]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/md/raid5.c
md/raid5: use bad-block log to improve handling of uncorrectable read errors.
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include <linux/ratelimit.h>
55 #include "md.h"
56 #include "raid5.h"
57 #include "raid0.h"
58 #include "bitmap.h"
59
60 /*
61 * Stripe cache
62 */
63
64 #define NR_STRIPES 256
65 #define STRIPE_SIZE PAGE_SIZE
66 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
67 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
68 #define IO_THRESHOLD 1
69 #define BYPASS_THRESHOLD 1
70 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
71 #define HASH_MASK (NR_HASH - 1)
72
73 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74
75 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
76 * order without overlap. There may be several bio's per stripe+device, and
77 * a bio could span several devices.
78 * When walking this list for a particular stripe+device, we must never proceed
79 * beyond a bio that extends past this device, as the next bio might no longer
80 * be valid.
81 * This macro is used to determine the 'next' bio in the list, given the sector
82 * of the current stripe+device
83 */
84 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85 /*
86 * The following can be used to debug the driver
87 */
88 #define RAID5_PARANOIA 1
89 #if RAID5_PARANOIA && defined(CONFIG_SMP)
90 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91 #else
92 # define CHECK_DEVLOCK()
93 #endif
94
95 #ifdef DEBUG
96 #define inline
97 #define __inline__
98 #endif
99
100 /*
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 */
104 static inline int raid5_bi_phys_segments(struct bio *bio)
105 {
106 return bio->bi_phys_segments & 0xffff;
107 }
108
109 static inline int raid5_bi_hw_segments(struct bio *bio)
110 {
111 return (bio->bi_phys_segments >> 16) & 0xffff;
112 }
113
114 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115 {
116 --bio->bi_phys_segments;
117 return raid5_bi_phys_segments(bio);
118 }
119
120 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121 {
122 unsigned short val = raid5_bi_hw_segments(bio);
123
124 --val;
125 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126 return val;
127 }
128
129 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130 {
131 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
132 }
133
134 /* Find first data disk in a raid6 stripe */
135 static inline int raid6_d0(struct stripe_head *sh)
136 {
137 if (sh->ddf_layout)
138 /* ddf always start from first device */
139 return 0;
140 /* md starts just after Q block */
141 if (sh->qd_idx == sh->disks - 1)
142 return 0;
143 else
144 return sh->qd_idx + 1;
145 }
146 static inline int raid6_next_disk(int disk, int raid_disks)
147 {
148 disk++;
149 return (disk < raid_disks) ? disk : 0;
150 }
151
152 /* When walking through the disks in a raid5, starting at raid6_d0,
153 * We need to map each disk to a 'slot', where the data disks are slot
154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155 * is raid_disks-1. This help does that mapping.
156 */
157 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158 int *count, int syndrome_disks)
159 {
160 int slot = *count;
161
162 if (sh->ddf_layout)
163 (*count)++;
164 if (idx == sh->pd_idx)
165 return syndrome_disks;
166 if (idx == sh->qd_idx)
167 return syndrome_disks + 1;
168 if (!sh->ddf_layout)
169 (*count)++;
170 return slot;
171 }
172
173 static void return_io(struct bio *return_bi)
174 {
175 struct bio *bi = return_bi;
176 while (bi) {
177
178 return_bi = bi->bi_next;
179 bi->bi_next = NULL;
180 bi->bi_size = 0;
181 bio_endio(bi, 0);
182 bi = return_bi;
183 }
184 }
185
186 static void print_raid5_conf (raid5_conf_t *conf);
187
188 static int stripe_operations_active(struct stripe_head *sh)
189 {
190 return sh->check_state || sh->reconstruct_state ||
191 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193 }
194
195 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196 {
197 if (atomic_dec_and_test(&sh->count)) {
198 BUG_ON(!list_empty(&sh->lru));
199 BUG_ON(atomic_read(&conf->active_stripes)==0);
200 if (test_bit(STRIPE_HANDLE, &sh->state)) {
201 if (test_bit(STRIPE_DELAYED, &sh->state))
202 list_add_tail(&sh->lru, &conf->delayed_list);
203 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204 sh->bm_seq - conf->seq_write > 0)
205 list_add_tail(&sh->lru, &conf->bitmap_list);
206 else {
207 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208 list_add_tail(&sh->lru, &conf->handle_list);
209 }
210 md_wakeup_thread(conf->mddev->thread);
211 } else {
212 BUG_ON(stripe_operations_active(sh));
213 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
214 atomic_dec(&conf->preread_active_stripes);
215 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
216 md_wakeup_thread(conf->mddev->thread);
217 }
218 atomic_dec(&conf->active_stripes);
219 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
220 list_add_tail(&sh->lru, &conf->inactive_list);
221 wake_up(&conf->wait_for_stripe);
222 if (conf->retry_read_aligned)
223 md_wakeup_thread(conf->mddev->thread);
224 }
225 }
226 }
227 }
228
229 static void release_stripe(struct stripe_head *sh)
230 {
231 raid5_conf_t *conf = sh->raid_conf;
232 unsigned long flags;
233
234 spin_lock_irqsave(&conf->device_lock, flags);
235 __release_stripe(conf, sh);
236 spin_unlock_irqrestore(&conf->device_lock, flags);
237 }
238
239 static inline void remove_hash(struct stripe_head *sh)
240 {
241 pr_debug("remove_hash(), stripe %llu\n",
242 (unsigned long long)sh->sector);
243
244 hlist_del_init(&sh->hash);
245 }
246
247 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
248 {
249 struct hlist_head *hp = stripe_hash(conf, sh->sector);
250
251 pr_debug("insert_hash(), stripe %llu\n",
252 (unsigned long long)sh->sector);
253
254 CHECK_DEVLOCK();
255 hlist_add_head(&sh->hash, hp);
256 }
257
258
259 /* find an idle stripe, make sure it is unhashed, and return it. */
260 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
261 {
262 struct stripe_head *sh = NULL;
263 struct list_head *first;
264
265 CHECK_DEVLOCK();
266 if (list_empty(&conf->inactive_list))
267 goto out;
268 first = conf->inactive_list.next;
269 sh = list_entry(first, struct stripe_head, lru);
270 list_del_init(first);
271 remove_hash(sh);
272 atomic_inc(&conf->active_stripes);
273 out:
274 return sh;
275 }
276
277 static void shrink_buffers(struct stripe_head *sh)
278 {
279 struct page *p;
280 int i;
281 int num = sh->raid_conf->pool_size;
282
283 for (i = 0; i < num ; i++) {
284 p = sh->dev[i].page;
285 if (!p)
286 continue;
287 sh->dev[i].page = NULL;
288 put_page(p);
289 }
290 }
291
292 static int grow_buffers(struct stripe_head *sh)
293 {
294 int i;
295 int num = sh->raid_conf->pool_size;
296
297 for (i = 0; i < num; i++) {
298 struct page *page;
299
300 if (!(page = alloc_page(GFP_KERNEL))) {
301 return 1;
302 }
303 sh->dev[i].page = page;
304 }
305 return 0;
306 }
307
308 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310 struct stripe_head *sh);
311
312 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313 {
314 raid5_conf_t *conf = sh->raid_conf;
315 int i;
316
317 BUG_ON(atomic_read(&sh->count) != 0);
318 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319 BUG_ON(stripe_operations_active(sh));
320
321 CHECK_DEVLOCK();
322 pr_debug("init_stripe called, stripe %llu\n",
323 (unsigned long long)sh->sector);
324
325 remove_hash(sh);
326
327 sh->generation = conf->generation - previous;
328 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329 sh->sector = sector;
330 stripe_set_idx(sector, conf, previous, sh);
331 sh->state = 0;
332
333
334 for (i = sh->disks; i--; ) {
335 struct r5dev *dev = &sh->dev[i];
336
337 if (dev->toread || dev->read || dev->towrite || dev->written ||
338 test_bit(R5_LOCKED, &dev->flags)) {
339 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340 (unsigned long long)sh->sector, i, dev->toread,
341 dev->read, dev->towrite, dev->written,
342 test_bit(R5_LOCKED, &dev->flags));
343 WARN_ON(1);
344 }
345 dev->flags = 0;
346 raid5_build_block(sh, i, previous);
347 }
348 insert_hash(conf, sh);
349 }
350
351 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352 short generation)
353 {
354 struct stripe_head *sh;
355 struct hlist_node *hn;
356
357 CHECK_DEVLOCK();
358 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360 if (sh->sector == sector && sh->generation == generation)
361 return sh;
362 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363 return NULL;
364 }
365
366 /*
367 * Need to check if array has failed when deciding whether to:
368 * - start an array
369 * - remove non-faulty devices
370 * - add a spare
371 * - allow a reshape
372 * This determination is simple when no reshape is happening.
373 * However if there is a reshape, we need to carefully check
374 * both the before and after sections.
375 * This is because some failed devices may only affect one
376 * of the two sections, and some non-in_sync devices may
377 * be insync in the section most affected by failed devices.
378 */
379 static int has_failed(raid5_conf_t *conf)
380 {
381 int degraded;
382 int i;
383 if (conf->mddev->reshape_position == MaxSector)
384 return conf->mddev->degraded > conf->max_degraded;
385
386 rcu_read_lock();
387 degraded = 0;
388 for (i = 0; i < conf->previous_raid_disks; i++) {
389 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
390 if (!rdev || test_bit(Faulty, &rdev->flags))
391 degraded++;
392 else if (test_bit(In_sync, &rdev->flags))
393 ;
394 else
395 /* not in-sync or faulty.
396 * If the reshape increases the number of devices,
397 * this is being recovered by the reshape, so
398 * this 'previous' section is not in_sync.
399 * If the number of devices is being reduced however,
400 * the device can only be part of the array if
401 * we are reverting a reshape, so this section will
402 * be in-sync.
403 */
404 if (conf->raid_disks >= conf->previous_raid_disks)
405 degraded++;
406 }
407 rcu_read_unlock();
408 if (degraded > conf->max_degraded)
409 return 1;
410 rcu_read_lock();
411 degraded = 0;
412 for (i = 0; i < conf->raid_disks; i++) {
413 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
414 if (!rdev || test_bit(Faulty, &rdev->flags))
415 degraded++;
416 else if (test_bit(In_sync, &rdev->flags))
417 ;
418 else
419 /* not in-sync or faulty.
420 * If reshape increases the number of devices, this
421 * section has already been recovered, else it
422 * almost certainly hasn't.
423 */
424 if (conf->raid_disks <= conf->previous_raid_disks)
425 degraded++;
426 }
427 rcu_read_unlock();
428 if (degraded > conf->max_degraded)
429 return 1;
430 return 0;
431 }
432
433 static struct stripe_head *
434 get_active_stripe(raid5_conf_t *conf, sector_t sector,
435 int previous, int noblock, int noquiesce)
436 {
437 struct stripe_head *sh;
438
439 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
440
441 spin_lock_irq(&conf->device_lock);
442
443 do {
444 wait_event_lock_irq(conf->wait_for_stripe,
445 conf->quiesce == 0 || noquiesce,
446 conf->device_lock, /* nothing */);
447 sh = __find_stripe(conf, sector, conf->generation - previous);
448 if (!sh) {
449 if (!conf->inactive_blocked)
450 sh = get_free_stripe(conf);
451 if (noblock && sh == NULL)
452 break;
453 if (!sh) {
454 conf->inactive_blocked = 1;
455 wait_event_lock_irq(conf->wait_for_stripe,
456 !list_empty(&conf->inactive_list) &&
457 (atomic_read(&conf->active_stripes)
458 < (conf->max_nr_stripes *3/4)
459 || !conf->inactive_blocked),
460 conf->device_lock,
461 );
462 conf->inactive_blocked = 0;
463 } else
464 init_stripe(sh, sector, previous);
465 } else {
466 if (atomic_read(&sh->count)) {
467 BUG_ON(!list_empty(&sh->lru)
468 && !test_bit(STRIPE_EXPANDING, &sh->state));
469 } else {
470 if (!test_bit(STRIPE_HANDLE, &sh->state))
471 atomic_inc(&conf->active_stripes);
472 if (list_empty(&sh->lru) &&
473 !test_bit(STRIPE_EXPANDING, &sh->state))
474 BUG();
475 list_del_init(&sh->lru);
476 }
477 }
478 } while (sh == NULL);
479
480 if (sh)
481 atomic_inc(&sh->count);
482
483 spin_unlock_irq(&conf->device_lock);
484 return sh;
485 }
486
487 static void
488 raid5_end_read_request(struct bio *bi, int error);
489 static void
490 raid5_end_write_request(struct bio *bi, int error);
491
492 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
493 {
494 raid5_conf_t *conf = sh->raid_conf;
495 int i, disks = sh->disks;
496
497 might_sleep();
498
499 for (i = disks; i--; ) {
500 int rw;
501 struct bio *bi;
502 mdk_rdev_t *rdev;
503 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
504 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
505 rw = WRITE_FUA;
506 else
507 rw = WRITE;
508 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
509 rw = READ;
510 else
511 continue;
512
513 bi = &sh->dev[i].req;
514
515 bi->bi_rw = rw;
516 if (rw & WRITE)
517 bi->bi_end_io = raid5_end_write_request;
518 else
519 bi->bi_end_io = raid5_end_read_request;
520
521 rcu_read_lock();
522 rdev = rcu_dereference(conf->disks[i].rdev);
523 if (rdev && test_bit(Faulty, &rdev->flags))
524 rdev = NULL;
525 if (rdev)
526 atomic_inc(&rdev->nr_pending);
527 rcu_read_unlock();
528
529 if (rdev) {
530 if (s->syncing || s->expanding || s->expanded)
531 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
532
533 set_bit(STRIPE_IO_STARTED, &sh->state);
534
535 bi->bi_bdev = rdev->bdev;
536 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
537 __func__, (unsigned long long)sh->sector,
538 bi->bi_rw, i);
539 atomic_inc(&sh->count);
540 bi->bi_sector = sh->sector + rdev->data_offset;
541 bi->bi_flags = 1 << BIO_UPTODATE;
542 bi->bi_vcnt = 1;
543 bi->bi_max_vecs = 1;
544 bi->bi_idx = 0;
545 bi->bi_io_vec = &sh->dev[i].vec;
546 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
547 bi->bi_io_vec[0].bv_offset = 0;
548 bi->bi_size = STRIPE_SIZE;
549 bi->bi_next = NULL;
550 generic_make_request(bi);
551 } else {
552 if (rw & WRITE)
553 set_bit(STRIPE_DEGRADED, &sh->state);
554 pr_debug("skip op %ld on disc %d for sector %llu\n",
555 bi->bi_rw, i, (unsigned long long)sh->sector);
556 clear_bit(R5_LOCKED, &sh->dev[i].flags);
557 set_bit(STRIPE_HANDLE, &sh->state);
558 }
559 }
560 }
561
562 static struct dma_async_tx_descriptor *
563 async_copy_data(int frombio, struct bio *bio, struct page *page,
564 sector_t sector, struct dma_async_tx_descriptor *tx)
565 {
566 struct bio_vec *bvl;
567 struct page *bio_page;
568 int i;
569 int page_offset;
570 struct async_submit_ctl submit;
571 enum async_tx_flags flags = 0;
572
573 if (bio->bi_sector >= sector)
574 page_offset = (signed)(bio->bi_sector - sector) * 512;
575 else
576 page_offset = (signed)(sector - bio->bi_sector) * -512;
577
578 if (frombio)
579 flags |= ASYNC_TX_FENCE;
580 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
581
582 bio_for_each_segment(bvl, bio, i) {
583 int len = bvl->bv_len;
584 int clen;
585 int b_offset = 0;
586
587 if (page_offset < 0) {
588 b_offset = -page_offset;
589 page_offset += b_offset;
590 len -= b_offset;
591 }
592
593 if (len > 0 && page_offset + len > STRIPE_SIZE)
594 clen = STRIPE_SIZE - page_offset;
595 else
596 clen = len;
597
598 if (clen > 0) {
599 b_offset += bvl->bv_offset;
600 bio_page = bvl->bv_page;
601 if (frombio)
602 tx = async_memcpy(page, bio_page, page_offset,
603 b_offset, clen, &submit);
604 else
605 tx = async_memcpy(bio_page, page, b_offset,
606 page_offset, clen, &submit);
607 }
608 /* chain the operations */
609 submit.depend_tx = tx;
610
611 if (clen < len) /* hit end of page */
612 break;
613 page_offset += len;
614 }
615
616 return tx;
617 }
618
619 static void ops_complete_biofill(void *stripe_head_ref)
620 {
621 struct stripe_head *sh = stripe_head_ref;
622 struct bio *return_bi = NULL;
623 raid5_conf_t *conf = sh->raid_conf;
624 int i;
625
626 pr_debug("%s: stripe %llu\n", __func__,
627 (unsigned long long)sh->sector);
628
629 /* clear completed biofills */
630 spin_lock_irq(&conf->device_lock);
631 for (i = sh->disks; i--; ) {
632 struct r5dev *dev = &sh->dev[i];
633
634 /* acknowledge completion of a biofill operation */
635 /* and check if we need to reply to a read request,
636 * new R5_Wantfill requests are held off until
637 * !STRIPE_BIOFILL_RUN
638 */
639 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
640 struct bio *rbi, *rbi2;
641
642 BUG_ON(!dev->read);
643 rbi = dev->read;
644 dev->read = NULL;
645 while (rbi && rbi->bi_sector <
646 dev->sector + STRIPE_SECTORS) {
647 rbi2 = r5_next_bio(rbi, dev->sector);
648 if (!raid5_dec_bi_phys_segments(rbi)) {
649 rbi->bi_next = return_bi;
650 return_bi = rbi;
651 }
652 rbi = rbi2;
653 }
654 }
655 }
656 spin_unlock_irq(&conf->device_lock);
657 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
658
659 return_io(return_bi);
660
661 set_bit(STRIPE_HANDLE, &sh->state);
662 release_stripe(sh);
663 }
664
665 static void ops_run_biofill(struct stripe_head *sh)
666 {
667 struct dma_async_tx_descriptor *tx = NULL;
668 raid5_conf_t *conf = sh->raid_conf;
669 struct async_submit_ctl submit;
670 int i;
671
672 pr_debug("%s: stripe %llu\n", __func__,
673 (unsigned long long)sh->sector);
674
675 for (i = sh->disks; i--; ) {
676 struct r5dev *dev = &sh->dev[i];
677 if (test_bit(R5_Wantfill, &dev->flags)) {
678 struct bio *rbi;
679 spin_lock_irq(&conf->device_lock);
680 dev->read = rbi = dev->toread;
681 dev->toread = NULL;
682 spin_unlock_irq(&conf->device_lock);
683 while (rbi && rbi->bi_sector <
684 dev->sector + STRIPE_SECTORS) {
685 tx = async_copy_data(0, rbi, dev->page,
686 dev->sector, tx);
687 rbi = r5_next_bio(rbi, dev->sector);
688 }
689 }
690 }
691
692 atomic_inc(&sh->count);
693 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
694 async_trigger_callback(&submit);
695 }
696
697 static void mark_target_uptodate(struct stripe_head *sh, int target)
698 {
699 struct r5dev *tgt;
700
701 if (target < 0)
702 return;
703
704 tgt = &sh->dev[target];
705 set_bit(R5_UPTODATE, &tgt->flags);
706 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
707 clear_bit(R5_Wantcompute, &tgt->flags);
708 }
709
710 static void ops_complete_compute(void *stripe_head_ref)
711 {
712 struct stripe_head *sh = stripe_head_ref;
713
714 pr_debug("%s: stripe %llu\n", __func__,
715 (unsigned long long)sh->sector);
716
717 /* mark the computed target(s) as uptodate */
718 mark_target_uptodate(sh, sh->ops.target);
719 mark_target_uptodate(sh, sh->ops.target2);
720
721 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
722 if (sh->check_state == check_state_compute_run)
723 sh->check_state = check_state_compute_result;
724 set_bit(STRIPE_HANDLE, &sh->state);
725 release_stripe(sh);
726 }
727
728 /* return a pointer to the address conversion region of the scribble buffer */
729 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
730 struct raid5_percpu *percpu)
731 {
732 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
733 }
734
735 static struct dma_async_tx_descriptor *
736 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
737 {
738 int disks = sh->disks;
739 struct page **xor_srcs = percpu->scribble;
740 int target = sh->ops.target;
741 struct r5dev *tgt = &sh->dev[target];
742 struct page *xor_dest = tgt->page;
743 int count = 0;
744 struct dma_async_tx_descriptor *tx;
745 struct async_submit_ctl submit;
746 int i;
747
748 pr_debug("%s: stripe %llu block: %d\n",
749 __func__, (unsigned long long)sh->sector, target);
750 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
751
752 for (i = disks; i--; )
753 if (i != target)
754 xor_srcs[count++] = sh->dev[i].page;
755
756 atomic_inc(&sh->count);
757
758 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
759 ops_complete_compute, sh, to_addr_conv(sh, percpu));
760 if (unlikely(count == 1))
761 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
762 else
763 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
764
765 return tx;
766 }
767
768 /* set_syndrome_sources - populate source buffers for gen_syndrome
769 * @srcs - (struct page *) array of size sh->disks
770 * @sh - stripe_head to parse
771 *
772 * Populates srcs in proper layout order for the stripe and returns the
773 * 'count' of sources to be used in a call to async_gen_syndrome. The P
774 * destination buffer is recorded in srcs[count] and the Q destination
775 * is recorded in srcs[count+1]].
