]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/media/i2c/adv7604.c
Merge remote-tracking branch 'drm/drm-next' into drm-misc-next
[mirror_ubuntu-focal-kernel.git] / drivers / media / i2c / adv7604.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * adv7604 - Analog Devices ADV7604 video decoder driver
4 *
5 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 *
7 */
8
9 /*
10 * References (c = chapter, p = page):
11 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12 * Revision 2.5, June 2010
13 * REF_02 - Analog devices, Register map documentation, Documentation of
14 * the register maps, Software manual, Rev. F, June 2010
15 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
16 */
17
18 #include <linux/delay.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/hdmi.h>
21 #include <linux/i2c.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of_graph.h>
25 #include <linux/slab.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <linux/videodev2.h>
28 #include <linux/workqueue.h>
29 #include <linux/regmap.h>
30
31 #include <media/i2c/adv7604.h>
32 #include <media/cec.h>
33 #include <media/v4l2-ctrls.h>
34 #include <media/v4l2-device.h>
35 #include <media/v4l2-event.h>
36 #include <media/v4l2-dv-timings.h>
37 #include <media/v4l2-fwnode.h>
38
39 static int debug;
40 module_param(debug, int, 0644);
41 MODULE_PARM_DESC(debug, "debug level (0-2)");
42
43 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
44 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
45 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
46 MODULE_LICENSE("GPL");
47
48 /* ADV7604 system clock frequency */
49 #define ADV76XX_FSC (28636360)
50
51 #define ADV76XX_RGB_OUT (1 << 1)
52
53 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0)
54 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0)
55 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0)
56
57 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5)
58 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5)
59 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5)
60 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5)
61 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5)
62 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5)
63
64 #define ADV76XX_OP_CH_SEL_GBR (0 << 5)
65 #define ADV76XX_OP_CH_SEL_GRB (1 << 5)
66 #define ADV76XX_OP_CH_SEL_BGR (2 << 5)
67 #define ADV76XX_OP_CH_SEL_RGB (3 << 5)
68 #define ADV76XX_OP_CH_SEL_BRG (4 << 5)
69 #define ADV76XX_OP_CH_SEL_RBG (5 << 5)
70
71 #define ADV76XX_OP_SWAP_CB_CR (1 << 0)
72
73 #define ADV76XX_MAX_ADDRS (3)
74
75 enum adv76xx_type {
76 ADV7604,
77 ADV7611,
78 ADV7612,
79 };
80
81 struct adv76xx_reg_seq {
82 unsigned int reg;
83 u8 val;
84 };
85
86 struct adv76xx_format_info {
87 u32 code;
88 u8 op_ch_sel;
89 bool rgb_out;
90 bool swap_cb_cr;
91 u8 op_format_sel;
92 };
93
94 struct adv76xx_cfg_read_infoframe {
95 const char *desc;
96 u8 present_mask;
97 u8 head_addr;
98 u8 payload_addr;
99 };
100
101 struct adv76xx_chip_info {
102 enum adv76xx_type type;
103
104 bool has_afe;
105 unsigned int max_port;
106 unsigned int num_dv_ports;
107
108 unsigned int edid_enable_reg;
109 unsigned int edid_status_reg;
110 unsigned int lcf_reg;
111
112 unsigned int cable_det_mask;
113 unsigned int tdms_lock_mask;
114 unsigned int fmt_change_digital_mask;
115 unsigned int cp_csc;
116
117 const struct adv76xx_format_info *formats;
118 unsigned int nformats;
119
120 void (*set_termination)(struct v4l2_subdev *sd, bool enable);
121 void (*setup_irqs)(struct v4l2_subdev *sd);
122 unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
123 unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
124
125 /* 0 = AFE, 1 = HDMI */
126 const struct adv76xx_reg_seq *recommended_settings[2];
127 unsigned int num_recommended_settings[2];
128
129 unsigned long page_mask;
130
131 /* Masks for timings */
132 unsigned int linewidth_mask;
133 unsigned int field0_height_mask;
134 unsigned int field1_height_mask;
135 unsigned int hfrontporch_mask;
136 unsigned int hsync_mask;
137 unsigned int hbackporch_mask;
138 unsigned int field0_vfrontporch_mask;
139 unsigned int field1_vfrontporch_mask;
140 unsigned int field0_vsync_mask;
141 unsigned int field1_vsync_mask;
142 unsigned int field0_vbackporch_mask;
143 unsigned int field1_vbackporch_mask;
144 };
145
146 /*
147 **********************************************************************
148 *
149 * Arrays with configuration parameters for the ADV7604
150 *
151 **********************************************************************
152 */
153
154 struct adv76xx_state {
155 const struct adv76xx_chip_info *info;
156 struct adv76xx_platform_data pdata;
157
158 struct gpio_desc *hpd_gpio[4];
159 struct gpio_desc *reset_gpio;
160
161 struct v4l2_subdev sd;
162 struct media_pad pads[ADV76XX_PAD_MAX];
163 unsigned int source_pad;
164
165 struct v4l2_ctrl_handler hdl;
166
167 enum adv76xx_pad selected_input;
168
169 struct v4l2_dv_timings timings;
170 const struct adv76xx_format_info *format;
171
172 struct {
173 u8 edid[256];
174 u32 present;
175 unsigned blocks;
176 } edid;
177 u16 spa_port_a[2];
178 struct v4l2_fract aspect_ratio;
179 u32 rgb_quantization_range;
180 struct delayed_work delayed_work_enable_hotplug;
181 bool restart_stdi_once;
182
183 /* CEC */
184 struct cec_adapter *cec_adap;
185 u8 cec_addr[ADV76XX_MAX_ADDRS];
186 u8 cec_valid_addrs;
187 bool cec_enabled_adap;
188
189 /* i2c clients */
190 struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
191
192 /* Regmaps */
193 struct regmap *regmap[ADV76XX_PAGE_MAX];
194
195 /* controls */
196 struct v4l2_ctrl *detect_tx_5v_ctrl;
197 struct v4l2_ctrl *analog_sampling_phase_ctrl;
198 struct v4l2_ctrl *free_run_color_manual_ctrl;
199 struct v4l2_ctrl *free_run_color_ctrl;
200 struct v4l2_ctrl *rgb_quantization_range_ctrl;
201 };
202
203 static bool adv76xx_has_afe(struct adv76xx_state *state)
204 {
205 return state->info->has_afe;
206 }
207
208 /* Unsupported timings. This device cannot support 720p30. */
209 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
210 V4L2_DV_BT_CEA_1280X720P30,
211 { }
212 };
213
214 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
215 {
216 int i;
217
218 for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
219 if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
220 return false;
221 return true;
222 }
223
224 struct adv76xx_video_standards {
225 struct v4l2_dv_timings timings;
226 u8 vid_std;
227 u8 v_freq;
228 };
229
230 /* sorted by number of lines */
231 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
232 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
233 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
234 { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
235 { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
236 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
237 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
238 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
239 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
240 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
241 /* TODO add 1920x1080P60_RB (CVT timing) */
242 { },
243 };
244
245 /* sorted by number of lines */
246 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
247 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
248 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
249 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
250 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
251 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
252 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
253 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
254 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
255 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
256 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
257 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
258 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
259 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
260 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
261 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
262 { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
263 { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
264 { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
265 { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
266 { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
267 /* TODO add 1600X1200P60_RB (not a DMT timing) */
268 { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
269 { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
270 { },
271 };
272
273 /* sorted by number of lines */
274 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
275 { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
276 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
277 { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
278 { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
279 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
280 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
281 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
282 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
283 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
284 { },
285 };
286
287 /* sorted by number of lines */
288 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
289 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
290 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
291 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
292 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
293 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
294 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
295 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
296 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
297 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
298 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
299 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
300 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
301 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
302 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
303 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
304 { },
305 };
306
307 static const struct v4l2_event adv76xx_ev_fmt = {
308 .type = V4L2_EVENT_SOURCE_CHANGE,
309 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
310 };
311
312 /* ----------------------------------------------------------------------- */
313
314 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
315 {
316 return container_of(sd, struct adv76xx_state, sd);
317 }
318
319 static inline unsigned htotal(const struct v4l2_bt_timings *t)
320 {
321 return V4L2_DV_BT_FRAME_WIDTH(t);
322 }
323
324 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
325 {
326 return V4L2_DV_BT_FRAME_HEIGHT(t);
327 }
328
329 /* ----------------------------------------------------------------------- */
330
331 static int adv76xx_read_check(struct adv76xx_state *state,
332 int client_page, u8 reg)
333 {
334 struct i2c_client *client = state->i2c_clients[client_page];
335 int err;
336 unsigned int val;
337
338 err = regmap_read(state->regmap[client_page], reg, &val);
339
340 if (err) {
341 v4l_err(client, "error reading %02x, %02x\n",
342 client->addr, reg);
343 return err;
344 }
345 return val;
346 }
347
348 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
349 * size to one or more registers.
