]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/media/dvb-frontends/af9033.c
Merge branch 'for-3.9' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-artful-kernel.git] / drivers / media / dvb-frontends / af9033.c
1 /*
2 * Afatech AF9033 demodulator driver
3 *
4 * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
5 * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 */
21
22 #include "af9033_priv.h"
23
24 struct af9033_state {
25 struct i2c_adapter *i2c;
26 struct dvb_frontend fe;
27 struct af9033_config cfg;
28
29 u32 bandwidth_hz;
30 bool ts_mode_parallel;
31 bool ts_mode_serial;
32
33 u32 ber;
34 u32 ucb;
35 unsigned long last_stat_check;
36 };
37
38 /* write multiple registers */
39 static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
40 int len)
41 {
42 int ret;
43 u8 buf[3 + len];
44 struct i2c_msg msg[1] = {
45 {
46 .addr = state->cfg.i2c_addr,
47 .flags = 0,
48 .len = sizeof(buf),
49 .buf = buf,
50 }
51 };
52
53 buf[0] = (reg >> 16) & 0xff;
54 buf[1] = (reg >> 8) & 0xff;
55 buf[2] = (reg >> 0) & 0xff;
56 memcpy(&buf[3], val, len);
57
58 ret = i2c_transfer(state->i2c, msg, 1);
59 if (ret == 1) {
60 ret = 0;
61 } else {
62 dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \
63 "len=%d\n", KBUILD_MODNAME, ret, reg, len);
64 ret = -EREMOTEIO;
65 }
66
67 return ret;
68 }
69
70 /* read multiple registers */
71 static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
72 {
73 int ret;
74 u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
75 (reg >> 0) & 0xff };
76 struct i2c_msg msg[2] = {
77 {
78 .addr = state->cfg.i2c_addr,
79 .flags = 0,
80 .len = sizeof(buf),
81 .buf = buf
82 }, {
83 .addr = state->cfg.i2c_addr,
84 .flags = I2C_M_RD,
85 .len = len,
86 .buf = val
87 }
88 };
89
90 ret = i2c_transfer(state->i2c, msg, 2);
91 if (ret == 2) {
92 ret = 0;
93 } else {
94 dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \
95 "len=%d\n", KBUILD_MODNAME, ret, reg, len);
96 ret = -EREMOTEIO;
97 }
98
99 return ret;
100 }
101
102
103 /* write single register */
104 static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
105 {
106 return af9033_wr_regs(state, reg, &val, 1);
107 }
108
109 /* read single register */
110 static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
111 {
112 return af9033_rd_regs(state, reg, val, 1);
113 }
114
115 /* write single register with mask */
116 static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
117 u8 mask)
118 {
119 int ret;
120 u8 tmp;
121
122 /* no need for read if whole reg is written */
123 if (mask != 0xff) {
124 ret = af9033_rd_regs(state, reg, &tmp, 1);
125 if (ret)
126 return ret;
127
128 val &= mask;
129 tmp &= ~mask;
130 val |= tmp;
131 }
132
133 return af9033_wr_regs(state, reg, &val, 1);
134 }
135
136 /* read single register with mask */
137 static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
138 u8 mask)
139 {
140 int ret, i;
141 u8 tmp;
142
143 ret = af9033_rd_regs(state, reg, &tmp, 1);
144 if (ret)
145 return ret;
146
147 tmp &= mask;
148
149 /* find position of the first bit */
150 for (i = 0; i < 8; i++) {
151 if ((mask >> i) & 0x01)
152 break;
153 }
154 *val = tmp >> i;
155
156 return 0;
157 }
158
159 static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x)
160 {
161 u32 r = 0, c = 0, i;
162
163 dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
164
165 if (a > b) {
