]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid5.c
Merge tag 'media/v4.5-3' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74 * Stripe cache
75 */
76
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
137 */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 int sectors = bio_sectors(bio);
141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 return bio->bi_next;
143 else
144 return NULL;
145 }
146
147 /*
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150 */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
171 {
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
174
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
212 {
213 int slot = *count;
214
215 if (sh->ddf_layout)
216 (*count)++;
217 if (idx == sh->pd_idx)
218 return syndrome_disks;
219 if (idx == sh->qd_idx)
220 return syndrome_disks + 1;
221 if (!sh->ddf_layout)
222 (*count)++;
223 return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228 struct bio *bi;
229 while ((bi = bio_list_pop(return_bi)) != NULL) {
230 bi->bi_iter.bi_size = 0;
231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 bi, 0);
233 bio_endio(bi);
234 }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241 return sh->check_state || sh->reconstruct_state ||
242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248 struct r5conf *conf = sh->raid_conf;
249 struct r5worker_group *group;
250 int thread_cnt;
251 int i, cpu = sh->cpu;
252
253 if (!cpu_online(cpu)) {
254 cpu = cpumask_any(cpu_online_mask);
255 sh->cpu = cpu;
256 }
257
258 if (list_empty(&sh->lru)) {
259 struct r5worker_group *group;
260 group = conf->worker_groups + cpu_to_group(cpu);
261 list_add_tail(&sh->lru, &group->handle_list);
262 group->stripes_cnt++;
263 sh->group = group;
264 }
265
266 if (conf->worker_cnt_per_group == 0) {
267 md_wakeup_thread(conf->mddev->thread);
268 return;
269 }
270
271 group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273 group->workers[0].working = true;
274 /* at least one worker should run to avoid race */
275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 /* wakeup more workers */
279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 if (group->workers[i].working == false) {
281 group->workers[i].working = true;
282 queue_work_on(sh->cpu, raid5_wq,
283 &group->workers[i].work);
284 thread_cnt--;
285 }
286 }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 struct list_head *temp_inactive_list)
291 {
292 BUG_ON(!list_empty(&sh->lru));
293 BUG_ON(atomic_read(&conf->active_stripes)==0);
294 if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297 list_add_tail(&sh->lru, &conf->delayed_list);
298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299 sh->bm_seq - conf->seq_write > 0)
300 list_add_tail(&sh->lru, &conf->bitmap_list);
301 else {
302 clear_bit(STRIPE_DELAYED, &sh->state);
303 clear_bit(STRIPE_BIT_DELAY, &sh->state);
304 if (conf->worker_cnt_per_group == 0) {
305 list_add_tail(&sh->lru, &conf->handle_list);
306 } else {
307 raid5_wakeup_stripe_thread(sh);
308 return;
309 }
310 }
311 md_wakeup_thread(conf->mddev->thread);
312 } else {
313 BUG_ON(stripe_operations_active(sh));
314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 if (atomic_dec_return(&conf->preread_active_stripes)
316 < IO_THRESHOLD)
317 md_wakeup_thread(conf->mddev->thread);
318 atomic_dec(&conf->active_stripes);
319 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 list_add_tail(&sh->lru, temp_inactive_list);
321 }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 struct list_head *temp_inactive_list)
326 {
327 if (atomic_dec_and_test(&sh->count))
328 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333 *
334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335 * given time. Adding stripes only takes device lock, while deleting stripes
336 * only takes hash lock.
337 */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339 struct list_head *temp_inactive_list,
340 int hash)
341 {
342 int size;
343 unsigned long do_wakeup = 0;
344 int i = 0;
345 unsigned long flags;
346
347 if (hash == NR_STRIPE_HASH_LOCKS) {
348 size = NR_STRIPE_HASH_LOCKS;
349 hash = NR_STRIPE_HASH_LOCKS - 1;
350 } else
351 size = 1;
352 while (size) {
353 struct list_head *list = &temp_inactive_list[size - 1];
354
355 /*
356 * We don't hold any lock here yet, raid5_get_active_stripe() might
357 * remove stripes from the list
358 */
359 if (!list_empty_careful(list)) {
360 spin_lock_irqsave(conf->hash_locks + hash, flags);
361 if (list_empty(conf->inactive_list + hash) &&
362 !list_empty(list))
363 atomic_dec(&conf->empty_inactive_list_nr);
364 list_splice_tail_init(list, conf->inactive_list + hash);
365 do_wakeup |= 1 << hash;
366 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367 }
368 size--;
369 hash--;
370 }
371
372 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373 if (do_wakeup & (1 << i))
374 wake_up(&conf->wait_for_stripe[i]);
375 }
376
377 if (do_wakeup) {
378 if (atomic_read(&conf->active_stripes) == 0)
379 wake_up(&conf->wait_for_quiescent);
380 if (conf->retry_read_aligned)
381 md_wakeup_thread(conf->mddev->thread);
382 }
383 }
384
385 /* should hold conf->device_lock already */
386 static int release_stripe_list(struct r5conf *conf,
387 struct list_head *temp_inactive_list)
388 {
389 struct stripe_head *sh;
390 int count = 0;
391 struct llist_node *head;
392
393 head = llist_del_all(&conf->released_stripes);
394 head = llist_reverse_order(head);
395 while (head) {
396 int hash;
397
398 sh = llist_entry(head, struct stripe_head, release_list);
399 head = llist_next(head);
400 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401 smp_mb();
402 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403 /*
404 * Don't worry the bit is set here, because if the bit is set
405 * again, the count is always > 1. This is true for
406 * STRIPE_ON_UNPLUG_LIST bit too.
407 */
408 hash = sh->hash_lock_index;
409 __release_stripe(conf, sh, &temp_inactive_list[hash]);
410 count++;
411 }
412
413 return count;
414 }
415
416 void raid5_release_stripe(struct stripe_head *sh)
417 {
418 struct r5conf *conf = sh->raid_conf;
419 unsigned long flags;
420 struct list_head list;
421 int hash;
422 bool wakeup;
423
424 /* Avoid release_list until the last reference.
425 */
426 if (atomic_add_unless(&sh->count, -1, 1))
427 return;
428
429 if (unlikely(!conf->mddev->thread) ||
430 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
431 goto slow_path;
432 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433 if (wakeup)
434 md_wakeup_thread(conf->mddev->thread);
435 return;
436 slow_path:
437 local_irq_save(flags);
438 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
440 INIT_LIST_HEAD(&list);
441 hash = sh->hash_lock_index;
442 do_release_stripe(conf, sh, &list);
443 spin_unlock(&conf->device_lock);
444 release_inactive_stripe_list(conf, &list, hash);
445 }
446 local_irq_restore(flags);
447 }
448
449 static inline void remove_hash(struct stripe_head *sh)
450 {
451 pr_debug("remove_hash(), stripe %llu\n",
452 (unsigned long long)sh->sector);
453
454 hlist_del_init(&sh->hash);
455 }
456
457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
458 {
459 struct hlist_head *hp = stripe_hash(conf, sh->sector);
460
461 pr_debug("insert_hash(), stripe %llu\n",
462 (unsigned long long)sh->sector);
463
464 hlist_add_head(&sh->hash, hp);
465 }
466
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 {
470 struct stripe_head *sh = NULL;
471 struct list_head *first;
472
473 if (list_empty(conf->inactive_list + hash))
474 goto out;
475 first = (conf->inactive_list + hash)->next;
476 sh = list_entry(first, struct stripe_head, lru);
477 list_del_init(first);
478 remove_hash(sh);
479 atomic_inc(&conf->active_stripes);
480 BUG_ON(hash != sh->hash_lock_index);
481 if (list_empty(conf->inactive_list + hash))
482 atomic_inc(&conf->empty_inactive_list_nr);
483 out:
484 return sh;
485 }
486
487 static void shrink_buffers(struct stripe_head *sh)
488 {
489 struct page *p;
490 int i;
491 int num = sh->raid_conf->pool_size;
492
493 for (i = 0; i < num ; i++) {
494 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
495 p = sh->dev[i].page;
496 if (!p)
497 continue;
498 sh->dev[i].page = NULL;
499 put_page(p);
500 }
501 }
502
503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
504 {
505 int i;
506 int num = sh->raid_conf->pool_size;
507
508 for (i = 0; i < num; i++) {
509 struct page *page;
510
511 if (!(page = alloc_page(gfp))) {
512 return 1;
513 }
514 sh->dev[i].page = page;
515 sh->dev[i].orig_page = page;
516 }
517 return 0;
518 }
519
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522 struct stripe_head *sh);
523
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526 struct r5conf *conf = sh->raid_conf;
527 int i, seq;
528
529 BUG_ON(atomic_read(&sh->count) != 0);
530 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531 BUG_ON(stripe_operations_active(sh));
532 BUG_ON(sh->batch_head);
533
534 pr_debug("init_stripe called, stripe %llu\n",
535 (unsigned long long)sector);
536 retry:
537 seq = read_seqcount_begin(&conf->gen_lock);
538 sh->generation = conf->generation - previous;
539 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
540 sh->sector = sector;
541 stripe_set_idx(sector, conf, previous, sh);
542 sh->state = 0;
543
544 for (i = sh->disks; i--; ) {
545 struct r5dev *dev = &sh->dev[i];
546
547 if (dev->toread || dev->read || dev->towrite || dev->written ||
548 test_bit(R5_LOCKED, &dev->flags)) {
549 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
550 (unsigned long long)sh->sector, i, dev->toread,
551 dev->read, dev->towrite, dev->written,
552 test_bit(R5_LOCKED, &dev->flags));
553 WARN_ON(1);
554 }
555 dev->flags = 0;
556 raid5_build_block(sh, i, previous);
557 }
558 if (read_seqcount_retry(&conf->gen_lock, seq))
559 goto retry;
560 sh->overwrite_disks = 0;
561 insert_hash(conf, sh);
562 sh->cpu = smp_processor_id();
563 set_bit(STRIPE_BATCH_READY, &sh->state);
564 }
565
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567 short generation)
568 {
569 struct stripe_head *sh;
570
571 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573 if (sh->sector == sector && sh->generation == generation)
574 return sh;
575 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576 return NULL;
577 }
578
579 /*
580 * Need to check if array has failed when deciding whether to:
581 * - start an array
582 * - remove non-faulty devices
583 * - add a spare
584 * - allow a reshape
585 * This determination is simple when no reshape is happening.
586 * However if there is a reshape, we need to carefully check
587 * both the before and after sections.
588 * This is because some failed devices may only affect one
589 * of the two sections, and some non-in_sync devices may
590 * be insync in the section most affected by failed devices.
591 */
592 static int calc_degraded(struct r5conf *conf)
593 {
594 int degraded, degraded2;
595 int i;
596
597 rcu_read_lock();
598 degraded = 0;
599 for (i = 0; i < conf->previous_raid_disks; i++) {
600 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601 if (rdev && test_bit(Faulty, &rdev->flags))
602 rdev = rcu_dereference(conf->disks[i].replacement);
603 if (!rdev || test_bit(Faulty, &rdev->flags))
604 degraded++;
605 else if (test_bit(In_sync, &rdev->flags))
606 ;
607 else
608 /* not in-sync or faulty.
609 * If the reshape increases the number of devices,
610 * this is being recovered by the reshape, so
611 * this 'previous' section is not in_sync.
612 * If the number of devices is being reduced however,
613 * the device can only be part of the array if
614 * we are reverting a reshape, so this section will
615 * be in-sync.
616 */
617 if (conf->raid_disks >= conf->previous_raid_disks)
618 degraded++;
619 }
620 rcu_read_unlock();
621 if (conf->raid_disks == conf->previous_raid_disks)
622 return degraded;
623 rcu_read_lock();
624 degraded2 = 0;
625 for (i = 0; i < conf->raid_disks; i++) {
626 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627 if (rdev && test_bit(Faulty, &rdev->flags))
628 rdev = rcu_dereference(conf->disks[i].replacement);
629 if (!rdev || test_bit(Faulty, &rdev->flags))
630 degraded2++;
631 else if (test_bit(In_sync, &rdev->flags))
632 ;
633 else
634 /* not in-sync or faulty.
635 * If reshape increases the number of devices, this
636 * section has already been recovered, else it
637 * almost certainly hasn't.
638 */
639 if (conf->raid_disks <= conf->previous_raid_disks)
640 degraded2++;
641 }
642 rcu_read_unlock();
643 if (degraded2 > degraded)
644 return degraded2;
645 return degraded;
646 }
647
648 static int has_failed(struct r5conf *conf)
649 {
650 int degraded;
651
652 if (conf->mddev->reshape_position == MaxSector)
653 return conf->mddev->degraded > conf->max_degraded;
654
655 degraded = calc_degraded(conf);
656 if (degraded > conf->max_degraded)
657 return 1;
658 return 0;
659 }
660
661 struct stripe_head *
662 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
663 int previous, int noblock, int noquiesce)
664 {
665 struct stripe_head *sh;
666 int hash = stripe_hash_locks_hash(sector);
667
668 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669
670 spin_lock_irq(conf->hash_locks + hash);
671
672 do {
673 wait_event_lock_irq(conf->wait_for_quiescent,
674 conf->quiesce == 0 || noquiesce,
675 *(conf->hash_locks + hash));
676 sh = __find_stripe(conf, sector, conf->generation - previous);
677 if (!sh) {
678 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
679 sh = get_free_stripe(conf, hash);
680 if (!sh && !test_bit(R5_DID_ALLOC,
681 &conf->cache_state))
682 set_bit(R5_ALLOC_MORE,
683 &conf->cache_state);
684 }
685 if (noblock && sh == NULL)
686 break;
687 if (!sh) {
688 set_bit(R5_INACTIVE_BLOCKED,
689 &conf->cache_state);
690 wait_event_exclusive_cmd(
691 conf->wait_for_stripe[hash],
692 !list_empty(conf->inactive_list + hash) &&
693 (atomic_read(&conf->active_stripes)
694 < (conf->max_nr_stripes * 3 / 4)
695 || !test_bit(R5_INACTIVE_BLOCKED,
696 &conf->cache_state)),
697 spin_unlock_irq(conf->hash_locks + hash),
698 spin_lock_irq(conf->hash_locks + hash));
699 clear_bit(R5_INACTIVE_BLOCKED,
700 &conf->cache_state);
701 } else {
702 init_stripe(sh, sector, previous);
703 atomic_inc(&sh->count);
704 }
705 } else if (!atomic_inc_not_zero(&sh->count)) {
706 spin_lock(&conf->device_lock);
707 if (!atomic_read(&sh->count)) {
708 if (!test_bit(STRIPE_HANDLE, &sh->state))
709 atomic_inc(&conf->active_stripes);
710 BUG_ON(list_empty(&sh->lru) &&
711 !test_bit(STRIPE_EXPANDING, &sh->state));
712 list_del_init(&sh->lru);
713 if (sh->group) {
714 sh->group->stripes_cnt--;
715 sh->group = NULL;
716 }
717 }
718 atomic_inc(&sh->count);
719 spin_unlock(&conf->device_lock);
720 }
721 } while (sh == NULL);
722
723 if (!list_empty(conf->inactive_list + hash))
724 wake_up(&conf->wait_for_stripe[hash]);
725
726 spin_unlock_irq(conf->hash_locks + hash);
727 return sh;
728 }
729
730 static bool is_full_stripe_write(struct stripe_head *sh)
731 {
732 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734 }
735
736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737 {
738 local_irq_disable();
739 if (sh1 > sh2) {
740 spin_lock(&sh2->stripe_lock);
741 spin_lock_nested(&sh1->stripe_lock, 1);
742 } else {
743 spin_lock(&sh1->stripe_lock);
744 spin_lock_nested(&sh2->stripe_lock, 1);
745 }
746 }
747
748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749 {
750 spin_unlock(&sh1->stripe_lock);
751 spin_unlock(&sh2->stripe_lock);
752 local_irq_enable();
753 }
754
755 /* Only freshly new full stripe normal write stripe can be added to a batch list */
756 static bool stripe_can_batch(struct stripe_head *sh)
757 {
758 struct r5conf *conf = sh->raid_conf;
759
760 if (conf->log)
761 return false;
762 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
763 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
764 is_full_stripe_write(sh);
765 }
766
767 /* we only do back search */
768 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769 {
770 struct stripe_head *head;
771 sector_t head_sector, tmp_sec;
772 int hash;
773 int dd_idx;
774
775 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
776 tmp_sec = sh->sector;
777 if (!sector_div(tmp_sec, conf->chunk_sectors))
778 return;
779 head_sector = sh->sector - STRIPE_SECTORS;
780
781 hash = stripe_hash_locks_hash(head_sector);
782 spin_lock_irq(conf->hash_locks + hash);
783 head = __find_stripe(conf, head_sector, conf->generation);
784 if (head && !atomic_inc_not_zero(&head->count)) {
785 spin_lock(&conf->device_lock);
786 if (!atomic_read(&head->count)) {
787 if (!test_bit(STRIPE_HANDLE, &head->state))
788 atomic_inc(&conf->active_stripes);
789 BUG_ON(list_empty(&head->lru) &&
790 !test_bit(STRIPE_EXPANDING, &head->state));
791 list_del_init(&head->lru);
792 if (head->group) {
793 head->group->stripes_cnt--;
794 head->group = NULL;
795 }
796 }
797 atomic_inc(&head->count);
798 spin_unlock(&conf->device_lock);
799 }
800 spin_unlock_irq(conf->hash_locks + hash);
801
802 if (!head)
803 return;
804 if (!stripe_can_batch(head))
805 goto out;
806
807 lock_two_stripes(head, sh);
808 /* clear_batch_ready clear the flag */
809 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
810 goto unlock_out;
811
812 if (sh->batch_head)
813 goto unlock_out;
814
815 dd_idx = 0;
816 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
817 dd_idx++;
818 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
819 goto unlock_out;
820
821 if (head->batch_head) {
822 spin_lock(&head->batch_head->batch_lock);
823 /* This batch list is already running */
824 if (!stripe_can_batch(head)) {
825 spin_unlock(&head->batch_head->batch_lock);
826 goto unlock_out;
827 }
828
829 /*
830 * at this point, head's BATCH_READY could be cleared, but we
831 * can still add the stripe to batch list
832 */
833 list_add(&sh->batch_list, &head->batch_list);
834 spin_unlock(&head->batch_head->batch_lock);
835
836 sh->batch_head = head->batch_head;
837 } else {
838 head->batch_head = head;
839 sh->batch_head = head->batch_head;
840 spin_lock(&head->batch_lock);
841 list_add_tail(&sh->batch_list, &head->batch_list);
842 spin_unlock(&head->batch_lock);
843 }
844
845 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
846 if (atomic_dec_return(&conf->preread_active_stripes)
847 < IO_THRESHOLD)
848 md_wakeup_thread(conf->mddev->thread);
849
850 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
851 int seq = sh->bm_seq;
852 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
853 sh->batch_head->bm_seq > seq)
854 seq = sh->batch_head->bm_seq;
855 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
856 sh->batch_head->bm_seq = seq;
857 }
858
859 atomic_inc(&sh->count);
860 unlock_out:
861 unlock_two_stripes(head, sh);
862 out:
863 raid5_release_stripe(head);
864 }
865
866 /* Determine if 'data_offset' or 'new_data_offset' should be used
867 * in this stripe_head.
868 */
869 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
870 {
871 sector_t progress = conf->reshape_progress;
872 /* Need a memory barrier to make sure we see the value
873 * of conf->generation, or ->data_offset that was set before
874 * reshape_progress was updated.
875 */
876 smp_rmb();
877 if (progress == MaxSector)
878 return 0;
879 if (sh->generation == conf->generation - 1)
880 return 0;
881 /* We are in a reshape, and this is a new-generation stripe,
882 * so use new_data_offset.
883 */
884 return 1;
885 }
886
887 static void
888 raid5_end_read_request(struct bio *bi);
889 static void
890 raid5_end_write_request(struct bio *bi);
891
892 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
893 {
894 struct r5conf *conf = sh->raid_conf;
895 int i, disks = sh->disks;
896 struct stripe_head *head_sh = sh;
897
898 might_sleep();
899
900 if (r5l_write_stripe(conf->log, sh) == 0)
901 return;
902 for (i = disks; i--; ) {
903 int rw;
904 int replace_only = 0;
905 struct bio *bi, *rbi;
906 struct md_rdev *rdev, *rrdev = NULL;
907
908 sh = head_sh;
909 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
910 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
911 rw = WRITE_FUA;
912 else
913 rw = WRITE;
914 if (test_bit(R5_Discard, &sh->dev[i].flags))
915 rw |= REQ_DISCARD;
916 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
917 rw = READ;
918 else if (test_and_clear_bit(R5_WantReplace,
919 &sh->dev[i].flags)) {
920 rw = WRITE;
921 replace_only = 1;
922 } else
923 continue;
924 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
925 rw |= REQ_SYNC;
926
927 again:
928 bi = &sh->dev[i].req;
929 rbi = &sh->dev[i].rreq; /* For writing to replacement */
930
931 rcu_read_lock();
932 rrdev = rcu_dereference(conf->disks[i].replacement);
933 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
934 rdev = rcu_dereference(conf->disks[i].rdev);
935 if (!rdev) {
936 rdev = rrdev;
937 rrdev = NULL;
938 }
939 if (rw & WRITE) {
940 if (replace_only)
941 rdev = NULL;
942 if (rdev == rrdev)
943 /* We raced and saw duplicates */
944 rrdev = NULL;
945 } else {
946 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
947 rdev = rrdev;
948 rrdev = NULL;
949 }
950
951 if (rdev && test_bit(Faulty, &rdev->flags))
952 rdev = NULL;
953 if (rdev)
954 atomic_inc(&rdev->nr_pending);
955 if (rrdev && test_bit(Faulty, &rrdev->flags))
956 rrdev = NULL;
957 if (rrdev)
958 atomic_inc(&rrdev->nr_pending);
959 rcu_read_unlock();
960
961 /* We have already checked bad blocks for reads. Now
962 * need to check for writes. We never accept write errors
963 * on the replacement, so we don't to check rrdev.
964 */
965 while ((rw & WRITE) && rdev &&
966 test_bit(WriteErrorSeen, &rdev->flags)) {
967 sector_t first_bad;
968 int bad_sectors;
969 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
970 &first_bad, &bad_sectors);
971 if (!bad)
972 break;
973
974 if (bad < 0) {
975 set_bit(BlockedBadBlocks, &rdev->flags);
976 if (!conf->mddev->external &&
977 conf->mddev->flags) {
978 /* It is very unlikely, but we might
979 * still need to write out the
980 * bad block log - better give it
981 * a chance*/
982 md_check_recovery(conf->mddev);
983 }
984 /*
985 * Because md_wait_for_blocked_rdev
986 * will dec nr_pending, we must
987 * increment it first.
988 */
989 atomic_inc(&rdev->nr_pending);
990 md_wait_for_blocked_rdev(rdev, conf->mddev);
991 } else {
992 /* Acknowledged bad block - skip the write */
993 rdev_dec_pending(rdev, conf->mddev);
994 rdev = NULL;
995 }
996 }
997
998 if (rdev) {
999 if (s->syncing || s->expanding || s->expanded
1000 || s->replacing)
1001 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1002
1003 set_bit(STRIPE_IO_STARTED, &sh->state);
1004
1005 bio_reset(bi);
1006 bi->bi_bdev = rdev->bdev;
1007 bi->bi_rw = rw;
1008 bi->bi_end_io = (rw & WRITE)
1009 ? raid5_end_write_request
1010 : raid5_end_read_request;
1011 bi->bi_private = sh;
1012
1013 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1014 __func__, (unsigned long long)sh->sector,
1015 bi->bi_rw, i);
1016 atomic_inc(&sh->count);
1017 if (sh != head_sh)
1018 atomic_inc(&head_sh->count);
1019 if (use_new_offset(conf, sh))
1020 bi->bi_iter.bi_sector = (sh->sector
1021 + rdev->new_data_offset);
1022 else
1023 bi->bi_iter.bi_sector = (sh->sector
1024 + rdev->data_offset);
1025 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1026 bi->bi_rw |= REQ_NOMERGE;
1027
1028 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1029 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1030 sh->dev[i].vec.bv_page = sh->dev[i].page;
1031 bi->bi_vcnt = 1;
1032 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1033 bi->bi_io_vec[0].bv_offset = 0;
1034 bi->bi_iter.bi_size = STRIPE_SIZE;
1035 /*
1036 * If this is discard request, set bi_vcnt 0. We don't
1037 * want to confuse SCSI because SCSI will replace payload
1038 */
1039 if (rw & REQ_DISCARD)
1040 bi->bi_vcnt = 0;
1041 if (rrdev)
1042 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1043
1044 if (conf->mddev->gendisk)
1045 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1046 bi, disk_devt(conf->mddev->gendisk),
1047 sh->dev[i].sector);
1048 generic_make_request(bi);
1049 }
1050 if (rrdev) {
1051 if (s->syncing || s->expanding || s->expanded
1052 || s->replacing)
1053 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1054
1055 set_bit(STRIPE_IO_STARTED, &sh->state);
1056
1057 bio_reset(rbi);
1058 rbi->bi_bdev = rrdev->bdev;
1059 rbi->bi_rw = rw;
1060 BUG_ON(!(rw & WRITE));
1061 rbi->bi_end_io = raid5_end_write_request;
1062 rbi->bi_private = sh;
1063
1064 pr_debug("%s: for %llu schedule op %ld on "
1065 "replacement disc %d\n",
1066 __func__, (unsigned long long)sh->sector,
1067 rbi->bi_rw, i);
1068 atomic_inc(&sh->count);
1069 if (sh != head_sh)
1070 atomic_inc(&head_sh->count);
1071 if (use_new_offset(conf, sh))
1072 rbi->bi_iter.bi_sector = (sh->sector
1073 + rrdev->new_data_offset);
1074 else
1075 rbi->bi_iter.bi_sector = (sh->sector
1076 + rrdev->data_offset);
1077 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1078 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1079 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1080 rbi->bi_vcnt = 1;
1081 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1082 rbi->bi_io_vec[0].bv_offset = 0;
1083 rbi->bi_iter.bi_size = STRIPE_SIZE;
1084 /*
1085 * If this is discard request, set bi_vcnt 0. We don't
1086 * want to confuse SCSI because SCSI will replace payload
1087 */
1088 if (rw & REQ_DISCARD)
1089 rbi->bi_vcnt = 0;
1090 if (conf->mddev->gendisk)
1091 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1092 rbi, disk_devt(conf->mddev->gendisk),
1093 sh->dev[i].sector);
1094 generic_make_request(rbi);
1095 }
1096 if (!rdev && !rrdev) {
1097 if (rw & WRITE)
1098 set_bit(STRIPE_DEGRADED, &sh->state);
1099 pr_debug("skip op %ld on disc %d for sector %llu\n",
1100 bi->bi_rw, i, (unsigned long long)sh->sector);
1101 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1102 set_bit(STRIPE_HANDLE, &sh->state);
1103 }
1104
1105 if (!head_sh->batch_head)
1106 continue;
1107 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1108 batch_list);
1109 if (sh != head_sh)
1110 goto again;
1111 }
1112 }
1113
1114 static struct dma_async_tx_descriptor *
1115 async_copy_data(int frombio, struct bio *bio, struct page **page,
1116 sector_t sector, struct dma_async_tx_descriptor *tx,
1117 struct stripe_head *sh)
1118 {
1119 struct bio_vec bvl;
1120 struct bvec_iter iter;
1121 struct page *bio_page;
1122 int page_offset;
1123 struct async_submit_ctl submit;
1124 enum async_tx_flags flags = 0;
1125
1126 if (bio->bi_iter.bi_sector >= sector)
1127 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1128 else
1129 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1130
1131 if (frombio)
1132 flags |= ASYNC_TX_FENCE;
1133 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1134
1135 bio_for_each_segment(bvl, bio, iter) {
1136 int len = bvl.bv_len;
1137 int clen;
1138 int b_offset = 0;
1139
1140 if (page_offset < 0) {
1141 b_offset = -page_offset;
1142 page_offset += b_offset;
1143 len -= b_offset;
1144 }
1145
1146 if (len > 0 && page_offset + len > STRIPE_SIZE)
1147 clen = STRIPE_SIZE - page_offset;
1148 else
1149 clen = len;
1150
1151 if (clen > 0) {
1152 b_offset += bvl.bv_offset;
1153 bio_page = bvl.bv_page;
1154 if (frombio) {
1155 if (sh->raid_conf->skip_copy &&
1156 b_offset == 0 && page_offset == 0 &&
1157 clen == STRIPE_SIZE)
1158 *page = bio_page;
1159 else
1160 tx = async_memcpy(*page, bio_page, page_offset,
1161 b_offset, clen, &submit);
1162 } else
1163 tx = async_memcpy(bio_page, *page, b_offset,
1164 page_offset, clen, &submit);
1165 }
1166 /* chain the operations */
1167 submit.depend_tx = tx;
1168
1169 if (clen < len) /* hit end of page */
1170 break;
1171 page_offset += len;
1172 }
1173
1174 return tx;
1175 }
1176
1177 static void ops_complete_biofill(void *stripe_head_ref)
1178 {
1179 struct stripe_head *sh = stripe_head_ref;
1180 struct bio_list return_bi = BIO_EMPTY_LIST;
1181 int i;
1182
1183 pr_debug("%s: stripe %llu\n", __func__,
1184 (unsigned long long)sh->sector);
1185
1186 /* clear completed biofills */
1187 for (i = sh->disks; i--; ) {
1188 struct r5dev *dev = &sh->dev[i];
1189
1190 /* acknowledge completion of a biofill operation */
1191 /* and check if we need to reply to a read request,
1192 * new R5_Wantfill requests are held off until
1193 * !STRIPE_BIOFILL_RUN
1194 */
1195 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1196 struct bio *rbi, *rbi2;
1197
1198 BUG_ON(!dev->read);
1199 rbi = dev->read;
1200 dev->read = NULL;
1201 while (rbi && rbi->bi_iter.bi_sector <
1202 dev->sector + STRIPE_SECTORS) {
1203 rbi2 = r5_next_bio(rbi, dev->sector);
1204 if (!raid5_dec_bi_active_stripes(rbi))
1205 bio_list_add(&return_bi, rbi);
1206 rbi = rbi2;
1207 }
1208 }
1209 }
1210 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1211
1212 return_io(&return_bi);
1213
1214 set_bit(STRIPE_HANDLE, &sh->state);
1215 raid5_release_stripe(sh);
1216 }
1217
1218 static void ops_run_biofill(struct stripe_head *sh)
1219 {
1220 struct dma_async_tx_descriptor *tx = NULL;
1221 struct async_submit_ctl submit;
1222 int i;
1223
1224 BUG_ON(sh->batch_head);
1225 pr_debug("%s: stripe %llu\n", __func__,
1226 (unsigned long long)sh->sector);
1227
1228 for (i = sh->disks; i--; ) {
1229 struct r5dev *dev = &sh->dev[i];
1230 if (test_bit(R5_Wantfill, &dev->flags)) {
1231 struct bio *rbi;
1232 spin_lock_irq(&sh->stripe_lock);
1233 dev->read = rbi = dev->toread;
1234 dev->toread = NULL;
1235 spin_unlock_irq(&sh->stripe_lock);
1236 while (rbi && rbi->bi_iter.bi_sector <
1237 dev->sector + STRIPE_SECTORS) {
1238 tx = async_copy_data(0, rbi, &dev->page,
1239 dev->sector, tx, sh);
1240 rbi = r5_next_bio(rbi, dev->sector);
1241 }
1242 }
1243 }
1244
1245 atomic_inc(&sh->count);
1246 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1247 async_trigger_callback(&submit);
1248 }
1249
1250 static void mark_target_uptodate(struct stripe_head *sh, int target)
1251 {
1252 struct r5dev *tgt;
1253
1254 if (target < 0)
1255 return;
1256
1257 tgt = &sh->dev[target];
1258 set_bit(R5_UPTODATE, &tgt->flags);
1259 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1260 clear_bit(R5_Wantcompute, &tgt->flags);
1261 }
1262
1263 static void ops_complete_compute(void *stripe_head_ref)
1264 {
1265 struct stripe_head *sh = stripe_head_ref;
1266
1267 pr_debug("%s: stripe %llu\n", __func__,
1268 (unsigned long long)sh->sector);
1269
1270 /* mark the computed target(s) as uptodate */
1271 mark_target_uptodate(sh, sh->ops.target);
1272 mark_target_uptodate(sh, sh->ops.target2);
1273
1274 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1275 if (sh->check_state == check_state_compute_run)
1276 sh->check_state = check_state_compute_result;
1277 set_bit(STRIPE_HANDLE, &sh->state);
1278 raid5_release_stripe(sh);
1279 }
1280
1281 /* return a pointer to the address conversion region of the scribble buffer */
1282 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1283 struct raid5_percpu *percpu, int i)
1284 {
1285 void *addr;
1286
1287 addr = flex_array_get(percpu->scribble, i);
1288 return addr + sizeof(struct page *) * (sh->disks + 2);
1289 }
1290
1291 /* return a pointer to the address conversion region of the scribble buffer */
1292 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1293 {
1294 void *addr;
1295
1296 addr = flex_array_get(percpu->scribble, i);
1297 return addr;
1298 }
1299
1300 static struct dma_async_tx_descriptor *
1301 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1302 {
1303 int disks = sh->disks;
1304 struct page **xor_srcs = to_addr_page(percpu, 0);
1305 int target = sh->ops.target;
1306 struct r5dev *tgt = &sh->dev[target];
1307 struct page *xor_dest = tgt->page;
1308 int count = 0;
1309 struct dma_async_tx_descriptor *tx;
1310 struct async_submit_ctl submit;
1311 int i;
1312
1313 BUG_ON(sh->batch_head);
1314
1315 pr_debug("%s: stripe %llu block: %d\n",
1316 __func__, (unsigned long long)sh->sector, target);
1317 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1318
1319 for (i = disks; i--; )
1320 if (i != target)
1321 xor_srcs[count++] = sh->dev[i].page;
1322
1323 atomic_inc(&sh->count);
1324
1325 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1326 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1327 if (unlikely(count == 1))
1328 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1329 else
1330 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1331
1332 return tx;
1333 }
1334
1335 /* set_syndrome_sources - populate source buffers for gen_syndrome
1336 * @srcs - (struct page *) array of size sh->disks
1337 * @sh - stripe_head to parse
1338 *
1339 * Populates srcs in proper layout order for the stripe and returns the
1340 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1341 * destination buffer is recorded in srcs[count] and the Q destination
1342 * is recorded in srcs[count+1]].
