]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/media/dvb-frontends/drxd_hard.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / drivers / media / dvb-frontends / drxd_hard.c
1 /*
2 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
3 *
4 * Copyright (C) 2003-2007 Micronas
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * version 2 only, as published by the Free Software Foundation.
9 *
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * To obtain the license, point your browser to
17 * http://www.gnu.org/copyleft/gpl.html
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/i2c.h>
27 #include <asm/div64.h>
28
29 #include "dvb_frontend.h"
30 #include "drxd.h"
31 #include "drxd_firm.h"
32
33 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
34 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
35
36 #define CHUNK_SIZE 48
37
38 #define DRX_I2C_RMW 0x10
39 #define DRX_I2C_BROADCAST 0x20
40 #define DRX_I2C_CLEARCRC 0x80
41 #define DRX_I2C_SINGLE_MASTER 0xC0
42 #define DRX_I2C_MODEFLAGS 0xC0
43 #define DRX_I2C_FLAGS 0xF0
44
45 #define DEFAULT_LOCK_TIMEOUT 1100
46
47 #define DRX_CHANNEL_AUTO 0
48 #define DRX_CHANNEL_HIGH 1
49 #define DRX_CHANNEL_LOW 2
50
51 #define DRX_LOCK_MPEG 1
52 #define DRX_LOCK_FEC 2
53 #define DRX_LOCK_DEMOD 4
54
55 /****************************************************************************/
56
57 enum CSCDState {
58 CSCD_INIT = 0,
59 CSCD_SET,
60 CSCD_SAVED
61 };
62
63 enum CDrxdState {
64 DRXD_UNINITIALIZED = 0,
65 DRXD_STOPPED,
66 DRXD_STARTED
67 };
68
69 enum AGC_CTRL_MODE {
70 AGC_CTRL_AUTO = 0,
71 AGC_CTRL_USER,
72 AGC_CTRL_OFF
73 };
74
75 enum OperationMode {
76 OM_Default,
77 OM_DVBT_Diversity_Front,
78 OM_DVBT_Diversity_End
79 };
80
81 struct SCfgAgc {
82 enum AGC_CTRL_MODE ctrlMode;
83 u16 outputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
84 u16 settleLevel; /* range [0, ... , 1023], 1/n of fullscale range */
85 u16 minOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
86 u16 maxOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
87 u16 speed; /* range [0, ... , 1023], 1/n of fullscale range */
88
89 u16 R1;
90 u16 R2;
91 u16 R3;
92 };
93
94 struct SNoiseCal {
95 int cpOpt;
96 short cpNexpOfs;
97 short tdCal2k;
98 short tdCal8k;
99 };
100
101 enum app_env {
102 APPENV_STATIC = 0,
103 APPENV_PORTABLE = 1,
104 APPENV_MOBILE = 2
105 };
106
107 enum EIFFilter {
108 IFFILTER_SAW = 0,
109 IFFILTER_DISCRETE = 1
110 };
111
112 struct drxd_state {
113 struct dvb_frontend frontend;
114 struct dvb_frontend_ops ops;
115 struct dtv_frontend_properties props;
116
117 const struct firmware *fw;
118 struct device *dev;
119
120 struct i2c_adapter *i2c;
121 void *priv;
122 struct drxd_config config;
123
124 int i2c_access;
125 int init_done;
126 struct mutex mutex;
127
128 u8 chip_adr;
129 u16 hi_cfg_timing_div;
130 u16 hi_cfg_bridge_delay;
131 u16 hi_cfg_wakeup_key;
132 u16 hi_cfg_ctrl;
133
134 u16 intermediate_freq;
135 u16 osc_clock_freq;
136
137 enum CSCDState cscd_state;
138 enum CDrxdState drxd_state;
139
140 u16 sys_clock_freq;
141 s16 osc_clock_deviation;
142 u16 expected_sys_clock_freq;
143
144 u16 insert_rs_byte;
145 u16 enable_parallel;
146
147 int operation_mode;
148
149 struct SCfgAgc if_agc_cfg;
150 struct SCfgAgc rf_agc_cfg;
151
152 struct SNoiseCal noise_cal;
153
154 u32 fe_fs_add_incr;
155 u32 org_fe_fs_add_incr;
156 u16 current_fe_if_incr;
157
158 u16 m_FeAgRegAgPwd;
159 u16 m_FeAgRegAgAgcSio;
160
161 u16 m_EcOcRegOcModeLop;
162 u16 m_EcOcRegSncSncLvl;
163 u8 *m_InitAtomicRead;
164 u8 *m_HiI2cPatch;
165
166 u8 *m_ResetCEFR;
167 u8 *m_InitFE_1;
168 u8 *m_InitFE_2;
169 u8 *m_InitCP;
170 u8 *m_InitCE;
171 u8 *m_InitEQ;
172 u8 *m_InitSC;
173 u8 *m_InitEC;
174 u8 *m_ResetECRAM;
175 u8 *m_InitDiversityFront;
176 u8 *m_InitDiversityEnd;
177 u8 *m_DisableDiversity;
178 u8 *m_StartDiversityFront;
179 u8 *m_StartDiversityEnd;
180
181 u8 *m_DiversityDelay8MHZ;
182 u8 *m_DiversityDelay6MHZ;
183
184 u8 *microcode;
185 u32 microcode_length;
186
187 int type_A;
188 int PGA;
189 int diversity;
190 int tuner_mirrors;
191
192 enum app_env app_env_default;
193 enum app_env app_env_diversity;
194
195 };
196
197 /****************************************************************************/
198 /* I2C **********************************************************************/
199 /****************************************************************************/
200
201 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
202 {
203 struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
204
205 if (i2c_transfer(adap, &msg, 1) != 1)
206 return -1;
207 return 0;
208 }
209
210 static int i2c_read(struct i2c_adapter *adap,
211 u8 adr, u8 *msg, int len, u8 *answ, int alen)
212 {
213 struct i2c_msg msgs[2] = {
214 {
215 .addr = adr, .flags = 0,
216 .buf = msg, .len = len
217 }, {
218 .addr = adr, .flags = I2C_M_RD,
219 .buf = answ, .len = alen
220 }
221 };
222 if (i2c_transfer(adap, msgs, 2) != 2)
223 return -1;
224 return 0;
225 }
226
227 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
228 {
229 u64 tmp64;
230
231 tmp64 = (u64)a * (u64)b;
232 do_div(tmp64, c);
233
234 return (u32) tmp64;
235 }
236
237 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
238 {
239 u8 adr = state->config.demod_address;
240 u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
241 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
242 };
243 u8 mm2[2];
244 if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
245 return -1;
246 if (data)
247 *data = mm2[0] | (mm2[1] << 8);
248 return mm2[0] | (mm2[1] << 8);
249 }
250
251 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
252 {
253 u8 adr = state->config.demod_address;
254 u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
255 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
256 };
257 u8 mm2[4];
258
259 if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
260 return -1;
261 if (data)
262 *data =
263 mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
264 return 0;
265 }
266
267 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
268 {
269 u8 adr = state->config.demod_address;
270 u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
271 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
272 data & 0xff, (data >> 8) & 0xff
273 };
274
275 if (i2c_write(state->i2c, adr, mm, 6) < 0)
276 return -1;
277 return 0;
278 }
279
280 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
281 {
282 u8 adr = state->config.demod_address;
283 u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
284 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
285 data & 0xff, (data >> 8) & 0xff,
286 (data >> 16) & 0xff, (data >> 24) & 0xff
287 };
288
289 if (i2c_write(state->i2c, adr, mm, 8) < 0)
290 return -1;
291 return 0;
292 }
293
294 static int write_chunk(struct drxd_state *state,
295 u32 reg, u8 *data, u32 len, u8 flags)
296 {
297 u8 adr = state->config.demod_address;
298 u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
299 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
300 };
301 int i;
302
303 for (i = 0; i < len; i++)
304 mm[4 + i] = data[i];
305 if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
306 printk(KERN_ERR "error in write_chunk\n");
307 return -1;
308 }
309 return 0;
310 }
311
312 static int WriteBlock(struct drxd_state *state,
313 u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
314 {
315 while (BlockSize > 0) {
316 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
317
318 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
319 return -1;
320 pBlock += Chunk;
321 Address += (Chunk >> 1);
322 BlockSize -= Chunk;
323 }
324 return 0;
325 }
326
327 static int WriteTable(struct drxd_state *state, u8 * pTable)
328 {
329 int status = 0;
330
331 if (pTable == NULL)
332 return 0;
333
334 while (!status) {
335 u16 Length;
336 u32 Address = pTable[0] | (pTable[1] << 8) |
337 (pTable[2] << 16) | (pTable[3] << 24);
338
339 if (Address == 0xFFFFFFFF)
340 break;
341 pTable += sizeof(u32);
342
343 Length = pTable[0] | (pTable[1] << 8);
344 pTable += sizeof(u16);
345 if (!Length)
346 break;
347 status = WriteBlock(state, Address, Length * 2, pTable, 0);
348 pTable += (Length * 2);
349 }
350 return status;
351 }
352
353 /****************************************************************************/
354 /****************************************************************************/
355 /****************************************************************************/
356
357 static int ResetCEFR(struct drxd_state *state)
358 {
359 return WriteTable(state, state->m_ResetCEFR);
360 }
361
362 static int InitCP(struct drxd_state *state)
363 {
364 return WriteTable(state, state->m_InitCP);
365 }
366
367 static int InitCE(struct drxd_state *state)
368 {
369 int status;
370 enum app_env AppEnv = state->app_env_default;
371
372 do {
373 status = WriteTable(state, state->m_InitCE);
374 if (status < 0)
375 break;
376
377 if (state->operation_mode == OM_DVBT_Diversity_Front ||
378 state->operation_mode == OM_DVBT_Diversity_End) {
379 AppEnv = state->app_env_diversity;
380 }
381 if (AppEnv == APPENV_STATIC) {
382 status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
383 if (status < 0)
384 break;
385 } else if (AppEnv == APPENV_PORTABLE) {
386 status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
387 if (status < 0)
388 break;
389 } else if (AppEnv == APPENV_MOBILE && state->type_A) {
390 status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
391 if (status < 0)
392 break;
393 } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
394 status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
395 if (status < 0)
396 break;
397 }
398
399 /* start ce */
400 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
401 if (status < 0)
402 break;
403 } while (0);