166 c = a / b;
167 a = a - c * b;
168 }
169
170 for (i = 0; i < x; i++) {
171 if (a >= b) {
172 r += 1;
173 a -= b;
174 }
175 a <<= 1;
176 r <<= 1;
177 }
178 r = (c << (u32)x) + r;
179
180 dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
181 __func__, a, b, x, r, r);
182
183 return r;
184 }
185
186 static void af9033_release(struct dvb_frontend *fe)
187 {
188 struct af9033_state *state = fe->demodulator_priv;
189
190 kfree(state);
191 }
192
193 static int af9033_init(struct dvb_frontend *fe)
194 {
195 struct af9033_state *state = fe->demodulator_priv;
196 int ret, i, len;
197 const struct reg_val *init;
198 u8 buf[4];
199 u32 adc_cw, clock_cw;
200 struct reg_val_mask tab[] = {
201 { 0x80fb24, 0x00, 0x08 },
202 { 0x80004c, 0x00, 0xff },
203 { 0x00f641, state->cfg.tuner, 0xff },
204 { 0x80f5ca, 0x01, 0x01 },
205 { 0x80f715, 0x01, 0x01 },
206 { 0x00f41f, 0x04, 0x04 },
207 { 0x00f41a, 0x01, 0x01 },
208 { 0x80f731, 0x00, 0x01 },
209 { 0x00d91e, 0x00, 0x01 },
210 { 0x00d919, 0x00, 0x01 },
211 { 0x80f732, 0x00, 0x01 },
212 { 0x00d91f, 0x00, 0x01 },
213 { 0x00d91a, 0x00, 0x01 },
214 { 0x80f730, 0x00, 0x01 },
215 { 0x80f778, 0x00, 0xff },
216 { 0x80f73c, 0x01, 0x01 },
217 { 0x80f776, 0x00, 0x01 },
218 { 0x00d8fd, 0x01, 0xff },
219 { 0x00d830, 0x01, 0xff },
220 { 0x00d831, 0x00, 0xff },
221 { 0x00d832, 0x00, 0xff },
222 { 0x80f985, state->ts_mode_serial, 0x01 },
223 { 0x80f986, state->ts_mode_parallel, 0x01 },
224 { 0x00d827, 0x00, 0xff },
225 { 0x00d829, 0x00, 0xff },
226 };
227
228 /* program clock control */
229 clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul);
230 buf[0] = (clock_cw >> 0) & 0xff;
231 buf[1] = (clock_cw >> 8) & 0xff;
232 buf[2] = (clock_cw >> 16) & 0xff;
233 buf[3] = (clock_cw >> 24) & 0xff;
234
235 dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n",
236 __func__, state->cfg.clock, clock_cw);
237
238 ret = af9033_wr_regs(state, 0x800025, buf, 4);
239 if (ret < 0)
240 goto err;
241
242 /* program ADC control */
243 for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
244 if (clock_adc_lut[i].clock == state->cfg.clock)
245 break;
246 }
247
248 adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul);
249 buf[0] = (adc_cw >> 0) & 0xff;
250 buf[1] = (adc_cw >> 8) & 0xff;
251 buf[2] = (adc_cw >> 16) & 0xff;
252
253 dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n",
254 __func__, clock_adc_lut[i].adc, adc_cw);
255
256 ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
257 if (ret < 0)
258 goto err;
259
260 /* program register table */
261 for (i = 0; i < ARRAY_SIZE(tab); i++) {
262 ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
263 tab[i].mask);
264 if (ret < 0)
265 goto err;
266 }
267
268 /* settings for TS interface */
269 if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
270 ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
271 if (ret < 0)
272 goto err;
273
274 ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
275 if (ret < 0)
276 goto err;
277 } else {
278 ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
279 if (ret < 0)
280 goto err;
281
282 ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
283 if (ret < 0)
284 goto err;
285 }
286
287 /* load OFSM settings */
288 dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
289 len = ARRAY_SIZE(ofsm_init);
290 init = ofsm_init;
291 for (i = 0; i < len; i++) {
