, &dev->flags);
3853 }
3854 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3855 dev = &sh->dev[pd_idx];
3856 s->locked++;
3857 set_bit(R5_LOCKED, &dev->flags);
3858 set_bit(R5_Wantwrite, &dev->flags);
3859 }
3860 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3861 dev = &sh->dev[qd_idx];
3862 s->locked++;
3863 set_bit(R5_LOCKED, &dev->flags);
3864 set_bit(R5_Wantwrite, &dev->flags);
3865 }
3866 clear_bit(STRIPE_DEGRADED, &sh->state);
3867
3868 set_bit(STRIPE_INSYNC, &sh->state);
3869 break;
3870 case check_state_run:
3871 case check_state_run_q:
3872 case check_state_run_pq:
3873 break; /* we will be called again upon completion */
3874 case check_state_check_result:
3875 sh->check_state = check_state_idle;
3876
3877 /* handle a successful check operation, if parity is correct
3878 * we are done. Otherwise update the mismatch count and repair
3879 * parity if !MD_RECOVERY_CHECK
3880 */
3881 if (sh->ops.zero_sum_result == 0) {
3882 /* both parities are correct */
3883 if (!s->failed)
3884 set_bit(STRIPE_INSYNC, &sh->state);
3885 else {
3886 /* in contrast to the raid5 case we can validate
3887 * parity, but still have a failure to write
3888 * back
3889 */
3890 sh->check_state = check_state_compute_result;
3891 /* Returning at this point means that we may go
3892 * off and bring p and/or q uptodate again so
3893 * we make sure to check zero_sum_result again
3894 * to verify if p or q need writeback
3895 */
3896 }
3897 } else {
3898 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3899 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3900 /* don't try to repair!! */
3901 set_bit(STRIPE_INSYNC, &sh->state);
3902 else {
3903 int *target = &sh->ops.target;
3904
3905 sh->ops.target = -1;
3906 sh->ops.target2 = -1;
3907 sh->check_state = check_state_compute_run;
3908 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3909 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3910 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3911 set_bit(R5_Wantcompute,
3912 &sh->dev[pd_idx].flags);
3913 *target = pd_idx;
3914 target = &sh->ops.target2;
3915 s->uptodate++;
3916 }
3917 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3918 set_bit(R5_Wantcompute,
3919 &sh->dev[qd_idx].flags);
3920 *target = qd_idx;
3921 s->uptodate++;
3922 }
3923 }
3924 }
3925 break;
3926 case check_state_compute_run:
3927 break;
3928 default:
3929 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3930 __func__, sh->check_state,
3931 (unsigned long long) sh->sector);
3932 BUG();
3933 }
3934 }
3935
3936 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3937 {
3938 int i;
3939
3940 /* We have read all the blocks in this stripe and now we need to
3941 * copy some of them into a target stripe for expand.
3942 */
3943 struct dma_async_tx_descriptor *tx = NULL;
3944 BUG_ON(sh->batch_head);
3945 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3946 for (i = 0; i < sh->disks; i++)
3947 if (i != sh->pd_idx && i != sh->qd_idx) {
3948 int dd_idx, j;
3949 struct stripe_head *sh2;
3950 struct async_submit_ctl submit;
3951
3952 sector_t bn = raid5_compute_blocknr(sh, i, 1);
3953 sector_t s = raid5_compute_sector(conf, bn, 0,
3954 &dd_idx, NULL);
3955 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3956 if (sh2 == NULL)
3957 /* so far only the early blocks of this stripe
3958 * have been requested. When later blocks
3959 * get requested, we will try again
3960 */
3961 continue;
3962 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3963 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3964 /* must have already done this block */
3965 raid5_release_stripe(sh2);
3966 continue;
3967 }
3968
3969 /* place all the copies on one channel */
3970 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3971 tx = async_memcpy(sh2->dev[dd_idx].page,
3972 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3973 &submit);
3974
3975 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3976 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3977 for (j = 0; j < conf->raid_disks; j++)
3978 if (j != sh2->pd_idx &&
3979 j != sh2->qd_idx &&
3980 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3981 break;
3982 if (j == conf->raid_disks) {
3983 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3984 set_bit(STRIPE_HANDLE, &sh2->state);
3985 }
3986 raid5_release_stripe(sh2);
3987
3988 }
3989 /* done submitting copies, wait for them to complete */
3990 async_tx_quiesce(&tx);
3991 }
3992
3993 /*
3994 * handle_stripe - do things to a stripe.
3995 *
3996 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3997 * state of various bits to see what needs to be done.
3998 * Possible results:
3999 * return some read requests which now have data
4000 * return some write requests which are safely on storage
4001 * schedule a read on some buffers
4002 * schedule a write of some buffers
4003 * return confirmation of parity correctness
4004 *
4005 */
4006
4007 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4008 {
4009 struct r5conf *conf = sh->raid_conf;
4010 int disks = sh->disks;
4011 struct r5dev *dev;
4012 int i;
4013 int do_recovery = 0;
4014
4015 memset(s, 0, sizeof(*s));
4016
4017 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4018 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4019 s->failed_num[0] = -1;
4020 s->failed_num[1] = -1;
4021 s->log_failed = r5l_log_disk_error(conf);
4022
4023 /* Now to look around and see what can be done */
4024 rcu_read_lock();
4025 for (i=disks; i--; ) {
4026 struct md_rdev *rdev;
4027 sector_t first_bad;
4028 int bad_sectors;
4029 int is_bad = 0;
4030
4031 dev = &sh->dev[i];
4032
4033 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4034 i, dev->flags,
4035 dev->toread, dev->towrite, dev->written);
4036 /* maybe we can reply to a read
4037 *
4038 * new wantfill requests are only permitted while
4039 * ops_complete_biofill is guaranteed to be inactive
4040 */
4041 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4042 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4043 set_bit(R5_Wantfill, &dev->flags);
4044
4045 /* now count some things */
4046 if (test_bit(R5_LOCKED, &dev->flags))
4047 s->locked++;
4048 if (test_bit(R5_UPTODATE, &dev->flags))
4049 s->uptodate++;
4050 if (test_bit(R5_Wantcompute, &dev->flags)) {
4051 s->compute++;
4052 BUG_ON(s->compute > 2);
4053 }
4054
4055 if (test_bit(R5_Wantfill, &dev->flags))
4056 s->to_fill++;
4057 else if (dev->toread)
4058 s->to_read++;
4059 if (dev->towrite) {
4060 s->to_write++;
4061 if (!test_bit(R5_OVERWRITE, &dev->flags))
4062 s->non_overwrite++;
4063 }
4064 if (dev->written)
4065 s->written++;
4066 /* Prefer to use the replacement for reads, but only
4067 * if it is recovered enough and has no bad blocks.
4068 */
4069 rdev = rcu_dereference(conf->disks[i].replacement);
4070 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4071 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4072 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4073 &first_bad, &bad_sectors))
4074 set_bit(R5_ReadRepl, &dev->flags);
4075 else {
4076 if (rdev && !test_bit(Faulty, &rdev->flags))
4077 set_bit(R5_NeedReplace, &dev->flags);
4078 else
4079 clear_bit(R5_NeedReplace, &dev->flags);
4080 rdev = rcu_dereference(conf->disks[i].rdev);
4081 clear_bit(R5_ReadRepl, &dev->flags);
4082 }
4083 if (rdev && test_bit(Faulty, &rdev->flags))
4084 rdev = NULL;
4085 if (rdev) {
4086 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4087 &first_bad, &bad_sectors);
4088 if (s->blocked_rdev == NULL
4089 && (test_bit(Blocked, &rdev->flags)
4090 || is_bad < 0)) {
4091 if (is_bad < 0)
4092 set_bit(BlockedBadBlocks,
4093 &rdev->flags);
4094 s->blocked_rdev = rdev;
4095 atomic_inc(&rdev->nr_pending);
4096 }
4097 }
4098 clear_bit(R5_Insync, &dev->flags);
4099 if (!rdev)
4100 /* Not in-sync */;
4101 else if (is_bad) {
4102 /* also not in-sync */
4103 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4104 test_bit(R5_UPTODATE, &dev->flags)) {
4105 /* treat as in-sync, but with a read error
4106 * which we can now try to correct
4107 */
4108 set_bit(R5_Insync, &dev->flags);
4109 set_bit(R5_ReadError, &dev->flags);
4110 }
4111 } else if (test_bit(In_sync, &rdev->flags))
4112 set_bit(R5_Insync, &dev->flags);
4113 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4114 /* in sync if before recovery_offset */
4115 set_bit(R5_Insync, &dev->flags);
4116 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4117 test_bit(R5_Expanded, &dev->flags))
4118 /* If we've reshaped into here, we assume it is Insync.
4119 * We will shortly update recovery_offset to make
4120 * it official.
4121 */
4122 set_bit(R5_Insync, &dev->flags);
4123
4124 if (test_bit(R5_WriteError, &dev->flags)) {
4125 /* This flag does not apply to '.replacement'
4126 * only to .rdev, so make sure to check that*/
4127 struct md_rdev *rdev2 = rcu_dereference(
4128 conf->disks[i].rdev);
4129 if (rdev2 == rdev)
4130 clear_bit(R5_Insync, &dev->flags);
4131 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4132 s->handle_bad_blocks = 1;
4133 atomic_inc(&rdev2->nr_pending);
4134 } else
4135 clear_bit(R5_WriteError, &dev->flags);
4136 }
4137 if (test_bit(R5_MadeGood, &dev->flags)) {
4138 /* This flag does not apply to '.replacement'
4139 * only to .rdev, so make sure to check that*/
4140 struct md_rdev *rdev2 = rcu_dereference(
4141 conf->disks[i].rdev);
4142 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4143 s->handle_bad_blocks = 1;
4144 atomic_inc(&rdev2->nr_pending);
4145 } else
4146 clear_bit(R5_MadeGood, &dev->flags);
4147 }
4148 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4149 struct md_rdev *rdev2 = rcu_dereference(
4150 conf->disks[i].replacement);
4151 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4152 s->handle_bad_blocks = 1;
4153 atomic_inc(&rdev2->nr_pending);
4154 } else
4155 clear_bit(R5_MadeGoodRepl, &dev->flags);
4156 }
4157 if (!test_bit(R5_Insync, &dev->flags)) {
4158 /* The ReadError flag will just be confusing now */
4159 clear_bit(R5_ReadError, &dev->flags);
4160 clear_bit(R5_ReWrite, &dev->flags);
4161 }
4162 if (test_bit(R5_ReadError, &dev->flags))
4163 clear_bit(R5_Insync, &dev->flags);
4164 if (!test_bit(R5_Insync, &dev->flags)) {
4165 if (s->failed < 2)
4166 s->failed_num[s->failed] = i;
4167 s->failed++;
4168 if (rdev && !test_bit(Faulty, &rdev->flags))
4169 do_recovery = 1;
4170 }
4171 }
4172 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4173 /* If there is a failed device being replaced,
4174 * we must be recovering.
4175 * else if we are after recovery_cp, we must be syncing
4176 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4177 * else we can only be replacing
4178 * sync and recovery both need to read all devices, and so
4179 * use the same flag.
4180 */
4181 if (do_recovery ||
4182 sh->sector >= conf->mddev->recovery_cp ||
4183 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4184 s->syncing = 1;
4185 else
4186 s->replacing = 1;
4187 }
4188 rcu_read_unlock();
4189 }
4190
4191 static int clear_batch_ready(struct stripe_head *sh)
4192 {
4193 /* Return '1' if this is a member of batch, or
4194 * '0' if it is a lone stripe or a head which can now be
4195 * handled.
4196 */
4197 struct stripe_head *tmp;
4198 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4199 return (sh->batch_head && sh->batch_head != sh);
4200 spin_lock(&sh->stripe_lock);
4201 if (!sh->batch_head) {
4202 spin_unlock(&sh->stripe_lock);
4203 return 0;
4204 }
4205
4206 /*
4207 * this stripe could be added to a batch list before we check
4208 * BATCH_READY, skips it
4209 */
4210 if (sh->batch_head != sh) {
4211 spin_unlock(&sh->stripe_lock);
4212 return 1;
4213 }
4214 spin_lock(&sh->batch_lock);
4215 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4216 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4217 spin_unlock(&sh->batch_lock);
4218 spin_unlock(&sh->stripe_lock);
4219
4220 /*
4221 * BATCH_READY is cleared, no new stripes can be added.
4222 * batch_list can be accessed without lock
4223 */
4224 return 0;
4225 }
4226
4227 static void break_stripe_batch_list(struct stripe_head *head_sh,
4228 unsigned long handle_flags)
4229 {
4230 struct stripe_head *sh, *next;
4231 int i;
4232 int do_wakeup = 0;
4233
4234 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4235
4236 list_del_init(&sh->batch_list);
4237
4238 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4239 (1 << STRIPE_SYNCING) |
4240 (1 << STRIPE_REPLACED) |
4241 (1 << STRIPE_PREREAD_ACTIVE) |
4242 (1 << STRIPE_DELAYED) |
4243 (1 << STRIPE_BIT_DELAY) |
4244 (1 << STRIPE_FULL_WRITE) |
4245 (1 << STRIPE_BIOFILL_RUN) |
4246 (1 << STRIPE_COMPUTE_RUN) |
4247 (1 << STRIPE_OPS_REQ_PENDING) |
4248 (1 << STRIPE_DISCARD) |
4249 (1 << STRIPE_BATCH_READY) |
4250 (1 << STRIPE_BATCH_ERR) |
4251 (1 << STRIPE_BITMAP_PENDING)));
4252 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4253 (1 << STRIPE_REPLACED)));
4254
4255 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4256 (1 << STRIPE_DEGRADED)),
4257 head_sh->state & (1 << STRIPE_INSYNC));
4258
4259 sh->check_state = head_sh->check_state;
4260 sh->reconstruct_state = head_sh->reconstruct_state;
4261 for (i = 0; i < sh->disks; i++) {
4262 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4263 do_wakeup = 1;
4264 sh->dev[i].flags = head_sh->dev[i].flags &
4265 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4266 }
4267 spin_lock_irq(&sh->stripe_lock);
4268 sh->batch_head = NULL;
4269 spin_unlock_irq(&sh->stripe_lock);
4270 if (handle_flags == 0 ||
4271 sh->state & handle_flags)
4272 set_bit(STRIPE_HANDLE, &sh->state);
4273 raid5_release_stripe(sh);
4274 }
4275 spin_lock_irq(&head_sh->stripe_lock);
4276 head_sh->batch_head = NULL;
4277 spin_unlock_irq(&head_sh->stripe_lock);
4278 for (i = 0; i < head_sh->disks; i++)
4279 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4280 do_wakeup = 1;
4281 if (head_sh->state & handle_flags)
4282 set_bit(STRIPE_HANDLE, &head_sh->state);
4283
4284 if (do_wakeup)
4285 wake_up(&head_sh->raid_conf->wait_for_overlap);
4286 }
4287
4288 static void handle_stripe(struct stripe_head *sh)
4289 {
4290 struct stripe_head_state s;
4291 struct r5conf *conf = sh->raid_conf;
4292 int i;
4293 int prexor;
4294 int disks = sh->disks;
4295 struct r5dev *pdev, *qdev;
4296
4297 clear_bit(STRIPE_HANDLE, &sh->state);
4298 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4299 /* already being handled, ensure it gets handled
4300 * again when current action finishes */
4301 set_bit(STRIPE_HANDLE, &sh->state);
4302 return;
4303 }
4304
4305 if (clear_batch_ready(sh) ) {
4306 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4307 return;
4308 }
4309
4310 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4311 break_stripe_batch_list(sh, 0);
4312
4313 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4314 spin_lock(&sh->stripe_lock);
4315 /* Cannot process 'sync' concurrently with 'discard' */
4316 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4317 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4318 set_bit(STRIPE_SYNCING, &sh->state);
4319 clear_bit(STRIPE_INSYNC, &sh->state);
4320 clear_bit(STRIPE_REPLACED, &sh->state);
4321 }
4322 spin_unlock(&sh->stripe_lock);
4323 }
4324 clear_bit(STRIPE_DELAYED, &sh->state);
4325
4326 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4327 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4328 (unsigned long long)sh->sector, sh->state,
4329 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4330 sh->check_state, sh->reconstruct_state);
4331
4332 analyse_stripe(sh, &s);
4333
4334 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4335 goto finish;
4336
4337 if (s.handle_bad_blocks) {
4338 set_bit(STRIPE_HANDLE, &sh->state);
4339 goto finish;
4340 }
4341
4342 if (unlikely(s.blocked_rdev)) {
4343 if (s.syncing || s.expanding || s.expanded ||
4344 s.replacing || s.to_write || s.written) {
4345 set_bit(STRIPE_HANDLE, &sh->state);
4346 goto finish;
4347 }
4348 /* There is nothing for the blocked_rdev to block */
4349 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4350 s.blocked_rdev = NULL;
4351 }
4352
4353 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4354 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4355 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4356 }
4357
4358 pr_debug("locked=%d uptodate=%d to_read=%d"
4359 " to_write=%d failed=%d failed_num=%d,%d\n",
4360 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4361 s.failed_num[0], s.failed_num[1]);
4362 /* check if the array has lost more than max_degraded devices and,
4363 * if so, some requests might need to be failed.
