]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/media/i2c/adv7604.c
[media] include/media: split I2C headers from V4L2 core
[mirror_ubuntu-zesty-kernel.git] / drivers / media / i2c / adv7604.c
1 /*
2 * adv7604 - Analog Devices ADV7604 video decoder driver
3 *
4 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5 *
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17 * SOFTWARE.
18 *
19 */
20
21 /*
22 * References (c = chapter, p = page):
23 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
24 * Revision 2.5, June 2010
25 * REF_02 - Analog devices, Register map documentation, Documentation of
26 * the register maps, Software manual, Rev. F, June 2010
27 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
28 */
29
30 #include <linux/delay.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/v4l2-dv-timings.h>
38 #include <linux/videodev2.h>
39 #include <linux/workqueue.h>
40 #include <linux/regmap.h>
41
42 #include <media/i2c/adv7604.h>
43 #include <media/v4l2-ctrls.h>
44 #include <media/v4l2-device.h>
45 #include <media/v4l2-event.h>
46 #include <media/v4l2-dv-timings.h>
47 #include <media/v4l2-of.h>
48
49 static int debug;
50 module_param(debug, int, 0644);
51 MODULE_PARM_DESC(debug, "debug level (0-2)");
52
53 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
54 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
55 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
56 MODULE_LICENSE("GPL");
57
58 /* ADV7604 system clock frequency */
59 #define ADV76XX_FSC (28636360)
60
61 #define ADV76XX_RGB_OUT (1 << 1)
62
63 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0)
64 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0)
65 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0)
66
67 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5)
68 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5)
69 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5)
70 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5)
71 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5)
72 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5)
73
74 #define ADV76XX_OP_CH_SEL_GBR (0 << 5)
75 #define ADV76XX_OP_CH_SEL_GRB (1 << 5)
76 #define ADV76XX_OP_CH_SEL_BGR (2 << 5)
77 #define ADV76XX_OP_CH_SEL_RGB (3 << 5)
78 #define ADV76XX_OP_CH_SEL_BRG (4 << 5)
79 #define ADV76XX_OP_CH_SEL_RBG (5 << 5)
80
81 #define ADV76XX_OP_SWAP_CB_CR (1 << 0)
82
83 enum adv76xx_type {
84 ADV7604,
85 ADV7611,
86 ADV7612,
87 };
88
89 struct adv76xx_reg_seq {
90 unsigned int reg;
91 u8 val;
92 };
93
94 struct adv76xx_format_info {
95 u32 code;
96 u8 op_ch_sel;
97 bool rgb_out;
98 bool swap_cb_cr;
99 u8 op_format_sel;
100 };
101
102 struct adv76xx_cfg_read_infoframe {
103 const char *desc;
104 u8 present_mask;
105 u8 head_addr;
106 u8 payload_addr;
107 };
108
109 struct adv76xx_chip_info {
110 enum adv76xx_type type;
111
112 bool has_afe;
113 unsigned int max_port;
114 unsigned int num_dv_ports;
115
116 unsigned int edid_enable_reg;
117 unsigned int edid_status_reg;
118 unsigned int lcf_reg;
119
120 unsigned int cable_det_mask;
121 unsigned int tdms_lock_mask;
122 unsigned int fmt_change_digital_mask;
123 unsigned int cp_csc;
124
125 const struct adv76xx_format_info *formats;
126 unsigned int nformats;
127
128 void (*set_termination)(struct v4l2_subdev *sd, bool enable);
129 void (*setup_irqs)(struct v4l2_subdev *sd);
130 unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
131 unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
132
133 /* 0 = AFE, 1 = HDMI */
134 const struct adv76xx_reg_seq *recommended_settings[2];
135 unsigned int num_recommended_settings[2];
136
137 unsigned long page_mask;
138
139 /* Masks for timings */
140 unsigned int linewidth_mask;
141 unsigned int field0_height_mask;
142 unsigned int field1_height_mask;
143 unsigned int hfrontporch_mask;
144 unsigned int hsync_mask;
145 unsigned int hbackporch_mask;
146 unsigned int field0_vfrontporch_mask;
147 unsigned int field1_vfrontporch_mask;
148 unsigned int field0_vsync_mask;
149 unsigned int field1_vsync_mask;
150 unsigned int field0_vbackporch_mask;
151 unsigned int field1_vbackporch_mask;
152 };
153
154 /*
155 **********************************************************************
156 *
157 * Arrays with configuration parameters for the ADV7604
158 *
159 **********************************************************************
160 */
161
162 struct adv76xx_state {
163 const struct adv76xx_chip_info *info;
164 struct adv76xx_platform_data pdata;
165
166 struct gpio_desc *hpd_gpio[4];
167
168 struct v4l2_subdev sd;
169 struct media_pad pads[ADV76XX_PAD_MAX];
170 unsigned int source_pad;
171
172 struct v4l2_ctrl_handler hdl;
173
174 enum adv76xx_pad selected_input;
175
176 struct v4l2_dv_timings timings;
177 const struct adv76xx_format_info *format;
178
179 struct {
180 u8 edid[256];
181 u32 present;
182 unsigned blocks;
183 } edid;
184 u16 spa_port_a[2];
185 struct v4l2_fract aspect_ratio;
186 u32 rgb_quantization_range;
187 struct workqueue_struct *work_queues;
188 struct delayed_work delayed_work_enable_hotplug;
189 bool restart_stdi_once;
190
191 /* i2c clients */
192 struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
193
194 /* Regmaps */
195 struct regmap *regmap[ADV76XX_PAGE_MAX];
196
197 /* controls */
198 struct v4l2_ctrl *detect_tx_5v_ctrl;
199 struct v4l2_ctrl *analog_sampling_phase_ctrl;
200 struct v4l2_ctrl *free_run_color_manual_ctrl;
201 struct v4l2_ctrl *free_run_color_ctrl;
202 struct v4l2_ctrl *rgb_quantization_range_ctrl;
203 };
204
205 static bool adv76xx_has_afe(struct adv76xx_state *state)
206 {
207 return state->info->has_afe;
208 }
209
210 /* Supported CEA and DMT timings */
211 static const struct v4l2_dv_timings adv76xx_timings[] = {
212 V4L2_DV_BT_CEA_720X480P59_94,
213 V4L2_DV_BT_CEA_720X576P50,
214 V4L2_DV_BT_CEA_1280X720P24,
215 V4L2_DV_BT_CEA_1280X720P25,
216 V4L2_DV_BT_CEA_1280X720P50,
217 V4L2_DV_BT_CEA_1280X720P60,
218 V4L2_DV_BT_CEA_1920X1080P24,
219 V4L2_DV_BT_CEA_1920X1080P25,
220 V4L2_DV_BT_CEA_1920X1080P30,
221 V4L2_DV_BT_CEA_1920X1080P50,
222 V4L2_DV_BT_CEA_1920X1080P60,
223
224 /* sorted by DMT ID */
225 V4L2_DV_BT_DMT_640X350P85,
226 V4L2_DV_BT_DMT_640X400P85,
227 V4L2_DV_BT_DMT_720X400P85,
228 V4L2_DV_BT_DMT_640X480P60,
229 V4L2_DV_BT_DMT_640X480P72,
230 V4L2_DV_BT_DMT_640X480P75,
231 V4L2_DV_BT_DMT_640X480P85,
232 V4L2_DV_BT_DMT_800X600P56,
233 V4L2_DV_BT_DMT_800X600P60,
234 V4L2_DV_BT_DMT_800X600P72,
235 V4L2_DV_BT_DMT_800X600P75,
236 V4L2_DV_BT_DMT_800X600P85,
237 V4L2_DV_BT_DMT_848X480P60,
238 V4L2_DV_BT_DMT_1024X768P60,
239 V4L2_DV_BT_DMT_1024X768P70,
240 V4L2_DV_BT_DMT_1024X768P75,
241 V4L2_DV_BT_DMT_1024X768P85,
242 V4L2_DV_BT_DMT_1152X864P75,
243 V4L2_DV_BT_DMT_1280X768P60_RB,
244 V4L2_DV_BT_DMT_1280X768P60,
245 V4L2_DV_BT_DMT_1280X768P75,
246 V4L2_DV_BT_DMT_1280X768P85,
247 V4L2_DV_BT_DMT_1280X800P60_RB,
248 V4L2_DV_BT_DMT_1280X800P60,
249 V4L2_DV_BT_DMT_1280X800P75,
250 V4L2_DV_BT_DMT_1280X800P85,
251 V4L2_DV_BT_DMT_1280X960P60,
252 V4L2_DV_BT_DMT_1280X960P85,
253 V4L2_DV_BT_DMT_1280X1024P60,
254 V4L2_DV_BT_DMT_1280X1024P75,
255 V4L2_DV_BT_DMT_1280X1024P85,
256 V4L2_DV_BT_DMT_1360X768P60,
257 V4L2_DV_BT_DMT_1400X1050P60_RB,
258 V4L2_DV_BT_DMT_1400X1050P60,
259 V4L2_DV_BT_DMT_1400X1050P75,
260 V4L2_DV_BT_DMT_1400X1050P85,
261 V4L2_DV_BT_DMT_1440X900P60_RB,
262 V4L2_DV_BT_DMT_1440X900P60,
263 V4L2_DV_BT_DMT_1600X1200P60,
264 V4L2_DV_BT_DMT_1680X1050P60_RB,
265 V4L2_DV_BT_DMT_1680X1050P60,
266 V4L2_DV_BT_DMT_1792X1344P60,
267 V4L2_DV_BT_DMT_1856X1392P60,
268 V4L2_DV_BT_DMT_1920X1200P60_RB,
269 V4L2_DV_BT_DMT_1366X768P60_RB,
270 V4L2_DV_BT_DMT_1366X768P60,
271 V4L2_DV_BT_DMT_1920X1080P60,
272 { },
273 };
274
275 struct adv76xx_video_standards {
276 struct v4l2_dv_timings timings;
277 u8 vid_std;
278 u8 v_freq;
279 };
280
281 /* sorted by number of lines */
282 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
283 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
284 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
285 { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
286 { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
287 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
288 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
289 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
290 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
291 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
292 /* TODO add 1920x1080P60_RB (CVT timing) */
293 { },
294 };
295
296 /* sorted by number of lines */
297 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
298 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
299 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
300 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
301 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
302 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
303 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
304 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
305 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
306 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
307 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
308 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
309 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
310 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
311 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
312 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
313 { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
314 { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
315 { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
316 { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
317 { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
318 /* TODO add 1600X1200P60_RB (not a DMT timing) */
319 { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
320 { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
321 { },
322 };
323
324 /* sorted by number of lines */
325 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
326 { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
327 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
328 { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
329 { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
330 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
331 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
332 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
333 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
334 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
335 { },
336 };
337
338 /* sorted by number of lines */
339 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
340 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
341 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
342 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
343 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
344 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
345 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
346 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
347 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
348 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
349 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
350 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
351 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
352 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
353 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
354 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
355 { },
356 };
357
358 static const struct v4l2_event adv76xx_ev_fmt = {
359 .type = V4L2_EVENT_SOURCE_CHANGE,
360 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
361 };
362
363 /* ----------------------------------------------------------------------- */
364
365 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
366 {
367 return container_of(sd, struct adv76xx_state, sd);
368 }
369
370 static inline unsigned htotal(const struct v4l2_bt_timings *t)
371 {
372 return V4L2_DV_BT_FRAME_WIDTH(t);
373 }
374
375 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
376 {
377 return V4L2_DV_BT_FRAME_HEIGHT(t);
378 }
379
380 /* ----------------------------------------------------------------------- */
381
382 static int adv76xx_read_check(struct adv76xx_state *state,
383 int client_page, u8 reg)
384 {
385 struct i2c_client *client = state->i2c_clients[client_page];
386 int err;
387 unsigned int val;
388
389 err = regmap_read(state->regmap[client_page], reg, &val);
390
391 if (err) {
392 v4l_err(client, "error reading %02x, %02x\n",
393 client->addr, reg);
394 return err;
395 }
396 return val;
397 }
398
399 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
400 * size to one or more registers.