292 ret = af9033_wr_reg(state, init[i].reg, init[i].val);
293 if (ret < 0)
294 goto err;
295 }
296
297 /* load tuner specific settings */
298 dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
299 __func__);
300 switch (state->cfg.tuner) {
301 case AF9033_TUNER_TUA9001:
302 len = ARRAY_SIZE(tuner_init_tua9001);
303 init = tuner_init_tua9001;
304 break;
305 case AF9033_TUNER_FC0011:
306 len = ARRAY_SIZE(tuner_init_fc0011);
307 init = tuner_init_fc0011;
308 break;
309 case AF9033_TUNER_MXL5007T:
310 len = ARRAY_SIZE(tuner_init_mxl5007t);
311 init = tuner_init_mxl5007t;
312 break;
313 case AF9033_TUNER_TDA18218:
314 len = ARRAY_SIZE(tuner_init_tda18218);
315 init = tuner_init_tda18218;
316 break;
317 case AF9033_TUNER_FC2580:
318 len = ARRAY_SIZE(tuner_init_fc2580);
319 init = tuner_init_fc2580;
320 break;
321 case AF9033_TUNER_FC0012:
322 len = ARRAY_SIZE(tuner_init_fc0012);
323 init = tuner_init_fc0012;
324 break;
325 default:
326 dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n",
327 __func__, state->cfg.tuner);
328 ret = -ENODEV;
329 goto err;
330 }
331
332 for (i = 0; i < len; i++) {
333 ret = af9033_wr_reg(state, init[i].reg, init[i].val);
334 if (ret < 0)
335 goto err;
336 }
337
338 if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
339 ret = af9033_wr_reg_mask(state, 0x00d91c, 0x01, 0x01);
340 if (ret < 0)
341 goto err;
342
343 ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
344 if (ret < 0)
345 goto err;
346
347 ret = af9033_wr_reg_mask(state, 0x00d916, 0x00, 0x01);
348 if (ret < 0)
349 goto err;
350 }
351
352 state->bandwidth_hz = 0; /* force to program all parameters */
353
354 return 0;
355
356 err:
357 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
358
359 return ret;
360 }
361
362 static int af9033_sleep(struct dvb_frontend *fe)
363 {
364 struct af9033_state *state = fe->demodulator_priv;
365 int ret, i;
366 u8 tmp;
367
368 ret = af9033_wr_reg(state, 0x80004c, 1);
369 if (ret < 0)
370 goto err;
371
372 ret = af9033_wr_reg(state, 0x800000, 0);
373 if (ret < 0)
374 goto err;
375
376 for (i = 100, tmp = 1; i && tmp; i--) {
377 ret = af9033_rd_reg(state, 0x80004c, &tmp);
378 if (ret < 0)
379 goto err;
380
381 usleep_range(200, 10000);
382 }
383
384 dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i);
385
386 if (i == 0) {
387 ret = -ETIMEDOUT;
388 goto err;
389 }
390
391 ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
392 if (ret < 0)
393 goto err;
394
395 /* prevent current leak (?) */
396 if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
397 /* enable parallel TS */
398 ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
399 if (ret < 0)
400 goto err;
401
402 ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
403 if (ret < 0)
404 goto err;
405 }
406
407 return 0;
408
409 err:
410 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
411
412 return ret;
413 }
414
415 static int af9033_get_tune_settings(struct dvb_frontend *fe,
416 struct dvb_frontend_tune_settings *fesettings)
417 {
418 fesettings->min_delay_ms = 800;
419 fesettings->step_size = 0;
420 fesettings->max_drift = 0;
421
422 return 0;
423 }
424
425 static int af9033_set_frontend(struct dvb_frontend *fe)
426 {
427 struct af9033_state *state = fe->demodulator_priv;
428 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
429 int ret, i, spec_inv, sampling_freq;
