]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/md/raid5.c
raid5: handle expansion/resync case with stripe batching
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74 * Stripe cache
75 */
76
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
137 */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 int sectors = bio_sectors(bio);
141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 return bio->bi_next;
143 else
144 return NULL;
145 }
146
147 /*
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150 */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
171 {
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
174
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
212 {
213 int slot = *count;
214
215 if (sh->ddf_layout)
216 (*count)++;
217 if (idx == sh->pd_idx)
218 return syndrome_disks;
219 if (idx == sh->qd_idx)
220 return syndrome_disks + 1;
221 if (!sh->ddf_layout)
222 (*count)++;
223 return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228 struct bio *bi = return_bi;
229 while (bi) {
230
231 return_bi = bi->bi_next;
232 bi->bi_next = NULL;
233 bi->bi_iter.bi_size = 0;
234 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 bi, 0);
236 bio_endio(bi, 0);
237 bi = return_bi;
238 }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245 return sh->check_state || sh->reconstruct_state ||
246 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252 struct r5conf *conf = sh->raid_conf;
253 struct r5worker_group *group;
254 int thread_cnt;
255 int i, cpu = sh->cpu;
256
257 if (!cpu_online(cpu)) {
258 cpu = cpumask_any(cpu_online_mask);
259 sh->cpu = cpu;
260 }
261
262 if (list_empty(&sh->lru)) {
263 struct r5worker_group *group;
264 group = conf->worker_groups + cpu_to_group(cpu);
265 list_add_tail(&sh->lru, &group->handle_list);
266 group->stripes_cnt++;
267 sh->group = group;
268 }
269
270 if (conf->worker_cnt_per_group == 0) {
271 md_wakeup_thread(conf->mddev->thread);
272 return;
273 }
274
275 group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277 group->workers[0].working = true;
278 /* at least one worker should run to avoid race */
279 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 /* wakeup more workers */
283 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 if (group->workers[i].working == false) {
285 group->workers[i].working = true;
286 queue_work_on(sh->cpu, raid5_wq,
287 &group->workers[i].work);
288 thread_cnt--;
289 }
290 }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 struct list_head *temp_inactive_list)
295 {
296 BUG_ON(!list_empty(&sh->lru));
297 BUG_ON(atomic_read(&conf->active_stripes)==0);
298 if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301 list_add_tail(&sh->lru, &conf->delayed_list);
302 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303 sh->bm_seq - conf->seq_write > 0)
304 list_add_tail(&sh->lru, &conf->bitmap_list);
305 else {
306 clear_bit(STRIPE_DELAYED, &sh->state);
307 clear_bit(STRIPE_BIT_DELAY, &sh->state);
308 if (conf->worker_cnt_per_group == 0) {
309 list_add_tail(&sh->lru, &conf->handle_list);
310 } else {
311 raid5_wakeup_stripe_thread(sh);
312 return;
313 }
314 }
315 md_wakeup_thread(conf->mddev->thread);
316 } else {
317 BUG_ON(stripe_operations_active(sh));
318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 if (atomic_dec_return(&conf->preread_active_stripes)
320 < IO_THRESHOLD)
321 md_wakeup_thread(conf->mddev->thread);
322 atomic_dec(&conf->active_stripes);
323 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 list_add_tail(&sh->lru, temp_inactive_list);
325 }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 struct list_head *temp_inactive_list)
330 {
331 if (atomic_dec_and_test(&sh->count))
332 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337 *
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
341 */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343 struct list_head *temp_inactive_list,
344 int hash)
345 {
346 int size;
347 bool do_wakeup = false;
348 unsigned long flags;
349
350 if (hash == NR_STRIPE_HASH_LOCKS) {
351 size = NR_STRIPE_HASH_LOCKS;
352 hash = NR_STRIPE_HASH_LOCKS - 1;
353 } else
354 size = 1;
355 while (size) {
356 struct list_head *list = &temp_inactive_list[size - 1];
357
358 /*
359 * We don't hold any lock here yet, get_active_stripe() might
360 * remove stripes from the list
361 */
362 if (!list_empty_careful(list)) {
363 spin_lock_irqsave(conf->hash_locks + hash, flags);
364 if (list_empty(conf->inactive_list + hash) &&
365 !list_empty(list))
366 atomic_dec(&conf->empty_inactive_list_nr);
367 list_splice_tail_init(list, conf->inactive_list + hash);
368 do_wakeup = true;
369 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370 }
371 size--;
372 hash--;
373 }
374
375 if (do_wakeup) {
376 wake_up(&conf->wait_for_stripe);
377 if (conf->retry_read_aligned)
378 md_wakeup_thread(conf->mddev->thread);
379 }
380 }
381
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384 struct list_head *temp_inactive_list)
385 {
386 struct stripe_head *sh;
387 int count = 0;
388 struct llist_node *head;
389
390 head = llist_del_all(&conf->released_stripes);
391 head = llist_reverse_order(head);
392 while (head) {
393 int hash;
394
395 sh = llist_entry(head, struct stripe_head, release_list);
396 head = llist_next(head);
397 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398 smp_mb();
399 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400 /*
401 * Don't worry the bit is set here, because if the bit is set
402 * again, the count is always > 1. This is true for
403 * STRIPE_ON_UNPLUG_LIST bit too.
404 */
405 hash = sh->hash_lock_index;
406 __release_stripe(conf, sh, &temp_inactive_list[hash]);
407 count++;
408 }
409
410 return count;
411 }
412
413 static void release_stripe(struct stripe_head *sh)
414 {
415 struct r5conf *conf = sh->raid_conf;
416 unsigned long flags;
417 struct list_head list;
418 int hash;
419 bool wakeup;
420
421 /* Avoid release_list until the last reference.
422 */
423 if (atomic_add_unless(&sh->count, -1, 1))
424 return;
425
426 if (unlikely(!conf->mddev->thread) ||
427 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428 goto slow_path;
429 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430 if (wakeup)
431 md_wakeup_thread(conf->mddev->thread);
432 return;
433 slow_path:
434 local_irq_save(flags);
435 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437 INIT_LIST_HEAD(&list);
438 hash = sh->hash_lock_index;
439 do_release_stripe(conf, sh, &list);
440 spin_unlock(&conf->device_lock);
441 release_inactive_stripe_list(conf, &list, hash);
442 }
443 local_irq_restore(flags);
444 }
445
446 static inline void remove_hash(struct stripe_head *sh)
447 {
448 pr_debug("remove_hash(), stripe %llu\n",
449 (unsigned long long)sh->sector);
450
451 hlist_del_init(&sh->hash);
452 }
453
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456 struct hlist_head *hp = stripe_hash(conf, sh->sector);
457
458 pr_debug("insert_hash(), stripe %llu\n",
459 (unsigned long long)sh->sector);
460
461 hlist_add_head(&sh->hash, hp);
462 }
463
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467 struct stripe_head *sh = NULL;
468 struct list_head *first;
469
470 if (list_empty(conf->inactive_list + hash))
471 goto out;
472 first = (conf->inactive_list + hash)->next;
473 sh = list_entry(first, struct stripe_head, lru);
474 list_del_init(first);
475 remove_hash(sh);
476 atomic_inc(&conf->active_stripes);
477 BUG_ON(hash != sh->hash_lock_index);
478 if (list_empty(conf->inactive_list + hash))
479 atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481 return sh;
482 }
483
484 static void shrink_buffers(struct stripe_head *sh)
485 {
486 struct page *p;
487 int i;
488 int num = sh->raid_conf->pool_size;
489
490 for (i = 0; i < num ; i++) {
491 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492 p = sh->dev[i].page;
493 if (!p)
494 continue;
495 sh->dev[i].page = NULL;
496 put_page(p);
497 }
498 }
499
500 static int grow_buffers(struct stripe_head *sh)
501 {
502 int i;
503 int num = sh->raid_conf->pool_size;
504
505 for (i = 0; i < num; i++) {
506 struct page *page;
507
508 if (!(page = alloc_page(GFP_KERNEL))) {
509 return 1;
510 }
511 sh->dev[i].page = page;
512 sh->dev[i].orig_page = page;
513 }
514 return 0;
515 }
516
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519 struct stripe_head *sh);
520
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523 struct r5conf *conf = sh->raid_conf;
524 int i, seq;
525
526 BUG_ON(atomic_read(&sh->count) != 0);
527 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528 BUG_ON(stripe_operations_active(sh));
529 BUG_ON(sh->batch_head);
530
531 pr_debug("init_stripe called, stripe %llu\n",
532 (unsigned long long)sector);
533 retry:
534 seq = read_seqcount_begin(&conf->gen_lock);
535 sh->generation = conf->generation - previous;
536 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537 sh->sector = sector;
538 stripe_set_idx(sector, conf, previous, sh);
539 sh->state = 0;
540
541 for (i = sh->disks; i--; ) {
542 struct r5dev *dev = &sh->dev[i];
543
544 if (dev->toread || dev->read || dev->towrite || dev->written ||
545 test_bit(R5_LOCKED, &dev->flags)) {
546 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547 (unsigned long long)sh->sector, i, dev->toread,
548 dev->read, dev->towrite, dev->written,
549 test_bit(R5_LOCKED, &dev->flags));
550 WARN_ON(1);
551 }
552 dev->flags = 0;
553 raid5_build_block(sh, i, previous);
554 }
555 if (read_seqcount_retry(&conf->gen_lock, seq))
556 goto retry;
557 sh->overwrite_disks = 0;
558 insert_hash(conf, sh);
559 sh->cpu = smp_processor_id();
560 set_bit(STRIPE_BATCH_READY, &sh->state);
561 }
562
563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564 short generation)
565 {
566 struct stripe_head *sh;
567
568 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570 if (sh->sector == sector && sh->generation == generation)
571 return sh;
572 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573 return NULL;
574 }
575
576 /*
577 * Need to check if array has failed when deciding whether to:
578 * - start an array
579 * - remove non-faulty devices
580 * - add a spare
581 * - allow a reshape
582 * This determination is simple when no reshape is happening.
583 * However if there is a reshape, we need to carefully check
584 * both the before and after sections.
585 * This is because some failed devices may only affect one
586 * of the two sections, and some non-in_sync devices may
587 * be insync in the section most affected by failed devices.
588 */
589 static int calc_degraded(struct r5conf *conf)
590 {
591 int degraded, degraded2;
592 int i;
593
594 rcu_read_lock();
595 degraded = 0;
596 for (i = 0; i < conf->previous_raid_disks; i++) {
597 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598 if (rdev && test_bit(Faulty, &rdev->flags))
599 rdev = rcu_dereference(conf->disks[i].replacement);
600 if (!rdev || test_bit(Faulty, &rdev->flags))
601 degraded++;
602 else if (test_bit(In_sync, &rdev->flags))
603 ;
604 else
605 /* not in-sync or faulty.
606 * If the reshape increases the number of devices,
607 * this is being recovered by the reshape, so
608 * this 'previous' section is not in_sync.
609 * If the number of devices is being reduced however,
610 * the device can only be part of the array if
611 * we are reverting a reshape, so this section will
612 * be in-sync.
613 */
614 if (conf->raid_disks >= conf->previous_raid_disks)
615 degraded++;
616 }
617 rcu_read_unlock();
618 if (conf->raid_disks == conf->previous_raid_disks)
619 return degraded;
620 rcu_read_lock();
621 degraded2 = 0;
622 for (i = 0; i < conf->raid_disks; i++) {
623 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624 if (rdev && test_bit(Faulty, &rdev->flags))
625 rdev = rcu_dereference(conf->disks[i].replacement);
626 if (!rdev || test_bit(Faulty, &rdev->flags))
627 degraded2++;
628 else if (test_bit(In_sync, &rdev->flags))
629 ;
630 else
631 /* not in-sync or faulty.
632 * If reshape increases the number of devices, this
633 * section has already been recovered, else it
634 * almost certainly hasn't.
635 */
636 if (conf->raid_disks <= conf->previous_raid_disks)
637 degraded2++;
638 }
639 rcu_read_unlock();
640 if (degraded2 > degraded)
641 return degraded2;
642 return degraded;
643 }
644
645 static int has_failed(struct r5conf *conf)
646 {
647 int degraded;
648
649 if (conf->mddev->reshape_position == MaxSector)
650 return conf->mddev->degraded > conf->max_degraded;
651
652 degraded = calc_degraded(conf);
653 if (degraded > conf->max_degraded)
654 return 1;
655 return 0;
656 }
657
658 static struct stripe_head *
659 get_active_stripe(struct r5conf *conf, sector_t sector,
660 int previous, int noblock, int noquiesce)
661 {
662 struct stripe_head *sh;
663 int hash = stripe_hash_locks_hash(sector);
664
665 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666
667 spin_lock_irq(conf->hash_locks + hash);
668
669 do {
670 wait_event_lock_irq(conf->wait_for_stripe,
671 conf->quiesce == 0 || noquiesce,
672 *(conf->hash_locks + hash));
673 sh = __find_stripe(conf, sector, conf->generation - previous);
674 if (!sh) {
675 if (!conf->inactive_blocked)
676 sh = get_free_stripe(conf, hash);
677 if (noblock && sh == NULL)
678 break;
679 if (!sh) {
680 conf->inactive_blocked = 1;
681 wait_event_lock_irq(
682 conf->wait_for_stripe,
683 !list_empty(conf->inactive_list + hash) &&
684 (atomic_read(&conf->active_stripes)
685 < (conf->max_nr_stripes * 3 / 4)
686 || !conf->inactive_blocked),
687 *(conf->hash_locks + hash));
688 conf->inactive_blocked = 0;
689 } else {
690 init_stripe(sh, sector, previous);
691 atomic_inc(&sh->count);
692 }
693 } else if (!atomic_inc_not_zero(&sh->count)) {
694 spin_lock(&conf->device_lock);
695 if (!atomic_read(&sh->count)) {
696 if (!test_bit(STRIPE_HANDLE, &sh->state))
697 atomic_inc(&conf->active_stripes);
698 BUG_ON(list_empty(&sh->lru) &&
699 !test_bit(STRIPE_EXPANDING, &sh->state));
700 list_del_init(&sh->lru);
701 if (sh->group) {
702 sh->group->stripes_cnt--;
703 sh->group = NULL;
704 }
705 }
706 atomic_inc(&sh->count);
707 spin_unlock(&conf->device_lock);
708 }
709 } while (sh == NULL);
710
711 spin_unlock_irq(conf->hash_locks + hash);
712 return sh;
713 }
714
715 static bool is_full_stripe_write(struct stripe_head *sh)
716 {
717 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
718 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
719 }
720
721 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
722 {
723 local_irq_disable();
724 if (sh1 > sh2) {
725 spin_lock(&sh2->stripe_lock);
726 spin_lock_nested(&sh1->stripe_lock, 1);
727 } else {
728 spin_lock(&sh1->stripe_lock);
729 spin_lock_nested(&sh2->stripe_lock, 1);
730 }
731 }
732
733 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
734 {
735 spin_unlock(&sh1->stripe_lock);
736 spin_unlock(&sh2->stripe_lock);
737 local_irq_enable();
738 }
739
740 /* Only freshly new full stripe normal write stripe can be added to a batch list */
741 static bool stripe_can_batch(struct stripe_head *sh)
742 {
743 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
744 is_full_stripe_write(sh);
745 }
746
747 /* we only do back search */
748 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
749 {
750 struct stripe_head *head;
751 sector_t head_sector, tmp_sec;
752 int hash;
753 int dd_idx;
754
755 if (!stripe_can_batch(sh))
756 return;
757 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
758 tmp_sec = sh->sector;
759 if (!sector_div(tmp_sec, conf->chunk_sectors))
760 return;
761 head_sector = sh->sector - STRIPE_SECTORS;
762
763 hash = stripe_hash_locks_hash(head_sector);
764 spin_lock_irq(conf->hash_locks + hash);
765 head = __find_stripe(conf, head_sector, conf->generation);
766 if (head && !atomic_inc_not_zero(&head->count)) {
767 spin_lock(&conf->device_lock);
768 if (!atomic_read(&head->count)) {
769 if (!test_bit(STRIPE_HANDLE, &head->state))
770 atomic_inc(&conf->active_stripes);
771 BUG_ON(list_empty(&head->lru) &&
772 !test_bit(STRIPE_EXPANDING, &head->state));
773 list_del_init(&head->lru);
774 if (head->group) {
775 head->group->stripes_cnt--;
776 head->group = NULL;
777 }
778 }
779 atomic_inc(&head->count);
780 spin_unlock(&conf->device_lock);
781 }
782 spin_unlock_irq(conf->hash_locks + hash);
783
784 if (!head)
785 return;
786 if (!stripe_can_batch(head))
787 goto out;
788
789 lock_two_stripes(head, sh);
790 /* clear_batch_ready clear the flag */
791 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
792 goto unlock_out;
793
794 if (sh->batch_head)
795 goto unlock_out;
796
797 dd_idx = 0;
798 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
799 dd_idx++;
800 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
801 goto unlock_out;
802
803 if (head->batch_head) {
804 spin_lock(&head->batch_head->batch_lock);
805 /* This batch list is already running */
806 if (!stripe_can_batch(head)) {
807 spin_unlock(&head->batch_head->batch_lock);
808 goto unlock_out;
809 }
810
811 /*
812 * at this point, head's BATCH_READY could be cleared, but we
813 * can still add the stripe to batch list
814 */
815 list_add(&sh->batch_list, &head->batch_list);
816 spin_unlock(&head->batch_head->batch_lock);
817
818 sh->batch_head = head->batch_head;
819 } else {
820 head->batch_head = head;
821 sh->batch_head = head->batch_head;
822 spin_lock(&head->batch_lock);
823 list_add_tail(&sh->batch_list, &head->batch_list);
824 spin_unlock(&head->batch_lock);
825 }
826
827 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
828 if (atomic_dec_return(&conf->preread_active_stripes)
829 < IO_THRESHOLD)
830 md_wakeup_thread(conf->mddev->thread);
831
832 atomic_inc(&sh->count);
833 unlock_out:
834 unlock_two_stripes(head, sh);
835 out:
836 release_stripe(head);
837 }
838
839 /* Determine if 'data_offset' or 'new_data_offset' should be used
840 * in this stripe_head.
841 */
842 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
843 {
844 sector_t progress = conf->reshape_progress;
845 /* Need a memory barrier to make sure we see the value
846 * of conf->generation, or ->data_offset that was set before
847 * reshape_progress was updated.
848 */
849 smp_rmb();
850 if (progress == MaxSector)
851 return 0;
852 if (sh->generation == conf->generation - 1)
853 return 0;
854 /* We are in a reshape, and this is a new-generation stripe,
855 * so use new_data_offset.
856 */
857 return 1;
858 }
859
860 static void
861 raid5_end_read_request(struct bio *bi, int error);
862 static void
863 raid5_end_write_request(struct bio *bi, int error);
864
865 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
866 {
867 struct r5conf *conf = sh->raid_conf;
868 int i, disks = sh->disks;
869 struct stripe_head *head_sh = sh;
870
871 might_sleep();
872
873 for (i = disks; i--; ) {
874 int rw;
875 int replace_only = 0;
876 struct bio *bi, *rbi;
877 struct md_rdev *rdev, *rrdev = NULL;
878
879 sh = head_sh;
880 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
881 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
882 rw = WRITE_FUA;
883 else
884 rw = WRITE;
885 if (test_bit(R5_Discard, &sh->dev[i].flags))
886 rw |= REQ_DISCARD;
887 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
888 rw = READ;
889 else if (test_and_clear_bit(R5_WantReplace,
890 &sh->dev[i].flags)) {
891 rw = WRITE;
892 replace_only = 1;
893 } else
894 continue;
895 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
896 rw |= REQ_SYNC;
897
898 again:
899 bi = &sh->dev[i].req;
900 rbi = &sh->dev[i].rreq; /* For writing to replacement */
901
902 rcu_read_lock();
903 rrdev = rcu_dereference(conf->disks[i].replacement);
904 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
905 rdev = rcu_dereference(conf->disks[i].rdev);
906 if (!rdev) {
907 rdev = rrdev;
908 rrdev = NULL;
909 }
910 if (rw & WRITE) {
911 if (replace_only)
912 rdev = NULL;
913 if (rdev == rrdev)
914 /* We raced and saw duplicates */
915 rrdev = NULL;
916 } else {
917 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
918 rdev = rrdev;
919 rrdev = NULL;
920 }
921
922 if (rdev && test_bit(Faulty, &rdev->flags))
923 rdev = NULL;
924 if (rdev)
925 atomic_inc(&rdev->nr_pending);
926 if (rrdev && test_bit(Faulty, &rrdev->flags))
927 rrdev = NULL;
928 if (rrdev)
929 atomic_inc(&rrdev->nr_pending);
930 rcu_read_unlock();
931
932 /* We have already checked bad blocks for reads. Now
933 * need to check for writes. We never accept write errors
934 * on the replacement, so we don't to check rrdev.
935 */
936 while ((rw & WRITE) && rdev &&
937 test_bit(WriteErrorSeen, &rdev->flags)) {
938 sector_t first_bad;
939 int bad_sectors;
940 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
941 &first_bad, &bad_sectors);
942 if (!bad)
943 break;
944
945 if (bad < 0) {
946 set_bit(BlockedBadBlocks, &rdev->flags);
947 if (!conf->mddev->external &&
948 conf->mddev->flags) {
949 /* It is very unlikely, but we might
950 * still need to write out the
951 * bad block log - better give it
952 * a chance*/
953 md_check_recovery(conf->mddev);
954 }
955 /*
956 * Because md_wait_for_blocked_rdev
957 * will dec nr_pending, we must
958 * increment it first.
959 */
960 atomic_inc(&rdev->nr_pending);
961 md_wait_for_blocked_rdev(rdev, conf->mddev);
962 } else {
963 /* Acknowledged bad block - skip the write */
964 rdev_dec_pending(rdev, conf->mddev);
965 rdev = NULL;
966 }
967 }
968
969 if (rdev) {
970 if (s->syncing || s->expanding || s->expanded
971 || s->replacing)
972 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
973
974 set_bit(STRIPE_IO_STARTED, &sh->state);
975
976 bio_reset(bi);
977 bi->bi_bdev = rdev->bdev;
978 bi->bi_rw = rw;
979 bi->bi_end_io = (rw & WRITE)
980 ? raid5_end_write_request
981 : raid5_end_read_request;
982 bi->bi_private = sh;
983
984 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
985 __func__, (unsigned long long)sh->sector,
986 bi->bi_rw, i);
987 atomic_inc(&sh->count);
988 if (sh != head_sh)
989 atomic_inc(&head_sh->count);
990 if (use_new_offset(conf, sh))
991 bi->bi_iter.bi_sector = (sh->sector
992 + rdev->new_data_offset);
993 else
994 bi->bi_iter.bi_sector = (sh->sector
995 + rdev->data_offset);
996 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
997 bi->bi_rw |= REQ_NOMERGE;
998
999 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1000 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1001 sh->dev[i].vec.bv_page = sh->dev[i].page;
1002 bi->bi_vcnt = 1;
1003 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1004 bi->bi_io_vec[0].bv_offset = 0;
1005 bi->bi_iter.bi_size = STRIPE_SIZE;
1006 /*
1007 * If this is discard request, set bi_vcnt 0. We don't
1008 * want to confuse SCSI because SCSI will replace payload
1009 */
1010 if (rw & REQ_DISCARD)
1011 bi->bi_vcnt = 0;
1012 if (rrdev)
1013 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1014
1015 if (conf->mddev->gendisk)
1016 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1017 bi, disk_devt(conf->mddev->gendisk),
1018 sh->dev[i].sector);
1019 generic_make_request(bi);
1020 }
1021 if (rrdev) {
1022 if (s->syncing || s->expanding || s->expanded
1023 || s->replacing)
1024 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1025
1026 set_bit(STRIPE_IO_STARTED, &sh->state);
1027
1028 bio_reset(rbi);
1029 rbi->bi_bdev = rrdev->bdev;
1030 rbi->bi_rw = rw;
1031 BUG_ON(!(rw & WRITE));
1032 rbi->bi_end_io = raid5_end_write_request;
1033 rbi->bi_private = sh;
1034
1035 pr_debug("%s: for %llu schedule op %ld on "
1036 "replacement disc %d\n",
1037 __func__, (unsigned long long)sh->sector,
1038 rbi->bi_rw, i);
1039 atomic_inc(&sh->count);
1040 if (sh != head_sh)
1041 atomic_inc(&head_sh->count);
1042 if (use_new_offset(conf, sh))
1043 rbi->bi_iter.bi_sector = (sh->sector
1044 + rrdev->new_data_offset);
1045 else
1046 rbi->bi_iter.bi_sector = (sh->sector
1047 + rrdev->data_offset);
1048 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1049 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1050 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1051 rbi->bi_vcnt = 1;
1052 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1053 rbi->bi_io_vec[0].bv_offset = 0;
1054 rbi->bi_iter.bi_size = STRIPE_SIZE;
1055 /*
1056 * If this is discard request, set bi_vcnt 0. We don't
1057 * want to confuse SCSI because SCSI will replace payload
1058 */
1059 if (rw & REQ_DISCARD)
1060 rbi->bi_vcnt = 0;
1061 if (conf->mddev->gendisk)
1062 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1063 rbi, disk_devt(conf->mddev->gendisk),
1064 sh->dev[i].sector);
1065 generic_make_request(rbi);
1066 }
1067 if (!rdev && !rrdev) {
1068 if (rw & WRITE)
1069 set_bit(STRIPE_DEGRADED, &sh->state);
1070 pr_debug("skip op %ld on disc %d for sector %llu\n",
1071 bi->bi_rw, i, (unsigned long long)sh->sector);
1072 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1073 if (sh->batch_head)
1074 set_bit(STRIPE_BATCH_ERR,
1075 &sh->batch_head->state);
1076 set_bit(STRIPE_HANDLE, &sh->state);
1077 }
1078
1079 if (!head_sh->batch_head)
1080 continue;
1081 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1082 batch_list);
1083 if (sh != head_sh)
1084 goto again;
1085 }
1086 }
1087
1088 static struct dma_async_tx_descriptor *
1089 async_copy_data(int frombio, struct bio *bio, struct page **page,
1090 sector_t sector, struct dma_async_tx_descriptor *tx,
1091 struct stripe_head *sh)
1092 {
1093 struct bio_vec bvl;
1094 struct bvec_iter iter;
1095 struct page *bio_page;
1096 int page_offset;
1097 struct async_submit_ctl submit;
1098 enum async_tx_flags flags = 0;
1099
1100 if (bio->bi_iter.bi_sector >= sector)
1101 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1102 else
1103 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1104
1105 if (frombio)
1106 flags |= ASYNC_TX_FENCE;
1107 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1108
1109 bio_for_each_segment(bvl, bio, iter) {
1110 int len = bvl.bv_len;
1111 int clen;
1112 int b_offset = 0;
1113
1114 if (page_offset < 0) {
1115 b_offset = -page_offset;
1116 page_offset += b_offset;
1117 len -= b_offset;
1118 }
1119
1120 if (len > 0 && page_offset + len > STRIPE_SIZE)
1121 clen = STRIPE_SIZE - page_offset;
1122 else
1123 clen = len;
1124
1125 if (clen > 0) {
1126 b_offset += bvl.bv_offset;
1127 bio_page = bvl.bv_page;
1128 if (frombio) {
1129 if (sh->raid_conf->skip_copy &&
1130 b_offset == 0 && page_offset == 0 &&
1131 clen == STRIPE_SIZE)
1132 *page = bio_page;
1133 else
1134 tx = async_memcpy(*page, bio_page, page_offset,
1135 b_offset, clen, &submit);
1136 } else
1137 tx = async_memcpy(bio_page, *page, b_offset,
1138 page_offset, clen, &submit);
1139 }
1140 /* chain the operations */
1141 submit.depend_tx = tx;
1142
1143 if (clen < len) /* hit end of page */
1144 break;
1145 page_offset += len;
1146 }
1147
1148 return tx;
1149 }
1150
1151 static void ops_complete_biofill(void *stripe_head_ref)
1152 {
1153 struct stripe_head *sh = stripe_head_ref;
1154 struct bio *return_bi = NULL;
1155 int i;
1156
1157 pr_debug("%s: stripe %llu\n", __func__,
1158 (unsigned long long)sh->sector);
1159
1160 /* clear completed biofills */
1161 for (i = sh->disks; i--; ) {
1162 struct r5dev *dev = &sh->dev[i];
1163
1164 /* acknowledge completion of a biofill operation */
1165 /* and check if we need to reply to a read request,
1166 * new R5_Wantfill requests are held off until
1167 * !STRIPE_BIOFILL_RUN
1168 */
1169 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1170 struct bio *rbi, *rbi2;
1171
1172 BUG_ON(!dev->read);
1173 rbi = dev->read;
1174 dev->read = NULL;
1175 while (rbi && rbi->bi_iter.bi_sector <
1176 dev->sector + STRIPE_SECTORS) {
1177 rbi2 = r5_next_bio(rbi, dev->sector);
1178 if (!raid5_dec_bi_active_stripes(rbi)) {
1179 rbi->bi_next = return_bi;
1180 return_bi = rbi;
1181 }
1182 rbi = rbi2;
1183 }
1184 }
1185 }
1186 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1187
1188 return_io(return_bi);
1189
1190 set_bit(STRIPE_HANDLE, &sh->state);
1191 release_stripe(sh);
1192 }
1193
1194 static void ops_run_biofill(struct stripe_head *sh)
1195 {
1196 struct dma_async_tx_descriptor *tx = NULL;
1197 struct async_submit_ctl submit;
1198 int i;
1199
1200 BUG_ON(sh->batch_head);
1201 pr_debug("%s: stripe %llu\n", __func__,
1202 (unsigned long long)sh->sector);
1203
1204 for (i = sh->disks; i--; ) {
1205 struct r5dev *dev = &sh->dev[i];
1206 if (test_bit(R5_Wantfill, &dev->flags)) {
1207 struct bio *rbi;
1208 spin_lock_irq(&sh->stripe_lock);
1209 dev->read = rbi = dev->toread;
1210 dev->toread = NULL;
1211 spin_unlock_irq(&sh->stripe_lock);
1212 while (rbi && rbi->bi_iter.bi_sector <
1213 dev->sector + STRIPE_SECTORS) {
1214 tx = async_copy_data(0, rbi, &dev->page,
1215 dev->sector, tx, sh);
1216 rbi = r5_next_bio(rbi, dev->sector);
1217 }
1218 }
1219 }
1220
1221 atomic_inc(&sh->count);
1222 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1223 async_trigger_callback(&submit);
1224 }
1225
1226 static void mark_target_uptodate(struct stripe_head *sh, int target)
1227 {
1228 struct r5dev *tgt;
1229
1230 if (target < 0)
1231 return;
1232
1233 tgt = &sh->dev[target];
1234 set_bit(R5_UPTODATE, &tgt->flags);
1235 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1236 clear_bit(R5_Wantcompute, &tgt->flags);
1237 }
1238
1239 static void ops_complete_compute(void *stripe_head_ref)
1240 {
1241 struct stripe_head *sh = stripe_head_ref;
1242
1243 pr_debug("%s: stripe %llu\n", __func__,
1244 (unsigned long long)sh->sector);
1245
1246 /* mark the computed target(s) as uptodate */
1247 mark_target_uptodate(sh, sh->ops.target);
1248 mark_target_uptodate(sh, sh->ops.target2);
1249
1250 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1251 if (sh->check_state == check_state_compute_run)
1252 sh->check_state = check_state_compute_result;
1253 set_bit(STRIPE_HANDLE, &sh->state);
1254 release_stripe(sh);
1255 }
1256
1257 /* return a pointer to the address conversion region of the scribble buffer */
1258 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1259 struct raid5_percpu *percpu, int i)
1260 {
1261 void *addr;
1262
1263 addr = flex_array_get(percpu->scribble, i);
1264 return addr + sizeof(struct page *) * (sh->disks + 2);
1265 }
1266
1267 /* return a pointer to the address conversion region of the scribble buffer */
1268 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1269 {
1270 void *addr;
1271
1272 addr = flex_array_get(percpu->scribble, i);
1273 return addr;
1274 }
1275
1276 static struct dma_async_tx_descriptor *
1277 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1278 {
1279 int disks = sh->disks;
1280 struct page **xor_srcs = to_addr_page(percpu, 0);
1281 int target = sh->ops.target;
1282 struct r5dev *tgt = &sh->dev[target];
1283 struct page *xor_dest = tgt->page;
1284 int count = 0;
1285 struct dma_async_tx_descriptor *tx;
1286 struct async_submit_ctl submit;
1287 int i;
1288
1289 BUG_ON(sh->batch_head);
1290
1291 pr_debug("%s: stripe %llu block: %d\n",
1292 __func__, (unsigned long long)sh->sector, target);
1293 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1294
1295 for (i = disks; i--; )
1296 if (i != target)
1297 xor_srcs[count++] = sh->dev[i].page;
1298
1299 atomic_inc(&sh->count);
1300
1301 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1302 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1303 if (unlikely(count == 1))
1304 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1305 else
1306 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1307
1308 return tx;
1309 }
1310
1311 /* set_syndrome_sources - populate source buffers for gen_syndrome
1312 * @srcs - (struct page *) array of size sh->disks
1313 * @sh - stripe_head to parse
1314 *
1315 * Populates srcs in proper layout order for the stripe and returns the
1316 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1317 * destination buffer is recorded in srcs[count] and the Q destination
1318 * is recorded in srcs[count+1]].