350 *
351 * A value of zero will be returned on success, a negative errno will
352 * be returned in error cases.
353 */
354 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
355 unsigned int init_reg, const void *val,
356 size_t val_len)
357 {
358 struct regmap *regmap = state->regmap[client_page];
359
360 if (val_len > I2C_SMBUS_BLOCK_MAX)
361 val_len = I2C_SMBUS_BLOCK_MAX;
362
363 return regmap_raw_write(regmap, init_reg, val, val_len);
364 }
365
366 /* ----------------------------------------------------------------------- */
367
368 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
369 {
370 struct adv76xx_state *state = to_state(sd);
371
372 return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
373 }
374
375 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
376 {
377 struct adv76xx_state *state = to_state(sd);
378
379 return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
380 }
381
382 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
383 u8 val)
384 {
385 return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
386 }
387
388 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
389 {
390 struct adv76xx_state *state = to_state(sd);
391
392 return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
393 }
394
395 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
396 {
397 struct adv76xx_state *state = to_state(sd);
398
399 return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
400 }
401
402 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
403 {
404 struct adv76xx_state *state = to_state(sd);
405
406 return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
407 }
408
409 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
410 {
411 struct adv76xx_state *state = to_state(sd);
412
413 return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
414 }
415
416 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
417 u8 val)
418 {
419 return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
420 }
421
422 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
423 {
424 struct adv76xx_state *state = to_state(sd);
425
426 return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
427 }
428
429 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
430 {
431 struct adv76xx_state *state = to_state(sd);
432
433 return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
434 }
435
436 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
437 {
438 struct adv76xx_state *state = to_state(sd);
439
440 return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
441 }
442
443 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
444 {
445 struct adv76xx_state *state = to_state(sd);
446
447 return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
448 }
449
450 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
451 {
452 struct adv76xx_state *state = to_state(sd);
453
454 return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
455 }
456
457 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
458 {
459 struct adv76xx_state *state = to_state(sd);
460
461 return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
462 }
463
464 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
465 {
466 return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
467 }
468
469 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
470 {
471 struct adv76xx_state *state = to_state(sd);
472
473 return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
474 }
475
476 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
477 {
478 struct adv76xx_state *state = to_state(sd);
479
480 return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
481 }
482
483 static inline int edid_write_block(struct v4l2_subdev *sd,
484 unsigned int total_len, const u8 *val)
485 {
486 struct adv76xx_state *state = to_state(sd);
487 int err = 0;
488 int i = 0;
489 int len = 0;
490
491 v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
492 __func__, total_len);
493
494 while (!err && i < total_len) {
495 len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
496 I2C_SMBUS_BLOCK_MAX :
497 (total_len - i);
498
499 err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
500 i, val + i, len);
501 i += len;
502 }
503
504 return err;
505 }
506
507 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
508 {
509 unsigned int i;
510
511 for (i = 0; i < state->info->num_dv_ports; ++i)
512 gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
513
514 v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
515 }
516
517 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
518 {
519 struct delayed_work *dwork = to_delayed_work(work);
520 struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
521 delayed_work_enable_hotplug);
522 struct v4l2_subdev *sd = &state->sd;
523
524 v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
525
526 adv76xx_set_hpd(state, state->edid.present);
527 }
528
529 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
530 {
531 struct adv76xx_state *state = to_state(sd);
532
533 return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
534 }
535
536 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
537 {
538 return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
539 }
540
541 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
542 {
543 struct adv76xx_state *state = to_state(sd);
544
545 return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
546 }
547
548 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
549 {
550 return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
551 }
552
553 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
554 {
555 struct adv76xx_state *state = to_state(sd);
556
557 return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
558 }
559
560 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
561 {
562 struct adv76xx_state *state = to_state(sd);
563
564 return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
565 }
566
567 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
568 {
569 return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
570 }
571
572 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
573 {
574 struct adv76xx_state *state = to_state(sd);
575
576 return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
577 }
578
579 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
580 {
581 return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
582 }
583
584 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
585 {
586 struct adv76xx_state *state = to_state(sd);
587
588 return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
589 }
590
591 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
592 {
593 struct adv76xx_state *state = to_state(sd);
594
595 return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
596 }
597
598 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset))
599 #define ADV76XX_REG_SEQ_TERM 0xffff
600
601 #ifdef CONFIG_VIDEO_ADV_DEBUG
602 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
603 {
604 struct adv76xx_state *state = to_state(sd);
605 unsigned int page = reg >> 8;
606 unsigned int val;
607 int err;
608
609 if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
610 return -EINVAL;
611
612 reg &= 0xff;
613 err = regmap_read(state->regmap[page], reg, &val);
614
615 return err ? err : val;
616 }
617 #endif
618
619 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
620 {
621 struct adv76xx_state *state = to_state(sd);
622 unsigned int page = reg >> 8;
623
624 if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
625 return -EINVAL;
626
627 reg &= 0xff;
628
629 return regmap_write(state->regmap[page], reg, val);
630 }
631
632 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
633 const struct adv76xx_reg_seq *reg_seq)
634 {
635 unsigned int i;
636
637 for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
638 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
639 }
640
641 /* -----------------------------------------------------------------------------
642 * Format helpers
643 */
644
645 static const struct adv76xx_format_info adv7604_formats[] = {
646 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
647 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
648 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
649 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
650 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
651 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
652 { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
653 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
654 { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
655 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
656 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
657 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
658 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
659 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
660 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
661 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
662 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
663 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
664 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
665 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
666 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
667 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
668 { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
669 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
670 { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
671 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
672 { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
673 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
674 { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
675 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
676 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
677 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
678 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
679 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
680 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
681 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
682 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
683 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
684 };
685
686 static const struct adv76xx_format_info adv7611_formats[] = {
687 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
688 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
689 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
690 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
691 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
692 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
693 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
694 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
695 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
696 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
697 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
698 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
699 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
700 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
701 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
702 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
703 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
704 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
705 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
706 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
707 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
708 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
709 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
710 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
711 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
712 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
713 };
714
715 static const struct adv76xx_format_info adv7612_formats[] = {
716 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
717 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
718 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
719 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
720 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
721 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
722 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
723 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
724 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
725 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
726 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
727 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
728 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
729 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
730 };
731
732 static const struct adv76xx_format_info *
733 adv76xx_format_info(struct adv76xx_state *state, u32 code)
734 {
735 unsigned int i;
736
737 for (i = 0; i < state->info->nformats; ++i) {
738 if (state->info->formats[i].code == code)
739 return &state->info->formats[i];
740 }
741
742 return NULL;
743 }
744
745 /* ----------------------------------------------------------------------- */
746
747 static inline bool is_analog_input(struct v4l2_subdev *sd)
748 {
749 struct adv76xx_state *state = to_state(sd);
750
751 return state->selected_input == ADV7604_PAD_VGA_RGB ||
752 state->selected_input == ADV7604_PAD_VGA_COMP;
753 }
754
755 static inline bool is_digital_input(struct v4l2_subdev *sd)
756 {
757 struct adv76xx_state *state = to_state(sd);
758
759 return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
760 state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
761 state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
762 state->selected_input == ADV7604_PAD_HDMI_PORT_D;
763 }
764
765 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
766 .type = V4L2_DV_BT_656_1120,
767 /* keep this initialization for compatibility with GCC < 4.4.6 */
768 .reserved = { 0 },
769 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
770 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
771 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
772 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
773 V4L2_DV_BT_CAP_CUSTOM)
774 };
775
776 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
777 .type = V4L2_DV_BT_656_1120,
778 /* keep this initialization for compatibility with GCC < 4.4.6 */
779 .reserved = { 0 },
780 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000,
781 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
782 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
783 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
784 V4L2_DV_BT_CAP_CUSTOM)
785 };
786
787 /*
788 * Return the DV timings capabilities for the requested sink pad. As a special
789 * case, pad value -1 returns the capabilities for the currently selected input.
