]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/media/dvb-frontends/tda1004x.c
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[mirror_ubuntu-artful-kernel.git] / drivers / media / dvb-frontends / tda1004x.c
1 /*
2 Driver for Philips tda1004xh OFDM Demodulator
3
4 (c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20
21 */
22 /*
23 * This driver needs external firmware. Please use the commands
24 * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10045",
25 * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10046" to
26 * download/extract them, and then copy them to /usr/lib/hotplug/firmware
27 * or /lib/firmware (depending on configuration of firmware hotplug).
28 */
29 #define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
30 #define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
31
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/device.h>
35 #include <linux/jiffies.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38
39 #include "dvb_frontend.h"
40 #include "tda1004x.h"
41
42 static int debug;
43 #define dprintk(args...) \
44 do { \
45 if (debug) printk(KERN_DEBUG "tda1004x: " args); \
46 } while (0)
47
48 #define TDA1004X_CHIPID 0x00
49 #define TDA1004X_AUTO 0x01
50 #define TDA1004X_IN_CONF1 0x02
51 #define TDA1004X_IN_CONF2 0x03
52 #define TDA1004X_OUT_CONF1 0x04
53 #define TDA1004X_OUT_CONF2 0x05
54 #define TDA1004X_STATUS_CD 0x06
55 #define TDA1004X_CONFC4 0x07
56 #define TDA1004X_DSSPARE2 0x0C
57 #define TDA10045H_CODE_IN 0x0D
58 #define TDA10045H_FWPAGE 0x0E
59 #define TDA1004X_SCAN_CPT 0x10
60 #define TDA1004X_DSP_CMD 0x11
61 #define TDA1004X_DSP_ARG 0x12
62 #define TDA1004X_DSP_DATA1 0x13
63 #define TDA1004X_DSP_DATA2 0x14
64 #define TDA1004X_CONFADC1 0x15
65 #define TDA1004X_CONFC1 0x16
66 #define TDA10045H_S_AGC 0x1a
67 #define TDA10046H_AGC_TUN_LEVEL 0x1a
68 #define TDA1004X_SNR 0x1c
69 #define TDA1004X_CONF_TS1 0x1e
70 #define TDA1004X_CONF_TS2 0x1f
71 #define TDA1004X_CBER_RESET 0x20
72 #define TDA1004X_CBER_MSB 0x21
73 #define TDA1004X_CBER_LSB 0x22
74 #define TDA1004X_CVBER_LUT 0x23
75 #define TDA1004X_VBER_MSB 0x24
76 #define TDA1004X_VBER_MID 0x25
77 #define TDA1004X_VBER_LSB 0x26
78 #define TDA1004X_UNCOR 0x27
79
80 #define TDA10045H_CONFPLL_P 0x2D
81 #define TDA10045H_CONFPLL_M_MSB 0x2E
82 #define TDA10045H_CONFPLL_M_LSB 0x2F
83 #define TDA10045H_CONFPLL_N 0x30
84
85 #define TDA10046H_CONFPLL1 0x2D
86 #define TDA10046H_CONFPLL2 0x2F
87 #define TDA10046H_CONFPLL3 0x30
88 #define TDA10046H_TIME_WREF1 0x31
89 #define TDA10046H_TIME_WREF2 0x32
90 #define TDA10046H_TIME_WREF3 0x33
91 #define TDA10046H_TIME_WREF4 0x34
92 #define TDA10046H_TIME_WREF5 0x35
93
94 #define TDA10045H_UNSURW_MSB 0x31
95 #define TDA10045H_UNSURW_LSB 0x32
96 #define TDA10045H_WREF_MSB 0x33
97 #define TDA10045H_WREF_MID 0x34
98 #define TDA10045H_WREF_LSB 0x35
99 #define TDA10045H_MUXOUT 0x36
100 #define TDA1004X_CONFADC2 0x37
101
102 #define TDA10045H_IOFFSET 0x38
103
104 #define TDA10046H_CONF_TRISTATE1 0x3B
105 #define TDA10046H_CONF_TRISTATE2 0x3C
106 #define TDA10046H_CONF_POLARITY 0x3D
107 #define TDA10046H_FREQ_OFFSET 0x3E
108 #define TDA10046H_GPIO_OUT_SEL 0x41
109 #define TDA10046H_GPIO_SELECT 0x42
110 #define TDA10046H_AGC_CONF 0x43
111 #define TDA10046H_AGC_THR 0x44
112 #define TDA10046H_AGC_RENORM 0x45
113 #define TDA10046H_AGC_GAINS 0x46
114 #define TDA10046H_AGC_TUN_MIN 0x47
115 #define TDA10046H_AGC_TUN_MAX 0x48
116 #define TDA10046H_AGC_IF_MIN 0x49
117 #define TDA10046H_AGC_IF_MAX 0x4A
118
119 #define TDA10046H_FREQ_PHY2_MSB 0x4D
120 #define TDA10046H_FREQ_PHY2_LSB 0x4E
121
122 #define TDA10046H_CVBER_CTRL 0x4F
123 #define TDA10046H_AGC_IF_LEVEL 0x52
124 #define TDA10046H_CODE_CPT 0x57
125 #define TDA10046H_CODE_IN 0x58
126
127
128 static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
129 {
130 int ret;
131 u8 buf[] = { reg, data };
132 struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
133
134 dprintk("%s: reg=0x%x, data=0x%x\n", __func__, reg, data);
135
136 msg.addr = state->config->demod_address;
137 ret = i2c_transfer(state->i2c, &msg, 1);
138
139 if (ret != 1)
140 dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
141 __func__, reg, data, ret);
142
143 dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__,
144 reg, data, ret);
145 return (ret != 1) ? -1 : 0;
146 }
147
148 static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
149 {
150 int ret;
151 u8 b0[] = { reg };
152 u8 b1[] = { 0 };
153 struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
154 { .flags = I2C_M_RD, .buf = b1, .len = 1 }};
155
156 dprintk("%s: reg=0x%x\n", __func__, reg);
157
158 msg[0].addr = state->config->demod_address;
159 msg[1].addr = state->config->demod_address;
160 ret = i2c_transfer(state->i2c, msg, 2);
161
162 if (ret != 2) {
163 dprintk("%s: error reg=0x%x, ret=%i\n", __func__, reg,
164 ret);
165 return -EINVAL;
166 }
167
168 dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__,
169 reg, b1[0], ret);
170 return b1[0];
171 }
172
173 static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
174 {
175 int val;
176 dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __func__, reg,
177 mask, data);
178
