]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/media/dvb/frontends/dib7000m.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / drivers / media / dvb / frontends / dib7000m.c
1 /*
2 * Linux-DVB Driver for DiBcom's DiB7000M and
3 * first generation DiB7000P-demodulator-family.
4 *
5 * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation, version 2.
10 */
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/i2c.h>
14
15 #include "dvb_frontend.h"
16
17 #include "dib7000m.h"
18
19 static int debug;
20 module_param(debug, int, 0644);
21 MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
22
23 #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000M: "); printk(args); printk("\n"); } } while (0)
24
25 struct dib7000m_state {
26 struct dvb_frontend demod;
27 struct dib7000m_config cfg;
28
29 u8 i2c_addr;
30 struct i2c_adapter *i2c_adap;
31
32 struct dibx000_i2c_master i2c_master;
33
34 /* offset is 1 in case of the 7000MC */
35 u8 reg_offs;
36
37 u16 wbd_ref;
38
39 u8 current_band;
40 fe_bandwidth_t current_bandwidth;
41 struct dibx000_agc_config *current_agc;
42 u32 timf;
43 u32 timf_default;
44 u32 internal_clk;
45
46 u8 div_force_off : 1;
47 u8 div_state : 1;
48 u16 div_sync_wait;
49
50 u16 revision;
51
52 u8 agc_state;
53 };
54
55 enum dib7000m_power_mode {
56 DIB7000M_POWER_ALL = 0,
57
58 DIB7000M_POWER_NO,
59 DIB7000M_POWER_INTERF_ANALOG_AGC,
60 DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD,
61 DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD,
62 DIB7000M_POWER_INTERFACE_ONLY,
63 };
64
65 static u16 dib7000m_read_word(struct dib7000m_state *state, u16 reg)
66 {
67 u8 wb[2] = { (reg >> 8) | 0x80, reg & 0xff };
68 u8 rb[2];
69 struct i2c_msg msg[2] = {
70 { .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 },
71 { .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 },
72 };
73
74 if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
75 dprintk("i2c read error on %d",reg);
76
77 return (rb[0] << 8) | rb[1];
78 }
79
80 static int dib7000m_write_word(struct dib7000m_state *state, u16 reg, u16 val)
81 {
82 u8 b[4] = {
83 (reg >> 8) & 0xff, reg & 0xff,
84 (val >> 8) & 0xff, val & 0xff,
85 };
86 struct i2c_msg msg = {
87 .addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
88 };
89 return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
90 }
91 static void dib7000m_write_tab(struct dib7000m_state *state, u16 *buf)
92 {
93 u16 l = 0, r, *n;
94 n = buf;
95 l = *n++;
96 while (l) {
97 r = *n++;
98
99 if (state->reg_offs && (r >= 112 && r <= 331)) // compensate for 7000MC
100 r++;
101
102 do {
103 dib7000m_write_word(state, r, *n++);
104 r++;
105 } while (--l);
106 l = *n++;
107 }
108 }
109
110 static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode)
111 {
112 int ret = 0;
113 u16 outreg, fifo_threshold, smo_mode,
114 sram = 0x0005; /* by default SRAM output is disabled */
115
116 outreg = 0;
117 fifo_threshold = 1792;
118 smo_mode = (dib7000m_read_word(state, 294 + state->reg_offs) & 0x0010) | (1 << 1);
119
120 dprintk( "setting output mode for demod %p to %d", &state->demod, mode);
121
122 switch (mode) {
123 case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
124 outreg = (1 << 10); /* 0x0400 */
125 break;
126 case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
127 outreg = (1 << 10) | (1 << 6); /* 0x0440 */
128 break;
129 case OUTMODE_MPEG2_SERIAL: // STBs with serial input
130 outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
131 break;
132 case OUTMODE_DIVERSITY:
133 if (state->cfg.hostbus_diversity)
134 outreg = (1 << 10) | (4 << 6); /* 0x0500 */
135 else
136 sram |= 0x0c00;
137 break;
138 case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
139 smo_mode |= (3 << 1);
140 fifo_threshold = 512;
141 outreg = (1 << 10) | (5 << 6);
142 break;
143 case OUTMODE_HIGH_Z: // disable
144 outreg = 0;
145 break;
146 default:
147 dprintk( "Unhandled output_mode passed to be set for demod %p",&state->demod);
148 break;
149 }
150
151 if (state->cfg.output_mpeg2_in_188_bytes)
152 smo_mode |= (1 << 5) ;
153
154 ret |= dib7000m_write_word(state, 294 + state->reg_offs, smo_mode);
155 ret |= dib7000m_write_word(state, 295 + state->reg_offs, fifo_threshold); /* synchronous fread */
156 ret |= dib7000m_write_word(state, 1795, outreg);
157 ret |= dib7000m_write_word(state, 1805, sram);
158
159 if (state->revision == 0x4003) {
160 u16 clk_cfg1 = dib7000m_read_word(state, 909) & 0xfffd;
161 if (mode == OUTMODE_DIVERSITY)
162 clk_cfg1 |= (1 << 1); // P_O_CLK_en
163 dib7000m_write_word(state, 909, clk_cfg1);
164 }
165 return ret;
166 }
167
168 static void dib7000m_set_power_mode(struct dib7000m_state *state, enum dib7000m_power_mode mode)
169 {
170 /* by default everything is going to be powered off */
171 u16 reg_903 = 0xffff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906 = 0x3fff;
172 u8 offset = 0;
173
174 /* now, depending on the requested mode, we power on */
175 switch (mode) {
176 /* power up everything in the demod */
177 case DIB7000M_POWER_ALL:
178 reg_903 = 0x0000; reg_904 = 0x0000; reg_905 = 0x0000; reg_906 = 0x0000;
179 break;
180
181 /* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */
182 case DIB7000M_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */
183 reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2));
184 break;
185
186 case DIB7000M_POWER_INTERF_ANALOG_AGC:
187 reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10));
188 reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2));