776 */
777 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
778 {
779 int disks = sh->disks;
780 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
781 int d0_idx = raid6_d0(sh);
782 int count;
783 int i;
784
785 for (i = 0; i < disks; i++)
786 srcs[i] = NULL;
787
788 count = 0;
789 i = d0_idx;
790 do {
791 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
792
793 srcs[slot] = sh->dev[i].page;
794 i = raid6_next_disk(i, disks);
795 } while (i != d0_idx);
796
797 return syndrome_disks;
798 }
799
800 static struct dma_async_tx_descriptor *
801 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
802 {
803 int disks = sh->disks;
804 struct page **blocks = percpu->scribble;
805 int target;
806 int qd_idx = sh->qd_idx;
807 struct dma_async_tx_descriptor *tx;
808 struct async_submit_ctl submit;
809 struct r5dev *tgt;
810 struct page *dest;
811 int i;
812 int count;
813
814 if (sh->ops.target < 0)
815 target = sh->ops.target2;
816 else if (sh->ops.target2 < 0)
817 target = sh->ops.target;
818 else
819 /* we should only have one valid target */
820 BUG();
821 BUG_ON(target < 0);
822 pr_debug("%s: stripe %llu block: %d\n",
823 __func__, (unsigned long long)sh->sector, target);
824
825 tgt = &sh->dev[target];
826 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
827 dest = tgt->page;
828
829 atomic_inc(&sh->count);
830
831 if (target == qd_idx) {
832 count = set_syndrome_sources(blocks, sh);
833 blocks[count] = NULL; /* regenerating p is not necessary */
834 BUG_ON(blocks[count+1] != dest); /* q should already be set */
835 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
836 ops_complete_compute, sh,
837 to_addr_conv(sh, percpu));
838 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
839 } else {
840 /* Compute any data- or p-drive using XOR */
841 count = 0;
842 for (i = disks; i-- ; ) {
843 if (i == target || i == qd_idx)
844 continue;
845 blocks[count++] = sh->dev[i].page;
846 }
847
848 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
849 NULL, ops_complete_compute, sh,
850 to_addr_conv(sh, percpu));
851 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
852 }
853
854 return tx;
855 }
856
857 static struct dma_async_tx_descriptor *
858 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
859 {
860 int i, count, disks = sh->disks;
861 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
862 int d0_idx = raid6_d0(sh);
863 int faila = -1, failb = -1;
864 int target = sh->ops.target;
865 int target2 = sh->ops.target2;
866 struct r5dev *tgt = &sh->dev[target];
867 struct r5dev *tgt2 = &sh->dev[target2];
868 struct dma_async_tx_descriptor *tx;
869 struct page **blocks = percpu->scribble;
870 struct async_submit_ctl submit;
871
872 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
873 __func__, (unsigned long long)sh->sector, target, target2);
874 BUG_ON(target < 0 || target2 < 0);
875 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
876 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
877
878 /* we need to open-code set_syndrome_sources to handle the
879 * slot number conversion for 'faila' and 'failb'
880 */
881 for (i = 0; i < disks ; i++)
882 blocks[i] = NULL;
883 count = 0;
884 i = d0_idx;
885 do {
886 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
887
888 blocks[slot] = sh->dev[i].page;
889
890 if (i == target)
891 faila = slot;
892 if (i == target2)
893 failb = slot;
894 i = raid6_next_disk(i, disks);
895 } while (i != d0_idx);
896
897 BUG_ON(faila == failb);
898 if (failb < faila)
899 swap(faila, failb);
900 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
901 __func__, (unsigned long long)sh->sector, faila, failb);
902
903 atomic_inc(&sh->count);
904
905 if (failb == syndrome_disks+1) {
906 /* Q disk is one of the missing disks */
907 if (faila == syndrome_disks) {
908 /* Missing P+Q, just recompute */
909 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
910 ops_complete_compute, sh,
911 to_addr_conv(sh, percpu));
912 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
913 STRIPE_SIZE, &submit);
914 } else {
915 struct page *dest;
916 int data_target;
917 int qd_idx = sh->qd_idx;
918
919 /* Missing D+Q: recompute D from P, then recompute Q */
920 if (target == qd_idx)
921 data_target = target2;
922 else
923 data_target = target;
924
925 count = 0;
926 for (i = disks; i-- ; ) {
927 if (i == data_target || i == qd_idx)
928 continue;
929 blocks[count++] = sh->dev[i].page;
930 }
931 dest = sh->dev[data_target].page;
932 init_async_submit(&submit,
933 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
934 NULL, NULL, NULL,
935 to_addr_conv(sh, percpu));
936 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
937 &submit);
938
939 count = set_syndrome_sources(blocks, sh);
940 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
941 ops_complete_compute, sh,
942 to_addr_conv(sh, percpu));
943 return async_gen_syndrome(blocks, 0, count+2,
944 STRIPE_SIZE, &submit);
945 }
946 } else {
947 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
948 ops_complete_compute, sh,
949 to_addr_conv(sh, percpu));
950 if (failb == syndrome_disks) {
951 /* We're missing D+P. */
952 return async_raid6_datap_recov(syndrome_disks+2,
953 STRIPE_SIZE, faila,
954 blocks, &submit);
955 } else {
956 /* We're missing D+D. */
957 return async_raid6_2data_recov(syndrome_disks+2,
958 STRIPE_SIZE, faila, failb,
959 blocks, &submit);
960 }
961 }
962 }
963
964
965 static void ops_complete_prexor(void *stripe_head_ref)
966 {
967 struct stripe_head *sh = stripe_head_ref;
968
969 pr_debug("%s: stripe %llu\n", __func__,
970 (unsigned long long)sh->sector);
971 }
972
973 static struct dma_async_tx_descriptor *
974 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
975 struct dma_async_tx_descriptor *tx)
976 {
977 int disks = sh->disks;
978 struct page **xor_srcs = percpu->scribble;
979 int count = 0, pd_idx = sh->pd_idx, i;
980 struct async_submit_ctl submit;
981
982 /* existing parity data subtracted */
983 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
984
985 pr_debug("%s: stripe %llu\n", __func__,
986 (unsigned long long)sh->sector);
987
988 for (i = disks; i--; ) {
989 struct r5dev *dev = &sh->dev[i];
990 /* Only process blocks that are known to be uptodate */
991 if (test_bit(R5_Wantdrain, &dev->flags))
992 xor_srcs[count++] = dev->page;
993 }
994
995 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
996 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
997 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
998
999 return tx;
1000 }
1001
1002 static struct dma_async_tx_descriptor *
1003 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1004 {
1005 int disks = sh->disks;
1006 int i;
1007
1008 pr_debug("%s: stripe %llu\n", __func__,
1009 (unsigned long long)sh->sector);
1010
1011 for (i = disks; i--; ) {
1012 struct r5dev *dev = &sh->dev[i];
1013 struct bio *chosen;
1014
1015 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1016 struct bio *wbi;
1017
1018 spin_lock_irq(&sh->raid_conf->device_lock);
1019 chosen = dev->towrite;
1020 dev->towrite = NULL;
1021 BUG_ON(dev->written);
1022 wbi = dev->written = chosen;
1023 spin_unlock_irq(&sh->raid_conf->device_lock);
1024
1025 while (wbi && wbi->bi_sector <
1026 dev->sector + STRIPE_SECTORS) {
1027 if (wbi->bi_rw & REQ_FUA)
1028 set_bit(R5_WantFUA, &dev->flags);
1029 tx = async_copy_data(1, wbi, dev->page,
1030 dev->sector, tx);
1031 wbi = r5_next_bio(wbi, dev->sector);
1032 }
1033 }
1034 }
1035
1036 return tx;
1037 }
1038
1039 static void ops_complete_reconstruct(void *stripe_head_ref)
1040 {
1041 struct stripe_head *sh = stripe_head_ref;
1042 int disks = sh->disks;
1043 int pd_idx = sh->pd_idx;
1044 int qd_idx = sh->qd_idx;
1045 int i;
1046 bool fua = false;
1047
1048 pr_debug("%s: stripe %llu\n", __func__,
1049 (unsigned long long)sh->sector);
1050
1051 for (i = disks; i--; )
1052 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1053
1054 for (i = disks; i--; ) {
1055 struct r5dev *dev = &sh->dev[i];
1056
1057 if (dev->written || i == pd_idx || i == qd_idx) {
1058 set_bit(R5_UPTODATE, &dev->flags);
1059 if (fua)
1060 set_bit(R5_WantFUA, &dev->flags);
1061 }
1062 }
1063
1064 if (sh->reconstruct_state == reconstruct_state_drain_run)
1065 sh->reconstruct_state = reconstruct_state_drain_result;
1066 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1067 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1068 else {
1069 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1070 sh->reconstruct_state = reconstruct_state_result;
1071 }
1072
1073 set_bit(STRIPE_HANDLE, &sh->state);
1074 release_stripe(sh);
1075 }
1076
1077 static void
1078 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1079 struct dma_async_tx_descriptor *tx)
1080 {
1081 int disks = sh->disks;
1082 struct page **xor_srcs = percpu->scribble;
1083 struct async_submit_ctl submit;
1084 int count = 0, pd_idx = sh->pd_idx, i;
1085 struct page *xor_dest;
1086 int prexor = 0;
1087 unsigned long flags;
1088
1089 pr_debug("%s: stripe %llu\n", __func__,
1090 (unsigned long long)sh->sector);
1091
1092 /* check if prexor is active which means only process blocks
1093 * that are part of a read-modify-write (written)
1094 */
1095 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1096 prexor = 1;
1097 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1098 for (i = disks; i--; ) {
1099 struct r5dev *dev = &sh->dev[i];
1100 if (dev->written)
1101 xor_srcs[count++] = dev->page;
1102 }
1103 } else {
1104 xor_dest = sh->dev[pd_idx].page;
1105 for (i = disks; i--; ) {
1106 struct r5dev *dev = &sh->dev[i];
1107 if (i != pd_idx)
1108 xor_srcs[count++] = dev->page;
1109 }
1110 }
1111
1112 /* 1/ if we prexor'd then the dest is reused as a source
1113 * 2/ if we did not prexor then we are redoing the parity
1114 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1115 * for the synchronous xor case
1116 */
1117 flags = ASYNC_TX_ACK |
1118 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1119
1120 atomic_inc(&sh->count);
1121
1122 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1123 to_addr_conv(sh, percpu));
1124 if (unlikely(count == 1))
1125 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1126 else
1127 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1128 }
1129
1130 static void
1131 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1132 struct dma_async_tx_descriptor *tx)
1133 {
1134 struct async_submit_ctl submit;
1135 struct page **blocks = percpu->scribble;
1136 int count;
1137
1138 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1139
1140 count = set_syndrome_sources(blocks, sh);
1141
1142 atomic_inc(&sh->count);
1143
1144 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1145 sh, to_addr_conv(sh, percpu));
1146 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1147 }
1148
1149 static void ops_complete_check(void *stripe_head_ref)
1150 {
1151 struct stripe_head *sh = stripe_head_ref;
1152
1153 pr_debug("%s: stripe %llu\n", __func__,
1154 (unsigned long long)sh->sector);
1155
1156 sh->check_state = check_state_check_result;
1157 set_bit(STRIPE_HANDLE, &sh->state);
1158 release_stripe(sh);
1159 }
1160
1161 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1162 {
1163 int disks = sh->disks;
1164 int pd_idx = sh->pd_idx;
1165 int qd_idx = sh->qd_idx;
1166 struct page *xor_dest;
1167 struct page **xor_srcs = percpu->scribble;
1168 struct dma_async_tx_descriptor *tx;
1169 struct async_submit_ctl submit;
1170 int count;
1171 int i;
1172
1173 pr_debug("%s: stripe %llu\n", __func__,
1174 (unsigned long long)sh->sector);
1175
1176 count = 0;
1177 xor_dest = sh->dev[pd_idx].page;
1178 xor_srcs[count++] = xor_dest;
1179 for (i = disks; i--; ) {
1180 if (i == pd_idx || i == qd_idx)
1181 continue;
1182 xor_srcs[count++] = sh->dev[i].page;
1183 }
1184
1185 init_async_submit(&submit, 0, NULL, NULL, NULL,
1186 to_addr_conv(sh, percpu));
1187 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1188 &sh->ops.zero_sum_result, &submit);
1189
1190 atomic_inc(&sh->count);
1191 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1192 tx = async_trigger_callback(&submit);
1193 }
1194
1195 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1196 {
1197 struct page **srcs = percpu->scribble;
1198 struct async_submit_ctl submit;
1199 int count;
1200
1201 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1202 (unsigned long long)sh->sector, checkp);
1203
1204 count = set_syndrome_sources(srcs, sh);
1205 if (!checkp)
1206 srcs[count] = NULL;
1207
1208 atomic_inc(&sh->count);
1209 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1210 sh, to_addr_conv(sh, percpu));
1211 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1212 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1213 }
1214
1215 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1216 {
1217 int overlap_clear = 0, i, disks = sh->disks;
1218 struct dma_async_tx_descriptor *tx = NULL;
1219 raid5_conf_t *conf = sh->raid_conf;
1220 int level = conf->level;
1221 struct raid5_percpu *percpu;
1222 unsigned long cpu;
1223
1224 cpu = get_cpu();
1225 percpu = per_cpu_ptr(conf->percpu, cpu);
1226 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1227 ops_run_biofill(sh);
1228 overlap_clear++;
1229 }
1230
1231 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1232 if (level < 6)
1233 tx = ops_run_compute5(sh, percpu);
1234 else {
1235 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1236 tx = ops_run_compute6_1(sh, percpu);
1237 else
1238 tx = ops_run_compute6_2(sh, percpu);
1239 }
1240 /* terminate the chain if reconstruct is not set to be run */
1241 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1242 async_tx_ack(tx);
1243 }
1244
1245 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1246 tx = ops_run_prexor(sh, percpu, tx);
1247
1248 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1249 tx = ops_run_biodrain(sh, tx);
1250 overlap_clear++;
1251 }
1252
1253 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1254 if (level < 6)
1255 ops_run_reconstruct5(sh, percpu, tx);
1256 else
1257 ops_run_reconstruct6(sh, percpu, tx);
1258 }
1259
1260 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1261 if (sh->check_state == check_state_run)
1262 ops_run_check_p(sh, percpu);
1263 else if (sh->check_state == check_state_run_q)
1264 ops_run_check_pq(sh, percpu, 0);
1265 else if (sh->check_state == check_state_run_pq)
1266 ops_run_check_pq(sh, percpu, 1);
1267 else
1268 BUG();
1269 }
1270
1271 if (overlap_clear)
1272 for (i = disks; i--; ) {
1273 struct r5dev *dev = &sh->dev[i];
1274 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1275 wake_up(&sh->raid_conf->wait_for_overlap);
1276 }
1277 put_cpu();
1278 }
1279
1280 #ifdef CONFIG_MULTICORE_RAID456
1281 static void async_run_ops(void *param, async_cookie_t cookie)
1282 {
1283 struct stripe_head *sh = param;
1284 unsigned long ops_request = sh->ops.request;
1285
1286 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1287 wake_up(&sh->ops.wait_for_ops);
1288
1289 __raid_run_ops(sh, ops_request);
1290 release_stripe(sh);
1291 }
1292
1293 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1294 {
1295 /* since handle_stripe can be called outside of raid5d context
1296 * we need to ensure sh->ops.request is de-staged before another
1297 * request arrives
1298 */
1299 wait_event(sh->ops.wait_for_ops,
1300 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1301 sh->ops.request = ops_request;
1302
1303 atomic_inc(&sh->count);
1304 async_schedule(async_run_ops, sh);
1305 }
1306 #else
1307 #define raid_run_ops __raid_run_ops
1308 #endif
1309
1310 static int grow_one_stripe(raid5_conf_t *conf)
1311 {
1312 struct stripe_head *sh;
1313 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1314 if (!sh)
1315 return 0;
1316
1317 sh->raid_conf = conf;
1318 #ifdef CONFIG_MULTICORE_RAID456
1319 init_waitqueue_head(&sh->ops.wait_for_ops);
1320 #endif
1321
1322 if (grow_buffers(sh)) {
1323 shrink_buffers(sh);
1324 kmem_cache_free(conf->slab_cache, sh);
1325 return 0;
1326 }
1327 /* we just created an active stripe so... */
1328 atomic_set(&sh->count, 1);
1329 atomic_inc(&conf->active_stripes);
1330 INIT_LIST_HEAD(&sh->lru);
1331 release_stripe(sh);
1332 return 1;
1333 }
1334
1335 static int grow_stripes(raid5_conf_t *conf, int num)
1336 {
1337 struct kmem_cache *sc;
1338 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1339
1340 if (conf->mddev->gendisk)
1341 sprintf(conf->cache_name[0],
1342 "raid%d-%s", conf->level, mdname(conf->mddev));
1343 else
1344 sprintf(conf->cache_name[0],
1345 "raid%d-%p", conf->level, conf->mddev);
1346 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1347
1348 conf->active_name = 0;
1349 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1350 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1351 0, 0, NULL);
1352 if (!sc)
1353 return 1;
1354 conf->slab_cache = sc;
1355 conf->pool_size = devs;
1356 while (num--)
1357 if (!grow_one_stripe(conf))
1358 return 1;
1359 return 0;
1360 }
1361
1362 /**
1363 * scribble_len - return the required size of the scribble region
1364 * @num - total number of disks in the array
1365 *
1366 * The size must be enough to contain:
1367 * 1/ a struct page pointer for each device in the array +2
1368 * 2/ room to convert each entry in (1) to its corresponding dma
1369 * (dma_map_page()) or page (page_address()) address.
1370 *
1371 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1372 * calculate over all devices (not just the data blocks), using zeros in place
1373 * of the P and Q blocks.
1374 */
1375 static size_t scribble_len(int num)
1376 {
1377 size_t len;
1378
1379 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1380
1381 return len;
1382 }
1383
1384 static int resize_stripes(raid5_conf_t *conf, int newsize)
1385 {
1386 /* Make all the stripes able to hold 'newsize' devices.
1387 * New slots in each stripe get 'page' set to a new page.
1388 *
1389 * This happens in stages:
1390 * 1/ create a new kmem_cache and allocate the required number of
1391 * stripe_heads.
1392 * 2/ gather all the old stripe_heads and tranfer the pages across
1393 * to the new stripe_heads. This will have the side effect of
1394 * freezing the array as once all stripe_heads have been collected,
1395 * no IO will be possible. Old stripe heads are freed once their
1396 * pages have been transferred over, and the old kmem_cache is
1397 * freed when all stripes are done.
1398 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1399 * we simple return a failre status - no need to clean anything up.
1400 * 4/ allocate new pages for the new slots in the new stripe_heads.
1401 * If this fails, we don't bother trying the shrink the
1402 * stripe_heads down again, we just leave them as they are.
1403 * As each stripe_head is processed the new one is released into
1404 * active service.
1405 *
1406 * Once step2 is started, we cannot afford to wait for a write,
1407 * so we use GFP_NOIO allocations.
1408 */
1409 struct stripe_head *osh, *nsh;
1410 LIST_HEAD(newstripes);
1411 struct disk_info *ndisks;
1412 unsigned long cpu;
1413 int err;
1414 struct kmem_cache *sc;
1415 int i;
1416
1417 if (newsize <= conf->pool_size)
1418 return 0; /* never bother to shrink */
1419
1420 err = md_allow_write(conf->mddev);
1421 if (err)
1422 return err;
1423
1424 /* Step 1 */
1425 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1426 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1427 0, 0, NULL);
1428 if (!sc)
1429 return -ENOMEM;
1430
1431 for (i = conf->max_nr_stripes; i; i--) {
1432 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1433 if (!nsh)
1434 break;
1435
1436 nsh->raid_conf = conf;
1437 #ifdef CONFIG_MULTICORE_RAID456
1438 init_waitqueue_head(&nsh->ops.wait_for_ops);
1439 #endif
1440
1441 list_add(&nsh->lru, &newstripes);
1442 }
1443 if (i) {
1444 /* didn't get enough, give up */
1445 while (!list_empty(&newstripes)) {
1446 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1447 list_del(&nsh->lru);
1448 kmem_cache_free(sc, nsh);
1449 }
1450 kmem_cache_destroy(sc);
1451 return -ENOMEM;
1452 }
1453 /* Step 2 - Must use GFP_NOIO now.
1454 * OK, we have enough stripes, start collecting inactive
1455 * stripes and copying them over
1456 */
1457 list_for_each_entry(nsh, &newstripes, lru) {
1458 spin_lock_irq(&conf->device_lock);
1459 wait_event_lock_irq(conf->wait_for_stripe,
1460 !list_empty(&conf->inactive_list),
1461 conf->device_lock,
1462 );
1463 osh = get_free_stripe(conf);
1464 spin_unlock_irq(&conf->device_lock);
1465 atomic_set(&nsh->count, 1);
1466 for(i=0; i<conf->pool_size; i++)
1467 nsh->dev[i].page = osh->dev[i].page;
1468 for( ; i<newsize; i++)
1469 nsh->dev[i].page = NULL;
1470 kmem_cache_free(conf->slab_cache, osh);
1471 }
1472 kmem_cache_destroy(conf->slab_cache);
1473
1474 /* Step 3.