401 *
402 * A value of zero will be returned on success, a negative errno will
403 * be returned in error cases.
404 */
405 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
406 unsigned int init_reg, const void *val,
407 size_t val_len)
408 {
409 struct regmap *regmap = state->regmap[client_page];
410
411 if (val_len > I2C_SMBUS_BLOCK_MAX)
412 val_len = I2C_SMBUS_BLOCK_MAX;
413
414 return regmap_raw_write(regmap, init_reg, val, val_len);
415 }
416
417 /* ----------------------------------------------------------------------- */
418
419 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
420 {
421 struct adv76xx_state *state = to_state(sd);
422
423 return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
424 }
425
426 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
427 {
428 struct adv76xx_state *state = to_state(sd);
429
430 return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
431 }
432
433 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
434 {
435 return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
436 }
437
438 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
439 {
440 struct adv76xx_state *state = to_state(sd);
441
442 return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
443 }
444
445 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
446 {
447 struct adv76xx_state *state = to_state(sd);
448
449 return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
450 }
451
452 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
453 {
454 struct adv76xx_state *state = to_state(sd);
455
456 return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
457 }
458
459 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
460 {
461 struct adv76xx_state *state = to_state(sd);
462
463 return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
464 }
465
466 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
467 {
468 struct adv76xx_state *state = to_state(sd);
469
470 return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
471 }
472
473 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
474 {
475 struct adv76xx_state *state = to_state(sd);
476
477 return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
478 }
479
480 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
481 {
482 struct adv76xx_state *state = to_state(sd);
483
484 return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
485 }
486
487 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
488 {
489 struct adv76xx_state *state = to_state(sd);
490
491 return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
492 }
493
494 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
495 {
496 struct adv76xx_state *state = to_state(sd);
497
498 return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
499 }
500
501 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
502 {
503 struct adv76xx_state *state = to_state(sd);
504
505 return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
506 }
507
508 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
509 {
510 return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
511 }
512
513 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
514 {
515 struct adv76xx_state *state = to_state(sd);
516
517 return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
518 }
519
520 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
521 {
522 struct adv76xx_state *state = to_state(sd);
523
524 return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
525 }
526
527 static inline int edid_write_block(struct v4l2_subdev *sd,
528 unsigned int total_len, const u8 *val)
529 {
530 struct adv76xx_state *state = to_state(sd);
531 int err = 0;
532 int i = 0;
533 int len = 0;
534
535 v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
536 __func__, total_len);
537
538 while (!err && i < total_len) {
539 len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
540 I2C_SMBUS_BLOCK_MAX :
541 (total_len - i);
542
543 err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
544 i, val + i, len);
545 i += len;
546 }
547
548 return err;
549 }
550
551 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
552 {
553 unsigned int i;
554
555 for (i = 0; i < state->info->num_dv_ports; ++i)
556 gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
557
558 v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
559 }
560
561 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
562 {
563 struct delayed_work *dwork = to_delayed_work(work);
564 struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
565 delayed_work_enable_hotplug);
566 struct v4l2_subdev *sd = &state->sd;
567
568 v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
569
570 adv76xx_set_hpd(state, state->edid.present);
571 }
572
573 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
574 {
575 struct adv76xx_state *state = to_state(sd);
576
577 return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
578 }
579
580 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
581 {
582 return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
583 }
584
585 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
586 {
587 struct adv76xx_state *state = to_state(sd);
588
589 return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
590 }
591
592 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
593 {
594 return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
595 }
596
597 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
598 {
599 struct adv76xx_state *state = to_state(sd);
600
601 return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
602 }
603
604 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
605 {
606 struct adv76xx_state *state = to_state(sd);
607
608 return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
609 }
610
611 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
612 {
613 return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
614 }
615
616 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
617 {
618 struct adv76xx_state *state = to_state(sd);
619
620 return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
621 }
622
623 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
624 {
625 return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
626 }
627
628 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
629 {
630 struct adv76xx_state *state = to_state(sd);
631
632 return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
633 }
634
635 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
636 {
637 struct adv76xx_state *state = to_state(sd);
638
639 return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
640 }
641
642 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset))
643 #define ADV76XX_REG_SEQ_TERM 0xffff
644
645 #ifdef CONFIG_VIDEO_ADV_DEBUG
646 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
647 {
648 struct adv76xx_state *state = to_state(sd);
649 unsigned int page = reg >> 8;
650 unsigned int val;
651 int err;
652
653 if (!(BIT(page) & state->info->page_mask))
654 return -EINVAL;
655
656 reg &= 0xff;
657 err = regmap_read(state->regmap[page], reg, &val);
658
659 return err ? err : val;
660 }
661 #endif
662
663 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
664 {
665 struct adv76xx_state *state = to_state(sd);
666 unsigned int page = reg >> 8;
667
668 if (!(BIT(page) & state->info->page_mask))
669 return -EINVAL;
670
671 reg &= 0xff;
672
673 return regmap_write(state->regmap[page], reg, val);
674 }
675
676 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
677 const struct adv76xx_reg_seq *reg_seq)
678 {
679 unsigned int i;
680
681 for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
682 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
683 }
684
685 /* -----------------------------------------------------------------------------
686 * Format helpers
687 */
688
689 static const struct adv76xx_format_info adv7604_formats[] = {
690 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
691 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
692 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
693 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
694 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
695 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
696 { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
697 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
698 { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
699 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
700 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
701 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
702 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
703 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
704 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
705 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
706 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
707 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
708 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
709 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
710 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
711 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
712 { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
713 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
714 { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
715 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
716 { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
717 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
718 { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
719 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
720 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
721 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
722 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
723 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
724 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
725 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
726 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
727 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
728 };
729
730 static const struct adv76xx_format_info adv7611_formats[] = {
731 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
732 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
733 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
734 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
735 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
736 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
737 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
738 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
739 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
740 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
741 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
742 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
743 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
744 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
745 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
746 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
747 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
748 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
749 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
750 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
751 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
752 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
753 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
754 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
755 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
756 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
757 };
758
759 static const struct adv76xx_format_info adv7612_formats[] = {
760 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
761 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
762 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
763 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
764 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
765 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
766 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
767 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
768 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
769 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
770 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
771 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
772 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
773 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
774 };
775
776 static const struct adv76xx_format_info *
777 adv76xx_format_info(struct adv76xx_state *state, u32 code)
778 {
779 unsigned int i;
780
781 for (i = 0; i < state->info->nformats; ++i) {
782 if (state->info->formats[i].code == code)
783 return &state->info->formats[i];
784 }
785
786 return NULL;
787 }
788
789 /* ----------------------------------------------------------------------- */
790
791 static inline bool is_analog_input(struct v4l2_subdev *sd)
792 {
793 struct adv76xx_state *state = to_state(sd);
794
795 return state->selected_input == ADV7604_PAD_VGA_RGB ||
796 state->selected_input == ADV7604_PAD_VGA_COMP;
797 }
798
799 static inline bool is_digital_input(struct v4l2_subdev *sd)
800 {
801 struct adv76xx_state *state = to_state(sd);
802
803 return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
804 state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
805 state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
806 state->selected_input == ADV7604_PAD_HDMI_PORT_D;
807 }
808
809 /* ----------------------------------------------------------------------- */
810
811 #ifdef CONFIG_VIDEO_ADV_DEBUG
812 static void adv76xx_inv_register(struct v4l2_subdev *sd)
813 {
814 v4l2_info(sd, "0x000-0x0ff: IO Map\n");
815 v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
816 v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
817 v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
818 v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
819 v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
820 v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
821 v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
822 v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
823 v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
824 v4l2_info(sd, "0xa00-0xaff: Test Map\n");
825 v4l2_info(sd, "0xb00-0xbff: CP Map\n");
826 v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
827 }
828
829 static int adv76xx_g_register(struct v4l2_subdev *sd,
