]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/media/cec/cec-adap.c
Merge tag 'v4.14-rc2' into patchwork
[mirror_ubuntu-bionic-kernel.git] / drivers / media / cec / cec-adap.c
1 /*
2 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
3 *
4 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5 *
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17 * SOFTWARE.
18 */
19
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/kmod.h>
25 #include <linux/ktime.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30
31 #include <drm/drm_edid.h>
32
33 #include "cec-priv.h"
34
35 static void cec_fill_msg_report_features(struct cec_adapter *adap,
36 struct cec_msg *msg,
37 unsigned int la_idx);
38
39 /*
40 * 400 ms is the time it takes for one 16 byte message to be
41 * transferred and 5 is the maximum number of retries. Add
42 * another 100 ms as a margin. So if the transmit doesn't
43 * finish before that time something is really wrong and we
44 * have to time out.
45 *
46 * This is a sign that something it really wrong and a warning
47 * will be issued.
48 */
49 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
50
51 #define call_op(adap, op, arg...) \
52 (adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
53
54 #define call_void_op(adap, op, arg...) \
55 do { \
56 if (adap->ops->op) \
57 adap->ops->op(adap, ## arg); \
58 } while (0)
59
60 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
61 {
62 int i;
63
64 for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
65 if (adap->log_addrs.log_addr[i] == log_addr)
66 return i;
67 return -1;
68 }
69
70 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
71 {
72 int i = cec_log_addr2idx(adap, log_addr);
73
74 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
75 }
76
77 /*
78 * Queue a new event for this filehandle. If ts == 0, then set it
79 * to the current time.
80 *
81 * We keep a queue of at most max_event events where max_event differs
82 * per event. If the queue becomes full, then drop the oldest event and
83 * keep track of how many events we've dropped.
84 */
85 void cec_queue_event_fh(struct cec_fh *fh,
86 const struct cec_event *new_ev, u64 ts)
87 {
88 static const u8 max_events[CEC_NUM_EVENTS] = {
89 1, 1, 64, 64, 8, 8,
90 };
91 struct cec_event_entry *entry;
92 unsigned int ev_idx = new_ev->event - 1;
93
94 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
95 return;
96
97 if (ts == 0)
98 ts = ktime_get_ns();
99
100 mutex_lock(&fh->lock);
101 if (ev_idx < CEC_NUM_CORE_EVENTS)
102 entry = &fh->core_events[ev_idx];
103 else
104 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
105 if (entry) {
106 if (new_ev->event == CEC_EVENT_LOST_MSGS &&
107 fh->queued_events[ev_idx]) {
108 entry->ev.lost_msgs.lost_msgs +=
109 new_ev->lost_msgs.lost_msgs;
110 goto unlock;
111 }
112 entry->ev = *new_ev;
113 entry->ev.ts = ts;
114
115 if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
116 /* Add new msg at the end of the queue */
117 list_add_tail(&entry->list, &fh->events[ev_idx]);
118 fh->queued_events[ev_idx]++;
119 fh->total_queued_events++;
120 goto unlock;
121 }
122
123 if (ev_idx >= CEC_NUM_CORE_EVENTS) {
124 list_add_tail(&entry->list, &fh->events[ev_idx]);
125 /* drop the oldest event */
126 entry = list_first_entry(&fh->events[ev_idx],
127 struct cec_event_entry, list);
128 list_del(&entry->list);
129 kfree(entry);
130 }
131 }
132 /* Mark that events were lost */
133 entry = list_first_entry_or_null(&fh->events[ev_idx],
134 struct cec_event_entry, list);
135 if (entry)
136 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
137
138 unlock:
139 mutex_unlock(&fh->lock);
140 wake_up_interruptible(&fh->wait);
141 }
142
143 /* Queue a new event for all open filehandles. */
144 static void cec_queue_event(struct cec_adapter *adap,
145 const struct cec_event *ev)
146 {
147 u64 ts = ktime_get_ns();
148 struct cec_fh *fh;
149
150 mutex_lock(&adap->devnode.lock);
151 list_for_each_entry(fh, &adap->devnode.fhs, list)
152 cec_queue_event_fh(fh, ev, ts);
153 mutex_unlock(&adap->devnode.lock);
154 }
155
156 /* Notify userspace that the CEC pin changed state at the given time. */
157 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
158 {
159 struct cec_event ev = {
160 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
161 CEC_EVENT_PIN_CEC_LOW,
162 };
163 struct cec_fh *fh;
164
165 mutex_lock(&adap->devnode.lock);
166 list_for_each_entry(fh, &adap->devnode.fhs, list)
167 if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
168 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
169 mutex_unlock(&adap->devnode.lock);
170 }
171 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
172
173 /* Notify userspace that the HPD pin changed state at the given time. */
174 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
175 {
176 struct cec_event ev = {
177 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
178 CEC_EVENT_PIN_HPD_LOW,
179 };
180 struct cec_fh *fh;
181
182 mutex_lock(&adap->devnode.lock);
183 list_for_each_entry(fh, &adap->devnode.fhs, list)
184 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
185 mutex_unlock(&adap->devnode.lock);
186 }
187 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
188
189 /*
190 * Queue a new message for this filehandle.
191 *
192 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
193 * queue becomes full, then drop the oldest message and keep track
194 * of how many messages we've dropped.
195 */
196 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
197 {
198 static const struct cec_event ev_lost_msgs = {
199 .event = CEC_EVENT_LOST_MSGS,
200 .flags = 0,
201 {
202 .lost_msgs = { 1 },
203 },
204 };
205 struct cec_msg_entry *entry;
206
207 mutex_lock(&fh->lock);
208 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
209 if (entry) {
210 entry->msg = *msg;
211 /* Add new msg at the end of the queue */
212 list_add_tail(&entry->list, &fh->msgs);
213
214 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
215 /* All is fine if there is enough room */
216 fh->queued_msgs++;
217 mutex_unlock(&fh->lock);
218 wake_up_interruptible(&fh->wait);
219 return;
220 }
221
222 /*
223 * if the message queue is full, then drop the oldest one and
224 * send a lost message event.
225 */
226 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
227 list_del(&entry->list);
228 kfree(entry);
229 }
230 mutex_unlock(&fh->lock);
231
232 /*
233 * We lost a message, either because kmalloc failed or the queue
234 * was full.
235 */
236 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
237 }
238
239 /*
240 * Queue the message for those filehandles that are in monitor mode.
241 * If valid_la is true (this message is for us or was sent by us),
242 * then pass it on to any monitoring filehandle. If this message
243 * isn't for us or from us, then only give it to filehandles that
244 * are in MONITOR_ALL mode.
245 *
246 * This can only happen if the CEC_CAP_MONITOR_ALL capability is
247 * set and the CEC adapter was placed in 'monitor all' mode.
248 */
249 static void cec_queue_msg_monitor(struct cec_adapter *adap,
250 const struct cec_msg *msg,
251 bool valid_la)
252 {
253 struct cec_fh *fh;
254 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
255 CEC_MODE_MONITOR_ALL;
256
257 mutex_lock(&adap->devnode.lock);
258 list_for_each_entry(fh, &adap->devnode.fhs, list) {
259 if (fh->mode_follower >= monitor_mode)
260 cec_queue_msg_fh(fh, msg);
261 }
262 mutex_unlock(&adap->devnode.lock);
263 }
264
265 /*
266 * Queue the message for follower filehandles.
267 */
268 static void cec_queue_msg_followers(struct cec_adapter *adap,
269 const struct cec_msg *msg)
270 {
271 struct cec_fh *fh;
272
273 mutex_lock(&adap->devnode.lock);
274 list_for_each_entry(fh, &adap->devnode.fhs, list) {
275 if (fh->mode_follower == CEC_MODE_FOLLOWER)
276 cec_queue_msg_fh(fh, msg);
277 }
278 mutex_unlock(&adap->devnode.lock);
279 }
280
281 /* Notify userspace of an adapter state change. */
282 static void cec_post_state_event(struct cec_adapter *adap)
283 {
284 struct cec_event ev = {
285 .event = CEC_EVENT_STATE_CHANGE,
286 };
287
288 ev.state_change.phys_addr = adap->phys_addr;
289 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
290 cec_queue_event(adap, &ev);
291 }
292
293 /*
294 * A CEC transmit (and a possible wait for reply) completed.
