]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/media/i2c/adv7604.c
4b98a02ac5b6fd867e85630260d6079530a06bc6
[mirror_ubuntu-bionic-kernel.git] / drivers / media / i2c / adv7604.c
1 /*
2 * adv7604 - Analog Devices ADV7604 video decoder driver
3 *
4 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5 *
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17 * SOFTWARE.
18 *
19 */
20
21 /*
22 * References (c = chapter, p = page):
23 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
24 * Revision 2.5, June 2010
25 * REF_02 - Analog devices, Register map documentation, Documentation of
26 * the register maps, Software manual, Rev. F, June 2010
27 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
28 */
29
30 #include <linux/delay.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/of_graph.h>
37 #include <linux/slab.h>
38 #include <linux/v4l2-dv-timings.h>
39 #include <linux/videodev2.h>
40 #include <linux/workqueue.h>
41 #include <linux/regmap.h>
42
43 #include <media/i2c/adv7604.h>
44 #include <media/cec.h>
45 #include <media/v4l2-ctrls.h>
46 #include <media/v4l2-device.h>
47 #include <media/v4l2-event.h>
48 #include <media/v4l2-dv-timings.h>
49 #include <media/v4l2-fwnode.h>
50
51 static int debug;
52 module_param(debug, int, 0644);
53 MODULE_PARM_DESC(debug, "debug level (0-2)");
54
55 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
56 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
57 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
58 MODULE_LICENSE("GPL");
59
60 /* ADV7604 system clock frequency */
61 #define ADV76XX_FSC (28636360)
62
63 #define ADV76XX_RGB_OUT (1 << 1)
64
65 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0)
66 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0)
67 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0)
68
69 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5)
70 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5)
71 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5)
72 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5)
73 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5)
74 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5)
75
76 #define ADV76XX_OP_CH_SEL_GBR (0 << 5)
77 #define ADV76XX_OP_CH_SEL_GRB (1 << 5)
78 #define ADV76XX_OP_CH_SEL_BGR (2 << 5)
79 #define ADV76XX_OP_CH_SEL_RGB (3 << 5)
80 #define ADV76XX_OP_CH_SEL_BRG (4 << 5)
81 #define ADV76XX_OP_CH_SEL_RBG (5 << 5)
82
83 #define ADV76XX_OP_SWAP_CB_CR (1 << 0)
84
85 #define ADV76XX_MAX_ADDRS (3)
86
87 enum adv76xx_type {
88 ADV7604,
89 ADV7611,
90 ADV7612,
91 };
92
93 struct adv76xx_reg_seq {
94 unsigned int reg;
95 u8 val;
96 };
97
98 struct adv76xx_format_info {
99 u32 code;
100 u8 op_ch_sel;
101 bool rgb_out;
102 bool swap_cb_cr;
103 u8 op_format_sel;
104 };
105
106 struct adv76xx_cfg_read_infoframe {
107 const char *desc;
108 u8 present_mask;
109 u8 head_addr;
110 u8 payload_addr;
111 };
112
113 struct adv76xx_chip_info {
114 enum adv76xx_type type;
115
116 bool has_afe;
117 unsigned int max_port;
118 unsigned int num_dv_ports;
119
120 unsigned int edid_enable_reg;
121 unsigned int edid_status_reg;
122 unsigned int lcf_reg;
123
124 unsigned int cable_det_mask;
125 unsigned int tdms_lock_mask;
126 unsigned int fmt_change_digital_mask;
127 unsigned int cp_csc;
128
129 const struct adv76xx_format_info *formats;
130 unsigned int nformats;
131
132 void (*set_termination)(struct v4l2_subdev *sd, bool enable);
133 void (*setup_irqs)(struct v4l2_subdev *sd);
134 unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
135 unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
136
137 /* 0 = AFE, 1 = HDMI */
138 const struct adv76xx_reg_seq *recommended_settings[2];
139 unsigned int num_recommended_settings[2];
140
141 unsigned long page_mask;
142
143 /* Masks for timings */
144 unsigned int linewidth_mask;
145 unsigned int field0_height_mask;
146 unsigned int field1_height_mask;
147 unsigned int hfrontporch_mask;
148 unsigned int hsync_mask;
149 unsigned int hbackporch_mask;
150 unsigned int field0_vfrontporch_mask;
151 unsigned int field1_vfrontporch_mask;
152 unsigned int field0_vsync_mask;
153 unsigned int field1_vsync_mask;
154 unsigned int field0_vbackporch_mask;
155 unsigned int field1_vbackporch_mask;
156 };
157
158 /*
159 **********************************************************************
160 *
161 * Arrays with configuration parameters for the ADV7604
162 *
163 **********************************************************************
164 */
165
166 struct adv76xx_state {
167 const struct adv76xx_chip_info *info;
168 struct adv76xx_platform_data pdata;
169
170 struct gpio_desc *hpd_gpio[4];
171 struct gpio_desc *reset_gpio;
172
173 struct v4l2_subdev sd;
174 struct media_pad pads[ADV76XX_PAD_MAX];
175 unsigned int source_pad;
176
177 struct v4l2_ctrl_handler hdl;
178
179 enum adv76xx_pad selected_input;
180
181 struct v4l2_dv_timings timings;
182 const struct adv76xx_format_info *format;
183
184 struct {
185 u8 edid[256];
186 u32 present;
187 unsigned blocks;
188 } edid;
189 u16 spa_port_a[2];
190 struct v4l2_fract aspect_ratio;
191 u32 rgb_quantization_range;
192 struct delayed_work delayed_work_enable_hotplug;
193 bool restart_stdi_once;
194
195 /* CEC */
196 struct cec_adapter *cec_adap;
197 u8 cec_addr[ADV76XX_MAX_ADDRS];
198 u8 cec_valid_addrs;
199 bool cec_enabled_adap;
200
201 /* i2c clients */
202 struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
203
204 /* Regmaps */
205 struct regmap *regmap[ADV76XX_PAGE_MAX];
206
207 /* controls */
208 struct v4l2_ctrl *detect_tx_5v_ctrl;
209 struct v4l2_ctrl *analog_sampling_phase_ctrl;
210 struct v4l2_ctrl *free_run_color_manual_ctrl;
211 struct v4l2_ctrl *free_run_color_ctrl;
212 struct v4l2_ctrl *rgb_quantization_range_ctrl;
213 };
214
215 static bool adv76xx_has_afe(struct adv76xx_state *state)
216 {
217 return state->info->has_afe;
218 }
219
220 /* Unsupported timings. This device cannot support 720p30. */
221 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
222 V4L2_DV_BT_CEA_1280X720P30,
223 { }
224 };
225
226 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
227 {
228 int i;
229
230 for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
231 if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
232 return false;
233 return true;
234 }
235
236 struct adv76xx_video_standards {
237 struct v4l2_dv_timings timings;
238 u8 vid_std;
239 u8 v_freq;
240 };
241
242 /* sorted by number of lines */
243 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
244 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
245 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
246 { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
247 { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
248 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
249 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
250 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
251 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
252 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
253 /* TODO add 1920x1080P60_RB (CVT timing) */
254 { },
255 };
256
257 /* sorted by number of lines */
258 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
259 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
260 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
261 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
262 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
263 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
264 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
265 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
266 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
267 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
268 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
269 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
270 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
271 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
272 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
273 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
274 { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
275 { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
276 { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
277 { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
278 { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
279 /* TODO add 1600X1200P60_RB (not a DMT timing) */
280 { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
281 { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
282 { },
283 };
284
285 /* sorted by number of lines */
286 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
287 { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
288 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
289 { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
290 { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
291 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
292 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
293 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
294 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
295 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
296 { },
297 };
298
299 /* sorted by number of lines */
300 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
301 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
302 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
303 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
304 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
305 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
306 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
307 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
308 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
309 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
310 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
311 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
312 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
313 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
314 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
315 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
316 { },
317 };
318
319 static const struct v4l2_event adv76xx_ev_fmt = {
320 .type = V4L2_EVENT_SOURCE_CHANGE,
321 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
322 };
323
324 /* ----------------------------------------------------------------------- */
325
326 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
327 {
328 return container_of(sd, struct adv76xx_state, sd);
329 }
330
331 static inline unsigned htotal(const struct v4l2_bt_timings *t)
332 {
333 return V4L2_DV_BT_FRAME_WIDTH(t);
334 }
335
336 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
337 {
338 return V4L2_DV_BT_FRAME_HEIGHT(t);
339 }
340
341 /* ----------------------------------------------------------------------- */
342
343 static int adv76xx_read_check(struct adv76xx_state *state,
344 int client_page, u8 reg)
345 {
346 struct i2c_client *client = state->i2c_clients[client_page];
347 int err;
348 unsigned int val;
349
350 err = regmap_read(state->regmap[client_page], reg, &val);
351
352 if (err) {
353 v4l_err(client, "error reading %02x, %02x\n",
354 client->addr, reg);
355 return err;
356 }
357 return val;
358 }
359
360 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
361 * size to one or more registers.
362 *
363 * A value of zero will be returned on success, a negative errno will
364 * be returned in error cases.
