]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/media/cec/cec-adap.c
Merge tag 'selinux-pr-20170831' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / media / cec / cec-adap.c
1 /*
2 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
3 *
4 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5 *
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17 * SOFTWARE.
18 */
19
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/kmod.h>
25 #include <linux/ktime.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30
31 #include <drm/drm_edid.h>
32
33 #include "cec-priv.h"
34
35 static void cec_fill_msg_report_features(struct cec_adapter *adap,
36 struct cec_msg *msg,
37 unsigned int la_idx);
38
39 /*
40 * 400 ms is the time it takes for one 16 byte message to be
41 * transferred and 5 is the maximum number of retries. Add
42 * another 100 ms as a margin. So if the transmit doesn't
43 * finish before that time something is really wrong and we
44 * have to time out.
45 *
46 * This is a sign that something it really wrong and a warning
47 * will be issued.
48 */
49 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
50
51 #define call_op(adap, op, arg...) \
52 (adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
53
54 #define call_void_op(adap, op, arg...) \
55 do { \
56 if (adap->ops->op) \
57 adap->ops->op(adap, ## arg); \
58 } while (0)
59
60 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
61 {
62 int i;
63
64 for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
65 if (adap->log_addrs.log_addr[i] == log_addr)
66 return i;
67 return -1;
68 }
69
70 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
71 {
72 int i = cec_log_addr2idx(adap, log_addr);
73
74 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
75 }
76
77 /*
78 * Queue a new event for this filehandle. If ts == 0, then set it
79 * to the current time.
80 *
81 * We keep a queue of at most max_event events where max_event differs
82 * per event. If the queue becomes full, then drop the oldest event and
83 * keep track of how many events we've dropped.
84 */
85 void cec_queue_event_fh(struct cec_fh *fh,
86 const struct cec_event *new_ev, u64 ts)
87 {
88 static const u8 max_events[CEC_NUM_EVENTS] = {
89 1, 1, 64, 64,
90 };
91 struct cec_event_entry *entry;
92 unsigned int ev_idx = new_ev->event - 1;
93
94 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
95 return;
96
97 if (ts == 0)
98 ts = ktime_get_ns();
99
100 mutex_lock(&fh->lock);
101 if (ev_idx < CEC_NUM_CORE_EVENTS)
102 entry = &fh->core_events[ev_idx];
103 else
104 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
105 if (entry) {
106 if (new_ev->event == CEC_EVENT_LOST_MSGS &&
107 fh->queued_events[ev_idx]) {
108 entry->ev.lost_msgs.lost_msgs +=
109 new_ev->lost_msgs.lost_msgs;
110 goto unlock;
111 }
112 entry->ev = *new_ev;
113 entry->ev.ts = ts;
114
115 if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
116 /* Add new msg at the end of the queue */
117 list_add_tail(&entry->list, &fh->events[ev_idx]);
118 fh->queued_events[ev_idx]++;
119 fh->total_queued_events++;
120 goto unlock;
121 }
122
123 if (ev_idx >= CEC_NUM_CORE_EVENTS) {
124 list_add_tail(&entry->list, &fh->events[ev_idx]);
125 /* drop the oldest event */
126 entry = list_first_entry(&fh->events[ev_idx],
127 struct cec_event_entry, list);
128 list_del(&entry->list);
129 kfree(entry);
130 }
131 }
132 /* Mark that events were lost */
133 entry = list_first_entry_or_null(&fh->events[ev_idx],
134 struct cec_event_entry, list);
135 if (entry)
136 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
137
138 unlock:
139 mutex_unlock(&fh->lock);
140 wake_up_interruptible(&fh->wait);
141 }
142
143 /* Queue a new event for all open filehandles. */
144 static void cec_queue_event(struct cec_adapter *adap,
145 const struct cec_event *ev)
146 {
147 u64 ts = ktime_get_ns();
148 struct cec_fh *fh;
149
150 mutex_lock(&adap->devnode.lock);
151 list_for_each_entry(fh, &adap->devnode.fhs, list)
152 cec_queue_event_fh(fh, ev, ts);
153 mutex_unlock(&adap->devnode.lock);
154 }
155
156 /* Notify userspace that the CEC pin changed state at the given time. */
157 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
158 {
159 struct cec_event ev = {
160 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
161 CEC_EVENT_PIN_CEC_LOW,
162 };
163 struct cec_fh *fh;
164
165 mutex_lock(&adap->devnode.lock);
166 list_for_each_entry(fh, &adap->devnode.fhs, list)
167 if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
168 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
169 mutex_unlock(&adap->devnode.lock);
170 }
171 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
172
173 /*
174 * Queue a new message for this filehandle.
175 *
176 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
177 * queue becomes full, then drop the oldest message and keep track
178 * of how many messages we've dropped.
179 */
180 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
181 {
182 static const struct cec_event ev_lost_msgs = {
183 .event = CEC_EVENT_LOST_MSGS,
184 .lost_msgs.lost_msgs = 1,
185 };
186 struct cec_msg_entry *entry;
187
188 mutex_lock(&fh->lock);
189 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
190 if (entry) {
191 entry->msg = *msg;
192 /* Add new msg at the end of the queue */
193 list_add_tail(&entry->list, &fh->msgs);
194
195 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
196 /* All is fine if there is enough room */
197 fh->queued_msgs++;
198 mutex_unlock(&fh->lock);
199 wake_up_interruptible(&fh->wait);
200 return;
201 }
202
203 /*
204 * if the message queue is full, then drop the oldest one and
205 * send a lost message event.
206 */
207 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
208 list_del(&entry->list);
209 kfree(entry);
210 }
211 mutex_unlock(&fh->lock);
212
213 /*
214 * We lost a message, either because kmalloc failed or the queue
215 * was full.
216 */
217 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
218 }
219
220 /*
221 * Queue the message for those filehandles that are in monitor mode.
222 * If valid_la is true (this message is for us or was sent by us),
223 * then pass it on to any monitoring filehandle. If this message
224 * isn't for us or from us, then only give it to filehandles that
225 * are in MONITOR_ALL mode.
226 *
227 * This can only happen if the CEC_CAP_MONITOR_ALL capability is
228 * set and the CEC adapter was placed in 'monitor all' mode.
229 */
230 static void cec_queue_msg_monitor(struct cec_adapter *adap,
231 const struct cec_msg *msg,
232 bool valid_la)
233 {
234 struct cec_fh *fh;
235 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
236 CEC_MODE_MONITOR_ALL;
237
238 mutex_lock(&adap->devnode.lock);
239 list_for_each_entry(fh, &adap->devnode.fhs, list) {
240 if (fh->mode_follower >= monitor_mode)
241 cec_queue_msg_fh(fh, msg);
242 }
243 mutex_unlock(&adap->devnode.lock);
244 }
245
246 /*
247 * Queue the message for follower filehandles.
248 */
249 static void cec_queue_msg_followers(struct cec_adapter *adap,
250 const struct cec_msg *msg)
251 {
252 struct cec_fh *fh;
253
254 mutex_lock(&adap->devnode.lock);
255 list_for_each_entry(fh, &adap->devnode.fhs, list) {
256 if (fh->mode_follower == CEC_MODE_FOLLOWER)
257 cec_queue_msg_fh(fh, msg);
258 }
259 mutex_unlock(&adap->devnode.lock);
260 }
261
262 /* Notify userspace of an adapter state change. */
263 static void cec_post_state_event(struct cec_adapter *adap)
264 {
265 struct cec_event ev = {
266 .event = CEC_EVENT_STATE_CHANGE,
267 };
268
269 ev.state_change.phys_addr = adap->phys_addr;
270 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
271 cec_queue_event(adap, &ev);
272 }
273
274 /*
275 * A CEC transmit (and a possible wait for reply) completed.
276 * If this was in blocking mode, then complete it, otherwise
277 * queue the message for userspace to dequeue later.
278 *
279 * This function is called with adap->lock held.