404 return status;
405 }
406
407 static int StopOC(struct drxd_state *state)
408 {
409 int status = 0;
410 u16 ocSyncLvl = 0;
411 u16 ocModeLop = state->m_EcOcRegOcModeLop;
412 u16 dtoIncLop = 0;
413 u16 dtoIncHip = 0;
414
415 do {
416 /* Store output configuration */
417 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
418 if (status < 0)
419 break;
420 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
421 state->m_EcOcRegSncSncLvl = ocSyncLvl;
422 /* m_EcOcRegOcModeLop = ocModeLop; */
423
424 /* Flush FIFO (byte-boundary) at fixed rate */
425 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
426 if (status < 0)
427 break;
428 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
429 if (status < 0)
430 break;
431 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
432 if (status < 0)
433 break;
434 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
435 if (status < 0)
436 break;
437 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
438 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
439 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
440 if (status < 0)
441 break;
442 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
443 if (status < 0)
444 break;
445
446 msleep(1);
447 /* Output pins to '0' */
448 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
449 if (status < 0)
450 break;
451
452 /* Force the OC out of sync */
453 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
454 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
455 if (status < 0)
456 break;
457 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
458 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
459 ocModeLop |= 0x2; /* Magically-out-of-sync */
460 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
461 if (status < 0)
462 break;
463 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
464 if (status < 0)
465 break;
466 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
467 if (status < 0)
468 break;
469 } while (0);
470
471 return status;
472 }
473
474 static int StartOC(struct drxd_state *state)
475 {
476 int status = 0;
477
478 do {
479 /* Stop OC */
480 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
481 if (status < 0)
482 break;
483
484 /* Restore output configuration */
485 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
486 if (status < 0)
487 break;
488 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
489 if (status < 0)
490 break;
491
492 /* Output pins active again */
493 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
494 if (status < 0)
495 break;
496
497 /* Start OC */
498 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
499 if (status < 0)
500 break;
501 } while (0);
502 return status;
503 }
504
505 static int InitEQ(struct drxd_state *state)
506 {
507 return WriteTable(state, state->m_InitEQ);
508 }
509
510 static int InitEC(struct drxd_state *state)
511 {
512 return WriteTable(state, state->m_InitEC);
513 }
514
515 static int InitSC(struct drxd_state *state)
516 {
517 return WriteTable(state, state->m_InitSC);
518 }
519
520 static int InitAtomicRead(struct drxd_state *state)
521 {
522 return WriteTable(state, state->m_InitAtomicRead);
523 }
524
525 static int CorrectSysClockDeviation(struct drxd_state *state);
526
527 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
528 {
529 u16 ScRaRamLock = 0;
530 const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
531 SC_RA_RAM_LOCK_FEC__M |
532 SC_RA_RAM_LOCK_DEMOD__M);
533 const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
534 SC_RA_RAM_LOCK_DEMOD__M);
535 const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
536
537 int status;
538
539 *pLockStatus = 0;
540
541 status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
542 if (status < 0) {
543 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
544 return status;
545 }
546
547 if (state->drxd_state != DRXD_STARTED)
548 return 0;
549
550 if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
551 *pLockStatus |= DRX_LOCK_MPEG;
552 CorrectSysClockDeviation(state);
553 }
554
555 if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
556 *pLockStatus |= DRX_LOCK_FEC;
557
558 if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
559 *pLockStatus |= DRX_LOCK_DEMOD;
560 return 0;
561 }
562
563 /****************************************************************************/
564
565 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
566 {
567 int status;
568
569 if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
570 return -1;
571
572 if (cfg->ctrlMode == AGC_CTRL_USER) {
573 do {
574 u16 FeAgRegPm1AgcWri;
575 u16 FeAgRegAgModeLop;
576
577 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
578 if (status < 0)
579 break;
580 FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
581 FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
582 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
583 if (status < 0)
584 break;
585
586 FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
587 FE_AG_REG_PM1_AGC_WRI__M);
588 status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
589 if (status < 0)
590 break;
591 } while (0);
592 } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
593 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
594 ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
595 ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
596 ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
597 )
598 return -1;
599 do {
600 u16 FeAgRegAgModeLop;
601 u16 FeAgRegEgcSetLvl;
602 u16 slope, offset;
603
604 /* == Mode == */
605
606 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
607 if (status < 0)
608 break;
609 FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
610 FeAgRegAgModeLop |=
611 FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
612 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
613 if (status < 0)
614 break;
615
616 /* == Settle level == */
617
618 FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
619 FE_AG_REG_EGC_SET_LVL__M);
620 status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
621 if (status < 0)
622 break;
623
624 /* == Min/Max == */
625
626 slope = (u16) ((cfg->maxOutputLevel -
627 cfg->minOutputLevel) / 2);
628 offset = (u16) ((cfg->maxOutputLevel +
629 cfg->minOutputLevel) / 2 - 511);
630
631 status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
632 if (status < 0)
633 break;
634 status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
635 if (status < 0)
636 break;
637
638 /* == Speed == */
639 {
640 const u16 maxRur = 8;
641 const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 };
642 const u16 fastIncrDecLUT[] = { 14, 15, 15, 16,
643 17, 18, 18, 19,
644 20, 21, 22, 23,
645 24, 26, 27, 28,
646 29, 31
647 };
648
649 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
650 (maxRur + 1);
651 u16 fineSpeed = (u16) (cfg->speed -
652 ((cfg->speed /
653 fineSteps) *
654 fineSteps));
655 u16 invRurCount = (u16) (cfg->speed /
656 fineSteps);
657 u16 rurCount;
658 if (invRurCount > maxRur) {
659 rurCount = 0;
660 fineSpeed += fineSteps;
661 } else {
662 rurCount = maxRur - invRurCount;
663 }
664
665 /*
666 fastInc = default *
667 (2^(fineSpeed/fineSteps))
668 => range[default...2*default>
669 slowInc = default *
670 (2^(fineSpeed/fineSteps))
671 */
672 {
673 u16 fastIncrDec =
674 fastIncrDecLUT[fineSpeed /
675 ((fineSteps /
676 (14 + 1)) + 1)];
677 u16 slowIncrDec =
678 slowIncrDecLUT[fineSpeed /
679 (fineSteps /
680 (3 + 1))];
681
682 status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
683 if (status < 0)
684 break;
685 status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
686 if (status < 0)
687 break;
688 status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
689 if (status < 0)
690 break;
691 status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
692 if (status < 0)
693 break;
694 status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
695 if (status < 0)
696 break;
697 }
698 }
699 } while (0);
700
701 } else {
702 /* No OFF mode for IF control */
703 return -1;
704 }
705 return status;
706 }
707
708 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
709 {
710 int status = 0;
711
712 if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
713 return -1;
714
715 if (cfg->ctrlMode == AGC_CTRL_USER) {
716 do {
717 u16 AgModeLop = 0;
718 u16 level = (cfg->outputLevel);
719
720 if (level == DRXD_FE_CTRL_MAX)
721 level++;
722
723 status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
724 if (status < 0)
725 break;
726
727 /*==== Mode ====*/
728
729 /* Powerdown PD2, WRI source */
730 state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
731 state->m_FeAgRegAgPwd |=
732 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
733 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
734 if (status < 0)
735 break;
736
737 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
738 if (status < 0)
739 break;
740 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
741 FE_AG_REG_AG_MODE_LOP_MODE_E__M));
742 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
743 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
744 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
745 if (status < 0)
746 break;
747
748 /* enable AGC2 pin */
749 {
750 u16 FeAgRegAgAgcSio = 0;
751 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
752 if (status < 0)
753 break;
754 FeAgRegAgAgcSio &=
755 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
756 FeAgRegAgAgcSio |=
757 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
758 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
759 if (status < 0)
760 break;
761 }
762
763 } while (0);
764 } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
765 u16 AgModeLop = 0;
766
767 do {
768 u16 level;
769 /* Automatic control */
770 /* Powerup PD2, AGC2 as output, TGC source */