430 u8 tmp, buf[3], bandwidth_reg_val;
431 u32 if_frequency, freq_cw, adc_freq;
432
433 dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
434 __func__, c->frequency, c->bandwidth_hz);
435
436 /* check bandwidth */
437 switch (c->bandwidth_hz) {
438 case 6000000:
439 bandwidth_reg_val = 0x00;
440 break;
441 case 7000000:
442 bandwidth_reg_val = 0x01;
443 break;
444 case 8000000:
445 bandwidth_reg_val = 0x02;
446 break;
447 default:
448 dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
449 __func__);
450 ret = -EINVAL;
451 goto err;
452 }
453
454 /* program tuner */
455 if (fe->ops.tuner_ops.set_params)
456 fe->ops.tuner_ops.set_params(fe);
457
458 /* program CFOE coefficients */
459 if (c->bandwidth_hz != state->bandwidth_hz) {
460 for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
461 if (coeff_lut[i].clock == state->cfg.clock &&
462 coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
463 break;
464 }
465 }
466 ret = af9033_wr_regs(state, 0x800001,
467 coeff_lut[i].val, sizeof(coeff_lut[i].val));
468 }
469
470 /* program frequency control */
471 if (c->bandwidth_hz != state->bandwidth_hz) {
472 spec_inv = state->cfg.spec_inv ? -1 : 1;
473
474 for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
475 if (clock_adc_lut[i].clock == state->cfg.clock)
476 break;
477 }
478 adc_freq = clock_adc_lut[i].adc;
479
480 /* get used IF frequency */
481 if (fe->ops.tuner_ops.get_if_frequency)
482 fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
483 else
484 if_frequency = 0;
485
486 sampling_freq = if_frequency;
487
488 while (sampling_freq > (adc_freq / 2))
489 sampling_freq -= adc_freq;
490
491 if (sampling_freq >= 0)
492 spec_inv *= -1;
493 else
494 sampling_freq *= -1;
495
496 freq_cw = af9033_div(state, sampling_freq, adc_freq, 23ul);
497
498 if (spec_inv == -1)
499 freq_cw = 0x800000 - freq_cw;
500
501 /* get adc multiplies */
502 ret = af9033_rd_reg(state, 0x800045, &tmp);
503 if (ret < 0)
504 goto err;
505
506 if (tmp == 1)
507 freq_cw /= 2;
508
509 buf[0] = (freq_cw >> 0) & 0xff;
510 buf[1] = (freq_cw >> 8) & 0xff;
511 buf[2] = (freq_cw >> 16) & 0x7f;
512 ret = af9033_wr_regs(state, 0x800029, buf, 3);
513 if (ret < 0)
514 goto err;
515
516 state->bandwidth_hz = c->bandwidth_hz;
517 }
518
519 ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
520 if (ret < 0)
521 goto err;
522
523 ret = af9033_wr_reg(state, 0x800040, 0x00);
524 if (ret < 0)
525 goto err;
526
527 ret = af9033_wr_reg(state, 0x800047, 0x00);
528 if (ret < 0)
529 goto err;
530
531 ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
532 if (ret < 0)
533 goto err;
534
535 if (c->frequency <= 230000000)
536 tmp = 0x00; /* VHF */
537 else
538 tmp = 0x01; /* UHF */
539
540 ret = af9033_wr_reg(state, 0x80004b, tmp);
541 if (ret < 0)
542 goto err;
543
544 ret = af9033_wr_reg(state, 0x800000, 0x00);
545 if (ret < 0)
546 goto err;
547
548 return 0;
549
550 err:
551 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
552
553 return ret;
554 }
555
556 static int af9033_get_frontend(struct dvb_frontend *fe)
557 {
558 struct af9033_state *state = fe->demodulator_priv;
559 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
560 int ret;
561 u8 buf[8];
562
563 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
564
565 /* read all needed registers */