1343 */
1344 static int set_syndrome_sources(struct page **srcs,
1345 struct stripe_head *sh,
1346 int srctype)
1347 {
1348 int disks = sh->disks;
1349 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1350 int d0_idx = raid6_d0(sh);
1351 int count;
1352 int i;
1353
1354 for (i = 0; i < disks; i++)
1355 srcs[i] = NULL;
1356
1357 count = 0;
1358 i = d0_idx;
1359 do {
1360 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1361 struct r5dev *dev = &sh->dev[i];
1362
1363 if (i == sh->qd_idx || i == sh->pd_idx ||
1364 (srctype == SYNDROME_SRC_ALL) ||
1365 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1366 test_bit(R5_Wantdrain, &dev->flags)) ||
1367 (srctype == SYNDROME_SRC_WRITTEN &&
1368 dev->written))
1369 srcs[slot] = sh->dev[i].page;
1370 i = raid6_next_disk(i, disks);
1371 } while (i != d0_idx);
1372
1373 return syndrome_disks;
1374 }
1375
1376 static struct dma_async_tx_descriptor *
1377 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1378 {
1379 int disks = sh->disks;
1380 struct page **blocks = to_addr_page(percpu, 0);
1381 int target;
1382 int qd_idx = sh->qd_idx;
1383 struct dma_async_tx_descriptor *tx;
1384 struct async_submit_ctl submit;
1385 struct r5dev *tgt;
1386 struct page *dest;
1387 int i;
1388 int count;
1389
1390 BUG_ON(sh->batch_head);
1391 if (sh->ops.target < 0)
1392 target = sh->ops.target2;
1393 else if (sh->ops.target2 < 0)
1394 target = sh->ops.target;
1395 else
1396 /* we should only have one valid target */
1397 BUG();
1398 BUG_ON(target < 0);
1399 pr_debug("%s: stripe %llu block: %d\n",
1400 __func__, (unsigned long long)sh->sector, target);
1401
1402 tgt = &sh->dev[target];
1403 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1404 dest = tgt->page;
1405
1406 atomic_inc(&sh->count);
1407
1408 if (target == qd_idx) {
1409 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1410 blocks[count] = NULL; /* regenerating p is not necessary */
1411 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1412 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1413 ops_complete_compute, sh,
1414 to_addr_conv(sh, percpu, 0));
1415 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1416 } else {
1417 /* Compute any data- or p-drive using XOR */
1418 count = 0;
1419 for (i = disks; i-- ; ) {
1420 if (i == target || i == qd_idx)
1421 continue;
1422 blocks[count++] = sh->dev[i].page;
1423 }
1424
1425 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1426 NULL, ops_complete_compute, sh,
1427 to_addr_conv(sh, percpu, 0));
1428 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1429 }
1430
1431 return tx;
1432 }
1433
1434 static struct dma_async_tx_descriptor *
1435 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1436 {
1437 int i, count, disks = sh->disks;
1438 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1439 int d0_idx = raid6_d0(sh);
1440 int faila = -1, failb = -1;
1441 int target = sh->ops.target;
1442 int target2 = sh->ops.target2;
1443 struct r5dev *tgt = &sh->dev[target];
1444 struct r5dev *tgt2 = &sh->dev[target2];
1445 struct dma_async_tx_descriptor *tx;
1446 struct page **blocks = to_addr_page(percpu, 0);
1447 struct async_submit_ctl submit;
1448
1449 BUG_ON(sh->batch_head);
1450 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1451 __func__, (unsigned long long)sh->sector, target, target2);
1452 BUG_ON(target < 0 || target2 < 0);
1453 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1454 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1455
1456 /* we need to open-code set_syndrome_sources to handle the
1457 * slot number conversion for 'faila' and 'failb'
1458 */
1459 for (i = 0; i < disks ; i++)
1460 blocks[i] = NULL;
1461 count = 0;
1462 i = d0_idx;
1463 do {
1464 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1465
1466 blocks[slot] = sh->dev[i].page;
1467
1468 if (i == target)
1469 faila = slot;
1470 if (i == target2)
1471 failb = slot;
1472 i = raid6_next_disk(i, disks);
1473 } while (i != d0_idx);
1474
1475 BUG_ON(faila == failb);
1476 if (failb < faila)
1477 swap(faila, failb);
1478 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1479 __func__, (unsigned long long)sh->sector, faila, failb);
1480
1481 atomic_inc(&sh->count);
1482
1483 if (failb == syndrome_disks+1) {
1484 /* Q disk is one of the missing disks */
1485 if (faila == syndrome_disks) {
1486 /* Missing P+Q, just recompute */
1487 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1488 ops_complete_compute, sh,
1489 to_addr_conv(sh, percpu, 0));
1490 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1491 STRIPE_SIZE, &submit);
1492 } else {
1493 struct page *dest;
1494 int data_target;
1495 int qd_idx = sh->qd_idx;
1496
1497 /* Missing D+Q: recompute D from P, then recompute Q */
1498 if (target == qd_idx)
1499 data_target = target2;
1500 else
1501 data_target = target;
1502
1503 count = 0;
1504 for (i = disks; i-- ; ) {
1505 if (i == data_target || i == qd_idx)
1506 continue;
1507 blocks[count++] = sh->dev[i].page;
1508 }
1509 dest = sh->dev[data_target].page;
1510 init_async_submit(&submit,
1511 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1512 NULL, NULL, NULL,
1513 to_addr_conv(sh, percpu, 0));
1514 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1515 &submit);
1516
1517 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1518 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1519 ops_complete_compute, sh,
1520 to_addr_conv(sh, percpu, 0));
1521 return async_gen_syndrome(blocks, 0, count+2,
1522 STRIPE_SIZE, &submit);
1523 }
1524 } else {
1525 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1526 ops_complete_compute, sh,
1527 to_addr_conv(sh, percpu, 0));
1528 if (failb == syndrome_disks) {
1529 /* We're missing D+P. */
1530 return async_raid6_datap_recov(syndrome_disks+2,
1531 STRIPE_SIZE, faila,
1532 blocks, &submit);
1533 } else {
1534 /* We're missing D+D. */
1535 return async_raid6_2data_recov(syndrome_disks+2,
1536 STRIPE_SIZE, faila, failb,
1537 blocks, &submit);
1538 }
1539 }
1540 }
1541
1542 static void ops_complete_prexor(void *stripe_head_ref)
1543 {
1544 struct stripe_head *sh = stripe_head_ref;
1545
1546 pr_debug("%s: stripe %llu\n", __func__,
1547 (unsigned long long)sh->sector);
1548 }
1549
1550 static struct dma_async_tx_descriptor *
1551 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1552 struct dma_async_tx_descriptor *tx)
1553 {
1554 int disks = sh->disks;
1555 struct page **xor_srcs = to_addr_page(percpu, 0);
1556 int count = 0, pd_idx = sh->pd_idx, i;
1557 struct async_submit_ctl submit;
1558
1559 /* existing parity data subtracted */
1560 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1561
1562 BUG_ON(sh->batch_head);
1563 pr_debug("%s: stripe %llu\n", __func__,
1564 (unsigned long long)sh->sector);
1565
1566 for (i = disks; i--; ) {
1567 struct r5dev *dev = &sh->dev[i];
1568 /* Only process blocks that are known to be uptodate */
1569 if (test_bit(R5_Wantdrain, &dev->flags))
1570 xor_srcs[count++] = dev->page;
1571 }
1572
1573 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1574 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1575 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1576
1577 return tx;
1578 }
1579
1580 static struct dma_async_tx_descriptor *
1581 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1582 struct dma_async_tx_descriptor *tx)
1583 {
1584 struct page **blocks = to_addr_page(percpu, 0);
1585 int count;
1586 struct async_submit_ctl submit;
1587
1588 pr_debug("%s: stripe %llu\n", __func__,
1589 (unsigned long long)sh->sector);
1590
1591 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1592
1593 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1594 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1595 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1596
1597 return tx;
1598 }
1599
1600 static struct dma_async_tx_descriptor *
1601 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1602 {
1603 int disks = sh->disks;
1604 int i;
1605 struct stripe_head *head_sh = sh;
1606
1607 pr_debug("%s: stripe %llu\n", __func__,
1608 (unsigned long long)sh->sector);
1609
1610 for (i = disks; i--; ) {
1611 struct r5dev *dev;
1612 struct bio *chosen;
1613
1614 sh = head_sh;
1615 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1616 struct bio *wbi;
1617
1618 again:
1619 dev = &sh->dev[i];
1620 spin_lock_irq(&sh->stripe_lock);
1621 chosen = dev->towrite;
1622 dev->towrite = NULL;
1623 sh->overwrite_disks = 0;
1624 BUG_ON(dev->written);
1625 wbi = dev->written = chosen;
1626 spin_unlock_irq(&sh->stripe_lock);
1627 WARN_ON(dev->page != dev->orig_page);
1628
1629 while (wbi && wbi->bi_iter.bi_sector <
1630 dev->sector + STRIPE_SECTORS) {
1631 if (wbi->bi_rw & REQ_FUA)
1632 set_bit(R5_WantFUA, &dev->flags);
1633 if (wbi->bi_rw & REQ_SYNC)
1634 set_bit(R5_SyncIO, &dev->flags);
1635 if (wbi->bi_rw & REQ_DISCARD)
1636 set_bit(R5_Discard, &dev->flags);
1637 else {
1638 tx = async_copy_data(1, wbi, &dev->page,
1639 dev->sector, tx, sh);
1640 if (dev->page != dev->orig_page) {
1641 set_bit(R5_SkipCopy, &dev->flags);
1642 clear_bit(R5_UPTODATE, &dev->flags);
1643 clear_bit(R5_OVERWRITE, &dev->flags);
1644 }
1645 }
1646 wbi = r5_next_bio(wbi, dev->sector);
1647 }
1648
1649 if (head_sh->batch_head) {
1650 sh = list_first_entry(&sh->batch_list,
1651 struct stripe_head,
1652 batch_list);
1653 if (sh == head_sh)
1654 continue;
1655 goto again;
1656 }
1657 }
1658 }
1659
1660 return tx;
1661 }
1662
1663 static void ops_complete_reconstruct(void *stripe_head_ref)
1664 {
1665 struct stripe_head *sh = stripe_head_ref;
1666 int disks = sh->disks;
1667 int pd_idx = sh->pd_idx;
1668 int qd_idx = sh->qd_idx;
1669 int i;
1670 bool fua = false, sync = false, discard = false;
1671
1672 pr_debug("%s: stripe %llu\n", __func__,
1673 (unsigned long long)sh->sector);
1674
1675 for (i = disks; i--; ) {
1676 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1677 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1678 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1679 }
1680
1681 for (i = disks; i--; ) {
1682 struct r5dev *dev = &sh->dev[i];
1683
1684 if (dev->written || i == pd_idx || i == qd_idx) {
1685 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1686 set_bit(R5_UPTODATE, &dev->flags);
1687 if (fua)
1688 set_bit(R5_WantFUA, &dev->flags);
1689 if (sync)
1690 set_bit(R5_SyncIO, &dev->flags);
1691 }
1692 }
1693
1694 if (sh->reconstruct_state == reconstruct_state_drain_run)
1695 sh->reconstruct_state = reconstruct_state_drain_result;
1696 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1697 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1698 else {
1699 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1700 sh->reconstruct_state = reconstruct_state_result;
1701 }
1702
1703 set_bit(STRIPE_HANDLE, &sh->state);
1704 raid5_release_stripe(sh);
1705 }
1706
1707 static void
1708 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1709 struct dma_async_tx_descriptor *tx)
1710 {
1711 int disks = sh->disks;
1712 struct page **xor_srcs;
1713 struct async_submit_ctl submit;
1714 int count, pd_idx = sh->pd_idx, i;
1715 struct page *xor_dest;
1716 int prexor = 0;
1717 unsigned long flags;
1718 int j = 0;
1719 struct stripe_head *head_sh = sh;
1720 int last_stripe;
1721
1722 pr_debug("%s: stripe %llu\n", __func__,
1723 (unsigned long long)sh->sector);
1724
1725 for (i = 0; i < sh->disks; i++) {
1726 if (pd_idx == i)
1727 continue;
1728 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1729 break;
1730 }
1731 if (i >= sh->disks) {
1732 atomic_inc(&sh->count);
1733 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1734 ops_complete_reconstruct(sh);
1735 return;
1736 }
1737 again:
1738 count = 0;
1739 xor_srcs = to_addr_page(percpu, j);
1740 /* check if prexor is active which means only process blocks
1741 * that are part of a read-modify-write (written)
1742 */
1743 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1744 prexor = 1;
1745 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1746 for (i = disks; i--; ) {
1747 struct r5dev *dev = &sh->dev[i];
1748 if (head_sh->dev[i].written)
1749 xor_srcs[count++] = dev->page;
1750 }
1751 } else {
1752 xor_dest = sh->dev[pd_idx].page;
1753 for (i = disks; i--; ) {
1754 struct r5dev *dev = &sh->dev[i];
1755 if (i != pd_idx)
1756 xor_srcs[count++] = dev->page;
1757 }
1758 }
1759
1760 /* 1/ if we prexor'd then the dest is reused as a source
1761 * 2/ if we did not prexor then we are redoing the parity
1762 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1763 * for the synchronous xor case
1764 */
1765 last_stripe = !head_sh->batch_head ||
1766 list_first_entry(&sh->batch_list,
1767 struct stripe_head, batch_list) == head_sh;
1768 if (last_stripe) {
1769 flags = ASYNC_TX_ACK |
1770 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1771
1772 atomic_inc(&head_sh->count);
1773 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1774 to_addr_conv(sh, percpu, j));
1775 } else {
1776 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1777 init_async_submit(&submit, flags, tx, NULL, NULL,
1778 to_addr_conv(sh, percpu, j));
1779 }
1780
1781 if (unlikely(count == 1))
1782 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1783 else
1784 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1785 if (!last_stripe) {
1786 j++;
1787 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1788 batch_list);
1789 goto again;
1790 }
1791 }
1792
1793 static void
1794 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1795 struct dma_async_tx_descriptor *tx)
1796 {
1797 struct async_submit_ctl submit;
1798 struct page **blocks;
1799 int count, i, j = 0;
1800 struct stripe_head *head_sh = sh;
1801 int last_stripe;
1802 int synflags;
1803 unsigned long txflags;
1804
1805 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1806
1807 for (i = 0; i < sh->disks; i++) {
1808 if (sh->pd_idx == i || sh->qd_idx == i)
1809 continue;
1810 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1811 break;
1812 }
1813 if (i >= sh->disks) {
1814 atomic_inc(&sh->count);
1815 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1816 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1817 ops_complete_reconstruct(sh);
1818 return;
1819 }
1820
1821 again:
1822 blocks = to_addr_page(percpu, j);
1823
1824 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1825 synflags = SYNDROME_SRC_WRITTEN;
1826 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1827 } else {
1828 synflags = SYNDROME_SRC_ALL;
1829 txflags = ASYNC_TX_ACK;
1830 }
1831
1832 count = set_syndrome_sources(blocks, sh, synflags);
1833 last_stripe = !head_sh->batch_head ||
1834 list_first_entry(&sh->batch_list,
1835 struct stripe_head, batch_list) == head_sh;
1836
1837 if (last_stripe) {
1838 atomic_inc(&head_sh->count);
1839 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1840 head_sh, to_addr_conv(sh, percpu, j));
1841 } else
1842 init_async_submit(&submit, 0, tx, NULL, NULL,
1843 to_addr_conv(sh, percpu, j));
1844 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1845 if (!last_stripe) {
1846 j++;
1847 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1848 batch_list);
1849 goto again;
1850 }
1851 }
1852
1853 static void ops_complete_check(void *stripe_head_ref)
1854 {
1855 struct stripe_head *sh = stripe_head_ref;
1856
1857 pr_debug("%s: stripe %llu\n", __func__,
1858 (unsigned long long)sh->sector);
1859
1860 sh->check_state = check_state_check_result;
1861 set_bit(STRIPE_HANDLE, &sh->state);
1862 raid5_release_stripe(sh);
1863 }
1864
1865 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1866 {
1867 int disks = sh->disks;
1868 int pd_idx = sh->pd_idx;
1869 int qd_idx = sh->qd_idx;
1870 struct page *xor_dest;
1871 struct page **xor_srcs = to_addr_page(percpu, 0);
1872 struct dma_async_tx_descriptor *tx;
1873 struct async_submit_ctl submit;
1874 int count;
1875 int i;
1876
1877 pr_debug("%s: stripe %llu\n", __func__,
1878 (unsigned long long)sh->sector);
1879
1880 BUG_ON(sh->batch_head);
1881 count = 0;
1882 xor_dest = sh->dev[pd_idx].page;
1883 xor_srcs[count++] = xor_dest;
1884 for (i = disks; i--; ) {
1885 if (i == pd_idx || i == qd_idx)
1886 continue;
1887 xor_srcs[count++] = sh->dev[i].page;
1888 }
1889
1890 init_async_submit(&submit, 0, NULL, NULL, NULL,
1891 to_addr_conv(sh, percpu, 0));
1892 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1893 &sh->ops.zero_sum_result, &submit);
1894
1895 atomic_inc(&sh->count);
1896 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1897 tx = async_trigger_callback(&submit);
1898 }
1899
1900 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1901 {
1902 struct page **srcs = to_addr_page(percpu, 0);
1903 struct async_submit_ctl submit;
1904 int count;
1905
1906 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1907 (unsigned long long)sh->sector, checkp);
1908
1909 BUG_ON(sh->batch_head);
1910 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1911 if (!checkp)
1912 srcs[count] = NULL;
1913
1914 atomic_inc(&sh->count);
1915 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1916 sh, to_addr_conv(sh, percpu, 0));
1917 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1918 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1919 }
1920
1921 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1922 {
1923 int overlap_clear = 0, i, disks = sh->disks;
1924 struct dma_async_tx_descriptor *tx = NULL;
1925 struct r5conf *conf = sh->raid_conf;
1926 int level = conf->level;
1927 struct raid5_percpu *percpu;
1928 unsigned long cpu;
1929
1930 cpu = get_cpu();
1931 percpu = per_cpu_ptr(conf->percpu, cpu);
1932 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1933 ops_run_biofill(sh);
1934 overlap_clear++;
1935 }
1936
1937 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1938 if (level < 6)
1939 tx = ops_run_compute5(sh, percpu);
1940 else {
1941 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1942 tx = ops_run_compute6_1(sh, percpu);
1943 else
1944 tx = ops_run_compute6_2(sh, percpu);
1945 }
1946 /* terminate the chain if reconstruct is not set to be run */
1947 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1948 async_tx_ack(tx);
1949 }
1950
1951 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1952 if (level < 6)
1953 tx = ops_run_prexor5(sh, percpu, tx);
1954 else
1955 tx = ops_run_prexor6(sh, percpu, tx);
1956 }
1957
1958 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1959 tx = ops_run_biodrain(sh, tx);
1960 overlap_clear++;
1961 }
1962
1963 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1964 if (level < 6)
1965 ops_run_reconstruct5(sh, percpu, tx);
1966 else
1967 ops_run_reconstruct6(sh, percpu, tx);
1968 }
1969
1970 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1971 if (sh->check_state == check_state_run)
1972 ops_run_check_p(sh, percpu);
1973 else if (sh->check_state == check_state_run_q)
1974 ops_run_check_pq(sh, percpu, 0);
1975 else if (sh->check_state == check_state_run_pq)
1976 ops_run_check_pq(sh, percpu, 1);
1977 else
1978 BUG();
1979 }
1980
1981 if (overlap_clear && !sh->batch_head)
1982 for (i = disks; i--; ) {
1983 struct r5dev *dev = &sh->dev[i];
1984 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1985 wake_up(&sh->raid_conf->wait_for_overlap);
1986 }
1987 put_cpu();
1988 }
1989
1990 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1991 {
1992 struct stripe_head *sh;
1993
1994 sh = kmem_cache_zalloc(sc, gfp);
1995 if (sh) {
1996 spin_lock_init(&sh->stripe_lock);
1997 spin_lock_init(&sh->batch_lock);
1998 INIT_LIST_HEAD(&sh->batch_list);
1999 INIT_LIST_HEAD(&sh->lru);
2000 atomic_set(&sh->count, 1);
2001 }
2002 return sh;
2003 }
2004 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2005 {
2006 struct stripe_head *sh;
2007
2008 sh = alloc_stripe(conf->slab_cache, gfp);
2009 if (!sh)
2010 return 0;
2011
2012 sh->raid_conf = conf;
2013
2014 if (grow_buffers(sh, gfp)) {
2015 shrink_buffers(sh);
2016 kmem_cache_free(conf->slab_cache, sh);
2017 return 0;
2018 }
2019 sh->hash_lock_index =
2020 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2021 /* we just created an active stripe so... */
2022 atomic_inc(&conf->active_stripes);
2023
2024 raid5_release_stripe(sh);
2025 conf->max_nr_stripes++;
2026 return 1;
2027 }
2028
2029 static int grow_stripes(struct r5conf *conf, int num)
2030 {
2031 struct kmem_cache *sc;
2032 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2033
2034 if (conf->mddev->gendisk)
2035 sprintf(conf->cache_name[0],
2036 "raid%d-%s", conf->level, mdname(conf->mddev));
2037 else
2038 sprintf(conf->cache_name[0],
2039 "raid%d-%p", conf->level, conf->mddev);
2040 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2041
2042 conf->active_name = 0;
2043 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2044 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2045 0, 0, NULL);
2046 if (!sc)
2047 return 1;
2048 conf->slab_cache = sc;
2049 conf->pool_size = devs;
2050 while (num--)
2051 if (!grow_one_stripe(conf, GFP_KERNEL))
2052 return 1;
2053
2054 return 0;
2055 }
2056
2057 /**
2058 * scribble_len - return the required size of the scribble region
2059 * @num - total number of disks in the array
2060 *
2061 * The size must be enough to contain:
2062 * 1/ a struct page pointer for each device in the array +2
2063 * 2/ room to convert each entry in (1) to its corresponding dma
2064 * (dma_map_page()) or page (page_address()) address.
2065 *
2066 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2067 * calculate over all devices (not just the data blocks), using zeros in place
2068 * of the P and Q blocks.
2069 */
2070 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2071 {
2072 struct flex_array *ret;
2073 size_t len;
2074
2075 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2076 ret = flex_array_alloc(len, cnt, flags);
2077 if (!ret)
2078 return NULL;
2079 /* always prealloc all elements, so no locking is required */
2080 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2081 flex_array_free(ret);
2082 return NULL;
2083 }
2084 return ret;
2085 }
2086
2087 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2088 {
2089 unsigned long cpu;
2090 int err = 0;
2091
2092 mddev_suspend(conf->mddev);
2093 get_online_cpus();
2094 for_each_present_cpu(cpu) {
2095 struct raid5_percpu *percpu;
2096 struct flex_array *scribble;
2097
2098 percpu = per_cpu_ptr(conf->percpu, cpu);
2099 scribble = scribble_alloc(new_disks,
2100 new_sectors / STRIPE_SECTORS,
2101 GFP_NOIO);
2102
2103 if (scribble) {
2104 flex_array_free(percpu->scribble);
2105 percpu->scribble = scribble;
2106 } else {
2107 err = -ENOMEM;
2108 break;
2109 }
2110 }
2111 put_online_cpus();
2112 mddev_resume(conf->mddev);
2113 return err;
2114 }
2115
2116 static int resize_stripes(struct r5conf *conf, int newsize)
2117 {
2118 /* Make all the stripes able to hold 'newsize' devices.
2119 * New slots in each stripe get 'page' set to a new page.
2120 *
2121 * This happens in stages:
2122 * 1/ create a new kmem_cache and allocate the required number of
2123 * stripe_heads.
2124 * 2/ gather all the old stripe_heads and transfer the pages across
2125 * to the new stripe_heads. This will have the side effect of
2126 * freezing the array as once all stripe_heads have been collected,
2127 * no IO will be possible. Old stripe heads are freed once their
2128 * pages have been transferred over, and the old kmem_cache is
2129 * freed when all stripes are done.
2130 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2131 * we simple return a failre status - no need to clean anything up.
2132 * 4/ allocate new pages for the new slots in the new stripe_heads.
2133 * If this fails, we don't bother trying the shrink the
2134 * stripe_heads down again, we just leave them as they are.
2135 * As each stripe_head is processed the new one is released into
2136 * active service.
2137 *
2138 * Once step2 is started, we cannot afford to wait for a write,
2139 * so we use GFP_NOIO allocations.
2140 */
2141 struct stripe_head *osh, *nsh;
2142 LIST_HEAD(newstripes);
2143 struct disk_info *ndisks;
2144 int err;
2145 struct kmem_cache *sc;
2146 int i;
2147 int hash, cnt;
2148
2149 if (newsize <= conf->pool_size)
2150 return 0; /* never bother to shrink */
2151
2152 err = md_allow_write(conf->mddev);
2153 if (err)
2154 return err;
2155
2156 /* Step 1 */
2157 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2158 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2159 0, 0, NULL);
2160 if (!sc)
2161 return -ENOMEM;
2162
2163 /* Need to ensure auto-resizing doesn't interfere */
2164 mutex_lock(&conf->cache_size_mutex);
2165
2166 for (i = conf->max_nr_stripes; i; i--) {
2167 nsh = alloc_stripe(sc, GFP_KERNEL);
2168 if (!nsh)
2169 break;
2170
2171 nsh->raid_conf = conf;
2172 list_add(&nsh->lru, &newstripes);
2173 }
2174 if (i) {
2175 /* didn't get enough, give up */
2176 while (!list_empty(&newstripes)) {
2177 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2178 list_del(&nsh->lru);
2179 kmem_cache_free(sc, nsh);
2180 }
2181 kmem_cache_destroy(sc);
2182 mutex_unlock(&conf->cache_size_mutex);
2183 return -ENOMEM;
2184 }
2185 /* Step 2 - Must use GFP_NOIO now.
2186 * OK, we have enough stripes, start collecting inactive
2187 * stripes and copying them over
2188 */
2189 hash = 0;
2190 cnt = 0;
2191 list_for_each_entry(nsh, &newstripes, lru) {
2192 lock_device_hash_lock(conf, hash);
2193 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2194 !list_empty(conf->inactive_list + hash),
2195 unlock_device_hash_lock(conf, hash),
2196 lock_device_hash_lock(conf, hash));
2197 osh = get_free_stripe(conf, hash);
2198 unlock_device_hash_lock(conf, hash);
2199
2200 for(i=0; i<conf->pool_size; i++) {
2201 nsh->dev[i].page = osh->dev[i].page;
2202 nsh->dev[i].orig_page = osh->dev[i].page;
2203 }
2204 nsh->hash_lock_index = hash;
2205 kmem_cache_free(conf->slab_cache, osh);
2206 cnt++;
2207 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2208 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2209 hash++;
2210 cnt = 0;
2211 }
2212 }
2213 kmem_cache_destroy(conf->slab_cache);
2214
2215 /* Step 3.
2216 * At this point, we are holding all the stripes so the array
2217 * is completely stalled, so now is a good time to resize
2218 * conf->disks and the scribble region
2219 */
2220 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2221 if (ndisks) {
2222 for (i=0; i<conf->raid_disks; i++)
2223 ndisks[i] = conf->disks[i];
2224 kfree(conf->disks);
2225 conf->disks = ndisks;
2226 } else
2227 err = -ENOMEM;
2228
2229 mutex_unlock(&conf->cache_size_mutex);
2230 /* Step 4, return new stripes to service */
2231 while(!list_empty(&newstripes)) {
2232 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2233 list_del_init(&nsh->lru);
2234
2235 for (i=conf->raid_disks; i < newsize; i++)
2236 if (nsh->dev[i].page == NULL) {
2237 struct page *p = alloc_page(GFP_NOIO);
2238 nsh->dev[i].page = p;
2239 nsh->dev[i].orig_page = p;
2240 if (!p)
2241 err = -ENOMEM;
2242 }
2243 raid5_release_stripe(nsh);
2244 }
2245 /* critical section pass, GFP_NOIO no longer needed */
2246
2247 conf->slab_cache = sc;
2248 conf->active_name = 1-conf->active_name;
2249 if (!err)
2250 conf->pool_size = newsize;
2251 return err;
2252 }
2253
2254 static int drop_one_stripe(struct r5conf *conf)
2255 {
2256 struct stripe_head *sh;
2257 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2258
2259 spin_lock_irq(conf->hash_locks + hash);
2260 sh = get_free_stripe(conf, hash);
2261 spin_unlock_irq(conf->hash_locks + hash);
2262 if (!sh)
2263 return 0;
2264 BUG_ON(atomic_read(&sh->count));
2265 shrink_buffers(sh);
2266 kmem_cache_free(conf->slab_cache, sh);
2267 atomic_dec(&conf->active_stripes);
2268 conf->max_nr_stripes--;
2269 return 1;
2270 }
2271
2272 static void shrink_stripes(struct r5conf *conf)
2273 {
2274 while (conf->max_nr_stripes &&
2275 drop_one_stripe(conf))
2276 ;
2277
2278 kmem_cache_destroy(conf->slab_cache);
2279 conf->slab_cache = NULL;
2280 }
2281
2282 static void raid5_end_read_request(struct bio * bi)
2283 {
2284 struct stripe_head *sh = bi->bi_private;
2285 struct r5conf *conf = sh->raid_conf;
2286 int disks = sh->disks, i;
2287 char b[BDEVNAME_SIZE];
2288 struct md_rdev *rdev = NULL;
2289 sector_t s;
2290
2291 for (i=0 ; i<disks; i++)
2292 if (bi == &sh->dev[i].req)
2293 break;
2294
2295 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2296 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2297 bi->bi_error);
2298 if (i == disks) {
2299 BUG();
2300 return;
2301 }
2302 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2303 /* If replacement finished while this request was outstanding,
2304 * 'replacement' might be NULL already.