189 reg_906 &= ~((1 << 0));
190 break;
191
192 case DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD:
193 reg_903 = 0x0000; reg_904 = 0x801f; reg_905 = 0x0000; reg_906 = 0x0000;
194 break;
195
196 case DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD:
197 reg_903 = 0x0000; reg_904 = 0x8000; reg_905 = 0x010b; reg_906 = 0x0000;
198 break;
199 case DIB7000M_POWER_NO:
200 break;
201 }
202
203 /* always power down unused parts */
204 if (!state->cfg.mobile_mode)
205 reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1);
206
207 /* P_sdio_select_clk = 0 on MC and after*/
208 if (state->revision != 0x4000)
209 reg_906 <<= 1;
210
211 if (state->revision == 0x4003)
212 offset = 1;
213
214 dib7000m_write_word(state, 903 + offset, reg_903);
215 dib7000m_write_word(state, 904 + offset, reg_904);
216 dib7000m_write_word(state, 905 + offset, reg_905);
217 dib7000m_write_word(state, 906 + offset, reg_906);
218 }
219
220 static int dib7000m_set_adc_state(struct dib7000m_state *state, enum dibx000_adc_states no)
221 {
222 int ret = 0;
223 u16 reg_913 = dib7000m_read_word(state, 913),
224 reg_914 = dib7000m_read_word(state, 914);
225
226 switch (no) {
227 case DIBX000_SLOW_ADC_ON:
228 reg_914 |= (1 << 1) | (1 << 0);
229 ret |= dib7000m_write_word(state, 914, reg_914);
230 reg_914 &= ~(1 << 1);
231 break;
232
233 case DIBX000_SLOW_ADC_OFF:
234 reg_914 |= (1 << 1) | (1 << 0);
235 break;
236
237 case DIBX000_ADC_ON:
238 if (state->revision == 0x4000) { // workaround for PA/MA
239 // power-up ADC
240 dib7000m_write_word(state, 913, 0);
241 dib7000m_write_word(state, 914, reg_914 & 0x3);
242 // power-down bandgag
243 dib7000m_write_word(state, 913, (1 << 15));
244 dib7000m_write_word(state, 914, reg_914 & 0x3);
245 }
246
247 reg_913 &= 0x0fff;
248 reg_914 &= 0x0003;
249 break;
250
251 case DIBX000_ADC_OFF: // leave the VBG voltage on
252 reg_913 |= (1 << 14) | (1 << 13) | (1 << 12);
253 reg_914 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
254 break;
255
256 case DIBX000_VBG_ENABLE:
257 reg_913 &= ~(1 << 15);
258 break;
259
260 case DIBX000_VBG_DISABLE:
261 reg_913 |= (1 << 15);
262 break;
263
264 default:
265 break;
266 }
267
268 // dprintk( "913: %x, 914: %x", reg_913, reg_914);
269 ret |= dib7000m_write_word(state, 913, reg_913);
270 ret |= dib7000m_write_word(state, 914, reg_914);
271
272 return ret;
273 }
274
275 static int dib7000m_set_bandwidth(struct dib7000m_state *state, u32 bw)
276 {
277 u32 timf;
278
279 // store the current bandwidth for later use
280 state->current_bandwidth = bw;
281
282 if (state->timf == 0) {
283 dprintk( "using default timf");
284 timf = state->timf_default;
285 } else {
286 dprintk( "using updated timf");
287 timf = state->timf;
288 }
289
290 timf = timf * (bw / 50) / 160;
291
292 dib7000m_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
293 dib7000m_write_word(state, 24, (u16) ((timf ) & 0xffff));
294
295 return 0;
296 }
297
298 static int dib7000m_set_diversity_in(struct dvb_frontend *demod, int onoff)
299 {
300 struct dib7000m_state *state = demod->demodulator_priv;
301
302 if (state->div_force_off) {
303 dprintk( "diversity combination deactivated - forced by COFDM parameters");
304 onoff = 0;
305 }
306 state->div_state = (u8)onoff;
307
308 if (onoff) {
309 dib7000m_write_word(state, 263 + state->reg_offs, 6);
310 dib7000m_write_word(state, 264 + state->reg_offs, 6);
311 dib7000m_write_word(state, 266 + state->reg_offs, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));
312 } else {
313 dib7000m_write_word(state, 263 + state->reg_offs, 1);
314 dib7000m_write_word(state, 264 + state->reg_offs, 0);
315 dib7000m_write_word(state, 266 + state->reg_offs, 0);
316 }
317
318 return 0;
319 }
320
321 static int dib7000m_sad_calib(struct dib7000m_state *state)
322 {
323
324 /* internal */
325 // dib7000m_write_word(state, 928, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth
326 dib7000m_write_word(state, 929, (0 << 1) | (0 << 0));
327 dib7000m_write_word(state, 930, 776); // 0.625*3.3 / 4096
328
329 /* do the calibration */
330 dib7000m_write_word(state, 929, (1 << 0));
331 dib7000m_write_word(state, 929, (0 << 0));
332
333 msleep(1);
334
335 return 0;
336 }
337
338 static void dib7000m_reset_pll_common(struct dib7000m_state *state, const struct dibx000_bandwidth_config *bw)
339 {
340 dib7000m_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff));
341 dib7000m_write_word(state, 19, (u16) ( (bw->internal*1000) & 0xffff));
342 dib7000m_write_word(state, 21, (u16) ( (bw->ifreq >> 16) & 0xffff));
343 dib7000m_write_word(state, 22, (u16) ( bw->ifreq & 0xffff));
344
345 dib7000m_write_word(state, 928, bw->sad_cfg);
346 }
347
348 static void dib7000m_reset_pll(struct dib7000m_state *state)
349 {
350 const struct dibx000_bandwidth_config *bw = state->cfg.bw;
351 u16 reg_907,reg_910;
352
353 /* default */
354 reg_907 = (bw->pll_bypass << 15) | (bw->modulo << 7) |
355 (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) |
356 (bw->enable_refdiv << 1) | (0 << 0);
357 reg_910 = (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset;
358
359 // for this oscillator frequency should be 30 MHz for the Master (default values in the board_parameters give that value)
360 // this is only working only for 30 MHz crystals
361 if (!state->cfg.quartz_direct) {
362 reg_910 |= (1 << 5); // forcing the predivider to 1
363
364 // if the previous front-end is baseband, its output frequency is 15 MHz (prev freq divided by 2)
