]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/md/raid5.c
md/raid5: move more common code into handle_stripe
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58
59 /*
60 * Stripe cache
61 */
62
63 #define NR_STRIPES 256
64 #define STRIPE_SIZE PAGE_SIZE
65 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD 1
68 #define BYPASS_THRESHOLD 1
69 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK (NR_HASH - 1)
71
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
79 * be valid.
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
82 */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85 * The following can be used to debug the driver
86 */
87 #define RAID5_PARANOIA 1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
101 /*
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107 return bio->bi_phys_segments & 0xffff;
108 }
109
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112 return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117 --bio->bi_phys_segments;
118 return raid5_bi_phys_segments(bio);
119 }
120
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123 unsigned short val = raid5_bi_hw_segments(bio);
124
125 --val;
126 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 return val;
128 }
129
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
133 }
134
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138 if (sh->ddf_layout)
139 /* ddf always start from first device */
140 return 0;
141 /* md starts just after Q block */
142 if (sh->qd_idx == sh->disks - 1)
143 return 0;
144 else
145 return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149 disk++;
150 return (disk < raid_disks) ? disk : 0;
151 }
152
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
157 */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 int *count, int syndrome_disks)
160 {
161 int slot = *count;
162
163 if (sh->ddf_layout)
164 (*count)++;
165 if (idx == sh->pd_idx)
166 return syndrome_disks;
167 if (idx == sh->qd_idx)
168 return syndrome_disks + 1;
169 if (!sh->ddf_layout)
170 (*count)++;
171 return slot;
172 }
173
174 static void return_io(struct bio *return_bi)
175 {
176 struct bio *bi = return_bi;
177 while (bi) {
178
179 return_bi = bi->bi_next;
180 bi->bi_next = NULL;
181 bi->bi_size = 0;
182 bio_endio(bi, 0);
183 bi = return_bi;
184 }
185 }
186
187 static void print_raid5_conf (raid5_conf_t *conf);
188
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191 return sh->check_state || sh->reconstruct_state ||
192 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198 if (atomic_dec_and_test(&sh->count)) {
199 BUG_ON(!list_empty(&sh->lru));
200 BUG_ON(atomic_read(&conf->active_stripes)==0);
201 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202 if (test_bit(STRIPE_DELAYED, &sh->state))
203 list_add_tail(&sh->lru, &conf->delayed_list);
204 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205 sh->bm_seq - conf->seq_write > 0)
206 list_add_tail(&sh->lru, &conf->bitmap_list);
207 else {
208 clear_bit(STRIPE_BIT_DELAY, &sh->state);
209 list_add_tail(&sh->lru, &conf->handle_list);
210 }
211 md_wakeup_thread(conf->mddev->thread);
212 } else {
213 BUG_ON(stripe_operations_active(sh));
214 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215 atomic_dec(&conf->preread_active_stripes);
216 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217 md_wakeup_thread(conf->mddev->thread);
218 }
219 atomic_dec(&conf->active_stripes);
220 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221 list_add_tail(&sh->lru, &conf->inactive_list);
222 wake_up(&conf->wait_for_stripe);
223 if (conf->retry_read_aligned)
224 md_wakeup_thread(conf->mddev->thread);
225 }
226 }
227 }
228 }
229
230 static void release_stripe(struct stripe_head *sh)
231 {
232 raid5_conf_t *conf = sh->raid_conf;
233 unsigned long flags;
234
235 spin_lock_irqsave(&conf->device_lock, flags);
236 __release_stripe(conf, sh);
237 spin_unlock_irqrestore(&conf->device_lock, flags);
238 }
239
240 static inline void remove_hash(struct stripe_head *sh)
241 {
242 pr_debug("remove_hash(), stripe %llu\n",
243 (unsigned long long)sh->sector);
244
245 hlist_del_init(&sh->hash);
246 }
247
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
249 {
250 struct hlist_head *hp = stripe_hash(conf, sh->sector);
251
252 pr_debug("insert_hash(), stripe %llu\n",
253 (unsigned long long)sh->sector);
254
255 CHECK_DEVLOCK();
256 hlist_add_head(&sh->hash, hp);
257 }
258
259
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262 {
263 struct stripe_head *sh = NULL;
264 struct list_head *first;
265
266 CHECK_DEVLOCK();
267 if (list_empty(&conf->inactive_list))
268 goto out;
269 first = conf->inactive_list.next;
270 sh = list_entry(first, struct stripe_head, lru);
271 list_del_init(first);
272 remove_hash(sh);
273 atomic_inc(&conf->active_stripes);
274 out:
275 return sh;
276 }
277
278 static void shrink_buffers(struct stripe_head *sh)
279 {
280 struct page *p;
281 int i;
282 int num = sh->raid_conf->pool_size;
283
284 for (i = 0; i < num ; i++) {
285 p = sh->dev[i].page;
286 if (!p)
287 continue;
288 sh->dev[i].page = NULL;
289 put_page(p);
290 }
291 }
292
293 static int grow_buffers(struct stripe_head *sh)
294 {
295 int i;
296 int num = sh->raid_conf->pool_size;
297
298 for (i = 0; i < num; i++) {
299 struct page *page;
300
301 if (!(page = alloc_page(GFP_KERNEL))) {
302 return 1;
303 }
304 sh->dev[i].page = page;
305 }
306 return 0;
307 }
308
309 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311 struct stripe_head *sh);
312
313 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
314 {
315 raid5_conf_t *conf = sh->raid_conf;
316 int i;
317
318 BUG_ON(atomic_read(&sh->count) != 0);
319 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320 BUG_ON(stripe_operations_active(sh));
321
322 CHECK_DEVLOCK();
323 pr_debug("init_stripe called, stripe %llu\n",
324 (unsigned long long)sh->sector);
325
326 remove_hash(sh);
327
328 sh->generation = conf->generation - previous;
329 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
330 sh->sector = sector;
331 stripe_set_idx(sector, conf, previous, sh);
332 sh->state = 0;
333
334
335 for (i = sh->disks; i--; ) {
336 struct r5dev *dev = &sh->dev[i];
337
338 if (dev->toread || dev->read || dev->towrite || dev->written ||
339 test_bit(R5_LOCKED, &dev->flags)) {
340 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
341 (unsigned long long)sh->sector, i, dev->toread,
342 dev->read, dev->towrite, dev->written,
343 test_bit(R5_LOCKED, &dev->flags));
344 BUG();
345 }
346 dev->flags = 0;
347 raid5_build_block(sh, i, previous);
348 }
349 insert_hash(conf, sh);
350 }
351
352 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353 short generation)
354 {
355 struct stripe_head *sh;
356 struct hlist_node *hn;
357
358 CHECK_DEVLOCK();
359 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361 if (sh->sector == sector && sh->generation == generation)
362 return sh;
363 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
364 return NULL;
365 }
366
367 /*
368 * Need to check if array has failed when deciding whether to:
369 * - start an array
370 * - remove non-faulty devices
371 * - add a spare
372 * - allow a reshape
373 * This determination is simple when no reshape is happening.
374 * However if there is a reshape, we need to carefully check
375 * both the before and after sections.
376 * This is because some failed devices may only affect one
377 * of the two sections, and some non-in_sync devices may
378 * be insync in the section most affected by failed devices.
379 */
380 static int has_failed(raid5_conf_t *conf)
381 {
382 int degraded;
383 int i;
384 if (conf->mddev->reshape_position == MaxSector)
385 return conf->mddev->degraded > conf->max_degraded;
386
387 rcu_read_lock();
388 degraded = 0;
389 for (i = 0; i < conf->previous_raid_disks; i++) {
390 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
391 if (!rdev || test_bit(Faulty, &rdev->flags))
392 degraded++;
393 else if (test_bit(In_sync, &rdev->flags))
394 ;
395 else
396 /* not in-sync or faulty.
397 * If the reshape increases the number of devices,
398 * this is being recovered by the reshape, so
399 * this 'previous' section is not in_sync.
400 * If the number of devices is being reduced however,
401 * the device can only be part of the array if
402 * we are reverting a reshape, so this section will
403 * be in-sync.
404 */
405 if (conf->raid_disks >= conf->previous_raid_disks)
406 degraded++;
407 }
408 rcu_read_unlock();
409 if (degraded > conf->max_degraded)
410 return 1;
411 rcu_read_lock();
412 degraded = 0;
413 for (i = 0; i < conf->raid_disks; i++) {
414 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
415 if (!rdev || test_bit(Faulty, &rdev->flags))
416 degraded++;
417 else if (test_bit(In_sync, &rdev->flags))
418 ;
419 else
420 /* not in-sync or faulty.
421 * If reshape increases the number of devices, this
422 * section has already been recovered, else it
423 * almost certainly hasn't.
424 */
425 if (conf->raid_disks <= conf->previous_raid_disks)
426 degraded++;
427 }
428 rcu_read_unlock();
429 if (degraded > conf->max_degraded)
430 return 1;
431 return 0;
432 }
433
434 static struct stripe_head *
435 get_active_stripe(raid5_conf_t *conf, sector_t sector,
436 int previous, int noblock, int noquiesce)
437 {
438 struct stripe_head *sh;
439
440 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
441
442 spin_lock_irq(&conf->device_lock);
443
444 do {
445 wait_event_lock_irq(conf->wait_for_stripe,
446 conf->quiesce == 0 || noquiesce,
447 conf->device_lock, /* nothing */);
448 sh = __find_stripe(conf, sector, conf->generation - previous);
449 if (!sh) {
450 if (!conf->inactive_blocked)
451 sh = get_free_stripe(conf);
452 if (noblock && sh == NULL)
453 break;
454 if (!sh) {
455 conf->inactive_blocked = 1;
456 wait_event_lock_irq(conf->wait_for_stripe,
457 !list_empty(&conf->inactive_list) &&
458 (atomic_read(&conf->active_stripes)
459 < (conf->max_nr_stripes *3/4)
460 || !conf->inactive_blocked),
461 conf->device_lock,
462 );
463 conf->inactive_blocked = 0;
464 } else
465 init_stripe(sh, sector, previous);
466 } else {
467 if (atomic_read(&sh->count)) {
468 BUG_ON(!list_empty(&sh->lru)
469 && !test_bit(STRIPE_EXPANDING, &sh->state));
470 } else {
471 if (!test_bit(STRIPE_HANDLE, &sh->state))
472 atomic_inc(&conf->active_stripes);
473 if (list_empty(&sh->lru) &&
474 !test_bit(STRIPE_EXPANDING, &sh->state))
475 BUG();
476 list_del_init(&sh->lru);
477 }
478 }
479 } while (sh == NULL);
480
481 if (sh)
482 atomic_inc(&sh->count);
483
484 spin_unlock_irq(&conf->device_lock);
485 return sh;
486 }
487
488 static void
489 raid5_end_read_request(struct bio *bi, int error);
490 static void
491 raid5_end_write_request(struct bio *bi, int error);
492
493 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 {
495 raid5_conf_t *conf = sh->raid_conf;
496 int i, disks = sh->disks;
497
498 might_sleep();
499
500 for (i = disks; i--; ) {
501 int rw;
502 struct bio *bi;
503 mdk_rdev_t *rdev;
504 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
505 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
506 rw = WRITE_FUA;
507 else
508 rw = WRITE;
509 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510 rw = READ;
511 else
512 continue;
513
514 bi = &sh->dev[i].req;
515
516 bi->bi_rw = rw;
517 if (rw & WRITE)
518 bi->bi_end_io = raid5_end_write_request;
519 else
520 bi->bi_end_io = raid5_end_read_request;
521
522 rcu_read_lock();
523 rdev = rcu_dereference(conf->disks[i].rdev);
524 if (rdev && test_bit(Faulty, &rdev->flags))
525 rdev = NULL;
526 if (rdev)
527 atomic_inc(&rdev->nr_pending);
528 rcu_read_unlock();
529
530 if (rdev) {
531 if (s->syncing || s->expanding || s->expanded)
532 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
533
534 set_bit(STRIPE_IO_STARTED, &sh->state);
535
536 bi->bi_bdev = rdev->bdev;
537 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538 __func__, (unsigned long long)sh->sector,
539 bi->bi_rw, i);
540 atomic_inc(&sh->count);
541 bi->bi_sector = sh->sector + rdev->data_offset;
542 bi->bi_flags = 1 << BIO_UPTODATE;
543 bi->bi_vcnt = 1;
544 bi->bi_max_vecs = 1;
545 bi->bi_idx = 0;
546 bi->bi_io_vec = &sh->dev[i].vec;
547 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
548 bi->bi_io_vec[0].bv_offset = 0;
549 bi->bi_size = STRIPE_SIZE;
550 bi->bi_next = NULL;
551 if ((rw & WRITE) &&
552 test_bit(R5_ReWrite, &sh->dev[i].flags))
553 atomic_add(STRIPE_SECTORS,
554 &rdev->corrected_errors);
555 generic_make_request(bi);
556 } else {
557 if (rw & WRITE)
558 set_bit(STRIPE_DEGRADED, &sh->state);
559 pr_debug("skip op %ld on disc %d for sector %llu\n",
560 bi->bi_rw, i, (unsigned long long)sh->sector);
561 clear_bit(R5_LOCKED, &sh->dev[i].flags);
562 set_bit(STRIPE_HANDLE, &sh->state);
563 }
564 }
565 }
566
567 static struct dma_async_tx_descriptor *
568 async_copy_data(int frombio, struct bio *bio, struct page *page,
569 sector_t sector, struct dma_async_tx_descriptor *tx)
570 {
571 struct bio_vec *bvl;
572 struct page *bio_page;
573 int i;
574 int page_offset;
575 struct async_submit_ctl submit;
576 enum async_tx_flags flags = 0;
577
578 if (bio->bi_sector >= sector)
579 page_offset = (signed)(bio->bi_sector - sector) * 512;
580 else
581 page_offset = (signed)(sector - bio->bi_sector) * -512;
582
583 if (frombio)
584 flags |= ASYNC_TX_FENCE;
585 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
586
587 bio_for_each_segment(bvl, bio, i) {
588 int len = bvl->bv_len;
589 int clen;
590 int b_offset = 0;
591
592 if (page_offset < 0) {
593 b_offset = -page_offset;
594 page_offset += b_offset;
595 len -= b_offset;
596 }
597
598 if (len > 0 && page_offset + len > STRIPE_SIZE)
599 clen = STRIPE_SIZE - page_offset;
600 else
601 clen = len;
602
603 if (clen > 0) {
604 b_offset += bvl->bv_offset;
605 bio_page = bvl->bv_page;
606 if (frombio)
607 tx = async_memcpy(page, bio_page, page_offset,
608 b_offset, clen, &submit);
609 else
610 tx = async_memcpy(bio_page, page, b_offset,
611 page_offset, clen, &submit);
612 }
613 /* chain the operations */
614 submit.depend_tx = tx;
615
616 if (clen < len) /* hit end of page */
617 break;
618 page_offset += len;
619 }
620
621 return tx;
622 }
623
624 static void ops_complete_biofill(void *stripe_head_ref)
625 {
626 struct stripe_head *sh = stripe_head_ref;
627 struct bio *return_bi = NULL;
628 raid5_conf_t *conf = sh->raid_conf;
629 int i;
630
631 pr_debug("%s: stripe %llu\n", __func__,
632 (unsigned long long)sh->sector);
633
634 /* clear completed biofills */
635 spin_lock_irq(&conf->device_lock);
636 for (i = sh->disks; i--; ) {
637 struct r5dev *dev = &sh->dev[i];
638
639 /* acknowledge completion of a biofill operation */
640 /* and check if we need to reply to a read request,
641 * new R5_Wantfill requests are held off until
642 * !STRIPE_BIOFILL_RUN
643 */
644 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645 struct bio *rbi, *rbi2;
646
647 BUG_ON(!dev->read);
648 rbi = dev->read;
649 dev->read = NULL;
650 while (rbi && rbi->bi_sector <
651 dev->sector + STRIPE_SECTORS) {
652 rbi2 = r5_next_bio(rbi, dev->sector);
653 if (!raid5_dec_bi_phys_segments(rbi)) {
654 rbi->bi_next = return_bi;
655 return_bi = rbi;
656 }
657 rbi = rbi2;
658 }
659 }
660 }
661 spin_unlock_irq(&conf->device_lock);
662 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
663
664 return_io(return_bi);
665
666 set_bit(STRIPE_HANDLE, &sh->state);
667 release_stripe(sh);
668 }
669
670 static void ops_run_biofill(struct stripe_head *sh)
671 {
672 struct dma_async_tx_descriptor *tx = NULL;
673 raid5_conf_t *conf = sh->raid_conf;
674 struct async_submit_ctl submit;
675 int i;
676
677 pr_debug("%s: stripe %llu\n", __func__,
678 (unsigned long long)sh->sector);
679
680 for (i = sh->disks; i--; ) {
681 struct r5dev *dev = &sh->dev[i];
682 if (test_bit(R5_Wantfill, &dev->flags)) {
683 struct bio *rbi;
684 spin_lock_irq(&conf->device_lock);
685 dev->read = rbi = dev->toread;
686 dev->toread = NULL;
687 spin_unlock_irq(&conf->device_lock);
688 while (rbi && rbi->bi_sector <
689 dev->sector + STRIPE_SECTORS) {
690 tx = async_copy_data(0, rbi, dev->page,
691 dev->sector, tx);
692 rbi = r5_next_bio(rbi, dev->sector);
693 }
694 }
695 }
696
697 atomic_inc(&sh->count);
698 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
699 async_trigger_callback(&submit);
700 }
701
702 static void mark_target_uptodate(struct stripe_head *sh, int target)
703 {
704 struct r5dev *tgt;
705
706 if (target < 0)
707 return;
708
709 tgt = &sh->dev[target];
710 set_bit(R5_UPTODATE, &tgt->flags);
711 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
712 clear_bit(R5_Wantcompute, &tgt->flags);
713 }
714
715 static void ops_complete_compute(void *stripe_head_ref)
716 {
717 struct stripe_head *sh = stripe_head_ref;
718
719 pr_debug("%s: stripe %llu\n", __func__,
720 (unsigned long long)sh->sector);
721
722 /* mark the computed target(s) as uptodate */
723 mark_target_uptodate(sh, sh->ops.target);
724 mark_target_uptodate(sh, sh->ops.target2);
725
726 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
727 if (sh->check_state == check_state_compute_run)
728 sh->check_state = check_state_compute_result;
729 set_bit(STRIPE_HANDLE, &sh->state);
730 release_stripe(sh);
731 }
732
733 /* return a pointer to the address conversion region of the scribble buffer */
734 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
735 struct raid5_percpu *percpu)
736 {
737 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
738 }
739
740 static struct dma_async_tx_descriptor *
741 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
742 {
743 int disks = sh->disks;
744 struct page **xor_srcs = percpu->scribble;
745 int target = sh->ops.target;
746 struct r5dev *tgt = &sh->dev[target];
747 struct page *xor_dest = tgt->page;
748 int count = 0;
749 struct dma_async_tx_descriptor *tx;
750 struct async_submit_ctl submit;
751 int i;
752
753 pr_debug("%s: stripe %llu block: %d\n",
754 __func__, (unsigned long long)sh->sector, target);
755 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
756
757 for (i = disks; i--; )
758 if (i != target)
759 xor_srcs[count++] = sh->dev[i].page;
760
761 atomic_inc(&sh->count);
762
763 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764 ops_complete_compute, sh, to_addr_conv(sh, percpu));
765 if (unlikely(count == 1))
766 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767 else
768 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
769
770 return tx;
771 }
772
773 /* set_syndrome_sources - populate source buffers for gen_syndrome
774 * @srcs - (struct page *) array of size sh->disks
775 * @sh - stripe_head to parse
776 *
777 * Populates srcs in proper layout order for the stripe and returns the
778 * 'count' of sources to be used in a call to async_gen_syndrome. The P
779 * destination buffer is recorded in srcs[count] and the Q destination
780 * is recorded in srcs[count+1]].
