]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid5.c
Merge remote-tracking branch 'spi/topic/zynqmp' into spi-next
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74 * Stripe cache
75 */
76
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
137 */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 int sectors = bio_sectors(bio);
141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 return bio->bi_next;
143 else
144 return NULL;
145 }
146
147 /*
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150 */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
171 {
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
174
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
212 {
213 int slot = *count;
214
215 if (sh->ddf_layout)
216 (*count)++;
217 if (idx == sh->pd_idx)
218 return syndrome_disks;
219 if (idx == sh->qd_idx)
220 return syndrome_disks + 1;
221 if (!sh->ddf_layout)
222 (*count)++;
223 return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228 struct bio *bi;
229 while ((bi = bio_list_pop(return_bi)) != NULL) {
230 bi->bi_iter.bi_size = 0;
231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 bi, 0);
233 bio_endio(bi);
234 }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241 return sh->check_state || sh->reconstruct_state ||
242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248 struct r5conf *conf = sh->raid_conf;
249 struct r5worker_group *group;
250 int thread_cnt;
251 int i, cpu = sh->cpu;
252
253 if (!cpu_online(cpu)) {
254 cpu = cpumask_any(cpu_online_mask);
255 sh->cpu = cpu;
256 }
257
258 if (list_empty(&sh->lru)) {
259 struct r5worker_group *group;
260 group = conf->worker_groups + cpu_to_group(cpu);
261 list_add_tail(&sh->lru, &group->handle_list);
262 group->stripes_cnt++;
263 sh->group = group;
264 }
265
266 if (conf->worker_cnt_per_group == 0) {
267 md_wakeup_thread(conf->mddev->thread);
268 return;
269 }
270
271 group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273 group->workers[0].working = true;
274 /* at least one worker should run to avoid race */
275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 /* wakeup more workers */
279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 if (group->workers[i].working == false) {
281 group->workers[i].working = true;
282 queue_work_on(sh->cpu, raid5_wq,
283 &group->workers[i].work);
284 thread_cnt--;
285 }
286 }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 struct list_head *temp_inactive_list)
291 {
292 BUG_ON(!list_empty(&sh->lru));
293 BUG_ON(atomic_read(&conf->active_stripes)==0);
294 if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297 list_add_tail(&sh->lru, &conf->delayed_list);
298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299 sh->bm_seq - conf->seq_write > 0)
300 list_add_tail(&sh->lru, &conf->bitmap_list);
301 else {
302 clear_bit(STRIPE_DELAYED, &sh->state);
303 clear_bit(STRIPE_BIT_DELAY, &sh->state);
304 if (conf->worker_cnt_per_group == 0) {
305 list_add_tail(&sh->lru, &conf->handle_list);
306 } else {
307 raid5_wakeup_stripe_thread(sh);
308 return;
309 }
310 }
311 md_wakeup_thread(conf->mddev->thread);
312 } else {
313 BUG_ON(stripe_operations_active(sh));
314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 if (atomic_dec_return(&conf->preread_active_stripes)
316 < IO_THRESHOLD)
317 md_wakeup_thread(conf->mddev->thread);
318 atomic_dec(&conf->active_stripes);
319 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 list_add_tail(&sh->lru, temp_inactive_list);
321 }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 struct list_head *temp_inactive_list)
326 {
327 if (atomic_dec_and_test(&sh->count))
328 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333 *
334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335 * given time. Adding stripes only takes device lock, while deleting stripes
336 * only takes hash lock.
337 */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339 struct list_head *temp_inactive_list,
340 int hash)
341 {
342 int size;
343 bool do_wakeup = false;
344 unsigned long flags;
345
346 if (hash == NR_STRIPE_HASH_LOCKS) {
347 size = NR_STRIPE_HASH_LOCKS;
348 hash = NR_STRIPE_HASH_LOCKS - 1;
349 } else
350 size = 1;
351 while (size) {
352 struct list_head *list = &temp_inactive_list[size - 1];
353
354 /*
355 * We don't hold any lock here yet, raid5_get_active_stripe() might
356 * remove stripes from the list
357 */
358 if (!list_empty_careful(list)) {
359 spin_lock_irqsave(conf->hash_locks + hash, flags);
360 if (list_empty(conf->inactive_list + hash) &&
361 !list_empty(list))
362 atomic_dec(&conf->empty_inactive_list_nr);
363 list_splice_tail_init(list, conf->inactive_list + hash);
364 do_wakeup = true;
365 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366 }
367 size--;
368 hash--;
369 }
370
371 if (do_wakeup) {
372 wake_up(&conf->wait_for_stripe);
373 if (atomic_read(&conf->active_stripes) == 0)
374 wake_up(&conf->wait_for_quiescent);
375 if (conf->retry_read_aligned)
376 md_wakeup_thread(conf->mddev->thread);
377 }
378 }
379
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382 struct list_head *temp_inactive_list)
383 {
384 struct stripe_head *sh;
385 int count = 0;
386 struct llist_node *head;
387
388 head = llist_del_all(&conf->released_stripes);
389 head = llist_reverse_order(head);
390 while (head) {
391 int hash;
392
393 sh = llist_entry(head, struct stripe_head, release_list);
394 head = llist_next(head);
395 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396 smp_mb();
397 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398 /*
399 * Don't worry the bit is set here, because if the bit is set
400 * again, the count is always > 1. This is true for
401 * STRIPE_ON_UNPLUG_LIST bit too.
402 */
403 hash = sh->hash_lock_index;
404 __release_stripe(conf, sh, &temp_inactive_list[hash]);
405 count++;
406 }
407
408 return count;
409 }
410
411 void raid5_release_stripe(struct stripe_head *sh)
412 {
413 struct r5conf *conf = sh->raid_conf;
414 unsigned long flags;
415 struct list_head list;
416 int hash;
417 bool wakeup;
418
419 /* Avoid release_list until the last reference.
420 */
421 if (atomic_add_unless(&sh->count, -1, 1))
422 return;
423
424 if (unlikely(!conf->mddev->thread) ||
425 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426 goto slow_path;
427 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428 if (wakeup)
429 md_wakeup_thread(conf->mddev->thread);
430 return;
431 slow_path:
432 local_irq_save(flags);
433 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435 INIT_LIST_HEAD(&list);
436 hash = sh->hash_lock_index;
437 do_release_stripe(conf, sh, &list);
438 spin_unlock(&conf->device_lock);
439 release_inactive_stripe_list(conf, &list, hash);
440 }
441 local_irq_restore(flags);
442 }
443
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446 pr_debug("remove_hash(), stripe %llu\n",
447 (unsigned long long)sh->sector);
448
449 hlist_del_init(&sh->hash);
450 }
451
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454 struct hlist_head *hp = stripe_hash(conf, sh->sector);
455
456 pr_debug("insert_hash(), stripe %llu\n",
457 (unsigned long long)sh->sector);
458
459 hlist_add_head(&sh->hash, hp);
460 }
461
462 /* find an idle stripe, make sure it is unhashed, and return it. */
463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
464 {
465 struct stripe_head *sh = NULL;
466 struct list_head *first;
467
468 if (list_empty(conf->inactive_list + hash))
469 goto out;
470 first = (conf->inactive_list + hash)->next;
471 sh = list_entry(first, struct stripe_head, lru);
472 list_del_init(first);
473 remove_hash(sh);
474 atomic_inc(&conf->active_stripes);
475 BUG_ON(hash != sh->hash_lock_index);
476 if (list_empty(conf->inactive_list + hash))
477 atomic_inc(&conf->empty_inactive_list_nr);
478 out:
479 return sh;
480 }
481
482 static void shrink_buffers(struct stripe_head *sh)
483 {
484 struct page *p;
485 int i;
486 int num = sh->raid_conf->pool_size;
487
488 for (i = 0; i < num ; i++) {
489 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
490 p = sh->dev[i].page;
491 if (!p)
492 continue;
493 sh->dev[i].page = NULL;
494 put_page(p);
495 }
496 }
497
498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
499 {
500 int i;
501 int num = sh->raid_conf->pool_size;
502
503 for (i = 0; i < num; i++) {
504 struct page *page;
505
506 if (!(page = alloc_page(gfp))) {
507 return 1;
508 }
509 sh->dev[i].page = page;
510 sh->dev[i].orig_page = page;
511 }
512 return 0;
513 }
514
515 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
517 struct stripe_head *sh);
518
519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
520 {
521 struct r5conf *conf = sh->raid_conf;
522 int i, seq;
523
524 BUG_ON(atomic_read(&sh->count) != 0);
525 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
526 BUG_ON(stripe_operations_active(sh));
527 BUG_ON(sh->batch_head);
528
529 pr_debug("init_stripe called, stripe %llu\n",
530 (unsigned long long)sector);
531 retry:
532 seq = read_seqcount_begin(&conf->gen_lock);
533 sh->generation = conf->generation - previous;
534 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535 sh->sector = sector;
536 stripe_set_idx(sector, conf, previous, sh);
537 sh->state = 0;
538
539 for (i = sh->disks; i--; ) {
540 struct r5dev *dev = &sh->dev[i];
541
542 if (dev->toread || dev->read || dev->towrite || dev->written ||
543 test_bit(R5_LOCKED, &dev->flags)) {
544 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545 (unsigned long long)sh->sector, i, dev->toread,
546 dev->read, dev->towrite, dev->written,
547 test_bit(R5_LOCKED, &dev->flags));
548 WARN_ON(1);
549 }
550 dev->flags = 0;
551 raid5_build_block(sh, i, previous);
552 }
553 if (read_seqcount_retry(&conf->gen_lock, seq))
554 goto retry;
555 sh->overwrite_disks = 0;
556 insert_hash(conf, sh);
557 sh->cpu = smp_processor_id();
558 set_bit(STRIPE_BATCH_READY, &sh->state);
559 }
560
561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
562 short generation)
563 {
564 struct stripe_head *sh;
565
566 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
567 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
568 if (sh->sector == sector && sh->generation == generation)
569 return sh;
570 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
571 return NULL;
572 }
573
574 /*
575 * Need to check if array has failed when deciding whether to:
576 * - start an array
577 * - remove non-faulty devices
578 * - add a spare
579 * - allow a reshape
580 * This determination is simple when no reshape is happening.
581 * However if there is a reshape, we need to carefully check
582 * both the before and after sections.
583 * This is because some failed devices may only affect one
584 * of the two sections, and some non-in_sync devices may
585 * be insync in the section most affected by failed devices.
586 */
587 static int calc_degraded(struct r5conf *conf)
588 {
589 int degraded, degraded2;
590 int i;
591
592 rcu_read_lock();
593 degraded = 0;
594 for (i = 0; i < conf->previous_raid_disks; i++) {
595 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
596 if (rdev && test_bit(Faulty, &rdev->flags))
597 rdev = rcu_dereference(conf->disks[i].replacement);
598 if (!rdev || test_bit(Faulty, &rdev->flags))
599 degraded++;
600 else if (test_bit(In_sync, &rdev->flags))
601 ;
602 else
603 /* not in-sync or faulty.
604 * If the reshape increases the number of devices,
605 * this is being recovered by the reshape, so
606 * this 'previous' section is not in_sync.
607 * If the number of devices is being reduced however,
608 * the device can only be part of the array if
609 * we are reverting a reshape, so this section will
610 * be in-sync.
611 */
612 if (conf->raid_disks >= conf->previous_raid_disks)
613 degraded++;
614 }
615 rcu_read_unlock();
616 if (conf->raid_disks == conf->previous_raid_disks)
617 return degraded;
618 rcu_read_lock();
619 degraded2 = 0;
620 for (i = 0; i < conf->raid_disks; i++) {
621 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
622 if (rdev && test_bit(Faulty, &rdev->flags))
623 rdev = rcu_dereference(conf->disks[i].replacement);
624 if (!rdev || test_bit(Faulty, &rdev->flags))
625 degraded2++;
626 else if (test_bit(In_sync, &rdev->flags))
627 ;
628 else
629 /* not in-sync or faulty.
630 * If reshape increases the number of devices, this
631 * section has already been recovered, else it
632 * almost certainly hasn't.
633 */
634 if (conf->raid_disks <= conf->previous_raid_disks)
635 degraded2++;
636 }
637 rcu_read_unlock();
638 if (degraded2 > degraded)
639 return degraded2;
640 return degraded;
641 }
642
643 static int has_failed(struct r5conf *conf)
644 {
645 int degraded;
646
647 if (conf->mddev->reshape_position == MaxSector)
648 return conf->mddev->degraded > conf->max_degraded;
649
650 degraded = calc_degraded(conf);
651 if (degraded > conf->max_degraded)
652 return 1;
653 return 0;
654 }
655
656 struct stripe_head *
657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658 int previous, int noblock, int noquiesce)
659 {
660 struct stripe_head *sh;
661 int hash = stripe_hash_locks_hash(sector);
662
663 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
664
665 spin_lock_irq(conf->hash_locks + hash);
666
667 do {
668 wait_event_lock_irq(conf->wait_for_quiescent,
669 conf->quiesce == 0 || noquiesce,
670 *(conf->hash_locks + hash));
671 sh = __find_stripe(conf, sector, conf->generation - previous);
672 if (!sh) {
673 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
674 sh = get_free_stripe(conf, hash);
675 if (!sh && !test_bit(R5_DID_ALLOC,
676 &conf->cache_state))
677 set_bit(R5_ALLOC_MORE,
678 &conf->cache_state);
679 }
680 if (noblock && sh == NULL)
681 break;
682 if (!sh) {
683 set_bit(R5_INACTIVE_BLOCKED,
684 &conf->cache_state);
685 wait_event_lock_irq(
686 conf->wait_for_stripe,
687 !list_empty(conf->inactive_list + hash) &&
688 (atomic_read(&conf->active_stripes)
689 < (conf->max_nr_stripes * 3 / 4)
690 || !test_bit(R5_INACTIVE_BLOCKED,
691 &conf->cache_state)),
692 *(conf->hash_locks + hash));
693 clear_bit(R5_INACTIVE_BLOCKED,
694 &conf->cache_state);
695 } else {
696 init_stripe(sh, sector, previous);
697 atomic_inc(&sh->count);
698 }
699 } else if (!atomic_inc_not_zero(&sh->count)) {
700 spin_lock(&conf->device_lock);
701 if (!atomic_read(&sh->count)) {
702 if (!test_bit(STRIPE_HANDLE, &sh->state))
703 atomic_inc(&conf->active_stripes);
704 BUG_ON(list_empty(&sh->lru) &&
705 !test_bit(STRIPE_EXPANDING, &sh->state));
706 list_del_init(&sh->lru);
707 if (sh->group) {
708 sh->group->stripes_cnt--;
709 sh->group = NULL;
710 }
711 }
712 atomic_inc(&sh->count);
713 spin_unlock(&conf->device_lock);
714 }
715 } while (sh == NULL);
716
717 spin_unlock_irq(conf->hash_locks + hash);
718 return sh;
719 }
720
721 static bool is_full_stripe_write(struct stripe_head *sh)
722 {
723 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
724 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
725 }
726
727 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728 {
729 local_irq_disable();
730 if (sh1 > sh2) {
731 spin_lock(&sh2->stripe_lock);
732 spin_lock_nested(&sh1->stripe_lock, 1);
733 } else {
734 spin_lock(&sh1->stripe_lock);
735 spin_lock_nested(&sh2->stripe_lock, 1);
736 }
737 }
738
739 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
740 {
741 spin_unlock(&sh1->stripe_lock);
742 spin_unlock(&sh2->stripe_lock);
743 local_irq_enable();
744 }
745
746 /* Only freshly new full stripe normal write stripe can be added to a batch list */
747 static bool stripe_can_batch(struct stripe_head *sh)
748 {
749 struct r5conf *conf = sh->raid_conf;
750
751 if (conf->log)
752 return false;
753 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
754 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
755 is_full_stripe_write(sh);
756 }
757
758 /* we only do back search */
759 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
760 {
761 struct stripe_head *head;
762 sector_t head_sector, tmp_sec;
763 int hash;
764 int dd_idx;
765
766 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767 tmp_sec = sh->sector;
768 if (!sector_div(tmp_sec, conf->chunk_sectors))
769 return;
770 head_sector = sh->sector - STRIPE_SECTORS;
771
772 hash = stripe_hash_locks_hash(head_sector);
773 spin_lock_irq(conf->hash_locks + hash);
774 head = __find_stripe(conf, head_sector, conf->generation);
775 if (head && !atomic_inc_not_zero(&head->count)) {
776 spin_lock(&conf->device_lock);
777 if (!atomic_read(&head->count)) {
778 if (!test_bit(STRIPE_HANDLE, &head->state))
779 atomic_inc(&conf->active_stripes);
780 BUG_ON(list_empty(&head->lru) &&
781 !test_bit(STRIPE_EXPANDING, &head->state));
782 list_del_init(&head->lru);
783 if (head->group) {
784 head->group->stripes_cnt--;
785 head->group = NULL;
786 }
787 }
788 atomic_inc(&head->count);
789 spin_unlock(&conf->device_lock);
790 }
791 spin_unlock_irq(conf->hash_locks + hash);
792
793 if (!head)
794 return;
795 if (!stripe_can_batch(head))
796 goto out;
797
798 lock_two_stripes(head, sh);
799 /* clear_batch_ready clear the flag */
800 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
801 goto unlock_out;
802
803 if (sh->batch_head)
804 goto unlock_out;
805
806 dd_idx = 0;
807 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
808 dd_idx++;
809 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
810 goto unlock_out;
811
812 if (head->batch_head) {
813 spin_lock(&head->batch_head->batch_lock);
814 /* This batch list is already running */
815 if (!stripe_can_batch(head)) {
816 spin_unlock(&head->batch_head->batch_lock);
817 goto unlock_out;
818 }
819
820 /*
821 * at this point, head's BATCH_READY could be cleared, but we
822 * can still add the stripe to batch list
823 */
824 list_add(&sh->batch_list, &head->batch_list);
825 spin_unlock(&head->batch_head->batch_lock);
826
827 sh->batch_head = head->batch_head;
828 } else {
829 head->batch_head = head;
830 sh->batch_head = head->batch_head;
831 spin_lock(&head->batch_lock);
832 list_add_tail(&sh->batch_list, &head->batch_list);
833 spin_unlock(&head->batch_lock);
834 }
835
836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837 if (atomic_dec_return(&conf->preread_active_stripes)
838 < IO_THRESHOLD)
839 md_wakeup_thread(conf->mddev->thread);
840
841 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842 int seq = sh->bm_seq;
843 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844 sh->batch_head->bm_seq > seq)
845 seq = sh->batch_head->bm_seq;
846 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847 sh->batch_head->bm_seq = seq;
848 }
849
850 atomic_inc(&sh->count);
851 unlock_out:
852 unlock_two_stripes(head, sh);
853 out:
854 raid5_release_stripe(head);
855 }
856
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858 * in this stripe_head.
859 */
860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861 {
862 sector_t progress = conf->reshape_progress;
863 /* Need a memory barrier to make sure we see the value
864 * of conf->generation, or ->data_offset that was set before
865 * reshape_progress was updated.
866 */
867 smp_rmb();
868 if (progress == MaxSector)
869 return 0;
870 if (sh->generation == conf->generation - 1)
871 return 0;
872 /* We are in a reshape, and this is a new-generation stripe,
873 * so use new_data_offset.
874 */
875 return 1;
876 }
877
878 static void
879 raid5_end_read_request(struct bio *bi);
880 static void
881 raid5_end_write_request(struct bio *bi);
882
883 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
884 {
885 struct r5conf *conf = sh->raid_conf;
886 int i, disks = sh->disks;
887 struct stripe_head *head_sh = sh;
888
889 might_sleep();
890
891 if (r5l_write_stripe(conf->log, sh) == 0)
892 return;
893 for (i = disks; i--; ) {
894 int rw;
895 int replace_only = 0;
896 struct bio *bi, *rbi;
897 struct md_rdev *rdev, *rrdev = NULL;
898
899 sh = head_sh;
900 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
901 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
902 rw = WRITE_FUA;
903 else
904 rw = WRITE;
905 if (test_bit(R5_Discard, &sh->dev[i].flags))
906 rw |= REQ_DISCARD;
907 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
908 rw = READ;
909 else if (test_and_clear_bit(R5_WantReplace,
910 &sh->dev[i].flags)) {
911 rw = WRITE;
912 replace_only = 1;
913 } else
914 continue;
915 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
916 rw |= REQ_SYNC;
917
918 again:
919 bi = &sh->dev[i].req;
920 rbi = &sh->dev[i].rreq; /* For writing to replacement */
921
922 rcu_read_lock();
923 rrdev = rcu_dereference(conf->disks[i].replacement);
924 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
925 rdev = rcu_dereference(conf->disks[i].rdev);
926 if (!rdev) {
927 rdev = rrdev;
928 rrdev = NULL;
929 }
930 if (rw & WRITE) {
931 if (replace_only)
932 rdev = NULL;
933 if (rdev == rrdev)
934 /* We raced and saw duplicates */
935 rrdev = NULL;
936 } else {
937 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
938 rdev = rrdev;
939 rrdev = NULL;
940 }
941
942 if (rdev && test_bit(Faulty, &rdev->flags))
943 rdev = NULL;
944 if (rdev)
945 atomic_inc(&rdev->nr_pending);
946 if (rrdev && test_bit(Faulty, &rrdev->flags))
947 rrdev = NULL;
948 if (rrdev)
949 atomic_inc(&rrdev->nr_pending);
950 rcu_read_unlock();
951
952 /* We have already checked bad blocks for reads. Now
953 * need to check for writes. We never accept write errors
954 * on the replacement, so we don't to check rrdev.
955 */
956 while ((rw & WRITE) && rdev &&
957 test_bit(WriteErrorSeen, &rdev->flags)) {
958 sector_t first_bad;
959 int bad_sectors;
960 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
961 &first_bad, &bad_sectors);
962 if (!bad)
963 break;
964
965 if (bad < 0) {
966 set_bit(BlockedBadBlocks, &rdev->flags);
967 if (!conf->mddev->external &&
968 conf->mddev->flags) {
969 /* It is very unlikely, but we might
970 * still need to write out the
971 * bad block log - better give it
972 * a chance*/
973 md_check_recovery(conf->mddev);
974 }
975 /*
976 * Because md_wait_for_blocked_rdev
977 * will dec nr_pending, we must
978 * increment it first.
979 */
980 atomic_inc(&rdev->nr_pending);
981 md_wait_for_blocked_rdev(rdev, conf->mddev);
982 } else {
983 /* Acknowledged bad block - skip the write */
984 rdev_dec_pending(rdev, conf->mddev);
985 rdev = NULL;
986 }
987 }
988
989 if (rdev) {
990 if (s->syncing || s->expanding || s->expanded
991 || s->replacing)
992 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
993
994 set_bit(STRIPE_IO_STARTED, &sh->state);
995
996 bio_reset(bi);
997 bi->bi_bdev = rdev->bdev;
998 bi->bi_rw = rw;
999 bi->bi_end_io = (rw & WRITE)
1000 ? raid5_end_write_request
1001 : raid5_end_read_request;
1002 bi->bi_private = sh;
1003
1004 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1005 __func__, (unsigned long long)sh->sector,
1006 bi->bi_rw, i);
1007 atomic_inc(&sh->count);
1008 if (sh != head_sh)
1009 atomic_inc(&head_sh->count);
1010 if (use_new_offset(conf, sh))
1011 bi->bi_iter.bi_sector = (sh->sector
1012 + rdev->new_data_offset);
1013 else
1014 bi->bi_iter.bi_sector = (sh->sector
1015 + rdev->data_offset);
1016 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1017 bi->bi_rw |= REQ_NOMERGE;
1018
1019 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1020 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1021 sh->dev[i].vec.bv_page = sh->dev[i].page;
1022 bi->bi_vcnt = 1;
1023 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1024 bi->bi_io_vec[0].bv_offset = 0;
1025 bi->bi_iter.bi_size = STRIPE_SIZE;
1026 /*
1027 * If this is discard request, set bi_vcnt 0. We don't
1028 * want to confuse SCSI because SCSI will replace payload
1029 */
1030 if (rw & REQ_DISCARD)
1031 bi->bi_vcnt = 0;
1032 if (rrdev)
1033 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1034
1035 if (conf->mddev->gendisk)
1036 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1037 bi, disk_devt(conf->mddev->gendisk),
1038 sh->dev[i].sector);
1039 generic_make_request(bi);
1040 }
1041 if (rrdev) {
1042 if (s->syncing || s->expanding || s->expanded
1043 || s->replacing)
1044 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1045
1046 set_bit(STRIPE_IO_STARTED, &sh->state);
1047
1048 bio_reset(rbi);
1049 rbi->bi_bdev = rrdev->bdev;
1050 rbi->bi_rw = rw;
1051 BUG_ON(!(rw & WRITE));
1052 rbi->bi_end_io = raid5_end_write_request;
1053 rbi->bi_private = sh;
1054
1055 pr_debug("%s: for %llu schedule op %ld on "
1056 "replacement disc %d\n",
1057 __func__, (unsigned long long)sh->sector,
1058 rbi->bi_rw, i);
1059 atomic_inc(&sh->count);
1060 if (sh != head_sh)
1061 atomic_inc(&head_sh->count);
1062 if (use_new_offset(conf, sh))
1063 rbi->bi_iter.bi_sector = (sh->sector
1064 + rrdev->new_data_offset);
1065 else
1066 rbi->bi_iter.bi_sector = (sh->sector
1067 + rrdev->data_offset);
1068 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1069 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1070 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1071 rbi->bi_vcnt = 1;
1072 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1073 rbi->bi_io_vec[0].bv_offset = 0;
1074 rbi->bi_iter.bi_size = STRIPE_SIZE;
1075 /*
1076 * If this is discard request, set bi_vcnt 0. We don't
1077 * want to confuse SCSI because SCSI will replace payload
1078 */
1079 if (rw & REQ_DISCARD)
1080 rbi->bi_vcnt = 0;
1081 if (conf->mddev->gendisk)
1082 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1083 rbi, disk_devt(conf->mddev->gendisk),
1084 sh->dev[i].sector);
1085 generic_make_request(rbi);
1086 }
1087 if (!rdev && !rrdev) {
1088 if (rw & WRITE)
1089 set_bit(STRIPE_DEGRADED, &sh->state);
1090 pr_debug("skip op %ld on disc %d for sector %llu\n",
1091 bi->bi_rw, i, (unsigned long long)sh->sector);
1092 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1093 set_bit(STRIPE_HANDLE, &sh->state);
1094 }
1095
1096 if (!head_sh->batch_head)
1097 continue;
1098 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1099 batch_list);
1100 if (sh != head_sh)
1101 goto again;
1102 }
1103 }
1104
1105 static struct dma_async_tx_descriptor *
1106 async_copy_data(int frombio, struct bio *bio, struct page **page,
1107 sector_t sector, struct dma_async_tx_descriptor *tx,
1108 struct stripe_head *sh)
1109 {
1110 struct bio_vec bvl;
1111 struct bvec_iter iter;
1112 struct page *bio_page;
1113 int page_offset;
1114 struct async_submit_ctl submit;
1115 enum async_tx_flags flags = 0;
1116
1117 if (bio->bi_iter.bi_sector >= sector)
1118 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1119 else
1120 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1121
1122 if (frombio)
1123 flags |= ASYNC_TX_FENCE;
1124 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1125
1126 bio_for_each_segment(bvl, bio, iter) {
1127 int len = bvl.bv_len;
1128 int clen;
1129 int b_offset = 0;
1130
1131 if (page_offset < 0) {
1132 b_offset = -page_offset;
1133 page_offset += b_offset;
1134 len -= b_offset;
1135 }
1136
1137 if (len > 0 && page_offset + len > STRIPE_SIZE)
1138 clen = STRIPE_SIZE - page_offset;
1139 else
1140 clen = len;
1141
1142 if (clen > 0) {
1143 b_offset += bvl.bv_offset;
1144 bio_page = bvl.bv_page;
1145 if (frombio) {
1146 if (sh->raid_conf->skip_copy &&
1147 b_offset == 0 && page_offset == 0 &&
1148 clen == STRIPE_SIZE)
1149 *page = bio_page;
1150 else
1151 tx = async_memcpy(*page, bio_page, page_offset,
1152 b_offset, clen, &submit);
1153 } else
1154 tx = async_memcpy(bio_page, *page, b_offset,
1155 page_offset, clen, &submit);
1156 }
1157 /* chain the operations */
1158 submit.depend_tx = tx;
1159
1160 if (clen < len) /* hit end of page */
1161 break;
1162 page_offset += len;
1163 }
1164
1165 return tx;
1166 }
1167
1168 static void ops_complete_biofill(void *stripe_head_ref)
1169 {
1170 struct stripe_head *sh = stripe_head_ref;
1171 struct bio_list return_bi = BIO_EMPTY_LIST;
1172 int i;
1173
1174 pr_debug("%s: stripe %llu\n", __func__,
1175 (unsigned long long)sh->sector);
1176
1177 /* clear completed biofills */
1178 for (i = sh->disks; i--; ) {
1179 struct r5dev *dev = &sh->dev[i];
1180
1181 /* acknowledge completion of a biofill operation */
1182 /* and check if we need to reply to a read request,
1183 * new R5_Wantfill requests are held off until
1184 * !STRIPE_BIOFILL_RUN
1185 */
1186 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1187 struct bio *rbi, *rbi2;
1188
1189 BUG_ON(!dev->read);
1190 rbi = dev->read;
1191 dev->read = NULL;
1192 while (rbi && rbi->bi_iter.bi_sector <
1193 dev->sector + STRIPE_SECTORS) {
1194 rbi2 = r5_next_bio(rbi, dev->sector);
1195 if (!raid5_dec_bi_active_stripes(rbi))
1196 bio_list_add(&return_bi, rbi);
1197 rbi = rbi2;
1198 }
1199 }
1200 }
1201 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1202
1203 return_io(&return_bi);
1204
1205 set_bit(STRIPE_HANDLE, &sh->state);
1206 raid5_release_stripe(sh);
1207 }
1208
1209 static void ops_run_biofill(struct stripe_head *sh)
1210 {
1211 struct dma_async_tx_descriptor *tx = NULL;
1212 struct async_submit_ctl submit;
1213 int i;
1214
1215 BUG_ON(sh->batch_head);
1216 pr_debug("%s: stripe %llu\n", __func__,
1217 (unsigned long long)sh->sector);
1218
1219 for (i = sh->disks; i--; ) {
1220 struct r5dev *dev = &sh->dev[i];
1221 if (test_bit(R5_Wantfill, &dev->flags)) {
1222 struct bio *rbi;
1223 spin_lock_irq(&sh->stripe_lock);
1224 dev->read = rbi = dev->toread;
1225 dev->toread = NULL;
1226 spin_unlock_irq(&sh->stripe_lock);
1227 while (rbi && rbi->bi_iter.bi_sector <
1228 dev->sector + STRIPE_SECTORS) {
1229 tx = async_copy_data(0, rbi, &dev->page,
1230 dev->sector, tx, sh);
1231 rbi = r5_next_bio(rbi, dev->sector);
1232 }
1233 }
1234 }
1235
1236 atomic_inc(&sh->count);
1237 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1238 async_trigger_callback(&submit);
1239 }
1240
1241 static void mark_target_uptodate(struct stripe_head *sh, int target)
1242 {
1243 struct r5dev *tgt;
1244
1245 if (target < 0)
1246 return;
1247
1248 tgt = &sh->dev[target];
1249 set_bit(R5_UPTODATE, &tgt->flags);
1250 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1251 clear_bit(R5_Wantcompute, &tgt->flags);
1252 }
1253
1254 static void ops_complete_compute(void *stripe_head_ref)
1255 {
1256 struct stripe_head *sh = stripe_head_ref;
1257
1258 pr_debug("%s: stripe %llu\n", __func__,
1259 (unsigned long long)sh->sector);
1260
1261 /* mark the computed target(s) as uptodate */
1262 mark_target_uptodate(sh, sh->ops.target);
1263 mark_target_uptodate(sh, sh->ops.target2);
1264
1265 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1266 if (sh->check_state == check_state_compute_run)
1267 sh->check_state = check_state_compute_result;
1268 set_bit(STRIPE_HANDLE, &sh->state);
1269 raid5_release_stripe(sh);
1270 }
1271
1272 /* return a pointer to the address conversion region of the scribble buffer */
1273 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1274 struct raid5_percpu *percpu, int i)
1275 {
1276 void *addr;
1277
1278 addr = flex_array_get(percpu->scribble, i);
1279 return addr + sizeof(struct page *) * (sh->disks + 2);
1280 }
1281
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1284 {
1285 void *addr;
1286
1287 addr = flex_array_get(percpu->scribble, i);
1288 return addr;
1289 }
1290
1291 static struct dma_async_tx_descriptor *
1292 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1293 {
1294 int disks = sh->disks;
1295 struct page **xor_srcs = to_addr_page(percpu, 0);
1296 int target = sh->ops.target;
1297 struct r5dev *tgt = &sh->dev[target];
1298 struct page *xor_dest = tgt->page;
1299 int count = 0;
1300 struct dma_async_tx_descriptor *tx;
1301 struct async_submit_ctl submit;
1302 int i;
1303
1304 BUG_ON(sh->batch_head);
1305
1306 pr_debug("%s: stripe %llu block: %d\n",
1307 __func__, (unsigned long long)sh->sector, target);
1308 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1309
1310 for (i = disks; i--; )
1311 if (i != target)
1312 xor_srcs[count++] = sh->dev[i].page;
1313
1314 atomic_inc(&sh->count);
1315
1316 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1317 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1318 if (unlikely(count == 1))
1319 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1320 else
1321 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1322
1323 return tx;
1324 }
1325
1326 /* set_syndrome_sources - populate source buffers for gen_syndrome
1327 * @srcs - (struct page *) array of size sh->disks
1328 * @sh - stripe_head to parse
1329 *
1330 * Populates srcs in proper layout order for the stripe and returns the
1331 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1332 * destination buffer is recorded in srcs[count] and the Q destination
1333 * is recorded in srcs[count+1]].