365 */
366 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
367 unsigned int init_reg, const void *val,
368 size_t val_len)
369 {
370 struct regmap *regmap = state->regmap[client_page];
371
372 if (val_len > I2C_SMBUS_BLOCK_MAX)
373 val_len = I2C_SMBUS_BLOCK_MAX;
374
375 return regmap_raw_write(regmap, init_reg, val, val_len);
376 }
377
378 /* ----------------------------------------------------------------------- */
379
380 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
381 {
382 struct adv76xx_state *state = to_state(sd);
383
384 return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
385 }
386
387 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
388 {
389 struct adv76xx_state *state = to_state(sd);
390
391 return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
392 }
393
394 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
395 u8 val)
396 {
397 return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
398 }
399
400 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
401 {
402 struct adv76xx_state *state = to_state(sd);
403
404 return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
405 }
406
407 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
408 {
409 struct adv76xx_state *state = to_state(sd);
410
411 return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
412 }
413
414 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
415 {
416 struct adv76xx_state *state = to_state(sd);
417
418 return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
419 }
420
421 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
422 {
423 struct adv76xx_state *state = to_state(sd);
424
425 return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
426 }
427
428 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
429 u8 val)
430 {
431 return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
432 }
433
434 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
435 {
436 struct adv76xx_state *state = to_state(sd);
437
438 return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
439 }
440
441 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
442 {
443 struct adv76xx_state *state = to_state(sd);
444
445 return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
446 }
447
448 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
449 {
450 struct adv76xx_state *state = to_state(sd);
451
452 return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
453 }
454
455 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
456 {
457 struct adv76xx_state *state = to_state(sd);
458
459 return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
460 }
461
462 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
463 {
464 struct adv76xx_state *state = to_state(sd);
465
466 return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
467 }
468
469 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
470 {
471 struct adv76xx_state *state = to_state(sd);
472
473 return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
474 }
475
476 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
477 {
478 return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
479 }
480
481 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
482 {
483 struct adv76xx_state *state = to_state(sd);
484
485 return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
486 }
487
488 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
489 {
490 struct adv76xx_state *state = to_state(sd);
491
492 return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
493 }
494
495 static inline int edid_write_block(struct v4l2_subdev *sd,
496 unsigned int total_len, const u8 *val)
497 {
498 struct adv76xx_state *state = to_state(sd);
499 int err = 0;
500 int i = 0;
501 int len = 0;
502
503 v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
504 __func__, total_len);
505
506 while (!err && i < total_len) {
507 len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
508 I2C_SMBUS_BLOCK_MAX :
509 (total_len - i);
510
511 err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
512 i, val + i, len);
513 i += len;
514 }
515
516 return err;
517 }
518
519 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
520 {
521 unsigned int i;
522
523 for (i = 0; i < state->info->num_dv_ports; ++i)
524 gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
525
526 v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
527 }
528
529 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
530 {
531 struct delayed_work *dwork = to_delayed_work(work);
532 struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
533 delayed_work_enable_hotplug);
534 struct v4l2_subdev *sd = &state->sd;
535
536 v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
537
538 adv76xx_set_hpd(state, state->edid.present);
539 }
540
541 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
542 {
543 struct adv76xx_state *state = to_state(sd);
544
545 return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
546 }
547
548 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
549 {
550 return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
551 }
552
553 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
554 {
555 struct adv76xx_state *state = to_state(sd);
556
557 return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
558 }
559
560 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
561 {
562 return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
563 }
564
565 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
566 {
567 struct adv76xx_state *state = to_state(sd);
568
569 return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
570 }
571
572 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
573 {
574 struct adv76xx_state *state = to_state(sd);
575
576 return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
577 }
578
579 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
580 {
581 return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
582 }
583
584 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
585 {
586 struct adv76xx_state *state = to_state(sd);
587
588 return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
589 }
590
591 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
592 {
593 return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
594 }
595
596 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
597 {
598 struct adv76xx_state *state = to_state(sd);
599
600 return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
601 }
602
603 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
604 {
605 struct adv76xx_state *state = to_state(sd);
606
607 return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
608 }
609
610 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset))
611 #define ADV76XX_REG_SEQ_TERM 0xffff
612
613 #ifdef CONFIG_VIDEO_ADV_DEBUG
614 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
615 {
616 struct adv76xx_state *state = to_state(sd);
617 unsigned int page = reg >> 8;
618 unsigned int val;
619 int err;
620
621 if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
622 return -EINVAL;
623
624 reg &= 0xff;
625 err = regmap_read(state->regmap[page], reg, &val);
626
627 return err ? err : val;
628 }
629 #endif
630
631 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
632 {
633 struct adv76xx_state *state = to_state(sd);
634 unsigned int page = reg >> 8;
635
636 if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
637 return -EINVAL;
638
639 reg &= 0xff;
640
641 return regmap_write(state->regmap[page], reg, val);
642 }
643
644 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
645 const struct adv76xx_reg_seq *reg_seq)
646 {
647 unsigned int i;
648
649 for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
650 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
651 }
652
653 /* -----------------------------------------------------------------------------
654 * Format helpers
655 */
656
657 static const struct adv76xx_format_info adv7604_formats[] = {
658 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
659 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
660 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
661 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
662 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
663 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
664 { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
665 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
666 { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
667 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
668 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
669 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
670 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
671 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
672 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
673 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
674 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
675 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
676 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
677 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
678 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
679 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
680 { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
681 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
682 { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
683 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
684 { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
685 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
686 { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
687 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
688 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
689 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
690 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
691 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
692 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
693 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
694 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
695 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
696 };
697
698 static const struct adv76xx_format_info adv7611_formats[] = {
699 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
700 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
701 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
702 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
703 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
704 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
705 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
706 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
707 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
708 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
709 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
710 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
711 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
712 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
713 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
714 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
715 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
716 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
717 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
718 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
719 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
720 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
721 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
722 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
723 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
724 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
725 };
726
727 static const struct adv76xx_format_info adv7612_formats[] = {
728 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
729 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
730 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
731 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
732 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
733 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
734 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
735 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
736 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
737 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
738 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
739 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
740 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
741 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
742 };
743
744 static const struct adv76xx_format_info *
745 adv76xx_format_info(struct adv76xx_state *state, u32 code)
746 {
747 unsigned int i;
748
749 for (i = 0; i < state->info->nformats; ++i) {
750 if (state->info->formats[i].code == code)
751 return &state->info->formats[i];
752 }
753
754 return NULL;
755 }
756
757 /* ----------------------------------------------------------------------- */
758
759 static inline bool is_analog_input(struct v4l2_subdev *sd)
760 {
761 struct adv76xx_state *state = to_state(sd);
762
763 return state->selected_input == ADV7604_PAD_VGA_RGB ||
764 state->selected_input == ADV7604_PAD_VGA_COMP;
765 }
766
767 static inline bool is_digital_input(struct v4l2_subdev *sd)
768 {
769 struct adv76xx_state *state = to_state(sd);
770
771 return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
772 state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
773 state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
774 state->selected_input == ADV7604_PAD_HDMI_PORT_D;
775 }
776
777 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
778 .type = V4L2_DV_BT_656_1120,
779 /* keep this initialization for compatibility with GCC < 4.4.6 */
780 .reserved = { 0 },
781 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
782 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
783 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
784 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
785 V4L2_DV_BT_CAP_CUSTOM)
786 };
787
788 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
789 .type = V4L2_DV_BT_656_1120,
790 /* keep this initialization for compatibility with GCC < 4.4.6 */
791 .reserved = { 0 },
792 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000,
793 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
794 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
795 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
796 V4L2_DV_BT_CAP_CUSTOM)
797 };
798
799 /*
800 * Return the DV timings capabilities for the requested sink pad. As a special
801 * case, pad value -1 returns the capabilities for the currently selected input.
802 */
803 static const struct v4l2_dv_timings_cap *
804 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
805 {
806 if (pad == -1) {
807 struct adv76xx_state *state = to_state(sd);
808
809 pad = state->selected_input;
810 }
811
812 switch (pad) {
813 case ADV76XX_PAD_HDMI_PORT_A:
814 case ADV7604_PAD_HDMI_PORT_B:
815 case ADV7604_PAD_HDMI_PORT_C:
816 case ADV7604_PAD_HDMI_PORT_D:
817 return &adv76xx_timings_cap_digital;
818
819 case ADV7604_PAD_VGA_RGB:
820 case ADV7604_PAD_VGA_COMP:
821 default:
822 return &adv7604_timings_cap_analog;
823 }
824 }
825
826
827 /* ----------------------------------------------------------------------- */
828
829 #ifdef CONFIG_VIDEO_ADV_DEBUG
830 static void adv76xx_inv_register(struct v4l2_subdev *sd)
831 {
832 v4l2_info(sd, "0x000-0x0ff: IO Map\n");
833 v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
834 v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
835 v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
836 v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
837 v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
838 v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
839 v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
840 v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
841 v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
842 v4l2_info(sd, "0xa00-0xaff: Test Map\n");
843 v4l2_info(sd, "0xb00-0xbff: CP Map\n");
844 v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
845 }
846
847 static int adv76xx_g_register(struct v4l2_subdev *sd,
848 struct v4l2_dbg_register *reg)
849 {
850 int ret;
851
852 ret = adv76xx_read_reg(sd, reg->reg);
853 if (ret < 0) {
854 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
855 adv76xx_inv_register(sd);
856 return ret;
857 }
858
859 reg->size = 1;
860 reg->val = ret;
861
862 return 0;
863 }
864
865 static int adv76xx_s_register(struct v4l2_subdev *sd,
866 const struct v4l2_dbg_register *reg)
867 {
868 int ret;
869
870 ret = adv76xx_write_reg(sd, reg->reg, reg->val);
871 if (ret < 0) {
872 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
873 adv76xx_inv_register(sd);
874 return ret;
875 }
876
877 return 0;
878 }
879 #endif
880
881 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
882 {
883 u8 value = io_read(sd, 0x6f);
884
885 return ((value & 0x10) >> 4)
886 | ((value & 0x08) >> 2)
887 | ((value & 0x04) << 0)
888 | ((value & 0x02) << 2);
889 }
890
891 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
892 {
893 u8 value = io_read(sd, 0x6f);
894
895 return value & 1;
896 }
897
898 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
899 {
900 /* Reads CABLE_DET_A_RAW. For input B support, need to
901 * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
902 */
903 u8 value = io_read(sd, 0x6f);
904
905 return value & 1;
906 }
907
908 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
909 {
910 struct adv76xx_state *state = to_state(sd);
911 const struct adv76xx_chip_info *info = state->info;
912 u16 cable_det = info->read_cable_det(sd);
913
914 return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
915 }
916
917 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
918 u8 prim_mode,
919 const struct adv76xx_video_standards *predef_vid_timings,
920 const struct v4l2_dv_timings *timings)
921 {
922 int i;
923
924 for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
925 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
926 is_digital_input(sd) ? 250000 : 1000000, false))
927 continue;
928 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
929 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
930 prim_mode); /* v_freq and prim mode */
931 return 0;
932 }
933
934 return -1;
935 }
936
937 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
938 struct v4l2_dv_timings *timings)
939 {
940 struct adv76xx_state *state = to_state(sd);
941 int err;
942
943 v4l2_dbg(1, debug, sd, "%s", __func__);
944
945 if (adv76xx_has_afe(state)) {
946 /* reset to default values */
947 io_write(sd, 0x16, 0x43);
948 io_write(sd, 0x17, 0x5a);
949 }
950 /* disable embedded syncs for auto graphics mode */
951 cp_write_clr_set(sd, 0x81, 0x10, 0x00);
952 cp_write(sd, 0x8f, 0x00);