2305 * In that case it moved down to 'rdev'.
2306 * rdev is not removed until all requests are finished.
2307 */
2308 rdev = conf->disks[i].replacement;
2309 if (!rdev)
2310 rdev = conf->disks[i].rdev;
2311
2312 if (use_new_offset(conf, sh))
2313 s = sh->sector + rdev->new_data_offset;
2314 else
2315 s = sh->sector + rdev->data_offset;
2316 if (!bi->bi_error) {
2317 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2318 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2319 /* Note that this cannot happen on a
2320 * replacement device. We just fail those on
2321 * any error
2322 */
2323 printk_ratelimited(
2324 KERN_INFO
2325 "md/raid:%s: read error corrected"
2326 " (%lu sectors at %llu on %s)\n",
2327 mdname(conf->mddev), STRIPE_SECTORS,
2328 (unsigned long long)s,
2329 bdevname(rdev->bdev, b));
2330 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2331 clear_bit(R5_ReadError, &sh->dev[i].flags);
2332 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2333 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2334 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2335
2336 if (atomic_read(&rdev->read_errors))
2337 atomic_set(&rdev->read_errors, 0);
2338 } else {
2339 const char *bdn = bdevname(rdev->bdev, b);
2340 int retry = 0;
2341 int set_bad = 0;
2342
2343 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2344 atomic_inc(&rdev->read_errors);
2345 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2346 printk_ratelimited(
2347 KERN_WARNING
2348 "md/raid:%s: read error on replacement device "
2349 "(sector %llu on %s).\n",
2350 mdname(conf->mddev),
2351 (unsigned long long)s,
2352 bdn);
2353 else if (conf->mddev->degraded >= conf->max_degraded) {
2354 set_bad = 1;
2355 printk_ratelimited(
2356 KERN_WARNING
2357 "md/raid:%s: read error not correctable "
2358 "(sector %llu on %s).\n",
2359 mdname(conf->mddev),
2360 (unsigned long long)s,
2361 bdn);
2362 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2363 /* Oh, no!!! */
2364 set_bad = 1;
2365 printk_ratelimited(
2366 KERN_WARNING
2367 "md/raid:%s: read error NOT corrected!! "
2368 "(sector %llu on %s).\n",
2369 mdname(conf->mddev),
2370 (unsigned long long)s,
2371 bdn);
2372 } else if (atomic_read(&rdev->read_errors)
2373 > conf->max_nr_stripes)
2374 printk(KERN_WARNING
2375 "md/raid:%s: Too many read errors, failing device %s.\n",
2376 mdname(conf->mddev), bdn);
2377 else
2378 retry = 1;
2379 if (set_bad && test_bit(In_sync, &rdev->flags)
2380 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2381 retry = 1;
2382 if (retry)
2383 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2384 set_bit(R5_ReadError, &sh->dev[i].flags);
2385 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2386 } else
2387 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2388 else {
2389 clear_bit(R5_ReadError, &sh->dev[i].flags);
2390 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2391 if (!(set_bad
2392 && test_bit(In_sync, &rdev->flags)
2393 && rdev_set_badblocks(
2394 rdev, sh->sector, STRIPE_SECTORS, 0)))
2395 md_error(conf->mddev, rdev);
2396 }
2397 }
2398 rdev_dec_pending(rdev, conf->mddev);
2399 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2400 set_bit(STRIPE_HANDLE, &sh->state);
2401 raid5_release_stripe(sh);
2402 }
2403
2404 static void raid5_end_write_request(struct bio *bi)
2405 {
2406 struct stripe_head *sh = bi->bi_private;
2407 struct r5conf *conf = sh->raid_conf;
2408 int disks = sh->disks, i;
2409 struct md_rdev *uninitialized_var(rdev);
2410 sector_t first_bad;
2411 int bad_sectors;
2412 int replacement = 0;
2413
2414 for (i = 0 ; i < disks; i++) {
2415 if (bi == &sh->dev[i].req) {
2416 rdev = conf->disks[i].rdev;
2417 break;
2418 }
2419 if (bi == &sh->dev[i].rreq) {
2420 rdev = conf->disks[i].replacement;
2421 if (rdev)
2422 replacement = 1;
2423 else
2424 /* rdev was removed and 'replacement'
2425 * replaced it. rdev is not removed
2426 * until all requests are finished.
2427 */
2428 rdev = conf->disks[i].rdev;
2429 break;
2430 }
2431 }
2432 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2433 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2434 bi->bi_error);
2435 if (i == disks) {
2436 BUG();
2437 return;
2438 }
2439
2440 if (replacement) {
2441 if (bi->bi_error)
2442 md_error(conf->mddev, rdev);
2443 else if (is_badblock(rdev, sh->sector,
2444 STRIPE_SECTORS,
2445 &first_bad, &bad_sectors))
2446 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2447 } else {
2448 if (bi->bi_error) {
2449 set_bit(STRIPE_DEGRADED, &sh->state);
2450 set_bit(WriteErrorSeen, &rdev->flags);
2451 set_bit(R5_WriteError, &sh->dev[i].flags);
2452 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2453 set_bit(MD_RECOVERY_NEEDED,
2454 &rdev->mddev->recovery);
2455 } else if (is_badblock(rdev, sh->sector,
2456 STRIPE_SECTORS,
2457 &first_bad, &bad_sectors)) {
2458 set_bit(R5_MadeGood, &sh->dev[i].flags);
2459 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2460 /* That was a successful write so make
2461 * sure it looks like we already did
2462 * a re-write.
2463 */
2464 set_bit(R5_ReWrite, &sh->dev[i].flags);
2465 }
2466 }
2467 rdev_dec_pending(rdev, conf->mddev);
2468
2469 if (sh->batch_head && bi->bi_error && !replacement)
2470 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2471
2472 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2473 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2474 set_bit(STRIPE_HANDLE, &sh->state);
2475 raid5_release_stripe(sh);
2476
2477 if (sh->batch_head && sh != sh->batch_head)
2478 raid5_release_stripe(sh->batch_head);
2479 }
2480
2481 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2482 {
2483 struct r5dev *dev = &sh->dev[i];
2484
2485 bio_init(&dev->req);
2486 dev->req.bi_io_vec = &dev->vec;
2487 dev->req.bi_max_vecs = 1;
2488 dev->req.bi_private = sh;
2489
2490 bio_init(&dev->rreq);
2491 dev->rreq.bi_io_vec = &dev->rvec;
2492 dev->rreq.bi_max_vecs = 1;
2493 dev->rreq.bi_private = sh;
2494
2495 dev->flags = 0;
2496 dev->sector = raid5_compute_blocknr(sh, i, previous);
2497 }
2498
2499 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2500 {
2501 char b[BDEVNAME_SIZE];
2502 struct r5conf *conf = mddev->private;
2503 unsigned long flags;
2504 pr_debug("raid456: error called\n");
2505
2506 spin_lock_irqsave(&conf->device_lock, flags);
2507 clear_bit(In_sync, &rdev->flags);
2508 mddev->degraded = calc_degraded(conf);
2509 spin_unlock_irqrestore(&conf->device_lock, flags);
2510 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2511
2512 set_bit(Blocked, &rdev->flags);
2513 set_bit(Faulty, &rdev->flags);
2514 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2515 set_bit(MD_CHANGE_PENDING, &mddev->flags);
2516 printk(KERN_ALERT
2517 "md/raid:%s: Disk failure on %s, disabling device.\n"
2518 "md/raid:%s: Operation continuing on %d devices.\n",
2519 mdname(mddev),
2520 bdevname(rdev->bdev, b),
2521 mdname(mddev),
2522 conf->raid_disks - mddev->degraded);
2523 }
2524
2525 /*
2526 * Input: a 'big' sector number,
2527 * Output: index of the data and parity disk, and the sector # in them.
2528 */
2529 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2530 int previous, int *dd_idx,
2531 struct stripe_head *sh)
2532 {
2533 sector_t stripe, stripe2;
2534 sector_t chunk_number;
2535 unsigned int chunk_offset;
2536 int pd_idx, qd_idx;
2537 int ddf_layout = 0;
2538 sector_t new_sector;
2539 int algorithm = previous ? conf->prev_algo
2540 : conf->algorithm;
2541 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2542 : conf->chunk_sectors;
2543 int raid_disks = previous ? conf->previous_raid_disks
2544 : conf->raid_disks;
2545 int data_disks = raid_disks - conf->max_degraded;
2546
2547 /* First compute the information on this sector */
2548
2549 /*
2550 * Compute the chunk number and the sector offset inside the chunk
2551 */
2552 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2553 chunk_number = r_sector;
2554
2555 /*
2556 * Compute the stripe number
2557 */
2558 stripe = chunk_number;
2559 *dd_idx = sector_div(stripe, data_disks);
2560 stripe2 = stripe;
2561 /*
2562 * Select the parity disk based on the user selected algorithm.
2563 */
2564 pd_idx = qd_idx = -1;
2565 switch(conf->level) {
2566 case 4:
2567 pd_idx = data_disks;
2568 break;
2569 case 5:
2570 switch (algorithm) {
2571 case ALGORITHM_LEFT_ASYMMETRIC:
2572 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2573 if (*dd_idx >= pd_idx)
2574 (*dd_idx)++;
2575 break;
2576 case ALGORITHM_RIGHT_ASYMMETRIC:
2577 pd_idx = sector_div(stripe2, raid_disks);
2578 if (*dd_idx >= pd_idx)
2579 (*dd_idx)++;
2580 break;
2581 case ALGORITHM_LEFT_SYMMETRIC:
2582 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2583 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2584 break;
2585 case ALGORITHM_RIGHT_SYMMETRIC:
2586 pd_idx = sector_div(stripe2, raid_disks);
2587 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2588 break;
2589 case ALGORITHM_PARITY_0:
2590 pd_idx = 0;
2591 (*dd_idx)++;
2592 break;
2593 case ALGORITHM_PARITY_N:
2594 pd_idx = data_disks;
2595 break;
2596 default:
2597 BUG();
2598 }
2599 break;
2600 case 6:
2601
2602 switch (algorithm) {
2603 case ALGORITHM_LEFT_ASYMMETRIC:
2604 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2605 qd_idx = pd_idx + 1;
2606 if (pd_idx == raid_disks-1) {
2607 (*dd_idx)++; /* Q D D D P */
2608 qd_idx = 0;
2609 } else if (*dd_idx >= pd_idx)
2610 (*dd_idx) += 2; /* D D P Q D */
2611 break;
2612 case ALGORITHM_RIGHT_ASYMMETRIC:
2613 pd_idx = sector_div(stripe2, raid_disks);
2614 qd_idx = pd_idx + 1;
2615 if (pd_idx == raid_disks-1) {
2616 (*dd_idx)++; /* Q D D D P */
2617 qd_idx = 0;
2618 } else if (*dd_idx >= pd_idx)
2619 (*dd_idx) += 2; /* D D P Q D */
2620 break;
2621 case ALGORITHM_LEFT_SYMMETRIC:
2622 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2623 qd_idx = (pd_idx + 1) % raid_disks;
2624 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2625 break;
2626 case ALGORITHM_RIGHT_SYMMETRIC:
2627 pd_idx = sector_div(stripe2, raid_disks);
2628 qd_idx = (pd_idx + 1) % raid_disks;
2629 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2630 break;
2631
2632 case ALGORITHM_PARITY_0:
2633 pd_idx = 0;
2634 qd_idx = 1;
2635 (*dd_idx) += 2;
2636 break;
2637 case ALGORITHM_PARITY_N:
2638 pd_idx = data_disks;
2639 qd_idx = data_disks + 1;
2640 break;
2641
2642 case ALGORITHM_ROTATING_ZERO_RESTART:
2643 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2644 * of blocks for computing Q is different.
2645 */
2646 pd_idx = sector_div(stripe2, raid_disks);
2647 qd_idx = pd_idx + 1;
2648 if (pd_idx == raid_disks-1) {
2649 (*dd_idx)++; /* Q D D D P */
2650 qd_idx = 0;
2651 } else if (*dd_idx >= pd_idx)
2652 (*dd_idx) += 2; /* D D P Q D */
2653 ddf_layout = 1;
2654 break;
2655
2656 case ALGORITHM_ROTATING_N_RESTART:
2657 /* Same a left_asymmetric, by first stripe is
2658 * D D D P Q rather than
2659 * Q D D D P
2660 */
2661 stripe2 += 1;
2662 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2663 qd_idx = pd_idx + 1;
2664 if (pd_idx == raid_disks-1) {
2665 (*dd_idx)++; /* Q D D D P */
2666 qd_idx = 0;
2667 } else if (*dd_idx >= pd_idx)
2668 (*dd_idx) += 2; /* D D P Q D */
2669 ddf_layout = 1;
2670 break;
2671
2672 case ALGORITHM_ROTATING_N_CONTINUE:
2673 /* Same as left_symmetric but Q is before P */
2674 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2675 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2676 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2677 ddf_layout = 1;
2678 break;
2679
2680 case ALGORITHM_LEFT_ASYMMETRIC_6:
2681 /* RAID5 left_asymmetric, with Q on last device */
2682 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2683 if (*dd_idx >= pd_idx)
2684 (*dd_idx)++;
2685 qd_idx = raid_disks - 1;
2686 break;
2687
2688 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2689 pd_idx = sector_div(stripe2, raid_disks-1);
2690 if (*dd_idx >= pd_idx)
2691 (*dd_idx)++;
2692 qd_idx = raid_disks - 1;
2693 break;
2694
2695 case ALGORITHM_LEFT_SYMMETRIC_6:
2696 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2697 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2698 qd_idx = raid_disks - 1;
2699 break;
2700
2701 case ALGORITHM_RIGHT_SYMMETRIC_6:
2702 pd_idx = sector_div(stripe2, raid_disks-1);
2703 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2704 qd_idx = raid_disks - 1;
2705 break;
2706
2707 case ALGORITHM_PARITY_0_6:
2708 pd_idx = 0;
2709 (*dd_idx)++;
2710 qd_idx = raid_disks - 1;
2711 break;
2712
2713 default:
2714 BUG();
2715 }
2716 break;
2717 }
2718
2719 if (sh) {
2720 sh->pd_idx = pd_idx;
2721 sh->qd_idx = qd_idx;
2722 sh->ddf_layout = ddf_layout;
2723 }
2724 /*
2725 * Finally, compute the new sector number
2726 */
2727 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2728 return new_sector;
2729 }
2730
2731 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2732 {
2733 struct r5conf *conf = sh->raid_conf;
2734 int raid_disks = sh->disks;
2735 int data_disks = raid_disks - conf->max_degraded;
2736 sector_t new_sector = sh->sector, check;
2737 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2738 : conf->chunk_sectors;
2739 int algorithm = previous ? conf->prev_algo
2740 : conf->algorithm;
2741 sector_t stripe;
2742 int chunk_offset;
2743 sector_t chunk_number;
2744 int dummy1, dd_idx = i;
2745 sector_t r_sector;
2746 struct stripe_head sh2;
2747
2748 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2749 stripe = new_sector;
2750
2751 if (i == sh->pd_idx)
2752 return 0;
2753 switch(conf->level) {
2754 case 4: break;
2755 case 5:
2756 switch (algorithm) {
2757 case ALGORITHM_LEFT_ASYMMETRIC:
2758 case ALGORITHM_RIGHT_ASYMMETRIC:
2759 if (i > sh->pd_idx)
2760 i--;
2761 break;
2762 case ALGORITHM_LEFT_SYMMETRIC:
2763 case ALGORITHM_RIGHT_SYMMETRIC:
2764 if (i < sh->pd_idx)
2765 i += raid_disks;
2766 i -= (sh->pd_idx + 1);
2767 break;
2768 case ALGORITHM_PARITY_0:
2769 i -= 1;
2770 break;
2771 case ALGORITHM_PARITY_N:
2772 break;
2773 default:
2774 BUG();
2775 }
2776 break;
2777 case 6:
2778 if (i == sh->qd_idx)
2779 return 0; /* It is the Q disk */
2780 switch (algorithm) {
2781 case ALGORITHM_LEFT_ASYMMETRIC:
2782 case ALGORITHM_RIGHT_ASYMMETRIC:
2783 case ALGORITHM_ROTATING_ZERO_RESTART:
2784 case ALGORITHM_ROTATING_N_RESTART:
2785 if (sh->pd_idx == raid_disks-1)
2786 i--; /* Q D D D P */
2787 else if (i > sh->pd_idx)
2788 i -= 2; /* D D P Q D */
2789 break;
2790 case ALGORITHM_LEFT_SYMMETRIC:
2791 case ALGORITHM_RIGHT_SYMMETRIC:
2792 if (sh->pd_idx == raid_disks-1)
2793 i--; /* Q D D D P */
2794 else {
2795 /* D D P Q D */
2796 if (i < sh->pd_idx)
2797 i += raid_disks;
2798 i -= (sh->pd_idx + 2);
2799 }
2800 break;
2801 case ALGORITHM_PARITY_0:
2802 i -= 2;
2803 break;
2804 case ALGORITHM_PARITY_N:
2805 break;
2806 case ALGORITHM_ROTATING_N_CONTINUE:
2807 /* Like left_symmetric, but P is before Q */
2808 if (sh->pd_idx == 0)
2809 i--; /* P D D D Q */
2810 else {
2811 /* D D Q P D */
2812 if (i < sh->pd_idx)
2813 i += raid_disks;
2814 i -= (sh->pd_idx + 1);
2815 }
2816 break;
2817 case ALGORITHM_LEFT_ASYMMETRIC_6:
2818 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2819 if (i > sh->pd_idx)
2820 i--;
2821 break;
2822 case ALGORITHM_LEFT_SYMMETRIC_6:
2823 case ALGORITHM_RIGHT_SYMMETRIC_6:
2824 if (i < sh->pd_idx)
2825 i += data_disks + 1;
2826 i -= (sh->pd_idx + 1);
2827 break;
2828 case ALGORITHM_PARITY_0_6:
2829 i -= 1;
2830 break;
2831 default:
2832 BUG();
2833 }
2834 break;
2835 }
2836
2837 chunk_number = stripe * data_disks + i;
2838 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2839
2840 check = raid5_compute_sector(conf, r_sector,
2841 previous, &dummy1, &sh2);
2842 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2843 || sh2.qd_idx != sh->qd_idx) {
2844 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2845 mdname(conf->mddev));
2846 return 0;
2847 }
2848 return r_sector;
2849 }
2850
2851 static void
2852 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2853 int rcw, int expand)
2854 {
2855 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2856 struct r5conf *conf = sh->raid_conf;
2857 int level = conf->level;
2858
2859 if (rcw) {
2860
2861 for (i = disks; i--; ) {
2862 struct r5dev *dev = &sh->dev[i];
2863
2864 if (dev->towrite) {
2865 set_bit(R5_LOCKED, &dev->flags);
2866 set_bit(R5_Wantdrain, &dev->flags);
2867 if (!expand)
2868 clear_bit(R5_UPTODATE, &dev->flags);
2869 s->locked++;
2870 }
2871 }
2872 /* if we are not expanding this is a proper write request, and
2873 * there will be bios with new data to be drained into the
2874 * stripe cache
2875 */
2876 if (!expand) {
2877 if (!s->locked)
2878 /* False alarm, nothing to do */
2879 return;
2880 sh->reconstruct_state = reconstruct_state_drain_run;
2881 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2882 } else
2883 sh->reconstruct_state = reconstruct_state_run;
2884
2885 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2886
2887 if (s->locked + conf->max_degraded == disks)
2888 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2889 atomic_inc(&conf->pending_full_writes);
2890 } else {
2891 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2892 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2893 BUG_ON(level == 6 &&
2894 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2895 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2896
2897 for (i = disks; i--; ) {
2898 struct r5dev *dev = &sh->dev[i];
2899 if (i == pd_idx || i == qd_idx)
2900 continue;
2901
2902 if (dev->towrite &&
2903 (test_bit(R5_UPTODATE, &dev->flags) ||
2904 test_bit(R5_Wantcompute, &dev->flags))) {
2905 set_bit(R5_Wantdrain, &dev->flags);
2906 set_bit(R5_LOCKED, &dev->flags);
2907 clear_bit(R5_UPTODATE, &dev->flags);
2908 s->locked++;
2909 }
2910 }
2911 if (!s->locked)
2912 /* False alarm - nothing to do */
2913 return;
2914 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2915 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2916 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2917 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2918 }
2919
2920 /* keep the parity disk(s) locked while asynchronous operations
2921 * are in flight
2922 */
2923 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2924 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2925 s->locked++;
2926
2927 if (level == 6) {
2928 int qd_idx = sh->qd_idx;
2929 struct r5dev *dev = &sh->dev[qd_idx];
2930
2931 set_bit(R5_LOCKED, &dev->flags);
2932 clear_bit(R5_UPTODATE, &dev->flags);
2933 s->locked++;
2934 }
2935
2936 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2937 __func__, (unsigned long long)sh->sector,
2938 s->locked, s->ops_request);
2939 }
2940
2941 /*
2942 * Each stripe/dev can have one or more bion attached.
2943 * toread/towrite point to the first in a chain.
2944 * The bi_next chain must be in order.
2945 */
2946 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2947 int forwrite, int previous)
2948 {
2949 struct bio **bip;
2950 struct r5conf *conf = sh->raid_conf;
2951 int firstwrite=0;
2952
2953 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2954 (unsigned long long)bi->bi_iter.bi_sector,
2955 (unsigned long long)sh->sector);
2956
2957 /*
2958 * If several bio share a stripe. The bio bi_phys_segments acts as a
2959 * reference count to avoid race. The reference count should already be
2960 * increased before this function is called (for example, in
2961 * raid5_make_request()), so other bio sharing this stripe will not free the
2962 * stripe. If a stripe is owned by one stripe, the stripe lock will
2963 * protect it.
2964 */
2965 spin_lock_irq(&sh->stripe_lock);
2966 /* Don't allow new IO added to stripes in batch list */
2967 if (sh->batch_head)
2968 goto overlap;
2969 if (forwrite) {
2970 bip = &sh->dev[dd_idx].towrite;
2971 if (*bip == NULL)
2972 firstwrite = 1;
2973 } else
2974 bip = &sh->dev[dd_idx].toread;
2975 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2976 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2977 goto overlap;
2978 bip = & (*bip)->bi_next;
2979 }
2980 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2981 goto overlap;
2982
2983 if (!forwrite || previous)
2984 clear_bit(STRIPE_BATCH_READY, &sh->state);
2985
2986 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2987 if (*bip)
2988 bi->bi_next = *bip;
2989 *bip = bi;
2990 raid5_inc_bi_active_stripes(bi);
2991
2992 if (forwrite) {
2993 /* check if page is covered */
2994 sector_t sector = sh->dev[dd_idx].sector;
2995 for (bi=sh->dev[dd_idx].towrite;
2996 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2997 bi && bi->bi_iter.bi_sector <= sector;
2998 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2999 if (bio_end_sector(bi) >= sector)
3000 sector = bio_end_sector(bi);
3001 }
3002 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3003 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3004 sh->overwrite_disks++;
3005 }
3006
3007 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3008 (unsigned long long)(*bip)->bi_iter.bi_sector,
3009 (unsigned long long)sh->sector, dd_idx);
3010
3011 if (conf->mddev->bitmap && firstwrite) {
3012 /* Cannot hold spinlock over bitmap_startwrite,
3013 * but must ensure this isn't added to a batch until
3014 * we have added to the bitmap and set bm_seq.
3015 * So set STRIPE_BITMAP_PENDING to prevent
3016 * batching.
3017 * If multiple add_stripe_bio() calls race here they
3018 * much all set STRIPE_BITMAP_PENDING. So only the first one
3019 * to complete "bitmap_startwrite" gets to set
3020 * STRIPE_BIT_DELAY. This is important as once a stripe
3021 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3022 * any more.
3023 */
3024 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3025 spin_unlock_irq(&sh->stripe_lock);
3026 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3027 STRIPE_SECTORS, 0);
3028 spin_lock_irq(&sh->stripe_lock);
3029 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3030 if (!sh->batch_head) {
3031 sh->bm_seq = conf->seq_flush+1;
3032 set_bit(STRIPE_BIT_DELAY, &sh->state);
3033 }
3034 }
3035 spin_unlock_irq(&sh->stripe_lock);
3036
3037 if (stripe_can_batch(sh))
3038 stripe_add_to_batch_list(conf, sh);
3039 return 1;
3040
3041 overlap:
3042 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3043 spin_unlock_irq(&sh->stripe_lock);
3044 return 0;
3045 }
3046
3047 static void end_reshape(struct r5conf *conf);
3048
3049 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3050 struct stripe_head *sh)
3051 {
3052 int sectors_per_chunk =
3053 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3054 int dd_idx;
3055 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3056 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3057
3058 raid5_compute_sector(conf,
3059 stripe * (disks - conf->max_degraded)
3060 *sectors_per_chunk + chunk_offset,
3061 previous,
3062 &dd_idx, sh);
3063 }
3064
3065 static void
3066 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3067 struct stripe_head_state *s, int disks,
3068 struct bio_list *return_bi)
3069 {
3070 int i;
3071 BUG_ON(sh->batch_head);
3072 for (i = disks; i--; ) {
3073 struct bio *bi;
3074 int bitmap_end = 0;
3075
3076 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3077 struct md_rdev *rdev;
3078 rcu_read_lock();
3079 rdev = rcu_dereference(conf->disks[i].rdev);
3080 if (rdev && test_bit(In_sync, &rdev->flags))
3081 atomic_inc(&rdev->nr_pending);
3082 else
3083 rdev = NULL;
3084 rcu_read_unlock();
3085 if (rdev) {
3086 if (!rdev_set_badblocks(
3087 rdev,
3088 sh->sector,
3089 STRIPE_SECTORS, 0))
3090 md_error(conf->mddev, rdev);
3091 rdev_dec_pending(rdev, conf->mddev);
3092 }
3093 }
3094 spin_lock_irq(&sh->stripe_lock);
3095 /* fail all writes first */
3096 bi = sh->dev[i].towrite;
3097 sh->dev[i].towrite = NULL;
3098 sh->overwrite_disks = 0;
3099 spin_unlock_irq(&sh->stripe_lock);
3100 if (bi)
3101 bitmap_end = 1;
3102
3103 r5l_stripe_write_finished(sh);
3104
3105 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3106 wake_up(&conf->wait_for_overlap);
3107
3108 while (bi && bi->bi_iter.bi_sector <
3109 sh->dev[i].sector + STRIPE_SECTORS) {
3110 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3111
3112 bi->bi_error = -EIO;
3113 if (!raid5_dec_bi_active_stripes(bi)) {
3114 md_write_end(conf->mddev);
3115 bio_list_add(return_bi, bi);
3116 }
3117 bi = nextbi;
3118 }
3119 if (bitmap_end)
3120 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3121 STRIPE_SECTORS, 0, 0);
3122 bitmap_end = 0;
3123 /* and fail all 'written' */
3124 bi = sh->dev[i].written;
3125 sh->dev[i].written = NULL;
3126 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3127 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3128 sh->dev[i].page = sh->dev[i].orig_page;
3129 }
3130
3131 if (bi) bitmap_end = 1;
3132 while (bi && bi->bi_iter.bi_sector <
3133 sh->dev[i].sector + STRIPE_SECTORS) {
3134 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3135
3136 bi->bi_error = -EIO;
3137 if (!raid5_dec_bi_active_stripes(bi)) {
3138 md_write_end(conf->mddev);
3139 bio_list_add(return_bi, bi);
3140 }
3141 bi = bi2;
3142 }
3143
3144 /* fail any reads if this device is non-operational and
3145 * the data has not reached the cache yet.
3146 */
3147 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3148 s->failed > conf->max_degraded &&
3149 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3150 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3151 spin_lock_irq(&sh->stripe_lock);
3152 bi = sh->dev[i].toread;
3153 sh->dev[i].toread = NULL;
3154 spin_unlock_irq(&sh->stripe_lock);
3155 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3156 wake_up(&conf->wait_for_overlap);
3157 if (bi)
3158 s->to_read--;
3159 while (bi && bi->bi_iter.bi_sector <
3160 sh->dev[i].sector + STRIPE_SECTORS) {
3161 struct bio *nextbi =
3162 r5_next_bio(bi, sh->dev[i].sector);
3163
3164 bi->bi_error = -EIO;
3165 if (!raid5_dec_bi_active_stripes(bi))
3166 bio_list_add(return_bi, bi);
3167 bi = nextbi;
3168 }
3169 }
3170 if (bitmap_end)
3171 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3172 STRIPE_SECTORS, 0, 0);
3173 /* If we were in the middle of a write the parity block might
3174 * still be locked - so just clear all R5_LOCKED flags
3175 */
3176 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3177 }
3178 s->to_write = 0;
3179 s->written = 0;
3180
3181 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3182 if (atomic_dec_and_test(&conf->pending_full_writes))
3183 md_wakeup_thread(conf->mddev->thread);
3184 }
3185
3186 static void
3187 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3188 struct stripe_head_state *s)
3189 {
3190 int abort = 0;
3191 int i;
3192
3193 BUG_ON(sh->batch_head);
3194 clear_bit(STRIPE_SYNCING, &sh->state);
3195 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3196 wake_up(&conf->wait_for_overlap);
3197 s->syncing = 0;
3198 s->replacing = 0;
3199 /* There is nothing more to do for sync/check/repair.
3200 * Don't even need to abort as that is handled elsewhere
3201 * if needed, and not always wanted e.g. if there is a known
3202 * bad block here.