1475 * At this point, we are holding all the stripes so the array
1476 * is completely stalled, so now is a good time to resize
1477 * conf->disks and the scribble region
1478 */
1479 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1480 if (ndisks) {
1481 for (i=0; i<conf->raid_disks; i++)
1482 ndisks[i] = conf->disks[i];
1483 kfree(conf->disks);
1484 conf->disks = ndisks;
1485 } else
1486 err = -ENOMEM;
1487
1488 get_online_cpus();
1489 conf->scribble_len = scribble_len(newsize);
1490 for_each_present_cpu(cpu) {
1491 struct raid5_percpu *percpu;
1492 void *scribble;
1493
1494 percpu = per_cpu_ptr(conf->percpu, cpu);
1495 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1496
1497 if (scribble) {
1498 kfree(percpu->scribble);
1499 percpu->scribble = scribble;
1500 } else {
1501 err = -ENOMEM;
1502 break;
1503 }
1504 }
1505 put_online_cpus();
1506
1507 /* Step 4, return new stripes to service */
1508 while(!list_empty(&newstripes)) {
1509 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1510 list_del_init(&nsh->lru);
1511
1512 for (i=conf->raid_disks; i < newsize; i++)
1513 if (nsh->dev[i].page == NULL) {
1514 struct page *p = alloc_page(GFP_NOIO);
1515 nsh->dev[i].page = p;
1516 if (!p)
1517 err = -ENOMEM;
1518 }
1519 release_stripe(nsh);
1520 }
1521 /* critical section pass, GFP_NOIO no longer needed */
1522
1523 conf->slab_cache = sc;
1524 conf->active_name = 1-conf->active_name;
1525 conf->pool_size = newsize;
1526 return err;
1527 }
1528
1529 static int drop_one_stripe(raid5_conf_t *conf)
1530 {
1531 struct stripe_head *sh;
1532
1533 spin_lock_irq(&conf->device_lock);
1534 sh = get_free_stripe(conf);
1535 spin_unlock_irq(&conf->device_lock);
1536 if (!sh)
1537 return 0;
1538 BUG_ON(atomic_read(&sh->count));
1539 shrink_buffers(sh);
1540 kmem_cache_free(conf->slab_cache, sh);
1541 atomic_dec(&conf->active_stripes);
1542 return 1;
1543 }
1544
1545 static void shrink_stripes(raid5_conf_t *conf)
1546 {
1547 while (drop_one_stripe(conf))
1548 ;
1549
1550 if (conf->slab_cache)
1551 kmem_cache_destroy(conf->slab_cache);
1552 conf->slab_cache = NULL;
1553 }
1554
1555 static void raid5_end_read_request(struct bio * bi, int error)
1556 {
1557 struct stripe_head *sh = bi->bi_private;
1558 raid5_conf_t *conf = sh->raid_conf;
1559 int disks = sh->disks, i;
1560 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1561 char b[BDEVNAME_SIZE];
1562 mdk_rdev_t *rdev;
1563
1564
1565 for (i=0 ; i<disks; i++)
1566 if (bi == &sh->dev[i].req)
1567 break;
1568
1569 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1570 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1571 uptodate);
1572 if (i == disks) {
1573 BUG();
1574 return;
1575 }
1576
1577 if (uptodate) {
1578 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1579 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1580 rdev = conf->disks[i].rdev;
1581 printk_ratelimited(
1582 KERN_INFO
1583 "md/raid:%s: read error corrected"
1584 " (%lu sectors at %llu on %s)\n",
1585 mdname(conf->mddev), STRIPE_SECTORS,
1586 (unsigned long long)(sh->sector
1587 + rdev->data_offset),
1588 bdevname(rdev->bdev, b));
1589 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1590 clear_bit(R5_ReadError, &sh->dev[i].flags);
1591 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1592 }
1593 if (atomic_read(&conf->disks[i].rdev->read_errors))
1594 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1595 } else {
1596 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1597 int retry = 0;
1598 rdev = conf->disks[i].rdev;
1599
1600 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1601 atomic_inc(&rdev->read_errors);
1602 if (conf->mddev->degraded >= conf->max_degraded)
1603 printk_ratelimited(
1604 KERN_WARNING
1605 "md/raid:%s: read error not correctable "
1606 "(sector %llu on %s).\n",
1607 mdname(conf->mddev),
1608 (unsigned long long)(sh->sector
1609 + rdev->data_offset),
1610 bdn);
1611 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1612 /* Oh, no!!! */
1613 printk_ratelimited(
1614 KERN_WARNING
1615 "md/raid:%s: read error NOT corrected!! "
1616 "(sector %llu on %s).\n",
1617 mdname(conf->mddev),
1618 (unsigned long long)(sh->sector
1619 + rdev->data_offset),
1620 bdn);
1621 else if (atomic_read(&rdev->read_errors)
1622 > conf->max_nr_stripes)
1623 printk(KERN_WARNING
1624 "md/raid:%s: Too many read errors, failing device %s.\n",
1625 mdname(conf->mddev), bdn);
1626 else
1627 retry = 1;
1628 if (retry)
1629 set_bit(R5_ReadError, &sh->dev[i].flags);
1630 else {
1631 clear_bit(R5_ReadError, &sh->dev[i].flags);
1632 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633 md_error(conf->mddev, rdev);
1634 }
1635 }
1636 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1637 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1638 set_bit(STRIPE_HANDLE, &sh->state);
1639 release_stripe(sh);
1640 }
1641
1642 static void raid5_end_write_request(struct bio *bi, int error)
1643 {
1644 struct stripe_head *sh = bi->bi_private;
1645 raid5_conf_t *conf = sh->raid_conf;
1646 int disks = sh->disks, i;
1647 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1648
1649 for (i=0 ; i<disks; i++)
1650 if (bi == &sh->dev[i].req)
1651 break;
1652
1653 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1654 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1655 uptodate);
1656 if (i == disks) {
1657 BUG();
1658 return;
1659 }
1660
1661 if (!uptodate)
1662 md_error(conf->mddev, conf->disks[i].rdev);
1663
1664 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1665
1666 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1667 set_bit(STRIPE_HANDLE, &sh->state);
1668 release_stripe(sh);
1669 }
1670
1671
1672 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1673
1674 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1675 {
1676 struct r5dev *dev = &sh->dev[i];
1677
1678 bio_init(&dev->req);
1679 dev->req.bi_io_vec = &dev->vec;
1680 dev->req.bi_vcnt++;
1681 dev->req.bi_max_vecs++;
1682 dev->vec.bv_page = dev->page;
1683 dev->vec.bv_len = STRIPE_SIZE;
1684 dev->vec.bv_offset = 0;
1685
1686 dev->req.bi_sector = sh->sector;
1687 dev->req.bi_private = sh;
1688
1689 dev->flags = 0;
1690 dev->sector = compute_blocknr(sh, i, previous);
1691 }
1692
1693 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1694 {
1695 char b[BDEVNAME_SIZE];
1696 raid5_conf_t *conf = mddev->private;
1697 pr_debug("raid456: error called\n");
1698
1699 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1700 unsigned long flags;
1701 spin_lock_irqsave(&conf->device_lock, flags);
1702 mddev->degraded++;
1703 spin_unlock_irqrestore(&conf->device_lock, flags);
1704 /*
1705 * if recovery was running, make sure it aborts.
1706 */
1707 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1708 }
1709 set_bit(Blocked, &rdev->flags);
1710 set_bit(Faulty, &rdev->flags);
1711 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1712 printk(KERN_ALERT
1713 "md/raid:%s: Disk failure on %s, disabling device.\n"
1714 "md/raid:%s: Operation continuing on %d devices.\n",
1715 mdname(mddev),
1716 bdevname(rdev->bdev, b),
1717 mdname(mddev),
1718 conf->raid_disks - mddev->degraded);
1719 }
1720
1721 /*
1722 * Input: a 'big' sector number,
1723 * Output: index of the data and parity disk, and the sector # in them.
1724 */
1725 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1726 int previous, int *dd_idx,
1727 struct stripe_head *sh)
1728 {
1729 sector_t stripe, stripe2;
1730 sector_t chunk_number;
1731 unsigned int chunk_offset;
1732 int pd_idx, qd_idx;
1733 int ddf_layout = 0;
1734 sector_t new_sector;
1735 int algorithm = previous ? conf->prev_algo
1736 : conf->algorithm;
1737 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1738 : conf->chunk_sectors;
1739 int raid_disks = previous ? conf->previous_raid_disks
1740 : conf->raid_disks;
1741 int data_disks = raid_disks - conf->max_degraded;
1742
1743 /* First compute the information on this sector */
1744
1745 /*
1746 * Compute the chunk number and the sector offset inside the chunk
1747 */
1748 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1749 chunk_number = r_sector;
1750
1751 /*
1752 * Compute the stripe number
1753 */
1754 stripe = chunk_number;
1755 *dd_idx = sector_div(stripe, data_disks);
1756 stripe2 = stripe;
1757 /*
1758 * Select the parity disk based on the user selected algorithm.
1759 */
1760 pd_idx = qd_idx = -1;
1761 switch(conf->level) {
1762 case 4:
1763 pd_idx = data_disks;
1764 break;
1765 case 5:
1766 switch (algorithm) {
1767 case ALGORITHM_LEFT_ASYMMETRIC:
1768 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1769 if (*dd_idx >= pd_idx)
1770 (*dd_idx)++;
1771 break;
1772 case ALGORITHM_RIGHT_ASYMMETRIC:
1773 pd_idx = sector_div(stripe2, raid_disks);
1774 if (*dd_idx >= pd_idx)
1775 (*dd_idx)++;
1776 break;
1777 case ALGORITHM_LEFT_SYMMETRIC:
1778 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1779 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1780 break;
1781 case ALGORITHM_RIGHT_SYMMETRIC:
1782 pd_idx = sector_div(stripe2, raid_disks);
1783 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1784 break;
1785 case ALGORITHM_PARITY_0:
1786 pd_idx = 0;
1787 (*dd_idx)++;
1788 break;
1789 case ALGORITHM_PARITY_N:
1790 pd_idx = data_disks;
1791 break;
1792 default:
1793 BUG();
1794 }
1795 break;
1796 case 6:
1797
1798 switch (algorithm) {
1799 case ALGORITHM_LEFT_ASYMMETRIC:
1800 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1801 qd_idx = pd_idx + 1;
1802 if (pd_idx == raid_disks-1) {
1803 (*dd_idx)++; /* Q D D D P */
1804 qd_idx = 0;
1805 } else if (*dd_idx >= pd_idx)
1806 (*dd_idx) += 2; /* D D P Q D */
1807 break;
1808 case ALGORITHM_RIGHT_ASYMMETRIC:
1809 pd_idx = sector_div(stripe2, raid_disks);
1810 qd_idx = pd_idx + 1;
1811 if (pd_idx == raid_disks-1) {
1812 (*dd_idx)++; /* Q D D D P */
1813 qd_idx = 0;
1814 } else if (*dd_idx >= pd_idx)
1815 (*dd_idx) += 2; /* D D P Q D */
1816 break;
1817 case ALGORITHM_LEFT_SYMMETRIC:
1818 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1819 qd_idx = (pd_idx + 1) % raid_disks;
1820 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1821 break;
1822 case ALGORITHM_RIGHT_SYMMETRIC:
1823 pd_idx = sector_div(stripe2, raid_disks);
1824 qd_idx = (pd_idx + 1) % raid_disks;
1825 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1826 break;
1827
1828 case ALGORITHM_PARITY_0:
1829 pd_idx = 0;
1830 qd_idx = 1;
1831 (*dd_idx) += 2;
1832 break;
1833 case ALGORITHM_PARITY_N:
1834 pd_idx = data_disks;
1835 qd_idx = data_disks + 1;
1836 break;
1837
1838 case ALGORITHM_ROTATING_ZERO_RESTART:
1839 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1840 * of blocks for computing Q is different.
1841 */
1842 pd_idx = sector_div(stripe2, raid_disks);
1843 qd_idx = pd_idx + 1;
1844 if (pd_idx == raid_disks-1) {
1845 (*dd_idx)++; /* Q D D D P */
1846 qd_idx = 0;
1847 } else if (*dd_idx >= pd_idx)
1848 (*dd_idx) += 2; /* D D P Q D */
1849 ddf_layout = 1;
1850 break;
1851
1852 case ALGORITHM_ROTATING_N_RESTART:
1853 /* Same a left_asymmetric, by first stripe is
1854 * D D D P Q rather than
1855 * Q D D D P
1856 */
1857 stripe2 += 1;
1858 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1859 qd_idx = pd_idx + 1;
1860 if (pd_idx == raid_disks-1) {
1861 (*dd_idx)++; /* Q D D D P */
1862 qd_idx = 0;
1863 } else if (*dd_idx >= pd_idx)
1864 (*dd_idx) += 2; /* D D P Q D */
1865 ddf_layout = 1;
1866 break;
1867
1868 case ALGORITHM_ROTATING_N_CONTINUE:
1869 /* Same as left_symmetric but Q is before P */
1870 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1871 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1872 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1873 ddf_layout = 1;
1874 break;
1875
1876 case ALGORITHM_LEFT_ASYMMETRIC_6:
1877 /* RAID5 left_asymmetric, with Q on last device */
1878 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1879 if (*dd_idx >= pd_idx)
1880 (*dd_idx)++;
1881 qd_idx = raid_disks - 1;
1882 break;
1883
1884 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1885 pd_idx = sector_div(stripe2, raid_disks-1);
1886 if (*dd_idx >= pd_idx)
1887 (*dd_idx)++;
1888 qd_idx = raid_disks - 1;
1889 break;
1890
1891 case ALGORITHM_LEFT_SYMMETRIC_6:
1892 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1893 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1894 qd_idx = raid_disks - 1;
1895 break;
1896
1897 case ALGORITHM_RIGHT_SYMMETRIC_6:
1898 pd_idx = sector_div(stripe2, raid_disks-1);
1899 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1900 qd_idx = raid_disks - 1;
1901 break;
1902
1903 case ALGORITHM_PARITY_0_6:
1904 pd_idx = 0;
1905 (*dd_idx)++;
1906 qd_idx = raid_disks - 1;
1907 break;
1908
1909 default:
1910 BUG();
1911 }
1912 break;
1913 }
1914
1915 if (sh) {
1916 sh->pd_idx = pd_idx;
1917 sh->qd_idx = qd_idx;
1918 sh->ddf_layout = ddf_layout;
1919 }
1920 /*
1921 * Finally, compute the new sector number
1922 */
1923 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1924 return new_sector;
1925 }
1926
1927
1928 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1929 {
1930 raid5_conf_t *conf = sh->raid_conf;
1931 int raid_disks = sh->disks;
1932 int data_disks = raid_disks - conf->max_degraded;
1933 sector_t new_sector = sh->sector, check;
1934 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1935 : conf->chunk_sectors;
1936 int algorithm = previous ? conf->prev_algo
1937 : conf->algorithm;
1938 sector_t stripe;
1939 int chunk_offset;
1940 sector_t chunk_number;
1941 int dummy1, dd_idx = i;
1942 sector_t r_sector;
1943 struct stripe_head sh2;
1944
1945
1946 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1947 stripe = new_sector;
1948
1949 if (i == sh->pd_idx)
1950 return 0;
1951 switch(conf->level) {
1952 case 4: break;
1953 case 5:
1954 switch (algorithm) {
1955 case ALGORITHM_LEFT_ASYMMETRIC:
1956 case ALGORITHM_RIGHT_ASYMMETRIC:
1957 if (i > sh->pd_idx)
1958 i--;
1959 break;
1960 case ALGORITHM_LEFT_SYMMETRIC:
1961 case ALGORITHM_RIGHT_SYMMETRIC:
1962 if (i < sh->pd_idx)
1963 i += raid_disks;
1964 i -= (sh->pd_idx + 1);
1965 break;
1966 case ALGORITHM_PARITY_0:
1967 i -= 1;
1968 break;
1969 case ALGORITHM_PARITY_N:
1970 break;
1971 default:
1972 BUG();
1973 }
1974 break;
1975 case 6:
1976 if (i == sh->qd_idx)
1977 return 0; /* It is the Q disk */
1978 switch (algorithm) {
1979 case ALGORITHM_LEFT_ASYMMETRIC:
1980 case ALGORITHM_RIGHT_ASYMMETRIC:
1981 case ALGORITHM_ROTATING_ZERO_RESTART:
1982 case ALGORITHM_ROTATING_N_RESTART:
1983 if (sh->pd_idx == raid_disks-1)
1984 i--; /* Q D D D P */
1985 else if (i > sh->pd_idx)
1986 i -= 2; /* D D P Q D */
1987 break;
1988 case ALGORITHM_LEFT_SYMMETRIC:
1989 case ALGORITHM_RIGHT_SYMMETRIC:
1990 if (sh->pd_idx == raid_disks-1)
1991 i--; /* Q D D D P */
1992 else {
1993 /* D D P Q D */
1994 if (i < sh->pd_idx)
1995 i += raid_disks;
1996 i -= (sh->pd_idx + 2);
1997 }
1998 break;
1999 case ALGORITHM_PARITY_0:
2000 i -= 2;
2001 break;
2002 case ALGORITHM_PARITY_N:
2003 break;
2004 case ALGORITHM_ROTATING_N_CONTINUE:
2005 /* Like left_symmetric, but P is before Q */
2006 if (sh->pd_idx == 0)
2007 i--; /* P D D D Q */
2008 else {
2009 /* D D Q P D */
2010 if (i < sh->pd_idx)
2011 i += raid_disks;
2012 i -= (sh->pd_idx + 1);
2013 }
2014 break;
2015 case ALGORITHM_LEFT_ASYMMETRIC_6:
2016 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2017 if (i > sh->pd_idx)
2018 i--;
2019 break;
2020 case ALGORITHM_LEFT_SYMMETRIC_6:
2021 case ALGORITHM_RIGHT_SYMMETRIC_6:
2022 if (i < sh->pd_idx)
2023 i += data_disks + 1;
2024 i -= (sh->pd_idx + 1);
2025 break;
2026 case ALGORITHM_PARITY_0_6:
2027 i -= 1;
2028 break;
2029 default:
2030 BUG();
2031 }
2032 break;
2033 }
2034
2035 chunk_number = stripe * data_disks + i;
2036 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2037
2038 check = raid5_compute_sector(conf, r_sector,
2039 previous, &dummy1, &sh2);
2040 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2041 || sh2.qd_idx != sh->qd_idx) {
2042 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2043 mdname(conf->mddev));
2044 return 0;
2045 }
2046 return r_sector;
2047 }
2048
2049
2050 static void
2051 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2052 int rcw, int expand)
2053 {
2054 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2055 raid5_conf_t *conf = sh->raid_conf;
2056 int level = conf->level;
2057
2058 if (rcw) {
2059 /* if we are not expanding this is a proper write request, and
2060 * there will be bios with new data to be drained into the
2061 * stripe cache
2062 */
2063 if (!expand) {
2064 sh->reconstruct_state = reconstruct_state_drain_run;
2065 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2066 } else
2067 sh->reconstruct_state = reconstruct_state_run;
2068
2069 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2070
2071 for (i = disks; i--; ) {
2072 struct r5dev *dev = &sh->dev[i];
2073
2074 if (dev->towrite) {
2075 set_bit(R5_LOCKED, &dev->flags);
2076 set_bit(R5_Wantdrain, &dev->flags);
2077 if (!expand)
2078 clear_bit(R5_UPTODATE, &dev->flags);
2079 s->locked++;
2080 }
2081 }
2082 if (s->locked + conf->max_degraded == disks)
2083 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2084 atomic_inc(&conf->pending_full_writes);
2085 } else {
2086 BUG_ON(level == 6);
2087 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2088 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2089
2090 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2091 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2092 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2093 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2094
2095 for (i = disks; i--; ) {
2096 struct r5dev *dev = &sh->dev[i];
2097 if (i == pd_idx)
2098 continue;
2099
2100 if (dev->towrite &&
2101 (test_bit(R5_UPTODATE, &dev->flags) ||
2102 test_bit(R5_Wantcompute, &dev->flags))) {
2103 set_bit(R5_Wantdrain, &dev->flags);
2104 set_bit(R5_LOCKED, &dev->flags);
2105 clear_bit(R5_UPTODATE, &dev->flags);
2106 s->locked++;
2107 }
2108 }
2109 }
2110
2111 /* keep the parity disk(s) locked while asynchronous operations
2112 * are in flight
2113 */
2114 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2115 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2116 s->locked++;
2117
2118 if (level == 6) {
2119 int qd_idx = sh->qd_idx;
2120 struct r5dev *dev = &sh->dev[qd_idx];
2121
2122 set_bit(R5_LOCKED, &dev->flags);
2123 clear_bit(R5_UPTODATE, &dev->flags);
2124 s->locked++;
2125 }
2126
2127 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2128 __func__, (unsigned long long)sh->sector,
2129 s->locked, s->ops_request);
2130 }
2131
2132 /*
2133 * Each stripe/dev can have one or more bion attached.
2134 * toread/towrite point to the first in a chain.
2135 * The bi_next chain must be in order.
2136 */
2137 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2138 {
2139 struct bio **bip;
2140 raid5_conf_t *conf = sh->raid_conf;
2141 int firstwrite=0;
2142
2143 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2144 (unsigned long long)bi->bi_sector,
2145 (unsigned long long)sh->sector);
2146
2147
2148 spin_lock_irq(&conf->device_lock);
2149 if (forwrite) {
2150 bip = &sh->dev[dd_idx].towrite;
2151 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2152 firstwrite = 1;
2153 } else
2154 bip = &sh->dev[dd_idx].toread;
2155 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2156 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2157 goto overlap;
2158 bip = & (*bip)->bi_next;
2159 }
2160 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2161 goto overlap;
2162
2163 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2164 if (*bip)
2165 bi->bi_next = *bip;
2166 *bip = bi;
2167 bi->bi_phys_segments++;
2168
2169 if (forwrite) {
2170 /* check if page is covered */
2171 sector_t sector = sh->dev[dd_idx].sector;
2172 for (bi=sh->dev[dd_idx].towrite;
2173 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2174 bi && bi->bi_sector <= sector;
2175 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2176 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2177 sector = bi->bi_sector + (bi->bi_size>>9);
2178 }
2179 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2180 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2181 }
2182 spin_unlock_irq(&conf->device_lock);
2183
2184 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2185 (unsigned long long)(*bip)->bi_sector,
2186 (unsigned long long)sh->sector, dd_idx);
2187
2188 if (conf->mddev->bitmap && firstwrite) {
2189 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2190 STRIPE_SECTORS, 0);
2191 sh->bm_seq = conf->seq_flush+1;
2192 set_bit(STRIPE_BIT_DELAY, &sh->state);
2193 }
2194 return 1;
2195
2196 overlap:
2197 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2198 spin_unlock_irq(&conf->device_lock);
2199 return 0;
2200 }
2201
2202 static void end_reshape(raid5_conf_t *conf);
2203
2204 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2205 struct stripe_head *sh)
2206 {
2207 int sectors_per_chunk =
2208 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2209 int dd_idx;
2210 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2211 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2212
2213 raid5_compute_sector(conf,
2214 stripe * (disks - conf->max_degraded)
2215 *sectors_per_chunk + chunk_offset,
2216 previous,
2217 &dd_idx, sh);
2218 }
2219
2220 static void
2221 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2222 struct stripe_head_state *s, int disks,
2223 struct bio **return_bi)
2224 {
2225 int i;
2226 for (i = disks; i--; ) {
2227 struct bio *bi;
2228 int bitmap_end = 0;
2229
2230 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2231 mdk_rdev_t *rdev;
2232 rcu_read_lock();
2233 rdev = rcu_dereference(conf->disks[i].rdev);
2234 if (rdev && test_bit(In_sync, &rdev->flags))
2235 atomic_inc(&rdev->nr_pending);
2236 else
2237 rdev = NULL;
2238 rcu_read_unlock();
2239 if (rdev) {
2240 if (!rdev_set_badblocks(
2241 rdev,
2242 sh->sector,
2243 STRIPE_SECTORS, 0))
2244 md_error(conf->mddev, rdev);
2245 rdev_dec_pending(rdev, conf->mddev);
2246 }
2247 }
2248 spin_lock_irq(&conf->device_lock);
2249 /* fail all writes first */
2250 bi = sh->dev[i].towrite;
2251 sh->dev[i].towrite = NULL;
2252 if (bi) {
2253 s->to_write--;
2254 bitmap_end = 1;
2255 }
2256
2257 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2258 wake_up(&conf->wait_for_overlap);
2259
2260 while (bi && bi->bi_sector <
2261 sh->dev[i].sector + STRIPE_SECTORS) {
2262 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2263 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2264 if (!raid5_dec_bi_phys_segments(bi)) {
2265 md_write_end(conf->mddev);
2266 bi->bi_next = *return_bi;
2267 *return_bi = bi;
2268 }
2269 bi = nextbi;
2270 }
2271 /* and fail all 'written' */
2272 bi = sh->dev[i].written;
2273 sh->dev[i].written = NULL;
2274 if (bi) bitmap_end = 1;
2275 while (bi && bi->bi_sector <
2276 sh->dev[i].sector + STRIPE_SECTORS) {
2277 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2278 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2279 if (!raid5_dec_bi_phys_segments(bi)) {
2280 md_write_end(conf->mddev);
2281 bi->bi_next = *return_bi;
2282 *return_bi = bi;
2283 }
2284 bi = bi2;
2285 }
2286
2287 /* fail any reads if this device is non-operational and
2288 * the data has not reached the cache yet.