4364 */
4365 if (s.failed > conf->max_degraded || s.log_failed) {
4366 sh->check_state = 0;
4367 sh->reconstruct_state = 0;
4368 break_stripe_batch_list(sh, 0);
4369 if (s.to_read+s.to_write+s.written)
4370 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4371 if (s.syncing + s.replacing)
4372 handle_failed_sync(conf, sh, &s);
4373 }
4374
4375 /* Now we check to see if any write operations have recently
4376 * completed
4377 */
4378 prexor = 0;
4379 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4380 prexor = 1;
4381 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4382 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4383 sh->reconstruct_state = reconstruct_state_idle;
4384
4385 /* All the 'written' buffers and the parity block are ready to
4386 * be written back to disk
4387 */
4388 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4389 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4390 BUG_ON(sh->qd_idx >= 0 &&
4391 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4392 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4393 for (i = disks; i--; ) {
4394 struct r5dev *dev = &sh->dev[i];
4395 if (test_bit(R5_LOCKED, &dev->flags) &&
4396 (i == sh->pd_idx || i == sh->qd_idx ||
4397 dev->written)) {
4398 pr_debug("Writing block %d\n", i);
4399 set_bit(R5_Wantwrite, &dev->flags);
4400 if (prexor)
4401 continue;
4402 if (s.failed > 1)
4403 continue;
4404 if (!test_bit(R5_Insync, &dev->flags) ||
4405 ((i == sh->pd_idx || i == sh->qd_idx) &&
4406 s.failed == 0))
4407 set_bit(STRIPE_INSYNC, &sh->state);
4408 }
4409 }
4410 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4411 s.dec_preread_active = 1;
4412 }
4413
4414 /*
4415 * might be able to return some write requests if the parity blocks
4416 * are safe, or on a failed drive
4417 */
4418 pdev = &sh->dev[sh->pd_idx];
4419 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4420 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4421 qdev = &sh->dev[sh->qd_idx];
4422 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4423 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4424 || conf->level < 6;
4425
4426 if (s.written &&
4427 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4428 && !test_bit(R5_LOCKED, &pdev->flags)
4429 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4430 test_bit(R5_Discard, &pdev->flags))))) &&
4431 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4432 && !test_bit(R5_LOCKED, &qdev->flags)
4433 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4434 test_bit(R5_Discard, &qdev->flags))))))
4435 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4436
4437 /* Now we might consider reading some blocks, either to check/generate
4438 * parity, or to satisfy requests
4439 * or to load a block that is being partially written.
4440 */
4441 if (s.to_read || s.non_overwrite
4442 || (conf->level == 6 && s.to_write && s.failed)
4443 || (s.syncing && (s.uptodate + s.compute < disks))
4444 || s.replacing
4445 || s.expanding)
4446 handle_stripe_fill(sh, &s, disks);
4447
4448 /* Now to consider new write requests and what else, if anything
4449 * should be read. We do not handle new writes when:
4450 * 1/ A 'write' operation (copy+xor) is already in flight.
4451 * 2/ A 'check' operation is in flight, as it may clobber the parity
4452 * block.
4453 */
4454 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4455 handle_stripe_dirtying(conf, sh, &s, disks);
4456
4457 /* maybe we need to check and possibly fix the parity for this stripe
4458 * Any reads will already have been scheduled, so we just see if enough
4459 * data is available. The parity check is held off while parity
4460 * dependent operations are in flight.
4461 */
4462 if (sh->check_state ||
4463 (s.syncing && s.locked == 0 &&
4464 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4465 !test_bit(STRIPE_INSYNC, &sh->state))) {
4466 if (conf->level == 6)
4467 handle_parity_checks6(conf, sh, &s, disks);
4468 else
4469 handle_parity_checks5(conf, sh, &s, disks);
4470 }
4471
4472 if ((s.replacing || s.syncing) && s.locked == 0
4473 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4474 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4475 /* Write out to replacement devices where possible */
4476 for (i = 0; i < conf->raid_disks; i++)
4477 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4478 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4479 set_bit(R5_WantReplace, &sh->dev[i].flags);
4480 set_bit(R5_LOCKED, &sh->dev[i].flags);
4481 s.locked++;
4482 }
4483 if (s.replacing)
4484 set_bit(STRIPE_INSYNC, &sh->state);
4485 set_bit(STRIPE_REPLACED, &sh->state);
4486 }
4487 if ((s.syncing || s.replacing) && s.locked == 0 &&
4488 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4489 test_bit(STRIPE_INSYNC, &sh->state)) {
4490 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4491 clear_bit(STRIPE_SYNCING, &sh->state);
4492 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4493 wake_up(&conf->wait_for_overlap);
4494 }
4495
4496 /* If the failed drives are just a ReadError, then we might need
4497 * to progress the repair/check process
4498 */
4499 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4500 for (i = 0; i < s.failed; i++) {
4501 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4502 if (test_bit(R5_ReadError, &dev->flags)
4503 && !test_bit(R5_LOCKED, &dev->flags)
4504 && test_bit(R5_UPTODATE, &dev->flags)
4505 ) {
4506 if (!test_bit(R5_ReWrite, &dev->flags)) {
4507 set_bit(R5_Wantwrite, &dev->flags);
4508 set_bit(R5_ReWrite, &dev->flags);
4509 set_bit(R5_LOCKED, &dev->flags);
4510 s.locked++;
4511 } else {
4512 /* let's read it back */
4513 set_bit(R5_Wantread, &dev->flags);
4514 set_bit(R5_LOCKED, &dev->flags);
4515 s.locked++;
4516 }
4517 }
4518 }
4519
4520 /* Finish reconstruct operations initiated by the expansion process */
4521 if (sh->reconstruct_state == reconstruct_state_result) {
4522 struct stripe_head *sh_src
4523 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4524 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4525 /* sh cannot be written until sh_src has been read.
4526 * so arrange for sh to be delayed a little
4527 */
4528 set_bit(STRIPE_DELAYED, &sh->state);
4529 set_bit(STRIPE_HANDLE, &sh->state);
4530 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4531 &sh_src->state))
4532 atomic_inc(&conf->preread_active_stripes);
4533 raid5_release_stripe(sh_src);
4534 goto finish;
4535 }
4536 if (sh_src)
4537 raid5_release_stripe(sh_src);
4538
4539 sh->reconstruct_state = reconstruct_state_idle;
4540 clear_bit(STRIPE_EXPANDING, &sh->state);
4541 for (i = conf->raid_disks; i--; ) {
4542 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4543 set_bit(R5_LOCKED, &sh->dev[i].flags);
4544 s.locked++;
4545 }
4546 }
4547
4548 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4549 !sh->reconstruct_state) {
4550 /* Need to write out all blocks after computing parity */
4551 sh->disks = conf->raid_disks;
4552 stripe_set_idx(sh->sector, conf, 0, sh);
4553 schedule_reconstruction(sh, &s, 1, 1);
4554 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4555 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4556 atomic_dec(&conf->reshape_stripes);
4557 wake_up(&conf->wait_for_overlap);
4558 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4559 }
4560
4561 if (s.expanding && s.locked == 0 &&
4562 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4563 handle_stripe_expansion(conf, sh);
4564
4565 finish:
4566 /* wait for this device to become unblocked */
4567 if (unlikely(s.blocked_rdev)) {
4568 if (conf->mddev->external)
4569 md_wait_for_blocked_rdev(s.blocked_rdev,
4570 conf->mddev);
4571 else
4572 /* Internal metadata will immediately
4573 * be written by raid5d, so we don't
4574 * need to wait here.
4575 */
4576 rdev_dec_pending(s.blocked_rdev,
4577 conf->mddev);
4578 }
4579
4580 if (s.handle_bad_blocks)
4581 for (i = disks; i--; ) {
4582 struct md_rdev *rdev;
4583 struct r5dev *dev = &sh->dev[i];
4584 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4585 /* We own a safe reference to the rdev */
4586 rdev = conf->disks[i].rdev;
4587 if (!rdev_set_badblocks(rdev, sh->sector,
4588 STRIPE_SECTORS, 0))
4589 md_error(conf->mddev, rdev);
4590 rdev_dec_pending(rdev, conf->mddev);
4591 }
4592 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4593 rdev = conf->disks[i].rdev;
4594 rdev_clear_badblocks(rdev, sh->sector,
4595 STRIPE_SECTORS, 0);
4596 rdev_dec_pending(rdev, conf->mddev);
4597 }
4598 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4599 rdev = conf->disks[i].replacement;
4600 if (!rdev)
4601 /* rdev have been moved down */
4602 rdev = conf->disks[i].rdev;
4603 rdev_clear_badblocks(rdev, sh->sector,
4604 STRIPE_SECTORS, 0);
4605 rdev_dec_pending(rdev, conf->mddev);
4606 }
4607 }
4608
4609 if (s.ops_request)
4610 raid_run_ops(sh, s.ops_request);
4611
4612 ops_run_io(sh, &s);
4613
4614 if (s.dec_preread_active) {
4615 /* We delay this until after ops_run_io so that if make_request
4616 * is waiting on a flush, it won't continue until the writes
4617 * have actually been submitted.
4618 */
4619 atomic_dec(&conf->preread_active_stripes);
4620 if (atomic_read(&conf->preread_active_stripes) <
4621 IO_THRESHOLD)
4622 md_wakeup_thread(conf->mddev->thread);
4623 }
4624
4625 if (!bio_list_empty(&s.return_bi)) {
4626 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4627 spin_lock_irq(&conf->device_lock);
4628 bio_list_merge(&conf->return_bi, &s.return_bi);
4629 spin_unlock_irq(&conf->device_lock);
4630 md_wakeup_thread(conf->mddev->thread);
4631 } else
4632 return_io(&s.return_bi);
4633 }
4634
4635 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4636 }
4637
4638 static void raid5_activate_delayed(struct r5conf *conf)
4639 {
4640 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4641 while (!list_empty(&conf->delayed_list)) {
4642 struct list_head *l = conf->delayed_list.next;
4643 struct stripe_head *sh;
4644 sh = list_entry(l, struct stripe_head, lru);
4645 list_del_init(l);
4646 clear_bit(STRIPE_DELAYED, &sh->state);
4647 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4648 atomic_inc(&conf->preread_active_stripes);
4649 list_add_tail(&sh->lru, &conf->hold_list);
4650 raid5_wakeup_stripe_thread(sh);
4651 }
4652 }
4653 }
4654
4655 static void activate_bit_delay(struct r5conf *conf,
4656 struct list_head *temp_inactive_list)
4657 {
4658 /* device_lock is held */
4659 struct list_head head;
4660 list_add(&head, &conf->bitmap_list);
4661 list_del_init(&conf->bitmap_list);
4662 while (!list_empty(&head)) {
4663 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4664 int hash;
4665 list_del_init(&sh->lru);
4666 atomic_inc(&sh->count);
4667 hash = sh->hash_lock_index;
4668 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4669 }
4670 }
4671
4672 static int raid5_congested(struct mddev *mddev, int bits)
4673 {
4674 struct r5conf *conf = mddev->private;
4675
4676 /* No difference between reads and writes. Just check
4677 * how busy the stripe_cache is
4678 */
4679
4680 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4681 return 1;
4682 if (conf->quiesce)
4683 return 1;
4684 if (atomic_read(&conf->empty_inactive_list_nr))
4685 return 1;
4686
4687 return 0;
4688 }
4689
4690 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4691 {
4692 struct r5conf *conf = mddev->private;
4693 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4694 unsigned int chunk_sectors;
4695 unsigned int bio_sectors = bio_sectors(bio);
4696
4697 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4698 return chunk_sectors >=
4699 ((sector & (chunk_sectors - 1)) + bio_sectors);
4700 }
4701
4702 /*
4703 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4704 * later sampled by raid5d.
4705 */
4706 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4707 {
4708 unsigned long flags;
4709
4710 spin_lock_irqsave(&conf->device_lock, flags);
4711
4712 bi->bi_next = conf->retry_read_aligned_list;
4713 conf->retry_read_aligned_list = bi;
4714
4715 spin_unlock_irqrestore(&conf->device_lock, flags);
4716 md_wakeup_thread(conf->mddev->thread);
4717 }
4718
4719 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4720 {
4721 struct bio *bi;
4722
4723 bi = conf->retry_read_aligned;
4724 if (bi) {
4725 conf->retry_read_aligned = NULL;
4726 return bi;
4727 }
4728 bi = conf->retry_read_aligned_list;
4729 if(bi) {
4730 conf->retry_read_aligned_list = bi->bi_next;
4731 bi->bi_next = NULL;
4732 /*
4733 * this sets the active strip count to 1 and the processed
4734 * strip count to zero (upper 8 bits)
4735 */
4736 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4737 }
4738
4739 return bi;
4740 }
4741
4742 /*
4743 * The "raid5_align_endio" should check if the read succeeded and if it
4744 * did, call bio_endio on the original bio (having bio_put the new bio
4745 * first).
4746 * If the read failed..
4747 */
4748 static void raid5_align_endio(struct bio *bi)
4749 {
4750 struct bio* raid_bi = bi->bi_private;
4751 struct mddev *mddev;
4752 struct r5conf *conf;
4753 struct md_rdev *rdev;
4754 int error = bi->bi_error;
4755
4756 bio_put(bi);
4757
4758 rdev = (void*)raid_bi->bi_next;
4759 raid_bi->bi_next = NULL;
4760 mddev = rdev->mddev;
4761 conf = mddev->private;
4762
4763 rdev_dec_pending(rdev, conf->mddev);
4764
4765 if (!error) {
4766 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4767 raid_bi, 0);
4768 bio_endio(raid_bi);
4769 if (atomic_dec_and_test(&conf->active_aligned_reads))
4770 wake_up(&conf->wait_for_quiescent);
4771 return;
4772 }
4773
4774 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4775
4776 add_bio_to_retry(raid_bi, conf);
4777 }
4778
4779 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4780 {
4781 struct r5conf *conf = mddev->private;
4782 int dd_idx;
4783 struct bio* align_bi;
4784 struct md_rdev *rdev;
4785 sector_t end_sector;
4786
4787 if (!in_chunk_boundary(mddev, raid_bio)) {
4788 pr_debug("%s: non aligned\n", __func__);
4789 return 0;
4790 }
4791 /*
4792 * use bio_clone_mddev to make a copy of the bio
4793 */
4794 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4795 if (!align_bi)
4796 return 0;
4797 /*
4798 * set bi_end_io to a new function, and set bi_private to the
4799 * original bio.
4800 */
4801 align_bi->bi_end_io = raid5_align_endio;
4802 align_bi->bi_private = raid_bio;
4803 /*
4804 * compute position
4805 */
4806 align_bi->bi_iter.bi_sector =
4807 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4808 0, &dd_idx, NULL);
4809
4810 end_sector = bio_end_sector(align_bi);
4811 rcu_read_lock();
4812 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4813 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4814 rdev->recovery_offset < end_sector) {
4815 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4816 if (rdev &&
4817 (test_bit(Faulty, &rdev->flags) ||
4818 !(test_bit(In_sync, &rdev->flags) ||
4819 rdev->recovery_offset >= end_sector)))
4820 rdev = NULL;
4821 }
4822 if (rdev) {
4823 sector_t first_bad;
4824 int bad_sectors;
4825
4826 atomic_inc(&rdev->nr_pending);
4827 rcu_read_unlock();
4828 raid_bio->bi_next = (void*)rdev;
4829 align_bi->bi_bdev = rdev->bdev;
4830 bio_clear_flag(align_bi, BIO_SEG_VALID);
4831
4832 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4833 bio_sectors(align_bi),
4834 &first_bad, &bad_sectors)) {
4835 bio_put(align_bi);
4836 rdev_dec_pending(rdev, mddev);
4837 return 0;
4838 }
4839
4840 /* No reshape active, so we can trust rdev->data_offset */
4841 align_bi->bi_iter.bi_sector += rdev->data_offset;
4842
4843 spin_lock_irq(&conf->device_lock);
4844 wait_event_lock_irq(conf->wait_for_quiescent,
4845 conf->quiesce == 0,
4846 conf->device_lock);
4847 atomic_inc(&conf->active_aligned_reads);
4848 spin_unlock_irq(&conf->device_lock);
4849
4850 if (mddev->gendisk)
4851 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4852 align_bi, disk_devt(mddev->gendisk),
4853 raid_bio->bi_iter.bi_sector);
4854 generic_make_request(align_bi);
4855 return 1;
4856 } else {
4857 rcu_read_unlock();
4858 bio_put(align_bi);
4859 return 0;
4860 }
4861 }
4862
4863 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4864 {
4865 struct bio *split;
4866
4867 do {
4868 sector_t sector = raid_bio->bi_iter.bi_sector;
4869 unsigned chunk_sects = mddev->chunk_sectors;
4870 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4871
4872 if (sectors < bio_sectors(raid_bio)) {
4873 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4874 bio_chain(split, raid_bio);
4875 } else
4876 split = raid_bio;
4877
4878 if (!raid5_read_one_chunk(mddev, split)) {
4879 if (split != raid_bio)
4880 generic_make_request(raid_bio);
4881 return split;
4882 }
4883 } while (split != raid_bio);
4884
4885 return NULL;
4886 }
4887
4888 /* __get_priority_stripe - get the next stripe to process
4889 *
4890 * Full stripe writes are allowed to pass preread active stripes up until
4891 * the bypass_threshold is exceeded. In general the bypass_count
4892 * increments when the handle_list is handled before the hold_list; however, it
4893 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4894 * stripe with in flight i/o. The bypass_count will be reset when the
4895 * head of the hold_list has changed, i.e. the head was promoted to the
4896 * handle_list.