3203 * For recover/replace we need to record a bad block on all
3204 * non-sync devices, or abort the recovery
3205 */
3206 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3207 /* During recovery devices cannot be removed, so
3208 * locking and refcounting of rdevs is not needed
3209 */
3210 for (i = 0; i < conf->raid_disks; i++) {
3211 struct md_rdev *rdev = conf->disks[i].rdev;
3212 if (rdev
3213 && !test_bit(Faulty, &rdev->flags)
3214 && !test_bit(In_sync, &rdev->flags)
3215 && !rdev_set_badblocks(rdev, sh->sector,
3216 STRIPE_SECTORS, 0))
3217 abort = 1;
3218 rdev = conf->disks[i].replacement;
3219 if (rdev
3220 && !test_bit(Faulty, &rdev->flags)
3221 && !test_bit(In_sync, &rdev->flags)
3222 && !rdev_set_badblocks(rdev, sh->sector,
3223 STRIPE_SECTORS, 0))
3224 abort = 1;
3225 }
3226 if (abort)
3227 conf->recovery_disabled =
3228 conf->mddev->recovery_disabled;
3229 }
3230 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3231 }
3232
3233 static int want_replace(struct stripe_head *sh, int disk_idx)
3234 {
3235 struct md_rdev *rdev;
3236 int rv = 0;
3237 /* Doing recovery so rcu locking not required */
3238 rdev = sh->raid_conf->disks[disk_idx].replacement;
3239 if (rdev
3240 && !test_bit(Faulty, &rdev->flags)
3241 && !test_bit(In_sync, &rdev->flags)
3242 && (rdev->recovery_offset <= sh->sector
3243 || rdev->mddev->recovery_cp <= sh->sector))
3244 rv = 1;
3245
3246 return rv;
3247 }
3248
3249 /* fetch_block - checks the given member device to see if its data needs
3250 * to be read or computed to satisfy a request.
3251 *
3252 * Returns 1 when no more member devices need to be checked, otherwise returns
3253 * 0 to tell the loop in handle_stripe_fill to continue
3254 */
3255
3256 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3257 int disk_idx, int disks)
3258 {
3259 struct r5dev *dev = &sh->dev[disk_idx];
3260 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3261 &sh->dev[s->failed_num[1]] };
3262 int i;
3263
3264
3265 if (test_bit(R5_LOCKED, &dev->flags) ||
3266 test_bit(R5_UPTODATE, &dev->flags))
3267 /* No point reading this as we already have it or have
3268 * decided to get it.
3269 */
3270 return 0;
3271
3272 if (dev->toread ||
3273 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3274 /* We need this block to directly satisfy a request */
3275 return 1;
3276
3277 if (s->syncing || s->expanding ||
3278 (s->replacing && want_replace(sh, disk_idx)))
3279 /* When syncing, or expanding we read everything.
3280 * When replacing, we need the replaced block.
3281 */
3282 return 1;
3283
3284 if ((s->failed >= 1 && fdev[0]->toread) ||
3285 (s->failed >= 2 && fdev[1]->toread))
3286 /* If we want to read from a failed device, then
3287 * we need to actually read every other device.
3288 */
3289 return 1;
3290
3291 /* Sometimes neither read-modify-write nor reconstruct-write
3292 * cycles can work. In those cases we read every block we
3293 * can. Then the parity-update is certain to have enough to
3294 * work with.
3295 * This can only be a problem when we need to write something,
3296 * and some device has failed. If either of those tests
3297 * fail we need look no further.
3298 */
3299 if (!s->failed || !s->to_write)
3300 return 0;
3301
3302 if (test_bit(R5_Insync, &dev->flags) &&
3303 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3304 /* Pre-reads at not permitted until after short delay
3305 * to gather multiple requests. However if this
3306 * device is no Insync, the block could only be be computed
3307 * and there is no need to delay that.
3308 */
3309 return 0;
3310
3311 for (i = 0; i < s->failed && i < 2; i++) {
3312 if (fdev[i]->towrite &&
3313 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3314 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3315 /* If we have a partial write to a failed
3316 * device, then we will need to reconstruct
3317 * the content of that device, so all other
3318 * devices must be read.
3319 */
3320 return 1;
3321 }
3322
3323 /* If we are forced to do a reconstruct-write, either because
3324 * the current RAID6 implementation only supports that, or
3325 * or because parity cannot be trusted and we are currently
3326 * recovering it, there is extra need to be careful.
3327 * If one of the devices that we would need to read, because
3328 * it is not being overwritten (and maybe not written at all)
3329 * is missing/faulty, then we need to read everything we can.
3330 */
3331 if (sh->raid_conf->level != 6 &&
3332 sh->sector < sh->raid_conf->mddev->recovery_cp)
3333 /* reconstruct-write isn't being forced */
3334 return 0;
3335 for (i = 0; i < s->failed && i < 2; i++) {
3336 if (s->failed_num[i] != sh->pd_idx &&
3337 s->failed_num[i] != sh->qd_idx &&
3338 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3339 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3340 return 1;
3341 }
3342
3343 return 0;
3344 }
3345
3346 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3347 int disk_idx, int disks)
3348 {
3349 struct r5dev *dev = &sh->dev[disk_idx];
3350
3351 /* is the data in this block needed, and can we get it? */
3352 if (need_this_block(sh, s, disk_idx, disks)) {
3353 /* we would like to get this block, possibly by computing it,
3354 * otherwise read it if the backing disk is insync
3355 */
3356 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3357 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3358 BUG_ON(sh->batch_head);
3359 if ((s->uptodate == disks - 1) &&
3360 (s->failed && (disk_idx == s->failed_num[0] ||
3361 disk_idx == s->failed_num[1]))) {
3362 /* have disk failed, and we're requested to fetch it;
3363 * do compute it
3364 */
3365 pr_debug("Computing stripe %llu block %d\n",
3366 (unsigned long long)sh->sector, disk_idx);
3367 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3368 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3369 set_bit(R5_Wantcompute, &dev->flags);
3370 sh->ops.target = disk_idx;
3371 sh->ops.target2 = -1; /* no 2nd target */
3372 s->req_compute = 1;
3373 /* Careful: from this point on 'uptodate' is in the eye
3374 * of raid_run_ops which services 'compute' operations
3375 * before writes. R5_Wantcompute flags a block that will
3376 * be R5_UPTODATE by the time it is needed for a
3377 * subsequent operation.
3378 */
3379 s->uptodate++;
3380 return 1;
3381 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3382 /* Computing 2-failure is *very* expensive; only
3383 * do it if failed >= 2
3384 */
3385 int other;
3386 for (other = disks; other--; ) {
3387 if (other == disk_idx)
3388 continue;
3389 if (!test_bit(R5_UPTODATE,
3390 &sh->dev[other].flags))
3391 break;
3392 }
3393 BUG_ON(other < 0);
3394 pr_debug("Computing stripe %llu blocks %d,%d\n",
3395 (unsigned long long)sh->sector,
3396 disk_idx, other);
3397 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3398 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3399 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3400 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3401 sh->ops.target = disk_idx;
3402 sh->ops.target2 = other;
3403 s->uptodate += 2;
3404 s->req_compute = 1;
3405 return 1;
3406 } else if (test_bit(R5_Insync, &dev->flags)) {
3407 set_bit(R5_LOCKED, &dev->flags);
3408 set_bit(R5_Wantread, &dev->flags);
3409 s->locked++;
3410 pr_debug("Reading block %d (sync=%d)\n",
3411 disk_idx, s->syncing);
3412 }
3413 }
3414
3415 return 0;
3416 }
3417
3418 /**
3419 * handle_stripe_fill - read or compute data to satisfy pending requests.
3420 */
3421 static void handle_stripe_fill(struct stripe_head *sh,
3422 struct stripe_head_state *s,
3423 int disks)
3424 {
3425 int i;
3426
3427 /* look for blocks to read/compute, skip this if a compute
3428 * is already in flight, or if the stripe contents are in the
3429 * midst of changing due to a write
3430 */
3431 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3432 !sh->reconstruct_state)
3433 for (i = disks; i--; )
3434 if (fetch_block(sh, s, i, disks))
3435 break;
3436 set_bit(STRIPE_HANDLE, &sh->state);
3437 }
3438
3439 static void break_stripe_batch_list(struct stripe_head *head_sh,
3440 unsigned long handle_flags);
3441 /* handle_stripe_clean_event
3442 * any written block on an uptodate or failed drive can be returned.
3443 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3444 * never LOCKED, so we don't need to test 'failed' directly.
3445 */
3446 static void handle_stripe_clean_event(struct r5conf *conf,
3447 struct stripe_head *sh, int disks, struct bio_list *return_bi)
3448 {
3449 int i;
3450 struct r5dev *dev;
3451 int discard_pending = 0;
3452 struct stripe_head *head_sh = sh;
3453 bool do_endio = false;
3454
3455 for (i = disks; i--; )
3456 if (sh->dev[i].written) {
3457 dev = &sh->dev[i];
3458 if (!test_bit(R5_LOCKED, &dev->flags) &&
3459 (test_bit(R5_UPTODATE, &dev->flags) ||
3460 test_bit(R5_Discard, &dev->flags) ||
3461 test_bit(R5_SkipCopy, &dev->flags))) {
3462 /* We can return any write requests */
3463 struct bio *wbi, *wbi2;
3464 pr_debug("Return write for disc %d\n", i);
3465 if (test_and_clear_bit(R5_Discard, &dev->flags))
3466 clear_bit(R5_UPTODATE, &dev->flags);
3467 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3468 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3469 }
3470 do_endio = true;
3471
3472 returnbi:
3473 dev->page = dev->orig_page;
3474 wbi = dev->written;
3475 dev->written = NULL;
3476 while (wbi && wbi->bi_iter.bi_sector <
3477 dev->sector + STRIPE_SECTORS) {
3478 wbi2 = r5_next_bio(wbi, dev->sector);
3479 if (!raid5_dec_bi_active_stripes(wbi)) {
3480 md_write_end(conf->mddev);
3481 bio_list_add(return_bi, wbi);
3482 }
3483 wbi = wbi2;
3484 }
3485 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3486 STRIPE_SECTORS,
3487 !test_bit(STRIPE_DEGRADED, &sh->state),
3488 0);
3489 if (head_sh->batch_head) {
3490 sh = list_first_entry(&sh->batch_list,
3491 struct stripe_head,
3492 batch_list);
3493 if (sh != head_sh) {
3494 dev = &sh->dev[i];
3495 goto returnbi;
3496 }
3497 }
3498 sh = head_sh;
3499 dev = &sh->dev[i];
3500 } else if (test_bit(R5_Discard, &dev->flags))
3501 discard_pending = 1;
3502 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3503 WARN_ON(dev->page != dev->orig_page);
3504 }
3505
3506 r5l_stripe_write_finished(sh);
3507
3508 if (!discard_pending &&
3509 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3510 int hash;
3511 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3512 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3513 if (sh->qd_idx >= 0) {
3514 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3515 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3516 }
3517 /* now that discard is done we can proceed with any sync */
3518 clear_bit(STRIPE_DISCARD, &sh->state);
3519 /*
3520 * SCSI discard will change some bio fields and the stripe has
3521 * no updated data, so remove it from hash list and the stripe
3522 * will be reinitialized
3523 */
3524 unhash:
3525 hash = sh->hash_lock_index;
3526 spin_lock_irq(conf->hash_locks + hash);
3527 remove_hash(sh);
3528 spin_unlock_irq(conf->hash_locks + hash);
3529 if (head_sh->batch_head) {
3530 sh = list_first_entry(&sh->batch_list,
3531 struct stripe_head, batch_list);
3532 if (sh != head_sh)
3533 goto unhash;
3534 }
3535 sh = head_sh;
3536
3537 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3538 set_bit(STRIPE_HANDLE, &sh->state);
3539
3540 }
3541
3542 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3543 if (atomic_dec_and_test(&conf->pending_full_writes))
3544 md_wakeup_thread(conf->mddev->thread);
3545
3546 if (head_sh->batch_head && do_endio)
3547 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3548 }
3549
3550 static void handle_stripe_dirtying(struct r5conf *conf,
3551 struct stripe_head *sh,
3552 struct stripe_head_state *s,
3553 int disks)
3554 {
3555 int rmw = 0, rcw = 0, i;
3556 sector_t recovery_cp = conf->mddev->recovery_cp;
3557
3558 /* Check whether resync is now happening or should start.
3559 * If yes, then the array is dirty (after unclean shutdown or
3560 * initial creation), so parity in some stripes might be inconsistent.
3561 * In this case, we need to always do reconstruct-write, to ensure
3562 * that in case of drive failure or read-error correction, we
3563 * generate correct data from the parity.
3564 */
3565 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3566 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3567 s->failed == 0)) {
3568 /* Calculate the real rcw later - for now make it
3569 * look like rcw is cheaper
3570 */
3571 rcw = 1; rmw = 2;
3572 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3573 conf->rmw_level, (unsigned long long)recovery_cp,
3574 (unsigned long long)sh->sector);
3575 } else for (i = disks; i--; ) {
3576 /* would I have to read this buffer for read_modify_write */
3577 struct r5dev *dev = &sh->dev[i];
3578 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3579 !test_bit(R5_LOCKED, &dev->flags) &&
3580 !(test_bit(R5_UPTODATE, &dev->flags) ||
3581 test_bit(R5_Wantcompute, &dev->flags))) {
3582 if (test_bit(R5_Insync, &dev->flags))
3583 rmw++;
3584 else
3585 rmw += 2*disks; /* cannot read it */
3586 }
3587 /* Would I have to read this buffer for reconstruct_write */
3588 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3589 i != sh->pd_idx && i != sh->qd_idx &&
3590 !test_bit(R5_LOCKED, &dev->flags) &&
3591 !(test_bit(R5_UPTODATE, &dev->flags) ||
3592 test_bit(R5_Wantcompute, &dev->flags))) {
3593 if (test_bit(R5_Insync, &dev->flags))
3594 rcw++;
3595 else
3596 rcw += 2*disks;
3597 }
3598 }
3599 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3600 (unsigned long long)sh->sector, rmw, rcw);
3601 set_bit(STRIPE_HANDLE, &sh->state);
3602 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3603 /* prefer read-modify-write, but need to get some data */
3604 if (conf->mddev->queue)
3605 blk_add_trace_msg(conf->mddev->queue,
3606 "raid5 rmw %llu %d",
3607 (unsigned long long)sh->sector, rmw);
3608 for (i = disks; i--; ) {
3609 struct r5dev *dev = &sh->dev[i];
3610 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3611 !test_bit(R5_LOCKED, &dev->flags) &&
3612 !(test_bit(R5_UPTODATE, &dev->flags) ||
3613 test_bit(R5_Wantcompute, &dev->flags)) &&
3614 test_bit(R5_Insync, &dev->flags)) {
3615 if (test_bit(STRIPE_PREREAD_ACTIVE,
3616 &sh->state)) {
3617 pr_debug("Read_old block %d for r-m-w\n",
3618 i);
3619 set_bit(R5_LOCKED, &dev->flags);
3620 set_bit(R5_Wantread, &dev->flags);
3621 s->locked++;
3622 } else {
3623 set_bit(STRIPE_DELAYED, &sh->state);
3624 set_bit(STRIPE_HANDLE, &sh->state);
3625 }
3626 }
3627 }
3628 }
3629 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3630 /* want reconstruct write, but need to get some data */
3631 int qread =0;
3632 rcw = 0;
3633 for (i = disks; i--; ) {
3634 struct r5dev *dev = &sh->dev[i];
3635 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3636 i != sh->pd_idx && i != sh->qd_idx &&
3637 !test_bit(R5_LOCKED, &dev->flags) &&
3638 !(test_bit(R5_UPTODATE, &dev->flags) ||
3639 test_bit(R5_Wantcompute, &dev->flags))) {
3640 rcw++;
3641 if (test_bit(R5_Insync, &dev->flags) &&
3642 test_bit(STRIPE_PREREAD_ACTIVE,
3643 &sh->state)) {
3644 pr_debug("Read_old block "
3645 "%d for Reconstruct\n", i);
3646 set_bit(R5_LOCKED, &dev->flags);
3647 set_bit(R5_Wantread, &dev->flags);
3648 s->locked++;
3649 qread++;
3650 } else {
3651 set_bit(STRIPE_DELAYED, &sh->state);
3652 set_bit(STRIPE_HANDLE, &sh->state);
3653 }
3654 }
3655 }
3656 if (rcw && conf->mddev->queue)
3657 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3658 (unsigned long long)sh->sector,
3659 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3660 }
3661
3662 if (rcw > disks && rmw > disks &&
3663 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3664 set_bit(STRIPE_DELAYED, &sh->state);
3665
3666 /* now if nothing is locked, and if we have enough data,
3667 * we can start a write request
3668 */
3669 /* since handle_stripe can be called at any time we need to handle the
3670 * case where a compute block operation has been submitted and then a
3671 * subsequent call wants to start a write request. raid_run_ops only
3672 * handles the case where compute block and reconstruct are requested
3673 * simultaneously. If this is not the case then new writes need to be
3674 * held off until the compute completes.
3675 */
3676 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3677 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3678 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3679 schedule_reconstruction(sh, s, rcw == 0, 0);
3680 }
3681
3682 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3683 struct stripe_head_state *s, int disks)
3684 {
3685 struct r5dev *dev = NULL;
3686
3687 BUG_ON(sh->batch_head);
3688 set_bit(STRIPE_HANDLE, &sh->state);
3689
3690 switch (sh->check_state) {
3691 case check_state_idle:
3692 /* start a new check operation if there are no failures */
3693 if (s->failed == 0) {
3694 BUG_ON(s->uptodate != disks);
3695 sh->check_state = check_state_run;
3696 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3697 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3698 s->uptodate--;
3699 break;
3700 }
3701 dev = &sh->dev[s->failed_num[0]];
3702 /* fall through */
3703 case check_state_compute_result:
3704 sh->check_state = check_state_idle;
3705 if (!dev)
3706 dev = &sh->dev[sh->pd_idx];
3707
3708 /* check that a write has not made the stripe insync */
3709 if (test_bit(STRIPE_INSYNC, &sh->state))
3710 break;
3711
3712 /* either failed parity check, or recovery is happening */
3713 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3714 BUG_ON(s->uptodate != disks);
3715
3716 set_bit(R5_LOCKED, &dev->flags);
3717 s->locked++;
3718 set_bit(R5_Wantwrite, &dev->flags);
3719
3720 clear_bit(STRIPE_DEGRADED, &sh->state);
3721 set_bit(STRIPE_INSYNC, &sh->state);
3722 break;
3723 case check_state_run:
3724 break; /* we will be called again upon completion */
3725 case check_state_check_result:
3726 sh->check_state = check_state_idle;
3727
3728 /* if a failure occurred during the check operation, leave
3729 * STRIPE_INSYNC not set and let the stripe be handled again
3730 */
3731 if (s->failed)
3732 break;
3733
3734 /* handle a successful check operation, if parity is correct
3735 * we are done. Otherwise update the mismatch count and repair
3736 * parity if !MD_RECOVERY_CHECK
3737 */
3738 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3739 /* parity is correct (on disc,
3740 * not in buffer any more)
3741 */
3742 set_bit(STRIPE_INSYNC, &sh->state);
3743 else {
3744 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3745 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3746 /* don't try to repair!! */
3747 set_bit(STRIPE_INSYNC, &sh->state);
3748 else {
3749 sh->check_state = check_state_compute_run;
3750 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3751 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3752 set_bit(R5_Wantcompute,
3753 &sh->dev[sh->pd_idx].flags);
3754 sh->ops.target = sh->pd_idx;
3755 sh->ops.target2 = -1;
3756 s->uptodate++;
3757 }
3758 }
3759 break;
3760 case check_state_compute_run:
3761 break;
3762 default:
3763 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3764 __func__, sh->check_state,
3765 (unsigned long long) sh->sector);
3766 BUG();
3767 }
3768 }
3769
3770 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3771 struct stripe_head_state *s,
3772 int disks)
3773 {
3774 int pd_idx = sh->pd_idx;
3775 int qd_idx = sh->qd_idx;
3776 struct r5dev *dev;
3777
3778 BUG_ON(sh->batch_head);
3779 set_bit(STRIPE_HANDLE, &sh->state);
3780
3781 BUG_ON(s->failed > 2);
3782
3783 /* Want to check and possibly repair P and Q.
3784 * However there could be one 'failed' device, in which
3785 * case we can only check one of them, possibly using the
3786 * other to generate missing data
3787 */
3788
3789 switch (sh->check_state) {
3790 case check_state_idle:
3791 /* start a new check operation if there are < 2 failures */
3792 if (s->failed == s->q_failed) {
3793 /* The only possible failed device holds Q, so it
3794 * makes sense to check P (If anything else were failed,
3795 * we would have used P to recreate it).
3796 */
3797 sh->check_state = check_state_run;
3798 }
3799 if (!s->q_failed && s->failed < 2) {
3800 /* Q is not failed, and we didn't use it to generate
3801 * anything, so it makes sense to check it
3802 */
3803 if (sh->check_state == check_state_run)
3804 sh->check_state = check_state_run_pq;
3805 else
3806 sh->check_state = check_state_run_q;
3807 }
3808
3809 /* discard potentially stale zero_sum_result */
3810 sh->ops.zero_sum_result = 0;
3811
3812 if (sh->check_state == check_state_run) {
3813 /* async_xor_zero_sum destroys the contents of P */
3814 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3815 s->uptodate--;
3816 }
3817 if (sh->check_state >= check_state_run &&
3818 sh->check_state <= check_state_run_pq) {
3819 /* async_syndrome_zero_sum preserves P and Q, so
3820 * no need to mark them !uptodate here
3821 */
3822 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3823 break;
3824 }
3825
3826 /* we have 2-disk failure */
3827 BUG_ON(s->failed != 2);
3828 /* fall through */
3829 case check_state_compute_result:
3830 sh->check_state = check_state_idle;
3831
3832 /* check that a write has not made the stripe insync */
3833 if (test_bit(STRIPE_INSYNC, &sh->state))
3834 break;
3835
3836 /* now write out any block on a failed drive,
3837 * or P or Q if they were recomputed
3838 */
3839 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3840 if (s->failed == 2) {
3841 dev = &sh->dev[s->failed_num[1]];
3842 s->locked++;
3843 set_bit(R5_LOCKED, &dev->flags);
3844 set_bit(R5_Wantwrite, &dev->flags);
3845 }
3846 if (s->failed >= 1) {
3847 dev = &sh->dev[s->failed_num[0]];
3848 s->locked++;
3849 set_bit(R5_LOCKED, &dev->flags);
3850 set_bit(R5_Wantwrite, &dev->flags);
3851 }
3852 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3853 dev = &sh->dev[pd_idx];
3854 s->locked++;
3855 set_bit(R5_LOCKED, &dev->flags);
3856 set_bit(R5_Wantwrite, &dev->flags);
3857 }
3858 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3859 dev = &sh->dev[qd_idx];
3860 s->locked++;
3861 set_bit(R5_LOCKED, &dev->flags);
3862 set_bit(R5_Wantwrite, &dev->flags);
3863 }
3864 clear_bit(STRIPE_DEGRADED, &sh->state);
3865
3866 set_bit(STRIPE_INSYNC, &sh->state);
3867 break;
3868 case check_state_run:
3869 case check_state_run_q:
3870 case check_state_run_pq:
3871 break; /* we will be called again upon completion */
3872 case check_state_check_result:
3873 sh->check_state = check_state_idle;
3874
3875 /* handle a successful check operation, if parity is correct
3876 * we are done. Otherwise update the mismatch count and repair
3877 * parity if !MD_RECOVERY_CHECK
3878 */
3879 if (sh->ops.zero_sum_result == 0) {
3880 /* both parities are correct */
3881 if (!s->failed)
3882 set_bit(STRIPE_INSYNC, &sh->state);
3883 else {
3884 /* in contrast to the raid5 case we can validate
3885 * parity, but still have a failure to write
3886 * back
3887 */
3888 sh->check_state = check_state_compute_result;
3889 /* Returning at this point means that we may go
3890 * off and bring p and/or q uptodate again so
3891 * we make sure to check zero_sum_result again
3892 * to verify if p or q need writeback
3893 */
3894 }
3895 } else {
3896 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3897 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3898 /* don't try to repair!! */
3899 set_bit(STRIPE_INSYNC, &sh->state);
3900 else {
3901 int *target = &sh->ops.target;
3902
3903 sh->ops.target = -1;
3904 sh->ops.target2 = -1;
3905 sh->check_state = check_state_compute_run;
3906 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3907 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3908 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3909 set_bit(R5_Wantcompute,
3910 &sh->dev[pd_idx].flags);
3911 *target = pd_idx;
3912 target = &sh->ops.target2;
3913 s->uptodate++;
3914 }
3915 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3916 set_bit(R5_Wantcompute,
3917 &sh->dev[qd_idx].flags);
3918 *target = qd_idx;
3919 s->uptodate++;
3920 }
3921 }
3922 }
3923 break;
3924 case check_state_compute_run:
3925 break;
3926 default:
3927 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3928 __func__, sh->check_state,
3929 (unsigned long long) sh->sector);
3930 BUG();
3931 }
3932 }
3933
3934 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3935 {
3936 int i;
3937
3938 /* We have read all the blocks in this stripe and now we need to
3939 * copy some of them into a target stripe for expand.
3940 */
3941 struct dma_async_tx_descriptor *tx = NULL;
3942 BUG_ON(sh->batch_head);
3943 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3944 for (i = 0; i < sh->disks; i++)
3945 if (i != sh->pd_idx && i != sh->qd_idx) {
3946 int dd_idx, j;
3947 struct stripe_head *sh2;
3948 struct async_submit_ctl submit;
3949
3950 sector_t bn = raid5_compute_blocknr(sh, i, 1);
3951 sector_t s = raid5_compute_sector(conf, bn, 0,
3952 &dd_idx, NULL);
3953 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3954 if (sh2 == NULL)
3955 /* so far only the early blocks of this stripe
3956 * have been requested. When later blocks
3957 * get requested, we will try again
3958 */
3959 continue;
3960 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3961 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3962 /* must have already done this block */
3963 raid5_release_stripe(sh2);
3964 continue;
3965 }
3966
3967 /* place all the copies on one channel */
3968 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3969 tx = async_memcpy(sh2->dev[dd_idx].page,
3970 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3971 &submit);
3972
3973 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3974 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3975 for (j = 0; j < conf->raid_disks; j++)
3976 if (j != sh2->pd_idx &&
3977 j != sh2->qd_idx &&
3978 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3979 break;
3980 if (j == conf->raid_disks) {
3981 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3982 set_bit(STRIPE_HANDLE, &sh2->state);
3983 }
3984 raid5_release_stripe(sh2);
3985
3986 }
3987 /* done submitting copies, wait for them to complete */
3988 async_tx_quiesce(&tx);
3989 }
3990
3991 /*
3992 * handle_stripe - do things to a stripe.
3993 *
3994 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3995 * state of various bits to see what needs to be done.
3996 * Possible results:
3997 * return some read requests which now have data
3998 * return some write requests which are safely on storage
3999 * schedule a read on some buffers
4000 * schedule a write of some buffers
4001 * return confirmation of parity correctness
4002 *
4003 */
4004
4005 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4006 {
4007 struct r5conf *conf = sh->raid_conf;
4008 int disks = sh->disks;
4009 struct r5dev *dev;
4010 int i;
4011 int do_recovery = 0;
4012
4013 memset(s, 0, sizeof(*s));
4014
4015 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4016 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4017 s->failed_num[0] = -1;
4018 s->failed_num[1] = -1;
4019 s->log_failed = r5l_log_disk_error(conf);
4020
4021 /* Now to look around and see what can be done */
4022 rcu_read_lock();
4023 for (i=disks; i--; ) {
4024 struct md_rdev *rdev;
4025 sector_t first_bad;
4026 int bad_sectors;
4027 int is_bad = 0;
4028
4029 dev = &sh->dev[i];
4030
4031 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4032 i, dev->flags,
4033 dev->toread, dev->towrite, dev->written);
4034 /* maybe we can reply to a read
4035 *
4036 * new wantfill requests are only permitted while
4037 * ops_complete_biofill is guaranteed to be inactive
4038 */
4039 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4040 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4041 set_bit(R5_Wantfill, &dev->flags);
4042
4043 /* now count some things */
4044 if (test_bit(R5_LOCKED, &dev->flags))
4045 s->locked++;
4046 if (test_bit(R5_UPTODATE, &dev->flags))
4047 s->uptodate++;
4048 if (test_bit(R5_Wantcompute, &dev->flags)) {
4049 s->compute++;
4050 BUG_ON(s->compute > 2);
4051 }
4052
4053 if (test_bit(R5_Wantfill, &dev->flags))
4054 s->to_fill++;
4055 else if (dev->toread)
4056 s->to_read++;
4057 if (dev->towrite) {
4058 s->to_write++;
4059 if (!test_bit(R5_OVERWRITE, &dev->flags))
4060 s->non_overwrite++;
4061 }
4062 if (dev->written)
4063 s->written++;
4064 /* Prefer to use the replacement for reads, but only
4065 * if it is recovered enough and has no bad blocks.
4066 */
4067 rdev = rcu_dereference(conf->disks[i].replacement);
4068 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4069 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4070 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4071 &first_bad, &bad_sectors))
4072 set_bit(R5_ReadRepl, &dev->flags);
4073 else {
4074 if (rdev && !test_bit(Faulty, &rdev->flags))
4075 set_bit(R5_NeedReplace, &dev->flags);
4076 else
4077 clear_bit(R5_NeedReplace, &dev->flags);
4078 rdev = rcu_dereference(conf->disks[i].rdev);
4079 clear_bit(R5_ReadRepl, &dev->flags);
4080 }
4081 if (rdev && test_bit(Faulty, &rdev->flags))
4082 rdev = NULL;
4083 if (rdev) {
4084 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4085 &first_bad, &bad_sectors);
4086 if (s->blocked_rdev == NULL
4087 && (test_bit(Blocked, &rdev->flags)
4088 || is_bad < 0)) {
4089 if (is_bad < 0)
4090 set_bit(BlockedBadBlocks,
4091 &rdev->flags);
4092 s->blocked_rdev = rdev;
4093 atomic_inc(&rdev->nr_pending);
4094 }
4095 }
4096 clear_bit(R5_Insync, &dev->flags);
4097 if (!rdev)
4098 /* Not in-sync */;
4099 else if (is_bad) {
4100 /* also not in-sync */
4101 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4102 test_bit(R5_UPTODATE, &dev->flags)) {
4103 /* treat as in-sync, but with a read error
4104 * which we can now try to correct
4105 */
4106 set_bit(R5_Insync, &dev->flags);
4107 set_bit(R5_ReadError, &dev->flags);
4108 }
4109 } else if (test_bit(In_sync, &rdev->flags))
4110 set_bit(R5_Insync, &dev->flags);
4111 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4112 /* in sync if before recovery_offset */
4113 set_bit(R5_Insync, &dev->flags);
4114 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4115 test_bit(R5_Expanded, &dev->flags))
4116 /* If we've reshaped into here, we assume it is Insync.
4117 * We will shortly update recovery_offset to make
4118 * it official.
4119 */
4120 set_bit(R5_Insync, &dev->flags);
4121
4122 if (test_bit(R5_WriteError, &dev->flags)) {
4123 /* This flag does not apply to '.replacement'
4124 * only to .rdev, so make sure to check that*/
4125 struct md_rdev *rdev2 = rcu_dereference(
4126 conf->disks[i].rdev);
4127 if (rdev2 == rdev)
4128 clear_bit(R5_Insync, &dev->flags);
4129 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4130 s->handle_bad_blocks = 1;
4131 atomic_inc(&rdev2->nr_pending);
4132 } else
4133 clear_bit(R5_WriteError, &dev->flags);
4134 }
4135 if (test_bit(R5_MadeGood, &dev->flags)) {
4136 /* This flag does not apply to '.replacement'
4137 * only to .rdev, so make sure to check that*/
4138 struct md_rdev *rdev2 = rcu_dereference(
4139 conf->disks[i].rdev);
4140 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4141 s->handle_bad_blocks = 1;
4142 atomic_inc(&rdev2->nr_pending);
4143 } else
4144 clear_bit(R5_MadeGood, &dev->flags);
4145 }
4146 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4147 struct md_rdev *rdev2 = rcu_dereference(
4148 conf->disks[i].replacement);
4149 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4150 s->handle_bad_blocks = 1;
4151 atomic_inc(&rdev2->nr_pending);
4152 } else
4153 clear_bit(R5_MadeGoodRepl, &dev->flags);
4154 }
4155 if (!test_bit(R5_Insync, &dev->flags)) {
4156 /* The ReadError flag will just be confusing now */
4157 clear_bit(R5_ReadError, &dev->flags);
4158 clear_bit(R5_ReWrite, &dev->flags);
4159 }
4160 if (test_bit(R5_ReadError, &dev->flags))
4161 clear_bit(R5_Insync, &dev->flags);
4162 if (!test_bit(R5_Insync, &dev->flags)) {
4163 if (s->failed < 2)
4164 s->failed_num[s->failed] = i;
4165 s->failed++;
4166 if (rdev && !test_bit(Faulty, &rdev->flags))
4167 do_recovery = 1;
4168 }
4169 }
4170 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4171 /* If there is a failed device being replaced,
4172 * we must be recovering.