365 if(state->cfg.input_clk_is_div_2)
366 reg_907 |= (16 << 9);
367 else // otherwise the previous front-end puts out its input (default 30MHz) - no extra division necessary
368 reg_907 |= (8 << 9);
369 } else {
370 reg_907 |= (bw->pll_ratio & 0x3f) << 9;
371 reg_910 |= (bw->pll_prediv << 5);
372 }
373
374 dib7000m_write_word(state, 910, reg_910); // pll cfg
375 dib7000m_write_word(state, 907, reg_907); // clk cfg0
376 dib7000m_write_word(state, 908, 0x0006); // clk_cfg1
377
378 dib7000m_reset_pll_common(state, bw);
379 }
380
381 static void dib7000mc_reset_pll(struct dib7000m_state *state)
382 {
383 const struct dibx000_bandwidth_config *bw = state->cfg.bw;
384 u16 clk_cfg1;
385
386 // clk_cfg0
387 dib7000m_write_word(state, 907, (bw->pll_prediv << 8) | (bw->pll_ratio << 0));
388
389 // clk_cfg1
390 //dib7000m_write_word(state, 908, (1 << 14) | (3 << 12) |(0 << 11) |
391 clk_cfg1 = (0 << 14) | (3 << 12) |(0 << 11) |
392 (bw->IO_CLK_en_core << 10) | (bw->bypclk_div << 5) | (bw->enable_refdiv << 4) |
393 (1 << 3) | (bw->pll_range << 1) | (bw->pll_reset << 0);
394 dib7000m_write_word(state, 908, clk_cfg1);
395 clk_cfg1 = (clk_cfg1 & 0xfff7) | (bw->pll_bypass << 3);
396 dib7000m_write_word(state, 908, clk_cfg1);
397
398 // smpl_cfg
399 dib7000m_write_word(state, 910, (1 << 12) | (2 << 10) | (bw->modulo << 8) | (bw->ADClkSrc << 7));
400
401 dib7000m_reset_pll_common(state, bw);
402 }
403
404 static int dib7000m_reset_gpio(struct dib7000m_state *st)
405 {
406 /* reset the GPIOs */
407 dib7000m_write_word(st, 773, st->cfg.gpio_dir);
408 dib7000m_write_word(st, 774, st->cfg.gpio_val);
409
410 /* TODO 782 is P_gpio_od */
411
412 dib7000m_write_word(st, 775, st->cfg.gpio_pwm_pos);
413
414 dib7000m_write_word(st, 780, st->cfg.pwm_freq_div);
415 return 0;
416 }
417
418 static u16 dib7000m_defaults_common[] =
419
420 {
421 // auto search configuration
422 3, 2,
423 0x0004,
424 0x1000,
425 0x0814,
426
427 12, 6,
428 0x001b,
429 0x7740,
430 0x005b,
431 0x8d80,
432 0x01c9,
433 0xc380,
434 0x0000,
435 0x0080,
436 0x0000,
437 0x0090,
438 0x0001,
439 0xd4c0,
440
441 1, 26,
442 0x6680, // P_corm_thres Lock algorithms configuration
443
444 1, 170,
445 0x0410, // P_palf_alpha_regul, P_palf_filter_freeze, P_palf_filter_on
446
447 8, 173,
448 0,
449 0,
450 0,
451 0,
452 0,
453 0,
454 0,
455 0,
456
457 1, 182,
458 8192, // P_fft_nb_to_cut
459
460 2, 195,
461 0x0ccd, // P_pha3_thres
462 0, // P_cti_use_cpe, P_cti_use_prog
463
464 1, 205,
465 0x200f, // P_cspu_regul, P_cspu_win_cut
466
467 5, 214,
468 0x023d, // P_adp_regul_cnt
469 0x00a4, // P_adp_noise_cnt
470 0x00a4, // P_adp_regul_ext
471 0x7ff0, // P_adp_noise_ext
472 0x3ccc, // P_adp_fil
473
474 1, 226,
475 0, // P_2d_byp_ti_num
476
477 1, 255,
478 0x800, // P_equal_thres_wgn
479
480 1, 263,
481 0x0001,
482
483 1, 281,
484 0x0010, // P_fec_*
485
486 1, 294,
487 0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
488
489 0
490 };
491
492 static u16 dib7000m_defaults[] =
493
494 {
495 /* set ADC level to -16 */
496 11, 76,
497 (1 << 13) - 825 - 117,
498 (1 << 13) - 837 - 117,
499 (1 << 13) - 811 - 117,
500 (1 << 13) - 766 - 117,
501 (1 << 13) - 737 - 117,
502 (1 << 13) - 693 - 117,
503 (1 << 13) - 648 - 117,
504 (1 << 13) - 619 - 117,
505 (1 << 13) - 575 - 117,
506 (1 << 13) - 531 - 117,
507 (1 << 13) - 501 - 117,
508
509 // Tuner IO bank: max drive (14mA)
510 1, 912,
511 0x2c8a,
512
513 1, 1817,
514 1,
515
516 0,
517 };
518
519 static int dib7000m_demod_reset(struct dib7000m_state *state)
520 {
521 dib7000m_set_power_mode(state, DIB7000M_POWER_ALL);
522
523 /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */
524 dib7000m_set_adc_state(state, DIBX000_VBG_ENABLE);
525
526 /* restart all parts */
527 dib7000m_write_word(state, 898, 0xffff);
528 dib7000m_write_word(state, 899, 0xffff);
529 dib7000m_write_word(state, 900, 0xff0f);
530 dib7000m_write_word(state, 901, 0xfffc);
531
532 dib7000m_write_word(state, 898, 0);
533 dib7000m_write_word(state, 899, 0);
534 dib7000m_write_word(state, 900, 0);
535 dib7000m_write_word(state, 901, 0);
536
537 if (state->revision == 0x4000)
538 dib7000m_reset_pll(state);
539 else
540 dib7000mc_reset_pll(state);
541
542 if (dib7000m_reset_gpio(state) != 0)
543 dprintk( "GPIO reset was not successful.");
544
545 if (dib7000m_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
546 dprintk( "OUTPUT_MODE could not be reset.");
547
548 /* unforce divstr regardless whether i2c enumeration was done or not */
549 dib7000m_write_word(state, 1794, dib7000m_read_word(state, 1794) & ~(1 << 1) );
550
551 dib7000m_set_bandwidth(state, 8000);
552
553 dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON);
554 dib7000m_sad_calib(state);
555 dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
556
557 if (state->cfg.dvbt_mode)
558 dib7000m_write_word(state, 1796, 0x0); // select DVB-T output
559
560 if (state->cfg.mobile_mode)
561 dib7000m_write_word(state, 261 + state->reg_offs, 2);
562 else
563 dib7000m_write_word(state, 224 + state->reg_offs, 1);
564
565 // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
566 if(state->cfg.tuner_is_baseband)
567 dib7000m_write_word(state, 36, 0x0755);
568 else
569 dib7000m_write_word(state, 36, 0x1f55);
570
571 // P_divclksel=3 P_divbitsel=1
572 if (state->revision == 0x4000)
573 dib7000m_write_word(state, 909, (3 << 10) | (1 << 6));
574 else
575 dib7000m_write_word(state, 909, (3 << 4) | 1);
576
577 dib7000m_write_tab(state, dib7000m_defaults_common);