2289 */
2290 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2291 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2292 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2293 bi = sh->dev[i].toread;
2294 sh->dev[i].toread = NULL;
2295 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2296 wake_up(&conf->wait_for_overlap);
2297 if (bi) s->to_read--;
2298 while (bi && bi->bi_sector <
2299 sh->dev[i].sector + STRIPE_SECTORS) {
2300 struct bio *nextbi =
2301 r5_next_bio(bi, sh->dev[i].sector);
2302 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2303 if (!raid5_dec_bi_phys_segments(bi)) {
2304 bi->bi_next = *return_bi;
2305 *return_bi = bi;
2306 }
2307 bi = nextbi;
2308 }
2309 }
2310 spin_unlock_irq(&conf->device_lock);
2311 if (bitmap_end)
2312 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2313 STRIPE_SECTORS, 0, 0);
2314 /* If we were in the middle of a write the parity block might
2315 * still be locked - so just clear all R5_LOCKED flags
2316 */
2317 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2318 }
2319
2320 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2321 if (atomic_dec_and_test(&conf->pending_full_writes))
2322 md_wakeup_thread(conf->mddev->thread);
2323 }
2324
2325 static void
2326 handle_failed_sync(raid5_conf_t *conf, struct stripe_head *sh,
2327 struct stripe_head_state *s)
2328 {
2329 int abort = 0;
2330 int i;
2331
2332 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2333 clear_bit(STRIPE_SYNCING, &sh->state);
2334 s->syncing = 0;
2335 /* There is nothing more to do for sync/check/repair.
2336 * For recover we need to record a bad block on all
2337 * non-sync devices, or abort the recovery
2338 */
2339 if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2340 return;
2341 /* During recovery devices cannot be removed, so locking and
2342 * refcounting of rdevs is not needed
2343 */
2344 for (i = 0; i < conf->raid_disks; i++) {
2345 mdk_rdev_t *rdev = conf->disks[i].rdev;
2346 if (!rdev
2347 || test_bit(Faulty, &rdev->flags)
2348 || test_bit(In_sync, &rdev->flags))
2349 continue;
2350 if (!rdev_set_badblocks(rdev, sh->sector,
2351 STRIPE_SECTORS, 0))
2352 abort = 1;
2353 }
2354 if (abort) {
2355 conf->recovery_disabled = conf->mddev->recovery_disabled;
2356 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2357 }
2358 }
2359
2360 /* fetch_block - checks the given member device to see if its data needs
2361 * to be read or computed to satisfy a request.
2362 *
2363 * Returns 1 when no more member devices need to be checked, otherwise returns
2364 * 0 to tell the loop in handle_stripe_fill to continue
2365 */
2366 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2367 int disk_idx, int disks)
2368 {
2369 struct r5dev *dev = &sh->dev[disk_idx];
2370 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2371 &sh->dev[s->failed_num[1]] };
2372
2373 /* is the data in this block needed, and can we get it? */
2374 if (!test_bit(R5_LOCKED, &dev->flags) &&
2375 !test_bit(R5_UPTODATE, &dev->flags) &&
2376 (dev->toread ||
2377 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2378 s->syncing || s->expanding ||
2379 (s->failed >= 1 && fdev[0]->toread) ||
2380 (s->failed >= 2 && fdev[1]->toread) ||
2381 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2382 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2383 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2384 /* we would like to get this block, possibly by computing it,
2385 * otherwise read it if the backing disk is insync
2386 */
2387 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2388 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2389 if ((s->uptodate == disks - 1) &&
2390 (s->failed && (disk_idx == s->failed_num[0] ||
2391 disk_idx == s->failed_num[1]))) {
2392 /* have disk failed, and we're requested to fetch it;
2393 * do compute it
2394 */
2395 pr_debug("Computing stripe %llu block %d\n",
2396 (unsigned long long)sh->sector, disk_idx);
2397 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2398 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2399 set_bit(R5_Wantcompute, &dev->flags);
2400 sh->ops.target = disk_idx;
2401 sh->ops.target2 = -1; /* no 2nd target */
2402 s->req_compute = 1;
2403 /* Careful: from this point on 'uptodate' is in the eye
2404 * of raid_run_ops which services 'compute' operations
2405 * before writes. R5_Wantcompute flags a block that will
2406 * be R5_UPTODATE by the time it is needed for a
2407 * subsequent operation.
2408 */
2409 s->uptodate++;
2410 return 1;
2411 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2412 /* Computing 2-failure is *very* expensive; only
2413 * do it if failed >= 2
2414 */
2415 int other;
2416 for (other = disks; other--; ) {
2417 if (other == disk_idx)
2418 continue;
2419 if (!test_bit(R5_UPTODATE,
2420 &sh->dev[other].flags))
2421 break;
2422 }
2423 BUG_ON(other < 0);
2424 pr_debug("Computing stripe %llu blocks %d,%d\n",
2425 (unsigned long long)sh->sector,
2426 disk_idx, other);
2427 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2428 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2429 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2430 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2431 sh->ops.target = disk_idx;
2432 sh->ops.target2 = other;
2433 s->uptodate += 2;
2434 s->req_compute = 1;
2435 return 1;
2436 } else if (test_bit(R5_Insync, &dev->flags)) {
2437 set_bit(R5_LOCKED, &dev->flags);
2438 set_bit(R5_Wantread, &dev->flags);
2439 s->locked++;
2440 pr_debug("Reading block %d (sync=%d)\n",
2441 disk_idx, s->syncing);
2442 }
2443 }
2444
2445 return 0;
2446 }
2447
2448 /**
2449 * handle_stripe_fill - read or compute data to satisfy pending requests.
2450 */
2451 static void handle_stripe_fill(struct stripe_head *sh,
2452 struct stripe_head_state *s,
2453 int disks)
2454 {
2455 int i;
2456
2457 /* look for blocks to read/compute, skip this if a compute
2458 * is already in flight, or if the stripe contents are in the
2459 * midst of changing due to a write
2460 */
2461 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2462 !sh->reconstruct_state)
2463 for (i = disks; i--; )
2464 if (fetch_block(sh, s, i, disks))
2465 break;
2466 set_bit(STRIPE_HANDLE, &sh->state);
2467 }
2468
2469
2470 /* handle_stripe_clean_event
2471 * any written block on an uptodate or failed drive can be returned.
2472 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2473 * never LOCKED, so we don't need to test 'failed' directly.
2474 */
2475 static void handle_stripe_clean_event(raid5_conf_t *conf,
2476 struct stripe_head *sh, int disks, struct bio **return_bi)
2477 {
2478 int i;
2479 struct r5dev *dev;
2480
2481 for (i = disks; i--; )
2482 if (sh->dev[i].written) {
2483 dev = &sh->dev[i];
2484 if (!test_bit(R5_LOCKED, &dev->flags) &&
2485 test_bit(R5_UPTODATE, &dev->flags)) {
2486 /* We can return any write requests */
2487 struct bio *wbi, *wbi2;
2488 int bitmap_end = 0;
2489 pr_debug("Return write for disc %d\n", i);
2490 spin_lock_irq(&conf->device_lock);
2491 wbi = dev->written;
2492 dev->written = NULL;
2493 while (wbi && wbi->bi_sector <
2494 dev->sector + STRIPE_SECTORS) {
2495 wbi2 = r5_next_bio(wbi, dev->sector);
2496 if (!raid5_dec_bi_phys_segments(wbi)) {
2497 md_write_end(conf->mddev);
2498 wbi->bi_next = *return_bi;
2499 *return_bi = wbi;
2500 }
2501 wbi = wbi2;
2502 }
2503 if (dev->towrite == NULL)
2504 bitmap_end = 1;
2505 spin_unlock_irq(&conf->device_lock);
2506 if (bitmap_end)
2507 bitmap_endwrite(conf->mddev->bitmap,
2508 sh->sector,
2509 STRIPE_SECTORS,
2510 !test_bit(STRIPE_DEGRADED, &sh->state),
2511 0);
2512 }
2513 }
2514
2515 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2516 if (atomic_dec_and_test(&conf->pending_full_writes))
2517 md_wakeup_thread(conf->mddev->thread);
2518 }
2519
2520 static void handle_stripe_dirtying(raid5_conf_t *conf,
2521 struct stripe_head *sh,
2522 struct stripe_head_state *s,
2523 int disks)
2524 {
2525 int rmw = 0, rcw = 0, i;
2526 if (conf->max_degraded == 2) {
2527 /* RAID6 requires 'rcw' in current implementation
2528 * Calculate the real rcw later - for now fake it
2529 * look like rcw is cheaper
2530 */
2531 rcw = 1; rmw = 2;
2532 } else for (i = disks; i--; ) {
2533 /* would I have to read this buffer for read_modify_write */
2534 struct r5dev *dev = &sh->dev[i];
2535 if ((dev->towrite || i == sh->pd_idx) &&
2536 !test_bit(R5_LOCKED, &dev->flags) &&
2537 !(test_bit(R5_UPTODATE, &dev->flags) ||
2538 test_bit(R5_Wantcompute, &dev->flags))) {
2539 if (test_bit(R5_Insync, &dev->flags))
2540 rmw++;
2541 else
2542 rmw += 2*disks; /* cannot read it */
2543 }
2544 /* Would I have to read this buffer for reconstruct_write */
2545 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2546 !test_bit(R5_LOCKED, &dev->flags) &&
2547 !(test_bit(R5_UPTODATE, &dev->flags) ||
2548 test_bit(R5_Wantcompute, &dev->flags))) {
2549 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2550 else
2551 rcw += 2*disks;
2552 }
2553 }
2554 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2555 (unsigned long long)sh->sector, rmw, rcw);
2556 set_bit(STRIPE_HANDLE, &sh->state);
2557 if (rmw < rcw && rmw > 0)
2558 /* prefer read-modify-write, but need to get some data */
2559 for (i = disks; i--; ) {
2560 struct r5dev *dev = &sh->dev[i];
2561 if ((dev->towrite || i == sh->pd_idx) &&
2562 !test_bit(R5_LOCKED, &dev->flags) &&
2563 !(test_bit(R5_UPTODATE, &dev->flags) ||
2564 test_bit(R5_Wantcompute, &dev->flags)) &&
2565 test_bit(R5_Insync, &dev->flags)) {
2566 if (
2567 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2568 pr_debug("Read_old block "
2569 "%d for r-m-w\n", i);
2570 set_bit(R5_LOCKED, &dev->flags);
2571 set_bit(R5_Wantread, &dev->flags);
2572 s->locked++;
2573 } else {
2574 set_bit(STRIPE_DELAYED, &sh->state);
2575 set_bit(STRIPE_HANDLE, &sh->state);
2576 }
2577 }
2578 }
2579 if (rcw <= rmw && rcw > 0) {
2580 /* want reconstruct write, but need to get some data */
2581 rcw = 0;
2582 for (i = disks; i--; ) {
2583 struct r5dev *dev = &sh->dev[i];
2584 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2585 i != sh->pd_idx && i != sh->qd_idx &&
2586 !test_bit(R5_LOCKED, &dev->flags) &&
2587 !(test_bit(R5_UPTODATE, &dev->flags) ||
2588 test_bit(R5_Wantcompute, &dev->flags))) {
2589 rcw++;
2590 if (!test_bit(R5_Insync, &dev->flags))
2591 continue; /* it's a failed drive */
2592 if (
2593 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2594 pr_debug("Read_old block "
2595 "%d for Reconstruct\n", i);
2596 set_bit(R5_LOCKED, &dev->flags);
2597 set_bit(R5_Wantread, &dev->flags);
2598 s->locked++;
2599 } else {
2600 set_bit(STRIPE_DELAYED, &sh->state);
2601 set_bit(STRIPE_HANDLE, &sh->state);
2602 }
2603 }
2604 }
2605 }
2606 /* now if nothing is locked, and if we have enough data,
2607 * we can start a write request
2608 */
2609 /* since handle_stripe can be called at any time we need to handle the
2610 * case where a compute block operation has been submitted and then a
2611 * subsequent call wants to start a write request. raid_run_ops only
2612 * handles the case where compute block and reconstruct are requested
2613 * simultaneously. If this is not the case then new writes need to be
2614 * held off until the compute completes.
2615 */
2616 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2617 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2618 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2619 schedule_reconstruction(sh, s, rcw == 0, 0);
2620 }
2621
2622 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2623 struct stripe_head_state *s, int disks)
2624 {
2625 struct r5dev *dev = NULL;
2626
2627 set_bit(STRIPE_HANDLE, &sh->state);
2628
2629 switch (sh->check_state) {
2630 case check_state_idle:
2631 /* start a new check operation if there are no failures */
2632 if (s->failed == 0) {
2633 BUG_ON(s->uptodate != disks);
2634 sh->check_state = check_state_run;
2635 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2636 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2637 s->uptodate--;
2638 break;
2639 }
2640 dev = &sh->dev[s->failed_num[0]];
2641 /* fall through */
2642 case check_state_compute_result:
2643 sh->check_state = check_state_idle;
2644 if (!dev)
2645 dev = &sh->dev[sh->pd_idx];
2646
2647 /* check that a write has not made the stripe insync */
2648 if (test_bit(STRIPE_INSYNC, &sh->state))
2649 break;
2650
2651 /* either failed parity check, or recovery is happening */
2652 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2653 BUG_ON(s->uptodate != disks);
2654
2655 set_bit(R5_LOCKED, &dev->flags);
2656 s->locked++;
2657 set_bit(R5_Wantwrite, &dev->flags);
2658
2659 clear_bit(STRIPE_DEGRADED, &sh->state);
2660 set_bit(STRIPE_INSYNC, &sh->state);
2661 break;
2662 case check_state_run:
2663 break; /* we will be called again upon completion */
2664 case check_state_check_result:
2665 sh->check_state = check_state_idle;
2666
2667 /* if a failure occurred during the check operation, leave
2668 * STRIPE_INSYNC not set and let the stripe be handled again
2669 */
2670 if (s->failed)
2671 break;
2672
2673 /* handle a successful check operation, if parity is correct
2674 * we are done. Otherwise update the mismatch count and repair
2675 * parity if !MD_RECOVERY_CHECK
2676 */
2677 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2678 /* parity is correct (on disc,
2679 * not in buffer any more)
2680 */
2681 set_bit(STRIPE_INSYNC, &sh->state);
2682 else {
2683 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2684 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2685 /* don't try to repair!! */
2686 set_bit(STRIPE_INSYNC, &sh->state);
2687 else {
2688 sh->check_state = check_state_compute_run;
2689 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2690 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2691 set_bit(R5_Wantcompute,
2692 &sh->dev[sh->pd_idx].flags);
2693 sh->ops.target = sh->pd_idx;
2694 sh->ops.target2 = -1;
2695 s->uptodate++;
2696 }
2697 }
2698 break;
2699 case check_state_compute_run:
2700 break;
2701 default:
2702 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2703 __func__, sh->check_state,
2704 (unsigned long long) sh->sector);
2705 BUG();
2706 }
2707 }
2708
2709
2710 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2711 struct stripe_head_state *s,
2712 int disks)
2713 {
2714 int pd_idx = sh->pd_idx;
2715 int qd_idx = sh->qd_idx;
2716 struct r5dev *dev;
2717
2718 set_bit(STRIPE_HANDLE, &sh->state);
2719
2720 BUG_ON(s->failed > 2);
2721
2722 /* Want to check and possibly repair P and Q.
2723 * However there could be one 'failed' device, in which
2724 * case we can only check one of them, possibly using the
2725 * other to generate missing data
2726 */
2727
2728 switch (sh->check_state) {
2729 case check_state_idle:
2730 /* start a new check operation if there are < 2 failures */
2731 if (s->failed == s->q_failed) {
2732 /* The only possible failed device holds Q, so it
2733 * makes sense to check P (If anything else were failed,
2734 * we would have used P to recreate it).
2735 */
2736 sh->check_state = check_state_run;
2737 }
2738 if (!s->q_failed && s->failed < 2) {
2739 /* Q is not failed, and we didn't use it to generate
2740 * anything, so it makes sense to check it
2741 */
2742 if (sh->check_state == check_state_run)
2743 sh->check_state = check_state_run_pq;
2744 else
2745 sh->check_state = check_state_run_q;
2746 }
2747
2748 /* discard potentially stale zero_sum_result */
2749 sh->ops.zero_sum_result = 0;
2750
2751 if (sh->check_state == check_state_run) {
2752 /* async_xor_zero_sum destroys the contents of P */
2753 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2754 s->uptodate--;
2755 }
2756 if (sh->check_state >= check_state_run &&
2757 sh->check_state <= check_state_run_pq) {
2758 /* async_syndrome_zero_sum preserves P and Q, so
2759 * no need to mark them !uptodate here
2760 */
2761 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2762 break;
2763 }
2764
2765 /* we have 2-disk failure */
2766 BUG_ON(s->failed != 2);
2767 /* fall through */
2768 case check_state_compute_result:
2769 sh->check_state = check_state_idle;
2770
2771 /* check that a write has not made the stripe insync */
2772 if (test_bit(STRIPE_INSYNC, &sh->state))
2773 break;
2774
2775 /* now write out any block on a failed drive,
2776 * or P or Q if they were recomputed
2777 */
2778 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2779 if (s->failed == 2) {
2780 dev = &sh->dev[s->failed_num[1]];
2781 s->locked++;
2782 set_bit(R5_LOCKED, &dev->flags);
2783 set_bit(R5_Wantwrite, &dev->flags);
2784 }
2785 if (s->failed >= 1) {
2786 dev = &sh->dev[s->failed_num[0]];
2787 s->locked++;
2788 set_bit(R5_LOCKED, &dev->flags);
2789 set_bit(R5_Wantwrite, &dev->flags);
2790 }
2791 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2792 dev = &sh->dev[pd_idx];
2793 s->locked++;
2794 set_bit(R5_LOCKED, &dev->flags);
2795 set_bit(R5_Wantwrite, &dev->flags);
2796 }
2797 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2798 dev = &sh->dev[qd_idx];
2799 s->locked++;
2800 set_bit(R5_LOCKED, &dev->flags);
2801 set_bit(R5_Wantwrite, &dev->flags);
2802 }
2803 clear_bit(STRIPE_DEGRADED, &sh->state);
2804
2805 set_bit(STRIPE_INSYNC, &sh->state);
2806 break;
2807 case check_state_run:
2808 case check_state_run_q:
2809 case check_state_run_pq:
2810 break; /* we will be called again upon completion */
2811 case check_state_check_result:
2812 sh->check_state = check_state_idle;
2813
2814 /* handle a successful check operation, if parity is correct
2815 * we are done. Otherwise update the mismatch count and repair
2816 * parity if !MD_RECOVERY_CHECK
2817 */
2818 if (sh->ops.zero_sum_result == 0) {
2819 /* both parities are correct */
2820 if (!s->failed)
2821 set_bit(STRIPE_INSYNC, &sh->state);
2822 else {
2823 /* in contrast to the raid5 case we can validate
2824 * parity, but still have a failure to write
2825 * back
2826 */
2827 sh->check_state = check_state_compute_result;
2828 /* Returning at this point means that we may go
2829 * off and bring p and/or q uptodate again so
2830 * we make sure to check zero_sum_result again
2831 * to verify if p or q need writeback
2832 */
2833 }
2834 } else {
2835 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2836 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2837 /* don't try to repair!! */
2838 set_bit(STRIPE_INSYNC, &sh->state);
2839 else {
2840 int *target = &sh->ops.target;
2841
2842 sh->ops.target = -1;
2843 sh->ops.target2 = -1;
2844 sh->check_state = check_state_compute_run;
2845 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2846 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2847 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2848 set_bit(R5_Wantcompute,
2849 &sh->dev[pd_idx].flags);
2850 *target = pd_idx;
2851 target = &sh->ops.target2;
2852 s->uptodate++;
2853 }
2854 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2855 set_bit(R5_Wantcompute,
2856 &sh->dev[qd_idx].flags);
2857 *target = qd_idx;
2858 s->uptodate++;
2859 }
2860 }
2861 }
2862 break;
2863 case check_state_compute_run:
2864 break;
2865 default:
2866 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2867 __func__, sh->check_state,
2868 (unsigned long long) sh->sector);
2869 BUG();
2870 }
2871 }
2872
2873 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2874 {
2875 int i;
2876
2877 /* We have read all the blocks in this stripe and now we need to
2878 * copy some of them into a target stripe for expand.
2879 */
2880 struct dma_async_tx_descriptor *tx = NULL;
2881 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2882 for (i = 0; i < sh->disks; i++)
2883 if (i != sh->pd_idx && i != sh->qd_idx) {
2884 int dd_idx, j;
2885 struct stripe_head *sh2;
2886 struct async_submit_ctl submit;
2887
2888 sector_t bn = compute_blocknr(sh, i, 1);
2889 sector_t s = raid5_compute_sector(conf, bn, 0,
2890 &dd_idx, NULL);
2891 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2892 if (sh2 == NULL)
2893 /* so far only the early blocks of this stripe
2894 * have been requested. When later blocks
2895 * get requested, we will try again
2896 */
2897 continue;
2898 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2899 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2900 /* must have already done this block */
2901 release_stripe(sh2);
2902 continue;
2903 }
2904
2905 /* place all the copies on one channel */
2906 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2907 tx = async_memcpy(sh2->dev[dd_idx].page,
2908 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2909 &submit);
2910
2911 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2912 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2913 for (j = 0; j < conf->raid_disks; j++)
2914 if (j != sh2->pd_idx &&
2915 j != sh2->qd_idx &&
2916 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2917 break;
2918 if (j == conf->raid_disks) {
2919 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2920 set_bit(STRIPE_HANDLE, &sh2->state);
2921 }
2922 release_stripe(sh2);
2923
2924 }
2925 /* done submitting copies, wait for them to complete */
2926 if (tx) {
2927 async_tx_ack(tx);
2928 dma_wait_for_async_tx(tx);
2929 }
2930 }
2931
2932
2933 /*
2934 * handle_stripe - do things to a stripe.
2935 *
2936 * We lock the stripe and then examine the state of various bits
2937 * to see what needs to be done.
2938 * Possible results:
2939 * return some read request which now have data
2940 * return some write requests which are safely on disc
2941 * schedule a read on some buffers
2942 * schedule a write of some buffers
2943 * return confirmation of parity correctness
2944 *
2945 * buffers are taken off read_list or write_list, and bh_cache buffers
2946 * get BH_Lock set before the stripe lock is released.