295 * If this was in blocking mode, then complete it, otherwise
296 * queue the message for userspace to dequeue later.
297 *
298 * This function is called with adap->lock held.
299 */
300 static void cec_data_completed(struct cec_data *data)
301 {
302 /*
303 * Delete this transmit from the filehandle's xfer_list since
304 * we're done with it.
305 *
306 * Note that if the filehandle is closed before this transmit
307 * finished, then the release() function will set data->fh to NULL.
308 * Without that we would be referring to a closed filehandle.
309 */
310 if (data->fh)
311 list_del(&data->xfer_list);
312
313 if (data->blocking) {
314 /*
315 * Someone is blocking so mark the message as completed
316 * and call complete.
317 */
318 data->completed = true;
319 complete(&data->c);
320 } else {
321 /*
322 * No blocking, so just queue the message if needed and
323 * free the memory.
324 */
325 if (data->fh)
326 cec_queue_msg_fh(data->fh, &data->msg);
327 kfree(data);
328 }
329 }
330
331 /*
332 * A pending CEC transmit needs to be cancelled, either because the CEC
333 * adapter is disabled or the transmit takes an impossibly long time to
334 * finish.
335 *
336 * This function is called with adap->lock held.
337 */
338 static void cec_data_cancel(struct cec_data *data)
339 {
340 /*
341 * It's either the current transmit, or it is a pending
342 * transmit. Take the appropriate action to clear it.
343 */
344 if (data->adap->transmitting == data) {
345 data->adap->transmitting = NULL;
346 } else {
347 list_del_init(&data->list);
348 if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
349 data->adap->transmit_queue_sz--;
350 }
351
352 /* Mark it as an error */
353 data->msg.tx_ts = ktime_get_ns();
354 data->msg.tx_status |= CEC_TX_STATUS_ERROR |
355 CEC_TX_STATUS_MAX_RETRIES;
356 data->msg.tx_error_cnt++;
357 data->attempts = 0;
358 /* Queue transmitted message for monitoring purposes */
359 cec_queue_msg_monitor(data->adap, &data->msg, 1);
360
361 cec_data_completed(data);
362 }
363
364 /*
365 * Flush all pending transmits and cancel any pending timeout work.
366 *
367 * This function is called with adap->lock held.
368 */
369 static void cec_flush(struct cec_adapter *adap)
370 {
371 struct cec_data *data, *n;
372
373 /*
374 * If the adapter is disabled, or we're asked to stop,
375 * then cancel any pending transmits.
376 */
377 while (!list_empty(&adap->transmit_queue)) {
378 data = list_first_entry(&adap->transmit_queue,
379 struct cec_data, list);
380 cec_data_cancel(data);
381 }
382 if (adap->transmitting)
383 cec_data_cancel(adap->transmitting);
384
385 /* Cancel the pending timeout work. */
386 list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
387 if (cancel_delayed_work(&data->work))
388 cec_data_cancel(data);
389 /*
390 * If cancel_delayed_work returned false, then
391 * the cec_wait_timeout function is running,
392 * which will call cec_data_completed. So no
393 * need to do anything special in that case.
394 */
395 }
396 }
397
398 /*
399 * Main CEC state machine
400 *
401 * Wait until the thread should be stopped, or we are not transmitting and
402 * a new transmit message is queued up, in which case we start transmitting
403 * that message. When the adapter finished transmitting the message it will
404 * call cec_transmit_done().
405 *
406 * If the adapter is disabled, then remove all queued messages instead.
407 *
408 * If the current transmit times out, then cancel that transmit.
409 */
410 int cec_thread_func(void *_adap)
411 {
412 struct cec_adapter *adap = _adap;
413
414 for (;;) {
415 unsigned int signal_free_time;
416 struct cec_data *data;
417 bool timeout = false;
418 u8 attempts;
419
420 if (adap->transmitting) {
421 int err;
422
423 /*
424 * We are transmitting a message, so add a timeout
425 * to prevent the state machine to get stuck waiting
426 * for this message to finalize and add a check to
427 * see if the adapter is disabled in which case the
428 * transmit should be canceled.
429 */
430 err = wait_event_interruptible_timeout(adap->kthread_waitq,
431 (adap->needs_hpd &&
432 (!adap->is_configured && !adap->is_configuring)) ||
433 kthread_should_stop() ||
434 (!adap->transmitting &&
435 !list_empty(&adap->transmit_queue)),
436 msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
437 timeout = err == 0;
438 } else {
439 /* Otherwise we just wait for something to happen. */
440 wait_event_interruptible(adap->kthread_waitq,
441 kthread_should_stop() ||
442 (!adap->transmitting &&
443 !list_empty(&adap->transmit_queue)));
444 }
445
446 mutex_lock(&adap->lock);
447
448 if ((adap->needs_hpd &&
449 (!adap->is_configured && !adap->is_configuring)) ||
450 kthread_should_stop()) {
451 cec_flush(adap);
452 goto unlock;
453 }
454
455 if (adap->transmitting && timeout) {
456 /*
457 * If we timeout, then log that. Normally this does
458 * not happen and it is an indication of a faulty CEC
459 * adapter driver, or the CEC bus is in some weird
460 * state. On rare occasions it can happen if there is
461 * so much traffic on the bus that the adapter was
462 * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
463 */
464 dprintk(1, "%s: message %*ph timed out\n", __func__,
465 adap->transmitting->msg.len,
466 adap->transmitting->msg.msg);
467 adap->tx_timeouts++;
468 /* Just give up on this. */
469 cec_data_cancel(adap->transmitting);
470 goto unlock;
471 }
472
473 /*
474 * If we are still transmitting, or there is nothing new to
475 * transmit, then just continue waiting.
476 */
477 if (adap->transmitting || list_empty(&adap->transmit_queue))
478 goto unlock;
479
480 /* Get a new message to transmit */
481 data = list_first_entry(&adap->transmit_queue,
482 struct cec_data, list);
483 list_del_init(&data->list);
484 adap->transmit_queue_sz--;
485
486 /* Make this the current transmitting message */
487 adap->transmitting = data;
488
489 /*
490 * Suggested number of attempts as per the CEC 2.0 spec:
491 * 4 attempts is the default, except for 'secondary poll
492 * messages', i.e. poll messages not sent during the adapter
493 * configuration phase when it allocates logical addresses.
494 */
495 if (data->msg.len == 1 && adap->is_configured)
496 attempts = 2;
497 else
498 attempts = 4;
499
500 /* Set the suggested signal free time */
501 if (data->attempts) {
502 /* should be >= 3 data bit periods for a retry */
503 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
504 } else if (data->new_initiator) {
505 /* should be >= 5 data bit periods for new initiator */
506 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
507 } else {
508 /*
509 * should be >= 7 data bit periods for sending another
510 * frame immediately after another.
511 */
512 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
513 }
514 if (data->attempts == 0)
515 data->attempts = attempts;
516
517 /* Tell the adapter to transmit, cancel on error */
518 if (adap->ops->adap_transmit(adap, data->attempts,
519 signal_free_time, &data->msg))
520 cec_data_cancel(data);
521
522 unlock:
523 mutex_unlock(&adap->lock);
524
525 if (kthread_should_stop())
526 break;
527 }
528 return 0;
529 }
530
531 /*
532 * Called by the CEC adapter if a transmit finished.
533 */
534 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
535 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
536 u8 error_cnt, ktime_t ts)
537 {
538 struct cec_data *data;
539 struct cec_msg *msg;
540 unsigned int attempts_made = arb_lost_cnt + nack_cnt +
541 low_drive_cnt + error_cnt;
542
543 dprintk(2, "%s: status %02x\n", __func__, status);
544 if (attempts_made < 1)
545 attempts_made = 1;
546
547 mutex_lock(&adap->lock);
548 data = adap->transmitting;
549 if (!data) {
550 /*
551 * This can happen if a transmit was issued and the cable is
552 * unplugged while the transmit is ongoing. Ignore this
553 * transmit in that case.
