]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/media/dvb-frontends/s5h1420.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / drivers / media / dvb-frontends / s5h1420.c
1 /*
2 * Driver for
3 * Samsung S5H1420 and
4 * PnpNetwork PN1010 QPSK Demodulator
5 *
6 * Copyright (C) 2005 Andrew de Quincey <adq_dvb@lidskialf.net>
7 * Copyright (C) 2005-8 Patrick Boettcher <pb@linuxtv.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 *
18 * GNU General Public License for more details.
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/jiffies.h>
28 #include <asm/div64.h>
29
30 #include <linux/i2c.h>
31
32
33 #include "dvb_frontend.h"
34 #include "s5h1420.h"
35 #include "s5h1420_priv.h"
36
37 #define TONE_FREQ 22000
38
39 struct s5h1420_state {
40 struct i2c_adapter* i2c;
41 const struct s5h1420_config* config;
42
43 struct dvb_frontend frontend;
44 struct i2c_adapter tuner_i2c_adapter;
45
46 u8 CON_1_val;
47
48 u8 postlocked:1;
49 u32 fclk;
50 u32 tunedfreq;
51 enum fe_code_rate fec_inner;
52 u32 symbol_rate;
53
54 /* FIXME: ugly workaround for flexcop's incapable i2c-controller
55 * it does not support repeated-start, workaround: write addr-1
56 * and then read
57 */
58 u8 shadow[256];
59 };
60
61 static u32 s5h1420_getsymbolrate(struct s5h1420_state* state);
62 static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
63 struct dvb_frontend_tune_settings* fesettings);
64
65
66 static int debug;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "enable debugging");
69
70 #define dprintk(x...) do { \
71 if (debug) \
72 printk(KERN_DEBUG "S5H1420: " x); \
73 } while (0)
74
75 static u8 s5h1420_readreg(struct s5h1420_state *state, u8 reg)
76 {
77 int ret;
78 u8 b[2];
79 struct i2c_msg msg[] = {
80 { .addr = state->config->demod_address, .flags = 0, .buf = b, .len = 2 },
81 { .addr = state->config->demod_address, .flags = 0, .buf = &reg, .len = 1 },
82 { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b, .len = 1 },
83 };
84
85 b[0] = (reg - 1) & 0xff;
86 b[1] = state->shadow[(reg - 1) & 0xff];
87
88 if (state->config->repeated_start_workaround) {
89 ret = i2c_transfer(state->i2c, msg, 3);
90 if (ret != 3)
91 return ret;
92 } else {
93 ret = i2c_transfer(state->i2c, &msg[1], 1);
94 if (ret != 1)
95 return ret;
96 ret = i2c_transfer(state->i2c, &msg[2], 1);
97 if (ret != 1)
98 return ret;
99 }
100
101 /* dprintk("rd(%02x): %02x %02x\n", state->config->demod_address, reg, b[0]); */
102
103 return b[0];
104 }
105
106 static int s5h1420_writereg (struct s5h1420_state* state, u8 reg, u8 data)
107 {
108 u8 buf[] = { reg, data };
109 struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
110 int err;
111
112 /* dprintk("wr(%02x): %02x %02x\n", state->config->demod_address, reg, data); */
113 err = i2c_transfer(state->i2c, &msg, 1);
114 if (err != 1) {
115 dprintk("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", __func__, err, reg, data);
116 return -EREMOTEIO;
117 }
118 state->shadow[reg] = data;
119
120 return 0;
121 }
122
123 static int s5h1420_set_voltage(struct dvb_frontend *fe,
124 enum fe_sec_voltage voltage)
125 {
126 struct s5h1420_state* state = fe->demodulator_priv;
127
128 dprintk("enter %s\n", __func__);
129
130 switch(voltage) {
131 case SEC_VOLTAGE_13:
132 s5h1420_writereg(state, 0x3c,
133 (s5h1420_readreg(state, 0x3c) & 0xfe) | 0x02);
134 break;
135
136 case SEC_VOLTAGE_18:
137 s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) | 0x03);