2947 *
2948 */
2949
2950 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2951 {
2952 raid5_conf_t *conf = sh->raid_conf;
2953 int disks = sh->disks;
2954 struct r5dev *dev;
2955 int i;
2956
2957 memset(s, 0, sizeof(*s));
2958
2959 s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2960 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2961 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2962 s->failed_num[0] = -1;
2963 s->failed_num[1] = -1;
2964
2965 /* Now to look around and see what can be done */
2966 rcu_read_lock();
2967 spin_lock_irq(&conf->device_lock);
2968 for (i=disks; i--; ) {
2969 mdk_rdev_t *rdev;
2970 sector_t first_bad;
2971 int bad_sectors;
2972 int is_bad = 0;
2973
2974 dev = &sh->dev[i];
2975
2976 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2977 i, dev->flags, dev->toread, dev->towrite, dev->written);
2978 /* maybe we can reply to a read
2979 *
2980 * new wantfill requests are only permitted while
2981 * ops_complete_biofill is guaranteed to be inactive
2982 */
2983 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2984 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2985 set_bit(R5_Wantfill, &dev->flags);
2986
2987 /* now count some things */
2988 if (test_bit(R5_LOCKED, &dev->flags))
2989 s->locked++;
2990 if (test_bit(R5_UPTODATE, &dev->flags))
2991 s->uptodate++;
2992 if (test_bit(R5_Wantcompute, &dev->flags)) {
2993 s->compute++;
2994 BUG_ON(s->compute > 2);
2995 }
2996
2997 if (test_bit(R5_Wantfill, &dev->flags))
2998 s->to_fill++;
2999 else if (dev->toread)
3000 s->to_read++;
3001 if (dev->towrite) {
3002 s->to_write++;
3003 if (!test_bit(R5_OVERWRITE, &dev->flags))
3004 s->non_overwrite++;
3005 }
3006 if (dev->written)
3007 s->written++;
3008 rdev = rcu_dereference(conf->disks[i].rdev);
3009 if (rdev) {
3010 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3011 &first_bad, &bad_sectors);
3012 if (s->blocked_rdev == NULL
3013 && (test_bit(Blocked, &rdev->flags)
3014 || is_bad < 0)) {
3015 if (is_bad < 0)
3016 set_bit(BlockedBadBlocks,
3017 &rdev->flags);
3018 s->blocked_rdev = rdev;
3019 atomic_inc(&rdev->nr_pending);
3020 }
3021 }
3022 clear_bit(R5_Insync, &dev->flags);
3023 if (!rdev)
3024 /* Not in-sync */;
3025 else if (is_bad) {
3026 /* also not in-sync */
3027 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3028 /* treat as in-sync, but with a read error
3029 * which we can now try to correct
3030 */
3031 set_bit(R5_Insync, &dev->flags);
3032 set_bit(R5_ReadError, &dev->flags);
3033 }
3034 } else if (test_bit(In_sync, &rdev->flags))
3035 set_bit(R5_Insync, &dev->flags);
3036 else {
3037 /* in sync if before recovery_offset */
3038 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3039 set_bit(R5_Insync, &dev->flags);
3040 }
3041 if (!test_bit(R5_Insync, &dev->flags)) {
3042 /* The ReadError flag will just be confusing now */
3043 clear_bit(R5_ReadError, &dev->flags);
3044 clear_bit(R5_ReWrite, &dev->flags);
3045 }
3046 if (test_bit(R5_ReadError, &dev->flags))
3047 clear_bit(R5_Insync, &dev->flags);
3048 if (!test_bit(R5_Insync, &dev->flags)) {
3049 if (s->failed < 2)
3050 s->failed_num[s->failed] = i;
3051 s->failed++;
3052 }
3053 }
3054 spin_unlock_irq(&conf->device_lock);
3055 rcu_read_unlock();
3056 }
3057
3058 static void handle_stripe(struct stripe_head *sh)
3059 {
3060 struct stripe_head_state s;
3061 raid5_conf_t *conf = sh->raid_conf;
3062 int i;
3063 int prexor;
3064 int disks = sh->disks;
3065 struct r5dev *pdev, *qdev;
3066
3067 clear_bit(STRIPE_HANDLE, &sh->state);
3068 if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3069 /* already being handled, ensure it gets handled
3070 * again when current action finishes */
3071 set_bit(STRIPE_HANDLE, &sh->state);
3072 return;
3073 }
3074
3075 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3076 set_bit(STRIPE_SYNCING, &sh->state);
3077 clear_bit(STRIPE_INSYNC, &sh->state);
3078 }
3079 clear_bit(STRIPE_DELAYED, &sh->state);
3080
3081 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3082 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3083 (unsigned long long)sh->sector, sh->state,
3084 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3085 sh->check_state, sh->reconstruct_state);
3086
3087 analyse_stripe(sh, &s);
3088
3089 if (unlikely(s.blocked_rdev)) {
3090 if (s.syncing || s.expanding || s.expanded ||
3091 s.to_write || s.written) {
3092 set_bit(STRIPE_HANDLE, &sh->state);
3093 goto finish;
3094 }
3095 /* There is nothing for the blocked_rdev to block */
3096 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3097 s.blocked_rdev = NULL;
3098 }
3099
3100 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3101 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3102 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3103 }
3104
3105 pr_debug("locked=%d uptodate=%d to_read=%d"
3106 " to_write=%d failed=%d failed_num=%d,%d\n",
3107 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3108 s.failed_num[0], s.failed_num[1]);
3109 /* check if the array has lost more than max_degraded devices and,
3110 * if so, some requests might need to be failed.
3111 */
3112 if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3113 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3114 if (s.failed > conf->max_degraded && s.syncing)
3115 handle_failed_sync(conf, sh, &s);
3116
3117 /*
3118 * might be able to return some write requests if the parity blocks
3119 * are safe, or on a failed drive
3120 */
3121 pdev = &sh->dev[sh->pd_idx];
3122 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3123 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3124 qdev = &sh->dev[sh->qd_idx];
3125 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3126 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3127 || conf->level < 6;
3128
3129 if (s.written &&
3130 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3131 && !test_bit(R5_LOCKED, &pdev->flags)
3132 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3133 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3134 && !test_bit(R5_LOCKED, &qdev->flags)
3135 && test_bit(R5_UPTODATE, &qdev->flags)))))
3136 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3137
3138 /* Now we might consider reading some blocks, either to check/generate
3139 * parity, or to satisfy requests
3140 * or to load a block that is being partially written.
3141 */
3142 if (s.to_read || s.non_overwrite
3143 || (conf->level == 6 && s.to_write && s.failed)
3144 || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3145 handle_stripe_fill(sh, &s, disks);
3146
3147 /* Now we check to see if any write operations have recently
3148 * completed
3149 */
3150 prexor = 0;
3151 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3152 prexor = 1;
3153 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3154 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3155 sh->reconstruct_state = reconstruct_state_idle;
3156
3157 /* All the 'written' buffers and the parity block are ready to
3158 * be written back to disk
3159 */
3160 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3161 BUG_ON(sh->qd_idx >= 0 &&
3162 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3163 for (i = disks; i--; ) {
3164 struct r5dev *dev = &sh->dev[i];
3165 if (test_bit(R5_LOCKED, &dev->flags) &&
3166 (i == sh->pd_idx || i == sh->qd_idx ||
3167 dev->written)) {
3168 pr_debug("Writing block %d\n", i);
3169 set_bit(R5_Wantwrite, &dev->flags);
3170 if (prexor)
3171 continue;
3172 if (!test_bit(R5_Insync, &dev->flags) ||
3173 ((i == sh->pd_idx || i == sh->qd_idx) &&
3174 s.failed == 0))
3175 set_bit(STRIPE_INSYNC, &sh->state);
3176 }
3177 }
3178 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3179 s.dec_preread_active = 1;
3180 }
3181
3182 /* Now to consider new write requests and what else, if anything
3183 * should be read. We do not handle new writes when:
3184 * 1/ A 'write' operation (copy+xor) is already in flight.
3185 * 2/ A 'check' operation is in flight, as it may clobber the parity
3186 * block.
3187 */
3188 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3189 handle_stripe_dirtying(conf, sh, &s, disks);
3190
3191 /* maybe we need to check and possibly fix the parity for this stripe
3192 * Any reads will already have been scheduled, so we just see if enough
3193 * data is available. The parity check is held off while parity
3194 * dependent operations are in flight.
3195 */
3196 if (sh->check_state ||
3197 (s.syncing && s.locked == 0 &&
3198 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3199 !test_bit(STRIPE_INSYNC, &sh->state))) {
3200 if (conf->level == 6)
3201 handle_parity_checks6(conf, sh, &s, disks);
3202 else
3203 handle_parity_checks5(conf, sh, &s, disks);
3204 }
3205
3206 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3207 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3208 clear_bit(STRIPE_SYNCING, &sh->state);
3209 }
3210
3211 /* If the failed drives are just a ReadError, then we might need
3212 * to progress the repair/check process
3213 */
3214 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3215 for (i = 0; i < s.failed; i++) {
3216 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3217 if (test_bit(R5_ReadError, &dev->flags)
3218 && !test_bit(R5_LOCKED, &dev->flags)
3219 && test_bit(R5_UPTODATE, &dev->flags)
3220 ) {
3221 if (!test_bit(R5_ReWrite, &dev->flags)) {
3222 set_bit(R5_Wantwrite, &dev->flags);
3223 set_bit(R5_ReWrite, &dev->flags);
3224 set_bit(R5_LOCKED, &dev->flags);
3225 s.locked++;
3226 } else {
3227 /* let's read it back */
3228 set_bit(R5_Wantread, &dev->flags);
3229 set_bit(R5_LOCKED, &dev->flags);
3230 s.locked++;
3231 }
3232 }
3233 }
3234
3235
3236 /* Finish reconstruct operations initiated by the expansion process */
3237 if (sh->reconstruct_state == reconstruct_state_result) {
3238 struct stripe_head *sh_src
3239 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3240 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3241 /* sh cannot be written until sh_src has been read.
3242 * so arrange for sh to be delayed a little
3243 */
3244 set_bit(STRIPE_DELAYED, &sh->state);
3245 set_bit(STRIPE_HANDLE, &sh->state);
3246 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3247 &sh_src->state))
3248 atomic_inc(&conf->preread_active_stripes);
3249 release_stripe(sh_src);
3250 goto finish;
3251 }
3252 if (sh_src)
3253 release_stripe(sh_src);
3254
3255 sh->reconstruct_state = reconstruct_state_idle;
3256 clear_bit(STRIPE_EXPANDING, &sh->state);
3257 for (i = conf->raid_disks; i--; ) {
3258 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3259 set_bit(R5_LOCKED, &sh->dev[i].flags);
3260 s.locked++;
3261 }
3262 }
3263
3264 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3265 !sh->reconstruct_state) {
3266 /* Need to write out all blocks after computing parity */
3267 sh->disks = conf->raid_disks;
3268 stripe_set_idx(sh->sector, conf, 0, sh);
3269 schedule_reconstruction(sh, &s, 1, 1);
3270 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3271 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3272 atomic_dec(&conf->reshape_stripes);
3273 wake_up(&conf->wait_for_overlap);
3274 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3275 }
3276
3277 if (s.expanding && s.locked == 0 &&
3278 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3279 handle_stripe_expansion(conf, sh);
3280
3281 finish:
3282 /* wait for this device to become unblocked */
3283 if (unlikely(s.blocked_rdev))
3284 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3285
3286 if (s.ops_request)
3287 raid_run_ops(sh, s.ops_request);
3288
3289 ops_run_io(sh, &s);
3290
3291
3292 if (s.dec_preread_active) {
3293 /* We delay this until after ops_run_io so that if make_request
3294 * is waiting on a flush, it won't continue until the writes
3295 * have actually been submitted.
3296 */
3297 atomic_dec(&conf->preread_active_stripes);
3298 if (atomic_read(&conf->preread_active_stripes) <
3299 IO_THRESHOLD)
3300 md_wakeup_thread(conf->mddev->thread);
3301 }
3302
3303 return_io(s.return_bi);
3304
3305 clear_bit(STRIPE_ACTIVE, &sh->state);
3306 }
3307
3308 static void raid5_activate_delayed(raid5_conf_t *conf)
3309 {
3310 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3311 while (!list_empty(&conf->delayed_list)) {
3312 struct list_head *l = conf->delayed_list.next;
3313 struct stripe_head *sh;
3314 sh = list_entry(l, struct stripe_head, lru);
3315 list_del_init(l);
3316 clear_bit(STRIPE_DELAYED, &sh->state);
3317 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3318 atomic_inc(&conf->preread_active_stripes);
3319 list_add_tail(&sh->lru, &conf->hold_list);
3320 }
3321 }
3322 }
3323
3324 static void activate_bit_delay(raid5_conf_t *conf)
3325 {
3326 /* device_lock is held */
3327 struct list_head head;
3328 list_add(&head, &conf->bitmap_list);
3329 list_del_init(&conf->bitmap_list);
3330 while (!list_empty(&head)) {
3331 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3332 list_del_init(&sh->lru);
3333 atomic_inc(&sh->count);
3334 __release_stripe(conf, sh);
3335 }
3336 }
3337
3338 int md_raid5_congested(mddev_t *mddev, int bits)
3339 {
3340 raid5_conf_t *conf = mddev->private;
3341
3342 /* No difference between reads and writes. Just check
3343 * how busy the stripe_cache is
3344 */
3345
3346 if (conf->inactive_blocked)
3347 return 1;
3348 if (conf->quiesce)
3349 return 1;
3350 if (list_empty_careful(&conf->inactive_list))
3351 return 1;
3352
3353 return 0;
3354 }
3355 EXPORT_SYMBOL_GPL(md_raid5_congested);
3356
3357 static int raid5_congested(void *data, int bits)
3358 {
3359 mddev_t *mddev = data;
3360
3361 return mddev_congested(mddev, bits) ||
3362 md_raid5_congested(mddev, bits);
3363 }
3364
3365 /* We want read requests to align with chunks where possible,
3366 * but write requests don't need to.
3367 */
3368 static int raid5_mergeable_bvec(struct request_queue *q,
3369 struct bvec_merge_data *bvm,
3370 struct bio_vec *biovec)
3371 {
3372 mddev_t *mddev = q->queuedata;
3373 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3374 int max;
3375 unsigned int chunk_sectors = mddev->chunk_sectors;
3376 unsigned int bio_sectors = bvm->bi_size >> 9;
3377
3378 if ((bvm->bi_rw & 1) == WRITE)
3379 return biovec->bv_len; /* always allow writes to be mergeable */
3380
3381 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3382 chunk_sectors = mddev->new_chunk_sectors;
3383 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3384 if (max < 0) max = 0;
3385 if (max <= biovec->bv_len && bio_sectors == 0)
3386 return biovec->bv_len;
3387 else
3388 return max;
3389 }
3390
3391
3392 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3393 {
3394 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3395 unsigned int chunk_sectors = mddev->chunk_sectors;
3396 unsigned int bio_sectors = bio->bi_size >> 9;
3397
3398 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3399 chunk_sectors = mddev->new_chunk_sectors;
3400 return chunk_sectors >=
3401 ((sector & (chunk_sectors - 1)) + bio_sectors);
3402 }
3403
3404 /*
3405 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3406 * later sampled by raid5d.
3407 */
3408 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3409 {
3410 unsigned long flags;
3411
3412 spin_lock_irqsave(&conf->device_lock, flags);
3413
3414 bi->bi_next = conf->retry_read_aligned_list;
3415 conf->retry_read_aligned_list = bi;
3416
3417 spin_unlock_irqrestore(&conf->device_lock, flags);
3418 md_wakeup_thread(conf->mddev->thread);
3419 }
3420
3421
3422 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3423 {
3424 struct bio *bi;
3425
3426 bi = conf->retry_read_aligned;
3427 if (bi) {
3428 conf->retry_read_aligned = NULL;
3429 return bi;
3430 }
3431 bi = conf->retry_read_aligned_list;
3432 if(bi) {
3433 conf->retry_read_aligned_list = bi->bi_next;
3434 bi->bi_next = NULL;
3435 /*
3436 * this sets the active strip count to 1 and the processed
3437 * strip count to zero (upper 8 bits)
3438 */
3439 bi->bi_phys_segments = 1; /* biased count of active stripes */
3440 }
3441
3442 return bi;
3443 }
3444
3445
3446 /*
3447 * The "raid5_align_endio" should check if the read succeeded and if it
3448 * did, call bio_endio on the original bio (having bio_put the new bio
3449 * first).
3450 * If the read failed..
3451 */
3452 static void raid5_align_endio(struct bio *bi, int error)
3453 {
3454 struct bio* raid_bi = bi->bi_private;
3455 mddev_t *mddev;
3456 raid5_conf_t *conf;
3457 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3458 mdk_rdev_t *rdev;
3459
3460 bio_put(bi);
3461
3462 rdev = (void*)raid_bi->bi_next;
3463 raid_bi->bi_next = NULL;
3464 mddev = rdev->mddev;
3465 conf = mddev->private;
3466
3467 rdev_dec_pending(rdev, conf->mddev);
3468
3469 if (!error && uptodate) {
3470 bio_endio(raid_bi, 0);
3471 if (atomic_dec_and_test(&conf->active_aligned_reads))
3472 wake_up(&conf->wait_for_stripe);
3473 return;
3474 }
3475
3476
3477 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3478
3479 add_bio_to_retry(raid_bi, conf);
3480 }
3481
3482 static int bio_fits_rdev(struct bio *bi)
3483 {
3484 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3485
3486 if ((bi->bi_size>>9) > queue_max_sectors(q))
3487 return 0;
3488 blk_recount_segments(q, bi);
3489 if (bi->bi_phys_segments > queue_max_segments(q))
3490 return 0;
3491
3492 if (q->merge_bvec_fn)
3493 /* it's too hard to apply the merge_bvec_fn at this stage,
3494 * just just give up
3495 */
3496 return 0;
3497
3498 return 1;
3499 }
3500
3501
3502 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3503 {
3504 raid5_conf_t *conf = mddev->private;
3505 int dd_idx;
3506 struct bio* align_bi;
3507 mdk_rdev_t *rdev;
3508
3509 if (!in_chunk_boundary(mddev, raid_bio)) {
3510 pr_debug("chunk_aligned_read : non aligned\n");
3511 return 0;
3512 }
3513 /*
3514 * use bio_clone_mddev to make a copy of the bio
3515 */
3516 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3517 if (!align_bi)
3518 return 0;
3519 /*
3520 * set bi_end_io to a new function, and set bi_private to the
3521 * original bio.
3522 */
3523 align_bi->bi_end_io = raid5_align_endio;
3524 align_bi->bi_private = raid_bio;
3525 /*
3526 * compute position
3527 */
3528 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3529 0,
3530 &dd_idx, NULL);
3531
3532 rcu_read_lock();
3533 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3534 if (rdev && test_bit(In_sync, &rdev->flags)) {
3535 sector_t first_bad;
3536 int bad_sectors;
3537
3538 atomic_inc(&rdev->nr_pending);
3539 rcu_read_unlock();
3540 raid_bio->bi_next = (void*)rdev;
3541 align_bi->bi_bdev = rdev->bdev;
3542 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3543 align_bi->bi_sector += rdev->data_offset;
3544
3545 if (!bio_fits_rdev(align_bi) ||
3546 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3547 &first_bad, &bad_sectors)) {
3548 /* too big in some way, or has a known bad block */
3549 bio_put(align_bi);
3550 rdev_dec_pending(rdev, mddev);
3551 return 0;
3552 }
3553
3554 spin_lock_irq(&conf->device_lock);
3555 wait_event_lock_irq(conf->wait_for_stripe,
3556 conf->quiesce == 0,
3557 conf->device_lock, /* nothing */);
3558 atomic_inc(&conf->active_aligned_reads);
3559 spin_unlock_irq(&conf->device_lock);
3560
3561 generic_make_request(align_bi);
3562 return 1;
3563 } else {
3564 rcu_read_unlock();
3565 bio_put(align_bi);
3566 return 0;
3567 }
3568 }
3569
3570 /* __get_priority_stripe - get the next stripe to process
3571 *
3572 * Full stripe writes are allowed to pass preread active stripes up until
3573 * the bypass_threshold is exceeded. In general the bypass_count
3574 * increments when the handle_list is handled before the hold_list; however, it
3575 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3576 * stripe with in flight i/o. The bypass_count will be reset when the
3577 * head of the hold_list has changed, i.e. the head was promoted to the
3578 * handle_list.
3579 */
3580 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3581 {
3582 struct stripe_head *sh;
3583
3584 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3585 __func__,
3586 list_empty(&conf->handle_list) ? "empty" : "busy",
3587 list_empty(&conf->hold_list) ? "empty" : "busy",
3588 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3589
3590 if (!list_empty(&conf->handle_list)) {
3591 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3592
3593 if (list_empty(&conf->hold_list))
3594 conf->bypass_count = 0;
3595 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3596 if (conf->hold_list.next == conf->last_hold)
3597 conf->bypass_count++;
3598 else {
3599 conf->last_hold = conf->hold_list.next;
3600 conf->bypass_count -= conf->bypass_threshold;
3601 if (conf->bypass_count < 0)
3602 conf->bypass_count = 0;
3603 }
3604 }
3605 } else if (!list_empty(&conf->hold_list) &&
3606 ((conf->bypass_threshold &&
3607 conf->bypass_count > conf->bypass_threshold) ||
3608 atomic_read(&conf->pending_full_writes) == 0)) {
3609 sh = list_entry(conf->hold_list.next,
3610 typeof(*sh), lru);
3611 conf->bypass_count -= conf->bypass_threshold;
3612 if (conf->bypass_count < 0)
3613 conf->bypass_count = 0;
3614 } else
3615 return NULL;
3616
3617 list_del_init(&sh->lru);
3618 atomic_inc(&sh->count);
3619 BUG_ON(atomic_read(&sh->count) != 1);
3620 return sh;
3621 }
3622
3623 static int make_request(mddev_t *mddev, struct bio * bi)
3624 {
3625 raid5_conf_t *conf = mddev->private;
3626 int dd_idx;
3627 sector_t new_sector;
3628 sector_t logical_sector, last_sector;
3629 struct stripe_head *sh;
3630 const int rw = bio_data_dir(bi);
3631 int remaining;
3632 int plugged;
3633
3634 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3635 md_flush_request(mddev, bi);
3636 return 0;
3637 }
3638
3639 md_write_start(mddev, bi);
3640
3641 if (rw == READ &&
3642 mddev->reshape_position == MaxSector &&
3643 chunk_aligned_read(mddev,bi))
3644 return 0;
3645
3646 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3647 last_sector = bi->bi_sector + (bi->bi_size>>9);
3648 bi->bi_next = NULL;
3649 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3650
3651 plugged = mddev_check_plugged(mddev);
3652 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3653 DEFINE_WAIT(w);
3654 int disks, data_disks;
3655 int previous;
3656
3657 retry:
3658 previous = 0;
3659 disks = conf->raid_disks;
3660 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3661 if (unlikely(conf->reshape_progress != MaxSector)) {
3662 /* spinlock is needed as reshape_progress may be
3663 * 64bit on a 32bit platform, and so it might be
3664 * possible to see a half-updated value
3665 * Of course reshape_progress could change after
3666 * the lock is dropped, so once we get a reference
3667 * to the stripe that we think it is, we will have
3668 * to check again.