554 */
555 dprintk(1, "%s was called without an ongoing transmit!\n",
556 __func__);
557 goto unlock;
558 }
559
560 msg = &data->msg;
561
562 /* Drivers must fill in the status! */
563 WARN_ON(status == 0);
564 msg->tx_ts = ktime_to_ns(ts);
565 msg->tx_status |= status;
566 msg->tx_arb_lost_cnt += arb_lost_cnt;
567 msg->tx_nack_cnt += nack_cnt;
568 msg->tx_low_drive_cnt += low_drive_cnt;
569 msg->tx_error_cnt += error_cnt;
570
571 /* Mark that we're done with this transmit */
572 adap->transmitting = NULL;
573
574 /*
575 * If there are still retry attempts left and there was an error and
576 * the hardware didn't signal that it retried itself (by setting
577 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
578 */
579 if (data->attempts > attempts_made &&
580 !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
581 /* Retry this message */
582 data->attempts -= attempts_made;
583 if (msg->timeout)
584 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
585 msg->len, msg->msg, data->attempts, msg->reply);
586 else
587 dprintk(2, "retransmit: %*ph (attempts: %d)\n",
588 msg->len, msg->msg, data->attempts);
589 /* Add the message in front of the transmit queue */
590 list_add(&data->list, &adap->transmit_queue);
591 adap->transmit_queue_sz++;
592 goto wake_thread;
593 }
594
595 data->attempts = 0;
596
597 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
598 if (!(status & CEC_TX_STATUS_OK))
599 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
600
601 /* Queue transmitted message for monitoring purposes */
602 cec_queue_msg_monitor(adap, msg, 1);
603
604 if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
605 msg->timeout) {
606 /*
607 * Queue the message into the wait queue if we want to wait
608 * for a reply.
609 */
610 list_add_tail(&data->list, &adap->wait_queue);
611 schedule_delayed_work(&data->work,
612 msecs_to_jiffies(msg->timeout));
613 } else {
614 /* Otherwise we're done */
615 cec_data_completed(data);
616 }
617
618 wake_thread:
619 /*
620 * Wake up the main thread to see if another message is ready
621 * for transmitting or to retry the current message.
622 */
623 wake_up_interruptible(&adap->kthread_waitq);
624 unlock:
625 mutex_unlock(&adap->lock);
626 }
627 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
628
629 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
630 u8 status, ktime_t ts)
631 {
632 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
633 case CEC_TX_STATUS_OK:
634 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
635 return;
636 case CEC_TX_STATUS_ARB_LOST:
637 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
638 return;
639 case CEC_TX_STATUS_NACK:
640 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
641 return;
642 case CEC_TX_STATUS_LOW_DRIVE:
643 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
644 return;
645 case CEC_TX_STATUS_ERROR:
646 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
647 return;
648 default:
649 /* Should never happen */
650 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
651 return;
652 }
653 }
654 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
655
656 /*
657 * Called when waiting for a reply times out.
658 */
659 static void cec_wait_timeout(struct work_struct *work)
660 {
661 struct cec_data *data = container_of(work, struct cec_data, work.work);
662 struct cec_adapter *adap = data->adap;
663
664 mutex_lock(&adap->lock);
665 /*
666 * Sanity check in case the timeout and the arrival of the message
667 * happened at the same time.
668 */
669 if (list_empty(&data->list))
670 goto unlock;
671
672 /* Mark the message as timed out */
673 list_del_init(&data->list);
674 data->msg.rx_ts = ktime_get_ns();
675 data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
676 cec_data_completed(data);
677 unlock:
678 mutex_unlock(&adap->lock);
679 }
680
681 /*
682 * Transmit a message. The fh argument may be NULL if the transmit is not
683 * associated with a specific filehandle.
684 *
685 * This function is called with adap->lock held.
686 */
687 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
688 struct cec_fh *fh, bool block)
689 {
690 struct cec_data *data;
691 u8 last_initiator = 0xff;
692 unsigned int timeout;
693 int res = 0;
694
695 msg->rx_ts = 0;
696 msg->tx_ts = 0;
697 msg->rx_status = 0;
698 msg->tx_status = 0;
699 msg->tx_arb_lost_cnt = 0;
700 msg->tx_nack_cnt = 0;
701 msg->tx_low_drive_cnt = 0;
702 msg->tx_error_cnt = 0;
703 msg->sequence = 0;
704
705 if (msg->reply && msg->timeout == 0) {
706 /* Make sure the timeout isn't 0. */
707 msg->timeout = 1000;
708 }
709 if (msg->timeout)
710 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS;
711 else
712 msg->flags = 0;
713
714 /* Sanity checks */
715 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
716 dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
717 return -EINVAL;
718 }
719 if (msg->timeout && msg->len == 1) {
720 dprintk(1, "%s: can't reply for poll msg\n", __func__);
721 return -EINVAL;
722 }
723 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
724 if (msg->len == 1) {
725 if (cec_msg_destination(msg) == 0xf) {
726 dprintk(1, "%s: invalid poll message\n", __func__);
727 return -EINVAL;
728 }
729 if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
730 /*
731 * If the destination is a logical address our adapter
732 * has already claimed, then just NACK this.
733 * It depends on the hardware what it will do with a
734 * POLL to itself (some OK this), so it is just as
735 * easy to handle it here so the behavior will be
736 * consistent.
737 */
738 msg->tx_ts = ktime_get_ns();
739 msg->tx_status = CEC_TX_STATUS_NACK |
740 CEC_TX_STATUS_MAX_RETRIES;
741 msg->tx_nack_cnt = 1;
742 msg->sequence = ++adap->sequence;
743 if (!msg->sequence)
744 msg->sequence = ++adap->sequence;
745 return 0;
746 }
747 }
748 if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
749 cec_has_log_addr(adap, cec_msg_destination(msg))) {
750 dprintk(1, "%s: destination is the adapter itself\n", __func__);
751 return -EINVAL;
752 }
753 if (msg->len > 1 && adap->is_configured &&
754 !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
755 dprintk(1, "%s: initiator has unknown logical address %d\n",
756 __func__, cec_msg_initiator(msg));
757 return -EINVAL;
758 }
759 if (!adap->is_configured && !adap->is_configuring) {
760 if (adap->needs_hpd || msg->msg[0] != 0xf0) {
761 dprintk(1, "%s: adapter is unconfigured\n", __func__);
762 return -ENONET;
763 }
764 if (msg->reply) {
765 dprintk(1, "%s: invalid msg->reply\n", __func__);
766 return -EINVAL;
767 }
768 }
769
770 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
771 dprintk(1, "%s: transmit queue full\n", __func__);
772 return -EBUSY;
773 }
774
775 data = kzalloc(sizeof(*data), GFP_KERNEL);
776 if (!data)
777 return -ENOMEM;
778
779 msg->sequence = ++adap->sequence;
780 if (!msg->sequence)
781 msg->sequence = ++adap->sequence;
782
783 if (msg->len > 1 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
784 msg->msg[2] = adap->phys_addr >> 8;
785 msg->msg[3] = adap->phys_addr & 0xff;
786 }
787
788 if (msg->timeout)
789 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
790 __func__, msg->len, msg->msg, msg->reply,
791 !block ? ", nb" : "");
792 else
793 dprintk(2, "%s: %*ph%s\n",
794 __func__, msg->len, msg->msg, !block ? " (nb)" : "");
795
796 data->msg = *msg;
797 data->fh = fh;
798 data->adap = adap;
799 data->blocking = block;
800
801 /*
802 * Determine if this message follows a message from the same
803 * initiator. Needed to determine the free signal time later on.
