]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/raid5.c
Merge branch 'devel-stable' into devel
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "bitmap.h"
57
58 /*
59 * Stripe cache
60 */
61
62 #define NR_STRIPES 256
63 #define STRIPE_SIZE PAGE_SIZE
64 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
65 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
66 #define IO_THRESHOLD 1
67 #define BYPASS_THRESHOLD 1
68 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
69 #define HASH_MASK (NR_HASH - 1)
70
71 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72
73 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
74 * order without overlap. There may be several bio's per stripe+device, and
75 * a bio could span several devices.
76 * When walking this list for a particular stripe+device, we must never proceed
77 * beyond a bio that extends past this device, as the next bio might no longer
78 * be valid.
79 * This macro is used to determine the 'next' bio in the list, given the sector
80 * of the current stripe+device
81 */
82 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83 /*
84 * The following can be used to debug the driver
85 */
86 #define RAID5_PARANOIA 1
87 #if RAID5_PARANOIA && defined(CONFIG_SMP)
88 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
89 #else
90 # define CHECK_DEVLOCK()
91 #endif
92
93 #ifdef DEBUG
94 #define inline
95 #define __inline__
96 #endif
97
98 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
99
100 /*
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 */
104 static inline int raid5_bi_phys_segments(struct bio *bio)
105 {
106 return bio->bi_phys_segments & 0xffff;
107 }
108
109 static inline int raid5_bi_hw_segments(struct bio *bio)
110 {
111 return (bio->bi_phys_segments >> 16) & 0xffff;
112 }
113
114 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115 {
116 --bio->bi_phys_segments;
117 return raid5_bi_phys_segments(bio);
118 }
119
120 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121 {
122 unsigned short val = raid5_bi_hw_segments(bio);
123
124 --val;
125 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126 return val;
127 }
128
129 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130 {
131 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
132 }
133
134 /* Find first data disk in a raid6 stripe */
135 static inline int raid6_d0(struct stripe_head *sh)
136 {
137 if (sh->ddf_layout)
138 /* ddf always start from first device */
139 return 0;
140 /* md starts just after Q block */
141 if (sh->qd_idx == sh->disks - 1)
142 return 0;
143 else
144 return sh->qd_idx + 1;
145 }
146 static inline int raid6_next_disk(int disk, int raid_disks)
147 {
148 disk++;
149 return (disk < raid_disks) ? disk : 0;
150 }
151
152 /* When walking through the disks in a raid5, starting at raid6_d0,
153 * We need to map each disk to a 'slot', where the data disks are slot
154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155 * is raid_disks-1. This help does that mapping.
156 */
157 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158 int *count, int syndrome_disks)
159 {
160 int slot = *count;
161
162 if (sh->ddf_layout)
163 (*count)++;
164 if (idx == sh->pd_idx)
165 return syndrome_disks;
166 if (idx == sh->qd_idx)
167 return syndrome_disks + 1;
168 if (!sh->ddf_layout)
169 (*count)++;
170 return slot;
171 }
172
173 static void return_io(struct bio *return_bi)
174 {
175 struct bio *bi = return_bi;
176 while (bi) {
177
178 return_bi = bi->bi_next;
179 bi->bi_next = NULL;
180 bi->bi_size = 0;
181 bio_endio(bi, 0);
182 bi = return_bi;
183 }
184 }
185
186 static void print_raid5_conf (raid5_conf_t *conf);
187
188 static int stripe_operations_active(struct stripe_head *sh)
189 {
190 return sh->check_state || sh->reconstruct_state ||
191 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193 }
194
195 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196 {
197 if (atomic_dec_and_test(&sh->count)) {
198 BUG_ON(!list_empty(&sh->lru));
199 BUG_ON(atomic_read(&conf->active_stripes)==0);
200 if (test_bit(STRIPE_HANDLE, &sh->state)) {
201 if (test_bit(STRIPE_DELAYED, &sh->state)) {
202 list_add_tail(&sh->lru, &conf->delayed_list);
203 blk_plug_device(conf->mddev->queue);
204 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205 sh->bm_seq - conf->seq_write > 0) {
206 list_add_tail(&sh->lru, &conf->bitmap_list);
207 blk_plug_device(conf->mddev->queue);
208 } else {
209 clear_bit(STRIPE_BIT_DELAY, &sh->state);
210 list_add_tail(&sh->lru, &conf->handle_list);
211 }
212 md_wakeup_thread(conf->mddev->thread);
213 } else {
214 BUG_ON(stripe_operations_active(sh));
215 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
216 atomic_dec(&conf->preread_active_stripes);
217 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
218 md_wakeup_thread(conf->mddev->thread);
219 }
220 atomic_dec(&conf->active_stripes);
221 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
222 list_add_tail(&sh->lru, &conf->inactive_list);
223 wake_up(&conf->wait_for_stripe);
224 if (conf->retry_read_aligned)
225 md_wakeup_thread(conf->mddev->thread);
226 }
227 }
228 }
229 }
230
231 static void release_stripe(struct stripe_head *sh)
232 {
233 raid5_conf_t *conf = sh->raid_conf;
234 unsigned long flags;
235
236 spin_lock_irqsave(&conf->device_lock, flags);
237 __release_stripe(conf, sh);
238 spin_unlock_irqrestore(&conf->device_lock, flags);
239 }
240
241 static inline void remove_hash(struct stripe_head *sh)
242 {
243 pr_debug("remove_hash(), stripe %llu\n",
244 (unsigned long long)sh->sector);
245
246 hlist_del_init(&sh->hash);
247 }
248
249 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
250 {
251 struct hlist_head *hp = stripe_hash(conf, sh->sector);
252
253 pr_debug("insert_hash(), stripe %llu\n",
254 (unsigned long long)sh->sector);
255
256 CHECK_DEVLOCK();
257 hlist_add_head(&sh->hash, hp);
258 }
259
260
261 /* find an idle stripe, make sure it is unhashed, and return it. */
262 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
263 {
264 struct stripe_head *sh = NULL;
265 struct list_head *first;
266
267 CHECK_DEVLOCK();
268 if (list_empty(&conf->inactive_list))
269 goto out;
270 first = conf->inactive_list.next;
271 sh = list_entry(first, struct stripe_head, lru);
272 list_del_init(first);
273 remove_hash(sh);
274 atomic_inc(&conf->active_stripes);
275 out:
276 return sh;
277 }
278
279 static void shrink_buffers(struct stripe_head *sh, int num)
280 {
281 struct page *p;
282 int i;
283
284 for (i=0; i<num ; i++) {
285 p = sh->dev[i].page;
286 if (!p)
287 continue;
288 sh->dev[i].page = NULL;
289 put_page(p);
290 }
291 }
292
293 static int grow_buffers(struct stripe_head *sh, int num)
294 {
295 int i;
296
297 for (i=0; i<num; i++) {
298 struct page *page;
299
300 if (!(page = alloc_page(GFP_KERNEL))) {
301 return 1;
302 }
303 sh->dev[i].page = page;
304 }
305 return 0;
306 }
307
308 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310 struct stripe_head *sh);
311
312 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313 {
314 raid5_conf_t *conf = sh->raid_conf;
315 int i;
316
317 BUG_ON(atomic_read(&sh->count) != 0);
318 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319 BUG_ON(stripe_operations_active(sh));
320
321 CHECK_DEVLOCK();
322 pr_debug("init_stripe called, stripe %llu\n",
323 (unsigned long long)sh->sector);
324
325 remove_hash(sh);
326
327 sh->generation = conf->generation - previous;
328 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329 sh->sector = sector;
330 stripe_set_idx(sector, conf, previous, sh);
331 sh->state = 0;
332
333
334 for (i = sh->disks; i--; ) {
335 struct r5dev *dev = &sh->dev[i];
336
337 if (dev->toread || dev->read || dev->towrite || dev->written ||
338 test_bit(R5_LOCKED, &dev->flags)) {
339 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340 (unsigned long long)sh->sector, i, dev->toread,
341 dev->read, dev->towrite, dev->written,
342 test_bit(R5_LOCKED, &dev->flags));
343 BUG();
344 }
345 dev->flags = 0;
346 raid5_build_block(sh, i, previous);
347 }
348 insert_hash(conf, sh);
349 }
350
351 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352 short generation)
353 {
354 struct stripe_head *sh;
355 struct hlist_node *hn;
356
357 CHECK_DEVLOCK();
358 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360 if (sh->sector == sector && sh->generation == generation)
361 return sh;
362 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363 return NULL;
364 }
365
366 static void unplug_slaves(mddev_t *mddev);
367 static void raid5_unplug_device(struct request_queue *q);
368
369 static struct stripe_head *
370 get_active_stripe(raid5_conf_t *conf, sector_t sector,
371 int previous, int noblock, int noquiesce)
372 {
373 struct stripe_head *sh;
374
375 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
376
377 spin_lock_irq(&conf->device_lock);
378
379 do {
380 wait_event_lock_irq(conf->wait_for_stripe,
381 conf->quiesce == 0 || noquiesce,
382 conf->device_lock, /* nothing */);
383 sh = __find_stripe(conf, sector, conf->generation - previous);
384 if (!sh) {
385 if (!conf->inactive_blocked)
386 sh = get_free_stripe(conf);
387 if (noblock && sh == NULL)
388 break;
389 if (!sh) {
390 conf->inactive_blocked = 1;
391 wait_event_lock_irq(conf->wait_for_stripe,
392 !list_empty(&conf->inactive_list) &&
393 (atomic_read(&conf->active_stripes)
394 < (conf->max_nr_stripes *3/4)
395 || !conf->inactive_blocked),
396 conf->device_lock,
397 raid5_unplug_device(conf->mddev->queue)
398 );
399 conf->inactive_blocked = 0;
400 } else
401 init_stripe(sh, sector, previous);
402 } else {
403 if (atomic_read(&sh->count)) {
404 BUG_ON(!list_empty(&sh->lru)
405 && !test_bit(STRIPE_EXPANDING, &sh->state));
406 } else {
407 if (!test_bit(STRIPE_HANDLE, &sh->state))
408 atomic_inc(&conf->active_stripes);
409 if (list_empty(&sh->lru) &&
410 !test_bit(STRIPE_EXPANDING, &sh->state))
411 BUG();
412 list_del_init(&sh->lru);
413 }
414 }
415 } while (sh == NULL);
416
417 if (sh)
418 atomic_inc(&sh->count);
419
420 spin_unlock_irq(&conf->device_lock);
421 return sh;
422 }
423
424 static void
425 raid5_end_read_request(struct bio *bi, int error);
426 static void
427 raid5_end_write_request(struct bio *bi, int error);
428
429 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
430 {
431 raid5_conf_t *conf = sh->raid_conf;
432 int i, disks = sh->disks;
433
434 might_sleep();
435
436 for (i = disks; i--; ) {
437 int rw;
438 struct bio *bi;
439 mdk_rdev_t *rdev;
440 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
441 rw = WRITE;
442 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
443 rw = READ;
444 else
445 continue;
446
447 bi = &sh->dev[i].req;
448
449 bi->bi_rw = rw;
450 if (rw == WRITE)
451 bi->bi_end_io = raid5_end_write_request;
452 else
453 bi->bi_end_io = raid5_end_read_request;
454
455 rcu_read_lock();
456 rdev = rcu_dereference(conf->disks[i].rdev);
457 if (rdev && test_bit(Faulty, &rdev->flags))
458 rdev = NULL;
459 if (rdev)
460 atomic_inc(&rdev->nr_pending);
461 rcu_read_unlock();
462
463 if (rdev) {
464 if (s->syncing || s->expanding || s->expanded)
465 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
466
467 set_bit(STRIPE_IO_STARTED, &sh->state);
468
469 bi->bi_bdev = rdev->bdev;
470 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
471 __func__, (unsigned long long)sh->sector,
472 bi->bi_rw, i);
473 atomic_inc(&sh->count);
474 bi->bi_sector = sh->sector + rdev->data_offset;
475 bi->bi_flags = 1 << BIO_UPTODATE;
476 bi->bi_vcnt = 1;
477 bi->bi_max_vecs = 1;
478 bi->bi_idx = 0;
479 bi->bi_io_vec = &sh->dev[i].vec;
480 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
481 bi->bi_io_vec[0].bv_offset = 0;
482 bi->bi_size = STRIPE_SIZE;
483 bi->bi_next = NULL;
484 if (rw == WRITE &&
485 test_bit(R5_ReWrite, &sh->dev[i].flags))
486 atomic_add(STRIPE_SECTORS,
487 &rdev->corrected_errors);
488 generic_make_request(bi);
489 } else {
490 if (rw == WRITE)
491 set_bit(STRIPE_DEGRADED, &sh->state);
492 pr_debug("skip op %ld on disc %d for sector %llu\n",
493 bi->bi_rw, i, (unsigned long long)sh->sector);
494 clear_bit(R5_LOCKED, &sh->dev[i].flags);
495 set_bit(STRIPE_HANDLE, &sh->state);
496 }
497 }
498 }
499
500 static struct dma_async_tx_descriptor *
501 async_copy_data(int frombio, struct bio *bio, struct page *page,
502 sector_t sector, struct dma_async_tx_descriptor *tx)
503 {
504 struct bio_vec *bvl;
505 struct page *bio_page;
506 int i;
507 int page_offset;
508 struct async_submit_ctl submit;
509 enum async_tx_flags flags = 0;
510
511 if (bio->bi_sector >= sector)
512 page_offset = (signed)(bio->bi_sector - sector) * 512;
513 else
514 page_offset = (signed)(sector - bio->bi_sector) * -512;
515
516 if (frombio)
517 flags |= ASYNC_TX_FENCE;
518 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
519
520 bio_for_each_segment(bvl, bio, i) {
521 int len = bio_iovec_idx(bio, i)->bv_len;
522 int clen;
523 int b_offset = 0;
524
525 if (page_offset < 0) {
526 b_offset = -page_offset;
527 page_offset += b_offset;
528 len -= b_offset;
529 }
530
531 if (len > 0 && page_offset + len > STRIPE_SIZE)
532 clen = STRIPE_SIZE - page_offset;
533 else
534 clen = len;
535
536 if (clen > 0) {
537 b_offset += bio_iovec_idx(bio, i)->bv_offset;
538 bio_page = bio_iovec_idx(bio, i)->bv_page;
539 if (frombio)
540 tx = async_memcpy(page, bio_page, page_offset,
541 b_offset, clen, &submit);
542 else
543 tx = async_memcpy(bio_page, page, b_offset,
544 page_offset, clen, &submit);
545 }
546 /* chain the operations */
547 submit.depend_tx = tx;
548
549 if (clen < len) /* hit end of page */
550 break;
551 page_offset += len;
552 }
553
554 return tx;
555 }
556
557 static void ops_complete_biofill(void *stripe_head_ref)
558 {
559 struct stripe_head *sh = stripe_head_ref;
560 struct bio *return_bi = NULL;
561 raid5_conf_t *conf = sh->raid_conf;
562 int i;
563
564 pr_debug("%s: stripe %llu\n", __func__,
565 (unsigned long long)sh->sector);
566
567 /* clear completed biofills */
568 spin_lock_irq(&conf->device_lock);
569 for (i = sh->disks; i--; ) {
570 struct r5dev *dev = &sh->dev[i];
571
572 /* acknowledge completion of a biofill operation */
573 /* and check if we need to reply to a read request,
574 * new R5_Wantfill requests are held off until
575 * !STRIPE_BIOFILL_RUN
576 */
577 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
578 struct bio *rbi, *rbi2;
579
580 BUG_ON(!dev->read);
581 rbi = dev->read;
582 dev->read = NULL;
583 while (rbi && rbi->bi_sector <
584 dev->sector + STRIPE_SECTORS) {
585 rbi2 = r5_next_bio(rbi, dev->sector);
586 if (!raid5_dec_bi_phys_segments(rbi)) {
587 rbi->bi_next = return_bi;
588 return_bi = rbi;
589 }
590 rbi = rbi2;
591 }
592 }
593 }
594 spin_unlock_irq(&conf->device_lock);
595 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
596
597 return_io(return_bi);
598
599 set_bit(STRIPE_HANDLE, &sh->state);
600 release_stripe(sh);
601 }
602
603 static void ops_run_biofill(struct stripe_head *sh)
604 {
605 struct dma_async_tx_descriptor *tx = NULL;
606 raid5_conf_t *conf = sh->raid_conf;
607 struct async_submit_ctl submit;
608 int i;
609
610 pr_debug("%s: stripe %llu\n", __func__,
611 (unsigned long long)sh->sector);
612
613 for (i = sh->disks; i--; ) {
614 struct r5dev *dev = &sh->dev[i];
615 if (test_bit(R5_Wantfill, &dev->flags)) {
616 struct bio *rbi;
617 spin_lock_irq(&conf->device_lock);
618 dev->read = rbi = dev->toread;
619 dev->toread = NULL;
620 spin_unlock_irq(&conf->device_lock);
621 while (rbi && rbi->bi_sector <
622 dev->sector + STRIPE_SECTORS) {
623 tx = async_copy_data(0, rbi, dev->page,
624 dev->sector, tx);
625 rbi = r5_next_bio(rbi, dev->sector);
626 }
627 }
628 }
629
630 atomic_inc(&sh->count);
631 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
632 async_trigger_callback(&submit);
633 }
634
635 static void mark_target_uptodate(struct stripe_head *sh, int target)
636 {
637 struct r5dev *tgt;
638
639 if (target < 0)
640 return;
641
642 tgt = &sh->dev[target];
643 set_bit(R5_UPTODATE, &tgt->flags);
644 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
645 clear_bit(R5_Wantcompute, &tgt->flags);
646 }
647
648 static void ops_complete_compute(void *stripe_head_ref)
649 {
650 struct stripe_head *sh = stripe_head_ref;
651
652 pr_debug("%s: stripe %llu\n", __func__,
653 (unsigned long long)sh->sector);
654
655 /* mark the computed target(s) as uptodate */
656 mark_target_uptodate(sh, sh->ops.target);
657 mark_target_uptodate(sh, sh->ops.target2);
658
659 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
660 if (sh->check_state == check_state_compute_run)
661 sh->check_state = check_state_compute_result;
662 set_bit(STRIPE_HANDLE, &sh->state);
663 release_stripe(sh);
664 }
665
666 /* return a pointer to the address conversion region of the scribble buffer */
667 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
668 struct raid5_percpu *percpu)
669 {
670 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
671 }
672
673 static struct dma_async_tx_descriptor *
674 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
675 {
676 int disks = sh->disks;
677 struct page **xor_srcs = percpu->scribble;
678 int target = sh->ops.target;
679 struct r5dev *tgt = &sh->dev[target];
680 struct page *xor_dest = tgt->page;
681 int count = 0;
682 struct dma_async_tx_descriptor *tx;
683 struct async_submit_ctl submit;
684 int i;
685
686 pr_debug("%s: stripe %llu block: %d\n",
687 __func__, (unsigned long long)sh->sector, target);
688 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
689
690 for (i = disks; i--; )
691 if (i != target)
692 xor_srcs[count++] = sh->dev[i].page;
693
694 atomic_inc(&sh->count);
695
696 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
697 ops_complete_compute, sh, to_addr_conv(sh, percpu));
698 if (unlikely(count == 1))
699 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
700 else
701 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
702
703 return tx;
704 }
705
706 /* set_syndrome_sources - populate source buffers for gen_syndrome
707 * @srcs - (struct page *) array of size sh->disks
708 * @sh - stripe_head to parse
709 *
710 * Populates srcs in proper layout order for the stripe and returns the
711 * 'count' of sources to be used in a call to async_gen_syndrome. The P
712 * destination buffer is recorded in srcs[count] and the Q destination
713 * is recorded in srcs[count+1]].