1319 */
1320 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1321 {
1322 int disks = sh->disks;
1323 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1324 int d0_idx = raid6_d0(sh);
1325 int count;
1326 int i;
1327
1328 for (i = 0; i < disks; i++)
1329 srcs[i] = NULL;
1330
1331 count = 0;
1332 i = d0_idx;
1333 do {
1334 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1335
1336 srcs[slot] = sh->dev[i].page;
1337 i = raid6_next_disk(i, disks);
1338 } while (i != d0_idx);
1339
1340 return syndrome_disks;
1341 }
1342
1343 static struct dma_async_tx_descriptor *
1344 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1345 {
1346 int disks = sh->disks;
1347 struct page **blocks = to_addr_page(percpu, 0);
1348 int target;
1349 int qd_idx = sh->qd_idx;
1350 struct dma_async_tx_descriptor *tx;
1351 struct async_submit_ctl submit;
1352 struct r5dev *tgt;
1353 struct page *dest;
1354 int i;
1355 int count;
1356
1357 BUG_ON(sh->batch_head);
1358 if (sh->ops.target < 0)
1359 target = sh->ops.target2;
1360 else if (sh->ops.target2 < 0)
1361 target = sh->ops.target;
1362 else
1363 /* we should only have one valid target */
1364 BUG();
1365 BUG_ON(target < 0);
1366 pr_debug("%s: stripe %llu block: %d\n",
1367 __func__, (unsigned long long)sh->sector, target);
1368
1369 tgt = &sh->dev[target];
1370 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1371 dest = tgt->page;
1372
1373 atomic_inc(&sh->count);
1374
1375 if (target == qd_idx) {
1376 count = set_syndrome_sources(blocks, sh);
1377 blocks[count] = NULL; /* regenerating p is not necessary */
1378 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1379 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1380 ops_complete_compute, sh,
1381 to_addr_conv(sh, percpu, 0));
1382 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1383 } else {
1384 /* Compute any data- or p-drive using XOR */
1385 count = 0;
1386 for (i = disks; i-- ; ) {
1387 if (i == target || i == qd_idx)
1388 continue;
1389 blocks[count++] = sh->dev[i].page;
1390 }
1391
1392 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1393 NULL, ops_complete_compute, sh,
1394 to_addr_conv(sh, percpu, 0));
1395 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1396 }
1397
1398 return tx;
1399 }
1400
1401 static struct dma_async_tx_descriptor *
1402 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1403 {
1404 int i, count, disks = sh->disks;
1405 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1406 int d0_idx = raid6_d0(sh);
1407 int faila = -1, failb = -1;
1408 int target = sh->ops.target;
1409 int target2 = sh->ops.target2;
1410 struct r5dev *tgt = &sh->dev[target];
1411 struct r5dev *tgt2 = &sh->dev[target2];
1412 struct dma_async_tx_descriptor *tx;
1413 struct page **blocks = to_addr_page(percpu, 0);
1414 struct async_submit_ctl submit;
1415
1416 BUG_ON(sh->batch_head);
1417 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1418 __func__, (unsigned long long)sh->sector, target, target2);
1419 BUG_ON(target < 0 || target2 < 0);
1420 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1421 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1422
1423 /* we need to open-code set_syndrome_sources to handle the
1424 * slot number conversion for 'faila' and 'failb'
1425 */
1426 for (i = 0; i < disks ; i++)
1427 blocks[i] = NULL;
1428 count = 0;
1429 i = d0_idx;
1430 do {
1431 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1432
1433 blocks[slot] = sh->dev[i].page;
1434
1435 if (i == target)
1436 faila = slot;
1437 if (i == target2)
1438 failb = slot;
1439 i = raid6_next_disk(i, disks);
1440 } while (i != d0_idx);
1441
1442 BUG_ON(faila == failb);
1443 if (failb < faila)
1444 swap(faila, failb);
1445 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1446 __func__, (unsigned long long)sh->sector, faila, failb);
1447
1448 atomic_inc(&sh->count);
1449
1450 if (failb == syndrome_disks+1) {
1451 /* Q disk is one of the missing disks */
1452 if (faila == syndrome_disks) {
1453 /* Missing P+Q, just recompute */
1454 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1455 ops_complete_compute, sh,
1456 to_addr_conv(sh, percpu, 0));
1457 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1458 STRIPE_SIZE, &submit);
1459 } else {
1460 struct page *dest;
1461 int data_target;
1462 int qd_idx = sh->qd_idx;
1463
1464 /* Missing D+Q: recompute D from P, then recompute Q */
1465 if (target == qd_idx)
1466 data_target = target2;
1467 else
1468 data_target = target;
1469
1470 count = 0;
1471 for (i = disks; i-- ; ) {
1472 if (i == data_target || i == qd_idx)
1473 continue;
1474 blocks[count++] = sh->dev[i].page;
1475 }
1476 dest = sh->dev[data_target].page;
1477 init_async_submit(&submit,
1478 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1479 NULL, NULL, NULL,
1480 to_addr_conv(sh, percpu, 0));
1481 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1482 &submit);
1483
1484 count = set_syndrome_sources(blocks, sh);
1485 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1486 ops_complete_compute, sh,
1487 to_addr_conv(sh, percpu, 0));
1488 return async_gen_syndrome(blocks, 0, count+2,
1489 STRIPE_SIZE, &submit);
1490 }
1491 } else {
1492 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1493 ops_complete_compute, sh,
1494 to_addr_conv(sh, percpu, 0));
1495 if (failb == syndrome_disks) {
1496 /* We're missing D+P. */
1497 return async_raid6_datap_recov(syndrome_disks+2,
1498 STRIPE_SIZE, faila,
1499 blocks, &submit);
1500 } else {
1501 /* We're missing D+D. */
1502 return async_raid6_2data_recov(syndrome_disks+2,
1503 STRIPE_SIZE, faila, failb,
1504 blocks, &submit);
1505 }
1506 }
1507 }
1508
1509 static void ops_complete_prexor(void *stripe_head_ref)
1510 {
1511 struct stripe_head *sh = stripe_head_ref;
1512
1513 pr_debug("%s: stripe %llu\n", __func__,
1514 (unsigned long long)sh->sector);
1515 }
1516
1517 static struct dma_async_tx_descriptor *
1518 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1519 struct dma_async_tx_descriptor *tx)
1520 {
1521 int disks = sh->disks;
1522 struct page **xor_srcs = to_addr_page(percpu, 0);
1523 int count = 0, pd_idx = sh->pd_idx, i;
1524 struct async_submit_ctl submit;
1525
1526 /* existing parity data subtracted */
1527 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1528
1529 BUG_ON(sh->batch_head);
1530 pr_debug("%s: stripe %llu\n", __func__,
1531 (unsigned long long)sh->sector);
1532
1533 for (i = disks; i--; ) {
1534 struct r5dev *dev = &sh->dev[i];
1535 /* Only process blocks that are known to be uptodate */
1536 if (test_bit(R5_Wantdrain, &dev->flags))
1537 xor_srcs[count++] = dev->page;
1538 }
1539
1540 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1541 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1542 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1543
1544 return tx;
1545 }
1546
1547 static struct dma_async_tx_descriptor *
1548 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1549 {
1550 int disks = sh->disks;
1551 int i;
1552 struct stripe_head *head_sh = sh;
1553
1554 pr_debug("%s: stripe %llu\n", __func__,
1555 (unsigned long long)sh->sector);
1556
1557 for (i = disks; i--; ) {
1558 struct r5dev *dev;
1559 struct bio *chosen;
1560
1561 sh = head_sh;
1562 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1563 struct bio *wbi;
1564
1565 again:
1566 dev = &sh->dev[i];
1567 spin_lock_irq(&sh->stripe_lock);
1568 chosen = dev->towrite;
1569 dev->towrite = NULL;
1570 sh->overwrite_disks = 0;
1571 BUG_ON(dev->written);
1572 wbi = dev->written = chosen;
1573 spin_unlock_irq(&sh->stripe_lock);
1574 WARN_ON(dev->page != dev->orig_page);
1575
1576 while (wbi && wbi->bi_iter.bi_sector <
1577 dev->sector + STRIPE_SECTORS) {
1578 if (wbi->bi_rw & REQ_FUA)
1579 set_bit(R5_WantFUA, &dev->flags);
1580 if (wbi->bi_rw & REQ_SYNC)
1581 set_bit(R5_SyncIO, &dev->flags);
1582 if (wbi->bi_rw & REQ_DISCARD)
1583 set_bit(R5_Discard, &dev->flags);
1584 else {
1585 tx = async_copy_data(1, wbi, &dev->page,
1586 dev->sector, tx, sh);
1587 if (dev->page != dev->orig_page) {
1588 set_bit(R5_SkipCopy, &dev->flags);
1589 clear_bit(R5_UPTODATE, &dev->flags);
1590 clear_bit(R5_OVERWRITE, &dev->flags);
1591 }
1592 }
1593 wbi = r5_next_bio(wbi, dev->sector);
1594 }
1595
1596 if (head_sh->batch_head) {
1597 sh = list_first_entry(&sh->batch_list,
1598 struct stripe_head,
1599 batch_list);
1600 if (sh == head_sh)
1601 continue;
1602 goto again;
1603 }
1604 }
1605 }
1606
1607 return tx;
1608 }
1609
1610 static void ops_complete_reconstruct(void *stripe_head_ref)
1611 {
1612 struct stripe_head *sh = stripe_head_ref;
1613 int disks = sh->disks;
1614 int pd_idx = sh->pd_idx;
1615 int qd_idx = sh->qd_idx;
1616 int i;
1617 bool fua = false, sync = false, discard = false;
1618
1619 pr_debug("%s: stripe %llu\n", __func__,
1620 (unsigned long long)sh->sector);
1621
1622 for (i = disks; i--; ) {
1623 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1624 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1625 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1626 }
1627
1628 for (i = disks; i--; ) {
1629 struct r5dev *dev = &sh->dev[i];
1630
1631 if (dev->written || i == pd_idx || i == qd_idx) {
1632 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1633 set_bit(R5_UPTODATE, &dev->flags);
1634 if (fua)
1635 set_bit(R5_WantFUA, &dev->flags);
1636 if (sync)
1637 set_bit(R5_SyncIO, &dev->flags);
1638 }
1639 }
1640
1641 if (sh->reconstruct_state == reconstruct_state_drain_run)
1642 sh->reconstruct_state = reconstruct_state_drain_result;
1643 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1644 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1645 else {
1646 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1647 sh->reconstruct_state = reconstruct_state_result;
1648 }
1649
1650 set_bit(STRIPE_HANDLE, &sh->state);
1651 release_stripe(sh);
1652 }
1653
1654 static void
1655 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1656 struct dma_async_tx_descriptor *tx)
1657 {
1658 int disks = sh->disks;
1659 struct page **xor_srcs;
1660 struct async_submit_ctl submit;
1661 int count, pd_idx = sh->pd_idx, i;
1662 struct page *xor_dest;
1663 int prexor = 0;
1664 unsigned long flags;
1665 int j = 0;
1666 struct stripe_head *head_sh = sh;
1667 int last_stripe;
1668
1669 pr_debug("%s: stripe %llu\n", __func__,
1670 (unsigned long long)sh->sector);
1671
1672 for (i = 0; i < sh->disks; i++) {
1673 if (pd_idx == i)
1674 continue;
1675 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1676 break;
1677 }
1678 if (i >= sh->disks) {
1679 atomic_inc(&sh->count);
1680 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1681 ops_complete_reconstruct(sh);
1682 return;
1683 }
1684 again:
1685 count = 0;
1686 xor_srcs = to_addr_page(percpu, j);
1687 /* check if prexor is active which means only process blocks
1688 * that are part of a read-modify-write (written)
1689 */
1690 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1691 prexor = 1;
1692 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1693 for (i = disks; i--; ) {
1694 struct r5dev *dev = &sh->dev[i];
1695 if (head_sh->dev[i].written)
1696 xor_srcs[count++] = dev->page;
1697 }
1698 } else {
1699 xor_dest = sh->dev[pd_idx].page;
1700 for (i = disks; i--; ) {
1701 struct r5dev *dev = &sh->dev[i];
1702 if (i != pd_idx)
1703 xor_srcs[count++] = dev->page;
1704 }
1705 }
1706
1707 /* 1/ if we prexor'd then the dest is reused as a source
1708 * 2/ if we did not prexor then we are redoing the parity
1709 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1710 * for the synchronous xor case
1711 */
1712 last_stripe = !head_sh->batch_head ||
1713 list_first_entry(&sh->batch_list,
1714 struct stripe_head, batch_list) == head_sh;
1715 if (last_stripe) {
1716 flags = ASYNC_TX_ACK |
1717 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1718
1719 atomic_inc(&head_sh->count);
1720 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1721 to_addr_conv(sh, percpu, j));
1722 } else {
1723 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1724 init_async_submit(&submit, flags, tx, NULL, NULL,
1725 to_addr_conv(sh, percpu, j));
1726 }
1727
1728 if (unlikely(count == 1))
1729 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1730 else
1731 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1732 if (!last_stripe) {
1733 j++;
1734 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1735 batch_list);
1736 goto again;
1737 }
1738 }
1739
1740 static void
1741 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1742 struct dma_async_tx_descriptor *tx)
1743 {
1744 struct async_submit_ctl submit;
1745 struct page **blocks;
1746 int count, i, j = 0;
1747 struct stripe_head *head_sh = sh;
1748 int last_stripe;
1749
1750 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1751
1752 for (i = 0; i < sh->disks; i++) {
1753 if (sh->pd_idx == i || sh->qd_idx == i)
1754 continue;
1755 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1756 break;
1757 }
1758 if (i >= sh->disks) {
1759 atomic_inc(&sh->count);
1760 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1761 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1762 ops_complete_reconstruct(sh);
1763 return;
1764 }
1765
1766 again:
1767 blocks = to_addr_page(percpu, j);
1768 count = set_syndrome_sources(blocks, sh);
1769 last_stripe = !head_sh->batch_head ||
1770 list_first_entry(&sh->batch_list,
1771 struct stripe_head, batch_list) == head_sh;
1772
1773 if (last_stripe) {
1774 atomic_inc(&head_sh->count);
1775 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1776 head_sh, to_addr_conv(sh, percpu, j));
1777 } else
1778 init_async_submit(&submit, 0, tx, NULL, NULL,
1779 to_addr_conv(sh, percpu, j));
1780 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1781 if (!last_stripe) {
1782 j++;
1783 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1784 batch_list);
1785 goto again;
1786 }
1787 }
1788
1789 static void ops_complete_check(void *stripe_head_ref)
1790 {
1791 struct stripe_head *sh = stripe_head_ref;
1792
1793 pr_debug("%s: stripe %llu\n", __func__,
1794 (unsigned long long)sh->sector);
1795
1796 sh->check_state = check_state_check_result;
1797 set_bit(STRIPE_HANDLE, &sh->state);
1798 release_stripe(sh);
1799 }
1800
1801 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1802 {
1803 int disks = sh->disks;
1804 int pd_idx = sh->pd_idx;
1805 int qd_idx = sh->qd_idx;
1806 struct page *xor_dest;
1807 struct page **xor_srcs = to_addr_page(percpu, 0);
1808 struct dma_async_tx_descriptor *tx;
1809 struct async_submit_ctl submit;
1810 int count;
1811 int i;
1812
1813 pr_debug("%s: stripe %llu\n", __func__,
1814 (unsigned long long)sh->sector);
1815
1816 BUG_ON(sh->batch_head);
1817 count = 0;
1818 xor_dest = sh->dev[pd_idx].page;
1819 xor_srcs[count++] = xor_dest;
1820 for (i = disks; i--; ) {
1821 if (i == pd_idx || i == qd_idx)
1822 continue;
1823 xor_srcs[count++] = sh->dev[i].page;
1824 }
1825
1826 init_async_submit(&submit, 0, NULL, NULL, NULL,
1827 to_addr_conv(sh, percpu, 0));
1828 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1829 &sh->ops.zero_sum_result, &submit);
1830
1831 atomic_inc(&sh->count);
1832 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1833 tx = async_trigger_callback(&submit);
1834 }
1835
1836 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1837 {
1838 struct page **srcs = to_addr_page(percpu, 0);
1839 struct async_submit_ctl submit;
1840 int count;
1841
1842 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1843 (unsigned long long)sh->sector, checkp);
1844
1845 BUG_ON(sh->batch_head);
1846 count = set_syndrome_sources(srcs, sh);
1847 if (!checkp)
1848 srcs[count] = NULL;
1849
1850 atomic_inc(&sh->count);
1851 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1852 sh, to_addr_conv(sh, percpu, 0));
1853 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1854 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1855 }
1856
1857 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1858 {
1859 int overlap_clear = 0, i, disks = sh->disks;
1860 struct dma_async_tx_descriptor *tx = NULL;
1861 struct r5conf *conf = sh->raid_conf;
1862 int level = conf->level;
1863 struct raid5_percpu *percpu;
1864 unsigned long cpu;
1865
1866 cpu = get_cpu();
1867 percpu = per_cpu_ptr(conf->percpu, cpu);
1868 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1869 ops_run_biofill(sh);
1870 overlap_clear++;
1871 }
1872
1873 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1874 if (level < 6)
1875 tx = ops_run_compute5(sh, percpu);
1876 else {
1877 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1878 tx = ops_run_compute6_1(sh, percpu);
1879 else
1880 tx = ops_run_compute6_2(sh, percpu);
1881 }
1882 /* terminate the chain if reconstruct is not set to be run */
1883 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1884 async_tx_ack(tx);
1885 }
1886
1887 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1888 tx = ops_run_prexor(sh, percpu, tx);
1889
1890 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1891 tx = ops_run_biodrain(sh, tx);
1892 overlap_clear++;
1893 }
1894
1895 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1896 if (level < 6)
1897 ops_run_reconstruct5(sh, percpu, tx);
1898 else
1899 ops_run_reconstruct6(sh, percpu, tx);
1900 }
1901
1902 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1903 if (sh->check_state == check_state_run)
1904 ops_run_check_p(sh, percpu);
1905 else if (sh->check_state == check_state_run_q)
1906 ops_run_check_pq(sh, percpu, 0);
1907 else if (sh->check_state == check_state_run_pq)
1908 ops_run_check_pq(sh, percpu, 1);
1909 else
1910 BUG();
1911 }
1912
1913 if (overlap_clear && !sh->batch_head)
1914 for (i = disks; i--; ) {
1915 struct r5dev *dev = &sh->dev[i];
1916 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1917 wake_up(&sh->raid_conf->wait_for_overlap);
1918 }
1919 put_cpu();
1920 }
1921
1922 static int grow_one_stripe(struct r5conf *conf, int hash)
1923 {
1924 struct stripe_head *sh;
1925 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1926 if (!sh)
1927 return 0;
1928
1929 sh->raid_conf = conf;
1930
1931 spin_lock_init(&sh->stripe_lock);
1932
1933 if (grow_buffers(sh)) {
1934 shrink_buffers(sh);
1935 kmem_cache_free(conf->slab_cache, sh);
1936 return 0;
1937 }
1938 sh->hash_lock_index = hash;
1939 /* we just created an active stripe so... */
1940 atomic_set(&sh->count, 1);
1941 atomic_inc(&conf->active_stripes);
1942 INIT_LIST_HEAD(&sh->lru);
1943
1944 spin_lock_init(&sh->batch_lock);
1945 INIT_LIST_HEAD(&sh->batch_list);
1946 sh->batch_head = NULL;
1947 release_stripe(sh);
1948 return 1;
1949 }
1950
1951 static int grow_stripes(struct r5conf *conf, int num)
1952 {
1953 struct kmem_cache *sc;
1954 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1955 int hash;
1956
1957 if (conf->mddev->gendisk)
1958 sprintf(conf->cache_name[0],
1959 "raid%d-%s", conf->level, mdname(conf->mddev));
1960 else
1961 sprintf(conf->cache_name[0],
1962 "raid%d-%p", conf->level, conf->mddev);
1963 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1964
1965 conf->active_name = 0;
1966 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1967 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1968 0, 0, NULL);
1969 if (!sc)
1970 return 1;
1971 conf->slab_cache = sc;
1972 conf->pool_size = devs;
1973 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1974 while (num--) {
1975 if (!grow_one_stripe(conf, hash))
1976 return 1;
1977 conf->max_nr_stripes++;
1978 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1979 }
1980 return 0;
1981 }
1982
1983 /**
1984 * scribble_len - return the required size of the scribble region
1985 * @num - total number of disks in the array
1986 *
1987 * The size must be enough to contain:
1988 * 1/ a struct page pointer for each device in the array +2
1989 * 2/ room to convert each entry in (1) to its corresponding dma
1990 * (dma_map_page()) or page (page_address()) address.
1991 *
1992 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1993 * calculate over all devices (not just the data blocks), using zeros in place
1994 * of the P and Q blocks.
1995 */
1996 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
1997 {
1998 struct flex_array *ret;
1999 size_t len;
2000
2001 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2002 ret = flex_array_alloc(len, cnt, flags);
2003 if (!ret)
2004 return NULL;
2005 /* always prealloc all elements, so no locking is required */
2006 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2007 flex_array_free(ret);
2008 return NULL;
2009 }
2010 return ret;
2011 }
2012
2013 static int resize_stripes(struct r5conf *conf, int newsize)
2014 {
2015 /* Make all the stripes able to hold 'newsize' devices.
2016 * New slots in each stripe get 'page' set to a new page.
2017 *
2018 * This happens in stages:
2019 * 1/ create a new kmem_cache and allocate the required number of
2020 * stripe_heads.
2021 * 2/ gather all the old stripe_heads and transfer the pages across
2022 * to the new stripe_heads. This will have the side effect of
2023 * freezing the array as once all stripe_heads have been collected,
2024 * no IO will be possible. Old stripe heads are freed once their
2025 * pages have been transferred over, and the old kmem_cache is
2026 * freed when all stripes are done.
2027 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2028 * we simple return a failre status - no need to clean anything up.
2029 * 4/ allocate new pages for the new slots in the new stripe_heads.
2030 * If this fails, we don't bother trying the shrink the
2031 * stripe_heads down again, we just leave them as they are.
2032 * As each stripe_head is processed the new one is released into
2033 * active service.
2034 *
2035 * Once step2 is started, we cannot afford to wait for a write,
2036 * so we use GFP_NOIO allocations.
2037 */
2038 struct stripe_head *osh, *nsh;
2039 LIST_HEAD(newstripes);
2040 struct disk_info *ndisks;
2041 unsigned long cpu;
2042 int err;
2043 struct kmem_cache *sc;
2044 int i;
2045 int hash, cnt;
2046
2047 if (newsize <= conf->pool_size)
2048 return 0; /* never bother to shrink */
2049
2050 err = md_allow_write(conf->mddev);
2051 if (err)
2052 return err;
2053
2054 /* Step 1 */
2055 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2056 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2057 0, 0, NULL);
2058 if (!sc)
2059 return -ENOMEM;
2060
2061 for (i = conf->max_nr_stripes; i; i--) {
2062 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
2063 if (!nsh)
2064 break;
2065
2066 nsh->raid_conf = conf;
2067 spin_lock_init(&nsh->stripe_lock);
2068
2069 list_add(&nsh->lru, &newstripes);
2070 }
2071 if (i) {
2072 /* didn't get enough, give up */
2073 while (!list_empty(&newstripes)) {
2074 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2075 list_del(&nsh->lru);
2076 kmem_cache_free(sc, nsh);
2077 }
2078 kmem_cache_destroy(sc);
2079 return -ENOMEM;
2080 }
2081 /* Step 2 - Must use GFP_NOIO now.
2082 * OK, we have enough stripes, start collecting inactive
2083 * stripes and copying them over
2084 */
2085 hash = 0;
2086 cnt = 0;
2087 list_for_each_entry(nsh, &newstripes, lru) {
2088 lock_device_hash_lock(conf, hash);
2089 wait_event_cmd(conf->wait_for_stripe,
2090 !list_empty(conf->inactive_list + hash),
2091 unlock_device_hash_lock(conf, hash),
2092 lock_device_hash_lock(conf, hash));
2093 osh = get_free_stripe(conf, hash);
2094 unlock_device_hash_lock(conf, hash);
2095 atomic_set(&nsh->count, 1);
2096 for(i=0; i<conf->pool_size; i++) {
2097 nsh->dev[i].page = osh->dev[i].page;
2098 nsh->dev[i].orig_page = osh->dev[i].page;
2099 }
2100 for( ; i<newsize; i++)
2101 nsh->dev[i].page = NULL;
2102 nsh->hash_lock_index = hash;
2103 kmem_cache_free(conf->slab_cache, osh);
2104 cnt++;
2105 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2106 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2107 hash++;
2108 cnt = 0;
2109 }
2110 }
2111 kmem_cache_destroy(conf->slab_cache);
2112
2113 /* Step 3.
2114 * At this point, we are holding all the stripes so the array
2115 * is completely stalled, so now is a good time to resize
2116 * conf->disks and the scribble region
2117 */
2118 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2119 if (ndisks) {
2120 for (i=0; i<conf->raid_disks; i++)
2121 ndisks[i] = conf->disks[i];
2122 kfree(conf->disks);
2123 conf->disks = ndisks;
2124 } else
2125 err = -ENOMEM;
2126
2127 get_online_cpus();
2128 for_each_present_cpu(cpu) {
2129 struct raid5_percpu *percpu;
2130 struct flex_array *scribble;
2131
2132 percpu = per_cpu_ptr(conf->percpu, cpu);
2133 scribble = scribble_alloc(newsize, conf->chunk_sectors /
2134 STRIPE_SECTORS, GFP_NOIO);
2135
2136 if (scribble) {
2137 flex_array_free(percpu->scribble);
2138 percpu->scribble = scribble;
2139 } else {
2140 err = -ENOMEM;
2141 break;
2142 }
2143 }
2144 put_online_cpus();
2145
2146 /* Step 4, return new stripes to service */
2147 while(!list_empty(&newstripes)) {
2148 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2149 list_del_init(&nsh->lru);
2150
2151 for (i=conf->raid_disks; i < newsize; i++)
2152 if (nsh->dev[i].page == NULL) {
2153 struct page *p = alloc_page(GFP_NOIO);
2154 nsh->dev[i].page = p;
2155 nsh->dev[i].orig_page = p;
2156 if (!p)
2157 err = -ENOMEM;
2158 }
2159 release_stripe(nsh);
2160 }
2161 /* critical section pass, GFP_NOIO no longer needed */
2162
2163 conf->slab_cache = sc;
2164 conf->active_name = 1-conf->active_name;
2165 conf->pool_size = newsize;
2166 return err;
2167 }
2168
2169 static int drop_one_stripe(struct r5conf *conf, int hash)
2170 {
2171 struct stripe_head *sh;
2172
2173 spin_lock_irq(conf->hash_locks + hash);
2174 sh = get_free_stripe(conf, hash);
2175 spin_unlock_irq(conf->hash_locks + hash);
2176 if (!sh)
2177 return 0;
2178 BUG_ON(atomic_read(&sh->count));
2179 shrink_buffers(sh);
2180 kmem_cache_free(conf->slab_cache, sh);
2181 atomic_dec(&conf->active_stripes);
2182 return 1;
2183 }
2184
2185 static void shrink_stripes(struct r5conf *conf)
2186 {
2187 int hash;
2188 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
2189 while (drop_one_stripe(conf, hash))
2190 ;
2191
2192 if (conf->slab_cache)
2193 kmem_cache_destroy(conf->slab_cache);
2194 conf->slab_cache = NULL;
2195 }
2196
2197 static void raid5_end_read_request(struct bio * bi, int error)
2198 {
2199 struct stripe_head *sh = bi->bi_private;
2200 struct r5conf *conf = sh->raid_conf;
2201 int disks = sh->disks, i;
2202 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2203 char b[BDEVNAME_SIZE];
2204 struct md_rdev *rdev = NULL;
2205 sector_t s;
2206
2207 for (i=0 ; i<disks; i++)
2208 if (bi == &sh->dev[i].req)
2209 break;
2210
2211 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2212 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2213 uptodate);
2214 if (i == disks) {
2215 BUG();
2216 return;
2217 }
2218 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2219 /* If replacement finished while this request was outstanding,
2220 * 'replacement' might be NULL already.
