]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/md/raid5.c
Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static bool devices_handle_discard_safely = false;
68 module_param(devices_handle_discard_safely, bool, 0644);
69 MODULE_PARM_DESC(devices_handle_discard_safely,
70 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71 static struct workqueue_struct *raid5_wq;
72 /*
73 * Stripe cache
74 */
75
76 #define NR_STRIPES 256
77 #define STRIPE_SIZE PAGE_SIZE
78 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
79 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
80 #define IO_THRESHOLD 1
81 #define BYPASS_THRESHOLD 1
82 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
83 #define HASH_MASK (NR_HASH - 1)
84 #define MAX_STRIPE_BATCH 8
85
86 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
87 {
88 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
89 return &conf->stripe_hashtbl[hash];
90 }
91
92 static inline int stripe_hash_locks_hash(sector_t sect)
93 {
94 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
95 }
96
97 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99 spin_lock_irq(conf->hash_locks + hash);
100 spin_lock(&conf->device_lock);
101 }
102
103 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
104 {
105 spin_unlock(&conf->device_lock);
106 spin_unlock_irq(conf->hash_locks + hash);
107 }
108
109 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
110 {
111 int i;
112 local_irq_disable();
113 spin_lock(conf->hash_locks);
114 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
115 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
116 spin_lock(&conf->device_lock);
117 }
118
119 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
120 {
121 int i;
122 spin_unlock(&conf->device_lock);
123 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
124 spin_unlock(conf->hash_locks + i - 1);
125 local_irq_enable();
126 }
127
128 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
129 * order without overlap. There may be several bio's per stripe+device, and
130 * a bio could span several devices.
131 * When walking this list for a particular stripe+device, we must never proceed
132 * beyond a bio that extends past this device, as the next bio might no longer
133 * be valid.
134 * This function is used to determine the 'next' bio in the list, given the sector
135 * of the current stripe+device
136 */
137 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
138 {
139 int sectors = bio_sectors(bio);
140 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
141 return bio->bi_next;
142 else
143 return NULL;
144 }
145
146 /*
147 * We maintain a biased count of active stripes in the bottom 16 bits of
148 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
149 */
150 static inline int raid5_bi_processed_stripes(struct bio *bio)
151 {
152 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
153 return (atomic_read(segments) >> 16) & 0xffff;
154 }
155
156 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
157 {
158 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
159 return atomic_sub_return(1, segments) & 0xffff;
160 }
161
162 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
163 {
164 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
165 atomic_inc(segments);
166 }
167
168 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
169 unsigned int cnt)
170 {
171 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
172 int old, new;
173
174 do {
175 old = atomic_read(segments);
176 new = (old & 0xffff) | (cnt << 16);
177 } while (atomic_cmpxchg(segments, old, new) != old);
178 }
179
180 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
181 {
182 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
183 atomic_set(segments, cnt);
184 }
185
186 /* Find first data disk in a raid6 stripe */
187 static inline int raid6_d0(struct stripe_head *sh)
188 {
189 if (sh->ddf_layout)
190 /* ddf always start from first device */
191 return 0;
192 /* md starts just after Q block */
193 if (sh->qd_idx == sh->disks - 1)
194 return 0;
195 else
196 return sh->qd_idx + 1;
197 }
198 static inline int raid6_next_disk(int disk, int raid_disks)
199 {
200 disk++;
201 return (disk < raid_disks) ? disk : 0;
202 }
203
204 /* When walking through the disks in a raid5, starting at raid6_d0,
205 * We need to map each disk to a 'slot', where the data disks are slot
206 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
207 * is raid_disks-1. This help does that mapping.
208 */
209 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
210 int *count, int syndrome_disks)
211 {
212 int slot = *count;
213
214 if (sh->ddf_layout)
215 (*count)++;
216 if (idx == sh->pd_idx)
217 return syndrome_disks;
218 if (idx == sh->qd_idx)
219 return syndrome_disks + 1;
220 if (!sh->ddf_layout)
221 (*count)++;
222 return slot;
223 }
224
225 static void return_io(struct bio *return_bi)
226 {
227 struct bio *bi = return_bi;
228 while (bi) {
229
230 return_bi = bi->bi_next;
231 bi->bi_next = NULL;
232 bi->bi_iter.bi_size = 0;
233 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
234 bi, 0);
235 bio_endio(bi, 0);
236 bi = return_bi;
237 }
238 }
239
240 static void print_raid5_conf (struct r5conf *conf);
241
242 static int stripe_operations_active(struct stripe_head *sh)
243 {
244 return sh->check_state || sh->reconstruct_state ||
245 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
246 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
247 }
248
249 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
250 {
251 struct r5conf *conf = sh->raid_conf;
252 struct r5worker_group *group;
253 int thread_cnt;
254 int i, cpu = sh->cpu;
255
256 if (!cpu_online(cpu)) {
257 cpu = cpumask_any(cpu_online_mask);
258 sh->cpu = cpu;
259 }
260
261 if (list_empty(&sh->lru)) {
262 struct r5worker_group *group;
263 group = conf->worker_groups + cpu_to_group(cpu);
264 list_add_tail(&sh->lru, &group->handle_list);
265 group->stripes_cnt++;
266 sh->group = group;
267 }
268
269 if (conf->worker_cnt_per_group == 0) {
270 md_wakeup_thread(conf->mddev->thread);
271 return;
272 }
273
274 group = conf->worker_groups + cpu_to_group(sh->cpu);
275
276 group->workers[0].working = true;
277 /* at least one worker should run to avoid race */
278 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
279
280 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
281 /* wakeup more workers */
282 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
283 if (group->workers[i].working == false) {
284 group->workers[i].working = true;
285 queue_work_on(sh->cpu, raid5_wq,
286 &group->workers[i].work);
287 thread_cnt--;
288 }
289 }
290 }
291
292 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
293 struct list_head *temp_inactive_list)
294 {
295 BUG_ON(!list_empty(&sh->lru));
296 BUG_ON(atomic_read(&conf->active_stripes)==0);
297 if (test_bit(STRIPE_HANDLE, &sh->state)) {
298 if (test_bit(STRIPE_DELAYED, &sh->state) &&
299 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
300 list_add_tail(&sh->lru, &conf->delayed_list);
301 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
302 sh->bm_seq - conf->seq_write > 0)
303 list_add_tail(&sh->lru, &conf->bitmap_list);
304 else {
305 clear_bit(STRIPE_DELAYED, &sh->state);
306 clear_bit(STRIPE_BIT_DELAY, &sh->state);
307 if (conf->worker_cnt_per_group == 0) {
308 list_add_tail(&sh->lru, &conf->handle_list);
309 } else {
310 raid5_wakeup_stripe_thread(sh);
311 return;
312 }
313 }
314 md_wakeup_thread(conf->mddev->thread);
315 } else {
316 BUG_ON(stripe_operations_active(sh));
317 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
318 if (atomic_dec_return(&conf->preread_active_stripes)
319 < IO_THRESHOLD)
320 md_wakeup_thread(conf->mddev->thread);
321 atomic_dec(&conf->active_stripes);
322 if (!test_bit(STRIPE_EXPANDING, &sh->state))
323 list_add_tail(&sh->lru, temp_inactive_list);
324 }
325 }
326
327 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
328 struct list_head *temp_inactive_list)
329 {
330 if (atomic_dec_and_test(&sh->count))
331 do_release_stripe(conf, sh, temp_inactive_list);
332 }
333
334 /*
335 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
336 *
337 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
338 * given time. Adding stripes only takes device lock, while deleting stripes
339 * only takes hash lock.
340 */
341 static void release_inactive_stripe_list(struct r5conf *conf,
342 struct list_head *temp_inactive_list,
343 int hash)
344 {
345 int size;
346 bool do_wakeup = false;
347 unsigned long flags;
348
349 if (hash == NR_STRIPE_HASH_LOCKS) {
350 size = NR_STRIPE_HASH_LOCKS;
351 hash = NR_STRIPE_HASH_LOCKS - 1;
352 } else
353 size = 1;
354 while (size) {
355 struct list_head *list = &temp_inactive_list[size - 1];
356
357 /*
358 * We don't hold any lock here yet, get_active_stripe() might
359 * remove stripes from the list
360 */
361 if (!list_empty_careful(list)) {
362 spin_lock_irqsave(conf->hash_locks + hash, flags);
363 if (list_empty(conf->inactive_list + hash) &&
364 !list_empty(list))
365 atomic_dec(&conf->empty_inactive_list_nr);
366 list_splice_tail_init(list, conf->inactive_list + hash);
367 do_wakeup = true;
368 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
369 }
370 size--;
371 hash--;
372 }
373
374 if (do_wakeup) {
375 wake_up(&conf->wait_for_stripe);
376 if (conf->retry_read_aligned)
377 md_wakeup_thread(conf->mddev->thread);
378 }
379 }
380
381 /* should hold conf->device_lock already */
382 static int release_stripe_list(struct r5conf *conf,
383 struct list_head *temp_inactive_list)
384 {
385 struct stripe_head *sh;
386 int count = 0;
387 struct llist_node *head;
388
389 head = llist_del_all(&conf->released_stripes);
390 head = llist_reverse_order(head);
391 while (head) {
392 int hash;
393
394 sh = llist_entry(head, struct stripe_head, release_list);
395 head = llist_next(head);
396 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
397 smp_mb();
398 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
399 /*
400 * Don't worry the bit is set here, because if the bit is set
401 * again, the count is always > 1. This is true for
402 * STRIPE_ON_UNPLUG_LIST bit too.
403 */
404 hash = sh->hash_lock_index;
405 __release_stripe(conf, sh, &temp_inactive_list[hash]);
406 count++;
407 }
408
409 return count;
410 }
411
412 static void release_stripe(struct stripe_head *sh)
413 {
414 struct r5conf *conf = sh->raid_conf;
415 unsigned long flags;
416 struct list_head list;
417 int hash;
418 bool wakeup;
419
420 /* Avoid release_list until the last reference.
421 */
422 if (atomic_add_unless(&sh->count, -1, 1))
423 return;
424
425 if (unlikely(!conf->mddev->thread) ||
426 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
427 goto slow_path;
428 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
429 if (wakeup)
430 md_wakeup_thread(conf->mddev->thread);
431 return;
432 slow_path:
433 local_irq_save(flags);
434 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
435 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
436 INIT_LIST_HEAD(&list);
437 hash = sh->hash_lock_index;
438 do_release_stripe(conf, sh, &list);
439 spin_unlock(&conf->device_lock);
440 release_inactive_stripe_list(conf, &list, hash);
441 }
442 local_irq_restore(flags);
443 }
444
445 static inline void remove_hash(struct stripe_head *sh)
446 {
447 pr_debug("remove_hash(), stripe %llu\n",
448 (unsigned long long)sh->sector);
449
450 hlist_del_init(&sh->hash);
451 }
452
453 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
454 {
455 struct hlist_head *hp = stripe_hash(conf, sh->sector);
456
457 pr_debug("insert_hash(), stripe %llu\n",
458 (unsigned long long)sh->sector);
459
460 hlist_add_head(&sh->hash, hp);
461 }
462
463 /* find an idle stripe, make sure it is unhashed, and return it. */
464 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
465 {
466 struct stripe_head *sh = NULL;
467 struct list_head *first;
468
469 if (list_empty(conf->inactive_list + hash))
470 goto out;
471 first = (conf->inactive_list + hash)->next;
472 sh = list_entry(first, struct stripe_head, lru);
473 list_del_init(first);
474 remove_hash(sh);
475 atomic_inc(&conf->active_stripes);
476 BUG_ON(hash != sh->hash_lock_index);
477 if (list_empty(conf->inactive_list + hash))
478 atomic_inc(&conf->empty_inactive_list_nr);
479 out:
480 return sh;
481 }
482
483 static void shrink_buffers(struct stripe_head *sh)
484 {
485 struct page *p;
486 int i;
487 int num = sh->raid_conf->pool_size;
488
489 for (i = 0; i < num ; i++) {
490 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
491 p = sh->dev[i].page;
492 if (!p)
493 continue;
494 sh->dev[i].page = NULL;
495 put_page(p);
496 }
497 }
498
499 static int grow_buffers(struct stripe_head *sh)
500 {
501 int i;
502 int num = sh->raid_conf->pool_size;
503
504 for (i = 0; i < num; i++) {
505 struct page *page;
506
507 if (!(page = alloc_page(GFP_KERNEL))) {
508 return 1;
509 }
510 sh->dev[i].page = page;
511 sh->dev[i].orig_page = page;
512 }
513 return 0;
514 }
515
516 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
517 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
518 struct stripe_head *sh);
519
520 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
521 {
522 struct r5conf *conf = sh->raid_conf;
523 int i, seq;
524
525 BUG_ON(atomic_read(&sh->count) != 0);
526 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
527 BUG_ON(stripe_operations_active(sh));
528
529 pr_debug("init_stripe called, stripe %llu\n",
530 (unsigned long long)sector);
531 retry:
532 seq = read_seqcount_begin(&conf->gen_lock);
533 sh->generation = conf->generation - previous;
534 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535 sh->sector = sector;
536 stripe_set_idx(sector, conf, previous, sh);
537 sh->state = 0;
538
539 for (i = sh->disks; i--; ) {
540 struct r5dev *dev = &sh->dev[i];
541
542 if (dev->toread || dev->read || dev->towrite || dev->written ||
543 test_bit(R5_LOCKED, &dev->flags)) {
544 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545 (unsigned long long)sh->sector, i, dev->toread,
546 dev->read, dev->towrite, dev->written,
547 test_bit(R5_LOCKED, &dev->flags));
548 WARN_ON(1);
549 }
550 dev->flags = 0;
551 raid5_build_block(sh, i, previous);
552 }
553 if (read_seqcount_retry(&conf->gen_lock, seq))
554 goto retry;
555 insert_hash(conf, sh);
556 sh->cpu = smp_processor_id();
557 }
558
559 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
560 short generation)
561 {
562 struct stripe_head *sh;
563
564 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
565 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
566 if (sh->sector == sector && sh->generation == generation)
567 return sh;
568 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
569 return NULL;
570 }
571
572 /*
573 * Need to check if array has failed when deciding whether to:
574 * - start an array
575 * - remove non-faulty devices
576 * - add a spare
577 * - allow a reshape
578 * This determination is simple when no reshape is happening.
579 * However if there is a reshape, we need to carefully check
580 * both the before and after sections.
581 * This is because some failed devices may only affect one
582 * of the two sections, and some non-in_sync devices may
583 * be insync in the section most affected by failed devices.
584 */
585 static int calc_degraded(struct r5conf *conf)
586 {
587 int degraded, degraded2;
588 int i;
589
590 rcu_read_lock();
591 degraded = 0;
592 for (i = 0; i < conf->previous_raid_disks; i++) {
593 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
594 if (rdev && test_bit(Faulty, &rdev->flags))
595 rdev = rcu_dereference(conf->disks[i].replacement);
596 if (!rdev || test_bit(Faulty, &rdev->flags))
597 degraded++;
598 else if (test_bit(In_sync, &rdev->flags))
599 ;
600 else
601 /* not in-sync or faulty.
602 * If the reshape increases the number of devices,
603 * this is being recovered by the reshape, so
604 * this 'previous' section is not in_sync.
605 * If the number of devices is being reduced however,
606 * the device can only be part of the array if
607 * we are reverting a reshape, so this section will
608 * be in-sync.
609 */
610 if (conf->raid_disks >= conf->previous_raid_disks)
611 degraded++;
612 }
613 rcu_read_unlock();
614 if (conf->raid_disks == conf->previous_raid_disks)
615 return degraded;
616 rcu_read_lock();
617 degraded2 = 0;
618 for (i = 0; i < conf->raid_disks; i++) {
619 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
620 if (rdev && test_bit(Faulty, &rdev->flags))
621 rdev = rcu_dereference(conf->disks[i].replacement);
622 if (!rdev || test_bit(Faulty, &rdev->flags))
623 degraded2++;
624 else if (test_bit(In_sync, &rdev->flags))
625 ;
626 else
627 /* not in-sync or faulty.
628 * If reshape increases the number of devices, this
629 * section has already been recovered, else it
630 * almost certainly hasn't.
631 */
632 if (conf->raid_disks <= conf->previous_raid_disks)
633 degraded2++;
634 }
635 rcu_read_unlock();
636 if (degraded2 > degraded)
637 return degraded2;
638 return degraded;
639 }
640
641 static int has_failed(struct r5conf *conf)
642 {
643 int degraded;
644
645 if (conf->mddev->reshape_position == MaxSector)
646 return conf->mddev->degraded > conf->max_degraded;
647
648 degraded = calc_degraded(conf);
649 if (degraded > conf->max_degraded)
650 return 1;
651 return 0;
652 }
653
654 static struct stripe_head *
655 get_active_stripe(struct r5conf *conf, sector_t sector,
656 int previous, int noblock, int noquiesce)
657 {
658 struct stripe_head *sh;
659 int hash = stripe_hash_locks_hash(sector);
660
661 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
662
663 spin_lock_irq(conf->hash_locks + hash);
664
665 do {
666 wait_event_lock_irq(conf->wait_for_stripe,
667 conf->quiesce == 0 || noquiesce,
668 *(conf->hash_locks + hash));
669 sh = __find_stripe(conf, sector, conf->generation - previous);
670 if (!sh) {
671 if (!conf->inactive_blocked)
672 sh = get_free_stripe(conf, hash);
673 if (noblock && sh == NULL)
674 break;
675 if (!sh) {
676 conf->inactive_blocked = 1;
677 wait_event_lock_irq(
678 conf->wait_for_stripe,
679 !list_empty(conf->inactive_list + hash) &&
680 (atomic_read(&conf->active_stripes)
681 < (conf->max_nr_stripes * 3 / 4)
682 || !conf->inactive_blocked),
683 *(conf->hash_locks + hash));
684 conf->inactive_blocked = 0;
685 } else {
686 init_stripe(sh, sector, previous);
687 atomic_inc(&sh->count);
688 }
689 } else if (!atomic_inc_not_zero(&sh->count)) {
690 spin_lock(&conf->device_lock);
691 if (!atomic_read(&sh->count)) {
692 if (!test_bit(STRIPE_HANDLE, &sh->state))
693 atomic_inc(&conf->active_stripes);
694 BUG_ON(list_empty(&sh->lru) &&
695 !test_bit(STRIPE_EXPANDING, &sh->state));
696 list_del_init(&sh->lru);
697 if (sh->group) {
698 sh->group->stripes_cnt--;
699 sh->group = NULL;
700 }
701 }
702 atomic_inc(&sh->count);
703 spin_unlock(&conf->device_lock);
704 }
705 } while (sh == NULL);
706
707 spin_unlock_irq(conf->hash_locks + hash);
708 return sh;
709 }
710
711 /* Determine if 'data_offset' or 'new_data_offset' should be used
712 * in this stripe_head.
713 */
714 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
715 {
716 sector_t progress = conf->reshape_progress;
717 /* Need a memory barrier to make sure we see the value
718 * of conf->generation, or ->data_offset that was set before
719 * reshape_progress was updated.
720 */
721 smp_rmb();
722 if (progress == MaxSector)
723 return 0;
724 if (sh->generation == conf->generation - 1)
725 return 0;
726 /* We are in a reshape, and this is a new-generation stripe,
727 * so use new_data_offset.
728 */
729 return 1;
730 }
731
732 static void
733 raid5_end_read_request(struct bio *bi, int error);
734 static void
735 raid5_end_write_request(struct bio *bi, int error);
736
737 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
738 {
739 struct r5conf *conf = sh->raid_conf;
740 int i, disks = sh->disks;
741
742 might_sleep();
743
744 for (i = disks; i--; ) {
745 int rw;
746 int replace_only = 0;
747 struct bio *bi, *rbi;
748 struct md_rdev *rdev, *rrdev = NULL;
749 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
750 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
751 rw = WRITE_FUA;
752 else
753 rw = WRITE;
754 if (test_bit(R5_Discard, &sh->dev[i].flags))
755 rw |= REQ_DISCARD;
756 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
757 rw = READ;
758 else if (test_and_clear_bit(R5_WantReplace,
759 &sh->dev[i].flags)) {
760 rw = WRITE;
761 replace_only = 1;
762 } else
763 continue;
764 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
765 rw |= REQ_SYNC;
766
767 bi = &sh->dev[i].req;
768 rbi = &sh->dev[i].rreq; /* For writing to replacement */
769
770 rcu_read_lock();
771 rrdev = rcu_dereference(conf->disks[i].replacement);
772 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
773 rdev = rcu_dereference(conf->disks[i].rdev);
774 if (!rdev) {
775 rdev = rrdev;
776 rrdev = NULL;
777 }
778 if (rw & WRITE) {
779 if (replace_only)
780 rdev = NULL;
781 if (rdev == rrdev)
782 /* We raced and saw duplicates */
783 rrdev = NULL;
784 } else {
785 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
786 rdev = rrdev;
787 rrdev = NULL;
788 }
789
790 if (rdev && test_bit(Faulty, &rdev->flags))
791 rdev = NULL;
792 if (rdev)
793 atomic_inc(&rdev->nr_pending);
794 if (rrdev && test_bit(Faulty, &rrdev->flags))
795 rrdev = NULL;
796 if (rrdev)
797 atomic_inc(&rrdev->nr_pending);
798 rcu_read_unlock();
799
800 /* We have already checked bad blocks for reads. Now
801 * need to check for writes. We never accept write errors
802 * on the replacement, so we don't to check rrdev.
803 */
804 while ((rw & WRITE) && rdev &&
805 test_bit(WriteErrorSeen, &rdev->flags)) {
806 sector_t first_bad;
807 int bad_sectors;
808 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
809 &first_bad, &bad_sectors);
810 if (!bad)
811 break;
812
813 if (bad < 0) {
814 set_bit(BlockedBadBlocks, &rdev->flags);
815 if (!conf->mddev->external &&
816 conf->mddev->flags) {
817 /* It is very unlikely, but we might
818 * still need to write out the
819 * bad block log - better give it
820 * a chance*/
821 md_check_recovery(conf->mddev);
822 }
823 /*
824 * Because md_wait_for_blocked_rdev
825 * will dec nr_pending, we must
826 * increment it first.
827 */
828 atomic_inc(&rdev->nr_pending);
829 md_wait_for_blocked_rdev(rdev, conf->mddev);
830 } else {
831 /* Acknowledged bad block - skip the write */
832 rdev_dec_pending(rdev, conf->mddev);
833 rdev = NULL;
834 }
835 }
836
837 if (rdev) {
838 if (s->syncing || s->expanding || s->expanded
839 || s->replacing)
840 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
841
842 set_bit(STRIPE_IO_STARTED, &sh->state);
843
844 bio_reset(bi);
845 bi->bi_bdev = rdev->bdev;
846 bi->bi_rw = rw;
847 bi->bi_end_io = (rw & WRITE)
848 ? raid5_end_write_request
849 : raid5_end_read_request;
850 bi->bi_private = sh;
851
852 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
853 __func__, (unsigned long long)sh->sector,
854 bi->bi_rw, i);
855 atomic_inc(&sh->count);
856 if (use_new_offset(conf, sh))
857 bi->bi_iter.bi_sector = (sh->sector
858 + rdev->new_data_offset);
859 else
860 bi->bi_iter.bi_sector = (sh->sector
861 + rdev->data_offset);
862 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
863 bi->bi_rw |= REQ_NOMERGE;
864
865 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
866 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
867 sh->dev[i].vec.bv_page = sh->dev[i].page;
868 bi->bi_vcnt = 1;
869 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
870 bi->bi_io_vec[0].bv_offset = 0;
871 bi->bi_iter.bi_size = STRIPE_SIZE;
872 /*
873 * If this is discard request, set bi_vcnt 0. We don't
874 * want to confuse SCSI because SCSI will replace payload
875 */
876 if (rw & REQ_DISCARD)
877 bi->bi_vcnt = 0;
878 if (rrdev)
879 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
880
881 if (conf->mddev->gendisk)
882 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
883 bi, disk_devt(conf->mddev->gendisk),
884 sh->dev[i].sector);
885 generic_make_request(bi);
886 }
887 if (rrdev) {
888 if (s->syncing || s->expanding || s->expanded
889 || s->replacing)
890 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
891
892 set_bit(STRIPE_IO_STARTED, &sh->state);
893
894 bio_reset(rbi);
895 rbi->bi_bdev = rrdev->bdev;
896 rbi->bi_rw = rw;
897 BUG_ON(!(rw & WRITE));
898 rbi->bi_end_io = raid5_end_write_request;
899 rbi->bi_private = sh;
900
901 pr_debug("%s: for %llu schedule op %ld on "
902 "replacement disc %d\n",
903 __func__, (unsigned long long)sh->sector,
904 rbi->bi_rw, i);
905 atomic_inc(&sh->count);
906 if (use_new_offset(conf, sh))
907 rbi->bi_iter.bi_sector = (sh->sector
908 + rrdev->new_data_offset);
909 else
910 rbi->bi_iter.bi_sector = (sh->sector
911 + rrdev->data_offset);
912 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
913 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
914 sh->dev[i].rvec.bv_page = sh->dev[i].page;
915 rbi->bi_vcnt = 1;
916 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
917 rbi->bi_io_vec[0].bv_offset = 0;
918 rbi->bi_iter.bi_size = STRIPE_SIZE;
919 /*
920 * If this is discard request, set bi_vcnt 0. We don't
921 * want to confuse SCSI because SCSI will replace payload
922 */
923 if (rw & REQ_DISCARD)
924 rbi->bi_vcnt = 0;
925 if (conf->mddev->gendisk)
926 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
927 rbi, disk_devt(conf->mddev->gendisk),
928 sh->dev[i].sector);
929 generic_make_request(rbi);
930 }
931 if (!rdev && !rrdev) {
932 if (rw & WRITE)
933 set_bit(STRIPE_DEGRADED, &sh->state);
934 pr_debug("skip op %ld on disc %d for sector %llu\n",
935 bi->bi_rw, i, (unsigned long long)sh->sector);
936 clear_bit(R5_LOCKED, &sh->dev[i].flags);
937 set_bit(STRIPE_HANDLE, &sh->state);
938 }
939 }
940 }
941
942 static struct dma_async_tx_descriptor *
943 async_copy_data(int frombio, struct bio *bio, struct page **page,
944 sector_t sector, struct dma_async_tx_descriptor *tx,
945 struct stripe_head *sh)
946 {
947 struct bio_vec bvl;
948 struct bvec_iter iter;
949 struct page *bio_page;
950 int page_offset;
951 struct async_submit_ctl submit;
952 enum async_tx_flags flags = 0;
953
954 if (bio->bi_iter.bi_sector >= sector)
955 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
956 else
957 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
958
959 if (frombio)
960 flags |= ASYNC_TX_FENCE;
961 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
962
963 bio_for_each_segment(bvl, bio, iter) {
964 int len = bvl.bv_len;
965 int clen;
966 int b_offset = 0;
967
968 if (page_offset < 0) {
969 b_offset = -page_offset;
970 page_offset += b_offset;
971 len -= b_offset;
972 }
973
974 if (len > 0 && page_offset + len > STRIPE_SIZE)
975 clen = STRIPE_SIZE - page_offset;
976 else
977 clen = len;
978
979 if (clen > 0) {
980 b_offset += bvl.bv_offset;
981 bio_page = bvl.bv_page;
982 if (frombio) {
983 if (sh->raid_conf->skip_copy &&
984 b_offset == 0 && page_offset == 0 &&
985 clen == STRIPE_SIZE)
986 *page = bio_page;
987 else
988 tx = async_memcpy(*page, bio_page, page_offset,
989 b_offset, clen, &submit);
990 } else
991 tx = async_memcpy(bio_page, *page, b_offset,
992 page_offset, clen, &submit);
993 }
994 /* chain the operations */
995 submit.depend_tx = tx;
996
997 if (clen < len) /* hit end of page */
998 break;
999 page_offset += len;
1000 }
1001
1002 return tx;
1003 }
1004
1005 static void ops_complete_biofill(void *stripe_head_ref)
1006 {
1007 struct stripe_head *sh = stripe_head_ref;
1008 struct bio *return_bi = NULL;
1009 int i;
1010
1011 pr_debug("%s: stripe %llu\n", __func__,
1012 (unsigned long long)sh->sector);
1013
1014 /* clear completed biofills */
1015 for (i = sh->disks; i--; ) {
1016 struct r5dev *dev = &sh->dev[i];
1017
1018 /* acknowledge completion of a biofill operation */
1019 /* and check if we need to reply to a read request,
1020 * new R5_Wantfill requests are held off until
1021 * !STRIPE_BIOFILL_RUN
1022 */
1023 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1024 struct bio *rbi, *rbi2;
1025
1026 BUG_ON(!dev->read);
1027 rbi = dev->read;
1028 dev->read = NULL;
1029 while (rbi && rbi->bi_iter.bi_sector <
1030 dev->sector + STRIPE_SECTORS) {
1031 rbi2 = r5_next_bio(rbi, dev->sector);
1032 if (!raid5_dec_bi_active_stripes(rbi)) {
1033 rbi->bi_next = return_bi;
1034 return_bi = rbi;
1035 }
1036 rbi = rbi2;
1037 }
1038 }
1039 }
1040 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1041
1042 return_io(return_bi);
1043
1044 set_bit(STRIPE_HANDLE, &sh->state);
1045 release_stripe(sh);
1046 }
1047
1048 static void ops_run_biofill(struct stripe_head *sh)
1049 {
1050 struct dma_async_tx_descriptor *tx = NULL;
1051 struct async_submit_ctl submit;
1052 int i;
1053
1054 pr_debug("%s: stripe %llu\n", __func__,
1055 (unsigned long long)sh->sector);
1056
1057 for (i = sh->disks; i--; ) {
1058 struct r5dev *dev = &sh->dev[i];
1059 if (test_bit(R5_Wantfill, &dev->flags)) {
1060 struct bio *rbi;
1061 spin_lock_irq(&sh->stripe_lock);
1062 dev->read = rbi = dev->toread;
1063 dev->toread = NULL;
1064 spin_unlock_irq(&sh->stripe_lock);
1065 while (rbi && rbi->bi_iter.bi_sector <
1066 dev->sector + STRIPE_SECTORS) {
1067 tx = async_copy_data(0, rbi, &dev->page,
1068 dev->sector, tx, sh);
1069 rbi = r5_next_bio(rbi, dev->sector);
1070 }
1071 }
1072 }
1073
1074 atomic_inc(&sh->count);
1075 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1076 async_trigger_callback(&submit);
1077 }
1078
1079 static void mark_target_uptodate(struct stripe_head *sh, int target)
1080 {
1081 struct r5dev *tgt;
1082
1083 if (target < 0)
1084 return;
1085
1086 tgt = &sh->dev[target];
1087 set_bit(R5_UPTODATE, &tgt->flags);
1088 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1089 clear_bit(R5_Wantcompute, &tgt->flags);
1090 }
1091
1092 static void ops_complete_compute(void *stripe_head_ref)
1093 {
1094 struct stripe_head *sh = stripe_head_ref;
1095
1096 pr_debug("%s: stripe %llu\n", __func__,
1097 (unsigned long long)sh->sector);
1098
1099 /* mark the computed target(s) as uptodate */
1100 mark_target_uptodate(sh, sh->ops.target);
1101 mark_target_uptodate(sh, sh->ops.target2);
1102
1103 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1104 if (sh->check_state == check_state_compute_run)
1105 sh->check_state = check_state_compute_result;
1106 set_bit(STRIPE_HANDLE, &sh->state);
1107 release_stripe(sh);
1108 }
1109
1110 /* return a pointer to the address conversion region of the scribble buffer */
1111 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1112 struct raid5_percpu *percpu)
1113 {
1114 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1115 }
1116
1117 static struct dma_async_tx_descriptor *
1118 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1119 {
1120 int disks = sh->disks;
1121 struct page **xor_srcs = percpu->scribble;
1122 int target = sh->ops.target;
1123 struct r5dev *tgt = &sh->dev[target];
1124 struct page *xor_dest = tgt->page;
1125 int count = 0;
1126 struct dma_async_tx_descriptor *tx;
1127 struct async_submit_ctl submit;
1128 int i;
1129
1130 pr_debug("%s: stripe %llu block: %d\n",
1131 __func__, (unsigned long long)sh->sector, target);
1132 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1133
1134 for (i = disks; i--; )
1135 if (i != target)
1136 xor_srcs[count++] = sh->dev[i].page;
1137
1138 atomic_inc(&sh->count);
1139
1140 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1141 ops_complete_compute, sh, to_addr_conv(sh, percpu));
1142 if (unlikely(count == 1))
1143 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1144 else
1145 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1146
1147 return tx;
1148 }
1149
1150 /* set_syndrome_sources - populate source buffers for gen_syndrome
1151 * @srcs - (struct page *) array of size sh->disks
1152 * @sh - stripe_head to parse
1153 *
1154 * Populates srcs in proper layout order for the stripe and returns the
1155 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1156 * destination buffer is recorded in srcs[count] and the Q destination
1157 * is recorded in srcs[count+1]].