790 */
791 static const struct v4l2_dv_timings_cap *
792 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
793 {
794 if (pad == -1) {
795 struct adv76xx_state *state = to_state(sd);
796
797 pad = state->selected_input;
798 }
799
800 switch (pad) {
801 case ADV76XX_PAD_HDMI_PORT_A:
802 case ADV7604_PAD_HDMI_PORT_B:
803 case ADV7604_PAD_HDMI_PORT_C:
804 case ADV7604_PAD_HDMI_PORT_D:
805 return &adv76xx_timings_cap_digital;
806
807 case ADV7604_PAD_VGA_RGB:
808 case ADV7604_PAD_VGA_COMP:
809 default:
810 return &adv7604_timings_cap_analog;
811 }
812 }
813
814
815 /* ----------------------------------------------------------------------- */
816
817 #ifdef CONFIG_VIDEO_ADV_DEBUG
818 static void adv76xx_inv_register(struct v4l2_subdev *sd)
819 {
820 v4l2_info(sd, "0x000-0x0ff: IO Map\n");
821 v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
822 v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
823 v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
824 v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
825 v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
826 v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
827 v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
828 v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
829 v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
830 v4l2_info(sd, "0xa00-0xaff: Test Map\n");
831 v4l2_info(sd, "0xb00-0xbff: CP Map\n");
832 v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
833 }
834
835 static int adv76xx_g_register(struct v4l2_subdev *sd,
836 struct v4l2_dbg_register *reg)
837 {
838 int ret;
839
840 ret = adv76xx_read_reg(sd, reg->reg);
841 if (ret < 0) {
842 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
843 adv76xx_inv_register(sd);
844 return ret;
845 }
846
847 reg->size = 1;
848 reg->val = ret;
849
850 return 0;
851 }
852
853 static int adv76xx_s_register(struct v4l2_subdev *sd,
854 const struct v4l2_dbg_register *reg)
855 {
856 int ret;
857
858 ret = adv76xx_write_reg(sd, reg->reg, reg->val);
859 if (ret < 0) {
860 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
861 adv76xx_inv_register(sd);
862 return ret;
863 }
864
865 return 0;
866 }
867 #endif
868
869 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
870 {
871 u8 value = io_read(sd, 0x6f);
872
873 return ((value & 0x10) >> 4)
874 | ((value & 0x08) >> 2)
875 | ((value & 0x04) << 0)
876 | ((value & 0x02) << 2);
877 }
878
879 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
880 {
881 u8 value = io_read(sd, 0x6f);
882
883 return value & 1;
884 }
885
886 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
887 {
888 /* Reads CABLE_DET_A_RAW. For input B support, need to
889 * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
890 */
891 u8 value = io_read(sd, 0x6f);
892
893 return value & 1;
894 }
895
896 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
897 {
898 struct adv76xx_state *state = to_state(sd);
899 const struct adv76xx_chip_info *info = state->info;
900 u16 cable_det = info->read_cable_det(sd);
901
902 return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
903 }
904
905 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
906 u8 prim_mode,
907 const struct adv76xx_video_standards *predef_vid_timings,
908 const struct v4l2_dv_timings *timings)
909 {
910 int i;
911
912 for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
913 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
914 is_digital_input(sd) ? 250000 : 1000000, false))
915 continue;
916 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
917 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
918 prim_mode); /* v_freq and prim mode */
919 return 0;
920 }
921
922 return -1;
923 }
924
925 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
926 struct v4l2_dv_timings *timings)
927 {
928 struct adv76xx_state *state = to_state(sd);
929 int err;
930
931 v4l2_dbg(1, debug, sd, "%s", __func__);
932
933 if (adv76xx_has_afe(state)) {
934 /* reset to default values */
935 io_write(sd, 0x16, 0x43);
936 io_write(sd, 0x17, 0x5a);
937 }
938 /* disable embedded syncs for auto graphics mode */
939 cp_write_clr_set(sd, 0x81, 0x10, 0x00);
940 cp_write(sd, 0x8f, 0x00);
941 cp_write(sd, 0x90, 0x00);
942 cp_write(sd, 0xa2, 0x00);
943 cp_write(sd, 0xa3, 0x00);
944 cp_write(sd, 0xa4, 0x00);
945 cp_write(sd, 0xa5, 0x00);
946 cp_write(sd, 0xa6, 0x00);
947 cp_write(sd, 0xa7, 0x00);
948 cp_write(sd, 0xab, 0x00);
949 cp_write(sd, 0xac, 0x00);
950
951 if (is_analog_input(sd)) {
952 err = find_and_set_predefined_video_timings(sd,
953 0x01, adv7604_prim_mode_comp, timings);
954 if (err)
955 err = find_and_set_predefined_video_timings(sd,
956 0x02, adv7604_prim_mode_gr, timings);
957 } else if (is_digital_input(sd)) {
958 err = find_and_set_predefined_video_timings(sd,
959 0x05, adv76xx_prim_mode_hdmi_comp, timings);
960 if (err)
961 err = find_and_set_predefined_video_timings(sd,
962 0x06, adv76xx_prim_mode_hdmi_gr, timings);
963 } else {
964 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
965 __func__, state->selected_input);
966 err = -1;
967 }
968
969
970 return err;
971 }
972
973 static void configure_custom_video_timings(struct v4l2_subdev *sd,
974 const struct v4l2_bt_timings *bt)
975 {
976 struct adv76xx_state *state = to_state(sd);
977 u32 width = htotal(bt);
978 u32 height = vtotal(bt);
979 u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
980 u16 cp_start_eav = width - bt->hfrontporch;
981 u16 cp_start_vbi = height - bt->vfrontporch;
982 u16 cp_end_vbi = bt->vsync + bt->vbackporch;
983 u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
984 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
985 const u8 pll[2] = {
986 0xc0 | ((width >> 8) & 0x1f),
987 width & 0xff
988 };
989
990 v4l2_dbg(2, debug, sd, "%s\n", __func__);
991
992 if (is_analog_input(sd)) {
993 /* auto graphics */
994 io_write(sd, 0x00, 0x07); /* video std */
995 io_write(sd, 0x01, 0x02); /* prim mode */
996 /* enable embedded syncs for auto graphics mode */
997 cp_write_clr_set(sd, 0x81, 0x10, 0x10);
998
999 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1000 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1001 /* IO-map reg. 0x16 and 0x17 should be written in sequence */
1002 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1003 0x16, pll, 2))
1004 v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1005
1006 /* active video - horizontal timing */
1007 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1008 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1009 ((cp_start_eav >> 8) & 0x0f));
1010 cp_write(sd, 0xa4, cp_start_eav & 0xff);
1011
1012 /* active video - vertical timing */
1013 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1014 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1015 ((cp_end_vbi >> 8) & 0xf));
1016 cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1017 } else if (is_digital_input(sd)) {
1018 /* set default prim_mode/vid_std for HDMI
1019 according to [REF_03, c. 4.2] */
1020 io_write(sd, 0x00, 0x02); /* video std */
1021 io_write(sd, 0x01, 0x06); /* prim mode */
1022 } else {
1023 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1024 __func__, state->selected_input);
1025 }
1026
1027 cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1028 cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1029 cp_write(sd, 0xab, (height >> 4) & 0xff);
1030 cp_write(sd, 0xac, (height & 0x0f) << 4);
1031 }
1032
1033 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1034 {
1035 struct adv76xx_state *state = to_state(sd);
1036 u8 offset_buf[4];
1037
1038 if (auto_offset) {
1039 offset_a = 0x3ff;
1040 offset_b = 0x3ff;
1041 offset_c = 0x3ff;
1042 }
1043
1044 v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1045 __func__, auto_offset ? "Auto" : "Manual",
1046 offset_a, offset_b, offset_c);
1047
1048 offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1049 offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1050 offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1051 offset_buf[3] = offset_c & 0x0ff;
1052
1053 /* Registers must be written in this order with no i2c access in between */
1054 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1055 0x77, offset_buf, 4))
1056 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1057 }
1058
1059 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1060 {
1061 struct adv76xx_state *state = to_state(sd);
1062 u8 gain_buf[4];
1063 u8 gain_man = 1;
1064 u8 agc_mode_man = 1;
1065
1066 if (auto_gain) {
1067 gain_man = 0;
1068 agc_mode_man = 0;
1069 gain_a = 0x100;
1070 gain_b = 0x100;
1071 gain_c = 0x100;
1072 }
1073
1074 v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1075 __func__, auto_gain ? "Auto" : "Manual",
1076 gain_a, gain_b, gain_c);
1077
1078 gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1079 gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1080 gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1081 gain_buf[3] = ((gain_c & 0x0ff));
1082
1083 /* Registers must be written in this order with no i2c access in between */
1084 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1085 0x73, gain_buf, 4))
1086 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1087 }
1088
1089 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1090 {
1091 struct adv76xx_state *state = to_state(sd);
1092 bool rgb_output = io_read(sd, 0x02) & 0x02;
1093 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1094 u8 y = HDMI_COLORSPACE_RGB;
1095
1096 if (hdmi_signal && (io_read(sd, 0x60) & 1))
1097 y = infoframe_read(sd, 0x01) >> 5;
1098
1099 v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1100 __func__, state->rgb_quantization_range,
1101 rgb_output, hdmi_signal);
1102
1103 adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1104 adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1105 io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1106
1107 switch (state->rgb_quantization_range) {
1108 case V4L2_DV_RGB_RANGE_AUTO:
1109 if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1110 /* Receiving analog RGB signal
1111 * Set RGB full range (0-255) */
1112 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1113 break;
1114 }
1115
1116 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1117 /* Receiving analog YPbPr signal
1118 * Set automode */
1119 io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1120 break;
1121 }
1122
1123 if (hdmi_signal) {
1124 /* Receiving HDMI signal
1125 * Set automode */
1126 io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1127 break;
1128 }
1129
1130 /* Receiving DVI-D signal
1131 * ADV7604 selects RGB limited range regardless of