830 struct v4l2_dbg_register *reg)
831 {
832 int ret;
833
834 ret = adv76xx_read_reg(sd, reg->reg);
835 if (ret < 0) {
836 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
837 adv76xx_inv_register(sd);
838 return ret;
839 }
840
841 reg->size = 1;
842 reg->val = ret;
843
844 return 0;
845 }
846
847 static int adv76xx_s_register(struct v4l2_subdev *sd,
848 const struct v4l2_dbg_register *reg)
849 {
850 int ret;
851
852 ret = adv76xx_write_reg(sd, reg->reg, reg->val);
853 if (ret < 0) {
854 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
855 adv76xx_inv_register(sd);
856 return ret;
857 }
858
859 return 0;
860 }
861 #endif
862
863 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
864 {
865 u8 value = io_read(sd, 0x6f);
866
867 return ((value & 0x10) >> 4)
868 | ((value & 0x08) >> 2)
869 | ((value & 0x04) << 0)
870 | ((value & 0x02) << 2);
871 }
872
873 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
874 {
875 u8 value = io_read(sd, 0x6f);
876
877 return value & 1;
878 }
879
880 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
881 {
882 /* Reads CABLE_DET_A_RAW. For input B support, need to
883 * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
884 */
885 u8 value = io_read(sd, 0x6f);
886
887 return value & 1;
888 }
889
890 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
891 {
892 struct adv76xx_state *state = to_state(sd);
893 const struct adv76xx_chip_info *info = state->info;
894
895 return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
896 info->read_cable_det(sd));
897 }
898
899 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
900 u8 prim_mode,
901 const struct adv76xx_video_standards *predef_vid_timings,
902 const struct v4l2_dv_timings *timings)
903 {
904 int i;
905
906 for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
907 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
908 is_digital_input(sd) ? 250000 : 1000000))
909 continue;
910 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
911 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
912 prim_mode); /* v_freq and prim mode */
913 return 0;
914 }
915
916 return -1;
917 }
918
919 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
920 struct v4l2_dv_timings *timings)
921 {
922 struct adv76xx_state *state = to_state(sd);
923 int err;
924
925 v4l2_dbg(1, debug, sd, "%s", __func__);
926
927 if (adv76xx_has_afe(state)) {
928 /* reset to default values */
929 io_write(sd, 0x16, 0x43);
930 io_write(sd, 0x17, 0x5a);
931 }
932 /* disable embedded syncs for auto graphics mode */
933 cp_write_clr_set(sd, 0x81, 0x10, 0x00);
934 cp_write(sd, 0x8f, 0x00);
935 cp_write(sd, 0x90, 0x00);
936 cp_write(sd, 0xa2, 0x00);
937 cp_write(sd, 0xa3, 0x00);
938 cp_write(sd, 0xa4, 0x00);
939 cp_write(sd, 0xa5, 0x00);
940 cp_write(sd, 0xa6, 0x00);
941 cp_write(sd, 0xa7, 0x00);
942 cp_write(sd, 0xab, 0x00);
943 cp_write(sd, 0xac, 0x00);
944
945 if (is_analog_input(sd)) {
946 err = find_and_set_predefined_video_timings(sd,
947 0x01, adv7604_prim_mode_comp, timings);
948 if (err)
949 err = find_and_set_predefined_video_timings(sd,
950 0x02, adv7604_prim_mode_gr, timings);
951 } else if (is_digital_input(sd)) {
952 err = find_and_set_predefined_video_timings(sd,
953 0x05, adv76xx_prim_mode_hdmi_comp, timings);
954 if (err)
955 err = find_and_set_predefined_video_timings(sd,
956 0x06, adv76xx_prim_mode_hdmi_gr, timings);
957 } else {
958 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
959 __func__, state->selected_input);
960 err = -1;
961 }
962
963
964 return err;
965 }
966
967 static void configure_custom_video_timings(struct v4l2_subdev *sd,
968 const struct v4l2_bt_timings *bt)
969 {
970 struct adv76xx_state *state = to_state(sd);
971 u32 width = htotal(bt);
972 u32 height = vtotal(bt);
973 u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
974 u16 cp_start_eav = width - bt->hfrontporch;
975 u16 cp_start_vbi = height - bt->vfrontporch;
976 u16 cp_end_vbi = bt->vsync + bt->vbackporch;
977 u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
978 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
979 const u8 pll[2] = {
980 0xc0 | ((width >> 8) & 0x1f),
981 width & 0xff
982 };
983
984 v4l2_dbg(2, debug, sd, "%s\n", __func__);
985
986 if (is_analog_input(sd)) {
987 /* auto graphics */
988 io_write(sd, 0x00, 0x07); /* video std */
989 io_write(sd, 0x01, 0x02); /* prim mode */
990 /* enable embedded syncs for auto graphics mode */
991 cp_write_clr_set(sd, 0x81, 0x10, 0x10);
992
993 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
994 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
995 /* IO-map reg. 0x16 and 0x17 should be written in sequence */
996 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
997 0x16, pll, 2))
998 v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
999
1000 /* active video - horizontal timing */
1001 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1002 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1003 ((cp_start_eav >> 8) & 0x0f));
1004 cp_write(sd, 0xa4, cp_start_eav & 0xff);
1005
1006 /* active video - vertical timing */
1007 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1008 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1009 ((cp_end_vbi >> 8) & 0xf));
1010 cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1011 } else if (is_digital_input(sd)) {
1012 /* set default prim_mode/vid_std for HDMI
1013 according to [REF_03, c. 4.2] */
1014 io_write(sd, 0x00, 0x02); /* video std */
1015 io_write(sd, 0x01, 0x06); /* prim mode */
1016 } else {
1017 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1018 __func__, state->selected_input);
1019 }
1020
1021 cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1022 cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1023 cp_write(sd, 0xab, (height >> 4) & 0xff);
1024 cp_write(sd, 0xac, (height & 0x0f) << 4);
1025 }
1026
1027 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1028 {
1029 struct adv76xx_state *state = to_state(sd);
1030 u8 offset_buf[4];
1031
1032 if (auto_offset) {
1033 offset_a = 0x3ff;
1034 offset_b = 0x3ff;
1035 offset_c = 0x3ff;
1036 }
1037
1038 v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1039 __func__, auto_offset ? "Auto" : "Manual",
1040 offset_a, offset_b, offset_c);
1041
1042 offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1043 offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1044 offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1045 offset_buf[3] = offset_c & 0x0ff;
1046
1047 /* Registers must be written in this order with no i2c access in between */
1048 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1049 0x77, offset_buf, 4))
1050 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1051 }
1052
1053 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1054 {
1055 struct adv76xx_state *state = to_state(sd);
1056 u8 gain_buf[4];
1057 u8 gain_man = 1;
1058 u8 agc_mode_man = 1;
1059
1060 if (auto_gain) {
1061 gain_man = 0;
1062 agc_mode_man = 0;
1063 gain_a = 0x100;
1064 gain_b = 0x100;
1065 gain_c = 0x100;
1066 }
1067
1068 v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1069 __func__, auto_gain ? "Auto" : "Manual",
1070 gain_a, gain_b, gain_c);
1071
1072 gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1073 gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1074 gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1075 gain_buf[3] = ((gain_c & 0x0ff));
1076
1077 /* Registers must be written in this order with no i2c access in between */
1078 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1079 0x73, gain_buf, 4))
1080 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1081 }
1082
1083 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1084 {
1085 struct adv76xx_state *state = to_state(sd);
1086 bool rgb_output = io_read(sd, 0x02) & 0x02;
1087 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1088
1089 v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1090 __func__, state->rgb_quantization_range,
1091 rgb_output, hdmi_signal);
1092
1093 adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1094 adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1095
1096 switch (state->rgb_quantization_range) {
1097 case V4L2_DV_RGB_RANGE_AUTO:
1098 if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1099 /* Receiving analog RGB signal
1100 * Set RGB full range (0-255) */
1101 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1102 break;
1103 }
1104
1105 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1106 /* Receiving analog YPbPr signal
1107 * Set automode */
1108 io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1109 break;
1110 }
1111
1112 if (hdmi_signal) {
1113 /* Receiving HDMI signal
1114 * Set automode */
1115 io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1116 break;
1117 }
1118
1119 /* Receiving DVI-D signal
1120 * ADV7604 selects RGB limited range regardless of
1121 * input format (CE/IT) in automatic mode */
1122 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1123 /* RGB limited range (16-235) */
1124 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1125 } else {
1126 /* RGB full range (0-255) */
1127 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1128
1129 if (is_digital_input(sd) && rgb_output) {
1130 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1131 } else {
1132 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1133 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1134 }
1135 }
1136 break;
1137 case V4L2_DV_RGB_RANGE_LIMITED:
1138 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1139 /* YCrCb limited range (16-235) */
1140 io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1141 break;
1142 }
1143
1144 /* RGB limited range (16-235) */
1145 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1146
1147 break;
1148 case V4L2_DV_RGB_RANGE_FULL:
1149 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1150 /* YCrCb full range (0-255) */
1151 io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1152 break;
1153 }
1154
1155 /* RGB full range (0-255) */
1156 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1157
1158 if (is_analog_input(sd) || hdmi_signal)
1159 break;
1160
1161 /* Adjust gain/offset for DVI-D signals only */
1162 if (rgb_output) {
1163 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1164 } else {
1165 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1166 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1167 }
1168 break;
1169 }
1170 }
1171
1172 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1173 {
1174 struct v4l2_subdev *sd =
1175 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1176
1177 struct adv76xx_state *state = to_state(sd);
1178
1179 switch (ctrl->id) {
1180 case V4L2_CID_BRIGHTNESS:
1181 cp_write(sd, 0x3c, ctrl->val);
1182 return 0;
1183 case V4L2_CID_CONTRAST:
1184 cp_write(sd, 0x3a, ctrl->val);
1185 return 0;
1186 case V4L2_CID_SATURATION:
1187 cp_write(sd, 0x3b, ctrl->val);
1188 return 0;
1189 case V4L2_CID_HUE:
1190 cp_write(sd, 0x3d, ctrl->val);
1191 return 0;
1192 case V4L2_CID_DV_RX_RGB_RANGE:
1193 state->rgb_quantization_range = ctrl->val;
1194 set_rgb_quantization_range(sd);
1195 return 0;
1196 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1197 if (!adv76xx_has_afe(state))
1198 return -EINVAL;
1199 /* Set the analog sampling phase. This is needed to find the
1200 best sampling phase for analog video: an application or
1201 driver has to try a number of phases and analyze the picture
1202 quality before settling on the best performing phase. */
1203 afe_write(sd, 0xc8, ctrl->val);
1204 return 0;
1205 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1206 /* Use the default blue color for free running mode,
1207 or supply your own. */
1208 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1209 return 0;
1210 case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1211 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1212 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1213 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1214 return 0;
1215 }
1216 return -EINVAL;
1217 }
1218
1219 /* ----------------------------------------------------------------------- */
1220
1221 static inline bool no_power(struct v4l2_subdev *sd)
1222 {
1223 /* Entire chip or CP powered off */
1224 return io_read(sd, 0x0c) & 0x24;
1225 }
1226
1227 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1228 {
1229 struct adv76xx_state *state = to_state(sd);
1230
1231 return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1232 }
1233
1234 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1235 {
1236 struct adv76xx_state *state = to_state(sd);
1237 const struct adv76xx_chip_info *info = state->info;
1238
1239 return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1240 }
1241
1242 static inline bool is_hdmi(struct v4l2_subdev *sd)
1243 {
1244 return hdmi_read(sd, 0x05) & 0x80;
1245 }
1246
1247 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1248 {
1249 struct adv76xx_state *state = to_state(sd);
1250
1251 /*
1252 * Chips without a AFE don't expose registers for the SSPD, so just assume
1253 * that we have a lock.
1254 */
1255 if (adv76xx_has_afe(state))
1256 return false;
1257
1258 /* TODO channel 2 */
1259 return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1260 }
1261
1262 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1263 {
1264 /* TODO channel 2 */
1265 return !(cp_read(sd, 0xb1) & 0x80);
1266 }
1267
1268 static inline bool no_signal(struct v4l2_subdev *sd)
1269 {
1270 bool ret;
1271
1272 ret = no_power(sd);
1273
1274 ret |= no_lock_stdi(sd);
1275 ret |= no_lock_sspd(sd);
1276
1277 if (is_digital_input(sd)) {
1278 ret |= no_lock_tmds(sd);
1279 ret |= no_signal_tmds(sd);
1280 }
1281
1282 return ret;
1283 }
1284
1285 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1286 {
1287 struct adv76xx_state *state = to_state(sd);
1288
1289 if (!adv76xx_has_afe(state))
1290 return false;
1291
1292 /* CP has detected a non standard number of lines on the incoming
1293 video compared to what it is configured to receive by s_dv_timings */
1294 return io_read(sd, 0x12) & 0x01;
1295 }
1296
1297 static inline bool in_free_run(struct v4l2_subdev *sd)
1298 {
1299 return cp_read(sd, 0xff) & 0x10;
1300 }
1301
1302 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1303 {
1304 *status = 0;
1305 *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1306 *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1307 if (!in_free_run(sd) && no_lock_cp(sd))
1308 *status |= is_digital_input(sd) ?