781 */
782 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
783 {
784 int disks = sh->disks;
785 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
786 int d0_idx = raid6_d0(sh);
787 int count;
788 int i;
789
790 for (i = 0; i < disks; i++)
791 srcs[i] = NULL;
792
793 count = 0;
794 i = d0_idx;
795 do {
796 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
797
798 srcs[slot] = sh->dev[i].page;
799 i = raid6_next_disk(i, disks);
800 } while (i != d0_idx);
801
802 return syndrome_disks;
803 }
804
805 static struct dma_async_tx_descriptor *
806 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
807 {
808 int disks = sh->disks;
809 struct page **blocks = percpu->scribble;
810 int target;
811 int qd_idx = sh->qd_idx;
812 struct dma_async_tx_descriptor *tx;
813 struct async_submit_ctl submit;
814 struct r5dev *tgt;
815 struct page *dest;
816 int i;
817 int count;
818
819 if (sh->ops.target < 0)
820 target = sh->ops.target2;
821 else if (sh->ops.target2 < 0)
822 target = sh->ops.target;
823 else
824 /* we should only have one valid target */
825 BUG();
826 BUG_ON(target < 0);
827 pr_debug("%s: stripe %llu block: %d\n",
828 __func__, (unsigned long long)sh->sector, target);
829
830 tgt = &sh->dev[target];
831 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
832 dest = tgt->page;
833
834 atomic_inc(&sh->count);
835
836 if (target == qd_idx) {
837 count = set_syndrome_sources(blocks, sh);
838 blocks[count] = NULL; /* regenerating p is not necessary */
839 BUG_ON(blocks[count+1] != dest); /* q should already be set */
840 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
841 ops_complete_compute, sh,
842 to_addr_conv(sh, percpu));
843 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
844 } else {
845 /* Compute any data- or p-drive using XOR */
846 count = 0;
847 for (i = disks; i-- ; ) {
848 if (i == target || i == qd_idx)
849 continue;
850 blocks[count++] = sh->dev[i].page;
851 }
852
853 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
854 NULL, ops_complete_compute, sh,
855 to_addr_conv(sh, percpu));
856 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
857 }
858
859 return tx;
860 }
861
862 static struct dma_async_tx_descriptor *
863 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
864 {
865 int i, count, disks = sh->disks;
866 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
867 int d0_idx = raid6_d0(sh);
868 int faila = -1, failb = -1;
869 int target = sh->ops.target;
870 int target2 = sh->ops.target2;
871 struct r5dev *tgt = &sh->dev[target];
872 struct r5dev *tgt2 = &sh->dev[target2];
873 struct dma_async_tx_descriptor *tx;
874 struct page **blocks = percpu->scribble;
875 struct async_submit_ctl submit;
876
877 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
878 __func__, (unsigned long long)sh->sector, target, target2);
879 BUG_ON(target < 0 || target2 < 0);
880 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
881 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
882
883 /* we need to open-code set_syndrome_sources to handle the
884 * slot number conversion for 'faila' and 'failb'
885 */
886 for (i = 0; i < disks ; i++)
887 blocks[i] = NULL;
888 count = 0;
889 i = d0_idx;
890 do {
891 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
892
893 blocks[slot] = sh->dev[i].page;
894
895 if (i == target)
896 faila = slot;
897 if (i == target2)
898 failb = slot;
899 i = raid6_next_disk(i, disks);
900 } while (i != d0_idx);
901
902 BUG_ON(faila == failb);
903 if (failb < faila)
904 swap(faila, failb);
905 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
906 __func__, (unsigned long long)sh->sector, faila, failb);
907
908 atomic_inc(&sh->count);
909
910 if (failb == syndrome_disks+1) {
911 /* Q disk is one of the missing disks */
912 if (faila == syndrome_disks) {
913 /* Missing P+Q, just recompute */
914 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
915 ops_complete_compute, sh,
916 to_addr_conv(sh, percpu));
917 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918 STRIPE_SIZE, &submit);
919 } else {
920 struct page *dest;
921 int data_target;
922 int qd_idx = sh->qd_idx;
923
924 /* Missing D+Q: recompute D from P, then recompute Q */
925 if (target == qd_idx)
926 data_target = target2;
927 else
928 data_target = target;
929
930 count = 0;
931 for (i = disks; i-- ; ) {
932 if (i == data_target || i == qd_idx)
933 continue;
934 blocks[count++] = sh->dev[i].page;
935 }
936 dest = sh->dev[data_target].page;
937 init_async_submit(&submit,
938 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
939 NULL, NULL, NULL,
940 to_addr_conv(sh, percpu));
941 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
942 &submit);
943
944 count = set_syndrome_sources(blocks, sh);
945 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
946 ops_complete_compute, sh,
947 to_addr_conv(sh, percpu));
948 return async_gen_syndrome(blocks, 0, count+2,
949 STRIPE_SIZE, &submit);
950 }
951 } else {
952 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
953 ops_complete_compute, sh,
954 to_addr_conv(sh, percpu));
955 if (failb == syndrome_disks) {
956 /* We're missing D+P. */
957 return async_raid6_datap_recov(syndrome_disks+2,
958 STRIPE_SIZE, faila,
959 blocks, &submit);
960 } else {
961 /* We're missing D+D. */
962 return async_raid6_2data_recov(syndrome_disks+2,
963 STRIPE_SIZE, faila, failb,
964 blocks, &submit);
965 }
966 }
967 }
968
969
970 static void ops_complete_prexor(void *stripe_head_ref)
971 {
972 struct stripe_head *sh = stripe_head_ref;
973
974 pr_debug("%s: stripe %llu\n", __func__,
975 (unsigned long long)sh->sector);
976 }
977
978 static struct dma_async_tx_descriptor *
979 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
980 struct dma_async_tx_descriptor *tx)
981 {
982 int disks = sh->disks;
983 struct page **xor_srcs = percpu->scribble;
984 int count = 0, pd_idx = sh->pd_idx, i;
985 struct async_submit_ctl submit;
986
987 /* existing parity data subtracted */
988 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
989
990 pr_debug("%s: stripe %llu\n", __func__,
991 (unsigned long long)sh->sector);
992
993 for (i = disks; i--; ) {
994 struct r5dev *dev = &sh->dev[i];
995 /* Only process blocks that are known to be uptodate */
996 if (test_bit(R5_Wantdrain, &dev->flags))
997 xor_srcs[count++] = dev->page;
998 }
999
1000 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1003
1004 return tx;
1005 }
1006
1007 static struct dma_async_tx_descriptor *
1008 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1009 {
1010 int disks = sh->disks;
1011 int i;
1012
1013 pr_debug("%s: stripe %llu\n", __func__,
1014 (unsigned long long)sh->sector);
1015
1016 for (i = disks; i--; ) {
1017 struct r5dev *dev = &sh->dev[i];
1018 struct bio *chosen;
1019
1020 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021 struct bio *wbi;
1022
1023 spin_lock_irq(&sh->raid_conf->device_lock);
1024 chosen = dev->towrite;
1025 dev->towrite = NULL;
1026 BUG_ON(dev->written);
1027 wbi = dev->written = chosen;
1028 spin_unlock_irq(&sh->raid_conf->device_lock);
1029
1030 while (wbi && wbi->bi_sector <
1031 dev->sector + STRIPE_SECTORS) {
1032 if (wbi->bi_rw & REQ_FUA)
1033 set_bit(R5_WantFUA, &dev->flags);
1034 tx = async_copy_data(1, wbi, dev->page,
1035 dev->sector, tx);
1036 wbi = r5_next_bio(wbi, dev->sector);
1037 }
1038 }
1039 }
1040
1041 return tx;
1042 }
1043
1044 static void ops_complete_reconstruct(void *stripe_head_ref)
1045 {
1046 struct stripe_head *sh = stripe_head_ref;
1047 int disks = sh->disks;
1048 int pd_idx = sh->pd_idx;
1049 int qd_idx = sh->qd_idx;
1050 int i;
1051 bool fua = false;
1052
1053 pr_debug("%s: stripe %llu\n", __func__,
1054 (unsigned long long)sh->sector);
1055
1056 for (i = disks; i--; )
1057 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1058
1059 for (i = disks; i--; ) {
1060 struct r5dev *dev = &sh->dev[i];
1061
1062 if (dev->written || i == pd_idx || i == qd_idx) {
1063 set_bit(R5_UPTODATE, &dev->flags);
1064 if (fua)
1065 set_bit(R5_WantFUA, &dev->flags);
1066 }
1067 }
1068
1069 if (sh->reconstruct_state == reconstruct_state_drain_run)
1070 sh->reconstruct_state = reconstruct_state_drain_result;
1071 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1072 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1073 else {
1074 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1075 sh->reconstruct_state = reconstruct_state_result;
1076 }
1077
1078 set_bit(STRIPE_HANDLE, &sh->state);
1079 release_stripe(sh);
1080 }
1081
1082 static void
1083 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1084 struct dma_async_tx_descriptor *tx)
1085 {
1086 int disks = sh->disks;
1087 struct page **xor_srcs = percpu->scribble;
1088 struct async_submit_ctl submit;
1089 int count = 0, pd_idx = sh->pd_idx, i;
1090 struct page *xor_dest;
1091 int prexor = 0;
1092 unsigned long flags;
1093
1094 pr_debug("%s: stripe %llu\n", __func__,
1095 (unsigned long long)sh->sector);
1096
1097 /* check if prexor is active which means only process blocks
1098 * that are part of a read-modify-write (written)
1099 */
1100 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1101 prexor = 1;
1102 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1103 for (i = disks; i--; ) {
1104 struct r5dev *dev = &sh->dev[i];
1105 if (dev->written)
1106 xor_srcs[count++] = dev->page;
1107 }
1108 } else {
1109 xor_dest = sh->dev[pd_idx].page;
1110 for (i = disks; i--; ) {
1111 struct r5dev *dev = &sh->dev[i];
1112 if (i != pd_idx)
1113 xor_srcs[count++] = dev->page;
1114 }
1115 }
1116
1117 /* 1/ if we prexor'd then the dest is reused as a source
1118 * 2/ if we did not prexor then we are redoing the parity
1119 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1120 * for the synchronous xor case
1121 */
1122 flags = ASYNC_TX_ACK |
1123 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1124
1125 atomic_inc(&sh->count);
1126
1127 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128 to_addr_conv(sh, percpu));
1129 if (unlikely(count == 1))
1130 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1131 else
1132 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1133 }
1134
1135 static void
1136 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1137 struct dma_async_tx_descriptor *tx)
1138 {
1139 struct async_submit_ctl submit;
1140 struct page **blocks = percpu->scribble;
1141 int count;
1142
1143 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1144
1145 count = set_syndrome_sources(blocks, sh);
1146
1147 atomic_inc(&sh->count);
1148
1149 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1150 sh, to_addr_conv(sh, percpu));
1151 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1152 }
1153
1154 static void ops_complete_check(void *stripe_head_ref)
1155 {
1156 struct stripe_head *sh = stripe_head_ref;
1157
1158 pr_debug("%s: stripe %llu\n", __func__,
1159 (unsigned long long)sh->sector);
1160
1161 sh->check_state = check_state_check_result;
1162 set_bit(STRIPE_HANDLE, &sh->state);
1163 release_stripe(sh);
1164 }
1165
1166 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1167 {
1168 int disks = sh->disks;
1169 int pd_idx = sh->pd_idx;
1170 int qd_idx = sh->qd_idx;
1171 struct page *xor_dest;
1172 struct page **xor_srcs = percpu->scribble;
1173 struct dma_async_tx_descriptor *tx;
1174 struct async_submit_ctl submit;
1175 int count;
1176 int i;
1177
1178 pr_debug("%s: stripe %llu\n", __func__,
1179 (unsigned long long)sh->sector);
1180
1181 count = 0;
1182 xor_dest = sh->dev[pd_idx].page;
1183 xor_srcs[count++] = xor_dest;
1184 for (i = disks; i--; ) {
1185 if (i == pd_idx || i == qd_idx)
1186 continue;
1187 xor_srcs[count++] = sh->dev[i].page;
1188 }
1189
1190 init_async_submit(&submit, 0, NULL, NULL, NULL,
1191 to_addr_conv(sh, percpu));
1192 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193 &sh->ops.zero_sum_result, &submit);
1194
1195 atomic_inc(&sh->count);
1196 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1197 tx = async_trigger_callback(&submit);
1198 }
1199
1200 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1201 {
1202 struct page **srcs = percpu->scribble;
1203 struct async_submit_ctl submit;
1204 int count;
1205
1206 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1207 (unsigned long long)sh->sector, checkp);
1208
1209 count = set_syndrome_sources(srcs, sh);
1210 if (!checkp)
1211 srcs[count] = NULL;
1212
1213 atomic_inc(&sh->count);
1214 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1215 sh, to_addr_conv(sh, percpu));
1216 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1217 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1218 }
1219
1220 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1221 {
1222 int overlap_clear = 0, i, disks = sh->disks;
1223 struct dma_async_tx_descriptor *tx = NULL;
1224 raid5_conf_t *conf = sh->raid_conf;
1225 int level = conf->level;
1226 struct raid5_percpu *percpu;
1227 unsigned long cpu;
1228
1229 cpu = get_cpu();
1230 percpu = per_cpu_ptr(conf->percpu, cpu);
1231 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232 ops_run_biofill(sh);
1233 overlap_clear++;
1234 }
1235
1236 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237 if (level < 6)
1238 tx = ops_run_compute5(sh, percpu);
1239 else {
1240 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1241 tx = ops_run_compute6_1(sh, percpu);
1242 else
1243 tx = ops_run_compute6_2(sh, percpu);
1244 }
1245 /* terminate the chain if reconstruct is not set to be run */
1246 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247 async_tx_ack(tx);
1248 }
1249
1250 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251 tx = ops_run_prexor(sh, percpu, tx);
1252
1253 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254 tx = ops_run_biodrain(sh, tx);
1255 overlap_clear++;
1256 }
1257
1258 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1259 if (level < 6)
1260 ops_run_reconstruct5(sh, percpu, tx);
1261 else
1262 ops_run_reconstruct6(sh, percpu, tx);
1263 }
1264
1265 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1266 if (sh->check_state == check_state_run)
1267 ops_run_check_p(sh, percpu);
1268 else if (sh->check_state == check_state_run_q)
1269 ops_run_check_pq(sh, percpu, 0);
1270 else if (sh->check_state == check_state_run_pq)
1271 ops_run_check_pq(sh, percpu, 1);
1272 else
1273 BUG();
1274 }
1275
1276 if (overlap_clear)
1277 for (i = disks; i--; ) {
1278 struct r5dev *dev = &sh->dev[i];
1279 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1280 wake_up(&sh->raid_conf->wait_for_overlap);
1281 }
1282 put_cpu();
1283 }
1284
1285 #ifdef CONFIG_MULTICORE_RAID456
1286 static void async_run_ops(void *param, async_cookie_t cookie)
1287 {
1288 struct stripe_head *sh = param;
1289 unsigned long ops_request = sh->ops.request;
1290
1291 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1292 wake_up(&sh->ops.wait_for_ops);
1293
1294 __raid_run_ops(sh, ops_request);
1295 release_stripe(sh);
1296 }
1297
1298 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1299 {
1300 /* since handle_stripe can be called outside of raid5d context
1301 * we need to ensure sh->ops.request is de-staged before another
1302 * request arrives
1303 */
1304 wait_event(sh->ops.wait_for_ops,
1305 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1306 sh->ops.request = ops_request;
1307
1308 atomic_inc(&sh->count);
1309 async_schedule(async_run_ops, sh);
1310 }
1311 #else
1312 #define raid_run_ops __raid_run_ops
1313 #endif
1314
1315 static int grow_one_stripe(raid5_conf_t *conf)
1316 {
1317 struct stripe_head *sh;
1318 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1319 if (!sh)
1320 return 0;
1321
1322 sh->raid_conf = conf;
1323 #ifdef CONFIG_MULTICORE_RAID456
1324 init_waitqueue_head(&sh->ops.wait_for_ops);
1325 #endif
1326
1327 if (grow_buffers(sh)) {
1328 shrink_buffers(sh);
1329 kmem_cache_free(conf->slab_cache, sh);
1330 return 0;
1331 }
1332 /* we just created an active stripe so... */
1333 atomic_set(&sh->count, 1);
1334 atomic_inc(&conf->active_stripes);
1335 INIT_LIST_HEAD(&sh->lru);
1336 release_stripe(sh);
1337 return 1;
1338 }
1339
1340 static int grow_stripes(raid5_conf_t *conf, int num)
1341 {
1342 struct kmem_cache *sc;
1343 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1344
1345 if (conf->mddev->gendisk)
1346 sprintf(conf->cache_name[0],
1347 "raid%d-%s", conf->level, mdname(conf->mddev));
1348 else
1349 sprintf(conf->cache_name[0],
1350 "raid%d-%p", conf->level, conf->mddev);
1351 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1352
1353 conf->active_name = 0;
1354 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1355 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1356 0, 0, NULL);
1357 if (!sc)
1358 return 1;
1359 conf->slab_cache = sc;
1360 conf->pool_size = devs;
1361 while (num--)
1362 if (!grow_one_stripe(conf))
1363 return 1;
1364 return 0;
1365 }
1366
1367 /**
1368 * scribble_len - return the required size of the scribble region
1369 * @num - total number of disks in the array
1370 *
1371 * The size must be enough to contain:
1372 * 1/ a struct page pointer for each device in the array +2
1373 * 2/ room to convert each entry in (1) to its corresponding dma
1374 * (dma_map_page()) or page (page_address()) address.
1375 *
1376 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1377 * calculate over all devices (not just the data blocks), using zeros in place
1378 * of the P and Q blocks.
1379 */
1380 static size_t scribble_len(int num)
1381 {
1382 size_t len;
1383
1384 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1385
1386 return len;
1387 }
1388
1389 static int resize_stripes(raid5_conf_t *conf, int newsize)
1390 {
1391 /* Make all the stripes able to hold 'newsize' devices.
1392 * New slots in each stripe get 'page' set to a new page.
1393 *
1394 * This happens in stages:
1395 * 1/ create a new kmem_cache and allocate the required number of
1396 * stripe_heads.
1397 * 2/ gather all the old stripe_heads and tranfer the pages across
1398 * to the new stripe_heads. This will have the side effect of
1399 * freezing the array as once all stripe_heads have been collected,
1400 * no IO will be possible. Old stripe heads are freed once their
1401 * pages have been transferred over, and the old kmem_cache is
1402 * freed when all stripes are done.
1403 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1404 * we simple return a failre status - no need to clean anything up.
1405 * 4/ allocate new pages for the new slots in the new stripe_heads.
1406 * If this fails, we don't bother trying the shrink the
1407 * stripe_heads down again, we just leave them as they are.
1408 * As each stripe_head is processed the new one is released into
1409 * active service.
1410 *
1411 * Once step2 is started, we cannot afford to wait for a write,
1412 * so we use GFP_NOIO allocations.
1413 */
1414 struct stripe_head *osh, *nsh;
1415 LIST_HEAD(newstripes);
1416 struct disk_info *ndisks;
1417 unsigned long cpu;
1418 int err;
1419 struct kmem_cache *sc;
1420 int i;
1421
1422 if (newsize <= conf->pool_size)
1423 return 0; /* never bother to shrink */
1424
1425 err = md_allow_write(conf->mddev);
1426 if (err)
1427 return err;
1428
1429 /* Step 1 */
1430 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1431 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1432 0, 0, NULL);
1433 if (!sc)
1434 return -ENOMEM;
1435
1436 for (i = conf->max_nr_stripes; i; i--) {
1437 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1438 if (!nsh)
1439 break;
1440
1441 nsh->raid_conf = conf;
1442 #ifdef CONFIG_MULTICORE_RAID456
1443 init_waitqueue_head(&nsh->ops.wait_for_ops);
1444 #endif
1445
1446 list_add(&nsh->lru, &newstripes);
1447 }
1448 if (i) {
1449 /* didn't get enough, give up */
1450 while (!list_empty(&newstripes)) {
1451 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1452 list_del(&nsh->lru);
1453 kmem_cache_free(sc, nsh);
1454 }
1455 kmem_cache_destroy(sc);
1456 return -ENOMEM;
1457 }
1458 /* Step 2 - Must use GFP_NOIO now.
1459 * OK, we have enough stripes, start collecting inactive
1460 * stripes and copying them over
1461 */
1462 list_for_each_entry(nsh, &newstripes, lru) {
1463 spin_lock_irq(&conf->device_lock);
1464 wait_event_lock_irq(conf->wait_for_stripe,
1465 !list_empty(&conf->inactive_list),
1466 conf->device_lock,
1467 );
1468 osh = get_free_stripe(conf);
1469 spin_unlock_irq(&conf->device_lock);
1470 atomic_set(&nsh->count, 1);
1471 for(i=0; i<conf->pool_size; i++)
1472 nsh->dev[i].page = osh->dev[i].page;
1473 for( ; i<newsize; i++)
1474 nsh->dev[i].page = NULL;
1475 kmem_cache_free(conf->slab_cache, osh);
1476 }
1477 kmem_cache_destroy(conf->slab_cache);
1478
1479 /* Step 3.
1480 * At this point, we are holding all the stripes so the array
1481 * is completely stalled, so now is a good time to resize
1482 * conf->disks and the scribble region
1483 */
1484 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1485 if (ndisks) {
1486 for (i=0; i<conf->raid_disks; i++)
1487 ndisks[i] = conf->disks[i];
1488 kfree(conf->disks);
1489 conf->disks = ndisks;
1490 } else
1491 err = -ENOMEM;
1492
1493 get_online_cpus();
1494 conf->scribble_len = scribble_len(newsize);
1495 for_each_present_cpu(cpu) {
1496 struct raid5_percpu *percpu;
1497 void *scribble;
1498
1499 percpu = per_cpu_ptr(conf->percpu, cpu);
1500 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1501
1502 if (scribble) {
1503 kfree(percpu->scribble);
1504 percpu->scribble = scribble;
1505 } else {
1506 err = -ENOMEM;
1507 break;
1508 }
1509 }
1510 put_online_cpus();
1511
1512 /* Step 4, return new stripes to service */
1513 while(!list_empty(&newstripes)) {
1514 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1515 list_del_init(&nsh->lru);
1516
1517 for (i=conf->raid_disks; i < newsize; i++)
1518 if (nsh->dev[i].page == NULL) {
1519 struct page *p = alloc_page(GFP_NOIO);
1520 nsh->dev[i].page = p;
1521 if (!p)
1522 err = -ENOMEM;
1523 }
1524 release_stripe(nsh);
1525 }
1526 /* critical section pass, GFP_NOIO no longer needed */
1527
1528 conf->slab_cache = sc;
1529 conf->active_name = 1-conf->active_name;
1530 conf->pool_size = newsize;
1531 return err;
1532 }
1533
1534 static int drop_one_stripe(raid5_conf_t *conf)
1535 {
1536 struct stripe_head *sh;
1537
1538 spin_lock_irq(&conf->device_lock);
1539 sh = get_free_stripe(conf);
1540 spin_unlock_irq(&conf->device_lock);
1541 if (!sh)
1542 return 0;
1543 BUG_ON(atomic_read(&sh->count));
1544 shrink_buffers(sh);
1545 kmem_cache_free(conf->slab_cache, sh);
1546 atomic_dec(&conf->active_stripes);
1547 return 1;
1548 }
1549
1550 static void shrink_stripes(raid5_conf_t *conf)
1551 {
1552 while (drop_one_stripe(conf))
1553 ;
1554
1555 if (conf->slab_cache)
1556 kmem_cache_destroy(conf->slab_cache);
1557 conf->slab_cache = NULL;
1558 }
1559
1560 static void raid5_end_read_request(struct bio * bi, int error)
1561 {
1562 struct stripe_head *sh = bi->bi_private;
1563 raid5_conf_t *conf = sh->raid_conf;
1564 int disks = sh->disks, i;
1565 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1566 char b[BDEVNAME_SIZE];
1567 mdk_rdev_t *rdev;
1568
1569
1570 for (i=0 ; i<disks; i++)
1571 if (bi == &sh->dev[i].req)
1572 break;
1573
1574 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1575 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1576 uptodate);
1577 if (i == disks) {
1578 BUG();
1579 return;
1580 }
1581
1582 if (uptodate) {
1583 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1584 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1585 rdev = conf->disks[i].rdev;
1586 printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1587 " (%lu sectors at %llu on %s)\n",
1588 mdname(conf->mddev), STRIPE_SECTORS,
1589 (unsigned long long)(sh->sector
1590 + rdev->data_offset),
1591 bdevname(rdev->bdev, b));
1592 clear_bit(R5_ReadError, &sh->dev[i].flags);
1593 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1594 }
1595 if (atomic_read(&conf->disks[i].rdev->read_errors))
1596 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1597 } else {
1598 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1599 int retry = 0;
1600 rdev = conf->disks[i].rdev;
1601
1602 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1603 atomic_inc(&rdev->read_errors);
1604 if (conf->mddev->degraded >= conf->max_degraded)
1605 printk_rl(KERN_WARNING
1606 "md/raid:%s: read error not correctable "
1607 "(sector %llu on %s).\n",
1608 mdname(conf->mddev),
1609 (unsigned long long)(sh->sector
1610 + rdev->data_offset),
1611 bdn);
1612 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1613 /* Oh, no!!! */
1614 printk_rl(KERN_WARNING
1615 "md/raid:%s: read error NOT corrected!! "
1616 "(sector %llu on %s).\n",
1617 mdname(conf->mddev),
1618 (unsigned long long)(sh->sector
1619 + rdev->data_offset),
1620 bdn);
1621 else if (atomic_read(&rdev->read_errors)
1622 > conf->max_nr_stripes)
1623 printk(KERN_WARNING
1624 "md/raid:%s: Too many read errors, failing device %s.\n",
1625 mdname(conf->mddev), bdn);
1626 else
1627 retry = 1;
1628 if (retry)
1629 set_bit(R5_ReadError, &sh->dev[i].flags);
1630 else {
1631 clear_bit(R5_ReadError, &sh->dev[i].flags);
1632 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633 md_error(conf->mddev, rdev);
1634 }
1635 }
1636 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1637 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1638 set_bit(STRIPE_HANDLE, &sh->state);
1639 release_stripe(sh);
1640 }
1641
1642 static void raid5_end_write_request(struct bio *bi, int error)
1643 {
1644 struct stripe_head *sh = bi->bi_private;
1645 raid5_conf_t *conf = sh->raid_conf;
1646 int disks = sh->disks, i;
1647 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1648
1649 for (i=0 ; i<disks; i++)
1650 if (bi == &sh->dev[i].req)
1651 break;
1652
1653 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1654 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1655 uptodate);
1656 if (i == disks) {
1657 BUG();
1658 return;
1659 }
1660
1661 if (!uptodate)
1662 md_error(conf->mddev, conf->disks[i].rdev);
1663
1664 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1665
1666 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1667 set_bit(STRIPE_HANDLE, &sh->state);
1668 release_stripe(sh);
1669 }
1670
1671
1672 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1673
1674 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1675 {
1676 struct r5dev *dev = &sh->dev[i];
1677
1678 bio_init(&dev->req);
1679 dev->req.bi_io_vec = &dev->vec;
1680 dev->req.bi_vcnt++;
1681 dev->req.bi_max_vecs++;
1682 dev->vec.bv_page = dev->page;
1683 dev->vec.bv_len = STRIPE_SIZE;
1684 dev->vec.bv_offset = 0;
1685
1686 dev->req.bi_sector = sh->sector;
1687 dev->req.bi_private = sh;
1688
1689 dev->flags = 0;
1690 dev->sector = compute_blocknr(sh, i, previous);
1691 }
1692
1693 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1694 {
1695 char b[BDEVNAME_SIZE];
1696 raid5_conf_t *conf = mddev->private;
1697 pr_debug("raid456: error called\n");
1698
1699 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1700 unsigned long flags;
1701 spin_lock_irqsave(&conf->device_lock, flags);
1702 mddev->degraded++;
1703 spin_unlock_irqrestore(&conf->device_lock, flags);
1704 /*
1705 * if recovery was running, make sure it aborts.