2221 * In that case it moved down to 'rdev'.
2222 * rdev is not removed until all requests are finished.
2223 */
2224 rdev = conf->disks[i].replacement;
2225 if (!rdev)
2226 rdev = conf->disks[i].rdev;
2227
2228 if (use_new_offset(conf, sh))
2229 s = sh->sector + rdev->new_data_offset;
2230 else
2231 s = sh->sector + rdev->data_offset;
2232 if (uptodate) {
2233 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2234 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2235 /* Note that this cannot happen on a
2236 * replacement device. We just fail those on
2237 * any error
2238 */
2239 printk_ratelimited(
2240 KERN_INFO
2241 "md/raid:%s: read error corrected"
2242 " (%lu sectors at %llu on %s)\n",
2243 mdname(conf->mddev), STRIPE_SECTORS,
2244 (unsigned long long)s,
2245 bdevname(rdev->bdev, b));
2246 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2247 clear_bit(R5_ReadError, &sh->dev[i].flags);
2248 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2249 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2250 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2251
2252 if (atomic_read(&rdev->read_errors))
2253 atomic_set(&rdev->read_errors, 0);
2254 } else {
2255 const char *bdn = bdevname(rdev->bdev, b);
2256 int retry = 0;
2257 int set_bad = 0;
2258
2259 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2260 atomic_inc(&rdev->read_errors);
2261 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2262 printk_ratelimited(
2263 KERN_WARNING
2264 "md/raid:%s: read error on replacement device "
2265 "(sector %llu on %s).\n",
2266 mdname(conf->mddev),
2267 (unsigned long long)s,
2268 bdn);
2269 else if (conf->mddev->degraded >= conf->max_degraded) {
2270 set_bad = 1;
2271 printk_ratelimited(
2272 KERN_WARNING
2273 "md/raid:%s: read error not correctable "
2274 "(sector %llu on %s).\n",
2275 mdname(conf->mddev),
2276 (unsigned long long)s,
2277 bdn);
2278 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2279 /* Oh, no!!! */
2280 set_bad = 1;
2281 printk_ratelimited(
2282 KERN_WARNING
2283 "md/raid:%s: read error NOT corrected!! "
2284 "(sector %llu on %s).\n",
2285 mdname(conf->mddev),
2286 (unsigned long long)s,
2287 bdn);
2288 } else if (atomic_read(&rdev->read_errors)
2289 > conf->max_nr_stripes)
2290 printk(KERN_WARNING
2291 "md/raid:%s: Too many read errors, failing device %s.\n",
2292 mdname(conf->mddev), bdn);
2293 else
2294 retry = 1;
2295 if (set_bad && test_bit(In_sync, &rdev->flags)
2296 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2297 retry = 1;
2298 if (retry)
2299 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2300 set_bit(R5_ReadError, &sh->dev[i].flags);
2301 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2302 } else
2303 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2304 else {
2305 clear_bit(R5_ReadError, &sh->dev[i].flags);
2306 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2307 if (!(set_bad
2308 && test_bit(In_sync, &rdev->flags)
2309 && rdev_set_badblocks(
2310 rdev, sh->sector, STRIPE_SECTORS, 0)))
2311 md_error(conf->mddev, rdev);
2312 }
2313 }
2314 rdev_dec_pending(rdev, conf->mddev);
2315 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2316 set_bit(STRIPE_HANDLE, &sh->state);
2317 release_stripe(sh);
2318 }
2319
2320 static void raid5_end_write_request(struct bio *bi, int error)
2321 {
2322 struct stripe_head *sh = bi->bi_private;
2323 struct r5conf *conf = sh->raid_conf;
2324 int disks = sh->disks, i;
2325 struct md_rdev *uninitialized_var(rdev);
2326 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2327 sector_t first_bad;
2328 int bad_sectors;
2329 int replacement = 0;
2330
2331 for (i = 0 ; i < disks; i++) {
2332 if (bi == &sh->dev[i].req) {
2333 rdev = conf->disks[i].rdev;
2334 break;
2335 }
2336 if (bi == &sh->dev[i].rreq) {
2337 rdev = conf->disks[i].replacement;
2338 if (rdev)
2339 replacement = 1;
2340 else
2341 /* rdev was removed and 'replacement'
2342 * replaced it. rdev is not removed
2343 * until all requests are finished.
2344 */
2345 rdev = conf->disks[i].rdev;
2346 break;
2347 }
2348 }
2349 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2350 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2351 uptodate);
2352 if (i == disks) {
2353 BUG();
2354 return;
2355 }
2356
2357 if (replacement) {
2358 if (!uptodate)
2359 md_error(conf->mddev, rdev);
2360 else if (is_badblock(rdev, sh->sector,
2361 STRIPE_SECTORS,
2362 &first_bad, &bad_sectors))
2363 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2364 } else {
2365 if (!uptodate) {
2366 set_bit(STRIPE_DEGRADED, &sh->state);
2367 set_bit(WriteErrorSeen, &rdev->flags);
2368 set_bit(R5_WriteError, &sh->dev[i].flags);
2369 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2370 set_bit(MD_RECOVERY_NEEDED,
2371 &rdev->mddev->recovery);
2372 } else if (is_badblock(rdev, sh->sector,
2373 STRIPE_SECTORS,
2374 &first_bad, &bad_sectors)) {
2375 set_bit(R5_MadeGood, &sh->dev[i].flags);
2376 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2377 /* That was a successful write so make
2378 * sure it looks like we already did
2379 * a re-write.
2380 */
2381 set_bit(R5_ReWrite, &sh->dev[i].flags);
2382 }
2383 }
2384 rdev_dec_pending(rdev, conf->mddev);
2385
2386 if (sh->batch_head && !uptodate)
2387 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2388
2389 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2390 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2391 set_bit(STRIPE_HANDLE, &sh->state);
2392 release_stripe(sh);
2393
2394 if (sh->batch_head && sh != sh->batch_head)
2395 release_stripe(sh->batch_head);
2396 }
2397
2398 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2399
2400 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2401 {
2402 struct r5dev *dev = &sh->dev[i];
2403
2404 bio_init(&dev->req);
2405 dev->req.bi_io_vec = &dev->vec;
2406 dev->req.bi_max_vecs = 1;
2407 dev->req.bi_private = sh;
2408
2409 bio_init(&dev->rreq);
2410 dev->rreq.bi_io_vec = &dev->rvec;
2411 dev->rreq.bi_max_vecs = 1;
2412 dev->rreq.bi_private = sh;
2413
2414 dev->flags = 0;
2415 dev->sector = compute_blocknr(sh, i, previous);
2416 }
2417
2418 static void error(struct mddev *mddev, struct md_rdev *rdev)
2419 {
2420 char b[BDEVNAME_SIZE];
2421 struct r5conf *conf = mddev->private;
2422 unsigned long flags;
2423 pr_debug("raid456: error called\n");
2424
2425 spin_lock_irqsave(&conf->device_lock, flags);
2426 clear_bit(In_sync, &rdev->flags);
2427 mddev->degraded = calc_degraded(conf);
2428 spin_unlock_irqrestore(&conf->device_lock, flags);
2429 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2430
2431 set_bit(Blocked, &rdev->flags);
2432 set_bit(Faulty, &rdev->flags);
2433 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2434 printk(KERN_ALERT
2435 "md/raid:%s: Disk failure on %s, disabling device.\n"
2436 "md/raid:%s: Operation continuing on %d devices.\n",
2437 mdname(mddev),
2438 bdevname(rdev->bdev, b),
2439 mdname(mddev),
2440 conf->raid_disks - mddev->degraded);
2441 }
2442
2443 /*
2444 * Input: a 'big' sector number,
2445 * Output: index of the data and parity disk, and the sector # in them.
2446 */
2447 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2448 int previous, int *dd_idx,
2449 struct stripe_head *sh)
2450 {
2451 sector_t stripe, stripe2;
2452 sector_t chunk_number;
2453 unsigned int chunk_offset;
2454 int pd_idx, qd_idx;
2455 int ddf_layout = 0;
2456 sector_t new_sector;
2457 int algorithm = previous ? conf->prev_algo
2458 : conf->algorithm;
2459 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2460 : conf->chunk_sectors;
2461 int raid_disks = previous ? conf->previous_raid_disks
2462 : conf->raid_disks;
2463 int data_disks = raid_disks - conf->max_degraded;
2464
2465 /* First compute the information on this sector */
2466
2467 /*
2468 * Compute the chunk number and the sector offset inside the chunk
2469 */
2470 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2471 chunk_number = r_sector;
2472
2473 /*
2474 * Compute the stripe number
2475 */
2476 stripe = chunk_number;
2477 *dd_idx = sector_div(stripe, data_disks);
2478 stripe2 = stripe;
2479 /*
2480 * Select the parity disk based on the user selected algorithm.
2481 */
2482 pd_idx = qd_idx = -1;
2483 switch(conf->level) {
2484 case 4:
2485 pd_idx = data_disks;
2486 break;
2487 case 5:
2488 switch (algorithm) {
2489 case ALGORITHM_LEFT_ASYMMETRIC:
2490 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2491 if (*dd_idx >= pd_idx)
2492 (*dd_idx)++;
2493 break;
2494 case ALGORITHM_RIGHT_ASYMMETRIC:
2495 pd_idx = sector_div(stripe2, raid_disks);
2496 if (*dd_idx >= pd_idx)
2497 (*dd_idx)++;
2498 break;
2499 case ALGORITHM_LEFT_SYMMETRIC:
2500 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2501 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2502 break;
2503 case ALGORITHM_RIGHT_SYMMETRIC:
2504 pd_idx = sector_div(stripe2, raid_disks);
2505 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2506 break;
2507 case ALGORITHM_PARITY_0:
2508 pd_idx = 0;
2509 (*dd_idx)++;
2510 break;
2511 case ALGORITHM_PARITY_N:
2512 pd_idx = data_disks;
2513 break;
2514 default:
2515 BUG();
2516 }
2517 break;
2518 case 6:
2519
2520 switch (algorithm) {
2521 case ALGORITHM_LEFT_ASYMMETRIC:
2522 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2523 qd_idx = pd_idx + 1;
2524 if (pd_idx == raid_disks-1) {
2525 (*dd_idx)++; /* Q D D D P */
2526 qd_idx = 0;
2527 } else if (*dd_idx >= pd_idx)
2528 (*dd_idx) += 2; /* D D P Q D */
2529 break;
2530 case ALGORITHM_RIGHT_ASYMMETRIC:
2531 pd_idx = sector_div(stripe2, raid_disks);
2532 qd_idx = pd_idx + 1;
2533 if (pd_idx == raid_disks-1) {
2534 (*dd_idx)++; /* Q D D D P */
2535 qd_idx = 0;
2536 } else if (*dd_idx >= pd_idx)
2537 (*dd_idx) += 2; /* D D P Q D */
2538 break;
2539 case ALGORITHM_LEFT_SYMMETRIC:
2540 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2541 qd_idx = (pd_idx + 1) % raid_disks;
2542 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2543 break;
2544 case ALGORITHM_RIGHT_SYMMETRIC:
2545 pd_idx = sector_div(stripe2, raid_disks);
2546 qd_idx = (pd_idx + 1) % raid_disks;
2547 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2548 break;
2549
2550 case ALGORITHM_PARITY_0:
2551 pd_idx = 0;
2552 qd_idx = 1;
2553 (*dd_idx) += 2;
2554 break;
2555 case ALGORITHM_PARITY_N:
2556 pd_idx = data_disks;
2557 qd_idx = data_disks + 1;
2558 break;
2559
2560 case ALGORITHM_ROTATING_ZERO_RESTART:
2561 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2562 * of blocks for computing Q is different.
2563 */
2564 pd_idx = sector_div(stripe2, raid_disks);
2565 qd_idx = pd_idx + 1;
2566 if (pd_idx == raid_disks-1) {
2567 (*dd_idx)++; /* Q D D D P */
2568 qd_idx = 0;
2569 } else if (*dd_idx >= pd_idx)
2570 (*dd_idx) += 2; /* D D P Q D */
2571 ddf_layout = 1;
2572 break;
2573
2574 case ALGORITHM_ROTATING_N_RESTART:
2575 /* Same a left_asymmetric, by first stripe is
2576 * D D D P Q rather than
2577 * Q D D D P
2578 */
2579 stripe2 += 1;
2580 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2581 qd_idx = pd_idx + 1;
2582 if (pd_idx == raid_disks-1) {
2583 (*dd_idx)++; /* Q D D D P */
2584 qd_idx = 0;
2585 } else if (*dd_idx >= pd_idx)
2586 (*dd_idx) += 2; /* D D P Q D */
2587 ddf_layout = 1;
2588 break;
2589
2590 case ALGORITHM_ROTATING_N_CONTINUE:
2591 /* Same as left_symmetric but Q is before P */
2592 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2593 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2594 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2595 ddf_layout = 1;
2596 break;
2597
2598 case ALGORITHM_LEFT_ASYMMETRIC_6:
2599 /* RAID5 left_asymmetric, with Q on last device */
2600 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2601 if (*dd_idx >= pd_idx)
2602 (*dd_idx)++;
2603 qd_idx = raid_disks - 1;
2604 break;
2605
2606 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2607 pd_idx = sector_div(stripe2, raid_disks-1);
2608 if (*dd_idx >= pd_idx)
2609 (*dd_idx)++;
2610 qd_idx = raid_disks - 1;
2611 break;
2612
2613 case ALGORITHM_LEFT_SYMMETRIC_6:
2614 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2615 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2616 qd_idx = raid_disks - 1;
2617 break;
2618
2619 case ALGORITHM_RIGHT_SYMMETRIC_6:
2620 pd_idx = sector_div(stripe2, raid_disks-1);
2621 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2622 qd_idx = raid_disks - 1;
2623 break;
2624
2625 case ALGORITHM_PARITY_0_6:
2626 pd_idx = 0;
2627 (*dd_idx)++;
2628 qd_idx = raid_disks - 1;
2629 break;
2630
2631 default:
2632 BUG();
2633 }
2634 break;
2635 }
2636
2637 if (sh) {
2638 sh->pd_idx = pd_idx;
2639 sh->qd_idx = qd_idx;
2640 sh->ddf_layout = ddf_layout;
2641 }
2642 /*
2643 * Finally, compute the new sector number
2644 */
2645 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2646 return new_sector;
2647 }
2648
2649 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2650 {
2651 struct r5conf *conf = sh->raid_conf;
2652 int raid_disks = sh->disks;
2653 int data_disks = raid_disks - conf->max_degraded;
2654 sector_t new_sector = sh->sector, check;
2655 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2656 : conf->chunk_sectors;
2657 int algorithm = previous ? conf->prev_algo
2658 : conf->algorithm;
2659 sector_t stripe;
2660 int chunk_offset;
2661 sector_t chunk_number;
2662 int dummy1, dd_idx = i;
2663 sector_t r_sector;
2664 struct stripe_head sh2;
2665
2666 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2667 stripe = new_sector;
2668
2669 if (i == sh->pd_idx)
2670 return 0;
2671 switch(conf->level) {
2672 case 4: break;
2673 case 5:
2674 switch (algorithm) {
2675 case ALGORITHM_LEFT_ASYMMETRIC:
2676 case ALGORITHM_RIGHT_ASYMMETRIC:
2677 if (i > sh->pd_idx)
2678 i--;
2679 break;
2680 case ALGORITHM_LEFT_SYMMETRIC:
2681 case ALGORITHM_RIGHT_SYMMETRIC:
2682 if (i < sh->pd_idx)
2683 i += raid_disks;
2684 i -= (sh->pd_idx + 1);
2685 break;
2686 case ALGORITHM_PARITY_0:
2687 i -= 1;
2688 break;
2689 case ALGORITHM_PARITY_N:
2690 break;
2691 default:
2692 BUG();
2693 }
2694 break;
2695 case 6:
2696 if (i == sh->qd_idx)
2697 return 0; /* It is the Q disk */
2698 switch (algorithm) {
2699 case ALGORITHM_LEFT_ASYMMETRIC:
2700 case ALGORITHM_RIGHT_ASYMMETRIC:
2701 case ALGORITHM_ROTATING_ZERO_RESTART:
2702 case ALGORITHM_ROTATING_N_RESTART:
2703 if (sh->pd_idx == raid_disks-1)
2704 i--; /* Q D D D P */
2705 else if (i > sh->pd_idx)
2706 i -= 2; /* D D P Q D */
2707 break;
2708 case ALGORITHM_LEFT_SYMMETRIC:
2709 case ALGORITHM_RIGHT_SYMMETRIC:
2710 if (sh->pd_idx == raid_disks-1)
2711 i--; /* Q D D D P */
2712 else {
2713 /* D D P Q D */
2714 if (i < sh->pd_idx)
2715 i += raid_disks;
2716 i -= (sh->pd_idx + 2);
2717 }
2718 break;
2719 case ALGORITHM_PARITY_0:
2720 i -= 2;
2721 break;
2722 case ALGORITHM_PARITY_N:
2723 break;
2724 case ALGORITHM_ROTATING_N_CONTINUE:
2725 /* Like left_symmetric, but P is before Q */
2726 if (sh->pd_idx == 0)
2727 i--; /* P D D D Q */
2728 else {
2729 /* D D Q P D */
2730 if (i < sh->pd_idx)
2731 i += raid_disks;
2732 i -= (sh->pd_idx + 1);
2733 }
2734 break;
2735 case ALGORITHM_LEFT_ASYMMETRIC_6:
2736 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2737 if (i > sh->pd_idx)
2738 i--;
2739 break;
2740 case ALGORITHM_LEFT_SYMMETRIC_6:
2741 case ALGORITHM_RIGHT_SYMMETRIC_6:
2742 if (i < sh->pd_idx)
2743 i += data_disks + 1;
2744 i -= (sh->pd_idx + 1);
2745 break;
2746 case ALGORITHM_PARITY_0_6:
2747 i -= 1;
2748 break;
2749 default:
2750 BUG();
2751 }
2752 break;
2753 }
2754
2755 chunk_number = stripe * data_disks + i;
2756 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2757
2758 check = raid5_compute_sector(conf, r_sector,
2759 previous, &dummy1, &sh2);
2760 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2761 || sh2.qd_idx != sh->qd_idx) {
2762 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2763 mdname(conf->mddev));
2764 return 0;
2765 }
2766 return r_sector;
2767 }
2768
2769 static void
2770 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2771 int rcw, int expand)
2772 {
2773 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2774 struct r5conf *conf = sh->raid_conf;
2775 int level = conf->level;
2776
2777 if (rcw) {
2778
2779 for (i = disks; i--; ) {
2780 struct r5dev *dev = &sh->dev[i];
2781
2782 if (dev->towrite) {
2783 set_bit(R5_LOCKED, &dev->flags);
2784 set_bit(R5_Wantdrain, &dev->flags);
2785 if (!expand)
2786 clear_bit(R5_UPTODATE, &dev->flags);
2787 s->locked++;
2788 }
2789 }
2790 /* if we are not expanding this is a proper write request, and
2791 * there will be bios with new data to be drained into the
2792 * stripe cache
2793 */
2794 if (!expand) {
2795 if (!s->locked)
2796 /* False alarm, nothing to do */
2797 return;
2798 sh->reconstruct_state = reconstruct_state_drain_run;
2799 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2800 } else
2801 sh->reconstruct_state = reconstruct_state_run;
2802
2803 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2804
2805 if (s->locked + conf->max_degraded == disks)
2806 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2807 atomic_inc(&conf->pending_full_writes);
2808 } else {
2809 BUG_ON(level == 6);
2810 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2811 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2812
2813 for (i = disks; i--; ) {
2814 struct r5dev *dev = &sh->dev[i];
2815 if (i == pd_idx)
2816 continue;
2817
2818 if (dev->towrite &&
2819 (test_bit(R5_UPTODATE, &dev->flags) ||
2820 test_bit(R5_Wantcompute, &dev->flags))) {
2821 set_bit(R5_Wantdrain, &dev->flags);
2822 set_bit(R5_LOCKED, &dev->flags);
2823 clear_bit(R5_UPTODATE, &dev->flags);
2824 s->locked++;
2825 }
2826 }
2827 if (!s->locked)
2828 /* False alarm - nothing to do */
2829 return;
2830 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2831 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2832 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2833 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2834 }
2835
2836 /* keep the parity disk(s) locked while asynchronous operations
2837 * are in flight
2838 */
2839 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2840 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2841 s->locked++;
2842
2843 if (level == 6) {
2844 int qd_idx = sh->qd_idx;
2845 struct r5dev *dev = &sh->dev[qd_idx];
2846
2847 set_bit(R5_LOCKED, &dev->flags);
2848 clear_bit(R5_UPTODATE, &dev->flags);
2849 s->locked++;
2850 }
2851
2852 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2853 __func__, (unsigned long long)sh->sector,
2854 s->locked, s->ops_request);
2855 }
2856
2857 /*
2858 * Each stripe/dev can have one or more bion attached.
2859 * toread/towrite point to the first in a chain.
2860 * The bi_next chain must be in order.
2861 */
2862 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2863 int forwrite, int previous)
2864 {
2865 struct bio **bip;
2866 struct r5conf *conf = sh->raid_conf;
2867 int firstwrite=0;
2868
2869 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2870 (unsigned long long)bi->bi_iter.bi_sector,
2871 (unsigned long long)sh->sector);
2872
2873 /*
2874 * If several bio share a stripe. The bio bi_phys_segments acts as a
2875 * reference count to avoid race. The reference count should already be
2876 * increased before this function is called (for example, in
2877 * make_request()), so other bio sharing this stripe will not free the
2878 * stripe. If a stripe is owned by one stripe, the stripe lock will
2879 * protect it.
2880 */
2881 spin_lock_irq(&sh->stripe_lock);
2882 /* Don't allow new IO added to stripes in batch list */
2883 if (sh->batch_head)
2884 goto overlap;
2885 if (forwrite) {
2886 bip = &sh->dev[dd_idx].towrite;
2887 if (*bip == NULL)
2888 firstwrite = 1;
2889 } else
2890 bip = &sh->dev[dd_idx].toread;
2891 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2892 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2893 goto overlap;
2894 bip = & (*bip)->bi_next;
2895 }
2896 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2897 goto overlap;
2898
2899 if (!forwrite || previous)
2900 clear_bit(STRIPE_BATCH_READY, &sh->state);
2901
2902 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2903 if (*bip)
2904 bi->bi_next = *bip;
2905 *bip = bi;
2906 raid5_inc_bi_active_stripes(bi);
2907
2908 if (forwrite) {
2909 /* check if page is covered */
2910 sector_t sector = sh->dev[dd_idx].sector;
2911 for (bi=sh->dev[dd_idx].towrite;
2912 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2913 bi && bi->bi_iter.bi_sector <= sector;
2914 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2915 if (bio_end_sector(bi) >= sector)
2916 sector = bio_end_sector(bi);
2917 }
2918 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2919 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2920 sh->overwrite_disks++;
2921 }
2922
2923 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2924 (unsigned long long)(*bip)->bi_iter.bi_sector,
2925 (unsigned long long)sh->sector, dd_idx);
2926 spin_unlock_irq(&sh->stripe_lock);
2927
2928 if (conf->mddev->bitmap && firstwrite) {
2929 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2930 STRIPE_SECTORS, 0);
2931 sh->bm_seq = conf->seq_flush+1;
2932 set_bit(STRIPE_BIT_DELAY, &sh->state);
2933 }
2934
2935 if (stripe_can_batch(sh))
2936 stripe_add_to_batch_list(conf, sh);
2937 return 1;
2938
2939 overlap:
2940 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2941 spin_unlock_irq(&sh->stripe_lock);
2942 return 0;
2943 }
2944
2945 static void end_reshape(struct r5conf *conf);
2946
2947 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2948 struct stripe_head *sh)
2949 {
2950 int sectors_per_chunk =
2951 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2952 int dd_idx;
2953 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2954 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2955
2956 raid5_compute_sector(conf,
2957 stripe * (disks - conf->max_degraded)
2958 *sectors_per_chunk + chunk_offset,
2959 previous,
2960 &dd_idx, sh);
2961 }
2962
2963 static void
2964 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2965 struct stripe_head_state *s, int disks,
2966 struct bio **return_bi)
2967 {
2968 int i;
2969 BUG_ON(sh->batch_head);
2970 for (i = disks; i--; ) {
2971 struct bio *bi;
2972 int bitmap_end = 0;
2973
2974 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2975 struct md_rdev *rdev;
2976 rcu_read_lock();
2977 rdev = rcu_dereference(conf->disks[i].rdev);
2978 if (rdev && test_bit(In_sync, &rdev->flags))
2979 atomic_inc(&rdev->nr_pending);
2980 else
2981 rdev = NULL;
2982 rcu_read_unlock();
2983 if (rdev) {
2984 if (!rdev_set_badblocks(
2985 rdev,
2986 sh->sector,
2987 STRIPE_SECTORS, 0))
2988 md_error(conf->mddev, rdev);
2989 rdev_dec_pending(rdev, conf->mddev);
2990 }
2991 }
2992 spin_lock_irq(&sh->stripe_lock);
2993 /* fail all writes first */
2994 bi = sh->dev[i].towrite;
2995 sh->dev[i].towrite = NULL;
2996 sh->overwrite_disks = 0;
2997 spin_unlock_irq(&sh->stripe_lock);
2998 if (bi)
2999 bitmap_end = 1;
3000
3001 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3002 wake_up(&conf->wait_for_overlap);
3003
3004 while (bi && bi->bi_iter.bi_sector <
3005 sh->dev[i].sector + STRIPE_SECTORS) {
3006 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3007 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3008 if (!raid5_dec_bi_active_stripes(bi)) {
3009 md_write_end(conf->mddev);
3010 bi->bi_next = *return_bi;
3011 *return_bi = bi;
3012 }
3013 bi = nextbi;
3014 }
3015 if (bitmap_end)
3016 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3017 STRIPE_SECTORS, 0, 0);
3018 bitmap_end = 0;
3019 /* and fail all 'written' */
3020 bi = sh->dev[i].written;
3021 sh->dev[i].written = NULL;
3022 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3023 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3024 sh->dev[i].page = sh->dev[i].orig_page;
3025 }
3026
3027 if (bi) bitmap_end = 1;
3028 while (bi && bi->bi_iter.bi_sector <
3029 sh->dev[i].sector + STRIPE_SECTORS) {
3030 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3031 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3032 if (!raid5_dec_bi_active_stripes(bi)) {
3033 md_write_end(conf->mddev);
3034 bi->bi_next = *return_bi;
3035 *return_bi = bi;
3036 }
3037 bi = bi2;
3038 }
3039
3040 /* fail any reads if this device is non-operational and
3041 * the data has not reached the cache yet.
3042 */
3043 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3044 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3045 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3046 spin_lock_irq(&sh->stripe_lock);
3047 bi = sh->dev[i].toread;
3048 sh->dev[i].toread = NULL;
3049 spin_unlock_irq(&sh->stripe_lock);
3050 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3051 wake_up(&conf->wait_for_overlap);
3052 while (bi && bi->bi_iter.bi_sector <
3053 sh->dev[i].sector + STRIPE_SECTORS) {
3054 struct bio *nextbi =
3055 r5_next_bio(bi, sh->dev[i].sector);
3056 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3057 if (!raid5_dec_bi_active_stripes(bi)) {
3058 bi->bi_next = *return_bi;
3059 *return_bi = bi;
3060 }
3061 bi = nextbi;
3062 }
3063 }
3064 if (bitmap_end)
3065 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3066 STRIPE_SECTORS, 0, 0);
3067 /* If we were in the middle of a write the parity block might
3068 * still be locked - so just clear all R5_LOCKED flags
3069 */
3070 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3071 }
3072
3073 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3074 if (atomic_dec_and_test(&conf->pending_full_writes))
3075 md_wakeup_thread(conf->mddev->thread);
3076 }
3077
3078 static void
3079 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3080 struct stripe_head_state *s)
3081 {
3082 int abort = 0;
3083 int i;
3084
3085 BUG_ON(sh->batch_head);
3086 clear_bit(STRIPE_SYNCING, &sh->state);
3087 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3088 wake_up(&conf->wait_for_overlap);
3089 s->syncing = 0;
3090 s->replacing = 0;
3091 /* There is nothing more to do for sync/check/repair.
3092 * Don't even need to abort as that is handled elsewhere
3093 * if needed, and not always wanted e.g. if there is a known
3094 * bad block here.