1334 */
1335 static int set_syndrome_sources(struct page **srcs,
1336 struct stripe_head *sh,
1337 int srctype)
1338 {
1339 int disks = sh->disks;
1340 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1341 int d0_idx = raid6_d0(sh);
1342 int count;
1343 int i;
1344
1345 for (i = 0; i < disks; i++)
1346 srcs[i] = NULL;
1347
1348 count = 0;
1349 i = d0_idx;
1350 do {
1351 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1352 struct r5dev *dev = &sh->dev[i];
1353
1354 if (i == sh->qd_idx || i == sh->pd_idx ||
1355 (srctype == SYNDROME_SRC_ALL) ||
1356 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1357 test_bit(R5_Wantdrain, &dev->flags)) ||
1358 (srctype == SYNDROME_SRC_WRITTEN &&
1359 dev->written))
1360 srcs[slot] = sh->dev[i].page;
1361 i = raid6_next_disk(i, disks);
1362 } while (i != d0_idx);
1363
1364 return syndrome_disks;
1365 }
1366
1367 static struct dma_async_tx_descriptor *
1368 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1369 {
1370 int disks = sh->disks;
1371 struct page **blocks = to_addr_page(percpu, 0);
1372 int target;
1373 int qd_idx = sh->qd_idx;
1374 struct dma_async_tx_descriptor *tx;
1375 struct async_submit_ctl submit;
1376 struct r5dev *tgt;
1377 struct page *dest;
1378 int i;
1379 int count;
1380
1381 BUG_ON(sh->batch_head);
1382 if (sh->ops.target < 0)
1383 target = sh->ops.target2;
1384 else if (sh->ops.target2 < 0)
1385 target = sh->ops.target;
1386 else
1387 /* we should only have one valid target */
1388 BUG();
1389 BUG_ON(target < 0);
1390 pr_debug("%s: stripe %llu block: %d\n",
1391 __func__, (unsigned long long)sh->sector, target);
1392
1393 tgt = &sh->dev[target];
1394 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1395 dest = tgt->page;
1396
1397 atomic_inc(&sh->count);
1398
1399 if (target == qd_idx) {
1400 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1401 blocks[count] = NULL; /* regenerating p is not necessary */
1402 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1403 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1404 ops_complete_compute, sh,
1405 to_addr_conv(sh, percpu, 0));
1406 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1407 } else {
1408 /* Compute any data- or p-drive using XOR */
1409 count = 0;
1410 for (i = disks; i-- ; ) {
1411 if (i == target || i == qd_idx)
1412 continue;
1413 blocks[count++] = sh->dev[i].page;
1414 }
1415
1416 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1417 NULL, ops_complete_compute, sh,
1418 to_addr_conv(sh, percpu, 0));
1419 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1420 }
1421
1422 return tx;
1423 }
1424
1425 static struct dma_async_tx_descriptor *
1426 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1427 {
1428 int i, count, disks = sh->disks;
1429 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1430 int d0_idx = raid6_d0(sh);
1431 int faila = -1, failb = -1;
1432 int target = sh->ops.target;
1433 int target2 = sh->ops.target2;
1434 struct r5dev *tgt = &sh->dev[target];
1435 struct r5dev *tgt2 = &sh->dev[target2];
1436 struct dma_async_tx_descriptor *tx;
1437 struct page **blocks = to_addr_page(percpu, 0);
1438 struct async_submit_ctl submit;
1439
1440 BUG_ON(sh->batch_head);
1441 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442 __func__, (unsigned long long)sh->sector, target, target2);
1443 BUG_ON(target < 0 || target2 < 0);
1444 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1446
1447 /* we need to open-code set_syndrome_sources to handle the
1448 * slot number conversion for 'faila' and 'failb'
1449 */
1450 for (i = 0; i < disks ; i++)
1451 blocks[i] = NULL;
1452 count = 0;
1453 i = d0_idx;
1454 do {
1455 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1456
1457 blocks[slot] = sh->dev[i].page;
1458
1459 if (i == target)
1460 faila = slot;
1461 if (i == target2)
1462 failb = slot;
1463 i = raid6_next_disk(i, disks);
1464 } while (i != d0_idx);
1465
1466 BUG_ON(faila == failb);
1467 if (failb < faila)
1468 swap(faila, failb);
1469 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470 __func__, (unsigned long long)sh->sector, faila, failb);
1471
1472 atomic_inc(&sh->count);
1473
1474 if (failb == syndrome_disks+1) {
1475 /* Q disk is one of the missing disks */
1476 if (faila == syndrome_disks) {
1477 /* Missing P+Q, just recompute */
1478 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1479 ops_complete_compute, sh,
1480 to_addr_conv(sh, percpu, 0));
1481 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1482 STRIPE_SIZE, &submit);
1483 } else {
1484 struct page *dest;
1485 int data_target;
1486 int qd_idx = sh->qd_idx;
1487
1488 /* Missing D+Q: recompute D from P, then recompute Q */
1489 if (target == qd_idx)
1490 data_target = target2;
1491 else
1492 data_target = target;
1493
1494 count = 0;
1495 for (i = disks; i-- ; ) {
1496 if (i == data_target || i == qd_idx)
1497 continue;
1498 blocks[count++] = sh->dev[i].page;
1499 }
1500 dest = sh->dev[data_target].page;
1501 init_async_submit(&submit,
1502 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1503 NULL, NULL, NULL,
1504 to_addr_conv(sh, percpu, 0));
1505 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1506 &submit);
1507
1508 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1509 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1510 ops_complete_compute, sh,
1511 to_addr_conv(sh, percpu, 0));
1512 return async_gen_syndrome(blocks, 0, count+2,
1513 STRIPE_SIZE, &submit);
1514 }
1515 } else {
1516 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1517 ops_complete_compute, sh,
1518 to_addr_conv(sh, percpu, 0));
1519 if (failb == syndrome_disks) {
1520 /* We're missing D+P. */
1521 return async_raid6_datap_recov(syndrome_disks+2,
1522 STRIPE_SIZE, faila,
1523 blocks, &submit);
1524 } else {
1525 /* We're missing D+D. */
1526 return async_raid6_2data_recov(syndrome_disks+2,
1527 STRIPE_SIZE, faila, failb,
1528 blocks, &submit);
1529 }
1530 }
1531 }
1532
1533 static void ops_complete_prexor(void *stripe_head_ref)
1534 {
1535 struct stripe_head *sh = stripe_head_ref;
1536
1537 pr_debug("%s: stripe %llu\n", __func__,
1538 (unsigned long long)sh->sector);
1539 }
1540
1541 static struct dma_async_tx_descriptor *
1542 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1543 struct dma_async_tx_descriptor *tx)
1544 {
1545 int disks = sh->disks;
1546 struct page **xor_srcs = to_addr_page(percpu, 0);
1547 int count = 0, pd_idx = sh->pd_idx, i;
1548 struct async_submit_ctl submit;
1549
1550 /* existing parity data subtracted */
1551 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1552
1553 BUG_ON(sh->batch_head);
1554 pr_debug("%s: stripe %llu\n", __func__,
1555 (unsigned long long)sh->sector);
1556
1557 for (i = disks; i--; ) {
1558 struct r5dev *dev = &sh->dev[i];
1559 /* Only process blocks that are known to be uptodate */
1560 if (test_bit(R5_Wantdrain, &dev->flags))
1561 xor_srcs[count++] = dev->page;
1562 }
1563
1564 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1565 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1566 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1567
1568 return tx;
1569 }
1570
1571 static struct dma_async_tx_descriptor *
1572 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1573 struct dma_async_tx_descriptor *tx)
1574 {
1575 struct page **blocks = to_addr_page(percpu, 0);
1576 int count;
1577 struct async_submit_ctl submit;
1578
1579 pr_debug("%s: stripe %llu\n", __func__,
1580 (unsigned long long)sh->sector);
1581
1582 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1583
1584 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1585 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1586 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1587
1588 return tx;
1589 }
1590
1591 static struct dma_async_tx_descriptor *
1592 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1593 {
1594 int disks = sh->disks;
1595 int i;
1596 struct stripe_head *head_sh = sh;
1597
1598 pr_debug("%s: stripe %llu\n", __func__,
1599 (unsigned long long)sh->sector);
1600
1601 for (i = disks; i--; ) {
1602 struct r5dev *dev;
1603 struct bio *chosen;
1604
1605 sh = head_sh;
1606 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1607 struct bio *wbi;
1608
1609 again:
1610 dev = &sh->dev[i];
1611 spin_lock_irq(&sh->stripe_lock);
1612 chosen = dev->towrite;
1613 dev->towrite = NULL;
1614 sh->overwrite_disks = 0;
1615 BUG_ON(dev->written);
1616 wbi = dev->written = chosen;
1617 spin_unlock_irq(&sh->stripe_lock);
1618 WARN_ON(dev->page != dev->orig_page);
1619
1620 while (wbi && wbi->bi_iter.bi_sector <
1621 dev->sector + STRIPE_SECTORS) {
1622 if (wbi->bi_rw & REQ_FUA)
1623 set_bit(R5_WantFUA, &dev->flags);
1624 if (wbi->bi_rw & REQ_SYNC)
1625 set_bit(R5_SyncIO, &dev->flags);
1626 if (wbi->bi_rw & REQ_DISCARD)
1627 set_bit(R5_Discard, &dev->flags);
1628 else {
1629 tx = async_copy_data(1, wbi, &dev->page,
1630 dev->sector, tx, sh);
1631 if (dev->page != dev->orig_page) {
1632 set_bit(R5_SkipCopy, &dev->flags);
1633 clear_bit(R5_UPTODATE, &dev->flags);
1634 clear_bit(R5_OVERWRITE, &dev->flags);
1635 }
1636 }
1637 wbi = r5_next_bio(wbi, dev->sector);
1638 }
1639
1640 if (head_sh->batch_head) {
1641 sh = list_first_entry(&sh->batch_list,
1642 struct stripe_head,
1643 batch_list);
1644 if (sh == head_sh)
1645 continue;
1646 goto again;
1647 }
1648 }
1649 }
1650
1651 return tx;
1652 }
1653
1654 static void ops_complete_reconstruct(void *stripe_head_ref)
1655 {
1656 struct stripe_head *sh = stripe_head_ref;
1657 int disks = sh->disks;
1658 int pd_idx = sh->pd_idx;
1659 int qd_idx = sh->qd_idx;
1660 int i;
1661 bool fua = false, sync = false, discard = false;
1662
1663 pr_debug("%s: stripe %llu\n", __func__,
1664 (unsigned long long)sh->sector);
1665
1666 for (i = disks; i--; ) {
1667 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1668 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1669 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1670 }
1671
1672 for (i = disks; i--; ) {
1673 struct r5dev *dev = &sh->dev[i];
1674
1675 if (dev->written || i == pd_idx || i == qd_idx) {
1676 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1677 set_bit(R5_UPTODATE, &dev->flags);
1678 if (fua)
1679 set_bit(R5_WantFUA, &dev->flags);
1680 if (sync)
1681 set_bit(R5_SyncIO, &dev->flags);
1682 }
1683 }
1684
1685 if (sh->reconstruct_state == reconstruct_state_drain_run)
1686 sh->reconstruct_state = reconstruct_state_drain_result;
1687 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1688 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1689 else {
1690 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1691 sh->reconstruct_state = reconstruct_state_result;
1692 }
1693
1694 set_bit(STRIPE_HANDLE, &sh->state);
1695 raid5_release_stripe(sh);
1696 }
1697
1698 static void
1699 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1700 struct dma_async_tx_descriptor *tx)
1701 {
1702 int disks = sh->disks;
1703 struct page **xor_srcs;
1704 struct async_submit_ctl submit;
1705 int count, pd_idx = sh->pd_idx, i;
1706 struct page *xor_dest;
1707 int prexor = 0;
1708 unsigned long flags;
1709 int j = 0;
1710 struct stripe_head *head_sh = sh;
1711 int last_stripe;
1712
1713 pr_debug("%s: stripe %llu\n", __func__,
1714 (unsigned long long)sh->sector);
1715
1716 for (i = 0; i < sh->disks; i++) {
1717 if (pd_idx == i)
1718 continue;
1719 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1720 break;
1721 }
1722 if (i >= sh->disks) {
1723 atomic_inc(&sh->count);
1724 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1725 ops_complete_reconstruct(sh);
1726 return;
1727 }
1728 again:
1729 count = 0;
1730 xor_srcs = to_addr_page(percpu, j);
1731 /* check if prexor is active which means only process blocks
1732 * that are part of a read-modify-write (written)
1733 */
1734 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1735 prexor = 1;
1736 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1737 for (i = disks; i--; ) {
1738 struct r5dev *dev = &sh->dev[i];
1739 if (head_sh->dev[i].written)
1740 xor_srcs[count++] = dev->page;
1741 }
1742 } else {
1743 xor_dest = sh->dev[pd_idx].page;
1744 for (i = disks; i--; ) {
1745 struct r5dev *dev = &sh->dev[i];
1746 if (i != pd_idx)
1747 xor_srcs[count++] = dev->page;
1748 }
1749 }
1750
1751 /* 1/ if we prexor'd then the dest is reused as a source
1752 * 2/ if we did not prexor then we are redoing the parity
1753 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754 * for the synchronous xor case
1755 */
1756 last_stripe = !head_sh->batch_head ||
1757 list_first_entry(&sh->batch_list,
1758 struct stripe_head, batch_list) == head_sh;
1759 if (last_stripe) {
1760 flags = ASYNC_TX_ACK |
1761 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1762
1763 atomic_inc(&head_sh->count);
1764 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1765 to_addr_conv(sh, percpu, j));
1766 } else {
1767 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1768 init_async_submit(&submit, flags, tx, NULL, NULL,
1769 to_addr_conv(sh, percpu, j));
1770 }
1771
1772 if (unlikely(count == 1))
1773 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1774 else
1775 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1776 if (!last_stripe) {
1777 j++;
1778 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1779 batch_list);
1780 goto again;
1781 }
1782 }
1783
1784 static void
1785 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1786 struct dma_async_tx_descriptor *tx)
1787 {
1788 struct async_submit_ctl submit;
1789 struct page **blocks;
1790 int count, i, j = 0;
1791 struct stripe_head *head_sh = sh;
1792 int last_stripe;
1793 int synflags;
1794 unsigned long txflags;
1795
1796 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1797
1798 for (i = 0; i < sh->disks; i++) {
1799 if (sh->pd_idx == i || sh->qd_idx == i)
1800 continue;
1801 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1802 break;
1803 }
1804 if (i >= sh->disks) {
1805 atomic_inc(&sh->count);
1806 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1807 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1808 ops_complete_reconstruct(sh);
1809 return;
1810 }
1811
1812 again:
1813 blocks = to_addr_page(percpu, j);
1814
1815 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1816 synflags = SYNDROME_SRC_WRITTEN;
1817 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1818 } else {
1819 synflags = SYNDROME_SRC_ALL;
1820 txflags = ASYNC_TX_ACK;
1821 }
1822
1823 count = set_syndrome_sources(blocks, sh, synflags);
1824 last_stripe = !head_sh->batch_head ||
1825 list_first_entry(&sh->batch_list,
1826 struct stripe_head, batch_list) == head_sh;
1827
1828 if (last_stripe) {
1829 atomic_inc(&head_sh->count);
1830 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1831 head_sh, to_addr_conv(sh, percpu, j));
1832 } else
1833 init_async_submit(&submit, 0, tx, NULL, NULL,
1834 to_addr_conv(sh, percpu, j));
1835 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1836 if (!last_stripe) {
1837 j++;
1838 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1839 batch_list);
1840 goto again;
1841 }
1842 }
1843
1844 static void ops_complete_check(void *stripe_head_ref)
1845 {
1846 struct stripe_head *sh = stripe_head_ref;
1847
1848 pr_debug("%s: stripe %llu\n", __func__,
1849 (unsigned long long)sh->sector);
1850
1851 sh->check_state = check_state_check_result;
1852 set_bit(STRIPE_HANDLE, &sh->state);
1853 raid5_release_stripe(sh);
1854 }
1855
1856 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1857 {
1858 int disks = sh->disks;
1859 int pd_idx = sh->pd_idx;
1860 int qd_idx = sh->qd_idx;
1861 struct page *xor_dest;
1862 struct page **xor_srcs = to_addr_page(percpu, 0);
1863 struct dma_async_tx_descriptor *tx;
1864 struct async_submit_ctl submit;
1865 int count;
1866 int i;
1867
1868 pr_debug("%s: stripe %llu\n", __func__,
1869 (unsigned long long)sh->sector);
1870
1871 BUG_ON(sh->batch_head);
1872 count = 0;
1873 xor_dest = sh->dev[pd_idx].page;
1874 xor_srcs[count++] = xor_dest;
1875 for (i = disks; i--; ) {
1876 if (i == pd_idx || i == qd_idx)
1877 continue;
1878 xor_srcs[count++] = sh->dev[i].page;
1879 }
1880
1881 init_async_submit(&submit, 0, NULL, NULL, NULL,
1882 to_addr_conv(sh, percpu, 0));
1883 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1884 &sh->ops.zero_sum_result, &submit);
1885
1886 atomic_inc(&sh->count);
1887 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1888 tx = async_trigger_callback(&submit);
1889 }
1890
1891 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1892 {
1893 struct page **srcs = to_addr_page(percpu, 0);
1894 struct async_submit_ctl submit;
1895 int count;
1896
1897 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1898 (unsigned long long)sh->sector, checkp);
1899
1900 BUG_ON(sh->batch_head);
1901 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1902 if (!checkp)
1903 srcs[count] = NULL;
1904
1905 atomic_inc(&sh->count);
1906 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1907 sh, to_addr_conv(sh, percpu, 0));
1908 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1909 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1910 }
1911
1912 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1913 {
1914 int overlap_clear = 0, i, disks = sh->disks;
1915 struct dma_async_tx_descriptor *tx = NULL;
1916 struct r5conf *conf = sh->raid_conf;
1917 int level = conf->level;
1918 struct raid5_percpu *percpu;
1919 unsigned long cpu;
1920
1921 cpu = get_cpu();
1922 percpu = per_cpu_ptr(conf->percpu, cpu);
1923 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1924 ops_run_biofill(sh);
1925 overlap_clear++;
1926 }
1927
1928 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1929 if (level < 6)
1930 tx = ops_run_compute5(sh, percpu);
1931 else {
1932 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1933 tx = ops_run_compute6_1(sh, percpu);
1934 else
1935 tx = ops_run_compute6_2(sh, percpu);
1936 }
1937 /* terminate the chain if reconstruct is not set to be run */
1938 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1939 async_tx_ack(tx);
1940 }
1941
1942 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1943 if (level < 6)
1944 tx = ops_run_prexor5(sh, percpu, tx);
1945 else
1946 tx = ops_run_prexor6(sh, percpu, tx);
1947 }
1948
1949 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1950 tx = ops_run_biodrain(sh, tx);
1951 overlap_clear++;
1952 }
1953
1954 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1955 if (level < 6)
1956 ops_run_reconstruct5(sh, percpu, tx);
1957 else
1958 ops_run_reconstruct6(sh, percpu, tx);
1959 }
1960
1961 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1962 if (sh->check_state == check_state_run)
1963 ops_run_check_p(sh, percpu);
1964 else if (sh->check_state == check_state_run_q)
1965 ops_run_check_pq(sh, percpu, 0);
1966 else if (sh->check_state == check_state_run_pq)
1967 ops_run_check_pq(sh, percpu, 1);
1968 else
1969 BUG();
1970 }
1971
1972 if (overlap_clear && !sh->batch_head)
1973 for (i = disks; i--; ) {
1974 struct r5dev *dev = &sh->dev[i];
1975 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1976 wake_up(&sh->raid_conf->wait_for_overlap);
1977 }
1978 put_cpu();
1979 }
1980
1981 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1982 {
1983 struct stripe_head *sh;
1984
1985 sh = kmem_cache_zalloc(sc, gfp);
1986 if (sh) {
1987 spin_lock_init(&sh->stripe_lock);
1988 spin_lock_init(&sh->batch_lock);
1989 INIT_LIST_HEAD(&sh->batch_list);
1990 INIT_LIST_HEAD(&sh->lru);
1991 atomic_set(&sh->count, 1);
1992 }
1993 return sh;
1994 }
1995 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1996 {
1997 struct stripe_head *sh;
1998
1999 sh = alloc_stripe(conf->slab_cache, gfp);
2000 if (!sh)
2001 return 0;
2002
2003 sh->raid_conf = conf;
2004
2005 if (grow_buffers(sh, gfp)) {
2006 shrink_buffers(sh);
2007 kmem_cache_free(conf->slab_cache, sh);
2008 return 0;
2009 }
2010 sh->hash_lock_index =
2011 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2012 /* we just created an active stripe so... */
2013 atomic_inc(&conf->active_stripes);
2014
2015 raid5_release_stripe(sh);
2016 conf->max_nr_stripes++;
2017 return 1;
2018 }
2019
2020 static int grow_stripes(struct r5conf *conf, int num)
2021 {
2022 struct kmem_cache *sc;
2023 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2024
2025 if (conf->mddev->gendisk)
2026 sprintf(conf->cache_name[0],
2027 "raid%d-%s", conf->level, mdname(conf->mddev));
2028 else
2029 sprintf(conf->cache_name[0],
2030 "raid%d-%p", conf->level, conf->mddev);
2031 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2032
2033 conf->active_name = 0;
2034 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2035 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2036 0, 0, NULL);
2037 if (!sc)
2038 return 1;
2039 conf->slab_cache = sc;
2040 conf->pool_size = devs;
2041 while (num--)
2042 if (!grow_one_stripe(conf, GFP_KERNEL))
2043 return 1;
2044
2045 return 0;
2046 }
2047
2048 /**
2049 * scribble_len - return the required size of the scribble region
2050 * @num - total number of disks in the array
2051 *
2052 * The size must be enough to contain:
2053 * 1/ a struct page pointer for each device in the array +2
2054 * 2/ room to convert each entry in (1) to its corresponding dma
2055 * (dma_map_page()) or page (page_address()) address.
2056 *
2057 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058 * calculate over all devices (not just the data blocks), using zeros in place
2059 * of the P and Q blocks.
2060 */
2061 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2062 {
2063 struct flex_array *ret;
2064 size_t len;
2065
2066 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2067 ret = flex_array_alloc(len, cnt, flags);
2068 if (!ret)
2069 return NULL;
2070 /* always prealloc all elements, so no locking is required */
2071 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2072 flex_array_free(ret);
2073 return NULL;
2074 }
2075 return ret;
2076 }
2077
2078 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2079 {
2080 unsigned long cpu;
2081 int err = 0;
2082
2083 /*
2084 * Never shrink. And mddev_suspend() could deadlock if this is called
2085 * from raid5d. In that case, scribble_disks and scribble_sectors
2086 * should equal to new_disks and new_sectors
2087 */
2088 if (conf->scribble_disks >= new_disks &&
2089 conf->scribble_sectors >= new_sectors)
2090 return 0;
2091 mddev_suspend(conf->mddev);
2092 get_online_cpus();
2093 for_each_present_cpu(cpu) {
2094 struct raid5_percpu *percpu;
2095 struct flex_array *scribble;
2096
2097 percpu = per_cpu_ptr(conf->percpu, cpu);
2098 scribble = scribble_alloc(new_disks,
2099 new_sectors / STRIPE_SECTORS,
2100 GFP_NOIO);
2101
2102 if (scribble) {
2103 flex_array_free(percpu->scribble);
2104 percpu->scribble = scribble;
2105 } else {
2106 err = -ENOMEM;
2107 break;
2108 }
2109 }
2110 put_online_cpus();
2111 mddev_resume(conf->mddev);
2112 if (!err) {
2113 conf->scribble_disks = new_disks;
2114 conf->scribble_sectors = new_sectors;
2115 }
2116 return err;
2117 }
2118
2119 static int resize_stripes(struct r5conf *conf, int newsize)
2120 {
2121 /* Make all the stripes able to hold 'newsize' devices.
2122 * New slots in each stripe get 'page' set to a new page.
2123 *
2124 * This happens in stages:
2125 * 1/ create a new kmem_cache and allocate the required number of
2126 * stripe_heads.
2127 * 2/ gather all the old stripe_heads and transfer the pages across
2128 * to the new stripe_heads. This will have the side effect of
2129 * freezing the array as once all stripe_heads have been collected,
2130 * no IO will be possible. Old stripe heads are freed once their
2131 * pages have been transferred over, and the old kmem_cache is
2132 * freed when all stripes are done.
2133 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2134 * we simple return a failre status - no need to clean anything up.
2135 * 4/ allocate new pages for the new slots in the new stripe_heads.
2136 * If this fails, we don't bother trying the shrink the
2137 * stripe_heads down again, we just leave them as they are.
2138 * As each stripe_head is processed the new one is released into
2139 * active service.
2140 *
2141 * Once step2 is started, we cannot afford to wait for a write,
2142 * so we use GFP_NOIO allocations.
2143 */
2144 struct stripe_head *osh, *nsh;
2145 LIST_HEAD(newstripes);
2146 struct disk_info *ndisks;
2147 int err;
2148 struct kmem_cache *sc;
2149 int i;
2150 int hash, cnt;
2151
2152 if (newsize <= conf->pool_size)
2153 return 0; /* never bother to shrink */
2154
2155 err = md_allow_write(conf->mddev);
2156 if (err)
2157 return err;
2158
2159 /* Step 1 */
2160 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2161 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2162 0, 0, NULL);
2163 if (!sc)
2164 return -ENOMEM;
2165
2166 /* Need to ensure auto-resizing doesn't interfere */
2167 mutex_lock(&conf->cache_size_mutex);
2168
2169 for (i = conf->max_nr_stripes; i; i--) {
2170 nsh = alloc_stripe(sc, GFP_KERNEL);
2171 if (!nsh)
2172 break;
2173
2174 nsh->raid_conf = conf;
2175 list_add(&nsh->lru, &newstripes);
2176 }
2177 if (i) {
2178 /* didn't get enough, give up */
2179 while (!list_empty(&newstripes)) {
2180 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2181 list_del(&nsh->lru);
2182 kmem_cache_free(sc, nsh);
2183 }
2184 kmem_cache_destroy(sc);
2185 mutex_unlock(&conf->cache_size_mutex);
2186 return -ENOMEM;
2187 }
2188 /* Step 2 - Must use GFP_NOIO now.
2189 * OK, we have enough stripes, start collecting inactive
2190 * stripes and copying them over
2191 */
2192 hash = 0;
2193 cnt = 0;
2194 list_for_each_entry(nsh, &newstripes, lru) {
2195 lock_device_hash_lock(conf, hash);
2196 wait_event_cmd(conf->wait_for_stripe,
2197 !list_empty(conf->inactive_list + hash),
2198 unlock_device_hash_lock(conf, hash),
2199 lock_device_hash_lock(conf, hash));
2200 osh = get_free_stripe(conf, hash);
2201 unlock_device_hash_lock(conf, hash);
2202
2203 for(i=0; i<conf->pool_size; i++) {
2204 nsh->dev[i].page = osh->dev[i].page;
2205 nsh->dev[i].orig_page = osh->dev[i].page;
2206 }
2207 nsh->hash_lock_index = hash;
2208 kmem_cache_free(conf->slab_cache, osh);
2209 cnt++;
2210 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2211 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2212 hash++;
2213 cnt = 0;
2214 }
2215 }
2216 kmem_cache_destroy(conf->slab_cache);
2217
2218 /* Step 3.
2219 * At this point, we are holding all the stripes so the array
2220 * is completely stalled, so now is a good time to resize
2221 * conf->disks and the scribble region
2222 */
2223 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2224 if (ndisks) {
2225 for (i=0; i<conf->raid_disks; i++)
2226 ndisks[i] = conf->disks[i];
2227 kfree(conf->disks);
2228 conf->disks = ndisks;
2229 } else
2230 err = -ENOMEM;
2231
2232 mutex_unlock(&conf->cache_size_mutex);
2233 /* Step 4, return new stripes to service */
2234 while(!list_empty(&newstripes)) {
2235 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2236 list_del_init(&nsh->lru);
2237
2238 for (i=conf->raid_disks; i < newsize; i++)
2239 if (nsh->dev[i].page == NULL) {
2240 struct page *p = alloc_page(GFP_NOIO);
2241 nsh->dev[i].page = p;
2242 nsh->dev[i].orig_page = p;
2243 if (!p)
2244 err = -ENOMEM;
2245 }
2246 raid5_release_stripe(nsh);
2247 }
2248 /* critical section pass, GFP_NOIO no longer needed */
2249
2250 conf->slab_cache = sc;
2251 conf->active_name = 1-conf->active_name;
2252 if (!err)
2253 conf->pool_size = newsize;
2254 return err;
2255 }
2256
2257 static int drop_one_stripe(struct r5conf *conf)
2258 {
2259 struct stripe_head *sh;
2260 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2261
2262 spin_lock_irq(conf->hash_locks + hash);
2263 sh = get_free_stripe(conf, hash);
2264 spin_unlock_irq(conf->hash_locks + hash);
2265 if (!sh)
2266 return 0;
2267 BUG_ON(atomic_read(&sh->count));
2268 shrink_buffers(sh);
2269 kmem_cache_free(conf->slab_cache, sh);
2270 atomic_dec(&conf->active_stripes);
2271 conf->max_nr_stripes--;
2272 return 1;
2273 }
2274
2275 static void shrink_stripes(struct r5conf *conf)
2276 {
2277 while (conf->max_nr_stripes &&
2278 drop_one_stripe(conf))
2279 ;
2280
2281 kmem_cache_destroy(conf->slab_cache);
2282 conf->slab_cache = NULL;
2283 }
2284
2285 static void raid5_end_read_request(struct bio * bi)
2286 {
2287 struct stripe_head *sh = bi->bi_private;
2288 struct r5conf *conf = sh->raid_conf;
2289 int disks = sh->disks, i;
2290 char b[BDEVNAME_SIZE];
2291 struct md_rdev *rdev = NULL;
2292 sector_t s;
2293
2294 for (i=0 ; i<disks; i++)
2295 if (bi == &sh->dev[i].req)
2296 break;
2297
2298 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2299 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2300 bi->bi_error);
2301 if (i == disks) {
2302 BUG();
2303 return;
2304 }
2305 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2306 /* If replacement finished while this request was outstanding,
2307 * 'replacement' might be NULL already.