1309 V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1310
1311 v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1312
1313 return 0;
1314 }
1315
1316 /* ----------------------------------------------------------------------- */
1317
1318 struct stdi_readback {
1319 u16 bl, lcf, lcvs;
1320 u8 hs_pol, vs_pol;
1321 bool interlaced;
1322 };
1323
1324 static int stdi2dv_timings(struct v4l2_subdev *sd,
1325 struct stdi_readback *stdi,
1326 struct v4l2_dv_timings *timings)
1327 {
1328 struct adv76xx_state *state = to_state(sd);
1329 u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1330 u32 pix_clk;
1331 int i;
1332
1333 for (i = 0; adv76xx_timings[i].bt.height; i++) {
1334 if (vtotal(&adv76xx_timings[i].bt) != stdi->lcf + 1)
1335 continue;
1336 if (adv76xx_timings[i].bt.vsync != stdi->lcvs)
1337 continue;
1338
1339 pix_clk = hfreq * htotal(&adv76xx_timings[i].bt);
1340
1341 if ((pix_clk < adv76xx_timings[i].bt.pixelclock + 1000000) &&
1342 (pix_clk > adv76xx_timings[i].bt.pixelclock - 1000000)) {
1343 *timings = adv76xx_timings[i];
1344 return 0;
1345 }
1346 }
1347
1348 if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1349 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1350 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1351 false, timings))
1352 return 0;
1353 if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1354 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1355 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1356 false, state->aspect_ratio, timings))
1357 return 0;
1358
1359 v4l2_dbg(2, debug, sd,
1360 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1361 __func__, stdi->lcvs, stdi->lcf, stdi->bl,
1362 stdi->hs_pol, stdi->vs_pol);
1363 return -1;
1364 }
1365
1366
1367 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1368 {
1369 struct adv76xx_state *state = to_state(sd);
1370 const struct adv76xx_chip_info *info = state->info;
1371 u8 polarity;
1372
1373 if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1374 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1375 return -1;
1376 }
1377
1378 /* read STDI */
1379 stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1380 stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1381 stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1382 stdi->interlaced = io_read(sd, 0x12) & 0x10;
1383
1384 if (adv76xx_has_afe(state)) {
1385 /* read SSPD */
1386 polarity = cp_read(sd, 0xb5);
1387 if ((polarity & 0x03) == 0x01) {
1388 stdi->hs_pol = polarity & 0x10
1389 ? (polarity & 0x08 ? '+' : '-') : 'x';
1390 stdi->vs_pol = polarity & 0x40
1391 ? (polarity & 0x20 ? '+' : '-') : 'x';
1392 } else {
1393 stdi->hs_pol = 'x';
1394 stdi->vs_pol = 'x';
1395 }
1396 } else {
1397 polarity = hdmi_read(sd, 0x05);
1398 stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1399 stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1400 }
1401
1402 if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1403 v4l2_dbg(2, debug, sd,
1404 "%s: signal lost during readout of STDI/SSPD\n", __func__);
1405 return -1;
1406 }
1407
1408 if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1409 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1410 memset(stdi, 0, sizeof(struct stdi_readback));
1411 return -1;
1412 }
1413
1414 v4l2_dbg(2, debug, sd,
1415 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1416 __func__, stdi->lcf, stdi->bl, stdi->lcvs,
1417 stdi->hs_pol, stdi->vs_pol,
1418 stdi->interlaced ? "interlaced" : "progressive");
1419
1420 return 0;
1421 }
1422
1423 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1424 struct v4l2_enum_dv_timings *timings)
1425 {
1426 struct adv76xx_state *state = to_state(sd);
1427
1428 if (timings->index >= ARRAY_SIZE(adv76xx_timings) - 1)
1429 return -EINVAL;
1430
1431 if (timings->pad >= state->source_pad)
1432 return -EINVAL;
1433
1434 memset(timings->reserved, 0, sizeof(timings->reserved));
1435 timings->timings = adv76xx_timings[timings->index];
1436 return 0;
1437 }
1438
1439 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1440 struct v4l2_dv_timings_cap *cap)
1441 {
1442 struct adv76xx_state *state = to_state(sd);
1443
1444 if (cap->pad >= state->source_pad)
1445 return -EINVAL;
1446
1447 cap->type = V4L2_DV_BT_656_1120;
1448 cap->bt.max_width = 1920;
1449 cap->bt.max_height = 1200;
1450 cap->bt.min_pixelclock = 25000000;
1451
1452 switch (cap->pad) {
1453 case ADV76XX_PAD_HDMI_PORT_A:
1454 case ADV7604_PAD_HDMI_PORT_B:
1455 case ADV7604_PAD_HDMI_PORT_C:
1456 case ADV7604_PAD_HDMI_PORT_D:
1457 cap->bt.max_pixelclock = 225000000;
1458 break;
1459 case ADV7604_PAD_VGA_RGB:
1460 case ADV7604_PAD_VGA_COMP:
1461 default:
1462 cap->bt.max_pixelclock = 170000000;
1463 break;
1464 }
1465
1466 cap->bt.standards = V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
1467 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT;
1468 cap->bt.capabilities = V4L2_DV_BT_CAP_PROGRESSIVE |
1469 V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM;
1470 return 0;
1471 }
1472
1473 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1474 if the format is listed in adv76xx_timings[] */
1475 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1476 struct v4l2_dv_timings *timings)
1477 {
1478 int i;
1479
1480 for (i = 0; adv76xx_timings[i].bt.width; i++) {
1481 if (v4l2_match_dv_timings(timings, &adv76xx_timings[i],
1482 is_digital_input(sd) ? 250000 : 1000000)) {
1483 *timings = adv76xx_timings[i];
1484 break;
1485 }
1486 }
1487 }
1488
1489 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1490 {
1491 unsigned int freq;
1492 int a, b;
1493
1494 a = hdmi_read(sd, 0x06);
1495 b = hdmi_read(sd, 0x3b);
1496 if (a < 0 || b < 0)
1497 return 0;
1498 freq = a * 1000000 + ((b & 0x30) >> 4) * 250000;
1499
1500 if (is_hdmi(sd)) {
1501 /* adjust for deep color mode */
1502 unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1503
1504 freq = freq * 8 / bits_per_channel;
1505 }
1506
1507 return freq;
1508 }
1509
1510 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1511 {
1512 int a, b;
1513
1514 a = hdmi_read(sd, 0x51);
1515 b = hdmi_read(sd, 0x52);
1516 if (a < 0 || b < 0)
1517 return 0;
1518 return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1519 }
1520
1521 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1522 struct v4l2_dv_timings *timings)
1523 {
1524 struct adv76xx_state *state = to_state(sd);
1525 const struct adv76xx_chip_info *info = state->info;
1526 struct v4l2_bt_timings *bt = &timings->bt;
1527 struct stdi_readback stdi;
1528
1529 if (!timings)
1530 return -EINVAL;
1531
1532 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1533
1534 if (no_signal(sd)) {
1535 state->restart_stdi_once = true;
1536 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1537 return -ENOLINK;
1538 }
1539
1540 /* read STDI */
1541 if (read_stdi(sd, &stdi)) {
1542 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1543 return -ENOLINK;
1544 }
1545 bt->interlaced = stdi.interlaced ?
1546 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1547
1548 if (is_digital_input(sd)) {
1549 timings->type = V4L2_DV_BT_656_1120;
1550
1551 bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask);
1552 bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask);
1553 bt->pixelclock = info->read_hdmi_pixelclock(sd);
1554 bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1555 bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1556 bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1557 bt->vfrontporch = hdmi_read16(sd, 0x2a,
1558 info->field0_vfrontporch_mask) / 2;
1559 bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1560 bt->vbackporch = hdmi_read16(sd, 0x32,
1561 info->field0_vbackporch_mask) / 2;
1562 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1563 ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1564 if (bt->interlaced == V4L2_DV_INTERLACED) {
1565 bt->height += hdmi_read16(sd, 0x0b,
1566 info->field1_height_mask);
1567 bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1568 info->field1_vfrontporch_mask) / 2;
1569 bt->il_vsync = hdmi_read16(sd, 0x30,
1570 info->field1_vsync_mask) / 2;
1571 bt->il_vbackporch = hdmi_read16(sd, 0x34,
1572 info->field1_vbackporch_mask) / 2;
1573 }
1574 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1575 } else {
1576 /* find format
1577 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1578 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1579 */
1580 if (!stdi2dv_timings(sd, &stdi, timings))
1581 goto found;
1582 stdi.lcvs += 1;
1583 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1584 if (!stdi2dv_timings(sd, &stdi, timings))
1585 goto found;
1586 stdi.lcvs -= 2;
1587 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1588 if (stdi2dv_timings(sd, &stdi, timings)) {
1589 /*
1590 * The STDI block may measure wrong values, especially
1591 * for lcvs and lcf. If the driver can not find any
1592 * valid timing, the STDI block is restarted to measure
1593 * the video timings again. The function will return an
1594 * error, but the restart of STDI will generate a new
1595 * STDI interrupt and the format detection process will
1596 * restart.
1597 */
1598 if (state->restart_stdi_once) {
1599 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1600 /* TODO restart STDI for Sync Channel 2 */
1601 /* enter one-shot mode */
1602 cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1603 /* trigger STDI restart */
1604 cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1605 /* reset to continuous mode */
1606 cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1607 state->restart_stdi_once = false;
1608 return -ENOLINK;
1609 }
1610 v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1611 return -ERANGE;
1612 }
1613 state->restart_stdi_once = true;
1614 }
1615 found:
1616
1617 if (no_signal(sd)) {
1618 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1619 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1620 return -ENOLINK;
1621 }
1622
1623 if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1624 (is_digital_input(sd) && bt->pixelclock > 225000000)) {
1625 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1626 __func__, (u32)bt->pixelclock);
1627 return -ERANGE;
1628 }
1629
1630 if (debug > 1)
1631 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1632 timings, true);
1633
1634 return 0;
1635 }
1636
1637 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1638 struct v4l2_dv_timings *timings)
1639 {
1640 struct adv76xx_state *state = to_state(sd);
1641 struct v4l2_bt_timings *bt;
1642 int err;
1643
1644 if (!timings)
1645 return -EINVAL;
1646
1647 if (v4l2_match_dv_timings(&state->timings, timings, 0)) {
1648 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1649 return 0;
1650 }
1651
1652 bt = &timings->bt;
1653
1654 if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1655 (is_digital_input(sd) && bt->pixelclock > 225000000)) {
1656 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1657 __func__, (u32)bt->pixelclock);
1658 return -ERANGE;
1659 }
1660
1661 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1662
1663 state->timings = *timings;
1664
1665 cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1666
1667 /* Use prim_mode and vid_std when available */
1668 err = configure_predefined_video_timings(sd, timings);
1669 if (err) {
1670 /* custom settings when the video format
1671 does not have prim_mode/vid_std */
1672 configure_custom_video_timings(sd, bt);
1673 }
1674
1675 set_rgb_quantization_range(sd);
1676
1677 if (debug > 1)
1678 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1679 timings, true);
1680 return 0;
1681 }
1682
1683 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1684 struct v4l2_dv_timings *timings)
1685 {
1686 struct adv76xx_state *state = to_state(sd);
1687
1688 *timings = state->timings;
1689 return 0;
1690 }
1691
1692 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1693 {
1694 hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1695 }
1696
1697 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1698 {
1699 hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1700 }
1701
1702 static void enable_input(struct v4l2_subdev *sd)
1703 {
1704 struct adv76xx_state *state = to_state(sd);
1705
1706 if (is_analog_input(sd)) {
1707 io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */
1708 } else if (is_digital_input(sd)) {
1709 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1710 state->info->set_termination(sd, true);
1711 io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */
1712 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1713 } else {
1714 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1715 __func__, state->selected_input);
1716 }
1717 }
1718
1719 static void disable_input(struct v4l2_subdev *sd)
1720 {
1721 struct adv76xx_state *state = to_state(sd);
1722
1723 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1724 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1725 io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */
1726 state->info->set_termination(sd, false);
1727 }
1728
1729 static void select_input(struct v4l2_subdev *sd)
1730 {
1731 struct adv76xx_state *state = to_state(sd);
1732 const struct adv76xx_chip_info *info = state->info;
1733
1734 if (is_analog_input(sd)) {
1735 adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1736
1737 afe_write(sd, 0x00, 0x08); /* power up ADC */
1738 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1739 afe_write(sd, 0xc8, 0x00); /* phase control */
1740 } else if (is_digital_input(sd)) {
1741 hdmi_write(sd, 0x00, state->selected_input & 0x03);
1742
1743 adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1744
1745 if (adv76xx_has_afe(state)) {
1746 afe_write(sd, 0x00, 0xff); /* power down ADC */
1747 afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1748 afe_write(sd, 0xc8, 0x40); /* phase control */
1749 }
1750
1751 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1752 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1753 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1754 } else {
1755 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1756 __func__, state->selected_input);
1757 }
1758 }
1759
1760 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1761 u32 input, u32 output, u32 config)
1762 {
1763 struct adv76xx_state *state = to_state(sd);
1764
1765 v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1766 __func__, input, state->selected_input);
1767
1768 if (input == state->selected_input)
1769 return 0;
1770
1771 if (input > state->info->max_port)
1772 return -EINVAL;
1773
1774 state->selected_input = input;
1775
1776 disable_input(sd);
1777 select_input(sd);
1778 enable_input(sd);
1779
1780 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1781
1782 return 0;
1783 }
1784
1785 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1786 struct v4l2_subdev_pad_config *cfg,
1787 struct v4l2_subdev_mbus_code_enum *code)
1788 {
1789 struct adv76xx_state *state = to_state(sd);
1790
1791 if (code->index >= state->info->nformats)
1792 return -EINVAL;
1793
1794 code->code = state->info->formats[code->index].code;
1795
1796 return 0;
1797 }
1798
1799 static void adv76xx_fill_format(struct adv76xx_state *state,
1800 struct v4l2_mbus_framefmt *format)
1801 {
1802 memset(format, 0, sizeof(*format));
1803
1804 format->width = state->timings.bt.width;
1805 format->height = state->timings.bt.height;
1806 format->field = V4L2_FIELD_NONE;
1807 format->colorspace = V4L2_COLORSPACE_SRGB;
1808
1809 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1810 format->colorspace = (state->timings.bt.height <= 576) ?