1132 * input format (CE/IT) in automatic mode */
1133 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1134 /* RGB limited range (16-235) */
1135 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1136 } else {
1137 /* RGB full range (0-255) */
1138 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1139
1140 if (is_digital_input(sd) && rgb_output) {
1141 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1142 } else {
1143 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1144 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1145 }
1146 }
1147 break;
1148 case V4L2_DV_RGB_RANGE_LIMITED:
1149 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1150 /* YCrCb limited range (16-235) */
1151 io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1152 break;
1153 }
1154
1155 if (y != HDMI_COLORSPACE_RGB)
1156 break;
1157
1158 /* RGB limited range (16-235) */
1159 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1160
1161 break;
1162 case V4L2_DV_RGB_RANGE_FULL:
1163 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1164 /* YCrCb full range (0-255) */
1165 io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1166 break;
1167 }
1168
1169 if (y != HDMI_COLORSPACE_RGB)
1170 break;
1171
1172 /* RGB full range (0-255) */
1173 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1174
1175 if (is_analog_input(sd) || hdmi_signal)
1176 break;
1177
1178 /* Adjust gain/offset for DVI-D signals only */
1179 if (rgb_output) {
1180 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1181 } else {
1182 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1183 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1184 }
1185 break;
1186 }
1187 }
1188
1189 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1190 {
1191 struct v4l2_subdev *sd =
1192 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1193
1194 struct adv76xx_state *state = to_state(sd);
1195
1196 switch (ctrl->id) {
1197 case V4L2_CID_BRIGHTNESS:
1198 cp_write(sd, 0x3c, ctrl->val);
1199 return 0;
1200 case V4L2_CID_CONTRAST:
1201 cp_write(sd, 0x3a, ctrl->val);
1202 return 0;
1203 case V4L2_CID_SATURATION:
1204 cp_write(sd, 0x3b, ctrl->val);
1205 return 0;
1206 case V4L2_CID_HUE:
1207 cp_write(sd, 0x3d, ctrl->val);
1208 return 0;
1209 case V4L2_CID_DV_RX_RGB_RANGE:
1210 state->rgb_quantization_range = ctrl->val;
1211 set_rgb_quantization_range(sd);
1212 return 0;
1213 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1214 if (!adv76xx_has_afe(state))
1215 return -EINVAL;
1216 /* Set the analog sampling phase. This is needed to find the
1217 best sampling phase for analog video: an application or
1218 driver has to try a number of phases and analyze the picture
1219 quality before settling on the best performing phase. */
1220 afe_write(sd, 0xc8, ctrl->val);
1221 return 0;
1222 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1223 /* Use the default blue color for free running mode,
1224 or supply your own. */
1225 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1226 return 0;
1227 case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1228 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1229 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1230 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1231 return 0;
1232 }
1233 return -EINVAL;
1234 }
1235
1236 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1237 {
1238 struct v4l2_subdev *sd =
1239 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1240
1241 if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1242 ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1243 if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1244 ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1245 return 0;
1246 }
1247 return -EINVAL;
1248 }
1249
1250 /* ----------------------------------------------------------------------- */
1251
1252 static inline bool no_power(struct v4l2_subdev *sd)
1253 {
1254 /* Entire chip or CP powered off */
1255 return io_read(sd, 0x0c) & 0x24;
1256 }
1257
1258 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1259 {
1260 struct adv76xx_state *state = to_state(sd);
1261
1262 return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1263 }
1264
1265 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1266 {
1267 struct adv76xx_state *state = to_state(sd);
1268 const struct adv76xx_chip_info *info = state->info;
1269
1270 return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1271 }
1272
1273 static inline bool is_hdmi(struct v4l2_subdev *sd)
1274 {
1275 return hdmi_read(sd, 0x05) & 0x80;
1276 }
1277
1278 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1279 {
1280 struct adv76xx_state *state = to_state(sd);
1281
1282 /*
1283 * Chips without a AFE don't expose registers for the SSPD, so just assume
1284 * that we have a lock.
1285 */
1286 if (adv76xx_has_afe(state))
1287 return false;
1288
1289 /* TODO channel 2 */
1290 return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1291 }
1292
1293 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1294 {
1295 /* TODO channel 2 */
1296 return !(cp_read(sd, 0xb1) & 0x80);
1297 }
1298
1299 static inline bool no_signal(struct v4l2_subdev *sd)
1300 {
1301 bool ret;
1302
1303 ret = no_power(sd);
1304
1305 ret |= no_lock_stdi(sd);
1306 ret |= no_lock_sspd(sd);
1307
1308 if (is_digital_input(sd)) {
1309 ret |= no_lock_tmds(sd);
1310 ret |= no_signal_tmds(sd);
1311 }
1312
1313 return ret;
1314 }
1315
1316 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1317 {
1318 struct adv76xx_state *state = to_state(sd);
1319
1320 if (!adv76xx_has_afe(state))
1321 return false;
1322
1323 /* CP has detected a non standard number of lines on the incoming
1324 video compared to what it is configured to receive by s_dv_timings */
1325 return io_read(sd, 0x12) & 0x01;
1326 }
1327
1328 static inline bool in_free_run(struct v4l2_subdev *sd)
1329 {
1330 return cp_read(sd, 0xff) & 0x10;
1331 }
1332
1333 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1334 {
1335 *status = 0;
1336 *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1337 *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1338 if (!in_free_run(sd) && no_lock_cp(sd))
1339 *status |= is_digital_input(sd) ?
1340 V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1341
1342 v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1343
1344 return 0;
1345 }
1346
1347 /* ----------------------------------------------------------------------- */
1348
1349 struct stdi_readback {
1350 u16 bl, lcf, lcvs;
1351 u8 hs_pol, vs_pol;
1352 bool interlaced;
1353 };
1354
1355 static int stdi2dv_timings(struct v4l2_subdev *sd,
1356 struct stdi_readback *stdi,
1357 struct v4l2_dv_timings *timings)
1358 {
1359 struct adv76xx_state *state = to_state(sd);
1360 u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1361 u32 pix_clk;
1362 int i;
1363
1364 for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1365 const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1366
1367 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1368 adv76xx_get_dv_timings_cap(sd, -1),
1369 adv76xx_check_dv_timings, NULL))
1370 continue;
1371 if (vtotal(bt) != stdi->lcf + 1)
1372 continue;
1373 if (bt->vsync != stdi->lcvs)
1374 continue;
1375
1376 pix_clk = hfreq * htotal(bt);
1377
1378 if ((pix_clk < bt->pixelclock + 1000000) &&
1379 (pix_clk > bt->pixelclock - 1000000)) {
1380 *timings = v4l2_dv_timings_presets[i];
1381 return 0;
1382 }
1383 }
1384
1385 if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1386 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1387 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1388 false, timings))
1389 return 0;
1390 if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1391 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1392 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1393 false, state->aspect_ratio, timings))
1394 return 0;
1395
1396 v4l2_dbg(2, debug, sd,
1397 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1398 __func__, stdi->lcvs, stdi->lcf, stdi->bl,
1399 stdi->hs_pol, stdi->vs_pol);
1400 return -1;
1401 }
1402
1403
1404 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1405 {
1406 struct adv76xx_state *state = to_state(sd);
1407 const struct adv76xx_chip_info *info = state->info;
1408 u8 polarity;
1409
1410 if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1411 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1412 return -1;
1413 }
1414
1415 /* read STDI */
1416 stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1417 stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1418 stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1419 stdi->interlaced = io_read(sd, 0x12) & 0x10;
1420
1421 if (adv76xx_has_afe(state)) {
1422 /* read SSPD */
1423 polarity = cp_read(sd, 0xb5);
1424 if ((polarity & 0x03) == 0x01) {
1425 stdi->hs_pol = polarity & 0x10
1426 ? (polarity & 0x08 ? '+' : '-') : 'x';
1427 stdi->vs_pol = polarity & 0x40
1428 ? (polarity & 0x20 ? '+' : '-') : 'x';
1429 } else {
1430 stdi->hs_pol = 'x';
1431 stdi->vs_pol = 'x';
1432 }
1433 } else {
1434 polarity = hdmi_read(sd, 0x05);
1435 stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1436 stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1437 }
1438
1439 if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1440 v4l2_dbg(2, debug, sd,
1441 "%s: signal lost during readout of STDI/SSPD\n", __func__);
1442 return -1;
1443 }
1444
1445 if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1446 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1447 memset(stdi, 0, sizeof(struct stdi_readback));
1448 return -1;
1449 }
1450
1451 v4l2_dbg(2, debug, sd,
1452 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1453 __func__, stdi->lcf, stdi->bl, stdi->lcvs,
1454 stdi->hs_pol, stdi->vs_pol,
1455 stdi->interlaced ? "interlaced" : "progressive");
1456
1457 return 0;
1458 }
1459
1460 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1461 struct v4l2_enum_dv_timings *timings)
1462 {
1463 struct adv76xx_state *state = to_state(sd);
1464
1465 if (timings->pad >= state->source_pad)
1466 return -EINVAL;
1467
1468 return v4l2_enum_dv_timings_cap(timings,
1469 adv76xx_get_dv_timings_cap(sd, timings->pad),
1470 adv76xx_check_dv_timings, NULL);
1471 }
1472
1473 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1474 struct v4l2_dv_timings_cap *cap)
1475 {
1476 struct adv76xx_state *state = to_state(sd);
1477 unsigned int pad = cap->pad;
1478
1479 if (cap->pad >= state->source_pad)
1480 return -EINVAL;
1481
1482 *cap = *adv76xx_get_dv_timings_cap(sd, pad);
1483 cap->pad = pad;
1484
1485 return 0;
1486 }
1487
1488 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1489 if the format is listed in adv76xx_timings[] */