1158 */
1159 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1160 {
1161 int disks = sh->disks;
1162 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1163 int d0_idx = raid6_d0(sh);
1164 int count;
1165 int i;
1166
1167 for (i = 0; i < disks; i++)
1168 srcs[i] = NULL;
1169
1170 count = 0;
1171 i = d0_idx;
1172 do {
1173 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1174
1175 srcs[slot] = sh->dev[i].page;
1176 i = raid6_next_disk(i, disks);
1177 } while (i != d0_idx);
1178
1179 return syndrome_disks;
1180 }
1181
1182 static struct dma_async_tx_descriptor *
1183 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1184 {
1185 int disks = sh->disks;
1186 struct page **blocks = percpu->scribble;
1187 int target;
1188 int qd_idx = sh->qd_idx;
1189 struct dma_async_tx_descriptor *tx;
1190 struct async_submit_ctl submit;
1191 struct r5dev *tgt;
1192 struct page *dest;
1193 int i;
1194 int count;
1195
1196 if (sh->ops.target < 0)
1197 target = sh->ops.target2;
1198 else if (sh->ops.target2 < 0)
1199 target = sh->ops.target;
1200 else
1201 /* we should only have one valid target */
1202 BUG();
1203 BUG_ON(target < 0);
1204 pr_debug("%s: stripe %llu block: %d\n",
1205 __func__, (unsigned long long)sh->sector, target);
1206
1207 tgt = &sh->dev[target];
1208 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1209 dest = tgt->page;
1210
1211 atomic_inc(&sh->count);
1212
1213 if (target == qd_idx) {
1214 count = set_syndrome_sources(blocks, sh);
1215 blocks[count] = NULL; /* regenerating p is not necessary */
1216 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1217 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1218 ops_complete_compute, sh,
1219 to_addr_conv(sh, percpu));
1220 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1221 } else {
1222 /* Compute any data- or p-drive using XOR */
1223 count = 0;
1224 for (i = disks; i-- ; ) {
1225 if (i == target || i == qd_idx)
1226 continue;
1227 blocks[count++] = sh->dev[i].page;
1228 }
1229
1230 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1231 NULL, ops_complete_compute, sh,
1232 to_addr_conv(sh, percpu));
1233 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1234 }
1235
1236 return tx;
1237 }
1238
1239 static struct dma_async_tx_descriptor *
1240 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1241 {
1242 int i, count, disks = sh->disks;
1243 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1244 int d0_idx = raid6_d0(sh);
1245 int faila = -1, failb = -1;
1246 int target = sh->ops.target;
1247 int target2 = sh->ops.target2;
1248 struct r5dev *tgt = &sh->dev[target];
1249 struct r5dev *tgt2 = &sh->dev[target2];
1250 struct dma_async_tx_descriptor *tx;
1251 struct page **blocks = percpu->scribble;
1252 struct async_submit_ctl submit;
1253
1254 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1255 __func__, (unsigned long long)sh->sector, target, target2);
1256 BUG_ON(target < 0 || target2 < 0);
1257 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1258 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1259
1260 /* we need to open-code set_syndrome_sources to handle the
1261 * slot number conversion for 'faila' and 'failb'
1262 */
1263 for (i = 0; i < disks ; i++)
1264 blocks[i] = NULL;
1265 count = 0;
1266 i = d0_idx;
1267 do {
1268 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1269
1270 blocks[slot] = sh->dev[i].page;
1271
1272 if (i == target)
1273 faila = slot;
1274 if (i == target2)
1275 failb = slot;
1276 i = raid6_next_disk(i, disks);
1277 } while (i != d0_idx);
1278
1279 BUG_ON(faila == failb);
1280 if (failb < faila)
1281 swap(faila, failb);
1282 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1283 __func__, (unsigned long long)sh->sector, faila, failb);
1284
1285 atomic_inc(&sh->count);
1286
1287 if (failb == syndrome_disks+1) {
1288 /* Q disk is one of the missing disks */
1289 if (faila == syndrome_disks) {
1290 /* Missing P+Q, just recompute */
1291 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1292 ops_complete_compute, sh,
1293 to_addr_conv(sh, percpu));
1294 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1295 STRIPE_SIZE, &submit);
1296 } else {
1297 struct page *dest;
1298 int data_target;
1299 int qd_idx = sh->qd_idx;
1300
1301 /* Missing D+Q: recompute D from P, then recompute Q */
1302 if (target == qd_idx)
1303 data_target = target2;
1304 else
1305 data_target = target;
1306
1307 count = 0;
1308 for (i = disks; i-- ; ) {
1309 if (i == data_target || i == qd_idx)
1310 continue;
1311 blocks[count++] = sh->dev[i].page;
1312 }
1313 dest = sh->dev[data_target].page;
1314 init_async_submit(&submit,
1315 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1316 NULL, NULL, NULL,
1317 to_addr_conv(sh, percpu));
1318 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1319 &submit);
1320
1321 count = set_syndrome_sources(blocks, sh);
1322 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1323 ops_complete_compute, sh,
1324 to_addr_conv(sh, percpu));
1325 return async_gen_syndrome(blocks, 0, count+2,
1326 STRIPE_SIZE, &submit);
1327 }
1328 } else {
1329 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1330 ops_complete_compute, sh,
1331 to_addr_conv(sh, percpu));
1332 if (failb == syndrome_disks) {
1333 /* We're missing D+P. */
1334 return async_raid6_datap_recov(syndrome_disks+2,
1335 STRIPE_SIZE, faila,
1336 blocks, &submit);
1337 } else {
1338 /* We're missing D+D. */
1339 return async_raid6_2data_recov(syndrome_disks+2,
1340 STRIPE_SIZE, faila, failb,
1341 blocks, &submit);
1342 }
1343 }
1344 }
1345
1346 static void ops_complete_prexor(void *stripe_head_ref)
1347 {
1348 struct stripe_head *sh = stripe_head_ref;
1349
1350 pr_debug("%s: stripe %llu\n", __func__,
1351 (unsigned long long)sh->sector);
1352 }
1353
1354 static struct dma_async_tx_descriptor *
1355 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1356 struct dma_async_tx_descriptor *tx)
1357 {
1358 int disks = sh->disks;
1359 struct page **xor_srcs = percpu->scribble;
1360 int count = 0, pd_idx = sh->pd_idx, i;
1361 struct async_submit_ctl submit;
1362
1363 /* existing parity data subtracted */
1364 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1365
1366 pr_debug("%s: stripe %llu\n", __func__,
1367 (unsigned long long)sh->sector);
1368
1369 for (i = disks; i--; ) {
1370 struct r5dev *dev = &sh->dev[i];
1371 /* Only process blocks that are known to be uptodate */
1372 if (test_bit(R5_Wantdrain, &dev->flags))
1373 xor_srcs[count++] = dev->page;
1374 }
1375
1376 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1377 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1378 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1379
1380 return tx;
1381 }
1382
1383 static struct dma_async_tx_descriptor *
1384 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1385 {
1386 int disks = sh->disks;
1387 int i;
1388
1389 pr_debug("%s: stripe %llu\n", __func__,
1390 (unsigned long long)sh->sector);
1391
1392 for (i = disks; i--; ) {
1393 struct r5dev *dev = &sh->dev[i];
1394 struct bio *chosen;
1395
1396 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1397 struct bio *wbi;
1398
1399 spin_lock_irq(&sh->stripe_lock);
1400 chosen = dev->towrite;
1401 dev->towrite = NULL;
1402 BUG_ON(dev->written);
1403 wbi = dev->written = chosen;
1404 spin_unlock_irq(&sh->stripe_lock);
1405 WARN_ON(dev->page != dev->orig_page);
1406
1407 while (wbi && wbi->bi_iter.bi_sector <
1408 dev->sector + STRIPE_SECTORS) {
1409 if (wbi->bi_rw & REQ_FUA)
1410 set_bit(R5_WantFUA, &dev->flags);
1411 if (wbi->bi_rw & REQ_SYNC)
1412 set_bit(R5_SyncIO, &dev->flags);
1413 if (wbi->bi_rw & REQ_DISCARD)
1414 set_bit(R5_Discard, &dev->flags);
1415 else {
1416 tx = async_copy_data(1, wbi, &dev->page,
1417 dev->sector, tx, sh);
1418 if (dev->page != dev->orig_page) {
1419 set_bit(R5_SkipCopy, &dev->flags);
1420 clear_bit(R5_UPTODATE, &dev->flags);
1421 clear_bit(R5_OVERWRITE, &dev->flags);
1422 }
1423 }
1424 wbi = r5_next_bio(wbi, dev->sector);
1425 }
1426 }
1427 }
1428
1429 return tx;
1430 }
1431
1432 static void ops_complete_reconstruct(void *stripe_head_ref)
1433 {
1434 struct stripe_head *sh = stripe_head_ref;
1435 int disks = sh->disks;
1436 int pd_idx = sh->pd_idx;
1437 int qd_idx = sh->qd_idx;
1438 int i;
1439 bool fua = false, sync = false, discard = false;
1440
1441 pr_debug("%s: stripe %llu\n", __func__,
1442 (unsigned long long)sh->sector);
1443
1444 for (i = disks; i--; ) {
1445 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1446 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1447 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1448 }
1449
1450 for (i = disks; i--; ) {
1451 struct r5dev *dev = &sh->dev[i];
1452
1453 if (dev->written || i == pd_idx || i == qd_idx) {
1454 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1455 set_bit(R5_UPTODATE, &dev->flags);
1456 if (fua)
1457 set_bit(R5_WantFUA, &dev->flags);
1458 if (sync)
1459 set_bit(R5_SyncIO, &dev->flags);
1460 }
1461 }
1462
1463 if (sh->reconstruct_state == reconstruct_state_drain_run)
1464 sh->reconstruct_state = reconstruct_state_drain_result;
1465 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1466 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1467 else {
1468 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1469 sh->reconstruct_state = reconstruct_state_result;
1470 }
1471
1472 set_bit(STRIPE_HANDLE, &sh->state);
1473 release_stripe(sh);
1474 }
1475
1476 static void
1477 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1478 struct dma_async_tx_descriptor *tx)
1479 {
1480 int disks = sh->disks;
1481 struct page **xor_srcs = percpu->scribble;
1482 struct async_submit_ctl submit;
1483 int count = 0, pd_idx = sh->pd_idx, i;
1484 struct page *xor_dest;
1485 int prexor = 0;
1486 unsigned long flags;
1487
1488 pr_debug("%s: stripe %llu\n", __func__,
1489 (unsigned long long)sh->sector);
1490
1491 for (i = 0; i < sh->disks; i++) {
1492 if (pd_idx == i)
1493 continue;
1494 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1495 break;
1496 }
1497 if (i >= sh->disks) {
1498 atomic_inc(&sh->count);
1499 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1500 ops_complete_reconstruct(sh);
1501 return;
1502 }
1503 /* check if prexor is active which means only process blocks
1504 * that are part of a read-modify-write (written)
1505 */
1506 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1507 prexor = 1;
1508 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1509 for (i = disks; i--; ) {
1510 struct r5dev *dev = &sh->dev[i];
1511 if (dev->written)
1512 xor_srcs[count++] = dev->page;
1513 }
1514 } else {
1515 xor_dest = sh->dev[pd_idx].page;
1516 for (i = disks; i--; ) {
1517 struct r5dev *dev = &sh->dev[i];
1518 if (i != pd_idx)
1519 xor_srcs[count++] = dev->page;
1520 }
1521 }
1522
1523 /* 1/ if we prexor'd then the dest is reused as a source
1524 * 2/ if we did not prexor then we are redoing the parity
1525 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1526 * for the synchronous xor case
1527 */
1528 flags = ASYNC_TX_ACK |
1529 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1530
1531 atomic_inc(&sh->count);
1532
1533 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1534 to_addr_conv(sh, percpu));
1535 if (unlikely(count == 1))
1536 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1537 else
1538 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1539 }
1540
1541 static void
1542 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1543 struct dma_async_tx_descriptor *tx)
1544 {
1545 struct async_submit_ctl submit;
1546 struct page **blocks = percpu->scribble;
1547 int count, i;
1548
1549 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1550
1551 for (i = 0; i < sh->disks; i++) {
1552 if (sh->pd_idx == i || sh->qd_idx == i)
1553 continue;
1554 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1555 break;
1556 }
1557 if (i >= sh->disks) {
1558 atomic_inc(&sh->count);
1559 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1560 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1561 ops_complete_reconstruct(sh);
1562 return;
1563 }
1564
1565 count = set_syndrome_sources(blocks, sh);
1566
1567 atomic_inc(&sh->count);
1568
1569 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1570 sh, to_addr_conv(sh, percpu));
1571 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1572 }
1573
1574 static void ops_complete_check(void *stripe_head_ref)
1575 {
1576 struct stripe_head *sh = stripe_head_ref;
1577
1578 pr_debug("%s: stripe %llu\n", __func__,
1579 (unsigned long long)sh->sector);
1580
1581 sh->check_state = check_state_check_result;
1582 set_bit(STRIPE_HANDLE, &sh->state);
1583 release_stripe(sh);
1584 }
1585
1586 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1587 {
1588 int disks = sh->disks;
1589 int pd_idx = sh->pd_idx;
1590 int qd_idx = sh->qd_idx;
1591 struct page *xor_dest;
1592 struct page **xor_srcs = percpu->scribble;
1593 struct dma_async_tx_descriptor *tx;
1594 struct async_submit_ctl submit;
1595 int count;
1596 int i;
1597
1598 pr_debug("%s: stripe %llu\n", __func__,
1599 (unsigned long long)sh->sector);
1600
1601 count = 0;
1602 xor_dest = sh->dev[pd_idx].page;
1603 xor_srcs[count++] = xor_dest;
1604 for (i = disks; i--; ) {
1605 if (i == pd_idx || i == qd_idx)
1606 continue;
1607 xor_srcs[count++] = sh->dev[i].page;
1608 }
1609
1610 init_async_submit(&submit, 0, NULL, NULL, NULL,
1611 to_addr_conv(sh, percpu));
1612 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1613 &sh->ops.zero_sum_result, &submit);
1614
1615 atomic_inc(&sh->count);
1616 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1617 tx = async_trigger_callback(&submit);
1618 }
1619
1620 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1621 {
1622 struct page **srcs = percpu->scribble;
1623 struct async_submit_ctl submit;
1624 int count;
1625
1626 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1627 (unsigned long long)sh->sector, checkp);
1628
1629 count = set_syndrome_sources(srcs, sh);
1630 if (!checkp)
1631 srcs[count] = NULL;
1632
1633 atomic_inc(&sh->count);
1634 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1635 sh, to_addr_conv(sh, percpu));
1636 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1637 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1638 }
1639
1640 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1641 {
1642 int overlap_clear = 0, i, disks = sh->disks;
1643 struct dma_async_tx_descriptor *tx = NULL;
1644 struct r5conf *conf = sh->raid_conf;
1645 int level = conf->level;
1646 struct raid5_percpu *percpu;
1647 unsigned long cpu;
1648
1649 cpu = get_cpu();
1650 percpu = per_cpu_ptr(conf->percpu, cpu);
1651 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1652 ops_run_biofill(sh);
1653 overlap_clear++;
1654 }
1655
1656 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1657 if (level < 6)
1658 tx = ops_run_compute5(sh, percpu);
1659 else {
1660 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1661 tx = ops_run_compute6_1(sh, percpu);
1662 else
1663 tx = ops_run_compute6_2(sh, percpu);
1664 }
1665 /* terminate the chain if reconstruct is not set to be run */
1666 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1667 async_tx_ack(tx);
1668 }
1669
1670 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1671 tx = ops_run_prexor(sh, percpu, tx);
1672
1673 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1674 tx = ops_run_biodrain(sh, tx);
1675 overlap_clear++;
1676 }
1677
1678 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1679 if (level < 6)
1680 ops_run_reconstruct5(sh, percpu, tx);
1681 else
1682 ops_run_reconstruct6(sh, percpu, tx);
1683 }
1684
1685 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1686 if (sh->check_state == check_state_run)
1687 ops_run_check_p(sh, percpu);
1688 else if (sh->check_state == check_state_run_q)
1689 ops_run_check_pq(sh, percpu, 0);
1690 else if (sh->check_state == check_state_run_pq)
1691 ops_run_check_pq(sh, percpu, 1);
1692 else
1693 BUG();
1694 }
1695
1696 if (overlap_clear)
1697 for (i = disks; i--; ) {
1698 struct r5dev *dev = &sh->dev[i];
1699 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1700 wake_up(&sh->raid_conf->wait_for_overlap);
1701 }
1702 put_cpu();
1703 }
1704
1705 static int grow_one_stripe(struct r5conf *conf, int hash)
1706 {
1707 struct stripe_head *sh;
1708 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1709 if (!sh)
1710 return 0;
1711
1712 sh->raid_conf = conf;
1713
1714 spin_lock_init(&sh->stripe_lock);
1715
1716 if (grow_buffers(sh)) {
1717 shrink_buffers(sh);
1718 kmem_cache_free(conf->slab_cache, sh);
1719 return 0;
1720 }
1721 sh->hash_lock_index = hash;
1722 /* we just created an active stripe so... */
1723 atomic_set(&sh->count, 1);
1724 atomic_inc(&conf->active_stripes);
1725 INIT_LIST_HEAD(&sh->lru);
1726 release_stripe(sh);
1727 return 1;
1728 }
1729
1730 static int grow_stripes(struct r5conf *conf, int num)
1731 {
1732 struct kmem_cache *sc;
1733 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1734 int hash;
1735
1736 if (conf->mddev->gendisk)
1737 sprintf(conf->cache_name[0],
1738 "raid%d-%s", conf->level, mdname(conf->mddev));
1739 else
1740 sprintf(conf->cache_name[0],
1741 "raid%d-%p", conf->level, conf->mddev);
1742 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1743
1744 conf->active_name = 0;
1745 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1746 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1747 0, 0, NULL);
1748 if (!sc)
1749 return 1;
1750 conf->slab_cache = sc;
1751 conf->pool_size = devs;
1752 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1753 while (num--) {
1754 if (!grow_one_stripe(conf, hash))
1755 return 1;
1756 conf->max_nr_stripes++;
1757 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1758 }
1759 return 0;
1760 }
1761
1762 /**
1763 * scribble_len - return the required size of the scribble region
1764 * @num - total number of disks in the array
1765 *
1766 * The size must be enough to contain:
1767 * 1/ a struct page pointer for each device in the array +2
1768 * 2/ room to convert each entry in (1) to its corresponding dma
1769 * (dma_map_page()) or page (page_address()) address.
1770 *
1771 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1772 * calculate over all devices (not just the data blocks), using zeros in place
1773 * of the P and Q blocks.
1774 */
1775 static size_t scribble_len(int num)
1776 {
1777 size_t len;
1778
1779 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1780
1781 return len;
1782 }
1783
1784 static int resize_stripes(struct r5conf *conf, int newsize)
1785 {
1786 /* Make all the stripes able to hold 'newsize' devices.
1787 * New slots in each stripe get 'page' set to a new page.
1788 *
1789 * This happens in stages:
1790 * 1/ create a new kmem_cache and allocate the required number of
1791 * stripe_heads.
1792 * 2/ gather all the old stripe_heads and transfer the pages across
1793 * to the new stripe_heads. This will have the side effect of
1794 * freezing the array as once all stripe_heads have been collected,
1795 * no IO will be possible. Old stripe heads are freed once their
1796 * pages have been transferred over, and the old kmem_cache is
1797 * freed when all stripes are done.
1798 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1799 * we simple return a failre status - no need to clean anything up.
1800 * 4/ allocate new pages for the new slots in the new stripe_heads.
1801 * If this fails, we don't bother trying the shrink the
1802 * stripe_heads down again, we just leave them as they are.
1803 * As each stripe_head is processed the new one is released into
1804 * active service.
1805 *
1806 * Once step2 is started, we cannot afford to wait for a write,
1807 * so we use GFP_NOIO allocations.
1808 */
1809 struct stripe_head *osh, *nsh;
1810 LIST_HEAD(newstripes);
1811 struct disk_info *ndisks;
1812 unsigned long cpu;
1813 int err;
1814 struct kmem_cache *sc;
1815 int i;
1816 int hash, cnt;
1817
1818 if (newsize <= conf->pool_size)
1819 return 0; /* never bother to shrink */
1820
1821 err = md_allow_write(conf->mddev);
1822 if (err)
1823 return err;
1824
1825 /* Step 1 */
1826 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1827 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1828 0, 0, NULL);
1829 if (!sc)
1830 return -ENOMEM;
1831
1832 for (i = conf->max_nr_stripes; i; i--) {
1833 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1834 if (!nsh)
1835 break;
1836
1837 nsh->raid_conf = conf;
1838 spin_lock_init(&nsh->stripe_lock);
1839
1840 list_add(&nsh->lru, &newstripes);
1841 }
1842 if (i) {
1843 /* didn't get enough, give up */
1844 while (!list_empty(&newstripes)) {
1845 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1846 list_del(&nsh->lru);
1847 kmem_cache_free(sc, nsh);
1848 }
1849 kmem_cache_destroy(sc);
1850 return -ENOMEM;
1851 }
1852 /* Step 2 - Must use GFP_NOIO now.
1853 * OK, we have enough stripes, start collecting inactive
1854 * stripes and copying them over
1855 */
1856 hash = 0;
1857 cnt = 0;
1858 list_for_each_entry(nsh, &newstripes, lru) {
1859 lock_device_hash_lock(conf, hash);
1860 wait_event_cmd(conf->wait_for_stripe,
1861 !list_empty(conf->inactive_list + hash),
1862 unlock_device_hash_lock(conf, hash),
1863 lock_device_hash_lock(conf, hash));
1864 osh = get_free_stripe(conf, hash);
1865 unlock_device_hash_lock(conf, hash);
1866 atomic_set(&nsh->count, 1);
1867 for(i=0; i<conf->pool_size; i++) {
1868 nsh->dev[i].page = osh->dev[i].page;
1869 nsh->dev[i].orig_page = osh->dev[i].page;
1870 }
1871 for( ; i<newsize; i++)
1872 nsh->dev[i].page = NULL;
1873 nsh->hash_lock_index = hash;
1874 kmem_cache_free(conf->slab_cache, osh);
1875 cnt++;
1876 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1877 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1878 hash++;
1879 cnt = 0;
1880 }
1881 }
1882 kmem_cache_destroy(conf->slab_cache);
1883
1884 /* Step 3.
1885 * At this point, we are holding all the stripes so the array
1886 * is completely stalled, so now is a good time to resize
1887 * conf->disks and the scribble region
1888 */
1889 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1890 if (ndisks) {
1891 for (i=0; i<conf->raid_disks; i++)
1892 ndisks[i] = conf->disks[i];
1893 kfree(conf->disks);
1894 conf->disks = ndisks;
1895 } else
1896 err = -ENOMEM;
1897
1898 get_online_cpus();
1899 conf->scribble_len = scribble_len(newsize);
1900 for_each_present_cpu(cpu) {
1901 struct raid5_percpu *percpu;
1902 void *scribble;
1903
1904 percpu = per_cpu_ptr(conf->percpu, cpu);
1905 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1906
1907 if (scribble) {
1908 kfree(percpu->scribble);
1909 percpu->scribble = scribble;
1910 } else {
1911 err = -ENOMEM;
1912 break;
1913 }
1914 }
1915 put_online_cpus();
1916
1917 /* Step 4, return new stripes to service */
1918 while(!list_empty(&newstripes)) {
1919 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1920 list_del_init(&nsh->lru);
1921
1922 for (i=conf->raid_disks; i < newsize; i++)
1923 if (nsh->dev[i].page == NULL) {
1924 struct page *p = alloc_page(GFP_NOIO);
1925 nsh->dev[i].page = p;
1926 nsh->dev[i].orig_page = p;
1927 if (!p)
1928 err = -ENOMEM;
1929 }
1930 release_stripe(nsh);
1931 }
1932 /* critical section pass, GFP_NOIO no longer needed */
1933
1934 conf->slab_cache = sc;
1935 conf->active_name = 1-conf->active_name;
1936 conf->pool_size = newsize;
1937 return err;
1938 }
1939
1940 static int drop_one_stripe(struct r5conf *conf, int hash)
1941 {
1942 struct stripe_head *sh;
1943
1944 spin_lock_irq(conf->hash_locks + hash);
1945 sh = get_free_stripe(conf, hash);
1946 spin_unlock_irq(conf->hash_locks + hash);
1947 if (!sh)
1948 return 0;
1949 BUG_ON(atomic_read(&sh->count));
1950 shrink_buffers(sh);
1951 kmem_cache_free(conf->slab_cache, sh);
1952 atomic_dec(&conf->active_stripes);
1953 return 1;
1954 }
1955
1956 static void shrink_stripes(struct r5conf *conf)
1957 {
1958 int hash;
1959 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1960 while (drop_one_stripe(conf, hash))
1961 ;
1962
1963 if (conf->slab_cache)
1964 kmem_cache_destroy(conf->slab_cache);
1965 conf->slab_cache = NULL;
1966 }
1967
1968 static void raid5_end_read_request(struct bio * bi, int error)
1969 {
1970 struct stripe_head *sh = bi->bi_private;
1971 struct r5conf *conf = sh->raid_conf;
1972 int disks = sh->disks, i;
1973 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1974 char b[BDEVNAME_SIZE];
1975 struct md_rdev *rdev = NULL;
1976 sector_t s;
1977
1978 for (i=0 ; i<disks; i++)
1979 if (bi == &sh->dev[i].req)
1980 break;
1981
1982 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1983 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1984 uptodate);
1985 if (i == disks) {
1986 BUG();
1987 return;
1988 }
1989 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1990 /* If replacement finished while this request was outstanding,
1991 * 'replacement' might be NULL already.