714 */
715 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
716 {
717 int disks = sh->disks;
718 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
719 int d0_idx = raid6_d0(sh);
720 int count;
721 int i;
722
723 for (i = 0; i < disks; i++)
724 srcs[i] = NULL;
725
726 count = 0;
727 i = d0_idx;
728 do {
729 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
730
731 srcs[slot] = sh->dev[i].page;
732 i = raid6_next_disk(i, disks);
733 } while (i != d0_idx);
734
735 return syndrome_disks;
736 }
737
738 static struct dma_async_tx_descriptor *
739 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
740 {
741 int disks = sh->disks;
742 struct page **blocks = percpu->scribble;
743 int target;
744 int qd_idx = sh->qd_idx;
745 struct dma_async_tx_descriptor *tx;
746 struct async_submit_ctl submit;
747 struct r5dev *tgt;
748 struct page *dest;
749 int i;
750 int count;
751
752 if (sh->ops.target < 0)
753 target = sh->ops.target2;
754 else if (sh->ops.target2 < 0)
755 target = sh->ops.target;
756 else
757 /* we should only have one valid target */
758 BUG();
759 BUG_ON(target < 0);
760 pr_debug("%s: stripe %llu block: %d\n",
761 __func__, (unsigned long long)sh->sector, target);
762
763 tgt = &sh->dev[target];
764 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
765 dest = tgt->page;
766
767 atomic_inc(&sh->count);
768
769 if (target == qd_idx) {
770 count = set_syndrome_sources(blocks, sh);
771 blocks[count] = NULL; /* regenerating p is not necessary */
772 BUG_ON(blocks[count+1] != dest); /* q should already be set */
773 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
774 ops_complete_compute, sh,
775 to_addr_conv(sh, percpu));
776 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
777 } else {
778 /* Compute any data- or p-drive using XOR */
779 count = 0;
780 for (i = disks; i-- ; ) {
781 if (i == target || i == qd_idx)
782 continue;
783 blocks[count++] = sh->dev[i].page;
784 }
785
786 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
787 NULL, ops_complete_compute, sh,
788 to_addr_conv(sh, percpu));
789 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
790 }
791
792 return tx;
793 }
794
795 static struct dma_async_tx_descriptor *
796 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
797 {
798 int i, count, disks = sh->disks;
799 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
800 int d0_idx = raid6_d0(sh);
801 int faila = -1, failb = -1;
802 int target = sh->ops.target;
803 int target2 = sh->ops.target2;
804 struct r5dev *tgt = &sh->dev[target];
805 struct r5dev *tgt2 = &sh->dev[target2];
806 struct dma_async_tx_descriptor *tx;
807 struct page **blocks = percpu->scribble;
808 struct async_submit_ctl submit;
809
810 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
811 __func__, (unsigned long long)sh->sector, target, target2);
812 BUG_ON(target < 0 || target2 < 0);
813 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
814 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
815
816 /* we need to open-code set_syndrome_sources to handle the
817 * slot number conversion for 'faila' and 'failb'
818 */
819 for (i = 0; i < disks ; i++)
820 blocks[i] = NULL;
821 count = 0;
822 i = d0_idx;
823 do {
824 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
825
826 blocks[slot] = sh->dev[i].page;
827
828 if (i == target)
829 faila = slot;
830 if (i == target2)
831 failb = slot;
832 i = raid6_next_disk(i, disks);
833 } while (i != d0_idx);
834
835 BUG_ON(faila == failb);
836 if (failb < faila)
837 swap(faila, failb);
838 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
839 __func__, (unsigned long long)sh->sector, faila, failb);
840
841 atomic_inc(&sh->count);
842
843 if (failb == syndrome_disks+1) {
844 /* Q disk is one of the missing disks */
845 if (faila == syndrome_disks) {
846 /* Missing P+Q, just recompute */
847 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
848 ops_complete_compute, sh,
849 to_addr_conv(sh, percpu));
850 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
851 STRIPE_SIZE, &submit);
852 } else {
853 struct page *dest;
854 int data_target;
855 int qd_idx = sh->qd_idx;
856
857 /* Missing D+Q: recompute D from P, then recompute Q */
858 if (target == qd_idx)
859 data_target = target2;
860 else
861 data_target = target;
862
863 count = 0;
864 for (i = disks; i-- ; ) {
865 if (i == data_target || i == qd_idx)
866 continue;
867 blocks[count++] = sh->dev[i].page;
868 }
869 dest = sh->dev[data_target].page;
870 init_async_submit(&submit,
871 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
872 NULL, NULL, NULL,
873 to_addr_conv(sh, percpu));
874 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
875 &submit);
876
877 count = set_syndrome_sources(blocks, sh);
878 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
879 ops_complete_compute, sh,
880 to_addr_conv(sh, percpu));
881 return async_gen_syndrome(blocks, 0, count+2,
882 STRIPE_SIZE, &submit);
883 }
884 } else {
885 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
886 ops_complete_compute, sh,
887 to_addr_conv(sh, percpu));
888 if (failb == syndrome_disks) {
889 /* We're missing D+P. */
890 return async_raid6_datap_recov(syndrome_disks+2,
891 STRIPE_SIZE, faila,
892 blocks, &submit);
893 } else {
894 /* We're missing D+D. */
895 return async_raid6_2data_recov(syndrome_disks+2,
896 STRIPE_SIZE, faila, failb,
897 blocks, &submit);
898 }
899 }
900 }
901
902
903 static void ops_complete_prexor(void *stripe_head_ref)
904 {
905 struct stripe_head *sh = stripe_head_ref;
906
907 pr_debug("%s: stripe %llu\n", __func__,
908 (unsigned long long)sh->sector);
909 }
910
911 static struct dma_async_tx_descriptor *
912 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
913 struct dma_async_tx_descriptor *tx)
914 {
915 int disks = sh->disks;
916 struct page **xor_srcs = percpu->scribble;
917 int count = 0, pd_idx = sh->pd_idx, i;
918 struct async_submit_ctl submit;
919
920 /* existing parity data subtracted */
921 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
922
923 pr_debug("%s: stripe %llu\n", __func__,
924 (unsigned long long)sh->sector);
925
926 for (i = disks; i--; ) {
927 struct r5dev *dev = &sh->dev[i];
928 /* Only process blocks that are known to be uptodate */
929 if (test_bit(R5_Wantdrain, &dev->flags))
930 xor_srcs[count++] = dev->page;
931 }
932
933 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
934 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
935 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
936
937 return tx;
938 }
939
940 static struct dma_async_tx_descriptor *
941 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
942 {
943 int disks = sh->disks;
944 int i;
945
946 pr_debug("%s: stripe %llu\n", __func__,
947 (unsigned long long)sh->sector);
948
949 for (i = disks; i--; ) {
950 struct r5dev *dev = &sh->dev[i];
951 struct bio *chosen;
952
953 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
954 struct bio *wbi;
955
956 spin_lock(&sh->lock);
957 chosen = dev->towrite;
958 dev->towrite = NULL;
959 BUG_ON(dev->written);
960 wbi = dev->written = chosen;
961 spin_unlock(&sh->lock);
962
963 while (wbi && wbi->bi_sector <
964 dev->sector + STRIPE_SECTORS) {
965 tx = async_copy_data(1, wbi, dev->page,
966 dev->sector, tx);
967 wbi = r5_next_bio(wbi, dev->sector);
968 }
969 }
970 }
971
972 return tx;
973 }
974
975 static void ops_complete_reconstruct(void *stripe_head_ref)
976 {
977 struct stripe_head *sh = stripe_head_ref;
978 int disks = sh->disks;
979 int pd_idx = sh->pd_idx;
980 int qd_idx = sh->qd_idx;
981 int i;
982
983 pr_debug("%s: stripe %llu\n", __func__,
984 (unsigned long long)sh->sector);
985
986 for (i = disks; i--; ) {
987 struct r5dev *dev = &sh->dev[i];
988
989 if (dev->written || i == pd_idx || i == qd_idx)
990 set_bit(R5_UPTODATE, &dev->flags);
991 }
992
993 if (sh->reconstruct_state == reconstruct_state_drain_run)
994 sh->reconstruct_state = reconstruct_state_drain_result;
995 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
996 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
997 else {
998 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
999 sh->reconstruct_state = reconstruct_state_result;
1000 }
1001
1002 set_bit(STRIPE_HANDLE, &sh->state);
1003 release_stripe(sh);
1004 }
1005
1006 static void
1007 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1008 struct dma_async_tx_descriptor *tx)
1009 {
1010 int disks = sh->disks;
1011 struct page **xor_srcs = percpu->scribble;
1012 struct async_submit_ctl submit;
1013 int count = 0, pd_idx = sh->pd_idx, i;
1014 struct page *xor_dest;
1015 int prexor = 0;
1016 unsigned long flags;
1017
1018 pr_debug("%s: stripe %llu\n", __func__,
1019 (unsigned long long)sh->sector);
1020
1021 /* check if prexor is active which means only process blocks
1022 * that are part of a read-modify-write (written)
1023 */
1024 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1025 prexor = 1;
1026 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1027 for (i = disks; i--; ) {
1028 struct r5dev *dev = &sh->dev[i];
1029 if (dev->written)
1030 xor_srcs[count++] = dev->page;
1031 }
1032 } else {
1033 xor_dest = sh->dev[pd_idx].page;
1034 for (i = disks; i--; ) {
1035 struct r5dev *dev = &sh->dev[i];
1036 if (i != pd_idx)
1037 xor_srcs[count++] = dev->page;
1038 }
1039 }
1040
1041 /* 1/ if we prexor'd then the dest is reused as a source
1042 * 2/ if we did not prexor then we are redoing the parity
1043 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1044 * for the synchronous xor case
1045 */
1046 flags = ASYNC_TX_ACK |
1047 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1048
1049 atomic_inc(&sh->count);
1050
1051 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1052 to_addr_conv(sh, percpu));
1053 if (unlikely(count == 1))
1054 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1055 else
1056 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1057 }
1058
1059 static void
1060 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1061 struct dma_async_tx_descriptor *tx)
1062 {
1063 struct async_submit_ctl submit;
1064 struct page **blocks = percpu->scribble;
1065 int count;
1066
1067 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1068
1069 count = set_syndrome_sources(blocks, sh);
1070
1071 atomic_inc(&sh->count);
1072
1073 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1074 sh, to_addr_conv(sh, percpu));
1075 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1076 }
1077
1078 static void ops_complete_check(void *stripe_head_ref)
1079 {
1080 struct stripe_head *sh = stripe_head_ref;
1081
1082 pr_debug("%s: stripe %llu\n", __func__,
1083 (unsigned long long)sh->sector);
1084
1085 sh->check_state = check_state_check_result;
1086 set_bit(STRIPE_HANDLE, &sh->state);
1087 release_stripe(sh);
1088 }
1089
1090 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1091 {
1092 int disks = sh->disks;
1093 int pd_idx = sh->pd_idx;
1094 int qd_idx = sh->qd_idx;
1095 struct page *xor_dest;
1096 struct page **xor_srcs = percpu->scribble;
1097 struct dma_async_tx_descriptor *tx;
1098 struct async_submit_ctl submit;
1099 int count;
1100 int i;
1101
1102 pr_debug("%s: stripe %llu\n", __func__,
1103 (unsigned long long)sh->sector);
1104
1105 count = 0;
1106 xor_dest = sh->dev[pd_idx].page;
1107 xor_srcs[count++] = xor_dest;
1108 for (i = disks; i--; ) {
1109 if (i == pd_idx || i == qd_idx)
1110 continue;
1111 xor_srcs[count++] = sh->dev[i].page;
1112 }
1113
1114 init_async_submit(&submit, 0, NULL, NULL, NULL,
1115 to_addr_conv(sh, percpu));
1116 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1117 &sh->ops.zero_sum_result, &submit);
1118
1119 atomic_inc(&sh->count);
1120 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1121 tx = async_trigger_callback(&submit);
1122 }
1123
1124 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1125 {
1126 struct page **srcs = percpu->scribble;
1127 struct async_submit_ctl submit;
1128 int count;
1129
1130 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1131 (unsigned long long)sh->sector, checkp);
1132
1133 count = set_syndrome_sources(srcs, sh);
1134 if (!checkp)
1135 srcs[count] = NULL;
1136
1137 atomic_inc(&sh->count);
1138 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1139 sh, to_addr_conv(sh, percpu));
1140 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1141 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1142 }
1143
1144 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1145 {
1146 int overlap_clear = 0, i, disks = sh->disks;
1147 struct dma_async_tx_descriptor *tx = NULL;
1148 raid5_conf_t *conf = sh->raid_conf;
1149 int level = conf->level;
1150 struct raid5_percpu *percpu;
1151 unsigned long cpu;
1152
1153 cpu = get_cpu();
1154 percpu = per_cpu_ptr(conf->percpu, cpu);
1155 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1156 ops_run_biofill(sh);
1157 overlap_clear++;
1158 }
1159
1160 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1161 if (level < 6)
1162 tx = ops_run_compute5(sh, percpu);
1163 else {
1164 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1165 tx = ops_run_compute6_1(sh, percpu);
1166 else
1167 tx = ops_run_compute6_2(sh, percpu);
1168 }
1169 /* terminate the chain if reconstruct is not set to be run */
1170 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1171 async_tx_ack(tx);
1172 }
1173
1174 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1175 tx = ops_run_prexor(sh, percpu, tx);
1176
1177 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1178 tx = ops_run_biodrain(sh, tx);
1179 overlap_clear++;
1180 }
1181
1182 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1183 if (level < 6)
1184 ops_run_reconstruct5(sh, percpu, tx);
1185 else
1186 ops_run_reconstruct6(sh, percpu, tx);
1187 }
1188
1189 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1190 if (sh->check_state == check_state_run)
1191 ops_run_check_p(sh, percpu);
1192 else if (sh->check_state == check_state_run_q)
1193 ops_run_check_pq(sh, percpu, 0);
1194 else if (sh->check_state == check_state_run_pq)
1195 ops_run_check_pq(sh, percpu, 1);
1196 else
1197 BUG();
1198 }
1199
1200 if (overlap_clear)
1201 for (i = disks; i--; ) {
1202 struct r5dev *dev = &sh->dev[i];
1203 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1204 wake_up(&sh->raid_conf->wait_for_overlap);
1205 }
1206 put_cpu();
1207 }
1208
1209 #ifdef CONFIG_MULTICORE_RAID456
1210 static void async_run_ops(void *param, async_cookie_t cookie)
1211 {
1212 struct stripe_head *sh = param;
1213 unsigned long ops_request = sh->ops.request;
1214
1215 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1216 wake_up(&sh->ops.wait_for_ops);
1217
1218 __raid_run_ops(sh, ops_request);
1219 release_stripe(sh);
1220 }
1221
1222 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1223 {
1224 /* since handle_stripe can be called outside of raid5d context
1225 * we need to ensure sh->ops.request is de-staged before another
1226 * request arrives
1227 */
1228 wait_event(sh->ops.wait_for_ops,
1229 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1230 sh->ops.request = ops_request;
1231
1232 atomic_inc(&sh->count);
1233 async_schedule(async_run_ops, sh);
1234 }
1235 #else
1236 #define raid_run_ops __raid_run_ops
1237 #endif
1238
1239 static int grow_one_stripe(raid5_conf_t *conf)
1240 {
1241 struct stripe_head *sh;
1242 int disks = max(conf->raid_disks, conf->previous_raid_disks);
1243 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1244 if (!sh)
1245 return 0;
1246 memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
1247 sh->raid_conf = conf;
1248 spin_lock_init(&sh->lock);
1249 #ifdef CONFIG_MULTICORE_RAID456
1250 init_waitqueue_head(&sh->ops.wait_for_ops);
1251 #endif
1252
1253 if (grow_buffers(sh, disks)) {
1254 shrink_buffers(sh, disks);
1255 kmem_cache_free(conf->slab_cache, sh);
1256 return 0;
1257 }
1258 /* we just created an active stripe so... */
1259 atomic_set(&sh->count, 1);
1260 atomic_inc(&conf->active_stripes);
1261 INIT_LIST_HEAD(&sh->lru);
1262 release_stripe(sh);
1263 return 1;
1264 }
1265
1266 static int grow_stripes(raid5_conf_t *conf, int num)
1267 {
1268 struct kmem_cache *sc;
1269 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1270
1271 sprintf(conf->cache_name[0],
1272 "raid%d-%s", conf->level, mdname(conf->mddev));
1273 sprintf(conf->cache_name[1],
1274 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
1275 conf->active_name = 0;
1276 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1277 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1278 0, 0, NULL);
1279 if (!sc)
1280 return 1;
1281 conf->slab_cache = sc;
1282 conf->pool_size = devs;
1283 while (num--)
1284 if (!grow_one_stripe(conf))
1285 return 1;
1286 return 0;
1287 }
1288
1289 /**
1290 * scribble_len - return the required size of the scribble region
1291 * @num - total number of disks in the array
1292 *
1293 * The size must be enough to contain:
1294 * 1/ a struct page pointer for each device in the array +2
1295 * 2/ room to convert each entry in (1) to its corresponding dma
1296 * (dma_map_page()) or page (page_address()) address.
1297 *
1298 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1299 * calculate over all devices (not just the data blocks), using zeros in place
1300 * of the P and Q blocks.
1301 */
1302 static size_t scribble_len(int num)
1303 {
1304 size_t len;
1305
1306 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1307
1308 return len;
1309 }
1310
1311 static int resize_stripes(raid5_conf_t *conf, int newsize)
1312 {
1313 /* Make all the stripes able to hold 'newsize' devices.
1314 * New slots in each stripe get 'page' set to a new page.
1315 *
1316 * This happens in stages:
1317 * 1/ create a new kmem_cache and allocate the required number of
1318 * stripe_heads.
1319 * 2/ gather all the old stripe_heads and tranfer the pages across
1320 * to the new stripe_heads. This will have the side effect of
1321 * freezing the array as once all stripe_heads have been collected,
1322 * no IO will be possible. Old stripe heads are freed once their
1323 * pages have been transferred over, and the old kmem_cache is
1324 * freed when all stripes are done.
1325 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1326 * we simple return a failre status - no need to clean anything up.
1327 * 4/ allocate new pages for the new slots in the new stripe_heads.
1328 * If this fails, we don't bother trying the shrink the
1329 * stripe_heads down again, we just leave them as they are.
1330 * As each stripe_head is processed the new one is released into
1331 * active service.
1332 *
1333 * Once step2 is started, we cannot afford to wait for a write,
1334 * so we use GFP_NOIO allocations.
1335 */
1336 struct stripe_head *osh, *nsh;
1337 LIST_HEAD(newstripes);
1338 struct disk_info *ndisks;
1339 unsigned long cpu;
1340 int err;
1341 struct kmem_cache *sc;
1342 int i;
1343
1344 if (newsize <= conf->pool_size)
1345 return 0; /* never bother to shrink */
1346
1347 err = md_allow_write(conf->mddev);
1348 if (err)
1349 return err;
1350
1351 /* Step 1 */
1352 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1353 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1354 0, 0, NULL);
1355 if (!sc)
1356 return -ENOMEM;
1357
1358 for (i = conf->max_nr_stripes; i; i--) {
1359 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1360 if (!nsh)
1361 break;
1362
1363 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1364
1365 nsh->raid_conf = conf;
1366 spin_lock_init(&nsh->lock);
1367 #ifdef CONFIG_MULTICORE_RAID456
1368 init_waitqueue_head(&nsh->ops.wait_for_ops);
1369 #endif
1370
1371 list_add(&nsh->lru, &newstripes);
1372 }
1373 if (i) {
1374 /* didn't get enough, give up */
1375 while (!list_empty(&newstripes)) {
1376 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1377 list_del(&nsh->lru);
1378 kmem_cache_free(sc, nsh);
1379 }
1380 kmem_cache_destroy(sc);
1381 return -ENOMEM;
1382 }
1383 /* Step 2 - Must use GFP_NOIO now.
1384 * OK, we have enough stripes, start collecting inactive
1385 * stripes and copying them over
1386 */
1387 list_for_each_entry(nsh, &newstripes, lru) {
1388 spin_lock_irq(&conf->device_lock);
1389 wait_event_lock_irq(conf->wait_for_stripe,
1390 !list_empty(&conf->inactive_list),
1391 conf->device_lock,
1392 unplug_slaves(conf->mddev)
1393 );
1394 osh = get_free_stripe(conf);
1395 spin_unlock_irq(&conf->device_lock);
1396 atomic_set(&nsh->count, 1);
1397 for(i=0; i<conf->pool_size; i++)
1398 nsh->dev[i].page = osh->dev[i].page;
1399 for( ; i<newsize; i++)
1400 nsh->dev[i].page = NULL;
1401 kmem_cache_free(conf->slab_cache, osh);
1402 }
1403 kmem_cache_destroy(conf->slab_cache);
1404
1405 /* Step 3.
1406 * At this point, we are holding all the stripes so the array
1407 * is completely stalled, so now is a good time to resize
1408 * conf->disks and the scribble region
1409 */
1410 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1411 if (ndisks) {
1412 for (i=0; i<conf->raid_disks; i++)
1413 ndisks[i] = conf->disks[i];
1414 kfree(conf->disks);
1415 conf->disks = ndisks;
1416 } else
1417 err = -ENOMEM;
1418
1419 get_online_cpus();
1420 conf->scribble_len = scribble_len(newsize);
1421 for_each_present_cpu(cpu) {
1422 struct raid5_percpu *percpu;
1423 void *scribble;
1424
1425 percpu = per_cpu_ptr(conf->percpu, cpu);
1426 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1427
1428 if (scribble) {
1429 kfree(percpu->scribble);
1430 percpu->scribble = scribble;
1431 } else {
1432 err = -ENOMEM;
1433 break;
1434 }
1435 }
1436 put_online_cpus();
1437
1438 /* Step 4, return new stripes to service */
1439 while(!list_empty(&newstripes)) {
1440 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1441 list_del_init(&nsh->lru);
1442
1443 for (i=conf->raid_disks; i < newsize; i++)
1444 if (nsh->dev[i].page == NULL) {
1445 struct page *p = alloc_page(GFP_NOIO);
1446 nsh->dev[i].page = p;
1447 if (!p)
1448 err = -ENOMEM;
1449 }
1450 release_stripe(nsh);
1451 }
1452 /* critical section pass, GFP_NOIO no longer needed */
1453
1454 conf->slab_cache = sc;
1455 conf->active_name = 1-conf->active_name;
1456 conf->pool_size = newsize;
1457 return err;
1458 }
1459
1460 static int drop_one_stripe(raid5_conf_t *conf)
1461 {
1462 struct stripe_head *sh;
1463
1464 spin_lock_irq(&conf->device_lock);
1465 sh = get_free_stripe(conf);
1466 spin_unlock_irq(&conf->device_lock);
1467 if (!sh)
1468 return 0;
1469 BUG_ON(atomic_read(&sh->count));
1470 shrink_buffers(sh, conf->pool_size);
1471 kmem_cache_free(conf->slab_cache, sh);
1472 atomic_dec(&conf->active_stripes);
1473 return 1;
1474 }
1475
1476 static void shrink_stripes(raid5_conf_t *conf)
1477 {
1478 while (drop_one_stripe(conf))
1479 ;
1480
1481 if (conf->slab_cache)
1482 kmem_cache_destroy(conf->slab_cache);
1483 conf->slab_cache = NULL;
1484 }
1485
1486 static void raid5_end_read_request(struct bio * bi, int error)
1487 {
1488 struct stripe_head *sh = bi->bi_private;
1489 raid5_conf_t *conf = sh->raid_conf;
1490 int disks = sh->disks, i;
1491 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1492 char b[BDEVNAME_SIZE];
1493 mdk_rdev_t *rdev;
1494
1495
1496 for (i=0 ; i<disks; i++)
1497 if (bi == &sh->dev[i].req)
1498 break;
1499
1500 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1501 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1502 uptodate);
1503 if (i == disks) {
1504 BUG();
1505 return;
1506 }
1507
1508 if (uptodate) {
1509 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1510 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1511 rdev = conf->disks[i].rdev;
1512 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1513 " (%lu sectors at %llu on %s)\n",
1514 mdname(conf->mddev), STRIPE_SECTORS,
1515 (unsigned long long)(sh->sector
1516 + rdev->data_offset),
1517 bdevname(rdev->bdev, b));
1518 clear_bit(R5_ReadError, &sh->dev[i].flags);
1519 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1520 }
1521 if (atomic_read(&conf->disks[i].rdev->read_errors))
1522 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1523 } else {
1524 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1525 int retry = 0;
1526 rdev = conf->disks[i].rdev;
1527
1528 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1529 atomic_inc(&rdev->read_errors);
1530 if (conf->mddev->degraded >= conf->max_degraded)
1531 printk_rl(KERN_WARNING
1532 "raid5:%s: read error not correctable "
1533 "(sector %llu on %s).\n",
1534 mdname(conf->mddev),
1535 (unsigned long long)(sh->sector
1536 + rdev->data_offset),
1537 bdn);
1538 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1539 /* Oh, no!!! */
1540 printk_rl(KERN_WARNING
1541 "raid5:%s: read error NOT corrected!! "
1542 "(sector %llu on %s).\n",
1543 mdname(conf->mddev),
1544 (unsigned long long)(sh->sector
1545 + rdev->data_offset),
1546 bdn);
1547 else if (atomic_read(&rdev->read_errors)
1548 > conf->max_nr_stripes)
1549 printk(KERN_WARNING
1550 "raid5:%s: Too many read errors, failing device %s.\n",
1551 mdname(conf->mddev), bdn);
1552 else
1553 retry = 1;
1554 if (retry)
1555 set_bit(R5_ReadError, &sh->dev[i].flags);
1556 else {
1557 clear_bit(R5_ReadError, &sh->dev[i].flags);
1558 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1559 md_error(conf->mddev, rdev);
1560 }
1561 }
1562 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1563 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1564 set_bit(STRIPE_HANDLE, &sh->state);
1565 release_stripe(sh);
1566 }
1567
1568 static void raid5_end_write_request(struct bio *bi, int error)
1569 {
1570 struct stripe_head *sh = bi->bi_private;
1571 raid5_conf_t *conf = sh->raid_conf;
1572 int disks = sh->disks, i;
1573 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1574
1575 for (i=0 ; i<disks; i++)
1576 if (bi == &sh->dev[i].req)
1577 break;
1578
1579 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1580 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1581 uptodate);
1582 if (i == disks) {
1583 BUG();
1584 return;
1585 }
1586
1587 if (!uptodate)
1588 md_error(conf->mddev, conf->disks[i].rdev);
1589
1590 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1591
1592 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1593 set_bit(STRIPE_HANDLE, &sh->state);
1594 release_stripe(sh);
1595 }
1596
1597
1598 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1599
1600 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1601 {
1602 struct r5dev *dev = &sh->dev[i];
1603
1604 bio_init(&dev->req);
1605 dev->req.bi_io_vec = &dev->vec;
1606 dev->req.bi_vcnt++;
1607 dev->req.bi_max_vecs++;
1608 dev->vec.bv_page = dev->page;
1609 dev->vec.bv_len = STRIPE_SIZE;
1610 dev->vec.bv_offset = 0;
1611
1612 dev->req.bi_sector = sh->sector;
1613 dev->req.bi_private = sh;
1614
1615 dev->flags = 0;
1616 dev->sector = compute_blocknr(sh, i, previous);
1617 }
1618
1619 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1620 {
1621 char b[BDEVNAME_SIZE];
1622 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1623 pr_debug("raid5: error called\n");
1624
1625 if (!test_bit(Faulty, &rdev->flags)) {
1626 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1627 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1628 unsigned long flags;
1629 spin_lock_irqsave(&conf->device_lock, flags);
1630 mddev->degraded++;
1631 spin_unlock_irqrestore(&conf->device_lock, flags);
1632 /*
1633 * if recovery was running, make sure it aborts.