1490 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1491 struct v4l2_dv_timings *timings)
1492 {
1493 v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1494 is_digital_input(sd) ? 250000 : 1000000,
1495 adv76xx_check_dv_timings, NULL);
1496 }
1497
1498 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1499 {
1500 unsigned int freq;
1501 int a, b;
1502
1503 a = hdmi_read(sd, 0x06);
1504 b = hdmi_read(sd, 0x3b);
1505 if (a < 0 || b < 0)
1506 return 0;
1507 freq = a * 1000000 + ((b & 0x30) >> 4) * 250000;
1508
1509 if (is_hdmi(sd)) {
1510 /* adjust for deep color mode */
1511 unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1512
1513 freq = freq * 8 / bits_per_channel;
1514 }
1515
1516 return freq;
1517 }
1518
1519 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1520 {
1521 int a, b;
1522
1523 a = hdmi_read(sd, 0x51);
1524 b = hdmi_read(sd, 0x52);
1525 if (a < 0 || b < 0)
1526 return 0;
1527 return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1528 }
1529
1530 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1531 struct v4l2_dv_timings *timings)
1532 {
1533 struct adv76xx_state *state = to_state(sd);
1534 const struct adv76xx_chip_info *info = state->info;
1535 struct v4l2_bt_timings *bt = &timings->bt;
1536 struct stdi_readback stdi;
1537
1538 if (!timings)
1539 return -EINVAL;
1540
1541 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1542
1543 if (no_signal(sd)) {
1544 state->restart_stdi_once = true;
1545 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1546 return -ENOLINK;
1547 }
1548
1549 /* read STDI */
1550 if (read_stdi(sd, &stdi)) {
1551 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1552 return -ENOLINK;
1553 }
1554 bt->interlaced = stdi.interlaced ?
1555 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1556
1557 if (is_digital_input(sd)) {
1558 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1559 u8 vic = 0;
1560 u32 w, h;
1561
1562 w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1563 h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1564
1565 if (hdmi_signal && (io_read(sd, 0x60) & 1))
1566 vic = infoframe_read(sd, 0x04);
1567
1568 if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1569 bt->width == w && bt->height == h)
1570 goto found;
1571
1572 timings->type = V4L2_DV_BT_656_1120;
1573
1574 bt->width = w;
1575 bt->height = h;
1576 bt->pixelclock = info->read_hdmi_pixelclock(sd);
1577 bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1578 bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1579 bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1580 bt->vfrontporch = hdmi_read16(sd, 0x2a,
1581 info->field0_vfrontporch_mask) / 2;
1582 bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1583 bt->vbackporch = hdmi_read16(sd, 0x32,
1584 info->field0_vbackporch_mask) / 2;
1585 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1586 ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1587 if (bt->interlaced == V4L2_DV_INTERLACED) {
1588 bt->height += hdmi_read16(sd, 0x0b,
1589 info->field1_height_mask);
1590 bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1591 info->field1_vfrontporch_mask) / 2;
1592 bt->il_vsync = hdmi_read16(sd, 0x30,
1593 info->field1_vsync_mask) / 2;
1594 bt->il_vbackporch = hdmi_read16(sd, 0x34,
1595 info->field1_vbackporch_mask) / 2;
1596 }
1597 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1598 } else {
1599 /* find format
1600 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1601 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1602 */
1603 if (!stdi2dv_timings(sd, &stdi, timings))
1604 goto found;
1605 stdi.lcvs += 1;
1606 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1607 if (!stdi2dv_timings(sd, &stdi, timings))
1608 goto found;
1609 stdi.lcvs -= 2;
1610 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1611 if (stdi2dv_timings(sd, &stdi, timings)) {
1612 /*
1613 * The STDI block may measure wrong values, especially
1614 * for lcvs and lcf. If the driver can not find any
1615 * valid timing, the STDI block is restarted to measure
1616 * the video timings again. The function will return an
1617 * error, but the restart of STDI will generate a new
1618 * STDI interrupt and the format detection process will
1619 * restart.
1620 */
1621 if (state->restart_stdi_once) {
1622 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1623 /* TODO restart STDI for Sync Channel 2 */
1624 /* enter one-shot mode */
1625 cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1626 /* trigger STDI restart */
1627 cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1628 /* reset to continuous mode */
1629 cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1630 state->restart_stdi_once = false;
1631 return -ENOLINK;
1632 }
1633 v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1634 return -ERANGE;
1635 }
1636 state->restart_stdi_once = true;
1637 }
1638 found:
1639
1640 if (no_signal(sd)) {
1641 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1642 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1643 return -ENOLINK;
1644 }
1645
1646 if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1647 (is_digital_input(sd) && bt->pixelclock > 225000000)) {
1648 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1649 __func__, (u32)bt->pixelclock);
1650 return -ERANGE;
1651 }
1652
1653 if (debug > 1)
1654 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1655 timings, true);
1656
1657 return 0;
1658 }
1659
1660 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1661 struct v4l2_dv_timings *timings)
1662 {
1663 struct adv76xx_state *state = to_state(sd);
1664 struct v4l2_bt_timings *bt;
1665 int err;
1666
1667 if (!timings)
1668 return -EINVAL;
1669
1670 if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1671 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1672 return 0;
1673 }
1674
1675 bt = &timings->bt;
1676
1677 if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1678 adv76xx_check_dv_timings, NULL))
1679 return -ERANGE;
1680
1681 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1682
1683 state->timings = *timings;
1684
1685 cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1686
1687 /* Use prim_mode and vid_std when available */
1688 err = configure_predefined_video_timings(sd, timings);
1689 if (err) {
1690 /* custom settings when the video format
1691 does not have prim_mode/vid_std */
1692 configure_custom_video_timings(sd, bt);
1693 }
1694
1695 set_rgb_quantization_range(sd);
1696
1697 if (debug > 1)
1698 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1699 timings, true);
1700 return 0;
1701 }
1702
1703 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1704 struct v4l2_dv_timings *timings)
1705 {
1706 struct adv76xx_state *state = to_state(sd);
1707
1708 *timings = state->timings;
1709 return 0;
1710 }
1711
1712 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1713 {
1714 hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1715 }
1716
1717 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1718 {
1719 hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1720 }
1721
1722 static void enable_input(struct v4l2_subdev *sd)
1723 {
1724 struct adv76xx_state *state = to_state(sd);
1725
1726 if (is_analog_input(sd)) {
1727 io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */
1728 } else if (is_digital_input(sd)) {
1729 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1730 state->info->set_termination(sd, true);
1731 io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */
1732 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1733 } else {
1734 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1735 __func__, state->selected_input);
1736 }
1737 }
1738
1739 static void disable_input(struct v4l2_subdev *sd)
1740 {
1741 struct adv76xx_state *state = to_state(sd);
1742
1743 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1744 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1745 io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */
1746 state->info->set_termination(sd, false);
1747 }
1748
1749 static void select_input(struct v4l2_subdev *sd)
1750 {
1751 struct adv76xx_state *state = to_state(sd);
1752 const struct adv76xx_chip_info *info = state->info;
1753
1754 if (is_analog_input(sd)) {
1755 adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1756
1757 afe_write(sd, 0x00, 0x08); /* power up ADC */
1758 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1759 afe_write(sd, 0xc8, 0x00); /* phase control */
1760 } else if (is_digital_input(sd)) {
1761 hdmi_write(sd, 0x00, state->selected_input & 0x03);
1762
1763 adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1764
1765 if (adv76xx_has_afe(state)) {
1766 afe_write(sd, 0x00, 0xff); /* power down ADC */
1767 afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1768 afe_write(sd, 0xc8, 0x40); /* phase control */
1769 }
1770
1771 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1772 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1773 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1774 } else {
1775 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1776 __func__, state->selected_input);
1777 }
1778 }
1779
1780 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1781 u32 input, u32 output, u32 config)
1782 {
1783 struct adv76xx_state *state = to_state(sd);
1784
1785 v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1786 __func__, input, state->selected_input);
1787
1788 if (input == state->selected_input)
1789 return 0;
1790
1791 if (input > state->info->max_port)
1792 return -EINVAL;
1793
1794 state->selected_input = input;
1795
1796 disable_input(sd);
1797 select_input(sd);
1798 enable_input(sd);
1799
1800 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1801
1802 return 0;
1803 }
1804
1805 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1806 struct v4l2_subdev_pad_config *cfg,
1807 struct v4l2_subdev_mbus_code_enum *code)
1808 {
1809 struct adv76xx_state *state = to_state(sd);
1810
1811 if (code->index >= state->info->nformats)
1812 return -EINVAL;
1813
1814 code->code = state->info->formats[code->index].code;
1815
1816 return 0;
1817 }
1818
1819 static void adv76xx_fill_format(struct adv76xx_state *state,
1820 struct v4l2_mbus_framefmt *format)
1821 {
1822 memset(format, 0, sizeof(*format));
1823
1824 format->width = state->timings.bt.width;
1825 format->height = state->timings.bt.height;
1826 format->field = V4L2_FIELD_NONE;
1827 format->colorspace = V4L2_COLORSPACE_SRGB;
1828
1829 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1830 format->colorspace = (state->timings.bt.height <= 576) ?