138 break;
139
140 case SEC_VOLTAGE_OFF:
141 s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) & 0xfd);
142 break;
143 }
144
145 dprintk("leave %s\n", __func__);
146 return 0;
147 }
148
149 static int s5h1420_set_tone(struct dvb_frontend *fe,
150 enum fe_sec_tone_mode tone)
151 {
152 struct s5h1420_state* state = fe->demodulator_priv;
153
154 dprintk("enter %s\n", __func__);
155 switch(tone) {
156 case SEC_TONE_ON:
157 s5h1420_writereg(state, 0x3b,
158 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x08);
159 break;
160
161 case SEC_TONE_OFF:
162 s5h1420_writereg(state, 0x3b,
163 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x01);
164 break;
165 }
166 dprintk("leave %s\n", __func__);
167
168 return 0;
169 }
170
171 static int s5h1420_send_master_cmd (struct dvb_frontend* fe,
172 struct dvb_diseqc_master_cmd* cmd)
173 {
174 struct s5h1420_state* state = fe->demodulator_priv;
175 u8 val;
176 int i;
177 unsigned long timeout;
178 int result = 0;
179
180 dprintk("enter %s\n", __func__);
181 if (cmd->msg_len > sizeof(cmd->msg))
182 return -EINVAL;
183
184 /* setup for DISEQC */
185 val = s5h1420_readreg(state, 0x3b);
186 s5h1420_writereg(state, 0x3b, 0x02);
187 msleep(15);
188
189 /* write the DISEQC command bytes */
190 for(i=0; i< cmd->msg_len; i++) {
191 s5h1420_writereg(state, 0x3d + i, cmd->msg[i]);
192 }
193
194 /* kick off transmission */
195 s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) |
196 ((cmd->msg_len-1) << 4) | 0x08);
197
198 /* wait for transmission to complete */
199 timeout = jiffies + ((100*HZ) / 1000);
200 while(time_before(jiffies, timeout)) {
201 if (!(s5h1420_readreg(state, 0x3b) & 0x08))
202 break;
203
204 msleep(5);
205 }
206 if (time_after(jiffies, timeout))
207 result = -ETIMEDOUT;
208
209 /* restore original settings */
210 s5h1420_writereg(state, 0x3b, val);
211 msleep(15);
212 dprintk("leave %s\n", __func__);
213 return result;
214 }
215
216 static int s5h1420_recv_slave_reply (struct dvb_frontend* fe,
217 struct dvb_diseqc_slave_reply* reply)
218 {
219 struct s5h1420_state* state = fe->demodulator_priv;
220 u8 val;
221 int i;
222 int length;
223 unsigned long timeout;
224 int result = 0;
225
226 /* setup for DISEQC receive */
227 val = s5h1420_readreg(state, 0x3b);
228 s5h1420_writereg(state, 0x3b, 0x82); /* FIXME: guess - do we need to set DIS_RDY(0x08) in receive mode? */
229 msleep(15);
230
231 /* wait for reception to complete */
232 timeout = jiffies + ((reply->timeout*HZ) / 1000);
233 while(time_before(jiffies, timeout)) {
234 if (!(s5h1420_readreg(state, 0x3b) & 0x80)) /* FIXME: do we test DIS_RDY(0x08) or RCV_EN(0x80)? */
235 break;
236
237 msleep(5);
238 }
239 if (time_after(jiffies, timeout)) {
240 result = -ETIMEDOUT;
241 goto exit;
242 }
243
244 /* check error flag - FIXME: not sure what this does - docs do not describe
245 * beyond "error flag for diseqc receive data :( */
246 if (s5h1420_readreg(state, 0x49)) {
247 result = -EIO;
248 goto exit;
249 }
250
251 /* check length */
252 length = (s5h1420_readreg(state, 0x3b) & 0x70) >> 4;
253 if (length > sizeof(reply->msg)) {
254 result = -EOVERFLOW;
255 goto exit;
256 }
257 reply->msg_len = length;
258
259 /* extract data */
260 for(i=0; i< length; i++) {
261 reply->msg[i] = s5h1420_readreg(state, 0x3d + i);
262 }
263
264 exit:
265 /* restore original settings */
266 s5h1420_writereg(state, 0x3b, val);