280 */
281 static void cec_data_completed(struct cec_data *data)
282 {
283 /*
284 * Delete this transmit from the filehandle's xfer_list since
285 * we're done with it.
286 *
287 * Note that if the filehandle is closed before this transmit
288 * finished, then the release() function will set data->fh to NULL.
289 * Without that we would be referring to a closed filehandle.
290 */
291 if (data->fh)
292 list_del(&data->xfer_list);
293
294 if (data->blocking) {
295 /*
296 * Someone is blocking so mark the message as completed
297 * and call complete.
298 */
299 data->completed = true;
300 complete(&data->c);
301 } else {
302 /*
303 * No blocking, so just queue the message if needed and
304 * free the memory.
305 */
306 if (data->fh)
307 cec_queue_msg_fh(data->fh, &data->msg);
308 kfree(data);
309 }
310 }
311
312 /*
313 * A pending CEC transmit needs to be cancelled, either because the CEC
314 * adapter is disabled or the transmit takes an impossibly long time to
315 * finish.
316 *
317 * This function is called with adap->lock held.
318 */
319 static void cec_data_cancel(struct cec_data *data)
320 {
321 /*
322 * It's either the current transmit, or it is a pending
323 * transmit. Take the appropriate action to clear it.
324 */
325 if (data->adap->transmitting == data) {
326 data->adap->transmitting = NULL;
327 } else {
328 list_del_init(&data->list);
329 if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
330 data->adap->transmit_queue_sz--;
331 }
332
333 /* Mark it as an error */
334 data->msg.tx_ts = ktime_get_ns();
335 data->msg.tx_status |= CEC_TX_STATUS_ERROR |
336 CEC_TX_STATUS_MAX_RETRIES;
337 data->msg.tx_error_cnt++;
338 data->attempts = 0;
339 /* Queue transmitted message for monitoring purposes */
340 cec_queue_msg_monitor(data->adap, &data->msg, 1);
341
342 cec_data_completed(data);
343 }
344
345 /*
346 * Flush all pending transmits and cancel any pending timeout work.
347 *
348 * This function is called with adap->lock held.
349 */
350 static void cec_flush(struct cec_adapter *adap)
351 {
352 struct cec_data *data, *n;
353
354 /*
355 * If the adapter is disabled, or we're asked to stop,
356 * then cancel any pending transmits.
357 */
358 while (!list_empty(&adap->transmit_queue)) {
359 data = list_first_entry(&adap->transmit_queue,
360 struct cec_data, list);
361 cec_data_cancel(data);
362 }
363 if (adap->transmitting)
364 cec_data_cancel(adap->transmitting);
365
366 /* Cancel the pending timeout work. */
367 list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
368 if (cancel_delayed_work(&data->work))
369 cec_data_cancel(data);
370 /*
371 * If cancel_delayed_work returned false, then
372 * the cec_wait_timeout function is running,
373 * which will call cec_data_completed. So no
374 * need to do anything special in that case.
375 */
376 }
377 }
378
379 /*
380 * Main CEC state machine
381 *
382 * Wait until the thread should be stopped, or we are not transmitting and
383 * a new transmit message is queued up, in which case we start transmitting
384 * that message. When the adapter finished transmitting the message it will
385 * call cec_transmit_done().
386 *
387 * If the adapter is disabled, then remove all queued messages instead.
388 *
389 * If the current transmit times out, then cancel that transmit.
390 */
391 int cec_thread_func(void *_adap)
392 {
393 struct cec_adapter *adap = _adap;
394
395 for (;;) {
396 unsigned int signal_free_time;
397 struct cec_data *data;
398 bool timeout = false;
399 u8 attempts;
400
401 if (adap->transmitting) {
402 int err;
403
404 /*
405 * We are transmitting a message, so add a timeout
406 * to prevent the state machine to get stuck waiting
407 * for this message to finalize and add a check to
408 * see if the adapter is disabled in which case the
409 * transmit should be canceled.
410 */
411 err = wait_event_interruptible_timeout(adap->kthread_waitq,
412 (adap->needs_hpd &&
413 (!adap->is_configured && !adap->is_configuring)) ||
414 kthread_should_stop() ||
415 (!adap->transmitting &&
416 !list_empty(&adap->transmit_queue)),
417 msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
418 timeout = err == 0;
419 } else {
420 /* Otherwise we just wait for something to happen. */
421 wait_event_interruptible(adap->kthread_waitq,
422 kthread_should_stop() ||
423 (!adap->transmitting &&
424 !list_empty(&adap->transmit_queue)));
425 }
426
427 mutex_lock(&adap->lock);
428
429 if ((adap->needs_hpd &&
430 (!adap->is_configured && !adap->is_configuring)) ||
431 kthread_should_stop()) {
432 cec_flush(adap);
433 goto unlock;
434 }
435
436 if (adap->transmitting && timeout) {
437 /*
438 * If we timeout, then log that. Normally this does
439 * not happen and it is an indication of a faulty CEC
440 * adapter driver, or the CEC bus is in some weird
441 * state. On rare occasions it can happen if there is
442 * so much traffic on the bus that the adapter was
443 * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
444 */
445 dprintk(1, "%s: message %*ph timed out\n", __func__,
446 adap->transmitting->msg.len,
447 adap->transmitting->msg.msg);
448 adap->tx_timeouts++;
449 /* Just give up on this. */
450 cec_data_cancel(adap->transmitting);
451 goto unlock;
452 }
453
454 /*
455 * If we are still transmitting, or there is nothing new to
456 * transmit, then just continue waiting.
457 */
458 if (adap->transmitting || list_empty(&adap->transmit_queue))
459 goto unlock;
460
461 /* Get a new message to transmit */
462 data = list_first_entry(&adap->transmit_queue,
463 struct cec_data, list);
464 list_del_init(&data->list);
465 adap->transmit_queue_sz--;
466
467 /* Make this the current transmitting message */
468 adap->transmitting = data;
469
470 /*
471 * Suggested number of attempts as per the CEC 2.0 spec:
472 * 4 attempts is the default, except for 'secondary poll
473 * messages', i.e. poll messages not sent during the adapter
474 * configuration phase when it allocates logical addresses.
475 */
476 if (data->msg.len == 1 && adap->is_configured)
477 attempts = 2;
478 else
479 attempts = 4;
480
481 /* Set the suggested signal free time */
482 if (data->attempts) {
483 /* should be >= 3 data bit periods for a retry */
484 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
485 } else if (data->new_initiator) {
486 /* should be >= 5 data bit periods for new initiator */
487 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
488 } else {
489 /*
490 * should be >= 7 data bit periods for sending another
491 * frame immediately after another.
492 */
493 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
494 }
495 if (data->attempts == 0)
496 data->attempts = attempts;
497
498 /* Tell the adapter to transmit, cancel on error */
499 if (adap->ops->adap_transmit(adap, data->attempts,
500 signal_free_time, &data->msg))
501 cec_data_cancel(data);
502
503 unlock:
504 mutex_unlock(&adap->lock);
505
506 if (kthread_should_stop())
507 break;
508 }
509 return 0;
510 }
511
512 /*
513 * Called by the CEC adapter if a transmit finished.
514 */
515 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
516 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
517 u8 error_cnt, ktime_t ts)
518 {
519 struct cec_data *data;
520 struct cec_msg *msg;
521 unsigned int attempts_made = arb_lost_cnt + nack_cnt +
522 low_drive_cnt + error_cnt;
523
524 dprintk(2, "%s: status %02x\n", __func__, status);
525 if (attempts_made < 1)
526 attempts_made = 1;
527
528 mutex_lock(&adap->lock);
529 data = adap->transmitting;
530 if (!data) {
531 /*
532 * This can happen if a transmit was issued and the cable is
533 * unplugged while the transmit is ongoing. Ignore this
534 * transmit in that case.