2308 * In that case it moved down to 'rdev'.
2309 * rdev is not removed until all requests are finished.
2310 */
2311 rdev = conf->disks[i].replacement;
2312 if (!rdev)
2313 rdev = conf->disks[i].rdev;
2314
2315 if (use_new_offset(conf, sh))
2316 s = sh->sector + rdev->new_data_offset;
2317 else
2318 s = sh->sector + rdev->data_offset;
2319 if (!bi->bi_error) {
2320 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2321 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2322 /* Note that this cannot happen on a
2323 * replacement device. We just fail those on
2324 * any error
2325 */
2326 printk_ratelimited(
2327 KERN_INFO
2328 "md/raid:%s: read error corrected"
2329 " (%lu sectors at %llu on %s)\n",
2330 mdname(conf->mddev), STRIPE_SECTORS,
2331 (unsigned long long)s,
2332 bdevname(rdev->bdev, b));
2333 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2334 clear_bit(R5_ReadError, &sh->dev[i].flags);
2335 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2336 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2337 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2338
2339 if (atomic_read(&rdev->read_errors))
2340 atomic_set(&rdev->read_errors, 0);
2341 } else {
2342 const char *bdn = bdevname(rdev->bdev, b);
2343 int retry = 0;
2344 int set_bad = 0;
2345
2346 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2347 atomic_inc(&rdev->read_errors);
2348 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2349 printk_ratelimited(
2350 KERN_WARNING
2351 "md/raid:%s: read error on replacement device "
2352 "(sector %llu on %s).\n",
2353 mdname(conf->mddev),
2354 (unsigned long long)s,
2355 bdn);
2356 else if (conf->mddev->degraded >= conf->max_degraded) {
2357 set_bad = 1;
2358 printk_ratelimited(
2359 KERN_WARNING
2360 "md/raid:%s: read error not correctable "
2361 "(sector %llu on %s).\n",
2362 mdname(conf->mddev),
2363 (unsigned long long)s,
2364 bdn);
2365 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2366 /* Oh, no!!! */
2367 set_bad = 1;
2368 printk_ratelimited(
2369 KERN_WARNING
2370 "md/raid:%s: read error NOT corrected!! "
2371 "(sector %llu on %s).\n",
2372 mdname(conf->mddev),
2373 (unsigned long long)s,
2374 bdn);
2375 } else if (atomic_read(&rdev->read_errors)
2376 > conf->max_nr_stripes)
2377 printk(KERN_WARNING
2378 "md/raid:%s: Too many read errors, failing device %s.\n",
2379 mdname(conf->mddev), bdn);
2380 else
2381 retry = 1;
2382 if (set_bad && test_bit(In_sync, &rdev->flags)
2383 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2384 retry = 1;
2385 if (retry)
2386 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2387 set_bit(R5_ReadError, &sh->dev[i].flags);
2388 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2389 } else
2390 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2391 else {
2392 clear_bit(R5_ReadError, &sh->dev[i].flags);
2393 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2394 if (!(set_bad
2395 && test_bit(In_sync, &rdev->flags)
2396 && rdev_set_badblocks(
2397 rdev, sh->sector, STRIPE_SECTORS, 0)))
2398 md_error(conf->mddev, rdev);
2399 }
2400 }
2401 rdev_dec_pending(rdev, conf->mddev);
2402 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2403 set_bit(STRIPE_HANDLE, &sh->state);
2404 raid5_release_stripe(sh);
2405 }
2406
2407 static void raid5_end_write_request(struct bio *bi)
2408 {
2409 struct stripe_head *sh = bi->bi_private;
2410 struct r5conf *conf = sh->raid_conf;
2411 int disks = sh->disks, i;
2412 struct md_rdev *uninitialized_var(rdev);
2413 sector_t first_bad;
2414 int bad_sectors;
2415 int replacement = 0;
2416
2417 for (i = 0 ; i < disks; i++) {
2418 if (bi == &sh->dev[i].req) {
2419 rdev = conf->disks[i].rdev;
2420 break;
2421 }
2422 if (bi == &sh->dev[i].rreq) {
2423 rdev = conf->disks[i].replacement;
2424 if (rdev)
2425 replacement = 1;
2426 else
2427 /* rdev was removed and 'replacement'
2428 * replaced it. rdev is not removed
2429 * until all requests are finished.
2430 */
2431 rdev = conf->disks[i].rdev;
2432 break;
2433 }
2434 }
2435 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2436 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2437 bi->bi_error);
2438 if (i == disks) {
2439 BUG();
2440 return;
2441 }
2442
2443 if (replacement) {
2444 if (bi->bi_error)
2445 md_error(conf->mddev, rdev);
2446 else if (is_badblock(rdev, sh->sector,
2447 STRIPE_SECTORS,
2448 &first_bad, &bad_sectors))
2449 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2450 } else {
2451 if (bi->bi_error) {
2452 set_bit(STRIPE_DEGRADED, &sh->state);
2453 set_bit(WriteErrorSeen, &rdev->flags);
2454 set_bit(R5_WriteError, &sh->dev[i].flags);
2455 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2456 set_bit(MD_RECOVERY_NEEDED,
2457 &rdev->mddev->recovery);
2458 } else if (is_badblock(rdev, sh->sector,
2459 STRIPE_SECTORS,
2460 &first_bad, &bad_sectors)) {
2461 set_bit(R5_MadeGood, &sh->dev[i].flags);
2462 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2463 /* That was a successful write so make
2464 * sure it looks like we already did
2465 * a re-write.
2466 */
2467 set_bit(R5_ReWrite, &sh->dev[i].flags);
2468 }
2469 }
2470 rdev_dec_pending(rdev, conf->mddev);
2471
2472 if (sh->batch_head && bi->bi_error && !replacement)
2473 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2474
2475 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2476 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2477 set_bit(STRIPE_HANDLE, &sh->state);
2478 raid5_release_stripe(sh);
2479
2480 if (sh->batch_head && sh != sh->batch_head)
2481 raid5_release_stripe(sh->batch_head);
2482 }
2483
2484 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2485 {
2486 struct r5dev *dev = &sh->dev[i];
2487
2488 bio_init(&dev->req);
2489 dev->req.bi_io_vec = &dev->vec;
2490 dev->req.bi_max_vecs = 1;
2491 dev->req.bi_private = sh;
2492
2493 bio_init(&dev->rreq);
2494 dev->rreq.bi_io_vec = &dev->rvec;
2495 dev->rreq.bi_max_vecs = 1;
2496 dev->rreq.bi_private = sh;
2497
2498 dev->flags = 0;
2499 dev->sector = raid5_compute_blocknr(sh, i, previous);
2500 }
2501
2502 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2503 {
2504 char b[BDEVNAME_SIZE];
2505 struct r5conf *conf = mddev->private;
2506 unsigned long flags;
2507 pr_debug("raid456: error called\n");
2508
2509 spin_lock_irqsave(&conf->device_lock, flags);
2510 clear_bit(In_sync, &rdev->flags);
2511 mddev->degraded = calc_degraded(conf);
2512 spin_unlock_irqrestore(&conf->device_lock, flags);
2513 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2514
2515 set_bit(Blocked, &rdev->flags);
2516 set_bit(Faulty, &rdev->flags);
2517 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2518 set_bit(MD_CHANGE_PENDING, &mddev->flags);
2519 printk(KERN_ALERT
2520 "md/raid:%s: Disk failure on %s, disabling device.\n"
2521 "md/raid:%s: Operation continuing on %d devices.\n",
2522 mdname(mddev),
2523 bdevname(rdev->bdev, b),
2524 mdname(mddev),
2525 conf->raid_disks - mddev->degraded);
2526 }
2527
2528 /*
2529 * Input: a 'big' sector number,
2530 * Output: index of the data and parity disk, and the sector # in them.
2531 */
2532 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2533 int previous, int *dd_idx,
2534 struct stripe_head *sh)
2535 {
2536 sector_t stripe, stripe2;
2537 sector_t chunk_number;
2538 unsigned int chunk_offset;
2539 int pd_idx, qd_idx;
2540 int ddf_layout = 0;
2541 sector_t new_sector;
2542 int algorithm = previous ? conf->prev_algo
2543 : conf->algorithm;
2544 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2545 : conf->chunk_sectors;
2546 int raid_disks = previous ? conf->previous_raid_disks
2547 : conf->raid_disks;
2548 int data_disks = raid_disks - conf->max_degraded;
2549
2550 /* First compute the information on this sector */
2551
2552 /*
2553 * Compute the chunk number and the sector offset inside the chunk
2554 */
2555 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2556 chunk_number = r_sector;
2557
2558 /*
2559 * Compute the stripe number
2560 */
2561 stripe = chunk_number;
2562 *dd_idx = sector_div(stripe, data_disks);
2563 stripe2 = stripe;
2564 /*
2565 * Select the parity disk based on the user selected algorithm.
2566 */
2567 pd_idx = qd_idx = -1;
2568 switch(conf->level) {
2569 case 4:
2570 pd_idx = data_disks;
2571 break;
2572 case 5:
2573 switch (algorithm) {
2574 case ALGORITHM_LEFT_ASYMMETRIC:
2575 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2576 if (*dd_idx >= pd_idx)
2577 (*dd_idx)++;
2578 break;
2579 case ALGORITHM_RIGHT_ASYMMETRIC:
2580 pd_idx = sector_div(stripe2, raid_disks);
2581 if (*dd_idx >= pd_idx)
2582 (*dd_idx)++;
2583 break;
2584 case ALGORITHM_LEFT_SYMMETRIC:
2585 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2586 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2587 break;
2588 case ALGORITHM_RIGHT_SYMMETRIC:
2589 pd_idx = sector_div(stripe2, raid_disks);
2590 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2591 break;
2592 case ALGORITHM_PARITY_0:
2593 pd_idx = 0;
2594 (*dd_idx)++;
2595 break;
2596 case ALGORITHM_PARITY_N:
2597 pd_idx = data_disks;
2598 break;
2599 default:
2600 BUG();
2601 }
2602 break;
2603 case 6:
2604
2605 switch (algorithm) {
2606 case ALGORITHM_LEFT_ASYMMETRIC:
2607 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2608 qd_idx = pd_idx + 1;
2609 if (pd_idx == raid_disks-1) {
2610 (*dd_idx)++; /* Q D D D P */
2611 qd_idx = 0;
2612 } else if (*dd_idx >= pd_idx)
2613 (*dd_idx) += 2; /* D D P Q D */
2614 break;
2615 case ALGORITHM_RIGHT_ASYMMETRIC:
2616 pd_idx = sector_div(stripe2, raid_disks);
2617 qd_idx = pd_idx + 1;
2618 if (pd_idx == raid_disks-1) {
2619 (*dd_idx)++; /* Q D D D P */
2620 qd_idx = 0;
2621 } else if (*dd_idx >= pd_idx)
2622 (*dd_idx) += 2; /* D D P Q D */
2623 break;
2624 case ALGORITHM_LEFT_SYMMETRIC:
2625 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2626 qd_idx = (pd_idx + 1) % raid_disks;
2627 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2628 break;
2629 case ALGORITHM_RIGHT_SYMMETRIC:
2630 pd_idx = sector_div(stripe2, raid_disks);
2631 qd_idx = (pd_idx + 1) % raid_disks;
2632 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2633 break;
2634
2635 case ALGORITHM_PARITY_0:
2636 pd_idx = 0;
2637 qd_idx = 1;
2638 (*dd_idx) += 2;
2639 break;
2640 case ALGORITHM_PARITY_N:
2641 pd_idx = data_disks;
2642 qd_idx = data_disks + 1;
2643 break;
2644
2645 case ALGORITHM_ROTATING_ZERO_RESTART:
2646 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2647 * of blocks for computing Q is different.
2648 */
2649 pd_idx = sector_div(stripe2, raid_disks);
2650 qd_idx = pd_idx + 1;
2651 if (pd_idx == raid_disks-1) {
2652 (*dd_idx)++; /* Q D D D P */
2653 qd_idx = 0;
2654 } else if (*dd_idx >= pd_idx)
2655 (*dd_idx) += 2; /* D D P Q D */
2656 ddf_layout = 1;
2657 break;
2658
2659 case ALGORITHM_ROTATING_N_RESTART:
2660 /* Same a left_asymmetric, by first stripe is
2661 * D D D P Q rather than
2662 * Q D D D P
2663 */
2664 stripe2 += 1;
2665 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2666 qd_idx = pd_idx + 1;
2667 if (pd_idx == raid_disks-1) {
2668 (*dd_idx)++; /* Q D D D P */
2669 qd_idx = 0;
2670 } else if (*dd_idx >= pd_idx)
2671 (*dd_idx) += 2; /* D D P Q D */
2672 ddf_layout = 1;
2673 break;
2674
2675 case ALGORITHM_ROTATING_N_CONTINUE:
2676 /* Same as left_symmetric but Q is before P */
2677 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2678 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2679 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2680 ddf_layout = 1;
2681 break;
2682
2683 case ALGORITHM_LEFT_ASYMMETRIC_6:
2684 /* RAID5 left_asymmetric, with Q on last device */
2685 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2686 if (*dd_idx >= pd_idx)
2687 (*dd_idx)++;
2688 qd_idx = raid_disks - 1;
2689 break;
2690
2691 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2692 pd_idx = sector_div(stripe2, raid_disks-1);
2693 if (*dd_idx >= pd_idx)
2694 (*dd_idx)++;
2695 qd_idx = raid_disks - 1;
2696 break;
2697
2698 case ALGORITHM_LEFT_SYMMETRIC_6:
2699 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2700 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2701 qd_idx = raid_disks - 1;
2702 break;
2703
2704 case ALGORITHM_RIGHT_SYMMETRIC_6:
2705 pd_idx = sector_div(stripe2, raid_disks-1);
2706 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2707 qd_idx = raid_disks - 1;
2708 break;
2709
2710 case ALGORITHM_PARITY_0_6:
2711 pd_idx = 0;
2712 (*dd_idx)++;
2713 qd_idx = raid_disks - 1;
2714 break;
2715
2716 default:
2717 BUG();
2718 }
2719 break;
2720 }
2721
2722 if (sh) {
2723 sh->pd_idx = pd_idx;
2724 sh->qd_idx = qd_idx;
2725 sh->ddf_layout = ddf_layout;
2726 }
2727 /*
2728 * Finally, compute the new sector number
2729 */
2730 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2731 return new_sector;
2732 }
2733
2734 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2735 {
2736 struct r5conf *conf = sh->raid_conf;
2737 int raid_disks = sh->disks;
2738 int data_disks = raid_disks - conf->max_degraded;
2739 sector_t new_sector = sh->sector, check;
2740 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2741 : conf->chunk_sectors;
2742 int algorithm = previous ? conf->prev_algo
2743 : conf->algorithm;
2744 sector_t stripe;
2745 int chunk_offset;
2746 sector_t chunk_number;
2747 int dummy1, dd_idx = i;
2748 sector_t r_sector;
2749 struct stripe_head sh2;
2750
2751 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2752 stripe = new_sector;
2753
2754 if (i == sh->pd_idx)
2755 return 0;
2756 switch(conf->level) {
2757 case 4: break;
2758 case 5:
2759 switch (algorithm) {
2760 case ALGORITHM_LEFT_ASYMMETRIC:
2761 case ALGORITHM_RIGHT_ASYMMETRIC:
2762 if (i > sh->pd_idx)
2763 i--;
2764 break;
2765 case ALGORITHM_LEFT_SYMMETRIC:
2766 case ALGORITHM_RIGHT_SYMMETRIC:
2767 if (i < sh->pd_idx)
2768 i += raid_disks;
2769 i -= (sh->pd_idx + 1);
2770 break;
2771 case ALGORITHM_PARITY_0:
2772 i -= 1;
2773 break;
2774 case ALGORITHM_PARITY_N:
2775 break;
2776 default:
2777 BUG();
2778 }
2779 break;
2780 case 6:
2781 if (i == sh->qd_idx)
2782 return 0; /* It is the Q disk */
2783 switch (algorithm) {
2784 case ALGORITHM_LEFT_ASYMMETRIC:
2785 case ALGORITHM_RIGHT_ASYMMETRIC:
2786 case ALGORITHM_ROTATING_ZERO_RESTART:
2787 case ALGORITHM_ROTATING_N_RESTART:
2788 if (sh->pd_idx == raid_disks-1)
2789 i--; /* Q D D D P */
2790 else if (i > sh->pd_idx)
2791 i -= 2; /* D D P Q D */
2792 break;
2793 case ALGORITHM_LEFT_SYMMETRIC:
2794 case ALGORITHM_RIGHT_SYMMETRIC:
2795 if (sh->pd_idx == raid_disks-1)
2796 i--; /* Q D D D P */
2797 else {
2798 /* D D P Q D */
2799 if (i < sh->pd_idx)
2800 i += raid_disks;
2801 i -= (sh->pd_idx + 2);
2802 }
2803 break;
2804 case ALGORITHM_PARITY_0:
2805 i -= 2;
2806 break;
2807 case ALGORITHM_PARITY_N:
2808 break;
2809 case ALGORITHM_ROTATING_N_CONTINUE:
2810 /* Like left_symmetric, but P is before Q */
2811 if (sh->pd_idx == 0)
2812 i--; /* P D D D Q */
2813 else {
2814 /* D D Q P D */
2815 if (i < sh->pd_idx)
2816 i += raid_disks;
2817 i -= (sh->pd_idx + 1);
2818 }
2819 break;
2820 case ALGORITHM_LEFT_ASYMMETRIC_6:
2821 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2822 if (i > sh->pd_idx)
2823 i--;
2824 break;
2825 case ALGORITHM_LEFT_SYMMETRIC_6:
2826 case ALGORITHM_RIGHT_SYMMETRIC_6:
2827 if (i < sh->pd_idx)
2828 i += data_disks + 1;
2829 i -= (sh->pd_idx + 1);
2830 break;
2831 case ALGORITHM_PARITY_0_6:
2832 i -= 1;
2833 break;
2834 default:
2835 BUG();
2836 }
2837 break;
2838 }
2839
2840 chunk_number = stripe * data_disks + i;
2841 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2842
2843 check = raid5_compute_sector(conf, r_sector,
2844 previous, &dummy1, &sh2);
2845 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2846 || sh2.qd_idx != sh->qd_idx) {
2847 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2848 mdname(conf->mddev));
2849 return 0;
2850 }
2851 return r_sector;
2852 }
2853
2854 static void
2855 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2856 int rcw, int expand)
2857 {
2858 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2859 struct r5conf *conf = sh->raid_conf;
2860 int level = conf->level;
2861
2862 if (rcw) {
2863
2864 for (i = disks; i--; ) {
2865 struct r5dev *dev = &sh->dev[i];
2866
2867 if (dev->towrite) {
2868 set_bit(R5_LOCKED, &dev->flags);
2869 set_bit(R5_Wantdrain, &dev->flags);
2870 if (!expand)
2871 clear_bit(R5_UPTODATE, &dev->flags);
2872 s->locked++;
2873 }
2874 }
2875 /* if we are not expanding this is a proper write request, and
2876 * there will be bios with new data to be drained into the
2877 * stripe cache
2878 */
2879 if (!expand) {
2880 if (!s->locked)
2881 /* False alarm, nothing to do */
2882 return;
2883 sh->reconstruct_state = reconstruct_state_drain_run;
2884 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2885 } else
2886 sh->reconstruct_state = reconstruct_state_run;
2887
2888 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2889
2890 if (s->locked + conf->max_degraded == disks)
2891 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2892 atomic_inc(&conf->pending_full_writes);
2893 } else {
2894 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2895 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2896 BUG_ON(level == 6 &&
2897 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2898 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2899
2900 for (i = disks; i--; ) {
2901 struct r5dev *dev = &sh->dev[i];
2902 if (i == pd_idx || i == qd_idx)
2903 continue;
2904
2905 if (dev->towrite &&
2906 (test_bit(R5_UPTODATE, &dev->flags) ||
2907 test_bit(R5_Wantcompute, &dev->flags))) {
2908 set_bit(R5_Wantdrain, &dev->flags);
2909 set_bit(R5_LOCKED, &dev->flags);
2910 clear_bit(R5_UPTODATE, &dev->flags);
2911 s->locked++;
2912 }
2913 }
2914 if (!s->locked)
2915 /* False alarm - nothing to do */
2916 return;
2917 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2918 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2919 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2920 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2921 }
2922
2923 /* keep the parity disk(s) locked while asynchronous operations
2924 * are in flight
2925 */
2926 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2927 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2928 s->locked++;
2929
2930 if (level == 6) {
2931 int qd_idx = sh->qd_idx;
2932 struct r5dev *dev = &sh->dev[qd_idx];
2933
2934 set_bit(R5_LOCKED, &dev->flags);
2935 clear_bit(R5_UPTODATE, &dev->flags);
2936 s->locked++;
2937 }
2938
2939 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2940 __func__, (unsigned long long)sh->sector,
2941 s->locked, s->ops_request);
2942 }
2943
2944 /*
2945 * Each stripe/dev can have one or more bion attached.
2946 * toread/towrite point to the first in a chain.
2947 * The bi_next chain must be in order.
2948 */
2949 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2950 int forwrite, int previous)
2951 {
2952 struct bio **bip;
2953 struct r5conf *conf = sh->raid_conf;
2954 int firstwrite=0;
2955
2956 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2957 (unsigned long long)bi->bi_iter.bi_sector,
2958 (unsigned long long)sh->sector);
2959
2960 /*
2961 * If several bio share a stripe. The bio bi_phys_segments acts as a
2962 * reference count to avoid race. The reference count should already be
2963 * increased before this function is called (for example, in
2964 * raid5_make_request()), so other bio sharing this stripe will not free the
2965 * stripe. If a stripe is owned by one stripe, the stripe lock will
2966 * protect it.
2967 */
2968 spin_lock_irq(&sh->stripe_lock);
2969 /* Don't allow new IO added to stripes in batch list */
2970 if (sh->batch_head)
2971 goto overlap;
2972 if (forwrite) {
2973 bip = &sh->dev[dd_idx].towrite;
2974 if (*bip == NULL)
2975 firstwrite = 1;
2976 } else
2977 bip = &sh->dev[dd_idx].toread;
2978 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2979 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2980 goto overlap;
2981 bip = & (*bip)->bi_next;
2982 }
2983 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2984 goto overlap;
2985
2986 if (!forwrite || previous)
2987 clear_bit(STRIPE_BATCH_READY, &sh->state);
2988
2989 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2990 if (*bip)
2991 bi->bi_next = *bip;
2992 *bip = bi;
2993 raid5_inc_bi_active_stripes(bi);
2994
2995 if (forwrite) {
2996 /* check if page is covered */
2997 sector_t sector = sh->dev[dd_idx].sector;
2998 for (bi=sh->dev[dd_idx].towrite;
2999 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3000 bi && bi->bi_iter.bi_sector <= sector;
3001 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3002 if (bio_end_sector(bi) >= sector)
3003 sector = bio_end_sector(bi);
3004 }
3005 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3006 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3007 sh->overwrite_disks++;
3008 }
3009
3010 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3011 (unsigned long long)(*bip)->bi_iter.bi_sector,
3012 (unsigned long long)sh->sector, dd_idx);
3013
3014 if (conf->mddev->bitmap && firstwrite) {
3015 /* Cannot hold spinlock over bitmap_startwrite,
3016 * but must ensure this isn't added to a batch until
3017 * we have added to the bitmap and set bm_seq.
3018 * So set STRIPE_BITMAP_PENDING to prevent
3019 * batching.
3020 * If multiple add_stripe_bio() calls race here they
3021 * much all set STRIPE_BITMAP_PENDING. So only the first one
3022 * to complete "bitmap_startwrite" gets to set
3023 * STRIPE_BIT_DELAY. This is important as once a stripe
3024 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3025 * any more.
3026 */
3027 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3028 spin_unlock_irq(&sh->stripe_lock);
3029 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3030 STRIPE_SECTORS, 0);
3031 spin_lock_irq(&sh->stripe_lock);
3032 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3033 if (!sh->batch_head) {
3034 sh->bm_seq = conf->seq_flush+1;
3035 set_bit(STRIPE_BIT_DELAY, &sh->state);
3036 }
3037 }
3038 spin_unlock_irq(&sh->stripe_lock);
3039
3040 if (stripe_can_batch(sh))
3041 stripe_add_to_batch_list(conf, sh);
3042 return 1;
3043
3044 overlap:
3045 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3046 spin_unlock_irq(&sh->stripe_lock);
3047 return 0;
3048 }
3049
3050 static void end_reshape(struct r5conf *conf);
3051
3052 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3053 struct stripe_head *sh)
3054 {
3055 int sectors_per_chunk =
3056 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3057 int dd_idx;
3058 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3059 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3060
3061 raid5_compute_sector(conf,
3062 stripe * (disks - conf->max_degraded)
3063 *sectors_per_chunk + chunk_offset,
3064 previous,
3065 &dd_idx, sh);
3066 }
3067
3068 static void
3069 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3070 struct stripe_head_state *s, int disks,
3071 struct bio_list *return_bi)
3072 {
3073 int i;
3074 BUG_ON(sh->batch_head);
3075 for (i = disks; i--; ) {
3076 struct bio *bi;
3077 int bitmap_end = 0;
3078
3079 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3080 struct md_rdev *rdev;
3081 rcu_read_lock();
3082 rdev = rcu_dereference(conf->disks[i].rdev);
3083 if (rdev && test_bit(In_sync, &rdev->flags))
3084 atomic_inc(&rdev->nr_pending);
3085 else
3086 rdev = NULL;
3087 rcu_read_unlock();
3088 if (rdev) {
3089 if (!rdev_set_badblocks(
3090 rdev,
3091 sh->sector,
3092 STRIPE_SECTORS, 0))
3093 md_error(conf->mddev, rdev);
3094 rdev_dec_pending(rdev, conf->mddev);
3095 }
3096 }
3097 spin_lock_irq(&sh->stripe_lock);
3098 /* fail all writes first */
3099 bi = sh->dev[i].towrite;
3100 sh->dev[i].towrite = NULL;
3101 sh->overwrite_disks = 0;
3102 spin_unlock_irq(&sh->stripe_lock);
3103 if (bi)
3104 bitmap_end = 1;
3105
3106 r5l_stripe_write_finished(sh);
3107
3108 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3109 wake_up(&conf->wait_for_overlap);
3110
3111 while (bi && bi->bi_iter.bi_sector <
3112 sh->dev[i].sector + STRIPE_SECTORS) {
3113 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3114
3115 bi->bi_error = -EIO;
3116 if (!raid5_dec_bi_active_stripes(bi)) {
3117 md_write_end(conf->mddev);
3118 bio_list_add(return_bi, bi);
3119 }
3120 bi = nextbi;
3121 }
3122 if (bitmap_end)
3123 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3124 STRIPE_SECTORS, 0, 0);
3125 bitmap_end = 0;
3126 /* and fail all 'written' */
3127 bi = sh->dev[i].written;
3128 sh->dev[i].written = NULL;
3129 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3130 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3131 sh->dev[i].page = sh->dev[i].orig_page;
3132 }
3133
3134 if (bi) bitmap_end = 1;
3135 while (bi && bi->bi_iter.bi_sector <
3136 sh->dev[i].sector + STRIPE_SECTORS) {
3137 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3138
3139 bi->bi_error = -EIO;
3140 if (!raid5_dec_bi_active_stripes(bi)) {
3141 md_write_end(conf->mddev);
3142 bio_list_add(return_bi, bi);
3143 }
3144 bi = bi2;
3145 }
3146
3147 /* fail any reads if this device is non-operational and
3148 * the data has not reached the cache yet.
3149 */
3150 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3151 s->failed > conf->max_degraded &&
3152 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3153 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3154 spin_lock_irq(&sh->stripe_lock);
3155 bi = sh->dev[i].toread;
3156 sh->dev[i].toread = NULL;
3157 spin_unlock_irq(&sh->stripe_lock);
3158 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3159 wake_up(&conf->wait_for_overlap);
3160 if (bi)
3161 s->to_read--;
3162 while (bi && bi->bi_iter.bi_sector <
3163 sh->dev[i].sector + STRIPE_SECTORS) {
3164 struct bio *nextbi =
3165 r5_next_bio(bi, sh->dev[i].sector);
3166
3167 bi->bi_error = -EIO;
3168 if (!raid5_dec_bi_active_stripes(bi))
3169 bio_list_add(return_bi, bi);
3170 bi = nextbi;
3171 }
3172 }
3173 if (bitmap_end)
3174 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3175 STRIPE_SECTORS, 0, 0);
3176 /* If we were in the middle of a write the parity block might
3177 * still be locked - so just clear all R5_LOCKED flags
3178 */
3179 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3180 }
3181 s->to_write = 0;
3182 s->written = 0;
3183
3184 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3185 if (atomic_dec_and_test(&conf->pending_full_writes))
3186 md_wakeup_thread(conf->mddev->thread);
3187 }
3188
3189 static void
3190 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3191 struct stripe_head_state *s)
3192 {
3193 int abort = 0;
3194 int i;
3195
3196 BUG_ON(sh->batch_head);
3197 clear_bit(STRIPE_SYNCING, &sh->state);
3198 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3199 wake_up(&conf->wait_for_overlap);
3200 s->syncing = 0;
3201 s->replacing = 0;
3202 /* There is nothing more to do for sync/check/repair.
3203 * Don't even need to abort as that is handled elsewhere
3204 * if needed, and not always wanted e.g. if there is a known
3205 * bad block here.
3206 * For recover/replace we need to record a bad block on all
3207 * non-sync devices, or abort the recovery
3208 */
3209 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3210 /* During recovery devices cannot be removed, so
3211 * locking and refcounting of rdevs is not needed
3212 */
3213 for (i = 0; i < conf->raid_disks; i++) {
3214 struct md_rdev *rdev = conf->disks[i].rdev;
3215 if (rdev
3216 && !test_bit(Faulty, &rdev->flags)
3217 && !test_bit(In_sync, &rdev->flags)
3218 && !rdev_set_badblocks(rdev, sh->sector,
3219 STRIPE_SECTORS, 0))
3220 abort = 1;
3221 rdev = conf->disks[i].replacement;
3222 if (rdev
3223 && !test_bit(Faulty, &rdev->flags)
3224 && !test_bit(In_sync, &rdev->flags)
3225 && !rdev_set_badblocks(rdev, sh->sector,
3226 STRIPE_SECTORS, 0))
3227 abort = 1;
3228 }
3229 if (abort)
3230 conf->recovery_disabled =
3231 conf->mddev->recovery_disabled;
3232 }
3233 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3234 }
3235
3236 static int want_replace(struct stripe_head *sh, int disk_idx)
3237 {
3238 struct md_rdev *rdev;
3239 int rv = 0;
3240 /* Doing recovery so rcu locking not required */
3241 rdev = sh->raid_conf->disks[disk_idx].replacement;
3242 if (rdev
3243 && !test_bit(Faulty, &rdev->flags)
3244 && !test_bit(In_sync, &rdev->flags)
3245 && (rdev->recovery_offset <= sh->sector
3246 || rdev->mddev->recovery_cp <= sh->sector))
3247 rv = 1;
3248
3249 return rv;
3250 }
3251
3252 /* fetch_block - checks the given member device to see if its data needs
3253 * to be read or computed to satisfy a request.