267 msleep(15);
268 return result;
269 }
270
271 static int s5h1420_send_burst(struct dvb_frontend *fe,
272 enum fe_sec_mini_cmd minicmd)
273 {
274 struct s5h1420_state* state = fe->demodulator_priv;
275 u8 val;
276 int result = 0;
277 unsigned long timeout;
278
279 /* setup for tone burst */
280 val = s5h1420_readreg(state, 0x3b);
281 s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x70) | 0x01);
282
283 /* set value for B position if requested */
284 if (minicmd == SEC_MINI_B) {
285 s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x04);
286 }
287 msleep(15);
288
289 /* start transmission */
290 s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x08);
291
292 /* wait for transmission to complete */
293 timeout = jiffies + ((100*HZ) / 1000);
294 while(time_before(jiffies, timeout)) {
295 if (!(s5h1420_readreg(state, 0x3b) & 0x08))
296 break;
297
298 msleep(5);
299 }
300 if (time_after(jiffies, timeout))
301 result = -ETIMEDOUT;
302
303 /* restore original settings */
304 s5h1420_writereg(state, 0x3b, val);
305 msleep(15);
306 return result;
307 }
308
309 static enum fe_status s5h1420_get_status_bits(struct s5h1420_state *state)
310 {
311 u8 val;
312 enum fe_status status = 0;
313
314 val = s5h1420_readreg(state, 0x14);
315 if (val & 0x02)
316 status |= FE_HAS_SIGNAL;
317 if (val & 0x01)
318 status |= FE_HAS_CARRIER;
319 val = s5h1420_readreg(state, 0x36);
320 if (val & 0x01)
321 status |= FE_HAS_VITERBI;
322 if (val & 0x20)
323 status |= FE_HAS_SYNC;
324 if (status == (FE_HAS_SIGNAL|FE_HAS_CARRIER|FE_HAS_VITERBI|FE_HAS_SYNC))
325 status |= FE_HAS_LOCK;
326
327 return status;
328 }
329
330 static int s5h1420_read_status(struct dvb_frontend *fe,
331 enum fe_status *status)
332 {
333 struct s5h1420_state* state = fe->demodulator_priv;
334 u8 val;
335
336 dprintk("enter %s\n", __func__);
337
338 if (status == NULL)
339 return -EINVAL;
340
341 /* determine lock state */
342 *status = s5h1420_get_status_bits(state);
343
344 /* fix for FEC 5/6 inversion issue - if it doesn't quite lock, invert
345 the inversion, wait a bit and check again */
346 if (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI)) {
347 val = s5h1420_readreg(state, Vit10);
348 if ((val & 0x07) == 0x03) {
349 if (val & 0x08)
350 s5h1420_writereg(state, Vit09, 0x13);
351 else
352 s5h1420_writereg(state, Vit09, 0x1b);
353
354 /* wait a bit then update lock status */
355 mdelay(200);
356 *status = s5h1420_get_status_bits(state);
357 }
358 }
359
360 /* perform post lock setup */
361 if ((*status & FE_HAS_LOCK) && !state->postlocked) {
362
363 /* calculate the data rate */
364 u32 tmp = s5h1420_getsymbolrate(state);
365 switch (s5h1420_readreg(state, Vit10) & 0x07) {
366 case 0: tmp = (tmp * 2 * 1) / 2; break;
367 case 1: tmp = (tmp * 2 * 2) / 3; break;
368 case 2: tmp = (tmp * 2 * 3) / 4; break;
369 case 3: tmp = (tmp * 2 * 5) / 6; break;
370 case 4: tmp = (tmp * 2 * 6) / 7; break;
371 case 5: tmp = (tmp * 2 * 7) / 8; break;
372 }
373
374 if (tmp == 0) {
375 printk(KERN_ERR "s5h1420: avoided division by 0\n");
376 tmp = 1;
377 }
378 tmp = state->fclk / tmp;
379
380
381 /* set the MPEG_CLK_INTL for the calculated data rate */
382 if (tmp < 2)
383 val = 0x00;
384 else if (tmp < 5)
385 val = 0x01;
386 else if (tmp < 9)
387 val = 0x02;
388 else if (tmp < 13)
389 val = 0x03;
390 else if (tmp < 17)
391 val = 0x04;
392 else if (tmp < 25)
393 val = 0x05;
394 else if (tmp < 33)