1706 */
1707 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1708 }
1709 set_bit(Faulty, &rdev->flags);
1710 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711 printk(KERN_ALERT
1712 "md/raid:%s: Disk failure on %s, disabling device.\n"
1713 "md/raid:%s: Operation continuing on %d devices.\n",
1714 mdname(mddev),
1715 bdevname(rdev->bdev, b),
1716 mdname(mddev),
1717 conf->raid_disks - mddev->degraded);
1718 }
1719
1720 /*
1721 * Input: a 'big' sector number,
1722 * Output: index of the data and parity disk, and the sector # in them.
1723 */
1724 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1725 int previous, int *dd_idx,
1726 struct stripe_head *sh)
1727 {
1728 sector_t stripe, stripe2;
1729 sector_t chunk_number;
1730 unsigned int chunk_offset;
1731 int pd_idx, qd_idx;
1732 int ddf_layout = 0;
1733 sector_t new_sector;
1734 int algorithm = previous ? conf->prev_algo
1735 : conf->algorithm;
1736 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1737 : conf->chunk_sectors;
1738 int raid_disks = previous ? conf->previous_raid_disks
1739 : conf->raid_disks;
1740 int data_disks = raid_disks - conf->max_degraded;
1741
1742 /* First compute the information on this sector */
1743
1744 /*
1745 * Compute the chunk number and the sector offset inside the chunk
1746 */
1747 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1748 chunk_number = r_sector;
1749
1750 /*
1751 * Compute the stripe number
1752 */
1753 stripe = chunk_number;
1754 *dd_idx = sector_div(stripe, data_disks);
1755 stripe2 = stripe;
1756 /*
1757 * Select the parity disk based on the user selected algorithm.
1758 */
1759 pd_idx = qd_idx = -1;
1760 switch(conf->level) {
1761 case 4:
1762 pd_idx = data_disks;
1763 break;
1764 case 5:
1765 switch (algorithm) {
1766 case ALGORITHM_LEFT_ASYMMETRIC:
1767 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1768 if (*dd_idx >= pd_idx)
1769 (*dd_idx)++;
1770 break;
1771 case ALGORITHM_RIGHT_ASYMMETRIC:
1772 pd_idx = sector_div(stripe2, raid_disks);
1773 if (*dd_idx >= pd_idx)
1774 (*dd_idx)++;
1775 break;
1776 case ALGORITHM_LEFT_SYMMETRIC:
1777 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1778 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1779 break;
1780 case ALGORITHM_RIGHT_SYMMETRIC:
1781 pd_idx = sector_div(stripe2, raid_disks);
1782 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1783 break;
1784 case ALGORITHM_PARITY_0:
1785 pd_idx = 0;
1786 (*dd_idx)++;
1787 break;
1788 case ALGORITHM_PARITY_N:
1789 pd_idx = data_disks;
1790 break;
1791 default:
1792 BUG();
1793 }
1794 break;
1795 case 6:
1796
1797 switch (algorithm) {
1798 case ALGORITHM_LEFT_ASYMMETRIC:
1799 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800 qd_idx = pd_idx + 1;
1801 if (pd_idx == raid_disks-1) {
1802 (*dd_idx)++; /* Q D D D P */
1803 qd_idx = 0;
1804 } else if (*dd_idx >= pd_idx)
1805 (*dd_idx) += 2; /* D D P Q D */
1806 break;
1807 case ALGORITHM_RIGHT_ASYMMETRIC:
1808 pd_idx = sector_div(stripe2, raid_disks);
1809 qd_idx = pd_idx + 1;
1810 if (pd_idx == raid_disks-1) {
1811 (*dd_idx)++; /* Q D D D P */
1812 qd_idx = 0;
1813 } else if (*dd_idx >= pd_idx)
1814 (*dd_idx) += 2; /* D D P Q D */
1815 break;
1816 case ALGORITHM_LEFT_SYMMETRIC:
1817 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1818 qd_idx = (pd_idx + 1) % raid_disks;
1819 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1820 break;
1821 case ALGORITHM_RIGHT_SYMMETRIC:
1822 pd_idx = sector_div(stripe2, raid_disks);
1823 qd_idx = (pd_idx + 1) % raid_disks;
1824 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1825 break;
1826
1827 case ALGORITHM_PARITY_0:
1828 pd_idx = 0;
1829 qd_idx = 1;
1830 (*dd_idx) += 2;
1831 break;
1832 case ALGORITHM_PARITY_N:
1833 pd_idx = data_disks;
1834 qd_idx = data_disks + 1;
1835 break;
1836
1837 case ALGORITHM_ROTATING_ZERO_RESTART:
1838 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1839 * of blocks for computing Q is different.
1840 */
1841 pd_idx = sector_div(stripe2, raid_disks);
1842 qd_idx = pd_idx + 1;
1843 if (pd_idx == raid_disks-1) {
1844 (*dd_idx)++; /* Q D D D P */
1845 qd_idx = 0;
1846 } else if (*dd_idx >= pd_idx)
1847 (*dd_idx) += 2; /* D D P Q D */
1848 ddf_layout = 1;
1849 break;
1850
1851 case ALGORITHM_ROTATING_N_RESTART:
1852 /* Same a left_asymmetric, by first stripe is
1853 * D D D P Q rather than
1854 * Q D D D P
1855 */
1856 stripe2 += 1;
1857 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1858 qd_idx = pd_idx + 1;
1859 if (pd_idx == raid_disks-1) {
1860 (*dd_idx)++; /* Q D D D P */
1861 qd_idx = 0;
1862 } else if (*dd_idx >= pd_idx)
1863 (*dd_idx) += 2; /* D D P Q D */
1864 ddf_layout = 1;
1865 break;
1866
1867 case ALGORITHM_ROTATING_N_CONTINUE:
1868 /* Same as left_symmetric but Q is before P */
1869 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1870 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1871 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1872 ddf_layout = 1;
1873 break;
1874
1875 case ALGORITHM_LEFT_ASYMMETRIC_6:
1876 /* RAID5 left_asymmetric, with Q on last device */
1877 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1878 if (*dd_idx >= pd_idx)
1879 (*dd_idx)++;
1880 qd_idx = raid_disks - 1;
1881 break;
1882
1883 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1884 pd_idx = sector_div(stripe2, raid_disks-1);
1885 if (*dd_idx >= pd_idx)
1886 (*dd_idx)++;
1887 qd_idx = raid_disks - 1;
1888 break;
1889
1890 case ALGORITHM_LEFT_SYMMETRIC_6:
1891 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1892 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1893 qd_idx = raid_disks - 1;
1894 break;
1895
1896 case ALGORITHM_RIGHT_SYMMETRIC_6:
1897 pd_idx = sector_div(stripe2, raid_disks-1);
1898 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1899 qd_idx = raid_disks - 1;
1900 break;
1901
1902 case ALGORITHM_PARITY_0_6:
1903 pd_idx = 0;
1904 (*dd_idx)++;
1905 qd_idx = raid_disks - 1;
1906 break;
1907
1908 default:
1909 BUG();
1910 }
1911 break;
1912 }
1913
1914 if (sh) {
1915 sh->pd_idx = pd_idx;
1916 sh->qd_idx = qd_idx;
1917 sh->ddf_layout = ddf_layout;
1918 }
1919 /*
1920 * Finally, compute the new sector number
1921 */
1922 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1923 return new_sector;
1924 }
1925
1926
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1928 {
1929 raid5_conf_t *conf = sh->raid_conf;
1930 int raid_disks = sh->disks;
1931 int data_disks = raid_disks - conf->max_degraded;
1932 sector_t new_sector = sh->sector, check;
1933 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1934 : conf->chunk_sectors;
1935 int algorithm = previous ? conf->prev_algo
1936 : conf->algorithm;
1937 sector_t stripe;
1938 int chunk_offset;
1939 sector_t chunk_number;
1940 int dummy1, dd_idx = i;
1941 sector_t r_sector;
1942 struct stripe_head sh2;
1943
1944
1945 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1946 stripe = new_sector;
1947
1948 if (i == sh->pd_idx)
1949 return 0;
1950 switch(conf->level) {
1951 case 4: break;
1952 case 5:
1953 switch (algorithm) {
1954 case ALGORITHM_LEFT_ASYMMETRIC:
1955 case ALGORITHM_RIGHT_ASYMMETRIC:
1956 if (i > sh->pd_idx)
1957 i--;
1958 break;
1959 case ALGORITHM_LEFT_SYMMETRIC:
1960 case ALGORITHM_RIGHT_SYMMETRIC:
1961 if (i < sh->pd_idx)
1962 i += raid_disks;
1963 i -= (sh->pd_idx + 1);
1964 break;
1965 case ALGORITHM_PARITY_0:
1966 i -= 1;
1967 break;
1968 case ALGORITHM_PARITY_N:
1969 break;
1970 default:
1971 BUG();
1972 }
1973 break;
1974 case 6:
1975 if (i == sh->qd_idx)
1976 return 0; /* It is the Q disk */
1977 switch (algorithm) {
1978 case ALGORITHM_LEFT_ASYMMETRIC:
1979 case ALGORITHM_RIGHT_ASYMMETRIC:
1980 case ALGORITHM_ROTATING_ZERO_RESTART:
1981 case ALGORITHM_ROTATING_N_RESTART:
1982 if (sh->pd_idx == raid_disks-1)
1983 i--; /* Q D D D P */
1984 else if (i > sh->pd_idx)
1985 i -= 2; /* D D P Q D */
1986 break;
1987 case ALGORITHM_LEFT_SYMMETRIC:
1988 case ALGORITHM_RIGHT_SYMMETRIC:
1989 if (sh->pd_idx == raid_disks-1)
1990 i--; /* Q D D D P */
1991 else {
1992 /* D D P Q D */
1993 if (i < sh->pd_idx)
1994 i += raid_disks;
1995 i -= (sh->pd_idx + 2);
1996 }
1997 break;
1998 case ALGORITHM_PARITY_0:
1999 i -= 2;
2000 break;
2001 case ALGORITHM_PARITY_N:
2002 break;
2003 case ALGORITHM_ROTATING_N_CONTINUE:
2004 /* Like left_symmetric, but P is before Q */
2005 if (sh->pd_idx == 0)
2006 i--; /* P D D D Q */
2007 else {
2008 /* D D Q P D */
2009 if (i < sh->pd_idx)
2010 i += raid_disks;
2011 i -= (sh->pd_idx + 1);
2012 }
2013 break;
2014 case ALGORITHM_LEFT_ASYMMETRIC_6:
2015 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2016 if (i > sh->pd_idx)
2017 i--;
2018 break;
2019 case ALGORITHM_LEFT_SYMMETRIC_6:
2020 case ALGORITHM_RIGHT_SYMMETRIC_6:
2021 if (i < sh->pd_idx)
2022 i += data_disks + 1;
2023 i -= (sh->pd_idx + 1);
2024 break;
2025 case ALGORITHM_PARITY_0_6:
2026 i -= 1;
2027 break;
2028 default:
2029 BUG();
2030 }
2031 break;
2032 }
2033
2034 chunk_number = stripe * data_disks + i;
2035 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2036
2037 check = raid5_compute_sector(conf, r_sector,
2038 previous, &dummy1, &sh2);
2039 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2040 || sh2.qd_idx != sh->qd_idx) {
2041 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2042 mdname(conf->mddev));
2043 return 0;
2044 }
2045 return r_sector;
2046 }
2047
2048
2049 static void
2050 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2051 int rcw, int expand)
2052 {
2053 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2054 raid5_conf_t *conf = sh->raid_conf;
2055 int level = conf->level;
2056
2057 if (rcw) {
2058 /* if we are not expanding this is a proper write request, and
2059 * there will be bios with new data to be drained into the
2060 * stripe cache
2061 */
2062 if (!expand) {
2063 sh->reconstruct_state = reconstruct_state_drain_run;
2064 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2065 } else
2066 sh->reconstruct_state = reconstruct_state_run;
2067
2068 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2069
2070 for (i = disks; i--; ) {
2071 struct r5dev *dev = &sh->dev[i];
2072
2073 if (dev->towrite) {
2074 set_bit(R5_LOCKED, &dev->flags);
2075 set_bit(R5_Wantdrain, &dev->flags);
2076 if (!expand)
2077 clear_bit(R5_UPTODATE, &dev->flags);
2078 s->locked++;
2079 }
2080 }
2081 if (s->locked + conf->max_degraded == disks)
2082 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2083 atomic_inc(&conf->pending_full_writes);
2084 } else {
2085 BUG_ON(level == 6);
2086 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2087 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2088
2089 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2090 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2091 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2092 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2093
2094 for (i = disks; i--; ) {
2095 struct r5dev *dev = &sh->dev[i];
2096 if (i == pd_idx)
2097 continue;
2098
2099 if (dev->towrite &&
2100 (test_bit(R5_UPTODATE, &dev->flags) ||
2101 test_bit(R5_Wantcompute, &dev->flags))) {
2102 set_bit(R5_Wantdrain, &dev->flags);
2103 set_bit(R5_LOCKED, &dev->flags);
2104 clear_bit(R5_UPTODATE, &dev->flags);
2105 s->locked++;
2106 }
2107 }
2108 }
2109
2110 /* keep the parity disk(s) locked while asynchronous operations
2111 * are in flight
2112 */
2113 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2114 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2115 s->locked++;
2116
2117 if (level == 6) {
2118 int qd_idx = sh->qd_idx;
2119 struct r5dev *dev = &sh->dev[qd_idx];
2120
2121 set_bit(R5_LOCKED, &dev->flags);
2122 clear_bit(R5_UPTODATE, &dev->flags);
2123 s->locked++;
2124 }
2125
2126 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2127 __func__, (unsigned long long)sh->sector,
2128 s->locked, s->ops_request);
2129 }
2130
2131 /*
2132 * Each stripe/dev can have one or more bion attached.
2133 * toread/towrite point to the first in a chain.
2134 * The bi_next chain must be in order.
2135 */
2136 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2137 {
2138 struct bio **bip;
2139 raid5_conf_t *conf = sh->raid_conf;
2140 int firstwrite=0;
2141
2142 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2143 (unsigned long long)bi->bi_sector,
2144 (unsigned long long)sh->sector);
2145
2146
2147 spin_lock_irq(&conf->device_lock);
2148 if (forwrite) {
2149 bip = &sh->dev[dd_idx].towrite;
2150 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2151 firstwrite = 1;
2152 } else
2153 bip = &sh->dev[dd_idx].toread;
2154 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2155 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2156 goto overlap;
2157 bip = & (*bip)->bi_next;
2158 }
2159 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2160 goto overlap;
2161
2162 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2163 if (*bip)
2164 bi->bi_next = *bip;
2165 *bip = bi;
2166 bi->bi_phys_segments++;
2167
2168 if (forwrite) {
2169 /* check if page is covered */
2170 sector_t sector = sh->dev[dd_idx].sector;
2171 for (bi=sh->dev[dd_idx].towrite;
2172 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2173 bi && bi->bi_sector <= sector;
2174 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2175 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2176 sector = bi->bi_sector + (bi->bi_size>>9);
2177 }
2178 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2179 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2180 }
2181 spin_unlock_irq(&conf->device_lock);
2182
2183 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2184 (unsigned long long)(*bip)->bi_sector,
2185 (unsigned long long)sh->sector, dd_idx);
2186
2187 if (conf->mddev->bitmap && firstwrite) {
2188 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2189 STRIPE_SECTORS, 0);
2190 sh->bm_seq = conf->seq_flush+1;
2191 set_bit(STRIPE_BIT_DELAY, &sh->state);
2192 }
2193 return 1;
2194
2195 overlap:
2196 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2197 spin_unlock_irq(&conf->device_lock);
2198 return 0;
2199 }
2200
2201 static void end_reshape(raid5_conf_t *conf);
2202
2203 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2204 struct stripe_head *sh)
2205 {
2206 int sectors_per_chunk =
2207 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2208 int dd_idx;
2209 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2210 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2211
2212 raid5_compute_sector(conf,
2213 stripe * (disks - conf->max_degraded)
2214 *sectors_per_chunk + chunk_offset,
2215 previous,
2216 &dd_idx, sh);
2217 }
2218
2219 static void
2220 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2221 struct stripe_head_state *s, int disks,
2222 struct bio **return_bi)
2223 {
2224 int i;
2225 for (i = disks; i--; ) {
2226 struct bio *bi;
2227 int bitmap_end = 0;
2228
2229 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2230 mdk_rdev_t *rdev;
2231 rcu_read_lock();
2232 rdev = rcu_dereference(conf->disks[i].rdev);
2233 if (rdev && test_bit(In_sync, &rdev->flags))
2234 /* multiple read failures in one stripe */
2235 md_error(conf->mddev, rdev);
2236 rcu_read_unlock();
2237 }
2238 spin_lock_irq(&conf->device_lock);
2239 /* fail all writes first */
2240 bi = sh->dev[i].towrite;
2241 sh->dev[i].towrite = NULL;
2242 if (bi) {
2243 s->to_write--;
2244 bitmap_end = 1;
2245 }
2246
2247 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2248 wake_up(&conf->wait_for_overlap);
2249
2250 while (bi && bi->bi_sector <
2251 sh->dev[i].sector + STRIPE_SECTORS) {
2252 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2253 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2254 if (!raid5_dec_bi_phys_segments(bi)) {
2255 md_write_end(conf->mddev);
2256 bi->bi_next = *return_bi;
2257 *return_bi = bi;
2258 }
2259 bi = nextbi;
2260 }
2261 /* and fail all 'written' */
2262 bi = sh->dev[i].written;
2263 sh->dev[i].written = NULL;
2264 if (bi) bitmap_end = 1;
2265 while (bi && bi->bi_sector <
2266 sh->dev[i].sector + STRIPE_SECTORS) {
2267 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2268 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2269 if (!raid5_dec_bi_phys_segments(bi)) {
2270 md_write_end(conf->mddev);
2271 bi->bi_next = *return_bi;
2272 *return_bi = bi;
2273 }
2274 bi = bi2;
2275 }
2276
2277 /* fail any reads if this device is non-operational and
2278 * the data has not reached the cache yet.
2279 */
2280 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2281 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2282 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2283 bi = sh->dev[i].toread;
2284 sh->dev[i].toread = NULL;
2285 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2286 wake_up(&conf->wait_for_overlap);
2287 if (bi) s->to_read--;
2288 while (bi && bi->bi_sector <
2289 sh->dev[i].sector + STRIPE_SECTORS) {
2290 struct bio *nextbi =
2291 r5_next_bio(bi, sh->dev[i].sector);
2292 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293 if (!raid5_dec_bi_phys_segments(bi)) {
2294 bi->bi_next = *return_bi;
2295 *return_bi = bi;
2296 }
2297 bi = nextbi;
2298 }
2299 }
2300 spin_unlock_irq(&conf->device_lock);
2301 if (bitmap_end)
2302 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2303 STRIPE_SECTORS, 0, 0);
2304 }
2305
2306 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2307 if (atomic_dec_and_test(&conf->pending_full_writes))
2308 md_wakeup_thread(conf->mddev->thread);
2309 }
2310
2311 /* fetch_block - checks the given member device to see if its data needs
2312 * to be read or computed to satisfy a request.
2313 *
2314 * Returns 1 when no more member devices need to be checked, otherwise returns
2315 * 0 to tell the loop in handle_stripe_fill to continue
2316 */
2317 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2318 int disk_idx, int disks)
2319 {
2320 struct r5dev *dev = &sh->dev[disk_idx];
2321 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2322 &sh->dev[s->failed_num[1]] };
2323
2324 /* is the data in this block needed, and can we get it? */
2325 if (!test_bit(R5_LOCKED, &dev->flags) &&
2326 !test_bit(R5_UPTODATE, &dev->flags) &&
2327 (dev->toread ||
2328 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2329 s->syncing || s->expanding ||
2330 (s->failed >= 1 && fdev[0]->toread) ||
2331 (s->failed >= 2 && fdev[1]->toread) ||
2332 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2333 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2334 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2335 /* we would like to get this block, possibly by computing it,
2336 * otherwise read it if the backing disk is insync
2337 */
2338 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2339 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2340 if ((s->uptodate == disks - 1) &&
2341 (s->failed && (disk_idx == s->failed_num[0] ||
2342 disk_idx == s->failed_num[1]))) {
2343 /* have disk failed, and we're requested to fetch it;
2344 * do compute it
2345 */
2346 pr_debug("Computing stripe %llu block %d\n",
2347 (unsigned long long)sh->sector, disk_idx);
2348 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2349 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2350 set_bit(R5_Wantcompute, &dev->flags);
2351 sh->ops.target = disk_idx;
2352 sh->ops.target2 = -1; /* no 2nd target */
2353 s->req_compute = 1;
2354 /* Careful: from this point on 'uptodate' is in the eye
2355 * of raid_run_ops which services 'compute' operations
2356 * before writes. R5_Wantcompute flags a block that will
2357 * be R5_UPTODATE by the time it is needed for a
2358 * subsequent operation.