3095 * For recover/replace we need to record a bad block on all
3096 * non-sync devices, or abort the recovery
3097 */
3098 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3099 /* During recovery devices cannot be removed, so
3100 * locking and refcounting of rdevs is not needed
3101 */
3102 for (i = 0; i < conf->raid_disks; i++) {
3103 struct md_rdev *rdev = conf->disks[i].rdev;
3104 if (rdev
3105 && !test_bit(Faulty, &rdev->flags)
3106 && !test_bit(In_sync, &rdev->flags)
3107 && !rdev_set_badblocks(rdev, sh->sector,
3108 STRIPE_SECTORS, 0))
3109 abort = 1;
3110 rdev = conf->disks[i].replacement;
3111 if (rdev
3112 && !test_bit(Faulty, &rdev->flags)
3113 && !test_bit(In_sync, &rdev->flags)
3114 && !rdev_set_badblocks(rdev, sh->sector,
3115 STRIPE_SECTORS, 0))
3116 abort = 1;
3117 }
3118 if (abort)
3119 conf->recovery_disabled =
3120 conf->mddev->recovery_disabled;
3121 }
3122 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3123 }
3124
3125 static int want_replace(struct stripe_head *sh, int disk_idx)
3126 {
3127 struct md_rdev *rdev;
3128 int rv = 0;
3129 /* Doing recovery so rcu locking not required */
3130 rdev = sh->raid_conf->disks[disk_idx].replacement;
3131 if (rdev
3132 && !test_bit(Faulty, &rdev->flags)
3133 && !test_bit(In_sync, &rdev->flags)
3134 && (rdev->recovery_offset <= sh->sector
3135 || rdev->mddev->recovery_cp <= sh->sector))
3136 rv = 1;
3137
3138 return rv;
3139 }
3140
3141 /* fetch_block - checks the given member device to see if its data needs
3142 * to be read or computed to satisfy a request.
3143 *
3144 * Returns 1 when no more member devices need to be checked, otherwise returns
3145 * 0 to tell the loop in handle_stripe_fill to continue
3146 */
3147
3148 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3149 int disk_idx, int disks)
3150 {
3151 struct r5dev *dev = &sh->dev[disk_idx];
3152 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3153 &sh->dev[s->failed_num[1]] };
3154 int i;
3155
3156
3157 if (test_bit(R5_LOCKED, &dev->flags) ||
3158 test_bit(R5_UPTODATE, &dev->flags))
3159 /* No point reading this as we already have it or have
3160 * decided to get it.
3161 */
3162 return 0;
3163
3164 if (dev->toread ||
3165 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3166 /* We need this block to directly satisfy a request */
3167 return 1;
3168
3169 if (s->syncing || s->expanding ||
3170 (s->replacing && want_replace(sh, disk_idx)))
3171 /* When syncing, or expanding we read everything.
3172 * When replacing, we need the replaced block.
3173 */
3174 return 1;
3175
3176 if ((s->failed >= 1 && fdev[0]->toread) ||
3177 (s->failed >= 2 && fdev[1]->toread))
3178 /* If we want to read from a failed device, then
3179 * we need to actually read every other device.
3180 */
3181 return 1;
3182
3183 /* Sometimes neither read-modify-write nor reconstruct-write
3184 * cycles can work. In those cases we read every block we
3185 * can. Then the parity-update is certain to have enough to
3186 * work with.
3187 * This can only be a problem when we need to write something,
3188 * and some device has failed. If either of those tests
3189 * fail we need look no further.
3190 */
3191 if (!s->failed || !s->to_write)
3192 return 0;
3193
3194 if (test_bit(R5_Insync, &dev->flags) &&
3195 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3196 /* Pre-reads at not permitted until after short delay
3197 * to gather multiple requests. However if this
3198 * device is no Insync, the block could only be be computed
3199 * and there is no need to delay that.
3200 */
3201 return 0;
3202
3203 for (i = 0; i < s->failed; i++) {
3204 if (fdev[i]->towrite &&
3205 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3206 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3207 /* If we have a partial write to a failed
3208 * device, then we will need to reconstruct
3209 * the content of that device, so all other
3210 * devices must be read.
3211 */
3212 return 1;
3213 }
3214
3215 /* If we are forced to do a reconstruct-write, either because
3216 * the current RAID6 implementation only supports that, or
3217 * or because parity cannot be trusted and we are currently
3218 * recovering it, there is extra need to be careful.
3219 * If one of the devices that we would need to read, because
3220 * it is not being overwritten (and maybe not written at all)
3221 * is missing/faulty, then we need to read everything we can.
3222 */
3223 if (sh->raid_conf->level != 6 &&
3224 sh->sector < sh->raid_conf->mddev->recovery_cp)
3225 /* reconstruct-write isn't being forced */
3226 return 0;
3227 for (i = 0; i < s->failed; i++) {
3228 if (!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3229 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3230 return 1;
3231 }
3232
3233 return 0;
3234 }
3235
3236 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3237 int disk_idx, int disks)
3238 {
3239 struct r5dev *dev = &sh->dev[disk_idx];
3240
3241 /* is the data in this block needed, and can we get it? */
3242 if (need_this_block(sh, s, disk_idx, disks)) {
3243 /* we would like to get this block, possibly by computing it,
3244 * otherwise read it if the backing disk is insync
3245 */
3246 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3247 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3248 if ((s->uptodate == disks - 1) &&
3249 (s->failed && (disk_idx == s->failed_num[0] ||
3250 disk_idx == s->failed_num[1]))) {
3251 /* have disk failed, and we're requested to fetch it;
3252 * do compute it
3253 */
3254 pr_debug("Computing stripe %llu block %d\n",
3255 (unsigned long long)sh->sector, disk_idx);
3256 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3257 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3258 set_bit(R5_Wantcompute, &dev->flags);
3259 sh->ops.target = disk_idx;
3260 sh->ops.target2 = -1; /* no 2nd target */
3261 s->req_compute = 1;
3262 /* Careful: from this point on 'uptodate' is in the eye
3263 * of raid_run_ops which services 'compute' operations
3264 * before writes. R5_Wantcompute flags a block that will
3265 * be R5_UPTODATE by the time it is needed for a
3266 * subsequent operation.
3267 */
3268 s->uptodate++;
3269 return 1;
3270 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3271 /* Computing 2-failure is *very* expensive; only
3272 * do it if failed >= 2
3273 */
3274 int other;
3275 for (other = disks; other--; ) {
3276 if (other == disk_idx)
3277 continue;
3278 if (!test_bit(R5_UPTODATE,
3279 &sh->dev[other].flags))
3280 break;
3281 }
3282 BUG_ON(other < 0);
3283 pr_debug("Computing stripe %llu blocks %d,%d\n",
3284 (unsigned long long)sh->sector,
3285 disk_idx, other);
3286 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3287 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3288 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3289 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3290 sh->ops.target = disk_idx;
3291 sh->ops.target2 = other;
3292 s->uptodate += 2;
3293 s->req_compute = 1;
3294 return 1;
3295 } else if (test_bit(R5_Insync, &dev->flags)) {
3296 set_bit(R5_LOCKED, &dev->flags);
3297 set_bit(R5_Wantread, &dev->flags);
3298 s->locked++;
3299 pr_debug("Reading block %d (sync=%d)\n",
3300 disk_idx, s->syncing);
3301 }
3302 }
3303
3304 return 0;
3305 }
3306
3307 /**
3308 * handle_stripe_fill - read or compute data to satisfy pending requests.
3309 */
3310 static void handle_stripe_fill(struct stripe_head *sh,
3311 struct stripe_head_state *s,
3312 int disks)
3313 {
3314 int i;
3315
3316 BUG_ON(sh->batch_head);
3317 /* look for blocks to read/compute, skip this if a compute
3318 * is already in flight, or if the stripe contents are in the
3319 * midst of changing due to a write
3320 */
3321 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3322 !sh->reconstruct_state)
3323 for (i = disks; i--; )
3324 if (fetch_block(sh, s, i, disks))
3325 break;
3326 set_bit(STRIPE_HANDLE, &sh->state);
3327 }
3328
3329 /* handle_stripe_clean_event
3330 * any written block on an uptodate or failed drive can be returned.
3331 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3332 * never LOCKED, so we don't need to test 'failed' directly.
3333 */
3334 static void handle_stripe_clean_event(struct r5conf *conf,
3335 struct stripe_head *sh, int disks, struct bio **return_bi)
3336 {
3337 int i;
3338 struct r5dev *dev;
3339 int discard_pending = 0;
3340 struct stripe_head *head_sh = sh;
3341 bool do_endio = false;
3342 int wakeup_nr = 0;
3343
3344 for (i = disks; i--; )
3345 if (sh->dev[i].written) {
3346 dev = &sh->dev[i];
3347 if (!test_bit(R5_LOCKED, &dev->flags) &&
3348 (test_bit(R5_UPTODATE, &dev->flags) ||
3349 test_bit(R5_Discard, &dev->flags) ||
3350 test_bit(R5_SkipCopy, &dev->flags))) {
3351 /* We can return any write requests */
3352 struct bio *wbi, *wbi2;
3353 pr_debug("Return write for disc %d\n", i);
3354 if (test_and_clear_bit(R5_Discard, &dev->flags))
3355 clear_bit(R5_UPTODATE, &dev->flags);
3356 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3357 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3358 }
3359 do_endio = true;
3360
3361 returnbi:
3362 dev->page = dev->orig_page;
3363 wbi = dev->written;
3364 dev->written = NULL;
3365 while (wbi && wbi->bi_iter.bi_sector <
3366 dev->sector + STRIPE_SECTORS) {
3367 wbi2 = r5_next_bio(wbi, dev->sector);
3368 if (!raid5_dec_bi_active_stripes(wbi)) {
3369 md_write_end(conf->mddev);
3370 wbi->bi_next = *return_bi;
3371 *return_bi = wbi;
3372 }
3373 wbi = wbi2;
3374 }
3375 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3376 STRIPE_SECTORS,
3377 !test_bit(STRIPE_DEGRADED, &sh->state),
3378 0);
3379 if (head_sh->batch_head) {
3380 sh = list_first_entry(&sh->batch_list,
3381 struct stripe_head,
3382 batch_list);
3383 if (sh != head_sh) {
3384 dev = &sh->dev[i];
3385 goto returnbi;
3386 }
3387 }
3388 sh = head_sh;
3389 dev = &sh->dev[i];
3390 } else if (test_bit(R5_Discard, &dev->flags))
3391 discard_pending = 1;
3392 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3393 WARN_ON(dev->page != dev->orig_page);
3394 }
3395 if (!discard_pending &&
3396 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3397 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3398 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3399 if (sh->qd_idx >= 0) {
3400 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3401 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3402 }
3403 /* now that discard is done we can proceed with any sync */
3404 clear_bit(STRIPE_DISCARD, &sh->state);
3405 /*
3406 * SCSI discard will change some bio fields and the stripe has
3407 * no updated data, so remove it from hash list and the stripe
3408 * will be reinitialized
3409 */
3410 spin_lock_irq(&conf->device_lock);
3411 unhash:
3412 remove_hash(sh);
3413 if (head_sh->batch_head) {
3414 sh = list_first_entry(&sh->batch_list,
3415 struct stripe_head, batch_list);
3416 if (sh != head_sh)
3417 goto unhash;
3418 }
3419 spin_unlock_irq(&conf->device_lock);
3420 sh = head_sh;
3421
3422 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3423 set_bit(STRIPE_HANDLE, &sh->state);
3424
3425 }
3426
3427 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3428 if (atomic_dec_and_test(&conf->pending_full_writes))
3429 md_wakeup_thread(conf->mddev->thread);
3430
3431 if (!head_sh->batch_head || !do_endio)
3432 return;
3433 for (i = 0; i < head_sh->disks; i++) {
3434 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3435 wakeup_nr++;
3436 }
3437 while (!list_empty(&head_sh->batch_list)) {
3438 int i;
3439 sh = list_first_entry(&head_sh->batch_list,
3440 struct stripe_head, batch_list);
3441 list_del_init(&sh->batch_list);
3442
3443 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
3444 head_sh->state & ~((1 << STRIPE_ACTIVE) |
3445 (1 << STRIPE_PREREAD_ACTIVE) |
3446 STRIPE_EXPAND_SYNC_FLAG));
3447 sh->check_state = head_sh->check_state;
3448 sh->reconstruct_state = head_sh->reconstruct_state;
3449 for (i = 0; i < sh->disks; i++) {
3450 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3451 wakeup_nr++;
3452 sh->dev[i].flags = head_sh->dev[i].flags;
3453 }
3454
3455 spin_lock_irq(&sh->stripe_lock);
3456 sh->batch_head = NULL;
3457 spin_unlock_irq(&sh->stripe_lock);
3458 if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
3459 set_bit(STRIPE_HANDLE, &sh->state);
3460 release_stripe(sh);
3461 }
3462
3463 spin_lock_irq(&head_sh->stripe_lock);
3464 head_sh->batch_head = NULL;
3465 spin_unlock_irq(&head_sh->stripe_lock);
3466 wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
3467 if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
3468 set_bit(STRIPE_HANDLE, &head_sh->state);
3469 }
3470
3471 static void handle_stripe_dirtying(struct r5conf *conf,
3472 struct stripe_head *sh,
3473 struct stripe_head_state *s,
3474 int disks)
3475 {
3476 int rmw = 0, rcw = 0, i;
3477 sector_t recovery_cp = conf->mddev->recovery_cp;
3478
3479 /* RAID6 requires 'rcw' in current implementation.
3480 * Otherwise, check whether resync is now happening or should start.
3481 * If yes, then the array is dirty (after unclean shutdown or
3482 * initial creation), so parity in some stripes might be inconsistent.
3483 * In this case, we need to always do reconstruct-write, to ensure
3484 * that in case of drive failure or read-error correction, we
3485 * generate correct data from the parity.
3486 */
3487 if (conf->max_degraded == 2 ||
3488 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3489 s->failed == 0)) {
3490 /* Calculate the real rcw later - for now make it
3491 * look like rcw is cheaper
3492 */
3493 rcw = 1; rmw = 2;
3494 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3495 conf->max_degraded, (unsigned long long)recovery_cp,
3496 (unsigned long long)sh->sector);
3497 } else for (i = disks; i--; ) {
3498 /* would I have to read this buffer for read_modify_write */
3499 struct r5dev *dev = &sh->dev[i];
3500 if ((dev->towrite || i == sh->pd_idx) &&
3501 !test_bit(R5_LOCKED, &dev->flags) &&
3502 !(test_bit(R5_UPTODATE, &dev->flags) ||
3503 test_bit(R5_Wantcompute, &dev->flags))) {
3504 if (test_bit(R5_Insync, &dev->flags))
3505 rmw++;
3506 else
3507 rmw += 2*disks; /* cannot read it */
3508 }
3509 /* Would I have to read this buffer for reconstruct_write */
3510 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3511 !test_bit(R5_LOCKED, &dev->flags) &&
3512 !(test_bit(R5_UPTODATE, &dev->flags) ||
3513 test_bit(R5_Wantcompute, &dev->flags))) {
3514 if (test_bit(R5_Insync, &dev->flags))
3515 rcw++;
3516 else
3517 rcw += 2*disks;
3518 }
3519 }
3520 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3521 (unsigned long long)sh->sector, rmw, rcw);
3522 set_bit(STRIPE_HANDLE, &sh->state);
3523 if (rmw < rcw && rmw > 0) {
3524 /* prefer read-modify-write, but need to get some data */
3525 if (conf->mddev->queue)
3526 blk_add_trace_msg(conf->mddev->queue,
3527 "raid5 rmw %llu %d",
3528 (unsigned long long)sh->sector, rmw);
3529 for (i = disks; i--; ) {
3530 struct r5dev *dev = &sh->dev[i];
3531 if ((dev->towrite || i == sh->pd_idx) &&
3532 !test_bit(R5_LOCKED, &dev->flags) &&
3533 !(test_bit(R5_UPTODATE, &dev->flags) ||
3534 test_bit(R5_Wantcompute, &dev->flags)) &&
3535 test_bit(R5_Insync, &dev->flags)) {
3536 if (test_bit(STRIPE_PREREAD_ACTIVE,
3537 &sh->state)) {
3538 pr_debug("Read_old block %d for r-m-w\n",
3539 i);
3540 set_bit(R5_LOCKED, &dev->flags);
3541 set_bit(R5_Wantread, &dev->flags);
3542 s->locked++;
3543 } else {
3544 set_bit(STRIPE_DELAYED, &sh->state);
3545 set_bit(STRIPE_HANDLE, &sh->state);
3546 }
3547 }
3548 }
3549 }
3550 if (rcw <= rmw && rcw > 0) {
3551 /* want reconstruct write, but need to get some data */
3552 int qread =0;
3553 rcw = 0;
3554 for (i = disks; i--; ) {
3555 struct r5dev *dev = &sh->dev[i];
3556 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3557 i != sh->pd_idx && i != sh->qd_idx &&
3558 !test_bit(R5_LOCKED, &dev->flags) &&
3559 !(test_bit(R5_UPTODATE, &dev->flags) ||
3560 test_bit(R5_Wantcompute, &dev->flags))) {
3561 rcw++;
3562 if (test_bit(R5_Insync, &dev->flags) &&
3563 test_bit(STRIPE_PREREAD_ACTIVE,
3564 &sh->state)) {
3565 pr_debug("Read_old block "
3566 "%d for Reconstruct\n", i);
3567 set_bit(R5_LOCKED, &dev->flags);
3568 set_bit(R5_Wantread, &dev->flags);
3569 s->locked++;
3570 qread++;
3571 } else {
3572 set_bit(STRIPE_DELAYED, &sh->state);
3573 set_bit(STRIPE_HANDLE, &sh->state);
3574 }
3575 }
3576 }
3577 if (rcw && conf->mddev->queue)
3578 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3579 (unsigned long long)sh->sector,
3580 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3581 }
3582
3583 if (rcw > disks && rmw > disks &&
3584 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3585 set_bit(STRIPE_DELAYED, &sh->state);
3586
3587 /* now if nothing is locked, and if we have enough data,
3588 * we can start a write request
3589 */
3590 /* since handle_stripe can be called at any time we need to handle the
3591 * case where a compute block operation has been submitted and then a
3592 * subsequent call wants to start a write request. raid_run_ops only
3593 * handles the case where compute block and reconstruct are requested
3594 * simultaneously. If this is not the case then new writes need to be
3595 * held off until the compute completes.
3596 */
3597 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3598 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3599 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3600 schedule_reconstruction(sh, s, rcw == 0, 0);
3601 }
3602
3603 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3604 struct stripe_head_state *s, int disks)
3605 {
3606 struct r5dev *dev = NULL;
3607
3608 BUG_ON(sh->batch_head);
3609 set_bit(STRIPE_HANDLE, &sh->state);
3610
3611 switch (sh->check_state) {
3612 case check_state_idle:
3613 /* start a new check operation if there are no failures */
3614 if (s->failed == 0) {
3615 BUG_ON(s->uptodate != disks);
3616 sh->check_state = check_state_run;
3617 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3618 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3619 s->uptodate--;
3620 break;
3621 }
3622 dev = &sh->dev[s->failed_num[0]];
3623 /* fall through */
3624 case check_state_compute_result:
3625 sh->check_state = check_state_idle;
3626 if (!dev)
3627 dev = &sh->dev[sh->pd_idx];
3628
3629 /* check that a write has not made the stripe insync */
3630 if (test_bit(STRIPE_INSYNC, &sh->state))
3631 break;
3632
3633 /* either failed parity check, or recovery is happening */
3634 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3635 BUG_ON(s->uptodate != disks);
3636
3637 set_bit(R5_LOCKED, &dev->flags);
3638 s->locked++;
3639 set_bit(R5_Wantwrite, &dev->flags);
3640
3641 clear_bit(STRIPE_DEGRADED, &sh->state);
3642 set_bit(STRIPE_INSYNC, &sh->state);
3643 break;
3644 case check_state_run:
3645 break; /* we will be called again upon completion */
3646 case check_state_check_result:
3647 sh->check_state = check_state_idle;
3648
3649 /* if a failure occurred during the check operation, leave
3650 * STRIPE_INSYNC not set and let the stripe be handled again
3651 */
3652 if (s->failed)
3653 break;
3654
3655 /* handle a successful check operation, if parity is correct
3656 * we are done. Otherwise update the mismatch count and repair
3657 * parity if !MD_RECOVERY_CHECK
3658 */
3659 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3660 /* parity is correct (on disc,
3661 * not in buffer any more)
3662 */
3663 set_bit(STRIPE_INSYNC, &sh->state);
3664 else {
3665 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3666 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3667 /* don't try to repair!! */
3668 set_bit(STRIPE_INSYNC, &sh->state);
3669 else {
3670 sh->check_state = check_state_compute_run;
3671 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3672 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3673 set_bit(R5_Wantcompute,
3674 &sh->dev[sh->pd_idx].flags);
3675 sh->ops.target = sh->pd_idx;
3676 sh->ops.target2 = -1;
3677 s->uptodate++;
3678 }
3679 }
3680 break;
3681 case check_state_compute_run:
3682 break;
3683 default:
3684 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3685 __func__, sh->check_state,
3686 (unsigned long long) sh->sector);
3687 BUG();
3688 }
3689 }
3690
3691 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3692 struct stripe_head_state *s,
3693 int disks)
3694 {
3695 int pd_idx = sh->pd_idx;
3696 int qd_idx = sh->qd_idx;
3697 struct r5dev *dev;
3698
3699 BUG_ON(sh->batch_head);
3700 set_bit(STRIPE_HANDLE, &sh->state);
3701
3702 BUG_ON(s->failed > 2);
3703
3704 /* Want to check and possibly repair P and Q.
3705 * However there could be one 'failed' device, in which
3706 * case we can only check one of them, possibly using the
3707 * other to generate missing data
3708 */
3709
3710 switch (sh->check_state) {
3711 case check_state_idle:
3712 /* start a new check operation if there are < 2 failures */
3713 if (s->failed == s->q_failed) {
3714 /* The only possible failed device holds Q, so it
3715 * makes sense to check P (If anything else were failed,
3716 * we would have used P to recreate it).
3717 */
3718 sh->check_state = check_state_run;
3719 }
3720 if (!s->q_failed && s->failed < 2) {
3721 /* Q is not failed, and we didn't use it to generate
3722 * anything, so it makes sense to check it
3723 */
3724 if (sh->check_state == check_state_run)
3725 sh->check_state = check_state_run_pq;
3726 else
3727 sh->check_state = check_state_run_q;
3728 }
3729
3730 /* discard potentially stale zero_sum_result */
3731 sh->ops.zero_sum_result = 0;
3732
3733 if (sh->check_state == check_state_run) {
3734 /* async_xor_zero_sum destroys the contents of P */
3735 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3736 s->uptodate--;
3737 }
3738 if (sh->check_state >= check_state_run &&
3739 sh->check_state <= check_state_run_pq) {
3740 /* async_syndrome_zero_sum preserves P and Q, so
3741 * no need to mark them !uptodate here
3742 */
3743 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3744 break;
3745 }
3746
3747 /* we have 2-disk failure */
3748 BUG_ON(s->failed != 2);
3749 /* fall through */
3750 case check_state_compute_result:
3751 sh->check_state = check_state_idle;
3752
3753 /* check that a write has not made the stripe insync */
3754 if (test_bit(STRIPE_INSYNC, &sh->state))
3755 break;
3756
3757 /* now write out any block on a failed drive,
3758 * or P or Q if they were recomputed
3759 */
3760 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3761 if (s->failed == 2) {
3762 dev = &sh->dev[s->failed_num[1]];
3763 s->locked++;
3764 set_bit(R5_LOCKED, &dev->flags);
3765 set_bit(R5_Wantwrite, &dev->flags);
3766 }
3767 if (s->failed >= 1) {
3768 dev = &sh->dev[s->failed_num[0]];
3769 s->locked++;
3770 set_bit(R5_LOCKED, &dev->flags);
3771 set_bit(R5_Wantwrite, &dev->flags);
3772 }
3773 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3774 dev = &sh->dev[pd_idx];
3775 s->locked++;
3776 set_bit(R5_LOCKED, &dev->flags);
3777 set_bit(R5_Wantwrite, &dev->flags);
3778 }
3779 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3780 dev = &sh->dev[qd_idx];
3781 s->locked++;
3782 set_bit(R5_LOCKED, &dev->flags);
3783 set_bit(R5_Wantwrite, &dev->flags);
3784 }
3785 clear_bit(STRIPE_DEGRADED, &sh->state);
3786
3787 set_bit(STRIPE_INSYNC, &sh->state);
3788 break;
3789 case check_state_run:
3790 case check_state_run_q:
3791 case check_state_run_pq:
3792 break; /* we will be called again upon completion */
3793 case check_state_check_result:
3794 sh->check_state = check_state_idle;
3795
3796 /* handle a successful check operation, if parity is correct
3797 * we are done. Otherwise update the mismatch count and repair
3798 * parity if !MD_RECOVERY_CHECK
3799 */
3800 if (sh->ops.zero_sum_result == 0) {
3801 /* both parities are correct */
3802 if (!s->failed)
3803 set_bit(STRIPE_INSYNC, &sh->state);
3804 else {
3805 /* in contrast to the raid5 case we can validate
3806 * parity, but still have a failure to write
3807 * back
3808 */
3809 sh->check_state = check_state_compute_result;
3810 /* Returning at this point means that we may go
3811 * off and bring p and/or q uptodate again so
3812 * we make sure to check zero_sum_result again
3813 * to verify if p or q need writeback
3814 */
3815 }
3816 } else {
3817 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3818 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3819 /* don't try to repair!! */
3820 set_bit(STRIPE_INSYNC, &sh->state);
3821 else {
3822 int *target = &sh->ops.target;
3823
3824 sh->ops.target = -1;
3825 sh->ops.target2 = -1;
3826 sh->check_state = check_state_compute_run;
3827 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3828 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3829 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3830 set_bit(R5_Wantcompute,
3831 &sh->dev[pd_idx].flags);
3832 *target = pd_idx;
3833 target = &sh->ops.target2;
3834 s->uptodate++;
3835 }
3836 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3837 set_bit(R5_Wantcompute,
3838 &sh->dev[qd_idx].flags);
3839 *target = qd_idx;
3840 s->uptodate++;
3841 }
3842 }
3843 }
3844 break;
3845 case check_state_compute_run:
3846 break;
3847 default:
3848 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3849 __func__, sh->check_state,
3850 (unsigned long long) sh->sector);
3851 BUG();
3852 }
3853 }
3854
3855 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3856 {
3857 int i;
3858
3859 /* We have read all the blocks in this stripe and now we need to
3860 * copy some of them into a target stripe for expand.
3861 */
3862 struct dma_async_tx_descriptor *tx = NULL;
3863 BUG_ON(sh->batch_head);
3864 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3865 for (i = 0; i < sh->disks; i++)
3866 if (i != sh->pd_idx && i != sh->qd_idx) {
3867 int dd_idx, j;
3868 struct stripe_head *sh2;
3869 struct async_submit_ctl submit;
3870
3871 sector_t bn = compute_blocknr(sh, i, 1);
3872 sector_t s = raid5_compute_sector(conf, bn, 0,
3873 &dd_idx, NULL);
3874 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3875 if (sh2 == NULL)
3876 /* so far only the early blocks of this stripe
3877 * have been requested. When later blocks
3878 * get requested, we will try again
3879 */
3880 continue;
3881 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3882 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3883 /* must have already done this block */
3884 release_stripe(sh2);
3885 continue;
3886 }
3887
3888 /* place all the copies on one channel */
3889 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3890 tx = async_memcpy(sh2->dev[dd_idx].page,
3891 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3892 &submit);
3893
3894 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3895 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3896 for (j = 0; j < conf->raid_disks; j++)
3897 if (j != sh2->pd_idx &&
3898 j != sh2->qd_idx &&
3899 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3900 break;
3901 if (j == conf->raid_disks) {
3902 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3903 set_bit(STRIPE_HANDLE, &sh2->state);
3904 }
3905 release_stripe(sh2);
3906
3907 }
3908 /* done submitting copies, wait for them to complete */
3909 async_tx_quiesce(&tx);
3910 }
3911
3912 /*
3913 * handle_stripe - do things to a stripe.
3914 *
3915 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3916 * state of various bits to see what needs to be done.
3917 * Possible results:
3918 * return some read requests which now have data
3919 * return some write requests which are safely on storage
3920 * schedule a read on some buffers
3921 * schedule a write of some buffers
3922 * return confirmation of parity correctness
3923 *
3924 */
3925
3926 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3927 {
3928 struct r5conf *conf = sh->raid_conf;
3929 int disks = sh->disks;
3930 struct r5dev *dev;
3931 int i;
3932 int do_recovery = 0;
3933
3934 memset(s, 0, sizeof(*s));
3935
3936 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
3937 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
3938 s->failed_num[0] = -1;
3939 s->failed_num[1] = -1;
3940
3941 /* Now to look around and see what can be done */
3942 rcu_read_lock();
3943 for (i=disks; i--; ) {
3944 struct md_rdev *rdev;
3945 sector_t first_bad;
3946 int bad_sectors;
3947 int is_bad = 0;
3948
3949 dev = &sh->dev[i];
3950
3951 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3952 i, dev->flags,
3953 dev->toread, dev->towrite, dev->written);
3954 /* maybe we can reply to a read
3955 *
3956 * new wantfill requests are only permitted while
3957 * ops_complete_biofill is guaranteed to be inactive
3958 */
3959 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3960 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3961 set_bit(R5_Wantfill, &dev->flags);
3962
3963 /* now count some things */
3964 if (test_bit(R5_LOCKED, &dev->flags))
3965 s->locked++;
3966 if (test_bit(R5_UPTODATE, &dev->flags))
3967 s->uptodate++;
3968 if (test_bit(R5_Wantcompute, &dev->flags)) {
3969 s->compute++;
3970 BUG_ON(s->compute > 2);
3971 }
3972
3973 if (test_bit(R5_Wantfill, &dev->flags))
3974 s->to_fill++;
3975 else if (dev->toread)
3976 s->to_read++;
3977 if (dev->towrite) {
3978 s->to_write++;
3979 if (!test_bit(R5_OVERWRITE, &dev->flags))
3980 s->non_overwrite++;
3981 }
3982 if (dev->written)
3983 s->written++;
3984 /* Prefer to use the replacement for reads, but only
3985 * if it is recovered enough and has no bad blocks.