535 */
536 dprintk(1, "%s was called without an ongoing transmit!\n",
537 __func__);
538 goto unlock;
539 }
540
541 msg = &data->msg;
542
543 /* Drivers must fill in the status! */
544 WARN_ON(status == 0);
545 msg->tx_ts = ktime_to_ns(ts);
546 msg->tx_status |= status;
547 msg->tx_arb_lost_cnt += arb_lost_cnt;
548 msg->tx_nack_cnt += nack_cnt;
549 msg->tx_low_drive_cnt += low_drive_cnt;
550 msg->tx_error_cnt += error_cnt;
551
552 /* Mark that we're done with this transmit */
553 adap->transmitting = NULL;
554
555 /*
556 * If there are still retry attempts left and there was an error and
557 * the hardware didn't signal that it retried itself (by setting
558 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
559 */
560 if (data->attempts > attempts_made &&
561 !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
562 /* Retry this message */
563 data->attempts -= attempts_made;
564 if (msg->timeout)
565 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
566 msg->len, msg->msg, data->attempts, msg->reply);
567 else
568 dprintk(2, "retransmit: %*ph (attempts: %d)\n",
569 msg->len, msg->msg, data->attempts);
570 /* Add the message in front of the transmit queue */
571 list_add(&data->list, &adap->transmit_queue);
572 adap->transmit_queue_sz++;
573 goto wake_thread;
574 }
575
576 data->attempts = 0;
577
578 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
579 if (!(status & CEC_TX_STATUS_OK))
580 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
581
582 /* Queue transmitted message for monitoring purposes */
583 cec_queue_msg_monitor(adap, msg, 1);
584
585 if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
586 msg->timeout) {
587 /*
588 * Queue the message into the wait queue if we want to wait
589 * for a reply.
590 */
591 list_add_tail(&data->list, &adap->wait_queue);
592 schedule_delayed_work(&data->work,
593 msecs_to_jiffies(msg->timeout));
594 } else {
595 /* Otherwise we're done */
596 cec_data_completed(data);
597 }
598
599 wake_thread:
600 /*
601 * Wake up the main thread to see if another message is ready
602 * for transmitting or to retry the current message.
603 */
604 wake_up_interruptible(&adap->kthread_waitq);
605 unlock:
606 mutex_unlock(&adap->lock);
607 }
608 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
609
610 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
611 u8 status, ktime_t ts)
612 {
613 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
614 case CEC_TX_STATUS_OK:
615 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
616 return;
617 case CEC_TX_STATUS_ARB_LOST:
618 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
619 return;
620 case CEC_TX_STATUS_NACK:
621 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
622 return;
623 case CEC_TX_STATUS_LOW_DRIVE:
624 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
625 return;
626 case CEC_TX_STATUS_ERROR:
627 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
628 return;
629 default:
630 /* Should never happen */
631 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
632 return;
633 }
634 }
635 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
636
637 /*
638 * Called when waiting for a reply times out.
639 */
640 static void cec_wait_timeout(struct work_struct *work)
641 {
642 struct cec_data *data = container_of(work, struct cec_data, work.work);
643 struct cec_adapter *adap = data->adap;
644
645 mutex_lock(&adap->lock);
646 /*
647 * Sanity check in case the timeout and the arrival of the message
648 * happened at the same time.
649 */
650 if (list_empty(&data->list))
651 goto unlock;
652
653 /* Mark the message as timed out */
654 list_del_init(&data->list);
655 data->msg.rx_ts = ktime_get_ns();
656 data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
657 cec_data_completed(data);
658 unlock:
659 mutex_unlock(&adap->lock);
660 }
661
662 /*
663 * Transmit a message. The fh argument may be NULL if the transmit is not
664 * associated with a specific filehandle.
665 *
666 * This function is called with adap->lock held.
667 */
668 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
669 struct cec_fh *fh, bool block)
670 {
671 struct cec_data *data;
672 u8 last_initiator = 0xff;
673 unsigned int timeout;
674 int res = 0;
675
676 msg->rx_ts = 0;
677 msg->tx_ts = 0;
678 msg->rx_status = 0;
679 msg->tx_status = 0;
680 msg->tx_arb_lost_cnt = 0;
681 msg->tx_nack_cnt = 0;
682 msg->tx_low_drive_cnt = 0;
683 msg->tx_error_cnt = 0;
684 msg->sequence = 0;
685
686 if (msg->reply && msg->timeout == 0) {
687 /* Make sure the timeout isn't 0. */
688 msg->timeout = 1000;
689 }
690 if (msg->timeout)
691 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS;
692 else
693 msg->flags = 0;
694
695 /* Sanity checks */
696 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
697 dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
698 return -EINVAL;
699 }
700 if (msg->timeout && msg->len == 1) {
701 dprintk(1, "%s: can't reply for poll msg\n", __func__);
702 return -EINVAL;
703 }
704 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
705 if (msg->len == 1) {
706 if (cec_msg_destination(msg) == 0xf) {
707 dprintk(1, "%s: invalid poll message\n", __func__);
708 return -EINVAL;
709 }
710 if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
711 /*
712 * If the destination is a logical address our adapter
713 * has already claimed, then just NACK this.
714 * It depends on the hardware what it will do with a
715 * POLL to itself (some OK this), so it is just as
716 * easy to handle it here so the behavior will be
717 * consistent.
718 */
719 msg->tx_ts = ktime_get_ns();
720 msg->tx_status = CEC_TX_STATUS_NACK |
721 CEC_TX_STATUS_MAX_RETRIES;
722 msg->tx_nack_cnt = 1;
723 msg->sequence = ++adap->sequence;
724 if (!msg->sequence)
725 msg->sequence = ++adap->sequence;
726 return 0;
727 }
728 }
729 if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
730 cec_has_log_addr(adap, cec_msg_destination(msg))) {
731 dprintk(1, "%s: destination is the adapter itself\n", __func__);
732 return -EINVAL;
733 }
734 if (msg->len > 1 && adap->is_configured &&
735 !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
736 dprintk(1, "%s: initiator has unknown logical address %d\n",
737 __func__, cec_msg_initiator(msg));
738 return -EINVAL;
739 }
740 if (!adap->is_configured && !adap->is_configuring) {
741 if (adap->needs_hpd || msg->msg[0] != 0xf0) {
742 dprintk(1, "%s: adapter is unconfigured\n", __func__);
743 return -ENONET;
744 }
745 if (msg->reply) {
746 dprintk(1, "%s: invalid msg->reply\n", __func__);
747 return -EINVAL;
748 }
749 }
750
751 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
752 dprintk(1, "%s: transmit queue full\n", __func__);
753 return -EBUSY;
754 }
755
756 data = kzalloc(sizeof(*data), GFP_KERNEL);
757 if (!data)
758 return -ENOMEM;
759
760 msg->sequence = ++adap->sequence;
761 if (!msg->sequence)
762 msg->sequence = ++adap->sequence;
763
764 if (msg->len > 1 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
765 msg->msg[2] = adap->phys_addr >> 8;
766 msg->msg[3] = adap->phys_addr & 0xff;
767 }
768
769 if (msg->timeout)
770 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
771 __func__, msg->len, msg->msg, msg->reply,
772 !block ? ", nb" : "");
773 else
774 dprintk(2, "%s: %*ph%s\n",
775 __func__, msg->len, msg->msg, !block ? " (nb)" : "");
776
777 data->msg = *msg;
778 data->fh = fh;
779 data->adap = adap;
780 data->blocking = block;
781
782 /*
783 * Determine if this message follows a message from the same
784 * initiator. Needed to determine the free signal time later on.