1992 * In that case it moved down to 'rdev'.
1993 * rdev is not removed until all requests are finished.
1994 */
1995 rdev = conf->disks[i].replacement;
1996 if (!rdev)
1997 rdev = conf->disks[i].rdev;
1998
1999 if (use_new_offset(conf, sh))
2000 s = sh->sector + rdev->new_data_offset;
2001 else
2002 s = sh->sector + rdev->data_offset;
2003 if (uptodate) {
2004 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2005 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2006 /* Note that this cannot happen on a
2007 * replacement device. We just fail those on
2008 * any error
2009 */
2010 printk_ratelimited(
2011 KERN_INFO
2012 "md/raid:%s: read error corrected"
2013 " (%lu sectors at %llu on %s)\n",
2014 mdname(conf->mddev), STRIPE_SECTORS,
2015 (unsigned long long)s,
2016 bdevname(rdev->bdev, b));
2017 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2018 clear_bit(R5_ReadError, &sh->dev[i].flags);
2019 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2020 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2021 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2022
2023 if (atomic_read(&rdev->read_errors))
2024 atomic_set(&rdev->read_errors, 0);
2025 } else {
2026 const char *bdn = bdevname(rdev->bdev, b);
2027 int retry = 0;
2028 int set_bad = 0;
2029
2030 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2031 atomic_inc(&rdev->read_errors);
2032 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2033 printk_ratelimited(
2034 KERN_WARNING
2035 "md/raid:%s: read error on replacement device "
2036 "(sector %llu on %s).\n",
2037 mdname(conf->mddev),
2038 (unsigned long long)s,
2039 bdn);
2040 else if (conf->mddev->degraded >= conf->max_degraded) {
2041 set_bad = 1;
2042 printk_ratelimited(
2043 KERN_WARNING
2044 "md/raid:%s: read error not correctable "
2045 "(sector %llu on %s).\n",
2046 mdname(conf->mddev),
2047 (unsigned long long)s,
2048 bdn);
2049 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2050 /* Oh, no!!! */
2051 set_bad = 1;
2052 printk_ratelimited(
2053 KERN_WARNING
2054 "md/raid:%s: read error NOT corrected!! "
2055 "(sector %llu on %s).\n",
2056 mdname(conf->mddev),
2057 (unsigned long long)s,
2058 bdn);
2059 } else if (atomic_read(&rdev->read_errors)
2060 > conf->max_nr_stripes)
2061 printk(KERN_WARNING
2062 "md/raid:%s: Too many read errors, failing device %s.\n",
2063 mdname(conf->mddev), bdn);
2064 else
2065 retry = 1;
2066 if (set_bad && test_bit(In_sync, &rdev->flags)
2067 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2068 retry = 1;
2069 if (retry)
2070 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2071 set_bit(R5_ReadError, &sh->dev[i].flags);
2072 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2073 } else
2074 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2075 else {
2076 clear_bit(R5_ReadError, &sh->dev[i].flags);
2077 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2078 if (!(set_bad
2079 && test_bit(In_sync, &rdev->flags)
2080 && rdev_set_badblocks(
2081 rdev, sh->sector, STRIPE_SECTORS, 0)))
2082 md_error(conf->mddev, rdev);
2083 }
2084 }
2085 rdev_dec_pending(rdev, conf->mddev);
2086 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2087 set_bit(STRIPE_HANDLE, &sh->state);
2088 release_stripe(sh);
2089 }
2090
2091 static void raid5_end_write_request(struct bio *bi, int error)
2092 {
2093 struct stripe_head *sh = bi->bi_private;
2094 struct r5conf *conf = sh->raid_conf;
2095 int disks = sh->disks, i;
2096 struct md_rdev *uninitialized_var(rdev);
2097 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2098 sector_t first_bad;
2099 int bad_sectors;
2100 int replacement = 0;
2101
2102 for (i = 0 ; i < disks; i++) {
2103 if (bi == &sh->dev[i].req) {
2104 rdev = conf->disks[i].rdev;
2105 break;
2106 }
2107 if (bi == &sh->dev[i].rreq) {
2108 rdev = conf->disks[i].replacement;
2109 if (rdev)
2110 replacement = 1;
2111 else
2112 /* rdev was removed and 'replacement'
2113 * replaced it. rdev is not removed
2114 * until all requests are finished.
2115 */
2116 rdev = conf->disks[i].rdev;
2117 break;
2118 }
2119 }
2120 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2121 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2122 uptodate);
2123 if (i == disks) {
2124 BUG();
2125 return;
2126 }
2127
2128 if (replacement) {
2129 if (!uptodate)
2130 md_error(conf->mddev, rdev);
2131 else if (is_badblock(rdev, sh->sector,
2132 STRIPE_SECTORS,
2133 &first_bad, &bad_sectors))
2134 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2135 } else {
2136 if (!uptodate) {
2137 set_bit(STRIPE_DEGRADED, &sh->state);
2138 set_bit(WriteErrorSeen, &rdev->flags);
2139 set_bit(R5_WriteError, &sh->dev[i].flags);
2140 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2141 set_bit(MD_RECOVERY_NEEDED,
2142 &rdev->mddev->recovery);
2143 } else if (is_badblock(rdev, sh->sector,
2144 STRIPE_SECTORS,
2145 &first_bad, &bad_sectors)) {
2146 set_bit(R5_MadeGood, &sh->dev[i].flags);
2147 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2148 /* That was a successful write so make
2149 * sure it looks like we already did
2150 * a re-write.
2151 */
2152 set_bit(R5_ReWrite, &sh->dev[i].flags);
2153 }
2154 }
2155 rdev_dec_pending(rdev, conf->mddev);
2156
2157 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2158 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2159 set_bit(STRIPE_HANDLE, &sh->state);
2160 release_stripe(sh);
2161 }
2162
2163 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2164
2165 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2166 {
2167 struct r5dev *dev = &sh->dev[i];
2168
2169 bio_init(&dev->req);
2170 dev->req.bi_io_vec = &dev->vec;
2171 dev->req.bi_max_vecs = 1;
2172 dev->req.bi_private = sh;
2173
2174 bio_init(&dev->rreq);
2175 dev->rreq.bi_io_vec = &dev->rvec;
2176 dev->rreq.bi_max_vecs = 1;
2177 dev->rreq.bi_private = sh;
2178
2179 dev->flags = 0;
2180 dev->sector = compute_blocknr(sh, i, previous);
2181 }
2182
2183 static void error(struct mddev *mddev, struct md_rdev *rdev)
2184 {
2185 char b[BDEVNAME_SIZE];
2186 struct r5conf *conf = mddev->private;
2187 unsigned long flags;
2188 pr_debug("raid456: error called\n");
2189
2190 spin_lock_irqsave(&conf->device_lock, flags);
2191 clear_bit(In_sync, &rdev->flags);
2192 mddev->degraded = calc_degraded(conf);
2193 spin_unlock_irqrestore(&conf->device_lock, flags);
2194 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2195
2196 set_bit(Blocked, &rdev->flags);
2197 set_bit(Faulty, &rdev->flags);
2198 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2199 printk(KERN_ALERT
2200 "md/raid:%s: Disk failure on %s, disabling device.\n"
2201 "md/raid:%s: Operation continuing on %d devices.\n",
2202 mdname(mddev),
2203 bdevname(rdev->bdev, b),
2204 mdname(mddev),
2205 conf->raid_disks - mddev->degraded);
2206 }
2207
2208 /*
2209 * Input: a 'big' sector number,
2210 * Output: index of the data and parity disk, and the sector # in them.
2211 */
2212 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2213 int previous, int *dd_idx,
2214 struct stripe_head *sh)
2215 {
2216 sector_t stripe, stripe2;
2217 sector_t chunk_number;
2218 unsigned int chunk_offset;
2219 int pd_idx, qd_idx;
2220 int ddf_layout = 0;
2221 sector_t new_sector;
2222 int algorithm = previous ? conf->prev_algo
2223 : conf->algorithm;
2224 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2225 : conf->chunk_sectors;
2226 int raid_disks = previous ? conf->previous_raid_disks
2227 : conf->raid_disks;
2228 int data_disks = raid_disks - conf->max_degraded;
2229
2230 /* First compute the information on this sector */
2231
2232 /*
2233 * Compute the chunk number and the sector offset inside the chunk
2234 */
2235 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2236 chunk_number = r_sector;
2237
2238 /*
2239 * Compute the stripe number
2240 */
2241 stripe = chunk_number;
2242 *dd_idx = sector_div(stripe, data_disks);
2243 stripe2 = stripe;
2244 /*
2245 * Select the parity disk based on the user selected algorithm.
2246 */
2247 pd_idx = qd_idx = -1;
2248 switch(conf->level) {
2249 case 4:
2250 pd_idx = data_disks;
2251 break;
2252 case 5:
2253 switch (algorithm) {
2254 case ALGORITHM_LEFT_ASYMMETRIC:
2255 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2256 if (*dd_idx >= pd_idx)
2257 (*dd_idx)++;
2258 break;
2259 case ALGORITHM_RIGHT_ASYMMETRIC:
2260 pd_idx = sector_div(stripe2, raid_disks);
2261 if (*dd_idx >= pd_idx)
2262 (*dd_idx)++;
2263 break;
2264 case ALGORITHM_LEFT_SYMMETRIC:
2265 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2266 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2267 break;
2268 case ALGORITHM_RIGHT_SYMMETRIC:
2269 pd_idx = sector_div(stripe2, raid_disks);
2270 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2271 break;
2272 case ALGORITHM_PARITY_0:
2273 pd_idx = 0;
2274 (*dd_idx)++;
2275 break;
2276 case ALGORITHM_PARITY_N:
2277 pd_idx = data_disks;
2278 break;
2279 default:
2280 BUG();
2281 }
2282 break;
2283 case 6:
2284
2285 switch (algorithm) {
2286 case ALGORITHM_LEFT_ASYMMETRIC:
2287 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2288 qd_idx = pd_idx + 1;
2289 if (pd_idx == raid_disks-1) {
2290 (*dd_idx)++; /* Q D D D P */
2291 qd_idx = 0;
2292 } else if (*dd_idx >= pd_idx)
2293 (*dd_idx) += 2; /* D D P Q D */
2294 break;
2295 case ALGORITHM_RIGHT_ASYMMETRIC:
2296 pd_idx = sector_div(stripe2, raid_disks);
2297 qd_idx = pd_idx + 1;
2298 if (pd_idx == raid_disks-1) {
2299 (*dd_idx)++; /* Q D D D P */
2300 qd_idx = 0;
2301 } else if (*dd_idx >= pd_idx)
2302 (*dd_idx) += 2; /* D D P Q D */
2303 break;
2304 case ALGORITHM_LEFT_SYMMETRIC:
2305 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2306 qd_idx = (pd_idx + 1) % raid_disks;
2307 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2308 break;
2309 case ALGORITHM_RIGHT_SYMMETRIC:
2310 pd_idx = sector_div(stripe2, raid_disks);
2311 qd_idx = (pd_idx + 1) % raid_disks;
2312 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2313 break;
2314
2315 case ALGORITHM_PARITY_0:
2316 pd_idx = 0;
2317 qd_idx = 1;
2318 (*dd_idx) += 2;
2319 break;
2320 case ALGORITHM_PARITY_N:
2321 pd_idx = data_disks;
2322 qd_idx = data_disks + 1;
2323 break;
2324
2325 case ALGORITHM_ROTATING_ZERO_RESTART:
2326 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2327 * of blocks for computing Q is different.
2328 */
2329 pd_idx = sector_div(stripe2, raid_disks);
2330 qd_idx = pd_idx + 1;
2331 if (pd_idx == raid_disks-1) {
2332 (*dd_idx)++; /* Q D D D P */
2333 qd_idx = 0;
2334 } else if (*dd_idx >= pd_idx)
2335 (*dd_idx) += 2; /* D D P Q D */
2336 ddf_layout = 1;
2337 break;
2338
2339 case ALGORITHM_ROTATING_N_RESTART:
2340 /* Same a left_asymmetric, by first stripe is
2341 * D D D P Q rather than
2342 * Q D D D P
2343 */
2344 stripe2 += 1;
2345 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2346 qd_idx = pd_idx + 1;
2347 if (pd_idx == raid_disks-1) {
2348 (*dd_idx)++; /* Q D D D P */
2349 qd_idx = 0;
2350 } else if (*dd_idx >= pd_idx)
2351 (*dd_idx) += 2; /* D D P Q D */
2352 ddf_layout = 1;
2353 break;
2354
2355 case ALGORITHM_ROTATING_N_CONTINUE:
2356 /* Same as left_symmetric but Q is before P */
2357 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2358 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2359 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2360 ddf_layout = 1;
2361 break;
2362
2363 case ALGORITHM_LEFT_ASYMMETRIC_6:
2364 /* RAID5 left_asymmetric, with Q on last device */
2365 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2366 if (*dd_idx >= pd_idx)
2367 (*dd_idx)++;
2368 qd_idx = raid_disks - 1;
2369 break;
2370
2371 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2372 pd_idx = sector_div(stripe2, raid_disks-1);
2373 if (*dd_idx >= pd_idx)
2374 (*dd_idx)++;
2375 qd_idx = raid_disks - 1;
2376 break;
2377
2378 case ALGORITHM_LEFT_SYMMETRIC_6:
2379 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2380 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2381 qd_idx = raid_disks - 1;
2382 break;
2383
2384 case ALGORITHM_RIGHT_SYMMETRIC_6:
2385 pd_idx = sector_div(stripe2, raid_disks-1);
2386 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2387 qd_idx = raid_disks - 1;
2388 break;
2389
2390 case ALGORITHM_PARITY_0_6:
2391 pd_idx = 0;
2392 (*dd_idx)++;
2393 qd_idx = raid_disks - 1;
2394 break;
2395
2396 default:
2397 BUG();
2398 }
2399 break;
2400 }
2401
2402 if (sh) {
2403 sh->pd_idx = pd_idx;
2404 sh->qd_idx = qd_idx;
2405 sh->ddf_layout = ddf_layout;
2406 }
2407 /*
2408 * Finally, compute the new sector number
2409 */
2410 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2411 return new_sector;
2412 }
2413
2414 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2415 {
2416 struct r5conf *conf = sh->raid_conf;
2417 int raid_disks = sh->disks;
2418 int data_disks = raid_disks - conf->max_degraded;
2419 sector_t new_sector = sh->sector, check;
2420 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2421 : conf->chunk_sectors;
2422 int algorithm = previous ? conf->prev_algo
2423 : conf->algorithm;
2424 sector_t stripe;
2425 int chunk_offset;
2426 sector_t chunk_number;
2427 int dummy1, dd_idx = i;
2428 sector_t r_sector;
2429 struct stripe_head sh2;
2430
2431 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2432 stripe = new_sector;
2433
2434 if (i == sh->pd_idx)
2435 return 0;
2436 switch(conf->level) {
2437 case 4: break;
2438 case 5:
2439 switch (algorithm) {
2440 case ALGORITHM_LEFT_ASYMMETRIC:
2441 case ALGORITHM_RIGHT_ASYMMETRIC:
2442 if (i > sh->pd_idx)
2443 i--;
2444 break;
2445 case ALGORITHM_LEFT_SYMMETRIC:
2446 case ALGORITHM_RIGHT_SYMMETRIC:
2447 if (i < sh->pd_idx)
2448 i += raid_disks;
2449 i -= (sh->pd_idx + 1);
2450 break;
2451 case ALGORITHM_PARITY_0:
2452 i -= 1;
2453 break;
2454 case ALGORITHM_PARITY_N:
2455 break;
2456 default:
2457 BUG();
2458 }
2459 break;
2460 case 6:
2461 if (i == sh->qd_idx)
2462 return 0; /* It is the Q disk */
2463 switch (algorithm) {
2464 case ALGORITHM_LEFT_ASYMMETRIC:
2465 case ALGORITHM_RIGHT_ASYMMETRIC:
2466 case ALGORITHM_ROTATING_ZERO_RESTART:
2467 case ALGORITHM_ROTATING_N_RESTART:
2468 if (sh->pd_idx == raid_disks-1)
2469 i--; /* Q D D D P */
2470 else if (i > sh->pd_idx)
2471 i -= 2; /* D D P Q D */
2472 break;
2473 case ALGORITHM_LEFT_SYMMETRIC:
2474 case ALGORITHM_RIGHT_SYMMETRIC:
2475 if (sh->pd_idx == raid_disks-1)
2476 i--; /* Q D D D P */
2477 else {
2478 /* D D P Q D */
2479 if (i < sh->pd_idx)
2480 i += raid_disks;
2481 i -= (sh->pd_idx + 2);
2482 }
2483 break;
2484 case ALGORITHM_PARITY_0:
2485 i -= 2;
2486 break;
2487 case ALGORITHM_PARITY_N:
2488 break;
2489 case ALGORITHM_ROTATING_N_CONTINUE:
2490 /* Like left_symmetric, but P is before Q */
2491 if (sh->pd_idx == 0)
2492 i--; /* P D D D Q */
2493 else {
2494 /* D D Q P D */
2495 if (i < sh->pd_idx)
2496 i += raid_disks;
2497 i -= (sh->pd_idx + 1);
2498 }
2499 break;
2500 case ALGORITHM_LEFT_ASYMMETRIC_6:
2501 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2502 if (i > sh->pd_idx)
2503 i--;
2504 break;
2505 case ALGORITHM_LEFT_SYMMETRIC_6:
2506 case ALGORITHM_RIGHT_SYMMETRIC_6:
2507 if (i < sh->pd_idx)
2508 i += data_disks + 1;
2509 i -= (sh->pd_idx + 1);
2510 break;
2511 case ALGORITHM_PARITY_0_6:
2512 i -= 1;
2513 break;
2514 default:
2515 BUG();
2516 }
2517 break;
2518 }
2519
2520 chunk_number = stripe * data_disks + i;
2521 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2522
2523 check = raid5_compute_sector(conf, r_sector,
2524 previous, &dummy1, &sh2);
2525 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2526 || sh2.qd_idx != sh->qd_idx) {
2527 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2528 mdname(conf->mddev));
2529 return 0;
2530 }
2531 return r_sector;
2532 }
2533
2534 static void
2535 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2536 int rcw, int expand)
2537 {
2538 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2539 struct r5conf *conf = sh->raid_conf;
2540 int level = conf->level;
2541
2542 if (rcw) {
2543
2544 for (i = disks; i--; ) {
2545 struct r5dev *dev = &sh->dev[i];
2546
2547 if (dev->towrite) {
2548 set_bit(R5_LOCKED, &dev->flags);
2549 set_bit(R5_Wantdrain, &dev->flags);
2550 if (!expand)
2551 clear_bit(R5_UPTODATE, &dev->flags);
2552 s->locked++;
2553 }
2554 }
2555 /* if we are not expanding this is a proper write request, and
2556 * there will be bios with new data to be drained into the
2557 * stripe cache
2558 */
2559 if (!expand) {
2560 if (!s->locked)
2561 /* False alarm, nothing to do */
2562 return;
2563 sh->reconstruct_state = reconstruct_state_drain_run;
2564 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2565 } else
2566 sh->reconstruct_state = reconstruct_state_run;
2567
2568 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2569
2570 if (s->locked + conf->max_degraded == disks)
2571 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2572 atomic_inc(&conf->pending_full_writes);
2573 } else {
2574 BUG_ON(level == 6);
2575 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2576 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2577
2578 for (i = disks; i--; ) {
2579 struct r5dev *dev = &sh->dev[i];
2580 if (i == pd_idx)
2581 continue;
2582
2583 if (dev->towrite &&
2584 (test_bit(R5_UPTODATE, &dev->flags) ||
2585 test_bit(R5_Wantcompute, &dev->flags))) {
2586 set_bit(R5_Wantdrain, &dev->flags);
2587 set_bit(R5_LOCKED, &dev->flags);
2588 clear_bit(R5_UPTODATE, &dev->flags);
2589 s->locked++;
2590 }
2591 }
2592 if (!s->locked)
2593 /* False alarm - nothing to do */
2594 return;
2595 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2596 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2597 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2598 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2599 }
2600
2601 /* keep the parity disk(s) locked while asynchronous operations
2602 * are in flight
2603 */
2604 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2605 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2606 s->locked++;
2607
2608 if (level == 6) {
2609 int qd_idx = sh->qd_idx;
2610 struct r5dev *dev = &sh->dev[qd_idx];
2611
2612 set_bit(R5_LOCKED, &dev->flags);
2613 clear_bit(R5_UPTODATE, &dev->flags);
2614 s->locked++;
2615 }
2616
2617 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2618 __func__, (unsigned long long)sh->sector,
2619 s->locked, s->ops_request);
2620 }
2621
2622 /*
2623 * Each stripe/dev can have one or more bion attached.
2624 * toread/towrite point to the first in a chain.
2625 * The bi_next chain must be in order.
2626 */
2627 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2628 {
2629 struct bio **bip;
2630 struct r5conf *conf = sh->raid_conf;
2631 int firstwrite=0;
2632
2633 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2634 (unsigned long long)bi->bi_iter.bi_sector,
2635 (unsigned long long)sh->sector);
2636
2637 /*
2638 * If several bio share a stripe. The bio bi_phys_segments acts as a
2639 * reference count to avoid race. The reference count should already be
2640 * increased before this function is called (for example, in
2641 * make_request()), so other bio sharing this stripe will not free the
2642 * stripe. If a stripe is owned by one stripe, the stripe lock will
2643 * protect it.
2644 */
2645 spin_lock_irq(&sh->stripe_lock);
2646 if (forwrite) {
2647 bip = &sh->dev[dd_idx].towrite;
2648 if (*bip == NULL)
2649 firstwrite = 1;
2650 } else
2651 bip = &sh->dev[dd_idx].toread;
2652 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2653 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2654 goto overlap;
2655 bip = & (*bip)->bi_next;
2656 }
2657 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2658 goto overlap;
2659
2660 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2661 if (*bip)
2662 bi->bi_next = *bip;
2663 *bip = bi;
2664 raid5_inc_bi_active_stripes(bi);
2665
2666 if (forwrite) {
2667 /* check if page is covered */
2668 sector_t sector = sh->dev[dd_idx].sector;
2669 for (bi=sh->dev[dd_idx].towrite;
2670 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2671 bi && bi->bi_iter.bi_sector <= sector;
2672 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2673 if (bio_end_sector(bi) >= sector)
2674 sector = bio_end_sector(bi);
2675 }
2676 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2677 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2678 }
2679
2680 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2681 (unsigned long long)(*bip)->bi_iter.bi_sector,
2682 (unsigned long long)sh->sector, dd_idx);
2683 spin_unlock_irq(&sh->stripe_lock);
2684
2685 if (conf->mddev->bitmap && firstwrite) {
2686 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2687 STRIPE_SECTORS, 0);
2688 sh->bm_seq = conf->seq_flush+1;
2689 set_bit(STRIPE_BIT_DELAY, &sh->state);
2690 }
2691 return 1;
2692
2693 overlap:
2694 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2695 spin_unlock_irq(&sh->stripe_lock);
2696 return 0;
2697 }
2698
2699 static void end_reshape(struct r5conf *conf);
2700
2701 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2702 struct stripe_head *sh)
2703 {
2704 int sectors_per_chunk =
2705 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2706 int dd_idx;
2707 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2708 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2709
2710 raid5_compute_sector(conf,
2711 stripe * (disks - conf->max_degraded)
2712 *sectors_per_chunk + chunk_offset,
2713 previous,
2714 &dd_idx, sh);
2715 }
2716
2717 static void
2718 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2719 struct stripe_head_state *s, int disks,
2720 struct bio **return_bi)
2721 {
2722 int i;
2723 for (i = disks; i--; ) {
2724 struct bio *bi;
2725 int bitmap_end = 0;
2726
2727 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2728 struct md_rdev *rdev;
2729 rcu_read_lock();
2730 rdev = rcu_dereference(conf->disks[i].rdev);
2731 if (rdev && test_bit(In_sync, &rdev->flags))
2732 atomic_inc(&rdev->nr_pending);
2733 else
2734 rdev = NULL;
2735 rcu_read_unlock();
2736 if (rdev) {
2737 if (!rdev_set_badblocks(
2738 rdev,
2739 sh->sector,
2740 STRIPE_SECTORS, 0))
2741 md_error(conf->mddev, rdev);
2742 rdev_dec_pending(rdev, conf->mddev);
2743 }
2744 }
2745 spin_lock_irq(&sh->stripe_lock);
2746 /* fail all writes first */
2747 bi = sh->dev[i].towrite;
2748 sh->dev[i].towrite = NULL;
2749 spin_unlock_irq(&sh->stripe_lock);
2750 if (bi)
2751 bitmap_end = 1;
2752
2753 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2754 wake_up(&conf->wait_for_overlap);
2755
2756 while (bi && bi->bi_iter.bi_sector <
2757 sh->dev[i].sector + STRIPE_SECTORS) {
2758 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2759 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2760 if (!raid5_dec_bi_active_stripes(bi)) {
2761 md_write_end(conf->mddev);
2762 bi->bi_next = *return_bi;
2763 *return_bi = bi;
2764 }
2765 bi = nextbi;
2766 }
2767 if (bitmap_end)
2768 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2769 STRIPE_SECTORS, 0, 0);
2770 bitmap_end = 0;
2771 /* and fail all 'written' */
2772 bi = sh->dev[i].written;
2773 sh->dev[i].written = NULL;
2774 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2775 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2776 sh->dev[i].page = sh->dev[i].orig_page;
2777 }
2778
2779 if (bi) bitmap_end = 1;
2780 while (bi && bi->bi_iter.bi_sector <
2781 sh->dev[i].sector + STRIPE_SECTORS) {
2782 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2783 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2784 if (!raid5_dec_bi_active_stripes(bi)) {
2785 md_write_end(conf->mddev);
2786 bi->bi_next = *return_bi;
2787 *return_bi = bi;
2788 }
2789 bi = bi2;
2790 }
2791
2792 /* fail any reads if this device is non-operational and
2793 * the data has not reached the cache yet.
2794 */
2795 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2796 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2797 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2798 spin_lock_irq(&sh->stripe_lock);
2799 bi = sh->dev[i].toread;
2800 sh->dev[i].toread = NULL;
2801 spin_unlock_irq(&sh->stripe_lock);
2802 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2803 wake_up(&conf->wait_for_overlap);
2804 while (bi && bi->bi_iter.bi_sector <
2805 sh->dev[i].sector + STRIPE_SECTORS) {
2806 struct bio *nextbi =
2807 r5_next_bio(bi, sh->dev[i].sector);
2808 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2809 if (!raid5_dec_bi_active_stripes(bi)) {
2810 bi->bi_next = *return_bi;
2811 *return_bi = bi;
2812 }
2813 bi = nextbi;
2814 }
2815 }
2816 if (bitmap_end)
2817 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2818 STRIPE_SECTORS, 0, 0);
2819 /* If we were in the middle of a write the parity block might
2820 * still be locked - so just clear all R5_LOCKED flags
2821 */
2822 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2823 }
2824
2825 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2826 if (atomic_dec_and_test(&conf->pending_full_writes))
2827 md_wakeup_thread(conf->mddev->thread);
2828 }
2829
2830 static void
2831 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2832 struct stripe_head_state *s)
2833 {
2834 int abort = 0;
2835 int i;
2836
2837 clear_bit(STRIPE_SYNCING, &sh->state);
2838 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2839 wake_up(&conf->wait_for_overlap);
2840 s->syncing = 0;
2841 s->replacing = 0;
2842 /* There is nothing more to do for sync/check/repair.
2843 * Don't even need to abort as that is handled elsewhere
2844 * if needed, and not always wanted e.g. if there is a known
2845 * bad block here.
2846 * For recover/replace we need to record a bad block on all
2847 * non-sync devices, or abort the recovery
2848 */
2849 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2850 /* During recovery devices cannot be removed, so
2851 * locking and refcounting of rdevs is not needed
2852 */
2853 for (i = 0; i < conf->raid_disks; i++) {
2854 struct md_rdev *rdev = conf->disks[i].rdev;
2855 if (rdev
2856 && !test_bit(Faulty, &rdev->flags)
2857 && !test_bit(In_sync, &rdev->flags)
2858 && !rdev_set_badblocks(rdev, sh->sector,
2859 STRIPE_SECTORS, 0))
2860 abort = 1;
2861 rdev = conf->disks[i].replacement;
2862 if (rdev
2863 && !test_bit(Faulty, &rdev->flags)
2864 && !test_bit(In_sync, &rdev->flags)
2865 && !rdev_set_badblocks(rdev, sh->sector,
2866 STRIPE_SECTORS, 0))
2867 abort = 1;
2868 }
2869 if (abort)
2870 conf->recovery_disabled =
2871 conf->mddev->recovery_disabled;
2872 }
2873 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2874 }
2875
2876 static int want_replace(struct stripe_head *sh, int disk_idx)
2877 {
2878 struct md_rdev *rdev;
2879 int rv = 0;
2880 /* Doing recovery so rcu locking not required */
2881 rdev = sh->raid_conf->disks[disk_idx].replacement;
2882 if (rdev
2883 && !test_bit(Faulty, &rdev->flags)
2884 && !test_bit(In_sync, &rdev->flags)
2885 && (rdev->recovery_offset <= sh->sector
2886 || rdev->mddev->recovery_cp <= sh->sector))
2887 rv = 1;
2888
2889 return rv;
2890 }
2891
2892 /* fetch_block - checks the given member device to see if its data needs
2893 * to be read or computed to satisfy a request.