1831 V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1832 }
1833
1834 /*
1835 * Compute the op_ch_sel value required to obtain on the bus the component order
1836 * corresponding to the selected format taking into account bus reordering
1837 * applied by the board at the output of the device.
1838 *
1839 * The following table gives the op_ch_value from the format component order
1840 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1841 * adv76xx_bus_order value in row).
1842 *
1843 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5)
1844 * ----------+-------------------------------------------------
1845 * RGB (NOP) | GBR GRB BGR RGB BRG RBG
1846 * GRB (1-2) | BGR RGB GBR GRB RBG BRG
1847 * RBG (2-3) | GRB GBR BRG RBG BGR RGB
1848 * BGR (1-3) | RBG BRG RGB BGR GRB GBR
1849 * BRG (ROR) | BRG RBG GRB GBR RGB BGR
1850 * GBR (ROL) | RGB BGR RBG BRG GBR GRB
1851 */
1852 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1853 {
1854 #define _SEL(a,b,c,d,e,f) { \
1855 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1856 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1857 #define _BUS(x) [ADV7604_BUS_ORDER_##x]
1858
1859 static const unsigned int op_ch_sel[6][6] = {
1860 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1861 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1862 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1863 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1864 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1865 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1866 };
1867
1868 return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1869 }
1870
1871 static void adv76xx_setup_format(struct adv76xx_state *state)
1872 {
1873 struct v4l2_subdev *sd = &state->sd;
1874
1875 io_write_clr_set(sd, 0x02, 0x02,
1876 state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1877 io_write(sd, 0x03, state->format->op_format_sel |
1878 state->pdata.op_format_mode_sel);
1879 io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1880 io_write_clr_set(sd, 0x05, 0x01,
1881 state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1882 set_rgb_quantization_range(sd);
1883 }
1884
1885 static int adv76xx_get_format(struct v4l2_subdev *sd,
1886 struct v4l2_subdev_pad_config *cfg,
1887 struct v4l2_subdev_format *format)
1888 {
1889 struct adv76xx_state *state = to_state(sd);
1890
1891 if (format->pad != state->source_pad)
1892 return -EINVAL;
1893
1894 adv76xx_fill_format(state, &format->format);
1895
1896 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1897 struct v4l2_mbus_framefmt *fmt;
1898
1899 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1900 format->format.code = fmt->code;
1901 } else {
1902 format->format.code = state->format->code;
1903 }
1904
1905 return 0;
1906 }
1907
1908 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1909 struct v4l2_subdev_pad_config *cfg,
1910 struct v4l2_subdev_selection *sel)
1911 {
1912 struct adv76xx_state *state = to_state(sd);
1913
1914 if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1915 return -EINVAL;
1916 /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1917 if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1918 return -EINVAL;
1919
1920 sel->r.left = 0;
1921 sel->r.top = 0;
1922 sel->r.width = state->timings.bt.width;
1923 sel->r.height = state->timings.bt.height;
1924
1925 return 0;
1926 }
1927
1928 static int adv76xx_set_format(struct v4l2_subdev *sd,
1929 struct v4l2_subdev_pad_config *cfg,
1930 struct v4l2_subdev_format *format)
1931 {
1932 struct adv76xx_state *state = to_state(sd);
1933 const struct adv76xx_format_info *info;
1934
1935 if (format->pad != state->source_pad)
1936 return -EINVAL;
1937
1938 info = adv76xx_format_info(state, format->format.code);
1939 if (!info)
1940 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1941
1942 adv76xx_fill_format(state, &format->format);
1943 format->format.code = info->code;
1944
1945 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1946 struct v4l2_mbus_framefmt *fmt;
1947
1948 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1949 fmt->code = format->format.code;
1950 } else {
1951 state->format = info;
1952 adv76xx_setup_format(state);
1953 }
1954
1955 return 0;
1956 }
1957
1958 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1959 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1960 {
1961 struct adv76xx_state *state = to_state(sd);
1962
1963 if ((cec_read(sd, 0x11) & 0x01) == 0) {
1964 v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1965 return;
1966 }
1967
1968 if (tx_raw_status & 0x02) {
1969 v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
1970 __func__);
1971 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
1972 1, 0, 0, 0);
1973 return;
1974 }
1975 if (tx_raw_status & 0x04) {
1976 u8 status;
1977 u8 nack_cnt;
1978 u8 low_drive_cnt;
1979
1980 v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
1981 /*
1982 * We set this status bit since this hardware performs
1983 * retransmissions.