4173 * else if we are after recovery_cp, we must be syncing
4174 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4175 * else we can only be replacing
4176 * sync and recovery both need to read all devices, and so
4177 * use the same flag.
4178 */
4179 if (do_recovery ||
4180 sh->sector >= conf->mddev->recovery_cp ||
4181 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4182 s->syncing = 1;
4183 else
4184 s->replacing = 1;
4185 }
4186 rcu_read_unlock();
4187 }
4188
4189 static int clear_batch_ready(struct stripe_head *sh)
4190 {
4191 /* Return '1' if this is a member of batch, or
4192 * '0' if it is a lone stripe or a head which can now be
4193 * handled.
4194 */
4195 struct stripe_head *tmp;
4196 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4197 return (sh->batch_head && sh->batch_head != sh);
4198 spin_lock(&sh->stripe_lock);
4199 if (!sh->batch_head) {
4200 spin_unlock(&sh->stripe_lock);
4201 return 0;
4202 }
4203
4204 /*
4205 * this stripe could be added to a batch list before we check
4206 * BATCH_READY, skips it
4207 */
4208 if (sh->batch_head != sh) {
4209 spin_unlock(&sh->stripe_lock);
4210 return 1;
4211 }
4212 spin_lock(&sh->batch_lock);
4213 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4214 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4215 spin_unlock(&sh->batch_lock);
4216 spin_unlock(&sh->stripe_lock);
4217
4218 /*
4219 * BATCH_READY is cleared, no new stripes can be added.
4220 * batch_list can be accessed without lock
4221 */
4222 return 0;
4223 }
4224
4225 static void break_stripe_batch_list(struct stripe_head *head_sh,
4226 unsigned long handle_flags)
4227 {
4228 struct stripe_head *sh, *next;
4229 int i;
4230 int do_wakeup = 0;
4231
4232 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4233
4234 list_del_init(&sh->batch_list);
4235
4236 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4237 (1 << STRIPE_SYNCING) |
4238 (1 << STRIPE_REPLACED) |
4239 (1 << STRIPE_PREREAD_ACTIVE) |
4240 (1 << STRIPE_DELAYED) |
4241 (1 << STRIPE_BIT_DELAY) |
4242 (1 << STRIPE_FULL_WRITE) |
4243 (1 << STRIPE_BIOFILL_RUN) |
4244 (1 << STRIPE_COMPUTE_RUN) |
4245 (1 << STRIPE_OPS_REQ_PENDING) |
4246 (1 << STRIPE_DISCARD) |
4247 (1 << STRIPE_BATCH_READY) |
4248 (1 << STRIPE_BATCH_ERR) |
4249 (1 << STRIPE_BITMAP_PENDING)));
4250 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4251 (1 << STRIPE_REPLACED)));
4252
4253 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4254 (1 << STRIPE_DEGRADED)),
4255 head_sh->state & (1 << STRIPE_INSYNC));
4256
4257 sh->check_state = head_sh->check_state;
4258 sh->reconstruct_state = head_sh->reconstruct_state;
4259 for (i = 0; i < sh->disks; i++) {
4260 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4261 do_wakeup = 1;
4262 sh->dev[i].flags = head_sh->dev[i].flags &
4263 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4264 }
4265 spin_lock_irq(&sh->stripe_lock);
4266 sh->batch_head = NULL;
4267 spin_unlock_irq(&sh->stripe_lock);
4268 if (handle_flags == 0 ||
4269 sh->state & handle_flags)
4270 set_bit(STRIPE_HANDLE, &sh->state);
4271 raid5_release_stripe(sh);
4272 }
4273 spin_lock_irq(&head_sh->stripe_lock);
4274 head_sh->batch_head = NULL;
4275 spin_unlock_irq(&head_sh->stripe_lock);
4276 for (i = 0; i < head_sh->disks; i++)
4277 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4278 do_wakeup = 1;
4279 if (head_sh->state & handle_flags)
4280 set_bit(STRIPE_HANDLE, &head_sh->state);
4281
4282 if (do_wakeup)
4283 wake_up(&head_sh->raid_conf->wait_for_overlap);
4284 }
4285
4286 static void handle_stripe(struct stripe_head *sh)
4287 {
4288 struct stripe_head_state s;
4289 struct r5conf *conf = sh->raid_conf;
4290 int i;
4291 int prexor;
4292 int disks = sh->disks;
4293 struct r5dev *pdev, *qdev;
4294
4295 clear_bit(STRIPE_HANDLE, &sh->state);
4296 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4297 /* already being handled, ensure it gets handled
4298 * again when current action finishes */
4299 set_bit(STRIPE_HANDLE, &sh->state);
4300 return;
4301 }
4302
4303 if (clear_batch_ready(sh) ) {
4304 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4305 return;
4306 }
4307
4308 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4309 break_stripe_batch_list(sh, 0);
4310
4311 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4312 spin_lock(&sh->stripe_lock);
4313 /* Cannot process 'sync' concurrently with 'discard' */
4314 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4315 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4316 set_bit(STRIPE_SYNCING, &sh->state);
4317 clear_bit(STRIPE_INSYNC, &sh->state);
4318 clear_bit(STRIPE_REPLACED, &sh->state);
4319 }
4320 spin_unlock(&sh->stripe_lock);
4321 }
4322 clear_bit(STRIPE_DELAYED, &sh->state);
4323
4324 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4325 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4326 (unsigned long long)sh->sector, sh->state,
4327 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4328 sh->check_state, sh->reconstruct_state);
4329
4330 analyse_stripe(sh, &s);
4331
4332 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4333 goto finish;
4334
4335 if (s.handle_bad_blocks) {
4336 set_bit(STRIPE_HANDLE, &sh->state);
4337 goto finish;
4338 }
4339
4340 if (unlikely(s.blocked_rdev)) {
4341 if (s.syncing || s.expanding || s.expanded ||
4342 s.replacing || s.to_write || s.written) {
4343 set_bit(STRIPE_HANDLE, &sh->state);
4344 goto finish;
4345 }
4346 /* There is nothing for the blocked_rdev to block */
4347 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4348 s.blocked_rdev = NULL;
4349 }
4350
4351 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4352 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4353 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4354 }
4355
4356 pr_debug("locked=%d uptodate=%d to_read=%d"
4357 " to_write=%d failed=%d failed_num=%d,%d\n",
4358 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4359 s.failed_num[0], s.failed_num[1]);
4360 /* check if the array has lost more than max_degraded devices and,
4361 * if so, some requests might need to be failed.
4362 */
4363 if (s.failed > conf->max_degraded || s.log_failed) {
4364 sh->check_state = 0;
4365 sh->reconstruct_state = 0;
4366 break_stripe_batch_list(sh, 0);
4367 if (s.to_read+s.to_write+s.written)
4368 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4369 if (s.syncing + s.replacing)
4370 handle_failed_sync(conf, sh, &s);
4371 }
4372
4373 /* Now we check to see if any write operations have recently
4374 * completed
4375 */
4376 prexor = 0;
4377 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4378 prexor = 1;
4379 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4380 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4381 sh->reconstruct_state = reconstruct_state_idle;
4382
4383 /* All the 'written' buffers and the parity block are ready to
4384 * be written back to disk
4385 */
4386 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4387 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4388 BUG_ON(sh->qd_idx >= 0 &&
4389 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4390 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4391 for (i = disks; i--; ) {
4392 struct r5dev *dev = &sh->dev[i];
4393 if (test_bit(R5_LOCKED, &dev->flags) &&
4394 (i == sh->pd_idx || i == sh->qd_idx ||
4395 dev->written)) {
4396 pr_debug("Writing block %d\n", i);
4397 set_bit(R5_Wantwrite, &dev->flags);
4398 if (prexor)
4399 continue;
4400 if (s.failed > 1)
4401 continue;
4402 if (!test_bit(R5_Insync, &dev->flags) ||
4403 ((i == sh->pd_idx || i == sh->qd_idx) &&
4404 s.failed == 0))
4405 set_bit(STRIPE_INSYNC, &sh->state);
4406 }
4407 }
4408 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4409 s.dec_preread_active = 1;
4410 }
4411
4412 /*
4413 * might be able to return some write requests if the parity blocks
4414 * are safe, or on a failed drive
4415 */
4416 pdev = &sh->dev[sh->pd_idx];
4417 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4418 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4419 qdev = &sh->dev[sh->qd_idx];
4420 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4421 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4422 || conf->level < 6;
4423
4424 if (s.written &&
4425 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4426 && !test_bit(R5_LOCKED, &pdev->flags)
4427 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4428 test_bit(R5_Discard, &pdev->flags))))) &&
4429 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4430 && !test_bit(R5_LOCKED, &qdev->flags)
4431 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4432 test_bit(R5_Discard, &qdev->flags))))))
4433 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4434
4435 /* Now we might consider reading some blocks, either to check/generate
4436 * parity, or to satisfy requests
4437 * or to load a block that is being partially written.
4438 */
4439 if (s.to_read || s.non_overwrite
4440 || (conf->level == 6 && s.to_write && s.failed)
4441 || (s.syncing && (s.uptodate + s.compute < disks))
4442 || s.replacing
4443 || s.expanding)
4444 handle_stripe_fill(sh, &s, disks);
4445
4446 /* Now to consider new write requests and what else, if anything
4447 * should be read. We do not handle new writes when:
4448 * 1/ A 'write' operation (copy+xor) is already in flight.
4449 * 2/ A 'check' operation is in flight, as it may clobber the parity
4450 * block.
4451 */
4452 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4453 handle_stripe_dirtying(conf, sh, &s, disks);
4454
4455 /* maybe we need to check and possibly fix the parity for this stripe
4456 * Any reads will already have been scheduled, so we just see if enough
4457 * data is available. The parity check is held off while parity
4458 * dependent operations are in flight.
4459 */
4460 if (sh->check_state ||
4461 (s.syncing && s.locked == 0 &&
4462 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4463 !test_bit(STRIPE_INSYNC, &sh->state))) {
4464 if (conf->level == 6)
4465 handle_parity_checks6(conf, sh, &s, disks);
4466 else
4467 handle_parity_checks5(conf, sh, &s, disks);
4468 }
4469
4470 if ((s.replacing || s.syncing) && s.locked == 0
4471 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4472 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4473 /* Write out to replacement devices where possible */
4474 for (i = 0; i < conf->raid_disks; i++)
4475 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4476 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4477 set_bit(R5_WantReplace, &sh->dev[i].flags);
4478 set_bit(R5_LOCKED, &sh->dev[i].flags);
4479 s.locked++;
4480 }
4481 if (s.replacing)
4482 set_bit(STRIPE_INSYNC, &sh->state);
4483 set_bit(STRIPE_REPLACED, &sh->state);
4484 }
4485 if ((s.syncing || s.replacing) && s.locked == 0 &&
4486 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4487 test_bit(STRIPE_INSYNC, &sh->state)) {
4488 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4489 clear_bit(STRIPE_SYNCING, &sh->state);
4490 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4491 wake_up(&conf->wait_for_overlap);
4492 }
4493
4494 /* If the failed drives are just a ReadError, then we might need
4495 * to progress the repair/check process
4496 */
4497 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4498 for (i = 0; i < s.failed; i++) {
4499 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4500 if (test_bit(R5_ReadError, &dev->flags)
4501 && !test_bit(R5_LOCKED, &dev->flags)
4502 && test_bit(R5_UPTODATE, &dev->flags)
4503 ) {
4504 if (!test_bit(R5_ReWrite, &dev->flags)) {
4505 set_bit(R5_Wantwrite, &dev->flags);
4506 set_bit(R5_ReWrite, &dev->flags);
4507 set_bit(R5_LOCKED, &dev->flags);
4508 s.locked++;
4509 } else {
4510 /* let's read it back */
4511 set_bit(R5_Wantread, &dev->flags);
4512 set_bit(R5_LOCKED, &dev->flags);
4513 s.locked++;
4514 }
4515 }
4516 }
4517
4518 /* Finish reconstruct operations initiated by the expansion process */
4519 if (sh->reconstruct_state == reconstruct_state_result) {
4520 struct stripe_head *sh_src
4521 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4522 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4523 /* sh cannot be written until sh_src has been read.
4524 * so arrange for sh to be delayed a little
4525 */
4526 set_bit(STRIPE_DELAYED, &sh->state);
4527 set_bit(STRIPE_HANDLE, &sh->state);
4528 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4529 &sh_src->state))
4530 atomic_inc(&conf->preread_active_stripes);
4531 raid5_release_stripe(sh_src);
4532 goto finish;
4533 }
4534 if (sh_src)
4535 raid5_release_stripe(sh_src);
4536
4537 sh->reconstruct_state = reconstruct_state_idle;
4538 clear_bit(STRIPE_EXPANDING, &sh->state);
4539 for (i = conf->raid_disks; i--; ) {
4540 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4541 set_bit(R5_LOCKED, &sh->dev[i].flags);
4542 s.locked++;
4543 }
4544 }
4545
4546 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4547 !sh->reconstruct_state) {
4548 /* Need to write out all blocks after computing parity */
4549 sh->disks = conf->raid_disks;
4550 stripe_set_idx(sh->sector, conf, 0, sh);
4551 schedule_reconstruction(sh, &s, 1, 1);
4552 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4553 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4554 atomic_dec(&conf->reshape_stripes);
4555 wake_up(&conf->wait_for_overlap);
4556 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4557 }
4558
4559 if (s.expanding && s.locked == 0 &&
4560 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4561 handle_stripe_expansion(conf, sh);
4562
4563 finish:
4564 /* wait for this device to become unblocked */
4565 if (unlikely(s.blocked_rdev)) {
4566 if (conf->mddev->external)
4567 md_wait_for_blocked_rdev(s.blocked_rdev,
4568 conf->mddev);
4569 else
4570 /* Internal metadata will immediately
4571 * be written by raid5d, so we don't
4572 * need to wait here.
4573 */
4574 rdev_dec_pending(s.blocked_rdev,
4575 conf->mddev);
4576 }
4577
4578 if (s.handle_bad_blocks)
4579 for (i = disks; i--; ) {
4580 struct md_rdev *rdev;
4581 struct r5dev *dev = &sh->dev[i];
4582 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4583 /* We own a safe reference to the rdev */
4584 rdev = conf->disks[i].rdev;
4585 if (!rdev_set_badblocks(rdev, sh->sector,
4586 STRIPE_SECTORS, 0))
4587 md_error(conf->mddev, rdev);
4588 rdev_dec_pending(rdev, conf->mddev);
4589 }
4590 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4591 rdev = conf->disks[i].rdev;
4592 rdev_clear_badblocks(rdev, sh->sector,
4593 STRIPE_SECTORS, 0);
4594 rdev_dec_pending(rdev, conf->mddev);
4595 }
4596 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4597 rdev = conf->disks[i].replacement;
4598 if (!rdev)
4599 /* rdev have been moved down */
4600 rdev = conf->disks[i].rdev;
4601 rdev_clear_badblocks(rdev, sh->sector,
4602 STRIPE_SECTORS, 0);
4603 rdev_dec_pending(rdev, conf->mddev);
4604 }
4605 }
4606
4607 if (s.ops_request)
4608 raid_run_ops(sh, s.ops_request);
4609
4610 ops_run_io(sh, &s);
4611
4612 if (s.dec_preread_active) {
4613 /* We delay this until after ops_run_io so that if make_request
4614 * is waiting on a flush, it won't continue until the writes
4615 * have actually been submitted.
4616 */
4617 atomic_dec(&conf->preread_active_stripes);
4618 if (atomic_read(&conf->preread_active_stripes) <
4619 IO_THRESHOLD)
4620 md_wakeup_thread(conf->mddev->thread);
4621 }
4622
4623 if (!bio_list_empty(&s.return_bi)) {
4624 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4625 spin_lock_irq(&conf->device_lock);
4626 bio_list_merge(&conf->return_bi, &s.return_bi);
4627 spin_unlock_irq(&conf->device_lock);
4628 md_wakeup_thread(conf->mddev->thread);
4629 } else
4630 return_io(&s.return_bi);
4631 }
4632
4633 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4634 }
4635
4636 static void raid5_activate_delayed(struct r5conf *conf)
4637 {
4638 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4639 while (!list_empty(&conf->delayed_list)) {
4640 struct list_head *l = conf->delayed_list.next;
4641 struct stripe_head *sh;
4642 sh = list_entry(l, struct stripe_head, lru);
4643 list_del_init(l);
4644 clear_bit(STRIPE_DELAYED, &sh->state);
4645 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4646 atomic_inc(&conf->preread_active_stripes);
4647 list_add_tail(&sh->lru, &conf->hold_list);
4648 raid5_wakeup_stripe_thread(sh);
4649 }
4650 }
4651 }
4652
4653 static void activate_bit_delay(struct r5conf *conf,
4654 struct list_head *temp_inactive_list)
4655 {
4656 /* device_lock is held */
4657 struct list_head head;
4658 list_add(&head, &conf->bitmap_list);
4659 list_del_init(&conf->bitmap_list);
4660 while (!list_empty(&head)) {
4661 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4662 int hash;
4663 list_del_init(&sh->lru);
4664 atomic_inc(&sh->count);
4665 hash = sh->hash_lock_index;
4666 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4667 }
4668 }
4669
4670 static int raid5_congested(struct mddev *mddev, int bits)
4671 {
4672 struct r5conf *conf = mddev->private;
4673
4674 /* No difference between reads and writes. Just check
4675 * how busy the stripe_cache is
4676 */
4677
4678 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4679 return 1;
4680 if (conf->quiesce)
4681 return 1;
4682 if (atomic_read(&conf->empty_inactive_list_nr))
4683 return 1;
4684
4685 return 0;
4686 }
4687
4688 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4689 {
4690 struct r5conf *conf = mddev->private;
4691 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4692 unsigned int chunk_sectors;
4693 unsigned int bio_sectors = bio_sectors(bio);
4694
4695 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4696 return chunk_sectors >=
4697 ((sector & (chunk_sectors - 1)) + bio_sectors);
4698 }
4699
4700 /*
4701 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4702 * later sampled by raid5d.
4703 */
4704 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4705 {
4706 unsigned long flags;
4707
4708 spin_lock_irqsave(&conf->device_lock, flags);
4709
4710 bi->bi_next = conf->retry_read_aligned_list;
4711 conf->retry_read_aligned_list = bi;
4712
4713 spin_unlock_irqrestore(&conf->device_lock, flags);
4714 md_wakeup_thread(conf->mddev->thread);
4715 }
4716
4717 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4718 {
4719 struct bio *bi;
4720
4721 bi = conf->retry_read_aligned;
4722 if (bi) {
4723 conf->retry_read_aligned = NULL;
4724 return bi;
4725 }
4726 bi = conf->retry_read_aligned_list;
4727 if(bi) {
4728 conf->retry_read_aligned_list = bi->bi_next;
4729 bi->bi_next = NULL;
4730 /*
4731 * this sets the active strip count to 1 and the processed
4732 * strip count to zero (upper 8 bits)
4733 */
4734 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4735 }
4736
4737 return bi;
4738 }
4739
4740 /*
4741 * The "raid5_align_endio" should check if the read succeeded and if it
4742 * did, call bio_endio on the original bio (having bio_put the new bio
4743 * first).
4744 * If the read failed..
4745 */
4746 static void raid5_align_endio(struct bio *bi)
4747 {
4748 struct bio* raid_bi = bi->bi_private;
4749 struct mddev *mddev;
4750 struct r5conf *conf;
4751 struct md_rdev *rdev;
4752 int error = bi->bi_error;
4753
4754 bio_put(bi);
4755
4756 rdev = (void*)raid_bi->bi_next;
4757 raid_bi->bi_next = NULL;
4758 mddev = rdev->mddev;
4759 conf = mddev->private;
4760
4761 rdev_dec_pending(rdev, conf->mddev);
4762
4763 if (!error) {
4764 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4765 raid_bi, 0);
4766 bio_endio(raid_bi);
4767 if (atomic_dec_and_test(&conf->active_aligned_reads))
4768 wake_up(&conf->wait_for_quiescent);
4769 return;
4770 }
4771
4772 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4773
4774 add_bio_to_retry(raid_bi, conf);
4775 }
4776
4777 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4778 {
4779 struct r5conf *conf = mddev->private;
4780 int dd_idx;
4781 struct bio* align_bi;
4782 struct md_rdev *rdev;
4783 sector_t end_sector;
4784
4785 if (!in_chunk_boundary(mddev, raid_bio)) {
4786 pr_debug("%s: non aligned\n", __func__);
4787 return 0;
4788 }
4789 /*
4790 * use bio_clone_mddev to make a copy of the bio
4791 */
4792 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4793 if (!align_bi)
4794 return 0;
4795 /*
4796 * set bi_end_io to a new function, and set bi_private to the
4797 * original bio.
4798 */
4799 align_bi->bi_end_io = raid5_align_endio;
4800 align_bi->bi_private = raid_bio;
4801 /*
4802 * compute position
4803 */
4804 align_bi->bi_iter.bi_sector =
4805 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4806 0, &dd_idx, NULL);
4807
4808 end_sector = bio_end_sector(align_bi);
4809 rcu_read_lock();
4810 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4811 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4812 rdev->recovery_offset < end_sector) {
4813 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4814 if (rdev &&
4815 (test_bit(Faulty, &rdev->flags) ||
4816 !(test_bit(In_sync, &rdev->flags) ||
4817 rdev->recovery_offset >= end_sector)))
4818 rdev = NULL;
4819 }
4820 if (rdev) {
4821 sector_t first_bad;
4822 int bad_sectors;
4823
4824 atomic_inc(&rdev->nr_pending);
4825 rcu_read_unlock();
4826 raid_bio->bi_next = (void*)rdev;
4827 align_bi->bi_bdev = rdev->bdev;
4828 bio_clear_flag(align_bi, BIO_SEG_VALID);
4829
4830 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4831 bio_sectors(align_bi),
4832 &first_bad, &bad_sectors)) {
4833 bio_put(align_bi);
4834 rdev_dec_pending(rdev, mddev);
4835 return 0;
4836 }
4837
4838 /* No reshape active, so we can trust rdev->data_offset */
4839 align_bi->bi_iter.bi_sector += rdev->data_offset;
4840
4841 spin_lock_irq(&conf->device_lock);
4842 wait_event_lock_irq(conf->wait_for_quiescent,
4843 conf->quiesce == 0,
4844 conf->device_lock);
4845 atomic_inc(&conf->active_aligned_reads);
4846 spin_unlock_irq(&conf->device_lock);
4847
4848 if (mddev->gendisk)
4849 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4850 align_bi, disk_devt(mddev->gendisk),
4851 raid_bio->bi_iter.bi_sector);
4852 generic_make_request(align_bi);
4853 return 1;
4854 } else {
4855 rcu_read_unlock();
4856 bio_put(align_bi);
4857 return 0;
4858 }
4859 }
4860
4861 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4862 {
4863 struct bio *split;
4864
4865 do {
4866 sector_t sector = raid_bio->bi_iter.bi_sector;
4867 unsigned chunk_sects = mddev->chunk_sectors;
4868 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4869
4870 if (sectors < bio_sectors(raid_bio)) {
4871 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4872 bio_chain(split, raid_bio);
4873 } else
4874 split = raid_bio;
4875
4876 if (!raid5_read_one_chunk(mddev, split)) {
4877 if (split != raid_bio)
4878 generic_make_request(raid_bio);
4879 return split;
4880 }
4881 } while (split != raid_bio);
4882
4883 return NULL;
4884 }
4885
4886 /* __get_priority_stripe - get the next stripe to process
4887 *
4888 * Full stripe writes are allowed to pass preread active stripes up until
4889 * the bypass_threshold is exceeded. In general the bypass_count
4890 * increments when the handle_list is handled before the hold_list; however, it
4891 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4892 * stripe with in flight i/o. The bypass_count will be reset when the
4893 * head of the hold_list has changed, i.e. the head was promoted to the
4894 * handle_list.
4895 */
4896 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4897 {
4898 struct stripe_head *sh = NULL, *tmp;
4899 struct list_head *handle_list = NULL;
4900 struct r5worker_group *wg = NULL;
4901
4902 if (conf->worker_cnt_per_group == 0) {
4903 handle_list = &conf->handle_list;
4904 } else if (group != ANY_GROUP) {
4905 handle_list = &conf->worker_groups[group].handle_list;
4906 wg = &conf->worker_groups[group];
4907 } else {
4908 int i;
4909 for (i = 0; i < conf->group_cnt; i++) {
4910 handle_list = &conf->worker_groups[i].handle_list;
4911 wg = &conf->worker_groups[i];
4912 if (!list_empty(handle_list))
4913 break;
4914 }
4915 }
4916
4917 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4918 __func__,
4919 list_empty(handle_list) ? "empty" : "busy",
4920 list_empty(&conf->hold_list) ? "empty" : "busy",
4921 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4922
4923 if (!list_empty(handle_list)) {
4924 sh = list_entry(handle_list->next, typeof(*sh), lru);
4925
4926 if (list_empty(&conf->hold_list))
4927 conf->bypass_count = 0;
4928 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4929 if (conf->hold_list.next == conf->last_hold)
4930 conf->bypass_count++;
4931 else {
4932 conf->last_hold = conf->hold_list.next;
4933 conf->bypass_count -= conf->bypass_threshold;
4934 if (conf->bypass_count < 0)
4935 conf->bypass_count = 0;
4936 }
4937 }
4938 } else if (!list_empty(&conf->hold_list) &&
4939 ((conf->bypass_threshold &&
4940 conf->bypass_count > conf->bypass_threshold) ||
4941 atomic_read(&conf->pending_full_writes) == 0)) {
4942
4943 list_for_each_entry(tmp, &conf->hold_list, lru) {
4944 if (conf->worker_cnt_per_group == 0 ||
4945 group == ANY_GROUP ||
4946 !cpu_online(tmp->cpu) ||
4947 cpu_to_group(tmp->cpu) == group) {
4948 sh = tmp;
4949 break;
4950 }
4951 }
4952
4953 if (sh) {
4954 conf->bypass_count -= conf->bypass_threshold;
4955 if (conf->bypass_count < 0)
4956 conf->bypass_count = 0;
4957 }
4958 wg = NULL;
4959 }
4960
4961 if (!sh)
4962 return NULL;
4963
4964 if (wg) {
4965 wg->stripes_cnt--;
4966 sh->group = NULL;
4967 }
4968 list_del_init(&sh->lru);
4969 BUG_ON(atomic_inc_return(&sh->count) != 1);
4970 return sh;
4971 }
4972
4973 struct raid5_plug_cb {
4974 struct blk_plug_cb cb;
4975 struct list_head list;
4976 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4977 };
4978
4979 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4980 {
4981 struct raid5_plug_cb *cb = container_of(
4982 blk_cb, struct raid5_plug_cb, cb);
4983 struct stripe_head *sh;
4984 struct mddev *mddev = cb->cb.data;
4985 struct r5conf *conf = mddev->private;
4986 int cnt = 0;
4987 int hash;
4988
4989 if (cb->list.next && !list_empty(&cb->list)) {
4990 spin_lock_irq(&conf->device_lock);
4991 while (!list_empty(&cb->list)) {
4992 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4993 list_del_init(&sh->lru);
4994 /*
4995 * avoid race release_stripe_plug() sees
4996 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4997 * is still in our list
4998 */
4999 smp_mb__before_atomic();
5000 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5001 /*
5002 * STRIPE_ON_RELEASE_LIST could be set here. In that
5003 * case, the count is always > 1 here
5004 */
5005 hash = sh->hash_lock_index;
5006 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5007 cnt++;
5008 }
5009 spin_unlock_irq(&conf->device_lock);
5010 }
5011 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5012 NR_STRIPE_HASH_LOCKS);
5013 if (mddev->queue)
5014 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5015 kfree(cb);
5016 }
5017
5018 static void release_stripe_plug(struct mddev *mddev,
5019 struct stripe_head *sh)
5020 {
5021 struct blk_plug_cb *blk_cb = blk_check_plugged(
5022 raid5_unplug, mddev,
5023 sizeof(struct raid5_plug_cb));
5024 struct raid5_plug_cb *cb;
5025
5026 if (!blk_cb) {
5027 raid5_release_stripe(sh);
5028 return;
5029 }
5030
5031 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5032
5033 if (cb->list.next == NULL) {
5034 int i;
5035 INIT_LIST_HEAD(&cb->list);
5036 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5037 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5038 }
5039
5040 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5041 list_add_tail(&sh->lru, &cb->list);
5042 else
5043 raid5_release_stripe(sh);
5044 }
5045
5046 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5047 {
5048 struct r5conf *conf = mddev->private;
5049 sector_t logical_sector, last_sector;
5050 struct stripe_head *sh;
5051 int remaining;
5052 int stripe_sectors;
5053
5054 if (mddev->reshape_position != MaxSector)
5055 /* Skip discard while reshape is happening */
5056 return;
5057
5058 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5059 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5060
5061 bi->bi_next = NULL;
5062 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5063
5064 stripe_sectors = conf->chunk_sectors *
5065 (conf->raid_disks - conf->max_degraded);
5066 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5067 stripe_sectors);
5068 sector_div(last_sector, stripe_sectors);
5069
5070 logical_sector *= conf->chunk_sectors;
5071 last_sector *= conf->chunk_sectors;
5072
5073 for (; logical_sector < last_sector;
5074 logical_sector += STRIPE_SECTORS) {
5075 DEFINE_WAIT(w);
5076 int d;
5077 again:
5078 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5079 prepare_to_wait(&conf->wait_for_overlap, &w,
5080 TASK_UNINTERRUPTIBLE);
5081 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5082 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5083 raid5_release_stripe(sh);
5084 schedule();
5085 goto again;
5086 }
5087 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5088 spin_lock_irq(&sh->stripe_lock);
5089 for (d = 0; d < conf->raid_disks; d++) {
5090 if (d == sh->pd_idx || d == sh->qd_idx)
5091 continue;
5092 if (sh->dev[d].towrite || sh->dev[d].toread) {
5093 set_bit(R5_Overlap, &sh->dev[d].flags);
5094 spin_unlock_irq(&sh->stripe_lock);
5095 raid5_release_stripe(sh);
5096 schedule();
5097 goto again;
5098 }
5099 }
5100 set_bit(STRIPE_DISCARD, &sh->state);
5101 finish_wait(&conf->wait_for_overlap, &w);
5102 sh->overwrite_disks = 0;
5103 for (d = 0; d < conf->raid_disks; d++) {
5104 if (d == sh->pd_idx || d == sh->qd_idx)
5105 continue;
5106 sh->dev[d].towrite = bi;
5107 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5108 raid5_inc_bi_active_stripes(bi);
5109 sh->overwrite_disks++;
5110 }
5111 spin_unlock_irq(&sh->stripe_lock);
5112 if (conf->mddev->bitmap) {
5113 for (d = 0;
5114 d < conf->raid_disks - conf->max_degraded;
5115 d++)
5116 bitmap_startwrite(mddev->bitmap,
5117 sh->sector,
5118 STRIPE_SECTORS,
5119 0);
5120 sh->bm_seq = conf->seq_flush + 1;
5121 set_bit(STRIPE_BIT_DELAY, &sh->state);
5122 }
5123
5124 set_bit(STRIPE_HANDLE, &sh->state);
5125 clear_bit(STRIPE_DELAYED, &sh->state);
5126 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5127 atomic_inc(&conf->preread_active_stripes);
5128 release_stripe_plug(mddev, sh);
5129 }
5130
5131 remaining = raid5_dec_bi_active_stripes(bi);
5132 if (remaining == 0) {
5133 md_write_end(mddev);
5134 bio_endio(bi);
5135 }
5136 }
5137
5138 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5139 {
5140 struct r5conf *conf = mddev->private;
5141 int dd_idx;
5142 sector_t new_sector;
5143 sector_t logical_sector, last_sector;
5144 struct stripe_head *sh;
5145 const int rw = bio_data_dir(bi);
5146 int remaining;
5147 DEFINE_WAIT(w);
5148 bool do_prepare;
5149
5150 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5151 int ret = r5l_handle_flush_request(conf->log, bi);
5152
5153 if (ret == 0)
5154 return;
5155 if (ret == -ENODEV) {
5156 md_flush_request(mddev, bi);
5157 return;
5158 }
5159 /* ret == -EAGAIN, fallback */
5160 }
5161
5162 md_write_start(mddev, bi);
5163
5164 /*
5165 * If array is degraded, better not do chunk aligned read because
5166 * later we might have to read it again in order to reconstruct
5167 * data on failed drives.