2894 *
2895 * Returns 1 when no more member devices need to be checked, otherwise returns
2896 * 0 to tell the loop in handle_stripe_fill to continue
2897 */
2898
2899 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
2900 int disk_idx, int disks)
2901 {
2902 struct r5dev *dev = &sh->dev[disk_idx];
2903 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2904 &sh->dev[s->failed_num[1]] };
2905 int i;
2906
2907
2908 if (test_bit(R5_LOCKED, &dev->flags) ||
2909 test_bit(R5_UPTODATE, &dev->flags))
2910 /* No point reading this as we already have it or have
2911 * decided to get it.
2912 */
2913 return 0;
2914
2915 if (dev->toread ||
2916 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
2917 /* We need this block to directly satisfy a request */
2918 return 1;
2919
2920 if (s->syncing || s->expanding ||
2921 (s->replacing && want_replace(sh, disk_idx)))
2922 /* When syncing, or expanding we read everything.
2923 * When replacing, we need the replaced block.
2924 */
2925 return 1;
2926
2927 if ((s->failed >= 1 && fdev[0]->toread) ||
2928 (s->failed >= 2 && fdev[1]->toread))
2929 /* If we want to read from a failed device, then
2930 * we need to actually read every other device.
2931 */
2932 return 1;
2933
2934 /* Sometimes neither read-modify-write nor reconstruct-write
2935 * cycles can work. In those cases we read every block we
2936 * can. Then the parity-update is certain to have enough to
2937 * work with.
2938 * This can only be a problem when we need to write something,
2939 * and some device has failed. If either of those tests
2940 * fail we need look no further.
2941 */
2942 if (!s->failed || !s->to_write)
2943 return 0;
2944
2945 if (test_bit(R5_Insync, &dev->flags) &&
2946 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2947 /* Pre-reads at not permitted until after short delay
2948 * to gather multiple requests. However if this
2949 * device is no Insync, the block could only be be computed
2950 * and there is no need to delay that.
2951 */
2952 return 0;
2953
2954 for (i = 0; i < s->failed; i++) {
2955 if (fdev[i]->towrite &&
2956 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
2957 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
2958 /* If we have a partial write to a failed
2959 * device, then we will need to reconstruct
2960 * the content of that device, so all other
2961 * devices must be read.
2962 */
2963 return 1;
2964 }
2965
2966 /* If we are forced to do a reconstruct-write, either because
2967 * the current RAID6 implementation only supports that, or
2968 * or because parity cannot be trusted and we are currently
2969 * recovering it, there is extra need to be careful.
2970 * If one of the devices that we would need to read, because
2971 * it is not being overwritten (and maybe not written at all)
2972 * is missing/faulty, then we need to read everything we can.
2973 */
2974 if (sh->raid_conf->level != 6 &&
2975 sh->sector < sh->raid_conf->mddev->recovery_cp)
2976 /* reconstruct-write isn't being forced */
2977 return 0;
2978 for (i = 0; i < s->failed; i++) {
2979 if (!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
2980 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
2981 return 1;
2982 }
2983
2984 return 0;
2985 }
2986
2987 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2988 int disk_idx, int disks)
2989 {
2990 struct r5dev *dev = &sh->dev[disk_idx];
2991
2992 /* is the data in this block needed, and can we get it? */
2993 if (need_this_block(sh, s, disk_idx, disks)) {
2994 /* we would like to get this block, possibly by computing it,
2995 * otherwise read it if the backing disk is insync
2996 */
2997 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2998 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2999 if ((s->uptodate == disks - 1) &&
3000 (s->failed && (disk_idx == s->failed_num[0] ||
3001 disk_idx == s->failed_num[1]))) {
3002 /* have disk failed, and we're requested to fetch it;
3003 * do compute it
3004 */
3005 pr_debug("Computing stripe %llu block %d\n",
3006 (unsigned long long)sh->sector, disk_idx);
3007 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3008 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3009 set_bit(R5_Wantcompute, &dev->flags);
3010 sh->ops.target = disk_idx;
3011 sh->ops.target2 = -1; /* no 2nd target */
3012 s->req_compute = 1;
3013 /* Careful: from this point on 'uptodate' is in the eye
3014 * of raid_run_ops which services 'compute' operations
3015 * before writes. R5_Wantcompute flags a block that will
3016 * be R5_UPTODATE by the time it is needed for a
3017 * subsequent operation.
3018 */
3019 s->uptodate++;
3020 return 1;
3021 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3022 /* Computing 2-failure is *very* expensive; only
3023 * do it if failed >= 2
3024 */
3025 int other;
3026 for (other = disks; other--; ) {
3027 if (other == disk_idx)
3028 continue;
3029 if (!test_bit(R5_UPTODATE,
3030 &sh->dev[other].flags))
3031 break;
3032 }
3033 BUG_ON(other < 0);
3034 pr_debug("Computing stripe %llu blocks %d,%d\n",
3035 (unsigned long long)sh->sector,
3036 disk_idx, other);
3037 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3038 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3039 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3040 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3041 sh->ops.target = disk_idx;
3042 sh->ops.target2 = other;
3043 s->uptodate += 2;
3044 s->req_compute = 1;
3045 return 1;
3046 } else if (test_bit(R5_Insync, &dev->flags)) {
3047 set_bit(R5_LOCKED, &dev->flags);
3048 set_bit(R5_Wantread, &dev->flags);
3049 s->locked++;
3050 pr_debug("Reading block %d (sync=%d)\n",
3051 disk_idx, s->syncing);
3052 }
3053 }
3054
3055 return 0;
3056 }
3057
3058 /**
3059 * handle_stripe_fill - read or compute data to satisfy pending requests.
3060 */
3061 static void handle_stripe_fill(struct stripe_head *sh,
3062 struct stripe_head_state *s,
3063 int disks)
3064 {
3065 int i;
3066
3067 /* look for blocks to read/compute, skip this if a compute
3068 * is already in flight, or if the stripe contents are in the
3069 * midst of changing due to a write
3070 */
3071 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3072 !sh->reconstruct_state)
3073 for (i = disks; i--; )
3074 if (fetch_block(sh, s, i, disks))
3075 break;
3076 set_bit(STRIPE_HANDLE, &sh->state);
3077 }
3078
3079 /* handle_stripe_clean_event
3080 * any written block on an uptodate or failed drive can be returned.
3081 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3082 * never LOCKED, so we don't need to test 'failed' directly.
3083 */
3084 static void handle_stripe_clean_event(struct r5conf *conf,
3085 struct stripe_head *sh, int disks, struct bio **return_bi)
3086 {
3087 int i;
3088 struct r5dev *dev;
3089 int discard_pending = 0;
3090
3091 for (i = disks; i--; )
3092 if (sh->dev[i].written) {
3093 dev = &sh->dev[i];
3094 if (!test_bit(R5_LOCKED, &dev->flags) &&
3095 (test_bit(R5_UPTODATE, &dev->flags) ||
3096 test_bit(R5_Discard, &dev->flags) ||
3097 test_bit(R5_SkipCopy, &dev->flags))) {
3098 /* We can return any write requests */
3099 struct bio *wbi, *wbi2;
3100 pr_debug("Return write for disc %d\n", i);
3101 if (test_and_clear_bit(R5_Discard, &dev->flags))
3102 clear_bit(R5_UPTODATE, &dev->flags);
3103 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3104 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3105 dev->page = dev->orig_page;
3106 }
3107 wbi = dev->written;
3108 dev->written = NULL;
3109 while (wbi && wbi->bi_iter.bi_sector <
3110 dev->sector + STRIPE_SECTORS) {
3111 wbi2 = r5_next_bio(wbi, dev->sector);
3112 if (!raid5_dec_bi_active_stripes(wbi)) {
3113 md_write_end(conf->mddev);
3114 wbi->bi_next = *return_bi;
3115 *return_bi = wbi;
3116 }
3117 wbi = wbi2;
3118 }
3119 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3120 STRIPE_SECTORS,
3121 !test_bit(STRIPE_DEGRADED, &sh->state),
3122 0);
3123 } else if (test_bit(R5_Discard, &dev->flags))
3124 discard_pending = 1;
3125 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3126 WARN_ON(dev->page != dev->orig_page);
3127 }
3128 if (!discard_pending &&
3129 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3130 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3131 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3132 if (sh->qd_idx >= 0) {
3133 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3134 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3135 }
3136 /* now that discard is done we can proceed with any sync */
3137 clear_bit(STRIPE_DISCARD, &sh->state);
3138 /*
3139 * SCSI discard will change some bio fields and the stripe has
3140 * no updated data, so remove it from hash list and the stripe
3141 * will be reinitialized
3142 */
3143 spin_lock_irq(&conf->device_lock);
3144 remove_hash(sh);
3145 spin_unlock_irq(&conf->device_lock);
3146 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3147 set_bit(STRIPE_HANDLE, &sh->state);
3148
3149 }
3150
3151 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3152 if (atomic_dec_and_test(&conf->pending_full_writes))
3153 md_wakeup_thread(conf->mddev->thread);
3154 }
3155
3156 static void handle_stripe_dirtying(struct r5conf *conf,
3157 struct stripe_head *sh,
3158 struct stripe_head_state *s,
3159 int disks)
3160 {
3161 int rmw = 0, rcw = 0, i;
3162 sector_t recovery_cp = conf->mddev->recovery_cp;
3163
3164 /* RAID6 requires 'rcw' in current implementation.
3165 * Otherwise, check whether resync is now happening or should start.
3166 * If yes, then the array is dirty (after unclean shutdown or
3167 * initial creation), so parity in some stripes might be inconsistent.
3168 * In this case, we need to always do reconstruct-write, to ensure
3169 * that in case of drive failure or read-error correction, we
3170 * generate correct data from the parity.
3171 */
3172 if (conf->max_degraded == 2 ||
3173 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3174 s->failed == 0)) {
3175 /* Calculate the real rcw later - for now make it
3176 * look like rcw is cheaper
3177 */
3178 rcw = 1; rmw = 2;
3179 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3180 conf->max_degraded, (unsigned long long)recovery_cp,
3181 (unsigned long long)sh->sector);
3182 } else for (i = disks; i--; ) {
3183 /* would I have to read this buffer for read_modify_write */
3184 struct r5dev *dev = &sh->dev[i];
3185 if ((dev->towrite || i == sh->pd_idx) &&
3186 !test_bit(R5_LOCKED, &dev->flags) &&
3187 !(test_bit(R5_UPTODATE, &dev->flags) ||
3188 test_bit(R5_Wantcompute, &dev->flags))) {
3189 if (test_bit(R5_Insync, &dev->flags))
3190 rmw++;
3191 else
3192 rmw += 2*disks; /* cannot read it */
3193 }
3194 /* Would I have to read this buffer for reconstruct_write */
3195 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3196 !test_bit(R5_LOCKED, &dev->flags) &&
3197 !(test_bit(R5_UPTODATE, &dev->flags) ||
3198 test_bit(R5_Wantcompute, &dev->flags))) {
3199 if (test_bit(R5_Insync, &dev->flags))
3200 rcw++;
3201 else
3202 rcw += 2*disks;
3203 }
3204 }
3205 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3206 (unsigned long long)sh->sector, rmw, rcw);
3207 set_bit(STRIPE_HANDLE, &sh->state);
3208 if (rmw < rcw && rmw > 0) {
3209 /* prefer read-modify-write, but need to get some data */
3210 if (conf->mddev->queue)
3211 blk_add_trace_msg(conf->mddev->queue,
3212 "raid5 rmw %llu %d",
3213 (unsigned long long)sh->sector, rmw);
3214 for (i = disks; i--; ) {
3215 struct r5dev *dev = &sh->dev[i];
3216 if ((dev->towrite || i == sh->pd_idx) &&
3217 !test_bit(R5_LOCKED, &dev->flags) &&
3218 !(test_bit(R5_UPTODATE, &dev->flags) ||
3219 test_bit(R5_Wantcompute, &dev->flags)) &&
3220 test_bit(R5_Insync, &dev->flags)) {
3221 if (test_bit(STRIPE_PREREAD_ACTIVE,
3222 &sh->state)) {
3223 pr_debug("Read_old block %d for r-m-w\n",
3224 i);
3225 set_bit(R5_LOCKED, &dev->flags);
3226 set_bit(R5_Wantread, &dev->flags);
3227 s->locked++;
3228 } else {
3229 set_bit(STRIPE_DELAYED, &sh->state);
3230 set_bit(STRIPE_HANDLE, &sh->state);
3231 }
3232 }
3233 }
3234 }
3235 if (rcw <= rmw && rcw > 0) {
3236 /* want reconstruct write, but need to get some data */
3237 int qread =0;
3238 rcw = 0;
3239 for (i = disks; i--; ) {
3240 struct r5dev *dev = &sh->dev[i];
3241 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3242 i != sh->pd_idx && i != sh->qd_idx &&
3243 !test_bit(R5_LOCKED, &dev->flags) &&
3244 !(test_bit(R5_UPTODATE, &dev->flags) ||
3245 test_bit(R5_Wantcompute, &dev->flags))) {
3246 rcw++;
3247 if (test_bit(R5_Insync, &dev->flags) &&
3248 test_bit(STRIPE_PREREAD_ACTIVE,
3249 &sh->state)) {
3250 pr_debug("Read_old block "
3251 "%d for Reconstruct\n", i);
3252 set_bit(R5_LOCKED, &dev->flags);
3253 set_bit(R5_Wantread, &dev->flags);
3254 s->locked++;
3255 qread++;
3256 } else {
3257 set_bit(STRIPE_DELAYED, &sh->state);
3258 set_bit(STRIPE_HANDLE, &sh->state);
3259 }
3260 }
3261 }
3262 if (rcw && conf->mddev->queue)
3263 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3264 (unsigned long long)sh->sector,
3265 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3266 }
3267
3268 if (rcw > disks && rmw > disks &&
3269 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3270 set_bit(STRIPE_DELAYED, &sh->state);
3271
3272 /* now if nothing is locked, and if we have enough data,
3273 * we can start a write request
3274 */
3275 /* since handle_stripe can be called at any time we need to handle the
3276 * case where a compute block operation has been submitted and then a
3277 * subsequent call wants to start a write request. raid_run_ops only
3278 * handles the case where compute block and reconstruct are requested
3279 * simultaneously. If this is not the case then new writes need to be
3280 * held off until the compute completes.
3281 */
3282 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3283 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3284 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3285 schedule_reconstruction(sh, s, rcw == 0, 0);
3286 }
3287
3288 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3289 struct stripe_head_state *s, int disks)
3290 {
3291 struct r5dev *dev = NULL;
3292
3293 set_bit(STRIPE_HANDLE, &sh->state);
3294
3295 switch (sh->check_state) {
3296 case check_state_idle:
3297 /* start a new check operation if there are no failures */
3298 if (s->failed == 0) {
3299 BUG_ON(s->uptodate != disks);
3300 sh->check_state = check_state_run;
3301 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3302 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3303 s->uptodate--;
3304 break;
3305 }
3306 dev = &sh->dev[s->failed_num[0]];
3307 /* fall through */
3308 case check_state_compute_result:
3309 sh->check_state = check_state_idle;
3310 if (!dev)
3311 dev = &sh->dev[sh->pd_idx];
3312
3313 /* check that a write has not made the stripe insync */
3314 if (test_bit(STRIPE_INSYNC, &sh->state))
3315 break;
3316
3317 /* either failed parity check, or recovery is happening */
3318 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3319 BUG_ON(s->uptodate != disks);
3320
3321 set_bit(R5_LOCKED, &dev->flags);
3322 s->locked++;
3323 set_bit(R5_Wantwrite, &dev->flags);
3324
3325 clear_bit(STRIPE_DEGRADED, &sh->state);
3326 set_bit(STRIPE_INSYNC, &sh->state);
3327 break;
3328 case check_state_run:
3329 break; /* we will be called again upon completion */
3330 case check_state_check_result:
3331 sh->check_state = check_state_idle;
3332
3333 /* if a failure occurred during the check operation, leave
3334 * STRIPE_INSYNC not set and let the stripe be handled again
3335 */
3336 if (s->failed)
3337 break;
3338
3339 /* handle a successful check operation, if parity is correct
3340 * we are done. Otherwise update the mismatch count and repair
3341 * parity if !MD_RECOVERY_CHECK
3342 */
3343 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3344 /* parity is correct (on disc,
3345 * not in buffer any more)
3346 */
3347 set_bit(STRIPE_INSYNC, &sh->state);
3348 else {
3349 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3350 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3351 /* don't try to repair!! */
3352 set_bit(STRIPE_INSYNC, &sh->state);
3353 else {
3354 sh->check_state = check_state_compute_run;
3355 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3356 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3357 set_bit(R5_Wantcompute,
3358 &sh->dev[sh->pd_idx].flags);
3359 sh->ops.target = sh->pd_idx;
3360 sh->ops.target2 = -1;
3361 s->uptodate++;
3362 }
3363 }
3364 break;
3365 case check_state_compute_run:
3366 break;
3367 default:
3368 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3369 __func__, sh->check_state,
3370 (unsigned long long) sh->sector);
3371 BUG();
3372 }
3373 }
3374
3375 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3376 struct stripe_head_state *s,
3377 int disks)
3378 {
3379 int pd_idx = sh->pd_idx;
3380 int qd_idx = sh->qd_idx;
3381 struct r5dev *dev;
3382
3383 set_bit(STRIPE_HANDLE, &sh->state);
3384
3385 BUG_ON(s->failed > 2);
3386
3387 /* Want to check and possibly repair P and Q.
3388 * However there could be one 'failed' device, in which
3389 * case we can only check one of them, possibly using the
3390 * other to generate missing data
3391 */
3392
3393 switch (sh->check_state) {
3394 case check_state_idle:
3395 /* start a new check operation if there are < 2 failures */
3396 if (s->failed == s->q_failed) {
3397 /* The only possible failed device holds Q, so it
3398 * makes sense to check P (If anything else were failed,
3399 * we would have used P to recreate it).
3400 */
3401 sh->check_state = check_state_run;
3402 }
3403 if (!s->q_failed && s->failed < 2) {
3404 /* Q is not failed, and we didn't use it to generate
3405 * anything, so it makes sense to check it
3406 */
3407 if (sh->check_state == check_state_run)
3408 sh->check_state = check_state_run_pq;
3409 else
3410 sh->check_state = check_state_run_q;
3411 }
3412
3413 /* discard potentially stale zero_sum_result */
3414 sh->ops.zero_sum_result = 0;
3415
3416 if (sh->check_state == check_state_run) {
3417 /* async_xor_zero_sum destroys the contents of P */
3418 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3419 s->uptodate--;
3420 }
3421 if (sh->check_state >= check_state_run &&
3422 sh->check_state <= check_state_run_pq) {
3423 /* async_syndrome_zero_sum preserves P and Q, so
3424 * no need to mark them !uptodate here
3425 */
3426 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3427 break;
3428 }
3429
3430 /* we have 2-disk failure */
3431 BUG_ON(s->failed != 2);
3432 /* fall through */
3433 case check_state_compute_result:
3434 sh->check_state = check_state_idle;
3435
3436 /* check that a write has not made the stripe insync */
3437 if (test_bit(STRIPE_INSYNC, &sh->state))
3438 break;
3439
3440 /* now write out any block on a failed drive,
3441 * or P or Q if they were recomputed
3442 */
3443 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3444 if (s->failed == 2) {
3445 dev = &sh->dev[s->failed_num[1]];
3446 s->locked++;
3447 set_bit(R5_LOCKED, &dev->flags);
3448 set_bit(R5_Wantwrite, &dev->flags);
3449 }
3450 if (s->failed >= 1) {
3451 dev = &sh->dev[s->failed_num[0]];
3452 s->locked++;
3453 set_bit(R5_LOCKED, &dev->flags);
3454 set_bit(R5_Wantwrite, &dev->flags);
3455 }
3456 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3457 dev = &sh->dev[pd_idx];
3458 s->locked++;
3459 set_bit(R5_LOCKED, &dev->flags);
3460 set_bit(R5_Wantwrite, &dev->flags);
3461 }
3462 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3463 dev = &sh->dev[qd_idx];
3464 s->locked++;
3465 set_bit(R5_LOCKED, &dev->flags);
3466 set_bit(R5_Wantwrite, &dev->flags);
3467 }
3468 clear_bit(STRIPE_DEGRADED, &sh->state);
3469
3470 set_bit(STRIPE_INSYNC, &sh->state);
3471 break;
3472 case check_state_run:
3473 case check_state_run_q:
3474 case check_state_run_pq:
3475 break; /* we will be called again upon completion */
3476 case check_state_check_result:
3477 sh->check_state = check_state_idle;
3478
3479 /* handle a successful check operation, if parity is correct
3480 * we are done. Otherwise update the mismatch count and repair
3481 * parity if !MD_RECOVERY_CHECK
3482 */
3483 if (sh->ops.zero_sum_result == 0) {
3484 /* both parities are correct */
3485 if (!s->failed)
3486 set_bit(STRIPE_INSYNC, &sh->state);
3487 else {
3488 /* in contrast to the raid5 case we can validate
3489 * parity, but still have a failure to write
3490 * back
3491 */
3492 sh->check_state = check_state_compute_result;
3493 /* Returning at this point means that we may go
3494 * off and bring p and/or q uptodate again so
3495 * we make sure to check zero_sum_result again
3496 * to verify if p or q need writeback
3497 */
3498 }
3499 } else {
3500 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3501 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3502 /* don't try to repair!! */
3503 set_bit(STRIPE_INSYNC, &sh->state);
3504 else {
3505 int *target = &sh->ops.target;
3506
3507 sh->ops.target = -1;
3508 sh->ops.target2 = -1;
3509 sh->check_state = check_state_compute_run;
3510 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3511 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3512 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3513 set_bit(R5_Wantcompute,
3514 &sh->dev[pd_idx].flags);
3515 *target = pd_idx;
3516 target = &sh->ops.target2;
3517 s->uptodate++;
3518 }
3519 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3520 set_bit(R5_Wantcompute,
3521 &sh->dev[qd_idx].flags);
3522 *target = qd_idx;
3523 s->uptodate++;
3524 }
3525 }
3526 }
3527 break;
3528 case check_state_compute_run:
3529 break;
3530 default:
3531 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3532 __func__, sh->check_state,
3533 (unsigned long long) sh->sector);
3534 BUG();
3535 }
3536 }
3537
3538 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3539 {
3540 int i;
3541
3542 /* We have read all the blocks in this stripe and now we need to
3543 * copy some of them into a target stripe for expand.
3544 */
3545 struct dma_async_tx_descriptor *tx = NULL;
3546 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3547 for (i = 0; i < sh->disks; i++)
3548 if (i != sh->pd_idx && i != sh->qd_idx) {
3549 int dd_idx, j;
3550 struct stripe_head *sh2;
3551 struct async_submit_ctl submit;
3552
3553 sector_t bn = compute_blocknr(sh, i, 1);
3554 sector_t s = raid5_compute_sector(conf, bn, 0,
3555 &dd_idx, NULL);
3556 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3557 if (sh2 == NULL)
3558 /* so far only the early blocks of this stripe
3559 * have been requested. When later blocks
3560 * get requested, we will try again
3561 */
3562 continue;
3563 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3564 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3565 /* must have already done this block */
3566 release_stripe(sh2);
3567 continue;
3568 }
3569
3570 /* place all the copies on one channel */
3571 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3572 tx = async_memcpy(sh2->dev[dd_idx].page,
3573 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3574 &submit);
3575
3576 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3577 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3578 for (j = 0; j < conf->raid_disks; j++)
3579 if (j != sh2->pd_idx &&
3580 j != sh2->qd_idx &&
3581 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3582 break;
3583 if (j == conf->raid_disks) {
3584 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3585 set_bit(STRIPE_HANDLE, &sh2->state);
3586 }
3587 release_stripe(sh2);
3588
3589 }
3590 /* done submitting copies, wait for them to complete */
3591 async_tx_quiesce(&tx);
3592 }
3593
3594 /*
3595 * handle_stripe - do things to a stripe.
3596 *
3597 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3598 * state of various bits to see what needs to be done.
3599 * Possible results:
3600 * return some read requests which now have data
3601 * return some write requests which are safely on storage
3602 * schedule a read on some buffers
3603 * schedule a write of some buffers
3604 * return confirmation of parity correctness
3605 *
3606 */
3607
3608 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3609 {
3610 struct r5conf *conf = sh->raid_conf;
3611 int disks = sh->disks;
3612 struct r5dev *dev;
3613 int i;
3614 int do_recovery = 0;
3615
3616 memset(s, 0, sizeof(*s));
3617
3618 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3619 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3620 s->failed_num[0] = -1;
3621 s->failed_num[1] = -1;
3622
3623 /* Now to look around and see what can be done */
3624 rcu_read_lock();
3625 for (i=disks; i--; ) {
3626 struct md_rdev *rdev;
3627 sector_t first_bad;
3628 int bad_sectors;
3629 int is_bad = 0;
3630
3631 dev = &sh->dev[i];
3632
3633 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3634 i, dev->flags,
3635 dev->toread, dev->towrite, dev->written);
3636 /* maybe we can reply to a read
3637 *
3638 * new wantfill requests are only permitted while
3639 * ops_complete_biofill is guaranteed to be inactive
3640 */
3641 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3642 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3643 set_bit(R5_Wantfill, &dev->flags);
3644
3645 /* now count some things */
3646 if (test_bit(R5_LOCKED, &dev->flags))
3647 s->locked++;
3648 if (test_bit(R5_UPTODATE, &dev->flags))
3649 s->uptodate++;
3650 if (test_bit(R5_Wantcompute, &dev->flags)) {
3651 s->compute++;
3652 BUG_ON(s->compute > 2);
3653 }
3654
3655 if (test_bit(R5_Wantfill, &dev->flags))
3656 s->to_fill++;
3657 else if (dev->toread)
3658 s->to_read++;
3659 if (dev->towrite) {
3660 s->to_write++;
3661 if (!test_bit(R5_OVERWRITE, &dev->flags))
3662 s->non_overwrite++;
3663 }
3664 if (dev->written)
3665 s->written++;
3666 /* Prefer to use the replacement for reads, but only
3667 * if it is recovered enough and has no bad blocks.
3668 */
3669 rdev = rcu_dereference(conf->disks[i].replacement);
3670 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3671 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3672 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3673 &first_bad, &bad_sectors))
3674 set_bit(R5_ReadRepl, &dev->flags);
3675 else {
3676 if (rdev)
3677 set_bit(R5_NeedReplace, &dev->flags);
3678 rdev = rcu_dereference(conf->disks[i].rdev);
3679 clear_bit(R5_ReadRepl, &dev->flags);
3680 }
3681 if (rdev && test_bit(Faulty, &rdev->flags))
3682 rdev = NULL;
3683 if (rdev) {
3684 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3685 &first_bad, &bad_sectors);
3686 if (s->blocked_rdev == NULL
3687 && (test_bit(Blocked, &rdev->flags)
3688 || is_bad < 0)) {
3689 if (is_bad < 0)
3690 set_bit(BlockedBadBlocks,
3691 &rdev->flags);
3692 s->blocked_rdev = rdev;
3693 atomic_inc(&rdev->nr_pending);
3694 }
3695 }
3696 clear_bit(R5_Insync, &dev->flags);
3697 if (!rdev)
3698 /* Not in-sync */;
3699 else if (is_bad) {
3700 /* also not in-sync */
3701 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3702 test_bit(R5_UPTODATE, &dev->flags)) {
3703 /* treat as in-sync, but with a read error
3704 * which we can now try to correct
3705 */
3706 set_bit(R5_Insync, &dev->flags);
3707 set_bit(R5_ReadError, &dev->flags);
3708 }
3709 } else if (test_bit(In_sync, &rdev->flags))
3710 set_bit(R5_Insync, &dev->flags);
3711 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3712 /* in sync if before recovery_offset */
3713 set_bit(R5_Insync, &dev->flags);
3714 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3715 test_bit(R5_Expanded, &dev->flags))
3716 /* If we've reshaped into here, we assume it is Insync.
3717 * We will shortly update recovery_offset to make
3718 * it official.