771 (state->m_FeAgRegAgPwd) &=
772 ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
773 (state->m_FeAgRegAgPwd) |=
774 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
775 status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
776 if (status < 0)
777 break;
778
779 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
780 if (status < 0)
781 break;
782 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
783 FE_AG_REG_AG_MODE_LOP_MODE_E__M));
784 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
785 FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
786 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
787 if (status < 0)
788 break;
789 /* Settle level */
790 level = (((cfg->settleLevel) >> 4) &
791 FE_AG_REG_TGC_SET_LVL__M);
792 status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
793 if (status < 0)
794 break;
795
796 /* Min/max: don't care */
797
798 /* Speed: TODO */
799
800 /* enable AGC2 pin */
801 {
802 u16 FeAgRegAgAgcSio = 0;
803 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
804 if (status < 0)
805 break;
806 FeAgRegAgAgcSio &=
807 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
808 FeAgRegAgAgcSio |=
809 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
810 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
811 if (status < 0)
812 break;
813 }
814
815 } while (0);
816 } else {
817 u16 AgModeLop = 0;
818
819 do {
820 /* No RF AGC control */
821 /* Powerdown PD2, AGC2 as output, WRI source */
822 (state->m_FeAgRegAgPwd) &=
823 ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
824 (state->m_FeAgRegAgPwd) |=
825 FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
826 status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
827 if (status < 0)
828 break;
829
830 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
831 if (status < 0)
832 break;
833 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
834 FE_AG_REG_AG_MODE_LOP_MODE_E__M));
835 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
836 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
837 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
838 if (status < 0)
839 break;
840
841 /* set FeAgRegAgAgcSio AGC2 (RF) as input */
842 {
843 u16 FeAgRegAgAgcSio = 0;
844 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
845 if (status < 0)
846 break;
847 FeAgRegAgAgcSio &=
848 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
849 FeAgRegAgAgcSio |=
850 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
851 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
852 if (status < 0)
853 break;
854 }
855 } while (0);
856 }
857 return status;
858 }
859
860 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
861 {
862 int status = 0;
863
864 *pValue = 0;
865 if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
866 u16 Value;
867 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
868 Value &= FE_AG_REG_GC1_AGC_DAT__M;
869 if (status >= 0) {
870 /* 3.3V
871 |
872 R1
873 |
874 Vin - R3 - * -- Vout
875 |
876 R2
877 |
878 GND
879 */
880 u32 R1 = state->if_agc_cfg.R1;
881 u32 R2 = state->if_agc_cfg.R2;
882 u32 R3 = state->if_agc_cfg.R3;
883
884 u32 Vmax, Rpar, Vmin, Vout;
885
886 if (R2 == 0 && (R1 == 0 || R3 == 0))
887 return 0;
888
889 Vmax = (3300 * R2) / (R1 + R2);
890 Rpar = (R2 * R3) / (R3 + R2);
891 Vmin = (3300 * Rpar) / (R1 + Rpar);
892 Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
893
894 *pValue = Vout;
895 }
896 }
897 return status;
898 }
899
900 static int load_firmware(struct drxd_state *state, const char *fw_name)
901 {
902 const struct firmware *fw;
903
904 if (request_firmware(&fw, fw_name, state->dev) < 0) {
905 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
906 return -EIO;
907 }
908
909 state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
910 if (state->microcode == NULL) {
911 release_firmware(fw);
912 printk(KERN_ERR "drxd: firmware load failure: no memory\n");
913 return -ENOMEM;
914 }
915
916 state->microcode_length = fw->size;
917 release_firmware(fw);
918 return 0;
919 }
920
921 static int DownloadMicrocode(struct drxd_state *state,
922 const u8 *pMCImage, u32 Length)
923 {
924 u8 *pSrc;
925 u32 Address;
926 u16 nBlocks;
927 u16 BlockSize;
928 u32 offset = 0;
929 int i, status = 0;
930
931 pSrc = (u8 *) pMCImage;
932 /* We're not using Flags */
933 /* Flags = (pSrc[0] << 8) | pSrc[1]; */
934 pSrc += sizeof(u16);
935 offset += sizeof(u16);
936 nBlocks = (pSrc[0] << 8) | pSrc[1];
937 pSrc += sizeof(u16);
938 offset += sizeof(u16);
939
940 for (i = 0; i < nBlocks; i++) {
941 Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
942 (pSrc[2] << 8) | pSrc[3];
943 pSrc += sizeof(u32);
944 offset += sizeof(u32);
945
946 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
947 pSrc += sizeof(u16);
948 offset += sizeof(u16);
949
950 /* We're not using Flags */
951 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
952 pSrc += sizeof(u16);
953 offset += sizeof(u16);
954
955 /* We're not using BlockCRC */
956 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
957 pSrc += sizeof(u16);
958 offset += sizeof(u16);
959
960 status = WriteBlock(state, Address, BlockSize,
961 pSrc, DRX_I2C_CLEARCRC);
962 if (status < 0)
963 break;
964 pSrc += BlockSize;
965 offset += BlockSize;
966 }
967
968 return status;
969 }
970
971 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
972 {
973 u32 nrRetries = 0;
974 u16 waitCmd;
975 int status;
976
977 status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
978 if (status < 0)
979 return status;
980
981 do {
982 nrRetries += 1;
983 if (nrRetries > DRXD_MAX_RETRIES) {
984 status = -1;
985 break;
986 }
987 status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
988 } while (waitCmd != 0);
989
990 if (status >= 0)
991 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
992 return status;
993 }
994
995 static int HI_CfgCommand(struct drxd_state *state)
996 {
997 int status = 0;
998
999 mutex_lock(&state->mutex);
1000 Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1001 Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1002 Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1003 Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1004 Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1005
1006 Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1007
1008 if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1009 HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1010 status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1011 HI_RA_RAM_SRV_CMD_CONFIG, 0);
1012 else
1013 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1014 mutex_unlock(&state->mutex);
1015 return status;
1016 }
1017
1018 static int InitHI(struct drxd_state *state)
1019 {
1020 state->hi_cfg_wakeup_key = (state->chip_adr);
1021 /* port/bridge/power down ctrl */
1022 state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1023 return HI_CfgCommand(state);
1024 }
1025
1026 static int HI_ResetCommand(struct drxd_state *state)
1027 {
1028 int status;
1029
1030 mutex_lock(&state->mutex);
1031 status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1032 HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1033 if (status == 0)
1034 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1035 mutex_unlock(&state->mutex);
1036 msleep(1);
1037 return status;
1038 }
1039
1040 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1041 {
1042 state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1043 if (bEnableBridge)
1044 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1045 else
1046 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1047
1048 return HI_CfgCommand(state);
1049 }
1050
1051 #define HI_TR_WRITE 0x9
1052 #define HI_TR_READ 0xA
1053 #define HI_TR_READ_WRITE 0xB
1054 #define HI_TR_BROADCAST 0x4
1055
1056 #if 0
1057 static int AtomicReadBlock(struct drxd_state *state,
1058 u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1059 {
1060 int status;
1061 int i = 0;
1062
1063 /* Parameter check */
1064 if ((!pData) || ((DataSize & 1) != 0))
1065 return -1;
1066
1067 mutex_lock(&state->mutex);
1068
1069 do {
1070 /* Instruct HI to read n bytes */
1071 /* TODO use proper names forthese egisters */
1072 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1073 if (status < 0)
1074 break;
1075 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1076 if (status < 0)
1077 break;
1078 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1079 if (status < 0)
1080 break;
1081 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1082 if (status < 0)
1083 break;
1084 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1085 if (status < 0)
1086 break;
1087
1088 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1089 if (status < 0)
1090 break;
1091
1092 } while (0);
1093
1094 if (status >= 0) {
1095 for (i = 0; i < (DataSize / 2); i += 1) {
1096 u16 word;
1097
1098 status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1099 &word, 0);
1100 if (status < 0)
1101 break;
1102 pData[2 * i] = (u8) (word & 0xFF);
1103 pData[(2 * i) + 1] = (u8) (word >> 8);
1104 }
1105 }
1106 mutex_unlock(&state->mutex);
1107 return status;
1108 }
1109
1110 static int AtomicReadReg32(struct drxd_state *state,
1111 u32 Addr, u32 *pData, u8 Flags)
1112 {
1113 u8 buf[sizeof(u32)];
1114 int status;
1115
1116 if (!pData)
1117 return -1;
1118 status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1119 *pData = (((u32) buf[0]) << 0) +
1120 (((u32) buf[1]) << 8) +
1121 (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1122 return status;
1123 }
1124 #endif
1125
1126 static int StopAllProcessors(struct drxd_state *state)
1127 {
1128 return Write16(state, HI_COMM_EXEC__A,
1129 SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1130 }
1131
1132 static int EnableAndResetMB(struct drxd_state *state)