804 */
805 if (msg->len > 1) {
806 if (!(list_empty(&adap->transmit_queue))) {
807 const struct cec_data *last;
808
809 last = list_last_entry(&adap->transmit_queue,
810 const struct cec_data, list);
811 last_initiator = cec_msg_initiator(&last->msg);
812 } else if (adap->transmitting) {
813 last_initiator =
814 cec_msg_initiator(&adap->transmitting->msg);
815 }
816 }
817 data->new_initiator = last_initiator != cec_msg_initiator(msg);
818 init_completion(&data->c);
819 INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
820
821 if (fh)
822 list_add_tail(&data->xfer_list, &fh->xfer_list);
823
824 list_add_tail(&data->list, &adap->transmit_queue);
825 adap->transmit_queue_sz++;
826 if (!adap->transmitting)
827 wake_up_interruptible(&adap->kthread_waitq);
828
829 /* All done if we don't need to block waiting for completion */
830 if (!block)
831 return 0;
832
833 /*
834 * If we don't get a completion before this time something is really
835 * wrong and we time out.
836 */
837 timeout = CEC_XFER_TIMEOUT_MS;
838 /* Add the requested timeout if we have to wait for a reply as well */
839 if (msg->timeout)
840 timeout += msg->timeout;
841
842 /*
843 * Release the lock and wait, retake the lock afterwards.
844 */
845 mutex_unlock(&adap->lock);
846 res = wait_for_completion_killable_timeout(&data->c,
847 msecs_to_jiffies(timeout));
848 mutex_lock(&adap->lock);
849
850 if (data->completed) {
851 /* The transmit completed (possibly with an error) */
852 *msg = data->msg;
853 kfree(data);
854 return 0;
855 }
856 /*
857 * The wait for completion timed out or was interrupted, so mark this
858 * as non-blocking and disconnect from the filehandle since it is
859 * still 'in flight'. When it finally completes it will just drop the
860 * result silently.
861 */
862 data->blocking = false;
863 if (data->fh)
864 list_del(&data->xfer_list);
865 data->fh = NULL;
866
867 if (res == 0) { /* timed out */
868 /* Check if the reply or the transmit failed */
869 if (msg->timeout && (msg->tx_status & CEC_TX_STATUS_OK))
870 msg->rx_status = CEC_RX_STATUS_TIMEOUT;
871 else
872 msg->tx_status = CEC_TX_STATUS_MAX_RETRIES;
873 }
874 return res > 0 ? 0 : res;
875 }
876
877 /* Helper function to be used by drivers and this framework. */
878 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
879 bool block)
880 {
881 int ret;
882
883 mutex_lock(&adap->lock);
884 ret = cec_transmit_msg_fh(adap, msg, NULL, block);
885 mutex_unlock(&adap->lock);
886 return ret;
887 }
888 EXPORT_SYMBOL_GPL(cec_transmit_msg);
889
890 /*
891 * I don't like forward references but without this the low-level
892 * cec_received_msg() function would come after a bunch of high-level
893 * CEC protocol handling functions. That was very confusing.
894 */
895 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
896 bool is_reply);
897
898 #define DIRECTED 0x80
899 #define BCAST1_4 0x40
900 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */
901 #define BCAST (BCAST1_4 | BCAST2_0)
902 #define BOTH (BCAST | DIRECTED)
903
904 /*
905 * Specify minimum length and whether the message is directed, broadcast
906 * or both. Messages that do not match the criteria are ignored as per
907 * the CEC specification.
908 */
909 static const u8 cec_msg_size[256] = {
910 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
911 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
912 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
913 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
914 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
915 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
916 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
917 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
918 [CEC_MSG_STANDBY] = 2 | BOTH,
919 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
920 [CEC_MSG_RECORD_ON] = 3 | DIRECTED,
921 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
922 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
923 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
924 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
925 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
926 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
927 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
928 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
929 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
930 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
931 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
932 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
933 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
934 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
935 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
936 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
937 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
938 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
939 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
940 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
941 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
942 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
943 [CEC_MSG_PLAY] = 3 | DIRECTED,
944 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
945 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
946 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
947 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
948 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
949 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
950 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
951 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
952 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
953 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
954 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
955 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
956 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
957 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
958 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
959 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
960 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
961 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
962 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
963 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
964 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
965 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
966 [CEC_MSG_ABORT] = 2 | DIRECTED,
967 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
968 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
969 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
970 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
971 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
972 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
973 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
974 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
975 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
976 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
977 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
978 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
979 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
980 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
981 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
982 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
983 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
984 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
985 };
986
987 /* Called by the CEC adapter if a message is received */
988 void cec_received_msg_ts(struct cec_adapter *adap,
989 struct cec_msg *msg, ktime_t ts)
990 {
991 struct cec_data *data;
992 u8 msg_init = cec_msg_initiator(msg);
993 u8 msg_dest = cec_msg_destination(msg);
994 u8 cmd = msg->msg[1];
995 bool is_reply = false;
996 bool valid_la = true;
997 u8 min_len = 0;
998
999 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1000 return;
1001
1002 /*
1003 * Some CEC adapters will receive the messages that they transmitted.
1004 * This test filters out those messages by checking if we are the
1005 * initiator, and just returning in that case.
1006 *
1007 * Note that this won't work if this is an Unregistered device.
1008 *
1009 * It is bad practice if the hardware receives the message that it
1010 * transmitted and luckily most CEC adapters behave correctly in this
1011 * respect.
1012 */
1013 if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1014 cec_has_log_addr(adap, msg_init))
1015 return;
1016
1017 msg->rx_ts = ktime_to_ns(ts);
1018 msg->rx_status = CEC_RX_STATUS_OK;
1019 msg->sequence = msg->reply = msg->timeout = 0;
1020 msg->tx_status = 0;
1021 msg->tx_ts = 0;
1022 msg->tx_arb_lost_cnt = 0;
1023 msg->tx_nack_cnt = 0;
1024 msg->tx_low_drive_cnt = 0;
1025 msg->tx_error_cnt = 0;
1026 msg->flags = 0;
1027 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1028
1029 mutex_lock(&adap->lock);
1030 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1031
1032 /* Check if this message was for us (directed or broadcast). */
1033 if (!cec_msg_is_broadcast(msg))
1034 valid_la = cec_has_log_addr(adap, msg_dest);
1035
1036 /*
1037 * Check if the length is not too short or if the message is a
1038 * broadcast message where a directed message was expected or
1039 * vice versa. If so, then the message has to be ignored (according
1040 * to section CEC 7.3 and CEC 12.2).
1041 */
1042 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1043 u8 dir_fl = cec_msg_size[cmd] & BOTH;
1044
1045 min_len = cec_msg_size[cmd] & 0x1f;
1046 if (msg->len < min_len)
1047 valid_la = false;
1048 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1049 valid_la = false;
1050 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST1_4))
1051 valid_la = false;
1052 else if (cec_msg_is_broadcast(msg) &&
1053 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0 &&
1054 !(dir_fl & BCAST2_0))
1055 valid_la = false;
1056 }
1057 if (valid_la && min_len) {
1058 /* These messages have special length requirements */
1059 switch (cmd) {
1060 case CEC_MSG_TIMER_STATUS:
1061 if (msg->msg[2] & 0x10) {
1062 switch (msg->msg[2] & 0xf) {
1063 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
1064 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
1065 if (msg->len < 5)
1066 valid_la = false;
1067 break;
1068 }
1069 } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
1070 if (msg->len < 5)
1071 valid_la = false;
1072 }
1073 break;
1074 case CEC_MSG_RECORD_ON:
1075 switch (msg->msg[2]) {
1076 case CEC_OP_RECORD_SRC_OWN:
1077 break;
1078 case CEC_OP_RECORD_SRC_DIGITAL:
1079 if (msg->len < 10)
1080 valid_la = false;
1081 break;
1082 case CEC_OP_RECORD_SRC_ANALOG:
1083 if (msg->len < 7)
1084 valid_la = false;
1085 break;
1086 case CEC_OP_RECORD_SRC_EXT_PLUG:
1087 if (msg->len < 4)
1088 valid_la = false;
1089 break;
1090 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1091 if (msg->len < 5)
1092 valid_la = false;
1093 break;
1094 }
1095 break;
1096 }
1097 }
1098
1099 /* It's a valid message and not a poll or CDC message */
1100 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1101 bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1102
1103 /* The aborted command is in msg[2] */
1104 if (abort)
1105 cmd = msg->msg[2];
1106
1107 /*
1108 * Walk over all transmitted messages that are waiting for a
1109 * reply.
