]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/media/common/tuners/mt2060.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-bionic-kernel.git] / drivers / media / common / tuners / mt2060.c
1 /*
2 * Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
3 *
4 * Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 *
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
20 */
21
22 /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
23
24 #include <linux/module.h>
25 #include <linux/delay.h>
26 #include <linux/dvb/frontend.h>
27 #include <linux/i2c.h>
28 #include <linux/slab.h>
29
30 #include "dvb_frontend.h"
31
32 #include "mt2060.h"
33 #include "mt2060_priv.h"
34
35 static int debug;
36 module_param(debug, int, 0644);
37 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
38
39 #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
40
41 // Reads a single register
42 static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
43 {
44 struct i2c_msg msg[2] = {
45 { .addr = priv->cfg->i2c_address, .flags = 0, .buf = &reg, .len = 1 },
46 { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
47 };
48
49 if (i2c_transfer(priv->i2c, msg, 2) != 2) {
50 printk(KERN_WARNING "mt2060 I2C read failed\n");
51 return -EREMOTEIO;
52 }
53 return 0;
54 }
55
56 // Writes a single register
57 static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
58 {
59 u8 buf[2] = { reg, val };
60 struct i2c_msg msg = {
61 .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2
62 };
63
64 if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
65 printk(KERN_WARNING "mt2060 I2C write failed\n");
66 return -EREMOTEIO;
67 }
68 return 0;
69 }
70
71 // Writes a set of consecutive registers
72 static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
73 {
74 struct i2c_msg msg = {
75 .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len
76 };
77 if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
78 printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
79 return -EREMOTEIO;
80 }
81 return 0;
82 }
83
84 // Initialisation sequences
85 // LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
86 static u8 mt2060_config1[] = {
87 REG_LO1C1,
88 0x3F, 0x74, 0x00, 0x08, 0x93
89 };
90
91 // FMCG=2, GP2=0, GP1=0
92 static u8 mt2060_config2[] = {
93 REG_MISC_CTRL,
94 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
95 };
96
97 // VGAG=3, V1CSE=1
98
99 #ifdef MT2060_SPURCHECK
100 /* The function below calculates the frequency offset between the output frequency if2
101 and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
102 static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
103 {
104 int I,J;
105 int dia,diamin,diff;
106 diamin=1000000;
107 for (I = 1; I < 10; I++) {
108 J = ((2*I*lo1)/lo2+1)/2;
109 diff = I*(int)lo1-J*(int)lo2;
110 if (diff < 0) diff=-diff;
111 dia = (diff-(int)if2);
112 if (dia < 0) dia=-dia;
113 if (diamin > dia) diamin=dia;
114 }
115 return diamin;
116 }
117
118 #define BANDWIDTH 4000 // kHz
119
120 /* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
121 static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
122 {
123 u32 Spur,Sp1,Sp2;
124 int I,J;
125 I=0;
126 J=1000;
127
128 Spur=mt2060_spurcalc(lo1,lo2,if2);
129 if (Spur < BANDWIDTH) {
130 /* Potential spurs detected */
131 dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
132 (int)lo1,(int)lo2);
133 I=1000;
134 Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
135 Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
136
137 if (Sp1 < Sp2) {
138 J=-J; I=-I; Spur=Sp2;
139 } else
140 Spur=Sp1;
141
142 while (Spur < BANDWIDTH) {
143 I += J;
144 Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
145 }
146 dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
147 (int)(lo1+I),(int)(lo2+I));
148 }
149 return I;
150 }
151 #endif
152
153 #define IF2 36150 // IF2 frequency = 36.150 MHz
154 #define FREF 16000 // Quartz oscillator 16 MHz
155
156 static int mt2060_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params)
157 {
158 struct mt2060_priv *priv;
159 int ret=0;
160 int i=0;
161 u32 freq;
162 u8 lnaband;
163 u32 f_lo1,f_lo2;
164 u32 div1,num1,div2,num2;
165 u8 b[8];
166 u32 if1;
167
168 priv = fe->tuner_priv;
169
170 if1 = priv->if1_freq;
171 b[0] = REG_LO1B1;
172 b[1] = 0xFF;
173
174 if (fe->ops.i2c_gate_ctrl)
175 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
176
177 mt2060_writeregs(priv,b,2);
178
179 freq = params->frequency / 1000; // Hz -> kHz
180 priv->bandwidth = (fe->ops.info.type == FE_OFDM) ? params->u.ofdm.bandwidth : 0;
181
182 f_lo1 = freq + if1 * 1000;
183 f_lo1 = (f_lo1 / 250) * 250;
184 f_lo2 = f_lo1 - freq - IF2;
185 // From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
186 f_lo2 = ((f_lo2 + 25) / 50) * 50;
187 priv->frequency = (f_lo1 - f_lo2 - IF2) * 1000,
188
189 #ifdef MT2060_SPURCHECK
190 // LO-related spurs detection and correction
191 num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
192 f_lo1 += num1;
193 f_lo2 += num1;
194 #endif
195 //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
196 num1 = f_lo1 / (FREF / 64);
197 div1 = num1 / 64;
198 num1 &= 0x3f;
199
200 // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
201 num2 = f_lo2 * 64 / (FREF / 128);