1811 V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1812 }
1813
1814 /*
1815 * Compute the op_ch_sel value required to obtain on the bus the component order
1816 * corresponding to the selected format taking into account bus reordering
1817 * applied by the board at the output of the device.
1818 *
1819 * The following table gives the op_ch_value from the format component order
1820 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1821 * adv76xx_bus_order value in row).
1822 *
1823 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5)
1824 * ----------+-------------------------------------------------
1825 * RGB (NOP) | GBR GRB BGR RGB BRG RBG
1826 * GRB (1-2) | BGR RGB GBR GRB RBG BRG
1827 * RBG (2-3) | GRB GBR BRG RBG BGR RGB
1828 * BGR (1-3) | RBG BRG RGB BGR GRB GBR
1829 * BRG (ROR) | BRG RBG GRB GBR RGB BGR
1830 * GBR (ROL) | RGB BGR RBG BRG GBR GRB
1831 */
1832 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1833 {
1834 #define _SEL(a,b,c,d,e,f) { \
1835 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1836 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1837 #define _BUS(x) [ADV7604_BUS_ORDER_##x]
1838
1839 static const unsigned int op_ch_sel[6][6] = {
1840 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1841 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1842 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1843 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1844 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1845 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1846 };
1847
1848 return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1849 }
1850
1851 static void adv76xx_setup_format(struct adv76xx_state *state)
1852 {
1853 struct v4l2_subdev *sd = &state->sd;
1854
1855 io_write_clr_set(sd, 0x02, 0x02,
1856 state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1857 io_write(sd, 0x03, state->format->op_format_sel |
1858 state->pdata.op_format_mode_sel);
1859 io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1860 io_write_clr_set(sd, 0x05, 0x01,
1861 state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1862 }
1863
1864 static int adv76xx_get_format(struct v4l2_subdev *sd,
1865 struct v4l2_subdev_pad_config *cfg,
1866 struct v4l2_subdev_format *format)
1867 {
1868 struct adv76xx_state *state = to_state(sd);
1869
1870 if (format->pad != state->source_pad)
1871 return -EINVAL;
1872
1873 adv76xx_fill_format(state, &format->format);
1874
1875 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1876 struct v4l2_mbus_framefmt *fmt;
1877
1878 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1879 format->format.code = fmt->code;
1880 } else {
1881 format->format.code = state->format->code;
1882 }
1883
1884 return 0;
1885 }
1886
1887 static int adv76xx_set_format(struct v4l2_subdev *sd,
1888 struct v4l2_subdev_pad_config *cfg,
1889 struct v4l2_subdev_format *format)
1890 {
1891 struct adv76xx_state *state = to_state(sd);
1892 const struct adv76xx_format_info *info;
1893
1894 if (format->pad != state->source_pad)
1895 return -EINVAL;
1896
1897 info = adv76xx_format_info(state, format->format.code);
1898 if (info == NULL)
1899 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1900
1901 adv76xx_fill_format(state, &format->format);
1902 format->format.code = info->code;
1903
1904 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1905 struct v4l2_mbus_framefmt *fmt;
1906
1907 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1908 fmt->code = format->format.code;
1909 } else {
1910 state->format = info;
1911 adv76xx_setup_format(state);
1912 }
1913
1914 return 0;
1915 }
1916
1917 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
1918 {
1919 struct adv76xx_state *state = to_state(sd);
1920 const struct adv76xx_chip_info *info = state->info;
1921 const u8 irq_reg_0x43 = io_read(sd, 0x43);
1922 const u8 irq_reg_0x6b = io_read(sd, 0x6b);
1923 const u8 irq_reg_0x70 = io_read(sd, 0x70);
1924 u8 fmt_change_digital;
1925 u8 fmt_change;
1926 u8 tx_5v;
1927
1928 if (irq_reg_0x43)
1929 io_write(sd, 0x44, irq_reg_0x43);
1930 if (irq_reg_0x70)
1931 io_write(sd, 0x71, irq_reg_0x70);
1932 if (irq_reg_0x6b)
1933 io_write(sd, 0x6c, irq_reg_0x6b);
1934
1935 v4l2_dbg(2, debug, sd, "%s: ", __func__);
1936
1937 /* format change */
1938 fmt_change = irq_reg_0x43 & 0x98;
1939 fmt_change_digital = is_digital_input(sd)
1940 ? irq_reg_0x6b & info->fmt_change_digital_mask
1941 : 0;
1942
1943 if (fmt_change || fmt_change_digital) {
1944 v4l2_dbg(1, debug, sd,
1945 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
1946 __func__, fmt_change, fmt_change_digital);
1947
1948 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1949
1950 if (handled)
1951 *handled = true;
1952 }
1953 /* HDMI/DVI mode */
1954 if (irq_reg_0x6b & 0x01) {
1955 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
1956 (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
1957 set_rgb_quantization_range(sd);
1958 if (handled)
1959 *handled = true;
1960 }
1961
1962 /* tx 5v detect */
1963 tx_5v = io_read(sd, 0x70) & info->cable_det_mask;
1964 if (tx_5v) {
1965 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
1966 io_write(sd, 0x71, tx_5v);
1967 adv76xx_s_detect_tx_5v_ctrl(sd);
1968 if (handled)
1969 *handled = true;
1970 }
1971 return 0;
1972 }
1973
1974 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1975 {
1976 struct adv76xx_state *state = to_state(sd);
1977 u8 *data = NULL;
1978
1979 memset(edid->reserved, 0, sizeof(edid->reserved));
1980
1981 switch (edid->pad) {
1982 case ADV76XX_PAD_HDMI_PORT_A:
1983 case ADV7604_PAD_HDMI_PORT_B:
1984 case ADV7604_PAD_HDMI_PORT_C:
1985 case ADV7604_PAD_HDMI_PORT_D:
1986 if (state->edid.present & (1 << edid->pad))
1987 data = state->edid.edid;
1988 break;
1989 default:
1990 return -EINVAL;
1991 }
1992
1993 if (edid->start_block == 0 && edid->blocks == 0) {
1994 edid->blocks = data ? state->edid.blocks : 0;
1995 return 0;
1996 }
1997
1998 if (data == NULL)
1999 return -ENODATA;
2000
2001 if (edid->start_block >= state->edid.blocks)
2002 return -EINVAL;
2003
2004 if (edid->start_block + edid->blocks > state->edid.blocks)
2005 edid->blocks = state->edid.blocks - edid->start_block;
2006
2007 memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2008
2009 return 0;
2010 }
2011
2012 static int get_edid_spa_location(const u8 *edid)
2013 {
2014 u8 d;
2015
2016 if ((edid[0x7e] != 1) ||
2017 (edid[0x80] != 0x02) ||
2018 (edid[0x81] != 0x03)) {
2019 return -1;
2020 }
2021
2022 /* search Vendor Specific Data Block (tag 3) */
2023 d = edid[0x82] & 0x7f;
2024 if (d > 4) {
2025 int i = 0x84;
2026 int end = 0x80 + d;
2027
2028 do {
2029 u8 tag = edid[i] >> 5;
2030 u8 len = edid[i] & 0x1f;
2031
2032 if ((tag == 3) && (len >= 5))
2033 return i + 4;
2034 i += len + 1;
2035 } while (i < end);
2036 }
2037 return -1;
2038 }
2039
2040 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2041 {
2042 struct adv76xx_state *state = to_state(sd);
2043 const struct adv76xx_chip_info *info = state->info;
2044 int spa_loc;
2045 int err;
2046 int i;
2047
2048 memset(edid->reserved, 0, sizeof(edid->reserved));
2049
2050 if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2051 return -EINVAL;
2052 if (edid->start_block != 0)
2053 return -EINVAL;
2054 if (edid->blocks == 0) {
2055 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2056 state->edid.present &= ~(1 << edid->pad);
2057 adv76xx_set_hpd(state, state->edid.present);
2058 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2059
2060 /* Fall back to a 16:9 aspect ratio */
2061 state->aspect_ratio.numerator = 16;
2062 state->aspect_ratio.denominator = 9;
2063
2064 if (!state->edid.present)
2065 state->edid.blocks = 0;
2066
2067 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2068 __func__, edid->pad, state->edid.present);
2069 return 0;
2070 }
2071 if (edid->blocks > 2) {
2072 edid->blocks = 2;
2073 return -E2BIG;
2074 }
2075
2076 v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2077 __func__, edid->pad, state->edid.present);
2078
2079 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2080 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2081 adv76xx_set_hpd(state, 0);
2082 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2083
2084 spa_loc = get_edid_spa_location(edid->edid);
2085 if (spa_loc < 0)
2086 spa_loc = 0xc0; /* Default value [REF_02, p. 116] */
2087
2088 switch (edid->pad) {
2089 case ADV76XX_PAD_HDMI_PORT_A:
2090 state->spa_port_a[0] = edid->edid[spa_loc];
2091 state->spa_port_a[1] = edid->edid[spa_loc + 1];
2092 break;
2093 case ADV7604_PAD_HDMI_PORT_B:
2094 rep_write(sd, 0x70, edid->edid[spa_loc]);
2095 rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2096 break;
2097 case ADV7604_PAD_HDMI_PORT_C:
2098 rep_write(sd, 0x72, edid->edid[spa_loc]);
2099 rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2100 break;
2101 case ADV7604_PAD_HDMI_PORT_D:
2102 rep_write(sd, 0x74, edid->edid[spa_loc]);
2103 rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2104 break;
2105 default:
2106 return -EINVAL;
2107 }
2108
2109 if (info->type == ADV7604) {
2110 rep_write(sd, 0x76, spa_loc & 0xff);
2111 rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2112 } else {
2113 /* FIXME: Where is the SPA location LSB register ? */
2114 rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2115 }
2116
2117 edid->edid[spa_loc] = state->spa_port_a[0];
2118 edid->edid[spa_loc + 1] = state->spa_port_a[1];
2119
2120 memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2121 state->edid.blocks = edid->blocks;
2122 state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2123 edid->edid[0x16]);
2124 state->edid.present |= 1 << edid->pad;
2125
2126 err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2127 if (err < 0) {
2128 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2129 return err;
2130 }
2131
2132 /* adv76xx calculates the checksums and enables I2C access to internal
2133 EDID RAM from DDC port. */
2134 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2135
2136 for (i = 0; i < 1000; i++) {
2137 if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2138 break;
2139 mdelay(1);
2140 }
2141 if (i == 1000) {
2142 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2143 return -EIO;
2144 }
2145
2146 /* enable hotplug after 100 ms */
2147 queue_delayed_work(state->work_queues,
2148 &state->delayed_work_enable_hotplug, HZ / 10);
2149 return 0;
2150 }
2151
2152 /*********** avi info frame CEA-861-E **************/
2153
2154 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2155 { "AVI", 0x01, 0xe0, 0x00 },
2156 { "Audio", 0x02, 0xe3, 0x1c },
2157 { "SDP", 0x04, 0xe6, 0x2a },
2158 { "Vendor", 0x10, 0xec, 0x54 }
2159 };
2160
2161 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2162 union hdmi_infoframe *frame)
2163 {
2164 uint8_t buffer[32];
2165 u8 len;
2166 int i;
2167
2168 if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2169 v4l2_info(sd, "%s infoframe not received\n",
2170 adv76xx_cri[index].desc);
2171 return -ENOENT;
2172 }
2173
2174 for (i = 0; i < 3; i++)
2175 buffer[i] = infoframe_read(sd,
2176 adv76xx_cri[index].head_addr + i);
2177
2178 len = buffer[2] + 1;
2179
2180 if (len + 3 > sizeof(buffer)) {
2181 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2182 adv76xx_cri[index].desc, len);
2183 return -ENOENT;
2184 }
2185
2186 for (i = 0; i < len; i++)
2187 buffer[i + 3] = infoframe_read(sd,
2188 adv76xx_cri[index].payload_addr + i);
2189
2190 if (hdmi_infoframe_unpack(frame, buffer) < 0) {
2191 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2192 adv76xx_cri[index].desc);
2193 return -ENOENT;
2194 }
2195 return 0;
2196 }
2197
2198 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2199 {
2200 int i;
2201
2202 if (!is_hdmi(sd)) {
2203 v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2204 return;
2205 }
2206