3254 *
3255 * Returns 1 when no more member devices need to be checked, otherwise returns
3256 * 0 to tell the loop in handle_stripe_fill to continue
3257 */
3258
3259 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3260 int disk_idx, int disks)
3261 {
3262 struct r5dev *dev = &sh->dev[disk_idx];
3263 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3264 &sh->dev[s->failed_num[1]] };
3265 int i;
3266
3267
3268 if (test_bit(R5_LOCKED, &dev->flags) ||
3269 test_bit(R5_UPTODATE, &dev->flags))
3270 /* No point reading this as we already have it or have
3271 * decided to get it.
3272 */
3273 return 0;
3274
3275 if (dev->toread ||
3276 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3277 /* We need this block to directly satisfy a request */
3278 return 1;
3279
3280 if (s->syncing || s->expanding ||
3281 (s->replacing && want_replace(sh, disk_idx)))
3282 /* When syncing, or expanding we read everything.
3283 * When replacing, we need the replaced block.
3284 */
3285 return 1;
3286
3287 if ((s->failed >= 1 && fdev[0]->toread) ||
3288 (s->failed >= 2 && fdev[1]->toread))
3289 /* If we want to read from a failed device, then
3290 * we need to actually read every other device.
3291 */
3292 return 1;
3293
3294 /* Sometimes neither read-modify-write nor reconstruct-write
3295 * cycles can work. In those cases we read every block we
3296 * can. Then the parity-update is certain to have enough to
3297 * work with.
3298 * This can only be a problem when we need to write something,
3299 * and some device has failed. If either of those tests
3300 * fail we need look no further.
3301 */
3302 if (!s->failed || !s->to_write)
3303 return 0;
3304
3305 if (test_bit(R5_Insync, &dev->flags) &&
3306 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3307 /* Pre-reads at not permitted until after short delay
3308 * to gather multiple requests. However if this
3309 * device is no Insync, the block could only be be computed
3310 * and there is no need to delay that.
3311 */
3312 return 0;
3313
3314 for (i = 0; i < s->failed && i < 2; i++) {
3315 if (fdev[i]->towrite &&
3316 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3317 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3318 /* If we have a partial write to a failed
3319 * device, then we will need to reconstruct
3320 * the content of that device, so all other
3321 * devices must be read.
3322 */
3323 return 1;
3324 }
3325
3326 /* If we are forced to do a reconstruct-write, either because
3327 * the current RAID6 implementation only supports that, or
3328 * or because parity cannot be trusted and we are currently
3329 * recovering it, there is extra need to be careful.
3330 * If one of the devices that we would need to read, because
3331 * it is not being overwritten (and maybe not written at all)
3332 * is missing/faulty, then we need to read everything we can.
3333 */
3334 if (sh->raid_conf->level != 6 &&
3335 sh->sector < sh->raid_conf->mddev->recovery_cp)
3336 /* reconstruct-write isn't being forced */
3337 return 0;
3338 for (i = 0; i < s->failed && i < 2; i++) {
3339 if (s->failed_num[i] != sh->pd_idx &&
3340 s->failed_num[i] != sh->qd_idx &&
3341 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3342 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3343 return 1;
3344 }
3345
3346 return 0;
3347 }
3348
3349 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3350 int disk_idx, int disks)
3351 {
3352 struct r5dev *dev = &sh->dev[disk_idx];
3353
3354 /* is the data in this block needed, and can we get it? */
3355 if (need_this_block(sh, s, disk_idx, disks)) {
3356 /* we would like to get this block, possibly by computing it,
3357 * otherwise read it if the backing disk is insync
3358 */
3359 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3360 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3361 BUG_ON(sh->batch_head);
3362 if ((s->uptodate == disks - 1) &&
3363 (s->failed && (disk_idx == s->failed_num[0] ||
3364 disk_idx == s->failed_num[1]))) {
3365 /* have disk failed, and we're requested to fetch it;
3366 * do compute it
3367 */
3368 pr_debug("Computing stripe %llu block %d\n",
3369 (unsigned long long)sh->sector, disk_idx);
3370 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3371 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3372 set_bit(R5_Wantcompute, &dev->flags);
3373 sh->ops.target = disk_idx;
3374 sh->ops.target2 = -1; /* no 2nd target */
3375 s->req_compute = 1;
3376 /* Careful: from this point on 'uptodate' is in the eye
3377 * of raid_run_ops which services 'compute' operations
3378 * before writes. R5_Wantcompute flags a block that will
3379 * be R5_UPTODATE by the time it is needed for a
3380 * subsequent operation.
3381 */
3382 s->uptodate++;
3383 return 1;
3384 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3385 /* Computing 2-failure is *very* expensive; only
3386 * do it if failed >= 2
3387 */
3388 int other;
3389 for (other = disks; other--; ) {
3390 if (other == disk_idx)
3391 continue;
3392 if (!test_bit(R5_UPTODATE,
3393 &sh->dev[other].flags))
3394 break;
3395 }
3396 BUG_ON(other < 0);
3397 pr_debug("Computing stripe %llu blocks %d,%d\n",
3398 (unsigned long long)sh->sector,
3399 disk_idx, other);
3400 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3401 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3402 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3403 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3404 sh->ops.target = disk_idx;
3405 sh->ops.target2 = other;
3406 s->uptodate += 2;
3407 s->req_compute = 1;
3408 return 1;
3409 } else if (test_bit(R5_Insync, &dev->flags)) {
3410 set_bit(R5_LOCKED, &dev->flags);
3411 set_bit(R5_Wantread, &dev->flags);
3412 s->locked++;
3413 pr_debug("Reading block %d (sync=%d)\n",
3414 disk_idx, s->syncing);
3415 }
3416 }
3417
3418 return 0;
3419 }
3420
3421 /**
3422 * handle_stripe_fill - read or compute data to satisfy pending requests.
3423 */
3424 static void handle_stripe_fill(struct stripe_head *sh,
3425 struct stripe_head_state *s,
3426 int disks)
3427 {
3428 int i;
3429
3430 /* look for blocks to read/compute, skip this if a compute
3431 * is already in flight, or if the stripe contents are in the
3432 * midst of changing due to a write
3433 */
3434 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3435 !sh->reconstruct_state)
3436 for (i = disks; i--; )
3437 if (fetch_block(sh, s, i, disks))
3438 break;
3439 set_bit(STRIPE_HANDLE, &sh->state);
3440 }
3441
3442 static void break_stripe_batch_list(struct stripe_head *head_sh,
3443 unsigned long handle_flags);
3444 /* handle_stripe_clean_event
3445 * any written block on an uptodate or failed drive can be returned.
3446 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3447 * never LOCKED, so we don't need to test 'failed' directly.
3448 */
3449 static void handle_stripe_clean_event(struct r5conf *conf,
3450 struct stripe_head *sh, int disks, struct bio_list *return_bi)
3451 {
3452 int i;
3453 struct r5dev *dev;
3454 int discard_pending = 0;
3455 struct stripe_head *head_sh = sh;
3456 bool do_endio = false;
3457
3458 for (i = disks; i--; )
3459 if (sh->dev[i].written) {
3460 dev = &sh->dev[i];
3461 if (!test_bit(R5_LOCKED, &dev->flags) &&
3462 (test_bit(R5_UPTODATE, &dev->flags) ||
3463 test_bit(R5_Discard, &dev->flags) ||
3464 test_bit(R5_SkipCopy, &dev->flags))) {
3465 /* We can return any write requests */
3466 struct bio *wbi, *wbi2;
3467 pr_debug("Return write for disc %d\n", i);
3468 if (test_and_clear_bit(R5_Discard, &dev->flags))
3469 clear_bit(R5_UPTODATE, &dev->flags);
3470 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3471 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3472 }
3473 do_endio = true;
3474
3475 returnbi:
3476 dev->page = dev->orig_page;
3477 wbi = dev->written;
3478 dev->written = NULL;
3479 while (wbi && wbi->bi_iter.bi_sector <
3480 dev->sector + STRIPE_SECTORS) {
3481 wbi2 = r5_next_bio(wbi, dev->sector);
3482 if (!raid5_dec_bi_active_stripes(wbi)) {
3483 md_write_end(conf->mddev);
3484 bio_list_add(return_bi, wbi);
3485 }
3486 wbi = wbi2;
3487 }
3488 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3489 STRIPE_SECTORS,
3490 !test_bit(STRIPE_DEGRADED, &sh->state),
3491 0);
3492 if (head_sh->batch_head) {
3493 sh = list_first_entry(&sh->batch_list,
3494 struct stripe_head,
3495 batch_list);
3496 if (sh != head_sh) {
3497 dev = &sh->dev[i];
3498 goto returnbi;
3499 }
3500 }
3501 sh = head_sh;
3502 dev = &sh->dev[i];
3503 } else if (test_bit(R5_Discard, &dev->flags))
3504 discard_pending = 1;
3505 }
3506
3507 r5l_stripe_write_finished(sh);
3508
3509 if (!discard_pending &&
3510 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3511 int hash;
3512 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3513 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3514 if (sh->qd_idx >= 0) {
3515 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3516 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3517 }
3518 /* now that discard is done we can proceed with any sync */
3519 clear_bit(STRIPE_DISCARD, &sh->state);
3520 /*
3521 * SCSI discard will change some bio fields and the stripe has
3522 * no updated data, so remove it from hash list and the stripe
3523 * will be reinitialized
3524 */
3525 unhash:
3526 hash = sh->hash_lock_index;
3527 spin_lock_irq(conf->hash_locks + hash);
3528 remove_hash(sh);
3529 spin_unlock_irq(conf->hash_locks + hash);
3530 if (head_sh->batch_head) {
3531 sh = list_first_entry(&sh->batch_list,
3532 struct stripe_head, batch_list);
3533 if (sh != head_sh)
3534 goto unhash;
3535 }
3536 sh = head_sh;
3537
3538 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3539 set_bit(STRIPE_HANDLE, &sh->state);
3540
3541 }
3542
3543 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3544 if (atomic_dec_and_test(&conf->pending_full_writes))
3545 md_wakeup_thread(conf->mddev->thread);
3546
3547 if (head_sh->batch_head && do_endio)
3548 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3549 }
3550
3551 static void handle_stripe_dirtying(struct r5conf *conf,
3552 struct stripe_head *sh,
3553 struct stripe_head_state *s,
3554 int disks)
3555 {
3556 int rmw = 0, rcw = 0, i;
3557 sector_t recovery_cp = conf->mddev->recovery_cp;
3558
3559 /* Check whether resync is now happening or should start.
3560 * If yes, then the array is dirty (after unclean shutdown or
3561 * initial creation), so parity in some stripes might be inconsistent.
3562 * In this case, we need to always do reconstruct-write, to ensure
3563 * that in case of drive failure or read-error correction, we
3564 * generate correct data from the parity.
3565 */
3566 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3567 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3568 s->failed == 0)) {
3569 /* Calculate the real rcw later - for now make it
3570 * look like rcw is cheaper
3571 */
3572 rcw = 1; rmw = 2;
3573 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3574 conf->rmw_level, (unsigned long long)recovery_cp,
3575 (unsigned long long)sh->sector);
3576 } else for (i = disks; i--; ) {
3577 /* would I have to read this buffer for read_modify_write */
3578 struct r5dev *dev = &sh->dev[i];
3579 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3580 !test_bit(R5_LOCKED, &dev->flags) &&
3581 !(test_bit(R5_UPTODATE, &dev->flags) ||
3582 test_bit(R5_Wantcompute, &dev->flags))) {
3583 if (test_bit(R5_Insync, &dev->flags))
3584 rmw++;
3585 else
3586 rmw += 2*disks; /* cannot read it */
3587 }
3588 /* Would I have to read this buffer for reconstruct_write */
3589 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3590 i != sh->pd_idx && i != sh->qd_idx &&
3591 !test_bit(R5_LOCKED, &dev->flags) &&
3592 !(test_bit(R5_UPTODATE, &dev->flags) ||
3593 test_bit(R5_Wantcompute, &dev->flags))) {
3594 if (test_bit(R5_Insync, &dev->flags))
3595 rcw++;
3596 else
3597 rcw += 2*disks;
3598 }
3599 }
3600 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3601 (unsigned long long)sh->sector, rmw, rcw);
3602 set_bit(STRIPE_HANDLE, &sh->state);
3603 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3604 /* prefer read-modify-write, but need to get some data */
3605 if (conf->mddev->queue)
3606 blk_add_trace_msg(conf->mddev->queue,
3607 "raid5 rmw %llu %d",
3608 (unsigned long long)sh->sector, rmw);
3609 for (i = disks; i--; ) {
3610 struct r5dev *dev = &sh->dev[i];
3611 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3612 !test_bit(R5_LOCKED, &dev->flags) &&
3613 !(test_bit(R5_UPTODATE, &dev->flags) ||
3614 test_bit(R5_Wantcompute, &dev->flags)) &&
3615 test_bit(R5_Insync, &dev->flags)) {
3616 if (test_bit(STRIPE_PREREAD_ACTIVE,
3617 &sh->state)) {
3618 pr_debug("Read_old block %d for r-m-w\n",
3619 i);
3620 set_bit(R5_LOCKED, &dev->flags);
3621 set_bit(R5_Wantread, &dev->flags);
3622 s->locked++;
3623 } else {
3624 set_bit(STRIPE_DELAYED, &sh->state);
3625 set_bit(STRIPE_HANDLE, &sh->state);
3626 }
3627 }
3628 }
3629 }
3630 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3631 /* want reconstruct write, but need to get some data */
3632 int qread =0;
3633 rcw = 0;
3634 for (i = disks; i--; ) {
3635 struct r5dev *dev = &sh->dev[i];
3636 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3637 i != sh->pd_idx && i != sh->qd_idx &&
3638 !test_bit(R5_LOCKED, &dev->flags) &&
3639 !(test_bit(R5_UPTODATE, &dev->flags) ||
3640 test_bit(R5_Wantcompute, &dev->flags))) {
3641 rcw++;
3642 if (test_bit(R5_Insync, &dev->flags) &&
3643 test_bit(STRIPE_PREREAD_ACTIVE,
3644 &sh->state)) {
3645 pr_debug("Read_old block "
3646 "%d for Reconstruct\n", i);
3647 set_bit(R5_LOCKED, &dev->flags);
3648 set_bit(R5_Wantread, &dev->flags);
3649 s->locked++;
3650 qread++;
3651 } else {
3652 set_bit(STRIPE_DELAYED, &sh->state);
3653 set_bit(STRIPE_HANDLE, &sh->state);
3654 }
3655 }
3656 }
3657 if (rcw && conf->mddev->queue)
3658 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3659 (unsigned long long)sh->sector,
3660 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3661 }
3662
3663 if (rcw > disks && rmw > disks &&
3664 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3665 set_bit(STRIPE_DELAYED, &sh->state);
3666
3667 /* now if nothing is locked, and if we have enough data,
3668 * we can start a write request
3669 */
3670 /* since handle_stripe can be called at any time we need to handle the
3671 * case where a compute block operation has been submitted and then a
3672 * subsequent call wants to start a write request. raid_run_ops only
3673 * handles the case where compute block and reconstruct are requested
3674 * simultaneously. If this is not the case then new writes need to be
3675 * held off until the compute completes.
3676 */
3677 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3678 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3679 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3680 schedule_reconstruction(sh, s, rcw == 0, 0);
3681 }
3682
3683 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3684 struct stripe_head_state *s, int disks)
3685 {
3686 struct r5dev *dev = NULL;
3687
3688 BUG_ON(sh->batch_head);
3689 set_bit(STRIPE_HANDLE, &sh->state);
3690
3691 switch (sh->check_state) {
3692 case check_state_idle:
3693 /* start a new check operation if there are no failures */
3694 if (s->failed == 0) {
3695 BUG_ON(s->uptodate != disks);
3696 sh->check_state = check_state_run;
3697 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3698 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3699 s->uptodate--;
3700 break;
3701 }
3702 dev = &sh->dev[s->failed_num[0]];
3703 /* fall through */
3704 case check_state_compute_result:
3705 sh->check_state = check_state_idle;
3706 if (!dev)
3707 dev = &sh->dev[sh->pd_idx];
3708
3709 /* check that a write has not made the stripe insync */
3710 if (test_bit(STRIPE_INSYNC, &sh->state))
3711 break;
3712
3713 /* either failed parity check, or recovery is happening */
3714 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3715 BUG_ON(s->uptodate != disks);
3716
3717 set_bit(R5_LOCKED, &dev->flags);
3718 s->locked++;
3719 set_bit(R5_Wantwrite, &dev->flags);
3720
3721 clear_bit(STRIPE_DEGRADED, &sh->state);
3722 set_bit(STRIPE_INSYNC, &sh->state);
3723 break;
3724 case check_state_run:
3725 break; /* we will be called again upon completion */
3726 case check_state_check_result:
3727 sh->check_state = check_state_idle;
3728
3729 /* if a failure occurred during the check operation, leave
3730 * STRIPE_INSYNC not set and let the stripe be handled again
3731 */
3732 if (s->failed)
3733 break;
3734
3735 /* handle a successful check operation, if parity is correct
3736 * we are done. Otherwise update the mismatch count and repair
3737 * parity if !MD_RECOVERY_CHECK
3738 */
3739 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3740 /* parity is correct (on disc,
3741 * not in buffer any more)
3742 */
3743 set_bit(STRIPE_INSYNC, &sh->state);
3744 else {
3745 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3746 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3747 /* don't try to repair!! */
3748 set_bit(STRIPE_INSYNC, &sh->state);
3749 else {
3750 sh->check_state = check_state_compute_run;
3751 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3752 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3753 set_bit(R5_Wantcompute,
3754 &sh->dev[sh->pd_idx].flags);
3755 sh->ops.target = sh->pd_idx;
3756 sh->ops.target2 = -1;
3757 s->uptodate++;
3758 }
3759 }
3760 break;
3761 case check_state_compute_run:
3762 break;
3763 default:
3764 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3765 __func__, sh->check_state,
3766 (unsigned long long) sh->sector);
3767 BUG();
3768 }
3769 }
3770
3771 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3772 struct stripe_head_state *s,
3773 int disks)
3774 {
3775 int pd_idx = sh->pd_idx;
3776 int qd_idx = sh->qd_idx;
3777 struct r5dev *dev;
3778
3779 BUG_ON(sh->batch_head);
3780 set_bit(STRIPE_HANDLE, &sh->state);
3781
3782 BUG_ON(s->failed > 2);
3783
3784 /* Want to check and possibly repair P and Q.
3785 * However there could be one 'failed' device, in which
3786 * case we can only check one of them, possibly using the
3787 * other to generate missing data
3788 */
3789
3790 switch (sh->check_state) {
3791 case check_state_idle:
3792 /* start a new check operation if there are < 2 failures */
3793 if (s->failed == s->q_failed) {
3794 /* The only possible failed device holds Q, so it
3795 * makes sense to check P (If anything else were failed,
3796 * we would have used P to recreate it).
3797 */
3798 sh->check_state = check_state_run;
3799 }
3800 if (!s->q_failed && s->failed < 2) {
3801 /* Q is not failed, and we didn't use it to generate
3802 * anything, so it makes sense to check it
3803 */
3804 if (sh->check_state == check_state_run)
3805 sh->check_state = check_state_run_pq;
3806 else
3807 sh->check_state = check_state_run_q;
3808 }
3809
3810 /* discard potentially stale zero_sum_result */
3811 sh->ops.zero_sum_result = 0;
3812
3813 if (sh->check_state == check_state_run) {
3814 /* async_xor_zero_sum destroys the contents of P */
3815 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3816 s->uptodate--;
3817 }
3818 if (sh->check_state >= check_state_run &&
3819 sh->check_state <= check_state_run_pq) {
3820 /* async_syndrome_zero_sum preserves P and Q, so
3821 * no need to mark them !uptodate here
3822 */
3823 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3824 break;
3825 }
3826
3827 /* we have 2-disk failure */
3828 BUG_ON(s->failed != 2);
3829 /* fall through */
3830 case check_state_compute_result:
3831 sh->check_state = check_state_idle;
3832
3833 /* check that a write has not made the stripe insync */
3834 if (test_bit(STRIPE_INSYNC, &sh->state))
3835 break;
3836
3837 /* now write out any block on a failed drive,
3838 * or P or Q if they were recomputed
3839 */
3840 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3841 if (s->failed == 2) {
3842 dev = &sh->dev[s->failed_num[1]];
3843 s->locked++;
3844 set_bit(R5_LOCKED, &dev->flags);
3845 set_bit(R5_Wantwrite, &dev->flags);
3846 }
3847 if (s->failed >= 1) {
3848 dev = &sh->dev[s->failed_num[0]];
3849 s->locked++;
3850 set_bit(R5_LOCKED, &dev->flags);
3851 set_bit(R5_Wantwrite, &dev->flags);
3852 }
3853 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3854 dev = &sh->dev[pd_idx];
3855 s->locked++;
3856 set_bit(R5_LOCKED, &dev->flags);
3857 set_bit(R5_Wantwrite, &dev->flags);
3858 }
3859 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3860 dev = &sh->dev[qd_idx];
3861 s->locked++;
3862 set_bit(R5_LOCKED, &dev->flags);
3863 set_bit(R5_Wantwrite, &dev->flags);
3864 }
3865 clear_bit(STRIPE_DEGRADED, &sh->state);
3866
3867 set_bit(STRIPE_INSYNC, &sh->state);
3868 break;
3869 case check_state_run:
3870 case check_state_run_q:
3871 case check_state_run_pq:
3872 break; /* we will be called again upon completion */
3873 case check_state_check_result:
3874 sh->check_state = check_state_idle;
3875
3876 /* handle a successful check operation, if parity is correct
3877 * we are done. Otherwise update the mismatch count and repair
3878 * parity if !MD_RECOVERY_CHECK
3879 */
3880 if (sh->ops.zero_sum_result == 0) {
3881 /* both parities are correct */
3882 if (!s->failed)
3883 set_bit(STRIPE_INSYNC, &sh->state);
3884 else {
3885 /* in contrast to the raid5 case we can validate
3886 * parity, but still have a failure to write
3887 * back
3888 */
3889 sh->check_state = check_state_compute_result;
3890 /* Returning at this point means that we may go
3891 * off and bring p and/or q uptodate again so
3892 * we make sure to check zero_sum_result again
3893 * to verify if p or q need writeback
3894 */
3895 }
3896 } else {
3897 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3898 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3899 /* don't try to repair!! */
3900 set_bit(STRIPE_INSYNC, &sh->state);
3901 else {
3902 int *target = &sh->ops.target;
3903
3904 sh->ops.target = -1;
3905 sh->ops.target2 = -1;
3906 sh->check_state = check_state_compute_run;
3907 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3908 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3909 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3910 set_bit(R5_Wantcompute,
3911 &sh->dev[pd_idx].flags);
3912 *target = pd_idx;
3913 target = &sh->ops.target2;
3914 s->uptodate++;
3915 }
3916 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3917 set_bit(R5_Wantcompute,
3918 &sh->dev[qd_idx].flags);
3919 *target = qd_idx;
3920 s->uptodate++;
3921 }
3922 }
3923 }
3924 break;
3925 case check_state_compute_run:
3926 break;
3927 default:
3928 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3929 __func__, sh->check_state,
3930 (unsigned long long) sh->sector);
3931 BUG();
3932 }
3933 }
3934
3935 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3936 {
3937 int i;
3938
3939 /* We have read all the blocks in this stripe and now we need to
3940 * copy some of them into a target stripe for expand.
3941 */
3942 struct dma_async_tx_descriptor *tx = NULL;
3943 BUG_ON(sh->batch_head);
3944 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3945 for (i = 0; i < sh->disks; i++)
3946 if (i != sh->pd_idx && i != sh->qd_idx) {
3947 int dd_idx, j;
3948 struct stripe_head *sh2;
3949 struct async_submit_ctl submit;
3950
3951 sector_t bn = raid5_compute_blocknr(sh, i, 1);
3952 sector_t s = raid5_compute_sector(conf, bn, 0,
3953 &dd_idx, NULL);
3954 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3955 if (sh2 == NULL)
3956 /* so far only the early blocks of this stripe
3957 * have been requested. When later blocks
3958 * get requested, we will try again
3959 */
3960 continue;
3961 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3962 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3963 /* must have already done this block */
3964 raid5_release_stripe(sh2);
3965 continue;
3966 }
3967
3968 /* place all the copies on one channel */
3969 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3970 tx = async_memcpy(sh2->dev[dd_idx].page,
3971 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3972 &submit);
3973
3974 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3975 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3976 for (j = 0; j < conf->raid_disks; j++)
3977 if (j != sh2->pd_idx &&
3978 j != sh2->qd_idx &&
3979 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3980 break;
3981 if (j == conf->raid_disks) {
3982 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3983 set_bit(STRIPE_HANDLE, &sh2->state);
3984 }
3985 raid5_release_stripe(sh2);
3986
3987 }
3988 /* done submitting copies, wait for them to complete */
3989 async_tx_quiesce(&tx);
3990 }
3991
3992 /*
3993 * handle_stripe - do things to a stripe.
3994 *
3995 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3996 * state of various bits to see what needs to be done.
3997 * Possible results:
3998 * return some read requests which now have data
3999 * return some write requests which are safely on storage
4000 * schedule a read on some buffers
4001 * schedule a write of some buffers
4002 * return confirmation of parity correctness
4003 *
4004 */
4005
4006 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4007 {
4008 struct r5conf *conf = sh->raid_conf;
4009 int disks = sh->disks;
4010 struct r5dev *dev;
4011 int i;
4012 int do_recovery = 0;
4013
4014 memset(s, 0, sizeof(*s));
4015
4016 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4017 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4018 s->failed_num[0] = -1;
4019 s->failed_num[1] = -1;
4020 s->log_failed = r5l_log_disk_error(conf);
4021
4022 /* Now to look around and see what can be done */
4023 rcu_read_lock();
4024 for (i=disks; i--; ) {
4025 struct md_rdev *rdev;
4026 sector_t first_bad;
4027 int bad_sectors;
4028 int is_bad = 0;
4029
4030 dev = &sh->dev[i];
4031
4032 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4033 i, dev->flags,
4034 dev->toread, dev->towrite, dev->written);
4035 /* maybe we can reply to a read
4036 *
4037 * new wantfill requests are only permitted while
4038 * ops_complete_biofill is guaranteed to be inactive
4039 */
4040 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4041 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4042 set_bit(R5_Wantfill, &dev->flags);
4043
4044 /* now count some things */
4045 if (test_bit(R5_LOCKED, &dev->flags))
4046 s->locked++;
4047 if (test_bit(R5_UPTODATE, &dev->flags))
4048 s->uptodate++;
4049 if (test_bit(R5_Wantcompute, &dev->flags)) {
4050 s->compute++;
4051 BUG_ON(s->compute > 2);
4052 }
4053
4054 if (test_bit(R5_Wantfill, &dev->flags))
4055 s->to_fill++;
4056 else if (dev->toread)
4057 s->to_read++;
4058 if (dev->towrite) {
4059 s->to_write++;
4060 if (!test_bit(R5_OVERWRITE, &dev->flags))
4061 s->non_overwrite++;
4062 }
4063 if (dev->written)
4064 s->written++;
4065 /* Prefer to use the replacement for reads, but only
4066 * if it is recovered enough and has no bad blocks.
4067 */
4068 rdev = rcu_dereference(conf->disks[i].replacement);
4069 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4070 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4071 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4072 &first_bad, &bad_sectors))
4073 set_bit(R5_ReadRepl, &dev->flags);
4074 else {
4075 if (rdev && !test_bit(Faulty, &rdev->flags))
4076 set_bit(R5_NeedReplace, &dev->flags);
4077 else
4078 clear_bit(R5_NeedReplace, &dev->flags);
4079 rdev = rcu_dereference(conf->disks[i].rdev);
4080 clear_bit(R5_ReadRepl, &dev->flags);
4081 }
4082 if (rdev && test_bit(Faulty, &rdev->flags))
4083 rdev = NULL;
4084 if (rdev) {
4085 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4086 &first_bad, &bad_sectors);
4087 if (s->blocked_rdev == NULL
4088 && (test_bit(Blocked, &rdev->flags)
4089 || is_bad < 0)) {
4090 if (is_bad < 0)
4091 set_bit(BlockedBadBlocks,
4092 &rdev->flags);
4093 s->blocked_rdev = rdev;
4094 atomic_inc(&rdev->nr_pending);
4095 }
4096 }
4097 clear_bit(R5_Insync, &dev->flags);
4098 if (!rdev)
4099 /* Not in-sync */;
4100 else if (is_bad) {
4101 /* also not in-sync */
4102 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4103 test_bit(R5_UPTODATE, &dev->flags)) {
4104 /* treat as in-sync, but with a read error
4105 * which we can now try to correct
4106 */
4107 set_bit(R5_Insync, &dev->flags);
4108 set_bit(R5_ReadError, &dev->flags);
4109 }
4110 } else if (test_bit(In_sync, &rdev->flags))
4111 set_bit(R5_Insync, &dev->flags);
4112 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4113 /* in sync if before recovery_offset */
4114 set_bit(R5_Insync, &dev->flags);
4115 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4116 test_bit(R5_Expanded, &dev->flags))
4117 /* If we've reshaped into here, we assume it is Insync.
4118 * We will shortly update recovery_offset to make
4119 * it official.
4120 */
4121 set_bit(R5_Insync, &dev->flags);
4122
4123 if (test_bit(R5_WriteError, &dev->flags)) {
4124 /* This flag does not apply to '.replacement'
4125 * only to .rdev, so make sure to check that*/
4126 struct md_rdev *rdev2 = rcu_dereference(
4127 conf->disks[i].rdev);
4128 if (rdev2 == rdev)
4129 clear_bit(R5_Insync, &dev->flags);
4130 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4131 s->handle_bad_blocks = 1;
4132 atomic_inc(&rdev2->nr_pending);
4133 } else
4134 clear_bit(R5_WriteError, &dev->flags);
4135 }
4136 if (test_bit(R5_MadeGood, &dev->flags)) {
4137 /* This flag does not apply to '.replacement'
4138 * only to .rdev, so make sure to check that*/
4139 struct md_rdev *rdev2 = rcu_dereference(
4140 conf->disks[i].rdev);
4141 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4142 s->handle_bad_blocks = 1;
4143 atomic_inc(&rdev2->nr_pending);
4144 } else
4145 clear_bit(R5_MadeGood, &dev->flags);
4146 }
4147 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4148 struct md_rdev *rdev2 = rcu_dereference(
4149 conf->disks[i].replacement);
4150 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4151 s->handle_bad_blocks = 1;
4152 atomic_inc(&rdev2->nr_pending);
4153 } else
4154 clear_bit(R5_MadeGoodRepl, &dev->flags);
4155 }
4156 if (!test_bit(R5_Insync, &dev->flags)) {
4157 /* The ReadError flag will just be confusing now */
4158 clear_bit(R5_ReadError, &dev->flags);
4159 clear_bit(R5_ReWrite, &dev->flags);
4160 }
4161 if (test_bit(R5_ReadError, &dev->flags))
4162 clear_bit(R5_Insync, &dev->flags);
4163 if (!test_bit(R5_Insync, &dev->flags)) {
4164 if (s->failed < 2)
4165 s->failed_num[s->failed] = i;
4166 s->failed++;
4167 if (rdev && !test_bit(Faulty, &rdev->flags))
4168 do_recovery = 1;
4169 }
4170 }
4171 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4172 /* If there is a failed device being replaced,
4173 * we must be recovering.