3719 */
3720 set_bit(R5_Insync, &dev->flags);
3721
3722 if (test_bit(R5_WriteError, &dev->flags)) {
3723 /* This flag does not apply to '.replacement'
3724 * only to .rdev, so make sure to check that*/
3725 struct md_rdev *rdev2 = rcu_dereference(
3726 conf->disks[i].rdev);
3727 if (rdev2 == rdev)
3728 clear_bit(R5_Insync, &dev->flags);
3729 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3730 s->handle_bad_blocks = 1;
3731 atomic_inc(&rdev2->nr_pending);
3732 } else
3733 clear_bit(R5_WriteError, &dev->flags);
3734 }
3735 if (test_bit(R5_MadeGood, &dev->flags)) {
3736 /* This flag does not apply to '.replacement'
3737 * only to .rdev, so make sure to check that*/
3738 struct md_rdev *rdev2 = rcu_dereference(
3739 conf->disks[i].rdev);
3740 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3741 s->handle_bad_blocks = 1;
3742 atomic_inc(&rdev2->nr_pending);
3743 } else
3744 clear_bit(R5_MadeGood, &dev->flags);
3745 }
3746 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3747 struct md_rdev *rdev2 = rcu_dereference(
3748 conf->disks[i].replacement);
3749 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3750 s->handle_bad_blocks = 1;
3751 atomic_inc(&rdev2->nr_pending);
3752 } else
3753 clear_bit(R5_MadeGoodRepl, &dev->flags);
3754 }
3755 if (!test_bit(R5_Insync, &dev->flags)) {
3756 /* The ReadError flag will just be confusing now */
3757 clear_bit(R5_ReadError, &dev->flags);
3758 clear_bit(R5_ReWrite, &dev->flags);
3759 }
3760 if (test_bit(R5_ReadError, &dev->flags))
3761 clear_bit(R5_Insync, &dev->flags);
3762 if (!test_bit(R5_Insync, &dev->flags)) {
3763 if (s->failed < 2)
3764 s->failed_num[s->failed] = i;
3765 s->failed++;
3766 if (rdev && !test_bit(Faulty, &rdev->flags))
3767 do_recovery = 1;
3768 }
3769 }
3770 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3771 /* If there is a failed device being replaced,
3772 * we must be recovering.
3773 * else if we are after recovery_cp, we must be syncing
3774 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3775 * else we can only be replacing
3776 * sync and recovery both need to read all devices, and so
3777 * use the same flag.
3778 */
3779 if (do_recovery ||
3780 sh->sector >= conf->mddev->recovery_cp ||
3781 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3782 s->syncing = 1;
3783 else
3784 s->replacing = 1;
3785 }
3786 rcu_read_unlock();
3787 }
3788
3789 static void handle_stripe(struct stripe_head *sh)
3790 {
3791 struct stripe_head_state s;
3792 struct r5conf *conf = sh->raid_conf;
3793 int i;
3794 int prexor;
3795 int disks = sh->disks;
3796 struct r5dev *pdev, *qdev;
3797
3798 clear_bit(STRIPE_HANDLE, &sh->state);
3799 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3800 /* already being handled, ensure it gets handled
3801 * again when current action finishes */
3802 set_bit(STRIPE_HANDLE, &sh->state);
3803 return;
3804 }
3805
3806 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3807 spin_lock(&sh->stripe_lock);
3808 /* Cannot process 'sync' concurrently with 'discard' */
3809 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3810 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3811 set_bit(STRIPE_SYNCING, &sh->state);
3812 clear_bit(STRIPE_INSYNC, &sh->state);
3813 clear_bit(STRIPE_REPLACED, &sh->state);
3814 }
3815 spin_unlock(&sh->stripe_lock);
3816 }
3817 clear_bit(STRIPE_DELAYED, &sh->state);
3818
3819 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3820 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3821 (unsigned long long)sh->sector, sh->state,
3822 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3823 sh->check_state, sh->reconstruct_state);
3824
3825 analyse_stripe(sh, &s);
3826
3827 if (s.handle_bad_blocks) {
3828 set_bit(STRIPE_HANDLE, &sh->state);
3829 goto finish;
3830 }
3831
3832 if (unlikely(s.blocked_rdev)) {
3833 if (s.syncing || s.expanding || s.expanded ||
3834 s.replacing || s.to_write || s.written) {
3835 set_bit(STRIPE_HANDLE, &sh->state);
3836 goto finish;
3837 }
3838 /* There is nothing for the blocked_rdev to block */
3839 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3840 s.blocked_rdev = NULL;
3841 }
3842
3843 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3844 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3845 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3846 }
3847
3848 pr_debug("locked=%d uptodate=%d to_read=%d"
3849 " to_write=%d failed=%d failed_num=%d,%d\n",
3850 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3851 s.failed_num[0], s.failed_num[1]);
3852 /* check if the array has lost more than max_degraded devices and,
3853 * if so, some requests might need to be failed.
3854 */
3855 if (s.failed > conf->max_degraded) {
3856 sh->check_state = 0;
3857 sh->reconstruct_state = 0;
3858 if (s.to_read+s.to_write+s.written)
3859 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3860 if (s.syncing + s.replacing)
3861 handle_failed_sync(conf, sh, &s);
3862 }
3863
3864 /* Now we check to see if any write operations have recently
3865 * completed
3866 */
3867 prexor = 0;
3868 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3869 prexor = 1;
3870 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3871 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3872 sh->reconstruct_state = reconstruct_state_idle;
3873
3874 /* All the 'written' buffers and the parity block are ready to
3875 * be written back to disk
3876 */
3877 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3878 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3879 BUG_ON(sh->qd_idx >= 0 &&
3880 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3881 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3882 for (i = disks; i--; ) {
3883 struct r5dev *dev = &sh->dev[i];
3884 if (test_bit(R5_LOCKED, &dev->flags) &&
3885 (i == sh->pd_idx || i == sh->qd_idx ||
3886 dev->written)) {
3887 pr_debug("Writing block %d\n", i);
3888 set_bit(R5_Wantwrite, &dev->flags);
3889 if (prexor)
3890 continue;
3891 if (s.failed > 1)
3892 continue;
3893 if (!test_bit(R5_Insync, &dev->flags) ||
3894 ((i == sh->pd_idx || i == sh->qd_idx) &&
3895 s.failed == 0))
3896 set_bit(STRIPE_INSYNC, &sh->state);
3897 }
3898 }
3899 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3900 s.dec_preread_active = 1;
3901 }
3902
3903 /*
3904 * might be able to return some write requests if the parity blocks
3905 * are safe, or on a failed drive
3906 */
3907 pdev = &sh->dev[sh->pd_idx];
3908 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3909 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3910 qdev = &sh->dev[sh->qd_idx];
3911 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3912 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3913 || conf->level < 6;
3914
3915 if (s.written &&
3916 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3917 && !test_bit(R5_LOCKED, &pdev->flags)
3918 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3919 test_bit(R5_Discard, &pdev->flags))))) &&
3920 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3921 && !test_bit(R5_LOCKED, &qdev->flags)
3922 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3923 test_bit(R5_Discard, &qdev->flags))))))
3924 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3925
3926 /* Now we might consider reading some blocks, either to check/generate
3927 * parity, or to satisfy requests
3928 * or to load a block that is being partially written.
3929 */
3930 if (s.to_read || s.non_overwrite
3931 || (conf->level == 6 && s.to_write && s.failed)
3932 || (s.syncing && (s.uptodate + s.compute < disks))
3933 || s.replacing
3934 || s.expanding)
3935 handle_stripe_fill(sh, &s, disks);
3936
3937 /* Now to consider new write requests and what else, if anything
3938 * should be read. We do not handle new writes when:
3939 * 1/ A 'write' operation (copy+xor) is already in flight.
3940 * 2/ A 'check' operation is in flight, as it may clobber the parity
3941 * block.
3942 */
3943 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3944 handle_stripe_dirtying(conf, sh, &s, disks);
3945
3946 /* maybe we need to check and possibly fix the parity for this stripe
3947 * Any reads will already have been scheduled, so we just see if enough
3948 * data is available. The parity check is held off while parity
3949 * dependent operations are in flight.
3950 */
3951 if (sh->check_state ||
3952 (s.syncing && s.locked == 0 &&
3953 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3954 !test_bit(STRIPE_INSYNC, &sh->state))) {
3955 if (conf->level == 6)
3956 handle_parity_checks6(conf, sh, &s, disks);
3957 else
3958 handle_parity_checks5(conf, sh, &s, disks);
3959 }
3960
3961 if ((s.replacing || s.syncing) && s.locked == 0
3962 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3963 && !test_bit(STRIPE_REPLACED, &sh->state)) {
3964 /* Write out to replacement devices where possible */
3965 for (i = 0; i < conf->raid_disks; i++)
3966 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3967 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3968 set_bit(R5_WantReplace, &sh->dev[i].flags);
3969 set_bit(R5_LOCKED, &sh->dev[i].flags);
3970 s.locked++;
3971 }
3972 if (s.replacing)
3973 set_bit(STRIPE_INSYNC, &sh->state);
3974 set_bit(STRIPE_REPLACED, &sh->state);
3975 }
3976 if ((s.syncing || s.replacing) && s.locked == 0 &&
3977 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3978 test_bit(STRIPE_INSYNC, &sh->state)) {
3979 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3980 clear_bit(STRIPE_SYNCING, &sh->state);
3981 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3982 wake_up(&conf->wait_for_overlap);
3983 }
3984
3985 /* If the failed drives are just a ReadError, then we might need
3986 * to progress the repair/check process
3987 */
3988 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3989 for (i = 0; i < s.failed; i++) {
3990 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3991 if (test_bit(R5_ReadError, &dev->flags)
3992 && !test_bit(R5_LOCKED, &dev->flags)
3993 && test_bit(R5_UPTODATE, &dev->flags)
3994 ) {
3995 if (!test_bit(R5_ReWrite, &dev->flags)) {
3996 set_bit(R5_Wantwrite, &dev->flags);
3997 set_bit(R5_ReWrite, &dev->flags);
3998 set_bit(R5_LOCKED, &dev->flags);
3999 s.locked++;
4000 } else {
4001 /* let's read it back */
4002 set_bit(R5_Wantread, &dev->flags);
4003 set_bit(R5_LOCKED, &dev->flags);
4004 s.locked++;
4005 }
4006 }
4007 }
4008
4009 /* Finish reconstruct operations initiated by the expansion process */
4010 if (sh->reconstruct_state == reconstruct_state_result) {
4011 struct stripe_head *sh_src
4012 = get_active_stripe(conf, sh->sector, 1, 1, 1);
4013 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4014 /* sh cannot be written until sh_src has been read.
4015 * so arrange for sh to be delayed a little
4016 */
4017 set_bit(STRIPE_DELAYED, &sh->state);
4018 set_bit(STRIPE_HANDLE, &sh->state);
4019 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4020 &sh_src->state))
4021 atomic_inc(&conf->preread_active_stripes);
4022 release_stripe(sh_src);
4023 goto finish;
4024 }
4025 if (sh_src)
4026 release_stripe(sh_src);
4027
4028 sh->reconstruct_state = reconstruct_state_idle;
4029 clear_bit(STRIPE_EXPANDING, &sh->state);
4030 for (i = conf->raid_disks; i--; ) {
4031 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4032 set_bit(R5_LOCKED, &sh->dev[i].flags);
4033 s.locked++;
4034 }
4035 }
4036
4037 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4038 !sh->reconstruct_state) {
4039 /* Need to write out all blocks after computing parity */
4040 sh->disks = conf->raid_disks;
4041 stripe_set_idx(sh->sector, conf, 0, sh);
4042 schedule_reconstruction(sh, &s, 1, 1);
4043 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4044 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4045 atomic_dec(&conf->reshape_stripes);
4046 wake_up(&conf->wait_for_overlap);
4047 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4048 }
4049
4050 if (s.expanding && s.locked == 0 &&
4051 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4052 handle_stripe_expansion(conf, sh);
4053
4054 finish:
4055 /* wait for this device to become unblocked */
4056 if (unlikely(s.blocked_rdev)) {
4057 if (conf->mddev->external)
4058 md_wait_for_blocked_rdev(s.blocked_rdev,
4059 conf->mddev);
4060 else
4061 /* Internal metadata will immediately
4062 * be written by raid5d, so we don't
4063 * need to wait here.
4064 */
4065 rdev_dec_pending(s.blocked_rdev,
4066 conf->mddev);
4067 }
4068
4069 if (s.handle_bad_blocks)
4070 for (i = disks; i--; ) {
4071 struct md_rdev *rdev;
4072 struct r5dev *dev = &sh->dev[i];
4073 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4074 /* We own a safe reference to the rdev */
4075 rdev = conf->disks[i].rdev;
4076 if (!rdev_set_badblocks(rdev, sh->sector,
4077 STRIPE_SECTORS, 0))
4078 md_error(conf->mddev, rdev);
4079 rdev_dec_pending(rdev, conf->mddev);
4080 }
4081 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4082 rdev = conf->disks[i].rdev;
4083 rdev_clear_badblocks(rdev, sh->sector,
4084 STRIPE_SECTORS, 0);
4085 rdev_dec_pending(rdev, conf->mddev);
4086 }
4087 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4088 rdev = conf->disks[i].replacement;
4089 if (!rdev)
4090 /* rdev have been moved down */
4091 rdev = conf->disks[i].rdev;
4092 rdev_clear_badblocks(rdev, sh->sector,
4093 STRIPE_SECTORS, 0);
4094 rdev_dec_pending(rdev, conf->mddev);
4095 }
4096 }
4097
4098 if (s.ops_request)
4099 raid_run_ops(sh, s.ops_request);
4100
4101 ops_run_io(sh, &s);
4102
4103 if (s.dec_preread_active) {
4104 /* We delay this until after ops_run_io so that if make_request
4105 * is waiting on a flush, it won't continue until the writes
4106 * have actually been submitted.
4107 */
4108 atomic_dec(&conf->preread_active_stripes);
4109 if (atomic_read(&conf->preread_active_stripes) <
4110 IO_THRESHOLD)
4111 md_wakeup_thread(conf->mddev->thread);
4112 }
4113
4114 return_io(s.return_bi);
4115
4116 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4117 }
4118
4119 static void raid5_activate_delayed(struct r5conf *conf)
4120 {
4121 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4122 while (!list_empty(&conf->delayed_list)) {
4123 struct list_head *l = conf->delayed_list.next;
4124 struct stripe_head *sh;
4125 sh = list_entry(l, struct stripe_head, lru);
4126 list_del_init(l);
4127 clear_bit(STRIPE_DELAYED, &sh->state);
4128 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4129 atomic_inc(&conf->preread_active_stripes);
4130 list_add_tail(&sh->lru, &conf->hold_list);
4131 raid5_wakeup_stripe_thread(sh);
4132 }
4133 }
4134 }
4135
4136 static void activate_bit_delay(struct r5conf *conf,
4137 struct list_head *temp_inactive_list)
4138 {
4139 /* device_lock is held */
4140 struct list_head head;
4141 list_add(&head, &conf->bitmap_list);
4142 list_del_init(&conf->bitmap_list);
4143 while (!list_empty(&head)) {
4144 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4145 int hash;
4146 list_del_init(&sh->lru);
4147 atomic_inc(&sh->count);
4148 hash = sh->hash_lock_index;
4149 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4150 }
4151 }
4152
4153 static int raid5_congested(struct mddev *mddev, int bits)
4154 {
4155 struct r5conf *conf = mddev->private;
4156
4157 /* No difference between reads and writes. Just check
4158 * how busy the stripe_cache is
4159 */
4160
4161 if (conf->inactive_blocked)
4162 return 1;
4163 if (conf->quiesce)
4164 return 1;
4165 if (atomic_read(&conf->empty_inactive_list_nr))
4166 return 1;
4167
4168 return 0;
4169 }
4170
4171 /* We want read requests to align with chunks where possible,
4172 * but write requests don't need to.
4173 */
4174 static int raid5_mergeable_bvec(struct mddev *mddev,
4175 struct bvec_merge_data *bvm,
4176 struct bio_vec *biovec)
4177 {
4178 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4179 int max;
4180 unsigned int chunk_sectors = mddev->chunk_sectors;
4181 unsigned int bio_sectors = bvm->bi_size >> 9;
4182
4183 if ((bvm->bi_rw & 1) == WRITE)
4184 return biovec->bv_len; /* always allow writes to be mergeable */
4185
4186 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4187 chunk_sectors = mddev->new_chunk_sectors;
4188 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4189 if (max < 0) max = 0;
4190 if (max <= biovec->bv_len && bio_sectors == 0)
4191 return biovec->bv_len;
4192 else
4193 return max;
4194 }
4195
4196 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4197 {
4198 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4199 unsigned int chunk_sectors = mddev->chunk_sectors;
4200 unsigned int bio_sectors = bio_sectors(bio);
4201
4202 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4203 chunk_sectors = mddev->new_chunk_sectors;
4204 return chunk_sectors >=
4205 ((sector & (chunk_sectors - 1)) + bio_sectors);
4206 }
4207
4208 /*
4209 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4210 * later sampled by raid5d.
4211 */
4212 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4213 {
4214 unsigned long flags;
4215
4216 spin_lock_irqsave(&conf->device_lock, flags);
4217
4218 bi->bi_next = conf->retry_read_aligned_list;
4219 conf->retry_read_aligned_list = bi;
4220
4221 spin_unlock_irqrestore(&conf->device_lock, flags);
4222 md_wakeup_thread(conf->mddev->thread);
4223 }
4224
4225 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4226 {
4227 struct bio *bi;
4228
4229 bi = conf->retry_read_aligned;
4230 if (bi) {
4231 conf->retry_read_aligned = NULL;
4232 return bi;
4233 }
4234 bi = conf->retry_read_aligned_list;
4235 if(bi) {
4236 conf->retry_read_aligned_list = bi->bi_next;
4237 bi->bi_next = NULL;
4238 /*
4239 * this sets the active strip count to 1 and the processed
4240 * strip count to zero (upper 8 bits)
4241 */
4242 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4243 }
4244
4245 return bi;
4246 }
4247
4248 /*
4249 * The "raid5_align_endio" should check if the read succeeded and if it
4250 * did, call bio_endio on the original bio (having bio_put the new bio
4251 * first).
4252 * If the read failed..
4253 */
4254 static void raid5_align_endio(struct bio *bi, int error)
4255 {
4256 struct bio* raid_bi = bi->bi_private;
4257 struct mddev *mddev;
4258 struct r5conf *conf;
4259 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4260 struct md_rdev *rdev;
4261
4262 bio_put(bi);
4263
4264 rdev = (void*)raid_bi->bi_next;
4265 raid_bi->bi_next = NULL;
4266 mddev = rdev->mddev;
4267 conf = mddev->private;
4268
4269 rdev_dec_pending(rdev, conf->mddev);
4270
4271 if (!error && uptodate) {
4272 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4273 raid_bi, 0);
4274 bio_endio(raid_bi, 0);
4275 if (atomic_dec_and_test(&conf->active_aligned_reads))
4276 wake_up(&conf->wait_for_stripe);
4277 return;
4278 }
4279
4280 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4281
4282 add_bio_to_retry(raid_bi, conf);
4283 }
4284
4285 static int bio_fits_rdev(struct bio *bi)
4286 {
4287 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4288
4289 if (bio_sectors(bi) > queue_max_sectors(q))
4290 return 0;
4291 blk_recount_segments(q, bi);
4292 if (bi->bi_phys_segments > queue_max_segments(q))
4293 return 0;
4294
4295 if (q->merge_bvec_fn)
4296 /* it's too hard to apply the merge_bvec_fn at this stage,
4297 * just just give up
4298 */
4299 return 0;
4300
4301 return 1;
4302 }
4303
4304 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4305 {
4306 struct r5conf *conf = mddev->private;
4307 int dd_idx;
4308 struct bio* align_bi;
4309 struct md_rdev *rdev;
4310 sector_t end_sector;
4311
4312 if (!in_chunk_boundary(mddev, raid_bio)) {
4313 pr_debug("chunk_aligned_read : non aligned\n");
4314 return 0;
4315 }
4316 /*
4317 * use bio_clone_mddev to make a copy of the bio
4318 */
4319 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4320 if (!align_bi)
4321 return 0;
4322 /*
4323 * set bi_end_io to a new function, and set bi_private to the
4324 * original bio.
4325 */
4326 align_bi->bi_end_io = raid5_align_endio;
4327 align_bi->bi_private = raid_bio;
4328 /*
4329 * compute position
4330 */
4331 align_bi->bi_iter.bi_sector =
4332 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4333 0, &dd_idx, NULL);
4334
4335 end_sector = bio_end_sector(align_bi);
4336 rcu_read_lock();
4337 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4338 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4339 rdev->recovery_offset < end_sector) {
4340 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4341 if (rdev &&
4342 (test_bit(Faulty, &rdev->flags) ||
4343 !(test_bit(In_sync, &rdev->flags) ||
4344 rdev->recovery_offset >= end_sector)))
4345 rdev = NULL;
4346 }
4347 if (rdev) {
4348 sector_t first_bad;
4349 int bad_sectors;
4350
4351 atomic_inc(&rdev->nr_pending);
4352 rcu_read_unlock();
4353 raid_bio->bi_next = (void*)rdev;
4354 align_bi->bi_bdev = rdev->bdev;
4355 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4356
4357 if (!bio_fits_rdev(align_bi) ||
4358 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4359 bio_sectors(align_bi),
4360 &first_bad, &bad_sectors)) {
4361 /* too big in some way, or has a known bad block */
4362 bio_put(align_bi);
4363 rdev_dec_pending(rdev, mddev);
4364 return 0;
4365 }
4366
4367 /* No reshape active, so we can trust rdev->data_offset */
4368 align_bi->bi_iter.bi_sector += rdev->data_offset;
4369
4370 spin_lock_irq(&conf->device_lock);
4371 wait_event_lock_irq(conf->wait_for_stripe,
4372 conf->quiesce == 0,
4373 conf->device_lock);
4374 atomic_inc(&conf->active_aligned_reads);
4375 spin_unlock_irq(&conf->device_lock);
4376
4377 if (mddev->gendisk)
4378 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4379 align_bi, disk_devt(mddev->gendisk),
4380 raid_bio->bi_iter.bi_sector);
4381 generic_make_request(align_bi);
4382 return 1;
4383 } else {
4384 rcu_read_unlock();
4385 bio_put(align_bi);
4386 return 0;
4387 }
4388 }
4389
4390 /* __get_priority_stripe - get the next stripe to process
4391 *
4392 * Full stripe writes are allowed to pass preread active stripes up until
4393 * the bypass_threshold is exceeded. In general the bypass_count
4394 * increments when the handle_list is handled before the hold_list; however, it
4395 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4396 * stripe with in flight i/o. The bypass_count will be reset when the
4397 * head of the hold_list has changed, i.e. the head was promoted to the
4398 * handle_list.
4399 */
4400 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4401 {
4402 struct stripe_head *sh = NULL, *tmp;
4403 struct list_head *handle_list = NULL;
4404 struct r5worker_group *wg = NULL;
4405
4406 if (conf->worker_cnt_per_group == 0) {
4407 handle_list = &conf->handle_list;
4408 } else if (group != ANY_GROUP) {
4409 handle_list = &conf->worker_groups[group].handle_list;
4410 wg = &conf->worker_groups[group];
4411 } else {
4412 int i;
4413 for (i = 0; i < conf->group_cnt; i++) {
4414 handle_list = &conf->worker_groups[i].handle_list;
4415 wg = &conf->worker_groups[i];
4416 if (!list_empty(handle_list))
4417 break;
4418 }
4419 }
4420
4421 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4422 __func__,
4423 list_empty(handle_list) ? "empty" : "busy",
4424 list_empty(&conf->hold_list) ? "empty" : "busy",
4425 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4426
4427 if (!list_empty(handle_list)) {
4428 sh = list_entry(handle_list->next, typeof(*sh), lru);
4429
4430 if (list_empty(&conf->hold_list))
4431 conf->bypass_count = 0;
4432 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4433 if (conf->hold_list.next == conf->last_hold)
4434 conf->bypass_count++;
4435 else {
4436 conf->last_hold = conf->hold_list.next;
4437 conf->bypass_count -= conf->bypass_threshold;
4438 if (conf->bypass_count < 0)
4439 conf->bypass_count = 0;
4440 }
4441 }
4442 } else if (!list_empty(&conf->hold_list) &&
4443 ((conf->bypass_threshold &&
4444 conf->bypass_count > conf->bypass_threshold) ||
4445 atomic_read(&conf->pending_full_writes) == 0)) {
4446
4447 list_for_each_entry(tmp, &conf->hold_list, lru) {
4448 if (conf->worker_cnt_per_group == 0 ||
4449 group == ANY_GROUP ||
4450 !cpu_online(tmp->cpu) ||
4451 cpu_to_group(tmp->cpu) == group) {
4452 sh = tmp;
4453 break;
4454 }
4455 }
4456
4457 if (sh) {
4458 conf->bypass_count -= conf->bypass_threshold;
4459 if (conf->bypass_count < 0)
4460 conf->bypass_count = 0;
4461 }
4462 wg = NULL;
4463 }
4464
4465 if (!sh)
4466 return NULL;
4467
4468 if (wg) {
4469 wg->stripes_cnt--;
4470 sh->group = NULL;
4471 }
4472 list_del_init(&sh->lru);
4473 BUG_ON(atomic_inc_return(&sh->count) != 1);
4474 return sh;
4475 }
4476
4477 struct raid5_plug_cb {
4478 struct blk_plug_cb cb;
4479 struct list_head list;
4480 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4481 };
4482
4483 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4484 {
4485 struct raid5_plug_cb *cb = container_of(
4486 blk_cb, struct raid5_plug_cb, cb);
4487 struct stripe_head *sh;
4488 struct mddev *mddev = cb->cb.data;
4489 struct r5conf *conf = mddev->private;
4490 int cnt = 0;
4491 int hash;
4492
4493 if (cb->list.next && !list_empty(&cb->list)) {
4494 spin_lock_irq(&conf->device_lock);
4495 while (!list_empty(&cb->list)) {
4496 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4497 list_del_init(&sh->lru);
4498 /*
4499 * avoid race release_stripe_plug() sees
4500 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4501 * is still in our list
4502 */
4503 smp_mb__before_atomic();
4504 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4505 /*
4506 * STRIPE_ON_RELEASE_LIST could be set here. In that
4507 * case, the count is always > 1 here
4508 */
4509 hash = sh->hash_lock_index;
4510 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4511 cnt++;
4512 }
4513 spin_unlock_irq(&conf->device_lock);
4514 }
4515 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4516 NR_STRIPE_HASH_LOCKS);
4517 if (mddev->queue)
4518 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4519 kfree(cb);
4520 }
4521
4522 static void release_stripe_plug(struct mddev *mddev,
4523 struct stripe_head *sh)
4524 {
4525 struct blk_plug_cb *blk_cb = blk_check_plugged(
4526 raid5_unplug, mddev,
4527 sizeof(struct raid5_plug_cb));
4528 struct raid5_plug_cb *cb;
4529
4530 if (!blk_cb) {
4531 release_stripe(sh);
4532 return;
4533 }
4534
4535 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4536
4537 if (cb->list.next == NULL) {
4538 int i;
4539 INIT_LIST_HEAD(&cb->list);
4540 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4541 INIT_LIST_HEAD(cb->temp_inactive_list + i);
4542 }
4543
4544 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4545 list_add_tail(&sh->lru, &cb->list);
4546 else
4547 release_stripe(sh);
4548 }
4549
4550 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4551 {
4552 struct r5conf *conf = mddev->private;
4553 sector_t logical_sector, last_sector;
4554 struct stripe_head *sh;
4555 int remaining;
4556 int stripe_sectors;
4557
4558 if (mddev->reshape_position != MaxSector)
4559 /* Skip discard while reshape is happening */
4560 return;
4561
4562 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4563 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4564
4565 bi->bi_next = NULL;
4566 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4567
4568 stripe_sectors = conf->chunk_sectors *
4569 (conf->raid_disks - conf->max_degraded);
4570 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4571 stripe_sectors);
4572 sector_div(last_sector, stripe_sectors);
4573
4574 logical_sector *= conf->chunk_sectors;
4575 last_sector *= conf->chunk_sectors;
4576
4577 for (; logical_sector < last_sector;
4578 logical_sector += STRIPE_SECTORS) {
4579 DEFINE_WAIT(w);
4580 int d;
4581 again:
4582 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4583 prepare_to_wait(&conf->wait_for_overlap, &w,
4584 TASK_UNINTERRUPTIBLE);
4585 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4586 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4587 release_stripe(sh);
4588 schedule();
4589 goto again;
4590 }
4591 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4592 spin_lock_irq(&sh->stripe_lock);
4593 for (d = 0; d < conf->raid_disks; d++) {
4594 if (d == sh->pd_idx || d == sh->qd_idx)
4595 continue;
4596 if (sh->dev[d].towrite || sh->dev[d].toread) {
4597 set_bit(R5_Overlap, &sh->dev[d].flags);
4598 spin_unlock_irq(&sh->stripe_lock);
4599 release_stripe(sh);
4600 schedule();
4601 goto again;
4602 }
4603 }
4604 set_bit(STRIPE_DISCARD, &sh->state);
4605 finish_wait(&conf->wait_for_overlap, &w);
4606 for (d = 0; d < conf->raid_disks; d++) {
4607 if (d == sh->pd_idx || d == sh->qd_idx)
4608 continue;
4609 sh->dev[d].towrite = bi;
4610 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4611 raid5_inc_bi_active_stripes(bi);
4612 }
4613 spin_unlock_irq(&sh->stripe_lock);
4614 if (conf->mddev->bitmap) {
4615 for (d = 0;
4616 d < conf->raid_disks - conf->max_degraded;
4617 d++)
4618 bitmap_startwrite(mddev->bitmap,
4619 sh->sector,
4620 STRIPE_SECTORS,
4621 0);
4622 sh->bm_seq = conf->seq_flush + 1;
4623 set_bit(STRIPE_BIT_DELAY, &sh->state);
4624 }
4625
4626 set_bit(STRIPE_HANDLE, &sh->state);
4627 clear_bit(STRIPE_DELAYED, &sh->state);
4628 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4629 atomic_inc(&conf->preread_active_stripes);
4630 release_stripe_plug(mddev, sh);
4631 }
4632
4633 remaining = raid5_dec_bi_active_stripes(bi);
4634 if (remaining == 0) {
4635 md_write_end(mddev);
4636 bio_endio(bi, 0);
4637 }
4638 }
4639
4640 static void make_request(struct mddev *mddev, struct bio * bi)
4641 {
4642 struct r5conf *conf = mddev->private;
4643 int dd_idx;
4644 sector_t new_sector;
4645 sector_t logical_sector, last_sector;
4646 struct stripe_head *sh;
4647 const int rw = bio_data_dir(bi);
4648 int remaining;
4649 DEFINE_WAIT(w);
4650 bool do_prepare;
4651
4652 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4653 md_flush_request(mddev, bi);
4654 return;
4655 }
4656
4657 md_write_start(mddev, bi);
4658
4659 if (rw == READ &&
4660 mddev->reshape_position == MaxSector &&
4661 chunk_aligned_read(mddev,bi))
4662 return;
4663
4664 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4665 make_discard_request(mddev, bi);
4666 return;
4667 }
4668
4669 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4670 last_sector = bio_end_sector(bi);
4671 bi->bi_next = NULL;
4672 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4673
4674 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4675 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4676 int previous;
4677 int seq;
4678
4679 do_prepare = false;
4680 retry:
4681 seq = read_seqcount_begin(&conf->gen_lock);
4682 previous = 0;
4683 if (do_prepare)
4684 prepare_to_wait(&conf->wait_for_overlap, &w,
4685 TASK_UNINTERRUPTIBLE);
4686 if (unlikely(conf->reshape_progress != MaxSector)) {
4687 /* spinlock is needed as reshape_progress may be
4688 * 64bit on a 32bit platform, and so it might be
4689 * possible to see a half-updated value
4690 * Of course reshape_progress could change after
4691 * the lock is dropped, so once we get a reference
4692 * to the stripe that we think it is, we will have
4693 * to check again.