1634 */
1635 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1636 }
1637 set_bit(Faulty, &rdev->flags);
1638 printk(KERN_ALERT
1639 "raid5: Disk failure on %s, disabling device.\n"
1640 "raid5: Operation continuing on %d devices.\n",
1641 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1642 }
1643 }
1644
1645 /*
1646 * Input: a 'big' sector number,
1647 * Output: index of the data and parity disk, and the sector # in them.
1648 */
1649 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1650 int previous, int *dd_idx,
1651 struct stripe_head *sh)
1652 {
1653 sector_t stripe, stripe2;
1654 sector_t chunk_number;
1655 unsigned int chunk_offset;
1656 int pd_idx, qd_idx;
1657 int ddf_layout = 0;
1658 sector_t new_sector;
1659 int algorithm = previous ? conf->prev_algo
1660 : conf->algorithm;
1661 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1662 : conf->chunk_sectors;
1663 int raid_disks = previous ? conf->previous_raid_disks
1664 : conf->raid_disks;
1665 int data_disks = raid_disks - conf->max_degraded;
1666
1667 /* First compute the information on this sector */
1668
1669 /*
1670 * Compute the chunk number and the sector offset inside the chunk
1671 */
1672 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1673 chunk_number = r_sector;
1674
1675 /*
1676 * Compute the stripe number
1677 */
1678 stripe = chunk_number;
1679 *dd_idx = sector_div(stripe, data_disks);
1680 stripe2 = stripe;
1681 /*
1682 * Select the parity disk based on the user selected algorithm.
1683 */
1684 pd_idx = qd_idx = ~0;
1685 switch(conf->level) {
1686 case 4:
1687 pd_idx = data_disks;
1688 break;
1689 case 5:
1690 switch (algorithm) {
1691 case ALGORITHM_LEFT_ASYMMETRIC:
1692 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1693 if (*dd_idx >= pd_idx)
1694 (*dd_idx)++;
1695 break;
1696 case ALGORITHM_RIGHT_ASYMMETRIC:
1697 pd_idx = sector_div(stripe2, raid_disks);
1698 if (*dd_idx >= pd_idx)
1699 (*dd_idx)++;
1700 break;
1701 case ALGORITHM_LEFT_SYMMETRIC:
1702 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1703 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1704 break;
1705 case ALGORITHM_RIGHT_SYMMETRIC:
1706 pd_idx = sector_div(stripe2, raid_disks);
1707 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1708 break;
1709 case ALGORITHM_PARITY_0:
1710 pd_idx = 0;
1711 (*dd_idx)++;
1712 break;
1713 case ALGORITHM_PARITY_N:
1714 pd_idx = data_disks;
1715 break;
1716 default:
1717 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1718 algorithm);
1719 BUG();
1720 }
1721 break;
1722 case 6:
1723
1724 switch (algorithm) {
1725 case ALGORITHM_LEFT_ASYMMETRIC:
1726 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1727 qd_idx = pd_idx + 1;
1728 if (pd_idx == raid_disks-1) {
1729 (*dd_idx)++; /* Q D D D P */
1730 qd_idx = 0;
1731 } else if (*dd_idx >= pd_idx)
1732 (*dd_idx) += 2; /* D D P Q D */
1733 break;
1734 case ALGORITHM_RIGHT_ASYMMETRIC:
1735 pd_idx = sector_div(stripe2, raid_disks);
1736 qd_idx = pd_idx + 1;
1737 if (pd_idx == raid_disks-1) {
1738 (*dd_idx)++; /* Q D D D P */
1739 qd_idx = 0;
1740 } else if (*dd_idx >= pd_idx)
1741 (*dd_idx) += 2; /* D D P Q D */
1742 break;
1743 case ALGORITHM_LEFT_SYMMETRIC:
1744 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1745 qd_idx = (pd_idx + 1) % raid_disks;
1746 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1747 break;
1748 case ALGORITHM_RIGHT_SYMMETRIC:
1749 pd_idx = sector_div(stripe2, raid_disks);
1750 qd_idx = (pd_idx + 1) % raid_disks;
1751 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1752 break;
1753
1754 case ALGORITHM_PARITY_0:
1755 pd_idx = 0;
1756 qd_idx = 1;
1757 (*dd_idx) += 2;
1758 break;
1759 case ALGORITHM_PARITY_N:
1760 pd_idx = data_disks;
1761 qd_idx = data_disks + 1;
1762 break;
1763
1764 case ALGORITHM_ROTATING_ZERO_RESTART:
1765 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1766 * of blocks for computing Q is different.
1767 */
1768 pd_idx = sector_div(stripe2, raid_disks);
1769 qd_idx = pd_idx + 1;
1770 if (pd_idx == raid_disks-1) {
1771 (*dd_idx)++; /* Q D D D P */
1772 qd_idx = 0;
1773 } else if (*dd_idx >= pd_idx)
1774 (*dd_idx) += 2; /* D D P Q D */
1775 ddf_layout = 1;
1776 break;
1777
1778 case ALGORITHM_ROTATING_N_RESTART:
1779 /* Same a left_asymmetric, by first stripe is
1780 * D D D P Q rather than
1781 * Q D D D P
1782 */
1783 stripe2 += 1;
1784 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1785 qd_idx = pd_idx + 1;
1786 if (pd_idx == raid_disks-1) {
1787 (*dd_idx)++; /* Q D D D P */
1788 qd_idx = 0;
1789 } else if (*dd_idx >= pd_idx)
1790 (*dd_idx) += 2; /* D D P Q D */
1791 ddf_layout = 1;
1792 break;
1793
1794 case ALGORITHM_ROTATING_N_CONTINUE:
1795 /* Same as left_symmetric but Q is before P */
1796 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1797 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1798 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1799 ddf_layout = 1;
1800 break;
1801
1802 case ALGORITHM_LEFT_ASYMMETRIC_6:
1803 /* RAID5 left_asymmetric, with Q on last device */
1804 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1805 if (*dd_idx >= pd_idx)
1806 (*dd_idx)++;
1807 qd_idx = raid_disks - 1;
1808 break;
1809
1810 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1811 pd_idx = sector_div(stripe2, raid_disks-1);
1812 if (*dd_idx >= pd_idx)
1813 (*dd_idx)++;
1814 qd_idx = raid_disks - 1;
1815 break;
1816
1817 case ALGORITHM_LEFT_SYMMETRIC_6:
1818 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1819 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1820 qd_idx = raid_disks - 1;
1821 break;
1822
1823 case ALGORITHM_RIGHT_SYMMETRIC_6:
1824 pd_idx = sector_div(stripe2, raid_disks-1);
1825 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1826 qd_idx = raid_disks - 1;
1827 break;
1828
1829 case ALGORITHM_PARITY_0_6:
1830 pd_idx = 0;
1831 (*dd_idx)++;
1832 qd_idx = raid_disks - 1;
1833 break;
1834
1835
1836 default:
1837 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1838 algorithm);
1839 BUG();
1840 }
1841 break;
1842 }
1843
1844 if (sh) {
1845 sh->pd_idx = pd_idx;
1846 sh->qd_idx = qd_idx;
1847 sh->ddf_layout = ddf_layout;
1848 }
1849 /*
1850 * Finally, compute the new sector number
1851 */
1852 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1853 return new_sector;
1854 }
1855
1856
1857 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1858 {
1859 raid5_conf_t *conf = sh->raid_conf;
1860 int raid_disks = sh->disks;
1861 int data_disks = raid_disks - conf->max_degraded;
1862 sector_t new_sector = sh->sector, check;
1863 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1864 : conf->chunk_sectors;
1865 int algorithm = previous ? conf->prev_algo
1866 : conf->algorithm;
1867 sector_t stripe;
1868 int chunk_offset;
1869 sector_t chunk_number;
1870 int dummy1, dd_idx = i;
1871 sector_t r_sector;
1872 struct stripe_head sh2;
1873
1874
1875 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1876 stripe = new_sector;
1877
1878 if (i == sh->pd_idx)
1879 return 0;
1880 switch(conf->level) {
1881 case 4: break;
1882 case 5:
1883 switch (algorithm) {
1884 case ALGORITHM_LEFT_ASYMMETRIC:
1885 case ALGORITHM_RIGHT_ASYMMETRIC:
1886 if (i > sh->pd_idx)
1887 i--;
1888 break;
1889 case ALGORITHM_LEFT_SYMMETRIC:
1890 case ALGORITHM_RIGHT_SYMMETRIC:
1891 if (i < sh->pd_idx)
1892 i += raid_disks;
1893 i -= (sh->pd_idx + 1);
1894 break;
1895 case ALGORITHM_PARITY_0:
1896 i -= 1;
1897 break;
1898 case ALGORITHM_PARITY_N:
1899 break;
1900 default:
1901 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1902 algorithm);
1903 BUG();
1904 }
1905 break;
1906 case 6:
1907 if (i == sh->qd_idx)
1908 return 0; /* It is the Q disk */
1909 switch (algorithm) {
1910 case ALGORITHM_LEFT_ASYMMETRIC:
1911 case ALGORITHM_RIGHT_ASYMMETRIC:
1912 case ALGORITHM_ROTATING_ZERO_RESTART:
1913 case ALGORITHM_ROTATING_N_RESTART:
1914 if (sh->pd_idx == raid_disks-1)
1915 i--; /* Q D D D P */
1916 else if (i > sh->pd_idx)
1917 i -= 2; /* D D P Q D */
1918 break;
1919 case ALGORITHM_LEFT_SYMMETRIC:
1920 case ALGORITHM_RIGHT_SYMMETRIC:
1921 if (sh->pd_idx == raid_disks-1)
1922 i--; /* Q D D D P */
1923 else {
1924 /* D D P Q D */
1925 if (i < sh->pd_idx)
1926 i += raid_disks;
1927 i -= (sh->pd_idx + 2);
1928 }
1929 break;
1930 case ALGORITHM_PARITY_0:
1931 i -= 2;
1932 break;
1933 case ALGORITHM_PARITY_N:
1934 break;
1935 case ALGORITHM_ROTATING_N_CONTINUE:
1936 /* Like left_symmetric, but P is before Q */
1937 if (sh->pd_idx == 0)
1938 i--; /* P D D D Q */
1939 else {
1940 /* D D Q P D */
1941 if (i < sh->pd_idx)
1942 i += raid_disks;
1943 i -= (sh->pd_idx + 1);
1944 }
1945 break;
1946 case ALGORITHM_LEFT_ASYMMETRIC_6:
1947 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1948 if (i > sh->pd_idx)
1949 i--;
1950 break;
1951 case ALGORITHM_LEFT_SYMMETRIC_6:
1952 case ALGORITHM_RIGHT_SYMMETRIC_6:
1953 if (i < sh->pd_idx)
1954 i += data_disks + 1;
1955 i -= (sh->pd_idx + 1);
1956 break;
1957 case ALGORITHM_PARITY_0_6:
1958 i -= 1;
1959 break;
1960 default:
1961 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1962 algorithm);
1963 BUG();
1964 }
1965 break;
1966 }
1967
1968 chunk_number = stripe * data_disks + i;
1969 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1970
1971 check = raid5_compute_sector(conf, r_sector,
1972 previous, &dummy1, &sh2);
1973 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1974 || sh2.qd_idx != sh->qd_idx) {
1975 printk(KERN_ERR "compute_blocknr: map not correct\n");
1976 return 0;
1977 }
1978 return r_sector;
1979 }
1980
1981
1982 static void
1983 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1984 int rcw, int expand)
1985 {
1986 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1987 raid5_conf_t *conf = sh->raid_conf;
1988 int level = conf->level;
1989
1990 if (rcw) {
1991 /* if we are not expanding this is a proper write request, and
1992 * there will be bios with new data to be drained into the
1993 * stripe cache
1994 */
1995 if (!expand) {
1996 sh->reconstruct_state = reconstruct_state_drain_run;
1997 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1998 } else
1999 sh->reconstruct_state = reconstruct_state_run;
2000
2001 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2002
2003 for (i = disks; i--; ) {
2004 struct r5dev *dev = &sh->dev[i];
2005
2006 if (dev->towrite) {
2007 set_bit(R5_LOCKED, &dev->flags);
2008 set_bit(R5_Wantdrain, &dev->flags);
2009 if (!expand)
2010 clear_bit(R5_UPTODATE, &dev->flags);
2011 s->locked++;
2012 }
2013 }
2014 if (s->locked + conf->max_degraded == disks)
2015 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2016 atomic_inc(&conf->pending_full_writes);
2017 } else {
2018 BUG_ON(level == 6);
2019 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2020 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2021
2022 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2023 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2024 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2025 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2026
2027 for (i = disks; i--; ) {
2028 struct r5dev *dev = &sh->dev[i];
2029 if (i == pd_idx)
2030 continue;
2031
2032 if (dev->towrite &&
2033 (test_bit(R5_UPTODATE, &dev->flags) ||
2034 test_bit(R5_Wantcompute, &dev->flags))) {
2035 set_bit(R5_Wantdrain, &dev->flags);
2036 set_bit(R5_LOCKED, &dev->flags);
2037 clear_bit(R5_UPTODATE, &dev->flags);
2038 s->locked++;
2039 }
2040 }
2041 }
2042
2043 /* keep the parity disk(s) locked while asynchronous operations
2044 * are in flight
2045 */
2046 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2047 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2048 s->locked++;
2049
2050 if (level == 6) {
2051 int qd_idx = sh->qd_idx;
2052 struct r5dev *dev = &sh->dev[qd_idx];
2053
2054 set_bit(R5_LOCKED, &dev->flags);
2055 clear_bit(R5_UPTODATE, &dev->flags);
2056 s->locked++;
2057 }
2058
2059 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2060 __func__, (unsigned long long)sh->sector,
2061 s->locked, s->ops_request);
2062 }
2063
2064 /*
2065 * Each stripe/dev can have one or more bion attached.
2066 * toread/towrite point to the first in a chain.
2067 * The bi_next chain must be in order.
2068 */
2069 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2070 {
2071 struct bio **bip;
2072 raid5_conf_t *conf = sh->raid_conf;
2073 int firstwrite=0;
2074
2075 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2076 (unsigned long long)bi->bi_sector,
2077 (unsigned long long)sh->sector);
2078
2079
2080 spin_lock(&sh->lock);
2081 spin_lock_irq(&conf->device_lock);
2082 if (forwrite) {
2083 bip = &sh->dev[dd_idx].towrite;
2084 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2085 firstwrite = 1;
2086 } else
2087 bip = &sh->dev[dd_idx].toread;
2088 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2089 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2090 goto overlap;
2091 bip = & (*bip)->bi_next;
2092 }
2093 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2094 goto overlap;
2095
2096 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2097 if (*bip)
2098 bi->bi_next = *bip;
2099 *bip = bi;
2100 bi->bi_phys_segments++;
2101 spin_unlock_irq(&conf->device_lock);
2102 spin_unlock(&sh->lock);
2103
2104 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2105 (unsigned long long)bi->bi_sector,
2106 (unsigned long long)sh->sector, dd_idx);
2107
2108 if (conf->mddev->bitmap && firstwrite) {
2109 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2110 STRIPE_SECTORS, 0);
2111 sh->bm_seq = conf->seq_flush+1;
2112 set_bit(STRIPE_BIT_DELAY, &sh->state);
2113 }
2114
2115 if (forwrite) {
2116 /* check if page is covered */
2117 sector_t sector = sh->dev[dd_idx].sector;
2118 for (bi=sh->dev[dd_idx].towrite;
2119 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2120 bi && bi->bi_sector <= sector;
2121 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2122 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2123 sector = bi->bi_sector + (bi->bi_size>>9);
2124 }
2125 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2126 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2127 }
2128 return 1;
2129
2130 overlap:
2131 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2132 spin_unlock_irq(&conf->device_lock);
2133 spin_unlock(&sh->lock);
2134 return 0;
2135 }
2136
2137 static void end_reshape(raid5_conf_t *conf);
2138
2139 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2140 struct stripe_head *sh)
2141 {
2142 int sectors_per_chunk =
2143 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2144 int dd_idx;
2145 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2146 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2147
2148 raid5_compute_sector(conf,
2149 stripe * (disks - conf->max_degraded)
2150 *sectors_per_chunk + chunk_offset,
2151 previous,
2152 &dd_idx, sh);
2153 }
2154
2155 static void
2156 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2157 struct stripe_head_state *s, int disks,
2158 struct bio **return_bi)
2159 {
2160 int i;
2161 for (i = disks; i--; ) {
2162 struct bio *bi;
2163 int bitmap_end = 0;
2164
2165 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2166 mdk_rdev_t *rdev;
2167 rcu_read_lock();
2168 rdev = rcu_dereference(conf->disks[i].rdev);
2169 if (rdev && test_bit(In_sync, &rdev->flags))
2170 /* multiple read failures in one stripe */
2171 md_error(conf->mddev, rdev);
2172 rcu_read_unlock();
2173 }
2174 spin_lock_irq(&conf->device_lock);
2175 /* fail all writes first */
2176 bi = sh->dev[i].towrite;
2177 sh->dev[i].towrite = NULL;
2178 if (bi) {
2179 s->to_write--;
2180 bitmap_end = 1;
2181 }
2182
2183 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2184 wake_up(&conf->wait_for_overlap);
2185
2186 while (bi && bi->bi_sector <
2187 sh->dev[i].sector + STRIPE_SECTORS) {
2188 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2189 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2190 if (!raid5_dec_bi_phys_segments(bi)) {
2191 md_write_end(conf->mddev);
2192 bi->bi_next = *return_bi;
2193 *return_bi = bi;
2194 }
2195 bi = nextbi;
2196 }
2197 /* and fail all 'written' */
2198 bi = sh->dev[i].written;
2199 sh->dev[i].written = NULL;
2200 if (bi) bitmap_end = 1;
2201 while (bi && bi->bi_sector <
2202 sh->dev[i].sector + STRIPE_SECTORS) {
2203 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2204 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2205 if (!raid5_dec_bi_phys_segments(bi)) {
2206 md_write_end(conf->mddev);
2207 bi->bi_next = *return_bi;
2208 *return_bi = bi;
2209 }
2210 bi = bi2;
2211 }
2212
2213 /* fail any reads if this device is non-operational and
2214 * the data has not reached the cache yet.
2215 */
2216 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2217 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2218 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2219 bi = sh->dev[i].toread;
2220 sh->dev[i].toread = NULL;
2221 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2222 wake_up(&conf->wait_for_overlap);
2223 if (bi) s->to_read--;
2224 while (bi && bi->bi_sector <
2225 sh->dev[i].sector + STRIPE_SECTORS) {
2226 struct bio *nextbi =
2227 r5_next_bio(bi, sh->dev[i].sector);
2228 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2229 if (!raid5_dec_bi_phys_segments(bi)) {
2230 bi->bi_next = *return_bi;
2231 *return_bi = bi;
2232 }
2233 bi = nextbi;
2234 }
2235 }
2236 spin_unlock_irq(&conf->device_lock);
2237 if (bitmap_end)
2238 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2239 STRIPE_SECTORS, 0, 0);
2240 }
2241
2242 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2243 if (atomic_dec_and_test(&conf->pending_full_writes))
2244 md_wakeup_thread(conf->mddev->thread);
2245 }
2246
2247 /* fetch_block5 - checks the given member device to see if its data needs
2248 * to be read or computed to satisfy a request.
2249 *
2250 * Returns 1 when no more member devices need to be checked, otherwise returns
2251 * 0 to tell the loop in handle_stripe_fill5 to continue
2252 */
2253 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2254 int disk_idx, int disks)
2255 {
2256 struct r5dev *dev = &sh->dev[disk_idx];
2257 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2258
2259 /* is the data in this block needed, and can we get it? */
2260 if (!test_bit(R5_LOCKED, &dev->flags) &&
2261 !test_bit(R5_UPTODATE, &dev->flags) &&
2262 (dev->toread ||
2263 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2264 s->syncing || s->expanding ||
2265 (s->failed &&
2266 (failed_dev->toread ||
2267 (failed_dev->towrite &&
2268 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2269 /* We would like to get this block, possibly by computing it,
2270 * otherwise read it if the backing disk is insync
2271 */
2272 if ((s->uptodate == disks - 1) &&
2273 (s->failed && disk_idx == s->failed_num)) {
2274 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2275 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2276 set_bit(R5_Wantcompute, &dev->flags);
2277 sh->ops.target = disk_idx;
2278 sh->ops.target2 = -1;
2279 s->req_compute = 1;
2280 /* Careful: from this point on 'uptodate' is in the eye
2281 * of raid_run_ops which services 'compute' operations
2282 * before writes. R5_Wantcompute flags a block that will
2283 * be R5_UPTODATE by the time it is needed for a
2284 * subsequent operation.
2285 */
2286 s->uptodate++;
2287 return 1; /* uptodate + compute == disks */
2288 } else if (test_bit(R5_Insync, &dev->flags)) {
2289 set_bit(R5_LOCKED, &dev->flags);
2290 set_bit(R5_Wantread, &dev->flags);
2291 s->locked++;
2292 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2293 s->syncing);
2294 }
2295 }
2296
2297 return 0;
2298 }
2299
2300 /**
2301 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2302 */
2303 static void handle_stripe_fill5(struct stripe_head *sh,
2304 struct stripe_head_state *s, int disks)
2305 {
2306 int i;
2307
2308 /* look for blocks to read/compute, skip this if a compute
2309 * is already in flight, or if the stripe contents are in the
2310 * midst of changing due to a write
2311 */
2312 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2313 !sh->reconstruct_state)
2314 for (i = disks; i--; )
2315 if (fetch_block5(sh, s, i, disks))
2316 break;
2317 set_bit(STRIPE_HANDLE, &sh->state);
2318 }
2319
2320 /* fetch_block6 - checks the given member device to see if its data needs
2321 * to be read or computed to satisfy a request.