179 // read a byte and check
180 val = tda1004x_read_byte(state, reg);
181 if (val < 0)
182 return val;
183
184 // mask if off
185 val = val & ~mask;
186 val |= data & 0xff;
187
188 // write it out again
189 return tda1004x_write_byteI(state, reg, val);
190 }
191
192 static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
193 {
194 int i;
195 int result;
196
197 dprintk("%s: reg=0x%x, len=0x%x\n", __func__, reg, len);
198
199 result = 0;
200 for (i = 0; i < len; i++) {
201 result = tda1004x_write_byteI(state, reg + i, buf[i]);
202 if (result != 0)
203 break;
204 }
205
206 return result;
207 }
208
209 static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
210 {
211 int result;
212 dprintk("%s\n", __func__);
213
214 result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
215 msleep(20);
216 return result;
217 }
218
219 static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
220 {
221 dprintk("%s\n", __func__);
222
223 return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
224 }
225
226 static int tda10045h_set_bandwidth(struct tda1004x_state *state,
227 u32 bandwidth)
228 {
229 static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
230 static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
231 static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
232
233 switch (bandwidth) {
234 case 6000000:
235 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
236 break;
237
238 case 7000000:
239 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
240 break;
241
242 case 8000000:
243 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
244 break;
245
246 default:
247 return -EINVAL;
248 }
249
250 tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
251
252 return 0;
253 }
254
255 static int tda10046h_set_bandwidth(struct tda1004x_state *state,
256 u32 bandwidth)
257 {
258 static u8 bandwidth_6mhz_53M[] = { 0x7b, 0x2e, 0x11, 0xf0, 0xd2 };
259 static u8 bandwidth_7mhz_53M[] = { 0x6a, 0x02, 0x6a, 0x43, 0x9f };
260 static u8 bandwidth_8mhz_53M[] = { 0x5c, 0x32, 0xc2, 0x96, 0x6d };
261
262 static u8 bandwidth_6mhz_48M[] = { 0x70, 0x02, 0x49, 0x24, 0x92 };
263 static u8 bandwidth_7mhz_48M[] = { 0x60, 0x02, 0xaa, 0xaa, 0xab };
264 static u8 bandwidth_8mhz_48M[] = { 0x54, 0x03, 0x0c, 0x30, 0xc3 };
265 int tda10046_clk53m;
266
267 if ((state->config->if_freq == TDA10046_FREQ_045) ||
268 (state->config->if_freq == TDA10046_FREQ_052))
269 tda10046_clk53m = 0;
270 else
271 tda10046_clk53m = 1;
272 switch (bandwidth) {
273 case 6000000:
274 if (tda10046_clk53m)
275 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_53M,
276 sizeof(bandwidth_6mhz_53M));
277 else
278 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_48M,
279 sizeof(bandwidth_6mhz_48M));
280 if (state->config->if_freq == TDA10046_FREQ_045) {
281 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a);
282 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xab);
283 }
284 break;
285
286 case 7000000:
287 if (tda10046_clk53m)
288 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_53M,
289 sizeof(bandwidth_7mhz_53M));
290 else
291 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_48M,
292 sizeof(bandwidth_7mhz_48M));
293 if (state->config->if_freq == TDA10046_FREQ_045) {
294 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
295 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
296 }
297 break;
298
299 case 8000000:
300 if (tda10046_clk53m)
301 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_53M,
302 sizeof(bandwidth_8mhz_53M));
303 else
304 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_48M,
305 sizeof(bandwidth_8mhz_48M));
306 if (state->config->if_freq == TDA10046_FREQ_045) {
307 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
308 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x55);
309 }
310 break;
311
312 default:
313 return -EINVAL;
314 }
315
316 return 0;
317 }
318
319 static int tda1004x_do_upload(struct tda1004x_state *state,
320 const unsigned char *mem, unsigned int len,
321 u8 dspCodeCounterReg, u8 dspCodeInReg)
322 {
323 u8 buf[65];
324 struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
325 int tx_size;
326 int pos = 0;
327
328 /* clear code counter */
329 tda1004x_write_byteI(state, dspCodeCounterReg, 0);
330 fw_msg.addr = state->config->demod_address;
331
332 i2c_lock_adapter(state->i2c);
333 buf[0] = dspCodeInReg;
334 while (pos != len) {
335 // work out how much to send this time
336 tx_size = len - pos;
337 if (tx_size > 0x10)
338 tx_size = 0x10;
339
340 // send the chunk
341 memcpy(buf + 1, mem + pos, tx_size);
342 fw_msg.len = tx_size + 1;
343 if (__i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
344 printk(KERN_ERR "tda1004x: Error during firmware upload\n");
345 i2c_unlock_adapter(state->i2c);
346 return -EIO;
347 }
348 pos += tx_size;
349
350 dprintk("%s: fw_pos=0x%x\n", __func__, pos);
351 }
352 i2c_unlock_adapter(state->i2c);
353
354 /* give the DSP a chance to settle 03/10/05 Hac */
355 msleep(100);
356
357 return 0;
358 }
359
360 static int tda1004x_check_upload_ok(struct tda1004x_state *state)
361 {
362 u8 data1, data2;
363 unsigned long timeout;
364
365 if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