2207 for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2208 union hdmi_infoframe frame;
2209 struct i2c_client *client = v4l2_get_subdevdata(sd);
2210
2211 if (adv76xx_read_infoframe(sd, i, &frame))
2212 return;
2213 hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2214 }
2215 }
2216
2217 static int adv76xx_log_status(struct v4l2_subdev *sd)
2218 {
2219 struct adv76xx_state *state = to_state(sd);
2220 const struct adv76xx_chip_info *info = state->info;
2221 struct v4l2_dv_timings timings;
2222 struct stdi_readback stdi;
2223 u8 reg_io_0x02 = io_read(sd, 0x02);
2224 u8 edid_enabled;
2225 u8 cable_det;
2226
2227 static const char * const csc_coeff_sel_rb[16] = {
2228 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2229 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2230 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2231 "reserved", "reserved", "reserved", "reserved", "manual"
2232 };
2233 static const char * const input_color_space_txt[16] = {
2234 "RGB limited range (16-235)", "RGB full range (0-255)",
2235 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2236 "xvYCC Bt.601", "xvYCC Bt.709",
2237 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2238 "invalid", "invalid", "invalid", "invalid", "invalid",
2239 "invalid", "invalid", "automatic"
2240 };
2241 static const char * const hdmi_color_space_txt[16] = {
2242 "RGB limited range (16-235)", "RGB full range (0-255)",
2243 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2244 "xvYCC Bt.601", "xvYCC Bt.709",
2245 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2246 "sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
2247 "invalid", "invalid", "invalid"
2248 };
2249 static const char * const rgb_quantization_range_txt[] = {
2250 "Automatic",
2251 "RGB limited range (16-235)",
2252 "RGB full range (0-255)",
2253 };
2254 static const char * const deep_color_mode_txt[4] = {
2255 "8-bits per channel",
2256 "10-bits per channel",
2257 "12-bits per channel",
2258 "16-bits per channel (not supported)"
2259 };
2260
2261 v4l2_info(sd, "-----Chip status-----\n");
2262 v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2263 edid_enabled = rep_read(sd, info->edid_status_reg);
2264 v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2265 ((edid_enabled & 0x01) ? "Yes" : "No"),
2266 ((edid_enabled & 0x02) ? "Yes" : "No"),
2267 ((edid_enabled & 0x04) ? "Yes" : "No"),
2268 ((edid_enabled & 0x08) ? "Yes" : "No"));
2269 v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ?
2270 "enabled" : "disabled");
2271
2272 v4l2_info(sd, "-----Signal status-----\n");
2273 cable_det = info->read_cable_det(sd);
2274 v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2275 ((cable_det & 0x01) ? "Yes" : "No"),
2276 ((cable_det & 0x02) ? "Yes" : "No"),
2277 ((cable_det & 0x04) ? "Yes" : "No"),
2278 ((cable_det & 0x08) ? "Yes" : "No"));
2279 v4l2_info(sd, "TMDS signal detected: %s\n",
2280 no_signal_tmds(sd) ? "false" : "true");
2281 v4l2_info(sd, "TMDS signal locked: %s\n",
2282 no_lock_tmds(sd) ? "false" : "true");
2283 v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2284 v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2285 v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2286 v4l2_info(sd, "CP free run: %s\n",
2287 (in_free_run(sd)) ? "on" : "off");
2288 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2289 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2290 (io_read(sd, 0x01) & 0x70) >> 4);
2291
2292 v4l2_info(sd, "-----Video Timings-----\n");
2293 if (read_stdi(sd, &stdi))
2294 v4l2_info(sd, "STDI: not locked\n");
2295 else
2296 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2297 stdi.lcf, stdi.bl, stdi.lcvs,
2298 stdi.interlaced ? "interlaced" : "progressive",
2299 stdi.hs_pol, stdi.vs_pol);
2300 if (adv76xx_query_dv_timings(sd, &timings))
2301 v4l2_info(sd, "No video detected\n");
2302 else
2303 v4l2_print_dv_timings(sd->name, "Detected format: ",
2304 &timings, true);
2305 v4l2_print_dv_timings(sd->name, "Configured format: ",
2306 &state->timings, true);
2307
2308 if (no_signal(sd))
2309 return 0;
2310
2311 v4l2_info(sd, "-----Color space-----\n");
2312 v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2313 rgb_quantization_range_txt[state->rgb_quantization_range]);
2314 v4l2_info(sd, "Input color space: %s\n",
2315 input_color_space_txt[reg_io_0x02 >> 4]);
2316 v4l2_info(sd, "Output color space: %s %s, saturator %s, alt-gamma %s\n",
2317 (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2318 (reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)",
2319 (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2320 "enabled" : "disabled",
2321 (reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2322 v4l2_info(sd, "Color space conversion: %s\n",
2323 csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2324
2325 if (!is_digital_input(sd))
2326 return 0;
2327
2328 v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2329 v4l2_info(sd, "Digital video port selected: %c\n",
2330 (hdmi_read(sd, 0x00) & 0x03) + 'A');
2331 v4l2_info(sd, "HDCP encrypted content: %s\n",
2332 (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2333 v4l2_info(sd, "HDCP keys read: %s%s\n",
2334 (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2335 (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2336 if (is_hdmi(sd)) {
2337 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2338 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2339 bool audio_mute = io_read(sd, 0x65) & 0x40;
2340
2341 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2342 audio_pll_locked ? "locked" : "not locked",
2343 audio_sample_packet_detect ? "detected" : "not detected",
2344 audio_mute ? "muted" : "enabled");
2345 if (audio_pll_locked && audio_sample_packet_detect) {
2346 v4l2_info(sd, "Audio format: %s\n",
2347 (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2348 }
2349 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2350 (hdmi_read(sd, 0x5c) << 8) +
2351 (hdmi_read(sd, 0x5d) & 0xf0));
2352 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2353 (hdmi_read(sd, 0x5e) << 8) +
2354 hdmi_read(sd, 0x5f));
2355 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2356
2357 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2358 v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2359
2360 adv76xx_log_infoframes(sd);
2361 }
2362
2363 return 0;
2364 }
2365
2366 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2367 struct v4l2_fh *fh,
2368 struct v4l2_event_subscription *sub)
2369 {
2370 switch (sub->type) {
2371 case V4L2_EVENT_SOURCE_CHANGE:
2372 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2373 case V4L2_EVENT_CTRL:
2374 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2375 default:
2376 return -EINVAL;
2377 }
2378 }
2379
2380 /* ----------------------------------------------------------------------- */
2381
2382 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2383 .s_ctrl = adv76xx_s_ctrl,
2384 };
2385
2386 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2387 .log_status = adv76xx_log_status,
2388 .interrupt_service_routine = adv76xx_isr,
2389 .subscribe_event = adv76xx_subscribe_event,
2390 .unsubscribe_event = v4l2_event_subdev_unsubscribe,
2391 #ifdef CONFIG_VIDEO_ADV_DEBUG
2392 .g_register = adv76xx_g_register,
2393 .s_register = adv76xx_s_register,
2394 #endif
2395 };
2396
2397 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2398 .s_routing = adv76xx_s_routing,
2399 .g_input_status = adv76xx_g_input_status,
2400 .s_dv_timings = adv76xx_s_dv_timings,
2401 .g_dv_timings = adv76xx_g_dv_timings,
2402 .query_dv_timings = adv76xx_query_dv_timings,
2403 };
2404
2405 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2406 .enum_mbus_code = adv76xx_enum_mbus_code,
2407 .get_fmt = adv76xx_get_format,
2408 .set_fmt = adv76xx_set_format,
2409 .get_edid = adv76xx_get_edid,
2410 .set_edid = adv76xx_set_edid,
2411 .dv_timings_cap = adv76xx_dv_timings_cap,
2412 .enum_dv_timings = adv76xx_enum_dv_timings,
2413 };
2414
2415 static const struct v4l2_subdev_ops adv76xx_ops = {
2416 .core = &adv76xx_core_ops,
2417 .video = &adv76xx_video_ops,
2418 .pad = &adv76xx_pad_ops,
2419 };
2420
2421 /* -------------------------- custom ctrls ---------------------------------- */
2422
2423 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2424 .ops = &adv76xx_ctrl_ops,
2425 .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2426 .name = "Analog Sampling Phase",
2427 .type = V4L2_CTRL_TYPE_INTEGER,
2428 .min = 0,
2429 .max = 0x1f,
2430 .step = 1,
2431 .def = 0,
2432 };
2433
2434 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2435 .ops = &adv76xx_ctrl_ops,
2436 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2437 .name = "Free Running Color, Manual",
2438 .type = V4L2_CTRL_TYPE_BOOLEAN,
2439 .min = false,
2440 .max = true,
2441 .step = 1,
2442 .def = false,
2443 };
2444
2445 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2446 .ops = &adv76xx_ctrl_ops,
2447 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2448 .name = "Free Running Color",
2449 .type = V4L2_CTRL_TYPE_INTEGER,
2450 .min = 0x0,
2451 .max = 0xffffff,
2452 .step = 0x1,
2453 .def = 0x0,
2454 };
2455
2456 /* ----------------------------------------------------------------------- */
2457
2458 static int adv76xx_core_init(struct v4l2_subdev *sd)
2459 {
2460 struct adv76xx_state *state = to_state(sd);
2461 const struct adv76xx_chip_info *info = state->info;
2462 struct adv76xx_platform_data *pdata = &state->pdata;
2463
2464 hdmi_write(sd, 0x48,
2465 (pdata->disable_pwrdnb ? 0x80 : 0) |
2466 (pdata->disable_cable_det_rst ? 0x40 : 0));
2467
2468 disable_input(sd);
2469
2470 if (pdata->default_input >= 0 &&
2471 pdata->default_input < state->source_pad) {
2472 state->selected_input = pdata->default_input;
2473 select_input(sd);
2474 enable_input(sd);
2475 }
2476
2477 /* power */
2478 io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */
2479 io_write(sd, 0x0b, 0x44); /* Power down ESDP block */
2480 cp_write(sd, 0xcf, 0x01); /* Power down macrovision */
2481
2482 /* video format */
2483 io_write_clr_set(sd, 0x02, 0x0f,
2484 pdata->alt_gamma << 3 |
2485 pdata->op_656_range << 2 |
2486 pdata->alt_data_sat << 0);
2487 io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2488 pdata->insert_av_codes << 2 |
2489 pdata->replicate_av_codes << 1);
2490 adv76xx_setup_format(state);
2491
2492 cp_write(sd, 0x69, 0x30); /* Enable CP CSC */
2493
2494 /* VS, HS polarities */
2495 io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2496 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2497
2498 /* Adjust drive strength */
2499 io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2500 pdata->dr_str_clk << 2 |
2501 pdata->dr_str_sync);
2502
2503 cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2504 cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2505 cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold -
2506 ADI recommended setting [REF_01, c. 2.3.3] */
2507 cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold -
2508 ADI recommended setting [REF_01, c. 2.3.3] */
2509 cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2510 for digital formats */
2511
2512 /* HDMI audio */
2513 hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2514 hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2515 hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2516
2517 /* TODO from platform data */
2518 afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */
2519
2520 if (adv76xx_has_afe(state)) {
2521 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2522 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2523 }
2524
2525 /* interrupts */
2526 io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2527 io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2528 io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2529 io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2530 info->setup_irqs(sd);