3986 */
3987 rdev = rcu_dereference(conf->disks[i].replacement);
3988 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3989 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3990 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3991 &first_bad, &bad_sectors))
3992 set_bit(R5_ReadRepl, &dev->flags);
3993 else {
3994 if (rdev)
3995 set_bit(R5_NeedReplace, &dev->flags);
3996 rdev = rcu_dereference(conf->disks[i].rdev);
3997 clear_bit(R5_ReadRepl, &dev->flags);
3998 }
3999 if (rdev && test_bit(Faulty, &rdev->flags))
4000 rdev = NULL;
4001 if (rdev) {
4002 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4003 &first_bad, &bad_sectors);
4004 if (s->blocked_rdev == NULL
4005 && (test_bit(Blocked, &rdev->flags)
4006 || is_bad < 0)) {
4007 if (is_bad < 0)
4008 set_bit(BlockedBadBlocks,
4009 &rdev->flags);
4010 s->blocked_rdev = rdev;
4011 atomic_inc(&rdev->nr_pending);
4012 }
4013 }
4014 clear_bit(R5_Insync, &dev->flags);
4015 if (!rdev)
4016 /* Not in-sync */;
4017 else if (is_bad) {
4018 /* also not in-sync */
4019 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4020 test_bit(R5_UPTODATE, &dev->flags)) {
4021 /* treat as in-sync, but with a read error
4022 * which we can now try to correct
4023 */
4024 set_bit(R5_Insync, &dev->flags);
4025 set_bit(R5_ReadError, &dev->flags);
4026 }
4027 } else if (test_bit(In_sync, &rdev->flags))
4028 set_bit(R5_Insync, &dev->flags);
4029 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4030 /* in sync if before recovery_offset */
4031 set_bit(R5_Insync, &dev->flags);
4032 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4033 test_bit(R5_Expanded, &dev->flags))
4034 /* If we've reshaped into here, we assume it is Insync.
4035 * We will shortly update recovery_offset to make
4036 * it official.
4037 */
4038 set_bit(R5_Insync, &dev->flags);
4039
4040 if (test_bit(R5_WriteError, &dev->flags)) {
4041 /* This flag does not apply to '.replacement'
4042 * only to .rdev, so make sure to check that*/
4043 struct md_rdev *rdev2 = rcu_dereference(
4044 conf->disks[i].rdev);
4045 if (rdev2 == rdev)
4046 clear_bit(R5_Insync, &dev->flags);
4047 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4048 s->handle_bad_blocks = 1;
4049 atomic_inc(&rdev2->nr_pending);
4050 } else
4051 clear_bit(R5_WriteError, &dev->flags);
4052 }
4053 if (test_bit(R5_MadeGood, &dev->flags)) {
4054 /* This flag does not apply to '.replacement'
4055 * only to .rdev, so make sure to check that*/
4056 struct md_rdev *rdev2 = rcu_dereference(
4057 conf->disks[i].rdev);
4058 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4059 s->handle_bad_blocks = 1;
4060 atomic_inc(&rdev2->nr_pending);
4061 } else
4062 clear_bit(R5_MadeGood, &dev->flags);
4063 }
4064 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4065 struct md_rdev *rdev2 = rcu_dereference(
4066 conf->disks[i].replacement);
4067 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4068 s->handle_bad_blocks = 1;
4069 atomic_inc(&rdev2->nr_pending);
4070 } else
4071 clear_bit(R5_MadeGoodRepl, &dev->flags);
4072 }
4073 if (!test_bit(R5_Insync, &dev->flags)) {
4074 /* The ReadError flag will just be confusing now */
4075 clear_bit(R5_ReadError, &dev->flags);
4076 clear_bit(R5_ReWrite, &dev->flags);
4077 }
4078 if (test_bit(R5_ReadError, &dev->flags))
4079 clear_bit(R5_Insync, &dev->flags);
4080 if (!test_bit(R5_Insync, &dev->flags)) {
4081 if (s->failed < 2)
4082 s->failed_num[s->failed] = i;
4083 s->failed++;
4084 if (rdev && !test_bit(Faulty, &rdev->flags))
4085 do_recovery = 1;
4086 }
4087 }
4088 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4089 /* If there is a failed device being replaced,
4090 * we must be recovering.
4091 * else if we are after recovery_cp, we must be syncing
4092 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4093 * else we can only be replacing
4094 * sync and recovery both need to read all devices, and so
4095 * use the same flag.
4096 */
4097 if (do_recovery ||
4098 sh->sector >= conf->mddev->recovery_cp ||
4099 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4100 s->syncing = 1;
4101 else
4102 s->replacing = 1;
4103 }
4104 rcu_read_unlock();
4105 }
4106
4107 static int clear_batch_ready(struct stripe_head *sh)
4108 {
4109 struct stripe_head *tmp;
4110 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4111 return 0;
4112 spin_lock(&sh->stripe_lock);
4113 if (!sh->batch_head) {
4114 spin_unlock(&sh->stripe_lock);
4115 return 0;
4116 }
4117
4118 /*
4119 * this stripe could be added to a batch list before we check
4120 * BATCH_READY, skips it
4121 */
4122 if (sh->batch_head != sh) {
4123 spin_unlock(&sh->stripe_lock);
4124 return 1;
4125 }
4126 spin_lock(&sh->batch_lock);
4127 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4128 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4129 spin_unlock(&sh->batch_lock);
4130 spin_unlock(&sh->stripe_lock);
4131
4132 /*
4133 * BATCH_READY is cleared, no new stripes can be added.
4134 * batch_list can be accessed without lock
4135 */
4136 return 0;
4137 }
4138
4139 static void check_break_stripe_batch_list(struct stripe_head *sh)
4140 {
4141 struct stripe_head *head_sh, *next;
4142 int i;
4143
4144 if (!test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4145 return;
4146
4147 head_sh = sh;
4148 do {
4149 sh = list_first_entry(&sh->batch_list,
4150 struct stripe_head, batch_list);
4151 BUG_ON(sh == head_sh);
4152 } while (!test_bit(STRIPE_DEGRADED, &sh->state));
4153
4154 while (sh != head_sh) {
4155 next = list_first_entry(&sh->batch_list,
4156 struct stripe_head, batch_list);
4157 list_del_init(&sh->batch_list);
4158
4159 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
4160 head_sh->state & ~((1 << STRIPE_ACTIVE) |
4161 (1 << STRIPE_PREREAD_ACTIVE) |
4162 (1 << STRIPE_DEGRADED) |
4163 STRIPE_EXPAND_SYNC_FLAG));
4164 sh->check_state = head_sh->check_state;
4165 sh->reconstruct_state = head_sh->reconstruct_state;
4166 for (i = 0; i < sh->disks; i++)
4167 sh->dev[i].flags = head_sh->dev[i].flags &
4168 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4169
4170 spin_lock_irq(&sh->stripe_lock);
4171 sh->batch_head = NULL;
4172 spin_unlock_irq(&sh->stripe_lock);
4173
4174 set_bit(STRIPE_HANDLE, &sh->state);
4175 release_stripe(sh);
4176
4177 sh = next;
4178 }
4179 }
4180
4181 static void handle_stripe(struct stripe_head *sh)
4182 {
4183 struct stripe_head_state s;
4184 struct r5conf *conf = sh->raid_conf;
4185 int i;
4186 int prexor;
4187 int disks = sh->disks;
4188 struct r5dev *pdev, *qdev;
4189
4190 clear_bit(STRIPE_HANDLE, &sh->state);
4191 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4192 /* already being handled, ensure it gets handled
4193 * again when current action finishes */
4194 set_bit(STRIPE_HANDLE, &sh->state);
4195 return;
4196 }
4197
4198 if (clear_batch_ready(sh) ) {
4199 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4200 return;
4201 }
4202
4203 check_break_stripe_batch_list(sh);
4204
4205 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4206 spin_lock(&sh->stripe_lock);
4207 /* Cannot process 'sync' concurrently with 'discard' */
4208 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4209 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4210 set_bit(STRIPE_SYNCING, &sh->state);
4211 clear_bit(STRIPE_INSYNC, &sh->state);
4212 clear_bit(STRIPE_REPLACED, &sh->state);
4213 }
4214 spin_unlock(&sh->stripe_lock);
4215 }
4216 clear_bit(STRIPE_DELAYED, &sh->state);
4217
4218 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4219 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4220 (unsigned long long)sh->sector, sh->state,
4221 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4222 sh->check_state, sh->reconstruct_state);
4223
4224 analyse_stripe(sh, &s);
4225
4226 if (s.handle_bad_blocks) {
4227 set_bit(STRIPE_HANDLE, &sh->state);
4228 goto finish;
4229 }
4230
4231 if (unlikely(s.blocked_rdev)) {
4232 if (s.syncing || s.expanding || s.expanded ||
4233 s.replacing || s.to_write || s.written) {
4234 set_bit(STRIPE_HANDLE, &sh->state);
4235 goto finish;
4236 }
4237 /* There is nothing for the blocked_rdev to block */
4238 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4239 s.blocked_rdev = NULL;
4240 }
4241
4242 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4243 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4244 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4245 }
4246
4247 pr_debug("locked=%d uptodate=%d to_read=%d"
4248 " to_write=%d failed=%d failed_num=%d,%d\n",
4249 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4250 s.failed_num[0], s.failed_num[1]);
4251 /* check if the array has lost more than max_degraded devices and,
4252 * if so, some requests might need to be failed.
4253 */
4254 if (s.failed > conf->max_degraded) {
4255 sh->check_state = 0;
4256 sh->reconstruct_state = 0;
4257 if (s.to_read+s.to_write+s.written)
4258 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4259 if (s.syncing + s.replacing)
4260 handle_failed_sync(conf, sh, &s);
4261 }
4262
4263 /* Now we check to see if any write operations have recently
4264 * completed
4265 */
4266 prexor = 0;
4267 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4268 prexor = 1;
4269 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4270 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4271 sh->reconstruct_state = reconstruct_state_idle;
4272
4273 /* All the 'written' buffers and the parity block are ready to
4274 * be written back to disk
4275 */
4276 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4277 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4278 BUG_ON(sh->qd_idx >= 0 &&
4279 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4280 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4281 for (i = disks; i--; ) {
4282 struct r5dev *dev = &sh->dev[i];
4283 if (test_bit(R5_LOCKED, &dev->flags) &&
4284 (i == sh->pd_idx || i == sh->qd_idx ||
4285 dev->written)) {
4286 pr_debug("Writing block %d\n", i);
4287 set_bit(R5_Wantwrite, &dev->flags);
4288 if (prexor)
4289 continue;
4290 if (s.failed > 1)
4291 continue;
4292 if (!test_bit(R5_Insync, &dev->flags) ||
4293 ((i == sh->pd_idx || i == sh->qd_idx) &&
4294 s.failed == 0))
4295 set_bit(STRIPE_INSYNC, &sh->state);
4296 }
4297 }
4298 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4299 s.dec_preread_active = 1;
4300 }
4301
4302 /*
4303 * might be able to return some write requests if the parity blocks
4304 * are safe, or on a failed drive
4305 */
4306 pdev = &sh->dev[sh->pd_idx];
4307 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4308 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4309 qdev = &sh->dev[sh->qd_idx];
4310 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4311 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4312 || conf->level < 6;
4313
4314 if (s.written &&
4315 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4316 && !test_bit(R5_LOCKED, &pdev->flags)
4317 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4318 test_bit(R5_Discard, &pdev->flags))))) &&
4319 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4320 && !test_bit(R5_LOCKED, &qdev->flags)
4321 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4322 test_bit(R5_Discard, &qdev->flags))))))
4323 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4324
4325 /* Now we might consider reading some blocks, either to check/generate
4326 * parity, or to satisfy requests
4327 * or to load a block that is being partially written.
4328 */
4329 if (s.to_read || s.non_overwrite
4330 || (conf->level == 6 && s.to_write && s.failed)
4331 || (s.syncing && (s.uptodate + s.compute < disks))
4332 || s.replacing
4333 || s.expanding)
4334 handle_stripe_fill(sh, &s, disks);
4335
4336 /* Now to consider new write requests and what else, if anything
4337 * should be read. We do not handle new writes when:
4338 * 1/ A 'write' operation (copy+xor) is already in flight.
4339 * 2/ A 'check' operation is in flight, as it may clobber the parity
4340 * block.
4341 */
4342 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4343 handle_stripe_dirtying(conf, sh, &s, disks);
4344
4345 /* maybe we need to check and possibly fix the parity for this stripe
4346 * Any reads will already have been scheduled, so we just see if enough
4347 * data is available. The parity check is held off while parity
4348 * dependent operations are in flight.
4349 */
4350 if (sh->check_state ||
4351 (s.syncing && s.locked == 0 &&
4352 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4353 !test_bit(STRIPE_INSYNC, &sh->state))) {
4354 if (conf->level == 6)
4355 handle_parity_checks6(conf, sh, &s, disks);
4356 else
4357 handle_parity_checks5(conf, sh, &s, disks);
4358 }
4359
4360 if ((s.replacing || s.syncing) && s.locked == 0
4361 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4362 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4363 /* Write out to replacement devices where possible */
4364 for (i = 0; i < conf->raid_disks; i++)
4365 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4366 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4367 set_bit(R5_WantReplace, &sh->dev[i].flags);
4368 set_bit(R5_LOCKED, &sh->dev[i].flags);
4369 s.locked++;
4370 }
4371 if (s.replacing)
4372 set_bit(STRIPE_INSYNC, &sh->state);
4373 set_bit(STRIPE_REPLACED, &sh->state);
4374 }
4375 if ((s.syncing || s.replacing) && s.locked == 0 &&
4376 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4377 test_bit(STRIPE_INSYNC, &sh->state)) {
4378 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4379 clear_bit(STRIPE_SYNCING, &sh->state);
4380 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4381 wake_up(&conf->wait_for_overlap);
4382 }
4383
4384 /* If the failed drives are just a ReadError, then we might need
4385 * to progress the repair/check process
4386 */
4387 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4388 for (i = 0; i < s.failed; i++) {
4389 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4390 if (test_bit(R5_ReadError, &dev->flags)
4391 && !test_bit(R5_LOCKED, &dev->flags)
4392 && test_bit(R5_UPTODATE, &dev->flags)
4393 ) {
4394 if (!test_bit(R5_ReWrite, &dev->flags)) {
4395 set_bit(R5_Wantwrite, &dev->flags);
4396 set_bit(R5_ReWrite, &dev->flags);
4397 set_bit(R5_LOCKED, &dev->flags);
4398 s.locked++;
4399 } else {
4400 /* let's read it back */
4401 set_bit(R5_Wantread, &dev->flags);
4402 set_bit(R5_LOCKED, &dev->flags);
4403 s.locked++;
4404 }
4405 }
4406 }
4407
4408 /* Finish reconstruct operations initiated by the expansion process */
4409 if (sh->reconstruct_state == reconstruct_state_result) {
4410 struct stripe_head *sh_src
4411 = get_active_stripe(conf, sh->sector, 1, 1, 1);
4412 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4413 /* sh cannot be written until sh_src has been read.
4414 * so arrange for sh to be delayed a little
4415 */
4416 set_bit(STRIPE_DELAYED, &sh->state);
4417 set_bit(STRIPE_HANDLE, &sh->state);
4418 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4419 &sh_src->state))
4420 atomic_inc(&conf->preread_active_stripes);
4421 release_stripe(sh_src);
4422 goto finish;
4423 }
4424 if (sh_src)
4425 release_stripe(sh_src);
4426
4427 sh->reconstruct_state = reconstruct_state_idle;
4428 clear_bit(STRIPE_EXPANDING, &sh->state);
4429 for (i = conf->raid_disks; i--; ) {
4430 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4431 set_bit(R5_LOCKED, &sh->dev[i].flags);
4432 s.locked++;
4433 }
4434 }
4435
4436 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4437 !sh->reconstruct_state) {
4438 /* Need to write out all blocks after computing parity */
4439 sh->disks = conf->raid_disks;
4440 stripe_set_idx(sh->sector, conf, 0, sh);
4441 schedule_reconstruction(sh, &s, 1, 1);
4442 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4443 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4444 atomic_dec(&conf->reshape_stripes);
4445 wake_up(&conf->wait_for_overlap);
4446 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4447 }
4448
4449 if (s.expanding && s.locked == 0 &&
4450 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4451 handle_stripe_expansion(conf, sh);
4452
4453 finish:
4454 /* wait for this device to become unblocked */
4455 if (unlikely(s.blocked_rdev)) {
4456 if (conf->mddev->external)
4457 md_wait_for_blocked_rdev(s.blocked_rdev,
4458 conf->mddev);
4459 else
4460 /* Internal metadata will immediately
4461 * be written by raid5d, so we don't
4462 * need to wait here.
4463 */
4464 rdev_dec_pending(s.blocked_rdev,
4465 conf->mddev);
4466 }
4467
4468 if (s.handle_bad_blocks)
4469 for (i = disks; i--; ) {
4470 struct md_rdev *rdev;
4471 struct r5dev *dev = &sh->dev[i];
4472 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4473 /* We own a safe reference to the rdev */
4474 rdev = conf->disks[i].rdev;
4475 if (!rdev_set_badblocks(rdev, sh->sector,
4476 STRIPE_SECTORS, 0))
4477 md_error(conf->mddev, rdev);
4478 rdev_dec_pending(rdev, conf->mddev);
4479 }
4480 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4481 rdev = conf->disks[i].rdev;
4482 rdev_clear_badblocks(rdev, sh->sector,
4483 STRIPE_SECTORS, 0);
4484 rdev_dec_pending(rdev, conf->mddev);
4485 }
4486 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4487 rdev = conf->disks[i].replacement;
4488 if (!rdev)
4489 /* rdev have been moved down */
4490 rdev = conf->disks[i].rdev;
4491 rdev_clear_badblocks(rdev, sh->sector,
4492 STRIPE_SECTORS, 0);
4493 rdev_dec_pending(rdev, conf->mddev);
4494 }
4495 }
4496
4497 if (s.ops_request)
4498 raid_run_ops(sh, s.ops_request);
4499
4500 ops_run_io(sh, &s);
4501
4502 if (s.dec_preread_active) {
4503 /* We delay this until after ops_run_io so that if make_request
4504 * is waiting on a flush, it won't continue until the writes
4505 * have actually been submitted.
4506 */
4507 atomic_dec(&conf->preread_active_stripes);
4508 if (atomic_read(&conf->preread_active_stripes) <
4509 IO_THRESHOLD)
4510 md_wakeup_thread(conf->mddev->thread);
4511 }
4512
4513 return_io(s.return_bi);
4514
4515 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4516 }
4517
4518 static void raid5_activate_delayed(struct r5conf *conf)
4519 {
4520 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4521 while (!list_empty(&conf->delayed_list)) {
4522 struct list_head *l = conf->delayed_list.next;
4523 struct stripe_head *sh;
4524 sh = list_entry(l, struct stripe_head, lru);
4525 list_del_init(l);
4526 clear_bit(STRIPE_DELAYED, &sh->state);
4527 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4528 atomic_inc(&conf->preread_active_stripes);
4529 list_add_tail(&sh->lru, &conf->hold_list);
4530 raid5_wakeup_stripe_thread(sh);
4531 }
4532 }
4533 }
4534
4535 static void activate_bit_delay(struct r5conf *conf,
4536 struct list_head *temp_inactive_list)
4537 {
4538 /* device_lock is held */
4539 struct list_head head;
4540 list_add(&head, &conf->bitmap_list);
4541 list_del_init(&conf->bitmap_list);
4542 while (!list_empty(&head)) {
4543 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4544 int hash;
4545 list_del_init(&sh->lru);
4546 atomic_inc(&sh->count);
4547 hash = sh->hash_lock_index;
4548 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4549 }
4550 }
4551
4552 static int raid5_congested(struct mddev *mddev, int bits)
4553 {
4554 struct r5conf *conf = mddev->private;
4555
4556 /* No difference between reads and writes. Just check
4557 * how busy the stripe_cache is
4558 */
4559
4560 if (conf->inactive_blocked)
4561 return 1;
4562 if (conf->quiesce)
4563 return 1;
4564 if (atomic_read(&conf->empty_inactive_list_nr))
4565 return 1;
4566
4567 return 0;
4568 }
4569
4570 /* We want read requests to align with chunks where possible,
4571 * but write requests don't need to.
4572 */
4573 static int raid5_mergeable_bvec(struct mddev *mddev,
4574 struct bvec_merge_data *bvm,
4575 struct bio_vec *biovec)
4576 {
4577 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4578 int max;
4579 unsigned int chunk_sectors = mddev->chunk_sectors;
4580 unsigned int bio_sectors = bvm->bi_size >> 9;
4581
4582 if ((bvm->bi_rw & 1) == WRITE)
4583 return biovec->bv_len; /* always allow writes to be mergeable */
4584
4585 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4586 chunk_sectors = mddev->new_chunk_sectors;
4587 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4588 if (max < 0) max = 0;
4589 if (max <= biovec->bv_len && bio_sectors == 0)
4590 return biovec->bv_len;
4591 else
4592 return max;
4593 }
4594
4595 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4596 {
4597 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4598 unsigned int chunk_sectors = mddev->chunk_sectors;
4599 unsigned int bio_sectors = bio_sectors(bio);
4600
4601 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4602 chunk_sectors = mddev->new_chunk_sectors;
4603 return chunk_sectors >=
4604 ((sector & (chunk_sectors - 1)) + bio_sectors);
4605 }
4606
4607 /*
4608 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4609 * later sampled by raid5d.
4610 */
4611 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4612 {
4613 unsigned long flags;
4614
4615 spin_lock_irqsave(&conf->device_lock, flags);
4616
4617 bi->bi_next = conf->retry_read_aligned_list;
4618 conf->retry_read_aligned_list = bi;
4619
4620 spin_unlock_irqrestore(&conf->device_lock, flags);
4621 md_wakeup_thread(conf->mddev->thread);
4622 }
4623
4624 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4625 {
4626 struct bio *bi;
4627
4628 bi = conf->retry_read_aligned;
4629 if (bi) {
4630 conf->retry_read_aligned = NULL;
4631 return bi;
4632 }
4633 bi = conf->retry_read_aligned_list;
4634 if(bi) {
4635 conf->retry_read_aligned_list = bi->bi_next;
4636 bi->bi_next = NULL;
4637 /*
4638 * this sets the active strip count to 1 and the processed
4639 * strip count to zero (upper 8 bits)
4640 */
4641 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4642 }
4643
4644 return bi;
4645 }
4646
4647 /*
4648 * The "raid5_align_endio" should check if the read succeeded and if it
4649 * did, call bio_endio on the original bio (having bio_put the new bio
4650 * first).
4651 * If the read failed..
4652 */
4653 static void raid5_align_endio(struct bio *bi, int error)
4654 {
4655 struct bio* raid_bi = bi->bi_private;
4656 struct mddev *mddev;
4657 struct r5conf *conf;
4658 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4659 struct md_rdev *rdev;
4660
4661 bio_put(bi);
4662
4663 rdev = (void*)raid_bi->bi_next;
4664 raid_bi->bi_next = NULL;
4665 mddev = rdev->mddev;
4666 conf = mddev->private;
4667
4668 rdev_dec_pending(rdev, conf->mddev);
4669
4670 if (!error && uptodate) {
4671 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4672 raid_bi, 0);
4673 bio_endio(raid_bi, 0);
4674 if (atomic_dec_and_test(&conf->active_aligned_reads))
4675 wake_up(&conf->wait_for_stripe);
4676 return;
4677 }
4678
4679 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4680
4681 add_bio_to_retry(raid_bi, conf);
4682 }
4683
4684 static int bio_fits_rdev(struct bio *bi)
4685 {
4686 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4687
4688 if (bio_sectors(bi) > queue_max_sectors(q))
4689 return 0;
4690 blk_recount_segments(q, bi);
4691 if (bi->bi_phys_segments > queue_max_segments(q))
4692 return 0;
4693
4694 if (q->merge_bvec_fn)
4695 /* it's too hard to apply the merge_bvec_fn at this stage,
4696 * just just give up
4697 */
4698 return 0;
4699
4700 return 1;
4701 }
4702
4703 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4704 {
4705 struct r5conf *conf = mddev->private;
4706 int dd_idx;
4707 struct bio* align_bi;
4708 struct md_rdev *rdev;
4709 sector_t end_sector;
4710
4711 if (!in_chunk_boundary(mddev, raid_bio)) {
4712 pr_debug("chunk_aligned_read : non aligned\n");
4713 return 0;
4714 }
4715 /*
4716 * use bio_clone_mddev to make a copy of the bio
4717 */
4718 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4719 if (!align_bi)
4720 return 0;
4721 /*
4722 * set bi_end_io to a new function, and set bi_private to the
4723 * original bio.
4724 */
4725 align_bi->bi_end_io = raid5_align_endio;
4726 align_bi->bi_private = raid_bio;
4727 /*
4728 * compute position
4729 */
4730 align_bi->bi_iter.bi_sector =
4731 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4732 0, &dd_idx, NULL);
4733
4734 end_sector = bio_end_sector(align_bi);
4735 rcu_read_lock();
4736 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4737 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4738 rdev->recovery_offset < end_sector) {
4739 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4740 if (rdev &&
4741 (test_bit(Faulty, &rdev->flags) ||
4742 !(test_bit(In_sync, &rdev->flags) ||
4743 rdev->recovery_offset >= end_sector)))
4744 rdev = NULL;
4745 }
4746 if (rdev) {
4747 sector_t first_bad;
4748 int bad_sectors;
4749
4750 atomic_inc(&rdev->nr_pending);
4751 rcu_read_unlock();
4752 raid_bio->bi_next = (void*)rdev;
4753 align_bi->bi_bdev = rdev->bdev;
4754 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4755
4756 if (!bio_fits_rdev(align_bi) ||
4757 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4758 bio_sectors(align_bi),
4759 &first_bad, &bad_sectors)) {
4760 /* too big in some way, or has a known bad block */
4761 bio_put(align_bi);
4762 rdev_dec_pending(rdev, mddev);
4763 return 0;
4764 }
4765
4766 /* No reshape active, so we can trust rdev->data_offset */
4767 align_bi->bi_iter.bi_sector += rdev->data_offset;
4768
4769 spin_lock_irq(&conf->device_lock);
4770 wait_event_lock_irq(conf->wait_for_stripe,
4771 conf->quiesce == 0,
4772 conf->device_lock);
4773 atomic_inc(&conf->active_aligned_reads);
4774 spin_unlock_irq(&conf->device_lock);
4775
4776 if (mddev->gendisk)
4777 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4778 align_bi, disk_devt(mddev->gendisk),
4779 raid_bio->bi_iter.bi_sector);
4780 generic_make_request(align_bi);
4781 return 1;
4782 } else {
4783 rcu_read_unlock();
4784 bio_put(align_bi);
4785 return 0;
4786 }
4787 }
4788
4789 /* __get_priority_stripe - get the next stripe to process
4790 *
4791 * Full stripe writes are allowed to pass preread active stripes up until
4792 * the bypass_threshold is exceeded. In general the bypass_count
4793 * increments when the handle_list is handled before the hold_list; however, it
4794 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4795 * stripe with in flight i/o. The bypass_count will be reset when the
4796 * head of the hold_list has changed, i.e. the head was promoted to the
4797 * handle_list.