785 */
786 if (msg->len > 1) {
787 if (!(list_empty(&adap->transmit_queue))) {
788 const struct cec_data *last;
789
790 last = list_last_entry(&adap->transmit_queue,
791 const struct cec_data, list);
792 last_initiator = cec_msg_initiator(&last->msg);
793 } else if (adap->transmitting) {
794 last_initiator =
795 cec_msg_initiator(&adap->transmitting->msg);
796 }
797 }
798 data->new_initiator = last_initiator != cec_msg_initiator(msg);
799 init_completion(&data->c);
800 INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
801
802 if (fh)
803 list_add_tail(&data->xfer_list, &fh->xfer_list);
804
805 list_add_tail(&data->list, &adap->transmit_queue);
806 adap->transmit_queue_sz++;
807 if (!adap->transmitting)
808 wake_up_interruptible(&adap->kthread_waitq);
809
810 /* All done if we don't need to block waiting for completion */
811 if (!block)
812 return 0;
813
814 /*
815 * If we don't get a completion before this time something is really
816 * wrong and we time out.
817 */
818 timeout = CEC_XFER_TIMEOUT_MS;
819 /* Add the requested timeout if we have to wait for a reply as well */
820 if (msg->timeout)
821 timeout += msg->timeout;
822
823 /*
824 * Release the lock and wait, retake the lock afterwards.
825 */
826 mutex_unlock(&adap->lock);
827 res = wait_for_completion_killable_timeout(&data->c,
828 msecs_to_jiffies(timeout));
829 mutex_lock(&adap->lock);
830
831 if (data->completed) {
832 /* The transmit completed (possibly with an error) */
833 *msg = data->msg;
834 kfree(data);
835 return 0;
836 }
837 /*
838 * The wait for completion timed out or was interrupted, so mark this
839 * as non-blocking and disconnect from the filehandle since it is
840 * still 'in flight'. When it finally completes it will just drop the
841 * result silently.
842 */
843 data->blocking = false;
844 if (data->fh)
845 list_del(&data->xfer_list);
846 data->fh = NULL;
847
848 if (res == 0) { /* timed out */
849 /* Check if the reply or the transmit failed */
850 if (msg->timeout && (msg->tx_status & CEC_TX_STATUS_OK))
851 msg->rx_status = CEC_RX_STATUS_TIMEOUT;
852 else
853 msg->tx_status = CEC_TX_STATUS_MAX_RETRIES;
854 }
855 return res > 0 ? 0 : res;
856 }
857
858 /* Helper function to be used by drivers and this framework. */
859 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
860 bool block)
861 {
862 int ret;
863
864 mutex_lock(&adap->lock);
865 ret = cec_transmit_msg_fh(adap, msg, NULL, block);
866 mutex_unlock(&adap->lock);
867 return ret;
868 }
869 EXPORT_SYMBOL_GPL(cec_transmit_msg);
870
871 /*
872 * I don't like forward references but without this the low-level
873 * cec_received_msg() function would come after a bunch of high-level
874 * CEC protocol handling functions. That was very confusing.
875 */
876 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
877 bool is_reply);
878
879 #define DIRECTED 0x80
880 #define BCAST1_4 0x40
881 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */
882 #define BCAST (BCAST1_4 | BCAST2_0)
883 #define BOTH (BCAST | DIRECTED)
884
885 /*
886 * Specify minimum length and whether the message is directed, broadcast
887 * or both. Messages that do not match the criteria are ignored as per
888 * the CEC specification.
889 */
890 static const u8 cec_msg_size[256] = {
891 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
892 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
893 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
894 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
895 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
896 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
897 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
898 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
899 [CEC_MSG_STANDBY] = 2 | BOTH,
900 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
901 [CEC_MSG_RECORD_ON] = 3 | DIRECTED,
902 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
903 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
904 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
905 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
906 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
907 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
908 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
909 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
910 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
911 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
912 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
913 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
914 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
915 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
916 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
917 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
918 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
919 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
920 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
921 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
922 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
923 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
924 [CEC_MSG_PLAY] = 3 | DIRECTED,
925 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
926 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
927 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
928 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
929 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
930 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
931 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
932 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
933 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
934 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
935 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
936 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
937 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
938 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
939 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
940 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
941 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
942 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
943 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
944 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
945 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
946 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
947 [CEC_MSG_ABORT] = 2 | DIRECTED,
948 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
949 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
950 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
951 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
952 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
953 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
954 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
955 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
956 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
957 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
958 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
959 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
960 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
961 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
962 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
963 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
964 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
965 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
966 };
967
968 /* Called by the CEC adapter if a message is received */
969 void cec_received_msg_ts(struct cec_adapter *adap,
970 struct cec_msg *msg, ktime_t ts)
971 {
972 struct cec_data *data;
973 u8 msg_init = cec_msg_initiator(msg);
974 u8 msg_dest = cec_msg_destination(msg);
975 u8 cmd = msg->msg[1];
976 bool is_reply = false;
977 bool valid_la = true;
978 u8 min_len = 0;
979
980 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
981 return;
982
983 /*
984 * Some CEC adapters will receive the messages that they transmitted.
985 * This test filters out those messages by checking if we are the
986 * initiator, and just returning in that case.
987 *
988 * Note that this won't work if this is an Unregistered device.
989 *
990 * It is bad practice if the hardware receives the message that it
991 * transmitted and luckily most CEC adapters behave correctly in this
992 * respect.
993 */
994 if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
995 cec_has_log_addr(adap, msg_init))
996 return;
997
998 msg->rx_ts = ktime_to_ns(ts);
999 msg->rx_status = CEC_RX_STATUS_OK;
1000 msg->sequence = msg->reply = msg->timeout = 0;
1001 msg->tx_status = 0;
1002 msg->tx_ts = 0;
1003 msg->tx_arb_lost_cnt = 0;
1004 msg->tx_nack_cnt = 0;
1005 msg->tx_low_drive_cnt = 0;
1006 msg->tx_error_cnt = 0;
1007 msg->flags = 0;
1008 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1009
1010 mutex_lock(&adap->lock);
1011 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1012
1013 /* Check if this message was for us (directed or broadcast). */
1014 if (!cec_msg_is_broadcast(msg))
1015 valid_la = cec_has_log_addr(adap, msg_dest);
1016
1017 /*
1018 * Check if the length is not too short or if the message is a
1019 * broadcast message where a directed message was expected or
1020 * vice versa. If so, then the message has to be ignored (according
1021 * to section CEC 7.3 and CEC 12.2).
1022 */
1023 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1024 u8 dir_fl = cec_msg_size[cmd] & BOTH;
1025
1026 min_len = cec_msg_size[cmd] & 0x1f;
1027 if (msg->len < min_len)
1028 valid_la = false;
1029 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1030 valid_la = false;
1031 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST1_4))
1032 valid_la = false;
1033 else if (cec_msg_is_broadcast(msg) &&
1034 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0 &&
1035 !(dir_fl & BCAST2_0))
1036 valid_la = false;
1037 }
1038 if (valid_la && min_len) {
1039 /* These messages have special length requirements */
1040 switch (cmd) {
1041 case CEC_MSG_TIMER_STATUS:
1042 if (msg->msg[2] & 0x10) {
1043 switch (msg->msg[2] & 0xf) {
1044 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
1045 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
1046 if (msg->len < 5)
1047 valid_la = false;
1048 break;
1049 }
1050 } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
1051 if (msg->len < 5)
1052 valid_la = false;
1053 }
1054 break;
1055 case CEC_MSG_RECORD_ON:
1056 switch (msg->msg[2]) {
1057 case CEC_OP_RECORD_SRC_OWN:
1058 break;
1059 case CEC_OP_RECORD_SRC_DIGITAL:
1060 if (msg->len < 10)
1061 valid_la = false;
1062 break;
1063 case CEC_OP_RECORD_SRC_ANALOG:
1064 if (msg->len < 7)
1065 valid_la = false;
1066 break;
1067 case CEC_OP_RECORD_SRC_EXT_PLUG:
1068 if (msg->len < 4)
1069 valid_la = false;
1070 break;
1071 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1072 if (msg->len < 5)
1073 valid_la = false;
1074 break;
1075 }
1076 break;
1077 }
1078 }
1079
1080 /* It's a valid message and not a poll or CDC message */
1081 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1082 bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1083
1084 /* The aborted command is in msg[2] */
1085 if (abort)
1086 cmd = msg->msg[2];
1087
1088 /*
1089 * Walk over all transmitted messages that are waiting for a
1090 * reply.