395 val = 0x06;
396 else
397 val = 0x07;
398 dprintk("for MPEG_CLK_INTL %d %x\n", tmp, val);
399
400 s5h1420_writereg(state, FEC01, 0x18);
401 s5h1420_writereg(state, FEC01, 0x10);
402 s5h1420_writereg(state, FEC01, val);
403
404 /* Enable "MPEG_Out" */
405 val = s5h1420_readreg(state, Mpeg02);
406 s5h1420_writereg(state, Mpeg02, val | (1 << 6));
407
408 /* kicker disable */
409 val = s5h1420_readreg(state, QPSK01) & 0x7f;
410 s5h1420_writereg(state, QPSK01, val);
411
412 /* DC freeze TODO it was never activated by default or it can stay activated */
413
414 if (s5h1420_getsymbolrate(state) >= 20000000) {
415 s5h1420_writereg(state, Loop04, 0x8a);
416 s5h1420_writereg(state, Loop05, 0x6a);
417 } else {
418 s5h1420_writereg(state, Loop04, 0x58);
419 s5h1420_writereg(state, Loop05, 0x27);
420 }
421
422 /* post-lock processing has been done! */
423 state->postlocked = 1;
424 }
425
426 dprintk("leave %s\n", __func__);
427
428 return 0;
429 }
430
431 static int s5h1420_read_ber(struct dvb_frontend* fe, u32* ber)
432 {
433 struct s5h1420_state* state = fe->demodulator_priv;
434
435 s5h1420_writereg(state, 0x46, 0x1d);
436 mdelay(25);
437
438 *ber = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
439
440 return 0;
441 }
442
443 static int s5h1420_read_signal_strength(struct dvb_frontend* fe, u16* strength)
444 {
445 struct s5h1420_state* state = fe->demodulator_priv;
446
447 u8 val = s5h1420_readreg(state, 0x15);
448
449 *strength = (u16) ((val << 8) | val);
450
451 return 0;
452 }
453
454 static int s5h1420_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
455 {
456 struct s5h1420_state* state = fe->demodulator_priv;
457
458 s5h1420_writereg(state, 0x46, 0x1f);
459 mdelay(25);
460
461 *ucblocks = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
462
463 return 0;
464 }
465
466 static void s5h1420_reset(struct s5h1420_state* state)
467 {
468 dprintk("%s\n", __func__);
469 s5h1420_writereg (state, 0x01, 0x08);
470 s5h1420_writereg (state, 0x01, 0x00);
471 udelay(10);
472 }
473
474 static void s5h1420_setsymbolrate(struct s5h1420_state* state,
475 struct dtv_frontend_properties *p)
476 {
477 u8 v;
478 u64 val;
479
480 dprintk("enter %s\n", __func__);
481
482 val = ((u64) p->symbol_rate / 1000ULL) * (1ULL<<24);
483 if (p->symbol_rate < 29000000)
484 val *= 2;
485 do_div(val, (state->fclk / 1000));
486
487 dprintk("symbol rate register: %06llx\n", (unsigned long long)val);
488
489 v = s5h1420_readreg(state, Loop01);
490 s5h1420_writereg(state, Loop01, v & 0x7f);
491 s5h1420_writereg(state, Tnco01, val >> 16);
492 s5h1420_writereg(state, Tnco02, val >> 8);
493 s5h1420_writereg(state, Tnco03, val & 0xff);
494 s5h1420_writereg(state, Loop01, v | 0x80);
495 dprintk("leave %s\n", __func__);
496 }
497
498 static u32 s5h1420_getsymbolrate(struct s5h1420_state* state)
499 {
500 return state->symbol_rate;
501 }
502
503 static void s5h1420_setfreqoffset(struct s5h1420_state* state, int freqoffset)
504 {
505 int val;
506 u8 v;
507
508 dprintk("enter %s\n", __func__);
509
510 /* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
511 * divide fclk by 1000000 to get the correct value. */
512 val = -(int) ((freqoffset * (1<<24)) / (state->fclk / 1000000));
513
514 dprintk("phase rotator/freqoffset: %d %06x\n", freqoffset, val);
515
516 v = s5h1420_readreg(state, Loop01);
517 s5h1420_writereg(state, Loop01, v & 0xbf);
518 s5h1420_writereg(state, Pnco01, val >> 16);