953 cp_write(sd, 0x90, 0x00);
954 cp_write(sd, 0xa2, 0x00);
955 cp_write(sd, 0xa3, 0x00);
956 cp_write(sd, 0xa4, 0x00);
957 cp_write(sd, 0xa5, 0x00);
958 cp_write(sd, 0xa6, 0x00);
959 cp_write(sd, 0xa7, 0x00);
960 cp_write(sd, 0xab, 0x00);
961 cp_write(sd, 0xac, 0x00);
962
963 if (is_analog_input(sd)) {
964 err = find_and_set_predefined_video_timings(sd,
965 0x01, adv7604_prim_mode_comp, timings);
966 if (err)
967 err = find_and_set_predefined_video_timings(sd,
968 0x02, adv7604_prim_mode_gr, timings);
969 } else if (is_digital_input(sd)) {
970 err = find_and_set_predefined_video_timings(sd,
971 0x05, adv76xx_prim_mode_hdmi_comp, timings);
972 if (err)
973 err = find_and_set_predefined_video_timings(sd,
974 0x06, adv76xx_prim_mode_hdmi_gr, timings);
975 } else {
976 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
977 __func__, state->selected_input);
978 err = -1;
979 }
980
981
982 return err;
983 }
984
985 static void configure_custom_video_timings(struct v4l2_subdev *sd,
986 const struct v4l2_bt_timings *bt)
987 {
988 struct adv76xx_state *state = to_state(sd);
989 u32 width = htotal(bt);
990 u32 height = vtotal(bt);
991 u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
992 u16 cp_start_eav = width - bt->hfrontporch;
993 u16 cp_start_vbi = height - bt->vfrontporch;
994 u16 cp_end_vbi = bt->vsync + bt->vbackporch;
995 u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
996 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
997 const u8 pll[2] = {
998 0xc0 | ((width >> 8) & 0x1f),
999 width & 0xff
1000 };
1001
1002 v4l2_dbg(2, debug, sd, "%s\n", __func__);
1003
1004 if (is_analog_input(sd)) {
1005 /* auto graphics */
1006 io_write(sd, 0x00, 0x07); /* video std */
1007 io_write(sd, 0x01, 0x02); /* prim mode */
1008 /* enable embedded syncs for auto graphics mode */
1009 cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1010
1011 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1012 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1013 /* IO-map reg. 0x16 and 0x17 should be written in sequence */
1014 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1015 0x16, pll, 2))
1016 v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1017
1018 /* active video - horizontal timing */
1019 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1020 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1021 ((cp_start_eav >> 8) & 0x0f));
1022 cp_write(sd, 0xa4, cp_start_eav & 0xff);
1023
1024 /* active video - vertical timing */
1025 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1026 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1027 ((cp_end_vbi >> 8) & 0xf));
1028 cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1029 } else if (is_digital_input(sd)) {
1030 /* set default prim_mode/vid_std for HDMI
1031 according to [REF_03, c. 4.2] */
1032 io_write(sd, 0x00, 0x02); /* video std */
1033 io_write(sd, 0x01, 0x06); /* prim mode */
1034 } else {
1035 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1036 __func__, state->selected_input);
1037 }
1038
1039 cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1040 cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1041 cp_write(sd, 0xab, (height >> 4) & 0xff);
1042 cp_write(sd, 0xac, (height & 0x0f) << 4);
1043 }
1044
1045 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1046 {
1047 struct adv76xx_state *state = to_state(sd);
1048 u8 offset_buf[4];
1049
1050 if (auto_offset) {
1051 offset_a = 0x3ff;
1052 offset_b = 0x3ff;
1053 offset_c = 0x3ff;
1054 }
1055
1056 v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1057 __func__, auto_offset ? "Auto" : "Manual",
1058 offset_a, offset_b, offset_c);
1059
1060 offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1061 offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1062 offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1063 offset_buf[3] = offset_c & 0x0ff;
1064
1065 /* Registers must be written in this order with no i2c access in between */
1066 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1067 0x77, offset_buf, 4))
1068 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1069 }
1070
1071 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1072 {
1073 struct adv76xx_state *state = to_state(sd);
1074 u8 gain_buf[4];
1075 u8 gain_man = 1;
1076 u8 agc_mode_man = 1;
1077
1078 if (auto_gain) {
1079 gain_man = 0;
1080 agc_mode_man = 0;
1081 gain_a = 0x100;
1082 gain_b = 0x100;
1083 gain_c = 0x100;
1084 }
1085
1086 v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1087 __func__, auto_gain ? "Auto" : "Manual",
1088 gain_a, gain_b, gain_c);
1089
1090 gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1091 gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1092 gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1093 gain_buf[3] = ((gain_c & 0x0ff));
1094
1095 /* Registers must be written in this order with no i2c access in between */
1096 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1097 0x73, gain_buf, 4))
1098 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1099 }
1100
1101 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1102 {
1103 struct adv76xx_state *state = to_state(sd);
1104 bool rgb_output = io_read(sd, 0x02) & 0x02;
1105 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1106 u8 y = HDMI_COLORSPACE_RGB;
1107
1108 if (hdmi_signal && (io_read(sd, 0x60) & 1))
1109 y = infoframe_read(sd, 0x01) >> 5;
1110
1111 v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1112 __func__, state->rgb_quantization_range,
1113 rgb_output, hdmi_signal);
1114
1115 adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1116 adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1117 io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1118
1119 switch (state->rgb_quantization_range) {
1120 case V4L2_DV_RGB_RANGE_AUTO:
1121 if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1122 /* Receiving analog RGB signal
1123 * Set RGB full range (0-255) */
1124 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1125 break;
1126 }
1127
1128 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1129 /* Receiving analog YPbPr signal
1130 * Set automode */
1131 io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1132 break;
1133 }
1134
1135 if (hdmi_signal) {
1136 /* Receiving HDMI signal
1137 * Set automode */
1138 io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1139 break;
1140 }
1141
1142 /* Receiving DVI-D signal
1143 * ADV7604 selects RGB limited range regardless of
1144 * input format (CE/IT) in automatic mode */
1145 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1146 /* RGB limited range (16-235) */
1147 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1148 } else {
1149 /* RGB full range (0-255) */
1150 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1151
1152 if (is_digital_input(sd) && rgb_output) {
1153 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1154 } else {
1155 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1156 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1157 }
1158 }
1159 break;
1160 case V4L2_DV_RGB_RANGE_LIMITED:
1161 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1162 /* YCrCb limited range (16-235) */
1163 io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1164 break;
1165 }
1166
1167 if (y != HDMI_COLORSPACE_RGB)
1168 break;
1169
1170 /* RGB limited range (16-235) */
1171 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1172
1173 break;
1174 case V4L2_DV_RGB_RANGE_FULL:
1175 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1176 /* YCrCb full range (0-255) */
1177 io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1178 break;
1179 }
1180
1181 if (y != HDMI_COLORSPACE_RGB)
1182 break;
1183
1184 /* RGB full range (0-255) */
1185 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1186
1187 if (is_analog_input(sd) || hdmi_signal)
1188 break;
1189
1190 /* Adjust gain/offset for DVI-D signals only */
1191 if (rgb_output) {
1192 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1193 } else {
1194 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1195 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1196 }
1197 break;
1198 }
1199 }
1200
1201 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1202 {
1203 struct v4l2_subdev *sd =
1204 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1205
1206 struct adv76xx_state *state = to_state(sd);
1207
1208 switch (ctrl->id) {
1209 case V4L2_CID_BRIGHTNESS:
1210 cp_write(sd, 0x3c, ctrl->val);
1211 return 0;
1212 case V4L2_CID_CONTRAST:
1213 cp_write(sd, 0x3a, ctrl->val);
1214 return 0;
1215 case V4L2_CID_SATURATION:
1216 cp_write(sd, 0x3b, ctrl->val);
1217 return 0;
1218 case V4L2_CID_HUE:
1219 cp_write(sd, 0x3d, ctrl->val);
1220 return 0;
1221 case V4L2_CID_DV_RX_RGB_RANGE:
1222 state->rgb_quantization_range = ctrl->val;
1223 set_rgb_quantization_range(sd);
1224 return 0;
1225 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1226 if (!adv76xx_has_afe(state))
1227 return -EINVAL;
1228 /* Set the analog sampling phase. This is needed to find the
1229 best sampling phase for analog video: an application or
1230 driver has to try a number of phases and analyze the picture
1231 quality before settling on the best performing phase. */
1232 afe_write(sd, 0xc8, ctrl->val);
1233 return 0;
1234 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1235 /* Use the default blue color for free running mode,
1236 or supply your own. */
1237 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1238 return 0;
1239 case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1240 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1241 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1242 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1243 return 0;
1244 }
1245 return -EINVAL;
1246 }
1247
1248 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1249 {
1250 struct v4l2_subdev *sd =
1251 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1252
1253 if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1254 ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1255 if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1256 ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1257 return 0;
1258 }
1259 return -EINVAL;
1260 }
1261
1262 /* ----------------------------------------------------------------------- */
1263
1264 static inline bool no_power(struct v4l2_subdev *sd)
1265 {
1266 /* Entire chip or CP powered off */
1267 return io_read(sd, 0x0c) & 0x24;
1268 }
1269
1270 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1271 {
1272 struct adv76xx_state *state = to_state(sd);
1273
1274 return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1275 }
1276
1277 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1278 {
1279 struct adv76xx_state *state = to_state(sd);
1280 const struct adv76xx_chip_info *info = state->info;
1281
1282 return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1283 }
1284
1285 static inline bool is_hdmi(struct v4l2_subdev *sd)
1286 {
1287 return hdmi_read(sd, 0x05) & 0x80;
1288 }
1289
1290 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1291 {
1292 struct adv76xx_state *state = to_state(sd);
1293
1294 /*
1295 * Chips without a AFE don't expose registers for the SSPD, so just assume
1296 * that we have a lock.
1297 */
1298 if (adv76xx_has_afe(state))
1299 return false;
1300
1301 /* TODO channel 2 */
1302 return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1303 }
1304
1305 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1306 {
1307 /* TODO channel 2 */
1308 return !(cp_read(sd, 0xb1) & 0x80);
1309 }
1310
1311 static inline bool no_signal(struct v4l2_subdev *sd)
1312 {
1313 bool ret;
1314
1315 ret = no_power(sd);
1316
1317 ret |= no_lock_stdi(sd);
1318 ret |= no_lock_sspd(sd);
1319
1320 if (is_digital_input(sd)) {
1321 ret |= no_lock_tmds(sd);
1322 ret |= no_signal_tmds(sd);
1323 }
1324
1325 return ret;
1326 }
1327
1328 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1329 {
1330 struct adv76xx_state *state = to_state(sd);
1331
1332 if (!adv76xx_has_afe(state))
1333 return false;
1334
1335 /* CP has detected a non standard number of lines on the incoming
1336 video compared to what it is configured to receive by s_dv_timings */
1337 return io_read(sd, 0x12) & 0x01;
1338 }
1339
1340 static inline bool in_free_run(struct v4l2_subdev *sd)
1341 {
1342 return cp_read(sd, 0xff) & 0x10;
1343 }
1344
1345 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1346 {
1347 *status = 0;
1348 *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1349 *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1350 if (!in_free_run(sd) && no_lock_cp(sd))
1351 *status |= is_digital_input(sd) ?
1352 V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1353
1354 v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1355
1356 return 0;
1357 }
1358
1359 /* ----------------------------------------------------------------------- */
1360
1361 struct stdi_readback {
1362 u16 bl, lcf, lcvs;
1363 u8 hs_pol, vs_pol;
1364 bool interlaced;
1365 };
1366
1367 static int stdi2dv_timings(struct v4l2_subdev *sd,
1368 struct stdi_readback *stdi,
1369 struct v4l2_dv_timings *timings)
1370 {
1371 struct adv76xx_state *state = to_state(sd);
1372 u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1373 u32 pix_clk;
1374 int i;
1375
1376 for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1377 const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1378
1379 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1380 adv76xx_get_dv_timings_cap(sd, -1),
1381 adv76xx_check_dv_timings, NULL))
1382 continue;
1383 if (vtotal(bt) != stdi->lcf + 1)
1384 continue;
1385 if (bt->vsync != stdi->lcvs)
1386 continue;
1387
1388 pix_clk = hfreq * htotal(bt);
1389
1390 if ((pix_clk < bt->pixelclock + 1000000) &&
1391 (pix_clk > bt->pixelclock - 1000000)) {
1392 *timings = v4l2_dv_timings_presets[i];
1393 return 0;
1394 }
1395 }
1396
1397 if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1398 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1399 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1400 false, timings))
1401 return 0;
1402 if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1403 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1404 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1405 false, state->aspect_ratio, timings))
1406 return 0;
1407
1408 v4l2_dbg(2, debug, sd,
1409 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1410 __func__, stdi->lcvs, stdi->lcf, stdi->bl,
1411 stdi->hs_pol, stdi->vs_pol);
1412 return -1;
1413 }
1414
1415
1416 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1417 {
1418 struct adv76xx_state *state = to_state(sd);
1419 const struct adv76xx_chip_info *info = state->info;
1420 u8 polarity;
1421
1422 if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1423 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1424 return -1;
1425 }
1426
1427 /* read STDI */
1428 stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1429 stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1430 stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1431 stdi->interlaced = io_read(sd, 0x12) & 0x10;
1432
1433 if (adv76xx_has_afe(state)) {
1434 /* read SSPD */
1435 polarity = cp_read(sd, 0xb5);
1436 if ((polarity & 0x03) == 0x01) {
1437 stdi->hs_pol = polarity & 0x10
1438 ? (polarity & 0x08 ? '+' : '-') : 'x';
1439 stdi->vs_pol = polarity & 0x40
1440 ? (polarity & 0x20 ? '+' : '-') : 'x';
1441 } else {
1442 stdi->hs_pol = 'x';
1443 stdi->vs_pol = 'x';
1444 }
1445 } else {
1446 polarity = hdmi_read(sd, 0x05);
1447 stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1448 stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1449 }
1450
1451 if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1452 v4l2_dbg(2, debug, sd,
1453 "%s: signal lost during readout of STDI/SSPD\n", __func__);
1454 return -1;
1455 }
1456
1457 if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1458 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1459 memset(stdi, 0, sizeof(struct stdi_readback));
1460 return -1;
1461 }
1462
1463 v4l2_dbg(2, debug, sd,
1464 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1465 __func__, stdi->lcf, stdi->bl, stdi->lcvs,
1466 stdi->hs_pol, stdi->vs_pol,
1467 stdi->interlaced ? "interlaced" : "progressive");
1468
1469 return 0;
1470 }
1471
1472 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1473 struct v4l2_enum_dv_timings *timings)
1474 {
1475 struct adv76xx_state *state = to_state(sd);
1476
1477 if (timings->pad >= state->source_pad)
1478 return -EINVAL;
1479
1480 return v4l2_enum_dv_timings_cap(timings,
1481 adv76xx_get_dv_timings_cap(sd, timings->pad),
1482 adv76xx_check_dv_timings, NULL);
1483 }
1484
1485 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1486 struct v4l2_dv_timings_cap *cap)
1487 {
1488 struct adv76xx_state *state = to_state(sd);
1489 unsigned int pad = cap->pad;
1490
1491 if (cap->pad >= state->source_pad)
1492 return -EINVAL;
1493
1494 *cap = *adv76xx_get_dv_timings_cap(sd, pad);
1495 cap->pad = pad;
1496
1497 return 0;
1498 }
1499
1500 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1501 if the format is listed in adv76xx_timings[] */
1502 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1503 struct v4l2_dv_timings *timings)
1504 {
1505 v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1506 is_digital_input(sd) ? 250000 : 1000000,
1507 adv76xx_check_dv_timings, NULL);
1508 }
1509
1510 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1511 {
1512 unsigned int freq;
1513 int a, b;
1514
1515 a = hdmi_read(sd, 0x06);
1516 b = hdmi_read(sd, 0x3b);
1517 if (a < 0 || b < 0)
1518 return 0;
1519 freq = a * 1000000 + ((b & 0x30) >> 4) * 250000;
1520
1521 if (is_hdmi(sd)) {
1522 /* adjust for deep color mode */
1523 unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1524
1525 freq = freq * 8 / bits_per_channel;
1526 }
1527
1528 return freq;
1529 }
1530
1531 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1532 {
1533 int a, b;
1534
1535 a = hdmi_read(sd, 0x51);
1536 b = hdmi_read(sd, 0x52);
1537 if (a < 0 || b < 0)
1538 return 0;
1539 return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1540 }
1541
1542 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1543 struct v4l2_dv_timings *timings)
1544 {
1545 struct adv76xx_state *state = to_state(sd);
1546 const struct adv76xx_chip_info *info = state->info;
1547 struct v4l2_bt_timings *bt = &timings->bt;
1548 struct stdi_readback stdi;
1549
1550 if (!timings)
1551 return -EINVAL;
1552
1553 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1554
1555 if (no_signal(sd)) {
1556 state->restart_stdi_once = true;
1557 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1558 return -ENOLINK;
1559 }
1560
1561 /* read STDI */
1562 if (read_stdi(sd, &stdi)) {
1563 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1564 return -ENOLINK;
1565 }
1566 bt->interlaced = stdi.interlaced ?