366 timeout = jiffies + 2 * HZ;
367 while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
368 if (time_after(jiffies, timeout)) {
369 printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n");
370 break;
371 }
372 msleep(1);
373 }
374 } else
375 msleep(100);
376
377 // check upload was OK
378 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
379 tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
380
381 data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
382 data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
383 if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) {
384 printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2);
385 return -EIO;
386 }
387 printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2);
388 return 0;
389 }
390
391 static int tda10045_fwupload(struct dvb_frontend* fe)
392 {
393 struct tda1004x_state* state = fe->demodulator_priv;
394 int ret;
395 const struct firmware *fw;
396
397 /* don't re-upload unless necessary */
398 if (tda1004x_check_upload_ok(state) == 0)
399 return 0;
400
401 /* request the firmware, this will block until someone uploads it */
402 printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
403 ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
404 if (ret) {
405 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
406 return ret;
407 }
408
409 /* reset chip */
410 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
411 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
412 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
413 msleep(10);
414
415 /* set parameters */
416 tda10045h_set_bandwidth(state, 8000000);
417
418 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
419 release_firmware(fw);
420 if (ret)
421 return ret;
422 printk(KERN_INFO "tda1004x: firmware upload complete\n");
423
424 /* wait for DSP to initialise */
425 /* DSPREADY doesn't seem to work on the TDA10045H */
426 msleep(100);
427
428 return tda1004x_check_upload_ok(state);
429 }
430
431 static void tda10046_init_plls(struct dvb_frontend* fe)
432 {
433 struct tda1004x_state* state = fe->demodulator_priv;
434 int tda10046_clk53m;
435
436 if ((state->config->if_freq == TDA10046_FREQ_045) ||
437 (state->config->if_freq == TDA10046_FREQ_052))
438 tda10046_clk53m = 0;
439 else
440 tda10046_clk53m = 1;
441
442 tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0);
443 if(tda10046_clk53m) {
444 printk(KERN_INFO "tda1004x: setting up plls for 53MHz sampling clock\n");
445 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x08); // PLL M = 8
446 } else {
447 printk(KERN_INFO "tda1004x: setting up plls for 48MHz sampling clock\n");
448 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x03); // PLL M = 3
449 }
450 if (state->config->xtal_freq == TDA10046_XTAL_4M ) {
451 dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __func__);
452 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
453 } else {
454 dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __func__);
455 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3
456 }
457 if(tda10046_clk53m)
458 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x67);
459 else
460 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x72);
461 /* Note clock frequency is handled implicitly */
462 switch (state->config->if_freq) {
463 case TDA10046_FREQ_045:
464 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
465 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
466 break;
467 case TDA10046_FREQ_052:
468 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
469 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xc7);
470 break;
471 case TDA10046_FREQ_3617:
472 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
473 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x59);
474 break;
475 case TDA10046_FREQ_3613:
476 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
477 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x3f);
478 break;
479 }
480 tda10046h_set_bandwidth(state, 8000000); /* default bandwidth 8 MHz */
481 /* let the PLLs settle */
482 msleep(120);
483 }
484
485 static int tda10046_fwupload(struct dvb_frontend* fe)
486 {
487 struct tda1004x_state* state = fe->demodulator_priv;
488 int ret, confc4;
489 const struct firmware *fw;
490
491 /* reset + wake up chip */
492 if (state->config->xtal_freq == TDA10046_XTAL_4M) {
493 confc4 = 0;
494 } else {
495 dprintk("%s: 16MHz Xtal, reducing I2C speed\n", __func__);
496 confc4 = 0x80;
497 }
498 tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4);
499
500 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
501 /* set GPIO 1 and 3 */
502 if (state->config->gpio_config != TDA10046_GPTRI) {
503 tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE2, 0x33);
504 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f, state->config->gpio_config &0x0f);
505 }
506 /* let the clocks recover from sleep */
507 msleep(10);
508
509 /* The PLLs need to be reprogrammed after sleep */
510 tda10046_init_plls(fe);
511 tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0);
512
513 /* don't re-upload unless necessary */
514 if (tda1004x_check_upload_ok(state) == 0)
515 return 0;