519 s5h1420_writereg(state, Pnco02, val >> 8);
520 s5h1420_writereg(state, Pnco03, val & 0xff);
521 s5h1420_writereg(state, Loop01, v | 0x40);
522 dprintk("leave %s\n", __func__);
523 }
524
525 static int s5h1420_getfreqoffset(struct s5h1420_state* state)
526 {
527 int val;
528
529 s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08);
530 val = s5h1420_readreg(state, 0x0e) << 16;
531 val |= s5h1420_readreg(state, 0x0f) << 8;
532 val |= s5h1420_readreg(state, 0x10);
533 s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7);
534
535 if (val & 0x800000)
536 val |= 0xff000000;
537
538 /* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
539 * divide fclk by 1000000 to get the correct value. */
540 val = (((-val) * (state->fclk/1000000)) / (1<<24));
541
542 return val;
543 }
544
545 static void s5h1420_setfec_inversion(struct s5h1420_state* state,
546 struct dtv_frontend_properties *p)
547 {
548 u8 inversion = 0;
549 u8 vit08, vit09;
550
551 dprintk("enter %s\n", __func__);
552
553 if (p->inversion == INVERSION_OFF)
554 inversion = state->config->invert ? 0x08 : 0;
555 else if (p->inversion == INVERSION_ON)
556 inversion = state->config->invert ? 0 : 0x08;
557
558 if ((p->fec_inner == FEC_AUTO) || (p->inversion == INVERSION_AUTO)) {
559 vit08 = 0x3f;
560 vit09 = 0;
561 } else {
562 switch (p->fec_inner) {
563 case FEC_1_2:
564 vit08 = 0x01;
565 vit09 = 0x10;
566 break;
567
568 case FEC_2_3:
569 vit08 = 0x02;
570 vit09 = 0x11;
571 break;
572
573 case FEC_3_4:
574 vit08 = 0x04;
575 vit09 = 0x12;
576 break;
577
578 case FEC_5_6:
579 vit08 = 0x08;
580 vit09 = 0x13;
581 break;
582
583 case FEC_6_7:
584 vit08 = 0x10;
585 vit09 = 0x14;
586 break;
587
588 case FEC_7_8:
589 vit08 = 0x20;
590 vit09 = 0x15;
591 break;
592
593 default:
594 return;
595 }
596 }
597 vit09 |= inversion;
598 dprintk("fec: %02x %02x\n", vit08, vit09);
599 s5h1420_writereg(state, Vit08, vit08);
600 s5h1420_writereg(state, Vit09, vit09);
601 dprintk("leave %s\n", __func__);
602 }
603
604 static enum fe_code_rate s5h1420_getfec(struct s5h1420_state *state)
605 {
606 switch(s5h1420_readreg(state, 0x32) & 0x07) {
607 case 0:
608 return FEC_1_2;
609
610 case 1:
611 return FEC_2_3;
612
613 case 2:
614 return FEC_3_4;
615
616 case 3:
617 return FEC_5_6;
618
619 case 4:
620 return FEC_6_7;
621
622 case 5:
623 return FEC_7_8;
624 }
625
626 return FEC_NONE;
627 }
628
629 static enum fe_spectral_inversion
630 s5h1420_getinversion(struct s5h1420_state *state)
631 {
632 if (s5h1420_readreg(state, 0x32) & 0x08)
633 return INVERSION_ON;
634
635 return INVERSION_OFF;
636 }
637
638 static int s5h1420_set_frontend(struct dvb_frontend *fe)
639 {
640 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
641 struct s5h1420_state* state = fe->demodulator_priv;
642 int frequency_delta;
643 struct dvb_frontend_tune_settings fesettings;
644
645 dprintk("enter %s\n", __func__);
646
647 /* check if we should do a fast-tune */
648 s5h1420_get_tune_settings(fe, &fesettings);
649 frequency_delta = p->frequency - state->tunedfreq;
650 if ((frequency_delta > -fesettings.max_drift) &&
651 (frequency_delta < fesettings.max_drift) &&
652 (frequency_delta != 0) &&
653 (state->fec_inner == p->fec_inner) &&
654 (state->symbol_rate == p->symbol_rate)) {
655
656 if (fe->ops.tuner_ops.set_params) {
657 fe->ops.tuner_ops.set_params(fe);
658 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