2322 *
2323 * Returns 1 when no more member devices need to be checked, otherwise returns
2324 * 0 to tell the loop in handle_stripe_fill6 to continue
2325 */
2326 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2327 struct r6_state *r6s, int disk_idx, int disks)
2328 {
2329 struct r5dev *dev = &sh->dev[disk_idx];
2330 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2331 &sh->dev[r6s->failed_num[1]] };
2332
2333 if (!test_bit(R5_LOCKED, &dev->flags) &&
2334 !test_bit(R5_UPTODATE, &dev->flags) &&
2335 (dev->toread ||
2336 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2337 s->syncing || s->expanding ||
2338 (s->failed >= 1 &&
2339 (fdev[0]->toread || s->to_write)) ||
2340 (s->failed >= 2 &&
2341 (fdev[1]->toread || s->to_write)))) {
2342 /* we would like to get this block, possibly by computing it,
2343 * otherwise read it if the backing disk is insync
2344 */
2345 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2346 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2347 if ((s->uptodate == disks - 1) &&
2348 (s->failed && (disk_idx == r6s->failed_num[0] ||
2349 disk_idx == r6s->failed_num[1]))) {
2350 /* have disk failed, and we're requested to fetch it;
2351 * do compute it
2352 */
2353 pr_debug("Computing stripe %llu block %d\n",
2354 (unsigned long long)sh->sector, disk_idx);
2355 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2356 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2357 set_bit(R5_Wantcompute, &dev->flags);
2358 sh->ops.target = disk_idx;
2359 sh->ops.target2 = -1; /* no 2nd target */
2360 s->req_compute = 1;
2361 s->uptodate++;
2362 return 1;
2363 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2364 /* Computing 2-failure is *very* expensive; only
2365 * do it if failed >= 2
2366 */
2367 int other;
2368 for (other = disks; other--; ) {
2369 if (other == disk_idx)
2370 continue;
2371 if (!test_bit(R5_UPTODATE,
2372 &sh->dev[other].flags))
2373 break;
2374 }
2375 BUG_ON(other < 0);
2376 pr_debug("Computing stripe %llu blocks %d,%d\n",
2377 (unsigned long long)sh->sector,
2378 disk_idx, other);
2379 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2380 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2381 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2382 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2383 sh->ops.target = disk_idx;
2384 sh->ops.target2 = other;
2385 s->uptodate += 2;
2386 s->req_compute = 1;
2387 return 1;
2388 } else if (test_bit(R5_Insync, &dev->flags)) {
2389 set_bit(R5_LOCKED, &dev->flags);
2390 set_bit(R5_Wantread, &dev->flags);
2391 s->locked++;
2392 pr_debug("Reading block %d (sync=%d)\n",
2393 disk_idx, s->syncing);
2394 }
2395 }
2396
2397 return 0;
2398 }
2399
2400 /**
2401 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2402 */
2403 static void handle_stripe_fill6(struct stripe_head *sh,
2404 struct stripe_head_state *s, struct r6_state *r6s,
2405 int disks)
2406 {
2407 int i;
2408
2409 /* look for blocks to read/compute, skip this if a compute
2410 * is already in flight, or if the stripe contents are in the
2411 * midst of changing due to a write
2412 */
2413 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2414 !sh->reconstruct_state)
2415 for (i = disks; i--; )
2416 if (fetch_block6(sh, s, r6s, i, disks))
2417 break;
2418 set_bit(STRIPE_HANDLE, &sh->state);
2419 }
2420
2421
2422 /* handle_stripe_clean_event
2423 * any written block on an uptodate or failed drive can be returned.
2424 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2425 * never LOCKED, so we don't need to test 'failed' directly.
2426 */
2427 static void handle_stripe_clean_event(raid5_conf_t *conf,
2428 struct stripe_head *sh, int disks, struct bio **return_bi)
2429 {
2430 int i;
2431 struct r5dev *dev;
2432
2433 for (i = disks; i--; )
2434 if (sh->dev[i].written) {
2435 dev = &sh->dev[i];
2436 if (!test_bit(R5_LOCKED, &dev->flags) &&
2437 test_bit(R5_UPTODATE, &dev->flags)) {
2438 /* We can return any write requests */
2439 struct bio *wbi, *wbi2;
2440 int bitmap_end = 0;
2441 pr_debug("Return write for disc %d\n", i);
2442 spin_lock_irq(&conf->device_lock);
2443 wbi = dev->written;
2444 dev->written = NULL;
2445 while (wbi && wbi->bi_sector <
2446 dev->sector + STRIPE_SECTORS) {
2447 wbi2 = r5_next_bio(wbi, dev->sector);
2448 if (!raid5_dec_bi_phys_segments(wbi)) {
2449 md_write_end(conf->mddev);
2450 wbi->bi_next = *return_bi;
2451 *return_bi = wbi;
2452 }
2453 wbi = wbi2;
2454 }
2455 if (dev->towrite == NULL)
2456 bitmap_end = 1;
2457 spin_unlock_irq(&conf->device_lock);
2458 if (bitmap_end)
2459 bitmap_endwrite(conf->mddev->bitmap,
2460 sh->sector,
2461 STRIPE_SECTORS,
2462 !test_bit(STRIPE_DEGRADED, &sh->state),
2463 0);
2464 }
2465 }
2466
2467 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2468 if (atomic_dec_and_test(&conf->pending_full_writes))
2469 md_wakeup_thread(conf->mddev->thread);
2470 }
2471
2472 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2473 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2474 {
2475 int rmw = 0, rcw = 0, i;
2476 for (i = disks; i--; ) {
2477 /* would I have to read this buffer for read_modify_write */
2478 struct r5dev *dev = &sh->dev[i];
2479 if ((dev->towrite || i == sh->pd_idx) &&
2480 !test_bit(R5_LOCKED, &dev->flags) &&
2481 !(test_bit(R5_UPTODATE, &dev->flags) ||
2482 test_bit(R5_Wantcompute, &dev->flags))) {
2483 if (test_bit(R5_Insync, &dev->flags))
2484 rmw++;
2485 else
2486 rmw += 2*disks; /* cannot read it */
2487 }
2488 /* Would I have to read this buffer for reconstruct_write */
2489 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2490 !test_bit(R5_LOCKED, &dev->flags) &&
2491 !(test_bit(R5_UPTODATE, &dev->flags) ||
2492 test_bit(R5_Wantcompute, &dev->flags))) {
2493 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2494 else
2495 rcw += 2*disks;
2496 }
2497 }
2498 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2499 (unsigned long long)sh->sector, rmw, rcw);
2500 set_bit(STRIPE_HANDLE, &sh->state);
2501 if (rmw < rcw && rmw > 0)
2502 /* prefer read-modify-write, but need to get some data */
2503 for (i = disks; i--; ) {
2504 struct r5dev *dev = &sh->dev[i];
2505 if ((dev->towrite || i == sh->pd_idx) &&
2506 !test_bit(R5_LOCKED, &dev->flags) &&
2507 !(test_bit(R5_UPTODATE, &dev->flags) ||
2508 test_bit(R5_Wantcompute, &dev->flags)) &&
2509 test_bit(R5_Insync, &dev->flags)) {
2510 if (
2511 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2512 pr_debug("Read_old block "
2513 "%d for r-m-w\n", i);
2514 set_bit(R5_LOCKED, &dev->flags);
2515 set_bit(R5_Wantread, &dev->flags);
2516 s->locked++;
2517 } else {
2518 set_bit(STRIPE_DELAYED, &sh->state);
2519 set_bit(STRIPE_HANDLE, &sh->state);
2520 }
2521 }
2522 }
2523 if (rcw <= rmw && rcw > 0)
2524 /* want reconstruct write, but need to get some data */
2525 for (i = disks; i--; ) {
2526 struct r5dev *dev = &sh->dev[i];
2527 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2528 i != sh->pd_idx &&
2529 !test_bit(R5_LOCKED, &dev->flags) &&
2530 !(test_bit(R5_UPTODATE, &dev->flags) ||
2531 test_bit(R5_Wantcompute, &dev->flags)) &&
2532 test_bit(R5_Insync, &dev->flags)) {
2533 if (
2534 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2535 pr_debug("Read_old block "
2536 "%d for Reconstruct\n", i);
2537 set_bit(R5_LOCKED, &dev->flags);
2538 set_bit(R5_Wantread, &dev->flags);
2539 s->locked++;
2540 } else {
2541 set_bit(STRIPE_DELAYED, &sh->state);
2542 set_bit(STRIPE_HANDLE, &sh->state);
2543 }
2544 }
2545 }
2546 /* now if nothing is locked, and if we have enough data,
2547 * we can start a write request
2548 */
2549 /* since handle_stripe can be called at any time we need to handle the
2550 * case where a compute block operation has been submitted and then a
2551 * subsequent call wants to start a write request. raid_run_ops only
2552 * handles the case where compute block and reconstruct are requested
2553 * simultaneously. If this is not the case then new writes need to be
2554 * held off until the compute completes.
2555 */
2556 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2557 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2558 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2559 schedule_reconstruction(sh, s, rcw == 0, 0);
2560 }
2561
2562 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2563 struct stripe_head *sh, struct stripe_head_state *s,
2564 struct r6_state *r6s, int disks)
2565 {
2566 int rcw = 0, pd_idx = sh->pd_idx, i;
2567 int qd_idx = sh->qd_idx;
2568
2569 set_bit(STRIPE_HANDLE, &sh->state);
2570 for (i = disks; i--; ) {
2571 struct r5dev *dev = &sh->dev[i];
2572 /* check if we haven't enough data */
2573 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2574 i != pd_idx && i != qd_idx &&
2575 !test_bit(R5_LOCKED, &dev->flags) &&
2576 !(test_bit(R5_UPTODATE, &dev->flags) ||
2577 test_bit(R5_Wantcompute, &dev->flags))) {
2578 rcw++;
2579 if (!test_bit(R5_Insync, &dev->flags))
2580 continue; /* it's a failed drive */
2581
2582 if (
2583 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2584 pr_debug("Read_old stripe %llu "
2585 "block %d for Reconstruct\n",
2586 (unsigned long long)sh->sector, i);
2587 set_bit(R5_LOCKED, &dev->flags);
2588 set_bit(R5_Wantread, &dev->flags);
2589 s->locked++;
2590 } else {
2591 pr_debug("Request delayed stripe %llu "
2592 "block %d for Reconstruct\n",
2593 (unsigned long long)sh->sector, i);
2594 set_bit(STRIPE_DELAYED, &sh->state);
2595 set_bit(STRIPE_HANDLE, &sh->state);
2596 }
2597 }
2598 }
2599 /* now if nothing is locked, and if we have enough data, we can start a
2600 * write request
2601 */
2602 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2603 s->locked == 0 && rcw == 0 &&
2604 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2605 schedule_reconstruction(sh, s, 1, 0);
2606 }
2607 }
2608
2609 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2610 struct stripe_head_state *s, int disks)
2611 {
2612 struct r5dev *dev = NULL;
2613
2614 set_bit(STRIPE_HANDLE, &sh->state);
2615
2616 switch (sh->check_state) {
2617 case check_state_idle:
2618 /* start a new check operation if there are no failures */
2619 if (s->failed == 0) {
2620 BUG_ON(s->uptodate != disks);
2621 sh->check_state = check_state_run;
2622 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2623 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2624 s->uptodate--;
2625 break;
2626 }
2627 dev = &sh->dev[s->failed_num];
2628 /* fall through */
2629 case check_state_compute_result:
2630 sh->check_state = check_state_idle;
2631 if (!dev)
2632 dev = &sh->dev[sh->pd_idx];
2633
2634 /* check that a write has not made the stripe insync */
2635 if (test_bit(STRIPE_INSYNC, &sh->state))
2636 break;
2637
2638 /* either failed parity check, or recovery is happening */
2639 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2640 BUG_ON(s->uptodate != disks);
2641
2642 set_bit(R5_LOCKED, &dev->flags);
2643 s->locked++;
2644 set_bit(R5_Wantwrite, &dev->flags);
2645
2646 clear_bit(STRIPE_DEGRADED, &sh->state);
2647 set_bit(STRIPE_INSYNC, &sh->state);
2648 break;
2649 case check_state_run:
2650 break; /* we will be called again upon completion */
2651 case check_state_check_result:
2652 sh->check_state = check_state_idle;
2653
2654 /* if a failure occurred during the check operation, leave
2655 * STRIPE_INSYNC not set and let the stripe be handled again
2656 */
2657 if (s->failed)
2658 break;
2659
2660 /* handle a successful check operation, if parity is correct
2661 * we are done. Otherwise update the mismatch count and repair
2662 * parity if !MD_RECOVERY_CHECK
2663 */
2664 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2665 /* parity is correct (on disc,
2666 * not in buffer any more)
2667 */
2668 set_bit(STRIPE_INSYNC, &sh->state);
2669 else {
2670 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2671 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2672 /* don't try to repair!! */
2673 set_bit(STRIPE_INSYNC, &sh->state);
2674 else {
2675 sh->check_state = check_state_compute_run;
2676 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2677 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2678 set_bit(R5_Wantcompute,
2679 &sh->dev[sh->pd_idx].flags);
2680 sh->ops.target = sh->pd_idx;
2681 sh->ops.target2 = -1;
2682 s->uptodate++;
2683 }
2684 }
2685 break;
2686 case check_state_compute_run:
2687 break;
2688 default:
2689 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2690 __func__, sh->check_state,
2691 (unsigned long long) sh->sector);
2692 BUG();
2693 }
2694 }
2695
2696
2697 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2698 struct stripe_head_state *s,
2699 struct r6_state *r6s, int disks)
2700 {
2701 int pd_idx = sh->pd_idx;
2702 int qd_idx = sh->qd_idx;
2703 struct r5dev *dev;
2704
2705 set_bit(STRIPE_HANDLE, &sh->state);
2706
2707 BUG_ON(s->failed > 2);
2708
2709 /* Want to check and possibly repair P and Q.
2710 * However there could be one 'failed' device, in which
2711 * case we can only check one of them, possibly using the
2712 * other to generate missing data
2713 */
2714
2715 switch (sh->check_state) {
2716 case check_state_idle:
2717 /* start a new check operation if there are < 2 failures */
2718 if (s->failed == r6s->q_failed) {
2719 /* The only possible failed device holds Q, so it
2720 * makes sense to check P (If anything else were failed,
2721 * we would have used P to recreate it).
2722 */
2723 sh->check_state = check_state_run;
2724 }
2725 if (!r6s->q_failed && s->failed < 2) {
2726 /* Q is not failed, and we didn't use it to generate
2727 * anything, so it makes sense to check it
2728 */
2729 if (sh->check_state == check_state_run)
2730 sh->check_state = check_state_run_pq;
2731 else
2732 sh->check_state = check_state_run_q;
2733 }
2734
2735 /* discard potentially stale zero_sum_result */
2736 sh->ops.zero_sum_result = 0;
2737
2738 if (sh->check_state == check_state_run) {
2739 /* async_xor_zero_sum destroys the contents of P */
2740 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2741 s->uptodate--;
2742 }
2743 if (sh->check_state >= check_state_run &&
2744 sh->check_state <= check_state_run_pq) {
2745 /* async_syndrome_zero_sum preserves P and Q, so
2746 * no need to mark them !uptodate here
2747 */
2748 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2749 break;
2750 }
2751
2752 /* we have 2-disk failure */
2753 BUG_ON(s->failed != 2);
2754 /* fall through */
2755 case check_state_compute_result:
2756 sh->check_state = check_state_idle;
2757
2758 /* check that a write has not made the stripe insync */
2759 if (test_bit(STRIPE_INSYNC, &sh->state))
2760 break;
2761
2762 /* now write out any block on a failed drive,
2763 * or P or Q if they were recomputed
2764 */
2765 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2766 if (s->failed == 2) {
2767 dev = &sh->dev[r6s->failed_num[1]];
2768 s->locked++;
2769 set_bit(R5_LOCKED, &dev->flags);
2770 set_bit(R5_Wantwrite, &dev->flags);
2771 }
2772 if (s->failed >= 1) {
2773 dev = &sh->dev[r6s->failed_num[0]];
2774 s->locked++;
2775 set_bit(R5_LOCKED, &dev->flags);
2776 set_bit(R5_Wantwrite, &dev->flags);
2777 }
2778 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2779 dev = &sh->dev[pd_idx];
2780 s->locked++;
2781 set_bit(R5_LOCKED, &dev->flags);
2782 set_bit(R5_Wantwrite, &dev->flags);
2783 }
2784 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2785 dev = &sh->dev[qd_idx];
2786 s->locked++;
2787 set_bit(R5_LOCKED, &dev->flags);
2788 set_bit(R5_Wantwrite, &dev->flags);
2789 }
2790 clear_bit(STRIPE_DEGRADED, &sh->state);
2791
2792 set_bit(STRIPE_INSYNC, &sh->state);
2793 break;
2794 case check_state_run:
2795 case check_state_run_q:
2796 case check_state_run_pq:
2797 break; /* we will be called again upon completion */
2798 case check_state_check_result:
2799 sh->check_state = check_state_idle;
2800
2801 /* handle a successful check operation, if parity is correct
2802 * we are done. Otherwise update the mismatch count and repair
2803 * parity if !MD_RECOVERY_CHECK
2804 */
2805 if (sh->ops.zero_sum_result == 0) {
2806 /* both parities are correct */
2807 if (!s->failed)
2808 set_bit(STRIPE_INSYNC, &sh->state);
2809 else {
2810 /* in contrast to the raid5 case we can validate
2811 * parity, but still have a failure to write
2812 * back
2813 */
2814 sh->check_state = check_state_compute_result;
2815 /* Returning at this point means that we may go
2816 * off and bring p and/or q uptodate again so
2817 * we make sure to check zero_sum_result again
2818 * to verify if p or q need writeback
2819 */
2820 }
2821 } else {
2822 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2823 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2824 /* don't try to repair!! */
2825 set_bit(STRIPE_INSYNC, &sh->state);
2826 else {
2827 int *target = &sh->ops.target;
2828
2829 sh->ops.target = -1;
2830 sh->ops.target2 = -1;
2831 sh->check_state = check_state_compute_run;
2832 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2833 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2834 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2835 set_bit(R5_Wantcompute,
2836 &sh->dev[pd_idx].flags);
2837 *target = pd_idx;
2838 target = &sh->ops.target2;
2839 s->uptodate++;
2840 }
2841 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2842 set_bit(R5_Wantcompute,
2843 &sh->dev[qd_idx].flags);
2844 *target = qd_idx;
2845 s->uptodate++;
2846 }
2847 }
2848 }
2849 break;
2850 case check_state_compute_run:
2851 break;
2852 default:
2853 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2854 __func__, sh->check_state,
2855 (unsigned long long) sh->sector);
2856 BUG();
2857 }
2858 }
2859
2860 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2861 struct r6_state *r6s)
2862 {
2863 int i;
2864
2865 /* We have read all the blocks in this stripe and now we need to
2866 * copy some of them into a target stripe for expand.
2867 */
2868 struct dma_async_tx_descriptor *tx = NULL;
2869 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2870 for (i = 0; i < sh->disks; i++)
2871 if (i != sh->pd_idx && i != sh->qd_idx) {
2872 int dd_idx, j;
2873 struct stripe_head *sh2;
2874 struct async_submit_ctl submit;
2875
2876 sector_t bn = compute_blocknr(sh, i, 1);
2877 sector_t s = raid5_compute_sector(conf, bn, 0,
2878 &dd_idx, NULL);
2879 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2880 if (sh2 == NULL)
2881 /* so far only the early blocks of this stripe
2882 * have been requested. When later blocks
2883 * get requested, we will try again
2884 */
2885 continue;
2886 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2887 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2888 /* must have already done this block */
2889 release_stripe(sh2);
2890 continue;
2891 }
2892
2893 /* place all the copies on one channel */
2894 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2895 tx = async_memcpy(sh2->dev[dd_idx].page,
2896 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2897 &submit);
2898
2899 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2900 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2901 for (j = 0; j < conf->raid_disks; j++)
2902 if (j != sh2->pd_idx &&
2903 (!r6s || j != sh2->qd_idx) &&
2904 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2905 break;
2906 if (j == conf->raid_disks) {
2907 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2908 set_bit(STRIPE_HANDLE, &sh2->state);
2909 }
2910 release_stripe(sh2);
2911
2912 }
2913 /* done submitting copies, wait for them to complete */
2914 if (tx) {
2915 async_tx_ack(tx);
2916 dma_wait_for_async_tx(tx);
2917 }
2918 }
2919
2920
2921 /*
2922 * handle_stripe - do things to a stripe.
2923 *
2924 * We lock the stripe and then examine the state of various bits
2925 * to see what needs to be done.
2926 * Possible results:
2927 * return some read request which now have data
2928 * return some write requests which are safely on disc
2929 * schedule a read on some buffers
2930 * schedule a write of some buffers
2931 * return confirmation of parity correctness
2932 *
2933 * buffers are taken off read_list or write_list, and bh_cache buffers
2934 * get BH_Lock set before the stripe lock is released.
2935 *
2936 */
2937
2938 static void handle_stripe5(struct stripe_head *sh)
2939 {
2940 raid5_conf_t *conf = sh->raid_conf;
2941 int disks = sh->disks, i;
2942 struct bio *return_bi = NULL;
2943 struct stripe_head_state s;
2944 struct r5dev *dev;
2945 mdk_rdev_t *blocked_rdev = NULL;
2946 int prexor;
2947 int dec_preread_active = 0;
2948
2949 memset(&s, 0, sizeof(s));
2950 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2951 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2952 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2953 sh->reconstruct_state);
2954
2955 spin_lock(&sh->lock);
2956 clear_bit(STRIPE_HANDLE, &sh->state);
2957 clear_bit(STRIPE_DELAYED, &sh->state);
2958
2959 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2960 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2961 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2962
2963 /* Now to look around and see what can be done */
2964 rcu_read_lock();
2965 for (i=disks; i--; ) {
2966 mdk_rdev_t *rdev;
2967
2968 dev = &sh->dev[i];
2969 clear_bit(R5_Insync, &dev->flags);
2970
2971 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2972 "written %p\n", i, dev->flags, dev->toread, dev->read,
2973 dev->towrite, dev->written);
2974
2975 /* maybe we can request a biofill operation
2976 *
2977 * new wantfill requests are only permitted while
2978 * ops_complete_biofill is guaranteed to be inactive
2979 */
2980 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2981 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2982 set_bit(R5_Wantfill, &dev->flags);
2983
2984 /* now count some things */
2985 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2986 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2987 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2988
2989 if (test_bit(R5_Wantfill, &dev->flags))
2990 s.to_fill++;
2991 else if (dev->toread)
2992 s.to_read++;
2993 if (dev->towrite) {
2994 s.to_write++;
2995 if (!test_bit(R5_OVERWRITE, &dev->flags))
2996 s.non_overwrite++;
2997 }
2998 if (dev->written)
2999 s.written++;
3000 rdev = rcu_dereference(conf->disks[i].rdev);
3001 if (blocked_rdev == NULL &&
3002 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3003 blocked_rdev = rdev;
3004 atomic_inc(&rdev->nr_pending);
3005 }
3006 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3007 /* The ReadError flag will just be confusing now */
3008 clear_bit(R5_ReadError, &dev->flags);
3009 clear_bit(R5_ReWrite, &dev->flags);
3010 }
3011 if (!rdev || !test_bit(In_sync, &rdev->flags)
3012 || test_bit(R5_ReadError, &dev->flags)) {
3013 s.failed++;
3014 s.failed_num = i;
3015 } else
3016 set_bit(R5_Insync, &dev->flags);
3017 }
3018 rcu_read_unlock();
3019
3020 if (unlikely(blocked_rdev)) {
3021 if (s.syncing || s.expanding || s.expanded ||
3022 s.to_write || s.written) {
3023 set_bit(STRIPE_HANDLE, &sh->state);
3024 goto unlock;
3025 }
3026 /* There is nothing for the blocked_rdev to block */
3027 rdev_dec_pending(blocked_rdev, conf->mddev);
3028 blocked_rdev = NULL;
3029 }
3030
3031 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3032 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3033 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3034 }
3035
3036 pr_debug("locked=%d uptodate=%d to_read=%d"
3037 " to_write=%d failed=%d failed_num=%d\n",
3038 s.locked, s.uptodate, s.to_read, s.to_write,
3039 s.failed, s.failed_num);
3040 /* check if the array has lost two devices and, if so, some requests might
3041 * need to be failed
3042 */
3043 if (s.failed > 1 && s.to_read+s.to_write+s.written)
3044 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3045 if (s.failed > 1 && s.syncing) {
3046 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3047 clear_bit(STRIPE_SYNCING, &sh->state);
3048 s.syncing = 0;
3049 }
3050
3051 /* might be able to return some write requests if the parity block
3052 * is safe, or on a failed drive
3053 */
3054 dev = &sh->dev[sh->pd_idx];
3055 if ( s.written &&
3056 ((test_bit(R5_Insync, &dev->flags) &&
3057 !test_bit(R5_LOCKED, &dev->flags) &&
3058 test_bit(R5_UPTODATE, &dev->flags)) ||
3059 (s.failed == 1 && s.failed_num == sh->pd_idx)))
3060 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3061
3062 /* Now we might consider reading some blocks, either to check/generate
3063 * parity, or to satisfy requests
3064 * or to load a block that is being partially written.