1091 */
1092 list_for_each_entry(data, &adap->wait_queue, list) {
1093 struct cec_msg *dst = &data->msg;
1094
1095 /*
1096 * The *only* CEC message that has two possible replies
1097 * is CEC_MSG_INITIATE_ARC.
1098 * In this case allow either of the two replies.
1099 */
1100 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1101 (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1102 cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1103 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1104 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1105 dst->reply = cmd;
1106
1107 /* Does the command match? */
1108 if ((abort && cmd != dst->msg[1]) ||
1109 (!abort && cmd != dst->reply))
1110 continue;
1111
1112 /* Does the addressing match? */
1113 if (msg_init != cec_msg_destination(dst) &&
1114 !cec_msg_is_broadcast(dst))
1115 continue;
1116
1117 /* We got a reply */
1118 memcpy(dst->msg, msg->msg, msg->len);
1119 dst->len = msg->len;
1120 dst->rx_ts = msg->rx_ts;
1121 dst->rx_status = msg->rx_status;
1122 if (abort)
1123 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1124 msg->flags = dst->flags;
1125 /* Remove it from the wait_queue */
1126 list_del_init(&data->list);
1127
1128 /* Cancel the pending timeout work */
1129 if (!cancel_delayed_work(&data->work)) {
1130 mutex_unlock(&adap->lock);
1131 flush_scheduled_work();
1132 mutex_lock(&adap->lock);
1133 }
1134 /*
1135 * Mark this as a reply, provided someone is still
1136 * waiting for the answer.
1137 */
1138 if (data->fh)
1139 is_reply = true;
1140 cec_data_completed(data);
1141 break;
1142 }
1143 }
1144 mutex_unlock(&adap->lock);
1145
1146 /* Pass the message on to any monitoring filehandles */
1147 cec_queue_msg_monitor(adap, msg, valid_la);
1148
1149 /* We're done if it is not for us or a poll message */
1150 if (!valid_la || msg->len <= 1)
1151 return;
1152
1153 if (adap->log_addrs.log_addr_mask == 0)
1154 return;
1155
1156 /*
1157 * Process the message on the protocol level. If is_reply is true,
1158 * then cec_receive_notify() won't pass on the reply to the listener(s)
1159 * since that was already done by cec_data_completed() above.
1160 */
1161 cec_receive_notify(adap, msg, is_reply);
1162 }
1163 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1164
1165 /* Logical Address Handling */
1166
1167 /*
1168 * Attempt to claim a specific logical address.
1169 *
1170 * This function is called with adap->lock held.
1171 */
1172 static int cec_config_log_addr(struct cec_adapter *adap,
1173 unsigned int idx,
1174 unsigned int log_addr)
1175 {
1176 struct cec_log_addrs *las = &adap->log_addrs;
1177 struct cec_msg msg = { };
1178 int err;
1179
1180 if (cec_has_log_addr(adap, log_addr))
1181 return 0;
1182
1183 /* Send poll message */
1184 msg.len = 1;
1185 msg.msg[0] = (log_addr << 4) | log_addr;
1186 err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1187
1188 /*
1189 * While trying to poll the physical address was reset
1190 * and the adapter was unconfigured, so bail out.
1191 */
1192 if (!adap->is_configuring)
1193 return -EINTR;
1194
1195 if (err)
1196 return err;
1197
1198 if (msg.tx_status & CEC_TX_STATUS_OK)
1199 return 0;
1200
1201 /*
1202 * Message not acknowledged, so this logical
1203 * address is free to use.
1204 */
1205 err = adap->ops->adap_log_addr(adap, log_addr);
1206 if (err)
1207 return err;
1208
1209 las->log_addr[idx] = log_addr;
1210 las->log_addr_mask |= 1 << log_addr;
1211 adap->phys_addrs[log_addr] = adap->phys_addr;
1212 return 1;
1213 }
1214
1215 /*
1216 * Unconfigure the adapter: clear all logical addresses and send
1217 * the state changed event.
1218 *
1219 * This function is called with adap->lock held.
1220 */
1221 static void cec_adap_unconfigure(struct cec_adapter *adap)
1222 {
1223 if (!adap->needs_hpd ||
1224 adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1225 WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
1226 adap->log_addrs.log_addr_mask = 0;
1227 adap->is_configuring = false;
1228 adap->is_configured = false;
1229 memset(adap->phys_addrs, 0xff, sizeof(adap->phys_addrs));
1230 cec_flush(adap);
1231 wake_up_interruptible(&adap->kthread_waitq);
1232 cec_post_state_event(adap);
1233 }
1234
1235 /*
1236 * Attempt to claim the required logical addresses.
1237 */
1238 static int cec_config_thread_func(void *arg)
1239 {
1240 /* The various LAs for each type of device */
1241 static const u8 tv_log_addrs[] = {
1242 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1243 CEC_LOG_ADDR_INVALID
1244 };
1245 static const u8 record_log_addrs[] = {
1246 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1247 CEC_LOG_ADDR_RECORD_3,
1248 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1249 CEC_LOG_ADDR_INVALID
1250 };
1251 static const u8 tuner_log_addrs[] = {
1252 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1253 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1254 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1255 CEC_LOG_ADDR_INVALID
1256 };
1257 static const u8 playback_log_addrs[] = {
1258 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1259 CEC_LOG_ADDR_PLAYBACK_3,
1260 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1261 CEC_LOG_ADDR_INVALID
1262 };
1263 static const u8 audiosystem_log_addrs[] = {
1264 CEC_LOG_ADDR_AUDIOSYSTEM,
1265 CEC_LOG_ADDR_INVALID
1266 };
1267 static const u8 specific_use_log_addrs[] = {
1268 CEC_LOG_ADDR_SPECIFIC,
1269 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1270 CEC_LOG_ADDR_INVALID
1271 };
1272 static const u8 *type2addrs[6] = {
1273 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1274 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1275 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1276 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1277 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1278 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1279 };
1280 static const u16 type2mask[] = {
1281 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1282 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1283 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1284 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1285 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1286 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1287 };
1288 struct cec_adapter *adap = arg;
1289 struct cec_log_addrs *las = &adap->log_addrs;
1290 int err;
1291 int i, j;
1292
1293 mutex_lock(&adap->lock);
1294 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1295 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1296 las->log_addr_mask = 0;
1297
1298 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1299 goto configured;
1300
1301 for (i = 0; i < las->num_log_addrs; i++) {
1302 unsigned int type = las->log_addr_type[i];
1303 const u8 *la_list;
1304 u8 last_la;
1305
1306 /*
1307 * The TV functionality can only map to physical address 0.
1308 * For any other address, try the Specific functionality
1309 * instead as per the spec.
1310 */
1311 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1312 type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1313
1314 la_list = type2addrs[type];
1315 last_la = las->log_addr[i];
1316 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1317 if (last_la == CEC_LOG_ADDR_INVALID ||
1318 last_la == CEC_LOG_ADDR_UNREGISTERED ||
1319 !((1 << last_la) & type2mask[type]))
1320 last_la = la_list[0];
1321
1322 err = cec_config_log_addr(adap, i, last_la);
1323 if (err > 0) /* Reused last LA */
1324 continue;
1325
1326 if (err < 0)
1327 goto unconfigure;
1328
1329 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1330 /* Tried this one already, skip it */
1331 if (la_list[j] == last_la)
1332 continue;
1333 /* The backup addresses are CEC 2.0 specific */
1334 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1335 la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1336 las->cec_version < CEC_OP_CEC_VERSION_2_0)
1337 continue;
1338
1339 err = cec_config_log_addr(adap, i, la_list[j]);
1340 if (err == 0) /* LA is in use */
1341 continue;
1342 if (err < 0)
1343 goto unconfigure;
1344 /* Done, claimed an LA */
1345 break;
1346 }
1347
1348 if (la_list[j] == CEC_LOG_ADDR_INVALID)
1349 dprintk(1, "could not claim LA %d\n", i);
1350 }
1351
1352 if (adap->log_addrs.log_addr_mask == 0 &&
1353 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1354 goto unconfigure;
1355
1356 configured:
1357 if (adap->log_addrs.log_addr_mask == 0) {
1358 /* Fall back to unregistered */
1359 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1360 las->log_addr_mask = 1 << las->log_addr[0];
1361 for (i = 1; i < las->num_log_addrs; i++)
1362 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1363 }
1364 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1365 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1366 adap->is_configured = true;
1367 adap->is_configuring = false;
1368 cec_post_state_event(adap);
1369
1370 /*
1371 * Now post the Report Features and Report Physical Address broadcast
1372 * messages. Note that these are non-blocking transmits, meaning that
1373 * they are just queued up and once adap->lock is unlocked the main
1374 * thread will kick in and start transmitting these.