2359 */
2360 s->uptodate++;
2361 return 1;
2362 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2363 /* Computing 2-failure is *very* expensive; only
2364 * do it if failed >= 2
2365 */
2366 int other;
2367 for (other = disks; other--; ) {
2368 if (other == disk_idx)
2369 continue;
2370 if (!test_bit(R5_UPTODATE,
2371 &sh->dev[other].flags))
2372 break;
2373 }
2374 BUG_ON(other < 0);
2375 pr_debug("Computing stripe %llu blocks %d,%d\n",
2376 (unsigned long long)sh->sector,
2377 disk_idx, other);
2378 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2379 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2380 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2381 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2382 sh->ops.target = disk_idx;
2383 sh->ops.target2 = other;
2384 s->uptodate += 2;
2385 s->req_compute = 1;
2386 return 1;
2387 } else if (test_bit(R5_Insync, &dev->flags)) {
2388 set_bit(R5_LOCKED, &dev->flags);
2389 set_bit(R5_Wantread, &dev->flags);
2390 s->locked++;
2391 pr_debug("Reading block %d (sync=%d)\n",
2392 disk_idx, s->syncing);
2393 }
2394 }
2395
2396 return 0;
2397 }
2398
2399 /**
2400 * handle_stripe_fill - read or compute data to satisfy pending requests.
2401 */
2402 static void handle_stripe_fill(struct stripe_head *sh,
2403 struct stripe_head_state *s,
2404 int disks)
2405 {
2406 int i;
2407
2408 /* look for blocks to read/compute, skip this if a compute
2409 * is already in flight, or if the stripe contents are in the
2410 * midst of changing due to a write
2411 */
2412 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2413 !sh->reconstruct_state)
2414 for (i = disks; i--; )
2415 if (fetch_block(sh, s, i, disks))
2416 break;
2417 set_bit(STRIPE_HANDLE, &sh->state);
2418 }
2419
2420
2421 /* handle_stripe_clean_event
2422 * any written block on an uptodate or failed drive can be returned.
2423 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2424 * never LOCKED, so we don't need to test 'failed' directly.
2425 */
2426 static void handle_stripe_clean_event(raid5_conf_t *conf,
2427 struct stripe_head *sh, int disks, struct bio **return_bi)
2428 {
2429 int i;
2430 struct r5dev *dev;
2431
2432 for (i = disks; i--; )
2433 if (sh->dev[i].written) {
2434 dev = &sh->dev[i];
2435 if (!test_bit(R5_LOCKED, &dev->flags) &&
2436 test_bit(R5_UPTODATE, &dev->flags)) {
2437 /* We can return any write requests */
2438 struct bio *wbi, *wbi2;
2439 int bitmap_end = 0;
2440 pr_debug("Return write for disc %d\n", i);
2441 spin_lock_irq(&conf->device_lock);
2442 wbi = dev->written;
2443 dev->written = NULL;
2444 while (wbi && wbi->bi_sector <
2445 dev->sector + STRIPE_SECTORS) {
2446 wbi2 = r5_next_bio(wbi, dev->sector);
2447 if (!raid5_dec_bi_phys_segments(wbi)) {
2448 md_write_end(conf->mddev);
2449 wbi->bi_next = *return_bi;
2450 *return_bi = wbi;
2451 }
2452 wbi = wbi2;
2453 }
2454 if (dev->towrite == NULL)
2455 bitmap_end = 1;
2456 spin_unlock_irq(&conf->device_lock);
2457 if (bitmap_end)
2458 bitmap_endwrite(conf->mddev->bitmap,
2459 sh->sector,
2460 STRIPE_SECTORS,
2461 !test_bit(STRIPE_DEGRADED, &sh->state),
2462 0);
2463 }
2464 }
2465
2466 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2467 if (atomic_dec_and_test(&conf->pending_full_writes))
2468 md_wakeup_thread(conf->mddev->thread);
2469 }
2470
2471 static void handle_stripe_dirtying(raid5_conf_t *conf,
2472 struct stripe_head *sh,
2473 struct stripe_head_state *s,
2474 int disks)
2475 {
2476 int rmw = 0, rcw = 0, i;
2477 if (conf->max_degraded == 2) {
2478 /* RAID6 requires 'rcw' in current implementation
2479 * Calculate the real rcw later - for now fake it
2480 * look like rcw is cheaper
2481 */
2482 rcw = 1; rmw = 2;
2483 } else for (i = disks; i--; ) {
2484 /* would I have to read this buffer for read_modify_write */
2485 struct r5dev *dev = &sh->dev[i];
2486 if ((dev->towrite || i == sh->pd_idx) &&
2487 !test_bit(R5_LOCKED, &dev->flags) &&
2488 !(test_bit(R5_UPTODATE, &dev->flags) ||
2489 test_bit(R5_Wantcompute, &dev->flags))) {
2490 if (test_bit(R5_Insync, &dev->flags))
2491 rmw++;
2492 else
2493 rmw += 2*disks; /* cannot read it */
2494 }
2495 /* Would I have to read this buffer for reconstruct_write */
2496 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2497 !test_bit(R5_LOCKED, &dev->flags) &&
2498 !(test_bit(R5_UPTODATE, &dev->flags) ||
2499 test_bit(R5_Wantcompute, &dev->flags))) {
2500 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2501 else
2502 rcw += 2*disks;
2503 }
2504 }
2505 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2506 (unsigned long long)sh->sector, rmw, rcw);
2507 set_bit(STRIPE_HANDLE, &sh->state);
2508 if (rmw < rcw && rmw > 0)
2509 /* prefer read-modify-write, but need to get some data */
2510 for (i = disks; i--; ) {
2511 struct r5dev *dev = &sh->dev[i];
2512 if ((dev->towrite || i == sh->pd_idx) &&
2513 !test_bit(R5_LOCKED, &dev->flags) &&
2514 !(test_bit(R5_UPTODATE, &dev->flags) ||
2515 test_bit(R5_Wantcompute, &dev->flags)) &&
2516 test_bit(R5_Insync, &dev->flags)) {
2517 if (
2518 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2519 pr_debug("Read_old block "
2520 "%d for r-m-w\n", i);
2521 set_bit(R5_LOCKED, &dev->flags);
2522 set_bit(R5_Wantread, &dev->flags);
2523 s->locked++;
2524 } else {
2525 set_bit(STRIPE_DELAYED, &sh->state);
2526 set_bit(STRIPE_HANDLE, &sh->state);
2527 }
2528 }
2529 }
2530 if (rcw <= rmw && rcw > 0) {
2531 /* want reconstruct write, but need to get some data */
2532 rcw = 0;
2533 for (i = disks; i--; ) {
2534 struct r5dev *dev = &sh->dev[i];
2535 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2536 i != sh->pd_idx && i != sh->qd_idx &&
2537 !test_bit(R5_LOCKED, &dev->flags) &&
2538 !(test_bit(R5_UPTODATE, &dev->flags) ||
2539 test_bit(R5_Wantcompute, &dev->flags))) {
2540 rcw++;
2541 if (!test_bit(R5_Insync, &dev->flags))
2542 continue; /* it's a failed drive */
2543 if (
2544 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2545 pr_debug("Read_old block "
2546 "%d for Reconstruct\n", i);
2547 set_bit(R5_LOCKED, &dev->flags);
2548 set_bit(R5_Wantread, &dev->flags);
2549 s->locked++;
2550 } else {
2551 set_bit(STRIPE_DELAYED, &sh->state);
2552 set_bit(STRIPE_HANDLE, &sh->state);
2553 }
2554 }
2555 }
2556 }
2557 /* now if nothing is locked, and if we have enough data,
2558 * we can start a write request
2559 */
2560 /* since handle_stripe can be called at any time we need to handle the
2561 * case where a compute block operation has been submitted and then a
2562 * subsequent call wants to start a write request. raid_run_ops only
2563 * handles the case where compute block and reconstruct are requested
2564 * simultaneously. If this is not the case then new writes need to be
2565 * held off until the compute completes.
2566 */
2567 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2568 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2569 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2570 schedule_reconstruction(sh, s, rcw == 0, 0);
2571 }
2572
2573 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2574 struct stripe_head_state *s, int disks)
2575 {
2576 struct r5dev *dev = NULL;
2577
2578 set_bit(STRIPE_HANDLE, &sh->state);
2579
2580 switch (sh->check_state) {
2581 case check_state_idle:
2582 /* start a new check operation if there are no failures */
2583 if (s->failed == 0) {
2584 BUG_ON(s->uptodate != disks);
2585 sh->check_state = check_state_run;
2586 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2587 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2588 s->uptodate--;
2589 break;
2590 }
2591 dev = &sh->dev[s->failed_num[0]];
2592 /* fall through */
2593 case check_state_compute_result:
2594 sh->check_state = check_state_idle;
2595 if (!dev)
2596 dev = &sh->dev[sh->pd_idx];
2597
2598 /* check that a write has not made the stripe insync */
2599 if (test_bit(STRIPE_INSYNC, &sh->state))
2600 break;
2601
2602 /* either failed parity check, or recovery is happening */
2603 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2604 BUG_ON(s->uptodate != disks);
2605
2606 set_bit(R5_LOCKED, &dev->flags);
2607 s->locked++;
2608 set_bit(R5_Wantwrite, &dev->flags);
2609
2610 clear_bit(STRIPE_DEGRADED, &sh->state);
2611 set_bit(STRIPE_INSYNC, &sh->state);
2612 break;
2613 case check_state_run:
2614 break; /* we will be called again upon completion */
2615 case check_state_check_result:
2616 sh->check_state = check_state_idle;
2617
2618 /* if a failure occurred during the check operation, leave
2619 * STRIPE_INSYNC not set and let the stripe be handled again
2620 */
2621 if (s->failed)
2622 break;
2623
2624 /* handle a successful check operation, if parity is correct
2625 * we are done. Otherwise update the mismatch count and repair
2626 * parity if !MD_RECOVERY_CHECK
2627 */
2628 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2629 /* parity is correct (on disc,
2630 * not in buffer any more)
2631 */
2632 set_bit(STRIPE_INSYNC, &sh->state);
2633 else {
2634 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2635 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2636 /* don't try to repair!! */
2637 set_bit(STRIPE_INSYNC, &sh->state);
2638 else {
2639 sh->check_state = check_state_compute_run;
2640 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2641 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2642 set_bit(R5_Wantcompute,
2643 &sh->dev[sh->pd_idx].flags);
2644 sh->ops.target = sh->pd_idx;
2645 sh->ops.target2 = -1;
2646 s->uptodate++;
2647 }
2648 }
2649 break;
2650 case check_state_compute_run:
2651 break;
2652 default:
2653 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2654 __func__, sh->check_state,
2655 (unsigned long long) sh->sector);
2656 BUG();
2657 }
2658 }
2659
2660
2661 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2662 struct stripe_head_state *s,
2663 int disks)
2664 {
2665 int pd_idx = sh->pd_idx;
2666 int qd_idx = sh->qd_idx;
2667 struct r5dev *dev;
2668
2669 set_bit(STRIPE_HANDLE, &sh->state);
2670
2671 BUG_ON(s->failed > 2);
2672
2673 /* Want to check and possibly repair P and Q.
2674 * However there could be one 'failed' device, in which
2675 * case we can only check one of them, possibly using the
2676 * other to generate missing data
2677 */
2678
2679 switch (sh->check_state) {
2680 case check_state_idle:
2681 /* start a new check operation if there are < 2 failures */
2682 if (s->failed == s->q_failed) {
2683 /* The only possible failed device holds Q, so it
2684 * makes sense to check P (If anything else were failed,
2685 * we would have used P to recreate it).
2686 */
2687 sh->check_state = check_state_run;
2688 }
2689 if (!s->q_failed && s->failed < 2) {
2690 /* Q is not failed, and we didn't use it to generate
2691 * anything, so it makes sense to check it
2692 */
2693 if (sh->check_state == check_state_run)
2694 sh->check_state = check_state_run_pq;
2695 else
2696 sh->check_state = check_state_run_q;
2697 }
2698
2699 /* discard potentially stale zero_sum_result */
2700 sh->ops.zero_sum_result = 0;
2701
2702 if (sh->check_state == check_state_run) {
2703 /* async_xor_zero_sum destroys the contents of P */
2704 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2705 s->uptodate--;
2706 }
2707 if (sh->check_state >= check_state_run &&
2708 sh->check_state <= check_state_run_pq) {
2709 /* async_syndrome_zero_sum preserves P and Q, so
2710 * no need to mark them !uptodate here
2711 */
2712 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2713 break;
2714 }
2715
2716 /* we have 2-disk failure */
2717 BUG_ON(s->failed != 2);
2718 /* fall through */
2719 case check_state_compute_result:
2720 sh->check_state = check_state_idle;
2721
2722 /* check that a write has not made the stripe insync */
2723 if (test_bit(STRIPE_INSYNC, &sh->state))
2724 break;
2725
2726 /* now write out any block on a failed drive,
2727 * or P or Q if they were recomputed
2728 */
2729 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2730 if (s->failed == 2) {
2731 dev = &sh->dev[s->failed_num[1]];
2732 s->locked++;
2733 set_bit(R5_LOCKED, &dev->flags);
2734 set_bit(R5_Wantwrite, &dev->flags);
2735 }
2736 if (s->failed >= 1) {
2737 dev = &sh->dev[s->failed_num[0]];
2738 s->locked++;
2739 set_bit(R5_LOCKED, &dev->flags);
2740 set_bit(R5_Wantwrite, &dev->flags);
2741 }
2742 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2743 dev = &sh->dev[pd_idx];
2744 s->locked++;
2745 set_bit(R5_LOCKED, &dev->flags);
2746 set_bit(R5_Wantwrite, &dev->flags);
2747 }
2748 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2749 dev = &sh->dev[qd_idx];
2750 s->locked++;
2751 set_bit(R5_LOCKED, &dev->flags);
2752 set_bit(R5_Wantwrite, &dev->flags);
2753 }
2754 clear_bit(STRIPE_DEGRADED, &sh->state);
2755
2756 set_bit(STRIPE_INSYNC, &sh->state);
2757 break;
2758 case check_state_run:
2759 case check_state_run_q:
2760 case check_state_run_pq:
2761 break; /* we will be called again upon completion */
2762 case check_state_check_result:
2763 sh->check_state = check_state_idle;
2764
2765 /* handle a successful check operation, if parity is correct
2766 * we are done. Otherwise update the mismatch count and repair
2767 * parity if !MD_RECOVERY_CHECK
2768 */
2769 if (sh->ops.zero_sum_result == 0) {
2770 /* both parities are correct */
2771 if (!s->failed)
2772 set_bit(STRIPE_INSYNC, &sh->state);
2773 else {
2774 /* in contrast to the raid5 case we can validate
2775 * parity, but still have a failure to write
2776 * back
2777 */
2778 sh->check_state = check_state_compute_result;
2779 /* Returning at this point means that we may go
2780 * off and bring p and/or q uptodate again so
2781 * we make sure to check zero_sum_result again
2782 * to verify if p or q need writeback
2783 */
2784 }
2785 } else {
2786 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2787 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2788 /* don't try to repair!! */
2789 set_bit(STRIPE_INSYNC, &sh->state);
2790 else {
2791 int *target = &sh->ops.target;
2792
2793 sh->ops.target = -1;
2794 sh->ops.target2 = -1;
2795 sh->check_state = check_state_compute_run;
2796 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2797 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2798 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2799 set_bit(R5_Wantcompute,
2800 &sh->dev[pd_idx].flags);
2801 *target = pd_idx;
2802 target = &sh->ops.target2;
2803 s->uptodate++;
2804 }
2805 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2806 set_bit(R5_Wantcompute,
2807 &sh->dev[qd_idx].flags);
2808 *target = qd_idx;
2809 s->uptodate++;
2810 }
2811 }
2812 }
2813 break;
2814 case check_state_compute_run:
2815 break;
2816 default:
2817 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2818 __func__, sh->check_state,
2819 (unsigned long long) sh->sector);
2820 BUG();
2821 }
2822 }
2823
2824 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2825 {
2826 int i;
2827
2828 /* We have read all the blocks in this stripe and now we need to
2829 * copy some of them into a target stripe for expand.
2830 */
2831 struct dma_async_tx_descriptor *tx = NULL;
2832 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2833 for (i = 0; i < sh->disks; i++)
2834 if (i != sh->pd_idx && i != sh->qd_idx) {
2835 int dd_idx, j;
2836 struct stripe_head *sh2;
2837 struct async_submit_ctl submit;
2838
2839 sector_t bn = compute_blocknr(sh, i, 1);
2840 sector_t s = raid5_compute_sector(conf, bn, 0,
2841 &dd_idx, NULL);
2842 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2843 if (sh2 == NULL)
2844 /* so far only the early blocks of this stripe
2845 * have been requested. When later blocks
2846 * get requested, we will try again
2847 */
2848 continue;
2849 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2850 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2851 /* must have already done this block */
2852 release_stripe(sh2);
2853 continue;
2854 }
2855
2856 /* place all the copies on one channel */
2857 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2858 tx = async_memcpy(sh2->dev[dd_idx].page,
2859 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2860 &submit);
2861
2862 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2863 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2864 for (j = 0; j < conf->raid_disks; j++)
2865 if (j != sh2->pd_idx &&
2866 j != sh2->qd_idx &&
2867 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2868 break;
2869 if (j == conf->raid_disks) {
2870 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2871 set_bit(STRIPE_HANDLE, &sh2->state);
2872 }
2873 release_stripe(sh2);
2874
2875 }
2876 /* done submitting copies, wait for them to complete */
2877 if (tx) {
2878 async_tx_ack(tx);
2879 dma_wait_for_async_tx(tx);
2880 }
2881 }
2882
2883
2884 /*
2885 * handle_stripe - do things to a stripe.
2886 *
2887 * We lock the stripe and then examine the state of various bits
2888 * to see what needs to be done.
2889 * Possible results:
2890 * return some read request which now have data
2891 * return some write requests which are safely on disc
2892 * schedule a read on some buffers
2893 * schedule a write of some buffers
2894 * return confirmation of parity correctness
2895 *
2896 * buffers are taken off read_list or write_list, and bh_cache buffers
2897 * get BH_Lock set before the stripe lock is released.
2898 *
2899 */
2900
2901 static int handle_stripe5(struct stripe_head *sh, struct stripe_head_state *s)
2902 {
2903 raid5_conf_t *conf = sh->raid_conf;
2904 int disks = sh->disks, i;
2905 struct r5dev *dev;
2906
2907 /* Now to look around and see what can be done */
2908 rcu_read_lock();
2909 spin_lock_irq(&conf->device_lock);
2910 for (i=disks; i--; ) {
2911 mdk_rdev_t *rdev;
2912
2913 dev = &sh->dev[i];
2914
2915 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2916 "written %p\n", i, dev->flags, dev->toread, dev->read,
2917 dev->towrite, dev->written);
2918
2919 /* maybe we can request a biofill operation
2920 *
2921 * new wantfill requests are only permitted while
2922 * ops_complete_biofill is guaranteed to be inactive
2923 */
2924 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2925 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2926 set_bit(R5_Wantfill, &dev->flags);
2927
2928 /* now count some things */
2929 if (test_bit(R5_LOCKED, &dev->flags))
2930 s->locked++;
2931 if (test_bit(R5_UPTODATE, &dev->flags))
2932 s->uptodate++;
2933 if (test_bit(R5_Wantcompute, &dev->flags))
2934 s->compute++;
2935
2936 if (test_bit(R5_Wantfill, &dev->flags))
2937 s->to_fill++;
2938 else if (dev->toread)
2939 s->to_read++;
2940 if (dev->towrite) {
2941 s->to_write++;
2942 if (!test_bit(R5_OVERWRITE, &dev->flags))
2943 s->non_overwrite++;
2944 }
2945 if (dev->written)
2946 s->written++;
2947 rdev = rcu_dereference(conf->disks[i].rdev);
2948 if (s->blocked_rdev == NULL &&
2949 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2950 s->blocked_rdev = rdev;
2951 atomic_inc(&rdev->nr_pending);
2952 }
2953 clear_bit(R5_Insync, &dev->flags);
2954 if (!rdev)
2955 /* Not in-sync */;
2956 else if (test_bit(In_sync, &rdev->flags))
2957 set_bit(R5_Insync, &dev->flags);
2958 else {
2959 /* could be in-sync depending on recovery/reshape status */
2960 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
2961 set_bit(R5_Insync, &dev->flags);
2962 }
2963 if (!test_bit(R5_Insync, &dev->flags)) {
2964 /* The ReadError flag will just be confusing now */
2965 clear_bit(R5_ReadError, &dev->flags);
2966 clear_bit(R5_ReWrite, &dev->flags);
2967 }
2968 if (test_bit(R5_ReadError, &dev->flags))
2969 clear_bit(R5_Insync, &dev->flags);
2970 if (!test_bit(R5_Insync, &dev->flags)) {
2971 s->failed++;
2972 s->failed_num[0] = i;
2973 }
2974 }
2975 spin_unlock_irq(&conf->device_lock);
2976 rcu_read_unlock();
2977
2978 if (unlikely(s->blocked_rdev)) {
2979 if (s->syncing || s->expanding || s->expanded ||
2980 s->to_write || s->written) {
2981 set_bit(STRIPE_HANDLE, &sh->state);
2982 return 1;
2983 }
2984 /* There is nothing for the blocked_rdev to block */
2985 rdev_dec_pending(s->blocked_rdev, conf->mddev);
2986 s->blocked_rdev = NULL;
2987 }
2988
2989 if (s->to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2990 set_bit(STRIPE_OP_BIOFILL, &s->ops_request);
2991 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2992 }
2993
2994 pr_debug("locked=%d uptodate=%d to_read=%d"
2995 " to_write=%d failed=%d failed_num=%d\n",
2996 s->locked, s->uptodate, s->to_read, s->to_write,
2997 s->failed, s->failed_num[0]);
2998 /* check if the array has lost two devices and, if so, some requests might
2999 * need to be failed
3000 */
3001 if (s->failed > 1 && s->to_read+s->to_write+s->written)
3002 handle_failed_stripe(conf, sh, s, disks, &s->return_bi);
3003 if (s->failed > 1 && s->syncing) {
3004 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3005 clear_bit(STRIPE_SYNCING, &sh->state);
3006 s->syncing = 0;
3007 }
3008
3009 /* might be able to return some write requests if the parity block
3010 * is safe, or on a failed drive
3011 */
3012 dev = &sh->dev[sh->pd_idx];
3013 if (s->written &&
3014 ((test_bit(R5_Insync, &dev->flags) &&
3015 !test_bit(R5_LOCKED, &dev->flags) &&
3016 test_bit(R5_UPTODATE, &dev->flags)) ||
3017 (s->failed == 1 && s->failed_num[0] == sh->pd_idx)))
3018 handle_stripe_clean_event(conf, sh, disks, &s->return_bi);
3019
3020 /* Now we might consider reading some blocks, either to check/generate
3021 * parity, or to satisfy requests
3022 * or to load a block that is being partially written.