1567 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1568
1569 if (is_digital_input(sd)) {
1570 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1571 u8 vic = 0;
1572 u32 w, h;
1573
1574 w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1575 h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1576
1577 if (hdmi_signal && (io_read(sd, 0x60) & 1))
1578 vic = infoframe_read(sd, 0x04);
1579
1580 if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1581 bt->width == w && bt->height == h)
1582 goto found;
1583
1584 timings->type = V4L2_DV_BT_656_1120;
1585
1586 bt->width = w;
1587 bt->height = h;
1588 bt->pixelclock = info->read_hdmi_pixelclock(sd);
1589 bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1590 bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1591 bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1592 bt->vfrontporch = hdmi_read16(sd, 0x2a,
1593 info->field0_vfrontporch_mask) / 2;
1594 bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1595 bt->vbackporch = hdmi_read16(sd, 0x32,
1596 info->field0_vbackporch_mask) / 2;
1597 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1598 ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1599 if (bt->interlaced == V4L2_DV_INTERLACED) {
1600 bt->height += hdmi_read16(sd, 0x0b,
1601 info->field1_height_mask);
1602 bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1603 info->field1_vfrontporch_mask) / 2;
1604 bt->il_vsync = hdmi_read16(sd, 0x30,
1605 info->field1_vsync_mask) / 2;
1606 bt->il_vbackporch = hdmi_read16(sd, 0x34,
1607 info->field1_vbackporch_mask) / 2;
1608 }
1609 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1610 } else {
1611 /* find format
1612 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1613 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1614 */
1615 if (!stdi2dv_timings(sd, &stdi, timings))
1616 goto found;
1617 stdi.lcvs += 1;
1618 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1619 if (!stdi2dv_timings(sd, &stdi, timings))
1620 goto found;
1621 stdi.lcvs -= 2;
1622 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1623 if (stdi2dv_timings(sd, &stdi, timings)) {
1624 /*
1625 * The STDI block may measure wrong values, especially
1626 * for lcvs and lcf. If the driver can not find any
1627 * valid timing, the STDI block is restarted to measure
1628 * the video timings again. The function will return an
1629 * error, but the restart of STDI will generate a new
1630 * STDI interrupt and the format detection process will
1631 * restart.
1632 */
1633 if (state->restart_stdi_once) {
1634 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1635 /* TODO restart STDI for Sync Channel 2 */
1636 /* enter one-shot mode */
1637 cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1638 /* trigger STDI restart */
1639 cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1640 /* reset to continuous mode */
1641 cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1642 state->restart_stdi_once = false;
1643 return -ENOLINK;
1644 }
1645 v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1646 return -ERANGE;
1647 }
1648 state->restart_stdi_once = true;
1649 }
1650 found:
1651
1652 if (no_signal(sd)) {
1653 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1654 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1655 return -ENOLINK;
1656 }
1657
1658 if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1659 (is_digital_input(sd) && bt->pixelclock > 225000000)) {
1660 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1661 __func__, (u32)bt->pixelclock);
1662 return -ERANGE;
1663 }
1664
1665 if (debug > 1)
1666 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1667 timings, true);
1668
1669 return 0;
1670 }
1671
1672 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1673 struct v4l2_dv_timings *timings)
1674 {
1675 struct adv76xx_state *state = to_state(sd);
1676 struct v4l2_bt_timings *bt;
1677 int err;
1678
1679 if (!timings)
1680 return -EINVAL;
1681
1682 if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1683 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1684 return 0;
1685 }
1686
1687 bt = &timings->bt;
1688
1689 if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1690 adv76xx_check_dv_timings, NULL))
1691 return -ERANGE;
1692
1693 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1694
1695 state->timings = *timings;
1696
1697 cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1698
1699 /* Use prim_mode and vid_std when available */
1700 err = configure_predefined_video_timings(sd, timings);
1701 if (err) {
1702 /* custom settings when the video format
1703 does not have prim_mode/vid_std */
1704 configure_custom_video_timings(sd, bt);
1705 }
1706
1707 set_rgb_quantization_range(sd);
1708
1709 if (debug > 1)
1710 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1711 timings, true);
1712 return 0;
1713 }
1714
1715 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1716 struct v4l2_dv_timings *timings)
1717 {
1718 struct adv76xx_state *state = to_state(sd);
1719
1720 *timings = state->timings;
1721 return 0;
1722 }
1723
1724 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1725 {
1726 hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1727 }
1728
1729 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1730 {
1731 hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1732 }
1733
1734 static void enable_input(struct v4l2_subdev *sd)
1735 {
1736 struct adv76xx_state *state = to_state(sd);
1737
1738 if (is_analog_input(sd)) {
1739 io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */
1740 } else if (is_digital_input(sd)) {
1741 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1742 state->info->set_termination(sd, true);
1743 io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */
1744 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1745 } else {
1746 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1747 __func__, state->selected_input);
1748 }
1749 }
1750
1751 static void disable_input(struct v4l2_subdev *sd)
1752 {
1753 struct adv76xx_state *state = to_state(sd);
1754
1755 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1756 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1757 io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */
1758 state->info->set_termination(sd, false);
1759 }
1760
1761 static void select_input(struct v4l2_subdev *sd)
1762 {
1763 struct adv76xx_state *state = to_state(sd);
1764 const struct adv76xx_chip_info *info = state->info;
1765
1766 if (is_analog_input(sd)) {
1767 adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1768
1769 afe_write(sd, 0x00, 0x08); /* power up ADC */
1770 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1771 afe_write(sd, 0xc8, 0x00); /* phase control */
1772 } else if (is_digital_input(sd)) {
1773 hdmi_write(sd, 0x00, state->selected_input & 0x03);
1774
1775 adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1776
1777 if (adv76xx_has_afe(state)) {
1778 afe_write(sd, 0x00, 0xff); /* power down ADC */
1779 afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1780 afe_write(sd, 0xc8, 0x40); /* phase control */
1781 }
1782
1783 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1784 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1785 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1786 } else {
1787 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1788 __func__, state->selected_input);
1789 }
1790 }
1791
1792 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1793 u32 input, u32 output, u32 config)
1794 {
1795 struct adv76xx_state *state = to_state(sd);
1796
1797 v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1798 __func__, input, state->selected_input);
1799
1800 if (input == state->selected_input)
1801 return 0;
1802
1803 if (input > state->info->max_port)
1804 return -EINVAL;
1805
1806 state->selected_input = input;
1807
1808 disable_input(sd);
1809 select_input(sd);
1810 enable_input(sd);
1811
1812 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1813
1814 return 0;
1815 }
1816
1817 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1818 struct v4l2_subdev_pad_config *cfg,
1819 struct v4l2_subdev_mbus_code_enum *code)
1820 {
1821 struct adv76xx_state *state = to_state(sd);
1822
1823 if (code->index >= state->info->nformats)
1824 return -EINVAL;
1825
1826 code->code = state->info->formats[code->index].code;
1827
1828 return 0;
1829 }
1830
1831 static void adv76xx_fill_format(struct adv76xx_state *state,
1832 struct v4l2_mbus_framefmt *format)
1833 {
1834 memset(format, 0, sizeof(*format));
1835
1836 format->width = state->timings.bt.width;
1837 format->height = state->timings.bt.height;
1838 format->field = V4L2_FIELD_NONE;
1839 format->colorspace = V4L2_COLORSPACE_SRGB;
1840
1841 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1842 format->colorspace = (state->timings.bt.height <= 576) ?
1843 V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1844 }
1845
1846 /*
1847 * Compute the op_ch_sel value required to obtain on the bus the component order
1848 * corresponding to the selected format taking into account bus reordering
1849 * applied by the board at the output of the device.
1850 *
1851 * The following table gives the op_ch_value from the format component order
1852 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1853 * adv76xx_bus_order value in row).
1854 *
1855 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5)
1856 * ----------+-------------------------------------------------
1857 * RGB (NOP) | GBR GRB BGR RGB BRG RBG
1858 * GRB (1-2) | BGR RGB GBR GRB RBG BRG
1859 * RBG (2-3) | GRB GBR BRG RBG BGR RGB
1860 * BGR (1-3) | RBG BRG RGB BGR GRB GBR
1861 * BRG (ROR) | BRG RBG GRB GBR RGB BGR
1862 * GBR (ROL) | RGB BGR RBG BRG GBR GRB
1863 */
1864 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1865 {
1866 #define _SEL(a,b,c,d,e,f) { \
1867 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1868 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1869 #define _BUS(x) [ADV7604_BUS_ORDER_##x]
1870
1871 static const unsigned int op_ch_sel[6][6] = {
1872 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1873 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1874 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1875 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1876 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1877 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1878 };
1879
1880 return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1881 }
1882
1883 static void adv76xx_setup_format(struct adv76xx_state *state)
1884 {
1885 struct v4l2_subdev *sd = &state->sd;
1886
1887 io_write_clr_set(sd, 0x02, 0x02,
1888 state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1889 io_write(sd, 0x03, state->format->op_format_sel |
1890 state->pdata.op_format_mode_sel);
1891 io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1892 io_write_clr_set(sd, 0x05, 0x01,
1893 state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1894 set_rgb_quantization_range(sd);
1895 }
1896
1897 static int adv76xx_get_format(struct v4l2_subdev *sd,
1898 struct v4l2_subdev_pad_config *cfg,
1899 struct v4l2_subdev_format *format)
1900 {
1901 struct adv76xx_state *state = to_state(sd);
1902
1903 if (format->pad != state->source_pad)
1904 return -EINVAL;
1905
1906 adv76xx_fill_format(state, &format->format);
1907
1908 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1909 struct v4l2_mbus_framefmt *fmt;
1910
1911 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1912 format->format.code = fmt->code;
1913 } else {
1914 format->format.code = state->format->code;
1915 }
1916
1917 return 0;
1918 }
1919
1920 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1921 struct v4l2_subdev_pad_config *cfg,
1922 struct v4l2_subdev_selection *sel)
1923 {
1924 struct adv76xx_state *state = to_state(sd);
1925
1926 if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1927 return -EINVAL;
1928 /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1929 if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1930 return -EINVAL;
1931
1932 sel->r.left = 0;
1933 sel->r.top = 0;
1934 sel->r.width = state->timings.bt.width;
1935 sel->r.height = state->timings.bt.height;
1936
1937 return 0;
1938 }
1939
1940 static int adv76xx_set_format(struct v4l2_subdev *sd,
1941 struct v4l2_subdev_pad_config *cfg,
1942 struct v4l2_subdev_format *format)
1943 {
1944 struct adv76xx_state *state = to_state(sd);
1945 const struct adv76xx_format_info *info;
1946
1947 if (format->pad != state->source_pad)
1948 return -EINVAL;
1949
1950 info = adv76xx_format_info(state, format->format.code);
1951 if (!info)
1952 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1953
1954 adv76xx_fill_format(state, &format->format);
1955 format->format.code = info->code;
1956
1957 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1958 struct v4l2_mbus_framefmt *fmt;
1959
1960 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1961 fmt->code = format->format.code;
1962 } else {
1963 state->format = info;
1964 adv76xx_setup_format(state);
1965 }
1966
1967 return 0;
1968 }
1969
1970 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1971 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1972 {
1973 struct adv76xx_state *state = to_state(sd);
1974
1975 if ((cec_read(sd, 0x11) & 0x01) == 0) {
1976 v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1977 return;
1978 }
1979
1980 if (tx_raw_status & 0x02) {
1981 v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
1982 __func__);
1983 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
1984 1, 0, 0, 0);
1985 }
1986 if (tx_raw_status & 0x04) {
1987 u8 status;
1988 u8 nack_cnt;
1989 u8 low_drive_cnt;
1990
1991 v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
1992 /*
1993 * We set this status bit since this hardware performs
1994 * retransmissions.