1375 *
1376 * If after this function is done (but before one or more of these
1377 * messages are actually transmitted) the CEC adapter is unconfigured,
1378 * then any remaining messages will be dropped by the main thread.
1379 */
1380 for (i = 0; i < las->num_log_addrs; i++) {
1381 struct cec_msg msg = {};
1382
1383 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1384 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1385 continue;
1386
1387 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1388
1389 /* Report Features must come first according to CEC 2.0 */
1390 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1391 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1392 cec_fill_msg_report_features(adap, &msg, i);
1393 cec_transmit_msg_fh(adap, &msg, NULL, false);
1394 }
1395
1396 /* Report Physical Address */
1397 cec_msg_report_physical_addr(&msg, adap->phys_addr,
1398 las->primary_device_type[i]);
1399 dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1400 las->log_addr[i],
1401 cec_phys_addr_exp(adap->phys_addr));
1402 cec_transmit_msg_fh(adap, &msg, NULL, false);
1403 }
1404 adap->kthread_config = NULL;
1405 complete(&adap->config_completion);
1406 mutex_unlock(&adap->lock);
1407 return 0;
1408
1409 unconfigure:
1410 for (i = 0; i < las->num_log_addrs; i++)
1411 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1412 cec_adap_unconfigure(adap);
1413 adap->kthread_config = NULL;
1414 mutex_unlock(&adap->lock);
1415 complete(&adap->config_completion);
1416 return 0;
1417 }
1418
1419 /*
1420 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1421 * logical addresses.
1422 *
1423 * This function is called with adap->lock held.
1424 */
1425 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1426 {
1427 if (WARN_ON(adap->is_configuring || adap->is_configured))
1428 return;
1429
1430 init_completion(&adap->config_completion);
1431
1432 /* Ready to kick off the thread */
1433 adap->is_configuring = true;
1434 adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1435 "ceccfg-%s", adap->name);
1436 if (IS_ERR(adap->kthread_config)) {
1437 adap->kthread_config = NULL;
1438 } else if (block) {
1439 mutex_unlock(&adap->lock);
1440 wait_for_completion(&adap->config_completion);
1441 mutex_lock(&adap->lock);
1442 }
1443 }
1444
1445 /* Set a new physical address and send an event notifying userspace of this.
1446 *
1447 * This function is called with adap->lock held.
1448 */
1449 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1450 {
1451 if (phys_addr == adap->phys_addr)
1452 return;
1453 if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered)
1454 return;
1455
1456 dprintk(1, "new physical address %x.%x.%x.%x\n",
1457 cec_phys_addr_exp(phys_addr));
1458 if (phys_addr == CEC_PHYS_ADDR_INVALID ||
1459 adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
1460 adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1461 cec_post_state_event(adap);
1462 cec_adap_unconfigure(adap);
1463 /* Disabling monitor all mode should always succeed */
1464 if (adap->monitor_all_cnt)
1465 WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1466 mutex_lock(&adap->devnode.lock);
1467 if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1468 WARN_ON(adap->ops->adap_enable(adap, false));
1469 mutex_unlock(&adap->devnode.lock);
1470 if (phys_addr == CEC_PHYS_ADDR_INVALID)
1471 return;
1472 }
1473
1474 mutex_lock(&adap->devnode.lock);
1475 if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) &&
1476 adap->ops->adap_enable(adap, true)) {
1477 mutex_unlock(&adap->devnode.lock);
1478 return;
1479 }
1480
1481 if (adap->monitor_all_cnt &&
1482 call_op(adap, adap_monitor_all_enable, true)) {
1483 if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1484 WARN_ON(adap->ops->adap_enable(adap, false));
1485 mutex_unlock(&adap->devnode.lock);
1486 return;
1487 }
1488 mutex_unlock(&adap->devnode.lock);
1489
1490 adap->phys_addr = phys_addr;
1491 cec_post_state_event(adap);
1492 if (adap->log_addrs.num_log_addrs)
1493 cec_claim_log_addrs(adap, block);
1494 }
1495
1496 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1497 {
1498 if (IS_ERR_OR_NULL(adap))
1499 return;
1500
1501 mutex_lock(&adap->lock);
1502 __cec_s_phys_addr(adap, phys_addr, block);
1503 mutex_unlock(&adap->lock);
1504 }
1505 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1506
1507 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1508 const struct edid *edid)
1509 {
1510 u16 pa = CEC_PHYS_ADDR_INVALID;
1511
1512 if (edid && edid->extensions)
1513 pa = cec_get_edid_phys_addr((const u8 *)edid,
1514 EDID_LENGTH * (edid->extensions + 1), NULL);
1515 cec_s_phys_addr(adap, pa, false);
1516 }
1517 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1518
1519 /*
1520 * Called from either the ioctl or a driver to set the logical addresses.
1521 *
1522 * This function is called with adap->lock held.
1523 */
1524 int __cec_s_log_addrs(struct cec_adapter *adap,
1525 struct cec_log_addrs *log_addrs, bool block)
1526 {
1527 u16 type_mask = 0;
1528 int i;
1529
1530 if (adap->devnode.unregistered)
1531 return -ENODEV;
1532
1533 if (!log_addrs || log_addrs->num_log_addrs == 0) {
1534 cec_adap_unconfigure(adap);
1535 adap->log_addrs.num_log_addrs = 0;
1536 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1537 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1538 adap->log_addrs.osd_name[0] = '\0';
1539 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1540 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1541 return 0;
1542 }
1543
1544 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1545 /*
1546 * Sanitize log_addrs fields if a CDC-Only device is
1547 * requested.
1548 */
1549 log_addrs->num_log_addrs = 1;
1550 log_addrs->osd_name[0] = '\0';
1551 log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1552 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1553 /*
1554 * This is just an internal convention since a CDC-Only device
1555 * doesn't have to be a switch. But switches already use
1556 * unregistered, so it makes some kind of sense to pick this
1557 * as the primary device. Since a CDC-Only device never sends
1558 * any 'normal' CEC messages this primary device type is never
1559 * sent over the CEC bus.
1560 */
1561 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1562 log_addrs->all_device_types[0] = 0;
1563 log_addrs->features[0][0] = 0;
1564 log_addrs->features[0][1] = 0;
1565 }
1566
1567 /* Ensure the osd name is 0-terminated */
1568 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1569
1570 /* Sanity checks */
1571 if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1572 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1573 return -EINVAL;
1574 }
1575
1576 /*
1577 * Vendor ID is a 24 bit number, so check if the value is
1578 * within the correct range.