1110 */
1111 list_for_each_entry(data, &adap->wait_queue, list) {
1112 struct cec_msg *dst = &data->msg;
1113
1114 /*
1115 * The *only* CEC message that has two possible replies
1116 * is CEC_MSG_INITIATE_ARC.
1117 * In this case allow either of the two replies.
1118 */
1119 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1120 (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1121 cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1122 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1123 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1124 dst->reply = cmd;
1125
1126 /* Does the command match? */
1127 if ((abort && cmd != dst->msg[1]) ||
1128 (!abort && cmd != dst->reply))
1129 continue;
1130
1131 /* Does the addressing match? */
1132 if (msg_init != cec_msg_destination(dst) &&
1133 !cec_msg_is_broadcast(dst))
1134 continue;
1135
1136 /* We got a reply */
1137 memcpy(dst->msg, msg->msg, msg->len);
1138 dst->len = msg->len;
1139 dst->rx_ts = msg->rx_ts;
1140 dst->rx_status = msg->rx_status;
1141 if (abort)
1142 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1143 msg->flags = dst->flags;
1144 /* Remove it from the wait_queue */
1145 list_del_init(&data->list);
1146
1147 /* Cancel the pending timeout work */
1148 if (!cancel_delayed_work(&data->work)) {
1149 mutex_unlock(&adap->lock);
1150 flush_scheduled_work();
1151 mutex_lock(&adap->lock);
1152 }
1153 /*
1154 * Mark this as a reply, provided someone is still
1155 * waiting for the answer.
1156 */
1157 if (data->fh)
1158 is_reply = true;
1159 cec_data_completed(data);
1160 break;
1161 }
1162 }
1163 mutex_unlock(&adap->lock);
1164
1165 /* Pass the message on to any monitoring filehandles */
1166 cec_queue_msg_monitor(adap, msg, valid_la);
1167
1168 /* We're done if it is not for us or a poll message */
1169 if (!valid_la || msg->len <= 1)
1170 return;
1171
1172 if (adap->log_addrs.log_addr_mask == 0)
1173 return;
1174
1175 /*
1176 * Process the message on the protocol level. If is_reply is true,
1177 * then cec_receive_notify() won't pass on the reply to the listener(s)
1178 * since that was already done by cec_data_completed() above.
1179 */
1180 cec_receive_notify(adap, msg, is_reply);
1181 }
1182 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1183
1184 /* Logical Address Handling */
1185
1186 /*
1187 * Attempt to claim a specific logical address.
1188 *
1189 * This function is called with adap->lock held.
1190 */
1191 static int cec_config_log_addr(struct cec_adapter *adap,
1192 unsigned int idx,
1193 unsigned int log_addr)
1194 {
1195 struct cec_log_addrs *las = &adap->log_addrs;
1196 struct cec_msg msg = { };
1197 int err;
1198
1199 if (cec_has_log_addr(adap, log_addr))
1200 return 0;
1201
1202 /* Send poll message */
1203 msg.len = 1;
1204 msg.msg[0] = (log_addr << 4) | log_addr;
1205 err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1206
1207 /*
1208 * While trying to poll the physical address was reset
1209 * and the adapter was unconfigured, so bail out.
1210 */
1211 if (!adap->is_configuring)
1212 return -EINTR;
1213
1214 if (err)
1215 return err;
1216
1217 if (msg.tx_status & CEC_TX_STATUS_OK)
1218 return 0;
1219
1220 /*
1221 * Message not acknowledged, so this logical
1222 * address is free to use.
1223 */
1224 err = adap->ops->adap_log_addr(adap, log_addr);
1225 if (err)
1226 return err;
1227
1228 las->log_addr[idx] = log_addr;
1229 las->log_addr_mask |= 1 << log_addr;
1230 adap->phys_addrs[log_addr] = adap->phys_addr;
1231 return 1;
1232 }
1233
1234 /*
1235 * Unconfigure the adapter: clear all logical addresses and send
1236 * the state changed event.
1237 *
1238 * This function is called with adap->lock held.
1239 */
1240 static void cec_adap_unconfigure(struct cec_adapter *adap)
1241 {
1242 if (!adap->needs_hpd ||
1243 adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1244 WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
1245 adap->log_addrs.log_addr_mask = 0;
1246 adap->is_configuring = false;
1247 adap->is_configured = false;
1248 memset(adap->phys_addrs, 0xff, sizeof(adap->phys_addrs));
1249 cec_flush(adap);
1250 wake_up_interruptible(&adap->kthread_waitq);
1251 cec_post_state_event(adap);
1252 }
1253
1254 /*
1255 * Attempt to claim the required logical addresses.
1256 */
1257 static int cec_config_thread_func(void *arg)
1258 {
1259 /* The various LAs for each type of device */
1260 static const u8 tv_log_addrs[] = {
1261 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1262 CEC_LOG_ADDR_INVALID
1263 };
1264 static const u8 record_log_addrs[] = {
1265 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1266 CEC_LOG_ADDR_RECORD_3,
1267 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1268 CEC_LOG_ADDR_INVALID
1269 };
1270 static const u8 tuner_log_addrs[] = {
1271 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1272 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1273 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1274 CEC_LOG_ADDR_INVALID
1275 };
1276 static const u8 playback_log_addrs[] = {
1277 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1278 CEC_LOG_ADDR_PLAYBACK_3,
1279 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1280 CEC_LOG_ADDR_INVALID
1281 };
1282 static const u8 audiosystem_log_addrs[] = {
1283 CEC_LOG_ADDR_AUDIOSYSTEM,
1284 CEC_LOG_ADDR_INVALID
1285 };
1286 static const u8 specific_use_log_addrs[] = {
1287 CEC_LOG_ADDR_SPECIFIC,
1288 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1289 CEC_LOG_ADDR_INVALID
1290 };
1291 static const u8 *type2addrs[6] = {
1292 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1293 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1294 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1295 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1296 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1297 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1298 };
1299 static const u16 type2mask[] = {
1300 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1301 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1302 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1303 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1304 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1305 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1306 };
1307 struct cec_adapter *adap = arg;
1308 struct cec_log_addrs *las = &adap->log_addrs;
1309 int err;
1310 int i, j;
1311
1312 mutex_lock(&adap->lock);
1313 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1314 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1315 las->log_addr_mask = 0;
1316
1317 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1318 goto configured;
1319
1320 for (i = 0; i < las->num_log_addrs; i++) {
1321 unsigned int type = las->log_addr_type[i];
1322 const u8 *la_list;
1323 u8 last_la;
1324
1325 /*
1326 * The TV functionality can only map to physical address 0.
1327 * For any other address, try the Specific functionality
1328 * instead as per the spec.