1995 */
1996 status = CEC_TX_STATUS_MAX_RETRIES;
1997 nack_cnt = cec_read(sd, 0x14) & 0xf;
1998 if (nack_cnt)
1999 status |= CEC_TX_STATUS_NACK;
2000 low_drive_cnt = cec_read(sd, 0x14) >> 4;
2001 if (low_drive_cnt)
2002 status |= CEC_TX_STATUS_LOW_DRIVE;
2003 cec_transmit_done(state->cec_adap, status,
2004 0, nack_cnt, low_drive_cnt, 0);
2005 return;
2006 }
2007 if (tx_raw_status & 0x01) {
2008 v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
2009 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
2010 return;
2011 }
2012 }
2013
2014 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2015 {
2016 struct adv76xx_state *state = to_state(sd);
2017 u8 cec_irq;
2018
2019 /* cec controller */
2020 cec_irq = io_read(sd, 0x4d) & 0x0f;
2021 if (!cec_irq)
2022 return;
2023
2024 v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2025 adv76xx_cec_tx_raw_status(sd, cec_irq);
2026 if (cec_irq & 0x08) {
2027 struct cec_msg msg;
2028
2029 msg.len = cec_read(sd, 0x25) & 0x1f;
2030 if (msg.len > 16)
2031 msg.len = 16;
2032
2033 if (msg.len) {
2034 u8 i;
2035
2036 for (i = 0; i < msg.len; i++)
2037 msg.msg[i] = cec_read(sd, i + 0x15);
2038 cec_write(sd, 0x26, 0x01); /* re-enable rx */
2039 cec_received_msg(state->cec_adap, &msg);
2040 }
2041 }
2042
2043 /* note: the bit order is swapped between 0x4d and 0x4e */
2044 cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2045 ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2046 io_write(sd, 0x4e, cec_irq);
2047
2048 if (handled)
2049 *handled = true;
2050 }
2051
2052 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2053 {
2054 struct adv76xx_state *state = cec_get_drvdata(adap);
2055 struct v4l2_subdev *sd = &state->sd;
2056
2057 if (!state->cec_enabled_adap && enable) {
2058 cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2059 cec_write(sd, 0x2c, 0x01); /* cec soft reset */
2060 cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2061 /* enabled irqs: */
2062 /* tx: ready */
2063 /* tx: arbitration lost */
2064 /* tx: retry timeout */
2065 /* rx: ready */
2066 io_write_clr_set(sd, 0x50, 0x0f, 0x0f);
2067 cec_write(sd, 0x26, 0x01); /* enable rx */
2068 } else if (state->cec_enabled_adap && !enable) {
2069 /* disable cec interrupts */
2070 io_write_clr_set(sd, 0x50, 0x0f, 0x00);
2071 /* disable address mask 1-3 */
2072 cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2073 /* power down cec section */
2074 cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2075 state->cec_valid_addrs = 0;
2076 }
2077 state->cec_enabled_adap = enable;
2078 adv76xx_s_detect_tx_5v_ctrl(sd);
2079 return 0;
2080 }
2081
2082 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2083 {
2084 struct adv76xx_state *state = cec_get_drvdata(adap);
2085 struct v4l2_subdev *sd = &state->sd;
2086 unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2087
2088 if (!state->cec_enabled_adap)
2089 return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2090
2091 if (addr == CEC_LOG_ADDR_INVALID) {
2092 cec_write_clr_set(sd, 0x27, 0x70, 0);
2093 state->cec_valid_addrs = 0;
2094 return 0;
2095 }
2096
2097 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2098 bool is_valid = state->cec_valid_addrs & (1 << i);
2099
2100 if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2101 free_idx = i;
2102 if (is_valid && state->cec_addr[i] == addr)
2103 return 0;
2104 }
2105 if (i == ADV76XX_MAX_ADDRS) {
2106 i = free_idx;
2107 if (i == ADV76XX_MAX_ADDRS)
2108 return -ENXIO;
2109 }
2110 state->cec_addr[i] = addr;
2111 state->cec_valid_addrs |= 1 << i;
2112
2113 switch (i) {
2114 case 0:
2115 /* enable address mask 0 */
2116 cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2117 /* set address for mask 0 */
2118 cec_write_clr_set(sd, 0x28, 0x0f, addr);
2119 break;
2120 case 1:
2121 /* enable address mask 1 */
2122 cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2123 /* set address for mask 1 */
2124 cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2125 break;
2126 case 2:
2127 /* enable address mask 2 */
2128 cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2129 /* set address for mask 1 */
2130 cec_write_clr_set(sd, 0x29, 0x0f, addr);
2131 break;
2132 }
2133 return 0;
2134 }
2135
2136 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2137 u32 signal_free_time, struct cec_msg *msg)
2138 {
2139 struct adv76xx_state *state = cec_get_drvdata(adap);
2140 struct v4l2_subdev *sd = &state->sd;
2141 u8 len = msg->len;
2142 unsigned int i;
2143
2144 /*
2145 * The number of retries is the number of attempts - 1, but retry
2146 * at least once. It's not clear if a value of 0 is allowed, so
2147 * let's do at least one retry.
2148 */
2149 cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2150
2151 if (len > 16) {
2152 v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2153 return -EINVAL;
2154 }
2155
2156 /* write data */
2157 for (i = 0; i < len; i++)
2158 cec_write(sd, i, msg->msg[i]);
2159
2160 /* set length (data + header) */
2161 cec_write(sd, 0x10, len);
2162 /* start transmit, enable tx */
2163 cec_write(sd, 0x11, 0x01);
2164 return 0;
2165 }
2166
2167 static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2168 .adap_enable = adv76xx_cec_adap_enable,
2169 .adap_log_addr = adv76xx_cec_adap_log_addr,
2170 .adap_transmit = adv76xx_cec_adap_transmit,
2171 };
2172 #endif
2173
2174 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2175 {
2176 struct adv76xx_state *state = to_state(sd);
2177 const struct adv76xx_chip_info *info = state->info;
2178 const u8 irq_reg_0x43 = io_read(sd, 0x43);
2179 const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2180 const u8 irq_reg_0x70 = io_read(sd, 0x70);
2181 u8 fmt_change_digital;
2182 u8 fmt_change;
2183 u8 tx_5v;
2184
2185 if (irq_reg_0x43)
2186 io_write(sd, 0x44, irq_reg_0x43);
2187 if (irq_reg_0x70)
2188 io_write(sd, 0x71, irq_reg_0x70);
2189 if (irq_reg_0x6b)
2190 io_write(sd, 0x6c, irq_reg_0x6b);
2191
2192 v4l2_dbg(2, debug, sd, "%s: ", __func__);
2193
2194 /* format change */
2195 fmt_change = irq_reg_0x43 & 0x98;
2196 fmt_change_digital = is_digital_input(sd)
2197 ? irq_reg_0x6b & info->fmt_change_digital_mask
2198 : 0;
2199
2200 if (fmt_change || fmt_change_digital) {
2201 v4l2_dbg(1, debug, sd,
2202 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2203 __func__, fmt_change, fmt_change_digital);
2204
2205 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2206
2207 if (handled)
2208 *handled = true;
2209 }
2210 /* HDMI/DVI mode */
2211 if (irq_reg_0x6b & 0x01) {
2212 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2213 (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2214 set_rgb_quantization_range(sd);
2215 if (handled)
2216 *handled = true;
2217 }
2218
2219 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2220 /* cec */
2221 adv76xx_cec_isr(sd, handled);
2222 #endif
2223
2224 /* tx 5v detect */
2225 tx_5v = irq_reg_0x70 & info->cable_det_mask;
2226 if (tx_5v) {
2227 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2228 adv76xx_s_detect_tx_5v_ctrl(sd);
2229 if (handled)
2230 *handled = true;
2231 }
2232 return 0;
2233 }
2234
2235 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2236 {
2237 struct adv76xx_state *state = to_state(sd);
2238 u8 *data = NULL;
2239
2240 memset(edid->reserved, 0, sizeof(edid->reserved));
2241
2242 switch (edid->pad) {
2243 case ADV76XX_PAD_HDMI_PORT_A:
2244 case ADV7604_PAD_HDMI_PORT_B:
2245 case ADV7604_PAD_HDMI_PORT_C:
2246 case ADV7604_PAD_HDMI_PORT_D:
2247 if (state->edid.present & (1 << edid->pad))
2248 data = state->edid.edid;
2249 break;
2250 default:
2251 return -EINVAL;
2252 }
2253
2254 if (edid->start_block == 0 && edid->blocks == 0) {
2255 edid->blocks = data ? state->edid.blocks : 0;
2256 return 0;
2257 }
2258
2259 if (!data)
2260 return -ENODATA;
2261
2262 if (edid->start_block >= state->edid.blocks)
2263 return -EINVAL;
2264
2265 if (edid->start_block + edid->blocks > state->edid.blocks)
2266 edid->blocks = state->edid.blocks - edid->start_block;
2267
2268 memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2269
2270 return 0;
2271 }
2272
2273 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2274 {
2275 struct adv76xx_state *state = to_state(sd);
2276 const struct adv76xx_chip_info *info = state->info;
2277 unsigned int spa_loc;
2278 u16 pa;
2279 int err;
2280 int i;
2281
2282 memset(edid->reserved, 0, sizeof(edid->reserved));
2283
2284 if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2285 return -EINVAL;
2286 if (edid->start_block != 0)
2287 return -EINVAL;
2288 if (edid->blocks == 0) {
2289 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2290 state->edid.present &= ~(1 << edid->pad);
2291 adv76xx_set_hpd(state, state->edid.present);
2292 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2293
2294 /* Fall back to a 16:9 aspect ratio */
2295 state->aspect_ratio.numerator = 16;
2296 state->aspect_ratio.denominator = 9;
2297
2298 if (!state->edid.present) {
2299 state->edid.blocks = 0;
2300 cec_phys_addr_invalidate(state->cec_adap);
2301 }
2302
2303 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2304 __func__, edid->pad, state->edid.present);
2305 return 0;
2306 }
2307 if (edid->blocks > 2) {
2308 edid->blocks = 2;
2309 return -E2BIG;
2310 }
2311 pa = cec_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2312 err = cec_phys_addr_validate(pa, &pa, NULL);
2313 if (err)
2314 return err;
2315
2316 v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2317 __func__, edid->pad, state->edid.present);
2318
2319 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2320 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2321 adv76xx_set_hpd(state, 0);
2322 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2323
2324 /*
2325 * Return an error if no location of the source physical address
2326 * was found.