578 dib7000m_write_tab(state, dib7000m_defaults);
579
580 dib7000m_set_power_mode(state, DIB7000M_POWER_INTERFACE_ONLY);
581
582 state->internal_clk = state->cfg.bw->internal;
583
584 return 0;
585 }
586
587 static void dib7000m_restart_agc(struct dib7000m_state *state)
588 {
589 // P_restart_iqc & P_restart_agc
590 dib7000m_write_word(state, 898, 0x0c00);
591 dib7000m_write_word(state, 898, 0x0000);
592 }
593
594 static int dib7000m_agc_soft_split(struct dib7000m_state *state)
595 {
596 u16 agc,split_offset;
597
598 if(!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0)
599 return 0;
600
601 // n_agc_global
602 agc = dib7000m_read_word(state, 390);
603
604 if (agc > state->current_agc->split.min_thres)
605 split_offset = state->current_agc->split.min;
606 else if (agc < state->current_agc->split.max_thres)
607 split_offset = state->current_agc->split.max;
608 else
609 split_offset = state->current_agc->split.max *
610 (agc - state->current_agc->split.min_thres) /
611 (state->current_agc->split.max_thres - state->current_agc->split.min_thres);
612
613 dprintk( "AGC split_offset: %d",split_offset);
614
615 // P_agc_force_split and P_agc_split_offset
616 return dib7000m_write_word(state, 103, (dib7000m_read_word(state, 103) & 0xff00) | split_offset);
617 }
618
619 static int dib7000m_update_lna(struct dib7000m_state *state)
620 {
621 u16 dyn_gain;
622
623 if (state->cfg.update_lna) {
624 // read dyn_gain here (because it is demod-dependent and not fe)
625 dyn_gain = dib7000m_read_word(state, 390);
626
627 if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed
628 dib7000m_restart_agc(state);
629 return 1;
630 }
631 }
632 return 0;
633 }
634
635 static int dib7000m_set_agc_config(struct dib7000m_state *state, u8 band)
636 {
637 struct dibx000_agc_config *agc = NULL;
638 int i;
639 if (state->current_band == band && state->current_agc != NULL)
640 return 0;
641 state->current_band = band;
642
643 for (i = 0; i < state->cfg.agc_config_count; i++)
644 if (state->cfg.agc[i].band_caps & band) {
645 agc = &state->cfg.agc[i];
646 break;
647 }
648
649 if (agc == NULL) {
650 dprintk( "no valid AGC configuration found for band 0x%02x",band);
651 return -EINVAL;
652 }
653
654 state->current_agc = agc;
655
656 /* AGC */
657 dib7000m_write_word(state, 72 , agc->setup);
658 dib7000m_write_word(state, 73 , agc->inv_gain);
659 dib7000m_write_word(state, 74 , agc->time_stabiliz);
660 dib7000m_write_word(state, 97 , (agc->alpha_level << 12) | agc->thlock);
661
662 // Demod AGC loop configuration
663 dib7000m_write_word(state, 98, (agc->alpha_mant << 5) | agc->alpha_exp);
664 dib7000m_write_word(state, 99, (agc->beta_mant << 6) | agc->beta_exp);
665
666 dprintk( "WBD: ref: %d, sel: %d, active: %d, alpha: %d",
667 state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
668
669 /* AGC continued */
670 if (state->wbd_ref != 0)
671 dib7000m_write_word(state, 102, state->wbd_ref);
672 else // use default
673 dib7000m_write_word(state, 102, agc->wbd_ref);
674
675 dib7000m_write_word(state, 103, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8) );
676 dib7000m_write_word(state, 104, agc->agc1_max);
677 dib7000m_write_word(state, 105, agc->agc1_min);
678 dib7000m_write_word(state, 106, agc->agc2_max);
679 dib7000m_write_word(state, 107, agc->agc2_min);
680 dib7000m_write_word(state, 108, (agc->agc1_pt1 << 8) | agc->agc1_pt2 );
681 dib7000m_write_word(state, 109, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
682 dib7000m_write_word(state, 110, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
683 dib7000m_write_word(state, 111, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
684
685 if (state->revision > 0x4000) { // settings for the MC
686 dib7000m_write_word(state, 71, agc->agc1_pt3);
687 // dprintk( "929: %x %d %d",
688 // (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2), agc->wbd_inv, agc->wbd_sel);
689 dib7000m_write_word(state, 929, (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2));
690 } else {
691 // wrong default values
692 u16 b[9] = { 676, 696, 717, 737, 758, 778, 799, 819, 840 };
693 for (i = 0; i < 9; i++)
694 dib7000m_write_word(state, 88 + i, b[i]);
695 }
696 return 0;
697 }
698
699 static void dib7000m_update_timf(struct dib7000m_state *state)
700 {
701 u32 timf = (dib7000m_read_word(state, 436) << 16) | dib7000m_read_word(state, 437);
702 state->timf = timf * 160 / (state->current_bandwidth / 50);
703 dib7000m_write_word(state, 23, (u16) (timf >> 16));
704 dib7000m_write_word(state, 24, (u16) (timf & 0xffff));
705 dprintk( "updated timf_frequency: %d (default: %d)",state->timf, state->timf_default);
706 }
707
708 static int dib7000m_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
709 {
710 struct dib7000m_state *state = demod->demodulator_priv;
711 u16 cfg_72 = dib7000m_read_word(state, 72);
712 int ret = -1;
713 u8 *agc_state = &state->agc_state;
714 u8 agc_split;
715
716 switch (state->agc_state) {
717 case 0:
718 // set power-up level: interf+analog+AGC
719 dib7000m_set_power_mode(state, DIB7000M_POWER_INTERF_ANALOG_AGC);
720 dib7000m_set_adc_state(state, DIBX000_ADC_ON);
721
722 if (dib7000m_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0)
723 return -1;
724
725 ret = 7; /* ADC power up */
726 (*agc_state)++;
727 break;
728
729 case 1:
730 /* AGC initialization */
731 if (state->cfg.agc_control)
732 state->cfg.agc_control(&state->demod, 1);
733
734 dib7000m_write_word(state, 75, 32768);
735 if (!state->current_agc->perform_agc_softsplit) {