4174 * else if we are after recovery_cp, we must be syncing
4175 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4176 * else we can only be replacing
4177 * sync and recovery both need to read all devices, and so
4178 * use the same flag.
4179 */
4180 if (do_recovery ||
4181 sh->sector >= conf->mddev->recovery_cp ||
4182 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4183 s->syncing = 1;
4184 else
4185 s->replacing = 1;
4186 }
4187 rcu_read_unlock();
4188 }
4189
4190 static int clear_batch_ready(struct stripe_head *sh)
4191 {
4192 /* Return '1' if this is a member of batch, or
4193 * '0' if it is a lone stripe or a head which can now be
4194 * handled.
4195 */
4196 struct stripe_head *tmp;
4197 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4198 return (sh->batch_head && sh->batch_head != sh);
4199 spin_lock(&sh->stripe_lock);
4200 if (!sh->batch_head) {
4201 spin_unlock(&sh->stripe_lock);
4202 return 0;
4203 }
4204
4205 /*
4206 * this stripe could be added to a batch list before we check
4207 * BATCH_READY, skips it
4208 */
4209 if (sh->batch_head != sh) {
4210 spin_unlock(&sh->stripe_lock);
4211 return 1;
4212 }
4213 spin_lock(&sh->batch_lock);
4214 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4215 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4216 spin_unlock(&sh->batch_lock);
4217 spin_unlock(&sh->stripe_lock);
4218
4219 /*
4220 * BATCH_READY is cleared, no new stripes can be added.
4221 * batch_list can be accessed without lock
4222 */
4223 return 0;
4224 }
4225
4226 static void break_stripe_batch_list(struct stripe_head *head_sh,
4227 unsigned long handle_flags)
4228 {
4229 struct stripe_head *sh, *next;
4230 int i;
4231 int do_wakeup = 0;
4232
4233 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4234
4235 list_del_init(&sh->batch_list);
4236
4237 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4238 (1 << STRIPE_SYNCING) |
4239 (1 << STRIPE_REPLACED) |
4240 (1 << STRIPE_DELAYED) |
4241 (1 << STRIPE_BIT_DELAY) |
4242 (1 << STRIPE_FULL_WRITE) |
4243 (1 << STRIPE_BIOFILL_RUN) |
4244 (1 << STRIPE_COMPUTE_RUN) |
4245 (1 << STRIPE_OPS_REQ_PENDING) |
4246 (1 << STRIPE_DISCARD) |
4247 (1 << STRIPE_BATCH_READY) |
4248 (1 << STRIPE_BATCH_ERR) |
4249 (1 << STRIPE_BITMAP_PENDING)),
4250 "stripe state: %lx\n", sh->state);
4251 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4252 (1 << STRIPE_REPLACED)),
4253 "head stripe state: %lx\n", head_sh->state);
4254
4255 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4256 (1 << STRIPE_PREREAD_ACTIVE) |
4257 (1 << STRIPE_DEGRADED)),
4258 head_sh->state & (1 << STRIPE_INSYNC));
4259
4260 sh->check_state = head_sh->check_state;
4261 sh->reconstruct_state = head_sh->reconstruct_state;
4262 for (i = 0; i < sh->disks; i++) {
4263 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4264 do_wakeup = 1;
4265 sh->dev[i].flags = head_sh->dev[i].flags &
4266 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4267 }
4268 spin_lock_irq(&sh->stripe_lock);
4269 sh->batch_head = NULL;
4270 spin_unlock_irq(&sh->stripe_lock);
4271 if (handle_flags == 0 ||
4272 sh->state & handle_flags)
4273 set_bit(STRIPE_HANDLE, &sh->state);
4274 raid5_release_stripe(sh);
4275 }
4276 spin_lock_irq(&head_sh->stripe_lock);
4277 head_sh->batch_head = NULL;
4278 spin_unlock_irq(&head_sh->stripe_lock);
4279 for (i = 0; i < head_sh->disks; i++)
4280 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4281 do_wakeup = 1;
4282 if (head_sh->state & handle_flags)
4283 set_bit(STRIPE_HANDLE, &head_sh->state);
4284
4285 if (do_wakeup)
4286 wake_up(&head_sh->raid_conf->wait_for_overlap);
4287 }
4288
4289 static void handle_stripe(struct stripe_head *sh)
4290 {
4291 struct stripe_head_state s;
4292 struct r5conf *conf = sh->raid_conf;
4293 int i;
4294 int prexor;
4295 int disks = sh->disks;
4296 struct r5dev *pdev, *qdev;
4297
4298 clear_bit(STRIPE_HANDLE, &sh->state);
4299 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4300 /* already being handled, ensure it gets handled
4301 * again when current action finishes */
4302 set_bit(STRIPE_HANDLE, &sh->state);
4303 return;
4304 }
4305
4306 if (clear_batch_ready(sh) ) {
4307 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4308 return;
4309 }
4310
4311 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4312 break_stripe_batch_list(sh, 0);
4313
4314 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4315 spin_lock(&sh->stripe_lock);
4316 /* Cannot process 'sync' concurrently with 'discard' */
4317 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4318 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4319 set_bit(STRIPE_SYNCING, &sh->state);
4320 clear_bit(STRIPE_INSYNC, &sh->state);
4321 clear_bit(STRIPE_REPLACED, &sh->state);
4322 }
4323 spin_unlock(&sh->stripe_lock);
4324 }
4325 clear_bit(STRIPE_DELAYED, &sh->state);
4326
4327 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4328 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4329 (unsigned long long)sh->sector, sh->state,
4330 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4331 sh->check_state, sh->reconstruct_state);
4332
4333 analyse_stripe(sh, &s);
4334
4335 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4336 goto finish;
4337
4338 if (s.handle_bad_blocks) {
4339 set_bit(STRIPE_HANDLE, &sh->state);
4340 goto finish;
4341 }
4342
4343 if (unlikely(s.blocked_rdev)) {
4344 if (s.syncing || s.expanding || s.expanded ||
4345 s.replacing || s.to_write || s.written) {
4346 set_bit(STRIPE_HANDLE, &sh->state);
4347 goto finish;
4348 }
4349 /* There is nothing for the blocked_rdev to block */
4350 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4351 s.blocked_rdev = NULL;
4352 }
4353
4354 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4355 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4356 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4357 }
4358
4359 pr_debug("locked=%d uptodate=%d to_read=%d"
4360 " to_write=%d failed=%d failed_num=%d,%d\n",
4361 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4362 s.failed_num[0], s.failed_num[1]);
4363 /* check if the array has lost more than max_degraded devices and,
4364 * if so, some requests might need to be failed.
4365 */
4366 if (s.failed > conf->max_degraded || s.log_failed) {
4367 sh->check_state = 0;
4368 sh->reconstruct_state = 0;
4369 break_stripe_batch_list(sh, 0);
4370 if (s.to_read+s.to_write+s.written)
4371 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4372 if (s.syncing + s.replacing)
4373 handle_failed_sync(conf, sh, &s);
4374 }
4375
4376 /* Now we check to see if any write operations have recently
4377 * completed
4378 */
4379 prexor = 0;
4380 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4381 prexor = 1;
4382 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4383 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4384 sh->reconstruct_state = reconstruct_state_idle;
4385
4386 /* All the 'written' buffers and the parity block are ready to
4387 * be written back to disk
4388 */
4389 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4390 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4391 BUG_ON(sh->qd_idx >= 0 &&
4392 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4393 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4394 for (i = disks; i--; ) {
4395 struct r5dev *dev = &sh->dev[i];
4396 if (test_bit(R5_LOCKED, &dev->flags) &&
4397 (i == sh->pd_idx || i == sh->qd_idx ||
4398 dev->written)) {
4399 pr_debug("Writing block %d\n", i);
4400 set_bit(R5_Wantwrite, &dev->flags);
4401 if (prexor)
4402 continue;
4403 if (s.failed > 1)
4404 continue;
4405 if (!test_bit(R5_Insync, &dev->flags) ||
4406 ((i == sh->pd_idx || i == sh->qd_idx) &&
4407 s.failed == 0))
4408 set_bit(STRIPE_INSYNC, &sh->state);
4409 }
4410 }
4411 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4412 s.dec_preread_active = 1;
4413 }
4414
4415 /*
4416 * might be able to return some write requests if the parity blocks
4417 * are safe, or on a failed drive
4418 */
4419 pdev = &sh->dev[sh->pd_idx];
4420 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4421 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4422 qdev = &sh->dev[sh->qd_idx];
4423 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4424 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4425 || conf->level < 6;
4426
4427 if (s.written &&
4428 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4429 && !test_bit(R5_LOCKED, &pdev->flags)
4430 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4431 test_bit(R5_Discard, &pdev->flags))))) &&
4432 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4433 && !test_bit(R5_LOCKED, &qdev->flags)
4434 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4435 test_bit(R5_Discard, &qdev->flags))))))
4436 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4437
4438 /* Now we might consider reading some blocks, either to check/generate
4439 * parity, or to satisfy requests
4440 * or to load a block that is being partially written.
4441 */
4442 if (s.to_read || s.non_overwrite
4443 || (conf->level == 6 && s.to_write && s.failed)
4444 || (s.syncing && (s.uptodate + s.compute < disks))
4445 || s.replacing
4446 || s.expanding)
4447 handle_stripe_fill(sh, &s, disks);
4448
4449 /* Now to consider new write requests and what else, if anything
4450 * should be read. We do not handle new writes when:
4451 * 1/ A 'write' operation (copy+xor) is already in flight.
4452 * 2/ A 'check' operation is in flight, as it may clobber the parity
4453 * block.
4454 */
4455 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4456 handle_stripe_dirtying(conf, sh, &s, disks);
4457
4458 /* maybe we need to check and possibly fix the parity for this stripe
4459 * Any reads will already have been scheduled, so we just see if enough
4460 * data is available. The parity check is held off while parity
4461 * dependent operations are in flight.
4462 */
4463 if (sh->check_state ||
4464 (s.syncing && s.locked == 0 &&
4465 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4466 !test_bit(STRIPE_INSYNC, &sh->state))) {
4467 if (conf->level == 6)
4468 handle_parity_checks6(conf, sh, &s, disks);
4469 else
4470 handle_parity_checks5(conf, sh, &s, disks);
4471 }
4472
4473 if ((s.replacing || s.syncing) && s.locked == 0
4474 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4475 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4476 /* Write out to replacement devices where possible */
4477 for (i = 0; i < conf->raid_disks; i++)
4478 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4479 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4480 set_bit(R5_WantReplace, &sh->dev[i].flags);
4481 set_bit(R5_LOCKED, &sh->dev[i].flags);
4482 s.locked++;
4483 }
4484 if (s.replacing)
4485 set_bit(STRIPE_INSYNC, &sh->state);
4486 set_bit(STRIPE_REPLACED, &sh->state);
4487 }
4488 if ((s.syncing || s.replacing) && s.locked == 0 &&
4489 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4490 test_bit(STRIPE_INSYNC, &sh->state)) {
4491 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4492 clear_bit(STRIPE_SYNCING, &sh->state);
4493 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4494 wake_up(&conf->wait_for_overlap);
4495 }
4496
4497 /* If the failed drives are just a ReadError, then we might need
4498 * to progress the repair/check process
4499 */
4500 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4501 for (i = 0; i < s.failed; i++) {
4502 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4503 if (test_bit(R5_ReadError, &dev->flags)
4504 && !test_bit(R5_LOCKED, &dev->flags)
4505 && test_bit(R5_UPTODATE, &dev->flags)
4506 ) {
4507 if (!test_bit(R5_ReWrite, &dev->flags)) {
4508 set_bit(R5_Wantwrite, &dev->flags);
4509 set_bit(R5_ReWrite, &dev->flags);
4510 set_bit(R5_LOCKED, &dev->flags);
4511 s.locked++;
4512 } else {
4513 /* let's read it back */
4514 set_bit(R5_Wantread, &dev->flags);
4515 set_bit(R5_LOCKED, &dev->flags);
4516 s.locked++;
4517 }
4518 }
4519 }
4520
4521 /* Finish reconstruct operations initiated by the expansion process */
4522 if (sh->reconstruct_state == reconstruct_state_result) {
4523 struct stripe_head *sh_src
4524 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4525 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4526 /* sh cannot be written until sh_src has been read.
4527 * so arrange for sh to be delayed a little
4528 */
4529 set_bit(STRIPE_DELAYED, &sh->state);
4530 set_bit(STRIPE_HANDLE, &sh->state);
4531 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4532 &sh_src->state))
4533 atomic_inc(&conf->preread_active_stripes);
4534 raid5_release_stripe(sh_src);
4535 goto finish;
4536 }
4537 if (sh_src)
4538 raid5_release_stripe(sh_src);
4539
4540 sh->reconstruct_state = reconstruct_state_idle;
4541 clear_bit(STRIPE_EXPANDING, &sh->state);
4542 for (i = conf->raid_disks; i--; ) {
4543 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4544 set_bit(R5_LOCKED, &sh->dev[i].flags);
4545 s.locked++;
4546 }
4547 }
4548
4549 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4550 !sh->reconstruct_state) {
4551 /* Need to write out all blocks after computing parity */
4552 sh->disks = conf->raid_disks;
4553 stripe_set_idx(sh->sector, conf, 0, sh);
4554 schedule_reconstruction(sh, &s, 1, 1);
4555 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4556 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4557 atomic_dec(&conf->reshape_stripes);
4558 wake_up(&conf->wait_for_overlap);
4559 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4560 }
4561
4562 if (s.expanding && s.locked == 0 &&
4563 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4564 handle_stripe_expansion(conf, sh);
4565
4566 finish:
4567 /* wait for this device to become unblocked */
4568 if (unlikely(s.blocked_rdev)) {
4569 if (conf->mddev->external)
4570 md_wait_for_blocked_rdev(s.blocked_rdev,
4571 conf->mddev);
4572 else
4573 /* Internal metadata will immediately
4574 * be written by raid5d, so we don't
4575 * need to wait here.
4576 */
4577 rdev_dec_pending(s.blocked_rdev,
4578 conf->mddev);
4579 }
4580
4581 if (s.handle_bad_blocks)
4582 for (i = disks; i--; ) {
4583 struct md_rdev *rdev;
4584 struct r5dev *dev = &sh->dev[i];
4585 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4586 /* We own a safe reference to the rdev */
4587 rdev = conf->disks[i].rdev;
4588 if (!rdev_set_badblocks(rdev, sh->sector,
4589 STRIPE_SECTORS, 0))
4590 md_error(conf->mddev, rdev);
4591 rdev_dec_pending(rdev, conf->mddev);
4592 }
4593 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4594 rdev = conf->disks[i].rdev;
4595 rdev_clear_badblocks(rdev, sh->sector,
4596 STRIPE_SECTORS, 0);
4597 rdev_dec_pending(rdev, conf->mddev);
4598 }
4599 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4600 rdev = conf->disks[i].replacement;
4601 if (!rdev)
4602 /* rdev have been moved down */
4603 rdev = conf->disks[i].rdev;
4604 rdev_clear_badblocks(rdev, sh->sector,
4605 STRIPE_SECTORS, 0);
4606 rdev_dec_pending(rdev, conf->mddev);
4607 }
4608 }
4609
4610 if (s.ops_request)
4611 raid_run_ops(sh, s.ops_request);
4612
4613 ops_run_io(sh, &s);
4614
4615 if (s.dec_preread_active) {
4616 /* We delay this until after ops_run_io so that if make_request
4617 * is waiting on a flush, it won't continue until the writes
4618 * have actually been submitted.
4619 */
4620 atomic_dec(&conf->preread_active_stripes);
4621 if (atomic_read(&conf->preread_active_stripes) <
4622 IO_THRESHOLD)
4623 md_wakeup_thread(conf->mddev->thread);
4624 }
4625
4626 if (!bio_list_empty(&s.return_bi)) {
4627 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4628 spin_lock_irq(&conf->device_lock);
4629 bio_list_merge(&conf->return_bi, &s.return_bi);
4630 spin_unlock_irq(&conf->device_lock);
4631 md_wakeup_thread(conf->mddev->thread);
4632 } else
4633 return_io(&s.return_bi);
4634 }
4635
4636 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4637 }
4638
4639 static void raid5_activate_delayed(struct r5conf *conf)
4640 {
4641 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4642 while (!list_empty(&conf->delayed_list)) {
4643 struct list_head *l = conf->delayed_list.next;
4644 struct stripe_head *sh;
4645 sh = list_entry(l, struct stripe_head, lru);
4646 list_del_init(l);
4647 clear_bit(STRIPE_DELAYED, &sh->state);
4648 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4649 atomic_inc(&conf->preread_active_stripes);
4650 list_add_tail(&sh->lru, &conf->hold_list);
4651 raid5_wakeup_stripe_thread(sh);
4652 }
4653 }
4654 }
4655
4656 static void activate_bit_delay(struct r5conf *conf,
4657 struct list_head *temp_inactive_list)
4658 {
4659 /* device_lock is held */
4660 struct list_head head;
4661 list_add(&head, &conf->bitmap_list);
4662 list_del_init(&conf->bitmap_list);
4663 while (!list_empty(&head)) {
4664 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4665 int hash;
4666 list_del_init(&sh->lru);
4667 atomic_inc(&sh->count);
4668 hash = sh->hash_lock_index;
4669 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4670 }
4671 }
4672
4673 static int raid5_congested(struct mddev *mddev, int bits)
4674 {
4675 struct r5conf *conf = mddev->private;
4676
4677 /* No difference between reads and writes. Just check
4678 * how busy the stripe_cache is
4679 */
4680
4681 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4682 return 1;
4683 if (conf->quiesce)
4684 return 1;
4685 if (atomic_read(&conf->empty_inactive_list_nr))
4686 return 1;
4687
4688 return 0;
4689 }
4690
4691 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4692 {
4693 struct r5conf *conf = mddev->private;
4694 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4695 unsigned int chunk_sectors;
4696 unsigned int bio_sectors = bio_sectors(bio);
4697
4698 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4699 return chunk_sectors >=
4700 ((sector & (chunk_sectors - 1)) + bio_sectors);
4701 }
4702
4703 /*
4704 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4705 * later sampled by raid5d.
4706 */
4707 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4708 {
4709 unsigned long flags;
4710
4711 spin_lock_irqsave(&conf->device_lock, flags);
4712
4713 bi->bi_next = conf->retry_read_aligned_list;
4714 conf->retry_read_aligned_list = bi;
4715
4716 spin_unlock_irqrestore(&conf->device_lock, flags);
4717 md_wakeup_thread(conf->mddev->thread);
4718 }
4719
4720 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4721 {
4722 struct bio *bi;
4723
4724 bi = conf->retry_read_aligned;
4725 if (bi) {
4726 conf->retry_read_aligned = NULL;
4727 return bi;
4728 }
4729 bi = conf->retry_read_aligned_list;
4730 if(bi) {
4731 conf->retry_read_aligned_list = bi->bi_next;
4732 bi->bi_next = NULL;
4733 /*
4734 * this sets the active strip count to 1 and the processed
4735 * strip count to zero (upper 8 bits)
4736 */
4737 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4738 }
4739
4740 return bi;
4741 }
4742
4743 /*
4744 * The "raid5_align_endio" should check if the read succeeded and if it
4745 * did, call bio_endio on the original bio (having bio_put the new bio
4746 * first).
4747 * If the read failed..
4748 */
4749 static void raid5_align_endio(struct bio *bi)
4750 {
4751 struct bio* raid_bi = bi->bi_private;
4752 struct mddev *mddev;
4753 struct r5conf *conf;
4754 struct md_rdev *rdev;
4755 int error = bi->bi_error;
4756
4757 bio_put(bi);
4758
4759 rdev = (void*)raid_bi->bi_next;
4760 raid_bi->bi_next = NULL;
4761 mddev = rdev->mddev;
4762 conf = mddev->private;
4763
4764 rdev_dec_pending(rdev, conf->mddev);
4765
4766 if (!error) {
4767 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4768 raid_bi, 0);
4769 bio_endio(raid_bi);
4770 if (atomic_dec_and_test(&conf->active_aligned_reads))
4771 wake_up(&conf->wait_for_quiescent);
4772 return;
4773 }
4774
4775 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4776
4777 add_bio_to_retry(raid_bi, conf);
4778 }
4779
4780 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4781 {
4782 struct r5conf *conf = mddev->private;
4783 int dd_idx;
4784 struct bio* align_bi;
4785 struct md_rdev *rdev;
4786 sector_t end_sector;
4787
4788 if (!in_chunk_boundary(mddev, raid_bio)) {
4789 pr_debug("%s: non aligned\n", __func__);
4790 return 0;
4791 }
4792 /*
4793 * use bio_clone_mddev to make a copy of the bio
4794 */
4795 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4796 if (!align_bi)
4797 return 0;
4798 /*
4799 * set bi_end_io to a new function, and set bi_private to the
4800 * original bio.
4801 */
4802 align_bi->bi_end_io = raid5_align_endio;
4803 align_bi->bi_private = raid_bio;
4804 /*
4805 * compute position
4806 */
4807 align_bi->bi_iter.bi_sector =
4808 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4809 0, &dd_idx, NULL);
4810
4811 end_sector = bio_end_sector(align_bi);
4812 rcu_read_lock();
4813 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4814 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4815 rdev->recovery_offset < end_sector) {
4816 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4817 if (rdev &&
4818 (test_bit(Faulty, &rdev->flags) ||
4819 !(test_bit(In_sync, &rdev->flags) ||
4820 rdev->recovery_offset >= end_sector)))
4821 rdev = NULL;
4822 }
4823 if (rdev) {
4824 sector_t first_bad;
4825 int bad_sectors;
4826
4827 atomic_inc(&rdev->nr_pending);
4828 rcu_read_unlock();
4829 raid_bio->bi_next = (void*)rdev;
4830 align_bi->bi_bdev = rdev->bdev;
4831 bio_clear_flag(align_bi, BIO_SEG_VALID);
4832
4833 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4834 bio_sectors(align_bi),
4835 &first_bad, &bad_sectors)) {
4836 bio_put(align_bi);
4837 rdev_dec_pending(rdev, mddev);
4838 return 0;
4839 }
4840
4841 /* No reshape active, so we can trust rdev->data_offset */
4842 align_bi->bi_iter.bi_sector += rdev->data_offset;
4843
4844 spin_lock_irq(&conf->device_lock);
4845 wait_event_lock_irq(conf->wait_for_quiescent,
4846 conf->quiesce == 0,
4847 conf->device_lock);
4848 atomic_inc(&conf->active_aligned_reads);
4849 spin_unlock_irq(&conf->device_lock);
4850
4851 if (mddev->gendisk)
4852 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4853 align_bi, disk_devt(mddev->gendisk),
4854 raid_bio->bi_iter.bi_sector);
4855 generic_make_request(align_bi);
4856 return 1;
4857 } else {
4858 rcu_read_unlock();
4859 bio_put(align_bi);
4860 return 0;
4861 }
4862 }
4863
4864 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4865 {
4866 struct bio *split;
4867
4868 do {
4869 sector_t sector = raid_bio->bi_iter.bi_sector;
4870 unsigned chunk_sects = mddev->chunk_sectors;
4871 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4872
4873 if (sectors < bio_sectors(raid_bio)) {
4874 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4875 bio_chain(split, raid_bio);
4876 } else
4877 split = raid_bio;
4878
4879 if (!raid5_read_one_chunk(mddev, split)) {
4880 if (split != raid_bio)
4881 generic_make_request(raid_bio);
4882 return split;
4883 }
4884 } while (split != raid_bio);
4885
4886 return NULL;
4887 }
4888
4889 /* __get_priority_stripe - get the next stripe to process
4890 *
4891 * Full stripe writes are allowed to pass preread active stripes up until
4892 * the bypass_threshold is exceeded. In general the bypass_count
4893 * increments when the handle_list is handled before the hold_list; however, it
4894 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4895 * stripe with in flight i/o. The bypass_count will be reset when the
4896 * head of the hold_list has changed, i.e. the head was promoted to the
4897 * handle_list.
4898 */
4899 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4900 {
4901 struct stripe_head *sh = NULL, *tmp;
4902 struct list_head *handle_list = NULL;
4903 struct r5worker_group *wg = NULL;
4904
4905 if (conf->worker_cnt_per_group == 0) {
4906 handle_list = &conf->handle_list;
4907 } else if (group != ANY_GROUP) {
4908 handle_list = &conf->worker_groups[group].handle_list;
4909 wg = &conf->worker_groups[group];
4910 } else {
4911 int i;
4912 for (i = 0; i < conf->group_cnt; i++) {
4913 handle_list = &conf->worker_groups[i].handle_list;
4914 wg = &conf->worker_groups[i];
4915 if (!list_empty(handle_list))
4916 break;
4917 }
4918 }
4919
4920 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4921 __func__,
4922 list_empty(handle_list) ? "empty" : "busy",
4923 list_empty(&conf->hold_list) ? "empty" : "busy",
4924 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4925
4926 if (!list_empty(handle_list)) {
4927 sh = list_entry(handle_list->next, typeof(*sh), lru);
4928
4929 if (list_empty(&conf->hold_list))
4930 conf->bypass_count = 0;
4931 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4932 if (conf->hold_list.next == conf->last_hold)
4933 conf->bypass_count++;
4934 else {
4935 conf->last_hold = conf->hold_list.next;
4936 conf->bypass_count -= conf->bypass_threshold;
4937 if (conf->bypass_count < 0)
4938 conf->bypass_count = 0;
4939 }
4940 }
4941 } else if (!list_empty(&conf->hold_list) &&
4942 ((conf->bypass_threshold &&
4943 conf->bypass_count > conf->bypass_threshold) ||
4944 atomic_read(&conf->pending_full_writes) == 0)) {
4945
4946 list_for_each_entry(tmp, &conf->hold_list, lru) {
4947 if (conf->worker_cnt_per_group == 0 ||
4948 group == ANY_GROUP ||
4949 !cpu_online(tmp->cpu) ||
4950 cpu_to_group(tmp->cpu) == group) {
4951 sh = tmp;
4952 break;
4953 }
4954 }
4955
4956 if (sh) {
4957 conf->bypass_count -= conf->bypass_threshold;
4958 if (conf->bypass_count < 0)
4959 conf->bypass_count = 0;
4960 }
4961 wg = NULL;
4962 }
4963
4964 if (!sh)
4965 return NULL;
4966
4967 if (wg) {
4968 wg->stripes_cnt--;
4969 sh->group = NULL;
4970 }
4971 list_del_init(&sh->lru);
4972 BUG_ON(atomic_inc_return(&sh->count) != 1);
4973 return sh;
4974 }
4975
4976 struct raid5_plug_cb {
4977 struct blk_plug_cb cb;
4978 struct list_head list;
4979 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4980 };
4981
4982 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4983 {
4984 struct raid5_plug_cb *cb = container_of(
4985 blk_cb, struct raid5_plug_cb, cb);
4986 struct stripe_head *sh;
4987 struct mddev *mddev = cb->cb.data;
4988 struct r5conf *conf = mddev->private;
4989 int cnt = 0;
4990 int hash;
4991
4992 if (cb->list.next && !list_empty(&cb->list)) {
4993 spin_lock_irq(&conf->device_lock);
4994 while (!list_empty(&cb->list)) {
4995 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4996 list_del_init(&sh->lru);
4997 /*
4998 * avoid race release_stripe_plug() sees
4999 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5000 * is still in our list
5001 */
5002 smp_mb__before_atomic();
5003 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5004 /*
5005 * STRIPE_ON_RELEASE_LIST could be set here. In that
5006 * case, the count is always > 1 here
5007 */
5008 hash = sh->hash_lock_index;
5009 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5010 cnt++;
5011 }
5012 spin_unlock_irq(&conf->device_lock);
5013 }
5014 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5015 NR_STRIPE_HASH_LOCKS);
5016 if (mddev->queue)
5017 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5018 kfree(cb);
5019 }
5020
5021 static void release_stripe_plug(struct mddev *mddev,
5022 struct stripe_head *sh)
5023 {
5024 struct blk_plug_cb *blk_cb = blk_check_plugged(
5025 raid5_unplug, mddev,
5026 sizeof(struct raid5_plug_cb));
5027 struct raid5_plug_cb *cb;
5028
5029 if (!blk_cb) {
5030 raid5_release_stripe(sh);
5031 return;
5032 }
5033
5034 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5035
5036 if (cb->list.next == NULL) {
5037 int i;
5038 INIT_LIST_HEAD(&cb->list);
5039 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5040 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5041 }
5042
5043 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5044 list_add_tail(&sh->lru, &cb->list);
5045 else
5046 raid5_release_stripe(sh);
5047 }
5048
5049 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5050 {
5051 struct r5conf *conf = mddev->private;
5052 sector_t logical_sector, last_sector;
5053 struct stripe_head *sh;
5054 int remaining;
5055 int stripe_sectors;
5056
5057 if (mddev->reshape_position != MaxSector)
5058 /* Skip discard while reshape is happening */
5059 return;
5060
5061 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5062 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5063
5064 bi->bi_next = NULL;
5065 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5066
5067 stripe_sectors = conf->chunk_sectors *
5068 (conf->raid_disks - conf->max_degraded);
5069 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5070 stripe_sectors);
5071 sector_div(last_sector, stripe_sectors);
5072
5073 logical_sector *= conf->chunk_sectors;
5074 last_sector *= conf->chunk_sectors;
5075
5076 for (; logical_sector < last_sector;
5077 logical_sector += STRIPE_SECTORS) {
5078 DEFINE_WAIT(w);
5079 int d;
5080 again:
5081 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5082 prepare_to_wait(&conf->wait_for_overlap, &w,
5083 TASK_UNINTERRUPTIBLE);
5084 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5085 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5086 raid5_release_stripe(sh);
5087 schedule();
5088 goto again;
5089 }
5090 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5091 spin_lock_irq(&sh->stripe_lock);
5092 for (d = 0; d < conf->raid_disks; d++) {
5093 if (d == sh->pd_idx || d == sh->qd_idx)
5094 continue;
5095 if (sh->dev[d].towrite || sh->dev[d].toread) {
5096 set_bit(R5_Overlap, &sh->dev[d].flags);
5097 spin_unlock_irq(&sh->stripe_lock);
5098 raid5_release_stripe(sh);
5099 schedule();
5100 goto again;
5101 }
5102 }
5103 set_bit(STRIPE_DISCARD, &sh->state);
5104 finish_wait(&conf->wait_for_overlap, &w);
5105 sh->overwrite_disks = 0;
5106 for (d = 0; d < conf->raid_disks; d++) {
5107 if (d == sh->pd_idx || d == sh->qd_idx)
5108 continue;
5109 sh->dev[d].towrite = bi;
5110 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5111 raid5_inc_bi_active_stripes(bi);
5112 sh->overwrite_disks++;
5113 }
5114 spin_unlock_irq(&sh->stripe_lock);
5115 if (conf->mddev->bitmap) {
5116 for (d = 0;
5117 d < conf->raid_disks - conf->max_degraded;
5118 d++)
5119 bitmap_startwrite(mddev->bitmap,
5120 sh->sector,
5121 STRIPE_SECTORS,
5122 0);
5123 sh->bm_seq = conf->seq_flush + 1;
5124 set_bit(STRIPE_BIT_DELAY, &sh->state);
5125 }
5126
5127 set_bit(STRIPE_HANDLE, &sh->state);
5128 clear_bit(STRIPE_DELAYED, &sh->state);
5129 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5130 atomic_inc(&conf->preread_active_stripes);
5131 release_stripe_plug(mddev, sh);
5132 }
5133
5134 remaining = raid5_dec_bi_active_stripes(bi);
5135 if (remaining == 0) {
5136 md_write_end(mddev);
5137 bio_endio(bi);
5138 }
5139 }
5140
5141 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5142 {
5143 struct r5conf *conf = mddev->private;
5144 int dd_idx;
5145 sector_t new_sector;
5146 sector_t logical_sector, last_sector;
5147 struct stripe_head *sh;
5148 const int rw = bio_data_dir(bi);
5149 int remaining;
5150 DEFINE_WAIT(w);
5151 bool do_prepare;
5152
5153 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5154 int ret = r5l_handle_flush_request(conf->log, bi);
5155
5156 if (ret == 0)
5157 return;
5158 if (ret == -ENODEV) {
5159 md_flush_request(mddev, bi);
5160 return;
5161 }
5162 /* ret == -EAGAIN, fallback */
5163 }
5164
5165 md_write_start(mddev, bi);
5166
5167 /*
5168 * If array is degraded, better not do chunk aligned read because
5169 * later we might have to read it again in order to reconstruct
5170 * data on failed drives.