3023 */
3024 if (s->to_read || s->non_overwrite ||
3025 (s->syncing && (s->uptodate + s->compute < disks)) || s->expanding)
3026 handle_stripe_fill(sh, s, disks);
3027
3028 return 0;
3029 }
3030
3031 static int handle_stripe6(struct stripe_head *sh, struct stripe_head_state *s)
3032 {
3033 raid5_conf_t *conf = sh->raid_conf;
3034 int disks = sh->disks;
3035 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3036 struct r5dev *dev, *pdev, *qdev;
3037
3038 /* Now to look around and see what can be done */
3039
3040 rcu_read_lock();
3041 spin_lock_irq(&conf->device_lock);
3042 for (i=disks; i--; ) {
3043 mdk_rdev_t *rdev;
3044 dev = &sh->dev[i];
3045
3046 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3047 i, dev->flags, dev->toread, dev->towrite, dev->written);
3048 /* maybe we can reply to a read
3049 *
3050 * new wantfill requests are only permitted while
3051 * ops_complete_biofill is guaranteed to be inactive
3052 */
3053 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3054 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3055 set_bit(R5_Wantfill, &dev->flags);
3056
3057 /* now count some things */
3058 if (test_bit(R5_LOCKED, &dev->flags))
3059 s->locked++;
3060 if (test_bit(R5_UPTODATE, &dev->flags))
3061 s->uptodate++;
3062 if (test_bit(R5_Wantcompute, &dev->flags)) {
3063 s->compute++;
3064 BUG_ON(s->compute > 2);
3065 }
3066
3067 if (test_bit(R5_Wantfill, &dev->flags)) {
3068 s->to_fill++;
3069 } else if (dev->toread)
3070 s->to_read++;
3071 if (dev->towrite) {
3072 s->to_write++;
3073 if (!test_bit(R5_OVERWRITE, &dev->flags))
3074 s->non_overwrite++;
3075 }
3076 if (dev->written)
3077 s->written++;
3078 rdev = rcu_dereference(conf->disks[i].rdev);
3079 if (s->blocked_rdev == NULL &&
3080 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3081 s->blocked_rdev = rdev;
3082 atomic_inc(&rdev->nr_pending);
3083 }
3084 clear_bit(R5_Insync, &dev->flags);
3085 if (!rdev)
3086 /* Not in-sync */;
3087 else if (test_bit(In_sync, &rdev->flags))
3088 set_bit(R5_Insync, &dev->flags);
3089 else {
3090 /* in sync if before recovery_offset */
3091 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3092 set_bit(R5_Insync, &dev->flags);
3093 }
3094 if (!test_bit(R5_Insync, &dev->flags)) {
3095 /* The ReadError flag will just be confusing now */
3096 clear_bit(R5_ReadError, &dev->flags);
3097 clear_bit(R5_ReWrite, &dev->flags);
3098 }
3099 if (test_bit(R5_ReadError, &dev->flags))
3100 clear_bit(R5_Insync, &dev->flags);
3101 if (!test_bit(R5_Insync, &dev->flags)) {
3102 if (s->failed < 2)
3103 s->failed_num[s->failed] = i;
3104 s->failed++;
3105 }
3106 }
3107 spin_unlock_irq(&conf->device_lock);
3108 rcu_read_unlock();
3109
3110 if (unlikely(s->blocked_rdev)) {
3111 if (s->syncing || s->expanding || s->expanded ||
3112 s->to_write || s->written) {
3113 set_bit(STRIPE_HANDLE, &sh->state);
3114 return 1;
3115 }
3116 /* There is nothing for the blocked_rdev to block */
3117 rdev_dec_pending(s->blocked_rdev, conf->mddev);
3118 s->blocked_rdev = NULL;
3119 }
3120
3121 if (s->to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3122 set_bit(STRIPE_OP_BIOFILL, &s->ops_request);
3123 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3124 }
3125
3126 pr_debug("locked=%d uptodate=%d to_read=%d"
3127 " to_write=%d failed=%d failed_num=%d,%d\n",
3128 s->locked, s->uptodate, s->to_read, s->to_write, s->failed,
3129 s->failed_num[0], s->failed_num[1]);
3130 /* check if the array has lost >2 devices and, if so, some requests
3131 * might need to be failed
3132 */
3133 if (s->failed > 2 && s->to_read+s->to_write+s->written)
3134 handle_failed_stripe(conf, sh, s, disks, &s->return_bi);
3135 if (s->failed > 2 && s->syncing) {
3136 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3137 clear_bit(STRIPE_SYNCING, &sh->state);
3138 s->syncing = 0;
3139 }
3140
3141 /*
3142 * might be able to return some write requests if the parity blocks
3143 * are safe, or on a failed drive
3144 */
3145 pdev = &sh->dev[pd_idx];
3146 s->p_failed = (s->failed >= 1 && s->failed_num[0] == pd_idx)
3147 || (s->failed >= 2 && s->failed_num[1] == pd_idx);
3148 qdev = &sh->dev[qd_idx];
3149 s->q_failed = (s->failed >= 1 && s->failed_num[0] == qd_idx)
3150 || (s->failed >= 2 && s->failed_num[1] == qd_idx);
3151
3152 if (s->written &&
3153 (s->p_failed || ((test_bit(R5_Insync, &pdev->flags)
3154 && !test_bit(R5_LOCKED, &pdev->flags)
3155 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3156 (s->q_failed || ((test_bit(R5_Insync, &qdev->flags)
3157 && !test_bit(R5_LOCKED, &qdev->flags)
3158 && test_bit(R5_UPTODATE, &qdev->flags)))))
3159 handle_stripe_clean_event(conf, sh, disks, &s->return_bi);
3160
3161 /* Now we might consider reading some blocks, either to check/generate
3162 * parity, or to satisfy requests
3163 * or to load a block that is being partially written.
3164 */
3165 if (s->to_read || s->non_overwrite || (s->to_write && s->failed) ||
3166 (s->syncing && (s->uptodate + s->compute < disks)) || s->expanding)
3167 handle_stripe_fill(sh, s, disks);
3168
3169 return 0;
3170 }
3171
3172 static void handle_stripe(struct stripe_head *sh)
3173 {
3174 struct stripe_head_state s;
3175 int done;
3176 int i;
3177 int prexor;
3178 int disks = sh->disks;
3179 raid5_conf_t *conf = sh->raid_conf;
3180
3181 clear_bit(STRIPE_HANDLE, &sh->state);
3182 if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3183 /* already being handled, ensure it gets handled
3184 * again when current action finishes */
3185 set_bit(STRIPE_HANDLE, &sh->state);
3186 return;
3187 }
3188
3189 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3190 set_bit(STRIPE_SYNCING, &sh->state);
3191 clear_bit(STRIPE_INSYNC, &sh->state);
3192 }
3193 clear_bit(STRIPE_DELAYED, &sh->state);
3194
3195 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3196 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3197 (unsigned long long)sh->sector, sh->state,
3198 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3199 sh->check_state, sh->reconstruct_state);
3200 memset(&s, 0, sizeof(s));
3201
3202 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3203 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3204 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3205 s.failed_num[0] = -1;
3206 s.failed_num[1] = -1;
3207
3208 if (conf->level == 6)
3209 done = handle_stripe6(sh, &s);
3210 else
3211 done = handle_stripe5(sh, &s);
3212
3213 if (done)
3214 goto finish;
3215
3216 /* Now we check to see if any write operations have recently
3217 * completed
3218 */
3219 prexor = 0;
3220 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3221 prexor = 1;
3222 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3223 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3224 sh->reconstruct_state = reconstruct_state_idle;
3225
3226 /* All the 'written' buffers and the parity block are ready to
3227 * be written back to disk
3228 */
3229 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3230 BUG_ON(sh->qd_idx >= 0 &&
3231 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3232 for (i = disks; i--; ) {
3233 struct r5dev *dev = &sh->dev[i];
3234 if (test_bit(R5_LOCKED, &dev->flags) &&
3235 (i == sh->pd_idx || i == sh->qd_idx ||
3236 dev->written)) {
3237 pr_debug("Writing block %d\n", i);
3238 set_bit(R5_Wantwrite, &dev->flags);
3239 if (prexor)
3240 continue;
3241 if (!test_bit(R5_Insync, &dev->flags) ||
3242 ((i == sh->pd_idx || i == sh->qd_idx) &&
3243 s.failed == 0))
3244 set_bit(STRIPE_INSYNC, &sh->state);
3245 }
3246 }
3247 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3248 s.dec_preread_active = 1;
3249 }
3250
3251 /* Now to consider new write requests and what else, if anything
3252 * should be read. We do not handle new writes when:
3253 * 1/ A 'write' operation (copy+xor) is already in flight.
3254 * 2/ A 'check' operation is in flight, as it may clobber the parity
3255 * block.
3256 */
3257 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3258 handle_stripe_dirtying(conf, sh, &s, disks);
3259
3260 /* maybe we need to check and possibly fix the parity for this stripe
3261 * Any reads will already have been scheduled, so we just see if enough
3262 * data is available. The parity check is held off while parity
3263 * dependent operations are in flight.
3264 */
3265 if (sh->check_state ||
3266 (s.syncing && s.locked == 0 &&
3267 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3268 !test_bit(STRIPE_INSYNC, &sh->state))) {
3269 if (conf->level == 6)
3270 handle_parity_checks6(conf, sh, &s, disks);
3271 else
3272 handle_parity_checks5(conf, sh, &s, disks);
3273 }
3274
3275 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3276 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3277 clear_bit(STRIPE_SYNCING, &sh->state);
3278 }
3279
3280 /* If the failed drives are just a ReadError, then we might need
3281 * to progress the repair/check process
3282 */
3283 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3284 for (i = 0; i < s.failed; i++) {
3285 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3286 if (test_bit(R5_ReadError, &dev->flags)
3287 && !test_bit(R5_LOCKED, &dev->flags)
3288 && test_bit(R5_UPTODATE, &dev->flags)
3289 ) {
3290 if (!test_bit(R5_ReWrite, &dev->flags)) {
3291 set_bit(R5_Wantwrite, &dev->flags);
3292 set_bit(R5_ReWrite, &dev->flags);
3293 set_bit(R5_LOCKED, &dev->flags);
3294 s.locked++;
3295 } else {
3296 /* let's read it back */
3297 set_bit(R5_Wantread, &dev->flags);
3298 set_bit(R5_LOCKED, &dev->flags);
3299 s.locked++;
3300 }
3301 }
3302 }
3303
3304
3305 /* Finish reconstruct operations initiated by the expansion process */
3306 if (sh->reconstruct_state == reconstruct_state_result) {
3307 struct stripe_head *sh_src
3308 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3309 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3310 /* sh cannot be written until sh_src has been read.
3311 * so arrange for sh to be delayed a little
3312 */
3313 set_bit(STRIPE_DELAYED, &sh->state);
3314 set_bit(STRIPE_HANDLE, &sh->state);
3315 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3316 &sh_src->state))
3317 atomic_inc(&conf->preread_active_stripes);
3318 release_stripe(sh_src);
3319 goto finish;
3320 }
3321 if (sh_src)
3322 release_stripe(sh_src);
3323
3324 sh->reconstruct_state = reconstruct_state_idle;
3325 clear_bit(STRIPE_EXPANDING, &sh->state);
3326 for (i = conf->raid_disks; i--; ) {
3327 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3328 set_bit(R5_LOCKED, &sh->dev[i].flags);
3329 s.locked++;
3330 }
3331 }
3332
3333 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3334 !sh->reconstruct_state) {
3335 /* Need to write out all blocks after computing parity */
3336 sh->disks = conf->raid_disks;
3337 stripe_set_idx(sh->sector, conf, 0, sh);
3338 schedule_reconstruction(sh, &s, 1, 1);
3339 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3340 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3341 atomic_dec(&conf->reshape_stripes);
3342 wake_up(&conf->wait_for_overlap);
3343 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3344 }
3345
3346 if (s.expanding && s.locked == 0 &&
3347 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3348 handle_stripe_expansion(conf, sh);
3349
3350 finish:
3351 /* wait for this device to become unblocked */
3352 if (unlikely(s.blocked_rdev))
3353 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3354
3355 if (s.ops_request)
3356 raid_run_ops(sh, s.ops_request);
3357
3358 ops_run_io(sh, &s);
3359
3360
3361 if (s.dec_preread_active) {
3362 /* We delay this until after ops_run_io so that if make_request
3363 * is waiting on a flush, it won't continue until the writes
3364 * have actually been submitted.
3365 */
3366 atomic_dec(&conf->preread_active_stripes);
3367 if (atomic_read(&conf->preread_active_stripes) <
3368 IO_THRESHOLD)
3369 md_wakeup_thread(conf->mddev->thread);
3370 }
3371
3372 return_io(s.return_bi);
3373
3374 clear_bit(STRIPE_ACTIVE, &sh->state);
3375 }
3376
3377 static void raid5_activate_delayed(raid5_conf_t *conf)
3378 {
3379 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3380 while (!list_empty(&conf->delayed_list)) {
3381 struct list_head *l = conf->delayed_list.next;
3382 struct stripe_head *sh;
3383 sh = list_entry(l, struct stripe_head, lru);
3384 list_del_init(l);
3385 clear_bit(STRIPE_DELAYED, &sh->state);
3386 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3387 atomic_inc(&conf->preread_active_stripes);
3388 list_add_tail(&sh->lru, &conf->hold_list);
3389 }
3390 }
3391 }
3392
3393 static void activate_bit_delay(raid5_conf_t *conf)
3394 {
3395 /* device_lock is held */
3396 struct list_head head;
3397 list_add(&head, &conf->bitmap_list);
3398 list_del_init(&conf->bitmap_list);
3399 while (!list_empty(&head)) {
3400 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3401 list_del_init(&sh->lru);
3402 atomic_inc(&sh->count);
3403 __release_stripe(conf, sh);
3404 }
3405 }
3406
3407 int md_raid5_congested(mddev_t *mddev, int bits)
3408 {
3409 raid5_conf_t *conf = mddev->private;
3410
3411 /* No difference between reads and writes. Just check
3412 * how busy the stripe_cache is
3413 */
3414
3415 if (conf->inactive_blocked)
3416 return 1;
3417 if (conf->quiesce)
3418 return 1;
3419 if (list_empty_careful(&conf->inactive_list))
3420 return 1;
3421
3422 return 0;
3423 }
3424 EXPORT_SYMBOL_GPL(md_raid5_congested);
3425
3426 static int raid5_congested(void *data, int bits)
3427 {
3428 mddev_t *mddev = data;
3429
3430 return mddev_congested(mddev, bits) ||
3431 md_raid5_congested(mddev, bits);
3432 }
3433
3434 /* We want read requests to align with chunks where possible,
3435 * but write requests don't need to.
3436 */
3437 static int raid5_mergeable_bvec(struct request_queue *q,
3438 struct bvec_merge_data *bvm,
3439 struct bio_vec *biovec)
3440 {
3441 mddev_t *mddev = q->queuedata;
3442 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3443 int max;
3444 unsigned int chunk_sectors = mddev->chunk_sectors;
3445 unsigned int bio_sectors = bvm->bi_size >> 9;
3446
3447 if ((bvm->bi_rw & 1) == WRITE)
3448 return biovec->bv_len; /* always allow writes to be mergeable */
3449
3450 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3451 chunk_sectors = mddev->new_chunk_sectors;
3452 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3453 if (max < 0) max = 0;
3454 if (max <= biovec->bv_len && bio_sectors == 0)
3455 return biovec->bv_len;
3456 else
3457 return max;
3458 }
3459
3460
3461 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3462 {
3463 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3464 unsigned int chunk_sectors = mddev->chunk_sectors;
3465 unsigned int bio_sectors = bio->bi_size >> 9;
3466
3467 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3468 chunk_sectors = mddev->new_chunk_sectors;
3469 return chunk_sectors >=
3470 ((sector & (chunk_sectors - 1)) + bio_sectors);
3471 }
3472
3473 /*
3474 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3475 * later sampled by raid5d.
3476 */
3477 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3478 {
3479 unsigned long flags;
3480
3481 spin_lock_irqsave(&conf->device_lock, flags);
3482
3483 bi->bi_next = conf->retry_read_aligned_list;
3484 conf->retry_read_aligned_list = bi;
3485
3486 spin_unlock_irqrestore(&conf->device_lock, flags);
3487 md_wakeup_thread(conf->mddev->thread);
3488 }
3489
3490
3491 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3492 {
3493 struct bio *bi;
3494
3495 bi = conf->retry_read_aligned;
3496 if (bi) {
3497 conf->retry_read_aligned = NULL;
3498 return bi;
3499 }
3500 bi = conf->retry_read_aligned_list;
3501 if(bi) {
3502 conf->retry_read_aligned_list = bi->bi_next;
3503 bi->bi_next = NULL;
3504 /*
3505 * this sets the active strip count to 1 and the processed
3506 * strip count to zero (upper 8 bits)
3507 */
3508 bi->bi_phys_segments = 1; /* biased count of active stripes */
3509 }
3510
3511 return bi;
3512 }
3513
3514
3515 /*
3516 * The "raid5_align_endio" should check if the read succeeded and if it
3517 * did, call bio_endio on the original bio (having bio_put the new bio
3518 * first).
3519 * If the read failed..
3520 */
3521 static void raid5_align_endio(struct bio *bi, int error)
3522 {
3523 struct bio* raid_bi = bi->bi_private;
3524 mddev_t *mddev;
3525 raid5_conf_t *conf;
3526 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3527 mdk_rdev_t *rdev;
3528
3529 bio_put(bi);
3530
3531 rdev = (void*)raid_bi->bi_next;
3532 raid_bi->bi_next = NULL;
3533 mddev = rdev->mddev;
3534 conf = mddev->private;
3535
3536 rdev_dec_pending(rdev, conf->mddev);
3537
3538 if (!error && uptodate) {
3539 bio_endio(raid_bi, 0);
3540 if (atomic_dec_and_test(&conf->active_aligned_reads))
3541 wake_up(&conf->wait_for_stripe);
3542 return;
3543 }
3544
3545
3546 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3547
3548 add_bio_to_retry(raid_bi, conf);
3549 }
3550
3551 static int bio_fits_rdev(struct bio *bi)
3552 {
3553 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3554
3555 if ((bi->bi_size>>9) > queue_max_sectors(q))
3556 return 0;
3557 blk_recount_segments(q, bi);
3558 if (bi->bi_phys_segments > queue_max_segments(q))
3559 return 0;
3560
3561 if (q->merge_bvec_fn)
3562 /* it's too hard to apply the merge_bvec_fn at this stage,
3563 * just just give up
3564 */
3565 return 0;
3566
3567 return 1;
3568 }
3569
3570
3571 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3572 {
3573 raid5_conf_t *conf = mddev->private;
3574 int dd_idx;
3575 struct bio* align_bi;
3576 mdk_rdev_t *rdev;
3577
3578 if (!in_chunk_boundary(mddev, raid_bio)) {
3579 pr_debug("chunk_aligned_read : non aligned\n");
3580 return 0;
3581 }
3582 /*
3583 * use bio_clone_mddev to make a copy of the bio
3584 */
3585 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3586 if (!align_bi)
3587 return 0;
3588 /*
3589 * set bi_end_io to a new function, and set bi_private to the
3590 * original bio.
3591 */
3592 align_bi->bi_end_io = raid5_align_endio;
3593 align_bi->bi_private = raid_bio;
3594 /*
3595 * compute position
3596 */
3597 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3598 0,
3599 &dd_idx, NULL);
3600
3601 rcu_read_lock();
3602 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3603 if (rdev && test_bit(In_sync, &rdev->flags)) {
3604 atomic_inc(&rdev->nr_pending);
3605 rcu_read_unlock();
3606 raid_bio->bi_next = (void*)rdev;
3607 align_bi->bi_bdev = rdev->bdev;
3608 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3609 align_bi->bi_sector += rdev->data_offset;
3610
3611 if (!bio_fits_rdev(align_bi)) {
3612 /* too big in some way */
3613 bio_put(align_bi);
3614 rdev_dec_pending(rdev, mddev);
3615 return 0;
3616 }
3617
3618 spin_lock_irq(&conf->device_lock);
3619 wait_event_lock_irq(conf->wait_for_stripe,
3620 conf->quiesce == 0,
3621 conf->device_lock, /* nothing */);
3622 atomic_inc(&conf->active_aligned_reads);
3623 spin_unlock_irq(&conf->device_lock);
3624
3625 generic_make_request(align_bi);
3626 return 1;
3627 } else {
3628 rcu_read_unlock();
3629 bio_put(align_bi);
3630 return 0;
3631 }
3632 }
3633
3634 /* __get_priority_stripe - get the next stripe to process
3635 *
3636 * Full stripe writes are allowed to pass preread active stripes up until
3637 * the bypass_threshold is exceeded. In general the bypass_count
3638 * increments when the handle_list is handled before the hold_list; however, it
3639 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3640 * stripe with in flight i/o. The bypass_count will be reset when the
3641 * head of the hold_list has changed, i.e. the head was promoted to the
3642 * handle_list.
3643 */
3644 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3645 {
3646 struct stripe_head *sh;
3647
3648 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3649 __func__,
3650 list_empty(&conf->handle_list) ? "empty" : "busy",
3651 list_empty(&conf->hold_list) ? "empty" : "busy",
3652 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3653
3654 if (!list_empty(&conf->handle_list)) {
3655 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3656
3657 if (list_empty(&conf->hold_list))
3658 conf->bypass_count = 0;
3659 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3660 if (conf->hold_list.next == conf->last_hold)
3661 conf->bypass_count++;
3662 else {
3663 conf->last_hold = conf->hold_list.next;
3664 conf->bypass_count -= conf->bypass_threshold;
3665 if (conf->bypass_count < 0)
3666 conf->bypass_count = 0;
3667 }
3668 }
3669 } else if (!list_empty(&conf->hold_list) &&
3670 ((conf->bypass_threshold &&
3671 conf->bypass_count > conf->bypass_threshold) ||
3672 atomic_read(&conf->pending_full_writes) == 0)) {
3673 sh = list_entry(conf->hold_list.next,
3674 typeof(*sh), lru);
3675 conf->bypass_count -= conf->bypass_threshold;
3676 if (conf->bypass_count < 0)
3677 conf->bypass_count = 0;
3678 } else
3679 return NULL;
3680
3681 list_del_init(&sh->lru);
3682 atomic_inc(&sh->count);
3683 BUG_ON(atomic_read(&sh->count) != 1);
3684 return sh;
3685 }
3686
3687 static int make_request(mddev_t *mddev, struct bio * bi)
3688 {
3689 raid5_conf_t *conf = mddev->private;
3690 int dd_idx;
3691 sector_t new_sector;
3692 sector_t logical_sector, last_sector;
3693 struct stripe_head *sh;
3694 const int rw = bio_data_dir(bi);
3695 int remaining;
3696 int plugged;
3697
3698 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3699 md_flush_request(mddev, bi);
3700 return 0;
3701 }
3702
3703 md_write_start(mddev, bi);
3704
3705 if (rw == READ &&
3706 mddev->reshape_position == MaxSector &&
3707 chunk_aligned_read(mddev,bi))
3708 return 0;
3709
3710 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3711 last_sector = bi->bi_sector + (bi->bi_size>>9);
3712 bi->bi_next = NULL;
3713 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3714
3715 plugged = mddev_check_plugged(mddev);
3716 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3717 DEFINE_WAIT(w);
3718 int disks, data_disks;
3719 int previous;
3720
3721 retry:
3722 previous = 0;
3723 disks = conf->raid_disks;
3724 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3725 if (unlikely(conf->reshape_progress != MaxSector)) {
3726 /* spinlock is needed as reshape_progress may be
3727 * 64bit on a 32bit platform, and so it might be
3728 * possible to see a half-updated value
3729 * Of course reshape_progress could change after
3730 * the lock is dropped, so once we get a reference
3731 * to the stripe that we think it is, we will have
3732 * to check again.