566 ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
567 if (ret < 0)
568 goto err;
569
570 switch ((buf[0] >> 0) & 3) {
571 case 0:
572 c->transmission_mode = TRANSMISSION_MODE_2K;
573 break;
574 case 1:
575 c->transmission_mode = TRANSMISSION_MODE_8K;
576 break;
577 }
578
579 switch ((buf[1] >> 0) & 3) {
580 case 0:
581 c->guard_interval = GUARD_INTERVAL_1_32;
582 break;
583 case 1:
584 c->guard_interval = GUARD_INTERVAL_1_16;
585 break;
586 case 2:
587 c->guard_interval = GUARD_INTERVAL_1_8;
588 break;
589 case 3:
590 c->guard_interval = GUARD_INTERVAL_1_4;
591 break;
592 }
593
594 switch ((buf[2] >> 0) & 7) {
595 case 0:
596 c->hierarchy = HIERARCHY_NONE;
597 break;
598 case 1:
599 c->hierarchy = HIERARCHY_1;
600 break;
601 case 2:
602 c->hierarchy = HIERARCHY_2;
603 break;
604 case 3:
605 c->hierarchy = HIERARCHY_4;
606 break;
607 }
608
609 switch ((buf[3] >> 0) & 3) {
610 case 0:
611 c->modulation = QPSK;
612 break;
613 case 1:
614 c->modulation = QAM_16;
615 break;
616 case 2:
617 c->modulation = QAM_64;
618 break;
619 }
620
621 switch ((buf[4] >> 0) & 3) {
622 case 0:
623 c->bandwidth_hz = 6000000;
624 break;
625 case 1:
626 c->bandwidth_hz = 7000000;
627 break;
628 case 2:
629 c->bandwidth_hz = 8000000;
630 break;
631 }
632
633 switch ((buf[6] >> 0) & 7) {
634 case 0:
635 c->code_rate_HP = FEC_1_2;
636 break;
637 case 1:
638 c->code_rate_HP = FEC_2_3;
639 break;
640 case 2:
641 c->code_rate_HP = FEC_3_4;
642 break;
643 case 3:
644 c->code_rate_HP = FEC_5_6;
645 break;
646 case 4:
647 c->code_rate_HP = FEC_7_8;
648 break;
649 case 5:
650 c->code_rate_HP = FEC_NONE;
651 break;
652 }
653
654 switch ((buf[7] >> 0) & 7) {
655 case 0:
656 c->code_rate_LP = FEC_1_2;
657 break;
658 case 1:
659 c->code_rate_LP = FEC_2_3;
660 break;
661 case 2:
662 c->code_rate_LP = FEC_3_4;
663 break;
664 case 3:
665 c->code_rate_LP = FEC_5_6;
666 break;
667 case 4:
668 c->code_rate_LP = FEC_7_8;
669 break;
670 case 5:
671 c->code_rate_LP = FEC_NONE;
672 break;
673 }
674
675 return 0;
676
677 err:
678 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
679
680 return ret;
681 }
682
683 static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
684 {
685 struct af9033_state *state = fe->demodulator_priv;
686 int ret;
687 u8 tmp;
688
689 *status = 0;
690
691 /* radio channel status, 0=no result, 1=has signal, 2=no signal */
692 ret = af9033_rd_reg(state, 0x800047, &tmp);
693 if (ret < 0)
694 goto err;
695
696 /* has signal */
697 if (tmp == 0x01)
698 *status |= FE_HAS_SIGNAL;
699
700 if (tmp != 0x02) {
701 /* TPS lock */
702 ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
703 if (ret < 0)
704 goto err;
705
706 if (tmp)
707 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
708 FE_HAS_VITERBI;
709
710 /* full lock */
711 ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
712 if (ret < 0)
713 goto err;
714
715 if (tmp)
716 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
717 FE_HAS_VITERBI | FE_HAS_SYNC |
718 FE_HAS_LOCK;
719 }
720
721 return 0;
722
723 err:
724 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
725
726 return ret;
727 }
728
729 static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
730 {
731 struct af9033_state *state = fe->demodulator_priv;
732 int ret, i, len;
733 u8 buf[3], tmp;
734 u32 snr_val;
735 const struct val_snr *uninitialized_var(snr_lut);
736
737 /* read value */