4798 */
4799 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4800 {
4801 struct stripe_head *sh = NULL, *tmp;
4802 struct list_head *handle_list = NULL;
4803 struct r5worker_group *wg = NULL;
4804
4805 if (conf->worker_cnt_per_group == 0) {
4806 handle_list = &conf->handle_list;
4807 } else if (group != ANY_GROUP) {
4808 handle_list = &conf->worker_groups[group].handle_list;
4809 wg = &conf->worker_groups[group];
4810 } else {
4811 int i;
4812 for (i = 0; i < conf->group_cnt; i++) {
4813 handle_list = &conf->worker_groups[i].handle_list;
4814 wg = &conf->worker_groups[i];
4815 if (!list_empty(handle_list))
4816 break;
4817 }
4818 }
4819
4820 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4821 __func__,
4822 list_empty(handle_list) ? "empty" : "busy",
4823 list_empty(&conf->hold_list) ? "empty" : "busy",
4824 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4825
4826 if (!list_empty(handle_list)) {
4827 sh = list_entry(handle_list->next, typeof(*sh), lru);
4828
4829 if (list_empty(&conf->hold_list))
4830 conf->bypass_count = 0;
4831 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4832 if (conf->hold_list.next == conf->last_hold)
4833 conf->bypass_count++;
4834 else {
4835 conf->last_hold = conf->hold_list.next;
4836 conf->bypass_count -= conf->bypass_threshold;
4837 if (conf->bypass_count < 0)
4838 conf->bypass_count = 0;
4839 }
4840 }
4841 } else if (!list_empty(&conf->hold_list) &&
4842 ((conf->bypass_threshold &&
4843 conf->bypass_count > conf->bypass_threshold) ||
4844 atomic_read(&conf->pending_full_writes) == 0)) {
4845
4846 list_for_each_entry(tmp, &conf->hold_list, lru) {
4847 if (conf->worker_cnt_per_group == 0 ||
4848 group == ANY_GROUP ||
4849 !cpu_online(tmp->cpu) ||
4850 cpu_to_group(tmp->cpu) == group) {
4851 sh = tmp;
4852 break;
4853 }
4854 }
4855
4856 if (sh) {
4857 conf->bypass_count -= conf->bypass_threshold;
4858 if (conf->bypass_count < 0)
4859 conf->bypass_count = 0;
4860 }
4861 wg = NULL;
4862 }
4863
4864 if (!sh)
4865 return NULL;
4866
4867 if (wg) {
4868 wg->stripes_cnt--;
4869 sh->group = NULL;
4870 }
4871 list_del_init(&sh->lru);
4872 BUG_ON(atomic_inc_return(&sh->count) != 1);
4873 return sh;
4874 }
4875
4876 struct raid5_plug_cb {
4877 struct blk_plug_cb cb;
4878 struct list_head list;
4879 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4880 };
4881
4882 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4883 {
4884 struct raid5_plug_cb *cb = container_of(
4885 blk_cb, struct raid5_plug_cb, cb);
4886 struct stripe_head *sh;
4887 struct mddev *mddev = cb->cb.data;
4888 struct r5conf *conf = mddev->private;
4889 int cnt = 0;
4890 int hash;
4891
4892 if (cb->list.next && !list_empty(&cb->list)) {
4893 spin_lock_irq(&conf->device_lock);
4894 while (!list_empty(&cb->list)) {
4895 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4896 list_del_init(&sh->lru);
4897 /*
4898 * avoid race release_stripe_plug() sees
4899 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4900 * is still in our list
4901 */
4902 smp_mb__before_atomic();
4903 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4904 /*
4905 * STRIPE_ON_RELEASE_LIST could be set here. In that
4906 * case, the count is always > 1 here
4907 */
4908 hash = sh->hash_lock_index;
4909 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4910 cnt++;
4911 }
4912 spin_unlock_irq(&conf->device_lock);
4913 }
4914 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4915 NR_STRIPE_HASH_LOCKS);
4916 if (mddev->queue)
4917 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4918 kfree(cb);
4919 }
4920
4921 static void release_stripe_plug(struct mddev *mddev,
4922 struct stripe_head *sh)
4923 {
4924 struct blk_plug_cb *blk_cb = blk_check_plugged(
4925 raid5_unplug, mddev,
4926 sizeof(struct raid5_plug_cb));
4927 struct raid5_plug_cb *cb;
4928
4929 if (!blk_cb) {
4930 release_stripe(sh);
4931 return;
4932 }
4933
4934 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4935
4936 if (cb->list.next == NULL) {
4937 int i;
4938 INIT_LIST_HEAD(&cb->list);
4939 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4940 INIT_LIST_HEAD(cb->temp_inactive_list + i);
4941 }
4942
4943 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4944 list_add_tail(&sh->lru, &cb->list);
4945 else
4946 release_stripe(sh);
4947 }
4948
4949 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4950 {
4951 struct r5conf *conf = mddev->private;
4952 sector_t logical_sector, last_sector;
4953 struct stripe_head *sh;
4954 int remaining;
4955 int stripe_sectors;
4956
4957 if (mddev->reshape_position != MaxSector)
4958 /* Skip discard while reshape is happening */
4959 return;
4960
4961 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4962 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4963
4964 bi->bi_next = NULL;
4965 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4966
4967 stripe_sectors = conf->chunk_sectors *
4968 (conf->raid_disks - conf->max_degraded);
4969 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4970 stripe_sectors);
4971 sector_div(last_sector, stripe_sectors);
4972
4973 logical_sector *= conf->chunk_sectors;
4974 last_sector *= conf->chunk_sectors;
4975
4976 for (; logical_sector < last_sector;
4977 logical_sector += STRIPE_SECTORS) {
4978 DEFINE_WAIT(w);
4979 int d;
4980 again:
4981 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4982 prepare_to_wait(&conf->wait_for_overlap, &w,
4983 TASK_UNINTERRUPTIBLE);
4984 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4985 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4986 release_stripe(sh);
4987 schedule();
4988 goto again;
4989 }
4990 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4991 spin_lock_irq(&sh->stripe_lock);
4992 for (d = 0; d < conf->raid_disks; d++) {
4993 if (d == sh->pd_idx || d == sh->qd_idx)
4994 continue;
4995 if (sh->dev[d].towrite || sh->dev[d].toread) {
4996 set_bit(R5_Overlap, &sh->dev[d].flags);
4997 spin_unlock_irq(&sh->stripe_lock);
4998 release_stripe(sh);
4999 schedule();
5000 goto again;
5001 }
5002 }
5003 set_bit(STRIPE_DISCARD, &sh->state);
5004 finish_wait(&conf->wait_for_overlap, &w);
5005 sh->overwrite_disks = 0;
5006 for (d = 0; d < conf->raid_disks; d++) {
5007 if (d == sh->pd_idx || d == sh->qd_idx)
5008 continue;
5009 sh->dev[d].towrite = bi;
5010 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5011 raid5_inc_bi_active_stripes(bi);
5012 sh->overwrite_disks++;
5013 }
5014 spin_unlock_irq(&sh->stripe_lock);
5015 if (conf->mddev->bitmap) {
5016 for (d = 0;
5017 d < conf->raid_disks - conf->max_degraded;
5018 d++)
5019 bitmap_startwrite(mddev->bitmap,
5020 sh->sector,
5021 STRIPE_SECTORS,
5022 0);
5023 sh->bm_seq = conf->seq_flush + 1;
5024 set_bit(STRIPE_BIT_DELAY, &sh->state);
5025 }
5026
5027 set_bit(STRIPE_HANDLE, &sh->state);
5028 clear_bit(STRIPE_DELAYED, &sh->state);
5029 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5030 atomic_inc(&conf->preread_active_stripes);
5031 release_stripe_plug(mddev, sh);
5032 }
5033
5034 remaining = raid5_dec_bi_active_stripes(bi);
5035 if (remaining == 0) {
5036 md_write_end(mddev);
5037 bio_endio(bi, 0);
5038 }
5039 }
5040
5041 static void make_request(struct mddev *mddev, struct bio * bi)
5042 {
5043 struct r5conf *conf = mddev->private;
5044 int dd_idx;
5045 sector_t new_sector;
5046 sector_t logical_sector, last_sector;
5047 struct stripe_head *sh;
5048 const int rw = bio_data_dir(bi);
5049 int remaining;
5050 DEFINE_WAIT(w);
5051 bool do_prepare;
5052
5053 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5054 md_flush_request(mddev, bi);
5055 return;
5056 }
5057
5058 md_write_start(mddev, bi);
5059
5060 if (rw == READ &&
5061 mddev->reshape_position == MaxSector &&
5062 chunk_aligned_read(mddev,bi))
5063 return;
5064
5065 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5066 make_discard_request(mddev, bi);
5067 return;
5068 }
5069
5070 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5071 last_sector = bio_end_sector(bi);
5072 bi->bi_next = NULL;
5073 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5074
5075 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5076 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5077 int previous;
5078 int seq;
5079
5080 do_prepare = false;
5081 retry:
5082 seq = read_seqcount_begin(&conf->gen_lock);
5083 previous = 0;
5084 if (do_prepare)
5085 prepare_to_wait(&conf->wait_for_overlap, &w,
5086 TASK_UNINTERRUPTIBLE);
5087 if (unlikely(conf->reshape_progress != MaxSector)) {
5088 /* spinlock is needed as reshape_progress may be
5089 * 64bit on a 32bit platform, and so it might be
5090 * possible to see a half-updated value
5091 * Of course reshape_progress could change after
5092 * the lock is dropped, so once we get a reference
5093 * to the stripe that we think it is, we will have
5094 * to check again.
5095 */
5096 spin_lock_irq(&conf->device_lock);
5097 if (mddev->reshape_backwards
5098 ? logical_sector < conf->reshape_progress
5099 : logical_sector >= conf->reshape_progress) {
5100 previous = 1;
5101 } else {
5102 if (mddev->reshape_backwards
5103 ? logical_sector < conf->reshape_safe
5104 : logical_sector >= conf->reshape_safe) {
5105 spin_unlock_irq(&conf->device_lock);
5106 schedule();
5107 do_prepare = true;
5108 goto retry;
5109 }
5110 }
5111 spin_unlock_irq(&conf->device_lock);
5112 }
5113
5114 new_sector = raid5_compute_sector(conf, logical_sector,
5115 previous,
5116 &dd_idx, NULL);
5117 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5118 (unsigned long long)new_sector,
5119 (unsigned long long)logical_sector);
5120
5121 sh = get_active_stripe(conf, new_sector, previous,
5122 (bi->bi_rw&RWA_MASK), 0);
5123 if (sh) {
5124 if (unlikely(previous)) {
5125 /* expansion might have moved on while waiting for a
5126 * stripe, so we must do the range check again.
5127 * Expansion could still move past after this
5128 * test, but as we are holding a reference to
5129 * 'sh', we know that if that happens,
5130 * STRIPE_EXPANDING will get set and the expansion
5131 * won't proceed until we finish with the stripe.
5132 */
5133 int must_retry = 0;
5134 spin_lock_irq(&conf->device_lock);
5135 if (mddev->reshape_backwards
5136 ? logical_sector >= conf->reshape_progress
5137 : logical_sector < conf->reshape_progress)
5138 /* mismatch, need to try again */
5139 must_retry = 1;
5140 spin_unlock_irq(&conf->device_lock);
5141 if (must_retry) {
5142 release_stripe(sh);
5143 schedule();
5144 do_prepare = true;
5145 goto retry;
5146 }
5147 }
5148 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5149 /* Might have got the wrong stripe_head
5150 * by accident
5151 */
5152 release_stripe(sh);
5153 goto retry;
5154 }
5155
5156 if (rw == WRITE &&
5157 logical_sector >= mddev->suspend_lo &&
5158 logical_sector < mddev->suspend_hi) {
5159 release_stripe(sh);
5160 /* As the suspend_* range is controlled by
5161 * userspace, we want an interruptible
5162 * wait.
5163 */
5164 flush_signals(current);
5165 prepare_to_wait(&conf->wait_for_overlap,
5166 &w, TASK_INTERRUPTIBLE);
5167 if (logical_sector >= mddev->suspend_lo &&
5168 logical_sector < mddev->suspend_hi) {
5169 schedule();
5170 do_prepare = true;
5171 }
5172 goto retry;
5173 }
5174
5175 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5176 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5177 /* Stripe is busy expanding or
5178 * add failed due to overlap. Flush everything
5179 * and wait a while
5180 */
5181 md_wakeup_thread(mddev->thread);
5182 release_stripe(sh);
5183 schedule();
5184 do_prepare = true;
5185 goto retry;
5186 }
5187 set_bit(STRIPE_HANDLE, &sh->state);
5188 clear_bit(STRIPE_DELAYED, &sh->state);
5189 if ((!sh->batch_head || sh == sh->batch_head) &&
5190 (bi->bi_rw & REQ_SYNC) &&
5191 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5192 atomic_inc(&conf->preread_active_stripes);
5193 release_stripe_plug(mddev, sh);
5194 } else {
5195 /* cannot get stripe for read-ahead, just give-up */
5196 clear_bit(BIO_UPTODATE, &bi->bi_flags);
5197 break;
5198 }
5199 }
5200 finish_wait(&conf->wait_for_overlap, &w);
5201
5202 remaining = raid5_dec_bi_active_stripes(bi);
5203 if (remaining == 0) {
5204
5205 if ( rw == WRITE )
5206 md_write_end(mddev);
5207
5208 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5209 bi, 0);
5210 bio_endio(bi, 0);
5211 }
5212 }
5213
5214 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5215
5216 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5217 {
5218 /* reshaping is quite different to recovery/resync so it is
5219 * handled quite separately ... here.
5220 *
5221 * On each call to sync_request, we gather one chunk worth of
5222 * destination stripes and flag them as expanding.
5223 * Then we find all the source stripes and request reads.
5224 * As the reads complete, handle_stripe will copy the data
5225 * into the destination stripe and release that stripe.
5226 */
5227 struct r5conf *conf = mddev->private;
5228 struct stripe_head *sh;
5229 sector_t first_sector, last_sector;
5230 int raid_disks = conf->previous_raid_disks;
5231 int data_disks = raid_disks - conf->max_degraded;
5232 int new_data_disks = conf->raid_disks - conf->max_degraded;
5233 int i;
5234 int dd_idx;
5235 sector_t writepos, readpos, safepos;
5236 sector_t stripe_addr;
5237 int reshape_sectors;
5238 struct list_head stripes;
5239
5240 if (sector_nr == 0) {
5241 /* If restarting in the middle, skip the initial sectors */
5242 if (mddev->reshape_backwards &&
5243 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5244 sector_nr = raid5_size(mddev, 0, 0)
5245 - conf->reshape_progress;
5246 } else if (!mddev->reshape_backwards &&
5247 conf->reshape_progress > 0)
5248 sector_nr = conf->reshape_progress;
5249 sector_div(sector_nr, new_data_disks);
5250 if (sector_nr) {
5251 mddev->curr_resync_completed = sector_nr;
5252 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5253 *skipped = 1;
5254 return sector_nr;
5255 }
5256 }
5257
5258 /* We need to process a full chunk at a time.
5259 * If old and new chunk sizes differ, we need to process the
5260 * largest of these
5261 */
5262 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5263 reshape_sectors = mddev->new_chunk_sectors;
5264 else
5265 reshape_sectors = mddev->chunk_sectors;
5266
5267 /* We update the metadata at least every 10 seconds, or when
5268 * the data about to be copied would over-write the source of
5269 * the data at the front of the range. i.e. one new_stripe
5270 * along from reshape_progress new_maps to after where
5271 * reshape_safe old_maps to
5272 */
5273 writepos = conf->reshape_progress;
5274 sector_div(writepos, new_data_disks);
5275 readpos = conf->reshape_progress;
5276 sector_div(readpos, data_disks);
5277 safepos = conf->reshape_safe;
5278 sector_div(safepos, data_disks);
5279 if (mddev->reshape_backwards) {
5280 writepos -= min_t(sector_t, reshape_sectors, writepos);
5281 readpos += reshape_sectors;
5282 safepos += reshape_sectors;
5283 } else {
5284 writepos += reshape_sectors;
5285 readpos -= min_t(sector_t, reshape_sectors, readpos);
5286 safepos -= min_t(sector_t, reshape_sectors, safepos);
5287 }
5288
5289 /* Having calculated the 'writepos' possibly use it
5290 * to set 'stripe_addr' which is where we will write to.
5291 */
5292 if (mddev->reshape_backwards) {
5293 BUG_ON(conf->reshape_progress == 0);
5294 stripe_addr = writepos;
5295 BUG_ON((mddev->dev_sectors &
5296 ~((sector_t)reshape_sectors - 1))
5297 - reshape_sectors - stripe_addr
5298 != sector_nr);
5299 } else {
5300 BUG_ON(writepos != sector_nr + reshape_sectors);
5301 stripe_addr = sector_nr;
5302 }
5303
5304 /* 'writepos' is the most advanced device address we might write.
5305 * 'readpos' is the least advanced device address we might read.
5306 * 'safepos' is the least address recorded in the metadata as having
5307 * been reshaped.
5308 * If there is a min_offset_diff, these are adjusted either by
5309 * increasing the safepos/readpos if diff is negative, or
5310 * increasing writepos if diff is positive.
5311 * If 'readpos' is then behind 'writepos', there is no way that we can
5312 * ensure safety in the face of a crash - that must be done by userspace
5313 * making a backup of the data. So in that case there is no particular
5314 * rush to update metadata.
5315 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5316 * update the metadata to advance 'safepos' to match 'readpos' so that
5317 * we can be safe in the event of a crash.
5318 * So we insist on updating metadata if safepos is behind writepos and
5319 * readpos is beyond writepos.
5320 * In any case, update the metadata every 10 seconds.
5321 * Maybe that number should be configurable, but I'm not sure it is
5322 * worth it.... maybe it could be a multiple of safemode_delay???
5323 */
5324 if (conf->min_offset_diff < 0) {
5325 safepos += -conf->min_offset_diff;
5326 readpos += -conf->min_offset_diff;
5327 } else
5328 writepos += conf->min_offset_diff;
5329
5330 if ((mddev->reshape_backwards
5331 ? (safepos > writepos && readpos < writepos)
5332 : (safepos < writepos && readpos > writepos)) ||
5333 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5334 /* Cannot proceed until we've updated the superblock... */
5335 wait_event(conf->wait_for_overlap,
5336 atomic_read(&conf->reshape_stripes)==0
5337 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5338 if (atomic_read(&conf->reshape_stripes) != 0)
5339 return 0;
5340 mddev->reshape_position = conf->reshape_progress;
5341 mddev->curr_resync_completed = sector_nr;
5342 conf->reshape_checkpoint = jiffies;
5343 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5344 md_wakeup_thread(mddev->thread);
5345 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5346 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5347 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5348 return 0;
5349 spin_lock_irq(&conf->device_lock);
5350 conf->reshape_safe = mddev->reshape_position;
5351 spin_unlock_irq(&conf->device_lock);
5352 wake_up(&conf->wait_for_overlap);
5353 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5354 }
5355
5356 INIT_LIST_HEAD(&stripes);
5357 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5358 int j;
5359 int skipped_disk = 0;
5360 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5361 set_bit(STRIPE_EXPANDING, &sh->state);
5362 atomic_inc(&conf->reshape_stripes);
5363 /* If any of this stripe is beyond the end of the old
5364 * array, then we need to zero those blocks
5365 */
5366 for (j=sh->disks; j--;) {
5367 sector_t s;
5368 if (j == sh->pd_idx)
5369 continue;
5370 if (conf->level == 6 &&
5371 j == sh->qd_idx)
5372 continue;
5373 s = compute_blocknr(sh, j, 0);
5374 if (s < raid5_size(mddev, 0, 0)) {
5375 skipped_disk = 1;
5376 continue;
5377 }
5378 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5379 set_bit(R5_Expanded, &sh->dev[j].flags);
5380 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5381 }
5382 if (!skipped_disk) {
5383 set_bit(STRIPE_EXPAND_READY, &sh->state);
5384 set_bit(STRIPE_HANDLE, &sh->state);
5385 }
5386 list_add(&sh->lru, &stripes);
5387 }
5388 spin_lock_irq(&conf->device_lock);
5389 if (mddev->reshape_backwards)
5390 conf->reshape_progress -= reshape_sectors * new_data_disks;
5391 else
5392 conf->reshape_progress += reshape_sectors * new_data_disks;
5393 spin_unlock_irq(&conf->device_lock);
5394 /* Ok, those stripe are ready. We can start scheduling
5395 * reads on the source stripes.
5396 * The source stripes are determined by mapping the first and last
5397 * block on the destination stripes.
5398 */
5399 first_sector =
5400 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5401 1, &dd_idx, NULL);
5402 last_sector =
5403 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5404 * new_data_disks - 1),
5405 1, &dd_idx, NULL);
5406 if (last_sector >= mddev->dev_sectors)
5407 last_sector = mddev->dev_sectors - 1;
5408 while (first_sector <= last_sector) {
5409 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5410 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5411 set_bit(STRIPE_HANDLE, &sh->state);
5412 release_stripe(sh);
5413 first_sector += STRIPE_SECTORS;
5414 }
5415 /* Now that the sources are clearly marked, we can release
5416 * the destination stripes
5417 */
5418 while (!list_empty(&stripes)) {
5419 sh = list_entry(stripes.next, struct stripe_head, lru);
5420 list_del_init(&sh->lru);
5421 release_stripe(sh);
5422 }
5423 /* If this takes us to the resync_max point where we have to pause,
5424 * then we need to write out the superblock.
5425 */
5426 sector_nr += reshape_sectors;
5427 if ((sector_nr - mddev->curr_resync_completed) * 2
5428 >= mddev->resync_max - mddev->curr_resync_completed) {
5429 /* Cannot proceed until we've updated the superblock... */
5430 wait_event(conf->wait_for_overlap,
5431 atomic_read(&conf->reshape_stripes) == 0
5432 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5433 if (atomic_read(&conf->reshape_stripes) != 0)
5434 goto ret;
5435 mddev->reshape_position = conf->reshape_progress;
5436 mddev->curr_resync_completed = sector_nr;
5437 conf->reshape_checkpoint = jiffies;
5438 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5439 md_wakeup_thread(mddev->thread);
5440 wait_event(mddev->sb_wait,
5441 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5442 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5443 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5444 goto ret;
5445 spin_lock_irq(&conf->device_lock);
5446 conf->reshape_safe = mddev->reshape_position;
5447 spin_unlock_irq(&conf->device_lock);
5448 wake_up(&conf->wait_for_overlap);
5449 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5450 }
5451 ret:
5452 return reshape_sectors;
5453 }
5454
5455 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5456 {
5457 struct r5conf *conf = mddev->private;
5458 struct stripe_head *sh;
5459 sector_t max_sector = mddev->dev_sectors;
5460 sector_t sync_blocks;
5461 int still_degraded = 0;
5462 int i;
5463
5464 if (sector_nr >= max_sector) {
5465 /* just being told to finish up .. nothing much to do */
5466
5467 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5468 end_reshape(conf);
5469 return 0;
5470 }
5471
5472 if (mddev->curr_resync < max_sector) /* aborted */
5473 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5474 &sync_blocks, 1);
5475 else /* completed sync */
5476 conf->fullsync = 0;
5477 bitmap_close_sync(mddev->bitmap);
5478
5479 return 0;
5480 }
5481
5482 /* Allow raid5_quiesce to complete */
5483 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5484
5485 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5486 return reshape_request(mddev, sector_nr, skipped);
5487
5488 /* No need to check resync_max as we never do more than one
5489 * stripe, and as resync_max will always be on a chunk boundary,
5490 * if the check in md_do_sync didn't fire, there is no chance
5491 * of overstepping resync_max here
5492 */
5493
5494 /* if there is too many failed drives and we are trying
5495 * to resync, then assert that we are finished, because there is
5496 * nothing we can do.
5497 */
5498 if (mddev->degraded >= conf->max_degraded &&
5499 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5500 sector_t rv = mddev->dev_sectors - sector_nr;
5501 *skipped = 1;
5502 return rv;
5503 }
5504 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5505 !conf->fullsync &&
5506 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5507 sync_blocks >= STRIPE_SECTORS) {
5508 /* we can skip this block, and probably more */
5509 sync_blocks /= STRIPE_SECTORS;
5510 *skipped = 1;
5511 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5512 }
5513
5514 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5515
5516 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5517 if (sh == NULL) {
5518 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5519 /* make sure we don't swamp the stripe cache if someone else
5520 * is trying to get access
5521 */
5522 schedule_timeout_uninterruptible(1);
5523 }
5524 /* Need to check if array will still be degraded after recovery/resync
5525 * Note in case of > 1 drive failures it's possible we're rebuilding
5526 * one drive while leaving another faulty drive in array.
5527 */
5528 rcu_read_lock();
5529 for (i = 0; i < conf->raid_disks; i++) {
5530 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5531
5532 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5533 still_degraded = 1;
5534 }
5535 rcu_read_unlock();
5536
5537 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5538
5539 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5540 set_bit(STRIPE_HANDLE, &sh->state);
5541
5542 release_stripe(sh);
5543
5544 return STRIPE_SECTORS;
5545 }
5546
5547 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5548 {
5549 /* We may not be able to submit a whole bio at once as there
5550 * may not be enough stripe_heads available.
5551 * We cannot pre-allocate enough stripe_heads as we may need
5552 * more than exist in the cache (if we allow ever large chunks).
5553 * So we do one stripe head at a time and record in
5554 * ->bi_hw_segments how many have been done.
5555 *
5556 * We *know* that this entire raid_bio is in one chunk, so
5557 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5558 */
5559 struct stripe_head *sh;
5560 int dd_idx;
5561 sector_t sector, logical_sector, last_sector;
5562 int scnt = 0;
5563 int remaining;
5564 int handled = 0;
5565
5566 logical_sector = raid_bio->bi_iter.bi_sector &
5567 ~((sector_t)STRIPE_SECTORS-1);
5568 sector = raid5_compute_sector(conf, logical_sector,
5569 0, &dd_idx, NULL);
5570 last_sector = bio_end_sector(raid_bio);
5571
5572 for (; logical_sector < last_sector;
5573 logical_sector += STRIPE_SECTORS,
5574 sector += STRIPE_SECTORS,
5575 scnt++) {
5576
5577 if (scnt < raid5_bi_processed_stripes(raid_bio))
5578 /* already done this stripe */
5579 continue;
5580
5581 sh = get_active_stripe(conf, sector, 0, 1, 1);
5582
5583 if (!sh) {
5584 /* failed to get a stripe - must wait */
5585 raid5_set_bi_processed_stripes(raid_bio, scnt);
5586 conf->retry_read_aligned = raid_bio;
5587 return handled;
5588 }
5589
5590 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5591 release_stripe(sh);
5592 raid5_set_bi_processed_stripes(raid_bio, scnt);
5593 conf->retry_read_aligned = raid_bio;
5594 return handled;
5595 }
5596
5597 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5598 handle_stripe(sh);
5599 release_stripe(sh);
5600 handled++;
5601 }
5602 remaining = raid5_dec_bi_active_stripes(raid_bio);
5603 if (remaining == 0) {
5604 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5605 raid_bio, 0);
5606 bio_endio(raid_bio, 0);
5607 }
5608 if (atomic_dec_and_test(&conf->active_aligned_reads))
5609 wake_up(&conf->wait_for_stripe);
5610 return handled;
5611 }
5612
5613 static int handle_active_stripes(struct r5conf *conf, int group,
5614 struct r5worker *worker,
5615 struct list_head *temp_inactive_list)
5616 {
5617 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5618 int i, batch_size = 0, hash;
5619 bool release_inactive = false;
5620
5621 while (batch_size < MAX_STRIPE_BATCH &&
5622 (sh = __get_priority_stripe(conf, group)) != NULL)
5623 batch[batch_size++] = sh;
5624
5625 if (batch_size == 0) {
5626 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5627 if (!list_empty(temp_inactive_list + i))
5628 break;
5629 if (i == NR_STRIPE_HASH_LOCKS)
5630 return batch_size;
5631 release_inactive = true;
5632 }
5633 spin_unlock_irq(&conf->device_lock);
5634
5635 release_inactive_stripe_list(conf, temp_inactive_list,
5636 NR_STRIPE_HASH_LOCKS);
5637
5638 if (release_inactive) {
5639 spin_lock_irq(&conf->device_lock);
5640 return 0;
5641 }
5642
5643 for (i = 0; i < batch_size; i++)
5644 handle_stripe(batch[i]);
5645
5646 cond_resched();
5647
5648 spin_lock_irq(&conf->device_lock);
5649 for (i = 0; i < batch_size; i++) {
5650 hash = batch[i]->hash_lock_index;
5651 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5652 }
5653 return batch_size;
5654 }
5655
5656 static void raid5_do_work(struct work_struct *work)
5657 {
5658 struct r5worker *worker = container_of(work, struct r5worker, work);
5659 struct r5worker_group *group = worker->group;
5660 struct r5conf *conf = group->conf;
5661 int group_id = group - conf->worker_groups;
5662 int handled;
5663 struct blk_plug plug;
5664
5665 pr_debug("+++ raid5worker active\n");
5666
5667 blk_start_plug(&plug);
5668 handled = 0;
5669 spin_lock_irq(&conf->device_lock);
5670 while (1) {
5671 int batch_size, released;
5672
5673 released = release_stripe_list(conf, worker->temp_inactive_list);
5674
5675 batch_size = handle_active_stripes(conf, group_id, worker,
5676 worker->temp_inactive_list);
5677 worker->working = false;
5678 if (!batch_size && !released)
5679 break;
5680 handled += batch_size;
5681 }
5682 pr_debug("%d stripes handled\n", handled);
5683
5684 spin_unlock_irq(&conf->device_lock);
5685 blk_finish_plug(&plug);
5686
5687 pr_debug("--- raid5worker inactive\n");
5688 }
5689
5690 /*
5691 * This is our raid5 kernel thread.
5692 *
5693 * We scan the hash table for stripes which can be handled now.
5694 * During the scan, completed stripes are saved for us by the interrupt
5695 * handler, so that they will not have to wait for our next wakeup.