1984 */
1985 status = CEC_TX_STATUS_MAX_RETRIES;
1986 nack_cnt = cec_read(sd, 0x14) & 0xf;
1987 if (nack_cnt)
1988 status |= CEC_TX_STATUS_NACK;
1989 low_drive_cnt = cec_read(sd, 0x14) >> 4;
1990 if (low_drive_cnt)
1991 status |= CEC_TX_STATUS_LOW_DRIVE;
1992 cec_transmit_done(state->cec_adap, status,
1993 0, nack_cnt, low_drive_cnt, 0);
1994 return;
1995 }
1996 if (tx_raw_status & 0x01) {
1997 v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
1998 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
1999 return;
2000 }
2001 }
2002
2003 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2004 {
2005 struct adv76xx_state *state = to_state(sd);
2006 u8 cec_irq;
2007
2008 /* cec controller */
2009 cec_irq = io_read(sd, 0x4d) & 0x0f;
2010 if (!cec_irq)
2011 return;
2012
2013 v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2014 adv76xx_cec_tx_raw_status(sd, cec_irq);
2015 if (cec_irq & 0x08) {
2016 struct cec_msg msg;
2017
2018 msg.len = cec_read(sd, 0x25) & 0x1f;
2019 if (msg.len > 16)
2020 msg.len = 16;
2021
2022 if (msg.len) {
2023 u8 i;
2024
2025 for (i = 0; i < msg.len; i++)
2026 msg.msg[i] = cec_read(sd, i + 0x15);
2027 cec_write(sd, 0x26, 0x01); /* re-enable rx */
2028 cec_received_msg(state->cec_adap, &msg);
2029 }
2030 }
2031
2032 /* note: the bit order is swapped between 0x4d and 0x4e */
2033 cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2034 ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2035 io_write(sd, 0x4e, cec_irq);
2036
2037 if (handled)
2038 *handled = true;
2039 }
2040
2041 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2042 {
2043 struct adv76xx_state *state = cec_get_drvdata(adap);
2044 struct v4l2_subdev *sd = &state->sd;
2045
2046 if (!state->cec_enabled_adap && enable) {
2047 cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2048 cec_write(sd, 0x2c, 0x01); /* cec soft reset */
2049 cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2050 /* enabled irqs: */
2051 /* tx: ready */
2052 /* tx: arbitration lost */
2053 /* tx: retry timeout */
2054 /* rx: ready */
2055 io_write_clr_set(sd, 0x50, 0x0f, 0x0f);
2056 cec_write(sd, 0x26, 0x01); /* enable rx */
2057 } else if (state->cec_enabled_adap && !enable) {
2058 /* disable cec interrupts */
2059 io_write_clr_set(sd, 0x50, 0x0f, 0x00);
2060 /* disable address mask 1-3 */
2061 cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2062 /* power down cec section */
2063 cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2064 state->cec_valid_addrs = 0;
2065 }
2066 state->cec_enabled_adap = enable;
2067 adv76xx_s_detect_tx_5v_ctrl(sd);
2068 return 0;
2069 }
2070
2071 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2072 {
2073 struct adv76xx_state *state = cec_get_drvdata(adap);
2074 struct v4l2_subdev *sd = &state->sd;
2075 unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2076
2077 if (!state->cec_enabled_adap)
2078 return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2079
2080 if (addr == CEC_LOG_ADDR_INVALID) {
2081 cec_write_clr_set(sd, 0x27, 0x70, 0);
2082 state->cec_valid_addrs = 0;
2083 return 0;
2084 }
2085
2086 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2087 bool is_valid = state->cec_valid_addrs & (1 << i);
2088
2089 if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2090 free_idx = i;
2091 if (is_valid && state->cec_addr[i] == addr)
2092 return 0;
2093 }
2094 if (i == ADV76XX_MAX_ADDRS) {
2095 i = free_idx;
2096 if (i == ADV76XX_MAX_ADDRS)
2097 return -ENXIO;
2098 }
2099 state->cec_addr[i] = addr;
2100 state->cec_valid_addrs |= 1 << i;
2101
2102 switch (i) {
2103 case 0:
2104 /* enable address mask 0 */
2105 cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2106 /* set address for mask 0 */
2107 cec_write_clr_set(sd, 0x28, 0x0f, addr);
2108 break;
2109 case 1:
2110 /* enable address mask 1 */
2111 cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2112 /* set address for mask 1 */
2113 cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2114 break;
2115 case 2:
2116 /* enable address mask 2 */
2117 cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2118 /* set address for mask 1 */
2119 cec_write_clr_set(sd, 0x29, 0x0f, addr);
2120 break;
2121 }
2122 return 0;
2123 }
2124
2125 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2126 u32 signal_free_time, struct cec_msg *msg)
2127 {
2128 struct adv76xx_state *state = cec_get_drvdata(adap);
2129 struct v4l2_subdev *sd = &state->sd;
2130 u8 len = msg->len;
2131 unsigned int i;
2132
2133 /*
2134 * The number of retries is the number of attempts - 1, but retry
2135 * at least once. It's not clear if a value of 0 is allowed, so
2136 * let's do at least one retry.
2137 */
2138 cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2139
2140 if (len > 16) {
2141 v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2142 return -EINVAL;
2143 }
2144
2145 /* write data */
2146 for (i = 0; i < len; i++)
2147 cec_write(sd, i, msg->msg[i]);
2148
2149 /* set length (data + header) */
2150 cec_write(sd, 0x10, len);
2151 /* start transmit, enable tx */
2152 cec_write(sd, 0x11, 0x01);
2153 return 0;
2154 }
2155
2156 static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2157 .adap_enable = adv76xx_cec_adap_enable,
2158 .adap_log_addr = adv76xx_cec_adap_log_addr,
2159 .adap_transmit = adv76xx_cec_adap_transmit,
2160 };
2161 #endif
2162
2163 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2164 {
2165 struct adv76xx_state *state = to_state(sd);
2166 const struct adv76xx_chip_info *info = state->info;
2167 const u8 irq_reg_0x43 = io_read(sd, 0x43);
2168 const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2169 const u8 irq_reg_0x70 = io_read(sd, 0x70);
2170 u8 fmt_change_digital;
2171 u8 fmt_change;
2172 u8 tx_5v;
2173
2174 if (irq_reg_0x43)
2175 io_write(sd, 0x44, irq_reg_0x43);
2176 if (irq_reg_0x70)
2177 io_write(sd, 0x71, irq_reg_0x70);
2178 if (irq_reg_0x6b)
2179 io_write(sd, 0x6c, irq_reg_0x6b);
2180
2181 v4l2_dbg(2, debug, sd, "%s: ", __func__);
2182
2183 /* format change */
2184 fmt_change = irq_reg_0x43 & 0x98;
2185 fmt_change_digital = is_digital_input(sd)
2186 ? irq_reg_0x6b & info->fmt_change_digital_mask
2187 : 0;
2188
2189 if (fmt_change || fmt_change_digital) {
2190 v4l2_dbg(1, debug, sd,
2191 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2192 __func__, fmt_change, fmt_change_digital);
2193
2194 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2195
2196 if (handled)
2197 *handled = true;
2198 }
2199 /* HDMI/DVI mode */
2200 if (irq_reg_0x6b & 0x01) {
2201 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2202 (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2203 set_rgb_quantization_range(sd);
2204 if (handled)
2205 *handled = true;
2206 }
2207
2208 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2209 /* cec */
2210 adv76xx_cec_isr(sd, handled);
2211 #endif
2212
2213 /* tx 5v detect */
2214 tx_5v = irq_reg_0x70 & info->cable_det_mask;
2215 if (tx_5v) {
2216 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2217 adv76xx_s_detect_tx_5v_ctrl(sd);
2218 if (handled)
2219 *handled = true;
2220 }
2221 return 0;
2222 }
2223
2224 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2225 {
2226 struct adv76xx_state *state = to_state(sd);
2227 u8 *data = NULL;
2228
2229 memset(edid->reserved, 0, sizeof(edid->reserved));
2230
2231 switch (edid->pad) {
2232 case ADV76XX_PAD_HDMI_PORT_A:
2233 case ADV7604_PAD_HDMI_PORT_B:
2234 case ADV7604_PAD_HDMI_PORT_C:
2235 case ADV7604_PAD_HDMI_PORT_D:
2236 if (state->edid.present & (1 << edid->pad))
2237 data = state->edid.edid;
2238 break;
2239 default:
2240 return -EINVAL;
2241 }
2242
2243 if (edid->start_block == 0 && edid->blocks == 0) {
2244 edid->blocks = data ? state->edid.blocks : 0;
2245 return 0;
2246 }
2247
2248 if (!data)
2249 return -ENODATA;
2250
2251 if (edid->start_block >= state->edid.blocks)
2252 return -EINVAL;
2253
2254 if (edid->start_block + edid->blocks > state->edid.blocks)
2255 edid->blocks = state->edid.blocks - edid->start_block;
2256
2257 memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2258
2259 return 0;
2260 }
2261
2262 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2263 {
2264 struct adv76xx_state *state = to_state(sd);
2265 const struct adv76xx_chip_info *info = state->info;
2266 unsigned int spa_loc;
2267 u16 pa;
2268 int err;
2269 int i;
2270
2271 memset(edid->reserved, 0, sizeof(edid->reserved));
2272
2273 if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2274 return -EINVAL;
2275 if (edid->start_block != 0)
2276 return -EINVAL;
2277 if (edid->blocks == 0) {
2278 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2279 state->edid.present &= ~(1 << edid->pad);
2280 adv76xx_set_hpd(state, state->edid.present);
2281 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2282
2283 /* Fall back to a 16:9 aspect ratio */
2284 state->aspect_ratio.numerator = 16;
2285 state->aspect_ratio.denominator = 9;
2286
2287 if (!state->edid.present) {
2288 state->edid.blocks = 0;
2289 cec_phys_addr_invalidate(state->cec_adap);
2290 }
2291
2292 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2293 __func__, edid->pad, state->edid.present);
2294 return 0;
2295 }
2296 if (edid->blocks > 2) {
2297 edid->blocks = 2;
2298 return -E2BIG;
2299 }
2300 pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2301 err = v4l2_phys_addr_validate(pa, &pa, NULL);
2302 if (err)
2303 return err;
2304
2305 v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2306 __func__, edid->pad, state->edid.present);
2307
2308 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2309 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2310 adv76xx_set_hpd(state, 0);
2311 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2312
2313 /*
2314 * Return an error if no location of the source physical address
2315 * was found.