1579 */
1580 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1581 (log_addrs->vendor_id & 0xff000000) != 0) {
1582 dprintk(1, "invalid vendor ID\n");
1583 return -EINVAL;
1584 }
1585
1586 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1587 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1588 dprintk(1, "invalid CEC version\n");
1589 return -EINVAL;
1590 }
1591
1592 if (log_addrs->num_log_addrs > 1)
1593 for (i = 0; i < log_addrs->num_log_addrs; i++)
1594 if (log_addrs->log_addr_type[i] ==
1595 CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1596 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1597 return -EINVAL;
1598 }
1599
1600 for (i = 0; i < log_addrs->num_log_addrs; i++) {
1601 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1602 u8 *features = log_addrs->features[i];
1603 bool op_is_dev_features = false;
1604 unsigned j;
1605
1606 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1607 if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1608 dprintk(1, "duplicate logical address type\n");
1609 return -EINVAL;
1610 }
1611 type_mask |= 1 << log_addrs->log_addr_type[i];
1612 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1613 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1614 /* Record already contains the playback functionality */
1615 dprintk(1, "invalid record + playback combination\n");
1616 return -EINVAL;
1617 }
1618 if (log_addrs->primary_device_type[i] >
1619 CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1620 dprintk(1, "unknown primary device type\n");
1621 return -EINVAL;
1622 }
1623 if (log_addrs->primary_device_type[i] == 2) {
1624 dprintk(1, "invalid primary device type\n");
1625 return -EINVAL;
1626 }
1627 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1628 dprintk(1, "unknown logical address type\n");
1629 return -EINVAL;
1630 }
1631 for (j = 0; j < feature_sz; j++) {
1632 if ((features[j] & 0x80) == 0) {
1633 if (op_is_dev_features)
1634 break;
1635 op_is_dev_features = true;
1636 }
1637 }
1638 if (!op_is_dev_features || j == feature_sz) {
1639 dprintk(1, "malformed features\n");
1640 return -EINVAL;
1641 }
1642 /* Zero unused part of the feature array */
1643 memset(features + j + 1, 0, feature_sz - j - 1);
1644 }
1645
1646 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1647 if (log_addrs->num_log_addrs > 2) {
1648 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1649 return -EINVAL;
1650 }
1651 if (log_addrs->num_log_addrs == 2) {
1652 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1653 (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1654 dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1655 return -EINVAL;
1656 }
1657 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1658 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1659 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1660 return -EINVAL;
1661 }
1662 }
1663 }
1664
1665 /* Zero unused LAs */
1666 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1667 log_addrs->primary_device_type[i] = 0;
1668 log_addrs->log_addr_type[i] = 0;
1669 log_addrs->all_device_types[i] = 0;
1670 memset(log_addrs->features[i], 0,
1671 sizeof(log_addrs->features[i]));
1672 }
1673
1674 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1675 adap->log_addrs = *log_addrs;
1676 if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1677 cec_claim_log_addrs(adap, block);
1678 return 0;
1679 }
1680
1681 int cec_s_log_addrs(struct cec_adapter *adap,
1682 struct cec_log_addrs *log_addrs, bool block)
1683 {
1684 int err;
1685
1686 mutex_lock(&adap->lock);
1687 err = __cec_s_log_addrs(adap, log_addrs, block);
1688 mutex_unlock(&adap->lock);
1689 return err;
1690 }
1691 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1692
1693 /* High-level core CEC message handling */
1694
1695 /* Fill in the Report Features message */
1696 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1697 struct cec_msg *msg,
1698 unsigned int la_idx)
1699 {
1700 const struct cec_log_addrs *las = &adap->log_addrs;
1701 const u8 *features = las->features[la_idx];
1702 bool op_is_dev_features = false;
1703 unsigned int idx;
1704
1705 /* Report Features */
1706 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1707 msg->len = 4;
1708 msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1709 msg->msg[2] = adap->log_addrs.cec_version;
1710 msg->msg[3] = las->all_device_types[la_idx];
1711
1712 /* Write RC Profiles first, then Device Features */
1713 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1714 msg->msg[msg->len++] = features[idx];
1715 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1716 if (op_is_dev_features)
1717 break;
1718 op_is_dev_features = true;
1719 }
1720 }
1721 }
1722
1723 /* Transmit the Feature Abort message */
1724 static int cec_feature_abort_reason(struct cec_adapter *adap,
1725 struct cec_msg *msg, u8 reason)
1726 {
1727 struct cec_msg tx_msg = { };
1728
1729 /*
1730 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1731 * message!
1732 */
1733 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1734 return 0;
1735 /* Don't Feature Abort messages from 'Unregistered' */
1736 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1737 return 0;
1738 cec_msg_set_reply_to(&tx_msg, msg);
1739 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1740 return cec_transmit_msg(adap, &tx_msg, false);
1741 }
1742
1743 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1744 {
1745 return cec_feature_abort_reason(adap, msg,
1746 CEC_OP_ABORT_UNRECOGNIZED_OP);
1747 }
1748
1749 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1750 {
1751 return cec_feature_abort_reason(adap, msg,
1752 CEC_OP_ABORT_REFUSED);
1753 }
1754
1755 /*
1756 * Called when a CEC message is received. This function will do any
1757 * necessary core processing. The is_reply bool is true if this message
1758 * is a reply to an earlier transmit.
1759 *
1760 * The message is either a broadcast message or a valid directed message.
1761 */
1762 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1763 bool is_reply)
1764 {
1765 bool is_broadcast = cec_msg_is_broadcast(msg);
1766 u8 dest_laddr = cec_msg_destination(msg);
1767 u8 init_laddr = cec_msg_initiator(msg);
1768 u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1769 int la_idx = cec_log_addr2idx(adap, dest_laddr);
1770 bool from_unregistered = init_laddr == 0xf;
1771 struct cec_msg tx_cec_msg = { };
1772 #ifdef CONFIG_MEDIA_CEC_RC
1773 int scancode;
1774 #endif
1775
1776 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1777
1778 /* If this is a CDC-Only device, then ignore any non-CDC messages */
1779 if (cec_is_cdc_only(&adap->log_addrs) &&
1780 msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1781 return 0;
1782
1783 if (adap->ops->received) {
1784 /* Allow drivers to process the message first */
1785 if (adap->ops->received(adap, msg) != -ENOMSG)
1786 return 0;
1787 }
1788
1789 /*
1790 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1791 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1792 * handled by the CEC core, even if the passthrough mode is on.
1793 * The others are just ignored if passthrough mode is on.
1794 */
1795 switch (msg->msg[1]) {
1796 case CEC_MSG_GET_CEC_VERSION:
1797 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1798 case CEC_MSG_ABORT:
1799 case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
1800 case CEC_MSG_GIVE_PHYSICAL_ADDR:
1801 case CEC_MSG_GIVE_OSD_NAME:
1802 case CEC_MSG_GIVE_FEATURES:
1803 /*
1804 * Skip processing these messages if the passthrough mode
1805 * is on.
1806 */
1807 if (adap->passthrough)
1808 goto skip_processing;
1809 /* Ignore if addressing is wrong */
1810 if (is_broadcast || from_unregistered)
1811 return 0;
1812 break;
1813
1814 case CEC_MSG_USER_CONTROL_PRESSED:
1815 case CEC_MSG_USER_CONTROL_RELEASED:
1816 /* Wrong addressing mode: don't process */
1817 if (is_broadcast || from_unregistered)
1818 goto skip_processing;
1819 break;
1820
1821 case CEC_MSG_REPORT_PHYSICAL_ADDR:
1822 /*
1823 * This message is always processed, regardless of the
1824 * passthrough setting.
1825 *
1826 * Exception: don't process if wrong addressing mode.
1827 */
1828 if (!is_broadcast)
1829 goto skip_processing;
1830 break;
1831
1832 default:
1833 break;
1834 }
1835
1836 cec_msg_set_reply_to(&tx_cec_msg, msg);
1837
1838 switch (msg->msg[1]) {
1839 /* The following messages are processed but still passed through */
1840 case CEC_MSG_REPORT_PHYSICAL_ADDR: {
1841 u16 pa = (msg->msg[2] << 8) | msg->msg[3];
1842
1843 if (!from_unregistered)
1844 adap->phys_addrs[init_laddr] = pa;
1845 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
1846 cec_phys_addr_exp(pa), init_laddr);
1847 break;
1848 }
1849
1850 case CEC_MSG_USER_CONTROL_PRESSED:
1851 if (!(adap->capabilities & CEC_CAP_RC) ||
1852 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1853 break;
1854
1855 #ifdef CONFIG_MEDIA_CEC_RC
1856 switch (msg->msg[2]) {
1857 /*
1858 * Play function, this message can have variable length
1859 * depending on the specific play function that is used.