4897 */
4898 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4899 {
4900 struct stripe_head *sh = NULL, *tmp;
4901 struct list_head *handle_list = NULL;
4902 struct r5worker_group *wg = NULL;
4903
4904 if (conf->worker_cnt_per_group == 0) {
4905 handle_list = &conf->handle_list;
4906 } else if (group != ANY_GROUP) {
4907 handle_list = &conf->worker_groups[group].handle_list;
4908 wg = &conf->worker_groups[group];
4909 } else {
4910 int i;
4911 for (i = 0; i < conf->group_cnt; i++) {
4912 handle_list = &conf->worker_groups[i].handle_list;
4913 wg = &conf->worker_groups[i];
4914 if (!list_empty(handle_list))
4915 break;
4916 }
4917 }
4918
4919 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4920 __func__,
4921 list_empty(handle_list) ? "empty" : "busy",
4922 list_empty(&conf->hold_list) ? "empty" : "busy",
4923 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4924
4925 if (!list_empty(handle_list)) {
4926 sh = list_entry(handle_list->next, typeof(*sh), lru);
4927
4928 if (list_empty(&conf->hold_list))
4929 conf->bypass_count = 0;
4930 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4931 if (conf->hold_list.next == conf->last_hold)
4932 conf->bypass_count++;
4933 else {
4934 conf->last_hold = conf->hold_list.next;
4935 conf->bypass_count -= conf->bypass_threshold;
4936 if (conf->bypass_count < 0)
4937 conf->bypass_count = 0;
4938 }
4939 }
4940 } else if (!list_empty(&conf->hold_list) &&
4941 ((conf->bypass_threshold &&
4942 conf->bypass_count > conf->bypass_threshold) ||
4943 atomic_read(&conf->pending_full_writes) == 0)) {
4944
4945 list_for_each_entry(tmp, &conf->hold_list, lru) {
4946 if (conf->worker_cnt_per_group == 0 ||
4947 group == ANY_GROUP ||
4948 !cpu_online(tmp->cpu) ||
4949 cpu_to_group(tmp->cpu) == group) {
4950 sh = tmp;
4951 break;
4952 }
4953 }
4954
4955 if (sh) {
4956 conf->bypass_count -= conf->bypass_threshold;
4957 if (conf->bypass_count < 0)
4958 conf->bypass_count = 0;
4959 }
4960 wg = NULL;
4961 }
4962
4963 if (!sh)
4964 return NULL;
4965
4966 if (wg) {
4967 wg->stripes_cnt--;
4968 sh->group = NULL;
4969 }
4970 list_del_init(&sh->lru);
4971 BUG_ON(atomic_inc_return(&sh->count) != 1);
4972 return sh;
4973 }
4974
4975 struct raid5_plug_cb {
4976 struct blk_plug_cb cb;
4977 struct list_head list;
4978 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4979 };
4980
4981 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4982 {
4983 struct raid5_plug_cb *cb = container_of(
4984 blk_cb, struct raid5_plug_cb, cb);
4985 struct stripe_head *sh;
4986 struct mddev *mddev = cb->cb.data;
4987 struct r5conf *conf = mddev->private;
4988 int cnt = 0;
4989 int hash;
4990
4991 if (cb->list.next && !list_empty(&cb->list)) {
4992 spin_lock_irq(&conf->device_lock);
4993 while (!list_empty(&cb->list)) {
4994 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4995 list_del_init(&sh->lru);
4996 /*
4997 * avoid race release_stripe_plug() sees
4998 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4999 * is still in our list
5000 */
5001 smp_mb__before_atomic();
5002 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5003 /*
5004 * STRIPE_ON_RELEASE_LIST could be set here. In that
5005 * case, the count is always > 1 here
5006 */
5007 hash = sh->hash_lock_index;
5008 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5009 cnt++;
5010 }
5011 spin_unlock_irq(&conf->device_lock);
5012 }
5013 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5014 NR_STRIPE_HASH_LOCKS);
5015 if (mddev->queue)
5016 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5017 kfree(cb);
5018 }
5019
5020 static void release_stripe_plug(struct mddev *mddev,
5021 struct stripe_head *sh)
5022 {
5023 struct blk_plug_cb *blk_cb = blk_check_plugged(
5024 raid5_unplug, mddev,
5025 sizeof(struct raid5_plug_cb));
5026 struct raid5_plug_cb *cb;
5027
5028 if (!blk_cb) {
5029 raid5_release_stripe(sh);
5030 return;
5031 }
5032
5033 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5034
5035 if (cb->list.next == NULL) {
5036 int i;
5037 INIT_LIST_HEAD(&cb->list);
5038 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5039 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5040 }
5041
5042 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5043 list_add_tail(&sh->lru, &cb->list);
5044 else
5045 raid5_release_stripe(sh);
5046 }
5047
5048 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5049 {
5050 struct r5conf *conf = mddev->private;
5051 sector_t logical_sector, last_sector;
5052 struct stripe_head *sh;
5053 int remaining;
5054 int stripe_sectors;
5055
5056 if (mddev->reshape_position != MaxSector)
5057 /* Skip discard while reshape is happening */
5058 return;
5059
5060 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5061 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5062
5063 bi->bi_next = NULL;
5064 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5065
5066 stripe_sectors = conf->chunk_sectors *
5067 (conf->raid_disks - conf->max_degraded);
5068 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5069 stripe_sectors);
5070 sector_div(last_sector, stripe_sectors);
5071
5072 logical_sector *= conf->chunk_sectors;
5073 last_sector *= conf->chunk_sectors;
5074
5075 for (; logical_sector < last_sector;
5076 logical_sector += STRIPE_SECTORS) {
5077 DEFINE_WAIT(w);
5078 int d;
5079 again:
5080 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5081 prepare_to_wait(&conf->wait_for_overlap, &w,
5082 TASK_UNINTERRUPTIBLE);
5083 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5084 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5085 raid5_release_stripe(sh);
5086 schedule();
5087 goto again;
5088 }
5089 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5090 spin_lock_irq(&sh->stripe_lock);
5091 for (d = 0; d < conf->raid_disks; d++) {
5092 if (d == sh->pd_idx || d == sh->qd_idx)
5093 continue;
5094 if (sh->dev[d].towrite || sh->dev[d].toread) {
5095 set_bit(R5_Overlap, &sh->dev[d].flags);
5096 spin_unlock_irq(&sh->stripe_lock);
5097 raid5_release_stripe(sh);
5098 schedule();
5099 goto again;
5100 }
5101 }
5102 set_bit(STRIPE_DISCARD, &sh->state);
5103 finish_wait(&conf->wait_for_overlap, &w);
5104 sh->overwrite_disks = 0;
5105 for (d = 0; d < conf->raid_disks; d++) {
5106 if (d == sh->pd_idx || d == sh->qd_idx)
5107 continue;
5108 sh->dev[d].towrite = bi;
5109 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5110 raid5_inc_bi_active_stripes(bi);
5111 sh->overwrite_disks++;
5112 }
5113 spin_unlock_irq(&sh->stripe_lock);
5114 if (conf->mddev->bitmap) {
5115 for (d = 0;
5116 d < conf->raid_disks - conf->max_degraded;
5117 d++)
5118 bitmap_startwrite(mddev->bitmap,
5119 sh->sector,
5120 STRIPE_SECTORS,
5121 0);
5122 sh->bm_seq = conf->seq_flush + 1;
5123 set_bit(STRIPE_BIT_DELAY, &sh->state);
5124 }
5125
5126 set_bit(STRIPE_HANDLE, &sh->state);
5127 clear_bit(STRIPE_DELAYED, &sh->state);
5128 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5129 atomic_inc(&conf->preread_active_stripes);
5130 release_stripe_plug(mddev, sh);
5131 }
5132
5133 remaining = raid5_dec_bi_active_stripes(bi);
5134 if (remaining == 0) {
5135 md_write_end(mddev);
5136 bio_endio(bi);
5137 }
5138 }
5139
5140 static void make_request(struct mddev *mddev, struct bio * bi)
5141 {
5142 struct r5conf *conf = mddev->private;
5143 int dd_idx;
5144 sector_t new_sector;
5145 sector_t logical_sector, last_sector;
5146 struct stripe_head *sh;
5147 const int rw = bio_data_dir(bi);
5148 int remaining;
5149 DEFINE_WAIT(w);
5150 bool do_prepare;
5151
5152 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5153 int ret = r5l_handle_flush_request(conf->log, bi);
5154
5155 if (ret == 0)
5156 return;
5157 if (ret == -ENODEV) {
5158 md_flush_request(mddev, bi);
5159 return;
5160 }
5161 /* ret == -EAGAIN, fallback */
5162 }
5163
5164 md_write_start(mddev, bi);
5165
5166 /*
5167 * If array is degraded, better not do chunk aligned read because
5168 * later we might have to read it again in order to reconstruct
5169 * data on failed drives.
5170 */
5171 if (rw == READ && mddev->degraded == 0 &&
5172 mddev->reshape_position == MaxSector) {
5173 bi = chunk_aligned_read(mddev, bi);
5174 if (!bi)
5175 return;
5176 }
5177
5178 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5179 make_discard_request(mddev, bi);
5180 return;
5181 }
5182
5183 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5184 last_sector = bio_end_sector(bi);
5185 bi->bi_next = NULL;
5186 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5187
5188 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5189 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5190 int previous;
5191 int seq;
5192
5193 do_prepare = false;
5194 retry:
5195 seq = read_seqcount_begin(&conf->gen_lock);
5196 previous = 0;
5197 if (do_prepare)
5198 prepare_to_wait(&conf->wait_for_overlap, &w,
5199 TASK_UNINTERRUPTIBLE);
5200 if (unlikely(conf->reshape_progress != MaxSector)) {
5201 /* spinlock is needed as reshape_progress may be
5202 * 64bit on a 32bit platform, and so it might be
5203 * possible to see a half-updated value
5204 * Of course reshape_progress could change after
5205 * the lock is dropped, so once we get a reference
5206 * to the stripe that we think it is, we will have
5207 * to check again.
5208 */
5209 spin_lock_irq(&conf->device_lock);
5210 if (mddev->reshape_backwards
5211 ? logical_sector < conf->reshape_progress
5212 : logical_sector >= conf->reshape_progress) {
5213 previous = 1;
5214 } else {
5215 if (mddev->reshape_backwards
5216 ? logical_sector < conf->reshape_safe
5217 : logical_sector >= conf->reshape_safe) {
5218 spin_unlock_irq(&conf->device_lock);
5219 schedule();
5220 do_prepare = true;
5221 goto retry;
5222 }
5223 }
5224 spin_unlock_irq(&conf->device_lock);
5225 }
5226
5227 new_sector = raid5_compute_sector(conf, logical_sector,
5228 previous,
5229 &dd_idx, NULL);
5230 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5231 (unsigned long long)new_sector,
5232 (unsigned long long)logical_sector);
5233
5234 sh = raid5_get_active_stripe(conf, new_sector, previous,
5235 (bi->bi_rw&RWA_MASK), 0);
5236 if (sh) {
5237 if (unlikely(previous)) {
5238 /* expansion might have moved on while waiting for a
5239 * stripe, so we must do the range check again.
5240 * Expansion could still move past after this
5241 * test, but as we are holding a reference to
5242 * 'sh', we know that if that happens,
5243 * STRIPE_EXPANDING will get set and the expansion
5244 * won't proceed until we finish with the stripe.
5245 */
5246 int must_retry = 0;
5247 spin_lock_irq(&conf->device_lock);
5248 if (mddev->reshape_backwards
5249 ? logical_sector >= conf->reshape_progress
5250 : logical_sector < conf->reshape_progress)
5251 /* mismatch, need to try again */
5252 must_retry = 1;
5253 spin_unlock_irq(&conf->device_lock);
5254 if (must_retry) {
5255 raid5_release_stripe(sh);
5256 schedule();
5257 do_prepare = true;
5258 goto retry;
5259 }
5260 }
5261 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5262 /* Might have got the wrong stripe_head
5263 * by accident
5264 */
5265 raid5_release_stripe(sh);
5266 goto retry;
5267 }
5268
5269 if (rw == WRITE &&
5270 logical_sector >= mddev->suspend_lo &&
5271 logical_sector < mddev->suspend_hi) {
5272 raid5_release_stripe(sh);
5273 /* As the suspend_* range is controlled by
5274 * userspace, we want an interruptible
5275 * wait.
5276 */
5277 flush_signals(current);
5278 prepare_to_wait(&conf->wait_for_overlap,
5279 &w, TASK_INTERRUPTIBLE);
5280 if (logical_sector >= mddev->suspend_lo &&
5281 logical_sector < mddev->suspend_hi) {
5282 schedule();
5283 do_prepare = true;
5284 }
5285 goto retry;
5286 }
5287
5288 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5289 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5290 /* Stripe is busy expanding or
5291 * add failed due to overlap. Flush everything
5292 * and wait a while
5293 */
5294 md_wakeup_thread(mddev->thread);
5295 raid5_release_stripe(sh);
5296 schedule();
5297 do_prepare = true;
5298 goto retry;
5299 }
5300 set_bit(STRIPE_HANDLE, &sh->state);
5301 clear_bit(STRIPE_DELAYED, &sh->state);
5302 if ((!sh->batch_head || sh == sh->batch_head) &&
5303 (bi->bi_rw & REQ_SYNC) &&
5304 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5305 atomic_inc(&conf->preread_active_stripes);
5306 release_stripe_plug(mddev, sh);
5307 } else {
5308 /* cannot get stripe for read-ahead, just give-up */
5309 bi->bi_error = -EIO;
5310 break;
5311 }
5312 }
5313 finish_wait(&conf->wait_for_overlap, &w);
5314
5315 remaining = raid5_dec_bi_active_stripes(bi);
5316 if (remaining == 0) {
5317
5318 if ( rw == WRITE )
5319 md_write_end(mddev);
5320
5321 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5322 bi, 0);
5323 bio_endio(bi);
5324 }
5325 }
5326
5327 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5328
5329 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5330 {
5331 /* reshaping is quite different to recovery/resync so it is
5332 * handled quite separately ... here.
5333 *
5334 * On each call to sync_request, we gather one chunk worth of
5335 * destination stripes and flag them as expanding.
5336 * Then we find all the source stripes and request reads.
5337 * As the reads complete, handle_stripe will copy the data
5338 * into the destination stripe and release that stripe.
5339 */
5340 struct r5conf *conf = mddev->private;
5341 struct stripe_head *sh;
5342 sector_t first_sector, last_sector;
5343 int raid_disks = conf->previous_raid_disks;
5344 int data_disks = raid_disks - conf->max_degraded;
5345 int new_data_disks = conf->raid_disks - conf->max_degraded;
5346 int i;
5347 int dd_idx;
5348 sector_t writepos, readpos, safepos;
5349 sector_t stripe_addr;
5350 int reshape_sectors;
5351 struct list_head stripes;
5352 sector_t retn;
5353
5354 if (sector_nr == 0) {
5355 /* If restarting in the middle, skip the initial sectors */
5356 if (mddev->reshape_backwards &&
5357 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5358 sector_nr = raid5_size(mddev, 0, 0)
5359 - conf->reshape_progress;
5360 } else if (mddev->reshape_backwards &&
5361 conf->reshape_progress == MaxSector) {
5362 /* shouldn't happen, but just in case, finish up.*/
5363 sector_nr = MaxSector;
5364 } else if (!mddev->reshape_backwards &&
5365 conf->reshape_progress > 0)
5366 sector_nr = conf->reshape_progress;
5367 sector_div(sector_nr, new_data_disks);
5368 if (sector_nr) {
5369 mddev->curr_resync_completed = sector_nr;
5370 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5371 *skipped = 1;
5372 retn = sector_nr;
5373 goto finish;
5374 }
5375 }
5376
5377 /* We need to process a full chunk at a time.