738 ret = af9033_rd_regs(state, 0x80002c, buf, 3);
739 if (ret < 0)
740 goto err;
741
742 snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
743
744 /* read current modulation */
745 ret = af9033_rd_reg(state, 0x80f903, &tmp);
746 if (ret < 0)
747 goto err;
748
749 switch ((tmp >> 0) & 3) {
750 case 0:
751 len = ARRAY_SIZE(qpsk_snr_lut);
752 snr_lut = qpsk_snr_lut;
753 break;
754 case 1:
755 len = ARRAY_SIZE(qam16_snr_lut);
756 snr_lut = qam16_snr_lut;
757 break;
758 case 2:
759 len = ARRAY_SIZE(qam64_snr_lut);
760 snr_lut = qam64_snr_lut;
761 break;
762 default:
763 goto err;
764 }
765
766 for (i = 0; i < len; i++) {
767 tmp = snr_lut[i].snr;
768
769 if (snr_val < snr_lut[i].val)
770 break;
771 }
772
773 *snr = tmp * 10; /* dB/10 */
774
775 return 0;
776
777 err:
778 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
779
780 return ret;
781 }
782
783 static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
784 {
785 struct af9033_state *state = fe->demodulator_priv;
786 int ret;
787 u8 strength2;
788
789 /* read signal strength of 0-100 scale */
790 ret = af9033_rd_reg(state, 0x800048, &strength2);
791 if (ret < 0)
792 goto err;
793
794 /* scale value to 0x0000-0xffff */
795 *strength = strength2 * 0xffff / 100;
796
797 return 0;
798
799 err:
800 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
801
802 return ret;
803 }
804
805 static int af9033_update_ch_stat(struct af9033_state *state)
806 {
807 int ret = 0;
808 u32 err_cnt, bit_cnt;
809 u16 abort_cnt;
810 u8 buf[7];
811
812 /* only update data every half second */
813 if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
814 ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
815 if (ret < 0)
816 goto err;
817 /* in 8 byte packets? */
818 abort_cnt = (buf[1] << 8) + buf[0];
819 /* in bits */
820 err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
821 /* in 8 byte packets? always(?) 0x2710 = 10000 */
822 bit_cnt = (buf[6] << 8) + buf[5];
823
824 if (bit_cnt < abort_cnt) {
825 abort_cnt = 1000;
826 state->ber = 0xffffffff;
827 } else {
828 /* 8 byte packets, that have not been rejected already */
829 bit_cnt -= (u32)abort_cnt;
830 if (bit_cnt == 0) {
831 state->ber = 0xffffffff;
832 } else {
833 err_cnt -= (u32)abort_cnt * 8 * 8;
834 bit_cnt *= 8 * 8;
835 state->ber = err_cnt * (0xffffffff / bit_cnt);
836 }
837 }
838 state->ucb += abort_cnt;
839 state->last_stat_check = jiffies;
840 }
841
842 return 0;
843 err:
844 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
845
846 return ret;
847 }
848
849 static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
850 {
851 struct af9033_state *state = fe->demodulator_priv;
852 int ret;
853
854 ret = af9033_update_ch_stat(state);
855 if (ret < 0)
856 return ret;
857
858 *ber = state->ber;
859
860 return 0;
861 }
862
863 static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
864 {
865 struct af9033_state *state = fe->demodulator_priv;
866 int ret;
867
868 ret = af9033_update_ch_stat(state);
869 if (ret < 0)
870 return ret;
871
872 *ucblocks = state->ucb;
873
874 return 0;
875 }
876
877 static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
878 {
879 struct af9033_state *state = fe->demodulator_priv;
880 int ret;
881
882 dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
883
884 ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