2327 */
2328 if (spa_loc == 0)
2329 return -EINVAL;
2330
2331 switch (edid->pad) {
2332 case ADV76XX_PAD_HDMI_PORT_A:
2333 state->spa_port_a[0] = edid->edid[spa_loc];
2334 state->spa_port_a[1] = edid->edid[spa_loc + 1];
2335 break;
2336 case ADV7604_PAD_HDMI_PORT_B:
2337 rep_write(sd, 0x70, edid->edid[spa_loc]);
2338 rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2339 break;
2340 case ADV7604_PAD_HDMI_PORT_C:
2341 rep_write(sd, 0x72, edid->edid[spa_loc]);
2342 rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2343 break;
2344 case ADV7604_PAD_HDMI_PORT_D:
2345 rep_write(sd, 0x74, edid->edid[spa_loc]);
2346 rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2347 break;
2348 default:
2349 return -EINVAL;
2350 }
2351
2352 if (info->type == ADV7604) {
2353 rep_write(sd, 0x76, spa_loc & 0xff);
2354 rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2355 } else {
2356 /* ADV7612 Software Manual Rev. A, p. 15 */
2357 rep_write(sd, 0x70, spa_loc & 0xff);
2358 rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2359 }
2360
2361 edid->edid[spa_loc] = state->spa_port_a[0];
2362 edid->edid[spa_loc + 1] = state->spa_port_a[1];
2363
2364 memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2365 state->edid.blocks = edid->blocks;
2366 state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2367 edid->edid[0x16]);
2368 state->edid.present |= 1 << edid->pad;
2369
2370 err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2371 if (err < 0) {
2372 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2373 return err;
2374 }
2375
2376 /* adv76xx calculates the checksums and enables I2C access to internal
2377 EDID RAM from DDC port. */
2378 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2379
2380 for (i = 0; i < 1000; i++) {
2381 if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2382 break;
2383 mdelay(1);
2384 }
2385 if (i == 1000) {
2386 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2387 return -EIO;
2388 }
2389 cec_s_phys_addr(state->cec_adap, pa, false);
2390
2391 /* enable hotplug after 100 ms */
2392 schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2393 return 0;
2394 }
2395
2396 /*********** avi info frame CEA-861-E **************/
2397
2398 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2399 { "AVI", 0x01, 0xe0, 0x00 },
2400 { "Audio", 0x02, 0xe3, 0x1c },
2401 { "SDP", 0x04, 0xe6, 0x2a },
2402 { "Vendor", 0x10, 0xec, 0x54 }
2403 };
2404
2405 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2406 union hdmi_infoframe *frame)
2407 {
2408 uint8_t buffer[32];
2409 u8 len;
2410 int i;
2411
2412 if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2413 v4l2_info(sd, "%s infoframe not received\n",
2414 adv76xx_cri[index].desc);
2415 return -ENOENT;
2416 }
2417
2418 for (i = 0; i < 3; i++)
2419 buffer[i] = infoframe_read(sd,
2420 adv76xx_cri[index].head_addr + i);
2421
2422 len = buffer[2] + 1;
2423
2424 if (len + 3 > sizeof(buffer)) {
2425 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2426 adv76xx_cri[index].desc, len);
2427 return -ENOENT;
2428 }
2429
2430 for (i = 0; i < len; i++)
2431 buffer[i + 3] = infoframe_read(sd,
2432 adv76xx_cri[index].payload_addr + i);
2433
2434 if (hdmi_infoframe_unpack(frame, buffer) < 0) {
2435 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2436 adv76xx_cri[index].desc);
2437 return -ENOENT;
2438 }
2439 return 0;
2440 }
2441
2442 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2443 {
2444 int i;
2445
2446 if (!is_hdmi(sd)) {
2447 v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2448 return;
2449 }
2450
2451 for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2452 union hdmi_infoframe frame;
2453 struct i2c_client *client = v4l2_get_subdevdata(sd);
2454
2455 if (adv76xx_read_infoframe(sd, i, &frame))
2456 return;
2457 hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2458 }
2459 }
2460
2461 static int adv76xx_log_status(struct v4l2_subdev *sd)
2462 {
2463 struct adv76xx_state *state = to_state(sd);
2464 const struct adv76xx_chip_info *info = state->info;
2465 struct v4l2_dv_timings timings;
2466 struct stdi_readback stdi;
2467 u8 reg_io_0x02 = io_read(sd, 0x02);
2468 u8 edid_enabled;
2469 u8 cable_det;
2470
2471 static const char * const csc_coeff_sel_rb[16] = {
2472 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2473 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2474 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2475 "reserved", "reserved", "reserved", "reserved", "manual"
2476 };
2477 static const char * const input_color_space_txt[16] = {
2478 "RGB limited range (16-235)", "RGB full range (0-255)",
2479 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2480 "xvYCC Bt.601", "xvYCC Bt.709",
2481 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2482 "invalid", "invalid", "invalid", "invalid", "invalid",
2483 "invalid", "invalid", "automatic"
2484 };
2485 static const char * const hdmi_color_space_txt[16] = {
2486 "RGB limited range (16-235)", "RGB full range (0-255)",
2487 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2488 "xvYCC Bt.601", "xvYCC Bt.709",
2489 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2490 "sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
2491 "invalid", "invalid", "invalid"
2492 };
2493 static const char * const rgb_quantization_range_txt[] = {
2494 "Automatic",
2495 "RGB limited range (16-235)",
2496 "RGB full range (0-255)",
2497 };
2498 static const char * const deep_color_mode_txt[4] = {
2499 "8-bits per channel",
2500 "10-bits per channel",
2501 "12-bits per channel",
2502 "16-bits per channel (not supported)"
2503 };
2504
2505 v4l2_info(sd, "-----Chip status-----\n");
2506 v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2507 edid_enabled = rep_read(sd, info->edid_status_reg);
2508 v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2509 ((edid_enabled & 0x01) ? "Yes" : "No"),
2510 ((edid_enabled & 0x02) ? "Yes" : "No"),
2511 ((edid_enabled & 0x04) ? "Yes" : "No"),
2512 ((edid_enabled & 0x08) ? "Yes" : "No"));
2513 v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2514 "enabled" : "disabled");
2515 if (state->cec_enabled_adap) {
2516 int i;
2517
2518 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2519 bool is_valid = state->cec_valid_addrs & (1 << i);
2520
2521 if (is_valid)
2522 v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2523 state->cec_addr[i]);
2524 }
2525 }
2526
2527 v4l2_info(sd, "-----Signal status-----\n");
2528 cable_det = info->read_cable_det(sd);
2529 v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2530 ((cable_det & 0x01) ? "Yes" : "No"),
2531 ((cable_det & 0x02) ? "Yes" : "No"),
2532 ((cable_det & 0x04) ? "Yes" : "No"),
2533 ((cable_det & 0x08) ? "Yes" : "No"));
2534 v4l2_info(sd, "TMDS signal detected: %s\n",
2535 no_signal_tmds(sd) ? "false" : "true");
2536 v4l2_info(sd, "TMDS signal locked: %s\n",
2537 no_lock_tmds(sd) ? "false" : "true");
2538 v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2539 v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2540 v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2541 v4l2_info(sd, "CP free run: %s\n",
2542 (in_free_run(sd)) ? "on" : "off");
2543 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2544 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2545 (io_read(sd, 0x01) & 0x70) >> 4);
2546
2547 v4l2_info(sd, "-----Video Timings-----\n");
2548 if (read_stdi(sd, &stdi))
2549 v4l2_info(sd, "STDI: not locked\n");
2550 else
2551 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2552 stdi.lcf, stdi.bl, stdi.lcvs,
2553 stdi.interlaced ? "interlaced" : "progressive",
2554 stdi.hs_pol, stdi.vs_pol);
2555 if (adv76xx_query_dv_timings(sd, &timings))
2556 v4l2_info(sd, "No video detected\n");
2557 else
2558 v4l2_print_dv_timings(sd->name, "Detected format: ",
2559 &timings, true);
2560 v4l2_print_dv_timings(sd->name, "Configured format: ",
2561 &state->timings, true);
2562
2563 if (no_signal(sd))
2564 return 0;
2565
2566 v4l2_info(sd, "-----Color space-----\n");
2567 v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2568 rgb_quantization_range_txt[state->rgb_quantization_range]);
2569 v4l2_info(sd, "Input color space: %s\n",
2570 input_color_space_txt[reg_io_0x02 >> 4]);
2571 v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2572 (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2573 (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2574 "(16-235)" : "(0-255)",
2575 (reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2576 v4l2_info(sd, "Color space conversion: %s\n",
2577 csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2578
2579 if (!is_digital_input(sd))
2580 return 0;
2581
2582 v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2583 v4l2_info(sd, "Digital video port selected: %c\n",
2584 (hdmi_read(sd, 0x00) & 0x03) + 'A');
2585 v4l2_info(sd, "HDCP encrypted content: %s\n",
2586 (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2587 v4l2_info(sd, "HDCP keys read: %s%s\n",
2588 (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2589 (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2590 if (is_hdmi(sd)) {
2591 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2592 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2593 bool audio_mute = io_read(sd, 0x65) & 0x40;
2594
2595 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2596 audio_pll_locked ? "locked" : "not locked",
2597 audio_sample_packet_detect ? "detected" : "not detected",
2598 audio_mute ? "muted" : "enabled");
2599 if (audio_pll_locked && audio_sample_packet_detect) {
2600 v4l2_info(sd, "Audio format: %s\n",
2601 (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2602 }
2603 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2604 (hdmi_read(sd, 0x5c) << 8) +
2605 (hdmi_read(sd, 0x5d) & 0xf0));
2606 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2607 (hdmi_read(sd, 0x5e) << 8) +
2608 hdmi_read(sd, 0x5f));
2609 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2610
2611 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2612 v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2613
2614 adv76xx_log_infoframes(sd);
2615 }
2616
2617 return 0;
2618 }
2619
2620 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2621 struct v4l2_fh *fh,
2622 struct v4l2_event_subscription *sub)
2623 {
2624 switch (sub->type) {
2625 case V4L2_EVENT_SOURCE_CHANGE:
2626 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2627 case V4L2_EVENT_CTRL:
2628 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2629 default:
2630 return -EINVAL;
2631 }
2632 }
2633
2634 static int adv76xx_registered(struct v4l2_subdev *sd)
2635 {
2636 struct adv76xx_state *state = to_state(sd);
2637 struct i2c_client *client = v4l2_get_subdevdata(sd);
2638 int err;
2639
2640 err = cec_register_adapter(state->cec_adap, &client->dev);
2641 if (err)
2642 cec_delete_adapter(state->cec_adap);
2643 return err;
2644 }
2645
2646 static void adv76xx_unregistered(struct v4l2_subdev *sd)
2647 {
2648 struct adv76xx_state *state = to_state(sd);
2649
2650 cec_unregister_adapter(state->cec_adap);
2651 }
2652
2653 /* ----------------------------------------------------------------------- */
2654
2655 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2656 .s_ctrl = adv76xx_s_ctrl,
2657 .g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2658 };
2659
2660 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2661 .log_status = adv76xx_log_status,
2662 .interrupt_service_routine = adv76xx_isr,
2663 .subscribe_event = adv76xx_subscribe_event,
2664 .unsubscribe_event = v4l2_event_subdev_unsubscribe,
2665 #ifdef CONFIG_VIDEO_ADV_DEBUG
2666 .g_register = adv76xx_g_register,
2667 .s_register = adv76xx_s_register,
2668 #endif
2669 };
2670
2671 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2672 .s_routing = adv76xx_s_routing,
2673 .g_input_status = adv76xx_g_input_status,
2674 .s_dv_timings = adv76xx_s_dv_timings,
2675 .g_dv_timings = adv76xx_g_dv_timings,
2676 .query_dv_timings = adv76xx_query_dv_timings,
2677 };
2678
2679 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2680 .enum_mbus_code = adv76xx_enum_mbus_code,
2681 .get_selection = adv76xx_get_selection,
2682 .get_fmt = adv76xx_get_format,
2683 .set_fmt = adv76xx_set_format,
2684 .get_edid = adv76xx_get_edid,
2685 .set_edid = adv76xx_set_edid,
2686 .dv_timings_cap = adv76xx_dv_timings_cap,
2687 .enum_dv_timings = adv76xx_enum_dv_timings,
2688 };
2689
2690 static const struct v4l2_subdev_ops adv76xx_ops = {
2691 .core = &adv76xx_core_ops,
2692 .video = &adv76xx_video_ops,
2693 .pad = &adv76xx_pad_ops,
2694 };
2695
2696 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2697 .registered = adv76xx_registered,
2698 .unregistered = adv76xx_unregistered,
2699 };
2700
2701 /* -------------------------- custom ctrls ---------------------------------- */
2702
2703 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2704 .ops = &adv76xx_ctrl_ops,
2705 .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2706 .name = "Analog Sampling Phase",
2707 .type = V4L2_CTRL_TYPE_INTEGER,
2708 .min = 0,
2709 .max = 0x1f,
2710 .step = 1,
2711 .def = 0,
2712 };
2713
2714 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2715 .ops = &adv76xx_ctrl_ops,
2716 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2717 .name = "Free Running Color, Manual",
2718 .type = V4L2_CTRL_TYPE_BOOLEAN,
2719 .min = false,
2720 .max = true,
2721 .step = 1,
2722 .def = false,
2723 };
2724
2725 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2726 .ops = &adv76xx_ctrl_ops,
2727 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2728 .name = "Free Running Color",
2729 .type = V4L2_CTRL_TYPE_INTEGER,
2730 .min = 0x0,
2731 .max = 0xffffff,