2531
2532 return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2533 }
2534
2535 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2536 {
2537 io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2538 }
2539
2540 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2541 {
2542 io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2543 }
2544
2545 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2546 {
2547 io_write(sd, 0x41, 0xd0); /* disable INT2 */
2548 }
2549
2550 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2551 {
2552 unsigned int i;
2553
2554 for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
2555 if (state->i2c_clients[i])
2556 i2c_unregister_device(state->i2c_clients[i]);
2557 }
2558 }
2559
2560 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2561 u8 addr, u8 io_reg)
2562 {
2563 struct i2c_client *client = v4l2_get_subdevdata(sd);
2564
2565 if (addr)
2566 io_write(sd, io_reg, addr << 1);
2567 return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
2568 }
2569
2570 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2571 /* reset ADI recommended settings for HDMI: */
2572 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2573 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2574 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2575 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2576 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2577 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2578 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2579 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2580 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2581 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2582 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2583 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2584 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2585
2586 /* set ADI recommended settings for digitizer */
2587 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2588 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2589 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2590 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2591 { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2592 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2593
2594 { ADV76XX_REG_SEQ_TERM, 0 },
2595 };
2596
2597 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2598 /* set ADI recommended settings for HDMI: */
2599 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2600 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2601 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2602 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2603 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2604 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2605 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2606 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2607 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2608 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2609 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2610 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2611
2612 /* reset ADI recommended settings for digitizer */
2613 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2614 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2615 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2616
2617 { ADV76XX_REG_SEQ_TERM, 0 },
2618 };
2619
2620 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2621 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2622 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2623 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2624 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2625 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2626 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2627 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2628 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2629 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2630 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2631 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2632 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2633
2634 { ADV76XX_REG_SEQ_TERM, 0 },
2635 };
2636
2637 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2638 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2639 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2640 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2641 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2642 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2643 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2644 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2645 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2646 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2647 { ADV76XX_REG_SEQ_TERM, 0 },
2648 };
2649
2650 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2651 [ADV7604] = {
2652 .type = ADV7604,
2653 .has_afe = true,
2654 .max_port = ADV7604_PAD_VGA_COMP,
2655 .num_dv_ports = 4,
2656 .edid_enable_reg = 0x77,
2657 .edid_status_reg = 0x7d,
2658 .lcf_reg = 0xb3,
2659 .tdms_lock_mask = 0xe0,
2660 .cable_det_mask = 0x1e,
2661 .fmt_change_digital_mask = 0xc1,
2662 .cp_csc = 0xfc,
2663 .formats = adv7604_formats,
2664 .nformats = ARRAY_SIZE(adv7604_formats),
2665 .set_termination = adv7604_set_termination,
2666 .setup_irqs = adv7604_setup_irqs,
2667 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
2668 .read_cable_det = adv7604_read_cable_det,
2669 .recommended_settings = {
2670 [0] = adv7604_recommended_settings_afe,
2671 [1] = adv7604_recommended_settings_hdmi,
2672 },
2673 .num_recommended_settings = {
2674 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
2675 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
2676 },
2677 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
2678 BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2679 BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2680 BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
2681 BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
2682 BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2683 BIT(ADV7604_PAGE_VDP),
2684 .linewidth_mask = 0xfff,
2685 .field0_height_mask = 0xfff,
2686 .field1_height_mask = 0xfff,
2687 .hfrontporch_mask = 0x3ff,
2688 .hsync_mask = 0x3ff,
2689 .hbackporch_mask = 0x3ff,
2690 .field0_vfrontporch_mask = 0x1fff,
2691 .field0_vsync_mask = 0x1fff,
2692 .field0_vbackporch_mask = 0x1fff,
2693 .field1_vfrontporch_mask = 0x1fff,
2694 .field1_vsync_mask = 0x1fff,
2695 .field1_vbackporch_mask = 0x1fff,
2696 },
2697 [ADV7611] = {
2698 .type = ADV7611,
2699 .has_afe = false,
2700 .max_port = ADV76XX_PAD_HDMI_PORT_A,
2701 .num_dv_ports = 1,
2702 .edid_enable_reg = 0x74,
2703 .edid_status_reg = 0x76,
2704 .lcf_reg = 0xa3,
2705 .tdms_lock_mask = 0x43,
2706 .cable_det_mask = 0x01,
2707 .fmt_change_digital_mask = 0x03,
2708 .cp_csc = 0xf4,
2709 .formats = adv7611_formats,
2710 .nformats = ARRAY_SIZE(adv7611_formats),
2711 .set_termination = adv7611_set_termination,
2712 .setup_irqs = adv7611_setup_irqs,
2713 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2714 .read_cable_det = adv7611_read_cable_det,
2715 .recommended_settings = {
2716 [1] = adv7611_recommended_settings_hdmi,
2717 },
2718 .num_recommended_settings = {
2719 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
2720 },
2721 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
2722 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
2723 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) |
2724 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2725 .linewidth_mask = 0x1fff,
2726 .field0_height_mask = 0x1fff,
2727 .field1_height_mask = 0x1fff,
2728 .hfrontporch_mask = 0x1fff,
2729 .hsync_mask = 0x1fff,
2730 .hbackporch_mask = 0x1fff,
2731 .field0_vfrontporch_mask = 0x3fff,
2732 .field0_vsync_mask = 0x3fff,
2733 .field0_vbackporch_mask = 0x3fff,
2734 .field1_vfrontporch_mask = 0x3fff,
2735 .field1_vsync_mask = 0x3fff,
2736 .field1_vbackporch_mask = 0x3fff,
2737 },
2738 [ADV7612] = {
2739 .type = ADV7612,
2740 .has_afe = false,
2741 .max_port = ADV76XX_PAD_HDMI_PORT_A, /* B not supported */
2742 .num_dv_ports = 1, /* normally 2 */
2743 .edid_enable_reg = 0x74,
2744 .edid_status_reg = 0x76,
2745 .lcf_reg = 0xa3,
2746 .tdms_lock_mask = 0x43,
2747 .cable_det_mask = 0x01,
2748 .fmt_change_digital_mask = 0x03,
2749 .cp_csc = 0xf4,
2750 .formats = adv7612_formats,
2751 .nformats = ARRAY_SIZE(adv7612_formats),
2752 .set_termination = adv7611_set_termination,
2753 .setup_irqs = adv7612_setup_irqs,
2754 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2755 .read_cable_det = adv7612_read_cable_det,
2756 .recommended_settings = {
2757 [1] = adv7612_recommended_settings_hdmi,
2758 },
2759 .num_recommended_settings = {
2760 [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
2761 },
2762 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
2763 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
2764 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) |
2765 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2766 .linewidth_mask = 0x1fff,
2767 .field0_height_mask = 0x1fff,
2768 .field1_height_mask = 0x1fff,
2769 .hfrontporch_mask = 0x1fff,
2770 .hsync_mask = 0x1fff,
2771 .hbackporch_mask = 0x1fff,
2772 .field0_vfrontporch_mask = 0x3fff,
2773 .field0_vsync_mask = 0x3fff,
2774 .field0_vbackporch_mask = 0x3fff,
2775 .field1_vfrontporch_mask = 0x3fff,
2776 .field1_vsync_mask = 0x3fff,
2777 .field1_vbackporch_mask = 0x3fff,
2778 },
2779 };
2780
2781 static const struct i2c_device_id adv76xx_i2c_id[] = {
2782 { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
2783 { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
2784 { "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
2785 { }
2786 };
2787 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
2788
2789 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
2790 { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
2791 { .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
2792 { }
2793 };
2794 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
2795
2796 static int adv76xx_parse_dt(struct adv76xx_state *state)
2797 {
2798 struct v4l2_of_endpoint bus_cfg;
2799 struct device_node *endpoint;
2800 struct device_node *np;
2801 unsigned int flags;
2802 u32 v;
2803
2804 np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
2805
2806 /* Parse the endpoint. */
2807 endpoint = of_graph_get_next_endpoint(np, NULL);
2808 if (!endpoint)
2809 return -EINVAL;
2810
2811 v4l2_of_parse_endpoint(endpoint, &bus_cfg);
2812
2813 if (!of_property_read_u32(endpoint, "default-input", &v))
2814 state->pdata.default_input = v;
2815 else
2816 state->pdata.default_input = -1;
2817
2818 of_node_put(endpoint);
2819
2820 flags = bus_cfg.bus.parallel.flags;
2821
2822 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
2823 state->pdata.inv_hs_pol = 1;
2824
2825 if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
2826 state->pdata.inv_vs_pol = 1;
2827
2828 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
2829 state->pdata.inv_llc_pol = 1;
2830
2831 if (bus_cfg.bus_type == V4L2_MBUS_BT656) {
2832 state->pdata.insert_av_codes = 1;
2833 state->pdata.op_656_range = 1;
2834 }
2835
2836 /* Disable the interrupt for now as no DT-based board uses it. */
2837 state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
2838
2839 /* Use the default I2C addresses. */
2840 state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
2841 state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
2842 state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
2843 state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
2844 state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