736 /* we are using the wbd - so slow AGC startup */
737 dib7000m_write_word(state, 103, 1 << 8); /* force 0 split on WBD and restart AGC */
738 (*agc_state)++;
739 ret = 5;
740 } else {
741 /* default AGC startup */
742 (*agc_state) = 4;
743 /* wait AGC rough lock time */
744 ret = 7;
745 }
746
747 dib7000m_restart_agc(state);
748 break;
749
750 case 2: /* fast split search path after 5sec */
751 dib7000m_write_word(state, 72, cfg_72 | (1 << 4)); /* freeze AGC loop */
752 dib7000m_write_word(state, 103, 2 << 9); /* fast split search 0.25kHz */
753 (*agc_state)++;
754 ret = 14;
755 break;
756
757 case 3: /* split search ended */
758 agc_split = (u8)dib7000m_read_word(state, 392); /* store the split value for the next time */
759 dib7000m_write_word(state, 75, dib7000m_read_word(state, 390)); /* set AGC gain start value */
760
761 dib7000m_write_word(state, 72, cfg_72 & ~(1 << 4)); /* std AGC loop */
762 dib7000m_write_word(state, 103, (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */
763
764 dib7000m_restart_agc(state);
765
766 dprintk( "SPLIT %p: %hd", demod, agc_split);
767
768 (*agc_state)++;
769 ret = 5;
770 break;
771
772 case 4: /* LNA startup */
773 /* wait AGC accurate lock time */
774 ret = 7;
775
776 if (dib7000m_update_lna(state))
777 // wait only AGC rough lock time
778 ret = 5;
779 else
780 (*agc_state)++;
781 break;
782
783 case 5:
784 dib7000m_agc_soft_split(state);
785
786 if (state->cfg.agc_control)
787 state->cfg.agc_control(&state->demod, 0);
788
789 (*agc_state)++;
790 break;
791
792 default:
793 break;
794 }
795 return ret;
796 }
797
798 static void dib7000m_set_channel(struct dib7000m_state *state, struct dvb_frontend_parameters *ch, u8 seq)
799 {
800 u16 value, est[4];
801
802 dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
803
804 /* nfft, guard, qam, alpha */
805 value = 0;
806 switch (ch->u.ofdm.transmission_mode) {
807 case TRANSMISSION_MODE_2K: value |= (0 << 7); break;
808 case /* 4K MODE */ 255: value |= (2 << 7); break;
809 default:
810 case TRANSMISSION_MODE_8K: value |= (1 << 7); break;
811 }
812 switch (ch->u.ofdm.guard_interval) {
813 case GUARD_INTERVAL_1_32: value |= (0 << 5); break;
814 case GUARD_INTERVAL_1_16: value |= (1 << 5); break;
815 case GUARD_INTERVAL_1_4: value |= (3 << 5); break;
816 default:
817 case GUARD_INTERVAL_1_8: value |= (2 << 5); break;
818 }
819 switch (ch->u.ofdm.constellation) {
820 case QPSK: value |= (0 << 3); break;
821 case QAM_16: value |= (1 << 3); break;
822 default:
823 case QAM_64: value |= (2 << 3); break;
824 }
825 switch (HIERARCHY_1) {
826 case HIERARCHY_2: value |= 2; break;
827 case HIERARCHY_4: value |= 4; break;
828 default:
829 case HIERARCHY_1: value |= 1; break;
830 }
831 dib7000m_write_word(state, 0, value);
832 dib7000m_write_word(state, 5, (seq << 4));
833
834 /* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */
835 value = 0;
836 if (1 != 0)
837 value |= (1 << 6);
838 if (ch->u.ofdm.hierarchy_information == 1)
839 value |= (1 << 4);
840 if (1 == 1)
841 value |= 1;
842 switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) {
843 case FEC_2_3: value |= (2 << 1); break;
844 case FEC_3_4: value |= (3 << 1); break;
845 case FEC_5_6: value |= (5 << 1); break;
846 case FEC_7_8: value |= (7 << 1); break;
847 default:
848 case FEC_1_2: value |= (1 << 1); break;
849 }
850 dib7000m_write_word(state, 267 + state->reg_offs, value);
851
852 /* offset loop parameters */
853
854 /* P_timf_alpha = 6, P_corm_alpha=6, P_corm_thres=0x80 */
855 dib7000m_write_word(state, 26, (6 << 12) | (6 << 8) | 0x80);
856
857 /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=1, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
858 dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (1 << 9) | (3 << 5) | (1 << 4) | (0x3));
859
860 /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max=3 */
861 dib7000m_write_word(state, 32, (0 << 4) | 0x3);
862
863 /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step=5 */
864 dib7000m_write_word(state, 33, (0 << 4) | 0x5);
865
866 /* P_dvsy_sync_wait */
867 switch (ch->u.ofdm.transmission_mode) {
868 case TRANSMISSION_MODE_8K: value = 256; break;
869 case /* 4K MODE */ 255: value = 128; break;
870 case TRANSMISSION_MODE_2K:
871 default: value = 64; break;
872 }
873 switch (ch->u.ofdm.guard_interval) {
874 case GUARD_INTERVAL_1_16: value *= 2; break;
875 case GUARD_INTERVAL_1_8: value *= 4; break;
876 case GUARD_INTERVAL_1_4: value *= 8; break;
877 default:
878 case GUARD_INTERVAL_1_32: value *= 1; break;
879 }
880 state->div_sync_wait = (value * 3) / 2 + 32; // add 50% SFN margin + compensate for one DVSY-fifo TODO
881
882 /* deactive the possibility of diversity reception if extended interleave - not for 7000MC */
883 /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */
884 if (1 == 1 || state->revision > 0x4000)
885 state->div_force_off = 0;
886 else
887 state->div_force_off = 1;
888 dib7000m_set_diversity_in(&state->demod, state->div_state);
889
890 /* channel estimation fine configuration */
891 switch (ch->u.ofdm.constellation) {
892 case QAM_64:
893 est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */
894 est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */
895 est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
896 est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */
897 break;
898 case QAM_16:
899 est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */
900 est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */
901 est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
902 est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */
903 break;
904 default:
905 est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */
906 est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */
907 est[2] = 0x0333; /* P_adp_regul_ext 0.1 */
908 est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */
909 break;
910 }
911 for (value = 0; value < 4; value++)
912 dib7000m_write_word(state, 214 + value + state->reg_offs, est[value]);
913
914 // set power-up level: autosearch
915 dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD);
916 }
917
918 static int dib7000m_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
919 {
920 struct dib7000m_state *state = demod->demodulator_priv;
921 struct dvb_frontend_parameters schan;
922 int ret = 0;
923 u32 value, factor;
924
925 schan = *ch;
926
927 schan.u.ofdm.constellation = QAM_64;
928 schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
929 schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
930 schan.u.ofdm.code_rate_HP = FEC_2_3;
931 schan.u.ofdm.code_rate_LP = FEC_3_4;
932 schan.u.ofdm.hierarchy_information = 0;
933
934 dib7000m_set_channel(state, &schan, 7);
935
936 factor = BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth);
937 if (factor >= 5000)
938 factor = 1;
939 else
940 factor = 6;
941
942 // always use the setting for 8MHz here lock_time for 7,6 MHz are longer
943 value = 30 * state->internal_clk * factor;
944 ret |= dib7000m_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time
945 ret |= dib7000m_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time
946 value = 100 * state->internal_clk * factor;
947 ret |= dib7000m_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time
948 ret |= dib7000m_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time
949 value = 500 * state->internal_clk * factor;
950 ret |= dib7000m_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time
951 ret |= dib7000m_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time
952
953 // start search
954 value = dib7000m_read_word(state, 0);
955 ret |= dib7000m_write_word(state, 0, (u16) (value | (1 << 9)));
956
957 /* clear n_irq_pending */
958 if (state->revision == 0x4000)
959 dib7000m_write_word(state, 1793, 0);
960 else
961 dib7000m_read_word(state, 537);
962
963 ret |= dib7000m_write_word(state, 0, (u16) value);
964
965 return ret;
966 }
967
968 static int dib7000m_autosearch_irq(struct dib7000m_state *state, u16 reg)
969 {
970 u16 irq_pending = dib7000m_read_word(state, reg);
971
972 if (irq_pending & 0x1) { // failed
973 dprintk( "autosearch failed");
974 return 1;
975 }
976
977 if (irq_pending & 0x2) { // succeeded
978 dprintk( "autosearch succeeded");
979 return 2;
980 }
981 return 0; // still pending
982 }
983
984 static int dib7000m_autosearch_is_irq(struct dvb_frontend *demod)
985 {
986 struct dib7000m_state *state = demod->demodulator_priv;
987 if (state->revision == 0x4000)
988 return dib7000m_autosearch_irq(state, 1793);
989 else
990 return dib7000m_autosearch_irq(state, 537);
991 }
992
993 static int dib7000m_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
994 {
995 struct dib7000m_state *state = demod->demodulator_priv;
996 int ret = 0;
997 u16 value;
998
999 // we are already tuned - just resuming from suspend
1000 if (ch != NULL)
1001 dib7000m_set_channel(state, ch, 0);
1002 else
1003 return -EINVAL;
1004
1005 // restart demod
1006 ret |= dib7000m_write_word(state, 898, 0x4000);
1007 ret |= dib7000m_write_word(state, 898, 0x0000);
1008 msleep(45);
1009
1010 dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD);
1011 /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
1012 ret |= dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3));
1013
1014 // never achieved a lock before - wait for timfreq to update
1015 if (state->timf == 0)
1016 msleep(200);
1017
1018 //dump_reg(state);
1019 /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
1020 value = (6 << 8) | 0x80;
1021 switch (ch->u.ofdm.transmission_mode) {
1022 case TRANSMISSION_MODE_2K: value |= (7 << 12); break;
1023 case /* 4K MODE */ 255: value |= (8 << 12); break;
1024 default:
1025 case TRANSMISSION_MODE_8K: value |= (9 << 12); break;
1026 }
1027 ret |= dib7000m_write_word(state, 26, value);
1028
1029 /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
1030 value = (0 << 4);
1031 switch (ch->u.ofdm.transmission_mode) {
1032 case TRANSMISSION_MODE_2K: value |= 0x6; break;
1033 case /* 4K MODE */ 255: value |= 0x7; break;
1034 default:
1035 case TRANSMISSION_MODE_8K: value |= 0x8; break;
1036 }
1037 ret |= dib7000m_write_word(state, 32, value);
1038
1039 /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
1040 value = (0 << 4);
1041 switch (ch->u.ofdm.transmission_mode) {
1042 case TRANSMISSION_MODE_2K: value |= 0x6; break;
1043 case /* 4K MODE */ 255: value |= 0x7; break;
1044 default:
1045 case TRANSMISSION_MODE_8K: value |= 0x8; break;
1046 }
1047 ret |= dib7000m_write_word(state, 33, value);
1048
1049 // we achieved a lock - it's time to update the timf freq
1050 if ((dib7000m_read_word(state, 535) >> 6) & 0x1)
1051 dib7000m_update_timf(state);
1052
1053 dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
1054 return ret;
1055 }
1056
1057 static int dib7000m_wakeup(struct dvb_frontend *demod)
1058 {
1059 struct dib7000m_state *state = demod->demodulator_priv;
1060
1061 dib7000m_set_power_mode(state, DIB7000M_POWER_ALL);