5696 */
5697 static void raid5d(struct md_thread *thread)
5698 {
5699 struct mddev *mddev = thread->mddev;
5700 struct r5conf *conf = mddev->private;
5701 int handled;
5702 struct blk_plug plug;
5703
5704 pr_debug("+++ raid5d active\n");
5705
5706 md_check_recovery(mddev);
5707
5708 blk_start_plug(&plug);
5709 handled = 0;
5710 spin_lock_irq(&conf->device_lock);
5711 while (1) {
5712 struct bio *bio;
5713 int batch_size, released;
5714
5715 released = release_stripe_list(conf, conf->temp_inactive_list);
5716
5717 if (
5718 !list_empty(&conf->bitmap_list)) {
5719 /* Now is a good time to flush some bitmap updates */
5720 conf->seq_flush++;
5721 spin_unlock_irq(&conf->device_lock);
5722 bitmap_unplug(mddev->bitmap);
5723 spin_lock_irq(&conf->device_lock);
5724 conf->seq_write = conf->seq_flush;
5725 activate_bit_delay(conf, conf->temp_inactive_list);
5726 }
5727 raid5_activate_delayed(conf);
5728
5729 while ((bio = remove_bio_from_retry(conf))) {
5730 int ok;
5731 spin_unlock_irq(&conf->device_lock);
5732 ok = retry_aligned_read(conf, bio);
5733 spin_lock_irq(&conf->device_lock);
5734 if (!ok)
5735 break;
5736 handled++;
5737 }
5738
5739 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5740 conf->temp_inactive_list);
5741 if (!batch_size && !released)
5742 break;
5743 handled += batch_size;
5744
5745 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5746 spin_unlock_irq(&conf->device_lock);
5747 md_check_recovery(mddev);
5748 spin_lock_irq(&conf->device_lock);
5749 }
5750 }
5751 pr_debug("%d stripes handled\n", handled);
5752
5753 spin_unlock_irq(&conf->device_lock);
5754
5755 async_tx_issue_pending_all();
5756 blk_finish_plug(&plug);
5757
5758 pr_debug("--- raid5d inactive\n");
5759 }
5760
5761 static ssize_t
5762 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5763 {
5764 struct r5conf *conf;
5765 int ret = 0;
5766 spin_lock(&mddev->lock);
5767 conf = mddev->private;
5768 if (conf)
5769 ret = sprintf(page, "%d\n", conf->max_nr_stripes);
5770 spin_unlock(&mddev->lock);
5771 return ret;
5772 }
5773
5774 int
5775 raid5_set_cache_size(struct mddev *mddev, int size)
5776 {
5777 struct r5conf *conf = mddev->private;
5778 int err;
5779 int hash;
5780
5781 if (size <= 16 || size > 32768)
5782 return -EINVAL;
5783 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5784 while (size < conf->max_nr_stripes) {
5785 if (drop_one_stripe(conf, hash))
5786 conf->max_nr_stripes--;
5787 else
5788 break;
5789 hash--;
5790 if (hash < 0)
5791 hash = NR_STRIPE_HASH_LOCKS - 1;
5792 }
5793 err = md_allow_write(mddev);
5794 if (err)
5795 return err;
5796 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5797 while (size > conf->max_nr_stripes) {
5798 if (grow_one_stripe(conf, hash))
5799 conf->max_nr_stripes++;
5800 else break;
5801 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5802 }
5803 return 0;
5804 }
5805 EXPORT_SYMBOL(raid5_set_cache_size);
5806
5807 static ssize_t
5808 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5809 {
5810 struct r5conf *conf;
5811 unsigned long new;
5812 int err;
5813
5814 if (len >= PAGE_SIZE)
5815 return -EINVAL;
5816 if (kstrtoul(page, 10, &new))
5817 return -EINVAL;
5818 err = mddev_lock(mddev);
5819 if (err)
5820 return err;
5821 conf = mddev->private;
5822 if (!conf)
5823 err = -ENODEV;
5824 else
5825 err = raid5_set_cache_size(mddev, new);
5826 mddev_unlock(mddev);
5827
5828 return err ?: len;
5829 }
5830
5831 static struct md_sysfs_entry
5832 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5833 raid5_show_stripe_cache_size,
5834 raid5_store_stripe_cache_size);
5835
5836 static ssize_t
5837 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5838 {
5839 struct r5conf *conf;
5840 int ret = 0;
5841 spin_lock(&mddev->lock);
5842 conf = mddev->private;
5843 if (conf)
5844 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5845 spin_unlock(&mddev->lock);
5846 return ret;
5847 }
5848
5849 static ssize_t
5850 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5851 {
5852 struct r5conf *conf;
5853 unsigned long new;
5854 int err;
5855
5856 if (len >= PAGE_SIZE)
5857 return -EINVAL;
5858 if (kstrtoul(page, 10, &new))
5859 return -EINVAL;
5860
5861 err = mddev_lock(mddev);
5862 if (err)
5863 return err;
5864 conf = mddev->private;
5865 if (!conf)
5866 err = -ENODEV;
5867 else if (new > conf->max_nr_stripes)
5868 err = -EINVAL;
5869 else
5870 conf->bypass_threshold = new;
5871 mddev_unlock(mddev);
5872 return err ?: len;
5873 }
5874
5875 static struct md_sysfs_entry
5876 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5877 S_IRUGO | S_IWUSR,
5878 raid5_show_preread_threshold,
5879 raid5_store_preread_threshold);
5880
5881 static ssize_t
5882 raid5_show_skip_copy(struct mddev *mddev, char *page)
5883 {
5884 struct r5conf *conf;
5885 int ret = 0;
5886 spin_lock(&mddev->lock);
5887 conf = mddev->private;
5888 if (conf)
5889 ret = sprintf(page, "%d\n", conf->skip_copy);
5890 spin_unlock(&mddev->lock);
5891 return ret;
5892 }
5893
5894 static ssize_t
5895 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5896 {
5897 struct r5conf *conf;
5898 unsigned long new;
5899 int err;
5900
5901 if (len >= PAGE_SIZE)
5902 return -EINVAL;
5903 if (kstrtoul(page, 10, &new))
5904 return -EINVAL;
5905 new = !!new;
5906
5907 err = mddev_lock(mddev);
5908 if (err)
5909 return err;
5910 conf = mddev->private;
5911 if (!conf)
5912 err = -ENODEV;
5913 else if (new != conf->skip_copy) {
5914 mddev_suspend(mddev);
5915 conf->skip_copy = new;
5916 if (new)
5917 mddev->queue->backing_dev_info.capabilities |=
5918 BDI_CAP_STABLE_WRITES;
5919 else
5920 mddev->queue->backing_dev_info.capabilities &=
5921 ~BDI_CAP_STABLE_WRITES;
5922 mddev_resume(mddev);
5923 }
5924 mddev_unlock(mddev);
5925 return err ?: len;
5926 }
5927
5928 static struct md_sysfs_entry
5929 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5930 raid5_show_skip_copy,
5931 raid5_store_skip_copy);
5932
5933 static ssize_t
5934 stripe_cache_active_show(struct mddev *mddev, char *page)
5935 {
5936 struct r5conf *conf = mddev->private;
5937 if (conf)
5938 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5939 else
5940 return 0;
5941 }
5942
5943 static struct md_sysfs_entry
5944 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5945
5946 static ssize_t
5947 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5948 {
5949 struct r5conf *conf;
5950 int ret = 0;
5951 spin_lock(&mddev->lock);
5952 conf = mddev->private;
5953 if (conf)
5954 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
5955 spin_unlock(&mddev->lock);
5956 return ret;
5957 }
5958
5959 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5960 int *group_cnt,
5961 int *worker_cnt_per_group,
5962 struct r5worker_group **worker_groups);
5963 static ssize_t
5964 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5965 {
5966 struct r5conf *conf;
5967 unsigned long new;
5968 int err;
5969 struct r5worker_group *new_groups, *old_groups;
5970 int group_cnt, worker_cnt_per_group;
5971
5972 if (len >= PAGE_SIZE)
5973 return -EINVAL;
5974 if (kstrtoul(page, 10, &new))
5975 return -EINVAL;
5976
5977 err = mddev_lock(mddev);
5978 if (err)
5979 return err;
5980 conf = mddev->private;
5981 if (!conf)
5982 err = -ENODEV;
5983 else if (new != conf->worker_cnt_per_group) {
5984 mddev_suspend(mddev);
5985
5986 old_groups = conf->worker_groups;
5987 if (old_groups)
5988 flush_workqueue(raid5_wq);
5989
5990 err = alloc_thread_groups(conf, new,
5991 &group_cnt, &worker_cnt_per_group,
5992 &new_groups);
5993 if (!err) {
5994 spin_lock_irq(&conf->device_lock);
5995 conf->group_cnt = group_cnt;
5996 conf->worker_cnt_per_group = worker_cnt_per_group;
5997 conf->worker_groups = new_groups;
5998 spin_unlock_irq(&conf->device_lock);
5999
6000 if (old_groups)
6001 kfree(old_groups[0].workers);
6002 kfree(old_groups);
6003 }
6004 mddev_resume(mddev);
6005 }
6006 mddev_unlock(mddev);
6007
6008 return err ?: len;
6009 }
6010
6011 static struct md_sysfs_entry
6012 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6013 raid5_show_group_thread_cnt,
6014 raid5_store_group_thread_cnt);
6015
6016 static struct attribute *raid5_attrs[] = {
6017 &raid5_stripecache_size.attr,
6018 &raid5_stripecache_active.attr,
6019 &raid5_preread_bypass_threshold.attr,
6020 &raid5_group_thread_cnt.attr,
6021 &raid5_skip_copy.attr,
6022 NULL,
6023 };
6024 static struct attribute_group raid5_attrs_group = {
6025 .name = NULL,
6026 .attrs = raid5_attrs,
6027 };
6028
6029 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6030 int *group_cnt,
6031 int *worker_cnt_per_group,
6032 struct r5worker_group **worker_groups)
6033 {
6034 int i, j, k;
6035 ssize_t size;
6036 struct r5worker *workers;
6037
6038 *worker_cnt_per_group = cnt;
6039 if (cnt == 0) {
6040 *group_cnt = 0;
6041 *worker_groups = NULL;
6042 return 0;
6043 }
6044 *group_cnt = num_possible_nodes();
6045 size = sizeof(struct r5worker) * cnt;
6046 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6047 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6048 *group_cnt, GFP_NOIO);
6049 if (!*worker_groups || !workers) {
6050 kfree(workers);
6051 kfree(*worker_groups);
6052 return -ENOMEM;
6053 }
6054
6055 for (i = 0; i < *group_cnt; i++) {
6056 struct r5worker_group *group;
6057
6058 group = &(*worker_groups)[i];
6059 INIT_LIST_HEAD(&group->handle_list);
6060 group->conf = conf;
6061 group->workers = workers + i * cnt;
6062
6063 for (j = 0; j < cnt; j++) {
6064 struct r5worker *worker = group->workers + j;
6065 worker->group = group;
6066 INIT_WORK(&worker->work, raid5_do_work);
6067
6068 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6069 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6070 }
6071 }
6072
6073 return 0;
6074 }
6075
6076 static void free_thread_groups(struct r5conf *conf)
6077 {
6078 if (conf->worker_groups)
6079 kfree(conf->worker_groups[0].workers);
6080 kfree(conf->worker_groups);
6081 conf->worker_groups = NULL;
6082 }
6083
6084 static sector_t
6085 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6086 {
6087 struct r5conf *conf = mddev->private;
6088
6089 if (!sectors)
6090 sectors = mddev->dev_sectors;
6091 if (!raid_disks)
6092 /* size is defined by the smallest of previous and new size */
6093 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6094
6095 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6096 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6097 return sectors * (raid_disks - conf->max_degraded);
6098 }
6099
6100 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6101 {
6102 safe_put_page(percpu->spare_page);
6103 if (percpu->scribble)
6104 flex_array_free(percpu->scribble);
6105 percpu->spare_page = NULL;
6106 percpu->scribble = NULL;
6107 }
6108
6109 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6110 {
6111 if (conf->level == 6 && !percpu->spare_page)
6112 percpu->spare_page = alloc_page(GFP_KERNEL);
6113 if (!percpu->scribble)
6114 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6115 conf->previous_raid_disks), conf->chunk_sectors /
6116 STRIPE_SECTORS, GFP_KERNEL);
6117
6118 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6119 free_scratch_buffer(conf, percpu);
6120 return -ENOMEM;
6121 }
6122
6123 return 0;
6124 }
6125
6126 static void raid5_free_percpu(struct r5conf *conf)
6127 {
6128 unsigned long cpu;
6129
6130 if (!conf->percpu)
6131 return;
6132
6133 #ifdef CONFIG_HOTPLUG_CPU
6134 unregister_cpu_notifier(&conf->cpu_notify);
6135 #endif
6136
6137 get_online_cpus();
6138 for_each_possible_cpu(cpu)
6139 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6140 put_online_cpus();
6141
6142 free_percpu(conf->percpu);
6143 }
6144
6145 static void free_conf(struct r5conf *conf)
6146 {
6147 free_thread_groups(conf);
6148 shrink_stripes(conf);
6149 raid5_free_percpu(conf);
6150 kfree(conf->disks);
6151 kfree(conf->stripe_hashtbl);
6152 kfree(conf);
6153 }
6154
6155 #ifdef CONFIG_HOTPLUG_CPU
6156 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6157 void *hcpu)
6158 {
6159 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6160 long cpu = (long)hcpu;
6161 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6162
6163 switch (action) {
6164 case CPU_UP_PREPARE:
6165 case CPU_UP_PREPARE_FROZEN:
6166 if (alloc_scratch_buffer(conf, percpu)) {
6167 pr_err("%s: failed memory allocation for cpu%ld\n",
6168 __func__, cpu);
6169 return notifier_from_errno(-ENOMEM);
6170 }
6171 break;
6172 case CPU_DEAD:
6173 case CPU_DEAD_FROZEN:
6174 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6175 break;
6176 default:
6177 break;
6178 }
6179 return NOTIFY_OK;
6180 }
6181 #endif
6182
6183 static int raid5_alloc_percpu(struct r5conf *conf)
6184 {
6185 unsigned long cpu;
6186 int err = 0;
6187
6188 conf->percpu = alloc_percpu(struct raid5_percpu);
6189 if (!conf->percpu)
6190 return -ENOMEM;
6191
6192 #ifdef CONFIG_HOTPLUG_CPU
6193 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6194 conf->cpu_notify.priority = 0;
6195 err = register_cpu_notifier(&conf->cpu_notify);
6196 if (err)
6197 return err;
6198 #endif
6199
6200 get_online_cpus();
6201 for_each_present_cpu(cpu) {
6202 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6203 if (err) {
6204 pr_err("%s: failed memory allocation for cpu%ld\n",
6205 __func__, cpu);
6206 break;
6207 }
6208 }
6209 put_online_cpus();
6210
6211 return err;
6212 }
6213
6214 static struct r5conf *setup_conf(struct mddev *mddev)
6215 {
6216 struct r5conf *conf;
6217 int raid_disk, memory, max_disks;
6218 struct md_rdev *rdev;
6219 struct disk_info *disk;
6220 char pers_name[6];
6221 int i;
6222 int group_cnt, worker_cnt_per_group;
6223 struct r5worker_group *new_group;
6224
6225 if (mddev->new_level != 5
6226 && mddev->new_level != 4
6227 && mddev->new_level != 6) {
6228 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6229 mdname(mddev), mddev->new_level);
6230 return ERR_PTR(-EIO);
6231 }
6232 if ((mddev->new_level == 5
6233 && !algorithm_valid_raid5(mddev->new_layout)) ||
6234 (mddev->new_level == 6
6235 && !algorithm_valid_raid6(mddev->new_layout))) {
6236 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6237 mdname(mddev), mddev->new_layout);
6238 return ERR_PTR(-EIO);
6239 }
6240 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6241 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6242 mdname(mddev), mddev->raid_disks);
6243 return ERR_PTR(-EINVAL);
6244 }
6245
6246 if (!mddev->new_chunk_sectors ||
6247 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6248 !is_power_of_2(mddev->new_chunk_sectors)) {
6249 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6250 mdname(mddev), mddev->new_chunk_sectors << 9);
6251 return ERR_PTR(-EINVAL);
6252 }
6253
6254 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6255 if (conf == NULL)
6256 goto abort;
6257 /* Don't enable multi-threading by default*/
6258 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6259 &new_group)) {
6260 conf->group_cnt = group_cnt;
6261 conf->worker_cnt_per_group = worker_cnt_per_group;
6262 conf->worker_groups = new_group;
6263 } else
6264 goto abort;
6265 spin_lock_init(&conf->device_lock);
6266 seqcount_init(&conf->gen_lock);
6267 init_waitqueue_head(&conf->wait_for_stripe);
6268 init_waitqueue_head(&conf->wait_for_overlap);
6269 INIT_LIST_HEAD(&conf->handle_list);
6270 INIT_LIST_HEAD(&conf->hold_list);
6271 INIT_LIST_HEAD(&conf->delayed_list);
6272 INIT_LIST_HEAD(&conf->bitmap_list);
6273 init_llist_head(&conf->released_stripes);
6274 atomic_set(&conf->active_stripes, 0);
6275 atomic_set(&conf->preread_active_stripes, 0);
6276 atomic_set(&conf->active_aligned_reads, 0);
6277 conf->bypass_threshold = BYPASS_THRESHOLD;
6278 conf->recovery_disabled = mddev->recovery_disabled - 1;
6279
6280 conf->raid_disks = mddev->raid_disks;
6281 if (mddev->reshape_position == MaxSector)
6282 conf->previous_raid_disks = mddev->raid_disks;
6283 else
6284 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6285 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6286
6287 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6288 GFP_KERNEL);
6289 if (!conf->disks)
6290 goto abort;
6291
6292 conf->mddev = mddev;
6293
6294 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6295 goto abort;
6296
6297 /* We init hash_locks[0] separately to that it can be used
6298 * as the reference lock in the spin_lock_nest_lock() call
6299 * in lock_all_device_hash_locks_irq in order to convince
6300 * lockdep that we know what we are doing.
6301 */
6302 spin_lock_init(conf->hash_locks);
6303 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6304 spin_lock_init(conf->hash_locks + i);
6305
6306 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6307 INIT_LIST_HEAD(conf->inactive_list + i);
6308
6309 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6310 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6311
6312 conf->level = mddev->new_level;
6313 conf->chunk_sectors = mddev->new_chunk_sectors;
6314 if (raid5_alloc_percpu(conf) != 0)
6315 goto abort;
6316
6317 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6318
6319 rdev_for_each(rdev, mddev) {
6320 raid_disk = rdev->raid_disk;
6321 if (raid_disk >= max_disks
6322 || raid_disk < 0)
6323 continue;
6324 disk = conf->disks + raid_disk;
6325
6326 if (test_bit(Replacement, &rdev->flags)) {
6327 if (disk->replacement)
6328 goto abort;
6329 disk->replacement = rdev;
6330 } else {
6331 if (disk->rdev)
6332 goto abort;
6333 disk->rdev = rdev;
6334 }
6335
6336 if (test_bit(In_sync, &rdev->flags)) {
6337 char b[BDEVNAME_SIZE];
6338 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6339 " disk %d\n",
6340 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6341 } else if (rdev->saved_raid_disk != raid_disk)
6342 /* Cannot rely on bitmap to complete recovery */
6343 conf->fullsync = 1;
6344 }
6345
6346 conf->level = mddev->new_level;
6347 if (conf->level == 6)
6348 conf->max_degraded = 2;
6349 else
6350 conf->max_degraded = 1;
6351 conf->algorithm = mddev->new_layout;
6352 conf->reshape_progress = mddev->reshape_position;
6353 if (conf->reshape_progress != MaxSector) {
6354 conf->prev_chunk_sectors = mddev->chunk_sectors;
6355 conf->prev_algo = mddev->layout;
6356 }
6357
6358 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
6359 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6360 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6361 if (grow_stripes(conf, NR_STRIPES)) {
6362 printk(KERN_ERR
6363 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6364 mdname(mddev), memory);
6365 goto abort;
6366 } else
6367 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6368 mdname(mddev), memory);
6369
6370 sprintf(pers_name, "raid%d", mddev->new_level);
6371 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6372 if (!conf->thread) {
6373 printk(KERN_ERR
6374 "md/raid:%s: couldn't allocate thread.\n",
6375 mdname(mddev));
6376 goto abort;
6377 }
6378
6379 return conf;
6380
6381 abort:
6382 if (conf) {
6383 free_conf(conf);
6384 return ERR_PTR(-EIO);
6385 } else
6386 return ERR_PTR(-ENOMEM);
6387 }
6388
6389 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6390 {
6391 switch (algo) {
6392 case ALGORITHM_PARITY_0:
6393 if (raid_disk < max_degraded)
6394 return 1;
6395 break;
6396 case ALGORITHM_PARITY_N:
6397 if (raid_disk >= raid_disks - max_degraded)
6398 return 1;
6399 break;
6400 case ALGORITHM_PARITY_0_6:
6401 if (raid_disk == 0 ||
6402 raid_disk == raid_disks - 1)
6403 return 1;
6404 break;
6405 case ALGORITHM_LEFT_ASYMMETRIC_6:
6406 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6407 case ALGORITHM_LEFT_SYMMETRIC_6:
6408 case ALGORITHM_RIGHT_SYMMETRIC_6:
6409 if (raid_disk == raid_disks - 1)
6410 return 1;
6411 }
6412 return 0;
6413 }
6414
6415 static int run(struct mddev *mddev)
6416 {
6417 struct r5conf *conf;
6418 int working_disks = 0;
6419 int dirty_parity_disks = 0;
6420 struct md_rdev *rdev;
6421 sector_t reshape_offset = 0;
6422 int i;
6423 long long min_offset_diff = 0;
6424 int first = 1;
6425
6426 if (mddev->recovery_cp != MaxSector)
6427 printk(KERN_NOTICE "md/raid:%s: not clean"
6428 " -- starting background reconstruction\n",
6429 mdname(mddev));
6430
6431 rdev_for_each(rdev, mddev) {
6432 long long diff;
6433 if (rdev->raid_disk < 0)
6434 continue;
6435 diff = (rdev->new_data_offset - rdev->data_offset);
6436 if (first) {
6437 min_offset_diff = diff;
6438 first = 0;
6439 } else if (mddev->reshape_backwards &&
6440 diff < min_offset_diff)
6441 min_offset_diff = diff;
6442 else if (!mddev->reshape_backwards &&
6443 diff > min_offset_diff)
6444 min_offset_diff = diff;
6445 }
6446
6447 if (mddev->reshape_position != MaxSector) {
6448 /* Check that we can continue the reshape.
6449 * Difficulties arise if the stripe we would write to
6450 * next is at or after the stripe we would read from next.
6451 * For a reshape that changes the number of devices, this
6452 * is only possible for a very short time, and mdadm makes
6453 * sure that time appears to have past before assembling
6454 * the array. So we fail if that time hasn't passed.
6455 * For a reshape that keeps the number of devices the same
6456 * mdadm must be monitoring the reshape can keeping the
6457 * critical areas read-only and backed up. It will start
6458 * the array in read-only mode, so we check for that.
6459 */
6460 sector_t here_new, here_old;
6461 int old_disks;
6462 int max_degraded = (mddev->level == 6 ? 2 : 1);
6463
6464 if (mddev->new_level != mddev->level) {
6465 printk(KERN_ERR "md/raid:%s: unsupported reshape "
6466 "required - aborting.\n",
6467 mdname(mddev));
6468 return -EINVAL;
6469 }
6470 old_disks = mddev->raid_disks - mddev->delta_disks;
6471 /* reshape_position must be on a new-stripe boundary, and one
6472 * further up in new geometry must map after here in old
6473 * geometry.
6474 */
6475 here_new = mddev->reshape_position;
6476 if (sector_div(here_new, mddev->new_chunk_sectors *
6477 (mddev->raid_disks - max_degraded))) {
6478 printk(KERN_ERR "md/raid:%s: reshape_position not "
6479 "on a stripe boundary\n", mdname(mddev));
6480 return -EINVAL;
6481 }
6482 reshape_offset = here_new * mddev->new_chunk_sectors;
6483 /* here_new is the stripe we will write to */
6484 here_old = mddev->reshape_position;
6485 sector_div(here_old, mddev->chunk_sectors *
6486 (old_disks-max_degraded));
6487 /* here_old is the first stripe that we might need to read
6488 * from */
6489 if (mddev->delta_disks == 0) {
6490 if ((here_new * mddev->new_chunk_sectors !=
6491 here_old * mddev->chunk_sectors)) {
6492 printk(KERN_ERR "md/raid:%s: reshape position is"
6493 " confused - aborting\n", mdname(mddev));
6494 return -EINVAL;
6495 }
6496 /* We cannot be sure it is safe to start an in-place
6497 * reshape. It is only safe if user-space is monitoring
6498 * and taking constant backups.
6499 * mdadm always starts a situation like this in
6500 * readonly mode so it can take control before
6501 * allowing any writes. So just check for that.
6502 */
6503 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6504 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6505 /* not really in-place - so OK */;
6506 else if (mddev->ro == 0) {
6507 printk(KERN_ERR "md/raid:%s: in-place reshape "
6508 "must be started in read-only mode "
6509 "- aborting\n",
6510 mdname(mddev));
6511 return -EINVAL;
6512 }
6513 } else if (mddev->reshape_backwards
6514 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6515 here_old * mddev->chunk_sectors)
6516 : (here_new * mddev->new_chunk_sectors >=
6517 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6518 /* Reading from the same stripe as writing to - bad */
6519 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6520 "auto-recovery - aborting.\n",
6521 mdname(mddev));
6522 return -EINVAL;
6523 }
6524 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6525 mdname(mddev));
6526 /* OK, we should be able to continue; */
6527 } else {
6528 BUG_ON(mddev->level != mddev->new_level);
6529 BUG_ON(mddev->layout != mddev->new_layout);
6530 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6531 BUG_ON(mddev->delta_disks != 0);
6532 }
6533
6534 if (mddev->private == NULL)
6535 conf = setup_conf(mddev);
6536 else
6537 conf = mddev->private;
6538
6539 if (IS_ERR(conf))
6540 return PTR_ERR(conf);
6541
6542 conf->min_offset_diff = min_offset_diff;
6543 mddev->thread = conf->thread;
6544 conf->thread = NULL;
6545 mddev->private = conf;
6546
6547 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6548 i++) {
6549 rdev = conf->disks[i].rdev;
6550 if (!rdev && conf->disks[i].replacement) {
6551 /* The replacement is all we have yet */
6552 rdev = conf->disks[i].replacement;
6553 conf->disks[i].replacement = NULL;
6554 clear_bit(Replacement, &rdev->flags);
6555 conf->disks[i].rdev = rdev;
6556 }
6557 if (!rdev)
6558 continue;
6559 if (conf->disks[i].replacement &&
6560 conf->reshape_progress != MaxSector) {
6561 /* replacements and reshape simply do not mix. */
6562 printk(KERN_ERR "md: cannot handle concurrent "
6563 "replacement and reshape.\n");
6564 goto abort;
6565 }
6566 if (test_bit(In_sync, &rdev->flags)) {
6567 working_disks++;
6568 continue;
6569 }
6570 /* This disc is not fully in-sync. However if it
6571 * just stored parity (beyond the recovery_offset),
6572 * when we don't need to be concerned about the
6573 * array being dirty.
6574 * When reshape goes 'backwards', we never have
6575 * partially completed devices, so we only need
6576 * to worry about reshape going forwards.
6577 */
6578 /* Hack because v0.91 doesn't store recovery_offset properly. */
6579 if (mddev->major_version == 0 &&
6580 mddev->minor_version > 90)
6581 rdev->recovery_offset = reshape_offset;
6582
6583 if (rdev->recovery_offset < reshape_offset) {
6584 /* We need to check old and new layout */
6585 if (!only_parity(rdev->raid_disk,
6586 conf->algorithm,
6587 conf->raid_disks,
6588 conf->max_degraded))
6589 continue;
6590 }
6591 if (!only_parity(rdev->raid_disk,
6592 conf->prev_algo,
6593 conf->previous_raid_disks,
6594 conf->max_degraded))
6595 continue;
6596 dirty_parity_disks++;
6597 }
6598
6599 /*
6600 * 0 for a fully functional array, 1 or 2 for a degraded array.
6601 */
6602 mddev->degraded = calc_degraded(conf);
6603
6604 if (has_failed(conf)) {
6605 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6606 " (%d/%d failed)\n",
6607 mdname(mddev), mddev->degraded, conf->raid_disks);
6608 goto abort;
6609 }
6610
6611 /* device size must be a multiple of chunk size */
6612 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6613 mddev->resync_max_sectors = mddev->dev_sectors;
6614
6615 if (mddev->degraded > dirty_parity_disks &&
6616 mddev->recovery_cp != MaxSector) {
6617 if (mddev->ok_start_degraded)
6618 printk(KERN_WARNING
6619 "md/raid:%s: starting dirty degraded array"
6620 " - data corruption possible.\n",
6621 mdname(mddev));
6622 else {
6623 printk(KERN_ERR
6624 "md/raid:%s: cannot start dirty degraded array.\n",
6625 mdname(mddev));
6626 goto abort;
6627 }
6628 }
6629
6630 if (mddev->degraded == 0)
6631 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6632 " devices, algorithm %d\n", mdname(mddev), conf->level,
6633 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6634 mddev->new_layout);
6635 else
6636 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6637 " out of %d devices, algorithm %d\n",
6638 mdname(mddev), conf->level,
6639 mddev->raid_disks - mddev->degraded,
6640 mddev->raid_disks, mddev->new_layout);
6641
6642 print_raid5_conf(conf);
6643
6644 if (conf->reshape_progress != MaxSector) {
6645 conf->reshape_safe = conf->reshape_progress;
6646 atomic_set(&conf->reshape_stripes, 0);
6647 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6648 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6649 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6650 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6651 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6652 "reshape");
6653 }
6654
6655 /* Ok, everything is just fine now */
6656 if (mddev->to_remove == &raid5_attrs_group)
6657 mddev->to_remove = NULL;
6658 else if (mddev->kobj.sd &&
6659 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6660 printk(KERN_WARNING
6661 "raid5: failed to create sysfs attributes for %s\n",
6662 mdname(mddev));
6663 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6664
6665 if (mddev->queue) {
6666 int chunk_size;
6667 bool discard_supported = true;
6668 /* read-ahead size must cover two whole stripes, which
6669 * is 2 * (datadisks) * chunksize where 'n' is the
6670 * number of raid devices
6671 */
6672 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6673 int stripe = data_disks *
6674 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6675 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6676 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6677
6678 chunk_size = mddev->chunk_sectors << 9;
6679 blk_queue_io_min(mddev->queue, chunk_size);
6680 blk_queue_io_opt(mddev->queue, chunk_size *
6681 (conf->raid_disks - conf->max_degraded));
6682 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6683 /*
6684 * We can only discard a whole stripe. It doesn't make sense to
6685 * discard data disk but write parity disk
6686 */
6687 stripe = stripe * PAGE_SIZE;
6688 /* Round up to power of 2, as discard handling
6689 * currently assumes that */
6690 while ((stripe-1) & stripe)
6691 stripe = (stripe | (stripe-1)) + 1;
6692 mddev->queue->limits.discard_alignment = stripe;
6693 mddev->queue->limits.discard_granularity = stripe;
6694 /*
6695 * unaligned part of discard request will be ignored, so can't
6696 * guarantee discard_zeroes_data
6697 */
6698 mddev->queue->limits.discard_zeroes_data = 0;
6699
6700 blk_queue_max_write_same_sectors(mddev->queue, 0);
6701
6702 rdev_for_each(rdev, mddev) {
6703 disk_stack_limits(mddev->gendisk, rdev->bdev,
6704 rdev->data_offset << 9);
6705 disk_stack_limits(mddev->gendisk, rdev->bdev,
6706 rdev->new_data_offset << 9);
6707 /*
6708 * discard_zeroes_data is required, otherwise data
6709 * could be lost. Consider a scenario: discard a stripe
6710 * (the stripe could be inconsistent if
6711 * discard_zeroes_data is 0); write one disk of the
6712 * stripe (the stripe could be inconsistent again
6713 * depending on which disks are used to calculate
6714 * parity); the disk is broken; The stripe data of this
6715 * disk is lost.
6716 */
6717 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6718 !bdev_get_queue(rdev->bdev)->
6719 limits.discard_zeroes_data)
6720 discard_supported = false;
6721 /* Unfortunately, discard_zeroes_data is not currently
6722 * a guarantee - just a hint. So we only allow DISCARD
6723 * if the sysadmin has confirmed that only safe devices
6724 * are in use by setting a module parameter.