3669 */
3670 spin_lock_irq(&conf->device_lock);
3671 if (mddev->delta_disks < 0
3672 ? logical_sector < conf->reshape_progress
3673 : logical_sector >= conf->reshape_progress) {
3674 disks = conf->previous_raid_disks;
3675 previous = 1;
3676 } else {
3677 if (mddev->delta_disks < 0
3678 ? logical_sector < conf->reshape_safe
3679 : logical_sector >= conf->reshape_safe) {
3680 spin_unlock_irq(&conf->device_lock);
3681 schedule();
3682 goto retry;
3683 }
3684 }
3685 spin_unlock_irq(&conf->device_lock);
3686 }
3687 data_disks = disks - conf->max_degraded;
3688
3689 new_sector = raid5_compute_sector(conf, logical_sector,
3690 previous,
3691 &dd_idx, NULL);
3692 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3693 (unsigned long long)new_sector,
3694 (unsigned long long)logical_sector);
3695
3696 sh = get_active_stripe(conf, new_sector, previous,
3697 (bi->bi_rw&RWA_MASK), 0);
3698 if (sh) {
3699 if (unlikely(previous)) {
3700 /* expansion might have moved on while waiting for a
3701 * stripe, so we must do the range check again.
3702 * Expansion could still move past after this
3703 * test, but as we are holding a reference to
3704 * 'sh', we know that if that happens,
3705 * STRIPE_EXPANDING will get set and the expansion
3706 * won't proceed until we finish with the stripe.
3707 */
3708 int must_retry = 0;
3709 spin_lock_irq(&conf->device_lock);
3710 if (mddev->delta_disks < 0
3711 ? logical_sector >= conf->reshape_progress
3712 : logical_sector < conf->reshape_progress)
3713 /* mismatch, need to try again */
3714 must_retry = 1;
3715 spin_unlock_irq(&conf->device_lock);
3716 if (must_retry) {
3717 release_stripe(sh);
3718 schedule();
3719 goto retry;
3720 }
3721 }
3722
3723 if (rw == WRITE &&
3724 logical_sector >= mddev->suspend_lo &&
3725 logical_sector < mddev->suspend_hi) {
3726 release_stripe(sh);
3727 /* As the suspend_* range is controlled by
3728 * userspace, we want an interruptible
3729 * wait.
3730 */
3731 flush_signals(current);
3732 prepare_to_wait(&conf->wait_for_overlap,
3733 &w, TASK_INTERRUPTIBLE);
3734 if (logical_sector >= mddev->suspend_lo &&
3735 logical_sector < mddev->suspend_hi)
3736 schedule();
3737 goto retry;
3738 }
3739
3740 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3741 !add_stripe_bio(sh, bi, dd_idx, rw)) {
3742 /* Stripe is busy expanding or
3743 * add failed due to overlap. Flush everything
3744 * and wait a while
3745 */
3746 md_wakeup_thread(mddev->thread);
3747 release_stripe(sh);
3748 schedule();
3749 goto retry;
3750 }
3751 finish_wait(&conf->wait_for_overlap, &w);
3752 set_bit(STRIPE_HANDLE, &sh->state);
3753 clear_bit(STRIPE_DELAYED, &sh->state);
3754 if ((bi->bi_rw & REQ_SYNC) &&
3755 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3756 atomic_inc(&conf->preread_active_stripes);
3757 release_stripe(sh);
3758 } else {
3759 /* cannot get stripe for read-ahead, just give-up */
3760 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3761 finish_wait(&conf->wait_for_overlap, &w);
3762 break;
3763 }
3764
3765 }
3766 if (!plugged)
3767 md_wakeup_thread(mddev->thread);
3768
3769 spin_lock_irq(&conf->device_lock);
3770 remaining = raid5_dec_bi_phys_segments(bi);
3771 spin_unlock_irq(&conf->device_lock);
3772 if (remaining == 0) {
3773
3774 if ( rw == WRITE )
3775 md_write_end(mddev);
3776
3777 bio_endio(bi, 0);
3778 }
3779
3780 return 0;
3781 }
3782
3783 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3784
3785 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3786 {
3787 /* reshaping is quite different to recovery/resync so it is
3788 * handled quite separately ... here.
3789 *
3790 * On each call to sync_request, we gather one chunk worth of
3791 * destination stripes and flag them as expanding.
3792 * Then we find all the source stripes and request reads.
3793 * As the reads complete, handle_stripe will copy the data
3794 * into the destination stripe and release that stripe.
3795 */
3796 raid5_conf_t *conf = mddev->private;
3797 struct stripe_head *sh;
3798 sector_t first_sector, last_sector;
3799 int raid_disks = conf->previous_raid_disks;
3800 int data_disks = raid_disks - conf->max_degraded;
3801 int new_data_disks = conf->raid_disks - conf->max_degraded;
3802 int i;
3803 int dd_idx;
3804 sector_t writepos, readpos, safepos;
3805 sector_t stripe_addr;
3806 int reshape_sectors;
3807 struct list_head stripes;
3808
3809 if (sector_nr == 0) {
3810 /* If restarting in the middle, skip the initial sectors */
3811 if (mddev->delta_disks < 0 &&
3812 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3813 sector_nr = raid5_size(mddev, 0, 0)
3814 - conf->reshape_progress;
3815 } else if (mddev->delta_disks >= 0 &&
3816 conf->reshape_progress > 0)
3817 sector_nr = conf->reshape_progress;
3818 sector_div(sector_nr, new_data_disks);
3819 if (sector_nr) {
3820 mddev->curr_resync_completed = sector_nr;
3821 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3822 *skipped = 1;
3823 return sector_nr;
3824 }
3825 }
3826
3827 /* We need to process a full chunk at a time.
3828 * If old and new chunk sizes differ, we need to process the
3829 * largest of these
3830 */
3831 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3832 reshape_sectors = mddev->new_chunk_sectors;
3833 else
3834 reshape_sectors = mddev->chunk_sectors;
3835
3836 /* we update the metadata when there is more than 3Meg
3837 * in the block range (that is rather arbitrary, should
3838 * probably be time based) or when the data about to be
3839 * copied would over-write the source of the data at
3840 * the front of the range.
3841 * i.e. one new_stripe along from reshape_progress new_maps
3842 * to after where reshape_safe old_maps to
3843 */
3844 writepos = conf->reshape_progress;
3845 sector_div(writepos, new_data_disks);
3846 readpos = conf->reshape_progress;
3847 sector_div(readpos, data_disks);
3848 safepos = conf->reshape_safe;
3849 sector_div(safepos, data_disks);
3850 if (mddev->delta_disks < 0) {
3851 writepos -= min_t(sector_t, reshape_sectors, writepos);
3852 readpos += reshape_sectors;
3853 safepos += reshape_sectors;
3854 } else {
3855 writepos += reshape_sectors;
3856 readpos -= min_t(sector_t, reshape_sectors, readpos);
3857 safepos -= min_t(sector_t, reshape_sectors, safepos);
3858 }
3859
3860 /* 'writepos' is the most advanced device address we might write.
3861 * 'readpos' is the least advanced device address we might read.
3862 * 'safepos' is the least address recorded in the metadata as having
3863 * been reshaped.
3864 * If 'readpos' is behind 'writepos', then there is no way that we can
3865 * ensure safety in the face of a crash - that must be done by userspace
3866 * making a backup of the data. So in that case there is no particular
3867 * rush to update metadata.
3868 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3869 * update the metadata to advance 'safepos' to match 'readpos' so that
3870 * we can be safe in the event of a crash.
3871 * So we insist on updating metadata if safepos is behind writepos and
3872 * readpos is beyond writepos.
3873 * In any case, update the metadata every 10 seconds.
3874 * Maybe that number should be configurable, but I'm not sure it is
3875 * worth it.... maybe it could be a multiple of safemode_delay???
3876 */
3877 if ((mddev->delta_disks < 0
3878 ? (safepos > writepos && readpos < writepos)
3879 : (safepos < writepos && readpos > writepos)) ||
3880 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3881 /* Cannot proceed until we've updated the superblock... */
3882 wait_event(conf->wait_for_overlap,
3883 atomic_read(&conf->reshape_stripes)==0);
3884 mddev->reshape_position = conf->reshape_progress;
3885 mddev->curr_resync_completed = sector_nr;
3886 conf->reshape_checkpoint = jiffies;
3887 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3888 md_wakeup_thread(mddev->thread);
3889 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3890 kthread_should_stop());
3891 spin_lock_irq(&conf->device_lock);
3892 conf->reshape_safe = mddev->reshape_position;
3893 spin_unlock_irq(&conf->device_lock);
3894 wake_up(&conf->wait_for_overlap);
3895 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3896 }
3897
3898 if (mddev->delta_disks < 0) {
3899 BUG_ON(conf->reshape_progress == 0);
3900 stripe_addr = writepos;
3901 BUG_ON((mddev->dev_sectors &
3902 ~((sector_t)reshape_sectors - 1))
3903 - reshape_sectors - stripe_addr
3904 != sector_nr);
3905 } else {
3906 BUG_ON(writepos != sector_nr + reshape_sectors);
3907 stripe_addr = sector_nr;
3908 }
3909 INIT_LIST_HEAD(&stripes);
3910 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3911 int j;
3912 int skipped_disk = 0;
3913 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3914 set_bit(STRIPE_EXPANDING, &sh->state);
3915 atomic_inc(&conf->reshape_stripes);
3916 /* If any of this stripe is beyond the end of the old
3917 * array, then we need to zero those blocks
3918 */
3919 for (j=sh->disks; j--;) {
3920 sector_t s;
3921 if (j == sh->pd_idx)
3922 continue;
3923 if (conf->level == 6 &&
3924 j == sh->qd_idx)
3925 continue;
3926 s = compute_blocknr(sh, j, 0);
3927 if (s < raid5_size(mddev, 0, 0)) {
3928 skipped_disk = 1;
3929 continue;
3930 }
3931 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3932 set_bit(R5_Expanded, &sh->dev[j].flags);
3933 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3934 }
3935 if (!skipped_disk) {
3936 set_bit(STRIPE_EXPAND_READY, &sh->state);
3937 set_bit(STRIPE_HANDLE, &sh->state);
3938 }
3939 list_add(&sh->lru, &stripes);
3940 }
3941 spin_lock_irq(&conf->device_lock);
3942 if (mddev->delta_disks < 0)
3943 conf->reshape_progress -= reshape_sectors * new_data_disks;
3944 else
3945 conf->reshape_progress += reshape_sectors * new_data_disks;
3946 spin_unlock_irq(&conf->device_lock);
3947 /* Ok, those stripe are ready. We can start scheduling
3948 * reads on the source stripes.
3949 * The source stripes are determined by mapping the first and last
3950 * block on the destination stripes.
3951 */
3952 first_sector =
3953 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3954 1, &dd_idx, NULL);
3955 last_sector =
3956 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
3957 * new_data_disks - 1),
3958 1, &dd_idx, NULL);
3959 if (last_sector >= mddev->dev_sectors)
3960 last_sector = mddev->dev_sectors - 1;
3961 while (first_sector <= last_sector) {
3962 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
3963 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3964 set_bit(STRIPE_HANDLE, &sh->state);
3965 release_stripe(sh);
3966 first_sector += STRIPE_SECTORS;
3967 }
3968 /* Now that the sources are clearly marked, we can release
3969 * the destination stripes
3970 */
3971 while (!list_empty(&stripes)) {
3972 sh = list_entry(stripes.next, struct stripe_head, lru);
3973 list_del_init(&sh->lru);
3974 release_stripe(sh);
3975 }
3976 /* If this takes us to the resync_max point where we have to pause,
3977 * then we need to write out the superblock.
3978 */
3979 sector_nr += reshape_sectors;
3980 if ((sector_nr - mddev->curr_resync_completed) * 2
3981 >= mddev->resync_max - mddev->curr_resync_completed) {
3982 /* Cannot proceed until we've updated the superblock... */
3983 wait_event(conf->wait_for_overlap,
3984 atomic_read(&conf->reshape_stripes) == 0);
3985 mddev->reshape_position = conf->reshape_progress;
3986 mddev->curr_resync_completed = sector_nr;
3987 conf->reshape_checkpoint = jiffies;
3988 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3989 md_wakeup_thread(mddev->thread);
3990 wait_event(mddev->sb_wait,
3991 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3992 || kthread_should_stop());
3993 spin_lock_irq(&conf->device_lock);
3994 conf->reshape_safe = mddev->reshape_position;
3995 spin_unlock_irq(&conf->device_lock);
3996 wake_up(&conf->wait_for_overlap);
3997 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3998 }
3999 return reshape_sectors;
4000 }
4001
4002 /* FIXME go_faster isn't used */
4003 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4004 {
4005 raid5_conf_t *conf = mddev->private;
4006 struct stripe_head *sh;
4007 sector_t max_sector = mddev->dev_sectors;
4008 sector_t sync_blocks;
4009 int still_degraded = 0;
4010 int i;
4011
4012 if (sector_nr >= max_sector) {
4013 /* just being told to finish up .. nothing much to do */
4014
4015 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4016 end_reshape(conf);
4017 return 0;
4018 }
4019
4020 if (mddev->curr_resync < max_sector) /* aborted */
4021 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4022 &sync_blocks, 1);
4023 else /* completed sync */
4024 conf->fullsync = 0;
4025 bitmap_close_sync(mddev->bitmap);
4026
4027 return 0;
4028 }
4029
4030 /* Allow raid5_quiesce to complete */
4031 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4032
4033 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4034 return reshape_request(mddev, sector_nr, skipped);
4035
4036 /* No need to check resync_max as we never do more than one
4037 * stripe, and as resync_max will always be on a chunk boundary,
4038 * if the check in md_do_sync didn't fire, there is no chance
4039 * of overstepping resync_max here
4040 */
4041
4042 /* if there is too many failed drives and we are trying
4043 * to resync, then assert that we are finished, because there is
4044 * nothing we can do.
4045 */
4046 if (mddev->degraded >= conf->max_degraded &&
4047 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4048 sector_t rv = mddev->dev_sectors - sector_nr;
4049 *skipped = 1;
4050 return rv;
4051 }
4052 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4053 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4054 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4055 /* we can skip this block, and probably more */
4056 sync_blocks /= STRIPE_SECTORS;
4057 *skipped = 1;
4058 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4059 }
4060
4061
4062 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4063
4064 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4065 if (sh == NULL) {
4066 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4067 /* make sure we don't swamp the stripe cache if someone else
4068 * is trying to get access
4069 */
4070 schedule_timeout_uninterruptible(1);
4071 }
4072 /* Need to check if array will still be degraded after recovery/resync
4073 * We don't need to check the 'failed' flag as when that gets set,
4074 * recovery aborts.
4075 */
4076 for (i = 0; i < conf->raid_disks; i++)
4077 if (conf->disks[i].rdev == NULL)
4078 still_degraded = 1;
4079
4080 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4081
4082 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4083
4084 handle_stripe(sh);
4085 release_stripe(sh);
4086
4087 return STRIPE_SECTORS;
4088 }
4089
4090 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4091 {
4092 /* We may not be able to submit a whole bio at once as there
4093 * may not be enough stripe_heads available.
4094 * We cannot pre-allocate enough stripe_heads as we may need
4095 * more than exist in the cache (if we allow ever large chunks).
4096 * So we do one stripe head at a time and record in
4097 * ->bi_hw_segments how many have been done.
4098 *
4099 * We *know* that this entire raid_bio is in one chunk, so
4100 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4101 */
4102 struct stripe_head *sh;
4103 int dd_idx;
4104 sector_t sector, logical_sector, last_sector;
4105 int scnt = 0;
4106 int remaining;
4107 int handled = 0;
4108
4109 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4110 sector = raid5_compute_sector(conf, logical_sector,
4111 0, &dd_idx, NULL);
4112 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4113
4114 for (; logical_sector < last_sector;
4115 logical_sector += STRIPE_SECTORS,
4116 sector += STRIPE_SECTORS,
4117 scnt++) {
4118
4119 if (scnt < raid5_bi_hw_segments(raid_bio))
4120 /* already done this stripe */
4121 continue;
4122
4123 sh = get_active_stripe(conf, sector, 0, 1, 0);
4124
4125 if (!sh) {
4126 /* failed to get a stripe - must wait */
4127 raid5_set_bi_hw_segments(raid_bio, scnt);
4128 conf->retry_read_aligned = raid_bio;
4129 return handled;
4130 }
4131
4132 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4133 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4134 release_stripe(sh);
4135 raid5_set_bi_hw_segments(raid_bio, scnt);
4136 conf->retry_read_aligned = raid_bio;
4137 return handled;
4138 }
4139
4140 handle_stripe(sh);
4141 release_stripe(sh);
4142 handled++;
4143 }
4144 spin_lock_irq(&conf->device_lock);
4145 remaining = raid5_dec_bi_phys_segments(raid_bio);
4146 spin_unlock_irq(&conf->device_lock);
4147 if (remaining == 0)
4148 bio_endio(raid_bio, 0);
4149 if (atomic_dec_and_test(&conf->active_aligned_reads))
4150 wake_up(&conf->wait_for_stripe);
4151 return handled;
4152 }
4153
4154
4155 /*
4156 * This is our raid5 kernel thread.
4157 *
4158 * We scan the hash table for stripes which can be handled now.
4159 * During the scan, completed stripes are saved for us by the interrupt
4160 * handler, so that they will not have to wait for our next wakeup.