1062
1063 if (dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
1064 dprintk( "could not start Slow ADC");
1065
1066 return 0;
1067 }
1068
1069 static int dib7000m_sleep(struct dvb_frontend *demod)
1070 {
1071 struct dib7000m_state *st = demod->demodulator_priv;
1072 dib7000m_set_output_mode(st, OUTMODE_HIGH_Z);
1073 dib7000m_set_power_mode(st, DIB7000M_POWER_INTERFACE_ONLY);
1074 return dib7000m_set_adc_state(st, DIBX000_SLOW_ADC_OFF) |
1075 dib7000m_set_adc_state(st, DIBX000_ADC_OFF);
1076 }
1077
1078 static int dib7000m_identify(struct dib7000m_state *state)
1079 {
1080 u16 value;
1081
1082 if ((value = dib7000m_read_word(state, 896)) != 0x01b3) {
1083 dprintk( "wrong Vendor ID (0x%x)",value);
1084 return -EREMOTEIO;
1085 }
1086
1087 state->revision = dib7000m_read_word(state, 897);
1088 if (state->revision != 0x4000 &&
1089 state->revision != 0x4001 &&
1090 state->revision != 0x4002 &&
1091 state->revision != 0x4003) {
1092 dprintk( "wrong Device ID (0x%x)",value);
1093 return -EREMOTEIO;
1094 }
1095
1096 /* protect this driver to be used with 7000PC */
1097 if (state->revision == 0x4000 && dib7000m_read_word(state, 769) == 0x4000) {
1098 dprintk( "this driver does not work with DiB7000PC");
1099 return -EREMOTEIO;
1100 }
1101
1102 switch (state->revision) {
1103 case 0x4000: dprintk( "found DiB7000MA/PA/MB/PB"); break;
1104 case 0x4001: state->reg_offs = 1; dprintk( "found DiB7000HC"); break;
1105 case 0x4002: state->reg_offs = 1; dprintk( "found DiB7000MC"); break;
1106 case 0x4003: state->reg_offs = 1; dprintk( "found DiB9000"); break;
1107 }
1108
1109 return 0;
1110 }
1111
1112
1113 static int dib7000m_get_frontend(struct dvb_frontend* fe,
1114 struct dvb_frontend_parameters *fep)
1115 {
1116 struct dib7000m_state *state = fe->demodulator_priv;
1117 u16 tps = dib7000m_read_word(state,480);
1118
1119 fep->inversion = INVERSION_AUTO;
1120
1121 fep->u.ofdm.bandwidth = state->current_bandwidth;
1122
1123 switch ((tps >> 8) & 0x3) {
1124 case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break;
1125 case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break;
1126 /* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */
1127 }
1128
1129 switch (tps & 0x3) {
1130 case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break;
1131 case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break;
1132 case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break;
1133 case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break;
1134 }
1135
1136 switch ((tps >> 14) & 0x3) {
1137 case 0: fep->u.ofdm.constellation = QPSK; break;
1138 case 1: fep->u.ofdm.constellation = QAM_16; break;
1139 case 2:
1140 default: fep->u.ofdm.constellation = QAM_64; break;
1141 }
1142
1143 /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
1144 /* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */
1145
1146 fep->u.ofdm.hierarchy_information = HIERARCHY_NONE;
1147 switch ((tps >> 5) & 0x7) {
1148 case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break;
1149 case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break;
1150 case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break;
1151 case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break;
1152 case 7:
1153 default: fep->u.ofdm.code_rate_HP = FEC_7_8; break;
1154
1155 }
1156
1157 switch ((tps >> 2) & 0x7) {
1158 case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break;
1159 case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break;
1160 case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break;
1161 case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break;
1162 case 7:
1163 default: fep->u.ofdm.code_rate_LP = FEC_7_8; break;
1164 }
1165
1166 /* native interleaver: (dib7000m_read_word(state, 481) >> 5) & 0x1 */
1167
1168 return 0;
1169 }
1170
1171 static int dib7000m_set_frontend(struct dvb_frontend* fe,
1172 struct dvb_frontend_parameters *fep)
1173 {
1174 struct dib7000m_state *state = fe->demodulator_priv;
1175 int time, ret;
1176
1177 dib7000m_set_output_mode(state, OUTMODE_HIGH_Z);
1178
1179 state->current_bandwidth = fep->u.ofdm.bandwidth;
1180 dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->u.ofdm.bandwidth));
1181
1182 if (fe->ops.tuner_ops.set_params)
1183 fe->ops.tuner_ops.set_params(fe, fep);
1184
1185 /* start up the AGC */
1186 state->agc_state = 0;
1187 do {
1188 time = dib7000m_agc_startup(fe, fep);
1189 if (time != -1)
1190 msleep(time);
1191 } while (time != -1);
1192
1193 if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
1194 fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO ||
1195 fep->u.ofdm.constellation == QAM_AUTO ||
1196 fep->u.ofdm.code_rate_HP == FEC_AUTO) {
1197 int i = 800, found;
1198
1199 dib7000m_autosearch_start(fe, fep);
1200 do {
1201 msleep(1);
1202 found = dib7000m_autosearch_is_irq(fe);
1203 } while (found == 0 && i--);
1204
1205 dprintk("autosearch returns: %d",found);
1206 if (found == 0 || found == 1)
1207 return 0; // no channel found
1208
1209 dib7000m_get_frontend(fe, fep);
1210 }
1211
1212 ret = dib7000m_tune(fe, fep);
1213
1214 /* make this a config parameter */
1215 dib7000m_set_output_mode(state, OUTMODE_MPEG2_FIFO);
1216 return ret;
1217 }
1218
1219 static int dib7000m_read_status(struct dvb_frontend *fe, fe_status_t *stat)
1220 {
1221 struct dib7000m_state *state = fe->demodulator_priv;
1222 u16 lock = dib7000m_read_word(state, 535);
1223
1224 *stat = 0;
1225
1226 if (lock & 0x8000)