202 div2 = num2 / 8192;
203 num2 &= 0x1fff;
204
205 if (freq <= 95000) lnaband = 0xB0; else
206 if (freq <= 180000) lnaband = 0xA0; else
207 if (freq <= 260000) lnaband = 0x90; else
208 if (freq <= 335000) lnaband = 0x80; else
209 if (freq <= 425000) lnaband = 0x70; else
210 if (freq <= 480000) lnaband = 0x60; else
211 if (freq <= 570000) lnaband = 0x50; else
212 if (freq <= 645000) lnaband = 0x40; else
213 if (freq <= 730000) lnaband = 0x30; else
214 if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
215
216 b[0] = REG_LO1C1;
217 b[1] = lnaband | ((num1 >>2) & 0x0F);
218 b[2] = div1;
219 b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
220 b[4] = num2 >> 4;
221 b[5] = ((num2 >>12) & 1) | (div2 << 1);
222
223 dprintk("IF1: %dMHz",(int)if1);
224 dprintk("PLL freq=%dkHz f_lo1=%dkHz f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
225 dprintk("PLL div1=%d num1=%d div2=%d num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
226 dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
227
228 mt2060_writeregs(priv,b,6);
229
230 //Waits for pll lock or timeout
231 i = 0;
232 do {
233 mt2060_readreg(priv,REG_LO_STATUS,b);
234 if ((b[0] & 0x88)==0x88)
235 break;
236 msleep(4);
237 i++;
238 } while (i<10);
239
240 if (fe->ops.i2c_gate_ctrl)
241 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
242
243 return ret;
244 }
245
246 static void mt2060_calibrate(struct mt2060_priv *priv)
247 {
248 u8 b = 0;
249 int i = 0;
250
251 if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
252 return;
253 if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
254 return;
255
256 /* initialize the clock output */
257 mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
258
259 do {
260 b |= (1 << 6); // FM1SS;
261 mt2060_writereg(priv, REG_LO2C1,b);
262 msleep(20);
263
264 if (i == 0) {
265 b |= (1 << 7); // FM1CA;
266 mt2060_writereg(priv, REG_LO2C1,b);
267 b &= ~(1 << 7); // FM1CA;
268 msleep(20);
269 }
270
271 b &= ~(1 << 6); // FM1SS
272 mt2060_writereg(priv, REG_LO2C1,b);
273
274 msleep(20);
275 i++;
276 } while (i < 9);
277
278 i = 0;
279 while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
280 msleep(20);
281
282 if (i <= 10) {
283 mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
284 dprintk("calibration was successful: %d", (int)priv->fmfreq);
285 } else
286 dprintk("FMCAL timed out");
287 }
288
289 static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
290 {
291 struct mt2060_priv *priv = fe->tuner_priv;
292 *frequency = priv->frequency;
293 return 0;
294 }
295
296 static int mt2060_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
297 {
298 struct mt2060_priv *priv = fe->tuner_priv;
299 *bandwidth = priv->bandwidth;
300 return 0;
301 }
302
303 static int mt2060_init(struct dvb_frontend *fe)
304 {
305 struct mt2060_priv *priv = fe->tuner_priv;
306 int ret;
307
308 if (fe->ops.i2c_gate_ctrl)
309 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
310
311 ret = mt2060_writereg(priv, REG_VGAG,
312 (priv->cfg->clock_out << 6) | 0x33);
313
314 if (fe->ops.i2c_gate_ctrl)
315 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
316
317 return ret;
318 }
319
320 static int mt2060_sleep(struct dvb_frontend *fe)
321 {
322 struct mt2060_priv *priv = fe->tuner_priv;
323 int ret;
324
325 if (fe->ops.i2c_gate_ctrl)
326 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
327
328 ret = mt2060_writereg(priv, REG_VGAG,
329 (priv->cfg->clock_out << 6) | 0x30);
330
331 if (fe->ops.i2c_gate_ctrl)
332 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
333
334 return ret;
335 }
336
337 static int mt2060_release(struct dvb_frontend *fe)
338 {
339 kfree(fe->tuner_priv);
340 fe->tuner_priv = NULL;
341 return 0;
342 }
343
344 static const struct dvb_tuner_ops mt2060_tuner_ops = {
345 .info = {
346 .name = "Microtune MT2060",
347 .frequency_min = 48000000,
348 .frequency_max = 860000000,
349 .frequency_step = 50000,
350 },
351
352 .release = mt2060_release,
353
354 .init = mt2060_init,
355 .sleep = mt2060_sleep,
356
357 .set_params = mt2060_set_params,
358 .get_frequency = mt2060_get_frequency,
359 .get_bandwidth = mt2060_get_bandwidth
360 };
361
362 /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
363 struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
364 {
365 struct mt2060_priv *priv = NULL;
366 u8 id = 0;
367
368 priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
369 if (priv == NULL)
370 return NULL;
371
372 priv->cfg = cfg;
373 priv->i2c = i2c;
374 priv->if1_freq = if1;
375
376 if (fe->ops.i2c_gate_ctrl)
377 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
378
379 if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
380 kfree(priv);
381 return NULL;
382 }
383
384 if (id != PART_REV) {
385 kfree(priv);
386 return NULL;
387 }
388 printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
389 memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
390
391 fe->tuner_priv = priv;
392
393 mt2060_calibrate(priv);
394
395 if (fe->ops.i2c_gate_ctrl)
396 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
397
398 return fe;
399 }
400 EXPORT_SYMBOL(mt2060_attach);
401
402 MODULE_AUTHOR("Olivier DANET");
403 MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
404 MODULE_LICENSE("GPL");