1329 */
1330 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1331 type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1332
1333 la_list = type2addrs[type];
1334 last_la = las->log_addr[i];
1335 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1336 if (last_la == CEC_LOG_ADDR_INVALID ||
1337 last_la == CEC_LOG_ADDR_UNREGISTERED ||
1338 !((1 << last_la) & type2mask[type]))
1339 last_la = la_list[0];
1340
1341 err = cec_config_log_addr(adap, i, last_la);
1342 if (err > 0) /* Reused last LA */
1343 continue;
1344
1345 if (err < 0)
1346 goto unconfigure;
1347
1348 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1349 /* Tried this one already, skip it */
1350 if (la_list[j] == last_la)
1351 continue;
1352 /* The backup addresses are CEC 2.0 specific */
1353 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1354 la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1355 las->cec_version < CEC_OP_CEC_VERSION_2_0)
1356 continue;
1357
1358 err = cec_config_log_addr(adap, i, la_list[j]);
1359 if (err == 0) /* LA is in use */
1360 continue;
1361 if (err < 0)
1362 goto unconfigure;
1363 /* Done, claimed an LA */
1364 break;
1365 }
1366
1367 if (la_list[j] == CEC_LOG_ADDR_INVALID)
1368 dprintk(1, "could not claim LA %d\n", i);
1369 }
1370
1371 if (adap->log_addrs.log_addr_mask == 0 &&
1372 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1373 goto unconfigure;
1374
1375 configured:
1376 if (adap->log_addrs.log_addr_mask == 0) {
1377 /* Fall back to unregistered */
1378 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1379 las->log_addr_mask = 1 << las->log_addr[0];
1380 for (i = 1; i < las->num_log_addrs; i++)
1381 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1382 }
1383 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1384 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1385 adap->is_configured = true;
1386 adap->is_configuring = false;
1387 cec_post_state_event(adap);
1388
1389 /*
1390 * Now post the Report Features and Report Physical Address broadcast
1391 * messages. Note that these are non-blocking transmits, meaning that
1392 * they are just queued up and once adap->lock is unlocked the main
1393 * thread will kick in and start transmitting these.
1394 *
1395 * If after this function is done (but before one or more of these
1396 * messages are actually transmitted) the CEC adapter is unconfigured,
1397 * then any remaining messages will be dropped by the main thread.
1398 */
1399 for (i = 0; i < las->num_log_addrs; i++) {
1400 struct cec_msg msg = {};
1401
1402 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1403 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1404 continue;
1405
1406 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1407
1408 /* Report Features must come first according to CEC 2.0 */
1409 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1410 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1411 cec_fill_msg_report_features(adap, &msg, i);
1412 cec_transmit_msg_fh(adap, &msg, NULL, false);
1413 }
1414
1415 /* Report Physical Address */
1416 cec_msg_report_physical_addr(&msg, adap->phys_addr,
1417 las->primary_device_type[i]);
1418 dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1419 las->log_addr[i],
1420 cec_phys_addr_exp(adap->phys_addr));
1421 cec_transmit_msg_fh(adap, &msg, NULL, false);
1422 }
1423 adap->kthread_config = NULL;
1424 complete(&adap->config_completion);
1425 mutex_unlock(&adap->lock);
1426 return 0;
1427
1428 unconfigure:
1429 for (i = 0; i < las->num_log_addrs; i++)
1430 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1431 cec_adap_unconfigure(adap);
1432 adap->kthread_config = NULL;
1433 mutex_unlock(&adap->lock);
1434 complete(&adap->config_completion);
1435 return 0;
1436 }
1437
1438 /*
1439 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1440 * logical addresses.
1441 *
1442 * This function is called with adap->lock held.
1443 */
1444 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1445 {
1446 if (WARN_ON(adap->is_configuring || adap->is_configured))
1447 return;
1448
1449 init_completion(&adap->config_completion);
1450
1451 /* Ready to kick off the thread */
1452 adap->is_configuring = true;
1453 adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1454 "ceccfg-%s", adap->name);
1455 if (IS_ERR(adap->kthread_config)) {
1456 adap->kthread_config = NULL;
1457 } else if (block) {
1458 mutex_unlock(&adap->lock);
1459 wait_for_completion(&adap->config_completion);
1460 mutex_lock(&adap->lock);
1461 }
1462 }
1463
1464 /* Set a new physical address and send an event notifying userspace of this.
1465 *
1466 * This function is called with adap->lock held.
1467 */
1468 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1469 {
1470 if (phys_addr == adap->phys_addr)
1471 return;
1472 if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered)
1473 return;
1474
1475 dprintk(1, "new physical address %x.%x.%x.%x\n",
1476 cec_phys_addr_exp(phys_addr));
1477 if (phys_addr == CEC_PHYS_ADDR_INVALID ||
1478 adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
1479 adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1480 cec_post_state_event(adap);
1481 cec_adap_unconfigure(adap);
1482 /* Disabling monitor all mode should always succeed */
1483 if (adap->monitor_all_cnt)
1484 WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1485 mutex_lock(&adap->devnode.lock);
1486 if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1487 WARN_ON(adap->ops->adap_enable(adap, false));
1488 mutex_unlock(&adap->devnode.lock);
1489 if (phys_addr == CEC_PHYS_ADDR_INVALID)
1490 return;
1491 }
1492
1493 mutex_lock(&adap->devnode.lock);
1494 if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) &&
1495 adap->ops->adap_enable(adap, true)) {
1496 mutex_unlock(&adap->devnode.lock);
1497 return;
1498 }
1499
1500 if (adap->monitor_all_cnt &&
1501 call_op(adap, adap_monitor_all_enable, true)) {
1502 if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1503 WARN_ON(adap->ops->adap_enable(adap, false));
1504 mutex_unlock(&adap->devnode.lock);
1505 return;
1506 }
1507 mutex_unlock(&adap->devnode.lock);
1508
1509 adap->phys_addr = phys_addr;
1510 cec_post_state_event(adap);
1511 if (adap->log_addrs.num_log_addrs)
1512 cec_claim_log_addrs(adap, block);
1513 }
1514
1515 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1516 {
1517 if (IS_ERR_OR_NULL(adap))
1518 return;
1519
1520 mutex_lock(&adap->lock);
1521 __cec_s_phys_addr(adap, phys_addr, block);
1522 mutex_unlock(&adap->lock);
1523 }
1524 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1525
1526 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1527 const struct edid *edid)
1528 {
1529 u16 pa = CEC_PHYS_ADDR_INVALID;
1530
1531 if (edid && edid->extensions)
1532 pa = cec_get_edid_phys_addr((const u8 *)edid,
1533 EDID_LENGTH * (edid->extensions + 1), NULL);
1534 cec_s_phys_addr(adap, pa, false);
1535 }
1536 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1537
1538 /*
1539 * Called from either the ioctl or a driver to set the logical addresses.
1540 *
1541 * This function is called with adap->lock held.
1542 */
1543 int __cec_s_log_addrs(struct cec_adapter *adap,
1544 struct cec_log_addrs *log_addrs, bool block)
1545 {
1546 u16 type_mask = 0;
1547 int i;
1548
1549 if (adap->devnode.unregistered)
1550 return -ENODEV;
1551
1552 if (!log_addrs || log_addrs->num_log_addrs == 0) {
1553 cec_adap_unconfigure(adap);
1554 adap->log_addrs.num_log_addrs = 0;
1555 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1556 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1557 adap->log_addrs.osd_name[0] = '\0';
1558 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1559 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1560 return 0;
1561 }
1562
1563 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1564 /*
1565 * Sanitize log_addrs fields if a CDC-Only device is
1566 * requested.
1567 */
1568 log_addrs->num_log_addrs = 1;
1569 log_addrs->osd_name[0] = '\0';
1570 log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1571 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1572 /*
1573 * This is just an internal convention since a CDC-Only device
1574 * doesn't have to be a switch. But switches already use
1575 * unregistered, so it makes some kind of sense to pick this
1576 * as the primary device. Since a CDC-Only device never sends
1577 * any 'normal' CEC messages this primary device type is never
1578 * sent over the CEC bus.
1579 */
1580 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1581 log_addrs->all_device_types[0] = 0;
1582 log_addrs->features[0][0] = 0;
1583 log_addrs->features[0][1] = 0;
1584 }
1585
1586 /* Ensure the osd name is 0-terminated */
1587 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1588
1589 /* Sanity checks */
1590 if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1591 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1592 return -EINVAL;
1593 }
1594
1595 /*
1596 * Vendor ID is a 24 bit number, so check if the value is
1597 * within the correct range.