516
517 /*
518 For i2c normal work, we need to slow down the bus speed.
519 However, the slow down breaks the eeprom firmware load.
520 So, use normal speed for eeprom booting and then restore the
521 i2c speed after that. Tested with MSI TV @nyware A/D board,
522 that comes with firmware version 29 inside their eeprom.
523
524 It should also be noticed that no other I2C transfer should
525 be in course while booting from eeprom, otherwise, tda10046
526 goes into an instable state. So, proper locking are needed
527 at the i2c bus master.
528 */
529 printk(KERN_INFO "tda1004x: trying to boot from eeprom\n");
530 tda1004x_write_byteI(state, TDA1004X_CONFC4, 4);
531 msleep(300);
532 tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4);
533
534 /* Checks if eeprom firmware went without troubles */
535 if (tda1004x_check_upload_ok(state) == 0)
536 return 0;
537
538 /* eeprom firmware didn't work. Load one manually. */
539
540 if (state->config->request_firmware != NULL) {
541 /* request the firmware, this will block until someone uploads it */
542 printk(KERN_INFO "tda1004x: waiting for firmware upload...\n");
543 ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
544 if (ret) {
545 /* remain compatible to old bug: try to load with tda10045 image name */
546 ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
547 if (ret) {
548 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
549 return ret;
550 } else {
551 printk(KERN_INFO "tda1004x: please rename the firmware file to %s\n",
552 TDA10046_DEFAULT_FIRMWARE);
553 }
554 }
555 } else {
556 printk(KERN_ERR "tda1004x: no request function defined, can't upload from file\n");
557 return -EIO;
558 }
559 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
560 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
561 release_firmware(fw);
562 return tda1004x_check_upload_ok(state);
563 }
564
565 static int tda1004x_encode_fec(int fec)
566 {
567 // convert known FEC values
568 switch (fec) {
569 case FEC_1_2:
570 return 0;
571 case FEC_2_3:
572 return 1;
573 case FEC_3_4:
574 return 2;
575 case FEC_5_6:
576 return 3;
577 case FEC_7_8:
578 return 4;
579 }
580
581 // unsupported
582 return -EINVAL;
583 }
584
585 static int tda1004x_decode_fec(int tdafec)
586 {
587 // convert known FEC values
588 switch (tdafec) {
589 case 0:
590 return FEC_1_2;
591 case 1:
592 return FEC_2_3;
593 case 2:
594 return FEC_3_4;
595 case 3:
596 return FEC_5_6;
597 case 4:
598 return FEC_7_8;
599 }
600
601 // unsupported
602 return -1;
603 }
604
605 static int tda1004x_write(struct dvb_frontend* fe, const u8 buf[], int len)
606 {
607 struct tda1004x_state* state = fe->demodulator_priv;
608
609 if (len != 2)
610 return -EINVAL;
611
612 return tda1004x_write_byteI(state, buf[0], buf[1]);
613 }
614
615 static int tda10045_init(struct dvb_frontend* fe)
616 {
617 struct tda1004x_state* state = fe->demodulator_priv;
618
619 dprintk("%s\n", __func__);
620
621 if (tda10045_fwupload(fe)) {
622 printk("tda1004x: firmware upload failed\n");
623 return -EIO;
624 }
625
626 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
627
628 // tda setup
629 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
630 tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
631 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
632 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
633 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
634 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
635 tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
636 tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
637 tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
638 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
639 tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
640
641 tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
642
643 return 0;
644 }
645
646 static int tda10046_init(struct dvb_frontend* fe)
647 {
648 struct tda1004x_state* state = fe->demodulator_priv;
649 dprintk("%s\n", __func__);
650
651 if (tda10046_fwupload(fe)) {
652 printk("tda1004x: firmware upload failed\n");
653 return -EIO;
654 }
655
656 // tda setup
657 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
658 tda1004x_write_byteI(state, TDA1004X_AUTO, 0x87); // 100 ppm crystal, select HP stream
659 tda1004x_write_byteI(state, TDA1004X_CONFC1, 0x88); // enable pulse killer
660
661 switch (state->config->agc_config) {
662 case TDA10046_AGC_DEFAULT:
663 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup
664 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
665 break;
666 case TDA10046_AGC_IFO_AUTO_NEG:
667 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
668 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
669 break;
670 case TDA10046_AGC_IFO_AUTO_POS:
671 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
672 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x00); // set AGC polarities
673 break;
674 case TDA10046_AGC_TDA827X:
675 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02); // AGC setup
676 tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70); // AGC Threshold
677 tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