2732 .step = 0x1,
2733 .def = 0x0,
2734 };
2735
2736 /* ----------------------------------------------------------------------- */
2737
2738 static int adv76xx_core_init(struct v4l2_subdev *sd)
2739 {
2740 struct adv76xx_state *state = to_state(sd);
2741 const struct adv76xx_chip_info *info = state->info;
2742 struct adv76xx_platform_data *pdata = &state->pdata;
2743
2744 hdmi_write(sd, 0x48,
2745 (pdata->disable_pwrdnb ? 0x80 : 0) |
2746 (pdata->disable_cable_det_rst ? 0x40 : 0));
2747
2748 disable_input(sd);
2749
2750 if (pdata->default_input >= 0 &&
2751 pdata->default_input < state->source_pad) {
2752 state->selected_input = pdata->default_input;
2753 select_input(sd);
2754 enable_input(sd);
2755 }
2756
2757 /* power */
2758 io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */
2759 io_write(sd, 0x0b, 0x44); /* Power down ESDP block */
2760 cp_write(sd, 0xcf, 0x01); /* Power down macrovision */
2761
2762 /* video format */
2763 io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2764 io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2765 pdata->insert_av_codes << 2 |
2766 pdata->replicate_av_codes << 1);
2767 adv76xx_setup_format(state);
2768
2769 cp_write(sd, 0x69, 0x30); /* Enable CP CSC */
2770
2771 /* VS, HS polarities */
2772 io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2773 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2774
2775 /* Adjust drive strength */
2776 io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2777 pdata->dr_str_clk << 2 |
2778 pdata->dr_str_sync);
2779
2780 cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2781 cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2782 cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold -
2783 ADI recommended setting [REF_01, c. 2.3.3] */
2784 cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold -
2785 ADI recommended setting [REF_01, c. 2.3.3] */
2786 cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2787 for digital formats */
2788
2789 /* HDMI audio */
2790 hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2791 hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2792 hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2793
2794 /* TODO from platform data */
2795 afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */
2796
2797 if (adv76xx_has_afe(state)) {
2798 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2799 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2800 }
2801
2802 /* interrupts */
2803 io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2804 io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2805 io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2806 io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2807 info->setup_irqs(sd);
2808
2809 return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2810 }
2811
2812 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2813 {
2814 io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2815 }
2816
2817 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2818 {
2819 io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2820 }
2821
2822 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2823 {
2824 io_write(sd, 0x41, 0xd0); /* disable INT2 */
2825 }
2826
2827 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2828 {
2829 unsigned int i;
2830
2831 for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
2832 if (state->i2c_clients[i])
2833 i2c_unregister_device(state->i2c_clients[i]);
2834 }
2835 }
2836
2837 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2838 u8 addr, u8 io_reg)
2839 {
2840 struct i2c_client *client = v4l2_get_subdevdata(sd);
2841
2842 if (addr)
2843 io_write(sd, io_reg, addr << 1);
2844 return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
2845 }
2846
2847 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2848 /* reset ADI recommended settings for HDMI: */
2849 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2850 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2851 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2852 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2853 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2854 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2855 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2856 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2857 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2858 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2859 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2860 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2861 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2862
2863 /* set ADI recommended settings for digitizer */
2864 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2865 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2866 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2867 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2868 { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2869 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2870
2871 { ADV76XX_REG_SEQ_TERM, 0 },
2872 };
2873
2874 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2875 /* set ADI recommended settings for HDMI: */
2876 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2877 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2878 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2879 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2880 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2881 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2882 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2883 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2884 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2885 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2886 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2887 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2888
2889 /* reset ADI recommended settings for digitizer */
2890 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2891 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2892 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2893
2894 { ADV76XX_REG_SEQ_TERM, 0 },
2895 };
2896
2897 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2898 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2899 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2900 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2901 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2902 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2903 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2904 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2905 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2906 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2907 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2908 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2909 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2910
2911 { ADV76XX_REG_SEQ_TERM, 0 },
2912 };
2913
2914 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2915 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2916 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2917 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2918 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2919 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2920 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2921 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2922 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2923 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2924 { ADV76XX_REG_SEQ_TERM, 0 },
2925 };
2926
2927 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2928 [ADV7604] = {
2929 .type = ADV7604,
2930 .has_afe = true,
2931 .max_port = ADV7604_PAD_VGA_COMP,
2932 .num_dv_ports = 4,
2933 .edid_enable_reg = 0x77,
2934 .edid_status_reg = 0x7d,
2935 .lcf_reg = 0xb3,
2936 .tdms_lock_mask = 0xe0,
2937 .cable_det_mask = 0x1e,
2938 .fmt_change_digital_mask = 0xc1,
2939 .cp_csc = 0xfc,
2940 .formats = adv7604_formats,
2941 .nformats = ARRAY_SIZE(adv7604_formats),
2942 .set_termination = adv7604_set_termination,
2943 .setup_irqs = adv7604_setup_irqs,
2944 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
2945 .read_cable_det = adv7604_read_cable_det,
2946 .recommended_settings = {
2947 [0] = adv7604_recommended_settings_afe,
2948 [1] = adv7604_recommended_settings_hdmi,
2949 },
2950 .num_recommended_settings = {
2951 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
2952 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
2953 },
2954 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
2955 BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2956 BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2957 BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
2958 BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
2959 BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2960 BIT(ADV7604_PAGE_VDP),
2961 .linewidth_mask = 0xfff,
2962 .field0_height_mask = 0xfff,
2963 .field1_height_mask = 0xfff,
2964 .hfrontporch_mask = 0x3ff,
2965 .hsync_mask = 0x3ff,
2966 .hbackporch_mask = 0x3ff,
2967 .field0_vfrontporch_mask = 0x1fff,
2968 .field0_vsync_mask = 0x1fff,
2969 .field0_vbackporch_mask = 0x1fff,
2970 .field1_vfrontporch_mask = 0x1fff,
2971 .field1_vsync_mask = 0x1fff,
2972 .field1_vbackporch_mask = 0x1fff,
2973 },
2974 [ADV7611] = {
2975 .type = ADV7611,
2976 .has_afe = false,
2977 .max_port = ADV76XX_PAD_HDMI_PORT_A,
2978 .num_dv_ports = 1,
2979 .edid_enable_reg = 0x74,
2980 .edid_status_reg = 0x76,
2981 .lcf_reg = 0xa3,
2982 .tdms_lock_mask = 0x43,
2983 .cable_det_mask = 0x01,
2984 .fmt_change_digital_mask = 0x03,
2985 .cp_csc = 0xf4,
2986 .formats = adv7611_formats,
2987 .nformats = ARRAY_SIZE(adv7611_formats),
2988 .set_termination = adv7611_set_termination,
2989 .setup_irqs = adv7611_setup_irqs,
2990 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2991 .read_cable_det = adv7611_read_cable_det,
2992 .recommended_settings = {
2993 [1] = adv7611_recommended_settings_hdmi,
2994 },
2995 .num_recommended_settings = {
2996 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
2997 },
2998 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
2999 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3000 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) |
3001 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3002 .linewidth_mask = 0x1fff,
3003 .field0_height_mask = 0x1fff,
3004 .field1_height_mask = 0x1fff,
3005 .hfrontporch_mask = 0x1fff,
3006 .hsync_mask = 0x1fff,
3007 .hbackporch_mask = 0x1fff,
3008 .field0_vfrontporch_mask = 0x3fff,
3009 .field0_vsync_mask = 0x3fff,
3010 .field0_vbackporch_mask = 0x3fff,
3011 .field1_vfrontporch_mask = 0x3fff,
3012 .field1_vsync_mask = 0x3fff,
3013 .field1_vbackporch_mask = 0x3fff,
3014 },
3015 [ADV7612] = {
3016 .type = ADV7612,
3017 .has_afe = false,
3018 .max_port = ADV76XX_PAD_HDMI_PORT_A, /* B not supported */
3019 .num_dv_ports = 1, /* normally 2 */
3020 .edid_enable_reg = 0x74,
3021 .edid_status_reg = 0x76,
3022 .lcf_reg = 0xa3,
3023 .tdms_lock_mask = 0x43,
3024 .cable_det_mask = 0x01,
3025 .fmt_change_digital_mask = 0x03,
3026 .cp_csc = 0xf4,
3027 .formats = adv7612_formats,
3028 .nformats = ARRAY_SIZE(adv7612_formats),
3029 .set_termination = adv7611_set_termination,
3030 .setup_irqs = adv7612_setup_irqs,
3031 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3032 .read_cable_det = adv7612_read_cable_det,
3033 .recommended_settings = {
3034 [1] = adv7612_recommended_settings_hdmi,
3035 },
3036 .num_recommended_settings = {
3037 [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3038 },
3039 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3040 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3041 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) |
3042 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3043 .linewidth_mask = 0x1fff,
3044 .field0_height_mask = 0x1fff,
3045 .field1_height_mask = 0x1fff,
3046 .hfrontporch_mask = 0x1fff,
3047 .hsync_mask = 0x1fff,
3048 .hbackporch_mask = 0x1fff,
3049 .field0_vfrontporch_mask = 0x3fff,
3050 .field0_vsync_mask = 0x3fff,
3051 .field0_vbackporch_mask = 0x3fff,
3052 .field1_vfrontporch_mask = 0x3fff,
3053 .field1_vsync_mask = 0x3fff,
3054 .field1_vbackporch_mask = 0x3fff,
3055 },
3056 };
3057
3058 static const struct i2c_device_id adv76xx_i2c_id[] = {
3059 { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3060 { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3061 { "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3062 { }
3063 };
3064 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3065
3066 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3067 { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3068 { .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3069 { }
3070 };
3071 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3072
3073 static int adv76xx_parse_dt(struct adv76xx_state *state)
3074 {
3075 struct v4l2_fwnode_endpoint bus_cfg;
3076 struct device_node *endpoint;
3077 struct device_node *np;
3078 unsigned int flags;
3079 int ret;
3080 u32 v;
3081
3082 np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3083
3084 /* Parse the endpoint. */
3085 endpoint = of_graph_get_next_endpoint(np, NULL);
3086 if (!endpoint)
3087 return -EINVAL;
3088
3089 ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3090 if (ret) {
3091 of_node_put(endpoint);
3092 return ret;
3093 }
3094
3095 of_node_put(endpoint);
3096
3097 if (!of_property_read_u32(np, "default-input", &v))
3098 state->pdata.default_input = v;
3099 else
3100 state->pdata.default_input = -1;
3101
3102 flags = bus_cfg.bus.parallel.flags;