1227 *stat |= FE_HAS_SIGNAL;
1228 if (lock & 0x3000)
1229 *stat |= FE_HAS_CARRIER;
1230 if (lock & 0x0100)
1231 *stat |= FE_HAS_VITERBI;
1232 if (lock & 0x0010)
1233 *stat |= FE_HAS_SYNC;
1234 if (lock & 0x0008)
1235 *stat |= FE_HAS_LOCK;
1236
1237 return 0;
1238 }
1239
1240 static int dib7000m_read_ber(struct dvb_frontend *fe, u32 *ber)
1241 {
1242 struct dib7000m_state *state = fe->demodulator_priv;
1243 *ber = (dib7000m_read_word(state, 526) << 16) | dib7000m_read_word(state, 527);
1244 return 0;
1245 }
1246
1247 static int dib7000m_read_unc_blocks(struct dvb_frontend *fe, u32 *unc)
1248 {
1249 struct dib7000m_state *state = fe->demodulator_priv;
1250 *unc = dib7000m_read_word(state, 534);
1251 return 0;
1252 }
1253
1254 static int dib7000m_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1255 {
1256 struct dib7000m_state *state = fe->demodulator_priv;
1257 u16 val = dib7000m_read_word(state, 390);
1258 *strength = 65535 - val;
1259 return 0;
1260 }
1261
1262 static int dib7000m_read_snr(struct dvb_frontend* fe, u16 *snr)
1263 {
1264 *snr = 0x0000;
1265 return 0;
1266 }
1267
1268 static int dib7000m_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
1269 {
1270 tune->min_delay_ms = 1000;
1271 return 0;
1272 }
1273
1274 static void dib7000m_release(struct dvb_frontend *demod)
1275 {
1276 struct dib7000m_state *st = demod->demodulator_priv;
1277 dibx000_exit_i2c_master(&st->i2c_master);
1278 kfree(st);
1279 }
1280
1281 struct i2c_adapter * dib7000m_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
1282 {
1283 struct dib7000m_state *st = demod->demodulator_priv;
1284 return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
1285 }
1286 EXPORT_SYMBOL(dib7000m_get_i2c_master);
1287
1288 #if 0
1289 /* used with some prototype boards */
1290 int dib7000m_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods,
1291 u8 default_addr, struct dib7000m_config cfg[])
1292 {
1293 struct dib7000m_state st = { .i2c_adap = i2c };
1294 int k = 0;
1295 u8 new_addr = 0;
1296
1297 for (k = no_of_demods-1; k >= 0; k--) {
1298 st.cfg = cfg[k];
1299
1300 /* designated i2c address */
1301 new_addr = (0x40 + k) << 1;
1302 st.i2c_addr = new_addr;
1303 if (dib7000m_identify(&st) != 0) {
1304 st.i2c_addr = default_addr;
1305 if (dib7000m_identify(&st) != 0) {
1306 dprintk("DiB7000M #%d: not identified", k);
1307 return -EIO;
1308 }
1309 }
1310
1311 /* start diversity to pull_down div_str - just for i2c-enumeration */
1312 dib7000m_set_output_mode(&st, OUTMODE_DIVERSITY);
1313
1314 dib7000m_write_word(&st, 1796, 0x0); // select DVB-T output
1315
1316 /* set new i2c address and force divstart */
1317 dib7000m_write_word(&st, 1794, (new_addr << 2) | 0x2);
1318
1319 dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
1320 }
1321
1322 for (k = 0; k < no_of_demods; k++) {
1323 st.cfg = cfg[k];
1324 st.i2c_addr = (0x40 + k) << 1;
1325
1326 // unforce divstr
1327 dib7000m_write_word(&st,1794, st.i2c_addr << 2);
1328
1329 /* deactivate div - it was just for i2c-enumeration */
1330 dib7000m_set_output_mode(&st, OUTMODE_HIGH_Z);
1331 }
1332
1333 return 0;
1334 }
1335 EXPORT_SYMBOL(dib7000m_i2c_enumeration);
1336 #endif
1337
1338 static struct dvb_frontend_ops dib7000m_ops;
1339 struct dvb_frontend * dib7000m_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000m_config *cfg)
1340 {
1341 struct dvb_frontend *demod;
1342 struct dib7000m_state *st;
1343 st = kzalloc(sizeof(struct dib7000m_state), GFP_KERNEL);
1344 if (st == NULL)
1345 return NULL;
1346
1347 memcpy(&st->cfg, cfg, sizeof(struct dib7000m_config));
1348 st->i2c_adap = i2c_adap;
1349 st->i2c_addr = i2c_addr;
1350
1351 demod = &st->demod;
1352 demod->demodulator_priv = st;
1353 memcpy(&st->demod.ops, &dib7000m_ops, sizeof(struct dvb_frontend_ops));
1354
1355 st->timf_default = cfg->bw->timf;
1356
1357 if (dib7000m_identify(st) != 0)
1358 goto error;
1359
1360 if (st->revision == 0x4000)
1361 dibx000_init_i2c_master(&st->i2c_master, DIB7000, st->i2c_adap, st->i2c_addr);
1362 else
1363 dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c_adap, st->i2c_addr);
1364
1365 dib7000m_demod_reset(st);
1366
1367 return demod;
1368
1369 error:
1370 kfree(st);
1371 return NULL;
1372 }
1373 EXPORT_SYMBOL(dib7000m_attach);
1374
1375 static struct dvb_frontend_ops dib7000m_ops = {
1376 .info = {
1377 .name = "DiBcom 7000MA/MB/PA/PB/MC",
1378 .type = FE_OFDM,
1379 .frequency_min = 44250000,
1380 .frequency_max = 867250000,
1381 .frequency_stepsize = 62500,
1382 .caps = FE_CAN_INVERSION_AUTO |
1383 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1384 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1385 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1386 FE_CAN_TRANSMISSION_MODE_AUTO |
1387 FE_CAN_GUARD_INTERVAL_AUTO |
1388 FE_CAN_RECOVER |
1389 FE_CAN_HIERARCHY_AUTO,
1390 },
1391
1392 .release = dib7000m_release,
1393
1394 .init = dib7000m_wakeup,
1395 .sleep = dib7000m_sleep,
1396
1397 .set_frontend = dib7000m_set_frontend,
1398 .get_tune_settings = dib7000m_fe_get_tune_settings,
1399 .get_frontend = dib7000m_get_frontend,
1400
1401 .read_status = dib7000m_read_status,
1402 .read_ber = dib7000m_read_ber,
1403 .read_signal_strength = dib7000m_read_signal_strength,
1404 .read_snr = dib7000m_read_snr,
1405 .read_ucblocks = dib7000m_read_unc_blocks,
1406 };
1407
1408 MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
1409 MODULE_DESCRIPTION("Driver for the DiBcom 7000MA/MB/PA/PB/MC COFDM demodulator");
1410 MODULE_LICENSE("GPL");