1133 {
1134 if (state->type_A) {
1135 /* disable? monitor bus observe @ EC_OC */
1136 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1137 }
1138
1139 /* do inverse broadcast, followed by explicit write to HI */
1140 Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1141 Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1142 return 0;
1143 }
1144
1145 static int InitCC(struct drxd_state *state)
1146 {
1147 if (state->osc_clock_freq == 0 ||
1148 state->osc_clock_freq > 20000 ||
1149 (state->osc_clock_freq % 4000) != 0) {
1150 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1151 return -1;
1152 }
1153
1154 Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1155 Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1156 CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1157 Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1158 Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1159 Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1160
1161 return 0;
1162 }
1163
1164 static int ResetECOD(struct drxd_state *state)
1165 {
1166 int status = 0;
1167
1168 if (state->type_A)
1169 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1170 else
1171 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1172
1173 if (!(status < 0))
1174 status = WriteTable(state, state->m_ResetECRAM);
1175 if (!(status < 0))
1176 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1177 return status;
1178 }
1179
1180 /* Configure PGA switch */
1181
1182 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1183 {
1184 int status;
1185 u16 AgModeLop = 0;
1186 u16 AgModeHip = 0;
1187 do {
1188 if (pgaSwitch) {
1189 /* PGA on */
1190 /* fine gain */
1191 status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1192 if (status < 0)
1193 break;
1194 AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1195 AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1196 status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1197 if (status < 0)
1198 break;
1199
1200 /* coarse gain */
1201 status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1202 if (status < 0)
1203 break;
1204 AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1205 AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1206 status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1207 if (status < 0)
1208 break;
1209
1210 /* enable fine and coarse gain, enable AAF,
1211 no ext resistor */
1212 status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1213 if (status < 0)
1214 break;
1215 } else {
1216 /* PGA off, bypass */
1217
1218 /* fine gain */
1219 status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1220 if (status < 0)
1221 break;
1222 AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1223 AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1224 status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1225 if (status < 0)
1226 break;
1227
1228 /* coarse gain */
1229 status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1230 if (status < 0)
1231 break;
1232 AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1233 AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1234 status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1235 if (status < 0)
1236 break;
1237
1238 /* disable fine and coarse gain, enable AAF,
1239 no ext resistor */
1240 status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1241 if (status < 0)
1242 break;
1243 }
1244 } while (0);
1245 return status;
1246 }
1247
1248 static int InitFE(struct drxd_state *state)
1249 {
1250 int status;
1251
1252 do {
1253 status = WriteTable(state, state->m_InitFE_1);
1254 if (status < 0)
1255 break;
1256
1257 if (state->type_A) {
1258 status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1259 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1260 0);
1261 } else {
1262 if (state->PGA)
1263 status = SetCfgPga(state, 0);
1264 else
1265 status =
1266 Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1267 B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1268 0);
1269 }
1270
1271 if (status < 0)
1272 break;
1273 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1274 if (status < 0)
1275 break;
1276 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1277 if (status < 0)
1278 break;
1279
1280 status = WriteTable(state, state->m_InitFE_2);
1281 if (status < 0)
1282 break;
1283
1284 } while (0);
1285
1286 return status;
1287 }
1288
1289 static int InitFT(struct drxd_state *state)
1290 {
1291 /*
1292 norm OFFSET, MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1293 SC stuff
1294 */
1295 return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1296 }
1297
1298 static int SC_WaitForReady(struct drxd_state *state)
1299 {
1300 u16 curCmd;
1301 int i;
1302
1303 for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1304 int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
1305 if (status == 0 || curCmd == 0)
1306 return status;
1307 }
1308 return -1;
1309 }
1310
1311 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1312 {
1313 int status = 0;
1314 u16 errCode;
1315
1316 Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1317 SC_WaitForReady(state);
1318
1319 Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1320
1321 if (errCode == 0xFFFF) {
1322 printk(KERN_ERR "Command Error\n");
1323 status = -1;
1324 }
1325
1326 return status;
1327 }
1328
1329 static int SC_ProcStartCommand(struct drxd_state *state,
1330 u16 subCmd, u16 param0, u16 param1)
1331 {
1332 int status = 0;
1333 u16 scExec;
1334
1335 mutex_lock(&state->mutex);
1336 do {
1337 Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1338 if (scExec != 1) {
1339 status = -1;
1340 break;
1341 }
1342 SC_WaitForReady(state);
1343 Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1344 Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1345 Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1346
1347 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1348 } while (0);
1349 mutex_unlock(&state->mutex);
1350 return status;
1351 }
1352
1353 static int SC_SetPrefParamCommand(struct drxd_state *state,
1354 u16 subCmd, u16 param0, u16 param1)
1355 {
1356 int status;
1357
1358 mutex_lock(&state->mutex);
1359 do {
1360 status = SC_WaitForReady(state);
1361 if (status < 0)
1362 break;
1363 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1364 if (status < 0)
1365 break;
1366 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1367 if (status < 0)
1368 break;
1369 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1370 if (status < 0)
1371 break;
1372
1373 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1374 if (status < 0)
1375 break;
1376 } while (0);
1377 mutex_unlock(&state->mutex);
1378 return status;
1379 }
1380
1381 #if 0
1382 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1383 {
1384 int status = 0;
1385
1386 mutex_lock(&state->mutex);
1387 do {
1388 status = SC_WaitForReady(state);
1389 if (status < 0)
1390 break;
1391 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1392 if (status < 0)
1393 break;
1394 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1395 if (status < 0)
1396 break;
1397 } while (0);
1398 mutex_unlock(&state->mutex);
1399 return status;
1400 }
1401 #endif
1402
1403 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1404 {
1405 int status;
1406
1407 do {
1408 u16 EcOcRegIprInvMpg = 0;
1409 u16 EcOcRegOcModeLop = 0;
1410 u16 EcOcRegOcModeHip = 0;
1411 u16 EcOcRegOcMpgSio = 0;
1412
1413 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1414
1415 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1416 if (bEnableOutput) {
1417 EcOcRegOcModeHip |=
1418 B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1419 } else
1420 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1421 EcOcRegOcModeLop |=
1422 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1423 } else {
1424 EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1425
1426 if (bEnableOutput)
1427 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1428 else
1429 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1430
1431 /* Don't Insert RS Byte */
1432 if (state->insert_rs_byte) {
1433 EcOcRegOcModeLop &=
1434 (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1435 EcOcRegOcModeHip &=
1436 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1437 EcOcRegOcModeHip |=
1438 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1439 } else {
1440 EcOcRegOcModeLop |=
1441 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1442 EcOcRegOcModeHip &=
1443 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1444 EcOcRegOcModeHip |=
1445 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1446 }
1447
1448 /* Mode = Parallel */
1449 if (state->enable_parallel)
1450 EcOcRegOcModeLop &=
1451 (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1452 else
1453 EcOcRegOcModeLop |=
1454 EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1455 }
1456 /* Invert Data */
1457 /* EcOcRegIprInvMpg |= 0x00FF; */
1458 EcOcRegIprInvMpg &= (~(0x00FF));
1459
1460 /* Invert Error ( we don't use the pin ) */
1461 /* EcOcRegIprInvMpg |= 0x0100; */
1462 EcOcRegIprInvMpg &= (~(0x0100));
1463
1464 /* Invert Start ( we don't use the pin ) */
1465 /* EcOcRegIprInvMpg |= 0x0200; */
1466 EcOcRegIprInvMpg &= (~(0x0200));
1467
1468 /* Invert Valid ( we don't use the pin ) */
1469 /* EcOcRegIprInvMpg |= 0x0400; */
1470 EcOcRegIprInvMpg &= (~(0x0400));
1471
1472 /* Invert Clock */
1473 /* EcOcRegIprInvMpg |= 0x0800; */
1474 EcOcRegIprInvMpg &= (~(0x0800));
1475
1476 /* EcOcRegOcModeLop =0x05; */
1477 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1478 if (status < 0)
1479 break;
1480 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1481 if (status < 0)
1482 break;
1483 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1484 if (status < 0)