4694 */
4695 spin_lock_irq(&conf->device_lock);
4696 if (mddev->reshape_backwards
4697 ? logical_sector < conf->reshape_progress
4698 : logical_sector >= conf->reshape_progress) {
4699 previous = 1;
4700 } else {
4701 if (mddev->reshape_backwards
4702 ? logical_sector < conf->reshape_safe
4703 : logical_sector >= conf->reshape_safe) {
4704 spin_unlock_irq(&conf->device_lock);
4705 schedule();
4706 do_prepare = true;
4707 goto retry;
4708 }
4709 }
4710 spin_unlock_irq(&conf->device_lock);
4711 }
4712
4713 new_sector = raid5_compute_sector(conf, logical_sector,
4714 previous,
4715 &dd_idx, NULL);
4716 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4717 (unsigned long long)new_sector,
4718 (unsigned long long)logical_sector);
4719
4720 sh = get_active_stripe(conf, new_sector, previous,
4721 (bi->bi_rw&RWA_MASK), 0);
4722 if (sh) {
4723 if (unlikely(previous)) {
4724 /* expansion might have moved on while waiting for a
4725 * stripe, so we must do the range check again.
4726 * Expansion could still move past after this
4727 * test, but as we are holding a reference to
4728 * 'sh', we know that if that happens,
4729 * STRIPE_EXPANDING will get set and the expansion
4730 * won't proceed until we finish with the stripe.
4731 */
4732 int must_retry = 0;
4733 spin_lock_irq(&conf->device_lock);
4734 if (mddev->reshape_backwards
4735 ? logical_sector >= conf->reshape_progress
4736 : logical_sector < conf->reshape_progress)
4737 /* mismatch, need to try again */
4738 must_retry = 1;
4739 spin_unlock_irq(&conf->device_lock);
4740 if (must_retry) {
4741 release_stripe(sh);
4742 schedule();
4743 do_prepare = true;
4744 goto retry;
4745 }
4746 }
4747 if (read_seqcount_retry(&conf->gen_lock, seq)) {
4748 /* Might have got the wrong stripe_head
4749 * by accident
4750 */
4751 release_stripe(sh);
4752 goto retry;
4753 }
4754
4755 if (rw == WRITE &&
4756 logical_sector >= mddev->suspend_lo &&
4757 logical_sector < mddev->suspend_hi) {
4758 release_stripe(sh);
4759 /* As the suspend_* range is controlled by
4760 * userspace, we want an interruptible
4761 * wait.
4762 */
4763 flush_signals(current);
4764 prepare_to_wait(&conf->wait_for_overlap,
4765 &w, TASK_INTERRUPTIBLE);
4766 if (logical_sector >= mddev->suspend_lo &&
4767 logical_sector < mddev->suspend_hi) {
4768 schedule();
4769 do_prepare = true;
4770 }
4771 goto retry;
4772 }
4773
4774 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4775 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4776 /* Stripe is busy expanding or
4777 * add failed due to overlap. Flush everything
4778 * and wait a while
4779 */
4780 md_wakeup_thread(mddev->thread);
4781 release_stripe(sh);
4782 schedule();
4783 do_prepare = true;
4784 goto retry;
4785 }
4786 set_bit(STRIPE_HANDLE, &sh->state);
4787 clear_bit(STRIPE_DELAYED, &sh->state);
4788 if ((bi->bi_rw & REQ_SYNC) &&
4789 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4790 atomic_inc(&conf->preread_active_stripes);
4791 release_stripe_plug(mddev, sh);
4792 } else {
4793 /* cannot get stripe for read-ahead, just give-up */
4794 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4795 break;
4796 }
4797 }
4798 finish_wait(&conf->wait_for_overlap, &w);
4799
4800 remaining = raid5_dec_bi_active_stripes(bi);
4801 if (remaining == 0) {
4802
4803 if ( rw == WRITE )
4804 md_write_end(mddev);
4805
4806 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4807 bi, 0);
4808 bio_endio(bi, 0);
4809 }
4810 }
4811
4812 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4813
4814 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4815 {
4816 /* reshaping is quite different to recovery/resync so it is
4817 * handled quite separately ... here.
4818 *
4819 * On each call to sync_request, we gather one chunk worth of
4820 * destination stripes and flag them as expanding.
4821 * Then we find all the source stripes and request reads.
4822 * As the reads complete, handle_stripe will copy the data
4823 * into the destination stripe and release that stripe.
4824 */
4825 struct r5conf *conf = mddev->private;
4826 struct stripe_head *sh;
4827 sector_t first_sector, last_sector;
4828 int raid_disks = conf->previous_raid_disks;
4829 int data_disks = raid_disks - conf->max_degraded;
4830 int new_data_disks = conf->raid_disks - conf->max_degraded;
4831 int i;
4832 int dd_idx;
4833 sector_t writepos, readpos, safepos;
4834 sector_t stripe_addr;
4835 int reshape_sectors;
4836 struct list_head stripes;
4837
4838 if (sector_nr == 0) {
4839 /* If restarting in the middle, skip the initial sectors */
4840 if (mddev->reshape_backwards &&
4841 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4842 sector_nr = raid5_size(mddev, 0, 0)
4843 - conf->reshape_progress;
4844 } else if (!mddev->reshape_backwards &&
4845 conf->reshape_progress > 0)
4846 sector_nr = conf->reshape_progress;
4847 sector_div(sector_nr, new_data_disks);
4848 if (sector_nr) {
4849 mddev->curr_resync_completed = sector_nr;
4850 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4851 *skipped = 1;
4852 return sector_nr;
4853 }
4854 }
4855
4856 /* We need to process a full chunk at a time.
4857 * If old and new chunk sizes differ, we need to process the
4858 * largest of these
4859 */
4860 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4861 reshape_sectors = mddev->new_chunk_sectors;
4862 else
4863 reshape_sectors = mddev->chunk_sectors;
4864
4865 /* We update the metadata at least every 10 seconds, or when
4866 * the data about to be copied would over-write the source of
4867 * the data at the front of the range. i.e. one new_stripe
4868 * along from reshape_progress new_maps to after where
4869 * reshape_safe old_maps to
4870 */
4871 writepos = conf->reshape_progress;
4872 sector_div(writepos, new_data_disks);
4873 readpos = conf->reshape_progress;
4874 sector_div(readpos, data_disks);
4875 safepos = conf->reshape_safe;
4876 sector_div(safepos, data_disks);
4877 if (mddev->reshape_backwards) {
4878 writepos -= min_t(sector_t, reshape_sectors, writepos);
4879 readpos += reshape_sectors;
4880 safepos += reshape_sectors;
4881 } else {
4882 writepos += reshape_sectors;
4883 readpos -= min_t(sector_t, reshape_sectors, readpos);
4884 safepos -= min_t(sector_t, reshape_sectors, safepos);
4885 }
4886
4887 /* Having calculated the 'writepos' possibly use it
4888 * to set 'stripe_addr' which is where we will write to.
4889 */
4890 if (mddev->reshape_backwards) {
4891 BUG_ON(conf->reshape_progress == 0);
4892 stripe_addr = writepos;
4893 BUG_ON((mddev->dev_sectors &
4894 ~((sector_t)reshape_sectors - 1))
4895 - reshape_sectors - stripe_addr
4896 != sector_nr);
4897 } else {
4898 BUG_ON(writepos != sector_nr + reshape_sectors);
4899 stripe_addr = sector_nr;
4900 }
4901
4902 /* 'writepos' is the most advanced device address we might write.
4903 * 'readpos' is the least advanced device address we might read.
4904 * 'safepos' is the least address recorded in the metadata as having
4905 * been reshaped.
4906 * If there is a min_offset_diff, these are adjusted either by
4907 * increasing the safepos/readpos if diff is negative, or
4908 * increasing writepos if diff is positive.
4909 * If 'readpos' is then behind 'writepos', there is no way that we can
4910 * ensure safety in the face of a crash - that must be done by userspace
4911 * making a backup of the data. So in that case there is no particular
4912 * rush to update metadata.
4913 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4914 * update the metadata to advance 'safepos' to match 'readpos' so that
4915 * we can be safe in the event of a crash.
4916 * So we insist on updating metadata if safepos is behind writepos and
4917 * readpos is beyond writepos.
4918 * In any case, update the metadata every 10 seconds.
4919 * Maybe that number should be configurable, but I'm not sure it is
4920 * worth it.... maybe it could be a multiple of safemode_delay???
4921 */
4922 if (conf->min_offset_diff < 0) {
4923 safepos += -conf->min_offset_diff;
4924 readpos += -conf->min_offset_diff;
4925 } else
4926 writepos += conf->min_offset_diff;
4927
4928 if ((mddev->reshape_backwards
4929 ? (safepos > writepos && readpos < writepos)
4930 : (safepos < writepos && readpos > writepos)) ||
4931 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4932 /* Cannot proceed until we've updated the superblock... */
4933 wait_event(conf->wait_for_overlap,
4934 atomic_read(&conf->reshape_stripes)==0
4935 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4936 if (atomic_read(&conf->reshape_stripes) != 0)
4937 return 0;
4938 mddev->reshape_position = conf->reshape_progress;
4939 mddev->curr_resync_completed = sector_nr;
4940 conf->reshape_checkpoint = jiffies;
4941 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4942 md_wakeup_thread(mddev->thread);
4943 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4944 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4945 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4946 return 0;
4947 spin_lock_irq(&conf->device_lock);
4948 conf->reshape_safe = mddev->reshape_position;
4949 spin_unlock_irq(&conf->device_lock);
4950 wake_up(&conf->wait_for_overlap);
4951 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4952 }
4953
4954 INIT_LIST_HEAD(&stripes);
4955 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4956 int j;
4957 int skipped_disk = 0;
4958 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4959 set_bit(STRIPE_EXPANDING, &sh->state);
4960 atomic_inc(&conf->reshape_stripes);
4961 /* If any of this stripe is beyond the end of the old
4962 * array, then we need to zero those blocks
4963 */
4964 for (j=sh->disks; j--;) {
4965 sector_t s;
4966 if (j == sh->pd_idx)
4967 continue;
4968 if (conf->level == 6 &&
4969 j == sh->qd_idx)
4970 continue;
4971 s = compute_blocknr(sh, j, 0);
4972 if (s < raid5_size(mddev, 0, 0)) {
4973 skipped_disk = 1;
4974 continue;
4975 }
4976 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4977 set_bit(R5_Expanded, &sh->dev[j].flags);
4978 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4979 }
4980 if (!skipped_disk) {
4981 set_bit(STRIPE_EXPAND_READY, &sh->state);
4982 set_bit(STRIPE_HANDLE, &sh->state);
4983 }
4984 list_add(&sh->lru, &stripes);
4985 }
4986 spin_lock_irq(&conf->device_lock);
4987 if (mddev->reshape_backwards)
4988 conf->reshape_progress -= reshape_sectors * new_data_disks;
4989 else
4990 conf->reshape_progress += reshape_sectors * new_data_disks;
4991 spin_unlock_irq(&conf->device_lock);
4992 /* Ok, those stripe are ready. We can start scheduling
4993 * reads on the source stripes.
4994 * The source stripes are determined by mapping the first and last
4995 * block on the destination stripes.
4996 */
4997 first_sector =
4998 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4999 1, &dd_idx, NULL);
5000 last_sector =
5001 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5002 * new_data_disks - 1),
5003 1, &dd_idx, NULL);
5004 if (last_sector >= mddev->dev_sectors)
5005 last_sector = mddev->dev_sectors - 1;
5006 while (first_sector <= last_sector) {
5007 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5008 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5009 set_bit(STRIPE_HANDLE, &sh->state);
5010 release_stripe(sh);
5011 first_sector += STRIPE_SECTORS;
5012 }
5013 /* Now that the sources are clearly marked, we can release
5014 * the destination stripes
5015 */
5016 while (!list_empty(&stripes)) {
5017 sh = list_entry(stripes.next, struct stripe_head, lru);
5018 list_del_init(&sh->lru);
5019 release_stripe(sh);
5020 }
5021 /* If this takes us to the resync_max point where we have to pause,
5022 * then we need to write out the superblock.
5023 */
5024 sector_nr += reshape_sectors;
5025 if ((sector_nr - mddev->curr_resync_completed) * 2
5026 >= mddev->resync_max - mddev->curr_resync_completed) {
5027 /* Cannot proceed until we've updated the superblock... */
5028 wait_event(conf->wait_for_overlap,
5029 atomic_read(&conf->reshape_stripes) == 0
5030 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5031 if (atomic_read(&conf->reshape_stripes) != 0)
5032 goto ret;
5033 mddev->reshape_position = conf->reshape_progress;
5034 mddev->curr_resync_completed = sector_nr;
5035 conf->reshape_checkpoint = jiffies;
5036 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5037 md_wakeup_thread(mddev->thread);
5038 wait_event(mddev->sb_wait,
5039 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5040 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5041 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5042 goto ret;
5043 spin_lock_irq(&conf->device_lock);
5044 conf->reshape_safe = mddev->reshape_position;
5045 spin_unlock_irq(&conf->device_lock);
5046 wake_up(&conf->wait_for_overlap);
5047 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5048 }
5049 ret:
5050 return reshape_sectors;
5051 }
5052
5053 /* FIXME go_faster isn't used */
5054 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
5055 {
5056 struct r5conf *conf = mddev->private;
5057 struct stripe_head *sh;
5058 sector_t max_sector = mddev->dev_sectors;
5059 sector_t sync_blocks;
5060 int still_degraded = 0;
5061 int i;
5062
5063 if (sector_nr >= max_sector) {
5064 /* just being told to finish up .. nothing much to do */
5065
5066 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5067 end_reshape(conf);
5068 return 0;
5069 }
5070
5071 if (mddev->curr_resync < max_sector) /* aborted */
5072 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5073 &sync_blocks, 1);
5074 else /* completed sync */
5075 conf->fullsync = 0;
5076 bitmap_close_sync(mddev->bitmap);
5077
5078 return 0;
5079 }
5080
5081 /* Allow raid5_quiesce to complete */
5082 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5083
5084 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5085 return reshape_request(mddev, sector_nr, skipped);
5086
5087 /* No need to check resync_max as we never do more than one
5088 * stripe, and as resync_max will always be on a chunk boundary,
5089 * if the check in md_do_sync didn't fire, there is no chance
5090 * of overstepping resync_max here
5091 */
5092
5093 /* if there is too many failed drives and we are trying
5094 * to resync, then assert that we are finished, because there is
5095 * nothing we can do.
5096 */
5097 if (mddev->degraded >= conf->max_degraded &&
5098 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5099 sector_t rv = mddev->dev_sectors - sector_nr;
5100 *skipped = 1;
5101 return rv;
5102 }
5103 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5104 !conf->fullsync &&
5105 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5106 sync_blocks >= STRIPE_SECTORS) {
5107 /* we can skip this block, and probably more */
5108 sync_blocks /= STRIPE_SECTORS;
5109 *skipped = 1;
5110 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5111 }
5112
5113 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5114
5115 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5116 if (sh == NULL) {
5117 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5118 /* make sure we don't swamp the stripe cache if someone else
5119 * is trying to get access
5120 */
5121 schedule_timeout_uninterruptible(1);
5122 }
5123 /* Need to check if array will still be degraded after recovery/resync
5124 * Note in case of > 1 drive failures it's possible we're rebuilding
5125 * one drive while leaving another faulty drive in array.
5126 */
5127 rcu_read_lock();
5128 for (i = 0; i < conf->raid_disks; i++) {
5129 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5130
5131 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5132 still_degraded = 1;
5133 }
5134 rcu_read_unlock();
5135
5136 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5137
5138 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5139 set_bit(STRIPE_HANDLE, &sh->state);
5140
5141 release_stripe(sh);
5142
5143 return STRIPE_SECTORS;
5144 }
5145
5146 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5147 {
5148 /* We may not be able to submit a whole bio at once as there
5149 * may not be enough stripe_heads available.
5150 * We cannot pre-allocate enough stripe_heads as we may need
5151 * more than exist in the cache (if we allow ever large chunks).
5152 * So we do one stripe head at a time and record in
5153 * ->bi_hw_segments how many have been done.
5154 *
5155 * We *know* that this entire raid_bio is in one chunk, so
5156 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5157 */
5158 struct stripe_head *sh;
5159 int dd_idx;
5160 sector_t sector, logical_sector, last_sector;
5161 int scnt = 0;
5162 int remaining;
5163 int handled = 0;
5164
5165 logical_sector = raid_bio->bi_iter.bi_sector &
5166 ~((sector_t)STRIPE_SECTORS-1);
5167 sector = raid5_compute_sector(conf, logical_sector,
5168 0, &dd_idx, NULL);
5169 last_sector = bio_end_sector(raid_bio);
5170
5171 for (; logical_sector < last_sector;
5172 logical_sector += STRIPE_SECTORS,
5173 sector += STRIPE_SECTORS,
5174 scnt++) {
5175
5176 if (scnt < raid5_bi_processed_stripes(raid_bio))
5177 /* already done this stripe */
5178 continue;
5179
5180 sh = get_active_stripe(conf, sector, 0, 1, 1);
5181
5182 if (!sh) {
5183 /* failed to get a stripe - must wait */
5184 raid5_set_bi_processed_stripes(raid_bio, scnt);
5185 conf->retry_read_aligned = raid_bio;
5186 return handled;
5187 }
5188
5189 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5190 release_stripe(sh);
5191 raid5_set_bi_processed_stripes(raid_bio, scnt);
5192 conf->retry_read_aligned = raid_bio;
5193 return handled;
5194 }
5195
5196 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5197 handle_stripe(sh);
5198 release_stripe(sh);
5199 handled++;
5200 }
5201 remaining = raid5_dec_bi_active_stripes(raid_bio);
5202 if (remaining == 0) {
5203 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5204 raid_bio, 0);
5205 bio_endio(raid_bio, 0);
5206 }
5207 if (atomic_dec_and_test(&conf->active_aligned_reads))
5208 wake_up(&conf->wait_for_stripe);
5209 return handled;
5210 }
5211
5212 static int handle_active_stripes(struct r5conf *conf, int group,
5213 struct r5worker *worker,
5214 struct list_head *temp_inactive_list)
5215 {
5216 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5217 int i, batch_size = 0, hash;
5218 bool release_inactive = false;
5219
5220 while (batch_size < MAX_STRIPE_BATCH &&
5221 (sh = __get_priority_stripe(conf, group)) != NULL)
5222 batch[batch_size++] = sh;
5223
5224 if (batch_size == 0) {
5225 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5226 if (!list_empty(temp_inactive_list + i))
5227 break;
5228 if (i == NR_STRIPE_HASH_LOCKS)
5229 return batch_size;
5230 release_inactive = true;
5231 }
5232 spin_unlock_irq(&conf->device_lock);
5233
5234 release_inactive_stripe_list(conf, temp_inactive_list,
5235 NR_STRIPE_HASH_LOCKS);
5236
5237 if (release_inactive) {
5238 spin_lock_irq(&conf->device_lock);
5239 return 0;
5240 }
5241
5242 for (i = 0; i < batch_size; i++)
5243 handle_stripe(batch[i]);
5244
5245 cond_resched();
5246
5247 spin_lock_irq(&conf->device_lock);
5248 for (i = 0; i < batch_size; i++) {
5249 hash = batch[i]->hash_lock_index;
5250 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5251 }
5252 return batch_size;
5253 }
5254
5255 static void raid5_do_work(struct work_struct *work)
5256 {
5257 struct r5worker *worker = container_of(work, struct r5worker, work);
5258 struct r5worker_group *group = worker->group;
5259 struct r5conf *conf = group->conf;
5260 int group_id = group - conf->worker_groups;
5261 int handled;
5262 struct blk_plug plug;
5263
5264 pr_debug("+++ raid5worker active\n");
5265
5266 blk_start_plug(&plug);
5267 handled = 0;
5268 spin_lock_irq(&conf->device_lock);
5269 while (1) {
5270 int batch_size, released;
5271
5272 released = release_stripe_list(conf, worker->temp_inactive_list);
5273
5274 batch_size = handle_active_stripes(conf, group_id, worker,
5275 worker->temp_inactive_list);
5276 worker->working = false;
5277 if (!batch_size && !released)
5278 break;
5279 handled += batch_size;
5280 }
5281 pr_debug("%d stripes handled\n", handled);
5282
5283 spin_unlock_irq(&conf->device_lock);
5284 blk_finish_plug(&plug);
5285
5286 pr_debug("--- raid5worker inactive\n");
5287 }
5288
5289 /*
5290 * This is our raid5 kernel thread.
5291 *
5292 * We scan the hash table for stripes which can be handled now.
5293 * During the scan, completed stripes are saved for us by the interrupt
5294 * handler, so that they will not have to wait for our next wakeup.