5171 */
5172 if (rw == READ && mddev->degraded == 0 &&
5173 mddev->reshape_position == MaxSector) {
5174 bi = chunk_aligned_read(mddev, bi);
5175 if (!bi)
5176 return;
5177 }
5178
5179 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5180 make_discard_request(mddev, bi);
5181 return;
5182 }
5183
5184 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5185 last_sector = bio_end_sector(bi);
5186 bi->bi_next = NULL;
5187 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5188
5189 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5190 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5191 int previous;
5192 int seq;
5193
5194 do_prepare = false;
5195 retry:
5196 seq = read_seqcount_begin(&conf->gen_lock);
5197 previous = 0;
5198 if (do_prepare)
5199 prepare_to_wait(&conf->wait_for_overlap, &w,
5200 TASK_UNINTERRUPTIBLE);
5201 if (unlikely(conf->reshape_progress != MaxSector)) {
5202 /* spinlock is needed as reshape_progress may be
5203 * 64bit on a 32bit platform, and so it might be
5204 * possible to see a half-updated value
5205 * Of course reshape_progress could change after
5206 * the lock is dropped, so once we get a reference
5207 * to the stripe that we think it is, we will have
5208 * to check again.
5209 */
5210 spin_lock_irq(&conf->device_lock);
5211 if (mddev->reshape_backwards
5212 ? logical_sector < conf->reshape_progress
5213 : logical_sector >= conf->reshape_progress) {
5214 previous = 1;
5215 } else {
5216 if (mddev->reshape_backwards
5217 ? logical_sector < conf->reshape_safe
5218 : logical_sector >= conf->reshape_safe) {
5219 spin_unlock_irq(&conf->device_lock);
5220 schedule();
5221 do_prepare = true;
5222 goto retry;
5223 }
5224 }
5225 spin_unlock_irq(&conf->device_lock);
5226 }
5227
5228 new_sector = raid5_compute_sector(conf, logical_sector,
5229 previous,
5230 &dd_idx, NULL);
5231 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5232 (unsigned long long)new_sector,
5233 (unsigned long long)logical_sector);
5234
5235 sh = raid5_get_active_stripe(conf, new_sector, previous,
5236 (bi->bi_rw&RWA_MASK), 0);
5237 if (sh) {
5238 if (unlikely(previous)) {
5239 /* expansion might have moved on while waiting for a
5240 * stripe, so we must do the range check again.
5241 * Expansion could still move past after this
5242 * test, but as we are holding a reference to
5243 * 'sh', we know that if that happens,
5244 * STRIPE_EXPANDING will get set and the expansion
5245 * won't proceed until we finish with the stripe.
5246 */
5247 int must_retry = 0;
5248 spin_lock_irq(&conf->device_lock);
5249 if (mddev->reshape_backwards
5250 ? logical_sector >= conf->reshape_progress
5251 : logical_sector < conf->reshape_progress)
5252 /* mismatch, need to try again */
5253 must_retry = 1;
5254 spin_unlock_irq(&conf->device_lock);
5255 if (must_retry) {
5256 raid5_release_stripe(sh);
5257 schedule();
5258 do_prepare = true;
5259 goto retry;
5260 }
5261 }
5262 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5263 /* Might have got the wrong stripe_head
5264 * by accident
5265 */
5266 raid5_release_stripe(sh);
5267 goto retry;
5268 }
5269
5270 if (rw == WRITE &&
5271 logical_sector >= mddev->suspend_lo &&
5272 logical_sector < mddev->suspend_hi) {
5273 raid5_release_stripe(sh);
5274 /* As the suspend_* range is controlled by
5275 * userspace, we want an interruptible
5276 * wait.
5277 */
5278 flush_signals(current);
5279 prepare_to_wait(&conf->wait_for_overlap,
5280 &w, TASK_INTERRUPTIBLE);
5281 if (logical_sector >= mddev->suspend_lo &&
5282 logical_sector < mddev->suspend_hi) {
5283 schedule();
5284 do_prepare = true;
5285 }
5286 goto retry;
5287 }
5288
5289 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5290 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5291 /* Stripe is busy expanding or
5292 * add failed due to overlap. Flush everything
5293 * and wait a while
5294 */
5295 md_wakeup_thread(mddev->thread);
5296 raid5_release_stripe(sh);
5297 schedule();
5298 do_prepare = true;
5299 goto retry;
5300 }
5301 set_bit(STRIPE_HANDLE, &sh->state);
5302 clear_bit(STRIPE_DELAYED, &sh->state);
5303 if ((!sh->batch_head || sh == sh->batch_head) &&
5304 (bi->bi_rw & REQ_SYNC) &&
5305 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5306 atomic_inc(&conf->preread_active_stripes);
5307 release_stripe_plug(mddev, sh);
5308 } else {
5309 /* cannot get stripe for read-ahead, just give-up */
5310 bi->bi_error = -EIO;
5311 break;
5312 }
5313 }
5314 finish_wait(&conf->wait_for_overlap, &w);
5315
5316 remaining = raid5_dec_bi_active_stripes(bi);
5317 if (remaining == 0) {
5318
5319 if ( rw == WRITE )
5320 md_write_end(mddev);
5321
5322 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5323 bi, 0);
5324 bio_endio(bi);
5325 }
5326 }
5327
5328 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5329
5330 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5331 {
5332 /* reshaping is quite different to recovery/resync so it is
5333 * handled quite separately ... here.
5334 *
5335 * On each call to sync_request, we gather one chunk worth of
5336 * destination stripes and flag them as expanding.
5337 * Then we find all the source stripes and request reads.
5338 * As the reads complete, handle_stripe will copy the data
5339 * into the destination stripe and release that stripe.
5340 */
5341 struct r5conf *conf = mddev->private;
5342 struct stripe_head *sh;
5343 sector_t first_sector, last_sector;
5344 int raid_disks = conf->previous_raid_disks;
5345 int data_disks = raid_disks - conf->max_degraded;
5346 int new_data_disks = conf->raid_disks - conf->max_degraded;
5347 int i;
5348 int dd_idx;
5349 sector_t writepos, readpos, safepos;
5350 sector_t stripe_addr;
5351 int reshape_sectors;
5352 struct list_head stripes;
5353 sector_t retn;
5354
5355 if (sector_nr == 0) {
5356 /* If restarting in the middle, skip the initial sectors */
5357 if (mddev->reshape_backwards &&
5358 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5359 sector_nr = raid5_size(mddev, 0, 0)
5360 - conf->reshape_progress;
5361 } else if (mddev->reshape_backwards &&
5362 conf->reshape_progress == MaxSector) {
5363 /* shouldn't happen, but just in case, finish up.*/
5364 sector_nr = MaxSector;
5365 } else if (!mddev->reshape_backwards &&
5366 conf->reshape_progress > 0)
5367 sector_nr = conf->reshape_progress;
5368 sector_div(sector_nr, new_data_disks);
5369 if (sector_nr) {
5370 mddev->curr_resync_completed = sector_nr;
5371 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5372 *skipped = 1;
5373 retn = sector_nr;
5374 goto finish;
5375 }
5376 }
5377
5378 /* We need to process a full chunk at a time.
5379 * If old and new chunk sizes differ, we need to process the
5380 * largest of these
5381 */
5382
5383 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5384
5385 /* We update the metadata at least every 10 seconds, or when
5386 * the data about to be copied would over-write the source of
5387 * the data at the front of the range. i.e. one new_stripe
5388 * along from reshape_progress new_maps to after where
5389 * reshape_safe old_maps to
5390 */
5391 writepos = conf->reshape_progress;
5392 sector_div(writepos, new_data_disks);
5393 readpos = conf->reshape_progress;
5394 sector_div(readpos, data_disks);
5395 safepos = conf->reshape_safe;
5396 sector_div(safepos, data_disks);
5397 if (mddev->reshape_backwards) {
5398 BUG_ON(writepos < reshape_sectors);
5399 writepos -= reshape_sectors;
5400 readpos += reshape_sectors;
5401 safepos += reshape_sectors;
5402 } else {
5403 writepos += reshape_sectors;
5404 /* readpos and safepos are worst-case calculations.
5405 * A negative number is overly pessimistic, and causes
5406 * obvious problems for unsigned storage. So clip to 0.
5407 */
5408 readpos -= min_t(sector_t, reshape_sectors, readpos);
5409 safepos -= min_t(sector_t, reshape_sectors, safepos);
5410 }
5411
5412 /* Having calculated the 'writepos' possibly use it
5413 * to set 'stripe_addr' which is where we will write to.
5414 */
5415 if (mddev->reshape_backwards) {
5416 BUG_ON(conf->reshape_progress == 0);
5417 stripe_addr = writepos;
5418 BUG_ON((mddev->dev_sectors &
5419 ~((sector_t)reshape_sectors - 1))
5420 - reshape_sectors - stripe_addr
5421 != sector_nr);
5422 } else {
5423 BUG_ON(writepos != sector_nr + reshape_sectors);
5424 stripe_addr = sector_nr;
5425 }
5426
5427 /* 'writepos' is the most advanced device address we might write.
5428 * 'readpos' is the least advanced device address we might read.
5429 * 'safepos' is the least address recorded in the metadata as having
5430 * been reshaped.
5431 * If there is a min_offset_diff, these are adjusted either by
5432 * increasing the safepos/readpos if diff is negative, or
5433 * increasing writepos if diff is positive.
5434 * If 'readpos' is then behind 'writepos', there is no way that we can
5435 * ensure safety in the face of a crash - that must be done by userspace
5436 * making a backup of the data. So in that case there is no particular
5437 * rush to update metadata.
5438 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5439 * update the metadata to advance 'safepos' to match 'readpos' so that
5440 * we can be safe in the event of a crash.
5441 * So we insist on updating metadata if safepos is behind writepos and
5442 * readpos is beyond writepos.
5443 * In any case, update the metadata every 10 seconds.
5444 * Maybe that number should be configurable, but I'm not sure it is
5445 * worth it.... maybe it could be a multiple of safemode_delay???
5446 */
5447 if (conf->min_offset_diff < 0) {
5448 safepos += -conf->min_offset_diff;
5449 readpos += -conf->min_offset_diff;
5450 } else
5451 writepos += conf->min_offset_diff;
5452
5453 if ((mddev->reshape_backwards
5454 ? (safepos > writepos && readpos < writepos)
5455 : (safepos < writepos && readpos > writepos)) ||
5456 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5457 /* Cannot proceed until we've updated the superblock... */
5458 wait_event(conf->wait_for_overlap,
5459 atomic_read(&conf->reshape_stripes)==0
5460 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5461 if (atomic_read(&conf->reshape_stripes) != 0)
5462 return 0;
5463 mddev->reshape_position = conf->reshape_progress;
5464 mddev->curr_resync_completed = sector_nr;
5465 conf->reshape_checkpoint = jiffies;
5466 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5467 md_wakeup_thread(mddev->thread);
5468 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5469 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5470 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5471 return 0;
5472 spin_lock_irq(&conf->device_lock);
5473 conf->reshape_safe = mddev->reshape_position;
5474 spin_unlock_irq(&conf->device_lock);
5475 wake_up(&conf->wait_for_overlap);
5476 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5477 }
5478
5479 INIT_LIST_HEAD(&stripes);
5480 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5481 int j;
5482 int skipped_disk = 0;
5483 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5484 set_bit(STRIPE_EXPANDING, &sh->state);
5485 atomic_inc(&conf->reshape_stripes);
5486 /* If any of this stripe is beyond the end of the old
5487 * array, then we need to zero those blocks
5488 */
5489 for (j=sh->disks; j--;) {
5490 sector_t s;
5491 if (j == sh->pd_idx)
5492 continue;
5493 if (conf->level == 6 &&
5494 j == sh->qd_idx)
5495 continue;
5496 s = raid5_compute_blocknr(sh, j, 0);
5497 if (s < raid5_size(mddev, 0, 0)) {
5498 skipped_disk = 1;
5499 continue;
5500 }
5501 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5502 set_bit(R5_Expanded, &sh->dev[j].flags);
5503 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5504 }
5505 if (!skipped_disk) {
5506 set_bit(STRIPE_EXPAND_READY, &sh->state);
5507 set_bit(STRIPE_HANDLE, &sh->state);
5508 }
5509 list_add(&sh->lru, &stripes);
5510 }
5511 spin_lock_irq(&conf->device_lock);
5512 if (mddev->reshape_backwards)
5513 conf->reshape_progress -= reshape_sectors * new_data_disks;
5514 else
5515 conf->reshape_progress += reshape_sectors * new_data_disks;
5516 spin_unlock_irq(&conf->device_lock);
5517 /* Ok, those stripe are ready. We can start scheduling
5518 * reads on the source stripes.
5519 * The source stripes are determined by mapping the first and last
5520 * block on the destination stripes.
5521 */
5522 first_sector =
5523 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5524 1, &dd_idx, NULL);
5525 last_sector =
5526 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5527 * new_data_disks - 1),
5528 1, &dd_idx, NULL);
5529 if (last_sector >= mddev->dev_sectors)
5530 last_sector = mddev->dev_sectors - 1;
5531 while (first_sector <= last_sector) {
5532 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5533 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5534 set_bit(STRIPE_HANDLE, &sh->state);
5535 raid5_release_stripe(sh);
5536 first_sector += STRIPE_SECTORS;
5537 }
5538 /* Now that the sources are clearly marked, we can release
5539 * the destination stripes
5540 */
5541 while (!list_empty(&stripes)) {
5542 sh = list_entry(stripes.next, struct stripe_head, lru);
5543 list_del_init(&sh->lru);
5544 raid5_release_stripe(sh);
5545 }
5546 /* If this takes us to the resync_max point where we have to pause,
5547 * then we need to write out the superblock.
5548 */
5549 sector_nr += reshape_sectors;
5550 retn = reshape_sectors;
5551 finish:
5552 if (mddev->curr_resync_completed > mddev->resync_max ||
5553 (sector_nr - mddev->curr_resync_completed) * 2
5554 >= mddev->resync_max - mddev->curr_resync_completed) {
5555 /* Cannot proceed until we've updated the superblock... */
5556 wait_event(conf->wait_for_overlap,
5557 atomic_read(&conf->reshape_stripes) == 0
5558 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5559 if (atomic_read(&conf->reshape_stripes) != 0)
5560 goto ret;
5561 mddev->reshape_position = conf->reshape_progress;
5562 mddev->curr_resync_completed = sector_nr;
5563 conf->reshape_checkpoint = jiffies;
5564 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5565 md_wakeup_thread(mddev->thread);
5566 wait_event(mddev->sb_wait,
5567 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5568 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5569 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5570 goto ret;
5571 spin_lock_irq(&conf->device_lock);
5572 conf->reshape_safe = mddev->reshape_position;
5573 spin_unlock_irq(&conf->device_lock);
5574 wake_up(&conf->wait_for_overlap);
5575 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5576 }
5577 ret:
5578 return retn;
5579 }
5580
5581 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5582 int *skipped)
5583 {
5584 struct r5conf *conf = mddev->private;
5585 struct stripe_head *sh;
5586 sector_t max_sector = mddev->dev_sectors;
5587 sector_t sync_blocks;
5588 int still_degraded = 0;
5589 int i;
5590
5591 if (sector_nr >= max_sector) {
5592 /* just being told to finish up .. nothing much to do */
5593
5594 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5595 end_reshape(conf);
5596 return 0;
5597 }
5598
5599 if (mddev->curr_resync < max_sector) /* aborted */
5600 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5601 &sync_blocks, 1);
5602 else /* completed sync */
5603 conf->fullsync = 0;
5604 bitmap_close_sync(mddev->bitmap);
5605
5606 return 0;
5607 }
5608
5609 /* Allow raid5_quiesce to complete */
5610 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5611
5612 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5613 return reshape_request(mddev, sector_nr, skipped);
5614
5615 /* No need to check resync_max as we never do more than one
5616 * stripe, and as resync_max will always be on a chunk boundary,
5617 * if the check in md_do_sync didn't fire, there is no chance
5618 * of overstepping resync_max here
5619 */
5620
5621 /* if there is too many failed drives and we are trying
5622 * to resync, then assert that we are finished, because there is
5623 * nothing we can do.
5624 */
5625 if (mddev->degraded >= conf->max_degraded &&
5626 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5627 sector_t rv = mddev->dev_sectors - sector_nr;
5628 *skipped = 1;
5629 return rv;
5630 }
5631 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5632 !conf->fullsync &&
5633 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5634 sync_blocks >= STRIPE_SECTORS) {
5635 /* we can skip this block, and probably more */
5636 sync_blocks /= STRIPE_SECTORS;
5637 *skipped = 1;
5638 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5639 }
5640
5641 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5642
5643 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5644 if (sh == NULL) {
5645 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5646 /* make sure we don't swamp the stripe cache if someone else
5647 * is trying to get access
5648 */
5649 schedule_timeout_uninterruptible(1);
5650 }
5651 /* Need to check if array will still be degraded after recovery/resync
5652 * Note in case of > 1 drive failures it's possible we're rebuilding
5653 * one drive while leaving another faulty drive in array.
5654 */
5655 rcu_read_lock();
5656 for (i = 0; i < conf->raid_disks; i++) {
5657 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5658
5659 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5660 still_degraded = 1;
5661 }
5662 rcu_read_unlock();
5663
5664 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5665
5666 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5667 set_bit(STRIPE_HANDLE, &sh->state);
5668
5669 raid5_release_stripe(sh);
5670
5671 return STRIPE_SECTORS;
5672 }
5673
5674 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5675 {
5676 /* We may not be able to submit a whole bio at once as there
5677 * may not be enough stripe_heads available.
5678 * We cannot pre-allocate enough stripe_heads as we may need
5679 * more than exist in the cache (if we allow ever large chunks).
5680 * So we do one stripe head at a time and record in
5681 * ->bi_hw_segments how many have been done.
5682 *
5683 * We *know* that this entire raid_bio is in one chunk, so
5684 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5685 */
5686 struct stripe_head *sh;
5687 int dd_idx;
5688 sector_t sector, logical_sector, last_sector;
5689 int scnt = 0;
5690 int remaining;
5691 int handled = 0;
5692
5693 logical_sector = raid_bio->bi_iter.bi_sector &
5694 ~((sector_t)STRIPE_SECTORS-1);
5695 sector = raid5_compute_sector(conf, logical_sector,
5696 0, &dd_idx, NULL);
5697 last_sector = bio_end_sector(raid_bio);
5698
5699 for (; logical_sector < last_sector;
5700 logical_sector += STRIPE_SECTORS,
5701 sector += STRIPE_SECTORS,
5702 scnt++) {
5703
5704 if (scnt < raid5_bi_processed_stripes(raid_bio))
5705 /* already done this stripe */
5706 continue;
5707
5708 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5709
5710 if (!sh) {
5711 /* failed to get a stripe - must wait */
5712 raid5_set_bi_processed_stripes(raid_bio, scnt);
5713 conf->retry_read_aligned = raid_bio;
5714 return handled;
5715 }
5716
5717 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5718 raid5_release_stripe(sh);
5719 raid5_set_bi_processed_stripes(raid_bio, scnt);
5720 conf->retry_read_aligned = raid_bio;
5721 return handled;
5722 }
5723
5724 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5725 handle_stripe(sh);
5726 raid5_release_stripe(sh);
5727 handled++;
5728 }
5729 remaining = raid5_dec_bi_active_stripes(raid_bio);
5730 if (remaining == 0) {
5731 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5732 raid_bio, 0);
5733 bio_endio(raid_bio);
5734 }
5735 if (atomic_dec_and_test(&conf->active_aligned_reads))
5736 wake_up(&conf->wait_for_quiescent);
5737 return handled;
5738 }
5739
5740 static int handle_active_stripes(struct r5conf *conf, int group,
5741 struct r5worker *worker,
5742 struct list_head *temp_inactive_list)
5743 {
5744 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5745 int i, batch_size = 0, hash;
5746 bool release_inactive = false;
5747
5748 while (batch_size < MAX_STRIPE_BATCH &&
5749 (sh = __get_priority_stripe(conf, group)) != NULL)
5750 batch[batch_size++] = sh;
5751
5752 if (batch_size == 0) {
5753 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5754 if (!list_empty(temp_inactive_list + i))
5755 break;
5756 if (i == NR_STRIPE_HASH_LOCKS) {
5757 spin_unlock_irq(&conf->device_lock);
5758 r5l_flush_stripe_to_raid(conf->log);
5759 spin_lock_irq(&conf->device_lock);
5760 return batch_size;
5761 }
5762 release_inactive = true;
5763 }
5764 spin_unlock_irq(&conf->device_lock);
5765
5766 release_inactive_stripe_list(conf, temp_inactive_list,
5767 NR_STRIPE_HASH_LOCKS);
5768
5769 r5l_flush_stripe_to_raid(conf->log);
5770 if (release_inactive) {
5771 spin_lock_irq(&conf->device_lock);
5772 return 0;
5773 }
5774
5775 for (i = 0; i < batch_size; i++)
5776 handle_stripe(batch[i]);
5777 r5l_write_stripe_run(conf->log);
5778
5779 cond_resched();
5780
5781 spin_lock_irq(&conf->device_lock);
5782 for (i = 0; i < batch_size; i++) {
5783 hash = batch[i]->hash_lock_index;
5784 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5785 }
5786 return batch_size;
5787 }
5788
5789 static void raid5_do_work(struct work_struct *work)
5790 {
5791 struct r5worker *worker = container_of(work, struct r5worker, work);
5792 struct r5worker_group *group = worker->group;
5793 struct r5conf *conf = group->conf;
5794 int group_id = group - conf->worker_groups;
5795 int handled;
5796 struct blk_plug plug;
5797
5798 pr_debug("+++ raid5worker active\n");
5799
5800 blk_start_plug(&plug);
5801 handled = 0;
5802 spin_lock_irq(&conf->device_lock);
5803 while (1) {
5804 int batch_size, released;
5805
5806 released = release_stripe_list(conf, worker->temp_inactive_list);
5807
5808 batch_size = handle_active_stripes(conf, group_id, worker,
5809 worker->temp_inactive_list);
5810 worker->working = false;
5811 if (!batch_size && !released)
5812 break;
5813 handled += batch_size;
5814 }
5815 pr_debug("%d stripes handled\n", handled);
5816
5817 spin_unlock_irq(&conf->device_lock);
5818 blk_finish_plug(&plug);
5819
5820 pr_debug("--- raid5worker inactive\n");
5821 }
5822
5823 /*
5824 * This is our raid5 kernel thread.
5825 *
5826 * We scan the hash table for stripes which can be handled now.
5827 * During the scan, completed stripes are saved for us by the interrupt
5828 * handler, so that they will not have to wait for our next wakeup.