678 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
679 break;
680 }
681 if (state->config->ts_mode == 0) {
682 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x40);
683 tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
684 } else {
685 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x80);
686 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x10,
687 state->config->invert_oclk << 4);
688 }
689 tda1004x_write_byteI(state, TDA1004X_CONFADC2, 0x38);
690 tda1004x_write_mask (state, TDA10046H_CONF_TRISTATE1, 0x3e, 0x38); // Turn IF AGC output on
691 tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0); // }
692 tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
693 tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0); // }
694 tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff); // }
695 tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 0x12); // IF gain 2, TUN gain 1
696 tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits
697 tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
698 tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config
699 // tda1004x_write_mask(state, 0x50, 0x80, 0x80); // handle out of guard echoes
700
701 return 0;
702 }
703
704 static int tda1004x_set_fe(struct dvb_frontend *fe)
705 {
706 struct dtv_frontend_properties *fe_params = &fe->dtv_property_cache;
707 struct tda1004x_state* state = fe->demodulator_priv;
708 int tmp;
709 int inversion;
710
711 dprintk("%s\n", __func__);
712
713 if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
714 // setup auto offset
715 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
716 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
717 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
718
719 // disable agc_conf[2]
720 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
721 }
722
723 // set frequency
724 if (fe->ops.tuner_ops.set_params) {
725 fe->ops.tuner_ops.set_params(fe);
726 if (fe->ops.i2c_gate_ctrl)
727 fe->ops.i2c_gate_ctrl(fe, 0);
728 }
729
730 // Hardcoded to use auto as much as possible on the TDA10045 as it
731 // is very unreliable if AUTO mode is _not_ used.
732 if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
733 fe_params->code_rate_HP = FEC_AUTO;
734 fe_params->guard_interval = GUARD_INTERVAL_AUTO;
735 fe_params->transmission_mode = TRANSMISSION_MODE_AUTO;
736 }
737
738 // Set standard params.. or put them to auto
739 if ((fe_params->code_rate_HP == FEC_AUTO) ||
740 (fe_params->code_rate_LP == FEC_AUTO) ||
741 (fe_params->modulation == QAM_AUTO) ||
742 (fe_params->hierarchy == HIERARCHY_AUTO)) {
743 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1); // enable auto
744 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); /* turn off modulation bits */
745 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
746 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
747 } else {
748 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0); // disable auto
749
750 // set HP FEC
751 tmp = tda1004x_encode_fec(fe_params->code_rate_HP);
752 if (tmp < 0)
753 return tmp;
754 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
755
756 // set LP FEC
757 tmp = tda1004x_encode_fec(fe_params->code_rate_LP);
758 if (tmp < 0)
759 return tmp;
760 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
761
762 /* set modulation */
763 switch (fe_params->modulation) {
764 case QPSK:
765 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
766 break;
767
768 case QAM_16:
769 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
770 break;
771
772 case QAM_64:
773 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
774 break;
775
776 default:
777 return -EINVAL;
778 }
779
780 // set hierarchy
781 switch (fe_params->hierarchy) {
782 case HIERARCHY_NONE:
783 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
784 break;
785
786 case HIERARCHY_1:
787 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
788 break;
789
790 case HIERARCHY_2:
791 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
792 break;
793
794 case HIERARCHY_4:
795 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
796 break;
797
798 default:
799 return -EINVAL;
800 }
801 }
802
803 // set bandwidth
804 switch (state->demod_type) {
805 case TDA1004X_DEMOD_TDA10045:
806 tda10045h_set_bandwidth(state, fe_params->bandwidth_hz);
807 break;
808
809 case TDA1004X_DEMOD_TDA10046:
810 tda10046h_set_bandwidth(state, fe_params->bandwidth_hz);
811 break;
812 }
813
814 // set inversion
815 inversion = fe_params->inversion;
816 if (state->config->invert)
817 inversion = inversion ? INVERSION_OFF : INVERSION_ON;
818 switch (inversion) {
819 case INVERSION_OFF:
820 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
821 break;
822
823 case INVERSION_ON:
824 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
825 break;
826
827 default:
828 return -EINVAL;
829 }
830
831 // set guard interval
832 switch (fe_params->guard_interval) {
833 case GUARD_INTERVAL_1_32:
834 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
835 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
836 break;
837
838 case GUARD_INTERVAL_1_16:
839 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
840 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
841 break;
842
843 case GUARD_INTERVAL_1_8:
844 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
845 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
846 break;
847
848 case GUARD_INTERVAL_1_4:
849 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
850 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
851 break;
852
853 case GUARD_INTERVAL_AUTO:
854 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
855 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
856 break;
857
858 default:
859 return -EINVAL;
860 }
861
862 // set transmission mode
863 switch (fe_params->transmission_mode) {
864 case TRANSMISSION_MODE_2K:
865 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
866 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
867 break;
868
869 case TRANSMISSION_MODE_8K:
870 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
871 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
872 break;
873
874 case TRANSMISSION_MODE_AUTO:
875 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
876 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
877 break;
878
879 default:
880 return -EINVAL;
881 }
882
883 // start the lock
884 switch (state->demod_type) {
885 case TDA1004X_DEMOD_TDA10045:
886 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
887 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
888 break;
889
890 case TDA1004X_DEMOD_TDA10046:
891 tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
892 msleep(1);
893 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 1);
894 break;
895 }
896
897 msleep(10);
898
899 return 0;
900 }
901
902 static int tda1004x_get_fe(struct dvb_frontend *fe)
903 {
904 struct dtv_frontend_properties *fe_params = &fe->dtv_property_cache;
905 struct tda1004x_state* state = fe->demodulator_priv;
906
907 dprintk("%s\n", __func__);
908
909 // inversion status
910 fe_params->inversion = INVERSION_OFF;
911 if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
912 fe_params->inversion = INVERSION_ON;
913 if (state->config->invert)
914 fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
915
916 // bandwidth
917 switch (state->demod_type) {
918 case TDA1004X_DEMOD_TDA10045:
919 switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
920 case 0x14:
921 fe_params->bandwidth_hz = 8000000;
922 break;
923 case 0xdb:
924 fe_params->bandwidth_hz = 7000000;
925 break;
926 case 0x4f:
927 fe_params->bandwidth_hz = 6000000;
928 break;
929 }
930 break;
931 case TDA1004X_DEMOD_TDA10046:
932 switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
933 case 0x5c:
934 case 0x54:
935 fe_params->bandwidth_hz = 8000000;
936 break;
937 case 0x6a:
938 case 0x60:
939 fe_params->bandwidth_hz = 7000000;
940 break;
941 case 0x7b:
942 case 0x70:
943 fe_params->bandwidth_hz = 6000000;
944 break;
945 }
946 break;
947 }
948
949 // FEC
950 fe_params->code_rate_HP =
951 tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
952 fe_params->code_rate_LP =
953 tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
954
955 /* modulation */
956 switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
957 case 0:
958 fe_params->modulation = QPSK;
959 break;
960 case 1:
961 fe_params->modulation = QAM_16;
962 break;
963 case 2:
964 fe_params->modulation = QAM_64;
965 break;
966 }
967
968 // transmission mode
969 fe_params->transmission_mode = TRANSMISSION_MODE_2K;
970 if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
971 fe_params->transmission_mode = TRANSMISSION_MODE_8K;
972
973 // guard interval
974 switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
975 case 0:
976 fe_params->guard_interval = GUARD_INTERVAL_1_32;
977 break;
978 case 1:
979 fe_params->guard_interval = GUARD_INTERVAL_1_16;
980 break;
981 case 2:
982 fe_params->guard_interval = GUARD_INTERVAL_1_8;
983 break;
984 case 3:
985 fe_params->guard_interval = GUARD_INTERVAL_1_4;
986 break;
987 }
988
989 // hierarchy
990 switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
991 case 0:
992 fe_params->hierarchy = HIERARCHY_NONE;
993 break;
994 case 1:
995 fe_params->hierarchy = HIERARCHY_1;
996 break;
997 case 2:
998 fe_params->hierarchy = HIERARCHY_2;
999 break;
1000 case 3:
1001 fe_params->hierarchy = HIERARCHY_4;
1002 break;
1003 }
1004
1005 return 0;
1006 }
1007
1008 static int tda1004x_read_status(struct dvb_frontend* fe, fe_status_t * fe_status)
1009 {
1010 struct tda1004x_state* state = fe->demodulator_priv;
1011 int status;
1012 int cber;
1013 int vber;
1014
1015 dprintk("%s\n", __func__);
1016
1017 // read status
1018 status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
1019 if (status == -1)
1020 return -EIO;
1021
1022 // decode
1023 *fe_status = 0;
1024 if (status & 4)
1025 *fe_status |= FE_HAS_SIGNAL;
1026 if (status & 2)
1027 *fe_status |= FE_HAS_CARRIER;
1028 if (status & 8)
1029 *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
1030
1031 // if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
1032 // is getting anything valid
1033 if (!(*fe_status & FE_HAS_VITERBI)) {
1034 // read the CBER