1598 */
1599 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1600 (log_addrs->vendor_id & 0xff000000) != 0) {
1601 dprintk(1, "invalid vendor ID\n");
1602 return -EINVAL;
1603 }
1604
1605 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1606 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1607 dprintk(1, "invalid CEC version\n");
1608 return -EINVAL;
1609 }
1610
1611 if (log_addrs->num_log_addrs > 1)
1612 for (i = 0; i < log_addrs->num_log_addrs; i++)
1613 if (log_addrs->log_addr_type[i] ==
1614 CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1615 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1616 return -EINVAL;
1617 }
1618
1619 for (i = 0; i < log_addrs->num_log_addrs; i++) {
1620 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1621 u8 *features = log_addrs->features[i];
1622 bool op_is_dev_features = false;
1623 unsigned j;
1624
1625 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1626 if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1627 dprintk(1, "duplicate logical address type\n");
1628 return -EINVAL;
1629 }
1630 type_mask |= 1 << log_addrs->log_addr_type[i];
1631 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1632 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1633 /* Record already contains the playback functionality */
1634 dprintk(1, "invalid record + playback combination\n");
1635 return -EINVAL;
1636 }
1637 if (log_addrs->primary_device_type[i] >
1638 CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1639 dprintk(1, "unknown primary device type\n");
1640 return -EINVAL;
1641 }
1642 if (log_addrs->primary_device_type[i] == 2) {
1643 dprintk(1, "invalid primary device type\n");
1644 return -EINVAL;
1645 }
1646 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1647 dprintk(1, "unknown logical address type\n");
1648 return -EINVAL;
1649 }
1650 for (j = 0; j < feature_sz; j++) {
1651 if ((features[j] & 0x80) == 0) {
1652 if (op_is_dev_features)
1653 break;
1654 op_is_dev_features = true;
1655 }
1656 }
1657 if (!op_is_dev_features || j == feature_sz) {
1658 dprintk(1, "malformed features\n");
1659 return -EINVAL;
1660 }
1661 /* Zero unused part of the feature array */
1662 memset(features + j + 1, 0, feature_sz - j - 1);
1663 }
1664
1665 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1666 if (log_addrs->num_log_addrs > 2) {
1667 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1668 return -EINVAL;
1669 }
1670 if (log_addrs->num_log_addrs == 2) {
1671 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1672 (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1673 dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1674 return -EINVAL;
1675 }
1676 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1677 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1678 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1679 return -EINVAL;
1680 }
1681 }
1682 }
1683
1684 /* Zero unused LAs */
1685 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1686 log_addrs->primary_device_type[i] = 0;
1687 log_addrs->log_addr_type[i] = 0;
1688 log_addrs->all_device_types[i] = 0;
1689 memset(log_addrs->features[i], 0,
1690 sizeof(log_addrs->features[i]));
1691 }
1692
1693 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1694 adap->log_addrs = *log_addrs;
1695 if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1696 cec_claim_log_addrs(adap, block);
1697 return 0;
1698 }
1699
1700 int cec_s_log_addrs(struct cec_adapter *adap,
1701 struct cec_log_addrs *log_addrs, bool block)
1702 {
1703 int err;
1704
1705 mutex_lock(&adap->lock);
1706 err = __cec_s_log_addrs(adap, log_addrs, block);
1707 mutex_unlock(&adap->lock);
1708 return err;
1709 }
1710 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1711
1712 /* High-level core CEC message handling */
1713
1714 /* Fill in the Report Features message */
1715 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1716 struct cec_msg *msg,
1717 unsigned int la_idx)
1718 {
1719 const struct cec_log_addrs *las = &adap->log_addrs;
1720 const u8 *features = las->features[la_idx];
1721 bool op_is_dev_features = false;
1722 unsigned int idx;
1723
1724 /* Report Features */
1725 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1726 msg->len = 4;
1727 msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1728 msg->msg[2] = adap->log_addrs.cec_version;
1729 msg->msg[3] = las->all_device_types[la_idx];
1730
1731 /* Write RC Profiles first, then Device Features */
1732 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1733 msg->msg[msg->len++] = features[idx];
1734 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1735 if (op_is_dev_features)
1736 break;
1737 op_is_dev_features = true;
1738 }
1739 }
1740 }
1741
1742 /* Transmit the Feature Abort message */
1743 static int cec_feature_abort_reason(struct cec_adapter *adap,
1744 struct cec_msg *msg, u8 reason)
1745 {
1746 struct cec_msg tx_msg = { };
1747
1748 /*
1749 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1750 * message!
1751 */
1752 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1753 return 0;
1754 /* Don't Feature Abort messages from 'Unregistered' */
1755 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1756 return 0;
1757 cec_msg_set_reply_to(&tx_msg, msg);
1758 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1759 return cec_transmit_msg(adap, &tx_msg, false);
1760 }
1761
1762 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1763 {
1764 return cec_feature_abort_reason(adap, msg,
1765 CEC_OP_ABORT_UNRECOGNIZED_OP);
1766 }
1767
1768 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1769 {
1770 return cec_feature_abort_reason(adap, msg,
1771 CEC_OP_ABORT_REFUSED);
1772 }
1773
1774 /*
1775 * Called when a CEC message is received. This function will do any
1776 * necessary core processing. The is_reply bool is true if this message
1777 * is a reply to an earlier transmit.
1778 *
1779 * The message is either a broadcast message or a valid directed message.
1780 */
1781 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1782 bool is_reply)
1783 {
1784 bool is_broadcast = cec_msg_is_broadcast(msg);
1785 u8 dest_laddr = cec_msg_destination(msg);
1786 u8 init_laddr = cec_msg_initiator(msg);
1787 u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1788 int la_idx = cec_log_addr2idx(adap, dest_laddr);
1789 bool from_unregistered = init_laddr == 0xf;
1790 struct cec_msg tx_cec_msg = { };
1791 #ifdef CONFIG_MEDIA_CEC_RC
1792 int scancode;
1793 #endif
1794
1795 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1796
1797 /* If this is a CDC-Only device, then ignore any non-CDC messages */
1798 if (cec_is_cdc_only(&adap->log_addrs) &&
1799 msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1800 return 0;
1801
1802 if (adap->ops->received) {
1803 /* Allow drivers to process the message first */
1804 if (adap->ops->received(adap, msg) != -ENOMSG)
1805 return 0;
1806 }
1807
1808 /*
1809 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1810 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1811 * handled by the CEC core, even if the passthrough mode is on.
1812 * The others are just ignored if passthrough mode is on.
1813 */
1814 switch (msg->msg[1]) {
1815 case CEC_MSG_GET_CEC_VERSION:
1816 case CEC_MSG_ABORT:
1817 case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
1818 case CEC_MSG_GIVE_OSD_NAME:
1819 /*
1820 * These messages reply with a directed message, so ignore if
1821 * the initiator is Unregistered.
1822 */
1823 if (!adap->passthrough && from_unregistered)
1824 return 0;
1825 /* Fall through */
1826 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1827 case CEC_MSG_GIVE_FEATURES:
1828 case CEC_MSG_GIVE_PHYSICAL_ADDR:
1829 /*
1830 * Skip processing these messages if the passthrough mode
1831 * is on.
1832 */
1833 if (adap->passthrough)
1834 goto skip_processing;
1835 /* Ignore if addressing is wrong */
1836 if (is_broadcast)
1837 return 0;
1838 break;
1839
1840 case CEC_MSG_USER_CONTROL_PRESSED:
1841 case CEC_MSG_USER_CONTROL_RELEASED:
1842 /* Wrong addressing mode: don't process */
1843 if (is_broadcast || from_unregistered)
1844 goto skip_processing;
1845 break;
1846
1847 case CEC_MSG_REPORT_PHYSICAL_ADDR:
1848 /*
1849 * This message is always processed, regardless of the
1850 * passthrough setting.
1851 *
1852 * Exception: don't process if wrong addressing mode.