5829 */
5830 static void raid5d(struct md_thread *thread)
5831 {
5832 struct mddev *mddev = thread->mddev;
5833 struct r5conf *conf = mddev->private;
5834 int handled;
5835 struct blk_plug plug;
5836
5837 pr_debug("+++ raid5d active\n");
5838
5839 md_check_recovery(mddev);
5840
5841 if (!bio_list_empty(&conf->return_bi) &&
5842 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5843 struct bio_list tmp = BIO_EMPTY_LIST;
5844 spin_lock_irq(&conf->device_lock);
5845 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5846 bio_list_merge(&tmp, &conf->return_bi);
5847 bio_list_init(&conf->return_bi);
5848 }
5849 spin_unlock_irq(&conf->device_lock);
5850 return_io(&tmp);
5851 }
5852
5853 blk_start_plug(&plug);
5854 handled = 0;
5855 spin_lock_irq(&conf->device_lock);
5856 while (1) {
5857 struct bio *bio;
5858 int batch_size, released;
5859
5860 released = release_stripe_list(conf, conf->temp_inactive_list);
5861 if (released)
5862 clear_bit(R5_DID_ALLOC, &conf->cache_state);
5863
5864 if (
5865 !list_empty(&conf->bitmap_list)) {
5866 /* Now is a good time to flush some bitmap updates */
5867 conf->seq_flush++;
5868 spin_unlock_irq(&conf->device_lock);
5869 bitmap_unplug(mddev->bitmap);
5870 spin_lock_irq(&conf->device_lock);
5871 conf->seq_write = conf->seq_flush;
5872 activate_bit_delay(conf, conf->temp_inactive_list);
5873 }
5874 raid5_activate_delayed(conf);
5875
5876 while ((bio = remove_bio_from_retry(conf))) {
5877 int ok;
5878 spin_unlock_irq(&conf->device_lock);
5879 ok = retry_aligned_read(conf, bio);
5880 spin_lock_irq(&conf->device_lock);
5881 if (!ok)
5882 break;
5883 handled++;
5884 }
5885
5886 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5887 conf->temp_inactive_list);
5888 if (!batch_size && !released)
5889 break;
5890 handled += batch_size;
5891
5892 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5893 spin_unlock_irq(&conf->device_lock);
5894 md_check_recovery(mddev);
5895 spin_lock_irq(&conf->device_lock);
5896 }
5897 }
5898 pr_debug("%d stripes handled\n", handled);
5899
5900 spin_unlock_irq(&conf->device_lock);
5901 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5902 mutex_trylock(&conf->cache_size_mutex)) {
5903 grow_one_stripe(conf, __GFP_NOWARN);
5904 /* Set flag even if allocation failed. This helps
5905 * slow down allocation requests when mem is short
5906 */
5907 set_bit(R5_DID_ALLOC, &conf->cache_state);
5908 mutex_unlock(&conf->cache_size_mutex);
5909 }
5910
5911 r5l_flush_stripe_to_raid(conf->log);
5912
5913 async_tx_issue_pending_all();
5914 blk_finish_plug(&plug);
5915
5916 pr_debug("--- raid5d inactive\n");
5917 }
5918
5919 static ssize_t
5920 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5921 {
5922 struct r5conf *conf;
5923 int ret = 0;
5924 spin_lock(&mddev->lock);
5925 conf = mddev->private;
5926 if (conf)
5927 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5928 spin_unlock(&mddev->lock);
5929 return ret;
5930 }
5931
5932 int
5933 raid5_set_cache_size(struct mddev *mddev, int size)
5934 {
5935 struct r5conf *conf = mddev->private;
5936 int err;
5937
5938 if (size <= 16 || size > 32768)
5939 return -EINVAL;
5940
5941 conf->min_nr_stripes = size;
5942 mutex_lock(&conf->cache_size_mutex);
5943 while (size < conf->max_nr_stripes &&
5944 drop_one_stripe(conf))
5945 ;
5946 mutex_unlock(&conf->cache_size_mutex);
5947
5948
5949 err = md_allow_write(mddev);
5950 if (err)
5951 return err;
5952
5953 mutex_lock(&conf->cache_size_mutex);
5954 while (size > conf->max_nr_stripes)
5955 if (!grow_one_stripe(conf, GFP_KERNEL))
5956 break;
5957 mutex_unlock(&conf->cache_size_mutex);
5958
5959 return 0;
5960 }
5961 EXPORT_SYMBOL(raid5_set_cache_size);
5962
5963 static ssize_t
5964 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5965 {
5966 struct r5conf *conf;
5967 unsigned long new;
5968 int err;
5969
5970 if (len >= PAGE_SIZE)
5971 return -EINVAL;
5972 if (kstrtoul(page, 10, &new))
5973 return -EINVAL;
5974 err = mddev_lock(mddev);
5975 if (err)
5976 return err;
5977 conf = mddev->private;
5978 if (!conf)
5979 err = -ENODEV;
5980 else
5981 err = raid5_set_cache_size(mddev, new);
5982 mddev_unlock(mddev);
5983
5984 return err ?: len;
5985 }
5986
5987 static struct md_sysfs_entry
5988 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5989 raid5_show_stripe_cache_size,
5990 raid5_store_stripe_cache_size);
5991
5992 static ssize_t
5993 raid5_show_rmw_level(struct mddev *mddev, char *page)
5994 {
5995 struct r5conf *conf = mddev->private;
5996 if (conf)
5997 return sprintf(page, "%d\n", conf->rmw_level);
5998 else
5999 return 0;
6000 }
6001
6002 static ssize_t
6003 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6004 {
6005 struct r5conf *conf = mddev->private;
6006 unsigned long new;
6007
6008 if (!conf)
6009 return -ENODEV;
6010
6011 if (len >= PAGE_SIZE)
6012 return -EINVAL;
6013
6014 if (kstrtoul(page, 10, &new))
6015 return -EINVAL;
6016
6017 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6018 return -EINVAL;
6019
6020 if (new != PARITY_DISABLE_RMW &&
6021 new != PARITY_ENABLE_RMW &&
6022 new != PARITY_PREFER_RMW)
6023 return -EINVAL;
6024
6025 conf->rmw_level = new;
6026 return len;
6027 }
6028
6029 static struct md_sysfs_entry
6030 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6031 raid5_show_rmw_level,
6032 raid5_store_rmw_level);
6033
6034
6035 static ssize_t
6036 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6037 {
6038 struct r5conf *conf;
6039 int ret = 0;
6040 spin_lock(&mddev->lock);
6041 conf = mddev->private;
6042 if (conf)
6043 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6044 spin_unlock(&mddev->lock);
6045 return ret;
6046 }
6047
6048 static ssize_t
6049 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6050 {
6051 struct r5conf *conf;
6052 unsigned long new;
6053 int err;
6054
6055 if (len >= PAGE_SIZE)
6056 return -EINVAL;
6057 if (kstrtoul(page, 10, &new))
6058 return -EINVAL;
6059
6060 err = mddev_lock(mddev);
6061 if (err)
6062 return err;
6063 conf = mddev->private;
6064 if (!conf)
6065 err = -ENODEV;
6066 else if (new > conf->min_nr_stripes)
6067 err = -EINVAL;
6068 else
6069 conf->bypass_threshold = new;
6070 mddev_unlock(mddev);
6071 return err ?: len;
6072 }
6073
6074 static struct md_sysfs_entry
6075 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6076 S_IRUGO | S_IWUSR,
6077 raid5_show_preread_threshold,
6078 raid5_store_preread_threshold);
6079
6080 static ssize_t
6081 raid5_show_skip_copy(struct mddev *mddev, char *page)
6082 {
6083 struct r5conf *conf;
6084 int ret = 0;
6085 spin_lock(&mddev->lock);
6086 conf = mddev->private;
6087 if (conf)
6088 ret = sprintf(page, "%d\n", conf->skip_copy);
6089 spin_unlock(&mddev->lock);
6090 return ret;
6091 }
6092
6093 static ssize_t
6094 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6095 {
6096 struct r5conf *conf;
6097 unsigned long new;
6098 int err;
6099
6100 if (len >= PAGE_SIZE)
6101 return -EINVAL;
6102 if (kstrtoul(page, 10, &new))
6103 return -EINVAL;
6104 new = !!new;
6105
6106 err = mddev_lock(mddev);
6107 if (err)
6108 return err;
6109 conf = mddev->private;
6110 if (!conf)
6111 err = -ENODEV;
6112 else if (new != conf->skip_copy) {
6113 mddev_suspend(mddev);
6114 conf->skip_copy = new;
6115 if (new)
6116 mddev->queue->backing_dev_info.capabilities |=
6117 BDI_CAP_STABLE_WRITES;
6118 else
6119 mddev->queue->backing_dev_info.capabilities &=
6120 ~BDI_CAP_STABLE_WRITES;
6121 mddev_resume(mddev);
6122 }
6123 mddev_unlock(mddev);
6124 return err ?: len;
6125 }
6126
6127 static struct md_sysfs_entry
6128 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6129 raid5_show_skip_copy,
6130 raid5_store_skip_copy);
6131
6132 static ssize_t
6133 stripe_cache_active_show(struct mddev *mddev, char *page)
6134 {
6135 struct r5conf *conf = mddev->private;
6136 if (conf)
6137 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6138 else
6139 return 0;
6140 }
6141
6142 static struct md_sysfs_entry
6143 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6144
6145 static ssize_t
6146 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6147 {
6148 struct r5conf *conf;
6149 int ret = 0;
6150 spin_lock(&mddev->lock);
6151 conf = mddev->private;
6152 if (conf)
6153 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6154 spin_unlock(&mddev->lock);
6155 return ret;
6156 }
6157
6158 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6159 int *group_cnt,
6160 int *worker_cnt_per_group,
6161 struct r5worker_group **worker_groups);
6162 static ssize_t
6163 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6164 {
6165 struct r5conf *conf;
6166 unsigned long new;
6167 int err;
6168 struct r5worker_group *new_groups, *old_groups;
6169 int group_cnt, worker_cnt_per_group;
6170
6171 if (len >= PAGE_SIZE)
6172 return -EINVAL;
6173 if (kstrtoul(page, 10, &new))
6174 return -EINVAL;
6175
6176 err = mddev_lock(mddev);
6177 if (err)
6178 return err;
6179 conf = mddev->private;
6180 if (!conf)
6181 err = -ENODEV;
6182 else if (new != conf->worker_cnt_per_group) {
6183 mddev_suspend(mddev);
6184
6185 old_groups = conf->worker_groups;
6186 if (old_groups)
6187 flush_workqueue(raid5_wq);
6188
6189 err = alloc_thread_groups(conf, new,
6190 &group_cnt, &worker_cnt_per_group,
6191 &new_groups);
6192 if (!err) {
6193 spin_lock_irq(&conf->device_lock);
6194 conf->group_cnt = group_cnt;
6195 conf->worker_cnt_per_group = worker_cnt_per_group;
6196 conf->worker_groups = new_groups;
6197 spin_unlock_irq(&conf->device_lock);
6198
6199 if (old_groups)
6200 kfree(old_groups[0].workers);
6201 kfree(old_groups);
6202 }
6203 mddev_resume(mddev);
6204 }
6205 mddev_unlock(mddev);
6206
6207 return err ?: len;
6208 }
6209
6210 static struct md_sysfs_entry
6211 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6212 raid5_show_group_thread_cnt,
6213 raid5_store_group_thread_cnt);
6214
6215 static struct attribute *raid5_attrs[] = {
6216 &raid5_stripecache_size.attr,
6217 &raid5_stripecache_active.attr,
6218 &raid5_preread_bypass_threshold.attr,
6219 &raid5_group_thread_cnt.attr,
6220 &raid5_skip_copy.attr,
6221 &raid5_rmw_level.attr,
6222 NULL,
6223 };
6224 static struct attribute_group raid5_attrs_group = {
6225 .name = NULL,
6226 .attrs = raid5_attrs,
6227 };
6228
6229 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6230 int *group_cnt,
6231 int *worker_cnt_per_group,
6232 struct r5worker_group **worker_groups)
6233 {
6234 int i, j, k;
6235 ssize_t size;
6236 struct r5worker *workers;
6237
6238 *worker_cnt_per_group = cnt;
6239 if (cnt == 0) {
6240 *group_cnt = 0;
6241 *worker_groups = NULL;
6242 return 0;
6243 }
6244 *group_cnt = num_possible_nodes();
6245 size = sizeof(struct r5worker) * cnt;
6246 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6247 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6248 *group_cnt, GFP_NOIO);
6249 if (!*worker_groups || !workers) {
6250 kfree(workers);
6251 kfree(*worker_groups);
6252 return -ENOMEM;
6253 }
6254
6255 for (i = 0; i < *group_cnt; i++) {
6256 struct r5worker_group *group;
6257
6258 group = &(*worker_groups)[i];
6259 INIT_LIST_HEAD(&group->handle_list);
6260 group->conf = conf;
6261 group->workers = workers + i * cnt;
6262
6263 for (j = 0; j < cnt; j++) {
6264 struct r5worker *worker = group->workers + j;
6265 worker->group = group;
6266 INIT_WORK(&worker->work, raid5_do_work);
6267
6268 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6269 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6270 }
6271 }
6272
6273 return 0;
6274 }
6275
6276 static void free_thread_groups(struct r5conf *conf)
6277 {
6278 if (conf->worker_groups)
6279 kfree(conf->worker_groups[0].workers);
6280 kfree(conf->worker_groups);
6281 conf->worker_groups = NULL;
6282 }
6283
6284 static sector_t
6285 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6286 {
6287 struct r5conf *conf = mddev->private;
6288
6289 if (!sectors)
6290 sectors = mddev->dev_sectors;
6291 if (!raid_disks)
6292 /* size is defined by the smallest of previous and new size */
6293 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6294
6295 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6296 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6297 return sectors * (raid_disks - conf->max_degraded);
6298 }
6299
6300 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6301 {
6302 safe_put_page(percpu->spare_page);
6303 if (percpu->scribble)
6304 flex_array_free(percpu->scribble);
6305 percpu->spare_page = NULL;
6306 percpu->scribble = NULL;
6307 }
6308
6309 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6310 {
6311 if (conf->level == 6 && !percpu->spare_page)
6312 percpu->spare_page = alloc_page(GFP_KERNEL);
6313 if (!percpu->scribble)
6314 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6315 conf->previous_raid_disks),
6316 max(conf->chunk_sectors,
6317 conf->prev_chunk_sectors)
6318 / STRIPE_SECTORS,
6319 GFP_KERNEL);
6320
6321 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6322 free_scratch_buffer(conf, percpu);
6323 return -ENOMEM;
6324 }
6325
6326 return 0;
6327 }
6328
6329 static void raid5_free_percpu(struct r5conf *conf)
6330 {
6331 unsigned long cpu;
6332
6333 if (!conf->percpu)
6334 return;
6335
6336 #ifdef CONFIG_HOTPLUG_CPU
6337 unregister_cpu_notifier(&conf->cpu_notify);
6338 #endif
6339
6340 get_online_cpus();
6341 for_each_possible_cpu(cpu)
6342 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6343 put_online_cpus();
6344
6345 free_percpu(conf->percpu);
6346 }
6347
6348 static void free_conf(struct r5conf *conf)
6349 {
6350 if (conf->log)
6351 r5l_exit_log(conf->log);
6352 if (conf->shrinker.seeks)
6353 unregister_shrinker(&conf->shrinker);
6354
6355 free_thread_groups(conf);
6356 shrink_stripes(conf);
6357 raid5_free_percpu(conf);
6358 kfree(conf->disks);
6359 kfree(conf->stripe_hashtbl);
6360 kfree(conf);
6361 }
6362
6363 #ifdef CONFIG_HOTPLUG_CPU
6364 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6365 void *hcpu)
6366 {
6367 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6368 long cpu = (long)hcpu;
6369 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6370
6371 switch (action) {
6372 case CPU_UP_PREPARE:
6373 case CPU_UP_PREPARE_FROZEN:
6374 if (alloc_scratch_buffer(conf, percpu)) {
6375 pr_err("%s: failed memory allocation for cpu%ld\n",
6376 __func__, cpu);
6377 return notifier_from_errno(-ENOMEM);
6378 }
6379 break;
6380 case CPU_DEAD:
6381 case CPU_DEAD_FROZEN:
6382 case CPU_UP_CANCELED:
6383 case CPU_UP_CANCELED_FROZEN:
6384 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6385 break;
6386 default:
6387 break;
6388 }
6389 return NOTIFY_OK;
6390 }
6391 #endif
6392
6393 static int raid5_alloc_percpu(struct r5conf *conf)
6394 {
6395 unsigned long cpu;
6396 int err = 0;
6397
6398 conf->percpu = alloc_percpu(struct raid5_percpu);
6399 if (!conf->percpu)
6400 return -ENOMEM;
6401
6402 #ifdef CONFIG_HOTPLUG_CPU
6403 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6404 conf->cpu_notify.priority = 0;
6405 err = register_cpu_notifier(&conf->cpu_notify);
6406 if (err)
6407 return err;
6408 #endif
6409
6410 get_online_cpus();
6411 for_each_present_cpu(cpu) {
6412 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6413 if (err) {
6414 pr_err("%s: failed memory allocation for cpu%ld\n",
6415 __func__, cpu);
6416 break;
6417 }
6418 }
6419 put_online_cpus();
6420
6421 if (!err) {
6422 conf->scribble_disks = max(conf->raid_disks,
6423 conf->previous_raid_disks);
6424 conf->scribble_sectors = max(conf->chunk_sectors,
6425 conf->prev_chunk_sectors);
6426 }
6427 return err;
6428 }
6429
6430 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6431 struct shrink_control *sc)
6432 {
6433 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6434 unsigned long ret = SHRINK_STOP;
6435
6436 if (mutex_trylock(&conf->cache_size_mutex)) {
6437 ret= 0;
6438 while (ret < sc->nr_to_scan &&
6439 conf->max_nr_stripes > conf->min_nr_stripes) {
6440 if (drop_one_stripe(conf) == 0) {
6441 ret = SHRINK_STOP;
6442 break;
6443 }
6444 ret++;
6445 }
6446 mutex_unlock(&conf->cache_size_mutex);
6447 }
6448 return ret;
6449 }
6450
6451 static unsigned long raid5_cache_count(struct shrinker *shrink,
6452 struct shrink_control *sc)
6453 {
6454 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6455
6456 if (conf->max_nr_stripes < conf->min_nr_stripes)
6457 /* unlikely, but not impossible */
6458 return 0;
6459 return conf->max_nr_stripes - conf->min_nr_stripes;
6460 }
6461
6462 static struct r5conf *setup_conf(struct mddev *mddev)
6463 {
6464 struct r5conf *conf;
6465 int raid_disk, memory, max_disks;
6466 struct md_rdev *rdev;
6467 struct disk_info *disk;
6468 char pers_name[6];
6469 int i;
6470 int group_cnt, worker_cnt_per_group;
6471 struct r5worker_group *new_group;
6472
6473 if (mddev->new_level != 5
6474 && mddev->new_level != 4
6475 && mddev->new_level != 6) {
6476 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6477 mdname(mddev), mddev->new_level);
6478 return ERR_PTR(-EIO);
6479 }
6480 if ((mddev->new_level == 5
6481 && !algorithm_valid_raid5(mddev->new_layout)) ||
6482 (mddev->new_level == 6
6483 && !algorithm_valid_raid6(mddev->new_layout))) {
6484 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6485 mdname(mddev), mddev->new_layout);
6486 return ERR_PTR(-EIO);
6487 }
6488 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6489 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6490 mdname(mddev), mddev->raid_disks);
6491 return ERR_PTR(-EINVAL);
6492 }
6493
6494 if (!mddev->new_chunk_sectors ||
6495 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6496 !is_power_of_2(mddev->new_chunk_sectors)) {
6497 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6498 mdname(mddev), mddev->new_chunk_sectors << 9);
6499 return ERR_PTR(-EINVAL);
6500 }
6501
6502 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6503 if (conf == NULL)
6504 goto abort;
6505 /* Don't enable multi-threading by default*/
6506 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6507 &new_group)) {
6508 conf->group_cnt = group_cnt;
6509 conf->worker_cnt_per_group = worker_cnt_per_group;
6510 conf->worker_groups = new_group;
6511 } else
6512 goto abort;
6513 spin_lock_init(&conf->device_lock);
6514 seqcount_init(&conf->gen_lock);
6515 mutex_init(&conf->cache_size_mutex);
6516 init_waitqueue_head(&conf->wait_for_quiescent);
6517 init_waitqueue_head(&conf->wait_for_stripe);
6518 init_waitqueue_head(&conf->wait_for_overlap);
6519 INIT_LIST_HEAD(&conf->handle_list);
6520 INIT_LIST_HEAD(&conf->hold_list);
6521 INIT_LIST_HEAD(&conf->delayed_list);
6522 INIT_LIST_HEAD(&conf->bitmap_list);
6523 bio_list_init(&conf->return_bi);
6524 init_llist_head(&conf->released_stripes);
6525 atomic_set(&conf->active_stripes, 0);
6526 atomic_set(&conf->preread_active_stripes, 0);
6527 atomic_set(&conf->active_aligned_reads, 0);
6528 conf->bypass_threshold = BYPASS_THRESHOLD;
6529 conf->recovery_disabled = mddev->recovery_disabled - 1;
6530
6531 conf->raid_disks = mddev->raid_disks;
6532 if (mddev->reshape_position == MaxSector)
6533 conf->previous_raid_disks = mddev->raid_disks;
6534 else
6535 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6536 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6537
6538 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6539 GFP_KERNEL);
6540 if (!conf->disks)
6541 goto abort;
6542
6543 conf->mddev = mddev;
6544
6545 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6546 goto abort;
6547
6548 /* We init hash_locks[0] separately to that it can be used
6549 * as the reference lock in the spin_lock_nest_lock() call
6550 * in lock_all_device_hash_locks_irq in order to convince
6551 * lockdep that we know what we are doing.
6552 */
6553 spin_lock_init(conf->hash_locks);
6554 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6555 spin_lock_init(conf->hash_locks + i);
6556
6557 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6558 INIT_LIST_HEAD(conf->inactive_list + i);
6559
6560 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6561 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6562
6563 conf->level = mddev->new_level;
6564 conf->chunk_sectors = mddev->new_chunk_sectors;
6565 if (raid5_alloc_percpu(conf) != 0)
6566 goto abort;
6567
6568 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6569
6570 rdev_for_each(rdev, mddev) {
6571 raid_disk = rdev->raid_disk;
6572 if (raid_disk >= max_disks
6573 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6574 continue;
6575 disk = conf->disks + raid_disk;
6576
6577 if (test_bit(Replacement, &rdev->flags)) {
6578 if (disk->replacement)
6579 goto abort;
6580 disk->replacement = rdev;
6581 } else {
6582 if (disk->rdev)
6583 goto abort;
6584 disk->rdev = rdev;
6585 }
6586
6587 if (test_bit(In_sync, &rdev->flags)) {
6588 char b[BDEVNAME_SIZE];
6589 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6590 " disk %d\n",
6591 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6592 } else if (rdev->saved_raid_disk != raid_disk)
6593 /* Cannot rely on bitmap to complete recovery */
6594 conf->fullsync = 1;
6595 }
6596
6597 conf->level = mddev->new_level;
6598 if (conf->level == 6) {
6599 conf->max_degraded = 2;
6600 if (raid6_call.xor_syndrome)
6601 conf->rmw_level = PARITY_ENABLE_RMW;
6602 else
6603 conf->rmw_level = PARITY_DISABLE_RMW;
6604 } else {
6605 conf->max_degraded = 1;
6606 conf->rmw_level = PARITY_ENABLE_RMW;
6607 }
6608 conf->algorithm = mddev->new_layout;
6609 conf->reshape_progress = mddev->reshape_position;
6610 if (conf->reshape_progress != MaxSector) {
6611 conf->prev_chunk_sectors = mddev->chunk_sectors;
6612 conf->prev_algo = mddev->layout;
6613 } else {
6614 conf->prev_chunk_sectors = conf->chunk_sectors;
6615 conf->prev_algo = conf->algorithm;
6616 }
6617
6618 conf->min_nr_stripes = NR_STRIPES;
6619 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6620 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6621 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6622 if (grow_stripes(conf, conf->min_nr_stripes)) {
6623 printk(KERN_ERR
6624 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6625 mdname(mddev), memory);
6626 goto abort;
6627 } else
6628 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6629 mdname(mddev), memory);
6630 /*
6631 * Losing a stripe head costs more than the time to refill it,
6632 * it reduces the queue depth and so can hurt throughput.
6633 * So set it rather large, scaled by number of devices.
6634 */
6635 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6636 conf->shrinker.scan_objects = raid5_cache_scan;
6637 conf->shrinker.count_objects = raid5_cache_count;
6638 conf->shrinker.batch = 128;
6639 conf->shrinker.flags = 0;
6640 register_shrinker(&conf->shrinker);
6641
6642 sprintf(pers_name, "raid%d", mddev->new_level);
6643 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6644 if (!conf->thread) {
6645 printk(KERN_ERR
6646 "md/raid:%s: couldn't allocate thread.\n",
6647 mdname(mddev));
6648 goto abort;
6649 }
6650
6651 return conf;
6652
6653 abort:
6654 if (conf) {
6655 free_conf(conf);
6656 return ERR_PTR(-EIO);
6657 } else
6658 return ERR_PTR(-ENOMEM);
6659 }
6660
6661 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6662 {
6663 switch (algo) {
6664 case ALGORITHM_PARITY_0:
6665 if (raid_disk < max_degraded)
6666 return 1;
6667 break;
6668 case ALGORITHM_PARITY_N:
6669 if (raid_disk >= raid_disks - max_degraded)
6670 return 1;
6671 break;
6672 case ALGORITHM_PARITY_0_6:
6673 if (raid_disk == 0 ||
6674 raid_disk == raid_disks - 1)
6675 return 1;
6676 break;
6677 case ALGORITHM_LEFT_ASYMMETRIC_6:
6678 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6679 case ALGORITHM_LEFT_SYMMETRIC_6:
6680 case ALGORITHM_RIGHT_SYMMETRIC_6:
6681 if (raid_disk == raid_disks - 1)
6682 return 1;
6683 }
6684 return 0;
6685 }
6686
6687 static int raid5_run(struct mddev *mddev)
6688 {
6689 struct r5conf *conf;
6690 int working_disks = 0;
6691 int dirty_parity_disks = 0;
6692 struct md_rdev *rdev;
6693 struct md_rdev *journal_dev = NULL;
6694 sector_t reshape_offset = 0;
6695 int i;
6696 long long min_offset_diff = 0;
6697 int first = 1;
6698
6699 if (mddev->recovery_cp != MaxSector)
6700 printk(KERN_NOTICE "md/raid:%s: not clean"
6701 " -- starting background reconstruction\n",
6702 mdname(mddev));
6703
6704 rdev_for_each(rdev, mddev) {
6705 long long diff;
6706
6707 if (test_bit(Journal, &rdev->flags)) {
6708 journal_dev = rdev;
6709 continue;
6710 }
6711 if (rdev->raid_disk < 0)
6712 continue;
6713 diff = (rdev->new_data_offset - rdev->data_offset);
6714 if (first) {
6715 min_offset_diff = diff;
6716 first = 0;
6717 } else if (mddev->reshape_backwards &&
6718 diff < min_offset_diff)
6719 min_offset_diff = diff;
6720 else if (!mddev->reshape_backwards &&
6721 diff > min_offset_diff)
6722 min_offset_diff = diff;
6723 }
6724
6725 if (mddev->reshape_position != MaxSector) {
6726 /* Check that we can continue the reshape.
6727 * Difficulties arise if the stripe we would write to
6728 * next is at or after the stripe we would read from next.
6729 * For a reshape that changes the number of devices, this
6730 * is only possible for a very short time, and mdadm makes
6731 * sure that time appears to have past before assembling
6732 * the array. So we fail if that time hasn't passed.
6733 * For a reshape that keeps the number of devices the same
6734 * mdadm must be monitoring the reshape can keeping the
6735 * critical areas read-only and backed up. It will start
6736 * the array in read-only mode, so we check for that.
6737 */
6738 sector_t here_new, here_old;
6739 int old_disks;
6740 int max_degraded = (mddev->level == 6 ? 2 : 1);
6741 int chunk_sectors;
6742 int new_data_disks;
6743
6744 if (journal_dev) {
6745 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6746 mdname(mddev));
6747 return -EINVAL;
6748 }
6749
6750 if (mddev->new_level != mddev->level) {
6751 printk(KERN_ERR "md/raid:%s: unsupported reshape "
6752 "required - aborting.\n",
6753 mdname(mddev));
6754 return -EINVAL;
6755 }
6756 old_disks = mddev->raid_disks - mddev->delta_disks;
6757 /* reshape_position must be on a new-stripe boundary, and one
6758 * further up in new geometry must map after here in old
6759 * geometry.
6760 * If the chunk sizes are different, then as we perform reshape
6761 * in units of the largest of the two, reshape_position needs
6762 * be a multiple of the largest chunk size times new data disks.
6763 */
6764 here_new = mddev->reshape_position;
6765 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6766 new_data_disks = mddev->raid_disks - max_degraded;
6767 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6768 printk(KERN_ERR "md/raid:%s: reshape_position not "
6769 "on a stripe boundary\n", mdname(mddev));
6770 return -EINVAL;
6771 }
6772 reshape_offset = here_new * chunk_sectors;
6773 /* here_new is the stripe we will write to */
6774 here_old = mddev->reshape_position;
6775 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6776 /* here_old is the first stripe that we might need to read
6777 * from */
6778 if (mddev->delta_disks == 0) {
6779 /* We cannot be sure it is safe to start an in-place
6780 * reshape. It is only safe if user-space is monitoring
6781 * and taking constant backups.
6782 * mdadm always starts a situation like this in
6783 * readonly mode so it can take control before
6784 * allowing any writes. So just check for that.
6785 */
6786 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6787 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6788 /* not really in-place - so OK */;
6789 else if (mddev->ro == 0) {
6790 printk(KERN_ERR "md/raid:%s: in-place reshape "
6791 "must be started in read-only mode "
6792 "- aborting\n",
6793 mdname(mddev));
6794 return -EINVAL;
6795 }
6796 } else if (mddev->reshape_backwards
6797 ? (here_new * chunk_sectors + min_offset_diff <=
6798 here_old * chunk_sectors)
6799 : (here_new * chunk_sectors >=
6800 here_old * chunk_sectors + (-min_offset_diff))) {
6801 /* Reading from the same stripe as writing to - bad */
6802 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6803 "auto-recovery - aborting.\n",
6804 mdname(mddev));
6805 return -EINVAL;
6806 }
6807 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6808 mdname(mddev));
6809 /* OK, we should be able to continue; */
6810 } else {
6811 BUG_ON(mddev->level != mddev->new_level);
6812 BUG_ON(mddev->layout != mddev->new_layout);
6813 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6814 BUG_ON(mddev->delta_disks != 0);
6815 }
6816
6817 if (mddev->private == NULL)
6818 conf = setup_conf(mddev);
6819 else
6820 conf = mddev->private;
6821
6822 if (IS_ERR(conf))
6823 return PTR_ERR(conf);
6824
6825 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6826 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6827 mdname(mddev));
6828 mddev->ro = 1;
6829 set_disk_ro(mddev->gendisk, 1);
6830 }
6831
6832 conf->min_offset_diff = min_offset_diff;
6833 mddev->thread = conf->thread;
6834 conf->thread = NULL;
6835 mddev->private = conf;
6836
6837 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6838 i++) {
6839 rdev = conf->disks[i].rdev;
6840 if (!rdev && conf->disks[i].replacement) {
6841 /* The replacement is all we have yet */
6842 rdev = conf->disks[i].replacement;
6843 conf->disks[i].replacement = NULL;
6844 clear_bit(Replacement, &rdev->flags);
6845 conf->disks[i].rdev = rdev;
6846 }
6847 if (!rdev)
6848 continue;
6849 if (conf->disks[i].replacement &&
6850 conf->reshape_progress != MaxSector) {
6851 /* replacements and reshape simply do not mix. */
6852 printk(KERN_ERR "md: cannot handle concurrent "
6853 "replacement and reshape.\n");
6854 goto abort;
6855 }
6856 if (test_bit(In_sync, &rdev->flags)) {
6857 working_disks++;
6858 continue;
6859 }
6860 /* This disc is not fully in-sync. However if it
6861 * just stored parity (beyond the recovery_offset),
6862 * when we don't need to be concerned about the
6863 * array being dirty.
6864 * When reshape goes 'backwards', we never have
6865 * partially completed devices, so we only need
6866 * to worry about reshape going forwards.
6867 */
6868 /* Hack because v0.91 doesn't store recovery_offset properly. */
6869 if (mddev->major_version == 0 &&
6870 mddev->minor_version > 90)
6871 rdev->recovery_offset = reshape_offset;
6872
6873 if (rdev->recovery_offset < reshape_offset) {
6874 /* We need to check old and new layout */
6875 if (!only_parity(rdev->raid_disk,
6876 conf->algorithm,
6877 conf->raid_disks,
6878 conf->max_degraded))
6879 continue;
6880 }
6881 if (!only_parity(rdev->raid_disk,
6882 conf->prev_algo,
6883 conf->previous_raid_disks,
6884 conf->max_degraded))
6885 continue;
6886 dirty_parity_disks++;
6887 }
6888
6889 /*
6890 * 0 for a fully functional array, 1 or 2 for a degraded array.
6891 */
6892 mddev->degraded = calc_degraded(conf);
6893
6894 if (has_failed(conf)) {
6895 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6896 " (%d/%d failed)\n",
6897 mdname(mddev), mddev->degraded, conf->raid_disks);
6898 goto abort;
6899 }
6900
6901 /* device size must be a multiple of chunk size */
6902 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6903 mddev->resync_max_sectors = mddev->dev_sectors;
6904
6905 if (mddev->degraded > dirty_parity_disks &&
6906 mddev->recovery_cp != MaxSector) {
6907 if (mddev->ok_start_degraded)
6908 printk(KERN_WARNING
6909 "md/raid:%s: starting dirty degraded array"
6910 " - data corruption possible.\n",
6911 mdname(mddev));
6912 else {
6913 printk(KERN_ERR
6914 "md/raid:%s: cannot start dirty degraded array.\n",
6915 mdname(mddev));
6916 goto abort;
6917 }
6918 }
6919
6920 if (mddev->degraded == 0)
6921 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6922 " devices, algorithm %d\n", mdname(mddev), conf->level,
6923 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6924 mddev->new_layout);
6925 else
6926 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6927 " out of %d devices, algorithm %d\n",
6928 mdname(mddev), conf->level,
6929 mddev->raid_disks - mddev->degraded,
6930 mddev->raid_disks, mddev->new_layout);
6931
6932 print_raid5_conf(conf);
6933
6934 if (conf->reshape_progress != MaxSector) {
6935 conf->reshape_safe = conf->reshape_progress;
6936 atomic_set(&conf->reshape_stripes, 0);
6937 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6938 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6939 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6940 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6941 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6942 "reshape");
6943 }
6944
6945 /* Ok, everything is just fine now */
6946 if (mddev->to_remove == &raid5_attrs_group)
6947 mddev->to_remove = NULL;
6948 else if (mddev->kobj.sd &&
6949 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6950 printk(KERN_WARNING
6951 "raid5: failed to create sysfs attributes for %s\n",
6952 mdname(mddev));
6953 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6954
6955 if (mddev->queue) {
6956 int chunk_size;
6957 bool discard_supported = true;
6958 /* read-ahead size must cover two whole stripes, which
6959 * is 2 * (datadisks) * chunksize where 'n' is the
6960 * number of raid devices
6961 */
6962 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6963 int stripe = data_disks *
6964 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6965 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6966 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6967
6968 chunk_size = mddev->chunk_sectors << 9;
6969 blk_queue_io_min(mddev->queue, chunk_size);
6970 blk_queue_io_opt(mddev->queue, chunk_size *
6971 (conf->raid_disks - conf->max_degraded));
6972 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6973 /*
6974 * We can only discard a whole stripe. It doesn't make sense to
6975 * discard data disk but write parity disk
6976 */
6977 stripe = stripe * PAGE_SIZE;
6978 /* Round up to power of 2, as discard handling
6979 * currently assumes that */
6980 while ((stripe-1) & stripe)
6981 stripe = (stripe | (stripe-1)) + 1;
6982 mddev->queue->limits.discard_alignment = stripe;
6983 mddev->queue->limits.discard_granularity = stripe;
6984 /*
6985 * unaligned part of discard request will be ignored, so can't
6986 * guarantee discard_zeroes_data
6987 */
6988 mddev->queue->limits.discard_zeroes_data = 0;
6989
6990 blk_queue_max_write_same_sectors(mddev->queue, 0);
6991
6992 rdev_for_each(rdev, mddev) {
6993 disk_stack_limits(mddev->gendisk, rdev->bdev,
6994 rdev->data_offset << 9);
6995 disk_stack_limits(mddev->gendisk, rdev->bdev,
6996 rdev->new_data_offset << 9);
6997 /*
6998 * discard_zeroes_data is required, otherwise data
6999 * could be lost. Consider a scenario: discard a stripe
7000 * (the stripe could be inconsistent if
7001 * discard_zeroes_data is 0); write one disk of the
7002 * stripe (the stripe could be inconsistent again
7003 * depending on which disks are used to calculate
7004 * parity); the disk is broken; The stripe data of this
7005 * disk is lost.
7006 */
7007 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7008 !bdev_get_queue(rdev->bdev)->
7009 limits.discard_zeroes_data)
7010 discard_supported = false;
7011 /* Unfortunately, discard_zeroes_data is not currently
7012 * a guarantee - just a hint. So we only allow DISCARD
7013 * if the sysadmin has confirmed that only safe devices
7014 * are in use by setting a module parameter.