3733 */
3734 spin_lock_irq(&conf->device_lock);
3735 if (mddev->delta_disks < 0
3736 ? logical_sector < conf->reshape_progress
3737 : logical_sector >= conf->reshape_progress) {
3738 disks = conf->previous_raid_disks;
3739 previous = 1;
3740 } else {
3741 if (mddev->delta_disks < 0
3742 ? logical_sector < conf->reshape_safe
3743 : logical_sector >= conf->reshape_safe) {
3744 spin_unlock_irq(&conf->device_lock);
3745 schedule();
3746 goto retry;
3747 }
3748 }
3749 spin_unlock_irq(&conf->device_lock);
3750 }
3751 data_disks = disks - conf->max_degraded;
3752
3753 new_sector = raid5_compute_sector(conf, logical_sector,
3754 previous,
3755 &dd_idx, NULL);
3756 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3757 (unsigned long long)new_sector,
3758 (unsigned long long)logical_sector);
3759
3760 sh = get_active_stripe(conf, new_sector, previous,
3761 (bi->bi_rw&RWA_MASK), 0);
3762 if (sh) {
3763 if (unlikely(previous)) {
3764 /* expansion might have moved on while waiting for a
3765 * stripe, so we must do the range check again.
3766 * Expansion could still move past after this
3767 * test, but as we are holding a reference to
3768 * 'sh', we know that if that happens,
3769 * STRIPE_EXPANDING will get set and the expansion
3770 * won't proceed until we finish with the stripe.
3771 */
3772 int must_retry = 0;
3773 spin_lock_irq(&conf->device_lock);
3774 if (mddev->delta_disks < 0
3775 ? logical_sector >= conf->reshape_progress
3776 : logical_sector < conf->reshape_progress)
3777 /* mismatch, need to try again */
3778 must_retry = 1;
3779 spin_unlock_irq(&conf->device_lock);
3780 if (must_retry) {
3781 release_stripe(sh);
3782 schedule();
3783 goto retry;
3784 }
3785 }
3786
3787 if (rw == WRITE &&
3788 logical_sector >= mddev->suspend_lo &&
3789 logical_sector < mddev->suspend_hi) {
3790 release_stripe(sh);
3791 /* As the suspend_* range is controlled by
3792 * userspace, we want an interruptible
3793 * wait.
3794 */
3795 flush_signals(current);
3796 prepare_to_wait(&conf->wait_for_overlap,
3797 &w, TASK_INTERRUPTIBLE);
3798 if (logical_sector >= mddev->suspend_lo &&
3799 logical_sector < mddev->suspend_hi)
3800 schedule();
3801 goto retry;
3802 }
3803
3804 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3805 !add_stripe_bio(sh, bi, dd_idx, rw)) {
3806 /* Stripe is busy expanding or
3807 * add failed due to overlap. Flush everything
3808 * and wait a while
3809 */
3810 md_wakeup_thread(mddev->thread);
3811 release_stripe(sh);
3812 schedule();
3813 goto retry;
3814 }
3815 finish_wait(&conf->wait_for_overlap, &w);
3816 set_bit(STRIPE_HANDLE, &sh->state);
3817 clear_bit(STRIPE_DELAYED, &sh->state);
3818 if ((bi->bi_rw & REQ_SYNC) &&
3819 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3820 atomic_inc(&conf->preread_active_stripes);
3821 release_stripe(sh);
3822 } else {
3823 /* cannot get stripe for read-ahead, just give-up */
3824 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3825 finish_wait(&conf->wait_for_overlap, &w);
3826 break;
3827 }
3828
3829 }
3830 if (!plugged)
3831 md_wakeup_thread(mddev->thread);
3832
3833 spin_lock_irq(&conf->device_lock);
3834 remaining = raid5_dec_bi_phys_segments(bi);
3835 spin_unlock_irq(&conf->device_lock);
3836 if (remaining == 0) {
3837
3838 if ( rw == WRITE )
3839 md_write_end(mddev);
3840
3841 bio_endio(bi, 0);
3842 }
3843
3844 return 0;
3845 }
3846
3847 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3848
3849 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3850 {
3851 /* reshaping is quite different to recovery/resync so it is
3852 * handled quite separately ... here.
3853 *
3854 * On each call to sync_request, we gather one chunk worth of
3855 * destination stripes and flag them as expanding.
3856 * Then we find all the source stripes and request reads.
3857 * As the reads complete, handle_stripe will copy the data
3858 * into the destination stripe and release that stripe.
3859 */
3860 raid5_conf_t *conf = mddev->private;
3861 struct stripe_head *sh;
3862 sector_t first_sector, last_sector;
3863 int raid_disks = conf->previous_raid_disks;
3864 int data_disks = raid_disks - conf->max_degraded;
3865 int new_data_disks = conf->raid_disks - conf->max_degraded;
3866 int i;
3867 int dd_idx;
3868 sector_t writepos, readpos, safepos;
3869 sector_t stripe_addr;
3870 int reshape_sectors;
3871 struct list_head stripes;
3872
3873 if (sector_nr == 0) {
3874 /* If restarting in the middle, skip the initial sectors */
3875 if (mddev->delta_disks < 0 &&
3876 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3877 sector_nr = raid5_size(mddev, 0, 0)
3878 - conf->reshape_progress;
3879 } else if (mddev->delta_disks >= 0 &&
3880 conf->reshape_progress > 0)
3881 sector_nr = conf->reshape_progress;
3882 sector_div(sector_nr, new_data_disks);
3883 if (sector_nr) {
3884 mddev->curr_resync_completed = sector_nr;
3885 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3886 *skipped = 1;
3887 return sector_nr;
3888 }
3889 }
3890
3891 /* We need to process a full chunk at a time.
3892 * If old and new chunk sizes differ, we need to process the
3893 * largest of these
3894 */
3895 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3896 reshape_sectors = mddev->new_chunk_sectors;
3897 else
3898 reshape_sectors = mddev->chunk_sectors;
3899
3900 /* we update the metadata when there is more than 3Meg
3901 * in the block range (that is rather arbitrary, should
3902 * probably be time based) or when the data about to be
3903 * copied would over-write the source of the data at
3904 * the front of the range.
3905 * i.e. one new_stripe along from reshape_progress new_maps
3906 * to after where reshape_safe old_maps to
3907 */
3908 writepos = conf->reshape_progress;
3909 sector_div(writepos, new_data_disks);
3910 readpos = conf->reshape_progress;
3911 sector_div(readpos, data_disks);
3912 safepos = conf->reshape_safe;
3913 sector_div(safepos, data_disks);
3914 if (mddev->delta_disks < 0) {
3915 writepos -= min_t(sector_t, reshape_sectors, writepos);
3916 readpos += reshape_sectors;
3917 safepos += reshape_sectors;
3918 } else {
3919 writepos += reshape_sectors;
3920 readpos -= min_t(sector_t, reshape_sectors, readpos);
3921 safepos -= min_t(sector_t, reshape_sectors, safepos);
3922 }
3923
3924 /* 'writepos' is the most advanced device address we might write.
3925 * 'readpos' is the least advanced device address we might read.
3926 * 'safepos' is the least address recorded in the metadata as having
3927 * been reshaped.
3928 * If 'readpos' is behind 'writepos', then there is no way that we can
3929 * ensure safety in the face of a crash - that must be done by userspace
3930 * making a backup of the data. So in that case there is no particular
3931 * rush to update metadata.
3932 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3933 * update the metadata to advance 'safepos' to match 'readpos' so that
3934 * we can be safe in the event of a crash.
3935 * So we insist on updating metadata if safepos is behind writepos and
3936 * readpos is beyond writepos.
3937 * In any case, update the metadata every 10 seconds.
3938 * Maybe that number should be configurable, but I'm not sure it is
3939 * worth it.... maybe it could be a multiple of safemode_delay???
3940 */
3941 if ((mddev->delta_disks < 0
3942 ? (safepos > writepos && readpos < writepos)
3943 : (safepos < writepos && readpos > writepos)) ||
3944 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3945 /* Cannot proceed until we've updated the superblock... */
3946 wait_event(conf->wait_for_overlap,
3947 atomic_read(&conf->reshape_stripes)==0);
3948 mddev->reshape_position = conf->reshape_progress;
3949 mddev->curr_resync_completed = sector_nr;
3950 conf->reshape_checkpoint = jiffies;
3951 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3952 md_wakeup_thread(mddev->thread);
3953 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3954 kthread_should_stop());
3955 spin_lock_irq(&conf->device_lock);
3956 conf->reshape_safe = mddev->reshape_position;
3957 spin_unlock_irq(&conf->device_lock);
3958 wake_up(&conf->wait_for_overlap);
3959 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3960 }
3961
3962 if (mddev->delta_disks < 0) {
3963 BUG_ON(conf->reshape_progress == 0);
3964 stripe_addr = writepos;
3965 BUG_ON((mddev->dev_sectors &
3966 ~((sector_t)reshape_sectors - 1))
3967 - reshape_sectors - stripe_addr
3968 != sector_nr);
3969 } else {
3970 BUG_ON(writepos != sector_nr + reshape_sectors);
3971 stripe_addr = sector_nr;
3972 }
3973 INIT_LIST_HEAD(&stripes);
3974 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3975 int j;
3976 int skipped_disk = 0;
3977 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3978 set_bit(STRIPE_EXPANDING, &sh->state);
3979 atomic_inc(&conf->reshape_stripes);
3980 /* If any of this stripe is beyond the end of the old
3981 * array, then we need to zero those blocks
3982 */
3983 for (j=sh->disks; j--;) {
3984 sector_t s;
3985 if (j == sh->pd_idx)
3986 continue;
3987 if (conf->level == 6 &&
3988 j == sh->qd_idx)
3989 continue;
3990 s = compute_blocknr(sh, j, 0);
3991 if (s < raid5_size(mddev, 0, 0)) {
3992 skipped_disk = 1;
3993 continue;
3994 }
3995 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3996 set_bit(R5_Expanded, &sh->dev[j].flags);
3997 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3998 }
3999 if (!skipped_disk) {
4000 set_bit(STRIPE_EXPAND_READY, &sh->state);
4001 set_bit(STRIPE_HANDLE, &sh->state);
4002 }
4003 list_add(&sh->lru, &stripes);
4004 }
4005 spin_lock_irq(&conf->device_lock);
4006 if (mddev->delta_disks < 0)
4007 conf->reshape_progress -= reshape_sectors * new_data_disks;
4008 else
4009 conf->reshape_progress += reshape_sectors * new_data_disks;
4010 spin_unlock_irq(&conf->device_lock);
4011 /* Ok, those stripe are ready. We can start scheduling
4012 * reads on the source stripes.
4013 * The source stripes are determined by mapping the first and last
4014 * block on the destination stripes.
4015 */
4016 first_sector =
4017 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4018 1, &dd_idx, NULL);
4019 last_sector =
4020 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4021 * new_data_disks - 1),
4022 1, &dd_idx, NULL);
4023 if (last_sector >= mddev->dev_sectors)
4024 last_sector = mddev->dev_sectors - 1;
4025 while (first_sector <= last_sector) {
4026 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4027 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4028 set_bit(STRIPE_HANDLE, &sh->state);
4029 release_stripe(sh);
4030 first_sector += STRIPE_SECTORS;
4031 }
4032 /* Now that the sources are clearly marked, we can release
4033 * the destination stripes
4034 */
4035 while (!list_empty(&stripes)) {
4036 sh = list_entry(stripes.next, struct stripe_head, lru);
4037 list_del_init(&sh->lru);
4038 release_stripe(sh);
4039 }
4040 /* If this takes us to the resync_max point where we have to pause,
4041 * then we need to write out the superblock.
4042 */
4043 sector_nr += reshape_sectors;
4044 if ((sector_nr - mddev->curr_resync_completed) * 2
4045 >= mddev->resync_max - mddev->curr_resync_completed) {
4046 /* Cannot proceed until we've updated the superblock... */
4047 wait_event(conf->wait_for_overlap,
4048 atomic_read(&conf->reshape_stripes) == 0);
4049 mddev->reshape_position = conf->reshape_progress;
4050 mddev->curr_resync_completed = sector_nr;
4051 conf->reshape_checkpoint = jiffies;
4052 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4053 md_wakeup_thread(mddev->thread);
4054 wait_event(mddev->sb_wait,
4055 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4056 || kthread_should_stop());
4057 spin_lock_irq(&conf->device_lock);
4058 conf->reshape_safe = mddev->reshape_position;
4059 spin_unlock_irq(&conf->device_lock);
4060 wake_up(&conf->wait_for_overlap);
4061 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4062 }
4063 return reshape_sectors;
4064 }
4065
4066 /* FIXME go_faster isn't used */
4067 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4068 {
4069 raid5_conf_t *conf = mddev->private;
4070 struct stripe_head *sh;
4071 sector_t max_sector = mddev->dev_sectors;
4072 sector_t sync_blocks;
4073 int still_degraded = 0;
4074 int i;
4075
4076 if (sector_nr >= max_sector) {
4077 /* just being told to finish up .. nothing much to do */
4078
4079 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4080 end_reshape(conf);
4081 return 0;
4082 }
4083
4084 if (mddev->curr_resync < max_sector) /* aborted */
4085 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4086 &sync_blocks, 1);
4087 else /* completed sync */
4088 conf->fullsync = 0;
4089 bitmap_close_sync(mddev->bitmap);
4090
4091 return 0;
4092 }
4093
4094 /* Allow raid5_quiesce to complete */
4095 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4096
4097 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4098 return reshape_request(mddev, sector_nr, skipped);
4099
4100 /* No need to check resync_max as we never do more than one
4101 * stripe, and as resync_max will always be on a chunk boundary,
4102 * if the check in md_do_sync didn't fire, there is no chance
4103 * of overstepping resync_max here
4104 */
4105
4106 /* if there is too many failed drives and we are trying
4107 * to resync, then assert that we are finished, because there is
4108 * nothing we can do.
4109 */
4110 if (mddev->degraded >= conf->max_degraded &&
4111 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4112 sector_t rv = mddev->dev_sectors - sector_nr;
4113 *skipped = 1;
4114 return rv;
4115 }
4116 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4117 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4118 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4119 /* we can skip this block, and probably more */
4120 sync_blocks /= STRIPE_SECTORS;
4121 *skipped = 1;
4122 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4123 }
4124
4125
4126 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4127
4128 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4129 if (sh == NULL) {
4130 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4131 /* make sure we don't swamp the stripe cache if someone else
4132 * is trying to get access
4133 */
4134 schedule_timeout_uninterruptible(1);
4135 }
4136 /* Need to check if array will still be degraded after recovery/resync
4137 * We don't need to check the 'failed' flag as when that gets set,
4138 * recovery aborts.
4139 */
4140 for (i = 0; i < conf->raid_disks; i++)
4141 if (conf->disks[i].rdev == NULL)
4142 still_degraded = 1;
4143
4144 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4145
4146 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4147
4148 handle_stripe(sh);
4149 release_stripe(sh);
4150
4151 return STRIPE_SECTORS;
4152 }
4153
4154 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4155 {
4156 /* We may not be able to submit a whole bio at once as there
4157 * may not be enough stripe_heads available.
4158 * We cannot pre-allocate enough stripe_heads as we may need
4159 * more than exist in the cache (if we allow ever large chunks).
4160 * So we do one stripe head at a time and record in
4161 * ->bi_hw_segments how many have been done.
4162 *
4163 * We *know* that this entire raid_bio is in one chunk, so
4164 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4165 */
4166 struct stripe_head *sh;
4167 int dd_idx;
4168 sector_t sector, logical_sector, last_sector;
4169 int scnt = 0;
4170 int remaining;
4171 int handled = 0;
4172
4173 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4174 sector = raid5_compute_sector(conf, logical_sector,
4175 0, &dd_idx, NULL);
4176 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4177
4178 for (; logical_sector < last_sector;
4179 logical_sector += STRIPE_SECTORS,
4180 sector += STRIPE_SECTORS,
4181 scnt++) {
4182
4183 if (scnt < raid5_bi_hw_segments(raid_bio))
4184 /* already done this stripe */
4185 continue;
4186
4187 sh = get_active_stripe(conf, sector, 0, 1, 0);
4188
4189 if (!sh) {
4190 /* failed to get a stripe - must wait */
4191 raid5_set_bi_hw_segments(raid_bio, scnt);
4192 conf->retry_read_aligned = raid_bio;
4193 return handled;
4194 }
4195
4196 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4197 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4198 release_stripe(sh);
4199 raid5_set_bi_hw_segments(raid_bio, scnt);
4200 conf->retry_read_aligned = raid_bio;
4201 return handled;
4202 }
4203
4204 handle_stripe(sh);
4205 release_stripe(sh);
4206 handled++;
4207 }
4208 spin_lock_irq(&conf->device_lock);
4209 remaining = raid5_dec_bi_phys_segments(raid_bio);
4210 spin_unlock_irq(&conf->device_lock);
4211 if (remaining == 0)
4212 bio_endio(raid_bio, 0);
4213 if (atomic_dec_and_test(&conf->active_aligned_reads))
4214 wake_up(&conf->wait_for_stripe);
4215 return handled;
4216 }
4217
4218
4219 /*
4220 * This is our raid5 kernel thread.
4221 *
4222 * We scan the hash table for stripes which can be handled now.
4223 * During the scan, completed stripes are saved for us by the interrupt
4224 * handler, so that they will not have to wait for our next wakeup.