5168 */
5169 if (rw == READ && mddev->degraded == 0 &&
5170 mddev->reshape_position == MaxSector) {
5171 bi = chunk_aligned_read(mddev, bi);
5172 if (!bi)
5173 return;
5174 }
5175
5176 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5177 make_discard_request(mddev, bi);
5178 return;
5179 }
5180
5181 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5182 last_sector = bio_end_sector(bi);
5183 bi->bi_next = NULL;
5184 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5185
5186 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5187 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5188 int previous;
5189 int seq;
5190
5191 do_prepare = false;
5192 retry:
5193 seq = read_seqcount_begin(&conf->gen_lock);
5194 previous = 0;
5195 if (do_prepare)
5196 prepare_to_wait(&conf->wait_for_overlap, &w,
5197 TASK_UNINTERRUPTIBLE);
5198 if (unlikely(conf->reshape_progress != MaxSector)) {
5199 /* spinlock is needed as reshape_progress may be
5200 * 64bit on a 32bit platform, and so it might be
5201 * possible to see a half-updated value
5202 * Of course reshape_progress could change after
5203 * the lock is dropped, so once we get a reference
5204 * to the stripe that we think it is, we will have
5205 * to check again.
5206 */
5207 spin_lock_irq(&conf->device_lock);
5208 if (mddev->reshape_backwards
5209 ? logical_sector < conf->reshape_progress
5210 : logical_sector >= conf->reshape_progress) {
5211 previous = 1;
5212 } else {
5213 if (mddev->reshape_backwards
5214 ? logical_sector < conf->reshape_safe
5215 : logical_sector >= conf->reshape_safe) {
5216 spin_unlock_irq(&conf->device_lock);
5217 schedule();
5218 do_prepare = true;
5219 goto retry;
5220 }
5221 }
5222 spin_unlock_irq(&conf->device_lock);
5223 }
5224
5225 new_sector = raid5_compute_sector(conf, logical_sector,
5226 previous,
5227 &dd_idx, NULL);
5228 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5229 (unsigned long long)new_sector,
5230 (unsigned long long)logical_sector);
5231
5232 sh = raid5_get_active_stripe(conf, new_sector, previous,
5233 (bi->bi_rw&RWA_MASK), 0);
5234 if (sh) {
5235 if (unlikely(previous)) {
5236 /* expansion might have moved on while waiting for a
5237 * stripe, so we must do the range check again.
5238 * Expansion could still move past after this
5239 * test, but as we are holding a reference to
5240 * 'sh', we know that if that happens,
5241 * STRIPE_EXPANDING will get set and the expansion
5242 * won't proceed until we finish with the stripe.
5243 */
5244 int must_retry = 0;
5245 spin_lock_irq(&conf->device_lock);
5246 if (mddev->reshape_backwards
5247 ? logical_sector >= conf->reshape_progress
5248 : logical_sector < conf->reshape_progress)
5249 /* mismatch, need to try again */
5250 must_retry = 1;
5251 spin_unlock_irq(&conf->device_lock);
5252 if (must_retry) {
5253 raid5_release_stripe(sh);
5254 schedule();
5255 do_prepare = true;
5256 goto retry;
5257 }
5258 }
5259 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5260 /* Might have got the wrong stripe_head
5261 * by accident
5262 */
5263 raid5_release_stripe(sh);
5264 goto retry;
5265 }
5266
5267 if (rw == WRITE &&
5268 logical_sector >= mddev->suspend_lo &&
5269 logical_sector < mddev->suspend_hi) {
5270 raid5_release_stripe(sh);
5271 /* As the suspend_* range is controlled by
5272 * userspace, we want an interruptible
5273 * wait.
5274 */
5275 flush_signals(current);
5276 prepare_to_wait(&conf->wait_for_overlap,
5277 &w, TASK_INTERRUPTIBLE);
5278 if (logical_sector >= mddev->suspend_lo &&
5279 logical_sector < mddev->suspend_hi) {
5280 schedule();
5281 do_prepare = true;
5282 }
5283 goto retry;
5284 }
5285
5286 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5287 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5288 /* Stripe is busy expanding or
5289 * add failed due to overlap. Flush everything
5290 * and wait a while
5291 */
5292 md_wakeup_thread(mddev->thread);
5293 raid5_release_stripe(sh);
5294 schedule();
5295 do_prepare = true;
5296 goto retry;
5297 }
5298 set_bit(STRIPE_HANDLE, &sh->state);
5299 clear_bit(STRIPE_DELAYED, &sh->state);
5300 if ((!sh->batch_head || sh == sh->batch_head) &&
5301 (bi->bi_rw & REQ_SYNC) &&
5302 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5303 atomic_inc(&conf->preread_active_stripes);
5304 release_stripe_plug(mddev, sh);
5305 } else {
5306 /* cannot get stripe for read-ahead, just give-up */
5307 bi->bi_error = -EIO;
5308 break;
5309 }
5310 }
5311 finish_wait(&conf->wait_for_overlap, &w);
5312
5313 remaining = raid5_dec_bi_active_stripes(bi);
5314 if (remaining == 0) {
5315
5316 if ( rw == WRITE )
5317 md_write_end(mddev);
5318
5319 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5320 bi, 0);
5321 bio_endio(bi);
5322 }
5323 }
5324
5325 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5326
5327 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5328 {
5329 /* reshaping is quite different to recovery/resync so it is
5330 * handled quite separately ... here.
5331 *
5332 * On each call to sync_request, we gather one chunk worth of
5333 * destination stripes and flag them as expanding.
5334 * Then we find all the source stripes and request reads.
5335 * As the reads complete, handle_stripe will copy the data
5336 * into the destination stripe and release that stripe.
5337 */
5338 struct r5conf *conf = mddev->private;
5339 struct stripe_head *sh;
5340 sector_t first_sector, last_sector;
5341 int raid_disks = conf->previous_raid_disks;
5342 int data_disks = raid_disks - conf->max_degraded;
5343 int new_data_disks = conf->raid_disks - conf->max_degraded;
5344 int i;
5345 int dd_idx;
5346 sector_t writepos, readpos, safepos;
5347 sector_t stripe_addr;
5348 int reshape_sectors;
5349 struct list_head stripes;
5350 sector_t retn;
5351
5352 if (sector_nr == 0) {
5353 /* If restarting in the middle, skip the initial sectors */
5354 if (mddev->reshape_backwards &&
5355 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5356 sector_nr = raid5_size(mddev, 0, 0)
5357 - conf->reshape_progress;
5358 } else if (mddev->reshape_backwards &&
5359 conf->reshape_progress == MaxSector) {
5360 /* shouldn't happen, but just in case, finish up.*/
5361 sector_nr = MaxSector;
5362 } else if (!mddev->reshape_backwards &&
5363 conf->reshape_progress > 0)
5364 sector_nr = conf->reshape_progress;
5365 sector_div(sector_nr, new_data_disks);
5366 if (sector_nr) {
5367 mddev->curr_resync_completed = sector_nr;
5368 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5369 *skipped = 1;
5370 retn = sector_nr;
5371 goto finish;
5372 }
5373 }
5374
5375 /* We need to process a full chunk at a time.
5376 * If old and new chunk sizes differ, we need to process the
5377 * largest of these
5378 */
5379
5380 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5381
5382 /* We update the metadata at least every 10 seconds, or when
5383 * the data about to be copied would over-write the source of
5384 * the data at the front of the range. i.e. one new_stripe
5385 * along from reshape_progress new_maps to after where
5386 * reshape_safe old_maps to
5387 */
5388 writepos = conf->reshape_progress;
5389 sector_div(writepos, new_data_disks);
5390 readpos = conf->reshape_progress;
5391 sector_div(readpos, data_disks);
5392 safepos = conf->reshape_safe;
5393 sector_div(safepos, data_disks);
5394 if (mddev->reshape_backwards) {
5395 BUG_ON(writepos < reshape_sectors);
5396 writepos -= reshape_sectors;
5397 readpos += reshape_sectors;
5398 safepos += reshape_sectors;
5399 } else {
5400 writepos += reshape_sectors;
5401 /* readpos and safepos are worst-case calculations.
5402 * A negative number is overly pessimistic, and causes
5403 * obvious problems for unsigned storage. So clip to 0.
5404 */
5405 readpos -= min_t(sector_t, reshape_sectors, readpos);
5406 safepos -= min_t(sector_t, reshape_sectors, safepos);
5407 }
5408
5409 /* Having calculated the 'writepos' possibly use it
5410 * to set 'stripe_addr' which is where we will write to.
5411 */
5412 if (mddev->reshape_backwards) {
5413 BUG_ON(conf->reshape_progress == 0);
5414 stripe_addr = writepos;
5415 BUG_ON((mddev->dev_sectors &
5416 ~((sector_t)reshape_sectors - 1))
5417 - reshape_sectors - stripe_addr
5418 != sector_nr);
5419 } else {
5420 BUG_ON(writepos != sector_nr + reshape_sectors);
5421 stripe_addr = sector_nr;
5422 }
5423
5424 /* 'writepos' is the most advanced device address we might write.
5425 * 'readpos' is the least advanced device address we might read.
5426 * 'safepos' is the least address recorded in the metadata as having
5427 * been reshaped.
5428 * If there is a min_offset_diff, these are adjusted either by
5429 * increasing the safepos/readpos if diff is negative, or
5430 * increasing writepos if diff is positive.
5431 * If 'readpos' is then behind 'writepos', there is no way that we can
5432 * ensure safety in the face of a crash - that must be done by userspace
5433 * making a backup of the data. So in that case there is no particular
5434 * rush to update metadata.
5435 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5436 * update the metadata to advance 'safepos' to match 'readpos' so that
5437 * we can be safe in the event of a crash.
5438 * So we insist on updating metadata if safepos is behind writepos and
5439 * readpos is beyond writepos.
5440 * In any case, update the metadata every 10 seconds.
5441 * Maybe that number should be configurable, but I'm not sure it is
5442 * worth it.... maybe it could be a multiple of safemode_delay???
5443 */
5444 if (conf->min_offset_diff < 0) {
5445 safepos += -conf->min_offset_diff;
5446 readpos += -conf->min_offset_diff;
5447 } else
5448 writepos += conf->min_offset_diff;
5449
5450 if ((mddev->reshape_backwards
5451 ? (safepos > writepos && readpos < writepos)
5452 : (safepos < writepos && readpos > writepos)) ||
5453 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5454 /* Cannot proceed until we've updated the superblock... */
5455 wait_event(conf->wait_for_overlap,
5456 atomic_read(&conf->reshape_stripes)==0
5457 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5458 if (atomic_read(&conf->reshape_stripes) != 0)
5459 return 0;
5460 mddev->reshape_position = conf->reshape_progress;
5461 mddev->curr_resync_completed = sector_nr;
5462 conf->reshape_checkpoint = jiffies;
5463 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5464 md_wakeup_thread(mddev->thread);
5465 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5466 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5467 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5468 return 0;
5469 spin_lock_irq(&conf->device_lock);
5470 conf->reshape_safe = mddev->reshape_position;
5471 spin_unlock_irq(&conf->device_lock);
5472 wake_up(&conf->wait_for_overlap);
5473 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5474 }
5475
5476 INIT_LIST_HEAD(&stripes);
5477 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5478 int j;
5479 int skipped_disk = 0;
5480 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5481 set_bit(STRIPE_EXPANDING, &sh->state);
5482 atomic_inc(&conf->reshape_stripes);
5483 /* If any of this stripe is beyond the end of the old
5484 * array, then we need to zero those blocks
5485 */
5486 for (j=sh->disks; j--;) {
5487 sector_t s;
5488 if (j == sh->pd_idx)
5489 continue;
5490 if (conf->level == 6 &&
5491 j == sh->qd_idx)
5492 continue;
5493 s = raid5_compute_blocknr(sh, j, 0);
5494 if (s < raid5_size(mddev, 0, 0)) {
5495 skipped_disk = 1;
5496 continue;
5497 }
5498 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5499 set_bit(R5_Expanded, &sh->dev[j].flags);
5500 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5501 }
5502 if (!skipped_disk) {
5503 set_bit(STRIPE_EXPAND_READY, &sh->state);
5504 set_bit(STRIPE_HANDLE, &sh->state);
5505 }
5506 list_add(&sh->lru, &stripes);
5507 }
5508 spin_lock_irq(&conf->device_lock);
5509 if (mddev->reshape_backwards)
5510 conf->reshape_progress -= reshape_sectors * new_data_disks;
5511 else
5512 conf->reshape_progress += reshape_sectors * new_data_disks;
5513 spin_unlock_irq(&conf->device_lock);
5514 /* Ok, those stripe are ready. We can start scheduling
5515 * reads on the source stripes.
5516 * The source stripes are determined by mapping the first and last
5517 * block on the destination stripes.
5518 */
5519 first_sector =
5520 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5521 1, &dd_idx, NULL);
5522 last_sector =
5523 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5524 * new_data_disks - 1),
5525 1, &dd_idx, NULL);
5526 if (last_sector >= mddev->dev_sectors)
5527 last_sector = mddev->dev_sectors - 1;
5528 while (first_sector <= last_sector) {
5529 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5530 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5531 set_bit(STRIPE_HANDLE, &sh->state);
5532 raid5_release_stripe(sh);
5533 first_sector += STRIPE_SECTORS;
5534 }
5535 /* Now that the sources are clearly marked, we can release
5536 * the destination stripes
5537 */
5538 while (!list_empty(&stripes)) {
5539 sh = list_entry(stripes.next, struct stripe_head, lru);
5540 list_del_init(&sh->lru);
5541 raid5_release_stripe(sh);
5542 }
5543 /* If this takes us to the resync_max point where we have to pause,
5544 * then we need to write out the superblock.
5545 */
5546 sector_nr += reshape_sectors;
5547 retn = reshape_sectors;
5548 finish:
5549 if (mddev->curr_resync_completed > mddev->resync_max ||
5550 (sector_nr - mddev->curr_resync_completed) * 2
5551 >= mddev->resync_max - mddev->curr_resync_completed) {
5552 /* Cannot proceed until we've updated the superblock... */
5553 wait_event(conf->wait_for_overlap,
5554 atomic_read(&conf->reshape_stripes) == 0
5555 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5556 if (atomic_read(&conf->reshape_stripes) != 0)
5557 goto ret;
5558 mddev->reshape_position = conf->reshape_progress;
5559 mddev->curr_resync_completed = sector_nr;
5560 conf->reshape_checkpoint = jiffies;
5561 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5562 md_wakeup_thread(mddev->thread);
5563 wait_event(mddev->sb_wait,
5564 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5565 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5566 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5567 goto ret;
5568 spin_lock_irq(&conf->device_lock);
5569 conf->reshape_safe = mddev->reshape_position;
5570 spin_unlock_irq(&conf->device_lock);
5571 wake_up(&conf->wait_for_overlap);
5572 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5573 }
5574 ret:
5575 return retn;
5576 }
5577
5578 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5579 int *skipped)
5580 {
5581 struct r5conf *conf = mddev->private;
5582 struct stripe_head *sh;
5583 sector_t max_sector = mddev->dev_sectors;
5584 sector_t sync_blocks;
5585 int still_degraded = 0;
5586 int i;
5587
5588 if (sector_nr >= max_sector) {
5589 /* just being told to finish up .. nothing much to do */
5590
5591 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5592 end_reshape(conf);
5593 return 0;
5594 }
5595
5596 if (mddev->curr_resync < max_sector) /* aborted */
5597 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5598 &sync_blocks, 1);
5599 else /* completed sync */
5600 conf->fullsync = 0;
5601 bitmap_close_sync(mddev->bitmap);
5602
5603 return 0;
5604 }
5605
5606 /* Allow raid5_quiesce to complete */
5607 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5608
5609 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5610 return reshape_request(mddev, sector_nr, skipped);
5611
5612 /* No need to check resync_max as we never do more than one
5613 * stripe, and as resync_max will always be on a chunk boundary,
5614 * if the check in md_do_sync didn't fire, there is no chance
5615 * of overstepping resync_max here
5616 */
5617
5618 /* if there is too many failed drives and we are trying
5619 * to resync, then assert that we are finished, because there is
5620 * nothing we can do.
5621 */
5622 if (mddev->degraded >= conf->max_degraded &&
5623 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5624 sector_t rv = mddev->dev_sectors - sector_nr;
5625 *skipped = 1;
5626 return rv;
5627 }
5628 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5629 !conf->fullsync &&
5630 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5631 sync_blocks >= STRIPE_SECTORS) {
5632 /* we can skip this block, and probably more */
5633 sync_blocks /= STRIPE_SECTORS;
5634 *skipped = 1;
5635 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5636 }
5637
5638 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5639
5640 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5641 if (sh == NULL) {
5642 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5643 /* make sure we don't swamp the stripe cache if someone else
5644 * is trying to get access
5645 */
5646 schedule_timeout_uninterruptible(1);
5647 }
5648 /* Need to check if array will still be degraded after recovery/resync
5649 * Note in case of > 1 drive failures it's possible we're rebuilding
5650 * one drive while leaving another faulty drive in array.
5651 */
5652 rcu_read_lock();
5653 for (i = 0; i < conf->raid_disks; i++) {
5654 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5655
5656 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5657 still_degraded = 1;
5658 }
5659 rcu_read_unlock();
5660
5661 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5662
5663 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5664 set_bit(STRIPE_HANDLE, &sh->state);
5665
5666 raid5_release_stripe(sh);
5667
5668 return STRIPE_SECTORS;
5669 }
5670
5671 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5672 {
5673 /* We may not be able to submit a whole bio at once as there
5674 * may not be enough stripe_heads available.
5675 * We cannot pre-allocate enough stripe_heads as we may need
5676 * more than exist in the cache (if we allow ever large chunks).
5677 * So we do one stripe head at a time and record in
5678 * ->bi_hw_segments how many have been done.
5679 *
5680 * We *know* that this entire raid_bio is in one chunk, so
5681 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5682 */
5683 struct stripe_head *sh;
5684 int dd_idx;
5685 sector_t sector, logical_sector, last_sector;
5686 int scnt = 0;
5687 int remaining;
5688 int handled = 0;
5689
5690 logical_sector = raid_bio->bi_iter.bi_sector &
5691 ~((sector_t)STRIPE_SECTORS-1);
5692 sector = raid5_compute_sector(conf, logical_sector,
5693 0, &dd_idx, NULL);
5694 last_sector = bio_end_sector(raid_bio);
5695
5696 for (; logical_sector < last_sector;
5697 logical_sector += STRIPE_SECTORS,
5698 sector += STRIPE_SECTORS,
5699 scnt++) {
5700
5701 if (scnt < raid5_bi_processed_stripes(raid_bio))
5702 /* already done this stripe */
5703 continue;
5704
5705 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5706
5707 if (!sh) {
5708 /* failed to get a stripe - must wait */
5709 raid5_set_bi_processed_stripes(raid_bio, scnt);
5710 conf->retry_read_aligned = raid_bio;
5711 return handled;
5712 }
5713
5714 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5715 raid5_release_stripe(sh);
5716 raid5_set_bi_processed_stripes(raid_bio, scnt);
5717 conf->retry_read_aligned = raid_bio;
5718 return handled;
5719 }
5720
5721 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5722 handle_stripe(sh);
5723 raid5_release_stripe(sh);
5724 handled++;
5725 }
5726 remaining = raid5_dec_bi_active_stripes(raid_bio);
5727 if (remaining == 0) {
5728 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5729 raid_bio, 0);
5730 bio_endio(raid_bio);
5731 }
5732 if (atomic_dec_and_test(&conf->active_aligned_reads))
5733 wake_up(&conf->wait_for_quiescent);
5734 return handled;
5735 }
5736
5737 static int handle_active_stripes(struct r5conf *conf, int group,
5738 struct r5worker *worker,
5739 struct list_head *temp_inactive_list)
5740 {
5741 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5742 int i, batch_size = 0, hash;
5743 bool release_inactive = false;
5744
5745 while (batch_size < MAX_STRIPE_BATCH &&
5746 (sh = __get_priority_stripe(conf, group)) != NULL)
5747 batch[batch_size++] = sh;
5748
5749 if (batch_size == 0) {
5750 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5751 if (!list_empty(temp_inactive_list + i))
5752 break;
5753 if (i == NR_STRIPE_HASH_LOCKS) {
5754 spin_unlock_irq(&conf->device_lock);
5755 r5l_flush_stripe_to_raid(conf->log);
5756 spin_lock_irq(&conf->device_lock);
5757 return batch_size;
5758 }
5759 release_inactive = true;
5760 }
5761 spin_unlock_irq(&conf->device_lock);
5762
5763 release_inactive_stripe_list(conf, temp_inactive_list,
5764 NR_STRIPE_HASH_LOCKS);
5765
5766 r5l_flush_stripe_to_raid(conf->log);
5767 if (release_inactive) {
5768 spin_lock_irq(&conf->device_lock);
5769 return 0;
5770 }
5771
5772 for (i = 0; i < batch_size; i++)
5773 handle_stripe(batch[i]);
5774 r5l_write_stripe_run(conf->log);
5775
5776 cond_resched();
5777
5778 spin_lock_irq(&conf->device_lock);
5779 for (i = 0; i < batch_size; i++) {
5780 hash = batch[i]->hash_lock_index;
5781 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5782 }
5783 return batch_size;
5784 }
5785
5786 static void raid5_do_work(struct work_struct *work)
5787 {
5788 struct r5worker *worker = container_of(work, struct r5worker, work);
5789 struct r5worker_group *group = worker->group;
5790 struct r5conf *conf = group->conf;
5791 int group_id = group - conf->worker_groups;
5792 int handled;
5793 struct blk_plug plug;
5794
5795 pr_debug("+++ raid5worker active\n");
5796
5797 blk_start_plug(&plug);
5798 handled = 0;
5799 spin_lock_irq(&conf->device_lock);
5800 while (1) {
5801 int batch_size, released;
5802
5803 released = release_stripe_list(conf, worker->temp_inactive_list);
5804
5805 batch_size = handle_active_stripes(conf, group_id, worker,
5806 worker->temp_inactive_list);
5807 worker->working = false;
5808 if (!batch_size && !released)
5809 break;
5810 handled += batch_size;
5811 }
5812 pr_debug("%d stripes handled\n", handled);
5813
5814 spin_unlock_irq(&conf->device_lock);
5815 blk_finish_plug(&plug);
5816
5817 pr_debug("--- raid5worker inactive\n");
5818 }
5819
5820 /*
5821 * This is our raid5 kernel thread.
5822 *
5823 * We scan the hash table for stripes which can be handled now.
5824 * During the scan, completed stripes are saved for us by the interrupt
5825 * handler, so that they will not have to wait for our next wakeup.