1485 break;
1486 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1487 if (status < 0)
1488 break;
1489 } while (0);
1490 return status;
1491 }
1492
1493 static int SetDeviceTypeId(struct drxd_state *state)
1494 {
1495 int status = 0;
1496 u16 deviceId = 0;
1497
1498 do {
1499 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1500 if (status < 0)
1501 break;
1502 /* TODO: why twice? */
1503 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1504 if (status < 0)
1505 break;
1506 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1507
1508 state->type_A = 0;
1509 state->PGA = 0;
1510 state->diversity = 0;
1511 if (deviceId == 0) { /* on A2 only 3975 available */
1512 state->type_A = 1;
1513 printk(KERN_INFO "DRX3975D-A2\n");
1514 } else {
1515 deviceId >>= 12;
1516 printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1517 switch (deviceId) {
1518 case 4:
1519 state->diversity = 1;
1520 case 3:
1521 case 7:
1522 state->PGA = 1;
1523 break;
1524 case 6:
1525 state->diversity = 1;
1526 case 5:
1527 case 8:
1528 break;
1529 default:
1530 status = -1;
1531 break;
1532 }
1533 }
1534 } while (0);
1535
1536 if (status < 0)
1537 return status;
1538
1539 /* Init Table selection */
1540 state->m_InitAtomicRead = DRXD_InitAtomicRead;
1541 state->m_InitSC = DRXD_InitSC;
1542 state->m_ResetECRAM = DRXD_ResetECRAM;
1543 if (state->type_A) {
1544 state->m_ResetCEFR = DRXD_ResetCEFR;
1545 state->m_InitFE_1 = DRXD_InitFEA2_1;
1546 state->m_InitFE_2 = DRXD_InitFEA2_2;
1547 state->m_InitCP = DRXD_InitCPA2;
1548 state->m_InitCE = DRXD_InitCEA2;
1549 state->m_InitEQ = DRXD_InitEQA2;
1550 state->m_InitEC = DRXD_InitECA2;
1551 if (load_firmware(state, DRX_FW_FILENAME_A2))
1552 return -EIO;
1553 } else {
1554 state->m_ResetCEFR = NULL;
1555 state->m_InitFE_1 = DRXD_InitFEB1_1;
1556 state->m_InitFE_2 = DRXD_InitFEB1_2;
1557 state->m_InitCP = DRXD_InitCPB1;
1558 state->m_InitCE = DRXD_InitCEB1;
1559 state->m_InitEQ = DRXD_InitEQB1;
1560 state->m_InitEC = DRXD_InitECB1;
1561 if (load_firmware(state, DRX_FW_FILENAME_B1))
1562 return -EIO;
1563 }
1564 if (state->diversity) {
1565 state->m_InitDiversityFront = DRXD_InitDiversityFront;
1566 state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1567 state->m_DisableDiversity = DRXD_DisableDiversity;
1568 state->m_StartDiversityFront = DRXD_StartDiversityFront;
1569 state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1570 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1571 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1572 } else {
1573 state->m_InitDiversityFront = NULL;
1574 state->m_InitDiversityEnd = NULL;
1575 state->m_DisableDiversity = NULL;
1576 state->m_StartDiversityFront = NULL;
1577 state->m_StartDiversityEnd = NULL;
1578 state->m_DiversityDelay8MHZ = NULL;
1579 state->m_DiversityDelay6MHZ = NULL;
1580 }
1581
1582 return status;
1583 }
1584
1585 static int CorrectSysClockDeviation(struct drxd_state *state)
1586 {
1587 int status;
1588 s32 incr = 0;
1589 s32 nomincr = 0;
1590 u32 bandwidth = 0;
1591 u32 sysClockInHz = 0;
1592 u32 sysClockFreq = 0; /* in kHz */
1593 s16 oscClockDeviation;
1594 s16 Diff;
1595
1596 do {
1597 /* Retrieve bandwidth and incr, sanity check */
1598
1599 /* These accesses should be AtomicReadReg32, but that
1600 causes trouble (at least for diversity */
1601 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1602 if (status < 0)
1603 break;
1604 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1605 if (status < 0)
1606 break;
1607
1608 if (state->type_A) {
1609 if ((nomincr - incr < -500) || (nomincr - incr > 500))
1610 break;
1611 } else {
1612 if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1613 break;
1614 }
1615
1616 switch (state->props.bandwidth_hz) {
1617 case 8000000:
1618 bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1619 break;
1620 case 7000000:
1621 bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1622 break;
1623 case 6000000:
1624 bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1625 break;
1626 default:
1627 return -1;
1628 break;
1629 }
1630
1631 /* Compute new sysclock value
1632 sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1633 incr += (1 << 23);
1634 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1635 sysClockFreq = (u32) (sysClockInHz / 1000);
1636 /* rounding */
1637 if ((sysClockInHz % 1000) > 500)
1638 sysClockFreq++;
1639
1640 /* Compute clock deviation in ppm */
1641 oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1642 (s32)
1643 (state->expected_sys_clock_freq)) *
1644 1000000L) /
1645 (s32)
1646 (state->expected_sys_clock_freq));
1647
1648 Diff = oscClockDeviation - state->osc_clock_deviation;
1649 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1650 if (Diff >= -200 && Diff <= 200) {
1651 state->sys_clock_freq = (u16) sysClockFreq;
1652 if (oscClockDeviation != state->osc_clock_deviation) {
1653 if (state->config.osc_deviation) {
1654 state->config.osc_deviation(state->priv,
1655 oscClockDeviation,
1656 1);
1657 state->osc_clock_deviation =
1658 oscClockDeviation;
1659 }
1660 }
1661 /* switch OFF SRMM scan in SC */
1662 status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1663 if (status < 0)
1664 break;
1665 /* overrule FE_IF internal value for
1666 proper re-locking */
1667 status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1668 if (status < 0)
1669 break;
1670 state->cscd_state = CSCD_SAVED;
1671 }
1672 } while (0);
1673
1674 return status;
1675 }
1676
1677 static int DRX_Stop(struct drxd_state *state)
1678 {
1679 int status;
1680
1681 if (state->drxd_state != DRXD_STARTED)
1682 return 0;
1683
1684 do {
1685 if (state->cscd_state != CSCD_SAVED) {
1686 u32 lock;
1687 status = DRX_GetLockStatus(state, &lock);
1688 if (status < 0)
1689 break;
1690 }
1691
1692 status = StopOC(state);
1693 if (status < 0)
1694 break;
1695
1696 state->drxd_state = DRXD_STOPPED;
1697
1698 status = ConfigureMPEGOutput(state, 0);
1699 if (status < 0)
1700 break;
1701
1702 if (state->type_A) {
1703 /* Stop relevant processors off the device */
1704 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1705 if (status < 0)
1706 break;
1707
1708 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1709 if (status < 0)
1710 break;
1711 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1712 if (status < 0)
1713 break;
1714 } else {
1715 /* Stop all processors except HI & CC & FE */
1716 status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1717 if (status < 0)
1718 break;
1719 status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1720 if (status < 0)
1721 break;
1722 status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1723 if (status < 0)
1724 break;
1725 status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1726 if (status < 0)
1727 break;
1728 status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1729 if (status < 0)
1730 break;
1731 status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1732 if (status < 0)
1733 break;
1734 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1735 if (status < 0)
1736 break;
1737 }
1738
1739 } while (0);
1740 return status;
1741 }
1742
1743 #if 0 /* Currently unused */
1744 static int SetOperationMode(struct drxd_state *state, int oMode)
1745 {
1746 int status;
1747
1748 do {
1749 if (state->drxd_state != DRXD_STOPPED) {
1750 status = -1;
1751 break;
1752 }
1753
1754 if (oMode == state->operation_mode) {
1755 status = 0;
1756 break;
1757 }
1758
1759 if (oMode != OM_Default && !state->diversity) {
1760 status = -1;
1761 break;
1762 }
1763
1764 switch (oMode) {
1765 case OM_DVBT_Diversity_Front:
1766 status = WriteTable(state, state->m_InitDiversityFront);
1767 break;
1768 case OM_DVBT_Diversity_End:
1769 status = WriteTable(state, state->m_InitDiversityEnd);
1770 break;
1771 case OM_Default:
1772 /* We need to check how to
1773 get DRXD out of diversity */
1774 default:
1775 status = WriteTable(state, state->m_DisableDiversity);
1776 break;
1777 }
1778 } while (0);
1779
1780 if (!status)
1781 state->operation_mode = oMode;
1782 return status;
1783 }
1784 #endif
1785
1786 static int StartDiversity(struct drxd_state *state)
1787 {
1788 int status = 0;
1789 u16 rcControl;
1790
1791 do {
1792 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1793 status = WriteTable(state, state->m_StartDiversityFront);
1794 if (status < 0)
1795 break;
1796 } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1797 status = WriteTable(state, state->m_StartDiversityEnd);
1798 if (status < 0)
1799 break;
1800 if (state->props.bandwidth_hz == 8000000) {
1801 status = WriteTable(state, state->m_DiversityDelay8MHZ);
1802 if (status < 0)
1803 break;
1804 } else {
1805 status = WriteTable(state, state->m_DiversityDelay6MHZ);
1806 if (status < 0)
1807 break;
1808 }
1809
1810 status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1811 if (status < 0)
1812 break;
1813 rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1814 rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1815 /* combining enabled */
1816 B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1817 B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1818 B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1819 status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1820 if (status < 0)
1821 break;
1822 }
1823 } while (0);
1824 return status;
1825 }
1826
1827 static int SetFrequencyShift(struct drxd_state *state,
1828 u32 offsetFreq, int channelMirrored)
1829 {
1830 int negativeShift = (state->tuner_mirrors == channelMirrored);
1831
1832 /* Handle all mirroring
1833 *
1834 * Note: ADC mirroring (aliasing) is implictly handled by limiting
1835 * feFsRegAddInc to 28 bits below
1836 * (if the result before masking is more than 28 bits, this means
1837 * that the ADC is mirroring.