659 }
660 if (fe->ops.tuner_ops.get_frequency) {
661 u32 tmp;
662 fe->ops.tuner_ops.get_frequency(fe, &tmp);
663 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
664 s5h1420_setfreqoffset(state, p->frequency - tmp);
665 } else {
666 s5h1420_setfreqoffset(state, 0);
667 }
668 dprintk("simple tune\n");
669 return 0;
670 }
671 dprintk("tuning demod\n");
672
673 /* first of all, software reset */
674 s5h1420_reset(state);
675
676 /* set s5h1420 fclk PLL according to desired symbol rate */
677 if (p->symbol_rate > 33000000)
678 state->fclk = 80000000;
679 else if (p->symbol_rate > 28500000)
680 state->fclk = 59000000;
681 else if (p->symbol_rate > 25000000)
682 state->fclk = 86000000;
683 else if (p->symbol_rate > 1900000)
684 state->fclk = 88000000;
685 else
686 state->fclk = 44000000;
687
688 dprintk("pll01: %d, ToneFreq: %d\n", state->fclk/1000000 - 8, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
689 s5h1420_writereg(state, PLL01, state->fclk/1000000 - 8);
690 s5h1420_writereg(state, PLL02, 0x40);
691 s5h1420_writereg(state, DiS01, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
692
693 /* TODO DC offset removal, config parameter ? */
694 if (p->symbol_rate > 29000000)
695 s5h1420_writereg(state, QPSK01, 0xae | 0x10);
696 else
697 s5h1420_writereg(state, QPSK01, 0xac | 0x10);
698
699 /* set misc registers */
700 s5h1420_writereg(state, CON_1, 0x00);
701 s5h1420_writereg(state, QPSK02, 0x00);
702 s5h1420_writereg(state, Pre01, 0xb0);
703
704 s5h1420_writereg(state, Loop01, 0xF0);
705 s5h1420_writereg(state, Loop02, 0x2a); /* e7 for s5h1420 */
706 s5h1420_writereg(state, Loop03, 0x79); /* 78 for s5h1420 */
707 if (p->symbol_rate > 20000000)
708 s5h1420_writereg(state, Loop04, 0x79);
709 else
710 s5h1420_writereg(state, Loop04, 0x58);
711 s5h1420_writereg(state, Loop05, 0x6b);
712
713 if (p->symbol_rate >= 8000000)
714 s5h1420_writereg(state, Post01, (0 << 6) | 0x10);
715 else if (p->symbol_rate >= 4000000)
716 s5h1420_writereg(state, Post01, (1 << 6) | 0x10);
717 else
718 s5h1420_writereg(state, Post01, (3 << 6) | 0x10);
719
720 s5h1420_writereg(state, Monitor12, 0x00); /* unfreeze DC compensation */
721
722 s5h1420_writereg(state, Sync01, 0x33);
723 s5h1420_writereg(state, Mpeg01, state->config->cdclk_polarity);
724 s5h1420_writereg(state, Mpeg02, 0x3d); /* Parallel output more, disabled -> enabled later */
725 s5h1420_writereg(state, Err01, 0x03); /* 0x1d for s5h1420 */
726
727 s5h1420_writereg(state, Vit06, 0x6e); /* 0x8e for s5h1420 */
728 s5h1420_writereg(state, DiS03, 0x00);
729 s5h1420_writereg(state, Rf01, 0x61); /* Tuner i2c address - for the gate controller */
730
731 /* set tuner PLL */
732 if (fe->ops.tuner_ops.set_params) {
733 fe->ops.tuner_ops.set_params(fe);
734 if (fe->ops.i2c_gate_ctrl)
735 fe->ops.i2c_gate_ctrl(fe, 0);
736 s5h1420_setfreqoffset(state, 0);
737 }
738
739 /* set the reset of the parameters */
740 s5h1420_setsymbolrate(state, p);
741 s5h1420_setfec_inversion(state, p);
742
743 /* start QPSK */
744 s5h1420_writereg(state, QPSK01, s5h1420_readreg(state, QPSK01) | 1);
745
746 state->fec_inner = p->fec_inner;
747 state->symbol_rate = p->symbol_rate;
748 state->postlocked = 0;
749 state->tunedfreq = p->frequency;
750
751 dprintk("leave %s\n", __func__);
752 return 0;
753 }
754
755 static int s5h1420_get_frontend(struct dvb_frontend* fe,
756 struct dtv_frontend_properties *p)
757 {