1035 cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1036 if (cber == -1)
1037 return -EIO;
1038 status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1039 if (status == -1)
1040 return -EIO;
1041 cber |= (status << 8);
1042 // The address 0x20 should be read to cope with a TDA10046 bug
1043 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1044
1045 if (cber != 65535)
1046 *fe_status |= FE_HAS_VITERBI;
1047 }
1048
1049 // if we DO have some valid VITERBI output, but don't already have SYNC
1050 // bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
1051 if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
1052 // read the VBER
1053 vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
1054 if (vber == -1)
1055 return -EIO;
1056 status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
1057 if (status == -1)
1058 return -EIO;
1059 vber |= (status << 8);
1060 status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
1061 if (status == -1)
1062 return -EIO;
1063 vber |= (status & 0x0f) << 16;
1064 // The CVBER_LUT should be read to cope with TDA10046 hardware bug
1065 tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
1066
1067 // if RS has passed some valid TS packets, then we must be
1068 // getting some SYNC bytes
1069 if (vber < 16632)
1070 *fe_status |= FE_HAS_SYNC;
1071 }
1072
1073 // success
1074 dprintk("%s: fe_status=0x%x\n", __func__, *fe_status);
1075 return 0;
1076 }
1077
1078 static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
1079 {
1080 struct tda1004x_state* state = fe->demodulator_priv;
1081 int tmp;
1082 int reg = 0;
1083
1084 dprintk("%s\n", __func__);
1085
1086 // determine the register to use
1087 switch (state->demod_type) {
1088 case TDA1004X_DEMOD_TDA10045:
1089 reg = TDA10045H_S_AGC;
1090 break;
1091
1092 case TDA1004X_DEMOD_TDA10046:
1093 reg = TDA10046H_AGC_IF_LEVEL;
1094 break;
1095 }
1096
1097 // read it
1098 tmp = tda1004x_read_byte(state, reg);
1099 if (tmp < 0)
1100 return -EIO;
1101
1102 *signal = (tmp << 8) | tmp;
1103 dprintk("%s: signal=0x%x\n", __func__, *signal);
1104 return 0;
1105 }
1106
1107 static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
1108 {
1109 struct tda1004x_state* state = fe->demodulator_priv;
1110 int tmp;
1111
1112 dprintk("%s\n", __func__);
1113
1114 // read it
1115 tmp = tda1004x_read_byte(state, TDA1004X_SNR);
1116 if (tmp < 0)
1117 return -EIO;
1118 tmp = 255 - tmp;
1119
1120 *snr = ((tmp << 8) | tmp);
1121 dprintk("%s: snr=0x%x\n", __func__, *snr);
1122 return 0;
1123 }
1124
1125 static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
1126 {
1127 struct tda1004x_state* state = fe->demodulator_priv;
1128 int tmp;
1129 int tmp2;
1130 int counter;
1131
1132 dprintk("%s\n", __func__);
1133
1134 // read the UCBLOCKS and reset
1135 counter = 0;
1136 tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
1137 if (tmp < 0)
1138 return -EIO;
1139 tmp &= 0x7f;
1140 while (counter++ < 5) {
1141 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1142 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1143 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1144
1145 tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
1146 if (tmp2 < 0)
1147 return -EIO;
1148 tmp2 &= 0x7f;
1149 if ((tmp2 < tmp) || (tmp2 == 0))
1150 break;
1151 }
1152
1153 if (tmp != 0x7f)
1154 *ucblocks = tmp;
1155 else
1156 *ucblocks = 0xffffffff;
1157
1158 dprintk("%s: ucblocks=0x%x\n", __func__, *ucblocks);
1159 return 0;
1160 }
1161
1162 static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
1163 {
1164 struct tda1004x_state* state = fe->demodulator_priv;
1165 int tmp;
1166
1167 dprintk("%s\n", __func__);
1168
1169 // read it in
1170 tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1171 if (tmp < 0)
1172 return -EIO;
1173 *ber = tmp << 1;
1174 tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1175 if (tmp < 0)
1176 return -EIO;
1177 *ber |= (tmp << 9);
1178 // The address 0x20 should be read to cope with a TDA10046 bug
1179 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1180
1181 dprintk("%s: ber=0x%x\n", __func__, *ber);
1182 return 0;
1183 }
1184
1185 static int tda1004x_sleep(struct dvb_frontend* fe)
1186 {
1187 struct tda1004x_state* state = fe->demodulator_priv;
1188 int gpio_conf;
1189
1190 switch (state->demod_type) {
1191 case TDA1004X_DEMOD_TDA10045:
1192 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
1193 break;
1194
1195 case TDA1004X_DEMOD_TDA10046:
1196 /* set outputs to tristate */
1197 tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0xff);
1198 /* invert GPIO 1 and 3 if desired*/
1199 gpio_conf = state->config->gpio_config;
1200 if (gpio_conf >= TDA10046_GP00_I)
1201 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f,
1202 (gpio_conf & 0x0f) ^ 0x0a);
1203
1204 tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0xc0);
1205 tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
1206 break;
1207 }
1208
1209 return 0;
1210 }
1211
1212 static int tda1004x_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
1213 {
1214 struct tda1004x_state* state = fe->demodulator_priv;
1215
1216 if (enable) {
1217 return tda1004x_enable_tuner_i2c(state);