3065 */
3066 if (s.to_read || s.non_overwrite ||
3067 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3068 handle_stripe_fill5(sh, &s, disks);
3069
3070 /* Now we check to see if any write operations have recently
3071 * completed
3072 */
3073 prexor = 0;
3074 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3075 prexor = 1;
3076 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3077 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3078 sh->reconstruct_state = reconstruct_state_idle;
3079
3080 /* All the 'written' buffers and the parity block are ready to
3081 * be written back to disk
3082 */
3083 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3084 for (i = disks; i--; ) {
3085 dev = &sh->dev[i];
3086 if (test_bit(R5_LOCKED, &dev->flags) &&
3087 (i == sh->pd_idx || dev->written)) {
3088 pr_debug("Writing block %d\n", i);
3089 set_bit(R5_Wantwrite, &dev->flags);
3090 if (prexor)
3091 continue;
3092 if (!test_bit(R5_Insync, &dev->flags) ||
3093 (i == sh->pd_idx && s.failed == 0))
3094 set_bit(STRIPE_INSYNC, &sh->state);
3095 }
3096 }
3097 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3098 dec_preread_active = 1;
3099 }
3100
3101 /* Now to consider new write requests and what else, if anything
3102 * should be read. We do not handle new writes when:
3103 * 1/ A 'write' operation (copy+xor) is already in flight.
3104 * 2/ A 'check' operation is in flight, as it may clobber the parity
3105 * block.
3106 */
3107 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3108 handle_stripe_dirtying5(conf, sh, &s, disks);
3109
3110 /* maybe we need to check and possibly fix the parity for this stripe
3111 * Any reads will already have been scheduled, so we just see if enough
3112 * data is available. The parity check is held off while parity
3113 * dependent operations are in flight.
3114 */
3115 if (sh->check_state ||
3116 (s.syncing && s.locked == 0 &&
3117 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3118 !test_bit(STRIPE_INSYNC, &sh->state)))
3119 handle_parity_checks5(conf, sh, &s, disks);
3120
3121 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3122 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3123 clear_bit(STRIPE_SYNCING, &sh->state);
3124 }
3125
3126 /* If the failed drive is just a ReadError, then we might need to progress
3127 * the repair/check process
3128 */
3129 if (s.failed == 1 && !conf->mddev->ro &&
3130 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3131 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3132 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3133 ) {
3134 dev = &sh->dev[s.failed_num];
3135 if (!test_bit(R5_ReWrite, &dev->flags)) {
3136 set_bit(R5_Wantwrite, &dev->flags);
3137 set_bit(R5_ReWrite, &dev->flags);
3138 set_bit(R5_LOCKED, &dev->flags);
3139 s.locked++;
3140 } else {
3141 /* let's read it back */
3142 set_bit(R5_Wantread, &dev->flags);
3143 set_bit(R5_LOCKED, &dev->flags);
3144 s.locked++;
3145 }
3146 }
3147
3148 /* Finish reconstruct operations initiated by the expansion process */
3149 if (sh->reconstruct_state == reconstruct_state_result) {
3150 struct stripe_head *sh2
3151 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3152 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3153 /* sh cannot be written until sh2 has been read.
3154 * so arrange for sh to be delayed a little
3155 */
3156 set_bit(STRIPE_DELAYED, &sh->state);
3157 set_bit(STRIPE_HANDLE, &sh->state);
3158 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3159 &sh2->state))
3160 atomic_inc(&conf->preread_active_stripes);
3161 release_stripe(sh2);
3162 goto unlock;
3163 }
3164 if (sh2)
3165 release_stripe(sh2);
3166
3167 sh->reconstruct_state = reconstruct_state_idle;
3168 clear_bit(STRIPE_EXPANDING, &sh->state);
3169 for (i = conf->raid_disks; i--; ) {
3170 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3171 set_bit(R5_LOCKED, &sh->dev[i].flags);
3172 s.locked++;
3173 }
3174 }
3175
3176 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3177 !sh->reconstruct_state) {
3178 /* Need to write out all blocks after computing parity */
3179 sh->disks = conf->raid_disks;
3180 stripe_set_idx(sh->sector, conf, 0, sh);
3181 schedule_reconstruction(sh, &s, 1, 1);
3182 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3183 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3184 atomic_dec(&conf->reshape_stripes);
3185 wake_up(&conf->wait_for_overlap);
3186 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3187 }
3188
3189 if (s.expanding && s.locked == 0 &&
3190 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3191 handle_stripe_expansion(conf, sh, NULL);
3192
3193 unlock:
3194 spin_unlock(&sh->lock);
3195
3196 /* wait for this device to become unblocked */
3197 if (unlikely(blocked_rdev))
3198 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3199
3200 if (s.ops_request)
3201 raid_run_ops(sh, s.ops_request);
3202
3203 ops_run_io(sh, &s);
3204
3205 if (dec_preread_active) {
3206 /* We delay this until after ops_run_io so that if make_request
3207 * is waiting on a barrier, it won't continue until the writes
3208 * have actually been submitted.
3209 */
3210 atomic_dec(&conf->preread_active_stripes);
3211 if (atomic_read(&conf->preread_active_stripes) <
3212 IO_THRESHOLD)
3213 md_wakeup_thread(conf->mddev->thread);
3214 }
3215 return_io(return_bi);
3216 }
3217
3218 static void handle_stripe6(struct stripe_head *sh)
3219 {
3220 raid5_conf_t *conf = sh->raid_conf;
3221 int disks = sh->disks;
3222 struct bio *return_bi = NULL;
3223 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3224 struct stripe_head_state s;
3225 struct r6_state r6s;
3226 struct r5dev *dev, *pdev, *qdev;
3227 mdk_rdev_t *blocked_rdev = NULL;
3228 int dec_preread_active = 0;
3229
3230 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3231 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3232 (unsigned long long)sh->sector, sh->state,
3233 atomic_read(&sh->count), pd_idx, qd_idx,
3234 sh->check_state, sh->reconstruct_state);
3235 memset(&s, 0, sizeof(s));
3236
3237 spin_lock(&sh->lock);
3238 clear_bit(STRIPE_HANDLE, &sh->state);
3239 clear_bit(STRIPE_DELAYED, &sh->state);
3240
3241 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3242 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3243 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3244 /* Now to look around and see what can be done */
3245
3246 rcu_read_lock();
3247 for (i=disks; i--; ) {
3248 mdk_rdev_t *rdev;
3249 dev = &sh->dev[i];
3250 clear_bit(R5_Insync, &dev->flags);
3251
3252 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3253 i, dev->flags, dev->toread, dev->towrite, dev->written);
3254 /* maybe we can reply to a read
3255 *
3256 * new wantfill requests are only permitted while
3257 * ops_complete_biofill is guaranteed to be inactive
3258 */
3259 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3260 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3261 set_bit(R5_Wantfill, &dev->flags);
3262
3263 /* now count some things */
3264 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3265 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3266 if (test_bit(R5_Wantcompute, &dev->flags)) {
3267 s.compute++;
3268 BUG_ON(s.compute > 2);
3269 }
3270
3271 if (test_bit(R5_Wantfill, &dev->flags)) {
3272 s.to_fill++;
3273 } else if (dev->toread)
3274 s.to_read++;
3275 if (dev->towrite) {
3276 s.to_write++;
3277 if (!test_bit(R5_OVERWRITE, &dev->flags))
3278 s.non_overwrite++;
3279 }
3280 if (dev->written)
3281 s.written++;
3282 rdev = rcu_dereference(conf->disks[i].rdev);
3283 if (blocked_rdev == NULL &&
3284 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3285 blocked_rdev = rdev;
3286 atomic_inc(&rdev->nr_pending);
3287 }
3288 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3289 /* The ReadError flag will just be confusing now */
3290 clear_bit(R5_ReadError, &dev->flags);
3291 clear_bit(R5_ReWrite, &dev->flags);
3292 }
3293 if (!rdev || !test_bit(In_sync, &rdev->flags)
3294 || test_bit(R5_ReadError, &dev->flags)) {
3295 if (s.failed < 2)
3296 r6s.failed_num[s.failed] = i;
3297 s.failed++;
3298 } else
3299 set_bit(R5_Insync, &dev->flags);
3300 }
3301 rcu_read_unlock();
3302
3303 if (unlikely(blocked_rdev)) {
3304 if (s.syncing || s.expanding || s.expanded ||
3305 s.to_write || s.written) {
3306 set_bit(STRIPE_HANDLE, &sh->state);
3307 goto unlock;
3308 }
3309 /* There is nothing for the blocked_rdev to block */
3310 rdev_dec_pending(blocked_rdev, conf->mddev);
3311 blocked_rdev = NULL;
3312 }
3313
3314 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3315 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3316 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3317 }
3318
3319 pr_debug("locked=%d uptodate=%d to_read=%d"
3320 " to_write=%d failed=%d failed_num=%d,%d\n",
3321 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3322 r6s.failed_num[0], r6s.failed_num[1]);
3323 /* check if the array has lost >2 devices and, if so, some requests
3324 * might need to be failed
3325 */
3326 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3327 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3328 if (s.failed > 2 && s.syncing) {
3329 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3330 clear_bit(STRIPE_SYNCING, &sh->state);
3331 s.syncing = 0;
3332 }
3333
3334 /*
3335 * might be able to return some write requests if the parity blocks
3336 * are safe, or on a failed drive
3337 */
3338 pdev = &sh->dev[pd_idx];
3339 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3340 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3341 qdev = &sh->dev[qd_idx];
3342 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3343 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3344
3345 if ( s.written &&
3346 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3347 && !test_bit(R5_LOCKED, &pdev->flags)
3348 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3349 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3350 && !test_bit(R5_LOCKED, &qdev->flags)
3351 && test_bit(R5_UPTODATE, &qdev->flags)))))
3352 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3353
3354 /* Now we might consider reading some blocks, either to check/generate
3355 * parity, or to satisfy requests
3356 * or to load a block that is being partially written.
3357 */
3358 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3359 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3360 handle_stripe_fill6(sh, &s, &r6s, disks);
3361
3362 /* Now we check to see if any write operations have recently
3363 * completed
3364 */
3365 if (sh->reconstruct_state == reconstruct_state_drain_result) {
3366
3367 sh->reconstruct_state = reconstruct_state_idle;
3368 /* All the 'written' buffers and the parity blocks are ready to
3369 * be written back to disk
3370 */
3371 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3372 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3373 for (i = disks; i--; ) {
3374 dev = &sh->dev[i];
3375 if (test_bit(R5_LOCKED, &dev->flags) &&
3376 (i == sh->pd_idx || i == qd_idx ||
3377 dev->written)) {
3378 pr_debug("Writing block %d\n", i);
3379 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3380 set_bit(R5_Wantwrite, &dev->flags);
3381 if (!test_bit(R5_Insync, &dev->flags) ||
3382 ((i == sh->pd_idx || i == qd_idx) &&
3383 s.failed == 0))
3384 set_bit(STRIPE_INSYNC, &sh->state);
3385 }
3386 }
3387 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3388 dec_preread_active = 1;
3389 }
3390
3391 /* Now to consider new write requests and what else, if anything
3392 * should be read. We do not handle new writes when:
3393 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3394 * 2/ A 'check' operation is in flight, as it may clobber the parity
3395 * block.
3396 */
3397 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3398 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3399
3400 /* maybe we need to check and possibly fix the parity for this stripe
3401 * Any reads will already have been scheduled, so we just see if enough
3402 * data is available. The parity check is held off while parity
3403 * dependent operations are in flight.
3404 */
3405 if (sh->check_state ||
3406 (s.syncing && s.locked == 0 &&
3407 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3408 !test_bit(STRIPE_INSYNC, &sh->state)))
3409 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3410
3411 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3412 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3413 clear_bit(STRIPE_SYNCING, &sh->state);
3414 }
3415
3416 /* If the failed drives are just a ReadError, then we might need
3417 * to progress the repair/check process
3418 */
3419 if (s.failed <= 2 && !conf->mddev->ro)
3420 for (i = 0; i < s.failed; i++) {
3421 dev = &sh->dev[r6s.failed_num[i]];
3422 if (test_bit(R5_ReadError, &dev->flags)
3423 && !test_bit(R5_LOCKED, &dev->flags)
3424 && test_bit(R5_UPTODATE, &dev->flags)
3425 ) {
3426 if (!test_bit(R5_ReWrite, &dev->flags)) {
3427 set_bit(R5_Wantwrite, &dev->flags);
3428 set_bit(R5_ReWrite, &dev->flags);
3429 set_bit(R5_LOCKED, &dev->flags);
3430 s.locked++;
3431 } else {
3432 /* let's read it back */
3433 set_bit(R5_Wantread, &dev->flags);
3434 set_bit(R5_LOCKED, &dev->flags);
3435 s.locked++;
3436 }
3437 }
3438 }
3439
3440 /* Finish reconstruct operations initiated by the expansion process */
3441 if (sh->reconstruct_state == reconstruct_state_result) {
3442 sh->reconstruct_state = reconstruct_state_idle;
3443 clear_bit(STRIPE_EXPANDING, &sh->state);
3444 for (i = conf->raid_disks; i--; ) {
3445 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3446 set_bit(R5_LOCKED, &sh->dev[i].flags);
3447 s.locked++;
3448 }
3449 }
3450
3451 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3452 !sh->reconstruct_state) {
3453 struct stripe_head *sh2
3454 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3455 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3456 /* sh cannot be written until sh2 has been read.
3457 * so arrange for sh to be delayed a little
3458 */
3459 set_bit(STRIPE_DELAYED, &sh->state);
3460 set_bit(STRIPE_HANDLE, &sh->state);
3461 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3462 &sh2->state))
3463 atomic_inc(&conf->preread_active_stripes);
3464 release_stripe(sh2);
3465 goto unlock;
3466 }
3467 if (sh2)
3468 release_stripe(sh2);
3469
3470 /* Need to write out all blocks after computing P&Q */
3471 sh->disks = conf->raid_disks;
3472 stripe_set_idx(sh->sector, conf, 0, sh);
3473 schedule_reconstruction(sh, &s, 1, 1);
3474 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3475 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3476 atomic_dec(&conf->reshape_stripes);
3477 wake_up(&conf->wait_for_overlap);
3478 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3479 }
3480
3481 if (s.expanding && s.locked == 0 &&
3482 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3483 handle_stripe_expansion(conf, sh, &r6s);
3484
3485 unlock:
3486 spin_unlock(&sh->lock);
3487
3488 /* wait for this device to become unblocked */
3489 if (unlikely(blocked_rdev))
3490 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3491
3492 if (s.ops_request)
3493 raid_run_ops(sh, s.ops_request);
3494
3495 ops_run_io(sh, &s);
3496
3497
3498 if (dec_preread_active) {
3499 /* We delay this until after ops_run_io so that if make_request
3500 * is waiting on a barrier, it won't continue until the writes
3501 * have actually been submitted.
3502 */
3503 atomic_dec(&conf->preread_active_stripes);
3504 if (atomic_read(&conf->preread_active_stripes) <
3505 IO_THRESHOLD)
3506 md_wakeup_thread(conf->mddev->thread);
3507 }
3508
3509 return_io(return_bi);
3510 }
3511
3512 static void handle_stripe(struct stripe_head *sh)
3513 {
3514 if (sh->raid_conf->level == 6)
3515 handle_stripe6(sh);
3516 else
3517 handle_stripe5(sh);
3518 }
3519
3520 static void raid5_activate_delayed(raid5_conf_t *conf)
3521 {
3522 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3523 while (!list_empty(&conf->delayed_list)) {
3524 struct list_head *l = conf->delayed_list.next;
3525 struct stripe_head *sh;
3526 sh = list_entry(l, struct stripe_head, lru);
3527 list_del_init(l);
3528 clear_bit(STRIPE_DELAYED, &sh->state);
3529 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3530 atomic_inc(&conf->preread_active_stripes);
3531 list_add_tail(&sh->lru, &conf->hold_list);
3532 }
3533 } else
3534 blk_plug_device(conf->mddev->queue);
3535 }
3536
3537 static void activate_bit_delay(raid5_conf_t *conf)
3538 {
3539 /* device_lock is held */
3540 struct list_head head;
3541 list_add(&head, &conf->bitmap_list);
3542 list_del_init(&conf->bitmap_list);
3543 while (!list_empty(&head)) {
3544 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3545 list_del_init(&sh->lru);
3546 atomic_inc(&sh->count);
3547 __release_stripe(conf, sh);
3548 }
3549 }
3550
3551 static void unplug_slaves(mddev_t *mddev)
3552 {
3553 raid5_conf_t *conf = mddev->private;
3554 int i;
3555 int devs = max(conf->raid_disks, conf->previous_raid_disks);
3556
3557 rcu_read_lock();
3558 for (i = 0; i < devs; i++) {
3559 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3560 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3561 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3562
3563 atomic_inc(&rdev->nr_pending);
3564 rcu_read_unlock();
3565
3566 blk_unplug(r_queue);
3567
3568 rdev_dec_pending(rdev, mddev);
3569 rcu_read_lock();
3570 }
3571 }
3572 rcu_read_unlock();
3573 }
3574
3575 static void raid5_unplug_device(struct request_queue *q)
3576 {
3577 mddev_t *mddev = q->queuedata;
3578 raid5_conf_t *conf = mddev->private;
3579 unsigned long flags;
3580
3581 spin_lock_irqsave(&conf->device_lock, flags);
3582
3583 if (blk_remove_plug(q)) {
3584 conf->seq_flush++;
3585 raid5_activate_delayed(conf);
3586 }
3587 md_wakeup_thread(mddev->thread);
3588
3589 spin_unlock_irqrestore(&conf->device_lock, flags);
3590
3591 unplug_slaves(mddev);
3592 }
3593
3594 static int raid5_congested(void *data, int bits)
3595 {
3596 mddev_t *mddev = data;
3597 raid5_conf_t *conf = mddev->private;
3598
3599 /* No difference between reads and writes. Just check
3600 * how busy the stripe_cache is
3601 */
3602
3603 if (mddev_congested(mddev, bits))
3604 return 1;
3605 if (conf->inactive_blocked)
3606 return 1;
3607 if (conf->quiesce)
3608 return 1;
3609 if (list_empty_careful(&conf->inactive_list))
3610 return 1;
3611
3612 return 0;
3613 }
3614
3615 /* We want read requests to align with chunks where possible,
3616 * but write requests don't need to.
3617 */
3618 static int raid5_mergeable_bvec(struct request_queue *q,
3619 struct bvec_merge_data *bvm,
3620 struct bio_vec *biovec)
3621 {
3622 mddev_t *mddev = q->queuedata;
3623 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3624 int max;
3625 unsigned int chunk_sectors = mddev->chunk_sectors;
3626 unsigned int bio_sectors = bvm->bi_size >> 9;
3627
3628 if ((bvm->bi_rw & 1) == WRITE)
3629 return biovec->bv_len; /* always allow writes to be mergeable */
3630
3631 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3632 chunk_sectors = mddev->new_chunk_sectors;
3633 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3634 if (max < 0) max = 0;
3635 if (max <= biovec->bv_len && bio_sectors == 0)
3636 return biovec->bv_len;
3637 else
3638 return max;
3639 }
3640
3641
3642 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3643 {
3644 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3645 unsigned int chunk_sectors = mddev->chunk_sectors;
3646 unsigned int bio_sectors = bio->bi_size >> 9;
3647
3648 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3649 chunk_sectors = mddev->new_chunk_sectors;
3650 return chunk_sectors >=
3651 ((sector & (chunk_sectors - 1)) + bio_sectors);
3652 }
3653
3654 /*
3655 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3656 * later sampled by raid5d.
3657 */
3658 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3659 {
3660 unsigned long flags;
3661
3662 spin_lock_irqsave(&conf->device_lock, flags);
3663
3664 bi->bi_next = conf->retry_read_aligned_list;
3665 conf->retry_read_aligned_list = bi;
3666
3667 spin_unlock_irqrestore(&conf->device_lock, flags);
3668 md_wakeup_thread(conf->mddev->thread);
3669 }
3670
3671
3672 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3673 {
3674 struct bio *bi;
3675
3676 bi = conf->retry_read_aligned;
3677 if (bi) {
3678 conf->retry_read_aligned = NULL;
3679 return bi;
3680 }
3681 bi = conf->retry_read_aligned_list;
3682 if(bi) {
3683 conf->retry_read_aligned_list = bi->bi_next;
3684 bi->bi_next = NULL;
3685 /*
3686 * this sets the active strip count to 1 and the processed
3687 * strip count to zero (upper 8 bits)
3688 */
3689 bi->bi_phys_segments = 1; /* biased count of active stripes */
3690 }
3691
3692 return bi;
3693 }
3694
3695
3696 /*
3697 * The "raid5_align_endio" should check if the read succeeded and if it
3698 * did, call bio_endio on the original bio (having bio_put the new bio
3699 * first).
3700 * If the read failed..
3701 */
3702 static void raid5_align_endio(struct bio *bi, int error)
3703 {
3704 struct bio* raid_bi = bi->bi_private;
3705 mddev_t *mddev;
3706 raid5_conf_t *conf;
3707 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3708 mdk_rdev_t *rdev;
3709
3710 bio_put(bi);
3711
3712 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3713 conf = mddev->private;
3714 rdev = (void*)raid_bi->bi_next;
3715 raid_bi->bi_next = NULL;
3716
3717 rdev_dec_pending(rdev, conf->mddev);
3718
3719 if (!error && uptodate) {
3720 bio_endio(raid_bi, 0);
3721 if (atomic_dec_and_test(&conf->active_aligned_reads))
3722 wake_up(&conf->wait_for_stripe);
3723 return;
3724 }
3725
3726
3727 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3728
3729 add_bio_to_retry(raid_bi, conf);
3730 }
3731
3732 static int bio_fits_rdev(struct bio *bi)
3733 {
3734 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3735
3736 if ((bi->bi_size>>9) > queue_max_sectors(q))
3737 return 0;
3738 blk_recount_segments(q, bi);
3739 if (bi->bi_phys_segments > queue_max_segments(q))
3740 return 0;
3741
3742 if (q->merge_bvec_fn)
3743 /* it's too hard to apply the merge_bvec_fn at this stage,
3744 * just just give up
3745 */
3746 return 0;
3747
3748 return 1;
3749 }
3750
3751
3752 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3753 {
3754 mddev_t *mddev = q->queuedata;
3755 raid5_conf_t *conf = mddev->private;
3756 int dd_idx;
3757 struct bio* align_bi;
3758 mdk_rdev_t *rdev;
3759
3760 if (!in_chunk_boundary(mddev, raid_bio)) {
3761 pr_debug("chunk_aligned_read : non aligned\n");
3762 return 0;
3763 }
3764 /*
3765 * use bio_clone to make a copy of the bio
3766 */
3767 align_bi = bio_clone(raid_bio, GFP_NOIO);
3768 if (!align_bi)
3769 return 0;
3770 /*
3771 * set bi_end_io to a new function, and set bi_private to the
3772 * original bio.