885 if (ret < 0)
886 goto err;
887
888 return 0;
889
890 err:
891 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
892
893 return ret;
894 }
895
896 static struct dvb_frontend_ops af9033_ops;
897
898 struct dvb_frontend *af9033_attach(const struct af9033_config *config,
899 struct i2c_adapter *i2c)
900 {
901 int ret;
902 struct af9033_state *state;
903 u8 buf[8];
904
905 dev_dbg(&i2c->dev, "%s:\n", __func__);
906
907 /* allocate memory for the internal state */
908 state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
909 if (state == NULL)
910 goto err;
911
912 /* setup the state */
913 state->i2c = i2c;
914 memcpy(&state->cfg, config, sizeof(struct af9033_config));
915
916 if (state->cfg.clock != 12000000) {
917 dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \
918 "only 12000000 Hz is supported currently\n",
919 KBUILD_MODNAME, state->cfg.clock);
920 goto err;
921 }
922
923 /* firmware version */
924 ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
925 if (ret < 0)
926 goto err;
927
928 ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
929 if (ret < 0)
930 goto err;
931
932 dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \
933 "OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1],
934 buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
935
936 /* sleep */
937 ret = af9033_wr_reg(state, 0x80004c, 1);
938 if (ret < 0)
939 goto err;
940
941 ret = af9033_wr_reg(state, 0x800000, 0);
942 if (ret < 0)
943 goto err;
944
945 /* configure internal TS mode */
946 switch (state->cfg.ts_mode) {
947 case AF9033_TS_MODE_PARALLEL:
948 state->ts_mode_parallel = true;
949 break;
950 case AF9033_TS_MODE_SERIAL:
951 state->ts_mode_serial = true;
952 break;
953 case AF9033_TS_MODE_USB:
954 /* usb mode for AF9035 */
955 default:
956 break;
957 }
958
959 /* create dvb_frontend */
960 memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
961 state->fe.demodulator_priv = state;
962
963 return &state->fe;
964
965 err:
966 kfree(state);
967 return NULL;
968 }
969 EXPORT_SYMBOL(af9033_attach);
970
971 static struct dvb_frontend_ops af9033_ops = {
972 .delsys = { SYS_DVBT },
973 .info = {
974 .name = "Afatech AF9033 (DVB-T)",
975 .frequency_min = 174000000,
976 .frequency_max = 862000000,
977 .frequency_stepsize = 250000,
978 .frequency_tolerance = 0,
979 .caps = FE_CAN_FEC_1_2 |
980 FE_CAN_FEC_2_3 |
981 FE_CAN_FEC_3_4 |
982 FE_CAN_FEC_5_6 |
983 FE_CAN_FEC_7_8 |
984 FE_CAN_FEC_AUTO |
985 FE_CAN_QPSK |
986 FE_CAN_QAM_16 |
987 FE_CAN_QAM_64 |
988 FE_CAN_QAM_AUTO |
989 FE_CAN_TRANSMISSION_MODE_AUTO |
990 FE_CAN_GUARD_INTERVAL_AUTO |
991 FE_CAN_HIERARCHY_AUTO |
992 FE_CAN_RECOVER |
993 FE_CAN_MUTE_TS
994 },
995
996 .release = af9033_release,
997
998 .init = af9033_init,
999 .sleep = af9033_sleep,
1000
1001 .get_tune_settings = af9033_get_tune_settings,
1002 .set_frontend = af9033_set_frontend,
1003 .get_frontend = af9033_get_frontend,
1004
1005 .read_status = af9033_read_status,
1006 .read_snr = af9033_read_snr,
1007 .read_signal_strength = af9033_read_signal_strength,
1008 .read_ber = af9033_read_ber,
1009 .read_ucblocks = af9033_read_ucblocks,
1010
1011 .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
1012 };
1013
1014 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
1015 MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
1016 MODULE_LICENSE("GPL");