1838 * The masking is in fact the aliasing of the ADC)
1839 *
1840 */
1841
1842 /* Compute register value, unsigned computation */
1843 state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1844 offsetFreq,
1845 1 << 28, state->sys_clock_freq);
1846 /* Remove integer part */
1847 state->fe_fs_add_incr &= 0x0FFFFFFFL;
1848 if (negativeShift)
1849 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1850
1851 /* Save the frequency shift without tunerOffset compensation
1852 for CtrlGetChannel. */
1853 state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1854 1 << 28, state->sys_clock_freq);
1855 /* Remove integer part */
1856 state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1857 if (negativeShift)
1858 state->org_fe_fs_add_incr = ((1L << 28) -
1859 state->org_fe_fs_add_incr);
1860
1861 return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1862 state->fe_fs_add_incr, 0);
1863 }
1864
1865 static int SetCfgNoiseCalibration(struct drxd_state *state,
1866 struct SNoiseCal *noiseCal)
1867 {
1868 u16 beOptEna;
1869 int status = 0;
1870
1871 do {
1872 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1873 if (status < 0)
1874 break;
1875 if (noiseCal->cpOpt) {
1876 beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1877 } else {
1878 beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1879 status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1880 if (status < 0)
1881 break;
1882 }
1883 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1884 if (status < 0)
1885 break;
1886
1887 if (!state->type_A) {
1888 status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1889 if (status < 0)
1890 break;
1891 status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1892 if (status < 0)
1893 break;
1894 }
1895 } while (0);
1896
1897 return status;
1898 }
1899
1900 static int DRX_Start(struct drxd_state *state, s32 off)
1901 {
1902 struct dtv_frontend_properties *p = &state->props;
1903 int status;
1904
1905 u16 transmissionParams = 0;
1906 u16 operationMode = 0;
1907 u16 qpskTdTpsPwr = 0;
1908 u16 qam16TdTpsPwr = 0;
1909 u16 qam64TdTpsPwr = 0;
1910 u32 feIfIncr = 0;
1911 u32 bandwidth = 0;
1912 int mirrorFreqSpect;
1913
1914 u16 qpskSnCeGain = 0;
1915 u16 qam16SnCeGain = 0;
1916 u16 qam64SnCeGain = 0;
1917 u16 qpskIsGainMan = 0;
1918 u16 qam16IsGainMan = 0;
1919 u16 qam64IsGainMan = 0;
1920 u16 qpskIsGainExp = 0;
1921 u16 qam16IsGainExp = 0;
1922 u16 qam64IsGainExp = 0;
1923 u16 bandwidthParam = 0;
1924
1925 if (off < 0)
1926 off = (off - 500) / 1000;
1927 else
1928 off = (off + 500) / 1000;
1929
1930 do {
1931 if (state->drxd_state != DRXD_STOPPED)
1932 return -1;
1933 status = ResetECOD(state);
1934 if (status < 0)
1935 break;
1936 if (state->type_A) {
1937 status = InitSC(state);
1938 if (status < 0)
1939 break;
1940 } else {
1941 status = InitFT(state);
1942 if (status < 0)
1943 break;
1944 status = InitCP(state);
1945 if (status < 0)
1946 break;
1947 status = InitCE(state);
1948 if (status < 0)
1949 break;
1950 status = InitEQ(state);
1951 if (status < 0)
1952 break;
1953 status = InitSC(state);
1954 if (status < 0)
1955 break;
1956 }
1957
1958 /* Restore current IF & RF AGC settings */
1959
1960 status = SetCfgIfAgc(state, &state->if_agc_cfg);
1961 if (status < 0)
1962 break;
1963 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1964 if (status < 0)
1965 break;
1966
1967 mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1968
1969 switch (p->transmission_mode) {
1970 default: /* Not set, detect it automatically */
1971 operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1972 /* fall through , try first guess DRX_FFTMODE_8K */
1973 case TRANSMISSION_MODE_8K:
1974 transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1975 if (state->type_A) {
1976 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1977 if (status < 0)
1978 break;
1979 qpskSnCeGain = 99;
1980 qam16SnCeGain = 83;
1981 qam64SnCeGain = 67;
1982 }
1983 break;
1984 case TRANSMISSION_MODE_2K:
1985 transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1986 if (state->type_A) {
1987 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1988 if (status < 0)
1989 break;
1990 qpskSnCeGain = 97;
1991 qam16SnCeGain = 71;
1992 qam64SnCeGain = 65;
1993 }
1994 break;
1995 }
1996
1997 switch (p->guard_interval) {
1998 case GUARD_INTERVAL_1_4:
1999 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2000 break;
2001 case GUARD_INTERVAL_1_8:
2002 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2003 break;
2004 case GUARD_INTERVAL_1_16:
2005 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2006 break;
2007 case GUARD_INTERVAL_1_32:
2008 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2009 break;
2010 default: /* Not set, detect it automatically */
2011 operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2012 /* try first guess 1/4 */
2013 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2014 break;
2015 }
2016
2017 switch (p->hierarchy) {
2018 case HIERARCHY_1:
2019 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2020 if (state->type_A) {
2021 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2022 if (status < 0)
2023 break;
2024 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2025 if (status < 0)
2026 break;
2027
2028 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2029 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2030 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2031
2032 qpskIsGainMan =
2033 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2034 qam16IsGainMan =
2035 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2036 qam64IsGainMan =
2037 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2038
2039 qpskIsGainExp =
2040 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2041 qam16IsGainExp =
2042 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2043 qam64IsGainExp =
2044 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2045 }
2046 break;
2047
2048 case HIERARCHY_2:
2049 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2050 if (state->type_A) {
2051 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2052 if (status < 0)
2053 break;
2054 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2055 if (status < 0)
2056 break;
2057
2058 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2059 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2060 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2061
2062 qpskIsGainMan =
2063 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2064 qam16IsGainMan =
2065 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2066 qam64IsGainMan =
2067 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2068
2069 qpskIsGainExp =
2070 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2071 qam16IsGainExp =
2072 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2073 qam64IsGainExp =
2074 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2075 }
2076 break;
2077 case HIERARCHY_4:
2078 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2079 if (state->type_A) {
2080 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2081 if (status < 0)
2082 break;
2083 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2084 if (status < 0)
2085 break;
2086
2087 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2088 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2089 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2090
2091 qpskIsGainMan =
2092 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2093 qam16IsGainMan =
2094 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2095 qam64IsGainMan =
2096 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2097
2098 qpskIsGainExp =
2099 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2100 qam16IsGainExp =
2101 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2102 qam64IsGainExp =
2103 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2104 }
2105 break;
2106 case HIERARCHY_AUTO:
2107 default:
2108 /* Not set, detect it automatically, start with none */
2109 operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2110 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2111 if (state->type_A) {
2112 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2113 if (status < 0)
2114 break;
2115 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2116 if (status < 0)
2117 break;
2118
2119 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2120 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2121 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2122
2123 qpskIsGainMan =
2124 SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2125 qam16IsGainMan =
2126 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2127 qam64IsGainMan =
2128 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2129
2130 qpskIsGainExp =
2131 SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2132 qam16IsGainExp =
2133 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2134 qam64IsGainExp =
2135 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2136 }
2137 break;
2138 }
2139 status = status;
2140 if (status < 0)
2141 break;
2142
2143 switch (p->modulation) {
2144 default:
2145 operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2146 /* fall through , try first guess
2147 DRX_CONSTELLATION_QAM64 */
2148 case QAM_64:
2149 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2150 if (state->type_A) {
2151 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2152 if (status < 0)
2153 break;
2154 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2155 if (status < 0)
2156 break;
2157 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2158 if (status < 0)
2159 break;
2160 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2161 if (status < 0)
2162 break;
2163 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2164 if (status < 0)
2165 break;
2166
2167 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2168 if (status < 0)
2169 break;
2170 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2171 if (status < 0)
2172 break;
2173 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2174 if (status < 0)
2175 break;
2176 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2177 if (status < 0)
2178 break;
2179 }
2180 break;
2181 case QPSK:
2182 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2183 if (state->type_A) {
2184 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2185 if (status < 0)
2186 break;
2187 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2188 if (status < 0)
2189 break;
2190 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2191 if (status < 0)
2192 break;
2193 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2194 if (status < 0)
2195 break;
2196 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2197 if (status < 0)
2198 break;
2199
2200 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2201 if (status < 0)
2202 break;
2203 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2204 if (status < 0)
2205 break;
2206 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2207 if (status < 0)
2208 break;
2209 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2210 if (status < 0)