3773 */
3774 align_bi->bi_end_io = raid5_align_endio;
3775 align_bi->bi_private = raid_bio;
3776 /*
3777 * compute position
3778 */
3779 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3780 0,
3781 &dd_idx, NULL);
3782
3783 rcu_read_lock();
3784 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3785 if (rdev && test_bit(In_sync, &rdev->flags)) {
3786 atomic_inc(&rdev->nr_pending);
3787 rcu_read_unlock();
3788 raid_bio->bi_next = (void*)rdev;
3789 align_bi->bi_bdev = rdev->bdev;
3790 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3791 align_bi->bi_sector += rdev->data_offset;
3792
3793 if (!bio_fits_rdev(align_bi)) {
3794 /* too big in some way */
3795 bio_put(align_bi);
3796 rdev_dec_pending(rdev, mddev);
3797 return 0;
3798 }
3799
3800 spin_lock_irq(&conf->device_lock);
3801 wait_event_lock_irq(conf->wait_for_stripe,
3802 conf->quiesce == 0,
3803 conf->device_lock, /* nothing */);
3804 atomic_inc(&conf->active_aligned_reads);
3805 spin_unlock_irq(&conf->device_lock);
3806
3807 generic_make_request(align_bi);
3808 return 1;
3809 } else {
3810 rcu_read_unlock();
3811 bio_put(align_bi);
3812 return 0;
3813 }
3814 }
3815
3816 /* __get_priority_stripe - get the next stripe to process
3817 *
3818 * Full stripe writes are allowed to pass preread active stripes up until
3819 * the bypass_threshold is exceeded. In general the bypass_count
3820 * increments when the handle_list is handled before the hold_list; however, it
3821 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3822 * stripe with in flight i/o. The bypass_count will be reset when the
3823 * head of the hold_list has changed, i.e. the head was promoted to the
3824 * handle_list.
3825 */
3826 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3827 {
3828 struct stripe_head *sh;
3829
3830 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3831 __func__,
3832 list_empty(&conf->handle_list) ? "empty" : "busy",
3833 list_empty(&conf->hold_list) ? "empty" : "busy",
3834 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3835
3836 if (!list_empty(&conf->handle_list)) {
3837 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3838
3839 if (list_empty(&conf->hold_list))
3840 conf->bypass_count = 0;
3841 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3842 if (conf->hold_list.next == conf->last_hold)
3843 conf->bypass_count++;
3844 else {
3845 conf->last_hold = conf->hold_list.next;
3846 conf->bypass_count -= conf->bypass_threshold;
3847 if (conf->bypass_count < 0)
3848 conf->bypass_count = 0;
3849 }
3850 }
3851 } else if (!list_empty(&conf->hold_list) &&
3852 ((conf->bypass_threshold &&
3853 conf->bypass_count > conf->bypass_threshold) ||
3854 atomic_read(&conf->pending_full_writes) == 0)) {
3855 sh = list_entry(conf->hold_list.next,
3856 typeof(*sh), lru);
3857 conf->bypass_count -= conf->bypass_threshold;
3858 if (conf->bypass_count < 0)
3859 conf->bypass_count = 0;
3860 } else
3861 return NULL;
3862
3863 list_del_init(&sh->lru);
3864 atomic_inc(&sh->count);
3865 BUG_ON(atomic_read(&sh->count) != 1);
3866 return sh;
3867 }
3868
3869 static int make_request(struct request_queue *q, struct bio * bi)
3870 {
3871 mddev_t *mddev = q->queuedata;
3872 raid5_conf_t *conf = mddev->private;
3873 int dd_idx;
3874 sector_t new_sector;
3875 sector_t logical_sector, last_sector;
3876 struct stripe_head *sh;
3877 const int rw = bio_data_dir(bi);
3878 int cpu, remaining;
3879
3880 if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3881 /* Drain all pending writes. We only really need
3882 * to ensure they have been submitted, but this is
3883 * easier.
3884 */
3885 mddev->pers->quiesce(mddev, 1);
3886 mddev->pers->quiesce(mddev, 0);
3887 md_barrier_request(mddev, bi);
3888 return 0;
3889 }
3890
3891 md_write_start(mddev, bi);
3892
3893 cpu = part_stat_lock();
3894 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3895 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3896 bio_sectors(bi));
3897 part_stat_unlock();
3898
3899 if (rw == READ &&
3900 mddev->reshape_position == MaxSector &&
3901 chunk_aligned_read(q,bi))
3902 return 0;
3903
3904 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3905 last_sector = bi->bi_sector + (bi->bi_size>>9);
3906 bi->bi_next = NULL;
3907 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3908
3909 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3910 DEFINE_WAIT(w);
3911 int disks, data_disks;
3912 int previous;
3913
3914 retry:
3915 previous = 0;
3916 disks = conf->raid_disks;
3917 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3918 if (unlikely(conf->reshape_progress != MaxSector)) {
3919 /* spinlock is needed as reshape_progress may be
3920 * 64bit on a 32bit platform, and so it might be
3921 * possible to see a half-updated value
3922 * Ofcourse reshape_progress could change after
3923 * the lock is dropped, so once we get a reference
3924 * to the stripe that we think it is, we will have
3925 * to check again.
3926 */
3927 spin_lock_irq(&conf->device_lock);
3928 if (mddev->delta_disks < 0
3929 ? logical_sector < conf->reshape_progress
3930 : logical_sector >= conf->reshape_progress) {
3931 disks = conf->previous_raid_disks;
3932 previous = 1;
3933 } else {
3934 if (mddev->delta_disks < 0
3935 ? logical_sector < conf->reshape_safe
3936 : logical_sector >= conf->reshape_safe) {
3937 spin_unlock_irq(&conf->device_lock);
3938 schedule();
3939 goto retry;
3940 }
3941 }
3942 spin_unlock_irq(&conf->device_lock);
3943 }
3944 data_disks = disks - conf->max_degraded;
3945
3946 new_sector = raid5_compute_sector(conf, logical_sector,
3947 previous,
3948 &dd_idx, NULL);
3949 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3950 (unsigned long long)new_sector,
3951 (unsigned long long)logical_sector);
3952
3953 sh = get_active_stripe(conf, new_sector, previous,
3954 (bi->bi_rw&RWA_MASK), 0);
3955 if (sh) {
3956 if (unlikely(previous)) {
3957 /* expansion might have moved on while waiting for a
3958 * stripe, so we must do the range check again.
3959 * Expansion could still move past after this
3960 * test, but as we are holding a reference to
3961 * 'sh', we know that if that happens,
3962 * STRIPE_EXPANDING will get set and the expansion
3963 * won't proceed until we finish with the stripe.
3964 */
3965 int must_retry = 0;
3966 spin_lock_irq(&conf->device_lock);
3967 if (mddev->delta_disks < 0
3968 ? logical_sector >= conf->reshape_progress
3969 : logical_sector < conf->reshape_progress)
3970 /* mismatch, need to try again */
3971 must_retry = 1;
3972 spin_unlock_irq(&conf->device_lock);
3973 if (must_retry) {
3974 release_stripe(sh);
3975 schedule();
3976 goto retry;
3977 }
3978 }
3979
3980 if (bio_data_dir(bi) == WRITE &&
3981 logical_sector >= mddev->suspend_lo &&
3982 logical_sector < mddev->suspend_hi) {
3983 release_stripe(sh);
3984 /* As the suspend_* range is controlled by
3985 * userspace, we want an interruptible
3986 * wait.
3987 */
3988 flush_signals(current);
3989 prepare_to_wait(&conf->wait_for_overlap,
3990 &w, TASK_INTERRUPTIBLE);
3991 if (logical_sector >= mddev->suspend_lo &&
3992 logical_sector < mddev->suspend_hi)
3993 schedule();
3994 goto retry;
3995 }
3996
3997 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3998 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3999 /* Stripe is busy expanding or
4000 * add failed due to overlap. Flush everything
4001 * and wait a while
4002 */
4003 raid5_unplug_device(mddev->queue);
4004 release_stripe(sh);
4005 schedule();
4006 goto retry;
4007 }
4008 finish_wait(&conf->wait_for_overlap, &w);
4009 set_bit(STRIPE_HANDLE, &sh->state);
4010 clear_bit(STRIPE_DELAYED, &sh->state);
4011 if (mddev->barrier &&
4012 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4013 atomic_inc(&conf->preread_active_stripes);
4014 release_stripe(sh);
4015 } else {
4016 /* cannot get stripe for read-ahead, just give-up */
4017 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4018 finish_wait(&conf->wait_for_overlap, &w);
4019 break;
4020 }
4021
4022 }
4023 spin_lock_irq(&conf->device_lock);
4024 remaining = raid5_dec_bi_phys_segments(bi);
4025 spin_unlock_irq(&conf->device_lock);
4026 if (remaining == 0) {
4027
4028 if ( rw == WRITE )
4029 md_write_end(mddev);
4030
4031 bio_endio(bi, 0);
4032 }
4033
4034 if (mddev->barrier) {
4035 /* We need to wait for the stripes to all be handled.
4036 * So: wait for preread_active_stripes to drop to 0.
4037 */
4038 wait_event(mddev->thread->wqueue,
4039 atomic_read(&conf->preread_active_stripes) == 0);
4040 }
4041 return 0;
4042 }
4043
4044 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4045
4046 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4047 {
4048 /* reshaping is quite different to recovery/resync so it is
4049 * handled quite separately ... here.
4050 *
4051 * On each call to sync_request, we gather one chunk worth of
4052 * destination stripes and flag them as expanding.
4053 * Then we find all the source stripes and request reads.
4054 * As the reads complete, handle_stripe will copy the data
4055 * into the destination stripe and release that stripe.
4056 */
4057 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4058 struct stripe_head *sh;
4059 sector_t first_sector, last_sector;
4060 int raid_disks = conf->previous_raid_disks;
4061 int data_disks = raid_disks - conf->max_degraded;
4062 int new_data_disks = conf->raid_disks - conf->max_degraded;
4063 int i;
4064 int dd_idx;
4065 sector_t writepos, readpos, safepos;
4066 sector_t stripe_addr;
4067 int reshape_sectors;
4068 struct list_head stripes;
4069
4070 if (sector_nr == 0) {
4071 /* If restarting in the middle, skip the initial sectors */
4072 if (mddev->delta_disks < 0 &&
4073 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4074 sector_nr = raid5_size(mddev, 0, 0)
4075 - conf->reshape_progress;
4076 } else if (mddev->delta_disks >= 0 &&
4077 conf->reshape_progress > 0)
4078 sector_nr = conf->reshape_progress;
4079 sector_div(sector_nr, new_data_disks);
4080 if (sector_nr) {
4081 mddev->curr_resync_completed = sector_nr;
4082 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4083 *skipped = 1;
4084 return sector_nr;
4085 }
4086 }
4087
4088 /* We need to process a full chunk at a time.
4089 * If old and new chunk sizes differ, we need to process the
4090 * largest of these
4091 */
4092 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4093 reshape_sectors = mddev->new_chunk_sectors;
4094 else
4095 reshape_sectors = mddev->chunk_sectors;
4096
4097 /* we update the metadata when there is more than 3Meg
4098 * in the block range (that is rather arbitrary, should
4099 * probably be time based) or when the data about to be
4100 * copied would over-write the source of the data at
4101 * the front of the range.
4102 * i.e. one new_stripe along from reshape_progress new_maps
4103 * to after where reshape_safe old_maps to
4104 */
4105 writepos = conf->reshape_progress;
4106 sector_div(writepos, new_data_disks);
4107 readpos = conf->reshape_progress;
4108 sector_div(readpos, data_disks);
4109 safepos = conf->reshape_safe;
4110 sector_div(safepos, data_disks);
4111 if (mddev->delta_disks < 0) {
4112 writepos -= min_t(sector_t, reshape_sectors, writepos);
4113 readpos += reshape_sectors;
4114 safepos += reshape_sectors;
4115 } else {
4116 writepos += reshape_sectors;
4117 readpos -= min_t(sector_t, reshape_sectors, readpos);
4118 safepos -= min_t(sector_t, reshape_sectors, safepos);
4119 }
4120
4121 /* 'writepos' is the most advanced device address we might write.
4122 * 'readpos' is the least advanced device address we might read.
4123 * 'safepos' is the least address recorded in the metadata as having
4124 * been reshaped.
4125 * If 'readpos' is behind 'writepos', then there is no way that we can
4126 * ensure safety in the face of a crash - that must be done by userspace
4127 * making a backup of the data. So in that case there is no particular
4128 * rush to update metadata.
4129 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4130 * update the metadata to advance 'safepos' to match 'readpos' so that
4131 * we can be safe in the event of a crash.
4132 * So we insist on updating metadata if safepos is behind writepos and
4133 * readpos is beyond writepos.
4134 * In any case, update the metadata every 10 seconds.
4135 * Maybe that number should be configurable, but I'm not sure it is
4136 * worth it.... maybe it could be a multiple of safemode_delay???
4137 */
4138 if ((mddev->delta_disks < 0
4139 ? (safepos > writepos && readpos < writepos)
4140 : (safepos < writepos && readpos > writepos)) ||
4141 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4142 /* Cannot proceed until we've updated the superblock... */
4143 wait_event(conf->wait_for_overlap,
4144 atomic_read(&conf->reshape_stripes)==0);
4145 mddev->reshape_position = conf->reshape_progress;
4146 mddev->curr_resync_completed = mddev->curr_resync;
4147 conf->reshape_checkpoint = jiffies;
4148 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4149 md_wakeup_thread(mddev->thread);
4150 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4151 kthread_should_stop());
4152 spin_lock_irq(&conf->device_lock);
4153 conf->reshape_safe = mddev->reshape_position;
4154 spin_unlock_irq(&conf->device_lock);
4155 wake_up(&conf->wait_for_overlap);
4156 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4157 }
4158
4159 if (mddev->delta_disks < 0) {
4160 BUG_ON(conf->reshape_progress == 0);
4161 stripe_addr = writepos;
4162 BUG_ON((mddev->dev_sectors &
4163 ~((sector_t)reshape_sectors - 1))
4164 - reshape_sectors - stripe_addr
4165 != sector_nr);
4166 } else {
4167 BUG_ON(writepos != sector_nr + reshape_sectors);
4168 stripe_addr = sector_nr;
4169 }
4170 INIT_LIST_HEAD(&stripes);
4171 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4172 int j;
4173 int skipped_disk = 0;
4174 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4175 set_bit(STRIPE_EXPANDING, &sh->state);
4176 atomic_inc(&conf->reshape_stripes);
4177 /* If any of this stripe is beyond the end of the old
4178 * array, then we need to zero those blocks
4179 */
4180 for (j=sh->disks; j--;) {
4181 sector_t s;
4182 if (j == sh->pd_idx)
4183 continue;
4184 if (conf->level == 6 &&
4185 j == sh->qd_idx)
4186 continue;
4187 s = compute_blocknr(sh, j, 0);
4188 if (s < raid5_size(mddev, 0, 0)) {
4189 skipped_disk = 1;
4190 continue;
4191 }
4192 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4193 set_bit(R5_Expanded, &sh->dev[j].flags);
4194 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4195 }
4196 if (!skipped_disk) {
4197 set_bit(STRIPE_EXPAND_READY, &sh->state);
4198 set_bit(STRIPE_HANDLE, &sh->state);
4199 }
4200 list_add(&sh->lru, &stripes);
4201 }
4202 spin_lock_irq(&conf->device_lock);
4203 if (mddev->delta_disks < 0)
4204 conf->reshape_progress -= reshape_sectors * new_data_disks;
4205 else
4206 conf->reshape_progress += reshape_sectors * new_data_disks;
4207 spin_unlock_irq(&conf->device_lock);
4208 /* Ok, those stripe are ready. We can start scheduling
4209 * reads on the source stripes.
4210 * The source stripes are determined by mapping the first and last
4211 * block on the destination stripes.
4212 */
4213 first_sector =
4214 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4215 1, &dd_idx, NULL);
4216 last_sector =
4217 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4218 * new_data_disks - 1),
4219 1, &dd_idx, NULL);
4220 if (last_sector >= mddev->dev_sectors)
4221 last_sector = mddev->dev_sectors - 1;
4222 while (first_sector <= last_sector) {
4223 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4224 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4225 set_bit(STRIPE_HANDLE, &sh->state);
4226 release_stripe(sh);
4227 first_sector += STRIPE_SECTORS;
4228 }
4229 /* Now that the sources are clearly marked, we can release
4230 * the destination stripes
4231 */
4232 while (!list_empty(&stripes)) {
4233 sh = list_entry(stripes.next, struct stripe_head, lru);
4234 list_del_init(&sh->lru);
4235 release_stripe(sh);
4236 }
4237 /* If this takes us to the resync_max point where we have to pause,
4238 * then we need to write out the superblock.
4239 */
4240 sector_nr += reshape_sectors;
4241 if ((sector_nr - mddev->curr_resync_completed) * 2
4242 >= mddev->resync_max - mddev->curr_resync_completed) {
4243 /* Cannot proceed until we've updated the superblock... */
4244 wait_event(conf->wait_for_overlap,
4245 atomic_read(&conf->reshape_stripes) == 0);
4246 mddev->reshape_position = conf->reshape_progress;
4247 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4248 conf->reshape_checkpoint = jiffies;
4249 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4250 md_wakeup_thread(mddev->thread);
4251 wait_event(mddev->sb_wait,
4252 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4253 || kthread_should_stop());
4254 spin_lock_irq(&conf->device_lock);
4255 conf->reshape_safe = mddev->reshape_position;
4256 spin_unlock_irq(&conf->device_lock);
4257 wake_up(&conf->wait_for_overlap);
4258 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4259 }
4260 return reshape_sectors;
4261 }
4262
4263 /* FIXME go_faster isn't used */
4264 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4265 {
4266 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4267 struct stripe_head *sh;
4268 sector_t max_sector = mddev->dev_sectors;
4269 int sync_blocks;
4270 int still_degraded = 0;
4271 int i;
4272
4273 if (sector_nr >= max_sector) {
4274 /* just being told to finish up .. nothing much to do */
4275 unplug_slaves(mddev);
4276
4277 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4278 end_reshape(conf);
4279 return 0;
4280 }
4281
4282 if (mddev->curr_resync < max_sector) /* aborted */
4283 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4284 &sync_blocks, 1);
4285 else /* completed sync */
4286 conf->fullsync = 0;
4287 bitmap_close_sync(mddev->bitmap);
4288
4289 return 0;
4290 }
4291
4292 /* Allow raid5_quiesce to complete */
4293 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4294
4295 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4296 return reshape_request(mddev, sector_nr, skipped);
4297
4298 /* No need to check resync_max as we never do more than one
4299 * stripe, and as resync_max will always be on a chunk boundary,
4300 * if the check in md_do_sync didn't fire, there is no chance
4301 * of overstepping resync_max here
4302 */
4303
4304 /* if there is too many failed drives and we are trying
4305 * to resync, then assert that we are finished, because there is
4306 * nothing we can do.
4307 */
4308 if (mddev->degraded >= conf->max_degraded &&
4309 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4310 sector_t rv = mddev->dev_sectors - sector_nr;
4311 *skipped = 1;
4312 return rv;
4313 }
4314 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4315 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4316 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4317 /* we can skip this block, and probably more */
4318 sync_blocks /= STRIPE_SECTORS;
4319 *skipped = 1;
4320 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4321 }
4322
4323
4324 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4325
4326 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4327 if (sh == NULL) {
4328 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4329 /* make sure we don't swamp the stripe cache if someone else
4330 * is trying to get access
4331 */
4332 schedule_timeout_uninterruptible(1);
4333 }
4334 /* Need to check if array will still be degraded after recovery/resync
4335 * We don't need to check the 'failed' flag as when that gets set,
4336 * recovery aborts.
4337 */
4338 for (i = 0; i < conf->raid_disks; i++)
4339 if (conf->disks[i].rdev == NULL)
4340 still_degraded = 1;
4341
4342 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4343
4344 spin_lock(&sh->lock);
4345 set_bit(STRIPE_SYNCING, &sh->state);
4346 clear_bit(STRIPE_INSYNC, &sh->state);
4347 spin_unlock(&sh->lock);
4348
4349 handle_stripe(sh);
4350 release_stripe(sh);
4351
4352 return STRIPE_SECTORS;
4353 }
4354
4355 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4356 {
4357 /* We may not be able to submit a whole bio at once as there
4358 * may not be enough stripe_heads available.
4359 * We cannot pre-allocate enough stripe_heads as we may need
4360 * more than exist in the cache (if we allow ever large chunks).
4361 * So we do one stripe head at a time and record in
4362 * ->bi_hw_segments how many have been done.
4363 *
4364 * We *know* that this entire raid_bio is in one chunk, so
4365 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4366 */
4367 struct stripe_head *sh;
4368 int dd_idx;
4369 sector_t sector, logical_sector, last_sector;
4370 int scnt = 0;
4371 int remaining;
4372 int handled = 0;
4373
4374 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4375 sector = raid5_compute_sector(conf, logical_sector,
4376 0, &dd_idx, NULL);
4377 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4378
4379 for (; logical_sector < last_sector;
4380 logical_sector += STRIPE_SECTORS,
4381 sector += STRIPE_SECTORS,
4382 scnt++) {
4383
4384 if (scnt < raid5_bi_hw_segments(raid_bio))
4385 /* already done this stripe */
4386 continue;
4387
4388 sh = get_active_stripe(conf, sector, 0, 1, 0);
4389
4390 if (!sh) {
4391 /* failed to get a stripe - must wait */
4392 raid5_set_bi_hw_segments(raid_bio, scnt);
4393 conf->retry_read_aligned = raid_bio;
4394 return handled;
4395 }
4396
4397 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4398 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4399 release_stripe(sh);
4400 raid5_set_bi_hw_segments(raid_bio, scnt);
4401 conf->retry_read_aligned = raid_bio;
4402 return handled;
4403 }
4404
4405 handle_stripe(sh);
4406 release_stripe(sh);
4407 handled++;
4408 }
4409 spin_lock_irq(&conf->device_lock);
4410 remaining = raid5_dec_bi_phys_segments(raid_bio);
4411 spin_unlock_irq(&conf->device_lock);
4412 if (remaining == 0)
4413 bio_endio(raid_bio, 0);
4414 if (atomic_dec_and_test(&conf->active_aligned_reads))
4415 wake_up(&conf->wait_for_stripe);
4416 return handled;
4417 }
4418
4419
4420 /*
4421 * This is our raid5 kernel thread.
4422 *
4423 * We scan the hash table for stripes which can be handled now.
4424 * During the scan, completed stripes are saved for us by the interrupt
4425 * handler, so that they will not have to wait for our next wakeup.