1218 } else {
1219 return tda1004x_disable_tuner_i2c(state);
1220 }
1221 }
1222
1223 static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
1224 {
1225 fesettings->min_delay_ms = 800;
1226 /* Drift compensation makes no sense for DVB-T */
1227 fesettings->step_size = 0;
1228 fesettings->max_drift = 0;
1229 return 0;
1230 }
1231
1232 static void tda1004x_release(struct dvb_frontend* fe)
1233 {
1234 struct tda1004x_state *state = fe->demodulator_priv;
1235 kfree(state);
1236 }
1237
1238 static struct dvb_frontend_ops tda10045_ops = {
1239 .delsys = { SYS_DVBT },
1240 .info = {
1241 .name = "Philips TDA10045H DVB-T",
1242 .frequency_min = 51000000,
1243 .frequency_max = 858000000,
1244 .frequency_stepsize = 166667,
1245 .caps =
1246 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1247 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1248 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1249 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1250 },
1251
1252 .release = tda1004x_release,
1253
1254 .init = tda10045_init,
1255 .sleep = tda1004x_sleep,
1256 .write = tda1004x_write,
1257 .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1258
1259 .set_frontend = tda1004x_set_fe,
1260 .get_frontend = tda1004x_get_fe,
1261 .get_tune_settings = tda1004x_get_tune_settings,
1262
1263 .read_status = tda1004x_read_status,
1264 .read_ber = tda1004x_read_ber,
1265 .read_signal_strength = tda1004x_read_signal_strength,
1266 .read_snr = tda1004x_read_snr,
1267 .read_ucblocks = tda1004x_read_ucblocks,
1268 };
1269
1270 struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
1271 struct i2c_adapter* i2c)
1272 {
1273 struct tda1004x_state *state;
1274 int id;
1275
1276 /* allocate memory for the internal state */
1277 state = kzalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1278 if (!state) {
1279 printk(KERN_ERR "Can't allocate memory for tda10045 state\n");
1280 return NULL;
1281 }
1282
1283 /* setup the state */
1284 state->config = config;
1285 state->i2c = i2c;
1286 state->demod_type = TDA1004X_DEMOD_TDA10045;
1287
1288 /* check if the demod is there */
1289 id = tda1004x_read_byte(state, TDA1004X_CHIPID);
1290 if (id < 0) {
1291 printk(KERN_ERR "tda10045: chip is not answering. Giving up.\n");
1292 kfree(state);
1293 return NULL;
1294 }
1295
1296 if (id != 0x25) {
1297 printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id);
1298 kfree(state);
1299 return NULL;
1300 }
1301
1302 /* create dvb_frontend */
1303 memcpy(&state->frontend.ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
1304 state->frontend.demodulator_priv = state;
1305 return &state->frontend;
1306 }
1307
1308 static struct dvb_frontend_ops tda10046_ops = {
1309 .delsys = { SYS_DVBT },
1310 .info = {
1311 .name = "Philips TDA10046H DVB-T",
1312 .frequency_min = 51000000,
1313 .frequency_max = 858000000,
1314 .frequency_stepsize = 166667,
1315 .caps =
1316 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1317 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1318 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1319 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1320 },
1321
1322 .release = tda1004x_release,
1323
1324 .init = tda10046_init,
1325 .sleep = tda1004x_sleep,
1326 .write = tda1004x_write,
1327 .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1328
1329 .set_frontend = tda1004x_set_fe,
1330 .get_frontend = tda1004x_get_fe,
1331 .get_tune_settings = tda1004x_get_tune_settings,
1332
1333 .read_status = tda1004x_read_status,
1334 .read_ber = tda1004x_read_ber,
1335 .read_signal_strength = tda1004x_read_signal_strength,
1336 .read_snr = tda1004x_read_snr,
1337 .read_ucblocks = tda1004x_read_ucblocks,
1338 };
1339
1340 struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
1341 struct i2c_adapter* i2c)
1342 {
1343 struct tda1004x_state *state;
1344 int id;
1345
1346 /* allocate memory for the internal state */
1347 state = kzalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1348 if (!state) {
1349 printk(KERN_ERR "Can't allocate memory for tda10046 state\n");
1350 return NULL;
1351 }
1352
1353 /* setup the state */
1354 state->config = config;
1355 state->i2c = i2c;
1356 state->demod_type = TDA1004X_DEMOD_TDA10046;
1357
1358 /* check if the demod is there */
1359 id = tda1004x_read_byte(state, TDA1004X_CHIPID);
1360 if (id < 0) {
1361 printk(KERN_ERR "tda10046: chip is not answering. Giving up.\n");
1362 kfree(state);
1363 return NULL;
1364 }
1365 if (id != 0x46) {
1366 printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id);
1367 kfree(state);
1368 return NULL;
1369 }
1370
1371 /* create dvb_frontend */
1372 memcpy(&state->frontend.ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
1373 state->frontend.demodulator_priv = state;
1374 return &state->frontend;
1375 }
1376
1377 module_param(debug, int, 0644);
1378 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
1379
1380 MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
1381 MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
1382 MODULE_LICENSE("GPL");
1383
1384 EXPORT_SYMBOL(tda10045_attach);
1385 EXPORT_SYMBOL(tda10046_attach);