4225 */
4226 static void raid5d(mddev_t *mddev)
4227 {
4228 struct stripe_head *sh;
4229 raid5_conf_t *conf = mddev->private;
4230 int handled;
4231 struct blk_plug plug;
4232
4233 pr_debug("+++ raid5d active\n");
4234
4235 md_check_recovery(mddev);
4236
4237 blk_start_plug(&plug);
4238 handled = 0;
4239 spin_lock_irq(&conf->device_lock);
4240 while (1) {
4241 struct bio *bio;
4242
4243 if (atomic_read(&mddev->plug_cnt) == 0 &&
4244 !list_empty(&conf->bitmap_list)) {
4245 /* Now is a good time to flush some bitmap updates */
4246 conf->seq_flush++;
4247 spin_unlock_irq(&conf->device_lock);
4248 bitmap_unplug(mddev->bitmap);
4249 spin_lock_irq(&conf->device_lock);
4250 conf->seq_write = conf->seq_flush;
4251 activate_bit_delay(conf);
4252 }
4253 if (atomic_read(&mddev->plug_cnt) == 0)
4254 raid5_activate_delayed(conf);
4255
4256 while ((bio = remove_bio_from_retry(conf))) {
4257 int ok;
4258 spin_unlock_irq(&conf->device_lock);
4259 ok = retry_aligned_read(conf, bio);
4260 spin_lock_irq(&conf->device_lock);
4261 if (!ok)
4262 break;
4263 handled++;
4264 }
4265
4266 sh = __get_priority_stripe(conf);
4267
4268 if (!sh)
4269 break;
4270 spin_unlock_irq(&conf->device_lock);
4271
4272 handled++;
4273 handle_stripe(sh);
4274 release_stripe(sh);
4275 cond_resched();
4276
4277 spin_lock_irq(&conf->device_lock);
4278 }
4279 pr_debug("%d stripes handled\n", handled);
4280
4281 spin_unlock_irq(&conf->device_lock);
4282
4283 async_tx_issue_pending_all();
4284 blk_finish_plug(&plug);
4285
4286 pr_debug("--- raid5d inactive\n");
4287 }
4288
4289 static ssize_t
4290 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4291 {
4292 raid5_conf_t *conf = mddev->private;
4293 if (conf)
4294 return sprintf(page, "%d\n", conf->max_nr_stripes);
4295 else
4296 return 0;
4297 }
4298
4299 int
4300 raid5_set_cache_size(mddev_t *mddev, int size)
4301 {
4302 raid5_conf_t *conf = mddev->private;
4303 int err;
4304
4305 if (size <= 16 || size > 32768)
4306 return -EINVAL;
4307 while (size < conf->max_nr_stripes) {
4308 if (drop_one_stripe(conf))
4309 conf->max_nr_stripes--;
4310 else
4311 break;
4312 }
4313 err = md_allow_write(mddev);
4314 if (err)
4315 return err;
4316 while (size > conf->max_nr_stripes) {
4317 if (grow_one_stripe(conf))
4318 conf->max_nr_stripes++;
4319 else break;
4320 }
4321 return 0;
4322 }
4323 EXPORT_SYMBOL(raid5_set_cache_size);
4324
4325 static ssize_t
4326 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4327 {
4328 raid5_conf_t *conf = mddev->private;
4329 unsigned long new;
4330 int err;
4331
4332 if (len >= PAGE_SIZE)
4333 return -EINVAL;
4334 if (!conf)
4335 return -ENODEV;
4336
4337 if (strict_strtoul(page, 10, &new))
4338 return -EINVAL;
4339 err = raid5_set_cache_size(mddev, new);
4340 if (err)
4341 return err;
4342 return len;
4343 }
4344
4345 static struct md_sysfs_entry
4346 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4347 raid5_show_stripe_cache_size,
4348 raid5_store_stripe_cache_size);
4349
4350 static ssize_t
4351 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4352 {
4353 raid5_conf_t *conf = mddev->private;
4354 if (conf)
4355 return sprintf(page, "%d\n", conf->bypass_threshold);
4356 else
4357 return 0;
4358 }
4359
4360 static ssize_t
4361 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4362 {
4363 raid5_conf_t *conf = mddev->private;
4364 unsigned long new;
4365 if (len >= PAGE_SIZE)
4366 return -EINVAL;
4367 if (!conf)
4368 return -ENODEV;
4369
4370 if (strict_strtoul(page, 10, &new))
4371 return -EINVAL;
4372 if (new > conf->max_nr_stripes)
4373 return -EINVAL;
4374 conf->bypass_threshold = new;
4375 return len;
4376 }
4377
4378 static struct md_sysfs_entry
4379 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4380 S_IRUGO | S_IWUSR,
4381 raid5_show_preread_threshold,
4382 raid5_store_preread_threshold);
4383
4384 static ssize_t
4385 stripe_cache_active_show(mddev_t *mddev, char *page)
4386 {
4387 raid5_conf_t *conf = mddev->private;
4388 if (conf)
4389 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4390 else
4391 return 0;
4392 }
4393
4394 static struct md_sysfs_entry
4395 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4396
4397 static struct attribute *raid5_attrs[] = {
4398 &raid5_stripecache_size.attr,
4399 &raid5_stripecache_active.attr,
4400 &raid5_preread_bypass_threshold.attr,
4401 NULL,
4402 };
4403 static struct attribute_group raid5_attrs_group = {
4404 .name = NULL,
4405 .attrs = raid5_attrs,
4406 };
4407
4408 static sector_t
4409 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4410 {
4411 raid5_conf_t *conf = mddev->private;
4412
4413 if (!sectors)
4414 sectors = mddev->dev_sectors;
4415 if (!raid_disks)
4416 /* size is defined by the smallest of previous and new size */
4417 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4418
4419 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4420 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4421 return sectors * (raid_disks - conf->max_degraded);
4422 }
4423
4424 static void raid5_free_percpu(raid5_conf_t *conf)
4425 {
4426 struct raid5_percpu *percpu;
4427 unsigned long cpu;
4428
4429 if (!conf->percpu)
4430 return;
4431
4432 get_online_cpus();
4433 for_each_possible_cpu(cpu) {
4434 percpu = per_cpu_ptr(conf->percpu, cpu);
4435 safe_put_page(percpu->spare_page);
4436 kfree(percpu->scribble);
4437 }
4438 #ifdef CONFIG_HOTPLUG_CPU
4439 unregister_cpu_notifier(&conf->cpu_notify);
4440 #endif
4441 put_online_cpus();
4442
4443 free_percpu(conf->percpu);
4444 }
4445
4446 static void free_conf(raid5_conf_t *conf)
4447 {
4448 shrink_stripes(conf);
4449 raid5_free_percpu(conf);
4450 kfree(conf->disks);
4451 kfree(conf->stripe_hashtbl);
4452 kfree(conf);
4453 }
4454
4455 #ifdef CONFIG_HOTPLUG_CPU
4456 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4457 void *hcpu)
4458 {
4459 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4460 long cpu = (long)hcpu;
4461 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4462
4463 switch (action) {
4464 case CPU_UP_PREPARE:
4465 case CPU_UP_PREPARE_FROZEN:
4466 if (conf->level == 6 && !percpu->spare_page)
4467 percpu->spare_page = alloc_page(GFP_KERNEL);
4468 if (!percpu->scribble)
4469 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4470
4471 if (!percpu->scribble ||
4472 (conf->level == 6 && !percpu->spare_page)) {
4473 safe_put_page(percpu->spare_page);
4474 kfree(percpu->scribble);
4475 pr_err("%s: failed memory allocation for cpu%ld\n",
4476 __func__, cpu);
4477 return notifier_from_errno(-ENOMEM);
4478 }
4479 break;
4480 case CPU_DEAD:
4481 case CPU_DEAD_FROZEN:
4482 safe_put_page(percpu->spare_page);
4483 kfree(percpu->scribble);
4484 percpu->spare_page = NULL;
4485 percpu->scribble = NULL;
4486 break;
4487 default:
4488 break;
4489 }
4490 return NOTIFY_OK;
4491 }
4492 #endif
4493
4494 static int raid5_alloc_percpu(raid5_conf_t *conf)
4495 {
4496 unsigned long cpu;
4497 struct page *spare_page;
4498 struct raid5_percpu __percpu *allcpus;
4499 void *scribble;
4500 int err;
4501
4502 allcpus = alloc_percpu(struct raid5_percpu);
4503 if (!allcpus)
4504 return -ENOMEM;
4505 conf->percpu = allcpus;
4506
4507 get_online_cpus();
4508 err = 0;
4509 for_each_present_cpu(cpu) {
4510 if (conf->level == 6) {
4511 spare_page = alloc_page(GFP_KERNEL);
4512 if (!spare_page) {
4513 err = -ENOMEM;
4514 break;
4515 }
4516 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4517 }
4518 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4519 if (!scribble) {
4520 err = -ENOMEM;
4521 break;
4522 }
4523 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4524 }
4525 #ifdef CONFIG_HOTPLUG_CPU
4526 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4527 conf->cpu_notify.priority = 0;
4528 if (err == 0)
4529 err = register_cpu_notifier(&conf->cpu_notify);
4530 #endif
4531 put_online_cpus();
4532
4533 return err;
4534 }
4535
4536 static raid5_conf_t *setup_conf(mddev_t *mddev)
4537 {
4538 raid5_conf_t *conf;
4539 int raid_disk, memory, max_disks;
4540 mdk_rdev_t *rdev;
4541 struct disk_info *disk;
4542
4543 if (mddev->new_level != 5
4544 && mddev->new_level != 4
4545 && mddev->new_level != 6) {
4546 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4547 mdname(mddev), mddev->new_level);
4548 return ERR_PTR(-EIO);
4549 }
4550 if ((mddev->new_level == 5
4551 && !algorithm_valid_raid5(mddev->new_layout)) ||
4552 (mddev->new_level == 6
4553 && !algorithm_valid_raid6(mddev->new_layout))) {
4554 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4555 mdname(mddev), mddev->new_layout);
4556 return ERR_PTR(-EIO);
4557 }
4558 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4559 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4560 mdname(mddev), mddev->raid_disks);
4561 return ERR_PTR(-EINVAL);
4562 }
4563
4564 if (!mddev->new_chunk_sectors ||
4565 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4566 !is_power_of_2(mddev->new_chunk_sectors)) {
4567 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4568 mdname(mddev), mddev->new_chunk_sectors << 9);
4569 return ERR_PTR(-EINVAL);
4570 }
4571
4572 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4573 if (conf == NULL)
4574 goto abort;
4575 spin_lock_init(&conf->device_lock);
4576 init_waitqueue_head(&conf->wait_for_stripe);
4577 init_waitqueue_head(&conf->wait_for_overlap);
4578 INIT_LIST_HEAD(&conf->handle_list);
4579 INIT_LIST_HEAD(&conf->hold_list);
4580 INIT_LIST_HEAD(&conf->delayed_list);
4581 INIT_LIST_HEAD(&conf->bitmap_list);
4582 INIT_LIST_HEAD(&conf->inactive_list);
4583 atomic_set(&conf->active_stripes, 0);
4584 atomic_set(&conf->preread_active_stripes, 0);
4585 atomic_set(&conf->active_aligned_reads, 0);
4586 conf->bypass_threshold = BYPASS_THRESHOLD;
4587
4588 conf->raid_disks = mddev->raid_disks;
4589 if (mddev->reshape_position == MaxSector)
4590 conf->previous_raid_disks = mddev->raid_disks;
4591 else
4592 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4593 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4594 conf->scribble_len = scribble_len(max_disks);
4595
4596 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4597 GFP_KERNEL);
4598 if (!conf->disks)
4599 goto abort;
4600
4601 conf->mddev = mddev;
4602
4603 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4604 goto abort;
4605
4606 conf->level = mddev->new_level;
4607 if (raid5_alloc_percpu(conf) != 0)
4608 goto abort;
4609
4610 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4611
4612 list_for_each_entry(rdev, &mddev->disks, same_set) {
4613 raid_disk = rdev->raid_disk;
4614 if (raid_disk >= max_disks
4615 || raid_disk < 0)
4616 continue;
4617 disk = conf->disks + raid_disk;
4618
4619 disk->rdev = rdev;
4620
4621 if (test_bit(In_sync, &rdev->flags)) {
4622 char b[BDEVNAME_SIZE];
4623 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4624 " disk %d\n",
4625 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4626 } else if (rdev->saved_raid_disk != raid_disk)
4627 /* Cannot rely on bitmap to complete recovery */
4628 conf->fullsync = 1;
4629 }
4630
4631 conf->chunk_sectors = mddev->new_chunk_sectors;
4632 conf->level = mddev->new_level;
4633 if (conf->level == 6)
4634 conf->max_degraded = 2;
4635 else
4636 conf->max_degraded = 1;
4637 conf->algorithm = mddev->new_layout;
4638 conf->max_nr_stripes = NR_STRIPES;
4639 conf->reshape_progress = mddev->reshape_position;
4640 if (conf->reshape_progress != MaxSector) {
4641 conf->prev_chunk_sectors = mddev->chunk_sectors;
4642 conf->prev_algo = mddev->layout;
4643 }
4644
4645 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4646 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4647 if (grow_stripes(conf, conf->max_nr_stripes)) {
4648 printk(KERN_ERR
4649 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4650 mdname(mddev), memory);
4651 goto abort;
4652 } else
4653 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4654 mdname(mddev), memory);
4655
4656 conf->thread = md_register_thread(raid5d, mddev, NULL);
4657 if (!conf->thread) {
4658 printk(KERN_ERR
4659 "md/raid:%s: couldn't allocate thread.\n",
4660 mdname(mddev));
4661 goto abort;
4662 }
4663
4664 return conf;
4665
4666 abort:
4667 if (conf) {
4668 free_conf(conf);
4669 return ERR_PTR(-EIO);
4670 } else
4671 return ERR_PTR(-ENOMEM);
4672 }
4673
4674
4675 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4676 {
4677 switch (algo) {
4678 case ALGORITHM_PARITY_0:
4679 if (raid_disk < max_degraded)
4680 return 1;
4681 break;
4682 case ALGORITHM_PARITY_N:
4683 if (raid_disk >= raid_disks - max_degraded)
4684 return 1;
4685 break;
4686 case ALGORITHM_PARITY_0_6:
4687 if (raid_disk == 0 ||
4688 raid_disk == raid_disks - 1)
4689 return 1;
4690 break;
4691 case ALGORITHM_LEFT_ASYMMETRIC_6:
4692 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4693 case ALGORITHM_LEFT_SYMMETRIC_6:
4694 case ALGORITHM_RIGHT_SYMMETRIC_6:
4695 if (raid_disk == raid_disks - 1)
4696 return 1;
4697 }
4698 return 0;
4699 }
4700
4701 static int run(mddev_t *mddev)
4702 {
4703 raid5_conf_t *conf;
4704 int working_disks = 0;
4705 int dirty_parity_disks = 0;
4706 mdk_rdev_t *rdev;
4707 sector_t reshape_offset = 0;
4708
4709 if (mddev->recovery_cp != MaxSector)
4710 printk(KERN_NOTICE "md/raid:%s: not clean"
4711 " -- starting background reconstruction\n",
4712 mdname(mddev));
4713 if (mddev->reshape_position != MaxSector) {
4714 /* Check that we can continue the reshape.
4715 * Currently only disks can change, it must
4716 * increase, and we must be past the point where
4717 * a stripe over-writes itself
4718 */
4719 sector_t here_new, here_old;
4720 int old_disks;
4721 int max_degraded = (mddev->level == 6 ? 2 : 1);
4722
4723 if (mddev->new_level != mddev->level) {
4724 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4725 "required - aborting.\n",
4726 mdname(mddev));
4727 return -EINVAL;
4728 }
4729 old_disks = mddev->raid_disks - mddev->delta_disks;
4730 /* reshape_position must be on a new-stripe boundary, and one
4731 * further up in new geometry must map after here in old
4732 * geometry.
4733 */
4734 here_new = mddev->reshape_position;
4735 if (sector_div(here_new, mddev->new_chunk_sectors *
4736 (mddev->raid_disks - max_degraded))) {
4737 printk(KERN_ERR "md/raid:%s: reshape_position not "
4738 "on a stripe boundary\n", mdname(mddev));
4739 return -EINVAL;
4740 }
4741 reshape_offset = here_new * mddev->new_chunk_sectors;
4742 /* here_new is the stripe we will write to */
4743 here_old = mddev->reshape_position;
4744 sector_div(here_old, mddev->chunk_sectors *
4745 (old_disks-max_degraded));
4746 /* here_old is the first stripe that we might need to read
4747 * from */
4748 if (mddev->delta_disks == 0) {
4749 /* We cannot be sure it is safe to start an in-place
4750 * reshape. It is only safe if user-space if monitoring
4751 * and taking constant backups.
4752 * mdadm always starts a situation like this in
4753 * readonly mode so it can take control before
4754 * allowing any writes. So just check for that.
4755 */
4756 if ((here_new * mddev->new_chunk_sectors !=
4757 here_old * mddev->chunk_sectors) ||
4758 mddev->ro == 0) {
4759 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4760 " in read-only mode - aborting\n",
4761 mdname(mddev));
4762 return -EINVAL;
4763 }
4764 } else if (mddev->delta_disks < 0
4765 ? (here_new * mddev->new_chunk_sectors <=
4766 here_old * mddev->chunk_sectors)
4767 : (here_new * mddev->new_chunk_sectors >=
4768 here_old * mddev->chunk_sectors)) {
4769 /* Reading from the same stripe as writing to - bad */
4770 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4771 "auto-recovery - aborting.\n",
4772 mdname(mddev));
4773 return -EINVAL;
4774 }
4775 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4776 mdname(mddev));
4777 /* OK, we should be able to continue; */
4778 } else {
4779 BUG_ON(mddev->level != mddev->new_level);
4780 BUG_ON(mddev->layout != mddev->new_layout);
4781 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4782 BUG_ON(mddev->delta_disks != 0);
4783 }
4784
4785 if (mddev->private == NULL)
4786 conf = setup_conf(mddev);
4787 else
4788 conf = mddev->private;
4789
4790 if (IS_ERR(conf))
4791 return PTR_ERR(conf);
4792
4793 mddev->thread = conf->thread;
4794 conf->thread = NULL;
4795 mddev->private = conf;
4796
4797 /*
4798 * 0 for a fully functional array, 1 or 2 for a degraded array.
4799 */
4800 list_for_each_entry(rdev, &mddev->disks, same_set) {
4801 if (rdev->raid_disk < 0)
4802 continue;
4803 if (test_bit(In_sync, &rdev->flags)) {
4804 working_disks++;
4805 continue;
4806 }
4807 /* This disc is not fully in-sync. However if it
4808 * just stored parity (beyond the recovery_offset),
4809 * when we don't need to be concerned about the
4810 * array being dirty.
4811 * When reshape goes 'backwards', we never have
4812 * partially completed devices, so we only need
4813 * to worry about reshape going forwards.
4814 */
4815 /* Hack because v0.91 doesn't store recovery_offset properly. */
4816 if (mddev->major_version == 0 &&
4817 mddev->minor_version > 90)
4818 rdev->recovery_offset = reshape_offset;
4819
4820 if (rdev->recovery_offset < reshape_offset) {
4821 /* We need to check old and new layout */
4822 if (!only_parity(rdev->raid_disk,
4823 conf->algorithm,
4824 conf->raid_disks,
4825 conf->max_degraded))
4826 continue;
4827 }
4828 if (!only_parity(rdev->raid_disk,
4829 conf->prev_algo,
4830 conf->previous_raid_disks,
4831 conf->max_degraded))
4832 continue;
4833 dirty_parity_disks++;
4834 }
4835
4836 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4837 - working_disks);
4838
4839 if (has_failed(conf)) {
4840 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4841 " (%d/%d failed)\n",
4842 mdname(mddev), mddev->degraded, conf->raid_disks);
4843 goto abort;
4844 }
4845
4846 /* device size must be a multiple of chunk size */
4847 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4848 mddev->resync_max_sectors = mddev->dev_sectors;
4849
4850 if (mddev->degraded > dirty_parity_disks &&
4851 mddev->recovery_cp != MaxSector) {
4852 if (mddev->ok_start_degraded)
4853 printk(KERN_WARNING
4854 "md/raid:%s: starting dirty degraded array"
4855 " - data corruption possible.\n",
4856 mdname(mddev));
4857 else {
4858 printk(KERN_ERR
4859 "md/raid:%s: cannot start dirty degraded array.\n",
4860 mdname(mddev));
4861 goto abort;
4862 }
4863 }
4864
4865 if (mddev->degraded == 0)
4866 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4867 " devices, algorithm %d\n", mdname(mddev), conf->level,
4868 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4869 mddev->new_layout);
4870 else
4871 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4872 " out of %d devices, algorithm %d\n",
4873 mdname(mddev), conf->level,
4874 mddev->raid_disks - mddev->degraded,
4875 mddev->raid_disks, mddev->new_layout);
4876
4877 print_raid5_conf(conf);
4878
4879 if (conf->reshape_progress != MaxSector) {
4880 conf->reshape_safe = conf->reshape_progress;
4881 atomic_set(&conf->reshape_stripes, 0);
4882 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4883 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4884 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4885 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4886 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4887 "reshape");
4888 }
4889
4890
4891 /* Ok, everything is just fine now */
4892 if (mddev->to_remove == &raid5_attrs_group)
4893 mddev->to_remove = NULL;
4894 else if (mddev->kobj.sd &&
4895 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4896 printk(KERN_WARNING
4897 "raid5: failed to create sysfs attributes for %s\n",
4898 mdname(mddev));
4899 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4900
4901 if (mddev->queue) {
4902 int chunk_size;
4903 /* read-ahead size must cover two whole stripes, which
4904 * is 2 * (datadisks) * chunksize where 'n' is the
4905 * number of raid devices
4906 */
4907 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4908 int stripe = data_disks *
4909 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4910 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4911 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4912
4913 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4914
4915 mddev->queue->backing_dev_info.congested_data = mddev;
4916 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4917
4918 chunk_size = mddev->chunk_sectors << 9;
4919 blk_queue_io_min(mddev->queue, chunk_size);
4920 blk_queue_io_opt(mddev->queue, chunk_size *
4921 (conf->raid_disks - conf->max_degraded));
4922
4923 list_for_each_entry(rdev, &mddev->disks, same_set)
4924 disk_stack_limits(mddev->gendisk, rdev->bdev,
4925 rdev->data_offset << 9);
4926 }
4927
4928 return 0;
4929 abort:
4930 md_unregister_thread(mddev->thread);
4931 mddev->thread = NULL;
4932 if (conf) {
4933 print_raid5_conf(conf);
4934 free_conf(conf);
4935 }
4936 mddev->private = NULL;
4937 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4938 return -EIO;
4939 }
4940
4941 static int stop(mddev_t *mddev)
4942 {
4943 raid5_conf_t *conf = mddev->private;
4944
4945 md_unregister_thread(mddev->thread);
4946 mddev->thread = NULL;
4947 if (mddev->queue)
4948 mddev->queue->backing_dev_info.congested_fn = NULL;
4949 free_conf(conf);
4950 mddev->private = NULL;
4951 mddev->to_remove = &raid5_attrs_group;
4952 return 0;
4953 }
4954
4955 #ifdef DEBUG
4956 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4957 {
4958 int i;
4959
4960 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4961 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4962 seq_printf(seq, "sh %llu, count %d.\n",
4963 (unsigned long long)sh->sector, atomic_read(&sh->count));
4964 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4965 for (i = 0; i < sh->disks; i++) {
4966 seq_printf(seq, "(cache%d: %p %ld) ",
4967 i, sh->dev[i].page, sh->dev[i].flags);
4968 }
4969 seq_printf(seq, "\n");
4970 }
4971
4972 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4973 {
4974 struct stripe_head *sh;
4975 struct hlist_node *hn;
4976 int i;
4977
4978 spin_lock_irq(&conf->device_lock);
4979 for (i = 0; i < NR_HASH; i++) {
4980 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4981 if (sh->raid_conf != conf)
4982 continue;
4983 print_sh(seq, sh);
4984 }
4985 }
4986 spin_unlock_irq(&conf->device_lock);
4987 }
4988 #endif
4989
4990 static void status(struct seq_file *seq, mddev_t *mddev)
4991 {
4992 raid5_conf_t *conf = mddev->private;
4993 int i;
4994
4995 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4996 mddev->chunk_sectors / 2, mddev->layout);
4997 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4998 for (i = 0; i < conf->raid_disks; i++)
4999 seq_printf (seq, "%s",
5000 conf->disks[i].rdev &&
5001 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5002 seq_printf (seq, "]");
5003 #ifdef DEBUG
5004 seq_printf (seq, "\n");
5005 printall(seq, conf);
5006 #endif
5007 }
5008
5009 static void print_raid5_conf (raid5_conf_t *conf)
5010 {
5011 int i;
5012 struct disk_info *tmp;
5013
5014 printk(KERN_DEBUG "RAID conf printout:\n");
5015 if (!conf) {
5016 printk("(conf==NULL)\n");
5017 return;
5018 }
5019 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5020 conf->raid_disks,
5021 conf->raid_disks - conf->mddev->degraded);
5022
5023 for (i = 0; i < conf->raid_disks; i++) {
5024 char b[BDEVNAME_SIZE];
5025 tmp = conf->disks + i;
5026 if (tmp->rdev)
5027 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5028 i, !test_bit(Faulty, &tmp->rdev->flags),
5029 bdevname(tmp->rdev->bdev, b));
5030 }
5031 }
5032
5033 static int raid5_spare_active(mddev_t *mddev)
5034 {
5035 int i;
5036 raid5_conf_t *conf = mddev->private;
5037 struct disk_info *tmp;
5038 int count = 0;
5039 unsigned long flags;
5040
5041 for (i = 0; i < conf->raid_disks; i++) {
5042 tmp = conf->disks + i;
5043 if (tmp->rdev
5044 && tmp->rdev->recovery_offset == MaxSector
5045 && !test_bit(Faulty, &tmp->rdev->flags)
5046 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5047 count++;
5048 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5049 }
5050 }
5051 spin_lock_irqsave(&conf->device_lock, flags);
5052 mddev->degraded -= count;
5053 spin_unlock_irqrestore(&conf->device_lock, flags);
5054 print_raid5_conf(conf);
5055 return count;
5056 }
5057
5058 static int raid5_remove_disk(mddev_t *mddev, int number)
5059 {
5060 raid5_conf_t *conf = mddev->private;
5061 int err = 0;
5062 mdk_rdev_t *rdev;
5063 struct disk_info *p = conf->disks + number;
5064
5065 print_raid5_conf(conf);
5066 rdev = p->rdev;
5067 if (rdev) {
5068 if (number >= conf->raid_disks &&
5069 conf->reshape_progress == MaxSector)
5070 clear_bit(In_sync, &rdev->flags);
5071
5072 if (test_bit(In_sync, &rdev->flags) ||
5073 atomic_read(&rdev->nr_pending)) {
5074 err = -EBUSY;
5075 goto abort;
5076 }
5077 /* Only remove non-faulty devices if recovery
5078 * isn't possible.
5079 */
5080 if (!test_bit(Faulty, &rdev->flags) &&
5081 !has_failed(conf) &&
5082 number < conf->raid_disks) {
5083 err = -EBUSY;
5084 goto abort;
5085 }
5086 p->rdev = NULL;
5087 synchronize_rcu();
5088 if (atomic_read(&rdev->nr_pending)) {
5089 /* lost the race, try later */
5090 err = -EBUSY;
5091 p->rdev = rdev;
5092 }
5093 }
5094 abort:
5095
5096 print_raid5_conf(conf);
5097 return err;
5098 }
5099
5100 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5101 {
5102 raid5_conf_t *conf = mddev->private;
5103 int err = -EEXIST;
5104 int disk;
5105 struct disk_info *p;
5106 int first = 0;
5107 int last = conf->raid_disks - 1;
5108
5109 if (has_failed(conf))
5110 /* no point adding a device */
5111 return -EINVAL;
5112
5113 if (rdev->raid_disk >= 0)
5114 first = last = rdev->raid_disk;
5115
5116 /*
5117 * find the disk ... but prefer rdev->saved_raid_disk
5118 * if possible.