5378 * If old and new chunk sizes differ, we need to process the
5379 * largest of these
5380 */
5381
5382 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5383
5384 /* We update the metadata at least every 10 seconds, or when
5385 * the data about to be copied would over-write the source of
5386 * the data at the front of the range. i.e. one new_stripe
5387 * along from reshape_progress new_maps to after where
5388 * reshape_safe old_maps to
5389 */
5390 writepos = conf->reshape_progress;
5391 sector_div(writepos, new_data_disks);
5392 readpos = conf->reshape_progress;
5393 sector_div(readpos, data_disks);
5394 safepos = conf->reshape_safe;
5395 sector_div(safepos, data_disks);
5396 if (mddev->reshape_backwards) {
5397 BUG_ON(writepos < reshape_sectors);
5398 writepos -= reshape_sectors;
5399 readpos += reshape_sectors;
5400 safepos += reshape_sectors;
5401 } else {
5402 writepos += reshape_sectors;
5403 /* readpos and safepos are worst-case calculations.
5404 * A negative number is overly pessimistic, and causes
5405 * obvious problems for unsigned storage. So clip to 0.
5406 */
5407 readpos -= min_t(sector_t, reshape_sectors, readpos);
5408 safepos -= min_t(sector_t, reshape_sectors, safepos);
5409 }
5410
5411 /* Having calculated the 'writepos' possibly use it
5412 * to set 'stripe_addr' which is where we will write to.
5413 */
5414 if (mddev->reshape_backwards) {
5415 BUG_ON(conf->reshape_progress == 0);
5416 stripe_addr = writepos;
5417 BUG_ON((mddev->dev_sectors &
5418 ~((sector_t)reshape_sectors - 1))
5419 - reshape_sectors - stripe_addr
5420 != sector_nr);
5421 } else {
5422 BUG_ON(writepos != sector_nr + reshape_sectors);
5423 stripe_addr = sector_nr;
5424 }
5425
5426 /* 'writepos' is the most advanced device address we might write.
5427 * 'readpos' is the least advanced device address we might read.
5428 * 'safepos' is the least address recorded in the metadata as having
5429 * been reshaped.
5430 * If there is a min_offset_diff, these are adjusted either by
5431 * increasing the safepos/readpos if diff is negative, or
5432 * increasing writepos if diff is positive.
5433 * If 'readpos' is then behind 'writepos', there is no way that we can
5434 * ensure safety in the face of a crash - that must be done by userspace
5435 * making a backup of the data. So in that case there is no particular
5436 * rush to update metadata.
5437 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5438 * update the metadata to advance 'safepos' to match 'readpos' so that
5439 * we can be safe in the event of a crash.
5440 * So we insist on updating metadata if safepos is behind writepos and
5441 * readpos is beyond writepos.
5442 * In any case, update the metadata every 10 seconds.
5443 * Maybe that number should be configurable, but I'm not sure it is
5444 * worth it.... maybe it could be a multiple of safemode_delay???
5445 */
5446 if (conf->min_offset_diff < 0) {
5447 safepos += -conf->min_offset_diff;
5448 readpos += -conf->min_offset_diff;
5449 } else
5450 writepos += conf->min_offset_diff;
5451
5452 if ((mddev->reshape_backwards
5453 ? (safepos > writepos && readpos < writepos)
5454 : (safepos < writepos && readpos > writepos)) ||
5455 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5456 /* Cannot proceed until we've updated the superblock... */
5457 wait_event(conf->wait_for_overlap,
5458 atomic_read(&conf->reshape_stripes)==0
5459 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5460 if (atomic_read(&conf->reshape_stripes) != 0)
5461 return 0;
5462 mddev->reshape_position = conf->reshape_progress;
5463 mddev->curr_resync_completed = sector_nr;
5464 conf->reshape_checkpoint = jiffies;
5465 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5466 md_wakeup_thread(mddev->thread);
5467 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5468 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5469 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5470 return 0;
5471 spin_lock_irq(&conf->device_lock);
5472 conf->reshape_safe = mddev->reshape_position;
5473 spin_unlock_irq(&conf->device_lock);
5474 wake_up(&conf->wait_for_overlap);
5475 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5476 }
5477
5478 INIT_LIST_HEAD(&stripes);
5479 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5480 int j;
5481 int skipped_disk = 0;
5482 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5483 set_bit(STRIPE_EXPANDING, &sh->state);
5484 atomic_inc(&conf->reshape_stripes);
5485 /* If any of this stripe is beyond the end of the old
5486 * array, then we need to zero those blocks
5487 */
5488 for (j=sh->disks; j--;) {
5489 sector_t s;
5490 if (j == sh->pd_idx)
5491 continue;
5492 if (conf->level == 6 &&
5493 j == sh->qd_idx)
5494 continue;
5495 s = raid5_compute_blocknr(sh, j, 0);
5496 if (s < raid5_size(mddev, 0, 0)) {
5497 skipped_disk = 1;
5498 continue;
5499 }
5500 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5501 set_bit(R5_Expanded, &sh->dev[j].flags);
5502 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5503 }
5504 if (!skipped_disk) {
5505 set_bit(STRIPE_EXPAND_READY, &sh->state);
5506 set_bit(STRIPE_HANDLE, &sh->state);
5507 }
5508 list_add(&sh->lru, &stripes);
5509 }
5510 spin_lock_irq(&conf->device_lock);
5511 if (mddev->reshape_backwards)
5512 conf->reshape_progress -= reshape_sectors * new_data_disks;
5513 else
5514 conf->reshape_progress += reshape_sectors * new_data_disks;
5515 spin_unlock_irq(&conf->device_lock);
5516 /* Ok, those stripe are ready. We can start scheduling
5517 * reads on the source stripes.
5518 * The source stripes are determined by mapping the first and last
5519 * block on the destination stripes.
5520 */
5521 first_sector =
5522 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5523 1, &dd_idx, NULL);
5524 last_sector =
5525 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5526 * new_data_disks - 1),
5527 1, &dd_idx, NULL);
5528 if (last_sector >= mddev->dev_sectors)
5529 last_sector = mddev->dev_sectors - 1;
5530 while (first_sector <= last_sector) {
5531 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5532 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5533 set_bit(STRIPE_HANDLE, &sh->state);
5534 raid5_release_stripe(sh);
5535 first_sector += STRIPE_SECTORS;
5536 }
5537 /* Now that the sources are clearly marked, we can release
5538 * the destination stripes
5539 */
5540 while (!list_empty(&stripes)) {
5541 sh = list_entry(stripes.next, struct stripe_head, lru);
5542 list_del_init(&sh->lru);
5543 raid5_release_stripe(sh);
5544 }
5545 /* If this takes us to the resync_max point where we have to pause,
5546 * then we need to write out the superblock.
5547 */
5548 sector_nr += reshape_sectors;
5549 retn = reshape_sectors;
5550 finish:
5551 if (mddev->curr_resync_completed > mddev->resync_max ||
5552 (sector_nr - mddev->curr_resync_completed) * 2
5553 >= mddev->resync_max - mddev->curr_resync_completed) {
5554 /* Cannot proceed until we've updated the superblock... */
5555 wait_event(conf->wait_for_overlap,
5556 atomic_read(&conf->reshape_stripes) == 0
5557 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5558 if (atomic_read(&conf->reshape_stripes) != 0)
5559 goto ret;
5560 mddev->reshape_position = conf->reshape_progress;
5561 mddev->curr_resync_completed = sector_nr;
5562 conf->reshape_checkpoint = jiffies;
5563 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5564 md_wakeup_thread(mddev->thread);
5565 wait_event(mddev->sb_wait,
5566 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5567 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5568 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5569 goto ret;
5570 spin_lock_irq(&conf->device_lock);
5571 conf->reshape_safe = mddev->reshape_position;
5572 spin_unlock_irq(&conf->device_lock);
5573 wake_up(&conf->wait_for_overlap);
5574 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5575 }
5576 ret:
5577 return retn;
5578 }
5579
5580 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5581 {
5582 struct r5conf *conf = mddev->private;
5583 struct stripe_head *sh;
5584 sector_t max_sector = mddev->dev_sectors;
5585 sector_t sync_blocks;
5586 int still_degraded = 0;
5587 int i;
5588
5589 if (sector_nr >= max_sector) {
5590 /* just being told to finish up .. nothing much to do */
5591
5592 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5593 end_reshape(conf);
5594 return 0;
5595 }
5596
5597 if (mddev->curr_resync < max_sector) /* aborted */
5598 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5599 &sync_blocks, 1);
5600 else /* completed sync */
5601 conf->fullsync = 0;
5602 bitmap_close_sync(mddev->bitmap);
5603
5604 return 0;
5605 }
5606
5607 /* Allow raid5_quiesce to complete */
5608 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5609
5610 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5611 return reshape_request(mddev, sector_nr, skipped);
5612
5613 /* No need to check resync_max as we never do more than one
5614 * stripe, and as resync_max will always be on a chunk boundary,
5615 * if the check in md_do_sync didn't fire, there is no chance
5616 * of overstepping resync_max here
5617 */
5618
5619 /* if there is too many failed drives and we are trying
5620 * to resync, then assert that we are finished, because there is
5621 * nothing we can do.
5622 */
5623 if (mddev->degraded >= conf->max_degraded &&
5624 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5625 sector_t rv = mddev->dev_sectors - sector_nr;
5626 *skipped = 1;
5627 return rv;
5628 }
5629 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5630 !conf->fullsync &&
5631 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5632 sync_blocks >= STRIPE_SECTORS) {
5633 /* we can skip this block, and probably more */
5634 sync_blocks /= STRIPE_SECTORS;
5635 *skipped = 1;
5636 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5637 }
5638
5639 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5640
5641 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5642 if (sh == NULL) {
5643 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5644 /* make sure we don't swamp the stripe cache if someone else
5645 * is trying to get access
5646 */
5647 schedule_timeout_uninterruptible(1);
5648 }
5649 /* Need to check if array will still be degraded after recovery/resync
5650 * Note in case of > 1 drive failures it's possible we're rebuilding
5651 * one drive while leaving another faulty drive in array.
5652 */
5653 rcu_read_lock();
5654 for (i = 0; i < conf->raid_disks; i++) {
5655 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5656
5657 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5658 still_degraded = 1;
5659 }
5660 rcu_read_unlock();
5661
5662 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5663
5664 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5665 set_bit(STRIPE_HANDLE, &sh->state);
5666
5667 raid5_release_stripe(sh);
5668
5669 return STRIPE_SECTORS;
5670 }
5671
5672 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5673 {
5674 /* We may not be able to submit a whole bio at once as there
5675 * may not be enough stripe_heads available.
5676 * We cannot pre-allocate enough stripe_heads as we may need
5677 * more than exist in the cache (if we allow ever large chunks).
5678 * So we do one stripe head at a time and record in
5679 * ->bi_hw_segments how many have been done.
5680 *
5681 * We *know* that this entire raid_bio is in one chunk, so
5682 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5683 */
5684 struct stripe_head *sh;
5685 int dd_idx;
5686 sector_t sector, logical_sector, last_sector;
5687 int scnt = 0;
5688 int remaining;
5689 int handled = 0;
5690
5691 logical_sector = raid_bio->bi_iter.bi_sector &
5692 ~((sector_t)STRIPE_SECTORS-1);
5693 sector = raid5_compute_sector(conf, logical_sector,
5694 0, &dd_idx, NULL);
5695 last_sector = bio_end_sector(raid_bio);
5696
5697 for (; logical_sector < last_sector;
5698 logical_sector += STRIPE_SECTORS,
5699 sector += STRIPE_SECTORS,
5700 scnt++) {
5701
5702 if (scnt < raid5_bi_processed_stripes(raid_bio))
5703 /* already done this stripe */
5704 continue;
5705
5706 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5707
5708 if (!sh) {
5709 /* failed to get a stripe - must wait */
5710 raid5_set_bi_processed_stripes(raid_bio, scnt);
5711 conf->retry_read_aligned = raid_bio;
5712 return handled;
5713 }
5714
5715 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5716 raid5_release_stripe(sh);
5717 raid5_set_bi_processed_stripes(raid_bio, scnt);
5718 conf->retry_read_aligned = raid_bio;
5719 return handled;
5720 }
5721
5722 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5723 handle_stripe(sh);
5724 raid5_release_stripe(sh);
5725 handled++;
5726 }
5727 remaining = raid5_dec_bi_active_stripes(raid_bio);
5728 if (remaining == 0) {
5729 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5730 raid_bio, 0);
5731 bio_endio(raid_bio);
5732 }
5733 if (atomic_dec_and_test(&conf->active_aligned_reads))
5734 wake_up(&conf->wait_for_quiescent);
5735 return handled;
5736 }
5737
5738 static int handle_active_stripes(struct r5conf *conf, int group,
5739 struct r5worker *worker,
5740 struct list_head *temp_inactive_list)
5741 {
5742 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5743 int i, batch_size = 0, hash;
5744 bool release_inactive = false;
5745
5746 while (batch_size < MAX_STRIPE_BATCH &&
5747 (sh = __get_priority_stripe(conf, group)) != NULL)
5748 batch[batch_size++] = sh;
5749
5750 if (batch_size == 0) {
5751 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5752 if (!list_empty(temp_inactive_list + i))
5753 break;
5754 if (i == NR_STRIPE_HASH_LOCKS) {
5755 spin_unlock_irq(&conf->device_lock);
5756 r5l_flush_stripe_to_raid(conf->log);
5757 spin_lock_irq(&conf->device_lock);
5758 return batch_size;
5759 }
5760 release_inactive = true;
5761 }
5762 spin_unlock_irq(&conf->device_lock);
5763
5764 release_inactive_stripe_list(conf, temp_inactive_list,
5765 NR_STRIPE_HASH_LOCKS);
5766
5767 r5l_flush_stripe_to_raid(conf->log);
5768 if (release_inactive) {
5769 spin_lock_irq(&conf->device_lock);
5770 return 0;
5771 }
5772
5773 for (i = 0; i < batch_size; i++)
5774 handle_stripe(batch[i]);
5775 r5l_write_stripe_run(conf->log);
5776
5777 cond_resched();
5778
5779 spin_lock_irq(&conf->device_lock);
5780 for (i = 0; i < batch_size; i++) {
5781 hash = batch[i]->hash_lock_index;
5782 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5783 }
5784 return batch_size;
5785 }
5786
5787 static void raid5_do_work(struct work_struct *work)
5788 {
5789 struct r5worker *worker = container_of(work, struct r5worker, work);
5790 struct r5worker_group *group = worker->group;
5791 struct r5conf *conf = group->conf;
5792 int group_id = group - conf->worker_groups;
5793 int handled;
5794 struct blk_plug plug;
5795
5796 pr_debug("+++ raid5worker active\n");
5797
5798 blk_start_plug(&plug);
5799 handled = 0;
5800 spin_lock_irq(&conf->device_lock);
5801 while (1) {
5802 int batch_size, released;
5803
5804 released = release_stripe_list(conf, worker->temp_inactive_list);
5805
5806 batch_size = handle_active_stripes(conf, group_id, worker,
5807 worker->temp_inactive_list);
5808 worker->working = false;
5809 if (!batch_size && !released)
5810 break;
5811 handled += batch_size;
5812 }
5813 pr_debug("%d stripes handled\n", handled);
5814
5815 spin_unlock_irq(&conf->device_lock);
5816 blk_finish_plug(&plug);
5817
5818 pr_debug("--- raid5worker inactive\n");
5819 }
5820
5821 /*
5822 * This is our raid5 kernel thread.
5823 *
5824 * We scan the hash table for stripes which can be handled now.
5825 * During the scan, completed stripes are saved for us by the interrupt
5826 * handler, so that they will not have to wait for our next wakeup.