3103
3104 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3105 state->pdata.inv_hs_pol = 1;
3106
3107 if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3108 state->pdata.inv_vs_pol = 1;
3109
3110 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3111 state->pdata.inv_llc_pol = 1;
3112
3113 if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3114 state->pdata.insert_av_codes = 1;
3115
3116 /* Disable the interrupt for now as no DT-based board uses it. */
3117 state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
3118
3119 /* Use the default I2C addresses. */
3120 state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
3121 state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
3122 state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
3123 state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
3124 state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
3125 state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
3126 state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
3127 state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
3128 state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
3129 state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
3130 state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
3131 state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;
3132
3133 /* Hardcode the remaining platform data fields. */
3134 state->pdata.disable_pwrdnb = 0;
3135 state->pdata.disable_cable_det_rst = 0;
3136 state->pdata.blank_data = 1;
3137 state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3138 state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3139 state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3140 state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3141 state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3142
3143 return 0;
3144 }
3145
3146 static const struct regmap_config adv76xx_regmap_cnf[] = {
3147 {
3148 .name = "io",
3149 .reg_bits = 8,
3150 .val_bits = 8,
3151
3152 .max_register = 0xff,
3153 .cache_type = REGCACHE_NONE,
3154 },
3155 {
3156 .name = "avlink",
3157 .reg_bits = 8,
3158 .val_bits = 8,
3159
3160 .max_register = 0xff,
3161 .cache_type = REGCACHE_NONE,
3162 },
3163 {
3164 .name = "cec",
3165 .reg_bits = 8,
3166 .val_bits = 8,
3167
3168 .max_register = 0xff,
3169 .cache_type = REGCACHE_NONE,
3170 },
3171 {
3172 .name = "infoframe",
3173 .reg_bits = 8,
3174 .val_bits = 8,
3175
3176 .max_register = 0xff,
3177 .cache_type = REGCACHE_NONE,
3178 },
3179 {
3180 .name = "esdp",
3181 .reg_bits = 8,
3182 .val_bits = 8,
3183
3184 .max_register = 0xff,
3185 .cache_type = REGCACHE_NONE,
3186 },
3187 {
3188 .name = "epp",
3189 .reg_bits = 8,
3190 .val_bits = 8,
3191
3192 .max_register = 0xff,
3193 .cache_type = REGCACHE_NONE,
3194 },
3195 {
3196 .name = "afe",
3197 .reg_bits = 8,
3198 .val_bits = 8,
3199
3200 .max_register = 0xff,
3201 .cache_type = REGCACHE_NONE,
3202 },
3203 {
3204 .name = "rep",
3205 .reg_bits = 8,
3206 .val_bits = 8,
3207
3208 .max_register = 0xff,
3209 .cache_type = REGCACHE_NONE,
3210 },
3211 {
3212 .name = "edid",
3213 .reg_bits = 8,
3214 .val_bits = 8,
3215
3216 .max_register = 0xff,
3217 .cache_type = REGCACHE_NONE,
3218 },
3219
3220 {
3221 .name = "hdmi",
3222 .reg_bits = 8,
3223 .val_bits = 8,
3224
3225 .max_register = 0xff,
3226 .cache_type = REGCACHE_NONE,
3227 },
3228 {
3229 .name = "test",
3230 .reg_bits = 8,
3231 .val_bits = 8,
3232
3233 .max_register = 0xff,
3234 .cache_type = REGCACHE_NONE,
3235 },
3236 {
3237 .name = "cp",
3238 .reg_bits = 8,
3239 .val_bits = 8,
3240
3241 .max_register = 0xff,
3242 .cache_type = REGCACHE_NONE,
3243 },
3244 {
3245 .name = "vdp",
3246 .reg_bits = 8,
3247 .val_bits = 8,
3248
3249 .max_register = 0xff,
3250 .cache_type = REGCACHE_NONE,
3251 },
3252 };
3253
3254 static int configure_regmap(struct adv76xx_state *state, int region)
3255 {
3256 int err;
3257
3258 if (!state->i2c_clients[region])
3259 return -ENODEV;
3260
3261 state->regmap[region] =
3262 devm_regmap_init_i2c(state->i2c_clients[region],
3263 &adv76xx_regmap_cnf[region]);
3264
3265 if (IS_ERR(state->regmap[region])) {
3266 err = PTR_ERR(state->regmap[region]);
3267 v4l_err(state->i2c_clients[region],
3268 "Error initializing regmap %d with error %d\n",
3269 region, err);
3270 return -EINVAL;
3271 }
3272
3273 return 0;
3274 }
3275
3276 static int configure_regmaps(struct adv76xx_state *state)
3277 {
3278 int i, err;
3279
3280 for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3281 err = configure_regmap(state, i);
3282 if (err && (err != -ENODEV))
3283 return err;
3284 }
3285 return 0;
3286 }
3287
3288 static void adv76xx_reset(struct adv76xx_state *state)
3289 {
3290 if (state->reset_gpio) {
3291 /* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3292 gpiod_set_value_cansleep(state->reset_gpio, 0);
3293 usleep_range(5000, 10000);
3294 gpiod_set_value_cansleep(state->reset_gpio, 1);
3295 /* It is recommended to wait 5 ms after the low pulse before */
3296 /* an I2C write is performed to the ADV76XX. */
3297 usleep_range(5000, 10000);
3298 }
3299 }
3300
3301 static int adv76xx_probe(struct i2c_client *client,
3302 const struct i2c_device_id *id)
3303 {
3304 static const struct v4l2_dv_timings cea640x480 =
3305 V4L2_DV_BT_CEA_640X480P59_94;
3306 struct adv76xx_state *state;
3307 struct v4l2_ctrl_handler *hdl;
3308 struct v4l2_ctrl *ctrl;
3309 struct v4l2_subdev *sd;
3310 unsigned int i;
3311 unsigned int val, val2;
3312 int err;
3313
3314 /* Check if the adapter supports the needed features */
3315 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3316 return -EIO;
3317 v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3318 client->addr << 1);
3319
3320 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3321 if (!state)
3322 return -ENOMEM;
3323
3324 state->i2c_clients[ADV76XX_PAGE_IO] = client;
3325
3326 /* initialize variables */
3327 state->restart_stdi_once = true;
3328 state->selected_input = ~0;
3329
3330 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3331 const struct of_device_id *oid;
3332
3333 oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3334 state->info = oid->data;
3335
3336 err = adv76xx_parse_dt(state);
3337 if (err < 0) {
3338 v4l_err(client, "DT parsing error\n");
3339 return err;
3340 }
3341 } else if (client->dev.platform_data) {
3342 struct adv76xx_platform_data *pdata = client->dev.platform_data;
3343
3344 state->info = (const struct adv76xx_chip_info *)id->driver_data;
3345 state->pdata = *pdata;
3346 } else {
3347 v4l_err(client, "No platform data!\n");
3348 return -ENODEV;
3349 }
3350
3351 /* Request GPIOs. */
3352 for (i = 0; i < state->info->num_dv_ports; ++i) {
3353 state->hpd_gpio[i] =
3354 devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3355 GPIOD_OUT_LOW);
3356 if (IS_ERR(state->hpd_gpio[i]))
3357 return PTR_ERR(state->hpd_gpio[i]);
3358
3359 if (state->hpd_gpio[i])
3360 v4l_info(client, "Handling HPD %u GPIO\n", i);
3361 }
3362 state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3363 GPIOD_OUT_HIGH);
3364 if (IS_ERR(state->reset_gpio))
3365 return PTR_ERR(state->reset_gpio);
3366
3367 adv76xx_reset(state);
3368
3369 state->timings = cea640x480;
3370 state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3371
3372 sd = &state->sd;
3373 v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3374 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3375 id->name, i2c_adapter_id(client->adapter),
3376 client->addr);
3377 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3378 sd->internal_ops = &adv76xx_int_ops;
3379
3380 /* Configure IO Regmap region */
3381 err = configure_regmap(state, ADV76XX_PAGE_IO);
3382
3383 if (err) {
3384 v4l2_err(sd, "Error configuring IO regmap region\n");
3385 return -ENODEV;
3386 }
3387
3388 /*
3389 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3390 * identifies the revision, while on ADV7611 it identifies the model as
3391 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3392 */
3393 switch (state->info->type) {
3394 case ADV7604:
3395 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3396 if (err) {
3397 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3398 return -ENODEV;
3399 }
3400 if (val != 0x68) {
3401 v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3402 client->addr << 1);
3403 return -ENODEV;
3404 }
3405 break;
3406 case ADV7611:
3407 case ADV7612:
3408 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3409 0xea,
3410 &val);
3411 if (err) {
3412 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3413 return -ENODEV;
3414 }
3415 val2 = val << 8;
3416 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3417 0xeb,
3418 &val);
3419 if (err) {
3420 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3421 return -ENODEV;
3422 }
3423 val |= val2;
3424 if ((state->info->type == ADV7611 && val != 0x2051) ||
3425 (state->info->type == ADV7612 && val != 0x2041)) {
3426 v4l2_err(sd, "not an adv761x on address 0x%x\n",
3427 client->addr << 1);
3428 return -ENODEV;
3429 }
3430 break;
3431 }
3432
3433 /* control handlers */
3434 hdl = &state->hdl;
3435 v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3436
3437 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3438 V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3439 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3440 V4L2_CID_CONTRAST, 0, 255, 1, 128);
3441 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3442 V4L2_CID_SATURATION, 0, 255, 1, 128);
3443 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3444 V4L2_CID_HUE, 0, 128, 1, 0);
3445 ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3446 V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3447 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3448 if (ctrl)
3449 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3450
3451 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3452 V4L2_CID_DV_RX_POWER_PRESENT, 0,
3453 (1 << state->info->num_dv_ports) - 1, 0, 0);
3454 state->rgb_quantization_range_ctrl =
3455 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3456 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3457 0, V4L2_DV_RGB_RANGE_AUTO);
3458
3459 /* custom controls */
3460 if (adv76xx_has_afe(state))
3461 state->analog_sampling_phase_ctrl =
3462 v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3463 state->free_run_color_manual_ctrl =
3464 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3465 state->free_run_color_ctrl =
3466 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3467
3468 sd->ctrl_handler = hdl;
3469 if (hdl->error) {
3470 err = hdl->error;
3471 goto err_hdl;
3472 }
3473 if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3474 err = -ENODEV;
3475 goto err_hdl;
3476 }
3477
3478 for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3479 if (!(BIT(i) & state->info->page_mask))
3480 continue;
3481
3482 state->i2c_clients[i] =
3483 adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
3484 0xf2 + i);
3485 if (!state->i2c_clients[i]) {
3486 err = -ENOMEM;
3487 v4l2_err(sd, "failed to create i2c client %u\n", i);
3488 goto err_i2c;
3489 }
3490 }
3491
3492 INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3493 adv76xx_delayed_work_enable_hotplug);
3494
3495 state->source_pad = state->info->num_dv_ports
3496 + (state->info->has_afe ? 2 : 0);
3497 for (i = 0; i < state->source_pad; ++i)
3498 state->pads[i].flags = MEDIA_PAD_FL_SINK;
3499 state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3500
3501 err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3502 state->pads);
3503 if (err)
3504 goto err_work_queues;
3505
3506 /* Configure regmaps */
3507 err = configure_regmaps(state);
3508 if (err)
3509 goto err_entity;
3510
3511 err = adv76xx_core_init(sd);
3512 if (err)
3513 goto err_entity;
3514
3515 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3516 state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3517 state, dev_name(&client->dev),
3518 CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3519 err = PTR_ERR_OR_ZERO(state->cec_adap);
3520 if (err)
3521 goto err_entity;
3522 #endif
3523
3524 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3525 client->addr << 1, client->adapter->name);
3526
3527 err = v4l2_async_register_subdev(sd);
3528 if (err)
3529 goto err_entity;
3530
3531 return 0;
3532
3533 err_entity:
3534 media_entity_cleanup(&sd->entity);
3535 err_work_queues:
3536 cancel_delayed_work(&state->delayed_work_enable_hotplug);
3537 err_i2c:
3538 adv76xx_unregister_clients(state);
3539 err_hdl:
3540 v4l2_ctrl_handler_free(hdl);
3541 return err;
3542 }
3543
3544 /* ----------------------------------------------------------------------- */
3545
3546 static int adv76xx_remove(struct i2c_client *client)
3547 {
3548 struct v4l2_subdev *sd = i2c_get_clientdata(client);
3549 struct adv76xx_state *state = to_state(sd);
3550
3551 /* disable interrupts */
3552 io_write(sd, 0x40, 0);
3553 io_write(sd, 0x41, 0);
3554 io_write(sd, 0x46, 0);
3555 io_write(sd, 0x6e, 0);
3556 io_write(sd, 0x73, 0);
3557
3558 cancel_delayed_work(&state->delayed_work_enable_hotplug);
3559 v4l2_async_unregister_subdev(sd);
3560 media_entity_cleanup(&sd->entity);
3561 adv76xx_unregister_clients(to_state(sd));
3562 v4l2_ctrl_handler_free(sd->ctrl_handler);
3563 return 0;
3564 }
3565
3566 /* ----------------------------------------------------------------------- */
3567
3568 static struct i2c_driver adv76xx_driver = {
3569 .driver = {
3570 .name = "adv7604",
3571 .of_match_table = of_match_ptr(adv76xx_of_id),
3572 },
3573 .probe = adv76xx_probe,
3574 .remove = adv76xx_remove,
3575 .id_table = adv76xx_i2c_id,
3576 };
3577
3578 module_i2c_driver(adv76xx_driver);