1860 */
1861 case 0x60:
1862 if (msg->len == 2)
1863 scancode = msg->msg[2];
1864 else
1865 scancode = msg->msg[2] << 8 | msg->msg[3];
1866 break;
1867 /*
1868 * Other function messages that are not handled.
1869 * Currently the RC framework does not allow to supply an
1870 * additional parameter to a keypress. These "keys" contain
1871 * other information such as channel number, an input number
1872 * etc.
1873 * For the time being these messages are not processed by the
1874 * framework and are simply forwarded to the user space.
1875 */
1876 case 0x56: case 0x57:
1877 case 0x67: case 0x68: case 0x69: case 0x6a:
1878 scancode = -1;
1879 break;
1880 default:
1881 scancode = msg->msg[2];
1882 break;
1883 }
1884
1885 /* Was repeating, but keypress timed out */
1886 if (adap->rc_repeating && !adap->rc->keypressed) {
1887 adap->rc_repeating = false;
1888 adap->rc_last_scancode = -1;
1889 }
1890 /* Different keypress from last time, ends repeat mode */
1891 if (adap->rc_last_scancode != scancode) {
1892 rc_keyup(adap->rc);
1893 adap->rc_repeating = false;
1894 }
1895 /* We can't handle this scancode */
1896 if (scancode < 0) {
1897 adap->rc_last_scancode = scancode;
1898 break;
1899 }
1900
1901 /* Send key press */
1902 rc_keydown(adap->rc, RC_PROTO_CEC, scancode, 0);
1903
1904 /* When in repeating mode, we're done */
1905 if (adap->rc_repeating)
1906 break;
1907
1908 /*
1909 * We are not repeating, but the new scancode is
1910 * the same as the last one, and this second key press is
1911 * within 550 ms (the 'Follower Safety Timeout') from the
1912 * previous key press, so we now enable the repeating mode.
1913 */
1914 if (adap->rc_last_scancode == scancode &&
1915 msg->rx_ts - adap->rc_last_keypress < 550 * NSEC_PER_MSEC) {
1916 adap->rc_repeating = true;
1917 break;
1918 }
1919 /*
1920 * Not in repeating mode, so avoid triggering repeat mode
1921 * by calling keyup.
1922 */
1923 rc_keyup(adap->rc);
1924 adap->rc_last_scancode = scancode;
1925 adap->rc_last_keypress = msg->rx_ts;
1926 #endif
1927 break;
1928
1929 case CEC_MSG_USER_CONTROL_RELEASED:
1930 if (!(adap->capabilities & CEC_CAP_RC) ||
1931 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1932 break;
1933 #ifdef CONFIG_MEDIA_CEC_RC
1934 rc_keyup(adap->rc);
1935 adap->rc_repeating = false;
1936 adap->rc_last_scancode = -1;
1937 #endif
1938 break;
1939
1940 /*
1941 * The remaining messages are only processed if the passthrough mode
1942 * is off.
1943 */
1944 case CEC_MSG_GET_CEC_VERSION:
1945 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
1946 return cec_transmit_msg(adap, &tx_cec_msg, false);
1947
1948 case CEC_MSG_GIVE_PHYSICAL_ADDR:
1949 /* Do nothing for CEC switches using addr 15 */
1950 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
1951 return 0;
1952 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
1953 return cec_transmit_msg(adap, &tx_cec_msg, false);
1954
1955 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1956 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
1957 return cec_feature_abort(adap, msg);
1958 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
1959 return cec_transmit_msg(adap, &tx_cec_msg, false);
1960
1961 case CEC_MSG_ABORT:
1962 /* Do nothing for CEC switches */
1963 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
1964 return 0;
1965 return cec_feature_refused(adap, msg);
1966
1967 case CEC_MSG_GIVE_OSD_NAME: {
1968 if (adap->log_addrs.osd_name[0] == 0)
1969 return cec_feature_abort(adap, msg);
1970 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
1971 return cec_transmit_msg(adap, &tx_cec_msg, false);
1972 }
1973
1974 case CEC_MSG_GIVE_FEATURES:
1975 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
1976 return cec_feature_abort(adap, msg);
1977 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
1978 return cec_transmit_msg(adap, &tx_cec_msg, false);
1979
1980 default:
1981 /*
1982 * Unprocessed messages are aborted if userspace isn't doing
1983 * any processing either.
1984 */
1985 if (!is_broadcast && !is_reply && !adap->follower_cnt &&
1986 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
1987 return cec_feature_abort(adap, msg);
1988 break;
1989 }
1990
1991 skip_processing:
1992 /* If this was a reply, then we're done, unless otherwise specified */
1993 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
1994 return 0;
1995
1996 /*
1997 * Send to the exclusive follower if there is one, otherwise send
1998 * to all followers.
1999 */
2000 if (adap->cec_follower)
2001 cec_queue_msg_fh(adap->cec_follower, msg);
2002 else
2003 cec_queue_msg_followers(adap, msg);
2004 return 0;
2005 }
2006
2007 /*
2008 * Helper functions to keep track of the 'monitor all' use count.
2009 *
2010 * These functions are called with adap->lock held.
2011 */
2012 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2013 {
2014 int ret = 0;
2015
2016 if (adap->monitor_all_cnt == 0)
2017 ret = call_op(adap, adap_monitor_all_enable, 1);
2018 if (ret == 0)
2019 adap->monitor_all_cnt++;
2020 return ret;
2021 }
2022
2023 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2024 {
2025 adap->monitor_all_cnt--;
2026 if (adap->monitor_all_cnt == 0)
2027 WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
2028 }
2029
2030 #ifdef CONFIG_DEBUG_FS
2031 /*
2032 * Log the current state of the CEC adapter.
2033 * Very useful for debugging.
2034 */
2035 int cec_adap_status(struct seq_file *file, void *priv)
2036 {
2037 struct cec_adapter *adap = dev_get_drvdata(file->private);
2038 struct cec_data *data;
2039
2040 mutex_lock(&adap->lock);
2041 seq_printf(file, "configured: %d\n", adap->is_configured);
2042 seq_printf(file, "configuring: %d\n", adap->is_configuring);
2043 seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2044 cec_phys_addr_exp(adap->phys_addr));
2045 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2046 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2047 if (adap->cec_follower)
2048 seq_printf(file, "has CEC follower%s\n",
2049 adap->passthrough ? " (in passthrough mode)" : "");
2050 if (adap->cec_initiator)
2051 seq_puts(file, "has CEC initiator\n");
2052 if (adap->monitor_all_cnt)
2053 seq_printf(file, "file handles in Monitor All mode: %u\n",
2054 adap->monitor_all_cnt);
2055 if (adap->tx_timeouts) {
2056 seq_printf(file, "transmit timeouts: %u\n",
2057 adap->tx_timeouts);
2058 adap->tx_timeouts = 0;
2059 }
2060 data = adap->transmitting;
2061 if (data)
2062 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2063 data->msg.len, data->msg.msg, data->msg.reply,
2064 data->msg.timeout);
2065 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2066 list_for_each_entry(data, &adap->transmit_queue, list) {
2067 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2068 data->msg.len, data->msg.msg, data->msg.reply,
2069 data->msg.timeout);
2070 }
2071 list_for_each_entry(data, &adap->wait_queue, list) {
2072 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2073 data->msg.len, data->msg.msg, data->msg.reply,
2074 data->msg.timeout);
2075 }
2076
2077 call_void_op(adap, adap_status, file);
2078 mutex_unlock(&adap->lock);
2079 return 0;
2080 }
2081 #endif