2211 break;
2212 }
2213 break;
2214
2215 case QAM_16:
2216 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2217 if (state->type_A) {
2218 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2219 if (status < 0)
2220 break;
2221 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2222 if (status < 0)
2223 break;
2224 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2225 if (status < 0)
2226 break;
2227 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2228 if (status < 0)
2229 break;
2230 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2231 if (status < 0)
2232 break;
2233
2234 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2235 if (status < 0)
2236 break;
2237 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2238 if (status < 0)
2239 break;
2240 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2241 if (status < 0)
2242 break;
2243 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2244 if (status < 0)
2245 break;
2246 }
2247 break;
2248
2249 }
2250 status = status;
2251 if (status < 0)
2252 break;
2253
2254 switch (DRX_CHANNEL_HIGH) {
2255 default:
2256 case DRX_CHANNEL_AUTO:
2257 case DRX_CHANNEL_LOW:
2258 transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2259 status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2260 if (status < 0)
2261 break;
2262 break;
2263 case DRX_CHANNEL_HIGH:
2264 transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2265 status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2266 if (status < 0)
2267 break;
2268 break;
2269
2270 }
2271
2272 switch (p->code_rate_HP) {
2273 case FEC_1_2:
2274 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2275 if (state->type_A) {
2276 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2277 if (status < 0)
2278 break;
2279 }
2280 break;
2281 default:
2282 operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2283 case FEC_2_3:
2284 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2285 if (state->type_A) {
2286 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2287 if (status < 0)
2288 break;
2289 }
2290 break;
2291 case FEC_3_4:
2292 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2293 if (state->type_A) {
2294 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2295 if (status < 0)
2296 break;
2297 }
2298 break;
2299 case FEC_5_6:
2300 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2301 if (state->type_A) {
2302 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2303 if (status < 0)
2304 break;
2305 }
2306 break;
2307 case FEC_7_8:
2308 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2309 if (state->type_A) {
2310 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2311 if (status < 0)
2312 break;
2313 }
2314 break;
2315 }
2316 status = status;
2317 if (status < 0)
2318 break;
2319
2320 /* First determine real bandwidth (Hz) */
2321 /* Also set delay for impulse noise cruncher (only A2) */
2322 /* Also set parameters for EC_OC fix, note
2323 EC_OC_REG_TMD_HIL_MAR is changed
2324 by SC for fix for some 8K,1/8 guard but is restored by
2325 InitEC and ResetEC
2326 functions */
2327 switch (p->bandwidth_hz) {
2328 case 0:
2329 p->bandwidth_hz = 8000000;
2330 /* fall through */
2331 case 8000000:
2332 /* (64/7)*(8/8)*1000000 */
2333 bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2334
2335 bandwidthParam = 0;
2336 status = Write16(state,
2337 FE_AG_REG_IND_DEL__A, 50, 0x0000);
2338 break;
2339 case 7000000:
2340 /* (64/7)*(7/8)*1000000 */
2341 bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2342 bandwidthParam = 0x4807; /*binary:0100 1000 0000 0111 */
2343 status = Write16(state,
2344 FE_AG_REG_IND_DEL__A, 59, 0x0000);
2345 break;
2346 case 6000000:
2347 /* (64/7)*(6/8)*1000000 */
2348 bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2349 bandwidthParam = 0x0F07; /*binary: 0000 1111 0000 0111 */
2350 status = Write16(state,
2351 FE_AG_REG_IND_DEL__A, 71, 0x0000);
2352 break;
2353 default:
2354 status = -EINVAL;
2355 }
2356 if (status < 0)
2357 break;
2358
2359 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2360 if (status < 0)
2361 break;
2362
2363 {
2364 u16 sc_config;
2365 status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2366 if (status < 0)
2367 break;
2368
2369 /* enable SLAVE mode in 2k 1/32 to
2370 prevent timing change glitches */
2371 if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2372 (p->guard_interval == GUARD_INTERVAL_1_32)) {
2373 /* enable slave */
2374 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2375 } else {
2376 /* disable slave */
2377 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2378 }
2379 status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2380 if (status < 0)
2381 break;
2382 }
2383
2384 status = SetCfgNoiseCalibration(state, &state->noise_cal);
2385 if (status < 0)
2386 break;
2387
2388 if (state->cscd_state == CSCD_INIT) {
2389 /* switch on SRMM scan in SC */
2390 status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2391 if (status < 0)
2392 break;
2393 /* CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2394 state->cscd_state = CSCD_SET;
2395 }
2396
2397 /* Now compute FE_IF_REG_INCR */
2398 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2399 ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2400 feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2401 (1ULL << 21), bandwidth) - (1 << 23);
2402 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2403 if (status < 0)
2404 break;
2405 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2406 if (status < 0)
2407 break;
2408 /* Bandwidth setting done */
2409
2410 /* Mirror & frequency offset */
2411 SetFrequencyShift(state, off, mirrorFreqSpect);
2412
2413 /* Start SC, write channel settings to SC */
2414
2415 /* Enable SC after setting all other parameters */
2416 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2417 if (status < 0)
2418 break;
2419 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2420 if (status < 0)
2421 break;
2422
2423 /* Write SC parameter registers, operation mode */
2424 #if 1
2425 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2426 SC_RA_RAM_OP_AUTO_GUARD__M |
2427 SC_RA_RAM_OP_AUTO_CONST__M |
2428 SC_RA_RAM_OP_AUTO_HIER__M |
2429 SC_RA_RAM_OP_AUTO_RATE__M);
2430 #endif
2431 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2432 if (status < 0)
2433 break;
2434
2435 /* Start correct processes to get in lock */
2436 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2437 if (status < 0)
2438 break;
2439
2440 status = StartOC(state);
2441 if (status < 0)
2442 break;
2443
2444 if (state->operation_mode != OM_Default) {
2445 status = StartDiversity(state);
2446 if (status < 0)
2447 break;
2448 }
2449
2450 state->drxd_state = DRXD_STARTED;
2451 } while (0);
2452
2453 return status;
2454 }
2455
2456 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2457 {
2458 u32 ulRfAgcOutputLevel = 0xffffffff;
2459 u32 ulRfAgcSettleLevel = 528; /* Optimum value for MT2060 */
2460 u32 ulRfAgcMinLevel = 0; /* Currently unused */
2461 u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2462 u32 ulRfAgcSpeed = 0; /* Currently unused */
2463 u32 ulRfAgcMode = 0; /*2; Off */
2464 u32 ulRfAgcR1 = 820;
2465 u32 ulRfAgcR2 = 2200;
2466 u32 ulRfAgcR3 = 150;
2467 u32 ulIfAgcMode = 0; /* Auto */
2468 u32 ulIfAgcOutputLevel = 0xffffffff;
2469 u32 ulIfAgcSettleLevel = 0xffffffff;
2470 u32 ulIfAgcMinLevel = 0xffffffff;
2471 u32 ulIfAgcMaxLevel = 0xffffffff;
2472 u32 ulIfAgcSpeed = 0xffffffff;
2473 u32 ulIfAgcR1 = 820;
2474 u32 ulIfAgcR2 = 2200;
2475 u32 ulIfAgcR3 = 150;
2476 u32 ulClock = state->config.clock;
2477 u32 ulSerialMode = 0;
2478 u32 ulEcOcRegOcModeLop = 4; /* Dynamic DTO source */
2479 u32 ulHiI2cDelay = HI_I2C_DELAY;
2480 u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2481 u32 ulHiI2cPatch = 0;
2482 u32 ulEnvironment = APPENV_PORTABLE;
2483 u32 ulEnvironmentDiversity = APPENV_MOBILE;
2484 u32 ulIFFilter = IFFILTER_SAW;
2485
2486 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2487 state->if_agc_cfg.outputLevel = 0;
2488 state->if_agc_cfg.settleLevel = 140;
2489 state->if_agc_cfg.minOutputLevel = 0;
2490 state->if_agc_cfg.maxOutputLevel = 1023;
2491 state->if_agc_cfg.speed = 904;
2492
2493 if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2494 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2495 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2496 }
2497
2498 if (ulIfAgcMode == 0 &&
2499 ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2500 ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2501 ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2502 ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2503 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2504 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2505 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2506 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2507 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2508 }
2509
2510 state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2511 state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2512 state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2513
2514 state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2515 state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2516 state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2517
2518 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2519 /* rest of the RFAgcCfg structure currently unused */
2520 if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2521 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2522 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2523 }
2524
2525 if (ulRfAgcMode == 0 &&
2526 ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2527 ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2528 ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2529 ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2530 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2531 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2532 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2533 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2534 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2535 }
2536
2537 if (ulRfAgcMode == 2)
2538 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2539
2540 if (ulEnvironment <= 2)
2541 state->app_env_default = (enum app_env)
2542 (ulEnvironment);
2543 if (ulEnvironmentDiversity <= 2)
2544 state->app_env_diversity = (enum app_env)
2545 (ulEnvironmentDiversity);
2546
2547 if (ulIFFilter == IFFILTER_DISCRETE) {
2548 /* discrete filter */
2549 state->noise_cal.cpOpt = 0;
2550 state->noise_cal.cpNexpOfs = 40;
2551 state->noise_cal.tdCal2k = -40;
2552 state->noise_cal.tdCal8k = -24;
2553 } else {
2554 /* SAW filter */
2555 state->noise_cal.cpOpt = 1;
2556 state->noise_cal.cpNexpOfs = 0;
2557 state->noise_cal.tdCal2k = -21;
2558 state->noise_cal.tdCal8k = -24;
2559 }
2560 state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2561
2562 state->chip_adr = (state->config.demod_address << 1) | 1;