5295 */
5296 static void raid5d(struct md_thread *thread)
5297 {
5298 struct mddev *mddev = thread->mddev;
5299 struct r5conf *conf = mddev->private;
5300 int handled;
5301 struct blk_plug plug;
5302
5303 pr_debug("+++ raid5d active\n");
5304
5305 md_check_recovery(mddev);
5306
5307 blk_start_plug(&plug);
5308 handled = 0;
5309 spin_lock_irq(&conf->device_lock);
5310 while (1) {
5311 struct bio *bio;
5312 int batch_size, released;
5313
5314 released = release_stripe_list(conf, conf->temp_inactive_list);
5315
5316 if (
5317 !list_empty(&conf->bitmap_list)) {
5318 /* Now is a good time to flush some bitmap updates */
5319 conf->seq_flush++;
5320 spin_unlock_irq(&conf->device_lock);
5321 bitmap_unplug(mddev->bitmap);
5322 spin_lock_irq(&conf->device_lock);
5323 conf->seq_write = conf->seq_flush;
5324 activate_bit_delay(conf, conf->temp_inactive_list);
5325 }
5326 raid5_activate_delayed(conf);
5327
5328 while ((bio = remove_bio_from_retry(conf))) {
5329 int ok;
5330 spin_unlock_irq(&conf->device_lock);
5331 ok = retry_aligned_read(conf, bio);
5332 spin_lock_irq(&conf->device_lock);
5333 if (!ok)
5334 break;
5335 handled++;
5336 }
5337
5338 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5339 conf->temp_inactive_list);
5340 if (!batch_size && !released)
5341 break;
5342 handled += batch_size;
5343
5344 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5345 spin_unlock_irq(&conf->device_lock);
5346 md_check_recovery(mddev);
5347 spin_lock_irq(&conf->device_lock);
5348 }
5349 }
5350 pr_debug("%d stripes handled\n", handled);
5351
5352 spin_unlock_irq(&conf->device_lock);
5353
5354 async_tx_issue_pending_all();
5355 blk_finish_plug(&plug);
5356
5357 pr_debug("--- raid5d inactive\n");
5358 }
5359
5360 static ssize_t
5361 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5362 {
5363 struct r5conf *conf;
5364 int ret = 0;
5365 spin_lock(&mddev->lock);
5366 conf = mddev->private;
5367 if (conf)
5368 ret = sprintf(page, "%d\n", conf->max_nr_stripes);
5369 spin_unlock(&mddev->lock);
5370 return ret;
5371 }
5372
5373 int
5374 raid5_set_cache_size(struct mddev *mddev, int size)
5375 {
5376 struct r5conf *conf = mddev->private;
5377 int err;
5378 int hash;
5379
5380 if (size <= 16 || size > 32768)
5381 return -EINVAL;
5382 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5383 while (size < conf->max_nr_stripes) {
5384 if (drop_one_stripe(conf, hash))
5385 conf->max_nr_stripes--;
5386 else
5387 break;
5388 hash--;
5389 if (hash < 0)
5390 hash = NR_STRIPE_HASH_LOCKS - 1;
5391 }
5392 err = md_allow_write(mddev);
5393 if (err)
5394 return err;
5395 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5396 while (size > conf->max_nr_stripes) {
5397 if (grow_one_stripe(conf, hash))
5398 conf->max_nr_stripes++;
5399 else break;
5400 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5401 }
5402 return 0;
5403 }
5404 EXPORT_SYMBOL(raid5_set_cache_size);
5405
5406 static ssize_t
5407 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5408 {
5409 struct r5conf *conf;
5410 unsigned long new;
5411 int err;
5412
5413 if (len >= PAGE_SIZE)
5414 return -EINVAL;
5415 if (kstrtoul(page, 10, &new))
5416 return -EINVAL;
5417 err = mddev_lock(mddev);
5418 if (err)
5419 return err;
5420 conf = mddev->private;
5421 if (!conf)
5422 err = -ENODEV;
5423 else
5424 err = raid5_set_cache_size(mddev, new);
5425 mddev_unlock(mddev);
5426
5427 return err ?: len;
5428 }
5429
5430 static struct md_sysfs_entry
5431 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5432 raid5_show_stripe_cache_size,
5433 raid5_store_stripe_cache_size);
5434
5435 static ssize_t
5436 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5437 {
5438 struct r5conf *conf;
5439 int ret = 0;
5440 spin_lock(&mddev->lock);
5441 conf = mddev->private;
5442 if (conf)
5443 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5444 spin_unlock(&mddev->lock);
5445 return ret;
5446 }
5447
5448 static ssize_t
5449 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5450 {
5451 struct r5conf *conf;
5452 unsigned long new;
5453 int err;
5454
5455 if (len >= PAGE_SIZE)
5456 return -EINVAL;
5457 if (kstrtoul(page, 10, &new))
5458 return -EINVAL;
5459
5460 err = mddev_lock(mddev);
5461 if (err)
5462 return err;
5463 conf = mddev->private;
5464 if (!conf)
5465 err = -ENODEV;
5466 else if (new > conf->max_nr_stripes)
5467 err = -EINVAL;
5468 else
5469 conf->bypass_threshold = new;
5470 mddev_unlock(mddev);
5471 return err ?: len;
5472 }
5473
5474 static struct md_sysfs_entry
5475 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5476 S_IRUGO | S_IWUSR,
5477 raid5_show_preread_threshold,
5478 raid5_store_preread_threshold);
5479
5480 static ssize_t
5481 raid5_show_skip_copy(struct mddev *mddev, char *page)
5482 {
5483 struct r5conf *conf;
5484 int ret = 0;
5485 spin_lock(&mddev->lock);
5486 conf = mddev->private;
5487 if (conf)
5488 ret = sprintf(page, "%d\n", conf->skip_copy);
5489 spin_unlock(&mddev->lock);
5490 return ret;
5491 }
5492
5493 static ssize_t
5494 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5495 {
5496 struct r5conf *conf;
5497 unsigned long new;
5498 int err;
5499
5500 if (len >= PAGE_SIZE)
5501 return -EINVAL;
5502 if (kstrtoul(page, 10, &new))
5503 return -EINVAL;
5504 new = !!new;
5505
5506 err = mddev_lock(mddev);
5507 if (err)
5508 return err;
5509 conf = mddev->private;
5510 if (!conf)
5511 err = -ENODEV;
5512 else if (new != conf->skip_copy) {
5513 mddev_suspend(mddev);
5514 conf->skip_copy = new;
5515 if (new)
5516 mddev->queue->backing_dev_info.capabilities |=
5517 BDI_CAP_STABLE_WRITES;
5518 else
5519 mddev->queue->backing_dev_info.capabilities &=
5520 ~BDI_CAP_STABLE_WRITES;
5521 mddev_resume(mddev);
5522 }
5523 mddev_unlock(mddev);
5524 return err ?: len;
5525 }
5526
5527 static struct md_sysfs_entry
5528 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5529 raid5_show_skip_copy,
5530 raid5_store_skip_copy);
5531
5532 static ssize_t
5533 stripe_cache_active_show(struct mddev *mddev, char *page)
5534 {
5535 struct r5conf *conf = mddev->private;
5536 if (conf)
5537 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5538 else
5539 return 0;
5540 }
5541
5542 static struct md_sysfs_entry
5543 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5544
5545 static ssize_t
5546 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5547 {
5548 struct r5conf *conf;
5549 int ret = 0;
5550 spin_lock(&mddev->lock);
5551 conf = mddev->private;
5552 if (conf)
5553 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
5554 spin_unlock(&mddev->lock);
5555 return ret;
5556 }
5557
5558 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5559 int *group_cnt,
5560 int *worker_cnt_per_group,
5561 struct r5worker_group **worker_groups);
5562 static ssize_t
5563 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5564 {
5565 struct r5conf *conf;
5566 unsigned long new;
5567 int err;
5568 struct r5worker_group *new_groups, *old_groups;
5569 int group_cnt, worker_cnt_per_group;
5570
5571 if (len >= PAGE_SIZE)
5572 return -EINVAL;
5573 if (kstrtoul(page, 10, &new))
5574 return -EINVAL;
5575
5576 err = mddev_lock(mddev);
5577 if (err)
5578 return err;
5579 conf = mddev->private;
5580 if (!conf)
5581 err = -ENODEV;
5582 else if (new != conf->worker_cnt_per_group) {
5583 mddev_suspend(mddev);
5584
5585 old_groups = conf->worker_groups;
5586 if (old_groups)
5587 flush_workqueue(raid5_wq);
5588
5589 err = alloc_thread_groups(conf, new,
5590 &group_cnt, &worker_cnt_per_group,
5591 &new_groups);
5592 if (!err) {
5593 spin_lock_irq(&conf->device_lock);
5594 conf->group_cnt = group_cnt;
5595 conf->worker_cnt_per_group = worker_cnt_per_group;
5596 conf->worker_groups = new_groups;
5597 spin_unlock_irq(&conf->device_lock);
5598
5599 if (old_groups)
5600 kfree(old_groups[0].workers);
5601 kfree(old_groups);
5602 }
5603 mddev_resume(mddev);
5604 }
5605 mddev_unlock(mddev);
5606
5607 return err ?: len;
5608 }
5609
5610 static struct md_sysfs_entry
5611 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5612 raid5_show_group_thread_cnt,
5613 raid5_store_group_thread_cnt);
5614
5615 static struct attribute *raid5_attrs[] = {
5616 &raid5_stripecache_size.attr,
5617 &raid5_stripecache_active.attr,
5618 &raid5_preread_bypass_threshold.attr,
5619 &raid5_group_thread_cnt.attr,
5620 &raid5_skip_copy.attr,
5621 NULL,
5622 };
5623 static struct attribute_group raid5_attrs_group = {
5624 .name = NULL,
5625 .attrs = raid5_attrs,
5626 };
5627
5628 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5629 int *group_cnt,
5630 int *worker_cnt_per_group,
5631 struct r5worker_group **worker_groups)
5632 {
5633 int i, j, k;
5634 ssize_t size;
5635 struct r5worker *workers;
5636
5637 *worker_cnt_per_group = cnt;
5638 if (cnt == 0) {
5639 *group_cnt = 0;
5640 *worker_groups = NULL;
5641 return 0;
5642 }
5643 *group_cnt = num_possible_nodes();
5644 size = sizeof(struct r5worker) * cnt;
5645 workers = kzalloc(size * *group_cnt, GFP_NOIO);
5646 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5647 *group_cnt, GFP_NOIO);
5648 if (!*worker_groups || !workers) {
5649 kfree(workers);
5650 kfree(*worker_groups);
5651 return -ENOMEM;
5652 }
5653
5654 for (i = 0; i < *group_cnt; i++) {
5655 struct r5worker_group *group;
5656
5657 group = &(*worker_groups)[i];
5658 INIT_LIST_HEAD(&group->handle_list);
5659 group->conf = conf;
5660 group->workers = workers + i * cnt;
5661
5662 for (j = 0; j < cnt; j++) {
5663 struct r5worker *worker = group->workers + j;
5664 worker->group = group;
5665 INIT_WORK(&worker->work, raid5_do_work);
5666
5667 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5668 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5669 }
5670 }
5671
5672 return 0;
5673 }
5674
5675 static void free_thread_groups(struct r5conf *conf)
5676 {
5677 if (conf->worker_groups)
5678 kfree(conf->worker_groups[0].workers);
5679 kfree(conf->worker_groups);
5680 conf->worker_groups = NULL;
5681 }
5682
5683 static sector_t
5684 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5685 {
5686 struct r5conf *conf = mddev->private;
5687
5688 if (!sectors)
5689 sectors = mddev->dev_sectors;
5690 if (!raid_disks)
5691 /* size is defined by the smallest of previous and new size */
5692 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5693
5694 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5695 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5696 return sectors * (raid_disks - conf->max_degraded);
5697 }
5698
5699 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5700 {
5701 safe_put_page(percpu->spare_page);
5702 kfree(percpu->scribble);
5703 percpu->spare_page = NULL;
5704 percpu->scribble = NULL;
5705 }
5706
5707 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5708 {
5709 if (conf->level == 6 && !percpu->spare_page)
5710 percpu->spare_page = alloc_page(GFP_KERNEL);
5711 if (!percpu->scribble)
5712 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5713
5714 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5715 free_scratch_buffer(conf, percpu);
5716 return -ENOMEM;
5717 }
5718
5719 return 0;
5720 }
5721
5722 static void raid5_free_percpu(struct r5conf *conf)
5723 {
5724 unsigned long cpu;
5725
5726 if (!conf->percpu)
5727 return;
5728
5729 #ifdef CONFIG_HOTPLUG_CPU
5730 unregister_cpu_notifier(&conf->cpu_notify);
5731 #endif
5732
5733 get_online_cpus();
5734 for_each_possible_cpu(cpu)
5735 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5736 put_online_cpus();
5737
5738 free_percpu(conf->percpu);
5739 }
5740
5741 static void free_conf(struct r5conf *conf)
5742 {
5743 free_thread_groups(conf);
5744 shrink_stripes(conf);
5745 raid5_free_percpu(conf);
5746 kfree(conf->disks);
5747 kfree(conf->stripe_hashtbl);
5748 kfree(conf);
5749 }
5750
5751 #ifdef CONFIG_HOTPLUG_CPU
5752 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5753 void *hcpu)
5754 {
5755 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5756 long cpu = (long)hcpu;
5757 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5758
5759 switch (action) {
5760 case CPU_UP_PREPARE:
5761 case CPU_UP_PREPARE_FROZEN:
5762 if (alloc_scratch_buffer(conf, percpu)) {
5763 pr_err("%s: failed memory allocation for cpu%ld\n",
5764 __func__, cpu);
5765 return notifier_from_errno(-ENOMEM);
5766 }
5767 break;
5768 case CPU_DEAD:
5769 case CPU_DEAD_FROZEN:
5770 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5771 break;
5772 default:
5773 break;
5774 }
5775 return NOTIFY_OK;
5776 }
5777 #endif
5778
5779 static int raid5_alloc_percpu(struct r5conf *conf)
5780 {
5781 unsigned long cpu;
5782 int err = 0;
5783
5784 conf->percpu = alloc_percpu(struct raid5_percpu);
5785 if (!conf->percpu)
5786 return -ENOMEM;
5787
5788 #ifdef CONFIG_HOTPLUG_CPU
5789 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5790 conf->cpu_notify.priority = 0;
5791 err = register_cpu_notifier(&conf->cpu_notify);
5792 if (err)
5793 return err;
5794 #endif
5795
5796 get_online_cpus();
5797 for_each_present_cpu(cpu) {
5798 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5799 if (err) {
5800 pr_err("%s: failed memory allocation for cpu%ld\n",
5801 __func__, cpu);
5802 break;
5803 }
5804 }
5805 put_online_cpus();
5806
5807 return err;
5808 }
5809
5810 static struct r5conf *setup_conf(struct mddev *mddev)
5811 {
5812 struct r5conf *conf;
5813 int raid_disk, memory, max_disks;
5814 struct md_rdev *rdev;
5815 struct disk_info *disk;
5816 char pers_name[6];
5817 int i;
5818 int group_cnt, worker_cnt_per_group;
5819 struct r5worker_group *new_group;
5820
5821 if (mddev->new_level != 5
5822 && mddev->new_level != 4
5823 && mddev->new_level != 6) {
5824 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5825 mdname(mddev), mddev->new_level);
5826 return ERR_PTR(-EIO);
5827 }
5828 if ((mddev->new_level == 5
5829 && !algorithm_valid_raid5(mddev->new_layout)) ||
5830 (mddev->new_level == 6
5831 && !algorithm_valid_raid6(mddev->new_layout))) {
5832 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5833 mdname(mddev), mddev->new_layout);
5834 return ERR_PTR(-EIO);
5835 }
5836 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5837 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5838 mdname(mddev), mddev->raid_disks);
5839 return ERR_PTR(-EINVAL);
5840 }
5841
5842 if (!mddev->new_chunk_sectors ||
5843 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5844 !is_power_of_2(mddev->new_chunk_sectors)) {
5845 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5846 mdname(mddev), mddev->new_chunk_sectors << 9);
5847 return ERR_PTR(-EINVAL);
5848 }
5849
5850 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5851 if (conf == NULL)
5852 goto abort;
5853 /* Don't enable multi-threading by default*/
5854 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5855 &new_group)) {
5856 conf->group_cnt = group_cnt;
5857 conf->worker_cnt_per_group = worker_cnt_per_group;
5858 conf->worker_groups = new_group;
5859 } else
5860 goto abort;
5861 spin_lock_init(&conf->device_lock);
5862 seqcount_init(&conf->gen_lock);
5863 init_waitqueue_head(&conf->wait_for_stripe);
5864 init_waitqueue_head(&conf->wait_for_overlap);
5865 INIT_LIST_HEAD(&conf->handle_list);
5866 INIT_LIST_HEAD(&conf->hold_list);
5867 INIT_LIST_HEAD(&conf->delayed_list);
5868 INIT_LIST_HEAD(&conf->bitmap_list);
5869 init_llist_head(&conf->released_stripes);
5870 atomic_set(&conf->active_stripes, 0);
5871 atomic_set(&conf->preread_active_stripes, 0);
5872 atomic_set(&conf->active_aligned_reads, 0);
5873 conf->bypass_threshold = BYPASS_THRESHOLD;
5874 conf->recovery_disabled = mddev->recovery_disabled - 1;
5875
5876 conf->raid_disks = mddev->raid_disks;
5877 if (mddev->reshape_position == MaxSector)
5878 conf->previous_raid_disks = mddev->raid_disks;
5879 else
5880 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5881 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5882 conf->scribble_len = scribble_len(max_disks);
5883
5884 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5885 GFP_KERNEL);
5886 if (!conf->disks)
5887 goto abort;
5888
5889 conf->mddev = mddev;
5890
5891 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5892 goto abort;
5893
5894 /* We init hash_locks[0] separately to that it can be used
5895 * as the reference lock in the spin_lock_nest_lock() call
5896 * in lock_all_device_hash_locks_irq in order to convince
5897 * lockdep that we know what we are doing.
5898 */
5899 spin_lock_init(conf->hash_locks);
5900 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5901 spin_lock_init(conf->hash_locks + i);
5902
5903 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5904 INIT_LIST_HEAD(conf->inactive_list + i);
5905
5906 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5907 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5908
5909 conf->level = mddev->new_level;
5910 if (raid5_alloc_percpu(conf) != 0)
5911 goto abort;
5912
5913 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5914
5915 rdev_for_each(rdev, mddev) {
5916 raid_disk = rdev->raid_disk;
5917 if (raid_disk >= max_disks
5918 || raid_disk < 0)
5919 continue;
5920 disk = conf->disks + raid_disk;
5921
5922 if (test_bit(Replacement, &rdev->flags)) {
5923 if (disk->replacement)
5924 goto abort;
5925 disk->replacement = rdev;
5926 } else {
5927 if (disk->rdev)
5928 goto abort;
5929 disk->rdev = rdev;
5930 }
5931
5932 if (test_bit(In_sync, &rdev->flags)) {
5933 char b[BDEVNAME_SIZE];
5934 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5935 " disk %d\n",
5936 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5937 } else if (rdev->saved_raid_disk != raid_disk)
5938 /* Cannot rely on bitmap to complete recovery */
5939 conf->fullsync = 1;
5940 }
5941
5942 conf->chunk_sectors = mddev->new_chunk_sectors;
5943 conf->level = mddev->new_level;
5944 if (conf->level == 6)
5945 conf->max_degraded = 2;
5946 else
5947 conf->max_degraded = 1;
5948 conf->algorithm = mddev->new_layout;
5949 conf->reshape_progress = mddev->reshape_position;
5950 if (conf->reshape_progress != MaxSector) {
5951 conf->prev_chunk_sectors = mddev->chunk_sectors;
5952 conf->prev_algo = mddev->layout;
5953 }
5954
5955 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5956 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5957 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5958 if (grow_stripes(conf, NR_STRIPES)) {
5959 printk(KERN_ERR
5960 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5961 mdname(mddev), memory);
5962 goto abort;
5963 } else
5964 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5965 mdname(mddev), memory);
5966
5967 sprintf(pers_name, "raid%d", mddev->new_level);
5968 conf->thread = md_register_thread(raid5d, mddev, pers_name);
5969 if (!conf->thread) {
5970 printk(KERN_ERR
5971 "md/raid:%s: couldn't allocate thread.\n",
5972 mdname(mddev));
5973 goto abort;
5974 }
5975
5976 return conf;
5977
5978 abort:
5979 if (conf) {
5980 free_conf(conf);
5981 return ERR_PTR(-EIO);
5982 } else
5983 return ERR_PTR(-ENOMEM);
5984 }
5985
5986 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5987 {
5988 switch (algo) {
5989 case ALGORITHM_PARITY_0:
5990 if (raid_disk < max_degraded)
5991 return 1;
5992 break;
5993 case ALGORITHM_PARITY_N:
5994 if (raid_disk >= raid_disks - max_degraded)
5995 return 1;
5996 break;
5997 case ALGORITHM_PARITY_0_6:
5998 if (raid_disk == 0 ||
5999 raid_disk == raid_disks - 1)
6000 return 1;
6001 break;
6002 case ALGORITHM_LEFT_ASYMMETRIC_6:
6003 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6004 case ALGORITHM_LEFT_SYMMETRIC_6:
6005 case ALGORITHM_RIGHT_SYMMETRIC_6:
6006 if (raid_disk == raid_disks - 1)
6007 return 1;
6008 }
6009 return 0;
6010 }
6011
6012 static int run(struct mddev *mddev)
6013 {
6014 struct r5conf *conf;
6015 int working_disks = 0;
6016 int dirty_parity_disks = 0;
6017 struct md_rdev *rdev;
6018 sector_t reshape_offset = 0;
6019 int i;
6020 long long min_offset_diff = 0;
6021 int first = 1;
6022
6023 if (mddev->recovery_cp != MaxSector)
6024 printk(KERN_NOTICE "md/raid:%s: not clean"
6025 " -- starting background reconstruction\n",
6026 mdname(mddev));
6027
6028 rdev_for_each(rdev, mddev) {
6029 long long diff;
6030 if (rdev->raid_disk < 0)
6031 continue;
6032 diff = (rdev->new_data_offset - rdev->data_offset);
6033 if (first) {
6034 min_offset_diff = diff;
6035 first = 0;
6036 } else if (mddev->reshape_backwards &&
6037 diff < min_offset_diff)
6038 min_offset_diff = diff;
6039 else if (!mddev->reshape_backwards &&
6040 diff > min_offset_diff)
6041 min_offset_diff = diff;
6042 }
6043
6044 if (mddev->reshape_position != MaxSector) {
6045 /* Check that we can continue the reshape.
6046 * Difficulties arise if the stripe we would write to
6047 * next is at or after the stripe we would read from next.
6048 * For a reshape that changes the number of devices, this
6049 * is only possible for a very short time, and mdadm makes
6050 * sure that time appears to have past before assembling
6051 * the array. So we fail if that time hasn't passed.
6052 * For a reshape that keeps the number of devices the same
6053 * mdadm must be monitoring the reshape can keeping the
6054 * critical areas read-only and backed up. It will start
6055 * the array in read-only mode, so we check for that.
6056 */
6057 sector_t here_new, here_old;
6058 int old_disks;
6059 int max_degraded = (mddev->level == 6 ? 2 : 1);
6060
6061 if (mddev->new_level != mddev->level) {
6062 printk(KERN_ERR "md/raid:%s: unsupported reshape "
6063 "required - aborting.\n",
6064 mdname(mddev));
6065 return -EINVAL;
6066 }
6067 old_disks = mddev->raid_disks - mddev->delta_disks;
6068 /* reshape_position must be on a new-stripe boundary, and one
6069 * further up in new geometry must map after here in old
6070 * geometry.
6071 */
6072 here_new = mddev->reshape_position;
6073 if (sector_div(here_new, mddev->new_chunk_sectors *
6074 (mddev->raid_disks - max_degraded))) {
6075 printk(KERN_ERR "md/raid:%s: reshape_position not "
6076 "on a stripe boundary\n", mdname(mddev));
6077 return -EINVAL;
6078 }
6079 reshape_offset = here_new * mddev->new_chunk_sectors;
6080 /* here_new is the stripe we will write to */
6081 here_old = mddev->reshape_position;
6082 sector_div(here_old, mddev->chunk_sectors *
6083 (old_disks-max_degraded));
6084 /* here_old is the first stripe that we might need to read
6085 * from */
6086 if (mddev->delta_disks == 0) {
6087 if ((here_new * mddev->new_chunk_sectors !=
6088 here_old * mddev->chunk_sectors)) {
6089 printk(KERN_ERR "md/raid:%s: reshape position is"
6090 " confused - aborting\n", mdname(mddev));
6091 return -EINVAL;
6092 }
6093 /* We cannot be sure it is safe to start an in-place
6094 * reshape. It is only safe if user-space is monitoring
6095 * and taking constant backups.
6096 * mdadm always starts a situation like this in
6097 * readonly mode so it can take control before
6098 * allowing any writes. So just check for that.
6099 */
6100 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6101 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6102 /* not really in-place - so OK */;
6103 else if (mddev->ro == 0) {
6104 printk(KERN_ERR "md/raid:%s: in-place reshape "
6105 "must be started in read-only mode "
6106 "- aborting\n",
6107 mdname(mddev));
6108 return -EINVAL;
6109 }
6110 } else if (mddev->reshape_backwards
6111 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6112 here_old * mddev->chunk_sectors)
6113 : (here_new * mddev->new_chunk_sectors >=
6114 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6115 /* Reading from the same stripe as writing to - bad */
6116 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6117 "auto-recovery - aborting.\n",
6118 mdname(mddev));
6119 return -EINVAL;
6120 }
6121 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6122 mdname(mddev));
6123 /* OK, we should be able to continue; */
6124 } else {
6125 BUG_ON(mddev->level != mddev->new_level);
6126 BUG_ON(mddev->layout != mddev->new_layout);
6127 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6128 BUG_ON(mddev->delta_disks != 0);
6129 }
6130
6131 if (mddev->private == NULL)
6132 conf = setup_conf(mddev);
6133 else
6134 conf = mddev->private;
6135
6136 if (IS_ERR(conf))
6137 return PTR_ERR(conf);
6138
6139 conf->min_offset_diff = min_offset_diff;
6140 mddev->thread = conf->thread;
6141 conf->thread = NULL;
6142 mddev->private = conf;
6143
6144 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6145 i++) {
6146 rdev = conf->disks[i].rdev;
6147 if (!rdev && conf->disks[i].replacement) {
6148 /* The replacement is all we have yet */
6149 rdev = conf->disks[i].replacement;
6150 conf->disks[i].replacement = NULL;
6151 clear_bit(Replacement, &rdev->flags);
6152 conf->disks[i].rdev = rdev;
6153 }
6154 if (!rdev)
6155 continue;
6156 if (conf->disks[i].replacement &&
6157 conf->reshape_progress != MaxSector) {
6158 /* replacements and reshape simply do not mix. */
6159 printk(KERN_ERR "md: cannot handle concurrent "
6160 "replacement and reshape.\n");
6161 goto abort;
6162 }
6163 if (test_bit(In_sync, &rdev->flags)) {
6164 working_disks++;
6165 continue;
6166 }
6167 /* This disc is not fully in-sync. However if it
6168 * just stored parity (beyond the recovery_offset),
6169 * when we don't need to be concerned about the
6170 * array being dirty.
6171 * When reshape goes 'backwards', we never have
6172 * partially completed devices, so we only need
6173 * to worry about reshape going forwards.
6174 */
6175 /* Hack because v0.91 doesn't store recovery_offset properly. */
6176 if (mddev->major_version == 0 &&
6177 mddev->minor_version > 90)
6178 rdev->recovery_offset = reshape_offset;
6179
6180 if (rdev->recovery_offset < reshape_offset) {
6181 /* We need to check old and new layout */
6182 if (!only_parity(rdev->raid_disk,
6183 conf->algorithm,
6184 conf->raid_disks,
6185 conf->max_degraded))
6186 continue;
6187 }
6188 if (!only_parity(rdev->raid_disk,
6189 conf->prev_algo,
6190 conf->previous_raid_disks,
6191 conf->max_degraded))
6192 continue;
6193 dirty_parity_disks++;
6194 }
6195
6196 /*
6197 * 0 for a fully functional array, 1 or 2 for a degraded array.
6198 */
6199 mddev->degraded = calc_degraded(conf);
6200
6201 if (has_failed(conf)) {
6202 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6203 " (%d/%d failed)\n",
6204 mdname(mddev), mddev->degraded, conf->raid_disks);
6205 goto abort;
6206 }
6207
6208 /* device size must be a multiple of chunk size */
6209 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6210 mddev->resync_max_sectors = mddev->dev_sectors;
6211
6212 if (mddev->degraded > dirty_parity_disks &&
6213 mddev->recovery_cp != MaxSector) {
6214 if (mddev->ok_start_degraded)
6215 printk(KERN_WARNING
6216 "md/raid:%s: starting dirty degraded array"
6217 " - data corruption possible.\n",
6218 mdname(mddev));
6219 else {
6220 printk(KERN_ERR
6221 "md/raid:%s: cannot start dirty degraded array.\n",
6222 mdname(mddev));
6223 goto abort;
6224 }
6225 }
6226
6227 if (mddev->degraded == 0)
6228 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6229 " devices, algorithm %d\n", mdname(mddev), conf->level,
6230 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6231 mddev->new_layout);
6232 else
6233 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6234 " out of %d devices, algorithm %d\n",
6235 mdname(mddev), conf->level,
6236 mddev->raid_disks - mddev->degraded,
6237 mddev->raid_disks, mddev->new_layout);
6238
6239 print_raid5_conf(conf);
6240
6241 if (conf->reshape_progress != MaxSector) {
6242 conf->reshape_safe = conf->reshape_progress;
6243 atomic_set(&conf->reshape_stripes, 0);
6244 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6245 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6246 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6247 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6248 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6249 "reshape");
6250 }
6251
6252 /* Ok, everything is just fine now */
6253 if (mddev->to_remove == &raid5_attrs_group)
6254 mddev->to_remove = NULL;
6255 else if (mddev->kobj.sd &&
6256 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6257 printk(KERN_WARNING
6258 "raid5: failed to create sysfs attributes for %s\n",
6259 mdname(mddev));
6260 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6261
6262 if (mddev->queue) {
6263 int chunk_size;
6264 bool discard_supported = true;
6265 /* read-ahead size must cover two whole stripes, which
6266 * is 2 * (datadisks) * chunksize where 'n' is the
6267 * number of raid devices
6268 */
6269 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6270 int stripe = data_disks *
6271 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6272 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6273 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6274
6275 chunk_size = mddev->chunk_sectors << 9;
6276 blk_queue_io_min(mddev->queue, chunk_size);
6277 blk_queue_io_opt(mddev->queue, chunk_size *
6278 (conf->raid_disks - conf->max_degraded));
6279 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6280 /*
6281 * We can only discard a whole stripe. It doesn't make sense to
6282 * discard data disk but write parity disk
6283 */
6284 stripe = stripe * PAGE_SIZE;
6285 /* Round up to power of 2, as discard handling
6286 * currently assumes that */
6287 while ((stripe-1) & stripe)
6288 stripe = (stripe | (stripe-1)) + 1;
6289 mddev->queue->limits.discard_alignment = stripe;
6290 mddev->queue->limits.discard_granularity = stripe;
6291 /*
6292 * unaligned part of discard request will be ignored, so can't
6293 * guarantee discard_zeroes_data
6294 */
6295 mddev->queue->limits.discard_zeroes_data = 0;
6296
6297 blk_queue_max_write_same_sectors(mddev->queue, 0);
6298
6299 rdev_for_each(rdev, mddev) {
6300 disk_stack_limits(mddev->gendisk, rdev->bdev,
6301 rdev->data_offset << 9);
6302 disk_stack_limits(mddev->gendisk, rdev->bdev,
6303 rdev->new_data_offset << 9);
6304 /*
6305 * discard_zeroes_data is required, otherwise data
6306 * could be lost. Consider a scenario: discard a stripe
6307 * (the stripe could be inconsistent if
6308 * discard_zeroes_data is 0); write one disk of the
6309 * stripe (the stripe could be inconsistent again
6310 * depending on which disks are used to calculate
6311 * parity); the disk is broken; The stripe data of this
6312 * disk is lost.
6313 */
6314 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6315 !bdev_get_queue(rdev->bdev)->
6316 limits.discard_zeroes_data)
6317 discard_supported = false;
6318 /* Unfortunately, discard_zeroes_data is not currently
6319 * a guarantee - just a hint. So we only allow DISCARD
6320 * if the sysadmin has confirmed that only safe devices
6321 * are in use by setting a module parameter.
6322 */
6323 if (!devices_handle_discard_safely) {
6324 if (discard_supported) {
6325 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6326 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6327 }
6328 discard_supported = false;
6329 }
6330 }
6331
6332 if (discard_supported &&
6333 mddev->queue->limits.max_discard_sectors >= stripe &&
6334 mddev->queue->limits.discard_granularity >= stripe)
6335 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6336 mddev->queue);
6337 else
6338 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6339 mddev->queue);
6340 }
6341
6342 return 0;
6343 abort:
6344 md_unregister_thread(&mddev->thread);
6345 print_raid5_conf(conf);
6346 free_conf(conf);
6347 mddev->private = NULL;
6348 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6349 return -EIO;
6350 }
6351
6352 static void raid5_free(struct mddev *mddev, void *priv)
6353 {
6354 struct r5conf *conf = priv;
6355
6356 free_conf(conf);
6357 mddev->to_remove = &raid5_attrs_group;
6358 }
6359
6360 static void status(struct seq_file *seq, struct mddev *mddev)
6361 {
6362 struct r5conf *conf = mddev->private;
6363 int i;
6364
6365 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6366 mddev->chunk_sectors / 2, mddev->layout);
6367 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6368 for (i = 0; i < conf->raid_disks; i++)
6369 seq_printf (seq, "%s",
6370 conf->disks[i].rdev &&
6371 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6372 seq_printf (seq, "]");
6373 }
6374
6375 static void print_raid5_conf (struct r5conf *conf)
6376 {
6377 int i;
6378 struct disk_info *tmp;
6379
6380 printk(KERN_DEBUG "RAID conf printout:\n");
6381 if (!conf) {
6382 printk("(conf==NULL)\n");
6383 return;
6384 }
6385 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6386 conf->raid_disks,
6387 conf->raid_disks - conf->mddev->degraded);
6388
6389 for (i = 0; i < conf->raid_disks; i++) {
6390 char b[BDEVNAME_SIZE];
6391 tmp = conf->disks + i;
6392 if (tmp->rdev)
6393 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6394 i, !test_bit(Faulty, &tmp->rdev->flags),
6395 bdevname(tmp->rdev->bdev, b));
6396 }
6397 }
6398
6399 static int raid5_spare_active(struct mddev *mddev)
6400 {
6401 int i;
6402 struct r5conf *conf = mddev->private;
6403 struct disk_info *tmp;
6404 int count = 0;
6405 unsigned long flags;
6406
6407 for (i = 0; i < conf->raid_disks; i++) {
6408 tmp = conf->disks + i;
6409 if (tmp->replacement
6410 && tmp->replacement->recovery_offset == MaxSector
6411 && !test_bit(Faulty, &tmp->replacement->flags)
6412 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6413 /* Replacement has just become active. */
6414 if (!tmp->rdev
6415 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6416 count++;
6417 if (tmp->rdev) {
6418 /* Replaced device not technically faulty,
6419 * but we need to be sure it gets removed
6420 * and never re-added.