4426 */
4427 static void raid5d(mddev_t *mddev)
4428 {
4429 struct stripe_head *sh;
4430 raid5_conf_t *conf = mddev->private;
4431 int handled;
4432
4433 pr_debug("+++ raid5d active\n");
4434
4435 md_check_recovery(mddev);
4436
4437 handled = 0;
4438 spin_lock_irq(&conf->device_lock);
4439 while (1) {
4440 struct bio *bio;
4441
4442 if (conf->seq_flush != conf->seq_write) {
4443 int seq = conf->seq_flush;
4444 spin_unlock_irq(&conf->device_lock);
4445 bitmap_unplug(mddev->bitmap);
4446 spin_lock_irq(&conf->device_lock);
4447 conf->seq_write = seq;
4448 activate_bit_delay(conf);
4449 }
4450
4451 while ((bio = remove_bio_from_retry(conf))) {
4452 int ok;
4453 spin_unlock_irq(&conf->device_lock);
4454 ok = retry_aligned_read(conf, bio);
4455 spin_lock_irq(&conf->device_lock);
4456 if (!ok)
4457 break;
4458 handled++;
4459 }
4460
4461 sh = __get_priority_stripe(conf);
4462
4463 if (!sh)
4464 break;
4465 spin_unlock_irq(&conf->device_lock);
4466
4467 handled++;
4468 handle_stripe(sh);
4469 release_stripe(sh);
4470 cond_resched();
4471
4472 spin_lock_irq(&conf->device_lock);
4473 }
4474 pr_debug("%d stripes handled\n", handled);
4475
4476 spin_unlock_irq(&conf->device_lock);
4477
4478 async_tx_issue_pending_all();
4479 unplug_slaves(mddev);
4480
4481 pr_debug("--- raid5d inactive\n");
4482 }
4483
4484 static ssize_t
4485 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4486 {
4487 raid5_conf_t *conf = mddev->private;
4488 if (conf)
4489 return sprintf(page, "%d\n", conf->max_nr_stripes);
4490 else
4491 return 0;
4492 }
4493
4494 static ssize_t
4495 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4496 {
4497 raid5_conf_t *conf = mddev->private;
4498 unsigned long new;
4499 int err;
4500
4501 if (len >= PAGE_SIZE)
4502 return -EINVAL;
4503 if (!conf)
4504 return -ENODEV;
4505
4506 if (strict_strtoul(page, 10, &new))
4507 return -EINVAL;
4508 if (new <= 16 || new > 32768)
4509 return -EINVAL;
4510 while (new < conf->max_nr_stripes) {
4511 if (drop_one_stripe(conf))
4512 conf->max_nr_stripes--;
4513 else
4514 break;
4515 }
4516 err = md_allow_write(mddev);
4517 if (err)
4518 return err;
4519 while (new > conf->max_nr_stripes) {
4520 if (grow_one_stripe(conf))
4521 conf->max_nr_stripes++;
4522 else break;
4523 }
4524 return len;
4525 }
4526
4527 static struct md_sysfs_entry
4528 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4529 raid5_show_stripe_cache_size,
4530 raid5_store_stripe_cache_size);
4531
4532 static ssize_t
4533 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4534 {
4535 raid5_conf_t *conf = mddev->private;
4536 if (conf)
4537 return sprintf(page, "%d\n", conf->bypass_threshold);
4538 else
4539 return 0;
4540 }
4541
4542 static ssize_t
4543 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4544 {
4545 raid5_conf_t *conf = mddev->private;
4546 unsigned long new;
4547 if (len >= PAGE_SIZE)
4548 return -EINVAL;
4549 if (!conf)
4550 return -ENODEV;
4551
4552 if (strict_strtoul(page, 10, &new))
4553 return -EINVAL;
4554 if (new > conf->max_nr_stripes)
4555 return -EINVAL;
4556 conf->bypass_threshold = new;
4557 return len;
4558 }
4559
4560 static struct md_sysfs_entry
4561 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4562 S_IRUGO | S_IWUSR,
4563 raid5_show_preread_threshold,
4564 raid5_store_preread_threshold);
4565
4566 static ssize_t
4567 stripe_cache_active_show(mddev_t *mddev, char *page)
4568 {
4569 raid5_conf_t *conf = mddev->private;
4570 if (conf)
4571 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4572 else
4573 return 0;
4574 }
4575
4576 static struct md_sysfs_entry
4577 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4578
4579 static struct attribute *raid5_attrs[] = {
4580 &raid5_stripecache_size.attr,
4581 &raid5_stripecache_active.attr,
4582 &raid5_preread_bypass_threshold.attr,
4583 NULL,
4584 };
4585 static struct attribute_group raid5_attrs_group = {
4586 .name = NULL,
4587 .attrs = raid5_attrs,
4588 };
4589
4590 static sector_t
4591 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4592 {
4593 raid5_conf_t *conf = mddev->private;
4594
4595 if (!sectors)
4596 sectors = mddev->dev_sectors;
4597 if (!raid_disks)
4598 /* size is defined by the smallest of previous and new size */
4599 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4600
4601 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4602 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4603 return sectors * (raid_disks - conf->max_degraded);
4604 }
4605
4606 static void raid5_free_percpu(raid5_conf_t *conf)
4607 {
4608 struct raid5_percpu *percpu;
4609 unsigned long cpu;
4610
4611 if (!conf->percpu)
4612 return;
4613
4614 get_online_cpus();
4615 for_each_possible_cpu(cpu) {
4616 percpu = per_cpu_ptr(conf->percpu, cpu);
4617 safe_put_page(percpu->spare_page);
4618 kfree(percpu->scribble);
4619 }
4620 #ifdef CONFIG_HOTPLUG_CPU
4621 unregister_cpu_notifier(&conf->cpu_notify);
4622 #endif
4623 put_online_cpus();
4624
4625 free_percpu(conf->percpu);
4626 }
4627
4628 static void free_conf(raid5_conf_t *conf)
4629 {
4630 shrink_stripes(conf);
4631 raid5_free_percpu(conf);
4632 kfree(conf->disks);
4633 kfree(conf->stripe_hashtbl);
4634 kfree(conf);
4635 }
4636
4637 #ifdef CONFIG_HOTPLUG_CPU
4638 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4639 void *hcpu)
4640 {
4641 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4642 long cpu = (long)hcpu;
4643 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4644
4645 switch (action) {
4646 case CPU_UP_PREPARE:
4647 case CPU_UP_PREPARE_FROZEN:
4648 if (conf->level == 6 && !percpu->spare_page)
4649 percpu->spare_page = alloc_page(GFP_KERNEL);
4650 if (!percpu->scribble)
4651 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4652
4653 if (!percpu->scribble ||
4654 (conf->level == 6 && !percpu->spare_page)) {
4655 safe_put_page(percpu->spare_page);
4656 kfree(percpu->scribble);
4657 pr_err("%s: failed memory allocation for cpu%ld\n",
4658 __func__, cpu);
4659 return NOTIFY_BAD;
4660 }
4661 break;
4662 case CPU_DEAD:
4663 case CPU_DEAD_FROZEN:
4664 safe_put_page(percpu->spare_page);
4665 kfree(percpu->scribble);
4666 percpu->spare_page = NULL;
4667 percpu->scribble = NULL;
4668 break;
4669 default:
4670 break;
4671 }
4672 return NOTIFY_OK;
4673 }
4674 #endif
4675
4676 static int raid5_alloc_percpu(raid5_conf_t *conf)
4677 {
4678 unsigned long cpu;
4679 struct page *spare_page;
4680 struct raid5_percpu __percpu *allcpus;
4681 void *scribble;
4682 int err;
4683
4684 allcpus = alloc_percpu(struct raid5_percpu);
4685 if (!allcpus)
4686 return -ENOMEM;
4687 conf->percpu = allcpus;
4688
4689 get_online_cpus();
4690 err = 0;
4691 for_each_present_cpu(cpu) {
4692 if (conf->level == 6) {
4693 spare_page = alloc_page(GFP_KERNEL);
4694 if (!spare_page) {
4695 err = -ENOMEM;
4696 break;
4697 }
4698 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4699 }
4700 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4701 if (!scribble) {
4702 err = -ENOMEM;
4703 break;
4704 }
4705 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4706 }
4707 #ifdef CONFIG_HOTPLUG_CPU
4708 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4709 conf->cpu_notify.priority = 0;
4710 if (err == 0)
4711 err = register_cpu_notifier(&conf->cpu_notify);
4712 #endif
4713 put_online_cpus();
4714
4715 return err;
4716 }
4717
4718 static raid5_conf_t *setup_conf(mddev_t *mddev)
4719 {
4720 raid5_conf_t *conf;
4721 int raid_disk, memory, max_disks;
4722 mdk_rdev_t *rdev;
4723 struct disk_info *disk;
4724
4725 if (mddev->new_level != 5
4726 && mddev->new_level != 4
4727 && mddev->new_level != 6) {
4728 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4729 mdname(mddev), mddev->new_level);
4730 return ERR_PTR(-EIO);
4731 }
4732 if ((mddev->new_level == 5
4733 && !algorithm_valid_raid5(mddev->new_layout)) ||
4734 (mddev->new_level == 6
4735 && !algorithm_valid_raid6(mddev->new_layout))) {
4736 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4737 mdname(mddev), mddev->new_layout);
4738 return ERR_PTR(-EIO);
4739 }
4740 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4741 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4742 mdname(mddev), mddev->raid_disks);
4743 return ERR_PTR(-EINVAL);
4744 }
4745
4746 if (!mddev->new_chunk_sectors ||
4747 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4748 !is_power_of_2(mddev->new_chunk_sectors)) {
4749 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4750 mddev->new_chunk_sectors << 9, mdname(mddev));
4751 return ERR_PTR(-EINVAL);
4752 }
4753
4754 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4755 if (conf == NULL)
4756 goto abort;
4757 spin_lock_init(&conf->device_lock);
4758 init_waitqueue_head(&conf->wait_for_stripe);
4759 init_waitqueue_head(&conf->wait_for_overlap);
4760 INIT_LIST_HEAD(&conf->handle_list);
4761 INIT_LIST_HEAD(&conf->hold_list);
4762 INIT_LIST_HEAD(&conf->delayed_list);
4763 INIT_LIST_HEAD(&conf->bitmap_list);
4764 INIT_LIST_HEAD(&conf->inactive_list);
4765 atomic_set(&conf->active_stripes, 0);
4766 atomic_set(&conf->preread_active_stripes, 0);
4767 atomic_set(&conf->active_aligned_reads, 0);
4768 conf->bypass_threshold = BYPASS_THRESHOLD;
4769
4770 conf->raid_disks = mddev->raid_disks;
4771 if (mddev->reshape_position == MaxSector)
4772 conf->previous_raid_disks = mddev->raid_disks;
4773 else
4774 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4775 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4776 conf->scribble_len = scribble_len(max_disks);
4777
4778 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4779 GFP_KERNEL);
4780 if (!conf->disks)
4781 goto abort;
4782
4783 conf->mddev = mddev;
4784
4785 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4786 goto abort;
4787
4788 conf->level = mddev->new_level;
4789 if (raid5_alloc_percpu(conf) != 0)
4790 goto abort;
4791
4792 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4793
4794 list_for_each_entry(rdev, &mddev->disks, same_set) {
4795 raid_disk = rdev->raid_disk;
4796 if (raid_disk >= max_disks
4797 || raid_disk < 0)
4798 continue;
4799 disk = conf->disks + raid_disk;
4800
4801 disk->rdev = rdev;
4802
4803 if (test_bit(In_sync, &rdev->flags)) {
4804 char b[BDEVNAME_SIZE];
4805 printk(KERN_INFO "raid5: device %s operational as raid"
4806 " disk %d\n", bdevname(rdev->bdev,b),
4807 raid_disk);
4808 } else
4809 /* Cannot rely on bitmap to complete recovery */
4810 conf->fullsync = 1;
4811 }
4812
4813 conf->chunk_sectors = mddev->new_chunk_sectors;
4814 conf->level = mddev->new_level;
4815 if (conf->level == 6)
4816 conf->max_degraded = 2;
4817 else
4818 conf->max_degraded = 1;
4819 conf->algorithm = mddev->new_layout;
4820 conf->max_nr_stripes = NR_STRIPES;
4821 conf->reshape_progress = mddev->reshape_position;
4822 if (conf->reshape_progress != MaxSector) {
4823 conf->prev_chunk_sectors = mddev->chunk_sectors;
4824 conf->prev_algo = mddev->layout;
4825 }
4826
4827 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4828 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4829 if (grow_stripes(conf, conf->max_nr_stripes)) {
4830 printk(KERN_ERR
4831 "raid5: couldn't allocate %dkB for buffers\n", memory);
4832 goto abort;
4833 } else
4834 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4835 memory, mdname(mddev));
4836
4837 conf->thread = md_register_thread(raid5d, mddev, NULL);
4838 if (!conf->thread) {
4839 printk(KERN_ERR
4840 "raid5: couldn't allocate thread for %s\n",
4841 mdname(mddev));
4842 goto abort;
4843 }
4844
4845 return conf;
4846
4847 abort:
4848 if (conf) {
4849 free_conf(conf);
4850 return ERR_PTR(-EIO);
4851 } else
4852 return ERR_PTR(-ENOMEM);
4853 }
4854
4855
4856 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4857 {
4858 switch (algo) {
4859 case ALGORITHM_PARITY_0:
4860 if (raid_disk < max_degraded)
4861 return 1;
4862 break;
4863 case ALGORITHM_PARITY_N:
4864 if (raid_disk >= raid_disks - max_degraded)
4865 return 1;
4866 break;
4867 case ALGORITHM_PARITY_0_6:
4868 if (raid_disk == 0 ||
4869 raid_disk == raid_disks - 1)
4870 return 1;
4871 break;
4872 case ALGORITHM_LEFT_ASYMMETRIC_6:
4873 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4874 case ALGORITHM_LEFT_SYMMETRIC_6:
4875 case ALGORITHM_RIGHT_SYMMETRIC_6:
4876 if (raid_disk == raid_disks - 1)
4877 return 1;
4878 }
4879 return 0;
4880 }
4881
4882 static int run(mddev_t *mddev)
4883 {
4884 raid5_conf_t *conf;
4885 int working_disks = 0, chunk_size;
4886 int dirty_parity_disks = 0;
4887 mdk_rdev_t *rdev;
4888 sector_t reshape_offset = 0;
4889
4890 if (mddev->recovery_cp != MaxSector)
4891 printk(KERN_NOTICE "raid5: %s is not clean"
4892 " -- starting background reconstruction\n",
4893 mdname(mddev));
4894 if (mddev->reshape_position != MaxSector) {
4895 /* Check that we can continue the reshape.
4896 * Currently only disks can change, it must
4897 * increase, and we must be past the point where
4898 * a stripe over-writes itself
4899 */
4900 sector_t here_new, here_old;
4901 int old_disks;
4902 int max_degraded = (mddev->level == 6 ? 2 : 1);
4903
4904 if (mddev->new_level != mddev->level) {
4905 printk(KERN_ERR "raid5: %s: unsupported reshape "
4906 "required - aborting.\n",
4907 mdname(mddev));
4908 return -EINVAL;
4909 }
4910 old_disks = mddev->raid_disks - mddev->delta_disks;
4911 /* reshape_position must be on a new-stripe boundary, and one
4912 * further up in new geometry must map after here in old
4913 * geometry.
4914 */
4915 here_new = mddev->reshape_position;
4916 if (sector_div(here_new, mddev->new_chunk_sectors *
4917 (mddev->raid_disks - max_degraded))) {
4918 printk(KERN_ERR "raid5: reshape_position not "
4919 "on a stripe boundary\n");
4920 return -EINVAL;
4921 }
4922 reshape_offset = here_new * mddev->new_chunk_sectors;
4923 /* here_new is the stripe we will write to */
4924 here_old = mddev->reshape_position;
4925 sector_div(here_old, mddev->chunk_sectors *
4926 (old_disks-max_degraded));
4927 /* here_old is the first stripe that we might need to read
4928 * from */
4929 if (mddev->delta_disks == 0) {
4930 /* We cannot be sure it is safe to start an in-place
4931 * reshape. It is only safe if user-space if monitoring
4932 * and taking constant backups.
4933 * mdadm always starts a situation like this in
4934 * readonly mode so it can take control before
4935 * allowing any writes. So just check for that.
4936 */
4937 if ((here_new * mddev->new_chunk_sectors !=
4938 here_old * mddev->chunk_sectors) ||
4939 mddev->ro == 0) {
4940 printk(KERN_ERR "raid5: in-place reshape must be started"
4941 " in read-only mode - aborting\n");
4942 return -EINVAL;
4943 }
4944 } else if (mddev->delta_disks < 0
4945 ? (here_new * mddev->new_chunk_sectors <=
4946 here_old * mddev->chunk_sectors)
4947 : (here_new * mddev->new_chunk_sectors >=
4948 here_old * mddev->chunk_sectors)) {
4949 /* Reading from the same stripe as writing to - bad */
4950 printk(KERN_ERR "raid5: reshape_position too early for "
4951 "auto-recovery - aborting.\n");
4952 return -EINVAL;
4953 }
4954 printk(KERN_INFO "raid5: reshape will continue\n");
4955 /* OK, we should be able to continue; */
4956 } else {
4957 BUG_ON(mddev->level != mddev->new_level);
4958 BUG_ON(mddev->layout != mddev->new_layout);
4959 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4960 BUG_ON(mddev->delta_disks != 0);
4961 }
4962
4963 if (mddev->private == NULL)
4964 conf = setup_conf(mddev);
4965 else
4966 conf = mddev->private;
4967
4968 if (IS_ERR(conf))
4969 return PTR_ERR(conf);
4970
4971 mddev->thread = conf->thread;
4972 conf->thread = NULL;
4973 mddev->private = conf;
4974
4975 /*
4976 * 0 for a fully functional array, 1 or 2 for a degraded array.
4977 */
4978 list_for_each_entry(rdev, &mddev->disks, same_set) {
4979 if (rdev->raid_disk < 0)
4980 continue;
4981 if (test_bit(In_sync, &rdev->flags))
4982 working_disks++;
4983 /* This disc is not fully in-sync. However if it
4984 * just stored parity (beyond the recovery_offset),
4985 * when we don't need to be concerned about the
4986 * array being dirty.
4987 * When reshape goes 'backwards', we never have
4988 * partially completed devices, so we only need
4989 * to worry about reshape going forwards.
4990 */
4991 /* Hack because v0.91 doesn't store recovery_offset properly. */
4992 if (mddev->major_version == 0 &&
4993 mddev->minor_version > 90)
4994 rdev->recovery_offset = reshape_offset;
4995
4996 printk("%d: w=%d pa=%d pr=%d m=%d a=%d r=%d op1=%d op2=%d\n",
4997 rdev->raid_disk, working_disks, conf->prev_algo,
4998 conf->previous_raid_disks, conf->max_degraded,
4999 conf->algorithm, conf->raid_disks,
5000 only_parity(rdev->raid_disk,
5001 conf->prev_algo,
5002 conf->previous_raid_disks,
5003 conf->max_degraded),
5004 only_parity(rdev->raid_disk,
5005 conf->algorithm,
5006 conf->raid_disks,
5007 conf->max_degraded));
5008 if (rdev->recovery_offset < reshape_offset) {
5009 /* We need to check old and new layout */
5010 if (!only_parity(rdev->raid_disk,
5011 conf->algorithm,
5012 conf->raid_disks,
5013 conf->max_degraded))
5014 continue;
5015 }
5016 if (!only_parity(rdev->raid_disk,
5017 conf->prev_algo,
5018 conf->previous_raid_disks,
5019 conf->max_degraded))
5020 continue;
5021 dirty_parity_disks++;
5022 }
5023
5024 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5025 - working_disks);
5026
5027 if (mddev->degraded > conf->max_degraded) {
5028 printk(KERN_ERR "raid5: not enough operational devices for %s"
5029 " (%d/%d failed)\n",
5030 mdname(mddev), mddev->degraded, conf->raid_disks);
5031 goto abort;
5032 }
5033
5034 /* device size must be a multiple of chunk size */
5035 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5036 mddev->resync_max_sectors = mddev->dev_sectors;
5037
5038 if (mddev->degraded > dirty_parity_disks &&
5039 mddev->recovery_cp != MaxSector) {
5040 if (mddev->ok_start_degraded)
5041 printk(KERN_WARNING
5042 "raid5: starting dirty degraded array: %s"
5043 "- data corruption possible.\n",
5044 mdname(mddev));
5045 else {
5046 printk(KERN_ERR
5047 "raid5: cannot start dirty degraded array for %s\n",
5048 mdname(mddev));
5049 goto abort;
5050 }
5051 }
5052
5053 if (mddev->degraded == 0)
5054 printk("raid5: raid level %d set %s active with %d out of %d"
5055 " devices, algorithm %d\n", conf->level, mdname(mddev),
5056 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5057 mddev->new_layout);
5058 else
5059 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
5060 " out of %d devices, algorithm %d\n", conf->level,
5061 mdname(mddev), mddev->raid_disks - mddev->degraded,
5062 mddev->raid_disks, mddev->new_layout);
5063
5064 print_raid5_conf(conf);
5065
5066 if (conf->reshape_progress != MaxSector) {
5067 printk("...ok start reshape thread\n");
5068 conf->reshape_safe = conf->reshape_progress;
5069 atomic_set(&conf->reshape_stripes, 0);
5070 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5071 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5072 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5073 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5074 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5075 "reshape");
5076 }
5077
5078 /* read-ahead size must cover two whole stripes, which is
5079 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5080 */
5081 {
5082 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5083 int stripe = data_disks *
5084 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5085 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5086 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5087 }
5088
5089 /* Ok, everything is just fine now */
5090 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5091 printk(KERN_WARNING
5092 "raid5: failed to create sysfs attributes for %s\n",
5093 mdname(mddev));
5094
5095 mddev->queue->queue_lock = &conf->device_lock;
5096
5097 mddev->queue->unplug_fn = raid5_unplug_device;
5098 mddev->queue->backing_dev_info.congested_data = mddev;
5099 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5100
5101 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5102
5103 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5104 chunk_size = mddev->chunk_sectors << 9;
5105 blk_queue_io_min(mddev->queue, chunk_size);
5106 blk_queue_io_opt(mddev->queue, chunk_size *
5107 (conf->raid_disks - conf->max_degraded));
5108
5109 list_for_each_entry(rdev, &mddev->disks, same_set)
5110 disk_stack_limits(mddev->gendisk, rdev->bdev,
5111 rdev->data_offset << 9);
5112
5113 return 0;
5114 abort:
5115 md_unregister_thread(mddev->thread);
5116 mddev->thread = NULL;
5117 if (conf) {
5118 print_raid5_conf(conf);
5119 free_conf(conf);
5120 }
5121 mddev->private = NULL;
5122 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5123 return -EIO;
5124 }
5125
5126
5127
5128 static int stop(mddev_t *mddev)
5129 {
5130 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5131
5132 md_unregister_thread(mddev->thread);
5133 mddev->thread = NULL;
5134 mddev->queue->backing_dev_info.congested_fn = NULL;
5135 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5136 free_conf(conf);
5137 mddev->private = &raid5_attrs_group;
5138 return 0;
5139 }
5140
5141 #ifdef DEBUG
5142 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5143 {
5144 int i;
5145
5146 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5147 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5148 seq_printf(seq, "sh %llu, count %d.\n",
5149 (unsigned long long)sh->sector, atomic_read(&sh->count));
5150 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5151 for (i = 0; i < sh->disks; i++) {
5152 seq_printf(seq, "(cache%d: %p %ld) ",
5153 i, sh->dev[i].page, sh->dev[i].flags);
5154 }
5155 seq_printf(seq, "\n");
5156 }
5157
5158 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5159 {
5160 struct stripe_head *sh;
5161 struct hlist_node *hn;
5162 int i;
5163
5164 spin_lock_irq(&conf->device_lock);
5165 for (i = 0; i < NR_HASH; i++) {
5166 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5167 if (sh->raid_conf != conf)
5168 continue;
5169 print_sh(seq, sh);
5170 }
5171 }
5172 spin_unlock_irq(&conf->device_lock);
5173 }
5174 #endif
5175
5176 static void status(struct seq_file *seq, mddev_t *mddev)
5177 {
5178 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5179 int i;
5180
5181 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5182 mddev->chunk_sectors / 2, mddev->layout);
5183 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5184 for (i = 0; i < conf->raid_disks; i++)
5185 seq_printf (seq, "%s",
5186 conf->disks[i].rdev &&
5187 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5188 seq_printf (seq, "]");
5189 #ifdef DEBUG
5190 seq_printf (seq, "\n");
5191 printall(seq, conf);
5192 #endif
5193 }
5194
5195 static void print_raid5_conf (raid5_conf_t *conf)
5196 {
5197 int i;
5198 struct disk_info *tmp;
5199
5200 printk("RAID5 conf printout:\n");
5201 if (!conf) {
5202 printk("(conf==NULL)\n");
5203 return;
5204 }
5205 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5206 conf->raid_disks - conf->mddev->degraded);
5207
5208 for (i = 0; i < conf->raid_disks; i++) {
5209 char b[BDEVNAME_SIZE];
5210 tmp = conf->disks + i;
5211 if (tmp->rdev)
5212 printk(" disk %d, o:%d, dev:%s\n",
5213 i, !test_bit(Faulty, &tmp->rdev->flags),
5214 bdevname(tmp->rdev->bdev,b));
5215 }
5216 }
5217
5218 static int raid5_spare_active(mddev_t *mddev)
5219 {
5220 int i;
5221 raid5_conf_t *conf = mddev->private;
5222 struct disk_info *tmp;
5223
5224 for (i = 0; i < conf->raid_disks; i++) {
5225 tmp = conf->disks + i;
5226 if (tmp->rdev
5227 && !test_bit(Faulty, &tmp->rdev->flags)
5228 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5229 unsigned long flags;
5230 spin_lock_irqsave(&conf->device_lock, flags);
5231 mddev->degraded--;
5232 spin_unlock_irqrestore(&conf->device_lock, flags);
5233 }
5234 }
5235 print_raid5_conf(conf);
5236 return 0;
5237 }
5238
5239 static int raid5_remove_disk(mddev_t *mddev, int number)
5240 {
5241 raid5_conf_t *conf = mddev->private;
5242 int err = 0;
5243 mdk_rdev_t *rdev;
5244 struct disk_info *p = conf->disks + number;
5245
5246 print_raid5_conf(conf);
5247 rdev = p->rdev;
5248 if (rdev) {
5249 if (number >= conf->raid_disks &&
5250 conf->reshape_progress == MaxSector)
5251 clear_bit(In_sync, &rdev->flags);
5252
5253 if (test_bit(In_sync, &rdev->flags) ||
5254 atomic_read(&rdev->nr_pending)) {
5255 err = -EBUSY;
5256 goto abort;
5257 }
5258 /* Only remove non-faulty devices if recovery
5259 * isn't possible.