7015 */
7016 if (!devices_handle_discard_safely) {
7017 if (discard_supported) {
7018 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7019 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7020 }
7021 discard_supported = false;
7022 }
7023 }
7024
7025 if (discard_supported &&
7026 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7027 mddev->queue->limits.discard_granularity >= stripe)
7028 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7029 mddev->queue);
7030 else
7031 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7032 mddev->queue);
7033 }
7034
7035 if (journal_dev) {
7036 char b[BDEVNAME_SIZE];
7037
7038 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7039 mdname(mddev), bdevname(journal_dev->bdev, b));
7040 r5l_init_log(conf, journal_dev);
7041 }
7042
7043 return 0;
7044 abort:
7045 md_unregister_thread(&mddev->thread);
7046 print_raid5_conf(conf);
7047 free_conf(conf);
7048 mddev->private = NULL;
7049 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7050 return -EIO;
7051 }
7052
7053 static void raid5_free(struct mddev *mddev, void *priv)
7054 {
7055 struct r5conf *conf = priv;
7056
7057 free_conf(conf);
7058 mddev->to_remove = &raid5_attrs_group;
7059 }
7060
7061 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7062 {
7063 struct r5conf *conf = mddev->private;
7064 int i;
7065
7066 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7067 conf->chunk_sectors / 2, mddev->layout);
7068 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7069 for (i = 0; i < conf->raid_disks; i++)
7070 seq_printf (seq, "%s",
7071 conf->disks[i].rdev &&
7072 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7073 seq_printf (seq, "]");
7074 }
7075
7076 static void print_raid5_conf (struct r5conf *conf)
7077 {
7078 int i;
7079 struct disk_info *tmp;
7080
7081 printk(KERN_DEBUG "RAID conf printout:\n");
7082 if (!conf) {
7083 printk("(conf==NULL)\n");
7084 return;
7085 }
7086 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7087 conf->raid_disks,
7088 conf->raid_disks - conf->mddev->degraded);
7089
7090 for (i = 0; i < conf->raid_disks; i++) {
7091 char b[BDEVNAME_SIZE];
7092 tmp = conf->disks + i;
7093 if (tmp->rdev)
7094 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7095 i, !test_bit(Faulty, &tmp->rdev->flags),
7096 bdevname(tmp->rdev->bdev, b));
7097 }
7098 }
7099
7100 static int raid5_spare_active(struct mddev *mddev)
7101 {
7102 int i;
7103 struct r5conf *conf = mddev->private;
7104 struct disk_info *tmp;
7105 int count = 0;
7106 unsigned long flags;
7107
7108 for (i = 0; i < conf->raid_disks; i++) {
7109 tmp = conf->disks + i;
7110 if (tmp->replacement
7111 && tmp->replacement->recovery_offset == MaxSector
7112 && !test_bit(Faulty, &tmp->replacement->flags)
7113 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7114 /* Replacement has just become active. */
7115 if (!tmp->rdev
7116 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7117 count++;
7118 if (tmp->rdev) {
7119 /* Replaced device not technically faulty,
7120 * but we need to be sure it gets removed
7121 * and never re-added.
7122 */
7123 set_bit(Faulty, &tmp->rdev->flags);
7124 sysfs_notify_dirent_safe(
7125 tmp->rdev->sysfs_state);
7126 }
7127 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7128 } else if (tmp->rdev
7129 && tmp->rdev->recovery_offset == MaxSector
7130 && !test_bit(Faulty, &tmp->rdev->flags)
7131 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7132 count++;
7133 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7134 }
7135 }
7136 spin_lock_irqsave(&conf->device_lock, flags);
7137 mddev->degraded = calc_degraded(conf);
7138 spin_unlock_irqrestore(&conf->device_lock, flags);
7139 print_raid5_conf(conf);
7140 return count;
7141 }
7142
7143 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7144 {
7145 struct r5conf *conf = mddev->private;
7146 int err = 0;
7147 int number = rdev->raid_disk;
7148 struct md_rdev **rdevp;
7149 struct disk_info *p = conf->disks + number;
7150
7151 print_raid5_conf(conf);
7152 if (test_bit(Journal, &rdev->flags) && conf->log) {
7153 struct r5l_log *log;
7154 /*
7155 * we can't wait pending write here, as this is called in
7156 * raid5d, wait will deadlock.
7157 */
7158 if (atomic_read(&mddev->writes_pending))
7159 return -EBUSY;
7160 log = conf->log;
7161 conf->log = NULL;
7162 synchronize_rcu();
7163 r5l_exit_log(log);
7164 return 0;
7165 }
7166 if (rdev == p->rdev)
7167 rdevp = &p->rdev;
7168 else if (rdev == p->replacement)
7169 rdevp = &p->replacement;
7170 else
7171 return 0;
7172
7173 if (number >= conf->raid_disks &&
7174 conf->reshape_progress == MaxSector)
7175 clear_bit(In_sync, &rdev->flags);
7176
7177 if (test_bit(In_sync, &rdev->flags) ||
7178 atomic_read(&rdev->nr_pending)) {
7179 err = -EBUSY;
7180 goto abort;
7181 }
7182 /* Only remove non-faulty devices if recovery
7183 * isn't possible.
7184 */
7185 if (!test_bit(Faulty, &rdev->flags) &&
7186 mddev->recovery_disabled != conf->recovery_disabled &&
7187 !has_failed(conf) &&
7188 (!p->replacement || p->replacement == rdev) &&
7189 number < conf->raid_disks) {
7190 err = -EBUSY;
7191 goto abort;
7192 }
7193 *rdevp = NULL;
7194 synchronize_rcu();
7195 if (atomic_read(&rdev->nr_pending)) {
7196 /* lost the race, try later */
7197 err = -EBUSY;
7198 *rdevp = rdev;
7199 } else if (p->replacement) {
7200 /* We must have just cleared 'rdev' */
7201 p->rdev = p->replacement;
7202 clear_bit(Replacement, &p->replacement->flags);
7203 smp_mb(); /* Make sure other CPUs may see both as identical
7204 * but will never see neither - if they are careful
7205 */
7206 p->replacement = NULL;
7207 clear_bit(WantReplacement, &rdev->flags);
7208 } else
7209 /* We might have just removed the Replacement as faulty-
7210 * clear the bit just in case
7211 */
7212 clear_bit(WantReplacement, &rdev->flags);
7213 abort:
7214
7215 print_raid5_conf(conf);
7216 return err;
7217 }
7218
7219 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7220 {
7221 struct r5conf *conf = mddev->private;
7222 int err = -EEXIST;
7223 int disk;
7224 struct disk_info *p;
7225 int first = 0;
7226 int last = conf->raid_disks - 1;
7227
7228 if (test_bit(Journal, &rdev->flags)) {
7229 char b[BDEVNAME_SIZE];
7230 if (conf->log)
7231 return -EBUSY;
7232
7233 rdev->raid_disk = 0;
7234 /*
7235 * The array is in readonly mode if journal is missing, so no
7236 * write requests running. We should be safe
7237 */
7238 r5l_init_log(conf, rdev);
7239 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7240 mdname(mddev), bdevname(rdev->bdev, b));
7241 return 0;
7242 }
7243 if (mddev->recovery_disabled == conf->recovery_disabled)
7244 return -EBUSY;
7245
7246 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7247 /* no point adding a device */
7248 return -EINVAL;
7249
7250 if (rdev->raid_disk >= 0)
7251 first = last = rdev->raid_disk;
7252
7253 /*
7254 * find the disk ... but prefer rdev->saved_raid_disk
7255 * if possible.
7256 */
7257 if (rdev->saved_raid_disk >= 0 &&
7258 rdev->saved_raid_disk >= first &&
7259 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7260 first = rdev->saved_raid_disk;
7261
7262 for (disk = first; disk <= last; disk++) {
7263 p = conf->disks + disk;
7264 if (p->rdev == NULL) {
7265 clear_bit(In_sync, &rdev->flags);
7266 rdev->raid_disk = disk;
7267 err = 0;
7268 if (rdev->saved_raid_disk != disk)
7269 conf->fullsync = 1;
7270 rcu_assign_pointer(p->rdev, rdev);
7271 goto out;
7272 }
7273 }
7274 for (disk = first; disk <= last; disk++) {
7275 p = conf->disks + disk;
7276 if (test_bit(WantReplacement, &p->rdev->flags) &&
7277 p->replacement == NULL) {
7278 clear_bit(In_sync, &rdev->flags);
7279 set_bit(Replacement, &rdev->flags);
7280 rdev->raid_disk = disk;
7281 err = 0;
7282 conf->fullsync = 1;
7283 rcu_assign_pointer(p->replacement, rdev);
7284 break;
7285 }
7286 }
7287 out:
7288 print_raid5_conf(conf);
7289 return err;
7290 }
7291
7292 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7293 {
7294 /* no resync is happening, and there is enough space
7295 * on all devices, so we can resize.
7296 * We need to make sure resync covers any new space.
7297 * If the array is shrinking we should possibly wait until
7298 * any io in the removed space completes, but it hardly seems
7299 * worth it.
7300 */
7301 sector_t newsize;
7302 struct r5conf *conf = mddev->private;
7303
7304 if (conf->log)
7305 return -EINVAL;
7306 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7307 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7308 if (mddev->external_size &&
7309 mddev->array_sectors > newsize)
7310 return -EINVAL;
7311 if (mddev->bitmap) {
7312 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7313 if (ret)
7314 return ret;
7315 }
7316 md_set_array_sectors(mddev, newsize);
7317 set_capacity(mddev->gendisk, mddev->array_sectors);
7318 revalidate_disk(mddev->gendisk);
7319 if (sectors > mddev->dev_sectors &&
7320 mddev->recovery_cp > mddev->dev_sectors) {
7321 mddev->recovery_cp = mddev->dev_sectors;
7322 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7323 }
7324 mddev->dev_sectors = sectors;
7325 mddev->resync_max_sectors = sectors;
7326 return 0;
7327 }
7328
7329 static int check_stripe_cache(struct mddev *mddev)
7330 {
7331 /* Can only proceed if there are plenty of stripe_heads.
7332 * We need a minimum of one full stripe,, and for sensible progress
7333 * it is best to have about 4 times that.
7334 * If we require 4 times, then the default 256 4K stripe_heads will
7335 * allow for chunk sizes up to 256K, which is probably OK.
7336 * If the chunk size is greater, user-space should request more
7337 * stripe_heads first.
7338 */
7339 struct r5conf *conf = mddev->private;
7340 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7341 > conf->min_nr_stripes ||
7342 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7343 > conf->min_nr_stripes) {
7344 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7345 mdname(mddev),
7346 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7347 / STRIPE_SIZE)*4);
7348 return 0;
7349 }
7350 return 1;
7351 }
7352
7353 static int check_reshape(struct mddev *mddev)
7354 {
7355 struct r5conf *conf = mddev->private;
7356
7357 if (conf->log)
7358 return -EINVAL;
7359 if (mddev->delta_disks == 0 &&
7360 mddev->new_layout == mddev->layout &&
7361 mddev->new_chunk_sectors == mddev->chunk_sectors)
7362 return 0; /* nothing to do */
7363 if (has_failed(conf))
7364 return -EINVAL;
7365 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7366 /* We might be able to shrink, but the devices must
7367 * be made bigger first.
7368 * For raid6, 4 is the minimum size.
7369 * Otherwise 2 is the minimum
7370 */
7371 int min = 2;
7372 if (mddev->level == 6)
7373 min = 4;
7374 if (mddev->raid_disks + mddev->delta_disks < min)
7375 return -EINVAL;
7376 }
7377
7378 if (!check_stripe_cache(mddev))
7379 return -ENOSPC;
7380
7381 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7382 mddev->delta_disks > 0)
7383 if (resize_chunks(conf,
7384 conf->previous_raid_disks
7385 + max(0, mddev->delta_disks),
7386 max(mddev->new_chunk_sectors,
7387 mddev->chunk_sectors)
7388 ) < 0)
7389 return -ENOMEM;
7390 return resize_stripes(conf, (conf->previous_raid_disks
7391 + mddev->delta_disks));
7392 }
7393
7394 static int raid5_start_reshape(struct mddev *mddev)
7395 {
7396 struct r5conf *conf = mddev->private;
7397 struct md_rdev *rdev;
7398 int spares = 0;
7399 unsigned long flags;
7400
7401 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7402 return -EBUSY;
7403
7404 if (!check_stripe_cache(mddev))
7405 return -ENOSPC;
7406
7407 if (has_failed(conf))
7408 return -EINVAL;
7409
7410 rdev_for_each(rdev, mddev) {
7411 if (!test_bit(In_sync, &rdev->flags)
7412 && !test_bit(Faulty, &rdev->flags))
7413 spares++;
7414 }
7415
7416 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7417 /* Not enough devices even to make a degraded array
7418 * of that size
7419 */
7420 return -EINVAL;
7421
7422 /* Refuse to reduce size of the array. Any reductions in
7423 * array size must be through explicit setting of array_size
7424 * attribute.
7425 */
7426 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7427 < mddev->array_sectors) {
7428 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7429 "before number of disks\n", mdname(mddev));
7430 return -EINVAL;
7431 }
7432
7433 atomic_set(&conf->reshape_stripes, 0);
7434 spin_lock_irq(&conf->device_lock);
7435 write_seqcount_begin(&conf->gen_lock);
7436 conf->previous_raid_disks = conf->raid_disks;
7437 conf->raid_disks += mddev->delta_disks;
7438 conf->prev_chunk_sectors = conf->chunk_sectors;
7439 conf->chunk_sectors = mddev->new_chunk_sectors;
7440 conf->prev_algo = conf->algorithm;
7441 conf->algorithm = mddev->new_layout;
7442 conf->generation++;
7443 /* Code that selects data_offset needs to see the generation update
7444 * if reshape_progress has been set - so a memory barrier needed.
7445 */
7446 smp_mb();
7447 if (mddev->reshape_backwards)
7448 conf->reshape_progress = raid5_size(mddev, 0, 0);
7449 else
7450 conf->reshape_progress = 0;
7451 conf->reshape_safe = conf->reshape_progress;
7452 write_seqcount_end(&conf->gen_lock);
7453 spin_unlock_irq(&conf->device_lock);
7454
7455 /* Now make sure any requests that proceeded on the assumption
7456 * the reshape wasn't running - like Discard or Read - have
7457 * completed.
7458 */
7459 mddev_suspend(mddev);
7460 mddev_resume(mddev);
7461
7462 /* Add some new drives, as many as will fit.
7463 * We know there are enough to make the newly sized array work.
7464 * Don't add devices if we are reducing the number of
7465 * devices in the array. This is because it is not possible
7466 * to correctly record the "partially reconstructed" state of
7467 * such devices during the reshape and confusion could result.
7468 */
7469 if (mddev->delta_disks >= 0) {
7470 rdev_for_each(rdev, mddev)
7471 if (rdev->raid_disk < 0 &&
7472 !test_bit(Faulty, &rdev->flags)) {
7473 if (raid5_add_disk(mddev, rdev) == 0) {
7474 if (rdev->raid_disk
7475 >= conf->previous_raid_disks)
7476 set_bit(In_sync, &rdev->flags);
7477 else
7478 rdev->recovery_offset = 0;
7479
7480 if (sysfs_link_rdev(mddev, rdev))
7481 /* Failure here is OK */;
7482 }
7483 } else if (rdev->raid_disk >= conf->previous_raid_disks
7484 && !test_bit(Faulty, &rdev->flags)) {
7485 /* This is a spare that was manually added */
7486 set_bit(In_sync, &rdev->flags);
7487 }
7488
7489 /* When a reshape changes the number of devices,
7490 * ->degraded is measured against the larger of the
7491 * pre and post number of devices.
7492 */
7493 spin_lock_irqsave(&conf->device_lock, flags);
7494 mddev->degraded = calc_degraded(conf);
7495 spin_unlock_irqrestore(&conf->device_lock, flags);
7496 }
7497 mddev->raid_disks = conf->raid_disks;
7498 mddev->reshape_position = conf->reshape_progress;
7499 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7500
7501 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7502 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7503 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7504 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7505 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7506 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7507 "reshape");
7508 if (!mddev->sync_thread) {
7509 mddev->recovery = 0;
7510 spin_lock_irq(&conf->device_lock);
7511 write_seqcount_begin(&conf->gen_lock);
7512 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7513 mddev->new_chunk_sectors =
7514 conf->chunk_sectors = conf->prev_chunk_sectors;
7515 mddev->new_layout = conf->algorithm = conf->prev_algo;
7516 rdev_for_each(rdev, mddev)
7517 rdev->new_data_offset = rdev->data_offset;
7518 smp_wmb();
7519 conf->generation --;
7520 conf->reshape_progress = MaxSector;
7521 mddev->reshape_position = MaxSector;
7522 write_seqcount_end(&conf->gen_lock);
7523 spin_unlock_irq(&conf->device_lock);
7524 return -EAGAIN;
7525 }
7526 conf->reshape_checkpoint = jiffies;
7527 md_wakeup_thread(mddev->sync_thread);
7528 md_new_event(mddev);
7529 return 0;
7530 }
7531
7532 /* This is called from the reshape thread and should make any
7533 * changes needed in 'conf'
7534 */
7535 static void end_reshape(struct r5conf *conf)
7536 {
7537
7538 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7539 struct md_rdev *rdev;
7540
7541 spin_lock_irq(&conf->device_lock);
7542 conf->previous_raid_disks = conf->raid_disks;
7543 rdev_for_each(rdev, conf->mddev)
7544 rdev->data_offset = rdev->new_data_offset;
7545 smp_wmb();
7546 conf->reshape_progress = MaxSector;
7547 conf->mddev->reshape_position = MaxSector;
7548 spin_unlock_irq(&conf->device_lock);
7549 wake_up(&conf->wait_for_overlap);
7550
7551 /* read-ahead size must cover two whole stripes, which is
7552 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7553 */
7554 if (conf->mddev->queue) {
7555 int data_disks = conf->raid_disks - conf->max_degraded;
7556 int stripe = data_disks * ((conf->chunk_sectors << 9)
7557 / PAGE_SIZE);
7558 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7559 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7560 }
7561 }
7562 }
7563
7564 /* This is called from the raid5d thread with mddev_lock held.
7565 * It makes config changes to the device.
7566 */
7567 static void raid5_finish_reshape(struct mddev *mddev)
7568 {
7569 struct r5conf *conf = mddev->private;
7570
7571 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7572
7573 if (mddev->delta_disks > 0) {
7574 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7575 set_capacity(mddev->gendisk, mddev->array_sectors);
7576 revalidate_disk(mddev->gendisk);
7577 } else {
7578 int d;
7579 spin_lock_irq(&conf->device_lock);
7580 mddev->degraded = calc_degraded(conf);
7581 spin_unlock_irq(&conf->device_lock);
7582 for (d = conf->raid_disks ;
7583 d < conf->raid_disks - mddev->delta_disks;
7584 d++) {
7585 struct md_rdev *rdev = conf->disks[d].rdev;
7586 if (rdev)
7587 clear_bit(In_sync, &rdev->flags);
7588 rdev = conf->disks[d].replacement;
7589 if (rdev)
7590 clear_bit(In_sync, &rdev->flags);
7591 }
7592 }
7593 mddev->layout = conf->algorithm;
7594 mddev->chunk_sectors = conf->chunk_sectors;
7595 mddev->reshape_position = MaxSector;
7596 mddev->delta_disks = 0;
7597 mddev->reshape_backwards = 0;
7598 }
7599 }
7600
7601 static void raid5_quiesce(struct mddev *mddev, int state)
7602 {
7603 struct r5conf *conf = mddev->private;
7604
7605 switch(state) {
7606 case 2: /* resume for a suspend */
7607 wake_up(&conf->wait_for_overlap);
7608 break;
7609
7610 case 1: /* stop all writes */
7611 lock_all_device_hash_locks_irq(conf);
7612 /* '2' tells resync/reshape to pause so that all
7613 * active stripes can drain
7614 */
7615 conf->quiesce = 2;
7616 wait_event_cmd(conf->wait_for_quiescent,
7617 atomic_read(&conf->active_stripes) == 0 &&
7618 atomic_read(&conf->active_aligned_reads) == 0,
7619 unlock_all_device_hash_locks_irq(conf),
7620 lock_all_device_hash_locks_irq(conf));
7621 conf->quiesce = 1;
7622 unlock_all_device_hash_locks_irq(conf);
7623 /* allow reshape to continue */
7624 wake_up(&conf->wait_for_overlap);
7625 break;
7626
7627 case 0: /* re-enable writes */
7628 lock_all_device_hash_locks_irq(conf);
7629 conf->quiesce = 0;
7630 wake_up(&conf->wait_for_quiescent);
7631 wake_up(&conf->wait_for_overlap);
7632 unlock_all_device_hash_locks_irq(conf);
7633 break;
7634 }
7635 r5l_quiesce(conf->log, state);
7636 }
7637
7638 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7639 {
7640 struct r0conf *raid0_conf = mddev->private;
7641 sector_t sectors;
7642
7643 /* for raid0 takeover only one zone is supported */
7644 if (raid0_conf->nr_strip_zones > 1) {
7645 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7646 mdname(mddev));
7647 return ERR_PTR(-EINVAL);
7648 }
7649
7650 sectors = raid0_conf->strip_zone[0].zone_end;
7651 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7652 mddev->dev_sectors = sectors;
7653 mddev->new_level = level;
7654 mddev->new_layout = ALGORITHM_PARITY_N;
7655 mddev->new_chunk_sectors = mddev->chunk_sectors;
7656 mddev->raid_disks += 1;
7657 mddev->delta_disks = 1;
7658 /* make sure it will be not marked as dirty */
7659 mddev->recovery_cp = MaxSector;
7660
7661 return setup_conf(mddev);
7662 }
7663
7664 static void *raid5_takeover_raid1(struct mddev *mddev)
7665 {
7666 int chunksect;
7667
7668 if (mddev->raid_disks != 2 ||
7669 mddev->degraded > 1)
7670 return ERR_PTR(-EINVAL);
7671
7672 /* Should check if there are write-behind devices? */
7673
7674 chunksect = 64*2; /* 64K by default */
7675
7676 /* The array must be an exact multiple of chunksize */
7677 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7678 chunksect >>= 1;
7679
7680 if ((chunksect<<9) < STRIPE_SIZE)
7681 /* array size does not allow a suitable chunk size */
7682 return ERR_PTR(-EINVAL);
7683
7684 mddev->new_level = 5;
7685 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7686 mddev->new_chunk_sectors = chunksect;
7687
7688 return setup_conf(mddev);
7689 }
7690
7691 static void *raid5_takeover_raid6(struct mddev *mddev)
7692 {
7693 int new_layout;
7694
7695 switch (mddev->layout) {
7696 case ALGORITHM_LEFT_ASYMMETRIC_6:
7697 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7698 break;
7699 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7700 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7701 break;
7702 case ALGORITHM_LEFT_SYMMETRIC_6:
7703 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7704 break;
7705 case ALGORITHM_RIGHT_SYMMETRIC_6:
7706 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7707 break;
7708 case ALGORITHM_PARITY_0_6:
7709 new_layout = ALGORITHM_PARITY_0;
7710 break;
7711 case ALGORITHM_PARITY_N:
7712 new_layout = ALGORITHM_PARITY_N;
7713 break;
7714 default:
7715 return ERR_PTR(-EINVAL);
7716 }
7717 mddev->new_level = 5;
7718 mddev->new_layout = new_layout;
7719 mddev->delta_disks = -1;
7720 mddev->raid_disks -= 1;
7721 return setup_conf(mddev);
7722 }
7723
7724 static int raid5_check_reshape(struct mddev *mddev)
7725 {
7726 /* For a 2-drive array, the layout and chunk size can be changed
7727 * immediately as not restriping is needed.
7728 * For larger arrays we record the new value - after validation
7729 * to be used by a reshape pass.
7730 */
7731 struct r5conf *conf = mddev->private;
7732 int new_chunk = mddev->new_chunk_sectors;
7733
7734 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7735 return -EINVAL;
7736 if (new_chunk > 0) {
7737 if (!is_power_of_2(new_chunk))
7738 return -EINVAL;
7739 if (new_chunk < (PAGE_SIZE>>9))
7740 return -EINVAL;
7741 if (mddev->array_sectors & (new_chunk-1))
7742 /* not factor of array size */
7743 return -EINVAL;
7744 }
7745
7746 /* They look valid */
7747
7748 if (mddev->raid_disks == 2) {
7749 /* can make the change immediately */
7750 if (mddev->new_layout >= 0) {
7751 conf->algorithm = mddev->new_layout;
7752 mddev->layout = mddev->new_layout;
7753 }
7754 if (new_chunk > 0) {
7755 conf->chunk_sectors = new_chunk ;
7756 mddev->chunk_sectors = new_chunk;
7757 }
7758 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7759 md_wakeup_thread(mddev->thread);
7760 }
7761 return check_reshape(mddev);
7762 }
7763
7764 static int raid6_check_reshape(struct mddev *mddev)
7765 {
7766 int new_chunk = mddev->new_chunk_sectors;
7767
7768 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7769 return -EINVAL;
7770 if (new_chunk > 0) {
7771 if (!is_power_of_2(new_chunk))
7772 return -EINVAL;
7773 if (new_chunk < (PAGE_SIZE >> 9))
7774 return -EINVAL;
7775 if (mddev->array_sectors & (new_chunk-1))
7776 /* not factor of array size */
7777 return -EINVAL;
7778 }
7779
7780 /* They look valid */
7781 return check_reshape(mddev);
7782 }
7783
7784 static void *raid5_takeover(struct mddev *mddev)
7785 {
7786 /* raid5 can take over:
7787 * raid0 - if there is only one strip zone - make it a raid4 layout
7788 * raid1 - if there are two drives. We need to know the chunk size
7789 * raid4 - trivial - just use a raid4 layout.
7790 * raid6 - Providing it is a *_6 layout
7791 */
7792 if (mddev->level == 0)
7793 return raid45_takeover_raid0(mddev, 5);
7794 if (mddev->level == 1)
7795 return raid5_takeover_raid1(mddev);
7796 if (mddev->level == 4) {
7797 mddev->new_layout = ALGORITHM_PARITY_N;
7798 mddev->new_level = 5;
7799 return setup_conf(mddev);
7800 }
7801 if (mddev->level == 6)
7802 return raid5_takeover_raid6(mddev);
7803
7804 return ERR_PTR(-EINVAL);
7805 }
7806
7807 static void *raid4_takeover(struct mddev *mddev)
7808 {
7809 /* raid4 can take over:
7810 * raid0 - if there is only one strip zone
7811 * raid5 - if layout is right
7812 */
7813 if (mddev->level == 0)
7814 return raid45_takeover_raid0(mddev, 4);
7815 if (mddev->level == 5 &&
7816 mddev->layout == ALGORITHM_PARITY_N) {
7817 mddev->new_layout = 0;
7818 mddev->new_level = 4;
7819 return setup_conf(mddev);
7820 }
7821 return ERR_PTR(-EINVAL);
7822 }
7823
7824 static struct md_personality raid5_personality;
7825
7826 static void *raid6_takeover(struct mddev *mddev)
7827 {
7828 /* Currently can only take over a raid5. We map the
7829 * personality to an equivalent raid6 personality
7830 * with the Q block at the end.
7831 */
7832 int new_layout;
7833
7834 if (mddev->pers != &raid5_personality)
7835 return ERR_PTR(-EINVAL);
7836 if (mddev->degraded > 1)
7837 return ERR_PTR(-EINVAL);
7838 if (mddev->raid_disks > 253)
7839 return ERR_PTR(-EINVAL);
7840 if (mddev->raid_disks < 3)
7841 return ERR_PTR(-EINVAL);
7842
7843 switch (mddev->layout) {
7844 case ALGORITHM_LEFT_ASYMMETRIC:
7845 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7846 break;
7847 case ALGORITHM_RIGHT_ASYMMETRIC:
7848 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7849 break;
7850 case ALGORITHM_LEFT_SYMMETRIC:
7851 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7852 break;
7853 case ALGORITHM_RIGHT_SYMMETRIC:
7854 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7855 break;
7856 case ALGORITHM_PARITY_0:
7857 new_layout = ALGORITHM_PARITY_0_6;
7858 break;
7859 case ALGORITHM_PARITY_N:
7860 new_layout = ALGORITHM_PARITY_N;
7861 break;
7862 default:
7863 return ERR_PTR(-EINVAL);
7864 }
7865 mddev->new_level = 6;
7866 mddev->new_layout = new_layout;
7867 mddev->delta_disks = 1;
7868 mddev->raid_disks += 1;
7869 return setup_conf(mddev);
7870 }
7871
7872 static struct md_personality raid6_personality =
7873 {
7874 .name = "raid6",
7875 .level = 6,
7876 .owner = THIS_MODULE,
7877 .make_request = raid5_make_request,
7878 .run = raid5_run,
7879 .free = raid5_free,
7880 .status = raid5_status,
7881 .error_handler = raid5_error,
7882 .hot_add_disk = raid5_add_disk,
7883 .hot_remove_disk= raid5_remove_disk,
7884 .spare_active = raid5_spare_active,
7885 .sync_request = raid5_sync_request,
7886 .resize = raid5_resize,
7887 .size = raid5_size,
7888 .check_reshape = raid6_check_reshape,
7889 .start_reshape = raid5_start_reshape,
7890 .finish_reshape = raid5_finish_reshape,
7891 .quiesce = raid5_quiesce,
7892 .takeover = raid6_takeover,
7893 .congested = raid5_congested,
7894 };
7895 static struct md_personality raid5_personality =
7896 {
7897 .name = "raid5",
7898 .level = 5,
7899 .owner = THIS_MODULE,
7900 .make_request = raid5_make_request,
7901 .run = raid5_run,
7902 .free = raid5_free,
7903 .status = raid5_status,
7904 .error_handler = raid5_error,
7905 .hot_add_disk = raid5_add_disk,
7906 .hot_remove_disk= raid5_remove_disk,
7907 .spare_active = raid5_spare_active,
7908 .sync_request = raid5_sync_request,
7909 .resize = raid5_resize,
7910 .size = raid5_size,
7911 .check_reshape = raid5_check_reshape,
7912 .start_reshape = raid5_start_reshape,
7913 .finish_reshape = raid5_finish_reshape,
7914 .quiesce = raid5_quiesce,
7915 .takeover = raid5_takeover,
7916 .congested = raid5_congested,
7917 };
7918
7919 static struct md_personality raid4_personality =
7920 {
7921 .name = "raid4",
7922 .level = 4,
7923 .owner = THIS_MODULE,
7924 .make_request = raid5_make_request,
7925 .run = raid5_run,
7926 .free = raid5_free,
7927 .status = raid5_status,
7928 .error_handler = raid5_error,
7929 .hot_add_disk = raid5_add_disk,
7930 .hot_remove_disk= raid5_remove_disk,
7931 .spare_active = raid5_spare_active,
7932 .sync_request = raid5_sync_request,
7933 .resize = raid5_resize,
7934 .size = raid5_size,
7935 .check_reshape = raid5_check_reshape,
7936 .start_reshape = raid5_start_reshape,
7937 .finish_reshape = raid5_finish_reshape,
7938 .quiesce = raid5_quiesce,
7939 .takeover = raid4_takeover,
7940 .congested = raid5_congested,
7941 };
7942
7943 static int __init raid5_init(void)
7944 {
7945 raid5_wq = alloc_workqueue("raid5wq",
7946 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7947 if (!raid5_wq)
7948 return -ENOMEM;
7949 register_md_personality(&raid6_personality);
7950 register_md_personality(&raid5_personality);
7951 register_md_personality(&raid4_personality);
7952 return 0;
7953 }
7954
7955 static void raid5_exit(void)
7956 {
7957 unregister_md_personality(&raid6_personality);
7958 unregister_md_personality(&raid5_personality);
7959 unregister_md_personality(&raid4_personality);
7960 destroy_workqueue(raid5_wq);
7961 }
7962
7963 module_init(raid5_init);
7964 module_exit(raid5_exit);
7965 MODULE_LICENSE("GPL");
7966 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7967 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7968 MODULE_ALIAS("md-raid5");
7969 MODULE_ALIAS("md-raid4");
7970 MODULE_ALIAS("md-level-5");
7971 MODULE_ALIAS("md-level-4");
7972 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7973 MODULE_ALIAS("md-raid6");
7974 MODULE_ALIAS("md-level-6");
7975
7976 /* This used to be two separate modules, they were: */
7977 MODULE_ALIAS("raid5");
7978 MODULE_ALIAS("raid6");