5827 */
5828 static void raid5d(struct md_thread *thread)
5829 {
5830 struct mddev *mddev = thread->mddev;
5831 struct r5conf *conf = mddev->private;
5832 int handled;
5833 struct blk_plug plug;
5834
5835 pr_debug("+++ raid5d active\n");
5836
5837 md_check_recovery(mddev);
5838
5839 if (!bio_list_empty(&conf->return_bi) &&
5840 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5841 struct bio_list tmp = BIO_EMPTY_LIST;
5842 spin_lock_irq(&conf->device_lock);
5843 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5844 bio_list_merge(&tmp, &conf->return_bi);
5845 bio_list_init(&conf->return_bi);
5846 }
5847 spin_unlock_irq(&conf->device_lock);
5848 return_io(&tmp);
5849 }
5850
5851 blk_start_plug(&plug);
5852 handled = 0;
5853 spin_lock_irq(&conf->device_lock);
5854 while (1) {
5855 struct bio *bio;
5856 int batch_size, released;
5857
5858 released = release_stripe_list(conf, conf->temp_inactive_list);
5859 if (released)
5860 clear_bit(R5_DID_ALLOC, &conf->cache_state);
5861
5862 if (
5863 !list_empty(&conf->bitmap_list)) {
5864 /* Now is a good time to flush some bitmap updates */
5865 conf->seq_flush++;
5866 spin_unlock_irq(&conf->device_lock);
5867 bitmap_unplug(mddev->bitmap);
5868 spin_lock_irq(&conf->device_lock);
5869 conf->seq_write = conf->seq_flush;
5870 activate_bit_delay(conf, conf->temp_inactive_list);
5871 }
5872 raid5_activate_delayed(conf);
5873
5874 while ((bio = remove_bio_from_retry(conf))) {
5875 int ok;
5876 spin_unlock_irq(&conf->device_lock);
5877 ok = retry_aligned_read(conf, bio);
5878 spin_lock_irq(&conf->device_lock);
5879 if (!ok)
5880 break;
5881 handled++;
5882 }
5883
5884 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5885 conf->temp_inactive_list);
5886 if (!batch_size && !released)
5887 break;
5888 handled += batch_size;
5889
5890 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5891 spin_unlock_irq(&conf->device_lock);
5892 md_check_recovery(mddev);
5893 spin_lock_irq(&conf->device_lock);
5894 }
5895 }
5896 pr_debug("%d stripes handled\n", handled);
5897
5898 spin_unlock_irq(&conf->device_lock);
5899 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5900 mutex_trylock(&conf->cache_size_mutex)) {
5901 grow_one_stripe(conf, __GFP_NOWARN);
5902 /* Set flag even if allocation failed. This helps
5903 * slow down allocation requests when mem is short
5904 */
5905 set_bit(R5_DID_ALLOC, &conf->cache_state);
5906 mutex_unlock(&conf->cache_size_mutex);
5907 }
5908
5909 r5l_flush_stripe_to_raid(conf->log);
5910
5911 async_tx_issue_pending_all();
5912 blk_finish_plug(&plug);
5913
5914 pr_debug("--- raid5d inactive\n");
5915 }
5916
5917 static ssize_t
5918 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5919 {
5920 struct r5conf *conf;
5921 int ret = 0;
5922 spin_lock(&mddev->lock);
5923 conf = mddev->private;
5924 if (conf)
5925 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5926 spin_unlock(&mddev->lock);
5927 return ret;
5928 }
5929
5930 int
5931 raid5_set_cache_size(struct mddev *mddev, int size)
5932 {
5933 struct r5conf *conf = mddev->private;
5934 int err;
5935
5936 if (size <= 16 || size > 32768)
5937 return -EINVAL;
5938
5939 conf->min_nr_stripes = size;
5940 mutex_lock(&conf->cache_size_mutex);
5941 while (size < conf->max_nr_stripes &&
5942 drop_one_stripe(conf))
5943 ;
5944 mutex_unlock(&conf->cache_size_mutex);
5945
5946
5947 err = md_allow_write(mddev);
5948 if (err)
5949 return err;
5950
5951 mutex_lock(&conf->cache_size_mutex);
5952 while (size > conf->max_nr_stripes)
5953 if (!grow_one_stripe(conf, GFP_KERNEL))
5954 break;
5955 mutex_unlock(&conf->cache_size_mutex);
5956
5957 return 0;
5958 }
5959 EXPORT_SYMBOL(raid5_set_cache_size);
5960
5961 static ssize_t
5962 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5963 {
5964 struct r5conf *conf;
5965 unsigned long new;
5966 int err;
5967
5968 if (len >= PAGE_SIZE)
5969 return -EINVAL;
5970 if (kstrtoul(page, 10, &new))
5971 return -EINVAL;
5972 err = mddev_lock(mddev);
5973 if (err)
5974 return err;
5975 conf = mddev->private;
5976 if (!conf)
5977 err = -ENODEV;
5978 else
5979 err = raid5_set_cache_size(mddev, new);
5980 mddev_unlock(mddev);
5981
5982 return err ?: len;
5983 }
5984
5985 static struct md_sysfs_entry
5986 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5987 raid5_show_stripe_cache_size,
5988 raid5_store_stripe_cache_size);
5989
5990 static ssize_t
5991 raid5_show_rmw_level(struct mddev *mddev, char *page)
5992 {
5993 struct r5conf *conf = mddev->private;
5994 if (conf)
5995 return sprintf(page, "%d\n", conf->rmw_level);
5996 else
5997 return 0;
5998 }
5999
6000 static ssize_t
6001 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6002 {
6003 struct r5conf *conf = mddev->private;
6004 unsigned long new;
6005
6006 if (!conf)
6007 return -ENODEV;
6008
6009 if (len >= PAGE_SIZE)
6010 return -EINVAL;
6011
6012 if (kstrtoul(page, 10, &new))
6013 return -EINVAL;
6014
6015 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6016 return -EINVAL;
6017
6018 if (new != PARITY_DISABLE_RMW &&
6019 new != PARITY_ENABLE_RMW &&
6020 new != PARITY_PREFER_RMW)
6021 return -EINVAL;
6022
6023 conf->rmw_level = new;
6024 return len;
6025 }
6026
6027 static struct md_sysfs_entry
6028 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6029 raid5_show_rmw_level,
6030 raid5_store_rmw_level);
6031
6032
6033 static ssize_t
6034 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6035 {
6036 struct r5conf *conf;
6037 int ret = 0;
6038 spin_lock(&mddev->lock);
6039 conf = mddev->private;
6040 if (conf)
6041 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6042 spin_unlock(&mddev->lock);
6043 return ret;
6044 }
6045
6046 static ssize_t
6047 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6048 {
6049 struct r5conf *conf;
6050 unsigned long new;
6051 int err;
6052
6053 if (len >= PAGE_SIZE)
6054 return -EINVAL;
6055 if (kstrtoul(page, 10, &new))
6056 return -EINVAL;
6057
6058 err = mddev_lock(mddev);
6059 if (err)
6060 return err;
6061 conf = mddev->private;
6062 if (!conf)
6063 err = -ENODEV;
6064 else if (new > conf->min_nr_stripes)
6065 err = -EINVAL;
6066 else
6067 conf->bypass_threshold = new;
6068 mddev_unlock(mddev);
6069 return err ?: len;
6070 }
6071
6072 static struct md_sysfs_entry
6073 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6074 S_IRUGO | S_IWUSR,
6075 raid5_show_preread_threshold,
6076 raid5_store_preread_threshold);
6077
6078 static ssize_t
6079 raid5_show_skip_copy(struct mddev *mddev, char *page)
6080 {
6081 struct r5conf *conf;
6082 int ret = 0;
6083 spin_lock(&mddev->lock);
6084 conf = mddev->private;
6085 if (conf)
6086 ret = sprintf(page, "%d\n", conf->skip_copy);
6087 spin_unlock(&mddev->lock);
6088 return ret;
6089 }
6090
6091 static ssize_t
6092 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6093 {
6094 struct r5conf *conf;
6095 unsigned long new;
6096 int err;
6097
6098 if (len >= PAGE_SIZE)
6099 return -EINVAL;
6100 if (kstrtoul(page, 10, &new))
6101 return -EINVAL;
6102 new = !!new;
6103
6104 err = mddev_lock(mddev);
6105 if (err)
6106 return err;
6107 conf = mddev->private;
6108 if (!conf)
6109 err = -ENODEV;
6110 else if (new != conf->skip_copy) {
6111 mddev_suspend(mddev);
6112 conf->skip_copy = new;
6113 if (new)
6114 mddev->queue->backing_dev_info.capabilities |=
6115 BDI_CAP_STABLE_WRITES;
6116 else
6117 mddev->queue->backing_dev_info.capabilities &=
6118 ~BDI_CAP_STABLE_WRITES;
6119 mddev_resume(mddev);
6120 }
6121 mddev_unlock(mddev);
6122 return err ?: len;
6123 }
6124
6125 static struct md_sysfs_entry
6126 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6127 raid5_show_skip_copy,
6128 raid5_store_skip_copy);
6129
6130 static ssize_t
6131 stripe_cache_active_show(struct mddev *mddev, char *page)
6132 {
6133 struct r5conf *conf = mddev->private;
6134 if (conf)
6135 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6136 else
6137 return 0;
6138 }
6139
6140 static struct md_sysfs_entry
6141 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6142
6143 static ssize_t
6144 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6145 {
6146 struct r5conf *conf;
6147 int ret = 0;
6148 spin_lock(&mddev->lock);
6149 conf = mddev->private;
6150 if (conf)
6151 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6152 spin_unlock(&mddev->lock);
6153 return ret;
6154 }
6155
6156 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6157 int *group_cnt,
6158 int *worker_cnt_per_group,
6159 struct r5worker_group **worker_groups);
6160 static ssize_t
6161 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6162 {
6163 struct r5conf *conf;
6164 unsigned long new;
6165 int err;
6166 struct r5worker_group *new_groups, *old_groups;
6167 int group_cnt, worker_cnt_per_group;
6168
6169 if (len >= PAGE_SIZE)
6170 return -EINVAL;
6171 if (kstrtoul(page, 10, &new))
6172 return -EINVAL;
6173
6174 err = mddev_lock(mddev);
6175 if (err)
6176 return err;
6177 conf = mddev->private;
6178 if (!conf)
6179 err = -ENODEV;
6180 else if (new != conf->worker_cnt_per_group) {
6181 mddev_suspend(mddev);
6182
6183 old_groups = conf->worker_groups;
6184 if (old_groups)
6185 flush_workqueue(raid5_wq);
6186
6187 err = alloc_thread_groups(conf, new,
6188 &group_cnt, &worker_cnt_per_group,
6189 &new_groups);
6190 if (!err) {
6191 spin_lock_irq(&conf->device_lock);
6192 conf->group_cnt = group_cnt;
6193 conf->worker_cnt_per_group = worker_cnt_per_group;
6194 conf->worker_groups = new_groups;
6195 spin_unlock_irq(&conf->device_lock);
6196
6197 if (old_groups)
6198 kfree(old_groups[0].workers);
6199 kfree(old_groups);
6200 }
6201 mddev_resume(mddev);
6202 }
6203 mddev_unlock(mddev);
6204
6205 return err ?: len;
6206 }
6207
6208 static struct md_sysfs_entry
6209 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6210 raid5_show_group_thread_cnt,
6211 raid5_store_group_thread_cnt);
6212
6213 static struct attribute *raid5_attrs[] = {
6214 &raid5_stripecache_size.attr,
6215 &raid5_stripecache_active.attr,
6216 &raid5_preread_bypass_threshold.attr,
6217 &raid5_group_thread_cnt.attr,
6218 &raid5_skip_copy.attr,
6219 &raid5_rmw_level.attr,
6220 NULL,
6221 };
6222 static struct attribute_group raid5_attrs_group = {
6223 .name = NULL,
6224 .attrs = raid5_attrs,
6225 };
6226
6227 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6228 int *group_cnt,
6229 int *worker_cnt_per_group,
6230 struct r5worker_group **worker_groups)
6231 {
6232 int i, j, k;
6233 ssize_t size;
6234 struct r5worker *workers;
6235
6236 *worker_cnt_per_group = cnt;
6237 if (cnt == 0) {
6238 *group_cnt = 0;
6239 *worker_groups = NULL;
6240 return 0;
6241 }
6242 *group_cnt = num_possible_nodes();
6243 size = sizeof(struct r5worker) * cnt;
6244 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6245 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6246 *group_cnt, GFP_NOIO);
6247 if (!*worker_groups || !workers) {
6248 kfree(workers);
6249 kfree(*worker_groups);
6250 return -ENOMEM;
6251 }
6252
6253 for (i = 0; i < *group_cnt; i++) {
6254 struct r5worker_group *group;
6255
6256 group = &(*worker_groups)[i];
6257 INIT_LIST_HEAD(&group->handle_list);
6258 group->conf = conf;
6259 group->workers = workers + i * cnt;
6260
6261 for (j = 0; j < cnt; j++) {
6262 struct r5worker *worker = group->workers + j;
6263 worker->group = group;
6264 INIT_WORK(&worker->work, raid5_do_work);
6265
6266 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6267 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6268 }
6269 }
6270
6271 return 0;
6272 }
6273
6274 static void free_thread_groups(struct r5conf *conf)
6275 {
6276 if (conf->worker_groups)
6277 kfree(conf->worker_groups[0].workers);
6278 kfree(conf->worker_groups);
6279 conf->worker_groups = NULL;
6280 }
6281
6282 static sector_t
6283 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6284 {
6285 struct r5conf *conf = mddev->private;
6286
6287 if (!sectors)
6288 sectors = mddev->dev_sectors;
6289 if (!raid_disks)
6290 /* size is defined by the smallest of previous and new size */
6291 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6292
6293 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6294 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6295 return sectors * (raid_disks - conf->max_degraded);
6296 }
6297
6298 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6299 {
6300 safe_put_page(percpu->spare_page);
6301 if (percpu->scribble)
6302 flex_array_free(percpu->scribble);
6303 percpu->spare_page = NULL;
6304 percpu->scribble = NULL;
6305 }
6306
6307 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6308 {
6309 if (conf->level == 6 && !percpu->spare_page)
6310 percpu->spare_page = alloc_page(GFP_KERNEL);
6311 if (!percpu->scribble)
6312 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6313 conf->previous_raid_disks),
6314 max(conf->chunk_sectors,
6315 conf->prev_chunk_sectors)
6316 / STRIPE_SECTORS,
6317 GFP_KERNEL);
6318
6319 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6320 free_scratch_buffer(conf, percpu);
6321 return -ENOMEM;
6322 }
6323
6324 return 0;
6325 }
6326
6327 static void raid5_free_percpu(struct r5conf *conf)
6328 {
6329 unsigned long cpu;
6330
6331 if (!conf->percpu)
6332 return;
6333
6334 #ifdef CONFIG_HOTPLUG_CPU
6335 unregister_cpu_notifier(&conf->cpu_notify);
6336 #endif
6337
6338 get_online_cpus();
6339 for_each_possible_cpu(cpu)
6340 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6341 put_online_cpus();
6342
6343 free_percpu(conf->percpu);
6344 }
6345
6346 static void free_conf(struct r5conf *conf)
6347 {
6348 if (conf->log)
6349 r5l_exit_log(conf->log);
6350 if (conf->shrinker.seeks)
6351 unregister_shrinker(&conf->shrinker);
6352
6353 free_thread_groups(conf);
6354 shrink_stripes(conf);
6355 raid5_free_percpu(conf);
6356 kfree(conf->disks);
6357 kfree(conf->stripe_hashtbl);
6358 kfree(conf);
6359 }
6360
6361 #ifdef CONFIG_HOTPLUG_CPU
6362 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6363 void *hcpu)
6364 {
6365 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6366 long cpu = (long)hcpu;
6367 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6368
6369 switch (action) {
6370 case CPU_UP_PREPARE:
6371 case CPU_UP_PREPARE_FROZEN:
6372 if (alloc_scratch_buffer(conf, percpu)) {
6373 pr_err("%s: failed memory allocation for cpu%ld\n",
6374 __func__, cpu);
6375 return notifier_from_errno(-ENOMEM);
6376 }
6377 break;
6378 case CPU_DEAD:
6379 case CPU_DEAD_FROZEN:
6380 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6381 break;
6382 default:
6383 break;
6384 }
6385 return NOTIFY_OK;
6386 }
6387 #endif
6388
6389 static int raid5_alloc_percpu(struct r5conf *conf)
6390 {
6391 unsigned long cpu;
6392 int err = 0;
6393
6394 conf->percpu = alloc_percpu(struct raid5_percpu);
6395 if (!conf->percpu)
6396 return -ENOMEM;
6397
6398 #ifdef CONFIG_HOTPLUG_CPU
6399 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6400 conf->cpu_notify.priority = 0;
6401 err = register_cpu_notifier(&conf->cpu_notify);
6402 if (err)
6403 return err;
6404 #endif
6405
6406 get_online_cpus();
6407 for_each_present_cpu(cpu) {
6408 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6409 if (err) {
6410 pr_err("%s: failed memory allocation for cpu%ld\n",
6411 __func__, cpu);
6412 break;
6413 }
6414 }
6415 put_online_cpus();
6416
6417 return err;
6418 }
6419
6420 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6421 struct shrink_control *sc)
6422 {
6423 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6424 unsigned long ret = SHRINK_STOP;
6425
6426 if (mutex_trylock(&conf->cache_size_mutex)) {
6427 ret= 0;
6428 while (ret < sc->nr_to_scan &&
6429 conf->max_nr_stripes > conf->min_nr_stripes) {
6430 if (drop_one_stripe(conf) == 0) {
6431 ret = SHRINK_STOP;
6432 break;
6433 }
6434 ret++;
6435 }
6436 mutex_unlock(&conf->cache_size_mutex);
6437 }
6438 return ret;
6439 }
6440
6441 static unsigned long raid5_cache_count(struct shrinker *shrink,
6442 struct shrink_control *sc)
6443 {
6444 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6445
6446 if (conf->max_nr_stripes < conf->min_nr_stripes)
6447 /* unlikely, but not impossible */
6448 return 0;
6449 return conf->max_nr_stripes - conf->min_nr_stripes;
6450 }
6451
6452 static struct r5conf *setup_conf(struct mddev *mddev)
6453 {
6454 struct r5conf *conf;
6455 int raid_disk, memory, max_disks;
6456 struct md_rdev *rdev;
6457 struct disk_info *disk;
6458 char pers_name[6];
6459 int i;
6460 int group_cnt, worker_cnt_per_group;
6461 struct r5worker_group *new_group;
6462
6463 if (mddev->new_level != 5
6464 && mddev->new_level != 4
6465 && mddev->new_level != 6) {
6466 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6467 mdname(mddev), mddev->new_level);
6468 return ERR_PTR(-EIO);
6469 }
6470 if ((mddev->new_level == 5
6471 && !algorithm_valid_raid5(mddev->new_layout)) ||
6472 (mddev->new_level == 6
6473 && !algorithm_valid_raid6(mddev->new_layout))) {
6474 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6475 mdname(mddev), mddev->new_layout);
6476 return ERR_PTR(-EIO);
6477 }
6478 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6479 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6480 mdname(mddev), mddev->raid_disks);
6481 return ERR_PTR(-EINVAL);
6482 }
6483
6484 if (!mddev->new_chunk_sectors ||
6485 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6486 !is_power_of_2(mddev->new_chunk_sectors)) {
6487 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6488 mdname(mddev), mddev->new_chunk_sectors << 9);
6489 return ERR_PTR(-EINVAL);
6490 }
6491
6492 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6493 if (conf == NULL)
6494 goto abort;
6495 /* Don't enable multi-threading by default*/
6496 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6497 &new_group)) {
6498 conf->group_cnt = group_cnt;
6499 conf->worker_cnt_per_group = worker_cnt_per_group;
6500 conf->worker_groups = new_group;
6501 } else
6502 goto abort;
6503 spin_lock_init(&conf->device_lock);
6504 seqcount_init(&conf->gen_lock);
6505 mutex_init(&conf->cache_size_mutex);
6506 init_waitqueue_head(&conf->wait_for_quiescent);
6507 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6508 init_waitqueue_head(&conf->wait_for_stripe[i]);
6509 }
6510 init_waitqueue_head(&conf->wait_for_overlap);
6511 INIT_LIST_HEAD(&conf->handle_list);
6512 INIT_LIST_HEAD(&conf->hold_list);
6513 INIT_LIST_HEAD(&conf->delayed_list);
6514 INIT_LIST_HEAD(&conf->bitmap_list);
6515 bio_list_init(&conf->return_bi);
6516 init_llist_head(&conf->released_stripes);
6517 atomic_set(&conf->active_stripes, 0);
6518 atomic_set(&conf->preread_active_stripes, 0);
6519 atomic_set(&conf->active_aligned_reads, 0);
6520 conf->bypass_threshold = BYPASS_THRESHOLD;
6521 conf->recovery_disabled = mddev->recovery_disabled - 1;
6522
6523 conf->raid_disks = mddev->raid_disks;
6524 if (mddev->reshape_position == MaxSector)
6525 conf->previous_raid_disks = mddev->raid_disks;
6526 else
6527 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6528 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6529
6530 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6531 GFP_KERNEL);
6532 if (!conf->disks)
6533 goto abort;
6534
6535 conf->mddev = mddev;
6536
6537 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6538 goto abort;
6539
6540 /* We init hash_locks[0] separately to that it can be used
6541 * as the reference lock in the spin_lock_nest_lock() call
6542 * in lock_all_device_hash_locks_irq in order to convince
6543 * lockdep that we know what we are doing.