2563 switch (ulHiI2cPatch) {
2564 case 1:
2565 state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2566 break;
2567 case 3:
2568 state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2569 break;
2570 default:
2571 state->m_HiI2cPatch = NULL;
2572 }
2573
2574 /* modify tuner and clock attributes */
2575 state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2576 /* expected system clock frequency in kHz */
2577 state->expected_sys_clock_freq = 48000;
2578 /* real system clock frequency in kHz */
2579 state->sys_clock_freq = 48000;
2580 state->osc_clock_freq = (u16) ulClock;
2581 state->osc_clock_deviation = 0;
2582 state->cscd_state = CSCD_INIT;
2583 state->drxd_state = DRXD_UNINITIALIZED;
2584
2585 state->PGA = 0;
2586 state->type_A = 0;
2587 state->tuner_mirrors = 0;
2588
2589 /* modify MPEG output attributes */
2590 state->insert_rs_byte = state->config.insert_rs_byte;
2591 state->enable_parallel = (ulSerialMode != 1);
2592
2593 /* Timing div, 250ns/Psys */
2594 /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2595
2596 state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2597 ulHiI2cDelay) / 1000;
2598 /* Bridge delay, uses oscilator clock */
2599 /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2600 state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2601 ulHiI2cBridgeDelay) / 1000;
2602
2603 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2604 /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2605 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2606 return 0;
2607 }
2608
2609 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2610 {
2611 int status = 0;
2612 u32 driverVersion;
2613
2614 if (state->init_done)
2615 return 0;
2616
2617 CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2618
2619 do {
2620 state->operation_mode = OM_Default;
2621
2622 status = SetDeviceTypeId(state);
2623 if (status < 0)
2624 break;
2625
2626 /* Apply I2c address patch to B1 */
2627 if (!state->type_A && state->m_HiI2cPatch != NULL) {
2628 status = WriteTable(state, state->m_HiI2cPatch);
2629 if (status < 0)
2630 break;
2631 }
2632
2633 if (state->type_A) {
2634 /* HI firmware patch for UIO readout,
2635 avoid clearing of result register */
2636 status = Write16(state, 0x43012D, 0x047f, 0);
2637 if (status < 0)
2638 break;
2639 }
2640
2641 status = HI_ResetCommand(state);
2642 if (status < 0)
2643 break;
2644
2645 status = StopAllProcessors(state);
2646 if (status < 0)
2647 break;
2648 status = InitCC(state);
2649 if (status < 0)
2650 break;
2651
2652 state->osc_clock_deviation = 0;
2653
2654 if (state->config.osc_deviation)
2655 state->osc_clock_deviation =
2656 state->config.osc_deviation(state->priv, 0, 0);
2657 {
2658 /* Handle clock deviation */
2659 s32 devB;
2660 s32 devA = (s32) (state->osc_clock_deviation) *
2661 (s32) (state->expected_sys_clock_freq);
2662 /* deviation in kHz */
2663 s32 deviation = (devA / (1000000L));
2664 /* rounding, signed */
2665 if (devA > 0)
2666 devB = (2);
2667 else
2668 devB = (-2);
2669 if ((devB * (devA % 1000000L) > 1000000L)) {
2670 /* add +1 or -1 */
2671 deviation += (devB / 2);
2672 }
2673
2674 state->sys_clock_freq =
2675 (u16) ((state->expected_sys_clock_freq) +
2676 deviation);
2677 }
2678 status = InitHI(state);
2679 if (status < 0)
2680 break;
2681 status = InitAtomicRead(state);
2682 if (status < 0)
2683 break;
2684
2685 status = EnableAndResetMB(state);
2686 if (status < 0)
2687 break;
2688 if (state->type_A) {
2689 status = ResetCEFR(state);
2690 if (status < 0)
2691 break;
2692 }
2693 if (fw) {
2694 status = DownloadMicrocode(state, fw, fw_size);
2695 if (status < 0)
2696 break;
2697 } else {
2698 status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2699 if (status < 0)
2700 break;
2701 }
2702
2703 if (state->PGA) {
2704 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2705 SetCfgPga(state, 0); /* PGA = 0 dB */
2706 } else {
2707 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2708 }
2709
2710 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2711
2712 status = InitFE(state);
2713 if (status < 0)
2714 break;
2715 status = InitFT(state);
2716 if (status < 0)
2717 break;
2718 status = InitCP(state);
2719 if (status < 0)
2720 break;
2721 status = InitCE(state);
2722 if (status < 0)
2723 break;
2724 status = InitEQ(state);
2725 if (status < 0)
2726 break;
2727 status = InitEC(state);
2728 if (status < 0)
2729 break;
2730 status = InitSC(state);
2731 if (status < 0)
2732 break;
2733
2734 status = SetCfgIfAgc(state, &state->if_agc_cfg);
2735 if (status < 0)
2736 break;
2737 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2738 if (status < 0)
2739 break;
2740
2741 state->cscd_state = CSCD_INIT;
2742 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2743 if (status < 0)
2744 break;
2745 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2746 if (status < 0)
2747 break;
2748
2749 driverVersion = (((VERSION_MAJOR / 10) << 4) +
2750 (VERSION_MAJOR % 10)) << 24;
2751 driverVersion += (((VERSION_MINOR / 10) << 4) +
2752 (VERSION_MINOR % 10)) << 16;
2753 driverVersion += ((VERSION_PATCH / 1000) << 12) +
2754 ((VERSION_PATCH / 100) << 8) +
2755 ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2756
2757 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2758 if (status < 0)
2759 break;
2760
2761 status = StopOC(state);
2762 if (status < 0)
2763 break;
2764
2765 state->drxd_state = DRXD_STOPPED;
2766 state->init_done = 1;
2767 status = 0;
2768 } while (0);
2769 return status;
2770 }
2771
2772 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2773 {
2774 DRX_GetLockStatus(state, pLockStatus);
2775
2776 /*if (*pLockStatus&DRX_LOCK_MPEG) */
2777 if (*pLockStatus & DRX_LOCK_FEC) {
2778 ConfigureMPEGOutput(state, 1);
2779 /* Get status again, in case we have MPEG lock now */
2780 /*DRX_GetLockStatus(state, pLockStatus); */
2781 }
2782
2783 return 0;
2784 }
2785
2786 /****************************************************************************/
2787 /****************************************************************************/
2788 /****************************************************************************/
2789
2790 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2791 {
2792 struct drxd_state *state = fe->demodulator_priv;
2793 u32 value;
2794 int res;
2795
2796 res = ReadIFAgc(state, &value);
2797 if (res < 0)
2798 *strength = 0;
2799 else
2800 *strength = 0xffff - (value << 4);
2801 return 0;
2802 }
2803
2804 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2805 {
2806 struct drxd_state *state = fe->demodulator_priv;
2807 u32 lock;
2808
2809 DRXD_status(state, &lock);
2810 *status = 0;
2811 /* No MPEG lock in V255 firmware, bug ? */
2812 #if 1
2813 if (lock & DRX_LOCK_MPEG)
2814 *status |= FE_HAS_LOCK;
2815 #else
2816 if (lock & DRX_LOCK_FEC)
2817 *status |= FE_HAS_LOCK;
2818 #endif
2819 if (lock & DRX_LOCK_FEC)
2820 *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2821 if (lock & DRX_LOCK_DEMOD)
2822 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2823
2824 return 0;
2825 }
2826
2827 static int drxd_init(struct dvb_frontend *fe)
2828 {
2829 struct drxd_state *state = fe->demodulator_priv;
2830
2831 return DRXD_init(state, NULL, 0);
2832 }
2833
2834 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2835 {
2836 struct drxd_state *state = fe->demodulator_priv;
2837
2838 if (state->config.disable_i2c_gate_ctrl == 1)
2839 return 0;
2840
2841 return DRX_ConfigureI2CBridge(state, onoff);
2842 }
2843
2844 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2845 struct dvb_frontend_tune_settings *sets)
2846 {
2847 sets->min_delay_ms = 10000;
2848 sets->max_drift = 0;
2849 sets->step_size = 0;
2850 return 0;
2851 }
2852
2853 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2854 {
2855 *ber = 0;
2856 return 0;
2857 }
2858
2859 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2860 {
2861 *snr = 0;
2862 return 0;
2863 }
2864
2865 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2866 {
2867 *ucblocks = 0;
2868 return 0;
2869 }
2870
2871 static int drxd_sleep(struct dvb_frontend *fe)
2872 {
2873 struct drxd_state *state = fe->demodulator_priv;
2874
2875 ConfigureMPEGOutput(state, 0);
2876 return 0;
2877 }
2878
2879 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2880 {
2881 return drxd_config_i2c(fe, enable);
2882 }
2883
2884 static int drxd_set_frontend(struct dvb_frontend *fe)
2885 {
2886 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2887 struct drxd_state *state = fe->demodulator_priv;
2888 s32 off = 0;
2889
2890 state->props = *p;
2891 DRX_Stop(state);
2892
2893 if (fe->ops.tuner_ops.set_params) {
2894 fe->ops.tuner_ops.set_params(fe);
2895 if (fe->ops.i2c_gate_ctrl)
2896 fe->ops.i2c_gate_ctrl(fe, 0);
2897 }
2898
2899 msleep(200);
2900
2901 return DRX_Start(state, off);
2902 }
2903
2904 static void drxd_release(struct dvb_frontend *fe)
2905 {
2906 struct drxd_state *state = fe->demodulator_priv;
2907
2908 kfree(state);
2909 }
2910
2911 static const struct dvb_frontend_ops drxd_ops = {
2912 .delsys = { SYS_DVBT},
2913 .info = {
2914 .name = "Micronas DRXD DVB-T",
2915 .frequency_min = 47125000,
2916 .frequency_max = 855250000,
2917 .frequency_stepsize = 166667,
2918 .frequency_tolerance = 0,
2919 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2920 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2921 FE_CAN_FEC_AUTO |
2922 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2923 FE_CAN_QAM_AUTO |
2924 FE_CAN_TRANSMISSION_MODE_AUTO |
2925 FE_CAN_GUARD_INTERVAL_AUTO |
2926 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2927
2928 .release = drxd_release,
2929 .init = drxd_init,
2930 .sleep = drxd_sleep,
2931 .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2932
2933 .set_frontend = drxd_set_frontend,
2934 .get_tune_settings = drxd_get_tune_settings,
2935
2936 .read_status = drxd_read_status,
2937 .read_ber = drxd_read_ber,
2938 .read_signal_strength = drxd_read_signal_strength,
2939 .read_snr = drxd_read_snr,
2940 .read_ucblocks = drxd_read_ucblocks,
2941 };
2942
2943 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2944 void *priv, struct i2c_adapter *i2c,
2945 struct device *dev)
2946 {
2947 struct drxd_state *state = NULL;
2948
2949 state = kzalloc(sizeof(*state), GFP_KERNEL);
2950 if (!state)
2951 return NULL;
2952
2953 state->ops = drxd_ops;
2954 state->dev = dev;
2955 state->config = *config;
2956 state->i2c = i2c;
2957 state->priv = priv;
2958
2959 mutex_init(&state->mutex);
2960
2961 if (Read16(state, 0, NULL, 0) < 0)
2962 goto error;
2963
2964 state->frontend.ops = drxd_ops;
2965 state->frontend.demodulator_priv = state;
2966 ConfigureMPEGOutput(state, 0);
2967 /* add few initialization to allow gate control */
2968 CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2969 InitHI(state);
2970
2971 return &state->frontend;
2972
2973 error:
2974 printk(KERN_ERR "drxd: not found\n");
2975 kfree(state);
2976 return NULL;
2977 }
2978 EXPORT_SYMBOL(drxd_attach);
2979
2980 MODULE_DESCRIPTION("DRXD driver");
2981 MODULE_AUTHOR("Micronas");
2982 MODULE_LICENSE("GPL");