5260 */
5261 if (!test_bit(Faulty, &rdev->flags) &&
5262 mddev->degraded <= conf->max_degraded &&
5263 number < conf->raid_disks) {
5264 err = -EBUSY;
5265 goto abort;
5266 }
5267 p->rdev = NULL;
5268 synchronize_rcu();
5269 if (atomic_read(&rdev->nr_pending)) {
5270 /* lost the race, try later */
5271 err = -EBUSY;
5272 p->rdev = rdev;
5273 }
5274 }
5275 abort:
5276
5277 print_raid5_conf(conf);
5278 return err;
5279 }
5280
5281 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5282 {
5283 raid5_conf_t *conf = mddev->private;
5284 int err = -EEXIST;
5285 int disk;
5286 struct disk_info *p;
5287 int first = 0;
5288 int last = conf->raid_disks - 1;
5289
5290 if (mddev->degraded > conf->max_degraded)
5291 /* no point adding a device */
5292 return -EINVAL;
5293
5294 if (rdev->raid_disk >= 0)
5295 first = last = rdev->raid_disk;
5296
5297 /*
5298 * find the disk ... but prefer rdev->saved_raid_disk
5299 * if possible.
5300 */
5301 if (rdev->saved_raid_disk >= 0 &&
5302 rdev->saved_raid_disk >= first &&
5303 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5304 disk = rdev->saved_raid_disk;
5305 else
5306 disk = first;
5307 for ( ; disk <= last ; disk++)
5308 if ((p=conf->disks + disk)->rdev == NULL) {
5309 clear_bit(In_sync, &rdev->flags);
5310 rdev->raid_disk = disk;
5311 err = 0;
5312 if (rdev->saved_raid_disk != disk)
5313 conf->fullsync = 1;
5314 rcu_assign_pointer(p->rdev, rdev);
5315 break;
5316 }
5317 print_raid5_conf(conf);
5318 return err;
5319 }
5320
5321 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5322 {
5323 /* no resync is happening, and there is enough space
5324 * on all devices, so we can resize.
5325 * We need to make sure resync covers any new space.
5326 * If the array is shrinking we should possibly wait until
5327 * any io in the removed space completes, but it hardly seems
5328 * worth it.
5329 */
5330 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5331 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5332 mddev->raid_disks));
5333 if (mddev->array_sectors >
5334 raid5_size(mddev, sectors, mddev->raid_disks))
5335 return -EINVAL;
5336 set_capacity(mddev->gendisk, mddev->array_sectors);
5337 mddev->changed = 1;
5338 revalidate_disk(mddev->gendisk);
5339 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5340 mddev->recovery_cp = mddev->dev_sectors;
5341 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5342 }
5343 mddev->dev_sectors = sectors;
5344 mddev->resync_max_sectors = sectors;
5345 return 0;
5346 }
5347
5348 static int check_stripe_cache(mddev_t *mddev)
5349 {
5350 /* Can only proceed if there are plenty of stripe_heads.
5351 * We need a minimum of one full stripe,, and for sensible progress
5352 * it is best to have about 4 times that.
5353 * If we require 4 times, then the default 256 4K stripe_heads will
5354 * allow for chunk sizes up to 256K, which is probably OK.
5355 * If the chunk size is greater, user-space should request more
5356 * stripe_heads first.
5357 */
5358 raid5_conf_t *conf = mddev->private;
5359 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5360 > conf->max_nr_stripes ||
5361 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5362 > conf->max_nr_stripes) {
5363 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
5364 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5365 / STRIPE_SIZE)*4);
5366 return 0;
5367 }
5368 return 1;
5369 }
5370
5371 static int check_reshape(mddev_t *mddev)
5372 {
5373 raid5_conf_t *conf = mddev->private;
5374
5375 if (mddev->delta_disks == 0 &&
5376 mddev->new_layout == mddev->layout &&
5377 mddev->new_chunk_sectors == mddev->chunk_sectors)
5378 return 0; /* nothing to do */
5379 if (mddev->bitmap)
5380 /* Cannot grow a bitmap yet */
5381 return -EBUSY;
5382 if (mddev->degraded > conf->max_degraded)
5383 return -EINVAL;
5384 if (mddev->delta_disks < 0) {
5385 /* We might be able to shrink, but the devices must
5386 * be made bigger first.
5387 * For raid6, 4 is the minimum size.
5388 * Otherwise 2 is the minimum
5389 */
5390 int min = 2;
5391 if (mddev->level == 6)
5392 min = 4;
5393 if (mddev->raid_disks + mddev->delta_disks < min)
5394 return -EINVAL;
5395 }
5396
5397 if (!check_stripe_cache(mddev))
5398 return -ENOSPC;
5399
5400 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5401 }
5402
5403 static int raid5_start_reshape(mddev_t *mddev)
5404 {
5405 raid5_conf_t *conf = mddev->private;
5406 mdk_rdev_t *rdev;
5407 int spares = 0;
5408 int added_devices = 0;
5409 unsigned long flags;
5410
5411 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5412 return -EBUSY;
5413
5414 if (!check_stripe_cache(mddev))
5415 return -ENOSPC;
5416
5417 list_for_each_entry(rdev, &mddev->disks, same_set)
5418 if (rdev->raid_disk < 0 &&
5419 !test_bit(Faulty, &rdev->flags))
5420 spares++;
5421
5422 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5423 /* Not enough devices even to make a degraded array
5424 * of that size
5425 */
5426 return -EINVAL;
5427
5428 /* Refuse to reduce size of the array. Any reductions in
5429 * array size must be through explicit setting of array_size
5430 * attribute.
5431 */
5432 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5433 < mddev->array_sectors) {
5434 printk(KERN_ERR "md: %s: array size must be reduced "
5435 "before number of disks\n", mdname(mddev));
5436 return -EINVAL;
5437 }
5438
5439 atomic_set(&conf->reshape_stripes, 0);
5440 spin_lock_irq(&conf->device_lock);
5441 conf->previous_raid_disks = conf->raid_disks;
5442 conf->raid_disks += mddev->delta_disks;
5443 conf->prev_chunk_sectors = conf->chunk_sectors;
5444 conf->chunk_sectors = mddev->new_chunk_sectors;
5445 conf->prev_algo = conf->algorithm;
5446 conf->algorithm = mddev->new_layout;
5447 if (mddev->delta_disks < 0)
5448 conf->reshape_progress = raid5_size(mddev, 0, 0);
5449 else
5450 conf->reshape_progress = 0;
5451 conf->reshape_safe = conf->reshape_progress;
5452 conf->generation++;
5453 spin_unlock_irq(&conf->device_lock);
5454
5455 /* Add some new drives, as many as will fit.
5456 * We know there are enough to make the newly sized array work.
5457 */
5458 list_for_each_entry(rdev, &mddev->disks, same_set)
5459 if (rdev->raid_disk < 0 &&
5460 !test_bit(Faulty, &rdev->flags)) {
5461 if (raid5_add_disk(mddev, rdev) == 0) {
5462 char nm[20];
5463 if (rdev->raid_disk >= conf->previous_raid_disks) {
5464 set_bit(In_sync, &rdev->flags);
5465 added_devices++;
5466 } else
5467 rdev->recovery_offset = 0;
5468 sprintf(nm, "rd%d", rdev->raid_disk);
5469 if (sysfs_create_link(&mddev->kobj,
5470 &rdev->kobj, nm))
5471 printk(KERN_WARNING
5472 "raid5: failed to create "
5473 " link %s for %s\n",
5474 nm, mdname(mddev));
5475 } else
5476 break;
5477 }
5478
5479 /* When a reshape changes the number of devices, ->degraded
5480 * is measured against the large of the pre and post number of
5481 * devices.*/
5482 if (mddev->delta_disks > 0) {
5483 spin_lock_irqsave(&conf->device_lock, flags);
5484 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5485 - added_devices;
5486 spin_unlock_irqrestore(&conf->device_lock, flags);
5487 }
5488 mddev->raid_disks = conf->raid_disks;
5489 mddev->reshape_position = conf->reshape_progress;
5490 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5491
5492 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5493 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5494 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5495 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5496 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5497 "reshape");
5498 if (!mddev->sync_thread) {
5499 mddev->recovery = 0;
5500 spin_lock_irq(&conf->device_lock);
5501 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5502 conf->reshape_progress = MaxSector;
5503 spin_unlock_irq(&conf->device_lock);
5504 return -EAGAIN;
5505 }
5506 conf->reshape_checkpoint = jiffies;
5507 md_wakeup_thread(mddev->sync_thread);
5508 md_new_event(mddev);
5509 return 0;
5510 }
5511
5512 /* This is called from the reshape thread and should make any
5513 * changes needed in 'conf'
5514 */
5515 static void end_reshape(raid5_conf_t *conf)
5516 {
5517
5518 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5519
5520 spin_lock_irq(&conf->device_lock);
5521 conf->previous_raid_disks = conf->raid_disks;
5522 conf->reshape_progress = MaxSector;
5523 spin_unlock_irq(&conf->device_lock);
5524 wake_up(&conf->wait_for_overlap);
5525
5526 /* read-ahead size must cover two whole stripes, which is
5527 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5528 */
5529 {
5530 int data_disks = conf->raid_disks - conf->max_degraded;
5531 int stripe = data_disks * ((conf->chunk_sectors << 9)
5532 / PAGE_SIZE);
5533 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5534 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5535 }
5536 }
5537 }
5538
5539 /* This is called from the raid5d thread with mddev_lock held.
5540 * It makes config changes to the device.
5541 */
5542 static void raid5_finish_reshape(mddev_t *mddev)
5543 {
5544 raid5_conf_t *conf = mddev->private;
5545
5546 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5547
5548 if (mddev->delta_disks > 0) {
5549 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5550 set_capacity(mddev->gendisk, mddev->array_sectors);
5551 mddev->changed = 1;
5552 revalidate_disk(mddev->gendisk);
5553 } else {
5554 int d;
5555 mddev->degraded = conf->raid_disks;
5556 for (d = 0; d < conf->raid_disks ; d++)
5557 if (conf->disks[d].rdev &&
5558 test_bit(In_sync,
5559 &conf->disks[d].rdev->flags))
5560 mddev->degraded--;
5561 for (d = conf->raid_disks ;
5562 d < conf->raid_disks - mddev->delta_disks;
5563 d++) {
5564 mdk_rdev_t *rdev = conf->disks[d].rdev;
5565 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5566 char nm[20];
5567 sprintf(nm, "rd%d", rdev->raid_disk);
5568 sysfs_remove_link(&mddev->kobj, nm);
5569 rdev->raid_disk = -1;
5570 }
5571 }
5572 }
5573 mddev->layout = conf->algorithm;
5574 mddev->chunk_sectors = conf->chunk_sectors;
5575 mddev->reshape_position = MaxSector;
5576 mddev->delta_disks = 0;
5577 }
5578 }
5579
5580 static void raid5_quiesce(mddev_t *mddev, int state)
5581 {
5582 raid5_conf_t *conf = mddev->private;
5583
5584 switch(state) {
5585 case 2: /* resume for a suspend */
5586 wake_up(&conf->wait_for_overlap);
5587 break;
5588
5589 case 1: /* stop all writes */
5590 spin_lock_irq(&conf->device_lock);
5591 /* '2' tells resync/reshape to pause so that all
5592 * active stripes can drain
5593 */
5594 conf->quiesce = 2;
5595 wait_event_lock_irq(conf->wait_for_stripe,
5596 atomic_read(&conf->active_stripes) == 0 &&
5597 atomic_read(&conf->active_aligned_reads) == 0,
5598 conf->device_lock, /* nothing */);
5599 conf->quiesce = 1;
5600 spin_unlock_irq(&conf->device_lock);
5601 /* allow reshape to continue */
5602 wake_up(&conf->wait_for_overlap);
5603 break;
5604
5605 case 0: /* re-enable writes */
5606 spin_lock_irq(&conf->device_lock);
5607 conf->quiesce = 0;
5608 wake_up(&conf->wait_for_stripe);
5609 wake_up(&conf->wait_for_overlap);
5610 spin_unlock_irq(&conf->device_lock);
5611 break;
5612 }
5613 }
5614
5615
5616 static void *raid5_takeover_raid1(mddev_t *mddev)
5617 {
5618 int chunksect;
5619
5620 if (mddev->raid_disks != 2 ||
5621 mddev->degraded > 1)
5622 return ERR_PTR(-EINVAL);
5623
5624 /* Should check if there are write-behind devices? */
5625
5626 chunksect = 64*2; /* 64K by default */
5627
5628 /* The array must be an exact multiple of chunksize */
5629 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5630 chunksect >>= 1;
5631
5632 if ((chunksect<<9) < STRIPE_SIZE)
5633 /* array size does not allow a suitable chunk size */
5634 return ERR_PTR(-EINVAL);
5635
5636 mddev->new_level = 5;
5637 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5638 mddev->new_chunk_sectors = chunksect;
5639
5640 return setup_conf(mddev);
5641 }
5642
5643 static void *raid5_takeover_raid6(mddev_t *mddev)
5644 {
5645 int new_layout;
5646
5647 switch (mddev->layout) {
5648 case ALGORITHM_LEFT_ASYMMETRIC_6:
5649 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5650 break;
5651 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5652 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5653 break;
5654 case ALGORITHM_LEFT_SYMMETRIC_6:
5655 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5656 break;
5657 case ALGORITHM_RIGHT_SYMMETRIC_6:
5658 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5659 break;
5660 case ALGORITHM_PARITY_0_6:
5661 new_layout = ALGORITHM_PARITY_0;
5662 break;
5663 case ALGORITHM_PARITY_N:
5664 new_layout = ALGORITHM_PARITY_N;
5665 break;
5666 default:
5667 return ERR_PTR(-EINVAL);
5668 }
5669 mddev->new_level = 5;
5670 mddev->new_layout = new_layout;
5671 mddev->delta_disks = -1;
5672 mddev->raid_disks -= 1;
5673 return setup_conf(mddev);
5674 }
5675
5676
5677 static int raid5_check_reshape(mddev_t *mddev)
5678 {
5679 /* For a 2-drive array, the layout and chunk size can be changed
5680 * immediately as not restriping is needed.
5681 * For larger arrays we record the new value - after validation
5682 * to be used by a reshape pass.
5683 */
5684 raid5_conf_t *conf = mddev->private;
5685 int new_chunk = mddev->new_chunk_sectors;
5686
5687 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5688 return -EINVAL;
5689 if (new_chunk > 0) {
5690 if (!is_power_of_2(new_chunk))
5691 return -EINVAL;
5692 if (new_chunk < (PAGE_SIZE>>9))
5693 return -EINVAL;
5694 if (mddev->array_sectors & (new_chunk-1))
5695 /* not factor of array size */
5696 return -EINVAL;
5697 }
5698
5699 /* They look valid */
5700
5701 if (mddev->raid_disks == 2) {
5702 /* can make the change immediately */
5703 if (mddev->new_layout >= 0) {
5704 conf->algorithm = mddev->new_layout;
5705 mddev->layout = mddev->new_layout;
5706 }
5707 if (new_chunk > 0) {
5708 conf->chunk_sectors = new_chunk ;
5709 mddev->chunk_sectors = new_chunk;
5710 }
5711 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5712 md_wakeup_thread(mddev->thread);
5713 }
5714 return check_reshape(mddev);
5715 }
5716
5717 static int raid6_check_reshape(mddev_t *mddev)
5718 {
5719 int new_chunk = mddev->new_chunk_sectors;
5720
5721 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5722 return -EINVAL;
5723 if (new_chunk > 0) {
5724 if (!is_power_of_2(new_chunk))
5725 return -EINVAL;
5726 if (new_chunk < (PAGE_SIZE >> 9))
5727 return -EINVAL;
5728 if (mddev->array_sectors & (new_chunk-1))
5729 /* not factor of array size */
5730 return -EINVAL;
5731 }
5732
5733 /* They look valid */
5734 return check_reshape(mddev);
5735 }
5736
5737 static void *raid5_takeover(mddev_t *mddev)
5738 {
5739 /* raid5 can take over:
5740 * raid0 - if all devices are the same - make it a raid4 layout
5741 * raid1 - if there are two drives. We need to know the chunk size
5742 * raid4 - trivial - just use a raid4 layout.
5743 * raid6 - Providing it is a *_6 layout
5744 */
5745
5746 if (mddev->level == 1)
5747 return raid5_takeover_raid1(mddev);
5748 if (mddev->level == 4) {
5749 mddev->new_layout = ALGORITHM_PARITY_N;
5750 mddev->new_level = 5;
5751 return setup_conf(mddev);
5752 }
5753 if (mddev->level == 6)
5754 return raid5_takeover_raid6(mddev);
5755
5756 return ERR_PTR(-EINVAL);
5757 }
5758
5759
5760 static struct mdk_personality raid5_personality;
5761
5762 static void *raid6_takeover(mddev_t *mddev)
5763 {
5764 /* Currently can only take over a raid5. We map the
5765 * personality to an equivalent raid6 personality
5766 * with the Q block at the end.
5767 */
5768 int new_layout;
5769
5770 if (mddev->pers != &raid5_personality)
5771 return ERR_PTR(-EINVAL);
5772 if (mddev->degraded > 1)
5773 return ERR_PTR(-EINVAL);
5774 if (mddev->raid_disks > 253)
5775 return ERR_PTR(-EINVAL);
5776 if (mddev->raid_disks < 3)
5777 return ERR_PTR(-EINVAL);
5778
5779 switch (mddev->layout) {
5780 case ALGORITHM_LEFT_ASYMMETRIC:
5781 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5782 break;
5783 case ALGORITHM_RIGHT_ASYMMETRIC:
5784 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5785 break;
5786 case ALGORITHM_LEFT_SYMMETRIC:
5787 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5788 break;
5789 case ALGORITHM_RIGHT_SYMMETRIC:
5790 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5791 break;
5792 case ALGORITHM_PARITY_0:
5793 new_layout = ALGORITHM_PARITY_0_6;
5794 break;
5795 case ALGORITHM_PARITY_N:
5796 new_layout = ALGORITHM_PARITY_N;
5797 break;
5798 default:
5799 return ERR_PTR(-EINVAL);
5800 }
5801 mddev->new_level = 6;
5802 mddev->new_layout = new_layout;
5803 mddev->delta_disks = 1;
5804 mddev->raid_disks += 1;
5805 return setup_conf(mddev);
5806 }
5807
5808
5809 static struct mdk_personality raid6_personality =
5810 {
5811 .name = "raid6",
5812 .level = 6,
5813 .owner = THIS_MODULE,
5814 .make_request = make_request,
5815 .run = run,
5816 .stop = stop,
5817 .status = status,
5818 .error_handler = error,
5819 .hot_add_disk = raid5_add_disk,
5820 .hot_remove_disk= raid5_remove_disk,
5821 .spare_active = raid5_spare_active,
5822 .sync_request = sync_request,
5823 .resize = raid5_resize,
5824 .size = raid5_size,
5825 .check_reshape = raid6_check_reshape,
5826 .start_reshape = raid5_start_reshape,
5827 .finish_reshape = raid5_finish_reshape,
5828 .quiesce = raid5_quiesce,
5829 .takeover = raid6_takeover,
5830 };
5831 static struct mdk_personality raid5_personality =
5832 {
5833 .name = "raid5",
5834 .level = 5,
5835 .owner = THIS_MODULE,
5836 .make_request = make_request,
5837 .run = run,
5838 .stop = stop,
5839 .status = status,
5840 .error_handler = error,
5841 .hot_add_disk = raid5_add_disk,
5842 .hot_remove_disk= raid5_remove_disk,
5843 .spare_active = raid5_spare_active,
5844 .sync_request = sync_request,
5845 .resize = raid5_resize,
5846 .size = raid5_size,
5847 .check_reshape = raid5_check_reshape,
5848 .start_reshape = raid5_start_reshape,
5849 .finish_reshape = raid5_finish_reshape,
5850 .quiesce = raid5_quiesce,
5851 .takeover = raid5_takeover,
5852 };
5853
5854 static struct mdk_personality raid4_personality =
5855 {
5856 .name = "raid4",
5857 .level = 4,
5858 .owner = THIS_MODULE,
5859 .make_request = make_request,
5860 .run = run,
5861 .stop = stop,
5862 .status = status,
5863 .error_handler = error,
5864 .hot_add_disk = raid5_add_disk,
5865 .hot_remove_disk= raid5_remove_disk,
5866 .spare_active = raid5_spare_active,
5867 .sync_request = sync_request,
5868 .resize = raid5_resize,
5869 .size = raid5_size,
5870 .check_reshape = raid5_check_reshape,
5871 .start_reshape = raid5_start_reshape,
5872 .finish_reshape = raid5_finish_reshape,
5873 .quiesce = raid5_quiesce,
5874 };
5875
5876 static int __init raid5_init(void)
5877 {
5878 register_md_personality(&raid6_personality);
5879 register_md_personality(&raid5_personality);
5880 register_md_personality(&raid4_personality);
5881 return 0;
5882 }
5883
5884 static void raid5_exit(void)
5885 {
5886 unregister_md_personality(&raid6_personality);
5887 unregister_md_personality(&raid5_personality);
5888 unregister_md_personality(&raid4_personality);
5889 }
5890
5891 module_init(raid5_init);
5892 module_exit(raid5_exit);
5893 MODULE_LICENSE("GPL");
5894 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5895 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5896 MODULE_ALIAS("md-raid5");
5897 MODULE_ALIAS("md-raid4");
5898 MODULE_ALIAS("md-level-5");
5899 MODULE_ALIAS("md-level-4");
5900 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5901 MODULE_ALIAS("md-raid6");
5902 MODULE_ALIAS("md-level-6");
5903
5904 /* This used to be two separate modules, they were: */
5905 MODULE_ALIAS("raid5");
5906 MODULE_ALIAS("raid6");