4161 */
4162 static void raid5d(mddev_t *mddev)
4163 {
4164 struct stripe_head *sh;
4165 raid5_conf_t *conf = mddev->private;
4166 int handled;
4167 struct blk_plug plug;
4168
4169 pr_debug("+++ raid5d active\n");
4170
4171 md_check_recovery(mddev);
4172
4173 blk_start_plug(&plug);
4174 handled = 0;
4175 spin_lock_irq(&conf->device_lock);
4176 while (1) {
4177 struct bio *bio;
4178
4179 if (atomic_read(&mddev->plug_cnt) == 0 &&
4180 !list_empty(&conf->bitmap_list)) {
4181 /* Now is a good time to flush some bitmap updates */
4182 conf->seq_flush++;
4183 spin_unlock_irq(&conf->device_lock);
4184 bitmap_unplug(mddev->bitmap);
4185 spin_lock_irq(&conf->device_lock);
4186 conf->seq_write = conf->seq_flush;
4187 activate_bit_delay(conf);
4188 }
4189 if (atomic_read(&mddev->plug_cnt) == 0)
4190 raid5_activate_delayed(conf);
4191
4192 while ((bio = remove_bio_from_retry(conf))) {
4193 int ok;
4194 spin_unlock_irq(&conf->device_lock);
4195 ok = retry_aligned_read(conf, bio);
4196 spin_lock_irq(&conf->device_lock);
4197 if (!ok)
4198 break;
4199 handled++;
4200 }
4201
4202 sh = __get_priority_stripe(conf);
4203
4204 if (!sh)
4205 break;
4206 spin_unlock_irq(&conf->device_lock);
4207
4208 handled++;
4209 handle_stripe(sh);
4210 release_stripe(sh);
4211 cond_resched();
4212
4213 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4214 md_check_recovery(mddev);
4215
4216 spin_lock_irq(&conf->device_lock);
4217 }
4218 pr_debug("%d stripes handled\n", handled);
4219
4220 spin_unlock_irq(&conf->device_lock);
4221
4222 async_tx_issue_pending_all();
4223 blk_finish_plug(&plug);
4224
4225 pr_debug("--- raid5d inactive\n");
4226 }
4227
4228 static ssize_t
4229 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4230 {
4231 raid5_conf_t *conf = mddev->private;
4232 if (conf)
4233 return sprintf(page, "%d\n", conf->max_nr_stripes);
4234 else
4235 return 0;
4236 }
4237
4238 int
4239 raid5_set_cache_size(mddev_t *mddev, int size)
4240 {
4241 raid5_conf_t *conf = mddev->private;
4242 int err;
4243
4244 if (size <= 16 || size > 32768)
4245 return -EINVAL;
4246 while (size < conf->max_nr_stripes) {
4247 if (drop_one_stripe(conf))
4248 conf->max_nr_stripes--;
4249 else
4250 break;
4251 }
4252 err = md_allow_write(mddev);
4253 if (err)
4254 return err;
4255 while (size > conf->max_nr_stripes) {
4256 if (grow_one_stripe(conf))
4257 conf->max_nr_stripes++;
4258 else break;
4259 }
4260 return 0;
4261 }
4262 EXPORT_SYMBOL(raid5_set_cache_size);
4263
4264 static ssize_t
4265 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4266 {
4267 raid5_conf_t *conf = mddev->private;
4268 unsigned long new;
4269 int err;
4270
4271 if (len >= PAGE_SIZE)
4272 return -EINVAL;
4273 if (!conf)
4274 return -ENODEV;
4275
4276 if (strict_strtoul(page, 10, &new))
4277 return -EINVAL;
4278 err = raid5_set_cache_size(mddev, new);
4279 if (err)
4280 return err;
4281 return len;
4282 }
4283
4284 static struct md_sysfs_entry
4285 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4286 raid5_show_stripe_cache_size,
4287 raid5_store_stripe_cache_size);
4288
4289 static ssize_t
4290 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4291 {
4292 raid5_conf_t *conf = mddev->private;
4293 if (conf)
4294 return sprintf(page, "%d\n", conf->bypass_threshold);
4295 else
4296 return 0;
4297 }
4298
4299 static ssize_t
4300 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4301 {
4302 raid5_conf_t *conf = mddev->private;
4303 unsigned long new;
4304 if (len >= PAGE_SIZE)
4305 return -EINVAL;
4306 if (!conf)
4307 return -ENODEV;
4308
4309 if (strict_strtoul(page, 10, &new))
4310 return -EINVAL;
4311 if (new > conf->max_nr_stripes)
4312 return -EINVAL;
4313 conf->bypass_threshold = new;
4314 return len;
4315 }
4316
4317 static struct md_sysfs_entry
4318 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4319 S_IRUGO | S_IWUSR,
4320 raid5_show_preread_threshold,
4321 raid5_store_preread_threshold);
4322
4323 static ssize_t
4324 stripe_cache_active_show(mddev_t *mddev, char *page)
4325 {
4326 raid5_conf_t *conf = mddev->private;
4327 if (conf)
4328 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4329 else
4330 return 0;
4331 }
4332
4333 static struct md_sysfs_entry
4334 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4335
4336 static struct attribute *raid5_attrs[] = {
4337 &raid5_stripecache_size.attr,
4338 &raid5_stripecache_active.attr,
4339 &raid5_preread_bypass_threshold.attr,
4340 NULL,
4341 };
4342 static struct attribute_group raid5_attrs_group = {
4343 .name = NULL,
4344 .attrs = raid5_attrs,
4345 };
4346
4347 static sector_t
4348 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4349 {
4350 raid5_conf_t *conf = mddev->private;
4351
4352 if (!sectors)
4353 sectors = mddev->dev_sectors;
4354 if (!raid_disks)
4355 /* size is defined by the smallest of previous and new size */
4356 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4357
4358 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4359 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4360 return sectors * (raid_disks - conf->max_degraded);
4361 }
4362
4363 static void raid5_free_percpu(raid5_conf_t *conf)
4364 {
4365 struct raid5_percpu *percpu;
4366 unsigned long cpu;
4367
4368 if (!conf->percpu)
4369 return;
4370
4371 get_online_cpus();
4372 for_each_possible_cpu(cpu) {
4373 percpu = per_cpu_ptr(conf->percpu, cpu);
4374 safe_put_page(percpu->spare_page);
4375 kfree(percpu->scribble);
4376 }
4377 #ifdef CONFIG_HOTPLUG_CPU
4378 unregister_cpu_notifier(&conf->cpu_notify);
4379 #endif
4380 put_online_cpus();
4381
4382 free_percpu(conf->percpu);
4383 }
4384
4385 static void free_conf(raid5_conf_t *conf)
4386 {
4387 shrink_stripes(conf);
4388 raid5_free_percpu(conf);
4389 kfree(conf->disks);
4390 kfree(conf->stripe_hashtbl);
4391 kfree(conf);
4392 }
4393
4394 #ifdef CONFIG_HOTPLUG_CPU
4395 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4396 void *hcpu)
4397 {
4398 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4399 long cpu = (long)hcpu;
4400 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4401
4402 switch (action) {
4403 case CPU_UP_PREPARE:
4404 case CPU_UP_PREPARE_FROZEN:
4405 if (conf->level == 6 && !percpu->spare_page)
4406 percpu->spare_page = alloc_page(GFP_KERNEL);
4407 if (!percpu->scribble)
4408 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4409
4410 if (!percpu->scribble ||
4411 (conf->level == 6 && !percpu->spare_page)) {
4412 safe_put_page(percpu->spare_page);
4413 kfree(percpu->scribble);
4414 pr_err("%s: failed memory allocation for cpu%ld\n",
4415 __func__, cpu);
4416 return notifier_from_errno(-ENOMEM);
4417 }
4418 break;
4419 case CPU_DEAD:
4420 case CPU_DEAD_FROZEN:
4421 safe_put_page(percpu->spare_page);
4422 kfree(percpu->scribble);
4423 percpu->spare_page = NULL;
4424 percpu->scribble = NULL;
4425 break;
4426 default:
4427 break;
4428 }
4429 return NOTIFY_OK;
4430 }
4431 #endif
4432
4433 static int raid5_alloc_percpu(raid5_conf_t *conf)
4434 {
4435 unsigned long cpu;
4436 struct page *spare_page;
4437 struct raid5_percpu __percpu *allcpus;
4438 void *scribble;
4439 int err;
4440
4441 allcpus = alloc_percpu(struct raid5_percpu);
4442 if (!allcpus)
4443 return -ENOMEM;
4444 conf->percpu = allcpus;
4445
4446 get_online_cpus();
4447 err = 0;
4448 for_each_present_cpu(cpu) {
4449 if (conf->level == 6) {
4450 spare_page = alloc_page(GFP_KERNEL);
4451 if (!spare_page) {
4452 err = -ENOMEM;
4453 break;
4454 }
4455 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4456 }
4457 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4458 if (!scribble) {
4459 err = -ENOMEM;
4460 break;
4461 }
4462 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4463 }
4464 #ifdef CONFIG_HOTPLUG_CPU
4465 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4466 conf->cpu_notify.priority = 0;
4467 if (err == 0)
4468 err = register_cpu_notifier(&conf->cpu_notify);
4469 #endif
4470 put_online_cpus();
4471
4472 return err;
4473 }
4474
4475 static raid5_conf_t *setup_conf(mddev_t *mddev)
4476 {
4477 raid5_conf_t *conf;
4478 int raid_disk, memory, max_disks;
4479 mdk_rdev_t *rdev;
4480 struct disk_info *disk;
4481
4482 if (mddev->new_level != 5
4483 && mddev->new_level != 4
4484 && mddev->new_level != 6) {
4485 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4486 mdname(mddev), mddev->new_level);
4487 return ERR_PTR(-EIO);
4488 }
4489 if ((mddev->new_level == 5
4490 && !algorithm_valid_raid5(mddev->new_layout)) ||
4491 (mddev->new_level == 6
4492 && !algorithm_valid_raid6(mddev->new_layout))) {
4493 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4494 mdname(mddev), mddev->new_layout);
4495 return ERR_PTR(-EIO);
4496 }
4497 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4498 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4499 mdname(mddev), mddev->raid_disks);
4500 return ERR_PTR(-EINVAL);
4501 }
4502
4503 if (!mddev->new_chunk_sectors ||
4504 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4505 !is_power_of_2(mddev->new_chunk_sectors)) {
4506 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4507 mdname(mddev), mddev->new_chunk_sectors << 9);
4508 return ERR_PTR(-EINVAL);
4509 }
4510
4511 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4512 if (conf == NULL)
4513 goto abort;
4514 spin_lock_init(&conf->device_lock);
4515 init_waitqueue_head(&conf->wait_for_stripe);
4516 init_waitqueue_head(&conf->wait_for_overlap);
4517 INIT_LIST_HEAD(&conf->handle_list);
4518 INIT_LIST_HEAD(&conf->hold_list);
4519 INIT_LIST_HEAD(&conf->delayed_list);
4520 INIT_LIST_HEAD(&conf->bitmap_list);
4521 INIT_LIST_HEAD(&conf->inactive_list);
4522 atomic_set(&conf->active_stripes, 0);
4523 atomic_set(&conf->preread_active_stripes, 0);
4524 atomic_set(&conf->active_aligned_reads, 0);
4525 conf->bypass_threshold = BYPASS_THRESHOLD;
4526
4527 conf->raid_disks = mddev->raid_disks;
4528 if (mddev->reshape_position == MaxSector)
4529 conf->previous_raid_disks = mddev->raid_disks;
4530 else
4531 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4532 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4533 conf->scribble_len = scribble_len(max_disks);
4534
4535 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4536 GFP_KERNEL);
4537 if (!conf->disks)
4538 goto abort;
4539
4540 conf->mddev = mddev;
4541
4542 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4543 goto abort;
4544
4545 conf->level = mddev->new_level;
4546 if (raid5_alloc_percpu(conf) != 0)
4547 goto abort;
4548
4549 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4550
4551 list_for_each_entry(rdev, &mddev->disks, same_set) {
4552 raid_disk = rdev->raid_disk;
4553 if (raid_disk >= max_disks
4554 || raid_disk < 0)
4555 continue;
4556 disk = conf->disks + raid_disk;
4557
4558 disk->rdev = rdev;
4559
4560 if (test_bit(In_sync, &rdev->flags)) {
4561 char b[BDEVNAME_SIZE];
4562 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4563 " disk %d\n",
4564 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4565 } else if (rdev->saved_raid_disk != raid_disk)
4566 /* Cannot rely on bitmap to complete recovery */
4567 conf->fullsync = 1;
4568 }
4569
4570 conf->chunk_sectors = mddev->new_chunk_sectors;
4571 conf->level = mddev->new_level;
4572 if (conf->level == 6)
4573 conf->max_degraded = 2;
4574 else
4575 conf->max_degraded = 1;
4576 conf->algorithm = mddev->new_layout;
4577 conf->max_nr_stripes = NR_STRIPES;
4578 conf->reshape_progress = mddev->reshape_position;
4579 if (conf->reshape_progress != MaxSector) {
4580 conf->prev_chunk_sectors = mddev->chunk_sectors;
4581 conf->prev_algo = mddev->layout;
4582 }
4583
4584 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4585 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4586 if (grow_stripes(conf, conf->max_nr_stripes)) {
4587 printk(KERN_ERR
4588 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4589 mdname(mddev), memory);
4590 goto abort;
4591 } else
4592 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4593 mdname(mddev), memory);
4594
4595 conf->thread = md_register_thread(raid5d, mddev, NULL);
4596 if (!conf->thread) {
4597 printk(KERN_ERR
4598 "md/raid:%s: couldn't allocate thread.\n",
4599 mdname(mddev));
4600 goto abort;
4601 }
4602
4603 return conf;
4604
4605 abort:
4606 if (conf) {
4607 free_conf(conf);
4608 return ERR_PTR(-EIO);
4609 } else
4610 return ERR_PTR(-ENOMEM);
4611 }
4612
4613
4614 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4615 {
4616 switch (algo) {
4617 case ALGORITHM_PARITY_0:
4618 if (raid_disk < max_degraded)
4619 return 1;
4620 break;
4621 case ALGORITHM_PARITY_N:
4622 if (raid_disk >= raid_disks - max_degraded)
4623 return 1;
4624 break;
4625 case ALGORITHM_PARITY_0_6:
4626 if (raid_disk == 0 ||
4627 raid_disk == raid_disks - 1)
4628 return 1;
4629 break;
4630 case ALGORITHM_LEFT_ASYMMETRIC_6:
4631 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4632 case ALGORITHM_LEFT_SYMMETRIC_6:
4633 case ALGORITHM_RIGHT_SYMMETRIC_6:
4634 if (raid_disk == raid_disks - 1)
4635 return 1;
4636 }
4637 return 0;
4638 }
4639
4640 static int run(mddev_t *mddev)
4641 {
4642 raid5_conf_t *conf;
4643 int working_disks = 0;
4644 int dirty_parity_disks = 0;
4645 mdk_rdev_t *rdev;
4646 sector_t reshape_offset = 0;
4647
4648 if (mddev->recovery_cp != MaxSector)
4649 printk(KERN_NOTICE "md/raid:%s: not clean"
4650 " -- starting background reconstruction\n",
4651 mdname(mddev));
4652 if (mddev->reshape_position != MaxSector) {
4653 /* Check that we can continue the reshape.
4654 * Currently only disks can change, it must
4655 * increase, and we must be past the point where
4656 * a stripe over-writes itself
4657 */
4658 sector_t here_new, here_old;
4659 int old_disks;
4660 int max_degraded = (mddev->level == 6 ? 2 : 1);
4661
4662 if (mddev->new_level != mddev->level) {
4663 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4664 "required - aborting.\n",
4665 mdname(mddev));
4666 return -EINVAL;
4667 }
4668 old_disks = mddev->raid_disks - mddev->delta_disks;
4669 /* reshape_position must be on a new-stripe boundary, and one
4670 * further up in new geometry must map after here in old
4671 * geometry.
4672 */
4673 here_new = mddev->reshape_position;
4674 if (sector_div(here_new, mddev->new_chunk_sectors *
4675 (mddev->raid_disks - max_degraded))) {
4676 printk(KERN_ERR "md/raid:%s: reshape_position not "
4677 "on a stripe boundary\n", mdname(mddev));
4678 return -EINVAL;
4679 }
4680 reshape_offset = here_new * mddev->new_chunk_sectors;
4681 /* here_new is the stripe we will write to */
4682 here_old = mddev->reshape_position;
4683 sector_div(here_old, mddev->chunk_sectors *
4684 (old_disks-max_degraded));
4685 /* here_old is the first stripe that we might need to read
4686 * from */
4687 if (mddev->delta_disks == 0) {
4688 /* We cannot be sure it is safe to start an in-place
4689 * reshape. It is only safe if user-space if monitoring
4690 * and taking constant backups.
4691 * mdadm always starts a situation like this in
4692 * readonly mode so it can take control before
4693 * allowing any writes. So just check for that.
4694 */
4695 if ((here_new * mddev->new_chunk_sectors !=
4696 here_old * mddev->chunk_sectors) ||
4697 mddev->ro == 0) {
4698 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4699 " in read-only mode - aborting\n",
4700 mdname(mddev));
4701 return -EINVAL;
4702 }
4703 } else if (mddev->delta_disks < 0
4704 ? (here_new * mddev->new_chunk_sectors <=
4705 here_old * mddev->chunk_sectors)
4706 : (here_new * mddev->new_chunk_sectors >=
4707 here_old * mddev->chunk_sectors)) {
4708 /* Reading from the same stripe as writing to - bad */
4709 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4710 "auto-recovery - aborting.\n",
4711 mdname(mddev));
4712 return -EINVAL;
4713 }
4714 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4715 mdname(mddev));
4716 /* OK, we should be able to continue; */
4717 } else {
4718 BUG_ON(mddev->level != mddev->new_level);
4719 BUG_ON(mddev->layout != mddev->new_layout);
4720 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4721 BUG_ON(mddev->delta_disks != 0);
4722 }
4723
4724 if (mddev->private == NULL)
4725 conf = setup_conf(mddev);
4726 else
4727 conf = mddev->private;
4728
4729 if (IS_ERR(conf))
4730 return PTR_ERR(conf);
4731
4732 mddev->thread = conf->thread;
4733 conf->thread = NULL;
4734 mddev->private = conf;
4735
4736 /*
4737 * 0 for a fully functional array, 1 or 2 for a degraded array.
4738 */
4739 list_for_each_entry(rdev, &mddev->disks, same_set) {
4740 if (rdev->raid_disk < 0)
4741 continue;
4742 if (test_bit(In_sync, &rdev->flags)) {
4743 working_disks++;
4744 continue;
4745 }
4746 /* This disc is not fully in-sync. However if it
4747 * just stored parity (beyond the recovery_offset),
4748 * when we don't need to be concerned about the
4749 * array being dirty.
4750 * When reshape goes 'backwards', we never have
4751 * partially completed devices, so we only need
4752 * to worry about reshape going forwards.
4753 */
4754 /* Hack because v0.91 doesn't store recovery_offset properly. */
4755 if (mddev->major_version == 0 &&
4756 mddev->minor_version > 90)
4757 rdev->recovery_offset = reshape_offset;
4758
4759 if (rdev->recovery_offset < reshape_offset) {
4760 /* We need to check old and new layout */
4761 if (!only_parity(rdev->raid_disk,
4762 conf->algorithm,
4763 conf->raid_disks,
4764 conf->max_degraded))
4765 continue;
4766 }
4767 if (!only_parity(rdev->raid_disk,
4768 conf->prev_algo,
4769 conf->previous_raid_disks,
4770 conf->max_degraded))
4771 continue;
4772 dirty_parity_disks++;
4773 }
4774
4775 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4776 - working_disks);
4777
4778 if (has_failed(conf)) {
4779 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4780 " (%d/%d failed)\n",
4781 mdname(mddev), mddev->degraded, conf->raid_disks);
4782 goto abort;
4783 }
4784
4785 /* device size must be a multiple of chunk size */
4786 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4787 mddev->resync_max_sectors = mddev->dev_sectors;
4788
4789 if (mddev->degraded > dirty_parity_disks &&
4790 mddev->recovery_cp != MaxSector) {
4791 if (mddev->ok_start_degraded)
4792 printk(KERN_WARNING
4793 "md/raid:%s: starting dirty degraded array"
4794 " - data corruption possible.\n",
4795 mdname(mddev));
4796 else {
4797 printk(KERN_ERR
4798 "md/raid:%s: cannot start dirty degraded array.\n",
4799 mdname(mddev));
4800 goto abort;
4801 }
4802 }
4803
4804 if (mddev->degraded == 0)
4805 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4806 " devices, algorithm %d\n", mdname(mddev), conf->level,
4807 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4808 mddev->new_layout);
4809 else
4810 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4811 " out of %d devices, algorithm %d\n",
4812 mdname(mddev), conf->level,
4813 mddev->raid_disks - mddev->degraded,
4814 mddev->raid_disks, mddev->new_layout);
4815
4816 print_raid5_conf(conf);
4817
4818 if (conf->reshape_progress != MaxSector) {
4819 conf->reshape_safe = conf->reshape_progress;
4820 atomic_set(&conf->reshape_stripes, 0);
4821 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4822 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4823 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4824 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4825 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4826 "reshape");
4827 }
4828
4829
4830 /* Ok, everything is just fine now */
4831 if (mddev->to_remove == &raid5_attrs_group)
4832 mddev->to_remove = NULL;
4833 else if (mddev->kobj.sd &&
4834 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4835 printk(KERN_WARNING
4836 "raid5: failed to create sysfs attributes for %s\n",
4837 mdname(mddev));
4838 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4839
4840 if (mddev->queue) {
4841 int chunk_size;
4842 /* read-ahead size must cover two whole stripes, which
4843 * is 2 * (datadisks) * chunksize where 'n' is the
4844 * number of raid devices
4845 */
4846 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4847 int stripe = data_disks *
4848 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4849 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4850 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4851
4852 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4853
4854 mddev->queue->backing_dev_info.congested_data = mddev;
4855 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4856
4857 chunk_size = mddev->chunk_sectors << 9;
4858 blk_queue_io_min(mddev->queue, chunk_size);
4859 blk_queue_io_opt(mddev->queue, chunk_size *
4860 (conf->raid_disks - conf->max_degraded));
4861
4862 list_for_each_entry(rdev, &mddev->disks, same_set)
4863 disk_stack_limits(mddev->gendisk, rdev->bdev,
4864 rdev->data_offset << 9);
4865 }
4866
4867 return 0;
4868 abort:
4869 md_unregister_thread(mddev->thread);
4870 mddev->thread = NULL;
4871 if (conf) {
4872 print_raid5_conf(conf);
4873 free_conf(conf);
4874 }
4875 mddev->private = NULL;
4876 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4877 return -EIO;
4878 }
4879
4880 static int stop(mddev_t *mddev)
4881 {
4882 raid5_conf_t *conf = mddev->private;
4883
4884 md_unregister_thread(mddev->thread);
4885 mddev->thread = NULL;
4886 if (mddev->queue)
4887 mddev->queue->backing_dev_info.congested_fn = NULL;
4888 free_conf(conf);
4889 mddev->private = NULL;
4890 mddev->to_remove = &raid5_attrs_group;
4891 return 0;
4892 }
4893
4894 #ifdef DEBUG
4895 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4896 {
4897 int i;
4898
4899 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4900 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4901 seq_printf(seq, "sh %llu, count %d.\n",
4902 (unsigned long long)sh->sector, atomic_read(&sh->count));
4903 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4904 for (i = 0; i < sh->disks; i++) {
4905 seq_printf(seq, "(cache%d: %p %ld) ",
4906 i, sh->dev[i].page, sh->dev[i].flags);
4907 }
4908 seq_printf(seq, "\n");
4909 }
4910
4911 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4912 {
4913 struct stripe_head *sh;
4914 struct hlist_node *hn;
4915 int i;
4916
4917 spin_lock_irq(&conf->device_lock);
4918 for (i = 0; i < NR_HASH; i++) {
4919 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4920 if (sh->raid_conf != conf)
4921 continue;
4922 print_sh(seq, sh);
4923 }
4924 }
4925 spin_unlock_irq(&conf->device_lock);
4926 }
4927 #endif
4928
4929 static void status(struct seq_file *seq, mddev_t *mddev)
4930 {
4931 raid5_conf_t *conf = mddev->private;
4932 int i;
4933
4934 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4935 mddev->chunk_sectors / 2, mddev->layout);
4936 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4937 for (i = 0; i < conf->raid_disks; i++)
4938 seq_printf (seq, "%s",
4939 conf->disks[i].rdev &&
4940 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4941 seq_printf (seq, "]");
4942 #ifdef DEBUG
4943 seq_printf (seq, "\n");
4944 printall(seq, conf);
4945 #endif
4946 }
4947
4948 static void print_raid5_conf (raid5_conf_t *conf)
4949 {
4950 int i;
4951 struct disk_info *tmp;
4952
4953 printk(KERN_DEBUG "RAID conf printout:\n");
4954 if (!conf) {
4955 printk("(conf==NULL)\n");
4956 return;
4957 }
4958 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
4959 conf->raid_disks,
4960 conf->raid_disks - conf->mddev->degraded);
4961
4962 for (i = 0; i < conf->raid_disks; i++) {
4963 char b[BDEVNAME_SIZE];
4964 tmp = conf->disks + i;
4965 if (tmp->rdev)
4966 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
4967 i, !test_bit(Faulty, &tmp->rdev->flags),
4968 bdevname(tmp->rdev->bdev, b));
4969 }
4970 }
4971
4972 static int raid5_spare_active(mddev_t *mddev)
4973 {
4974 int i;
4975 raid5_conf_t *conf = mddev->private;
4976 struct disk_info *tmp;
4977 int count = 0;
4978 unsigned long flags;
4979
4980 for (i = 0; i < conf->raid_disks; i++) {
4981 tmp = conf->disks + i;
4982 if (tmp->rdev
4983 && tmp->rdev->recovery_offset == MaxSector
4984 && !test_bit(Faulty, &tmp->rdev->flags)
4985 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4986 count++;
4987 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
4988 }
4989 }
4990 spin_lock_irqsave(&conf->device_lock, flags);
4991 mddev->degraded -= count;
4992 spin_unlock_irqrestore(&conf->device_lock, flags);
4993 print_raid5_conf(conf);
4994 return count;
4995 }
4996
4997 static int raid5_remove_disk(mddev_t *mddev, int number)
4998 {
4999 raid5_conf_t *conf = mddev->private;
5000 int err = 0;
5001 mdk_rdev_t *rdev;
5002 struct disk_info *p = conf->disks + number;
5003
5004 print_raid5_conf(conf);
5005 rdev = p->rdev;
5006 if (rdev) {
5007 if (number >= conf->raid_disks &&
5008 conf->reshape_progress == MaxSector)
5009 clear_bit(In_sync, &rdev->flags);
5010
5011 if (test_bit(In_sync, &rdev->flags) ||
5012 atomic_read(&rdev->nr_pending)) {
5013 err = -EBUSY;
5014 goto abort;
5015 }
5016 /* Only remove non-faulty devices if recovery
5017 * isn't possible.
5018 */
5019 if (!test_bit(Faulty, &rdev->flags) &&
5020 mddev->recovery_disabled != conf->recovery_disabled &&
5021 !has_failed(conf) &&
5022 number < conf->raid_disks) {
5023 err = -EBUSY;
5024 goto abort;
5025 }
5026 p->rdev = NULL;
5027 synchronize_rcu();
5028 if (atomic_read(&rdev->nr_pending)) {
5029 /* lost the race, try later */
5030 err = -EBUSY;
5031 p->rdev = rdev;
5032 }
5033 }
5034 abort:
5035
5036 print_raid5_conf(conf);
5037 return err;
5038 }
5039
5040 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5041 {
5042 raid5_conf_t *conf = mddev->private;
5043 int err = -EEXIST;
5044 int disk;
5045 struct disk_info *p;
5046 int first = 0;
5047 int last = conf->raid_disks - 1;
5048
5049 if (mddev->recovery_disabled == conf->recovery_disabled)
5050 return -EBUSY;
5051
5052 if (has_failed(conf))
5053 /* no point adding a device */
5054 return -EINVAL;
5055
5056 if (rdev->raid_disk >= 0)
5057 first = last = rdev->raid_disk;
5058
5059 /*
5060 * find the disk ... but prefer rdev->saved_raid_disk
5061 * if possible.