5826 */
5827 static void raid5d(struct md_thread *thread)
5828 {
5829 struct mddev *mddev = thread->mddev;
5830 struct r5conf *conf = mddev->private;
5831 int handled;
5832 struct blk_plug plug;
5833
5834 pr_debug("+++ raid5d active\n");
5835
5836 md_check_recovery(mddev);
5837
5838 if (!bio_list_empty(&conf->return_bi) &&
5839 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5840 struct bio_list tmp = BIO_EMPTY_LIST;
5841 spin_lock_irq(&conf->device_lock);
5842 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5843 bio_list_merge(&tmp, &conf->return_bi);
5844 bio_list_init(&conf->return_bi);
5845 }
5846 spin_unlock_irq(&conf->device_lock);
5847 return_io(&tmp);
5848 }
5849
5850 blk_start_plug(&plug);
5851 handled = 0;
5852 spin_lock_irq(&conf->device_lock);
5853 while (1) {
5854 struct bio *bio;
5855 int batch_size, released;
5856
5857 released = release_stripe_list(conf, conf->temp_inactive_list);
5858 if (released)
5859 clear_bit(R5_DID_ALLOC, &conf->cache_state);
5860
5861 if (
5862 !list_empty(&conf->bitmap_list)) {
5863 /* Now is a good time to flush some bitmap updates */
5864 conf->seq_flush++;
5865 spin_unlock_irq(&conf->device_lock);
5866 bitmap_unplug(mddev->bitmap);
5867 spin_lock_irq(&conf->device_lock);
5868 conf->seq_write = conf->seq_flush;
5869 activate_bit_delay(conf, conf->temp_inactive_list);
5870 }
5871 raid5_activate_delayed(conf);
5872
5873 while ((bio = remove_bio_from_retry(conf))) {
5874 int ok;
5875 spin_unlock_irq(&conf->device_lock);
5876 ok = retry_aligned_read(conf, bio);
5877 spin_lock_irq(&conf->device_lock);
5878 if (!ok)
5879 break;
5880 handled++;
5881 }
5882
5883 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5884 conf->temp_inactive_list);
5885 if (!batch_size && !released)
5886 break;
5887 handled += batch_size;
5888
5889 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5890 spin_unlock_irq(&conf->device_lock);
5891 md_check_recovery(mddev);
5892 spin_lock_irq(&conf->device_lock);
5893 }
5894 }
5895 pr_debug("%d stripes handled\n", handled);
5896
5897 spin_unlock_irq(&conf->device_lock);
5898 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5899 mutex_trylock(&conf->cache_size_mutex)) {
5900 grow_one_stripe(conf, __GFP_NOWARN);
5901 /* Set flag even if allocation failed. This helps
5902 * slow down allocation requests when mem is short
5903 */
5904 set_bit(R5_DID_ALLOC, &conf->cache_state);
5905 mutex_unlock(&conf->cache_size_mutex);
5906 }
5907
5908 r5l_flush_stripe_to_raid(conf->log);
5909
5910 async_tx_issue_pending_all();
5911 blk_finish_plug(&plug);
5912
5913 pr_debug("--- raid5d inactive\n");
5914 }
5915
5916 static ssize_t
5917 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5918 {
5919 struct r5conf *conf;
5920 int ret = 0;
5921 spin_lock(&mddev->lock);
5922 conf = mddev->private;
5923 if (conf)
5924 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5925 spin_unlock(&mddev->lock);
5926 return ret;
5927 }
5928
5929 int
5930 raid5_set_cache_size(struct mddev *mddev, int size)
5931 {
5932 struct r5conf *conf = mddev->private;
5933 int err;
5934
5935 if (size <= 16 || size > 32768)
5936 return -EINVAL;
5937
5938 conf->min_nr_stripes = size;
5939 mutex_lock(&conf->cache_size_mutex);
5940 while (size < conf->max_nr_stripes &&
5941 drop_one_stripe(conf))
5942 ;
5943 mutex_unlock(&conf->cache_size_mutex);
5944
5945
5946 err = md_allow_write(mddev);
5947 if (err)
5948 return err;
5949
5950 mutex_lock(&conf->cache_size_mutex);
5951 while (size > conf->max_nr_stripes)
5952 if (!grow_one_stripe(conf, GFP_KERNEL))
5953 break;
5954 mutex_unlock(&conf->cache_size_mutex);
5955
5956 return 0;
5957 }
5958 EXPORT_SYMBOL(raid5_set_cache_size);
5959
5960 static ssize_t
5961 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5962 {
5963 struct r5conf *conf;
5964 unsigned long new;
5965 int err;
5966
5967 if (len >= PAGE_SIZE)
5968 return -EINVAL;
5969 if (kstrtoul(page, 10, &new))
5970 return -EINVAL;
5971 err = mddev_lock(mddev);
5972 if (err)
5973 return err;
5974 conf = mddev->private;
5975 if (!conf)
5976 err = -ENODEV;
5977 else
5978 err = raid5_set_cache_size(mddev, new);
5979 mddev_unlock(mddev);
5980
5981 return err ?: len;
5982 }
5983
5984 static struct md_sysfs_entry
5985 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5986 raid5_show_stripe_cache_size,
5987 raid5_store_stripe_cache_size);
5988
5989 static ssize_t
5990 raid5_show_rmw_level(struct mddev *mddev, char *page)
5991 {
5992 struct r5conf *conf = mddev->private;
5993 if (conf)
5994 return sprintf(page, "%d\n", conf->rmw_level);
5995 else
5996 return 0;
5997 }
5998
5999 static ssize_t
6000 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6001 {
6002 struct r5conf *conf = mddev->private;
6003 unsigned long new;
6004
6005 if (!conf)
6006 return -ENODEV;
6007
6008 if (len >= PAGE_SIZE)
6009 return -EINVAL;
6010
6011 if (kstrtoul(page, 10, &new))
6012 return -EINVAL;
6013
6014 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6015 return -EINVAL;
6016
6017 if (new != PARITY_DISABLE_RMW &&
6018 new != PARITY_ENABLE_RMW &&
6019 new != PARITY_PREFER_RMW)
6020 return -EINVAL;
6021
6022 conf->rmw_level = new;
6023 return len;
6024 }
6025
6026 static struct md_sysfs_entry
6027 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6028 raid5_show_rmw_level,
6029 raid5_store_rmw_level);
6030
6031
6032 static ssize_t
6033 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6034 {
6035 struct r5conf *conf;
6036 int ret = 0;
6037 spin_lock(&mddev->lock);
6038 conf = mddev->private;
6039 if (conf)
6040 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6041 spin_unlock(&mddev->lock);
6042 return ret;
6043 }
6044
6045 static ssize_t
6046 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6047 {
6048 struct r5conf *conf;
6049 unsigned long new;
6050 int err;
6051
6052 if (len >= PAGE_SIZE)
6053 return -EINVAL;
6054 if (kstrtoul(page, 10, &new))
6055 return -EINVAL;
6056
6057 err = mddev_lock(mddev);
6058 if (err)
6059 return err;
6060 conf = mddev->private;
6061 if (!conf)
6062 err = -ENODEV;
6063 else if (new > conf->min_nr_stripes)
6064 err = -EINVAL;
6065 else
6066 conf->bypass_threshold = new;
6067 mddev_unlock(mddev);
6068 return err ?: len;
6069 }
6070
6071 static struct md_sysfs_entry
6072 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6073 S_IRUGO | S_IWUSR,
6074 raid5_show_preread_threshold,
6075 raid5_store_preread_threshold);
6076
6077 static ssize_t
6078 raid5_show_skip_copy(struct mddev *mddev, char *page)
6079 {
6080 struct r5conf *conf;
6081 int ret = 0;
6082 spin_lock(&mddev->lock);
6083 conf = mddev->private;
6084 if (conf)
6085 ret = sprintf(page, "%d\n", conf->skip_copy);
6086 spin_unlock(&mddev->lock);
6087 return ret;
6088 }
6089
6090 static ssize_t
6091 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6092 {
6093 struct r5conf *conf;
6094 unsigned long new;
6095 int err;
6096
6097 if (len >= PAGE_SIZE)
6098 return -EINVAL;
6099 if (kstrtoul(page, 10, &new))
6100 return -EINVAL;
6101 new = !!new;
6102
6103 err = mddev_lock(mddev);
6104 if (err)
6105 return err;
6106 conf = mddev->private;
6107 if (!conf)
6108 err = -ENODEV;
6109 else if (new != conf->skip_copy) {
6110 mddev_suspend(mddev);
6111 conf->skip_copy = new;
6112 if (new)
6113 mddev->queue->backing_dev_info.capabilities |=
6114 BDI_CAP_STABLE_WRITES;
6115 else
6116 mddev->queue->backing_dev_info.capabilities &=
6117 ~BDI_CAP_STABLE_WRITES;
6118 mddev_resume(mddev);
6119 }
6120 mddev_unlock(mddev);
6121 return err ?: len;
6122 }
6123
6124 static struct md_sysfs_entry
6125 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6126 raid5_show_skip_copy,
6127 raid5_store_skip_copy);
6128
6129 static ssize_t
6130 stripe_cache_active_show(struct mddev *mddev, char *page)
6131 {
6132 struct r5conf *conf = mddev->private;
6133 if (conf)
6134 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6135 else
6136 return 0;
6137 }
6138
6139 static struct md_sysfs_entry
6140 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6141
6142 static ssize_t
6143 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6144 {
6145 struct r5conf *conf;
6146 int ret = 0;
6147 spin_lock(&mddev->lock);
6148 conf = mddev->private;
6149 if (conf)
6150 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6151 spin_unlock(&mddev->lock);
6152 return ret;
6153 }
6154
6155 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6156 int *group_cnt,
6157 int *worker_cnt_per_group,
6158 struct r5worker_group **worker_groups);
6159 static ssize_t
6160 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6161 {
6162 struct r5conf *conf;
6163 unsigned long new;
6164 int err;
6165 struct r5worker_group *new_groups, *old_groups;
6166 int group_cnt, worker_cnt_per_group;
6167
6168 if (len >= PAGE_SIZE)
6169 return -EINVAL;
6170 if (kstrtoul(page, 10, &new))
6171 return -EINVAL;
6172
6173 err = mddev_lock(mddev);
6174 if (err)
6175 return err;
6176 conf = mddev->private;
6177 if (!conf)
6178 err = -ENODEV;
6179 else if (new != conf->worker_cnt_per_group) {
6180 mddev_suspend(mddev);
6181
6182 old_groups = conf->worker_groups;
6183 if (old_groups)
6184 flush_workqueue(raid5_wq);
6185
6186 err = alloc_thread_groups(conf, new,
6187 &group_cnt, &worker_cnt_per_group,
6188 &new_groups);
6189 if (!err) {
6190 spin_lock_irq(&conf->device_lock);
6191 conf->group_cnt = group_cnt;
6192 conf->worker_cnt_per_group = worker_cnt_per_group;
6193 conf->worker_groups = new_groups;
6194 spin_unlock_irq(&conf->device_lock);
6195
6196 if (old_groups)
6197 kfree(old_groups[0].workers);
6198 kfree(old_groups);
6199 }
6200 mddev_resume(mddev);
6201 }
6202 mddev_unlock(mddev);
6203
6204 return err ?: len;
6205 }
6206
6207 static struct md_sysfs_entry
6208 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6209 raid5_show_group_thread_cnt,
6210 raid5_store_group_thread_cnt);
6211
6212 static struct attribute *raid5_attrs[] = {
6213 &raid5_stripecache_size.attr,
6214 &raid5_stripecache_active.attr,
6215 &raid5_preread_bypass_threshold.attr,
6216 &raid5_group_thread_cnt.attr,
6217 &raid5_skip_copy.attr,
6218 &raid5_rmw_level.attr,
6219 NULL,
6220 };
6221 static struct attribute_group raid5_attrs_group = {
6222 .name = NULL,
6223 .attrs = raid5_attrs,
6224 };
6225
6226 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6227 int *group_cnt,
6228 int *worker_cnt_per_group,
6229 struct r5worker_group **worker_groups)
6230 {
6231 int i, j, k;
6232 ssize_t size;
6233 struct r5worker *workers;
6234
6235 *worker_cnt_per_group = cnt;
6236 if (cnt == 0) {
6237 *group_cnt = 0;
6238 *worker_groups = NULL;
6239 return 0;
6240 }
6241 *group_cnt = num_possible_nodes();
6242 size = sizeof(struct r5worker) * cnt;
6243 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6244 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6245 *group_cnt, GFP_NOIO);
6246 if (!*worker_groups || !workers) {
6247 kfree(workers);
6248 kfree(*worker_groups);
6249 return -ENOMEM;
6250 }
6251
6252 for (i = 0; i < *group_cnt; i++) {
6253 struct r5worker_group *group;
6254
6255 group = &(*worker_groups)[i];
6256 INIT_LIST_HEAD(&group->handle_list);
6257 group->conf = conf;
6258 group->workers = workers + i * cnt;
6259
6260 for (j = 0; j < cnt; j++) {
6261 struct r5worker *worker = group->workers + j;
6262 worker->group = group;
6263 INIT_WORK(&worker->work, raid5_do_work);
6264
6265 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6266 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6267 }
6268 }
6269
6270 return 0;
6271 }
6272
6273 static void free_thread_groups(struct r5conf *conf)
6274 {
6275 if (conf->worker_groups)
6276 kfree(conf->worker_groups[0].workers);
6277 kfree(conf->worker_groups);
6278 conf->worker_groups = NULL;
6279 }
6280
6281 static sector_t
6282 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6283 {
6284 struct r5conf *conf = mddev->private;
6285
6286 if (!sectors)
6287 sectors = mddev->dev_sectors;
6288 if (!raid_disks)
6289 /* size is defined by the smallest of previous and new size */
6290 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6291
6292 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6293 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6294 return sectors * (raid_disks - conf->max_degraded);
6295 }
6296
6297 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6298 {
6299 safe_put_page(percpu->spare_page);
6300 if (percpu->scribble)
6301 flex_array_free(percpu->scribble);
6302 percpu->spare_page = NULL;
6303 percpu->scribble = NULL;
6304 }
6305
6306 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6307 {
6308 if (conf->level == 6 && !percpu->spare_page)
6309 percpu->spare_page = alloc_page(GFP_KERNEL);
6310 if (!percpu->scribble)
6311 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6312 conf->previous_raid_disks),
6313 max(conf->chunk_sectors,
6314 conf->prev_chunk_sectors)
6315 / STRIPE_SECTORS,
6316 GFP_KERNEL);
6317
6318 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6319 free_scratch_buffer(conf, percpu);
6320 return -ENOMEM;
6321 }
6322
6323 return 0;
6324 }
6325
6326 static void raid5_free_percpu(struct r5conf *conf)
6327 {
6328 unsigned long cpu;
6329
6330 if (!conf->percpu)
6331 return;
6332
6333 #ifdef CONFIG_HOTPLUG_CPU
6334 unregister_cpu_notifier(&conf->cpu_notify);
6335 #endif
6336
6337 get_online_cpus();
6338 for_each_possible_cpu(cpu)
6339 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6340 put_online_cpus();
6341
6342 free_percpu(conf->percpu);
6343 }
6344
6345 static void free_conf(struct r5conf *conf)
6346 {
6347 if (conf->log)
6348 r5l_exit_log(conf->log);
6349 if (conf->shrinker.seeks)
6350 unregister_shrinker(&conf->shrinker);
6351
6352 free_thread_groups(conf);
6353 shrink_stripes(conf);
6354 raid5_free_percpu(conf);
6355 kfree(conf->disks);
6356 kfree(conf->stripe_hashtbl);
6357 kfree(conf);
6358 }
6359
6360 #ifdef CONFIG_HOTPLUG_CPU
6361 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6362 void *hcpu)
6363 {
6364 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6365 long cpu = (long)hcpu;
6366 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6367
6368 switch (action) {
6369 case CPU_UP_PREPARE:
6370 case CPU_UP_PREPARE_FROZEN:
6371 if (alloc_scratch_buffer(conf, percpu)) {
6372 pr_err("%s: failed memory allocation for cpu%ld\n",
6373 __func__, cpu);
6374 return notifier_from_errno(-ENOMEM);
6375 }
6376 break;
6377 case CPU_DEAD:
6378 case CPU_DEAD_FROZEN:
6379 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6380 break;
6381 default:
6382 break;
6383 }
6384 return NOTIFY_OK;
6385 }
6386 #endif
6387
6388 static int raid5_alloc_percpu(struct r5conf *conf)
6389 {
6390 unsigned long cpu;
6391 int err = 0;
6392
6393 conf->percpu = alloc_percpu(struct raid5_percpu);
6394 if (!conf->percpu)
6395 return -ENOMEM;
6396
6397 #ifdef CONFIG_HOTPLUG_CPU
6398 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6399 conf->cpu_notify.priority = 0;
6400 err = register_cpu_notifier(&conf->cpu_notify);
6401 if (err)
6402 return err;
6403 #endif
6404
6405 get_online_cpus();
6406 for_each_present_cpu(cpu) {
6407 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6408 if (err) {
6409 pr_err("%s: failed memory allocation for cpu%ld\n",
6410 __func__, cpu);
6411 break;
6412 }
6413 }
6414 put_online_cpus();
6415
6416 return err;
6417 }
6418
6419 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6420 struct shrink_control *sc)
6421 {
6422 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6423 unsigned long ret = SHRINK_STOP;
6424
6425 if (mutex_trylock(&conf->cache_size_mutex)) {
6426 ret= 0;
6427 while (ret < sc->nr_to_scan &&
6428 conf->max_nr_stripes > conf->min_nr_stripes) {
6429 if (drop_one_stripe(conf) == 0) {
6430 ret = SHRINK_STOP;
6431 break;
6432 }
6433 ret++;
6434 }
6435 mutex_unlock(&conf->cache_size_mutex);
6436 }
6437 return ret;
6438 }
6439
6440 static unsigned long raid5_cache_count(struct shrinker *shrink,
6441 struct shrink_control *sc)
6442 {
6443 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6444
6445 if (conf->max_nr_stripes < conf->min_nr_stripes)
6446 /* unlikely, but not impossible */
6447 return 0;
6448 return conf->max_nr_stripes - conf->min_nr_stripes;
6449 }
6450
6451 static struct r5conf *setup_conf(struct mddev *mddev)
6452 {
6453 struct r5conf *conf;
6454 int raid_disk, memory, max_disks;
6455 struct md_rdev *rdev;
6456 struct disk_info *disk;
6457 char pers_name[6];
6458 int i;
6459 int group_cnt, worker_cnt_per_group;
6460 struct r5worker_group *new_group;
6461
6462 if (mddev->new_level != 5
6463 && mddev->new_level != 4
6464 && mddev->new_level != 6) {
6465 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6466 mdname(mddev), mddev->new_level);
6467 return ERR_PTR(-EIO);
6468 }
6469 if ((mddev->new_level == 5
6470 && !algorithm_valid_raid5(mddev->new_layout)) ||
6471 (mddev->new_level == 6
6472 && !algorithm_valid_raid6(mddev->new_layout))) {
6473 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6474 mdname(mddev), mddev->new_layout);
6475 return ERR_PTR(-EIO);
6476 }
6477 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6478 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6479 mdname(mddev), mddev->raid_disks);
6480 return ERR_PTR(-EINVAL);
6481 }
6482
6483 if (!mddev->new_chunk_sectors ||
6484 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6485 !is_power_of_2(mddev->new_chunk_sectors)) {
6486 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6487 mdname(mddev), mddev->new_chunk_sectors << 9);
6488 return ERR_PTR(-EINVAL);
6489 }
6490
6491 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6492 if (conf == NULL)
6493 goto abort;
6494 /* Don't enable multi-threading by default*/
6495 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6496 &new_group)) {
6497 conf->group_cnt = group_cnt;
6498 conf->worker_cnt_per_group = worker_cnt_per_group;
6499 conf->worker_groups = new_group;
6500 } else
6501 goto abort;
6502 spin_lock_init(&conf->device_lock);
6503 seqcount_init(&conf->gen_lock);
6504 mutex_init(&conf->cache_size_mutex);
6505 init_waitqueue_head(&conf->wait_for_quiescent);
6506 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6507 init_waitqueue_head(&conf->wait_for_stripe[i]);
6508 }
6509 init_waitqueue_head(&conf->wait_for_overlap);
6510 INIT_LIST_HEAD(&conf->handle_list);
6511 INIT_LIST_HEAD(&conf->hold_list);
6512 INIT_LIST_HEAD(&conf->delayed_list);
6513 INIT_LIST_HEAD(&conf->bitmap_list);
6514 bio_list_init(&conf->return_bi);
6515 init_llist_head(&conf->released_stripes);
6516 atomic_set(&conf->active_stripes, 0);
6517 atomic_set(&conf->preread_active_stripes, 0);
6518 atomic_set(&conf->active_aligned_reads, 0);
6519 conf->bypass_threshold = BYPASS_THRESHOLD;
6520 conf->recovery_disabled = mddev->recovery_disabled - 1;
6521
6522 conf->raid_disks = mddev->raid_disks;
6523 if (mddev->reshape_position == MaxSector)
6524 conf->previous_raid_disks = mddev->raid_disks;
6525 else
6526 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6527 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6528
6529 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6530 GFP_KERNEL);
6531 if (!conf->disks)
6532 goto abort;
6533
6534 conf->mddev = mddev;
6535
6536 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6537 goto abort;
6538
6539 /* We init hash_locks[0] separately to that it can be used
6540 * as the reference lock in the spin_lock_nest_lock() call
6541 * in lock_all_device_hash_locks_irq in order to convince
6542 * lockdep that we know what we are doing.
6543 */
6544 spin_lock_init(conf->hash_locks);
6545 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6546 spin_lock_init(conf->hash_locks + i);
6547
6548 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6549 INIT_LIST_HEAD(conf->inactive_list + i);
6550
6551 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6552 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6553
6554 conf->level = mddev->new_level;
6555 conf->chunk_sectors = mddev->new_chunk_sectors;
6556 if (raid5_alloc_percpu(conf) != 0)
6557 goto abort;
6558
6559 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6560
6561 rdev_for_each(rdev, mddev) {
6562 raid_disk = rdev->raid_disk;
6563 if (raid_disk >= max_disks
6564 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6565 continue;
6566 disk = conf->disks + raid_disk;
6567
6568 if (test_bit(Replacement, &rdev->flags)) {
6569 if (disk->replacement)
6570 goto abort;
6571 disk->replacement = rdev;
6572 } else {
6573 if (disk->rdev)
6574 goto abort;
6575 disk->rdev = rdev;
6576 }
6577
6578 if (test_bit(In_sync, &rdev->flags)) {
6579 char b[BDEVNAME_SIZE];
6580 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6581 " disk %d\n",
6582 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6583 } else if (rdev->saved_raid_disk != raid_disk)
6584 /* Cannot rely on bitmap to complete recovery */
6585 conf->fullsync = 1;
6586 }
6587
6588 conf->level = mddev->new_level;
6589 if (conf->level == 6) {
6590 conf->max_degraded = 2;
6591 if (raid6_call.xor_syndrome)
6592 conf->rmw_level = PARITY_ENABLE_RMW;
6593 else
6594 conf->rmw_level = PARITY_DISABLE_RMW;
6595 } else {
6596 conf->max_degraded = 1;
6597 conf->rmw_level = PARITY_ENABLE_RMW;
6598 }
6599 conf->algorithm = mddev->new_layout;
6600 conf->reshape_progress = mddev->reshape_position;
6601 if (conf->reshape_progress != MaxSector) {
6602 conf->prev_chunk_sectors = mddev->chunk_sectors;
6603 conf->prev_algo = mddev->layout;
6604 } else {
6605 conf->prev_chunk_sectors = conf->chunk_sectors;
6606 conf->prev_algo = conf->algorithm;
6607 }
6608
6609 conf->min_nr_stripes = NR_STRIPES;
6610 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6611 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6612 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6613 if (grow_stripes(conf, conf->min_nr_stripes)) {
6614 printk(KERN_ERR
6615 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6616 mdname(mddev), memory);
6617 goto abort;
6618 } else
6619 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6620 mdname(mddev), memory);
6621 /*
6622 * Losing a stripe head costs more than the time to refill it,
6623 * it reduces the queue depth and so can hurt throughput.
6624 * So set it rather large, scaled by number of devices.
6625 */
6626 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6627 conf->shrinker.scan_objects = raid5_cache_scan;
6628 conf->shrinker.count_objects = raid5_cache_count;
6629 conf->shrinker.batch = 128;
6630 conf->shrinker.flags = 0;
6631 register_shrinker(&conf->shrinker);
6632
6633 sprintf(pers_name, "raid%d", mddev->new_level);
6634 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6635 if (!conf->thread) {
6636 printk(KERN_ERR
6637 "md/raid:%s: couldn't allocate thread.\n",
6638 mdname(mddev));
6639 goto abort;
6640 }
6641
6642 return conf;
6643
6644 abort:
6645 if (conf) {
6646 free_conf(conf);
6647 return ERR_PTR(-EIO);
6648 } else
6649 return ERR_PTR(-ENOMEM);
6650 }
6651
6652 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6653 {
6654 switch (algo) {
6655 case ALGORITHM_PARITY_0:
6656 if (raid_disk < max_degraded)
6657 return 1;
6658 break;
6659 case ALGORITHM_PARITY_N:
6660 if (raid_disk >= raid_disks - max_degraded)
6661 return 1;
6662 break;
6663 case ALGORITHM_PARITY_0_6:
6664 if (raid_disk == 0 ||
6665 raid_disk == raid_disks - 1)
6666 return 1;
6667 break;
6668 case ALGORITHM_LEFT_ASYMMETRIC_6:
6669 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6670 case ALGORITHM_LEFT_SYMMETRIC_6:
6671 case ALGORITHM_RIGHT_SYMMETRIC_6:
6672 if (raid_disk == raid_disks - 1)
6673 return 1;
6674 }
6675 return 0;
6676 }
6677
6678 static int raid5_run(struct mddev *mddev)
6679 {
6680 struct r5conf *conf;
6681 int working_disks = 0;
6682 int dirty_parity_disks = 0;
6683 struct md_rdev *rdev;
6684 struct md_rdev *journal_dev = NULL;
6685 sector_t reshape_offset = 0;
6686 int i;
6687 long long min_offset_diff = 0;
6688 int first = 1;
6689
6690 if (mddev->recovery_cp != MaxSector)
6691 printk(KERN_NOTICE "md/raid:%s: not clean"
6692 " -- starting background reconstruction\n",
6693 mdname(mddev));
6694
6695 rdev_for_each(rdev, mddev) {
6696 long long diff;
6697
6698 if (test_bit(Journal, &rdev->flags)) {
6699 journal_dev = rdev;
6700 continue;
6701 }
6702 if (rdev->raid_disk < 0)
6703 continue;
6704 diff = (rdev->new_data_offset - rdev->data_offset);
6705 if (first) {
6706 min_offset_diff = diff;
6707 first = 0;
6708 } else if (mddev->reshape_backwards &&
6709 diff < min_offset_diff)
6710 min_offset_diff = diff;
6711 else if (!mddev->reshape_backwards &&
6712 diff > min_offset_diff)
6713 min_offset_diff = diff;
6714 }
6715
6716 if (mddev->reshape_position != MaxSector) {
6717 /* Check that we can continue the reshape.
6718 * Difficulties arise if the stripe we would write to
6719 * next is at or after the stripe we would read from next.
6720 * For a reshape that changes the number of devices, this
6721 * is only possible for a very short time, and mdadm makes
6722 * sure that time appears to have past before assembling
6723 * the array. So we fail if that time hasn't passed.
6724 * For a reshape that keeps the number of devices the same
6725 * mdadm must be monitoring the reshape can keeping the
6726 * critical areas read-only and backed up. It will start
6727 * the array in read-only mode, so we check for that.
6728 */
6729 sector_t here_new, here_old;
6730 int old_disks;
6731 int max_degraded = (mddev->level == 6 ? 2 : 1);
6732 int chunk_sectors;
6733 int new_data_disks;
6734
6735 if (journal_dev) {
6736 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6737 mdname(mddev));
6738 return -EINVAL;
6739 }
6740
6741 if (mddev->new_level != mddev->level) {
6742 printk(KERN_ERR "md/raid:%s: unsupported reshape "
6743 "required - aborting.\n",
6744 mdname(mddev));
6745 return -EINVAL;
6746 }
6747 old_disks = mddev->raid_disks - mddev->delta_disks;
6748 /* reshape_position must be on a new-stripe boundary, and one
6749 * further up in new geometry must map after here in old
6750 * geometry.
6751 * If the chunk sizes are different, then as we perform reshape
6752 * in units of the largest of the two, reshape_position needs
6753 * be a multiple of the largest chunk size times new data disks.
6754 */
6755 here_new = mddev->reshape_position;
6756 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6757 new_data_disks = mddev->raid_disks - max_degraded;
6758 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6759 printk(KERN_ERR "md/raid:%s: reshape_position not "
6760 "on a stripe boundary\n", mdname(mddev));
6761 return -EINVAL;
6762 }
6763 reshape_offset = here_new * chunk_sectors;
6764 /* here_new is the stripe we will write to */
6765 here_old = mddev->reshape_position;
6766 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6767 /* here_old is the first stripe that we might need to read
6768 * from */
6769 if (mddev->delta_disks == 0) {
6770 /* We cannot be sure it is safe to start an in-place
6771 * reshape. It is only safe if user-space is monitoring
6772 * and taking constant backups.
6773 * mdadm always starts a situation like this in
6774 * readonly mode so it can take control before
6775 * allowing any writes. So just check for that.
6776 */
6777 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6778 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6779 /* not really in-place - so OK */;
6780 else if (mddev->ro == 0) {
6781 printk(KERN_ERR "md/raid:%s: in-place reshape "
6782 "must be started in read-only mode "
6783 "- aborting\n",
6784 mdname(mddev));
6785 return -EINVAL;
6786 }
6787 } else if (mddev->reshape_backwards
6788 ? (here_new * chunk_sectors + min_offset_diff <=
6789 here_old * chunk_sectors)
6790 : (here_new * chunk_sectors >=
6791 here_old * chunk_sectors + (-min_offset_diff))) {
6792 /* Reading from the same stripe as writing to - bad */
6793 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6794 "auto-recovery - aborting.\n",
6795 mdname(mddev));
6796 return -EINVAL;
6797 }
6798 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6799 mdname(mddev));
6800 /* OK, we should be able to continue; */
6801 } else {
6802 BUG_ON(mddev->level != mddev->new_level);
6803 BUG_ON(mddev->layout != mddev->new_layout);
6804 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6805 BUG_ON(mddev->delta_disks != 0);
6806 }
6807
6808 if (mddev->private == NULL)
6809 conf = setup_conf(mddev);
6810 else
6811 conf = mddev->private;
6812
6813 if (IS_ERR(conf))
6814 return PTR_ERR(conf);
6815
6816 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6817 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6818 mdname(mddev));
6819 mddev->ro = 1;
6820 set_disk_ro(mddev->gendisk, 1);
6821 }
6822
6823 conf->min_offset_diff = min_offset_diff;
6824 mddev->thread = conf->thread;
6825 conf->thread = NULL;
6826 mddev->private = conf;
6827
6828 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6829 i++) {
6830 rdev = conf->disks[i].rdev;
6831 if (!rdev && conf->disks[i].replacement) {
6832 /* The replacement is all we have yet */
6833 rdev = conf->disks[i].replacement;
6834 conf->disks[i].replacement = NULL;
6835 clear_bit(Replacement, &rdev->flags);
6836 conf->disks[i].rdev = rdev;
6837 }
6838 if (!rdev)
6839 continue;
6840 if (conf->disks[i].replacement &&
6841 conf->reshape_progress != MaxSector) {
6842 /* replacements and reshape simply do not mix. */
6843 printk(KERN_ERR "md: cannot handle concurrent "
6844 "replacement and reshape.\n");
6845 goto abort;
6846 }
6847 if (test_bit(In_sync, &rdev->flags)) {
6848 working_disks++;
6849 continue;
6850 }
6851 /* This disc is not fully in-sync. However if it
6852 * just stored parity (beyond the recovery_offset),
6853 * when we don't need to be concerned about the
6854 * array being dirty.
6855 * When reshape goes 'backwards', we never have
6856 * partially completed devices, so we only need
6857 * to worry about reshape going forwards.
6858 */
6859 /* Hack because v0.91 doesn't store recovery_offset properly. */
6860 if (mddev->major_version == 0 &&
6861 mddev->minor_version > 90)
6862 rdev->recovery_offset = reshape_offset;
6863
6864 if (rdev->recovery_offset < reshape_offset) {
6865 /* We need to check old and new layout */
6866 if (!only_parity(rdev->raid_disk,
6867 conf->algorithm,
6868 conf->raid_disks,
6869 conf->max_degraded))
6870 continue;
6871 }
6872 if (!only_parity(rdev->raid_disk,
6873 conf->prev_algo,
6874 conf->previous_raid_disks,
6875 conf->max_degraded))
6876 continue;
6877 dirty_parity_disks++;
6878 }
6879
6880 /*
6881 * 0 for a fully functional array, 1 or 2 for a degraded array.
6882 */
6883 mddev->degraded = calc_degraded(conf);
6884
6885 if (has_failed(conf)) {
6886 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6887 " (%d/%d failed)\n",
6888 mdname(mddev), mddev->degraded, conf->raid_disks);
6889 goto abort;
6890 }
6891
6892 /* device size must be a multiple of chunk size */
6893 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6894 mddev->resync_max_sectors = mddev->dev_sectors;
6895
6896 if (mddev->degraded > dirty_parity_disks &&
6897 mddev->recovery_cp != MaxSector) {
6898 if (mddev->ok_start_degraded)
6899 printk(KERN_WARNING
6900 "md/raid:%s: starting dirty degraded array"
6901 " - data corruption possible.\n",
6902 mdname(mddev));
6903 else {
6904 printk(KERN_ERR
6905 "md/raid:%s: cannot start dirty degraded array.\n",
6906 mdname(mddev));
6907 goto abort;
6908 }
6909 }
6910
6911 if (mddev->degraded == 0)
6912 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6913 " devices, algorithm %d\n", mdname(mddev), conf->level,
6914 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6915 mddev->new_layout);
6916 else
6917 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6918 " out of %d devices, algorithm %d\n",
6919 mdname(mddev), conf->level,
6920 mddev->raid_disks - mddev->degraded,
6921 mddev->raid_disks, mddev->new_layout);
6922
6923 print_raid5_conf(conf);
6924
6925 if (conf->reshape_progress != MaxSector) {
6926 conf->reshape_safe = conf->reshape_progress;
6927 atomic_set(&conf->reshape_stripes, 0);
6928 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6929 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6930 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6931 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6932 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6933 "reshape");
6934 }
6935
6936 /* Ok, everything is just fine now */
6937 if (mddev->to_remove == &raid5_attrs_group)
6938 mddev->to_remove = NULL;
6939 else if (mddev->kobj.sd &&
6940 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6941 printk(KERN_WARNING
6942 "raid5: failed to create sysfs attributes for %s\n",
6943 mdname(mddev));
6944 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6945
6946 if (mddev->queue) {
6947 int chunk_size;
6948 bool discard_supported = true;
6949 /* read-ahead size must cover two whole stripes, which
6950 * is 2 * (datadisks) * chunksize where 'n' is the
6951 * number of raid devices
6952 */
6953 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6954 int stripe = data_disks *
6955 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6956 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6957 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6958
6959 chunk_size = mddev->chunk_sectors << 9;
6960 blk_queue_io_min(mddev->queue, chunk_size);
6961 blk_queue_io_opt(mddev->queue, chunk_size *
6962 (conf->raid_disks - conf->max_degraded));
6963 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6964 /*
6965 * We can only discard a whole stripe. It doesn't make sense to
6966 * discard data disk but write parity disk
6967 */
6968 stripe = stripe * PAGE_SIZE;
6969 /* Round up to power of 2, as discard handling
6970 * currently assumes that */
6971 while ((stripe-1) & stripe)
6972 stripe = (stripe | (stripe-1)) + 1;
6973 mddev->queue->limits.discard_alignment = stripe;
6974 mddev->queue->limits.discard_granularity = stripe;
6975 /*
6976 * unaligned part of discard request will be ignored, so can't
6977 * guarantee discard_zeroes_data
6978 */
6979 mddev->queue->limits.discard_zeroes_data = 0;
6980
6981 blk_queue_max_write_same_sectors(mddev->queue, 0);
6982
6983 rdev_for_each(rdev, mddev) {
6984 disk_stack_limits(mddev->gendisk, rdev->bdev,
6985 rdev->data_offset << 9);
6986 disk_stack_limits(mddev->gendisk, rdev->bdev,
6987 rdev->new_data_offset << 9);
6988 /*
6989 * discard_zeroes_data is required, otherwise data
6990 * could be lost. Consider a scenario: discard a stripe
6991 * (the stripe could be inconsistent if
6992 * discard_zeroes_data is 0); write one disk of the
6993 * stripe (the stripe could be inconsistent again
6994 * depending on which disks are used to calculate
6995 * parity); the disk is broken; The stripe data of this
6996 * disk is lost.
6997 */
6998 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6999 !bdev_get_queue(rdev->bdev)->
7000 limits.discard_zeroes_data)
7001 discard_supported = false;
7002 /* Unfortunately, discard_zeroes_data is not currently
7003 * a guarantee - just a hint. So we only allow DISCARD
7004 * if the sysadmin has confirmed that only safe devices
7005 * are in use by setting a module parameter.