1853 */
1854 if (!is_broadcast)
1855 goto skip_processing;
1856 break;
1857
1858 default:
1859 break;
1860 }
1861
1862 cec_msg_set_reply_to(&tx_cec_msg, msg);
1863
1864 switch (msg->msg[1]) {
1865 /* The following messages are processed but still passed through */
1866 case CEC_MSG_REPORT_PHYSICAL_ADDR: {
1867 u16 pa = (msg->msg[2] << 8) | msg->msg[3];
1868
1869 if (!from_unregistered)
1870 adap->phys_addrs[init_laddr] = pa;
1871 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
1872 cec_phys_addr_exp(pa), init_laddr);
1873 break;
1874 }
1875
1876 case CEC_MSG_USER_CONTROL_PRESSED:
1877 if (!(adap->capabilities & CEC_CAP_RC) ||
1878 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1879 break;
1880
1881 #ifdef CONFIG_MEDIA_CEC_RC
1882 switch (msg->msg[2]) {
1883 /*
1884 * Play function, this message can have variable length
1885 * depending on the specific play function that is used.
1886 */
1887 case 0x60:
1888 if (msg->len == 2)
1889 scancode = msg->msg[2];
1890 else
1891 scancode = msg->msg[2] << 8 | msg->msg[3];
1892 break;
1893 /*
1894 * Other function messages that are not handled.
1895 * Currently the RC framework does not allow to supply an
1896 * additional parameter to a keypress. These "keys" contain
1897 * other information such as channel number, an input number
1898 * etc.
1899 * For the time being these messages are not processed by the
1900 * framework and are simply forwarded to the user space.
1901 */
1902 case 0x56: case 0x57:
1903 case 0x67: case 0x68: case 0x69: case 0x6a:
1904 scancode = -1;
1905 break;
1906 default:
1907 scancode = msg->msg[2];
1908 break;
1909 }
1910
1911 /* Was repeating, but keypress timed out */
1912 if (adap->rc_repeating && !adap->rc->keypressed) {
1913 adap->rc_repeating = false;
1914 adap->rc_last_scancode = -1;
1915 }
1916 /* Different keypress from last time, ends repeat mode */
1917 if (adap->rc_last_scancode != scancode) {
1918 rc_keyup(adap->rc);
1919 adap->rc_repeating = false;
1920 }
1921 /* We can't handle this scancode */
1922 if (scancode < 0) {
1923 adap->rc_last_scancode = scancode;
1924 break;
1925 }
1926
1927 /* Send key press */
1928 rc_keydown(adap->rc, RC_PROTO_CEC, scancode, 0);
1929
1930 /* When in repeating mode, we're done */
1931 if (adap->rc_repeating)
1932 break;
1933
1934 /*
1935 * We are not repeating, but the new scancode is
1936 * the same as the last one, and this second key press is
1937 * within 550 ms (the 'Follower Safety Timeout') from the
1938 * previous key press, so we now enable the repeating mode.
1939 */
1940 if (adap->rc_last_scancode == scancode &&
1941 msg->rx_ts - adap->rc_last_keypress < 550 * NSEC_PER_MSEC) {
1942 adap->rc_repeating = true;
1943 break;
1944 }
1945 /*
1946 * Not in repeating mode, so avoid triggering repeat mode
1947 * by calling keyup.
1948 */
1949 rc_keyup(adap->rc);
1950 adap->rc_last_scancode = scancode;
1951 adap->rc_last_keypress = msg->rx_ts;
1952 #endif
1953 break;
1954
1955 case CEC_MSG_USER_CONTROL_RELEASED:
1956 if (!(adap->capabilities & CEC_CAP_RC) ||
1957 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1958 break;
1959 #ifdef CONFIG_MEDIA_CEC_RC
1960 rc_keyup(adap->rc);
1961 adap->rc_repeating = false;
1962 adap->rc_last_scancode = -1;
1963 #endif
1964 break;
1965
1966 /*
1967 * The remaining messages are only processed if the passthrough mode
1968 * is off.
1969 */
1970 case CEC_MSG_GET_CEC_VERSION:
1971 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
1972 return cec_transmit_msg(adap, &tx_cec_msg, false);
1973
1974 case CEC_MSG_GIVE_PHYSICAL_ADDR:
1975 /* Do nothing for CEC switches using addr 15 */
1976 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
1977 return 0;
1978 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
1979 return cec_transmit_msg(adap, &tx_cec_msg, false);
1980
1981 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1982 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
1983 return cec_feature_abort(adap, msg);
1984 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
1985 return cec_transmit_msg(adap, &tx_cec_msg, false);
1986
1987 case CEC_MSG_ABORT:
1988 /* Do nothing for CEC switches */
1989 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
1990 return 0;
1991 return cec_feature_refused(adap, msg);
1992
1993 case CEC_MSG_GIVE_OSD_NAME: {
1994 if (adap->log_addrs.osd_name[0] == 0)
1995 return cec_feature_abort(adap, msg);
1996 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
1997 return cec_transmit_msg(adap, &tx_cec_msg, false);
1998 }
1999
2000 case CEC_MSG_GIVE_FEATURES:
2001 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2002 return cec_feature_abort(adap, msg);
2003 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2004 return cec_transmit_msg(adap, &tx_cec_msg, false);
2005
2006 default:
2007 /*
2008 * Unprocessed messages are aborted if userspace isn't doing
2009 * any processing either.
2010 */
2011 if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2012 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2013 return cec_feature_abort(adap, msg);
2014 break;
2015 }
2016
2017 skip_processing:
2018 /* If this was a reply, then we're done, unless otherwise specified */
2019 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2020 return 0;
2021
2022 /*
2023 * Send to the exclusive follower if there is one, otherwise send
2024 * to all followers.
2025 */
2026 if (adap->cec_follower)
2027 cec_queue_msg_fh(adap->cec_follower, msg);
2028 else
2029 cec_queue_msg_followers(adap, msg);
2030 return 0;
2031 }
2032
2033 /*
2034 * Helper functions to keep track of the 'monitor all' use count.
2035 *
2036 * These functions are called with adap->lock held.
2037 */
2038 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2039 {
2040 int ret = 0;
2041
2042 if (adap->monitor_all_cnt == 0)
2043 ret = call_op(adap, adap_monitor_all_enable, 1);
2044 if (ret == 0)
2045 adap->monitor_all_cnt++;
2046 return ret;
2047 }
2048
2049 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2050 {
2051 adap->monitor_all_cnt--;
2052 if (adap->monitor_all_cnt == 0)
2053 WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
2054 }
2055
2056 #ifdef CONFIG_DEBUG_FS
2057 /*
2058 * Log the current state of the CEC adapter.
2059 * Very useful for debugging.
2060 */
2061 int cec_adap_status(struct seq_file *file, void *priv)
2062 {
2063 struct cec_adapter *adap = dev_get_drvdata(file->private);
2064 struct cec_data *data;
2065
2066 mutex_lock(&adap->lock);
2067 seq_printf(file, "configured: %d\n", adap->is_configured);
2068 seq_printf(file, "configuring: %d\n", adap->is_configuring);
2069 seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2070 cec_phys_addr_exp(adap->phys_addr));
2071 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2072 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2073 if (adap->cec_follower)
2074 seq_printf(file, "has CEC follower%s\n",
2075 adap->passthrough ? " (in passthrough mode)" : "");
2076 if (adap->cec_initiator)
2077 seq_puts(file, "has CEC initiator\n");
2078 if (adap->monitor_all_cnt)
2079 seq_printf(file, "file handles in Monitor All mode: %u\n",
2080 adap->monitor_all_cnt);
2081 if (adap->tx_timeouts) {
2082 seq_printf(file, "transmit timeouts: %u\n",
2083 adap->tx_timeouts);
2084 adap->tx_timeouts = 0;
2085 }
2086 data = adap->transmitting;
2087 if (data)
2088 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2089 data->msg.len, data->msg.msg, data->msg.reply,
2090 data->msg.timeout);
2091 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2092 list_for_each_entry(data, &adap->transmit_queue, list) {
2093 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2094 data->msg.len, data->msg.msg, data->msg.reply,
2095 data->msg.timeout);
2096 }
2097 list_for_each_entry(data, &adap->wait_queue, list) {
2098 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2099 data->msg.len, data->msg.msg, data->msg.reply,
2100 data->msg.timeout);
2101 }
2102
2103 call_void_op(adap, adap_status, file);
2104 mutex_unlock(&adap->lock);
2105 return 0;
2106 }
2107 #endif