5062 */
5063 if (rdev->saved_raid_disk >= 0 &&
5064 rdev->saved_raid_disk >= first &&
5065 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5066 disk = rdev->saved_raid_disk;
5067 else
5068 disk = first;
5069 for ( ; disk <= last ; disk++)
5070 if ((p=conf->disks + disk)->rdev == NULL) {
5071 clear_bit(In_sync, &rdev->flags);
5072 rdev->raid_disk = disk;
5073 err = 0;
5074 if (rdev->saved_raid_disk != disk)
5075 conf->fullsync = 1;
5076 rcu_assign_pointer(p->rdev, rdev);
5077 break;
5078 }
5079 print_raid5_conf(conf);
5080 return err;
5081 }
5082
5083 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5084 {
5085 /* no resync is happening, and there is enough space
5086 * on all devices, so we can resize.
5087 * We need to make sure resync covers any new space.
5088 * If the array is shrinking we should possibly wait until
5089 * any io in the removed space completes, but it hardly seems
5090 * worth it.
5091 */
5092 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5093 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5094 mddev->raid_disks));
5095 if (mddev->array_sectors >
5096 raid5_size(mddev, sectors, mddev->raid_disks))
5097 return -EINVAL;
5098 set_capacity(mddev->gendisk, mddev->array_sectors);
5099 revalidate_disk(mddev->gendisk);
5100 if (sectors > mddev->dev_sectors &&
5101 mddev->recovery_cp > mddev->dev_sectors) {
5102 mddev->recovery_cp = mddev->dev_sectors;
5103 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5104 }
5105 mddev->dev_sectors = sectors;
5106 mddev->resync_max_sectors = sectors;
5107 return 0;
5108 }
5109
5110 static int check_stripe_cache(mddev_t *mddev)
5111 {
5112 /* Can only proceed if there are plenty of stripe_heads.
5113 * We need a minimum of one full stripe,, and for sensible progress
5114 * it is best to have about 4 times that.
5115 * If we require 4 times, then the default 256 4K stripe_heads will
5116 * allow for chunk sizes up to 256K, which is probably OK.
5117 * If the chunk size is greater, user-space should request more
5118 * stripe_heads first.
5119 */
5120 raid5_conf_t *conf = mddev->private;
5121 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5122 > conf->max_nr_stripes ||
5123 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5124 > conf->max_nr_stripes) {
5125 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5126 mdname(mddev),
5127 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5128 / STRIPE_SIZE)*4);
5129 return 0;
5130 }
5131 return 1;
5132 }
5133
5134 static int check_reshape(mddev_t *mddev)
5135 {
5136 raid5_conf_t *conf = mddev->private;
5137
5138 if (mddev->delta_disks == 0 &&
5139 mddev->new_layout == mddev->layout &&
5140 mddev->new_chunk_sectors == mddev->chunk_sectors)
5141 return 0; /* nothing to do */
5142 if (mddev->bitmap)
5143 /* Cannot grow a bitmap yet */
5144 return -EBUSY;
5145 if (has_failed(conf))
5146 return -EINVAL;
5147 if (mddev->delta_disks < 0) {
5148 /* We might be able to shrink, but the devices must
5149 * be made bigger first.
5150 * For raid6, 4 is the minimum size.
5151 * Otherwise 2 is the minimum
5152 */
5153 int min = 2;
5154 if (mddev->level == 6)
5155 min = 4;
5156 if (mddev->raid_disks + mddev->delta_disks < min)
5157 return -EINVAL;
5158 }
5159
5160 if (!check_stripe_cache(mddev))
5161 return -ENOSPC;
5162
5163 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5164 }
5165
5166 static int raid5_start_reshape(mddev_t *mddev)
5167 {
5168 raid5_conf_t *conf = mddev->private;
5169 mdk_rdev_t *rdev;
5170 int spares = 0;
5171 unsigned long flags;
5172
5173 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5174 return -EBUSY;
5175
5176 if (!check_stripe_cache(mddev))
5177 return -ENOSPC;
5178
5179 list_for_each_entry(rdev, &mddev->disks, same_set)
5180 if (!test_bit(In_sync, &rdev->flags)
5181 && !test_bit(Faulty, &rdev->flags))
5182 spares++;
5183
5184 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5185 /* Not enough devices even to make a degraded array
5186 * of that size
5187 */
5188 return -EINVAL;
5189
5190 /* Refuse to reduce size of the array. Any reductions in
5191 * array size must be through explicit setting of array_size
5192 * attribute.
5193 */
5194 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5195 < mddev->array_sectors) {
5196 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5197 "before number of disks\n", mdname(mddev));
5198 return -EINVAL;
5199 }
5200
5201 atomic_set(&conf->reshape_stripes, 0);
5202 spin_lock_irq(&conf->device_lock);
5203 conf->previous_raid_disks = conf->raid_disks;
5204 conf->raid_disks += mddev->delta_disks;
5205 conf->prev_chunk_sectors = conf->chunk_sectors;
5206 conf->chunk_sectors = mddev->new_chunk_sectors;
5207 conf->prev_algo = conf->algorithm;
5208 conf->algorithm = mddev->new_layout;
5209 if (mddev->delta_disks < 0)
5210 conf->reshape_progress = raid5_size(mddev, 0, 0);
5211 else
5212 conf->reshape_progress = 0;
5213 conf->reshape_safe = conf->reshape_progress;
5214 conf->generation++;
5215 spin_unlock_irq(&conf->device_lock);
5216
5217 /* Add some new drives, as many as will fit.
5218 * We know there are enough to make the newly sized array work.
5219 * Don't add devices if we are reducing the number of
5220 * devices in the array. This is because it is not possible
5221 * to correctly record the "partially reconstructed" state of
5222 * such devices during the reshape and confusion could result.
5223 */
5224 if (mddev->delta_disks >= 0) {
5225 int added_devices = 0;
5226 list_for_each_entry(rdev, &mddev->disks, same_set)
5227 if (rdev->raid_disk < 0 &&
5228 !test_bit(Faulty, &rdev->flags)) {
5229 if (raid5_add_disk(mddev, rdev) == 0) {
5230 if (rdev->raid_disk
5231 >= conf->previous_raid_disks) {
5232 set_bit(In_sync, &rdev->flags);
5233 added_devices++;
5234 } else
5235 rdev->recovery_offset = 0;
5236
5237 if (sysfs_link_rdev(mddev, rdev))
5238 /* Failure here is OK */;
5239 }
5240 } else if (rdev->raid_disk >= conf->previous_raid_disks
5241 && !test_bit(Faulty, &rdev->flags)) {
5242 /* This is a spare that was manually added */
5243 set_bit(In_sync, &rdev->flags);
5244 added_devices++;
5245 }
5246
5247 /* When a reshape changes the number of devices,
5248 * ->degraded is measured against the larger of the
5249 * pre and post number of devices.
5250 */
5251 spin_lock_irqsave(&conf->device_lock, flags);
5252 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5253 - added_devices;
5254 spin_unlock_irqrestore(&conf->device_lock, flags);
5255 }
5256 mddev->raid_disks = conf->raid_disks;
5257 mddev->reshape_position = conf->reshape_progress;
5258 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5259
5260 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5261 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5262 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5263 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5264 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5265 "reshape");
5266 if (!mddev->sync_thread) {
5267 mddev->recovery = 0;
5268 spin_lock_irq(&conf->device_lock);
5269 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5270 conf->reshape_progress = MaxSector;
5271 spin_unlock_irq(&conf->device_lock);
5272 return -EAGAIN;
5273 }
5274 conf->reshape_checkpoint = jiffies;
5275 md_wakeup_thread(mddev->sync_thread);
5276 md_new_event(mddev);
5277 return 0;
5278 }
5279
5280 /* This is called from the reshape thread and should make any
5281 * changes needed in 'conf'
5282 */
5283 static void end_reshape(raid5_conf_t *conf)
5284 {
5285
5286 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5287
5288 spin_lock_irq(&conf->device_lock);
5289 conf->previous_raid_disks = conf->raid_disks;
5290 conf->reshape_progress = MaxSector;
5291 spin_unlock_irq(&conf->device_lock);
5292 wake_up(&conf->wait_for_overlap);
5293
5294 /* read-ahead size must cover two whole stripes, which is
5295 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5296 */
5297 if (conf->mddev->queue) {
5298 int data_disks = conf->raid_disks - conf->max_degraded;
5299 int stripe = data_disks * ((conf->chunk_sectors << 9)
5300 / PAGE_SIZE);
5301 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5302 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5303 }
5304 }
5305 }
5306
5307 /* This is called from the raid5d thread with mddev_lock held.
5308 * It makes config changes to the device.
5309 */
5310 static void raid5_finish_reshape(mddev_t *mddev)
5311 {
5312 raid5_conf_t *conf = mddev->private;
5313
5314 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5315
5316 if (mddev->delta_disks > 0) {
5317 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5318 set_capacity(mddev->gendisk, mddev->array_sectors);
5319 revalidate_disk(mddev->gendisk);
5320 } else {
5321 int d;
5322 mddev->degraded = conf->raid_disks;
5323 for (d = 0; d < conf->raid_disks ; d++)
5324 if (conf->disks[d].rdev &&
5325 test_bit(In_sync,
5326 &conf->disks[d].rdev->flags))
5327 mddev->degraded--;
5328 for (d = conf->raid_disks ;
5329 d < conf->raid_disks - mddev->delta_disks;
5330 d++) {
5331 mdk_rdev_t *rdev = conf->disks[d].rdev;
5332 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5333 sysfs_unlink_rdev(mddev, rdev);
5334 rdev->raid_disk = -1;
5335 }
5336 }
5337 }
5338 mddev->layout = conf->algorithm;
5339 mddev->chunk_sectors = conf->chunk_sectors;
5340 mddev->reshape_position = MaxSector;
5341 mddev->delta_disks = 0;
5342 }
5343 }
5344
5345 static void raid5_quiesce(mddev_t *mddev, int state)
5346 {
5347 raid5_conf_t *conf = mddev->private;
5348
5349 switch(state) {
5350 case 2: /* resume for a suspend */
5351 wake_up(&conf->wait_for_overlap);
5352 break;
5353
5354 case 1: /* stop all writes */
5355 spin_lock_irq(&conf->device_lock);
5356 /* '2' tells resync/reshape to pause so that all
5357 * active stripes can drain
5358 */
5359 conf->quiesce = 2;
5360 wait_event_lock_irq(conf->wait_for_stripe,
5361 atomic_read(&conf->active_stripes) == 0 &&
5362 atomic_read(&conf->active_aligned_reads) == 0,
5363 conf->device_lock, /* nothing */);
5364 conf->quiesce = 1;
5365 spin_unlock_irq(&conf->device_lock);
5366 /* allow reshape to continue */
5367 wake_up(&conf->wait_for_overlap);
5368 break;
5369
5370 case 0: /* re-enable writes */
5371 spin_lock_irq(&conf->device_lock);
5372 conf->quiesce = 0;
5373 wake_up(&conf->wait_for_stripe);
5374 wake_up(&conf->wait_for_overlap);
5375 spin_unlock_irq(&conf->device_lock);
5376 break;
5377 }
5378 }
5379
5380
5381 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5382 {
5383 struct raid0_private_data *raid0_priv = mddev->private;
5384 sector_t sectors;
5385
5386 /* for raid0 takeover only one zone is supported */
5387 if (raid0_priv->nr_strip_zones > 1) {
5388 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5389 mdname(mddev));
5390 return ERR_PTR(-EINVAL);
5391 }
5392
5393 sectors = raid0_priv->strip_zone[0].zone_end;
5394 sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5395 mddev->dev_sectors = sectors;
5396 mddev->new_level = level;
5397 mddev->new_layout = ALGORITHM_PARITY_N;
5398 mddev->new_chunk_sectors = mddev->chunk_sectors;
5399 mddev->raid_disks += 1;
5400 mddev->delta_disks = 1;
5401 /* make sure it will be not marked as dirty */
5402 mddev->recovery_cp = MaxSector;
5403
5404 return setup_conf(mddev);
5405 }
5406
5407
5408 static void *raid5_takeover_raid1(mddev_t *mddev)
5409 {
5410 int chunksect;
5411
5412 if (mddev->raid_disks != 2 ||
5413 mddev->degraded > 1)
5414 return ERR_PTR(-EINVAL);
5415
5416 /* Should check if there are write-behind devices? */
5417
5418 chunksect = 64*2; /* 64K by default */
5419
5420 /* The array must be an exact multiple of chunksize */
5421 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5422 chunksect >>= 1;
5423
5424 if ((chunksect<<9) < STRIPE_SIZE)
5425 /* array size does not allow a suitable chunk size */
5426 return ERR_PTR(-EINVAL);
5427
5428 mddev->new_level = 5;
5429 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5430 mddev->new_chunk_sectors = chunksect;
5431
5432 return setup_conf(mddev);
5433 }
5434
5435 static void *raid5_takeover_raid6(mddev_t *mddev)
5436 {
5437 int new_layout;
5438
5439 switch (mddev->layout) {
5440 case ALGORITHM_LEFT_ASYMMETRIC_6:
5441 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5442 break;
5443 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5444 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5445 break;
5446 case ALGORITHM_LEFT_SYMMETRIC_6:
5447 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5448 break;
5449 case ALGORITHM_RIGHT_SYMMETRIC_6:
5450 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5451 break;
5452 case ALGORITHM_PARITY_0_6:
5453 new_layout = ALGORITHM_PARITY_0;
5454 break;
5455 case ALGORITHM_PARITY_N:
5456 new_layout = ALGORITHM_PARITY_N;
5457 break;
5458 default:
5459 return ERR_PTR(-EINVAL);
5460 }
5461 mddev->new_level = 5;
5462 mddev->new_layout = new_layout;
5463 mddev->delta_disks = -1;
5464 mddev->raid_disks -= 1;
5465 return setup_conf(mddev);
5466 }
5467
5468
5469 static int raid5_check_reshape(mddev_t *mddev)
5470 {
5471 /* For a 2-drive array, the layout and chunk size can be changed
5472 * immediately as not restriping is needed.
5473 * For larger arrays we record the new value - after validation
5474 * to be used by a reshape pass.
5475 */
5476 raid5_conf_t *conf = mddev->private;
5477 int new_chunk = mddev->new_chunk_sectors;
5478
5479 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5480 return -EINVAL;
5481 if (new_chunk > 0) {
5482 if (!is_power_of_2(new_chunk))
5483 return -EINVAL;
5484 if (new_chunk < (PAGE_SIZE>>9))
5485 return -EINVAL;
5486 if (mddev->array_sectors & (new_chunk-1))
5487 /* not factor of array size */
5488 return -EINVAL;
5489 }
5490
5491 /* They look valid */
5492
5493 if (mddev->raid_disks == 2) {
5494 /* can make the change immediately */
5495 if (mddev->new_layout >= 0) {
5496 conf->algorithm = mddev->new_layout;
5497 mddev->layout = mddev->new_layout;
5498 }
5499 if (new_chunk > 0) {
5500 conf->chunk_sectors = new_chunk ;
5501 mddev->chunk_sectors = new_chunk;
5502 }
5503 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5504 md_wakeup_thread(mddev->thread);
5505 }
5506 return check_reshape(mddev);
5507 }
5508
5509 static int raid6_check_reshape(mddev_t *mddev)
5510 {
5511 int new_chunk = mddev->new_chunk_sectors;
5512
5513 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5514 return -EINVAL;
5515 if (new_chunk > 0) {
5516 if (!is_power_of_2(new_chunk))
5517 return -EINVAL;
5518 if (new_chunk < (PAGE_SIZE >> 9))
5519 return -EINVAL;
5520 if (mddev->array_sectors & (new_chunk-1))
5521 /* not factor of array size */
5522 return -EINVAL;
5523 }
5524
5525 /* They look valid */
5526 return check_reshape(mddev);
5527 }
5528
5529 static void *raid5_takeover(mddev_t *mddev)
5530 {
5531 /* raid5 can take over:
5532 * raid0 - if there is only one strip zone - make it a raid4 layout
5533 * raid1 - if there are two drives. We need to know the chunk size
5534 * raid4 - trivial - just use a raid4 layout.
5535 * raid6 - Providing it is a *_6 layout
5536 */
5537 if (mddev->level == 0)
5538 return raid45_takeover_raid0(mddev, 5);
5539 if (mddev->level == 1)
5540 return raid5_takeover_raid1(mddev);
5541 if (mddev->level == 4) {
5542 mddev->new_layout = ALGORITHM_PARITY_N;
5543 mddev->new_level = 5;
5544 return setup_conf(mddev);
5545 }
5546 if (mddev->level == 6)
5547 return raid5_takeover_raid6(mddev);
5548
5549 return ERR_PTR(-EINVAL);
5550 }
5551
5552 static void *raid4_takeover(mddev_t *mddev)
5553 {
5554 /* raid4 can take over:
5555 * raid0 - if there is only one strip zone
5556 * raid5 - if layout is right
5557 */
5558 if (mddev->level == 0)
5559 return raid45_takeover_raid0(mddev, 4);
5560 if (mddev->level == 5 &&
5561 mddev->layout == ALGORITHM_PARITY_N) {
5562 mddev->new_layout = 0;
5563 mddev->new_level = 4;
5564 return setup_conf(mddev);
5565 }
5566 return ERR_PTR(-EINVAL);
5567 }
5568
5569 static struct mdk_personality raid5_personality;
5570
5571 static void *raid6_takeover(mddev_t *mddev)
5572 {
5573 /* Currently can only take over a raid5. We map the
5574 * personality to an equivalent raid6 personality
5575 * with the Q block at the end.
5576 */
5577 int new_layout;
5578
5579 if (mddev->pers != &raid5_personality)
5580 return ERR_PTR(-EINVAL);
5581 if (mddev->degraded > 1)
5582 return ERR_PTR(-EINVAL);
5583 if (mddev->raid_disks > 253)
5584 return ERR_PTR(-EINVAL);
5585 if (mddev->raid_disks < 3)
5586 return ERR_PTR(-EINVAL);
5587
5588 switch (mddev->layout) {
5589 case ALGORITHM_LEFT_ASYMMETRIC:
5590 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5591 break;
5592 case ALGORITHM_RIGHT_ASYMMETRIC:
5593 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5594 break;
5595 case ALGORITHM_LEFT_SYMMETRIC:
5596 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5597 break;
5598 case ALGORITHM_RIGHT_SYMMETRIC:
5599 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5600 break;
5601 case ALGORITHM_PARITY_0:
5602 new_layout = ALGORITHM_PARITY_0_6;
5603 break;
5604 case ALGORITHM_PARITY_N:
5605 new_layout = ALGORITHM_PARITY_N;
5606 break;
5607 default:
5608 return ERR_PTR(-EINVAL);
5609 }
5610 mddev->new_level = 6;
5611 mddev->new_layout = new_layout;
5612 mddev->delta_disks = 1;
5613 mddev->raid_disks += 1;
5614 return setup_conf(mddev);
5615 }
5616
5617
5618 static struct mdk_personality raid6_personality =
5619 {
5620 .name = "raid6",
5621 .level = 6,
5622 .owner = THIS_MODULE,
5623 .make_request = make_request,
5624 .run = run,
5625 .stop = stop,
5626 .status = status,
5627 .error_handler = error,
5628 .hot_add_disk = raid5_add_disk,
5629 .hot_remove_disk= raid5_remove_disk,
5630 .spare_active = raid5_spare_active,
5631 .sync_request = sync_request,
5632 .resize = raid5_resize,
5633 .size = raid5_size,
5634 .check_reshape = raid6_check_reshape,
5635 .start_reshape = raid5_start_reshape,
5636 .finish_reshape = raid5_finish_reshape,
5637 .quiesce = raid5_quiesce,
5638 .takeover = raid6_takeover,
5639 };
5640 static struct mdk_personality raid5_personality =
5641 {
5642 .name = "raid5",
5643 .level = 5,
5644 .owner = THIS_MODULE,
5645 .make_request = make_request,
5646 .run = run,
5647 .stop = stop,
5648 .status = status,
5649 .error_handler = error,
5650 .hot_add_disk = raid5_add_disk,
5651 .hot_remove_disk= raid5_remove_disk,
5652 .spare_active = raid5_spare_active,
5653 .sync_request = sync_request,
5654 .resize = raid5_resize,
5655 .size = raid5_size,
5656 .check_reshape = raid5_check_reshape,
5657 .start_reshape = raid5_start_reshape,
5658 .finish_reshape = raid5_finish_reshape,
5659 .quiesce = raid5_quiesce,
5660 .takeover = raid5_takeover,
5661 };
5662
5663 static struct mdk_personality raid4_personality =
5664 {
5665 .name = "raid4",
5666 .level = 4,
5667 .owner = THIS_MODULE,
5668 .make_request = make_request,
5669 .run = run,
5670 .stop = stop,
5671 .status = status,
5672 .error_handler = error,
5673 .hot_add_disk = raid5_add_disk,
5674 .hot_remove_disk= raid5_remove_disk,
5675 .spare_active = raid5_spare_active,
5676 .sync_request = sync_request,
5677 .resize = raid5_resize,
5678 .size = raid5_size,
5679 .check_reshape = raid5_check_reshape,
5680 .start_reshape = raid5_start_reshape,
5681 .finish_reshape = raid5_finish_reshape,
5682 .quiesce = raid5_quiesce,
5683 .takeover = raid4_takeover,
5684 };
5685
5686 static int __init raid5_init(void)
5687 {
5688 register_md_personality(&raid6_personality);
5689 register_md_personality(&raid5_personality);
5690 register_md_personality(&raid4_personality);
5691 return 0;
5692 }
5693
5694 static void raid5_exit(void)
5695 {
5696 unregister_md_personality(&raid6_personality);
5697 unregister_md_personality(&raid5_personality);
5698 unregister_md_personality(&raid4_personality);
5699 }
5700
5701 module_init(raid5_init);
5702 module_exit(raid5_exit);
5703 MODULE_LICENSE("GPL");
5704 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5705 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5706 MODULE_ALIAS("md-raid5");
5707 MODULE_ALIAS("md-raid4");
5708 MODULE_ALIAS("md-level-5");
5709 MODULE_ALIAS("md-level-4");
5710 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5711 MODULE_ALIAS("md-raid6");
5712 MODULE_ALIAS("md-level-6");
5713
5714 /* This used to be two separate modules, they were: */
5715 MODULE_ALIAS("raid5");
5716 MODULE_ALIAS("raid6");