758 struct s5h1420_state* state = fe->demodulator_priv;
759
760 p->frequency = state->tunedfreq + s5h1420_getfreqoffset(state);
761 p->inversion = s5h1420_getinversion(state);
762 p->symbol_rate = s5h1420_getsymbolrate(state);
763 p->fec_inner = s5h1420_getfec(state);
764
765 return 0;
766 }
767
768 static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
769 struct dvb_frontend_tune_settings* fesettings)
770 {
771 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
772 if (p->symbol_rate > 20000000) {
773 fesettings->min_delay_ms = 50;
774 fesettings->step_size = 2000;
775 fesettings->max_drift = 8000;
776 } else if (p->symbol_rate > 12000000) {
777 fesettings->min_delay_ms = 100;
778 fesettings->step_size = 1500;
779 fesettings->max_drift = 9000;
780 } else if (p->symbol_rate > 8000000) {
781 fesettings->min_delay_ms = 100;
782 fesettings->step_size = 1000;
783 fesettings->max_drift = 8000;
784 } else if (p->symbol_rate > 4000000) {
785 fesettings->min_delay_ms = 100;
786 fesettings->step_size = 500;
787 fesettings->max_drift = 7000;
788 } else if (p->symbol_rate > 2000000) {
789 fesettings->min_delay_ms = 200;
790 fesettings->step_size = (p->symbol_rate / 8000);
791 fesettings->max_drift = 14 * fesettings->step_size;
792 } else {
793 fesettings->min_delay_ms = 200;
794 fesettings->step_size = (p->symbol_rate / 8000);
795 fesettings->max_drift = 18 * fesettings->step_size;
796 }
797
798 return 0;
799 }
800
801 static int s5h1420_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
802 {
803 struct s5h1420_state* state = fe->demodulator_priv;
804
805 if (enable)
806 return s5h1420_writereg(state, 0x02, state->CON_1_val | 1);
807 else
808 return s5h1420_writereg(state, 0x02, state->CON_1_val & 0xfe);
809 }
810
811 static int s5h1420_init (struct dvb_frontend* fe)
812 {
813 struct s5h1420_state* state = fe->demodulator_priv;
814
815 /* disable power down and do reset */
816 state->CON_1_val = state->config->serial_mpeg << 4;
817 s5h1420_writereg(state, 0x02, state->CON_1_val);
818 msleep(10);
819 s5h1420_reset(state);
820
821 return 0;
822 }
823
824 static int s5h1420_sleep(struct dvb_frontend* fe)
825 {
826 struct s5h1420_state* state = fe->demodulator_priv;
827 state->CON_1_val = 0x12;
828 return s5h1420_writereg(state, 0x02, state->CON_1_val);
829 }
830
831 static void s5h1420_release(struct dvb_frontend* fe)
832 {
833 struct s5h1420_state* state = fe->demodulator_priv;
834 i2c_del_adapter(&state->tuner_i2c_adapter);
835 kfree(state);
836 }
837
838 static u32 s5h1420_tuner_i2c_func(struct i2c_adapter *adapter)
839 {
840 return I2C_FUNC_I2C;
841 }
842
843 static int s5h1420_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
844 {
845 struct s5h1420_state *state = i2c_get_adapdata(i2c_adap);
846 struct i2c_msg m[3];
847 u8 tx_open[2] = { CON_1, state->CON_1_val | 1 }; /* repeater stops once there was a stop condition */
848
849 if (1 + num > ARRAY_SIZE(m)) {
850 printk(KERN_WARNING
851 "%s: i2c xfer: num=%d is too big!\n",
852 KBUILD_MODNAME, num);
853 return -EOPNOTSUPP;
854 }
855
856 memset(m, 0, sizeof(struct i2c_msg) * (1 + num));
857
858 m[0].addr = state->config->demod_address;
859 m[0].buf = tx_open;
860 m[0].len = 2;
861
862 memcpy(&m[1], msg, sizeof(struct i2c_msg) * num);
863
864 return i2c_transfer(state->i2c, m, 1 + num) == 1 + num ? num : -EIO;
865 }
866
867 static struct i2c_algorithm s5h1420_tuner_i2c_algo = {
868 .master_xfer = s5h1420_tuner_i2c_tuner_xfer,