6421 */
6422 set_bit(Faulty, &tmp->rdev->flags);
6423 sysfs_notify_dirent_safe(
6424 tmp->rdev->sysfs_state);
6425 }
6426 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6427 } else if (tmp->rdev
6428 && tmp->rdev->recovery_offset == MaxSector
6429 && !test_bit(Faulty, &tmp->rdev->flags)
6430 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6431 count++;
6432 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6433 }
6434 }
6435 spin_lock_irqsave(&conf->device_lock, flags);
6436 mddev->degraded = calc_degraded(conf);
6437 spin_unlock_irqrestore(&conf->device_lock, flags);
6438 print_raid5_conf(conf);
6439 return count;
6440 }
6441
6442 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6443 {
6444 struct r5conf *conf = mddev->private;
6445 int err = 0;
6446 int number = rdev->raid_disk;
6447 struct md_rdev **rdevp;
6448 struct disk_info *p = conf->disks + number;
6449
6450 print_raid5_conf(conf);
6451 if (rdev == p->rdev)
6452 rdevp = &p->rdev;
6453 else if (rdev == p->replacement)
6454 rdevp = &p->replacement;
6455 else
6456 return 0;
6457
6458 if (number >= conf->raid_disks &&
6459 conf->reshape_progress == MaxSector)
6460 clear_bit(In_sync, &rdev->flags);
6461
6462 if (test_bit(In_sync, &rdev->flags) ||
6463 atomic_read(&rdev->nr_pending)) {
6464 err = -EBUSY;
6465 goto abort;
6466 }
6467 /* Only remove non-faulty devices if recovery
6468 * isn't possible.
6469 */
6470 if (!test_bit(Faulty, &rdev->flags) &&
6471 mddev->recovery_disabled != conf->recovery_disabled &&
6472 !has_failed(conf) &&
6473 (!p->replacement || p->replacement == rdev) &&
6474 number < conf->raid_disks) {
6475 err = -EBUSY;
6476 goto abort;
6477 }
6478 *rdevp = NULL;
6479 synchronize_rcu();
6480 if (atomic_read(&rdev->nr_pending)) {
6481 /* lost the race, try later */
6482 err = -EBUSY;
6483 *rdevp = rdev;
6484 } else if (p->replacement) {
6485 /* We must have just cleared 'rdev' */
6486 p->rdev = p->replacement;
6487 clear_bit(Replacement, &p->replacement->flags);
6488 smp_mb(); /* Make sure other CPUs may see both as identical
6489 * but will never see neither - if they are careful
6490 */
6491 p->replacement = NULL;
6492 clear_bit(WantReplacement, &rdev->flags);
6493 } else
6494 /* We might have just removed the Replacement as faulty-
6495 * clear the bit just in case
6496 */
6497 clear_bit(WantReplacement, &rdev->flags);
6498 abort:
6499
6500 print_raid5_conf(conf);
6501 return err;
6502 }
6503
6504 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6505 {
6506 struct r5conf *conf = mddev->private;
6507 int err = -EEXIST;
6508 int disk;
6509 struct disk_info *p;
6510 int first = 0;
6511 int last = conf->raid_disks - 1;
6512
6513 if (mddev->recovery_disabled == conf->recovery_disabled)
6514 return -EBUSY;
6515
6516 if (rdev->saved_raid_disk < 0 && has_failed(conf))
6517 /* no point adding a device */
6518 return -EINVAL;
6519
6520 if (rdev->raid_disk >= 0)
6521 first = last = rdev->raid_disk;
6522
6523 /*
6524 * find the disk ... but prefer rdev->saved_raid_disk
6525 * if possible.
6526 */
6527 if (rdev->saved_raid_disk >= 0 &&
6528 rdev->saved_raid_disk >= first &&
6529 conf->disks[rdev->saved_raid_disk].rdev == NULL)
6530 first = rdev->saved_raid_disk;
6531
6532 for (disk = first; disk <= last; disk++) {
6533 p = conf->disks + disk;
6534 if (p->rdev == NULL) {
6535 clear_bit(In_sync, &rdev->flags);
6536 rdev->raid_disk = disk;
6537 err = 0;
6538 if (rdev->saved_raid_disk != disk)
6539 conf->fullsync = 1;
6540 rcu_assign_pointer(p->rdev, rdev);
6541 goto out;
6542 }
6543 }
6544 for (disk = first; disk <= last; disk++) {
6545 p = conf->disks + disk;
6546 if (test_bit(WantReplacement, &p->rdev->flags) &&
6547 p->replacement == NULL) {
6548 clear_bit(In_sync, &rdev->flags);
6549 set_bit(Replacement, &rdev->flags);
6550 rdev->raid_disk = disk;
6551 err = 0;
6552 conf->fullsync = 1;
6553 rcu_assign_pointer(p->replacement, rdev);
6554 break;
6555 }
6556 }
6557 out:
6558 print_raid5_conf(conf);
6559 return err;
6560 }
6561
6562 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6563 {
6564 /* no resync is happening, and there is enough space
6565 * on all devices, so we can resize.
6566 * We need to make sure resync covers any new space.
6567 * If the array is shrinking we should possibly wait until
6568 * any io in the removed space completes, but it hardly seems
6569 * worth it.
6570 */
6571 sector_t newsize;
6572 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6573 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6574 if (mddev->external_size &&
6575 mddev->array_sectors > newsize)
6576 return -EINVAL;
6577 if (mddev->bitmap) {
6578 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6579 if (ret)
6580 return ret;
6581 }
6582 md_set_array_sectors(mddev, newsize);
6583 set_capacity(mddev->gendisk, mddev->array_sectors);
6584 revalidate_disk(mddev->gendisk);
6585 if (sectors > mddev->dev_sectors &&
6586 mddev->recovery_cp > mddev->dev_sectors) {
6587 mddev->recovery_cp = mddev->dev_sectors;
6588 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6589 }
6590 mddev->dev_sectors = sectors;
6591 mddev->resync_max_sectors = sectors;
6592 return 0;
6593 }
6594
6595 static int check_stripe_cache(struct mddev *mddev)
6596 {
6597 /* Can only proceed if there are plenty of stripe_heads.
6598 * We need a minimum of one full stripe,, and for sensible progress
6599 * it is best to have about 4 times that.
6600 * If we require 4 times, then the default 256 4K stripe_heads will
6601 * allow for chunk sizes up to 256K, which is probably OK.
6602 * If the chunk size is greater, user-space should request more
6603 * stripe_heads first.
6604 */
6605 struct r5conf *conf = mddev->private;
6606 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6607 > conf->max_nr_stripes ||
6608 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6609 > conf->max_nr_stripes) {
6610 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
6611 mdname(mddev),
6612 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6613 / STRIPE_SIZE)*4);
6614 return 0;
6615 }
6616 return 1;
6617 }
6618
6619 static int check_reshape(struct mddev *mddev)
6620 {
6621 struct r5conf *conf = mddev->private;
6622
6623 if (mddev->delta_disks == 0 &&
6624 mddev->new_layout == mddev->layout &&
6625 mddev->new_chunk_sectors == mddev->chunk_sectors)
6626 return 0; /* nothing to do */
6627 if (has_failed(conf))
6628 return -EINVAL;
6629 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6630 /* We might be able to shrink, but the devices must
6631 * be made bigger first.
6632 * For raid6, 4 is the minimum size.
6633 * Otherwise 2 is the minimum
6634 */
6635 int min = 2;
6636 if (mddev->level == 6)
6637 min = 4;
6638 if (mddev->raid_disks + mddev->delta_disks < min)
6639 return -EINVAL;
6640 }
6641
6642 if (!check_stripe_cache(mddev))
6643 return -ENOSPC;
6644
6645 return resize_stripes(conf, (conf->previous_raid_disks
6646 + mddev->delta_disks));
6647 }
6648
6649 static int raid5_start_reshape(struct mddev *mddev)
6650 {
6651 struct r5conf *conf = mddev->private;
6652 struct md_rdev *rdev;
6653 int spares = 0;
6654 unsigned long flags;
6655
6656 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6657 return -EBUSY;
6658
6659 if (!check_stripe_cache(mddev))
6660 return -ENOSPC;
6661
6662 if (has_failed(conf))
6663 return -EINVAL;
6664
6665 rdev_for_each(rdev, mddev) {
6666 if (!test_bit(In_sync, &rdev->flags)
6667 && !test_bit(Faulty, &rdev->flags))
6668 spares++;
6669 }
6670
6671 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6672 /* Not enough devices even to make a degraded array
6673 * of that size
6674 */
6675 return -EINVAL;
6676
6677 /* Refuse to reduce size of the array. Any reductions in
6678 * array size must be through explicit setting of array_size
6679 * attribute.
6680 */
6681 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6682 < mddev->array_sectors) {
6683 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6684 "before number of disks\n", mdname(mddev));
6685 return -EINVAL;
6686 }
6687
6688 atomic_set(&conf->reshape_stripes, 0);
6689 spin_lock_irq(&conf->device_lock);
6690 write_seqcount_begin(&conf->gen_lock);
6691 conf->previous_raid_disks = conf->raid_disks;
6692 conf->raid_disks += mddev->delta_disks;
6693 conf->prev_chunk_sectors = conf->chunk_sectors;
6694 conf->chunk_sectors = mddev->new_chunk_sectors;
6695 conf->prev_algo = conf->algorithm;
6696 conf->algorithm = mddev->new_layout;
6697 conf->generation++;
6698 /* Code that selects data_offset needs to see the generation update
6699 * if reshape_progress has been set - so a memory barrier needed.
6700 */
6701 smp_mb();
6702 if (mddev->reshape_backwards)
6703 conf->reshape_progress = raid5_size(mddev, 0, 0);
6704 else
6705 conf->reshape_progress = 0;
6706 conf->reshape_safe = conf->reshape_progress;
6707 write_seqcount_end(&conf->gen_lock);
6708 spin_unlock_irq(&conf->device_lock);
6709
6710 /* Now make sure any requests that proceeded on the assumption
6711 * the reshape wasn't running - like Discard or Read - have
6712 * completed.
6713 */
6714 mddev_suspend(mddev);
6715 mddev_resume(mddev);
6716
6717 /* Add some new drives, as many as will fit.
6718 * We know there are enough to make the newly sized array work.
6719 * Don't add devices if we are reducing the number of
6720 * devices in the array. This is because it is not possible
6721 * to correctly record the "partially reconstructed" state of
6722 * such devices during the reshape and confusion could result.
6723 */
6724 if (mddev->delta_disks >= 0) {
6725 rdev_for_each(rdev, mddev)
6726 if (rdev->raid_disk < 0 &&
6727 !test_bit(Faulty, &rdev->flags)) {
6728 if (raid5_add_disk(mddev, rdev) == 0) {
6729 if (rdev->raid_disk
6730 >= conf->previous_raid_disks)
6731 set_bit(In_sync, &rdev->flags);
6732 else
6733 rdev->recovery_offset = 0;
6734
6735 if (sysfs_link_rdev(mddev, rdev))
6736 /* Failure here is OK */;
6737 }
6738 } else if (rdev->raid_disk >= conf->previous_raid_disks
6739 && !test_bit(Faulty, &rdev->flags)) {
6740 /* This is a spare that was manually added */
6741 set_bit(In_sync, &rdev->flags);
6742 }
6743
6744 /* When a reshape changes the number of devices,
6745 * ->degraded is measured against the larger of the
6746 * pre and post number of devices.
6747 */
6748 spin_lock_irqsave(&conf->device_lock, flags);
6749 mddev->degraded = calc_degraded(conf);
6750 spin_unlock_irqrestore(&conf->device_lock, flags);
6751 }
6752 mddev->raid_disks = conf->raid_disks;
6753 mddev->reshape_position = conf->reshape_progress;
6754 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6755
6756 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6757 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6758 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6759 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6760 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6761 "reshape");
6762 if (!mddev->sync_thread) {
6763 mddev->recovery = 0;
6764 spin_lock_irq(&conf->device_lock);
6765 write_seqcount_begin(&conf->gen_lock);
6766 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6767 mddev->new_chunk_sectors =
6768 conf->chunk_sectors = conf->prev_chunk_sectors;
6769 mddev->new_layout = conf->algorithm = conf->prev_algo;
6770 rdev_for_each(rdev, mddev)
6771 rdev->new_data_offset = rdev->data_offset;
6772 smp_wmb();
6773 conf->generation --;
6774 conf->reshape_progress = MaxSector;
6775 mddev->reshape_position = MaxSector;
6776 write_seqcount_end(&conf->gen_lock);
6777 spin_unlock_irq(&conf->device_lock);
6778 return -EAGAIN;
6779 }
6780 conf->reshape_checkpoint = jiffies;
6781 md_wakeup_thread(mddev->sync_thread);
6782 md_new_event(mddev);
6783 return 0;
6784 }
6785
6786 /* This is called from the reshape thread and should make any
6787 * changes needed in 'conf'
6788 */
6789 static void end_reshape(struct r5conf *conf)
6790 {
6791
6792 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6793 struct md_rdev *rdev;
6794
6795 spin_lock_irq(&conf->device_lock);
6796 conf->previous_raid_disks = conf->raid_disks;
6797 rdev_for_each(rdev, conf->mddev)
6798 rdev->data_offset = rdev->new_data_offset;
6799 smp_wmb();
6800 conf->reshape_progress = MaxSector;
6801 spin_unlock_irq(&conf->device_lock);
6802 wake_up(&conf->wait_for_overlap);
6803
6804 /* read-ahead size must cover two whole stripes, which is
6805 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6806 */
6807 if (conf->mddev->queue) {
6808 int data_disks = conf->raid_disks - conf->max_degraded;
6809 int stripe = data_disks * ((conf->chunk_sectors << 9)
6810 / PAGE_SIZE);
6811 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6812 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6813 }
6814 }
6815 }
6816
6817 /* This is called from the raid5d thread with mddev_lock held.
6818 * It makes config changes to the device.
6819 */
6820 static void raid5_finish_reshape(struct mddev *mddev)
6821 {
6822 struct r5conf *conf = mddev->private;
6823
6824 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6825
6826 if (mddev->delta_disks > 0) {
6827 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6828 set_capacity(mddev->gendisk, mddev->array_sectors);
6829 revalidate_disk(mddev->gendisk);
6830 } else {
6831 int d;
6832 spin_lock_irq(&conf->device_lock);
6833 mddev->degraded = calc_degraded(conf);
6834 spin_unlock_irq(&conf->device_lock);
6835 for (d = conf->raid_disks ;
6836 d < conf->raid_disks - mddev->delta_disks;
6837 d++) {
6838 struct md_rdev *rdev = conf->disks[d].rdev;
6839 if (rdev)
6840 clear_bit(In_sync, &rdev->flags);
6841 rdev = conf->disks[d].replacement;
6842 if (rdev)
6843 clear_bit(In_sync, &rdev->flags);
6844 }
6845 }
6846 mddev->layout = conf->algorithm;
6847 mddev->chunk_sectors = conf->chunk_sectors;
6848 mddev->reshape_position = MaxSector;
6849 mddev->delta_disks = 0;
6850 mddev->reshape_backwards = 0;
6851 }
6852 }
6853
6854 static void raid5_quiesce(struct mddev *mddev, int state)
6855 {
6856 struct r5conf *conf = mddev->private;
6857
6858 switch(state) {
6859 case 2: /* resume for a suspend */
6860 wake_up(&conf->wait_for_overlap);
6861 break;
6862
6863 case 1: /* stop all writes */
6864 lock_all_device_hash_locks_irq(conf);
6865 /* '2' tells resync/reshape to pause so that all
6866 * active stripes can drain
6867 */
6868 conf->quiesce = 2;
6869 wait_event_cmd(conf->wait_for_stripe,
6870 atomic_read(&conf->active_stripes) == 0 &&
6871 atomic_read(&conf->active_aligned_reads) == 0,
6872 unlock_all_device_hash_locks_irq(conf),
6873 lock_all_device_hash_locks_irq(conf));
6874 conf->quiesce = 1;
6875 unlock_all_device_hash_locks_irq(conf);
6876 /* allow reshape to continue */
6877 wake_up(&conf->wait_for_overlap);
6878 break;
6879
6880 case 0: /* re-enable writes */
6881 lock_all_device_hash_locks_irq(conf);
6882 conf->quiesce = 0;
6883 wake_up(&conf->wait_for_stripe);
6884 wake_up(&conf->wait_for_overlap);
6885 unlock_all_device_hash_locks_irq(conf);
6886 break;
6887 }
6888 }
6889
6890 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6891 {
6892 struct r0conf *raid0_conf = mddev->private;
6893 sector_t sectors;
6894
6895 /* for raid0 takeover only one zone is supported */
6896 if (raid0_conf->nr_strip_zones > 1) {
6897 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6898 mdname(mddev));
6899 return ERR_PTR(-EINVAL);
6900 }
6901
6902 sectors = raid0_conf->strip_zone[0].zone_end;
6903 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6904 mddev->dev_sectors = sectors;
6905 mddev->new_level = level;
6906 mddev->new_layout = ALGORITHM_PARITY_N;
6907 mddev->new_chunk_sectors = mddev->chunk_sectors;
6908 mddev->raid_disks += 1;
6909 mddev->delta_disks = 1;
6910 /* make sure it will be not marked as dirty */
6911 mddev->recovery_cp = MaxSector;
6912
6913 return setup_conf(mddev);
6914 }
6915
6916 static void *raid5_takeover_raid1(struct mddev *mddev)
6917 {
6918 int chunksect;
6919
6920 if (mddev->raid_disks != 2 ||
6921 mddev->degraded > 1)
6922 return ERR_PTR(-EINVAL);
6923
6924 /* Should check if there are write-behind devices? */
6925
6926 chunksect = 64*2; /* 64K by default */
6927
6928 /* The array must be an exact multiple of chunksize */
6929 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6930 chunksect >>= 1;
6931
6932 if ((chunksect<<9) < STRIPE_SIZE)
6933 /* array size does not allow a suitable chunk size */
6934 return ERR_PTR(-EINVAL);
6935
6936 mddev->new_level = 5;
6937 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6938 mddev->new_chunk_sectors = chunksect;
6939
6940 return setup_conf(mddev);
6941 }
6942
6943 static void *raid5_takeover_raid6(struct mddev *mddev)
6944 {
6945 int new_layout;
6946
6947 switch (mddev->layout) {
6948 case ALGORITHM_LEFT_ASYMMETRIC_6:
6949 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6950 break;
6951 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6952 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6953 break;
6954 case ALGORITHM_LEFT_SYMMETRIC_6:
6955 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6956 break;
6957 case ALGORITHM_RIGHT_SYMMETRIC_6:
6958 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6959 break;
6960 case ALGORITHM_PARITY_0_6:
6961 new_layout = ALGORITHM_PARITY_0;
6962 break;
6963 case ALGORITHM_PARITY_N:
6964 new_layout = ALGORITHM_PARITY_N;
6965 break;
6966 default:
6967 return ERR_PTR(-EINVAL);
6968 }
6969 mddev->new_level = 5;
6970 mddev->new_layout = new_layout;
6971 mddev->delta_disks = -1;
6972 mddev->raid_disks -= 1;
6973 return setup_conf(mddev);
6974 }
6975
6976 static int raid5_check_reshape(struct mddev *mddev)
6977 {
6978 /* For a 2-drive array, the layout and chunk size can be changed
6979 * immediately as not restriping is needed.
6980 * For larger arrays we record the new value - after validation
6981 * to be used by a reshape pass.
6982 */
6983 struct r5conf *conf = mddev->private;
6984 int new_chunk = mddev->new_chunk_sectors;
6985
6986 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6987 return -EINVAL;
6988 if (new_chunk > 0) {
6989 if (!is_power_of_2(new_chunk))
6990 return -EINVAL;
6991 if (new_chunk < (PAGE_SIZE>>9))
6992 return -EINVAL;
6993 if (mddev->array_sectors & (new_chunk-1))
6994 /* not factor of array size */
6995 return -EINVAL;
6996 }
6997
6998 /* They look valid */
6999
7000 if (mddev->raid_disks == 2) {
7001 /* can make the change immediately */
7002 if (mddev->new_layout >= 0) {
7003 conf->algorithm = mddev->new_layout;
7004 mddev->layout = mddev->new_layout;
7005 }
7006 if (new_chunk > 0) {
7007 conf->chunk_sectors = new_chunk ;
7008 mddev->chunk_sectors = new_chunk;
7009 }
7010 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7011 md_wakeup_thread(mddev->thread);
7012 }
7013 return check_reshape(mddev);
7014 }
7015
7016 static int raid6_check_reshape(struct mddev *mddev)
7017 {
7018 int new_chunk = mddev->new_chunk_sectors;
7019
7020 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7021 return -EINVAL;
7022 if (new_chunk > 0) {
7023 if (!is_power_of_2(new_chunk))
7024 return -EINVAL;
7025 if (new_chunk < (PAGE_SIZE >> 9))
7026 return -EINVAL;
7027 if (mddev->array_sectors & (new_chunk-1))
7028 /* not factor of array size */
7029 return -EINVAL;
7030 }
7031
7032 /* They look valid */
7033 return check_reshape(mddev);
7034 }
7035
7036 static void *raid5_takeover(struct mddev *mddev)
7037 {
7038 /* raid5 can take over:
7039 * raid0 - if there is only one strip zone - make it a raid4 layout
7040 * raid1 - if there are two drives. We need to know the chunk size
7041 * raid4 - trivial - just use a raid4 layout.
7042 * raid6 - Providing it is a *_6 layout
7043 */
7044 if (mddev->level == 0)
7045 return raid45_takeover_raid0(mddev, 5);
7046 if (mddev->level == 1)
7047 return raid5_takeover_raid1(mddev);
7048 if (mddev->level == 4) {
7049 mddev->new_layout = ALGORITHM_PARITY_N;
7050 mddev->new_level = 5;
7051 return setup_conf(mddev);
7052 }
7053 if (mddev->level == 6)
7054 return raid5_takeover_raid6(mddev);
7055
7056 return ERR_PTR(-EINVAL);
7057 }
7058
7059 static void *raid4_takeover(struct mddev *mddev)
7060 {
7061 /* raid4 can take over:
7062 * raid0 - if there is only one strip zone
7063 * raid5 - if layout is right
7064 */
7065 if (mddev->level == 0)
7066 return raid45_takeover_raid0(mddev, 4);
7067 if (mddev->level == 5 &&
7068 mddev->layout == ALGORITHM_PARITY_N) {
7069 mddev->new_layout = 0;
7070 mddev->new_level = 4;
7071 return setup_conf(mddev);
7072 }
7073 return ERR_PTR(-EINVAL);
7074 }
7075
7076 static struct md_personality raid5_personality;
7077
7078 static void *raid6_takeover(struct mddev *mddev)
7079 {
7080 /* Currently can only take over a raid5. We map the
7081 * personality to an equivalent raid6 personality
7082 * with the Q block at the end.
7083 */
7084 int new_layout;
7085
7086 if (mddev->pers != &raid5_personality)
7087 return ERR_PTR(-EINVAL);
7088 if (mddev->degraded > 1)
7089 return ERR_PTR(-EINVAL);
7090 if (mddev->raid_disks > 253)
7091 return ERR_PTR(-EINVAL);
7092 if (mddev->raid_disks < 3)
7093 return ERR_PTR(-EINVAL);
7094
7095 switch (mddev->layout) {
7096 case ALGORITHM_LEFT_ASYMMETRIC:
7097 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7098 break;
7099 case ALGORITHM_RIGHT_ASYMMETRIC:
7100 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7101 break;
7102 case ALGORITHM_LEFT_SYMMETRIC:
7103 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7104 break;
7105 case ALGORITHM_RIGHT_SYMMETRIC:
7106 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7107 break;
7108 case ALGORITHM_PARITY_0:
7109 new_layout = ALGORITHM_PARITY_0_6;
7110 break;
7111 case ALGORITHM_PARITY_N:
7112 new_layout = ALGORITHM_PARITY_N;
7113 break;
7114 default:
7115 return ERR_PTR(-EINVAL);
7116 }
7117 mddev->new_level = 6;
7118 mddev->new_layout = new_layout;
7119 mddev->delta_disks = 1;
7120 mddev->raid_disks += 1;
7121 return setup_conf(mddev);
7122 }
7123
7124 static struct md_personality raid6_personality =
7125 {
7126 .name = "raid6",
7127 .level = 6,
7128 .owner = THIS_MODULE,
7129 .make_request = make_request,
7130 .run = run,
7131 .free = raid5_free,
7132 .status = status,
7133 .error_handler = error,
7134 .hot_add_disk = raid5_add_disk,
7135 .hot_remove_disk= raid5_remove_disk,
7136 .spare_active = raid5_spare_active,
7137 .sync_request = sync_request,
7138 .resize = raid5_resize,
7139 .size = raid5_size,
7140 .check_reshape = raid6_check_reshape,
7141 .start_reshape = raid5_start_reshape,
7142 .finish_reshape = raid5_finish_reshape,
7143 .quiesce = raid5_quiesce,
7144 .takeover = raid6_takeover,
7145 .congested = raid5_congested,
7146 .mergeable_bvec = raid5_mergeable_bvec,
7147 };
7148 static struct md_personality raid5_personality =
7149 {
7150 .name = "raid5",
7151 .level = 5,
7152 .owner = THIS_MODULE,
7153 .make_request = make_request,
7154 .run = run,
7155 .free = raid5_free,
7156 .status = status,
7157 .error_handler = error,
7158 .hot_add_disk = raid5_add_disk,
7159 .hot_remove_disk= raid5_remove_disk,
7160 .spare_active = raid5_spare_active,
7161 .sync_request = sync_request,
7162 .resize = raid5_resize,
7163 .size = raid5_size,
7164 .check_reshape = raid5_check_reshape,
7165 .start_reshape = raid5_start_reshape,
7166 .finish_reshape = raid5_finish_reshape,
7167 .quiesce = raid5_quiesce,
7168 .takeover = raid5_takeover,
7169 .congested = raid5_congested,
7170 .mergeable_bvec = raid5_mergeable_bvec,
7171 };
7172
7173 static struct md_personality raid4_personality =
7174 {
7175 .name = "raid4",
7176 .level = 4,
7177 .owner = THIS_MODULE,
7178 .make_request = make_request,
7179 .run = run,
7180 .free = raid5_free,
7181 .status = status,
7182 .error_handler = error,
7183 .hot_add_disk = raid5_add_disk,
7184 .hot_remove_disk= raid5_remove_disk,
7185 .spare_active = raid5_spare_active,
7186 .sync_request = sync_request,
7187 .resize = raid5_resize,
7188 .size = raid5_size,
7189 .check_reshape = raid5_check_reshape,
7190 .start_reshape = raid5_start_reshape,
7191 .finish_reshape = raid5_finish_reshape,
7192 .quiesce = raid5_quiesce,
7193 .takeover = raid4_takeover,
7194 .congested = raid5_congested,
7195 .mergeable_bvec = raid5_mergeable_bvec,
7196 };
7197
7198 static int __init raid5_init(void)
7199 {
7200 raid5_wq = alloc_workqueue("raid5wq",
7201 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7202 if (!raid5_wq)
7203 return -ENOMEM;
7204 register_md_personality(&raid6_personality);
7205 register_md_personality(&raid5_personality);
7206 register_md_personality(&raid4_personality);
7207 return 0;
7208 }
7209
7210 static void raid5_exit(void)
7211 {
7212 unregister_md_personality(&raid6_personality);
7213 unregister_md_personality(&raid5_personality);
7214 unregister_md_personality(&raid4_personality);
7215 destroy_workqueue(raid5_wq);
7216 }
7217
7218 module_init(raid5_init);
7219 module_exit(raid5_exit);
7220 MODULE_LICENSE("GPL");
7221 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7222 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7223 MODULE_ALIAS("md-raid5");
7224 MODULE_ALIAS("md-raid4");
7225 MODULE_ALIAS("md-level-5");
7226 MODULE_ALIAS("md-level-4");
7227 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7228 MODULE_ALIAS("md-raid6");
7229 MODULE_ALIAS("md-level-6");
7230
7231 /* This used to be two separate modules, they were: */
7232 MODULE_ALIAS("raid5");
7233 MODULE_ALIAS("raid6");