5119 */
5120 if (rdev->saved_raid_disk >= 0 &&
5121 rdev->saved_raid_disk >= first &&
5122 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5123 disk = rdev->saved_raid_disk;
5124 else
5125 disk = first;
5126 for ( ; disk <= last ; disk++)
5127 if ((p=conf->disks + disk)->rdev == NULL) {
5128 clear_bit(In_sync, &rdev->flags);
5129 rdev->raid_disk = disk;
5130 err = 0;
5131 if (rdev->saved_raid_disk != disk)
5132 conf->fullsync = 1;
5133 rcu_assign_pointer(p->rdev, rdev);
5134 break;
5135 }
5136 print_raid5_conf(conf);
5137 return err;
5138 }
5139
5140 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5141 {
5142 /* no resync is happening, and there is enough space
5143 * on all devices, so we can resize.
5144 * We need to make sure resync covers any new space.
5145 * If the array is shrinking we should possibly wait until
5146 * any io in the removed space completes, but it hardly seems
5147 * worth it.
5148 */
5149 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5150 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5151 mddev->raid_disks));
5152 if (mddev->array_sectors >
5153 raid5_size(mddev, sectors, mddev->raid_disks))
5154 return -EINVAL;
5155 set_capacity(mddev->gendisk, mddev->array_sectors);
5156 revalidate_disk(mddev->gendisk);
5157 if (sectors > mddev->dev_sectors &&
5158 mddev->recovery_cp > mddev->dev_sectors) {
5159 mddev->recovery_cp = mddev->dev_sectors;
5160 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5161 }
5162 mddev->dev_sectors = sectors;
5163 mddev->resync_max_sectors = sectors;
5164 return 0;
5165 }
5166
5167 static int check_stripe_cache(mddev_t *mddev)
5168 {
5169 /* Can only proceed if there are plenty of stripe_heads.
5170 * We need a minimum of one full stripe,, and for sensible progress
5171 * it is best to have about 4 times that.
5172 * If we require 4 times, then the default 256 4K stripe_heads will
5173 * allow for chunk sizes up to 256K, which is probably OK.
5174 * If the chunk size is greater, user-space should request more
5175 * stripe_heads first.
5176 */
5177 raid5_conf_t *conf = mddev->private;
5178 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5179 > conf->max_nr_stripes ||
5180 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5181 > conf->max_nr_stripes) {
5182 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5183 mdname(mddev),
5184 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5185 / STRIPE_SIZE)*4);
5186 return 0;
5187 }
5188 return 1;
5189 }
5190
5191 static int check_reshape(mddev_t *mddev)
5192 {
5193 raid5_conf_t *conf = mddev->private;
5194
5195 if (mddev->delta_disks == 0 &&
5196 mddev->new_layout == mddev->layout &&
5197 mddev->new_chunk_sectors == mddev->chunk_sectors)
5198 return 0; /* nothing to do */
5199 if (mddev->bitmap)
5200 /* Cannot grow a bitmap yet */
5201 return -EBUSY;
5202 if (has_failed(conf))
5203 return -EINVAL;
5204 if (mddev->delta_disks < 0) {
5205 /* We might be able to shrink, but the devices must
5206 * be made bigger first.
5207 * For raid6, 4 is the minimum size.
5208 * Otherwise 2 is the minimum
5209 */
5210 int min = 2;
5211 if (mddev->level == 6)
5212 min = 4;
5213 if (mddev->raid_disks + mddev->delta_disks < min)
5214 return -EINVAL;
5215 }
5216
5217 if (!check_stripe_cache(mddev))
5218 return -ENOSPC;
5219
5220 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5221 }
5222
5223 static int raid5_start_reshape(mddev_t *mddev)
5224 {
5225 raid5_conf_t *conf = mddev->private;
5226 mdk_rdev_t *rdev;
5227 int spares = 0;
5228 unsigned long flags;
5229
5230 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5231 return -EBUSY;
5232
5233 if (!check_stripe_cache(mddev))
5234 return -ENOSPC;
5235
5236 list_for_each_entry(rdev, &mddev->disks, same_set)
5237 if (!test_bit(In_sync, &rdev->flags)
5238 && !test_bit(Faulty, &rdev->flags))
5239 spares++;
5240
5241 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5242 /* Not enough devices even to make a degraded array
5243 * of that size
5244 */
5245 return -EINVAL;
5246
5247 /* Refuse to reduce size of the array. Any reductions in
5248 * array size must be through explicit setting of array_size
5249 * attribute.
5250 */
5251 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5252 < mddev->array_sectors) {
5253 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5254 "before number of disks\n", mdname(mddev));
5255 return -EINVAL;
5256 }
5257
5258 atomic_set(&conf->reshape_stripes, 0);
5259 spin_lock_irq(&conf->device_lock);
5260 conf->previous_raid_disks = conf->raid_disks;
5261 conf->raid_disks += mddev->delta_disks;
5262 conf->prev_chunk_sectors = conf->chunk_sectors;
5263 conf->chunk_sectors = mddev->new_chunk_sectors;
5264 conf->prev_algo = conf->algorithm;
5265 conf->algorithm = mddev->new_layout;
5266 if (mddev->delta_disks < 0)
5267 conf->reshape_progress = raid5_size(mddev, 0, 0);
5268 else
5269 conf->reshape_progress = 0;
5270 conf->reshape_safe = conf->reshape_progress;
5271 conf->generation++;
5272 spin_unlock_irq(&conf->device_lock);
5273
5274 /* Add some new drives, as many as will fit.
5275 * We know there are enough to make the newly sized array work.
5276 * Don't add devices if we are reducing the number of
5277 * devices in the array. This is because it is not possible
5278 * to correctly record the "partially reconstructed" state of
5279 * such devices during the reshape and confusion could result.
5280 */
5281 if (mddev->delta_disks >= 0) {
5282 int added_devices = 0;
5283 list_for_each_entry(rdev, &mddev->disks, same_set)
5284 if (rdev->raid_disk < 0 &&
5285 !test_bit(Faulty, &rdev->flags)) {
5286 if (raid5_add_disk(mddev, rdev) == 0) {
5287 char nm[20];
5288 if (rdev->raid_disk
5289 >= conf->previous_raid_disks) {
5290 set_bit(In_sync, &rdev->flags);
5291 added_devices++;
5292 } else
5293 rdev->recovery_offset = 0;
5294 sprintf(nm, "rd%d", rdev->raid_disk);
5295 if (sysfs_create_link(&mddev->kobj,
5296 &rdev->kobj, nm))
5297 /* Failure here is OK */;
5298 }
5299 } else if (rdev->raid_disk >= conf->previous_raid_disks
5300 && !test_bit(Faulty, &rdev->flags)) {
5301 /* This is a spare that was manually added */
5302 set_bit(In_sync, &rdev->flags);
5303 added_devices++;
5304 }
5305
5306 /* When a reshape changes the number of devices,
5307 * ->degraded is measured against the larger of the
5308 * pre and post number of devices.
5309 */
5310 spin_lock_irqsave(&conf->device_lock, flags);
5311 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5312 - added_devices;
5313 spin_unlock_irqrestore(&conf->device_lock, flags);
5314 }
5315 mddev->raid_disks = conf->raid_disks;
5316 mddev->reshape_position = conf->reshape_progress;
5317 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5318
5319 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5320 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5321 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5322 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5323 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5324 "reshape");
5325 if (!mddev->sync_thread) {
5326 mddev->recovery = 0;
5327 spin_lock_irq(&conf->device_lock);
5328 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5329 conf->reshape_progress = MaxSector;
5330 spin_unlock_irq(&conf->device_lock);
5331 return -EAGAIN;
5332 }
5333 conf->reshape_checkpoint = jiffies;
5334 md_wakeup_thread(mddev->sync_thread);
5335 md_new_event(mddev);
5336 return 0;
5337 }
5338
5339 /* This is called from the reshape thread and should make any
5340 * changes needed in 'conf'
5341 */
5342 static void end_reshape(raid5_conf_t *conf)
5343 {
5344
5345 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5346
5347 spin_lock_irq(&conf->device_lock);
5348 conf->previous_raid_disks = conf->raid_disks;
5349 conf->reshape_progress = MaxSector;
5350 spin_unlock_irq(&conf->device_lock);
5351 wake_up(&conf->wait_for_overlap);
5352
5353 /* read-ahead size must cover two whole stripes, which is
5354 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5355 */
5356 if (conf->mddev->queue) {
5357 int data_disks = conf->raid_disks - conf->max_degraded;
5358 int stripe = data_disks * ((conf->chunk_sectors << 9)
5359 / PAGE_SIZE);
5360 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5361 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5362 }
5363 }
5364 }
5365
5366 /* This is called from the raid5d thread with mddev_lock held.
5367 * It makes config changes to the device.
5368 */
5369 static void raid5_finish_reshape(mddev_t *mddev)
5370 {
5371 raid5_conf_t *conf = mddev->private;
5372
5373 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5374
5375 if (mddev->delta_disks > 0) {
5376 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5377 set_capacity(mddev->gendisk, mddev->array_sectors);
5378 revalidate_disk(mddev->gendisk);
5379 } else {
5380 int d;
5381 mddev->degraded = conf->raid_disks;
5382 for (d = 0; d < conf->raid_disks ; d++)
5383 if (conf->disks[d].rdev &&
5384 test_bit(In_sync,
5385 &conf->disks[d].rdev->flags))
5386 mddev->degraded--;
5387 for (d = conf->raid_disks ;
5388 d < conf->raid_disks - mddev->delta_disks;
5389 d++) {
5390 mdk_rdev_t *rdev = conf->disks[d].rdev;
5391 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5392 char nm[20];
5393 sprintf(nm, "rd%d", rdev->raid_disk);
5394 sysfs_remove_link(&mddev->kobj, nm);
5395 rdev->raid_disk = -1;
5396 }
5397 }
5398 }
5399 mddev->layout = conf->algorithm;
5400 mddev->chunk_sectors = conf->chunk_sectors;
5401 mddev->reshape_position = MaxSector;
5402 mddev->delta_disks = 0;
5403 }
5404 }
5405
5406 static void raid5_quiesce(mddev_t *mddev, int state)
5407 {
5408 raid5_conf_t *conf = mddev->private;
5409
5410 switch(state) {
5411 case 2: /* resume for a suspend */
5412 wake_up(&conf->wait_for_overlap);
5413 break;
5414
5415 case 1: /* stop all writes */
5416 spin_lock_irq(&conf->device_lock);
5417 /* '2' tells resync/reshape to pause so that all
5418 * active stripes can drain
5419 */
5420 conf->quiesce = 2;
5421 wait_event_lock_irq(conf->wait_for_stripe,
5422 atomic_read(&conf->active_stripes) == 0 &&
5423 atomic_read(&conf->active_aligned_reads) == 0,
5424 conf->device_lock, /* nothing */);
5425 conf->quiesce = 1;
5426 spin_unlock_irq(&conf->device_lock);
5427 /* allow reshape to continue */
5428 wake_up(&conf->wait_for_overlap);
5429 break;
5430
5431 case 0: /* re-enable writes */
5432 spin_lock_irq(&conf->device_lock);
5433 conf->quiesce = 0;
5434 wake_up(&conf->wait_for_stripe);
5435 wake_up(&conf->wait_for_overlap);
5436 spin_unlock_irq(&conf->device_lock);
5437 break;
5438 }
5439 }
5440
5441
5442 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5443 {
5444 struct raid0_private_data *raid0_priv = mddev->private;
5445 sector_t sectors;
5446
5447 /* for raid0 takeover only one zone is supported */
5448 if (raid0_priv->nr_strip_zones > 1) {
5449 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5450 mdname(mddev));
5451 return ERR_PTR(-EINVAL);
5452 }
5453
5454 sectors = raid0_priv->strip_zone[0].zone_end;
5455 sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5456 mddev->dev_sectors = sectors;
5457 mddev->new_level = level;
5458 mddev->new_layout = ALGORITHM_PARITY_N;
5459 mddev->new_chunk_sectors = mddev->chunk_sectors;
5460 mddev->raid_disks += 1;
5461 mddev->delta_disks = 1;
5462 /* make sure it will be not marked as dirty */
5463 mddev->recovery_cp = MaxSector;
5464
5465 return setup_conf(mddev);
5466 }
5467
5468
5469 static void *raid5_takeover_raid1(mddev_t *mddev)
5470 {
5471 int chunksect;
5472
5473 if (mddev->raid_disks != 2 ||
5474 mddev->degraded > 1)
5475 return ERR_PTR(-EINVAL);
5476
5477 /* Should check if there are write-behind devices? */
5478
5479 chunksect = 64*2; /* 64K by default */
5480
5481 /* The array must be an exact multiple of chunksize */
5482 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5483 chunksect >>= 1;
5484
5485 if ((chunksect<<9) < STRIPE_SIZE)
5486 /* array size does not allow a suitable chunk size */
5487 return ERR_PTR(-EINVAL);
5488
5489 mddev->new_level = 5;
5490 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5491 mddev->new_chunk_sectors = chunksect;
5492
5493 return setup_conf(mddev);
5494 }
5495
5496 static void *raid5_takeover_raid6(mddev_t *mddev)
5497 {
5498 int new_layout;
5499
5500 switch (mddev->layout) {
5501 case ALGORITHM_LEFT_ASYMMETRIC_6:
5502 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5503 break;
5504 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5505 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5506 break;
5507 case ALGORITHM_LEFT_SYMMETRIC_6:
5508 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5509 break;
5510 case ALGORITHM_RIGHT_SYMMETRIC_6:
5511 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5512 break;
5513 case ALGORITHM_PARITY_0_6:
5514 new_layout = ALGORITHM_PARITY_0;
5515 break;
5516 case ALGORITHM_PARITY_N:
5517 new_layout = ALGORITHM_PARITY_N;
5518 break;
5519 default:
5520 return ERR_PTR(-EINVAL);
5521 }
5522 mddev->new_level = 5;
5523 mddev->new_layout = new_layout;
5524 mddev->delta_disks = -1;
5525 mddev->raid_disks -= 1;
5526 return setup_conf(mddev);
5527 }
5528
5529
5530 static int raid5_check_reshape(mddev_t *mddev)
5531 {
5532 /* For a 2-drive array, the layout and chunk size can be changed
5533 * immediately as not restriping is needed.
5534 * For larger arrays we record the new value - after validation
5535 * to be used by a reshape pass.
5536 */
5537 raid5_conf_t *conf = mddev->private;
5538 int new_chunk = mddev->new_chunk_sectors;
5539
5540 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5541 return -EINVAL;
5542 if (new_chunk > 0) {
5543 if (!is_power_of_2(new_chunk))
5544 return -EINVAL;
5545 if (new_chunk < (PAGE_SIZE>>9))
5546 return -EINVAL;
5547 if (mddev->array_sectors & (new_chunk-1))
5548 /* not factor of array size */
5549 return -EINVAL;
5550 }
5551
5552 /* They look valid */
5553
5554 if (mddev->raid_disks == 2) {
5555 /* can make the change immediately */
5556 if (mddev->new_layout >= 0) {
5557 conf->algorithm = mddev->new_layout;
5558 mddev->layout = mddev->new_layout;
5559 }
5560 if (new_chunk > 0) {
5561 conf->chunk_sectors = new_chunk ;
5562 mddev->chunk_sectors = new_chunk;
5563 }
5564 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5565 md_wakeup_thread(mddev->thread);
5566 }
5567 return check_reshape(mddev);
5568 }
5569
5570 static int raid6_check_reshape(mddev_t *mddev)
5571 {
5572 int new_chunk = mddev->new_chunk_sectors;
5573
5574 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5575 return -EINVAL;
5576 if (new_chunk > 0) {
5577 if (!is_power_of_2(new_chunk))
5578 return -EINVAL;
5579 if (new_chunk < (PAGE_SIZE >> 9))
5580 return -EINVAL;
5581 if (mddev->array_sectors & (new_chunk-1))
5582 /* not factor of array size */
5583 return -EINVAL;
5584 }
5585
5586 /* They look valid */
5587 return check_reshape(mddev);
5588 }
5589
5590 static void *raid5_takeover(mddev_t *mddev)
5591 {
5592 /* raid5 can take over:
5593 * raid0 - if there is only one strip zone - make it a raid4 layout
5594 * raid1 - if there are two drives. We need to know the chunk size
5595 * raid4 - trivial - just use a raid4 layout.
5596 * raid6 - Providing it is a *_6 layout
5597 */
5598 if (mddev->level == 0)
5599 return raid45_takeover_raid0(mddev, 5);
5600 if (mddev->level == 1)
5601 return raid5_takeover_raid1(mddev);
5602 if (mddev->level == 4) {
5603 mddev->new_layout = ALGORITHM_PARITY_N;
5604 mddev->new_level = 5;
5605 return setup_conf(mddev);
5606 }
5607 if (mddev->level == 6)
5608 return raid5_takeover_raid6(mddev);
5609
5610 return ERR_PTR(-EINVAL);
5611 }
5612
5613 static void *raid4_takeover(mddev_t *mddev)
5614 {
5615 /* raid4 can take over:
5616 * raid0 - if there is only one strip zone
5617 * raid5 - if layout is right
5618 */
5619 if (mddev->level == 0)
5620 return raid45_takeover_raid0(mddev, 4);
5621 if (mddev->level == 5 &&
5622 mddev->layout == ALGORITHM_PARITY_N) {
5623 mddev->new_layout = 0;
5624 mddev->new_level = 4;
5625 return setup_conf(mddev);
5626 }
5627 return ERR_PTR(-EINVAL);
5628 }
5629
5630 static struct mdk_personality raid5_personality;
5631
5632 static void *raid6_takeover(mddev_t *mddev)
5633 {
5634 /* Currently can only take over a raid5. We map the
5635 * personality to an equivalent raid6 personality
5636 * with the Q block at the end.
5637 */
5638 int new_layout;
5639
5640 if (mddev->pers != &raid5_personality)
5641 return ERR_PTR(-EINVAL);
5642 if (mddev->degraded > 1)
5643 return ERR_PTR(-EINVAL);
5644 if (mddev->raid_disks > 253)
5645 return ERR_PTR(-EINVAL);
5646 if (mddev->raid_disks < 3)
5647 return ERR_PTR(-EINVAL);
5648
5649 switch (mddev->layout) {
5650 case ALGORITHM_LEFT_ASYMMETRIC:
5651 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5652 break;
5653 case ALGORITHM_RIGHT_ASYMMETRIC:
5654 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5655 break;
5656 case ALGORITHM_LEFT_SYMMETRIC:
5657 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5658 break;
5659 case ALGORITHM_RIGHT_SYMMETRIC:
5660 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5661 break;
5662 case ALGORITHM_PARITY_0:
5663 new_layout = ALGORITHM_PARITY_0_6;
5664 break;
5665 case ALGORITHM_PARITY_N:
5666 new_layout = ALGORITHM_PARITY_N;
5667 break;
5668 default:
5669 return ERR_PTR(-EINVAL);
5670 }
5671 mddev->new_level = 6;
5672 mddev->new_layout = new_layout;
5673 mddev->delta_disks = 1;
5674 mddev->raid_disks += 1;
5675 return setup_conf(mddev);
5676 }
5677
5678
5679 static struct mdk_personality raid6_personality =
5680 {
5681 .name = "raid6",
5682 .level = 6,
5683 .owner = THIS_MODULE,
5684 .make_request = make_request,
5685 .run = run,
5686 .stop = stop,
5687 .status = status,
5688 .error_handler = error,
5689 .hot_add_disk = raid5_add_disk,
5690 .hot_remove_disk= raid5_remove_disk,
5691 .spare_active = raid5_spare_active,
5692 .sync_request = sync_request,
5693 .resize = raid5_resize,
5694 .size = raid5_size,
5695 .check_reshape = raid6_check_reshape,
5696 .start_reshape = raid5_start_reshape,
5697 .finish_reshape = raid5_finish_reshape,
5698 .quiesce = raid5_quiesce,
5699 .takeover = raid6_takeover,
5700 };
5701 static struct mdk_personality raid5_personality =
5702 {
5703 .name = "raid5",
5704 .level = 5,
5705 .owner = THIS_MODULE,
5706 .make_request = make_request,
5707 .run = run,
5708 .stop = stop,
5709 .status = status,
5710 .error_handler = error,
5711 .hot_add_disk = raid5_add_disk,
5712 .hot_remove_disk= raid5_remove_disk,
5713 .spare_active = raid5_spare_active,
5714 .sync_request = sync_request,
5715 .resize = raid5_resize,
5716 .size = raid5_size,
5717 .check_reshape = raid5_check_reshape,
5718 .start_reshape = raid5_start_reshape,
5719 .finish_reshape = raid5_finish_reshape,
5720 .quiesce = raid5_quiesce,
5721 .takeover = raid5_takeover,
5722 };
5723
5724 static struct mdk_personality raid4_personality =
5725 {
5726 .name = "raid4",
5727 .level = 4,
5728 .owner = THIS_MODULE,
5729 .make_request = make_request,
5730 .run = run,
5731 .stop = stop,
5732 .status = status,
5733 .error_handler = error,
5734 .hot_add_disk = raid5_add_disk,
5735 .hot_remove_disk= raid5_remove_disk,
5736 .spare_active = raid5_spare_active,
5737 .sync_request = sync_request,
5738 .resize = raid5_resize,
5739 .size = raid5_size,
5740 .check_reshape = raid5_check_reshape,
5741 .start_reshape = raid5_start_reshape,
5742 .finish_reshape = raid5_finish_reshape,
5743 .quiesce = raid5_quiesce,
5744 .takeover = raid4_takeover,
5745 };
5746
5747 static int __init raid5_init(void)
5748 {
5749 register_md_personality(&raid6_personality);
5750 register_md_personality(&raid5_personality);
5751 register_md_personality(&raid4_personality);
5752 return 0;
5753 }
5754
5755 static void raid5_exit(void)
5756 {
5757 unregister_md_personality(&raid6_personality);
5758 unregister_md_personality(&raid5_personality);
5759 unregister_md_personality(&raid4_personality);
5760 }
5761
5762 module_init(raid5_init);
5763 module_exit(raid5_exit);
5764 MODULE_LICENSE("GPL");
5765 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5766 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5767 MODULE_ALIAS("md-raid5");
5768 MODULE_ALIAS("md-raid4");
5769 MODULE_ALIAS("md-level-5");
5770 MODULE_ALIAS("md-level-4");
5771 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5772 MODULE_ALIAS("md-raid6");
5773 MODULE_ALIAS("md-level-6");
5774
5775 /* This used to be two separate modules, they were: */
5776 MODULE_ALIAS("raid5");
5777 MODULE_ALIAS("raid6");