2845 state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
2846 state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
2847 state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
2848 state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
2849 state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
2850 state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
2851 state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;
2852
2853 /* Hardcode the remaining platform data fields. */
2854 state->pdata.disable_pwrdnb = 0;
2855 state->pdata.disable_cable_det_rst = 0;
2856 state->pdata.blank_data = 1;
2857 state->pdata.alt_data_sat = 1;
2858 state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
2859 state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
2860
2861 return 0;
2862 }
2863
2864 static const struct regmap_config adv76xx_regmap_cnf[] = {
2865 {
2866 .name = "io",
2867 .reg_bits = 8,
2868 .val_bits = 8,
2869
2870 .max_register = 0xff,
2871 .cache_type = REGCACHE_NONE,
2872 },
2873 {
2874 .name = "avlink",
2875 .reg_bits = 8,
2876 .val_bits = 8,
2877
2878 .max_register = 0xff,
2879 .cache_type = REGCACHE_NONE,
2880 },
2881 {
2882 .name = "cec",
2883 .reg_bits = 8,
2884 .val_bits = 8,
2885
2886 .max_register = 0xff,
2887 .cache_type = REGCACHE_NONE,
2888 },
2889 {
2890 .name = "infoframe",
2891 .reg_bits = 8,
2892 .val_bits = 8,
2893
2894 .max_register = 0xff,
2895 .cache_type = REGCACHE_NONE,
2896 },
2897 {
2898 .name = "esdp",
2899 .reg_bits = 8,
2900 .val_bits = 8,
2901
2902 .max_register = 0xff,
2903 .cache_type = REGCACHE_NONE,
2904 },
2905 {
2906 .name = "epp",
2907 .reg_bits = 8,
2908 .val_bits = 8,
2909
2910 .max_register = 0xff,
2911 .cache_type = REGCACHE_NONE,
2912 },
2913 {
2914 .name = "afe",
2915 .reg_bits = 8,
2916 .val_bits = 8,
2917
2918 .max_register = 0xff,
2919 .cache_type = REGCACHE_NONE,
2920 },
2921 {
2922 .name = "rep",
2923 .reg_bits = 8,
2924 .val_bits = 8,
2925
2926 .max_register = 0xff,
2927 .cache_type = REGCACHE_NONE,
2928 },
2929 {
2930 .name = "edid",
2931 .reg_bits = 8,
2932 .val_bits = 8,
2933
2934 .max_register = 0xff,
2935 .cache_type = REGCACHE_NONE,
2936 },
2937
2938 {
2939 .name = "hdmi",
2940 .reg_bits = 8,
2941 .val_bits = 8,
2942
2943 .max_register = 0xff,
2944 .cache_type = REGCACHE_NONE,
2945 },
2946 {
2947 .name = "test",
2948 .reg_bits = 8,
2949 .val_bits = 8,
2950
2951 .max_register = 0xff,
2952 .cache_type = REGCACHE_NONE,
2953 },
2954 {
2955 .name = "cp",
2956 .reg_bits = 8,
2957 .val_bits = 8,
2958
2959 .max_register = 0xff,
2960 .cache_type = REGCACHE_NONE,
2961 },
2962 {
2963 .name = "vdp",
2964 .reg_bits = 8,
2965 .val_bits = 8,
2966
2967 .max_register = 0xff,
2968 .cache_type = REGCACHE_NONE,
2969 },
2970 };
2971
2972 static int configure_regmap(struct adv76xx_state *state, int region)
2973 {
2974 int err;
2975
2976 if (!state->i2c_clients[region])
2977 return -ENODEV;
2978
2979 state->regmap[region] =
2980 devm_regmap_init_i2c(state->i2c_clients[region],
2981 &adv76xx_regmap_cnf[region]);
2982
2983 if (IS_ERR(state->regmap[region])) {
2984 err = PTR_ERR(state->regmap[region]);
2985 v4l_err(state->i2c_clients[region],
2986 "Error initializing regmap %d with error %d\n",
2987 region, err);
2988 return -EINVAL;
2989 }
2990
2991 return 0;
2992 }
2993
2994 static int configure_regmaps(struct adv76xx_state *state)
2995 {
2996 int i, err;
2997
2998 for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
2999 err = configure_regmap(state, i);
3000 if (err && (err != -ENODEV))
3001 return err;
3002 }
3003 return 0;
3004 }
3005
3006 static int adv76xx_probe(struct i2c_client *client,
3007 const struct i2c_device_id *id)
3008 {
3009 static const struct v4l2_dv_timings cea640x480 =
3010 V4L2_DV_BT_CEA_640X480P59_94;
3011 struct adv76xx_state *state;
3012 struct v4l2_ctrl_handler *hdl;
3013 struct v4l2_subdev *sd;
3014 unsigned int i;
3015 unsigned int val, val2;
3016 int err;
3017
3018 /* Check if the adapter supports the needed features */
3019 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3020 return -EIO;
3021 v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3022 client->addr << 1);
3023
3024 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3025 if (!state) {
3026 v4l_err(client, "Could not allocate adv76xx_state memory!\n");
3027 return -ENOMEM;
3028 }
3029
3030 state->i2c_clients[ADV76XX_PAGE_IO] = client;
3031
3032 /* initialize variables */
3033 state->restart_stdi_once = true;
3034 state->selected_input = ~0;
3035
3036 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3037 const struct of_device_id *oid;
3038
3039 oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3040 state->info = oid->data;
3041
3042 err = adv76xx_parse_dt(state);
3043 if (err < 0) {
3044 v4l_err(client, "DT parsing error\n");
3045 return err;
3046 }
3047 } else if (client->dev.platform_data) {
3048 struct adv76xx_platform_data *pdata = client->dev.platform_data;
3049
3050 state->info = (const struct adv76xx_chip_info *)id->driver_data;
3051 state->pdata = *pdata;
3052 } else {
3053 v4l_err(client, "No platform data!\n");
3054 return -ENODEV;
3055 }
3056
3057 /* Request GPIOs. */
3058 for (i = 0; i < state->info->num_dv_ports; ++i) {
3059 state->hpd_gpio[i] =
3060 devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3061 GPIOD_OUT_LOW);
3062 if (IS_ERR(state->hpd_gpio[i]))
3063 return PTR_ERR(state->hpd_gpio[i]);
3064
3065 if (state->hpd_gpio[i])
3066 v4l_info(client, "Handling HPD %u GPIO\n", i);
3067 }
3068
3069 state->timings = cea640x480;
3070 state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3071
3072 sd = &state->sd;
3073 v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3074 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3075 id->name, i2c_adapter_id(client->adapter),
3076 client->addr);
3077 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3078
3079 /* Configure IO Regmap region */
3080 err = configure_regmap(state, ADV76XX_PAGE_IO);
3081
3082 if (err) {
3083 v4l2_err(sd, "Error configuring IO regmap region\n");
3084 return -ENODEV;
3085 }
3086
3087 /*
3088 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3089 * identifies the revision, while on ADV7611 it identifies the model as
3090 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3091 */
3092 switch (state->info->type) {
3093 case ADV7604:
3094 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3095 if (err) {
3096 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3097 return -ENODEV;
3098 }
3099 if (val != 0x68) {
3100 v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3101 client->addr << 1);
3102 return -ENODEV;
3103 }
3104 break;
3105 case ADV7611:
3106 case ADV7612:
3107 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3108 0xea,
3109 &val);
3110 if (err) {
3111 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3112 return -ENODEV;
3113 }
3114 val2 = val << 8;
3115 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3116 0xeb,
3117 &val);
3118 if (err) {
3119 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3120 return -ENODEV;
3121 }
3122 val |= val2;
3123 if ((state->info->type == ADV7611 && val != 0x2051) ||
3124 (state->info->type == ADV7612 && val != 0x2041)) {
3125 v4l2_err(sd, "not an adv761x on address 0x%x\n",
3126 client->addr << 1);
3127 return -ENODEV;
3128 }
3129 break;
3130 }
3131
3132 /* control handlers */
3133 hdl = &state->hdl;
3134 v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3135
3136 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3137 V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3138 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3139 V4L2_CID_CONTRAST, 0, 255, 1, 128);
3140 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3141 V4L2_CID_SATURATION, 0, 255, 1, 128);
3142 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3143 V4L2_CID_HUE, 0, 128, 1, 0);
3144
3145 /* private controls */
3146 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3147 V4L2_CID_DV_RX_POWER_PRESENT, 0,
3148 (1 << state->info->num_dv_ports) - 1, 0, 0);
3149 state->rgb_quantization_range_ctrl =
3150 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3151 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3152 0, V4L2_DV_RGB_RANGE_AUTO);
3153
3154 /* custom controls */
3155 if (adv76xx_has_afe(state))
3156 state->analog_sampling_phase_ctrl =
3157 v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3158 state->free_run_color_manual_ctrl =
3159 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3160 state->free_run_color_ctrl =
3161 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3162
3163 sd->ctrl_handler = hdl;
3164 if (hdl->error) {
3165 err = hdl->error;
3166 goto err_hdl;
3167 }
3168 state->detect_tx_5v_ctrl->is_private = true;
3169 state->rgb_quantization_range_ctrl->is_private = true;
3170 if (adv76xx_has_afe(state))
3171 state->analog_sampling_phase_ctrl->is_private = true;
3172 state->free_run_color_manual_ctrl->is_private = true;
3173 state->free_run_color_ctrl->is_private = true;
3174
3175 if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3176 err = -ENODEV;
3177 goto err_hdl;
3178 }
3179
3180 for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3181 if (!(BIT(i) & state->info->page_mask))
3182 continue;
3183
3184 state->i2c_clients[i] =
3185 adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
3186 0xf2 + i);
3187 if (state->i2c_clients[i] == NULL) {
3188 err = -ENOMEM;
3189 v4l2_err(sd, "failed to create i2c client %u\n", i);
3190 goto err_i2c;
3191 }
3192 }
3193
3194 /* work queues */
3195 state->work_queues = create_singlethread_workqueue(client->name);
3196 if (!state->work_queues) {
3197 v4l2_err(sd, "Could not create work queue\n");
3198 err = -ENOMEM;
3199 goto err_i2c;
3200 }
3201
3202 INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3203 adv76xx_delayed_work_enable_hotplug);
3204
3205 state->source_pad = state->info->num_dv_ports
3206 + (state->info->has_afe ? 2 : 0);
3207 for (i = 0; i < state->source_pad; ++i)
3208 state->pads[i].flags = MEDIA_PAD_FL_SINK;
3209 state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3210
3211 err = media_entity_init(&sd->entity, state->source_pad + 1,
3212 state->pads, 0);
3213 if (err)
3214 goto err_work_queues;
3215
3216 /* Configure regmaps */
3217 err = configure_regmaps(state);
3218 if (err)
3219 goto err_entity;
3220
3221 err = adv76xx_core_init(sd);
3222 if (err)
3223 goto err_entity;
3224 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3225 client->addr << 1, client->adapter->name);
3226
3227 err = v4l2_async_register_subdev(sd);
3228 if (err)
3229 goto err_entity;
3230
3231 return 0;
3232
3233 err_entity:
3234 media_entity_cleanup(&sd->entity);
3235 err_work_queues:
3236 cancel_delayed_work(&state->delayed_work_enable_hotplug);
3237 destroy_workqueue(state->work_queues);
3238 err_i2c:
3239 adv76xx_unregister_clients(state);
3240 err_hdl:
3241 v4l2_ctrl_handler_free(hdl);
3242 return err;
3243 }
3244
3245 /* ----------------------------------------------------------------------- */
3246
3247 static int adv76xx_remove(struct i2c_client *client)
3248 {
3249 struct v4l2_subdev *sd = i2c_get_clientdata(client);
3250 struct adv76xx_state *state = to_state(sd);
3251
3252 cancel_delayed_work(&state->delayed_work_enable_hotplug);
3253 destroy_workqueue(state->work_queues);
3254 v4l2_async_unregister_subdev(sd);
3255 media_entity_cleanup(&sd->entity);
3256 adv76xx_unregister_clients(to_state(sd));
3257 v4l2_ctrl_handler_free(sd->ctrl_handler);
3258 return 0;
3259 }
3260
3261 /* ----------------------------------------------------------------------- */
3262
3263 static struct i2c_driver adv76xx_driver = {
3264 .driver = {
3265 .name = "adv7604",
3266 .of_match_table = of_match_ptr(adv76xx_of_id),
3267 },
3268 .probe = adv76xx_probe,
3269 .remove = adv76xx_remove,
3270 .id_table = adv76xx_i2c_id,
3271 };
3272
3273 module_i2c_driver(adv76xx_driver);