6544 */
6545 spin_lock_init(conf->hash_locks);
6546 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6547 spin_lock_init(conf->hash_locks + i);
6548
6549 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6550 INIT_LIST_HEAD(conf->inactive_list + i);
6551
6552 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6553 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6554
6555 conf->level = mddev->new_level;
6556 conf->chunk_sectors = mddev->new_chunk_sectors;
6557 if (raid5_alloc_percpu(conf) != 0)
6558 goto abort;
6559
6560 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6561
6562 rdev_for_each(rdev, mddev) {
6563 raid_disk = rdev->raid_disk;
6564 if (raid_disk >= max_disks
6565 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6566 continue;
6567 disk = conf->disks + raid_disk;
6568
6569 if (test_bit(Replacement, &rdev->flags)) {
6570 if (disk->replacement)
6571 goto abort;
6572 disk->replacement = rdev;
6573 } else {
6574 if (disk->rdev)
6575 goto abort;
6576 disk->rdev = rdev;
6577 }
6578
6579 if (test_bit(In_sync, &rdev->flags)) {
6580 char b[BDEVNAME_SIZE];
6581 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6582 " disk %d\n",
6583 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6584 } else if (rdev->saved_raid_disk != raid_disk)
6585 /* Cannot rely on bitmap to complete recovery */
6586 conf->fullsync = 1;
6587 }
6588
6589 conf->level = mddev->new_level;
6590 if (conf->level == 6) {
6591 conf->max_degraded = 2;
6592 if (raid6_call.xor_syndrome)
6593 conf->rmw_level = PARITY_ENABLE_RMW;
6594 else
6595 conf->rmw_level = PARITY_DISABLE_RMW;
6596 } else {
6597 conf->max_degraded = 1;
6598 conf->rmw_level = PARITY_ENABLE_RMW;
6599 }
6600 conf->algorithm = mddev->new_layout;
6601 conf->reshape_progress = mddev->reshape_position;
6602 if (conf->reshape_progress != MaxSector) {
6603 conf->prev_chunk_sectors = mddev->chunk_sectors;
6604 conf->prev_algo = mddev->layout;
6605 } else {
6606 conf->prev_chunk_sectors = conf->chunk_sectors;
6607 conf->prev_algo = conf->algorithm;
6608 }
6609
6610 conf->min_nr_stripes = NR_STRIPES;
6611 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6612 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6613 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6614 if (grow_stripes(conf, conf->min_nr_stripes)) {
6615 printk(KERN_ERR
6616 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6617 mdname(mddev), memory);
6618 goto abort;
6619 } else
6620 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6621 mdname(mddev), memory);
6622 /*
6623 * Losing a stripe head costs more than the time to refill it,
6624 * it reduces the queue depth and so can hurt throughput.
6625 * So set it rather large, scaled by number of devices.
6626 */
6627 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6628 conf->shrinker.scan_objects = raid5_cache_scan;
6629 conf->shrinker.count_objects = raid5_cache_count;
6630 conf->shrinker.batch = 128;
6631 conf->shrinker.flags = 0;
6632 register_shrinker(&conf->shrinker);
6633
6634 sprintf(pers_name, "raid%d", mddev->new_level);
6635 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6636 if (!conf->thread) {
6637 printk(KERN_ERR
6638 "md/raid:%s: couldn't allocate thread.\n",
6639 mdname(mddev));
6640 goto abort;
6641 }
6642
6643 return conf;
6644
6645 abort:
6646 if (conf) {
6647 free_conf(conf);
6648 return ERR_PTR(-EIO);
6649 } else
6650 return ERR_PTR(-ENOMEM);
6651 }
6652
6653 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6654 {
6655 switch (algo) {
6656 case ALGORITHM_PARITY_0:
6657 if (raid_disk < max_degraded)
6658 return 1;
6659 break;
6660 case ALGORITHM_PARITY_N:
6661 if (raid_disk >= raid_disks - max_degraded)
6662 return 1;
6663 break;
6664 case ALGORITHM_PARITY_0_6:
6665 if (raid_disk == 0 ||
6666 raid_disk == raid_disks - 1)
6667 return 1;
6668 break;
6669 case ALGORITHM_LEFT_ASYMMETRIC_6:
6670 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6671 case ALGORITHM_LEFT_SYMMETRIC_6:
6672 case ALGORITHM_RIGHT_SYMMETRIC_6:
6673 if (raid_disk == raid_disks - 1)
6674 return 1;
6675 }
6676 return 0;
6677 }
6678
6679 static int run(struct mddev *mddev)
6680 {
6681 struct r5conf *conf;
6682 int working_disks = 0;
6683 int dirty_parity_disks = 0;
6684 struct md_rdev *rdev;
6685 struct md_rdev *journal_dev = NULL;
6686 sector_t reshape_offset = 0;
6687 int i;
6688 long long min_offset_diff = 0;
6689 int first = 1;
6690
6691 if (mddev->recovery_cp != MaxSector)
6692 printk(KERN_NOTICE "md/raid:%s: not clean"
6693 " -- starting background reconstruction\n",
6694 mdname(mddev));
6695
6696 rdev_for_each(rdev, mddev) {
6697 long long diff;
6698
6699 if (test_bit(Journal, &rdev->flags)) {
6700 journal_dev = rdev;
6701 continue;
6702 }
6703 if (rdev->raid_disk < 0)
6704 continue;
6705 diff = (rdev->new_data_offset - rdev->data_offset);
6706 if (first) {
6707 min_offset_diff = diff;
6708 first = 0;
6709 } else if (mddev->reshape_backwards &&
6710 diff < min_offset_diff)
6711 min_offset_diff = diff;
6712 else if (!mddev->reshape_backwards &&
6713 diff > min_offset_diff)
6714 min_offset_diff = diff;
6715 }
6716
6717 if (mddev->reshape_position != MaxSector) {
6718 /* Check that we can continue the reshape.
6719 * Difficulties arise if the stripe we would write to
6720 * next is at or after the stripe we would read from next.
6721 * For a reshape that changes the number of devices, this
6722 * is only possible for a very short time, and mdadm makes
6723 * sure that time appears to have past before assembling
6724 * the array. So we fail if that time hasn't passed.
6725 * For a reshape that keeps the number of devices the same
6726 * mdadm must be monitoring the reshape can keeping the
6727 * critical areas read-only and backed up. It will start
6728 * the array in read-only mode, so we check for that.
6729 */
6730 sector_t here_new, here_old;
6731 int old_disks;
6732 int max_degraded = (mddev->level == 6 ? 2 : 1);
6733 int chunk_sectors;
6734 int new_data_disks;
6735
6736 if (journal_dev) {
6737 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6738 mdname(mddev));
6739 return -EINVAL;
6740 }
6741
6742 if (mddev->new_level != mddev->level) {
6743 printk(KERN_ERR "md/raid:%s: unsupported reshape "
6744 "required - aborting.\n",
6745 mdname(mddev));
6746 return -EINVAL;
6747 }
6748 old_disks = mddev->raid_disks - mddev->delta_disks;
6749 /* reshape_position must be on a new-stripe boundary, and one
6750 * further up in new geometry must map after here in old
6751 * geometry.
6752 * If the chunk sizes are different, then as we perform reshape
6753 * in units of the largest of the two, reshape_position needs
6754 * be a multiple of the largest chunk size times new data disks.
6755 */
6756 here_new = mddev->reshape_position;
6757 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6758 new_data_disks = mddev->raid_disks - max_degraded;
6759 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6760 printk(KERN_ERR "md/raid:%s: reshape_position not "
6761 "on a stripe boundary\n", mdname(mddev));
6762 return -EINVAL;
6763 }
6764 reshape_offset = here_new * chunk_sectors;
6765 /* here_new is the stripe we will write to */
6766 here_old = mddev->reshape_position;
6767 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6768 /* here_old is the first stripe that we might need to read
6769 * from */
6770 if (mddev->delta_disks == 0) {
6771 /* We cannot be sure it is safe to start an in-place
6772 * reshape. It is only safe if user-space is monitoring
6773 * and taking constant backups.
6774 * mdadm always starts a situation like this in
6775 * readonly mode so it can take control before
6776 * allowing any writes. So just check for that.
6777 */
6778 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6779 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6780 /* not really in-place - so OK */;
6781 else if (mddev->ro == 0) {
6782 printk(KERN_ERR "md/raid:%s: in-place reshape "
6783 "must be started in read-only mode "
6784 "- aborting\n",
6785 mdname(mddev));
6786 return -EINVAL;
6787 }
6788 } else if (mddev->reshape_backwards
6789 ? (here_new * chunk_sectors + min_offset_diff <=
6790 here_old * chunk_sectors)
6791 : (here_new * chunk_sectors >=
6792 here_old * chunk_sectors + (-min_offset_diff))) {
6793 /* Reading from the same stripe as writing to - bad */
6794 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6795 "auto-recovery - aborting.\n",
6796 mdname(mddev));
6797 return -EINVAL;
6798 }
6799 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6800 mdname(mddev));
6801 /* OK, we should be able to continue; */
6802 } else {
6803 BUG_ON(mddev->level != mddev->new_level);
6804 BUG_ON(mddev->layout != mddev->new_layout);
6805 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6806 BUG_ON(mddev->delta_disks != 0);
6807 }
6808
6809 if (mddev->private == NULL)
6810 conf = setup_conf(mddev);
6811 else
6812 conf = mddev->private;
6813
6814 if (IS_ERR(conf))
6815 return PTR_ERR(conf);
6816
6817 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6818 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6819 mdname(mddev));
6820 mddev->ro = 1;
6821 set_disk_ro(mddev->gendisk, 1);
6822 }
6823
6824 conf->min_offset_diff = min_offset_diff;
6825 mddev->thread = conf->thread;
6826 conf->thread = NULL;
6827 mddev->private = conf;
6828
6829 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6830 i++) {
6831 rdev = conf->disks[i].rdev;
6832 if (!rdev && conf->disks[i].replacement) {
6833 /* The replacement is all we have yet */
6834 rdev = conf->disks[i].replacement;
6835 conf->disks[i].replacement = NULL;
6836 clear_bit(Replacement, &rdev->flags);
6837 conf->disks[i].rdev = rdev;
6838 }
6839 if (!rdev)
6840 continue;
6841 if (conf->disks[i].replacement &&
6842 conf->reshape_progress != MaxSector) {
6843 /* replacements and reshape simply do not mix. */
6844 printk(KERN_ERR "md: cannot handle concurrent "
6845 "replacement and reshape.\n");
6846 goto abort;
6847 }
6848 if (test_bit(In_sync, &rdev->flags)) {
6849 working_disks++;
6850 continue;
6851 }
6852 /* This disc is not fully in-sync. However if it
6853 * just stored parity (beyond the recovery_offset),
6854 * when we don't need to be concerned about the
6855 * array being dirty.
6856 * When reshape goes 'backwards', we never have
6857 * partially completed devices, so we only need
6858 * to worry about reshape going forwards.
6859 */
6860 /* Hack because v0.91 doesn't store recovery_offset properly. */
6861 if (mddev->major_version == 0 &&
6862 mddev->minor_version > 90)
6863 rdev->recovery_offset = reshape_offset;
6864
6865 if (rdev->recovery_offset < reshape_offset) {
6866 /* We need to check old and new layout */
6867 if (!only_parity(rdev->raid_disk,
6868 conf->algorithm,
6869 conf->raid_disks,
6870 conf->max_degraded))
6871 continue;
6872 }
6873 if (!only_parity(rdev->raid_disk,
6874 conf->prev_algo,
6875 conf->previous_raid_disks,
6876 conf->max_degraded))
6877 continue;
6878 dirty_parity_disks++;
6879 }
6880
6881 /*
6882 * 0 for a fully functional array, 1 or 2 for a degraded array.
6883 */
6884 mddev->degraded = calc_degraded(conf);
6885
6886 if (has_failed(conf)) {
6887 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6888 " (%d/%d failed)\n",
6889 mdname(mddev), mddev->degraded, conf->raid_disks);
6890 goto abort;
6891 }
6892
6893 /* device size must be a multiple of chunk size */
6894 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6895 mddev->resync_max_sectors = mddev->dev_sectors;
6896
6897 if (mddev->degraded > dirty_parity_disks &&
6898 mddev->recovery_cp != MaxSector) {
6899 if (mddev->ok_start_degraded)
6900 printk(KERN_WARNING
6901 "md/raid:%s: starting dirty degraded array"
6902 " - data corruption possible.\n",
6903 mdname(mddev));
6904 else {
6905 printk(KERN_ERR
6906 "md/raid:%s: cannot start dirty degraded array.\n",
6907 mdname(mddev));
6908 goto abort;
6909 }
6910 }
6911
6912 if (mddev->degraded == 0)
6913 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6914 " devices, algorithm %d\n", mdname(mddev), conf->level,
6915 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6916 mddev->new_layout);
6917 else
6918 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6919 " out of %d devices, algorithm %d\n",
6920 mdname(mddev), conf->level,
6921 mddev->raid_disks - mddev->degraded,
6922 mddev->raid_disks, mddev->new_layout);
6923
6924 print_raid5_conf(conf);
6925
6926 if (conf->reshape_progress != MaxSector) {
6927 conf->reshape_safe = conf->reshape_progress;
6928 atomic_set(&conf->reshape_stripes, 0);
6929 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6930 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6931 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6932 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6933 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6934 "reshape");
6935 }
6936
6937 /* Ok, everything is just fine now */
6938 if (mddev->to_remove == &raid5_attrs_group)
6939 mddev->to_remove = NULL;
6940 else if (mddev->kobj.sd &&
6941 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6942 printk(KERN_WARNING
6943 "raid5: failed to create sysfs attributes for %s\n",
6944 mdname(mddev));
6945 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6946
6947 if (mddev->queue) {
6948 int chunk_size;
6949 bool discard_supported = true;
6950 /* read-ahead size must cover two whole stripes, which
6951 * is 2 * (datadisks) * chunksize where 'n' is the
6952 * number of raid devices
6953 */
6954 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6955 int stripe = data_disks *
6956 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6957 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6958 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6959
6960 chunk_size = mddev->chunk_sectors << 9;
6961 blk_queue_io_min(mddev->queue, chunk_size);
6962 blk_queue_io_opt(mddev->queue, chunk_size *
6963 (conf->raid_disks - conf->max_degraded));
6964 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6965 /*
6966 * We can only discard a whole stripe. It doesn't make sense to
6967 * discard data disk but write parity disk
6968 */
6969 stripe = stripe * PAGE_SIZE;
6970 /* Round up to power of 2, as discard handling
6971 * currently assumes that */
6972 while ((stripe-1) & stripe)
6973 stripe = (stripe | (stripe-1)) + 1;
6974 mddev->queue->limits.discard_alignment = stripe;
6975 mddev->queue->limits.discard_granularity = stripe;
6976 /*
6977 * unaligned part of discard request will be ignored, so can't
6978 * guarantee discard_zeroes_data
6979 */
6980 mddev->queue->limits.discard_zeroes_data = 0;
6981
6982 blk_queue_max_write_same_sectors(mddev->queue, 0);
6983
6984 rdev_for_each(rdev, mddev) {
6985 disk_stack_limits(mddev->gendisk, rdev->bdev,
6986 rdev->data_offset << 9);
6987 disk_stack_limits(mddev->gendisk, rdev->bdev,
6988 rdev->new_data_offset << 9);
6989 /*
6990 * discard_zeroes_data is required, otherwise data
6991 * could be lost. Consider a scenario: discard a stripe
6992 * (the stripe could be inconsistent if
6993 * discard_zeroes_data is 0); write one disk of the
6994 * stripe (the stripe could be inconsistent again
6995 * depending on which disks are used to calculate
6996 * parity); the disk is broken; The stripe data of this
6997 * disk is lost.