869 .functionality = s5h1420_tuner_i2c_func,
870 };
871
872 struct i2c_adapter *s5h1420_get_tuner_i2c_adapter(struct dvb_frontend *fe)
873 {
874 struct s5h1420_state *state = fe->demodulator_priv;
875 return &state->tuner_i2c_adapter;
876 }
877 EXPORT_SYMBOL(s5h1420_get_tuner_i2c_adapter);
878
879 static const struct dvb_frontend_ops s5h1420_ops;
880
881 struct dvb_frontend *s5h1420_attach(const struct s5h1420_config *config,
882 struct i2c_adapter *i2c)
883 {
884 /* allocate memory for the internal state */
885 struct s5h1420_state *state = kzalloc(sizeof(struct s5h1420_state), GFP_KERNEL);
886 u8 i;
887
888 if (state == NULL)
889 goto error;
890
891 /* setup the state */
892 state->config = config;
893 state->i2c = i2c;
894 state->postlocked = 0;
895 state->fclk = 88000000;
896 state->tunedfreq = 0;
897 state->fec_inner = FEC_NONE;
898 state->symbol_rate = 0;
899
900 /* check if the demod is there + identify it */
901 i = s5h1420_readreg(state, ID01);
902 if (i != 0x03)
903 goto error;
904
905 memset(state->shadow, 0xff, sizeof(state->shadow));
906
907 for (i = 0; i < 0x50; i++)
908 state->shadow[i] = s5h1420_readreg(state, i);
909
910 /* create dvb_frontend */
911 memcpy(&state->frontend.ops, &s5h1420_ops, sizeof(struct dvb_frontend_ops));
912 state->frontend.demodulator_priv = state;
913
914 /* create tuner i2c adapter */
915 strlcpy(state->tuner_i2c_adapter.name, "S5H1420-PN1010 tuner I2C bus",
916 sizeof(state->tuner_i2c_adapter.name));
917 state->tuner_i2c_adapter.algo = &s5h1420_tuner_i2c_algo;
918 state->tuner_i2c_adapter.algo_data = NULL;
919 i2c_set_adapdata(&state->tuner_i2c_adapter, state);
920 if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) {
921 printk(KERN_ERR "S5H1420/PN1010: tuner i2c bus could not be initialized\n");
922 goto error;
923 }
924
925 return &state->frontend;
926
927 error:
928 kfree(state);
929 return NULL;
930 }
931 EXPORT_SYMBOL(s5h1420_attach);
932
933 static const struct dvb_frontend_ops s5h1420_ops = {
934 .delsys = { SYS_DVBS },
935 .info = {
936 .name = "Samsung S5H1420/PnpNetwork PN1010 DVB-S",
937 .frequency_min = 950000,
938 .frequency_max = 2150000,
939 .frequency_stepsize = 125, /* kHz for QPSK frontends */
940 .frequency_tolerance = 29500,
941 .symbol_rate_min = 1000000,
942 .symbol_rate_max = 45000000,
943 /* .symbol_rate_tolerance = ???,*/
944 .caps = FE_CAN_INVERSION_AUTO |
945 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
946 FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
947 FE_CAN_QPSK
948 },
949
950 .release = s5h1420_release,
951
952 .init = s5h1420_init,
953 .sleep = s5h1420_sleep,
954 .i2c_gate_ctrl = s5h1420_i2c_gate_ctrl,
955
956 .set_frontend = s5h1420_set_frontend,
957 .get_frontend = s5h1420_get_frontend,
958 .get_tune_settings = s5h1420_get_tune_settings,
959
960 .read_status = s5h1420_read_status,
961 .read_ber = s5h1420_read_ber,
962 .read_signal_strength = s5h1420_read_signal_strength,
963 .read_ucblocks = s5h1420_read_ucblocks,
964
965 .diseqc_send_master_cmd = s5h1420_send_master_cmd,
966 .diseqc_recv_slave_reply = s5h1420_recv_slave_reply,
967 .diseqc_send_burst = s5h1420_send_burst,
968 .set_tone = s5h1420_set_tone,
969 .set_voltage = s5h1420_set_voltage,
970 };
971
972 MODULE_DESCRIPTION("Samsung S5H1420/PnpNetwork PN1010 DVB-S Demodulator driver");
973 MODULE_AUTHOR("Andrew de Quincey, Patrick Boettcher");
974 MODULE_LICENSE("GPL");