6725 */
6726 if (!devices_handle_discard_safely) {
6727 if (discard_supported) {
6728 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6729 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6730 }
6731 discard_supported = false;
6732 }
6733 }
6734
6735 if (discard_supported &&
6736 mddev->queue->limits.max_discard_sectors >= stripe &&
6737 mddev->queue->limits.discard_granularity >= stripe)
6738 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6739 mddev->queue);
6740 else
6741 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6742 mddev->queue);
6743 }
6744
6745 return 0;
6746 abort:
6747 md_unregister_thread(&mddev->thread);
6748 print_raid5_conf(conf);
6749 free_conf(conf);
6750 mddev->private = NULL;
6751 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6752 return -EIO;
6753 }
6754
6755 static void raid5_free(struct mddev *mddev, void *priv)
6756 {
6757 struct r5conf *conf = priv;
6758
6759 free_conf(conf);
6760 mddev->to_remove = &raid5_attrs_group;
6761 }
6762
6763 static void status(struct seq_file *seq, struct mddev *mddev)
6764 {
6765 struct r5conf *conf = mddev->private;
6766 int i;
6767
6768 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6769 mddev->chunk_sectors / 2, mddev->layout);
6770 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6771 for (i = 0; i < conf->raid_disks; i++)
6772 seq_printf (seq, "%s",
6773 conf->disks[i].rdev &&
6774 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6775 seq_printf (seq, "]");
6776 }
6777
6778 static void print_raid5_conf (struct r5conf *conf)
6779 {
6780 int i;
6781 struct disk_info *tmp;
6782
6783 printk(KERN_DEBUG "RAID conf printout:\n");
6784 if (!conf) {
6785 printk("(conf==NULL)\n");
6786 return;
6787 }
6788 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6789 conf->raid_disks,
6790 conf->raid_disks - conf->mddev->degraded);
6791
6792 for (i = 0; i < conf->raid_disks; i++) {
6793 char b[BDEVNAME_SIZE];
6794 tmp = conf->disks + i;
6795 if (tmp->rdev)
6796 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6797 i, !test_bit(Faulty, &tmp->rdev->flags),
6798 bdevname(tmp->rdev->bdev, b));
6799 }
6800 }
6801
6802 static int raid5_spare_active(struct mddev *mddev)
6803 {
6804 int i;
6805 struct r5conf *conf = mddev->private;
6806 struct disk_info *tmp;
6807 int count = 0;
6808 unsigned long flags;
6809
6810 for (i = 0; i < conf->raid_disks; i++) {
6811 tmp = conf->disks + i;
6812 if (tmp->replacement
6813 && tmp->replacement->recovery_offset == MaxSector
6814 && !test_bit(Faulty, &tmp->replacement->flags)
6815 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6816 /* Replacement has just become active. */
6817 if (!tmp->rdev
6818 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6819 count++;
6820 if (tmp->rdev) {
6821 /* Replaced device not technically faulty,
6822 * but we need to be sure it gets removed
6823 * and never re-added.
6824 */
6825 set_bit(Faulty, &tmp->rdev->flags);
6826 sysfs_notify_dirent_safe(
6827 tmp->rdev->sysfs_state);
6828 }
6829 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6830 } else if (tmp->rdev
6831 && tmp->rdev->recovery_offset == MaxSector
6832 && !test_bit(Faulty, &tmp->rdev->flags)
6833 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6834 count++;
6835 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6836 }
6837 }
6838 spin_lock_irqsave(&conf->device_lock, flags);
6839 mddev->degraded = calc_degraded(conf);
6840 spin_unlock_irqrestore(&conf->device_lock, flags);
6841 print_raid5_conf(conf);
6842 return count;
6843 }
6844
6845 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6846 {
6847 struct r5conf *conf = mddev->private;
6848 int err = 0;
6849 int number = rdev->raid_disk;
6850 struct md_rdev **rdevp;
6851 struct disk_info *p = conf->disks + number;
6852
6853 print_raid5_conf(conf);
6854 if (rdev == p->rdev)
6855 rdevp = &p->rdev;
6856 else if (rdev == p->replacement)
6857 rdevp = &p->replacement;
6858 else
6859 return 0;
6860
6861 if (number >= conf->raid_disks &&
6862 conf->reshape_progress == MaxSector)
6863 clear_bit(In_sync, &rdev->flags);
6864
6865 if (test_bit(In_sync, &rdev->flags) ||
6866 atomic_read(&rdev->nr_pending)) {
6867 err = -EBUSY;
6868 goto abort;
6869 }
6870 /* Only remove non-faulty devices if recovery
6871 * isn't possible.
6872 */
6873 if (!test_bit(Faulty, &rdev->flags) &&
6874 mddev->recovery_disabled != conf->recovery_disabled &&
6875 !has_failed(conf) &&
6876 (!p->replacement || p->replacement == rdev) &&
6877 number < conf->raid_disks) {
6878 err = -EBUSY;
6879 goto abort;
6880 }
6881 *rdevp = NULL;
6882 synchronize_rcu();
6883 if (atomic_read(&rdev->nr_pending)) {
6884 /* lost the race, try later */
6885 err = -EBUSY;
6886 *rdevp = rdev;
6887 } else if (p->replacement) {
6888 /* We must have just cleared 'rdev' */
6889 p->rdev = p->replacement;
6890 clear_bit(Replacement, &p->replacement->flags);
6891 smp_mb(); /* Make sure other CPUs may see both as identical
6892 * but will never see neither - if they are careful
6893 */
6894 p->replacement = NULL;
6895 clear_bit(WantReplacement, &rdev->flags);
6896 } else
6897 /* We might have just removed the Replacement as faulty-
6898 * clear the bit just in case
6899 */
6900 clear_bit(WantReplacement, &rdev->flags);
6901 abort:
6902
6903 print_raid5_conf(conf);
6904 return err;
6905 }
6906
6907 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6908 {
6909 struct r5conf *conf = mddev->private;
6910 int err = -EEXIST;
6911 int disk;
6912 struct disk_info *p;
6913 int first = 0;
6914 int last = conf->raid_disks - 1;
6915
6916 if (mddev->recovery_disabled == conf->recovery_disabled)
6917 return -EBUSY;
6918
6919 if (rdev->saved_raid_disk < 0 && has_failed(conf))
6920 /* no point adding a device */
6921 return -EINVAL;
6922
6923 if (rdev->raid_disk >= 0)
6924 first = last = rdev->raid_disk;
6925
6926 /*
6927 * find the disk ... but prefer rdev->saved_raid_disk
6928 * if possible.
6929 */
6930 if (rdev->saved_raid_disk >= 0 &&
6931 rdev->saved_raid_disk >= first &&
6932 conf->disks[rdev->saved_raid_disk].rdev == NULL)
6933 first = rdev->saved_raid_disk;
6934
6935 for (disk = first; disk <= last; disk++) {
6936 p = conf->disks + disk;
6937 if (p->rdev == NULL) {
6938 clear_bit(In_sync, &rdev->flags);
6939 rdev->raid_disk = disk;
6940 err = 0;
6941 if (rdev->saved_raid_disk != disk)
6942 conf->fullsync = 1;
6943 rcu_assign_pointer(p->rdev, rdev);
6944 goto out;
6945 }
6946 }
6947 for (disk = first; disk <= last; disk++) {
6948 p = conf->disks + disk;
6949 if (test_bit(WantReplacement, &p->rdev->flags) &&
6950 p->replacement == NULL) {
6951 clear_bit(In_sync, &rdev->flags);
6952 set_bit(Replacement, &rdev->flags);
6953 rdev->raid_disk = disk;
6954 err = 0;
6955 conf->fullsync = 1;
6956 rcu_assign_pointer(p->replacement, rdev);
6957 break;
6958 }
6959 }
6960 out:
6961 print_raid5_conf(conf);
6962 return err;
6963 }
6964
6965 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6966 {
6967 /* no resync is happening, and there is enough space
6968 * on all devices, so we can resize.
6969 * We need to make sure resync covers any new space.
6970 * If the array is shrinking we should possibly wait until
6971 * any io in the removed space completes, but it hardly seems
6972 * worth it.
6973 */
6974 sector_t newsize;
6975 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6976 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6977 if (mddev->external_size &&
6978 mddev->array_sectors > newsize)
6979 return -EINVAL;
6980 if (mddev->bitmap) {
6981 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6982 if (ret)
6983 return ret;
6984 }
6985 md_set_array_sectors(mddev, newsize);
6986 set_capacity(mddev->gendisk, mddev->array_sectors);
6987 revalidate_disk(mddev->gendisk);
6988 if (sectors > mddev->dev_sectors &&
6989 mddev->recovery_cp > mddev->dev_sectors) {
6990 mddev->recovery_cp = mddev->dev_sectors;
6991 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6992 }
6993 mddev->dev_sectors = sectors;
6994 mddev->resync_max_sectors = sectors;
6995 return 0;
6996 }
6997
6998 static int check_stripe_cache(struct mddev *mddev)
6999 {
7000 /* Can only proceed if there are plenty of stripe_heads.
7001 * We need a minimum of one full stripe,, and for sensible progress
7002 * it is best to have about 4 times that.
7003 * If we require 4 times, then the default 256 4K stripe_heads will
7004 * allow for chunk sizes up to 256K, which is probably OK.
7005 * If the chunk size is greater, user-space should request more
7006 * stripe_heads first.
7007 */
7008 struct r5conf *conf = mddev->private;
7009 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7010 > conf->max_nr_stripes ||
7011 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7012 > conf->max_nr_stripes) {
7013 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7014 mdname(mddev),
7015 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7016 / STRIPE_SIZE)*4);
7017 return 0;
7018 }
7019 return 1;
7020 }
7021
7022 static int check_reshape(struct mddev *mddev)
7023 {
7024 struct r5conf *conf = mddev->private;
7025
7026 if (mddev->delta_disks == 0 &&
7027 mddev->new_layout == mddev->layout &&
7028 mddev->new_chunk_sectors == mddev->chunk_sectors)
7029 return 0; /* nothing to do */
7030 if (has_failed(conf))
7031 return -EINVAL;
7032 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7033 /* We might be able to shrink, but the devices must
7034 * be made bigger first.
7035 * For raid6, 4 is the minimum size.
7036 * Otherwise 2 is the minimum
7037 */
7038 int min = 2;
7039 if (mddev->level == 6)
7040 min = 4;
7041 if (mddev->raid_disks + mddev->delta_disks < min)
7042 return -EINVAL;
7043 }
7044
7045 if (!check_stripe_cache(mddev))
7046 return -ENOSPC;
7047
7048 return resize_stripes(conf, (conf->previous_raid_disks
7049 + mddev->delta_disks));
7050 }
7051
7052 static int raid5_start_reshape(struct mddev *mddev)
7053 {
7054 struct r5conf *conf = mddev->private;
7055 struct md_rdev *rdev;
7056 int spares = 0;
7057 unsigned long flags;
7058
7059 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7060 return -EBUSY;
7061
7062 if (!check_stripe_cache(mddev))
7063 return -ENOSPC;
7064
7065 if (has_failed(conf))
7066 return -EINVAL;
7067
7068 rdev_for_each(rdev, mddev) {
7069 if (!test_bit(In_sync, &rdev->flags)
7070 && !test_bit(Faulty, &rdev->flags))
7071 spares++;
7072 }
7073
7074 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7075 /* Not enough devices even to make a degraded array
7076 * of that size
7077 */
7078 return -EINVAL;
7079
7080 /* Refuse to reduce size of the array. Any reductions in
7081 * array size must be through explicit setting of array_size
7082 * attribute.
7083 */
7084 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7085 < mddev->array_sectors) {
7086 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7087 "before number of disks\n", mdname(mddev));
7088 return -EINVAL;
7089 }
7090
7091 atomic_set(&conf->reshape_stripes, 0);
7092 spin_lock_irq(&conf->device_lock);
7093 write_seqcount_begin(&conf->gen_lock);
7094 conf->previous_raid_disks = conf->raid_disks;
7095 conf->raid_disks += mddev->delta_disks;
7096 conf->prev_chunk_sectors = conf->chunk_sectors;
7097 conf->chunk_sectors = mddev->new_chunk_sectors;
7098 conf->prev_algo = conf->algorithm;
7099 conf->algorithm = mddev->new_layout;
7100 conf->generation++;
7101 /* Code that selects data_offset needs to see the generation update
7102 * if reshape_progress has been set - so a memory barrier needed.
7103 */
7104 smp_mb();
7105 if (mddev->reshape_backwards)
7106 conf->reshape_progress = raid5_size(mddev, 0, 0);
7107 else
7108 conf->reshape_progress = 0;
7109 conf->reshape_safe = conf->reshape_progress;
7110 write_seqcount_end(&conf->gen_lock);
7111 spin_unlock_irq(&conf->device_lock);
7112
7113 /* Now make sure any requests that proceeded on the assumption
7114 * the reshape wasn't running - like Discard or Read - have
7115 * completed.
7116 */
7117 mddev_suspend(mddev);
7118 mddev_resume(mddev);
7119
7120 /* Add some new drives, as many as will fit.
7121 * We know there are enough to make the newly sized array work.
7122 * Don't add devices if we are reducing the number of
7123 * devices in the array. This is because it is not possible
7124 * to correctly record the "partially reconstructed" state of
7125 * such devices during the reshape and confusion could result.
7126 */
7127 if (mddev->delta_disks >= 0) {
7128 rdev_for_each(rdev, mddev)
7129 if (rdev->raid_disk < 0 &&
7130 !test_bit(Faulty, &rdev->flags)) {
7131 if (raid5_add_disk(mddev, rdev) == 0) {
7132 if (rdev->raid_disk
7133 >= conf->previous_raid_disks)
7134 set_bit(In_sync, &rdev->flags);
7135 else
7136 rdev->recovery_offset = 0;
7137
7138 if (sysfs_link_rdev(mddev, rdev))
7139 /* Failure here is OK */;
7140 }
7141 } else if (rdev->raid_disk >= conf->previous_raid_disks
7142 && !test_bit(Faulty, &rdev->flags)) {
7143 /* This is a spare that was manually added */
7144 set_bit(In_sync, &rdev->flags);
7145 }
7146
7147 /* When a reshape changes the number of devices,
7148 * ->degraded is measured against the larger of the
7149 * pre and post number of devices.
7150 */
7151 spin_lock_irqsave(&conf->device_lock, flags);
7152 mddev->degraded = calc_degraded(conf);
7153 spin_unlock_irqrestore(&conf->device_lock, flags);
7154 }
7155 mddev->raid_disks = conf->raid_disks;
7156 mddev->reshape_position = conf->reshape_progress;
7157 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7158
7159 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7160 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7161 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7162 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7163 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7164 "reshape");
7165 if (!mddev->sync_thread) {
7166 mddev->recovery = 0;
7167 spin_lock_irq(&conf->device_lock);
7168 write_seqcount_begin(&conf->gen_lock);
7169 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7170 mddev->new_chunk_sectors =
7171 conf->chunk_sectors = conf->prev_chunk_sectors;
7172 mddev->new_layout = conf->algorithm = conf->prev_algo;
7173 rdev_for_each(rdev, mddev)
7174 rdev->new_data_offset = rdev->data_offset;
7175 smp_wmb();
7176 conf->generation --;
7177 conf->reshape_progress = MaxSector;
7178 mddev->reshape_position = MaxSector;
7179 write_seqcount_end(&conf->gen_lock);
7180 spin_unlock_irq(&conf->device_lock);
7181 return -EAGAIN;
7182 }
7183 conf->reshape_checkpoint = jiffies;
7184 md_wakeup_thread(mddev->sync_thread);
7185 md_new_event(mddev);
7186 return 0;
7187 }
7188
7189 /* This is called from the reshape thread and should make any
7190 * changes needed in 'conf'
7191 */
7192 static void end_reshape(struct r5conf *conf)
7193 {
7194
7195 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7196 struct md_rdev *rdev;
7197
7198 spin_lock_irq(&conf->device_lock);
7199 conf->previous_raid_disks = conf->raid_disks;
7200 rdev_for_each(rdev, conf->mddev)
7201 rdev->data_offset = rdev->new_data_offset;
7202 smp_wmb();
7203 conf->reshape_progress = MaxSector;
7204 spin_unlock_irq(&conf->device_lock);
7205 wake_up(&conf->wait_for_overlap);
7206
7207 /* read-ahead size must cover two whole stripes, which is
7208 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7209 */
7210 if (conf->mddev->queue) {
7211 int data_disks = conf->raid_disks - conf->max_degraded;
7212 int stripe = data_disks * ((conf->chunk_sectors << 9)
7213 / PAGE_SIZE);
7214 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7215 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7216 }
7217 }
7218 }
7219
7220 /* This is called from the raid5d thread with mddev_lock held.
7221 * It makes config changes to the device.
7222 */
7223 static void raid5_finish_reshape(struct mddev *mddev)
7224 {
7225 struct r5conf *conf = mddev->private;
7226
7227 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7228
7229 if (mddev->delta_disks > 0) {
7230 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7231 set_capacity(mddev->gendisk, mddev->array_sectors);
7232 revalidate_disk(mddev->gendisk);
7233 } else {
7234 int d;
7235 spin_lock_irq(&conf->device_lock);
7236 mddev->degraded = calc_degraded(conf);
7237 spin_unlock_irq(&conf->device_lock);
7238 for (d = conf->raid_disks ;
7239 d < conf->raid_disks - mddev->delta_disks;
7240 d++) {
7241 struct md_rdev *rdev = conf->disks[d].rdev;
7242 if (rdev)
7243 clear_bit(In_sync, &rdev->flags);
7244 rdev = conf->disks[d].replacement;
7245 if (rdev)
7246 clear_bit(In_sync, &rdev->flags);
7247 }
7248 }
7249 mddev->layout = conf->algorithm;
7250 mddev->chunk_sectors = conf->chunk_sectors;
7251 mddev->reshape_position = MaxSector;
7252 mddev->delta_disks = 0;
7253 mddev->reshape_backwards = 0;
7254 }
7255 }
7256
7257 static void raid5_quiesce(struct mddev *mddev, int state)
7258 {
7259 struct r5conf *conf = mddev->private;
7260
7261 switch(state) {
7262 case 2: /* resume for a suspend */
7263 wake_up(&conf->wait_for_overlap);
7264 break;
7265
7266 case 1: /* stop all writes */
7267 lock_all_device_hash_locks_irq(conf);
7268 /* '2' tells resync/reshape to pause so that all
7269 * active stripes can drain
7270 */
7271 conf->quiesce = 2;
7272 wait_event_cmd(conf->wait_for_stripe,
7273 atomic_read(&conf->active_stripes) == 0 &&
7274 atomic_read(&conf->active_aligned_reads) == 0,
7275 unlock_all_device_hash_locks_irq(conf),
7276 lock_all_device_hash_locks_irq(conf));
7277 conf->quiesce = 1;
7278 unlock_all_device_hash_locks_irq(conf);
7279 /* allow reshape to continue */
7280 wake_up(&conf->wait_for_overlap);
7281 break;
7282
7283 case 0: /* re-enable writes */
7284 lock_all_device_hash_locks_irq(conf);
7285 conf->quiesce = 0;
7286 wake_up(&conf->wait_for_stripe);
7287 wake_up(&conf->wait_for_overlap);
7288 unlock_all_device_hash_locks_irq(conf);
7289 break;
7290 }
7291 }
7292
7293 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7294 {
7295 struct r0conf *raid0_conf = mddev->private;
7296 sector_t sectors;
7297
7298 /* for raid0 takeover only one zone is supported */
7299 if (raid0_conf->nr_strip_zones > 1) {
7300 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7301 mdname(mddev));
7302 return ERR_PTR(-EINVAL);
7303 }
7304
7305 sectors = raid0_conf->strip_zone[0].zone_end;
7306 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7307 mddev->dev_sectors = sectors;
7308 mddev->new_level = level;
7309 mddev->new_layout = ALGORITHM_PARITY_N;
7310 mddev->new_chunk_sectors = mddev->chunk_sectors;
7311 mddev->raid_disks += 1;
7312 mddev->delta_disks = 1;
7313 /* make sure it will be not marked as dirty */
7314 mddev->recovery_cp = MaxSector;
7315
7316 return setup_conf(mddev);
7317 }
7318
7319 static void *raid5_takeover_raid1(struct mddev *mddev)
7320 {
7321 int chunksect;
7322
7323 if (mddev->raid_disks != 2 ||
7324 mddev->degraded > 1)
7325 return ERR_PTR(-EINVAL);
7326
7327 /* Should check if there are write-behind devices? */
7328
7329 chunksect = 64*2; /* 64K by default */
7330
7331 /* The array must be an exact multiple of chunksize */
7332 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7333 chunksect >>= 1;
7334
7335 if ((chunksect<<9) < STRIPE_SIZE)
7336 /* array size does not allow a suitable chunk size */
7337 return ERR_PTR(-EINVAL);
7338
7339 mddev->new_level = 5;
7340 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7341 mddev->new_chunk_sectors = chunksect;
7342
7343 return setup_conf(mddev);
7344 }
7345
7346 static void *raid5_takeover_raid6(struct mddev *mddev)
7347 {
7348 int new_layout;
7349
7350 switch (mddev->layout) {
7351 case ALGORITHM_LEFT_ASYMMETRIC_6:
7352 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7353 break;
7354 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7355 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7356 break;
7357 case ALGORITHM_LEFT_SYMMETRIC_6:
7358 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7359 break;
7360 case ALGORITHM_RIGHT_SYMMETRIC_6:
7361 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7362 break;
7363 case ALGORITHM_PARITY_0_6:
7364 new_layout = ALGORITHM_PARITY_0;
7365 break;
7366 case ALGORITHM_PARITY_N:
7367 new_layout = ALGORITHM_PARITY_N;
7368 break;
7369 default:
7370 return ERR_PTR(-EINVAL);
7371 }
7372 mddev->new_level = 5;
7373 mddev->new_layout = new_layout;
7374 mddev->delta_disks = -1;
7375 mddev->raid_disks -= 1;
7376 return setup_conf(mddev);
7377 }
7378
7379 static int raid5_check_reshape(struct mddev *mddev)
7380 {
7381 /* For a 2-drive array, the layout and chunk size can be changed
7382 * immediately as not restriping is needed.
7383 * For larger arrays we record the new value - after validation
7384 * to be used by a reshape pass.
7385 */
7386 struct r5conf *conf = mddev->private;
7387 int new_chunk = mddev->new_chunk_sectors;
7388
7389 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7390 return -EINVAL;
7391 if (new_chunk > 0) {
7392 if (!is_power_of_2(new_chunk))
7393 return -EINVAL;
7394 if (new_chunk < (PAGE_SIZE>>9))
7395 return -EINVAL;
7396 if (mddev->array_sectors & (new_chunk-1))
7397 /* not factor of array size */
7398 return -EINVAL;
7399 }
7400
7401 /* They look valid */
7402
7403 if (mddev->raid_disks == 2) {
7404 /* can make the change immediately */
7405 if (mddev->new_layout >= 0) {
7406 conf->algorithm = mddev->new_layout;
7407 mddev->layout = mddev->new_layout;
7408 }
7409 if (new_chunk > 0) {
7410 conf->chunk_sectors = new_chunk ;
7411 mddev->chunk_sectors = new_chunk;
7412 }
7413 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7414 md_wakeup_thread(mddev->thread);
7415 }
7416 return check_reshape(mddev);
7417 }
7418
7419 static int raid6_check_reshape(struct mddev *mddev)
7420 {
7421 int new_chunk = mddev->new_chunk_sectors;
7422
7423 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7424 return -EINVAL;
7425 if (new_chunk > 0) {
7426 if (!is_power_of_2(new_chunk))
7427 return -EINVAL;
7428 if (new_chunk < (PAGE_SIZE >> 9))
7429 return -EINVAL;
7430 if (mddev->array_sectors & (new_chunk-1))
7431 /* not factor of array size */
7432 return -EINVAL;
7433 }
7434
7435 /* They look valid */
7436 return check_reshape(mddev);
7437 }
7438
7439 static void *raid5_takeover(struct mddev *mddev)
7440 {
7441 /* raid5 can take over:
7442 * raid0 - if there is only one strip zone - make it a raid4 layout
7443 * raid1 - if there are two drives. We need to know the chunk size
7444 * raid4 - trivial - just use a raid4 layout.
7445 * raid6 - Providing it is a *_6 layout
7446 */
7447 if (mddev->level == 0)
7448 return raid45_takeover_raid0(mddev, 5);
7449 if (mddev->level == 1)
7450 return raid5_takeover_raid1(mddev);
7451 if (mddev->level == 4) {
7452 mddev->new_layout = ALGORITHM_PARITY_N;
7453 mddev->new_level = 5;
7454 return setup_conf(mddev);
7455 }
7456 if (mddev->level == 6)
7457 return raid5_takeover_raid6(mddev);
7458
7459 return ERR_PTR(-EINVAL);
7460 }
7461
7462 static void *raid4_takeover(struct mddev *mddev)
7463 {
7464 /* raid4 can take over:
7465 * raid0 - if there is only one strip zone
7466 * raid5 - if layout is right
7467 */
7468 if (mddev->level == 0)
7469 return raid45_takeover_raid0(mddev, 4);
7470 if (mddev->level == 5 &&
7471 mddev->layout == ALGORITHM_PARITY_N) {
7472 mddev->new_layout = 0;
7473 mddev->new_level = 4;
7474 return setup_conf(mddev);
7475 }
7476 return ERR_PTR(-EINVAL);
7477 }
7478
7479 static struct md_personality raid5_personality;
7480
7481 static void *raid6_takeover(struct mddev *mddev)
7482 {
7483 /* Currently can only take over a raid5. We map the
7484 * personality to an equivalent raid6 personality
7485 * with the Q block at the end.
7486 */
7487 int new_layout;
7488
7489 if (mddev->pers != &raid5_personality)
7490 return ERR_PTR(-EINVAL);
7491 if (mddev->degraded > 1)
7492 return ERR_PTR(-EINVAL);
7493 if (mddev->raid_disks > 253)
7494 return ERR_PTR(-EINVAL);
7495 if (mddev->raid_disks < 3)
7496 return ERR_PTR(-EINVAL);
7497
7498 switch (mddev->layout) {
7499 case ALGORITHM_LEFT_ASYMMETRIC:
7500 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7501 break;
7502 case ALGORITHM_RIGHT_ASYMMETRIC:
7503 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7504 break;
7505 case ALGORITHM_LEFT_SYMMETRIC:
7506 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7507 break;
7508 case ALGORITHM_RIGHT_SYMMETRIC:
7509 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7510 break;
7511 case ALGORITHM_PARITY_0:
7512 new_layout = ALGORITHM_PARITY_0_6;
7513 break;
7514 case ALGORITHM_PARITY_N:
7515 new_layout = ALGORITHM_PARITY_N;
7516 break;
7517 default:
7518 return ERR_PTR(-EINVAL);
7519 }
7520 mddev->new_level = 6;
7521 mddev->new_layout = new_layout;
7522 mddev->delta_disks = 1;
7523 mddev->raid_disks += 1;
7524 return setup_conf(mddev);
7525 }
7526
7527 static struct md_personality raid6_personality =
7528 {
7529 .name = "raid6",
7530 .level = 6,
7531 .owner = THIS_MODULE,
7532 .make_request = make_request,
7533 .run = run,
7534 .free = raid5_free,
7535 .status = status,
7536 .error_handler = error,
7537 .hot_add_disk = raid5_add_disk,
7538 .hot_remove_disk= raid5_remove_disk,
7539 .spare_active = raid5_spare_active,
7540 .sync_request = sync_request,
7541 .resize = raid5_resize,
7542 .size = raid5_size,
7543 .check_reshape = raid6_check_reshape,
7544 .start_reshape = raid5_start_reshape,
7545 .finish_reshape = raid5_finish_reshape,
7546 .quiesce = raid5_quiesce,
7547 .takeover = raid6_takeover,
7548 .congested = raid5_congested,
7549 .mergeable_bvec = raid5_mergeable_bvec,
7550 };
7551 static struct md_personality raid5_personality =
7552 {
7553 .name = "raid5",
7554 .level = 5,
7555 .owner = THIS_MODULE,
7556 .make_request = make_request,
7557 .run = run,
7558 .free = raid5_free,
7559 .status = status,
7560 .error_handler = error,
7561 .hot_add_disk = raid5_add_disk,
7562 .hot_remove_disk= raid5_remove_disk,
7563 .spare_active = raid5_spare_active,
7564 .sync_request = sync_request,
7565 .resize = raid5_resize,
7566 .size = raid5_size,
7567 .check_reshape = raid5_check_reshape,
7568 .start_reshape = raid5_start_reshape,
7569 .finish_reshape = raid5_finish_reshape,
7570 .quiesce = raid5_quiesce,
7571 .takeover = raid5_takeover,
7572 .congested = raid5_congested,
7573 .mergeable_bvec = raid5_mergeable_bvec,
7574 };
7575
7576 static struct md_personality raid4_personality =
7577 {
7578 .name = "raid4",
7579 .level = 4,
7580 .owner = THIS_MODULE,
7581 .make_request = make_request,
7582 .run = run,
7583 .free = raid5_free,
7584 .status = status,
7585 .error_handler = error,
7586 .hot_add_disk = raid5_add_disk,
7587 .hot_remove_disk= raid5_remove_disk,
7588 .spare_active = raid5_spare_active,
7589 .sync_request = sync_request,
7590 .resize = raid5_resize,
7591 .size = raid5_size,
7592 .check_reshape = raid5_check_reshape,
7593 .start_reshape = raid5_start_reshape,
7594 .finish_reshape = raid5_finish_reshape,
7595 .quiesce = raid5_quiesce,
7596 .takeover = raid4_takeover,
7597 .congested = raid5_congested,
7598 .mergeable_bvec = raid5_mergeable_bvec,
7599 };
7600
7601 static int __init raid5_init(void)
7602 {
7603 raid5_wq = alloc_workqueue("raid5wq",
7604 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7605 if (!raid5_wq)
7606 return -ENOMEM;
7607 register_md_personality(&raid6_personality);
7608 register_md_personality(&raid5_personality);
7609 register_md_personality(&raid4_personality);
7610 return 0;
7611 }
7612
7613 static void raid5_exit(void)
7614 {
7615 unregister_md_personality(&raid6_personality);
7616 unregister_md_personality(&raid5_personality);
7617 unregister_md_personality(&raid4_personality);
7618 destroy_workqueue(raid5_wq);
7619 }
7620
7621 module_init(raid5_init);
7622 module_exit(raid5_exit);
7623 MODULE_LICENSE("GPL");
7624 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7625 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7626 MODULE_ALIAS("md-raid5");
7627 MODULE_ALIAS("md-raid4");
7628 MODULE_ALIAS("md-level-5");
7629 MODULE_ALIAS("md-level-4");
7630 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7631 MODULE_ALIAS("md-raid6");
7632 MODULE_ALIAS("md-level-6");
7633
7634 /* This used to be two separate modules, they were: */
7635 MODULE_ALIAS("raid5");
7636 MODULE_ALIAS("raid6");