6998 */
6999 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7000 !bdev_get_queue(rdev->bdev)->
7001 limits.discard_zeroes_data)
7002 discard_supported = false;
7003 /* Unfortunately, discard_zeroes_data is not currently
7004 * a guarantee - just a hint. So we only allow DISCARD
7005 * if the sysadmin has confirmed that only safe devices
7006 * are in use by setting a module parameter.
7007 */
7008 if (!devices_handle_discard_safely) {
7009 if (discard_supported) {
7010 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7011 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7012 }
7013 discard_supported = false;
7014 }
7015 }
7016
7017 if (discard_supported &&
7018 mddev->queue->limits.max_discard_sectors >= stripe &&
7019 mddev->queue->limits.discard_granularity >= stripe)
7020 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7021 mddev->queue);
7022 else
7023 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7024 mddev->queue);
7025 }
7026
7027 if (journal_dev) {
7028 char b[BDEVNAME_SIZE];
7029
7030 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7031 mdname(mddev), bdevname(journal_dev->bdev, b));
7032 r5l_init_log(conf, journal_dev);
7033 }
7034
7035 return 0;
7036 abort:
7037 md_unregister_thread(&mddev->thread);
7038 print_raid5_conf(conf);
7039 free_conf(conf);
7040 mddev->private = NULL;
7041 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7042 return -EIO;
7043 }
7044
7045 static void raid5_free(struct mddev *mddev, void *priv)
7046 {
7047 struct r5conf *conf = priv;
7048
7049 free_conf(conf);
7050 mddev->to_remove = &raid5_attrs_group;
7051 }
7052
7053 static void status(struct seq_file *seq, struct mddev *mddev)
7054 {
7055 struct r5conf *conf = mddev->private;
7056 int i;
7057
7058 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7059 conf->chunk_sectors / 2, mddev->layout);
7060 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7061 for (i = 0; i < conf->raid_disks; i++)
7062 seq_printf (seq, "%s",
7063 conf->disks[i].rdev &&
7064 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7065 seq_printf (seq, "]");
7066 }
7067
7068 static void print_raid5_conf (struct r5conf *conf)
7069 {
7070 int i;
7071 struct disk_info *tmp;
7072
7073 printk(KERN_DEBUG "RAID conf printout:\n");
7074 if (!conf) {
7075 printk("(conf==NULL)\n");
7076 return;
7077 }
7078 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7079 conf->raid_disks,
7080 conf->raid_disks - conf->mddev->degraded);
7081
7082 for (i = 0; i < conf->raid_disks; i++) {
7083 char b[BDEVNAME_SIZE];
7084 tmp = conf->disks + i;
7085 if (tmp->rdev)
7086 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7087 i, !test_bit(Faulty, &tmp->rdev->flags),
7088 bdevname(tmp->rdev->bdev, b));
7089 }
7090 }
7091
7092 static int raid5_spare_active(struct mddev *mddev)
7093 {
7094 int i;
7095 struct r5conf *conf = mddev->private;
7096 struct disk_info *tmp;
7097 int count = 0;
7098 unsigned long flags;
7099
7100 for (i = 0; i < conf->raid_disks; i++) {
7101 tmp = conf->disks + i;
7102 if (tmp->replacement
7103 && tmp->replacement->recovery_offset == MaxSector
7104 && !test_bit(Faulty, &tmp->replacement->flags)
7105 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7106 /* Replacement has just become active. */
7107 if (!tmp->rdev
7108 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7109 count++;
7110 if (tmp->rdev) {
7111 /* Replaced device not technically faulty,
7112 * but we need to be sure it gets removed
7113 * and never re-added.
7114 */
7115 set_bit(Faulty, &tmp->rdev->flags);
7116 sysfs_notify_dirent_safe(
7117 tmp->rdev->sysfs_state);
7118 }
7119 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7120 } else if (tmp->rdev
7121 && tmp->rdev->recovery_offset == MaxSector
7122 && !test_bit(Faulty, &tmp->rdev->flags)
7123 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7124 count++;
7125 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7126 }
7127 }
7128 spin_lock_irqsave(&conf->device_lock, flags);
7129 mddev->degraded = calc_degraded(conf);
7130 spin_unlock_irqrestore(&conf->device_lock, flags);
7131 print_raid5_conf(conf);
7132 return count;
7133 }
7134
7135 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7136 {
7137 struct r5conf *conf = mddev->private;
7138 int err = 0;
7139 int number = rdev->raid_disk;
7140 struct md_rdev **rdevp;
7141 struct disk_info *p = conf->disks + number;
7142
7143 print_raid5_conf(conf);
7144 if (test_bit(Journal, &rdev->flags)) {
7145 /*
7146 * journal disk is not removable, but we need give a chance to
7147 * update superblock of other disks. Otherwise journal disk
7148 * will be considered as 'fresh'
7149 */
7150 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7151 return -EINVAL;
7152 }
7153 if (rdev == p->rdev)
7154 rdevp = &p->rdev;
7155 else if (rdev == p->replacement)
7156 rdevp = &p->replacement;
7157 else
7158 return 0;
7159
7160 if (number >= conf->raid_disks &&
7161 conf->reshape_progress == MaxSector)
7162 clear_bit(In_sync, &rdev->flags);
7163
7164 if (test_bit(In_sync, &rdev->flags) ||
7165 atomic_read(&rdev->nr_pending)) {
7166 err = -EBUSY;
7167 goto abort;
7168 }
7169 /* Only remove non-faulty devices if recovery
7170 * isn't possible.
7171 */
7172 if (!test_bit(Faulty, &rdev->flags) &&
7173 mddev->recovery_disabled != conf->recovery_disabled &&
7174 !has_failed(conf) &&
7175 (!p->replacement || p->replacement == rdev) &&
7176 number < conf->raid_disks) {
7177 err = -EBUSY;
7178 goto abort;
7179 }
7180 *rdevp = NULL;
7181 synchronize_rcu();
7182 if (atomic_read(&rdev->nr_pending)) {
7183 /* lost the race, try later */
7184 err = -EBUSY;
7185 *rdevp = rdev;
7186 } else if (p->replacement) {
7187 /* We must have just cleared 'rdev' */
7188 p->rdev = p->replacement;
7189 clear_bit(Replacement, &p->replacement->flags);
7190 smp_mb(); /* Make sure other CPUs may see both as identical
7191 * but will never see neither - if they are careful
7192 */
7193 p->replacement = NULL;
7194 clear_bit(WantReplacement, &rdev->flags);
7195 } else
7196 /* We might have just removed the Replacement as faulty-
7197 * clear the bit just in case
7198 */
7199 clear_bit(WantReplacement, &rdev->flags);
7200 abort:
7201
7202 print_raid5_conf(conf);
7203 return err;
7204 }
7205
7206 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7207 {
7208 struct r5conf *conf = mddev->private;
7209 int err = -EEXIST;
7210 int disk;
7211 struct disk_info *p;
7212 int first = 0;
7213 int last = conf->raid_disks - 1;
7214
7215 if (test_bit(Journal, &rdev->flags))
7216 return -EINVAL;
7217 if (mddev->recovery_disabled == conf->recovery_disabled)
7218 return -EBUSY;
7219
7220 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7221 /* no point adding a device */
7222 return -EINVAL;
7223
7224 if (rdev->raid_disk >= 0)
7225 first = last = rdev->raid_disk;
7226
7227 /*
7228 * find the disk ... but prefer rdev->saved_raid_disk
7229 * if possible.
7230 */
7231 if (rdev->saved_raid_disk >= 0 &&
7232 rdev->saved_raid_disk >= first &&
7233 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7234 first = rdev->saved_raid_disk;
7235
7236 for (disk = first; disk <= last; disk++) {
7237 p = conf->disks + disk;
7238 if (p->rdev == NULL) {
7239 clear_bit(In_sync, &rdev->flags);
7240 rdev->raid_disk = disk;
7241 err = 0;
7242 if (rdev->saved_raid_disk != disk)
7243 conf->fullsync = 1;
7244 rcu_assign_pointer(p->rdev, rdev);
7245 goto out;
7246 }
7247 }
7248 for (disk = first; disk <= last; disk++) {
7249 p = conf->disks + disk;
7250 if (test_bit(WantReplacement, &p->rdev->flags) &&
7251 p->replacement == NULL) {
7252 clear_bit(In_sync, &rdev->flags);
7253 set_bit(Replacement, &rdev->flags);
7254 rdev->raid_disk = disk;
7255 err = 0;
7256 conf->fullsync = 1;
7257 rcu_assign_pointer(p->replacement, rdev);
7258 break;
7259 }
7260 }
7261 out:
7262 print_raid5_conf(conf);
7263 return err;
7264 }
7265
7266 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7267 {
7268 /* no resync is happening, and there is enough space
7269 * on all devices, so we can resize.
7270 * We need to make sure resync covers any new space.
7271 * If the array is shrinking we should possibly wait until
7272 * any io in the removed space completes, but it hardly seems
7273 * worth it.
7274 */
7275 sector_t newsize;
7276 struct r5conf *conf = mddev->private;
7277
7278 if (conf->log)
7279 return -EINVAL;
7280 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7281 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7282 if (mddev->external_size &&
7283 mddev->array_sectors > newsize)
7284 return -EINVAL;
7285 if (mddev->bitmap) {
7286 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7287 if (ret)
7288 return ret;
7289 }
7290 md_set_array_sectors(mddev, newsize);
7291 set_capacity(mddev->gendisk, mddev->array_sectors);
7292 revalidate_disk(mddev->gendisk);
7293 if (sectors > mddev->dev_sectors &&
7294 mddev->recovery_cp > mddev->dev_sectors) {
7295 mddev->recovery_cp = mddev->dev_sectors;
7296 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7297 }
7298 mddev->dev_sectors = sectors;
7299 mddev->resync_max_sectors = sectors;
7300 return 0;
7301 }
7302
7303 static int check_stripe_cache(struct mddev *mddev)
7304 {
7305 /* Can only proceed if there are plenty of stripe_heads.
7306 * We need a minimum of one full stripe,, and for sensible progress
7307 * it is best to have about 4 times that.
7308 * If we require 4 times, then the default 256 4K stripe_heads will
7309 * allow for chunk sizes up to 256K, which is probably OK.
7310 * If the chunk size is greater, user-space should request more
7311 * stripe_heads first.
7312 */
7313 struct r5conf *conf = mddev->private;
7314 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7315 > conf->min_nr_stripes ||
7316 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7317 > conf->min_nr_stripes) {
7318 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7319 mdname(mddev),
7320 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7321 / STRIPE_SIZE)*4);
7322 return 0;
7323 }
7324 return 1;
7325 }
7326
7327 static int check_reshape(struct mddev *mddev)
7328 {
7329 struct r5conf *conf = mddev->private;
7330
7331 if (conf->log)
7332 return -EINVAL;
7333 if (mddev->delta_disks == 0 &&
7334 mddev->new_layout == mddev->layout &&
7335 mddev->new_chunk_sectors == mddev->chunk_sectors)
7336 return 0; /* nothing to do */
7337 if (has_failed(conf))
7338 return -EINVAL;
7339 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7340 /* We might be able to shrink, but the devices must
7341 * be made bigger first.
7342 * For raid6, 4 is the minimum size.
7343 * Otherwise 2 is the minimum
7344 */
7345 int min = 2;
7346 if (mddev->level == 6)
7347 min = 4;
7348 if (mddev->raid_disks + mddev->delta_disks < min)
7349 return -EINVAL;
7350 }
7351
7352 if (!check_stripe_cache(mddev))
7353 return -ENOSPC;
7354
7355 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7356 mddev->delta_disks > 0)
7357 if (resize_chunks(conf,
7358 conf->previous_raid_disks
7359 + max(0, mddev->delta_disks),
7360 max(mddev->new_chunk_sectors,
7361 mddev->chunk_sectors)
7362 ) < 0)
7363 return -ENOMEM;
7364 return resize_stripes(conf, (conf->previous_raid_disks
7365 + mddev->delta_disks));
7366 }
7367
7368 static int raid5_start_reshape(struct mddev *mddev)
7369 {
7370 struct r5conf *conf = mddev->private;
7371 struct md_rdev *rdev;
7372 int spares = 0;
7373 unsigned long flags;
7374
7375 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7376 return -EBUSY;
7377
7378 if (!check_stripe_cache(mddev))
7379 return -ENOSPC;
7380
7381 if (has_failed(conf))
7382 return -EINVAL;
7383
7384 rdev_for_each(rdev, mddev) {
7385 if (!test_bit(In_sync, &rdev->flags)
7386 && !test_bit(Faulty, &rdev->flags))
7387 spares++;
7388 }
7389
7390 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7391 /* Not enough devices even to make a degraded array
7392 * of that size
7393 */
7394 return -EINVAL;
7395
7396 /* Refuse to reduce size of the array. Any reductions in
7397 * array size must be through explicit setting of array_size
7398 * attribute.
7399 */
7400 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7401 < mddev->array_sectors) {
7402 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7403 "before number of disks\n", mdname(mddev));
7404 return -EINVAL;
7405 }
7406
7407 atomic_set(&conf->reshape_stripes, 0);
7408 spin_lock_irq(&conf->device_lock);
7409 write_seqcount_begin(&conf->gen_lock);
7410 conf->previous_raid_disks = conf->raid_disks;
7411 conf->raid_disks += mddev->delta_disks;
7412 conf->prev_chunk_sectors = conf->chunk_sectors;
7413 conf->chunk_sectors = mddev->new_chunk_sectors;
7414 conf->prev_algo = conf->algorithm;
7415 conf->algorithm = mddev->new_layout;
7416 conf->generation++;
7417 /* Code that selects data_offset needs to see the generation update
7418 * if reshape_progress has been set - so a memory barrier needed.
7419 */
7420 smp_mb();
7421 if (mddev->reshape_backwards)
7422 conf->reshape_progress = raid5_size(mddev, 0, 0);
7423 else
7424 conf->reshape_progress = 0;
7425 conf->reshape_safe = conf->reshape_progress;
7426 write_seqcount_end(&conf->gen_lock);
7427 spin_unlock_irq(&conf->device_lock);
7428
7429 /* Now make sure any requests that proceeded on the assumption
7430 * the reshape wasn't running - like Discard or Read - have
7431 * completed.
7432 */
7433 mddev_suspend(mddev);
7434 mddev_resume(mddev);
7435
7436 /* Add some new drives, as many as will fit.
7437 * We know there are enough to make the newly sized array work.
7438 * Don't add devices if we are reducing the number of
7439 * devices in the array. This is because it is not possible
7440 * to correctly record the "partially reconstructed" state of
7441 * such devices during the reshape and confusion could result.
7442 */
7443 if (mddev->delta_disks >= 0) {
7444 rdev_for_each(rdev, mddev)
7445 if (rdev->raid_disk < 0 &&
7446 !test_bit(Faulty, &rdev->flags)) {
7447 if (raid5_add_disk(mddev, rdev) == 0) {
7448 if (rdev->raid_disk
7449 >= conf->previous_raid_disks)
7450 set_bit(In_sync, &rdev->flags);
7451 else
7452 rdev->recovery_offset = 0;
7453
7454 if (sysfs_link_rdev(mddev, rdev))
7455 /* Failure here is OK */;
7456 }
7457 } else if (rdev->raid_disk >= conf->previous_raid_disks
7458 && !test_bit(Faulty, &rdev->flags)) {
7459 /* This is a spare that was manually added */
7460 set_bit(In_sync, &rdev->flags);
7461 }
7462
7463 /* When a reshape changes the number of devices,
7464 * ->degraded is measured against the larger of the
7465 * pre and post number of devices.