7006 */
7007 if (!devices_handle_discard_safely) {
7008 if (discard_supported) {
7009 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7010 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7011 }
7012 discard_supported = false;
7013 }
7014 }
7015
7016 if (discard_supported &&
7017 mddev->queue->limits.max_discard_sectors >= stripe &&
7018 mddev->queue->limits.discard_granularity >= stripe)
7019 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7020 mddev->queue);
7021 else
7022 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7023 mddev->queue);
7024 }
7025
7026 if (journal_dev) {
7027 char b[BDEVNAME_SIZE];
7028
7029 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7030 mdname(mddev), bdevname(journal_dev->bdev, b));
7031 r5l_init_log(conf, journal_dev);
7032 }
7033
7034 return 0;
7035 abort:
7036 md_unregister_thread(&mddev->thread);
7037 print_raid5_conf(conf);
7038 free_conf(conf);
7039 mddev->private = NULL;
7040 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7041 return -EIO;
7042 }
7043
7044 static void raid5_free(struct mddev *mddev, void *priv)
7045 {
7046 struct r5conf *conf = priv;
7047
7048 free_conf(conf);
7049 mddev->to_remove = &raid5_attrs_group;
7050 }
7051
7052 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7053 {
7054 struct r5conf *conf = mddev->private;
7055 int i;
7056
7057 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7058 conf->chunk_sectors / 2, mddev->layout);
7059 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7060 for (i = 0; i < conf->raid_disks; i++)
7061 seq_printf (seq, "%s",
7062 conf->disks[i].rdev &&
7063 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7064 seq_printf (seq, "]");
7065 }
7066
7067 static void print_raid5_conf (struct r5conf *conf)
7068 {
7069 int i;
7070 struct disk_info *tmp;
7071
7072 printk(KERN_DEBUG "RAID conf printout:\n");
7073 if (!conf) {
7074 printk("(conf==NULL)\n");
7075 return;
7076 }
7077 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7078 conf->raid_disks,
7079 conf->raid_disks - conf->mddev->degraded);
7080
7081 for (i = 0; i < conf->raid_disks; i++) {
7082 char b[BDEVNAME_SIZE];
7083 tmp = conf->disks + i;
7084 if (tmp->rdev)
7085 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7086 i, !test_bit(Faulty, &tmp->rdev->flags),
7087 bdevname(tmp->rdev->bdev, b));
7088 }
7089 }
7090
7091 static int raid5_spare_active(struct mddev *mddev)
7092 {
7093 int i;
7094 struct r5conf *conf = mddev->private;
7095 struct disk_info *tmp;
7096 int count = 0;
7097 unsigned long flags;
7098
7099 for (i = 0; i < conf->raid_disks; i++) {
7100 tmp = conf->disks + i;
7101 if (tmp->replacement
7102 && tmp->replacement->recovery_offset == MaxSector
7103 && !test_bit(Faulty, &tmp->replacement->flags)
7104 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7105 /* Replacement has just become active. */
7106 if (!tmp->rdev
7107 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7108 count++;
7109 if (tmp->rdev) {
7110 /* Replaced device not technically faulty,
7111 * but we need to be sure it gets removed
7112 * and never re-added.
7113 */
7114 set_bit(Faulty, &tmp->rdev->flags);
7115 sysfs_notify_dirent_safe(
7116 tmp->rdev->sysfs_state);
7117 }
7118 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7119 } else if (tmp->rdev
7120 && tmp->rdev->recovery_offset == MaxSector
7121 && !test_bit(Faulty, &tmp->rdev->flags)
7122 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7123 count++;
7124 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7125 }
7126 }
7127 spin_lock_irqsave(&conf->device_lock, flags);
7128 mddev->degraded = calc_degraded(conf);
7129 spin_unlock_irqrestore(&conf->device_lock, flags);
7130 print_raid5_conf(conf);
7131 return count;
7132 }
7133
7134 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7135 {
7136 struct r5conf *conf = mddev->private;
7137 int err = 0;
7138 int number = rdev->raid_disk;
7139 struct md_rdev **rdevp;
7140 struct disk_info *p = conf->disks + number;
7141
7142 print_raid5_conf(conf);
7143 if (test_bit(Journal, &rdev->flags) && conf->log) {
7144 struct r5l_log *log;
7145 /*
7146 * we can't wait pending write here, as this is called in
7147 * raid5d, wait will deadlock.
7148 */
7149 if (atomic_read(&mddev->writes_pending))
7150 return -EBUSY;
7151 log = conf->log;
7152 conf->log = NULL;
7153 synchronize_rcu();
7154 r5l_exit_log(log);
7155 return 0;
7156 }
7157 if (rdev == p->rdev)
7158 rdevp = &p->rdev;
7159 else if (rdev == p->replacement)
7160 rdevp = &p->replacement;
7161 else
7162 return 0;
7163
7164 if (number >= conf->raid_disks &&
7165 conf->reshape_progress == MaxSector)
7166 clear_bit(In_sync, &rdev->flags);
7167
7168 if (test_bit(In_sync, &rdev->flags) ||
7169 atomic_read(&rdev->nr_pending)) {
7170 err = -EBUSY;
7171 goto abort;
7172 }
7173 /* Only remove non-faulty devices if recovery
7174 * isn't possible.
7175 */
7176 if (!test_bit(Faulty, &rdev->flags) &&
7177 mddev->recovery_disabled != conf->recovery_disabled &&
7178 !has_failed(conf) &&
7179 (!p->replacement || p->replacement == rdev) &&
7180 number < conf->raid_disks) {
7181 err = -EBUSY;
7182 goto abort;
7183 }
7184 *rdevp = NULL;
7185 synchronize_rcu();
7186 if (atomic_read(&rdev->nr_pending)) {
7187 /* lost the race, try later */
7188 err = -EBUSY;
7189 *rdevp = rdev;
7190 } else if (p->replacement) {
7191 /* We must have just cleared 'rdev' */
7192 p->rdev = p->replacement;
7193 clear_bit(Replacement, &p->replacement->flags);
7194 smp_mb(); /* Make sure other CPUs may see both as identical
7195 * but will never see neither - if they are careful
7196 */
7197 p->replacement = NULL;
7198 clear_bit(WantReplacement, &rdev->flags);
7199 } else
7200 /* We might have just removed the Replacement as faulty-
7201 * clear the bit just in case
7202 */
7203 clear_bit(WantReplacement, &rdev->flags);
7204 abort:
7205
7206 print_raid5_conf(conf);
7207 return err;
7208 }
7209
7210 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7211 {
7212 struct r5conf *conf = mddev->private;
7213 int err = -EEXIST;
7214 int disk;
7215 struct disk_info *p;
7216 int first = 0;
7217 int last = conf->raid_disks - 1;
7218
7219 if (test_bit(Journal, &rdev->flags)) {
7220 char b[BDEVNAME_SIZE];
7221 if (conf->log)
7222 return -EBUSY;
7223
7224 rdev->raid_disk = 0;
7225 /*
7226 * The array is in readonly mode if journal is missing, so no
7227 * write requests running. We should be safe
7228 */
7229 r5l_init_log(conf, rdev);
7230 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7231 mdname(mddev), bdevname(rdev->bdev, b));
7232 return 0;
7233 }
7234 if (mddev->recovery_disabled == conf->recovery_disabled)
7235 return -EBUSY;
7236
7237 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7238 /* no point adding a device */
7239 return -EINVAL;
7240
7241 if (rdev->raid_disk >= 0)
7242 first = last = rdev->raid_disk;
7243
7244 /*
7245 * find the disk ... but prefer rdev->saved_raid_disk
7246 * if possible.
7247 */
7248 if (rdev->saved_raid_disk >= 0 &&
7249 rdev->saved_raid_disk >= first &&
7250 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7251 first = rdev->saved_raid_disk;
7252
7253 for (disk = first; disk <= last; disk++) {
7254 p = conf->disks + disk;
7255 if (p->rdev == NULL) {
7256 clear_bit(In_sync, &rdev->flags);
7257 rdev->raid_disk = disk;
7258 err = 0;
7259 if (rdev->saved_raid_disk != disk)
7260 conf->fullsync = 1;
7261 rcu_assign_pointer(p->rdev, rdev);
7262 goto out;
7263 }
7264 }
7265 for (disk = first; disk <= last; disk++) {
7266 p = conf->disks + disk;
7267 if (test_bit(WantReplacement, &p->rdev->flags) &&
7268 p->replacement == NULL) {
7269 clear_bit(In_sync, &rdev->flags);
7270 set_bit(Replacement, &rdev->flags);
7271 rdev->raid_disk = disk;
7272 err = 0;
7273 conf->fullsync = 1;
7274 rcu_assign_pointer(p->replacement, rdev);
7275 break;
7276 }
7277 }
7278 out:
7279 print_raid5_conf(conf);
7280 return err;
7281 }
7282
7283 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7284 {
7285 /* no resync is happening, and there is enough space
7286 * on all devices, so we can resize.
7287 * We need to make sure resync covers any new space.
7288 * If the array is shrinking we should possibly wait until
7289 * any io in the removed space completes, but it hardly seems
7290 * worth it.
7291 */
7292 sector_t newsize;
7293 struct r5conf *conf = mddev->private;
7294
7295 if (conf->log)
7296 return -EINVAL;
7297 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7298 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7299 if (mddev->external_size &&
7300 mddev->array_sectors > newsize)
7301 return -EINVAL;
7302 if (mddev->bitmap) {
7303 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7304 if (ret)
7305 return ret;
7306 }
7307 md_set_array_sectors(mddev, newsize);
7308 set_capacity(mddev->gendisk, mddev->array_sectors);
7309 revalidate_disk(mddev->gendisk);
7310 if (sectors > mddev->dev_sectors &&
7311 mddev->recovery_cp > mddev->dev_sectors) {
7312 mddev->recovery_cp = mddev->dev_sectors;
7313 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7314 }
7315 mddev->dev_sectors = sectors;
7316 mddev->resync_max_sectors = sectors;
7317 return 0;
7318 }
7319
7320 static int check_stripe_cache(struct mddev *mddev)
7321 {
7322 /* Can only proceed if there are plenty of stripe_heads.
7323 * We need a minimum of one full stripe,, and for sensible progress
7324 * it is best to have about 4 times that.
7325 * If we require 4 times, then the default 256 4K stripe_heads will
7326 * allow for chunk sizes up to 256K, which is probably OK.
7327 * If the chunk size is greater, user-space should request more
7328 * stripe_heads first.
7329 */
7330 struct r5conf *conf = mddev->private;
7331 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7332 > conf->min_nr_stripes ||
7333 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7334 > conf->min_nr_stripes) {
7335 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7336 mdname(mddev),
7337 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7338 / STRIPE_SIZE)*4);
7339 return 0;
7340 }
7341 return 1;
7342 }
7343
7344 static int check_reshape(struct mddev *mddev)
7345 {
7346 struct r5conf *conf = mddev->private;
7347
7348 if (conf->log)
7349 return -EINVAL;
7350 if (mddev->delta_disks == 0 &&
7351 mddev->new_layout == mddev->layout &&
7352 mddev->new_chunk_sectors == mddev->chunk_sectors)
7353 return 0; /* nothing to do */
7354 if (has_failed(conf))
7355 return -EINVAL;
7356 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7357 /* We might be able to shrink, but the devices must
7358 * be made bigger first.
7359 * For raid6, 4 is the minimum size.
7360 * Otherwise 2 is the minimum
7361 */
7362 int min = 2;
7363 if (mddev->level == 6)
7364 min = 4;
7365 if (mddev->raid_disks + mddev->delta_disks < min)
7366 return -EINVAL;
7367 }
7368
7369 if (!check_stripe_cache(mddev))
7370 return -ENOSPC;
7371
7372 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7373 mddev->delta_disks > 0)
7374 if (resize_chunks(conf,
7375 conf->previous_raid_disks
7376 + max(0, mddev->delta_disks),
7377 max(mddev->new_chunk_sectors,
7378 mddev->chunk_sectors)
7379 ) < 0)
7380 return -ENOMEM;
7381 return resize_stripes(conf, (conf->previous_raid_disks
7382 + mddev->delta_disks));
7383 }
7384
7385 static int raid5_start_reshape(struct mddev *mddev)
7386 {
7387 struct r5conf *conf = mddev->private;
7388 struct md_rdev *rdev;
7389 int spares = 0;
7390 unsigned long flags;
7391
7392 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7393 return -EBUSY;
7394
7395 if (!check_stripe_cache(mddev))
7396 return -ENOSPC;
7397
7398 if (has_failed(conf))
7399 return -EINVAL;
7400
7401 rdev_for_each(rdev, mddev) {
7402 if (!test_bit(In_sync, &rdev->flags)
7403 && !test_bit(Faulty, &rdev->flags))
7404 spares++;
7405 }
7406
7407 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7408 /* Not enough devices even to make a degraded array
7409 * of that size
7410 */
7411 return -EINVAL;
7412
7413 /* Refuse to reduce size of the array. Any reductions in
7414 * array size must be through explicit setting of array_size
7415 * attribute.
7416 */
7417 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7418 < mddev->array_sectors) {
7419 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7420 "before number of disks\n", mdname(mddev));
7421 return -EINVAL;
7422 }
7423
7424 atomic_set(&conf->reshape_stripes, 0);
7425 spin_lock_irq(&conf->device_lock);
7426 write_seqcount_begin(&conf->gen_lock);
7427 conf->previous_raid_disks = conf->raid_disks;
7428 conf->raid_disks += mddev->delta_disks;
7429 conf->prev_chunk_sectors = conf->chunk_sectors;
7430 conf->chunk_sectors = mddev->new_chunk_sectors;
7431 conf->prev_algo = conf->algorithm;
7432 conf->algorithm = mddev->new_layout;
7433 conf->generation++;
7434 /* Code that selects data_offset needs to see the generation update
7435 * if reshape_progress has been set - so a memory barrier needed.
7436 */
7437 smp_mb();
7438 if (mddev->reshape_backwards)
7439 conf->reshape_progress = raid5_size(mddev, 0, 0);
7440 else
7441 conf->reshape_progress = 0;
7442 conf->reshape_safe = conf->reshape_progress;
7443 write_seqcount_end(&conf->gen_lock);
7444 spin_unlock_irq(&conf->device_lock);
7445
7446 /* Now make sure any requests that proceeded on the assumption
7447 * the reshape wasn't running - like Discard or Read - have
7448 * completed.
7449 */
7450 mddev_suspend(mddev);
7451 mddev_resume(mddev);
7452
7453 /* Add some new drives, as many as will fit.
7454 * We know there are enough to make the newly sized array work.
7455 * Don't add devices if we are reducing the number of
7456 * devices in the array. This is because it is not possible
7457 * to correctly record the "partially reconstructed" state of
7458 * such devices during the reshape and confusion could result.
7459 */
7460 if (mddev->delta_disks >= 0) {
7461 rdev_for_each(rdev, mddev)
7462 if (rdev->raid_disk < 0 &&
7463 !test_bit(Faulty, &rdev->flags)) {
7464 if (raid5_add_disk(mddev, rdev) == 0) {
7465 if (rdev->raid_disk
7466 >= conf->previous_raid_disks)
7467 set_bit(In_sync, &rdev->flags);
7468 else
7469 rdev->recovery_offset = 0;
7470
7471 if (sysfs_link_rdev(mddev, rdev))
7472 /* Failure here is OK */;
7473 }
7474 } else if (rdev->raid_disk >= conf->previous_raid_disks
7475 && !test_bit(Faulty, &rdev->flags)) {
7476 /* This is a spare that was manually added */
7477 set_bit(In_sync, &rdev->flags);
7478 }
7479
7480 /* When a reshape changes the number of devices,
7481 * ->degraded is measured against the larger of the
7482 * pre and post number of devices.
7483 */
7484 spin_lock_irqsave(&conf->device_lock, flags);
7485 mddev->degraded = calc_degraded(conf);
7486 spin_unlock_irqrestore(&conf->device_lock, flags);
7487 }
7488 mddev->raid_disks = conf->raid_disks;
7489 mddev->reshape_position = conf->reshape_progress;
7490 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7491
7492 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7493 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7494 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7495 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7496 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7497 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7498 "reshape");
7499 if (!mddev->sync_thread) {
7500 mddev->recovery = 0;
7501 spin_lock_irq(&conf->device_lock);
7502 write_seqcount_begin(&conf->gen_lock);
7503 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7504 mddev->new_chunk_sectors =
7505 conf->chunk_sectors = conf->prev_chunk_sectors;
7506 mddev->new_layout = conf->algorithm = conf->prev_algo;
7507 rdev_for_each(rdev, mddev)
7508 rdev->new_data_offset = rdev->data_offset;
7509 smp_wmb();
7510 conf->generation --;
7511 conf->reshape_progress = MaxSector;
7512 mddev->reshape_position = MaxSector;
7513 write_seqcount_end(&conf->gen_lock);
7514 spin_unlock_irq(&conf->device_lock);
7515 return -EAGAIN;
7516 }
7517 conf->reshape_checkpoint = jiffies;
7518 md_wakeup_thread(mddev->sync_thread);
7519 md_new_event(mddev);
7520 return 0;
7521 }
7522
7523 /* This is called from the reshape thread and should make any
7524 * changes needed in 'conf'
7525 */
7526 static void end_reshape(struct r5conf *conf)
7527 {
7528
7529 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7530 struct md_rdev *rdev;
7531
7532 spin_lock_irq(&conf->device_lock);
7533 conf->previous_raid_disks = conf->raid_disks;
7534 rdev_for_each(rdev, conf->mddev)
7535 rdev->data_offset = rdev->new_data_offset;
7536 smp_wmb();
7537 conf->reshape_progress = MaxSector;
7538 conf->mddev->reshape_position = MaxSector;
7539 spin_unlock_irq(&conf->device_lock);
7540 wake_up(&conf->wait_for_overlap);
7541
7542 /* read-ahead size must cover two whole stripes, which is
7543 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7544 */
7545 if (conf->mddev->queue) {
7546 int data_disks = conf->raid_disks - conf->max_degraded;
7547 int stripe = data_disks * ((conf->chunk_sectors << 9)
7548 / PAGE_SIZE);
7549 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7550 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7551 }
7552 }
7553 }
7554
7555 /* This is called from the raid5d thread with mddev_lock held.
7556 * It makes config changes to the device.
7557 */
7558 static void raid5_finish_reshape(struct mddev *mddev)
7559 {
7560 struct r5conf *conf = mddev->private;
7561
7562 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7563
7564 if (mddev->delta_disks > 0) {
7565 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7566 set_capacity(mddev->gendisk, mddev->array_sectors);
7567 revalidate_disk(mddev->gendisk);
7568 } else {
7569 int d;
7570 spin_lock_irq(&conf->device_lock);
7571 mddev->degraded = calc_degraded(conf);
7572 spin_unlock_irq(&conf->device_lock);
7573 for (d = conf->raid_disks ;
7574 d < conf->raid_disks - mddev->delta_disks;
7575 d++) {
7576 struct md_rdev *rdev = conf->disks[d].rdev;
7577 if (rdev)
7578 clear_bit(In_sync, &rdev->flags);
7579 rdev = conf->disks[d].replacement;
7580 if (rdev)
7581 clear_bit(In_sync, &rdev->flags);
7582 }
7583 }
7584 mddev->layout = conf->algorithm;
7585 mddev->chunk_sectors = conf->chunk_sectors;
7586 mddev->reshape_position = MaxSector;
7587 mddev->delta_disks = 0;
7588 mddev->reshape_backwards = 0;
7589 }
7590 }
7591
7592 static void raid5_quiesce(struct mddev *mddev, int state)
7593 {
7594 struct r5conf *conf = mddev->private;
7595
7596 switch(state) {
7597 case 2: /* resume for a suspend */
7598 wake_up(&conf->wait_for_overlap);
7599 break;
7600
7601 case 1: /* stop all writes */
7602 lock_all_device_hash_locks_irq(conf);
7603 /* '2' tells resync/reshape to pause so that all
7604 * active stripes can drain
7605 */
7606 conf->quiesce = 2;
7607 wait_event_cmd(conf->wait_for_quiescent,
7608 atomic_read(&conf->active_stripes) == 0 &&
7609 atomic_read(&conf->active_aligned_reads) == 0,
7610 unlock_all_device_hash_locks_irq(conf),
7611 lock_all_device_hash_locks_irq(conf));
7612 conf->quiesce = 1;
7613 unlock_all_device_hash_locks_irq(conf);
7614 /* allow reshape to continue */
7615 wake_up(&conf->wait_for_overlap);
7616 break;
7617
7618 case 0: /* re-enable writes */
7619 lock_all_device_hash_locks_irq(conf);
7620 conf->quiesce = 0;
7621 wake_up(&conf->wait_for_quiescent);
7622 wake_up(&conf->wait_for_overlap);
7623 unlock_all_device_hash_locks_irq(conf);
7624 break;
7625 }
7626 r5l_quiesce(conf->log, state);
7627 }
7628
7629 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7630 {
7631 struct r0conf *raid0_conf = mddev->private;
7632 sector_t sectors;
7633
7634 /* for raid0 takeover only one zone is supported */
7635 if (raid0_conf->nr_strip_zones > 1) {
7636 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7637 mdname(mddev));
7638 return ERR_PTR(-EINVAL);
7639 }
7640
7641 sectors = raid0_conf->strip_zone[0].zone_end;
7642 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7643 mddev->dev_sectors = sectors;
7644 mddev->new_level = level;
7645 mddev->new_layout = ALGORITHM_PARITY_N;
7646 mddev->new_chunk_sectors = mddev->chunk_sectors;
7647 mddev->raid_disks += 1;
7648 mddev->delta_disks = 1;
7649 /* make sure it will be not marked as dirty */
7650 mddev->recovery_cp = MaxSector;
7651
7652 return setup_conf(mddev);
7653 }
7654
7655 static void *raid5_takeover_raid1(struct mddev *mddev)
7656 {
7657 int chunksect;
7658
7659 if (mddev->raid_disks != 2 ||
7660 mddev->degraded > 1)
7661 return ERR_PTR(-EINVAL);
7662
7663 /* Should check if there are write-behind devices? */
7664
7665 chunksect = 64*2; /* 64K by default */
7666
7667 /* The array must be an exact multiple of chunksize */
7668 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7669 chunksect >>= 1;
7670
7671 if ((chunksect<<9) < STRIPE_SIZE)
7672 /* array size does not allow a suitable chunk size */
7673 return ERR_PTR(-EINVAL);
7674
7675 mddev->new_level = 5;
7676 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7677 mddev->new_chunk_sectors = chunksect;
7678
7679 return setup_conf(mddev);
7680 }
7681
7682 static void *raid5_takeover_raid6(struct mddev *mddev)
7683 {
7684 int new_layout;
7685
7686 switch (mddev->layout) {
7687 case ALGORITHM_LEFT_ASYMMETRIC_6:
7688 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7689 break;
7690 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7691 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7692 break;
7693 case ALGORITHM_LEFT_SYMMETRIC_6:
7694 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7695 break;
7696 case ALGORITHM_RIGHT_SYMMETRIC_6:
7697 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7698 break;
7699 case ALGORITHM_PARITY_0_6:
7700 new_layout = ALGORITHM_PARITY_0;
7701 break;
7702 case ALGORITHM_PARITY_N:
7703 new_layout = ALGORITHM_PARITY_N;
7704 break;
7705 default:
7706 return ERR_PTR(-EINVAL);
7707 }
7708 mddev->new_level = 5;
7709 mddev->new_layout = new_layout;
7710 mddev->delta_disks = -1;
7711 mddev->raid_disks -= 1;
7712 return setup_conf(mddev);
7713 }
7714
7715 static int raid5_check_reshape(struct mddev *mddev)
7716 {
7717 /* For a 2-drive array, the layout and chunk size can be changed
7718 * immediately as not restriping is needed.
7719 * For larger arrays we record the new value - after validation
7720 * to be used by a reshape pass.
7721 */
7722 struct r5conf *conf = mddev->private;
7723 int new_chunk = mddev->new_chunk_sectors;
7724
7725 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7726 return -EINVAL;
7727 if (new_chunk > 0) {
7728 if (!is_power_of_2(new_chunk))
7729 return -EINVAL;
7730 if (new_chunk < (PAGE_SIZE>>9))
7731 return -EINVAL;
7732 if (mddev->array_sectors & (new_chunk-1))
7733 /* not factor of array size */
7734 return -EINVAL;
7735 }
7736
7737 /* They look valid */
7738
7739 if (mddev->raid_disks == 2) {
7740 /* can make the change immediately */
7741 if (mddev->new_layout >= 0) {
7742 conf->algorithm = mddev->new_layout;
7743 mddev->layout = mddev->new_layout;
7744 }
7745 if (new_chunk > 0) {
7746 conf->chunk_sectors = new_chunk ;
7747 mddev->chunk_sectors = new_chunk;
7748 }
7749 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7750 md_wakeup_thread(mddev->thread);
7751 }
7752 return check_reshape(mddev);
7753 }
7754
7755 static int raid6_check_reshape(struct mddev *mddev)
7756 {
7757 int new_chunk = mddev->new_chunk_sectors;
7758
7759 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7760 return -EINVAL;
7761 if (new_chunk > 0) {
7762 if (!is_power_of_2(new_chunk))
7763 return -EINVAL;
7764 if (new_chunk < (PAGE_SIZE >> 9))
7765 return -EINVAL;
7766 if (mddev->array_sectors & (new_chunk-1))
7767 /* not factor of array size */
7768 return -EINVAL;
7769 }
7770
7771 /* They look valid */
7772 return check_reshape(mddev);
7773 }
7774
7775 static void *raid5_takeover(struct mddev *mddev)
7776 {
7777 /* raid5 can take over:
7778 * raid0 - if there is only one strip zone - make it a raid4 layout
7779 * raid1 - if there are two drives. We need to know the chunk size
7780 * raid4 - trivial - just use a raid4 layout.
7781 * raid6 - Providing it is a *_6 layout
7782 */
7783 if (mddev->level == 0)
7784 return raid45_takeover_raid0(mddev, 5);
7785 if (mddev->level == 1)
7786 return raid5_takeover_raid1(mddev);
7787 if (mddev->level == 4) {
7788 mddev->new_layout = ALGORITHM_PARITY_N;
7789 mddev->new_level = 5;
7790 return setup_conf(mddev);
7791 }
7792 if (mddev->level == 6)
7793 return raid5_takeover_raid6(mddev);
7794
7795 return ERR_PTR(-EINVAL);
7796 }
7797
7798 static void *raid4_takeover(struct mddev *mddev)
7799 {
7800 /* raid4 can take over:
7801 * raid0 - if there is only one strip zone
7802 * raid5 - if layout is right
7803 */
7804 if (mddev->level == 0)
7805 return raid45_takeover_raid0(mddev, 4);
7806 if (mddev->level == 5 &&
7807 mddev->layout == ALGORITHM_PARITY_N) {
7808 mddev->new_layout = 0;
7809 mddev->new_level = 4;
7810 return setup_conf(mddev);
7811 }
7812 return ERR_PTR(-EINVAL);
7813 }
7814
7815 static struct md_personality raid5_personality;
7816
7817 static void *raid6_takeover(struct mddev *mddev)
7818 {
7819 /* Currently can only take over a raid5. We map the
7820 * personality to an equivalent raid6 personality
7821 * with the Q block at the end.
7822 */
7823 int new_layout;
7824
7825 if (mddev->pers != &raid5_personality)
7826 return ERR_PTR(-EINVAL);
7827 if (mddev->degraded > 1)
7828 return ERR_PTR(-EINVAL);
7829 if (mddev->raid_disks > 253)
7830 return ERR_PTR(-EINVAL);
7831 if (mddev->raid_disks < 3)
7832 return ERR_PTR(-EINVAL);
7833
7834 switch (mddev->layout) {
7835 case ALGORITHM_LEFT_ASYMMETRIC:
7836 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7837 break;
7838 case ALGORITHM_RIGHT_ASYMMETRIC:
7839 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7840 break;
7841 case ALGORITHM_LEFT_SYMMETRIC:
7842 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7843 break;
7844 case ALGORITHM_RIGHT_SYMMETRIC:
7845 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7846 break;
7847 case ALGORITHM_PARITY_0:
7848 new_layout = ALGORITHM_PARITY_0_6;
7849 break;
7850 case ALGORITHM_PARITY_N:
7851 new_layout = ALGORITHM_PARITY_N;
7852 break;
7853 default:
7854 return ERR_PTR(-EINVAL);
7855 }
7856 mddev->new_level = 6;
7857 mddev->new_layout = new_layout;
7858 mddev->delta_disks = 1;
7859 mddev->raid_disks += 1;
7860 return setup_conf(mddev);
7861 }
7862
7863 static struct md_personality raid6_personality =
7864 {
7865 .name = "raid6",
7866 .level = 6,
7867 .owner = THIS_MODULE,
7868 .make_request = raid5_make_request,
7869 .run = raid5_run,
7870 .free = raid5_free,
7871 .status = raid5_status,
7872 .error_handler = raid5_error,
7873 .hot_add_disk = raid5_add_disk,
7874 .hot_remove_disk= raid5_remove_disk,
7875 .spare_active = raid5_spare_active,
7876 .sync_request = raid5_sync_request,
7877 .resize = raid5_resize,
7878 .size = raid5_size,
7879 .check_reshape = raid6_check_reshape,
7880 .start_reshape = raid5_start_reshape,
7881 .finish_reshape = raid5_finish_reshape,
7882 .quiesce = raid5_quiesce,
7883 .takeover = raid6_takeover,
7884 .congested = raid5_congested,
7885 };
7886 static struct md_personality raid5_personality =
7887 {
7888 .name = "raid5",
7889 .level = 5,
7890 .owner = THIS_MODULE,
7891 .make_request = raid5_make_request,
7892 .run = raid5_run,
7893 .free = raid5_free,
7894 .status = raid5_status,
7895 .error_handler = raid5_error,
7896 .hot_add_disk = raid5_add_disk,
7897 .hot_remove_disk= raid5_remove_disk,
7898 .spare_active = raid5_spare_active,
7899 .sync_request = raid5_sync_request,
7900 .resize = raid5_resize,
7901 .size = raid5_size,
7902 .check_reshape = raid5_check_reshape,
7903 .start_reshape = raid5_start_reshape,
7904 .finish_reshape = raid5_finish_reshape,
7905 .quiesce = raid5_quiesce,
7906 .takeover = raid5_takeover,
7907 .congested = raid5_congested,
7908 };
7909
7910 static struct md_personality raid4_personality =
7911 {
7912 .name = "raid4",
7913 .level = 4,
7914 .owner = THIS_MODULE,
7915 .make_request = raid5_make_request,
7916 .run = raid5_run,
7917 .free = raid5_free,
7918 .status = raid5_status,
7919 .error_handler = raid5_error,
7920 .hot_add_disk = raid5_add_disk,
7921 .hot_remove_disk= raid5_remove_disk,
7922 .spare_active = raid5_spare_active,
7923 .sync_request = raid5_sync_request,
7924 .resize = raid5_resize,
7925 .size = raid5_size,
7926 .check_reshape = raid5_check_reshape,
7927 .start_reshape = raid5_start_reshape,
7928 .finish_reshape = raid5_finish_reshape,
7929 .quiesce = raid5_quiesce,
7930 .takeover = raid4_takeover,
7931 .congested = raid5_congested,
7932 };
7933
7934 static int __init raid5_init(void)
7935 {
7936 raid5_wq = alloc_workqueue("raid5wq",
7937 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7938 if (!raid5_wq)
7939 return -ENOMEM;
7940 register_md_personality(&raid6_personality);
7941 register_md_personality(&raid5_personality);
7942 register_md_personality(&raid4_personality);
7943 return 0;
7944 }
7945
7946 static void raid5_exit(void)
7947 {
7948 unregister_md_personality(&raid6_personality);
7949 unregister_md_personality(&raid5_personality);
7950 unregister_md_personality(&raid4_personality);
7951 destroy_workqueue(raid5_wq);
7952 }
7953
7954 module_init(raid5_init);
7955 module_exit(raid5_exit);
7956 MODULE_LICENSE("GPL");
7957 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7958 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7959 MODULE_ALIAS("md-raid5");
7960 MODULE_ALIAS("md-raid4");
7961 MODULE_ALIAS("md-level-5");
7962 MODULE_ALIAS("md-level-4");
7963 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7964 MODULE_ALIAS("md-raid6");
7965 MODULE_ALIAS("md-level-6");
7966
7967 /* This used to be two separate modules, they were: */
7968 MODULE_ALIAS("raid5");
7969 MODULE_ALIAS("raid6");