7466 */
7467 spin_lock_irqsave(&conf->device_lock, flags);
7468 mddev->degraded = calc_degraded(conf);
7469 spin_unlock_irqrestore(&conf->device_lock, flags);
7470 }
7471 mddev->raid_disks = conf->raid_disks;
7472 mddev->reshape_position = conf->reshape_progress;
7473 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7474
7475 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7476 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7477 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7478 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7479 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7480 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7481 "reshape");
7482 if (!mddev->sync_thread) {
7483 mddev->recovery = 0;
7484 spin_lock_irq(&conf->device_lock);
7485 write_seqcount_begin(&conf->gen_lock);
7486 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7487 mddev->new_chunk_sectors =
7488 conf->chunk_sectors = conf->prev_chunk_sectors;
7489 mddev->new_layout = conf->algorithm = conf->prev_algo;
7490 rdev_for_each(rdev, mddev)
7491 rdev->new_data_offset = rdev->data_offset;
7492 smp_wmb();
7493 conf->generation --;
7494 conf->reshape_progress = MaxSector;
7495 mddev->reshape_position = MaxSector;
7496 write_seqcount_end(&conf->gen_lock);
7497 spin_unlock_irq(&conf->device_lock);
7498 return -EAGAIN;
7499 }
7500 conf->reshape_checkpoint = jiffies;
7501 md_wakeup_thread(mddev->sync_thread);
7502 md_new_event(mddev);
7503 return 0;
7504 }
7505
7506 /* This is called from the reshape thread and should make any
7507 * changes needed in 'conf'
7508 */
7509 static void end_reshape(struct r5conf *conf)
7510 {
7511
7512 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7513 struct md_rdev *rdev;
7514
7515 spin_lock_irq(&conf->device_lock);
7516 conf->previous_raid_disks = conf->raid_disks;
7517 rdev_for_each(rdev, conf->mddev)
7518 rdev->data_offset = rdev->new_data_offset;
7519 smp_wmb();
7520 conf->reshape_progress = MaxSector;
7521 conf->mddev->reshape_position = MaxSector;
7522 spin_unlock_irq(&conf->device_lock);
7523 wake_up(&conf->wait_for_overlap);
7524
7525 /* read-ahead size must cover two whole stripes, which is
7526 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7527 */
7528 if (conf->mddev->queue) {
7529 int data_disks = conf->raid_disks - conf->max_degraded;
7530 int stripe = data_disks * ((conf->chunk_sectors << 9)
7531 / PAGE_SIZE);
7532 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7533 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7534 }
7535 }
7536 }
7537
7538 /* This is called from the raid5d thread with mddev_lock held.
7539 * It makes config changes to the device.
7540 */
7541 static void raid5_finish_reshape(struct mddev *mddev)
7542 {
7543 struct r5conf *conf = mddev->private;
7544
7545 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7546
7547 if (mddev->delta_disks > 0) {
7548 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7549 set_capacity(mddev->gendisk, mddev->array_sectors);
7550 revalidate_disk(mddev->gendisk);
7551 } else {
7552 int d;
7553 spin_lock_irq(&conf->device_lock);
7554 mddev->degraded = calc_degraded(conf);
7555 spin_unlock_irq(&conf->device_lock);
7556 for (d = conf->raid_disks ;
7557 d < conf->raid_disks - mddev->delta_disks;
7558 d++) {
7559 struct md_rdev *rdev = conf->disks[d].rdev;
7560 if (rdev)
7561 clear_bit(In_sync, &rdev->flags);
7562 rdev = conf->disks[d].replacement;
7563 if (rdev)
7564 clear_bit(In_sync, &rdev->flags);
7565 }
7566 }
7567 mddev->layout = conf->algorithm;
7568 mddev->chunk_sectors = conf->chunk_sectors;
7569 mddev->reshape_position = MaxSector;
7570 mddev->delta_disks = 0;
7571 mddev->reshape_backwards = 0;
7572 }
7573 }
7574
7575 static void raid5_quiesce(struct mddev *mddev, int state)
7576 {
7577 struct r5conf *conf = mddev->private;
7578
7579 switch(state) {
7580 case 2: /* resume for a suspend */
7581 wake_up(&conf->wait_for_overlap);
7582 break;
7583
7584 case 1: /* stop all writes */
7585 lock_all_device_hash_locks_irq(conf);
7586 /* '2' tells resync/reshape to pause so that all
7587 * active stripes can drain
7588 */
7589 conf->quiesce = 2;
7590 wait_event_cmd(conf->wait_for_quiescent,
7591 atomic_read(&conf->active_stripes) == 0 &&
7592 atomic_read(&conf->active_aligned_reads) == 0,
7593 unlock_all_device_hash_locks_irq(conf),
7594 lock_all_device_hash_locks_irq(conf));
7595 conf->quiesce = 1;
7596 unlock_all_device_hash_locks_irq(conf);
7597 /* allow reshape to continue */
7598 wake_up(&conf->wait_for_overlap);
7599 break;
7600
7601 case 0: /* re-enable writes */
7602 lock_all_device_hash_locks_irq(conf);
7603 conf->quiesce = 0;
7604 wake_up(&conf->wait_for_quiescent);
7605 wake_up(&conf->wait_for_overlap);
7606 unlock_all_device_hash_locks_irq(conf);
7607 break;
7608 }
7609 r5l_quiesce(conf->log, state);
7610 }
7611
7612 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7613 {
7614 struct r0conf *raid0_conf = mddev->private;
7615 sector_t sectors;
7616
7617 /* for raid0 takeover only one zone is supported */
7618 if (raid0_conf->nr_strip_zones > 1) {
7619 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7620 mdname(mddev));
7621 return ERR_PTR(-EINVAL);
7622 }
7623
7624 sectors = raid0_conf->strip_zone[0].zone_end;
7625 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7626 mddev->dev_sectors = sectors;
7627 mddev->new_level = level;
7628 mddev->new_layout = ALGORITHM_PARITY_N;
7629 mddev->new_chunk_sectors = mddev->chunk_sectors;
7630 mddev->raid_disks += 1;
7631 mddev->delta_disks = 1;
7632 /* make sure it will be not marked as dirty */
7633 mddev->recovery_cp = MaxSector;
7634
7635 return setup_conf(mddev);
7636 }
7637
7638 static void *raid5_takeover_raid1(struct mddev *mddev)
7639 {
7640 int chunksect;
7641
7642 if (mddev->raid_disks != 2 ||
7643 mddev->degraded > 1)
7644 return ERR_PTR(-EINVAL);
7645
7646 /* Should check if there are write-behind devices? */
7647
7648 chunksect = 64*2; /* 64K by default */
7649
7650 /* The array must be an exact multiple of chunksize */
7651 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7652 chunksect >>= 1;
7653
7654 if ((chunksect<<9) < STRIPE_SIZE)
7655 /* array size does not allow a suitable chunk size */
7656 return ERR_PTR(-EINVAL);
7657
7658 mddev->new_level = 5;
7659 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7660 mddev->new_chunk_sectors = chunksect;
7661
7662 return setup_conf(mddev);
7663 }
7664
7665 static void *raid5_takeover_raid6(struct mddev *mddev)
7666 {
7667 int new_layout;
7668
7669 switch (mddev->layout) {
7670 case ALGORITHM_LEFT_ASYMMETRIC_6:
7671 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7672 break;
7673 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7674 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7675 break;
7676 case ALGORITHM_LEFT_SYMMETRIC_6:
7677 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7678 break;
7679 case ALGORITHM_RIGHT_SYMMETRIC_6:
7680 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7681 break;
7682 case ALGORITHM_PARITY_0_6:
7683 new_layout = ALGORITHM_PARITY_0;
7684 break;
7685 case ALGORITHM_PARITY_N:
7686 new_layout = ALGORITHM_PARITY_N;
7687 break;
7688 default:
7689 return ERR_PTR(-EINVAL);
7690 }
7691 mddev->new_level = 5;
7692 mddev->new_layout = new_layout;
7693 mddev->delta_disks = -1;
7694 mddev->raid_disks -= 1;
7695 return setup_conf(mddev);
7696 }
7697
7698 static int raid5_check_reshape(struct mddev *mddev)
7699 {
7700 /* For a 2-drive array, the layout and chunk size can be changed
7701 * immediately as not restriping is needed.
7702 * For larger arrays we record the new value - after validation
7703 * to be used by a reshape pass.
7704 */
7705 struct r5conf *conf = mddev->private;
7706 int new_chunk = mddev->new_chunk_sectors;
7707
7708 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7709 return -EINVAL;
7710 if (new_chunk > 0) {
7711 if (!is_power_of_2(new_chunk))
7712 return -EINVAL;
7713 if (new_chunk < (PAGE_SIZE>>9))
7714 return -EINVAL;
7715 if (mddev->array_sectors & (new_chunk-1))
7716 /* not factor of array size */
7717 return -EINVAL;
7718 }
7719
7720 /* They look valid */
7721
7722 if (mddev->raid_disks == 2) {
7723 /* can make the change immediately */
7724 if (mddev->new_layout >= 0) {
7725 conf->algorithm = mddev->new_layout;
7726 mddev->layout = mddev->new_layout;
7727 }
7728 if (new_chunk > 0) {
7729 conf->chunk_sectors = new_chunk ;
7730 mddev->chunk_sectors = new_chunk;
7731 }
7732 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7733 md_wakeup_thread(mddev->thread);
7734 }
7735 return check_reshape(mddev);
7736 }
7737
7738 static int raid6_check_reshape(struct mddev *mddev)
7739 {
7740 int new_chunk = mddev->new_chunk_sectors;
7741
7742 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7743 return -EINVAL;
7744 if (new_chunk > 0) {
7745 if (!is_power_of_2(new_chunk))
7746 return -EINVAL;
7747 if (new_chunk < (PAGE_SIZE >> 9))
7748 return -EINVAL;
7749 if (mddev->array_sectors & (new_chunk-1))
7750 /* not factor of array size */
7751 return -EINVAL;
7752 }
7753
7754 /* They look valid */
7755 return check_reshape(mddev);
7756 }
7757
7758 static void *raid5_takeover(struct mddev *mddev)
7759 {
7760 /* raid5 can take over:
7761 * raid0 - if there is only one strip zone - make it a raid4 layout
7762 * raid1 - if there are two drives. We need to know the chunk size
7763 * raid4 - trivial - just use a raid4 layout.
7764 * raid6 - Providing it is a *_6 layout
7765 */
7766 if (mddev->level == 0)
7767 return raid45_takeover_raid0(mddev, 5);
7768 if (mddev->level == 1)
7769 return raid5_takeover_raid1(mddev);
7770 if (mddev->level == 4) {
7771 mddev->new_layout = ALGORITHM_PARITY_N;
7772 mddev->new_level = 5;
7773 return setup_conf(mddev);
7774 }
7775 if (mddev->level == 6)
7776 return raid5_takeover_raid6(mddev);
7777
7778 return ERR_PTR(-EINVAL);
7779 }
7780
7781 static void *raid4_takeover(struct mddev *mddev)
7782 {
7783 /* raid4 can take over:
7784 * raid0 - if there is only one strip zone
7785 * raid5 - if layout is right
7786 */
7787 if (mddev->level == 0)
7788 return raid45_takeover_raid0(mddev, 4);
7789 if (mddev->level == 5 &&
7790 mddev->layout == ALGORITHM_PARITY_N) {
7791 mddev->new_layout = 0;
7792 mddev->new_level = 4;
7793 return setup_conf(mddev);
7794 }
7795 return ERR_PTR(-EINVAL);
7796 }
7797
7798 static struct md_personality raid5_personality;
7799
7800 static void *raid6_takeover(struct mddev *mddev)
7801 {
7802 /* Currently can only take over a raid5. We map the
7803 * personality to an equivalent raid6 personality
7804 * with the Q block at the end.
7805 */
7806 int new_layout;
7807
7808 if (mddev->pers != &raid5_personality)
7809 return ERR_PTR(-EINVAL);
7810 if (mddev->degraded > 1)
7811 return ERR_PTR(-EINVAL);
7812 if (mddev->raid_disks > 253)
7813 return ERR_PTR(-EINVAL);
7814 if (mddev->raid_disks < 3)
7815 return ERR_PTR(-EINVAL);
7816
7817 switch (mddev->layout) {
7818 case ALGORITHM_LEFT_ASYMMETRIC:
7819 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7820 break;
7821 case ALGORITHM_RIGHT_ASYMMETRIC:
7822 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7823 break;
7824 case ALGORITHM_LEFT_SYMMETRIC:
7825 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7826 break;
7827 case ALGORITHM_RIGHT_SYMMETRIC:
7828 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7829 break;
7830 case ALGORITHM_PARITY_0:
7831 new_layout = ALGORITHM_PARITY_0_6;
7832 break;
7833 case ALGORITHM_PARITY_N:
7834 new_layout = ALGORITHM_PARITY_N;
7835 break;
7836 default:
7837 return ERR_PTR(-EINVAL);
7838 }
7839 mddev->new_level = 6;
7840 mddev->new_layout = new_layout;
7841 mddev->delta_disks = 1;
7842 mddev->raid_disks += 1;
7843 return setup_conf(mddev);
7844 }
7845
7846 static struct md_personality raid6_personality =
7847 {
7848 .name = "raid6",
7849 .level = 6,
7850 .owner = THIS_MODULE,
7851 .make_request = make_request,
7852 .run = run,
7853 .free = raid5_free,
7854 .status = status,
7855 .error_handler = error,
7856 .hot_add_disk = raid5_add_disk,
7857 .hot_remove_disk= raid5_remove_disk,
7858 .spare_active = raid5_spare_active,
7859 .sync_request = sync_request,
7860 .resize = raid5_resize,
7861 .size = raid5_size,
7862 .check_reshape = raid6_check_reshape,
7863 .start_reshape = raid5_start_reshape,
7864 .finish_reshape = raid5_finish_reshape,
7865 .quiesce = raid5_quiesce,
7866 .takeover = raid6_takeover,
7867 .congested = raid5_congested,
7868 };
7869 static struct md_personality raid5_personality =
7870 {
7871 .name = "raid5",
7872 .level = 5,
7873 .owner = THIS_MODULE,
7874 .make_request = make_request,
7875 .run = run,
7876 .free = raid5_free,
7877 .status = status,
7878 .error_handler = error,
7879 .hot_add_disk = raid5_add_disk,
7880 .hot_remove_disk= raid5_remove_disk,
7881 .spare_active = raid5_spare_active,
7882 .sync_request = sync_request,
7883 .resize = raid5_resize,
7884 .size = raid5_size,
7885 .check_reshape = raid5_check_reshape,
7886 .start_reshape = raid5_start_reshape,
7887 .finish_reshape = raid5_finish_reshape,
7888 .quiesce = raid5_quiesce,
7889 .takeover = raid5_takeover,
7890 .congested = raid5_congested,
7891 };
7892
7893 static struct md_personality raid4_personality =
7894 {
7895 .name = "raid4",
7896 .level = 4,
7897 .owner = THIS_MODULE,
7898 .make_request = make_request,
7899 .run = run,
7900 .free = raid5_free,
7901 .status = status,
7902 .error_handler = error,
7903 .hot_add_disk = raid5_add_disk,
7904 .hot_remove_disk= raid5_remove_disk,
7905 .spare_active = raid5_spare_active,
7906 .sync_request = sync_request,
7907 .resize = raid5_resize,
7908 .size = raid5_size,
7909 .check_reshape = raid5_check_reshape,
7910 .start_reshape = raid5_start_reshape,
7911 .finish_reshape = raid5_finish_reshape,
7912 .quiesce = raid5_quiesce,
7913 .takeover = raid4_takeover,
7914 .congested = raid5_congested,
7915 };
7916
7917 static int __init raid5_init(void)
7918 {
7919 raid5_wq = alloc_workqueue("raid5wq",
7920 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7921 if (!raid5_wq)
7922 return -ENOMEM;
7923 register_md_personality(&raid6_personality);
7924 register_md_personality(&raid5_personality);
7925 register_md_personality(&raid4_personality);
7926 return 0;
7927 }
7928
7929 static void raid5_exit(void)
7930 {
7931 unregister_md_personality(&raid6_personality);
7932 unregister_md_personality(&raid5_personality);
7933 unregister_md_personality(&raid4_personality);
7934 destroy_workqueue(raid5_wq);
7935 }
7936
7937 module_init(raid5_init);
7938 module_exit(raid5_exit);
7939 MODULE_LICENSE("GPL");
7940 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7941 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7942 MODULE_ALIAS("md-raid5");
7943 MODULE_ALIAS("md-raid4");
7944 MODULE_ALIAS("md-level-5");
7945 MODULE_ALIAS("md-level-4");
7946 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7947 MODULE_ALIAS("md-raid6");
7948 MODULE_ALIAS("md-level-6");
7949
7950 /* This used to be two separate modules, they were: */
7951 MODULE_ALIAS("raid5");
7952 MODULE_ALIAS("raid6");