2316 */
2317 if (spa_loc == 0)
2318 return -EINVAL;
2319
2320 switch (edid->pad) {
2321 case ADV76XX_PAD_HDMI_PORT_A:
2322 state->spa_port_a[0] = edid->edid[spa_loc];
2323 state->spa_port_a[1] = edid->edid[spa_loc + 1];
2324 break;
2325 case ADV7604_PAD_HDMI_PORT_B:
2326 rep_write(sd, 0x70, edid->edid[spa_loc]);
2327 rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2328 break;
2329 case ADV7604_PAD_HDMI_PORT_C:
2330 rep_write(sd, 0x72, edid->edid[spa_loc]);
2331 rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2332 break;
2333 case ADV7604_PAD_HDMI_PORT_D:
2334 rep_write(sd, 0x74, edid->edid[spa_loc]);
2335 rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2336 break;
2337 default:
2338 return -EINVAL;
2339 }
2340
2341 if (info->type == ADV7604) {
2342 rep_write(sd, 0x76, spa_loc & 0xff);
2343 rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2344 } else {
2345 /* ADV7612 Software Manual Rev. A, p. 15 */
2346 rep_write(sd, 0x70, spa_loc & 0xff);
2347 rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2348 }
2349
2350 edid->edid[spa_loc] = state->spa_port_a[0];
2351 edid->edid[spa_loc + 1] = state->spa_port_a[1];
2352
2353 memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2354 state->edid.blocks = edid->blocks;
2355 state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2356 edid->edid[0x16]);
2357 state->edid.present |= 1 << edid->pad;
2358
2359 err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2360 if (err < 0) {
2361 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2362 return err;
2363 }
2364
2365 /* adv76xx calculates the checksums and enables I2C access to internal
2366 EDID RAM from DDC port. */
2367 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2368
2369 for (i = 0; i < 1000; i++) {
2370 if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2371 break;
2372 mdelay(1);
2373 }
2374 if (i == 1000) {
2375 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2376 return -EIO;
2377 }
2378 cec_s_phys_addr(state->cec_adap, pa, false);
2379
2380 /* enable hotplug after 100 ms */
2381 schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2382 return 0;
2383 }
2384
2385 /*********** avi info frame CEA-861-E **************/
2386
2387 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2388 { "AVI", 0x01, 0xe0, 0x00 },
2389 { "Audio", 0x02, 0xe3, 0x1c },
2390 { "SDP", 0x04, 0xe6, 0x2a },
2391 { "Vendor", 0x10, 0xec, 0x54 }
2392 };
2393
2394 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2395 union hdmi_infoframe *frame)
2396 {
2397 uint8_t buffer[32];
2398 u8 len;
2399 int i;
2400
2401 if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2402 v4l2_info(sd, "%s infoframe not received\n",
2403 adv76xx_cri[index].desc);
2404 return -ENOENT;
2405 }
2406
2407 for (i = 0; i < 3; i++)
2408 buffer[i] = infoframe_read(sd,
2409 adv76xx_cri[index].head_addr + i);
2410
2411 len = buffer[2] + 1;
2412
2413 if (len + 3 > sizeof(buffer)) {
2414 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2415 adv76xx_cri[index].desc, len);
2416 return -ENOENT;
2417 }
2418
2419 for (i = 0; i < len; i++)
2420 buffer[i + 3] = infoframe_read(sd,
2421 adv76xx_cri[index].payload_addr + i);
2422
2423 if (hdmi_infoframe_unpack(frame, buffer, sizeof(buffer)) < 0) {
2424 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2425 adv76xx_cri[index].desc);
2426 return -ENOENT;
2427 }
2428 return 0;
2429 }
2430
2431 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2432 {
2433 int i;
2434
2435 if (!is_hdmi(sd)) {
2436 v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2437 return;
2438 }
2439
2440 for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2441 union hdmi_infoframe frame;
2442 struct i2c_client *client = v4l2_get_subdevdata(sd);
2443
2444 if (adv76xx_read_infoframe(sd, i, &frame))
2445 return;
2446 hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2447 }
2448 }
2449
2450 static int adv76xx_log_status(struct v4l2_subdev *sd)
2451 {
2452 struct adv76xx_state *state = to_state(sd);
2453 const struct adv76xx_chip_info *info = state->info;
2454 struct v4l2_dv_timings timings;
2455 struct stdi_readback stdi;
2456 u8 reg_io_0x02 = io_read(sd, 0x02);
2457 u8 edid_enabled;
2458 u8 cable_det;
2459
2460 static const char * const csc_coeff_sel_rb[16] = {
2461 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2462 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2463 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2464 "reserved", "reserved", "reserved", "reserved", "manual"
2465 };
2466 static const char * const input_color_space_txt[16] = {
2467 "RGB limited range (16-235)", "RGB full range (0-255)",
2468 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2469 "xvYCC Bt.601", "xvYCC Bt.709",
2470 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2471 "invalid", "invalid", "invalid", "invalid", "invalid",
2472 "invalid", "invalid", "automatic"
2473 };
2474 static const char * const hdmi_color_space_txt[16] = {
2475 "RGB limited range (16-235)", "RGB full range (0-255)",
2476 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2477 "xvYCC Bt.601", "xvYCC Bt.709",
2478 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2479 "sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
2480 "invalid", "invalid", "invalid"
2481 };
2482 static const char * const rgb_quantization_range_txt[] = {
2483 "Automatic",
2484 "RGB limited range (16-235)",
2485 "RGB full range (0-255)",
2486 };
2487 static const char * const deep_color_mode_txt[4] = {
2488 "8-bits per channel",
2489 "10-bits per channel",
2490 "12-bits per channel",
2491 "16-bits per channel (not supported)"
2492 };
2493
2494 v4l2_info(sd, "-----Chip status-----\n");
2495 v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2496 edid_enabled = rep_read(sd, info->edid_status_reg);
2497 v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2498 ((edid_enabled & 0x01) ? "Yes" : "No"),
2499 ((edid_enabled & 0x02) ? "Yes" : "No"),
2500 ((edid_enabled & 0x04) ? "Yes" : "No"),
2501 ((edid_enabled & 0x08) ? "Yes" : "No"));
2502 v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2503 "enabled" : "disabled");
2504 if (state->cec_enabled_adap) {
2505 int i;
2506
2507 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2508 bool is_valid = state->cec_valid_addrs & (1 << i);
2509
2510 if (is_valid)
2511 v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2512 state->cec_addr[i]);
2513 }
2514 }
2515
2516 v4l2_info(sd, "-----Signal status-----\n");
2517 cable_det = info->read_cable_det(sd);
2518 v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2519 ((cable_det & 0x01) ? "Yes" : "No"),
2520 ((cable_det & 0x02) ? "Yes" : "No"),
2521 ((cable_det & 0x04) ? "Yes" : "No"),
2522 ((cable_det & 0x08) ? "Yes" : "No"));
2523 v4l2_info(sd, "TMDS signal detected: %s\n",
2524 no_signal_tmds(sd) ? "false" : "true");
2525 v4l2_info(sd, "TMDS signal locked: %s\n",
2526 no_lock_tmds(sd) ? "false" : "true");
2527 v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2528 v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2529 v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2530 v4l2_info(sd, "CP free run: %s\n",
2531 (in_free_run(sd)) ? "on" : "off");
2532 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2533 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2534 (io_read(sd, 0x01) & 0x70) >> 4);
2535
2536 v4l2_info(sd, "-----Video Timings-----\n");
2537 if (read_stdi(sd, &stdi))
2538 v4l2_info(sd, "STDI: not locked\n");
2539 else
2540 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2541 stdi.lcf, stdi.bl, stdi.lcvs,
2542 stdi.interlaced ? "interlaced" : "progressive",
2543 stdi.hs_pol, stdi.vs_pol);
2544 if (adv76xx_query_dv_timings(sd, &timings))
2545 v4l2_info(sd, "No video detected\n");
2546 else
2547 v4l2_print_dv_timings(sd->name, "Detected format: ",
2548 &timings, true);
2549 v4l2_print_dv_timings(sd->name, "Configured format: ",
2550 &state->timings, true);
2551
2552 if (no_signal(sd))
2553 return 0;
2554
2555 v4l2_info(sd, "-----Color space-----\n");
2556 v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2557 rgb_quantization_range_txt[state->rgb_quantization_range]);
2558 v4l2_info(sd, "Input color space: %s\n",
2559 input_color_space_txt[reg_io_0x02 >> 4]);
2560 v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2561 (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2562 (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2563 "(16-235)" : "(0-255)",
2564 (reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2565 v4l2_info(sd, "Color space conversion: %s\n",
2566 csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2567
2568 if (!is_digital_input(sd))
2569 return 0;
2570
2571 v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2572 v4l2_info(sd, "Digital video port selected: %c\n",
2573 (hdmi_read(sd, 0x00) & 0x03) + 'A');
2574 v4l2_info(sd, "HDCP encrypted content: %s\n",
2575 (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2576 v4l2_info(sd, "HDCP keys read: %s%s\n",
2577 (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2578 (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2579 if (is_hdmi(sd)) {
2580 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2581 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2582 bool audio_mute = io_read(sd, 0x65) & 0x40;
2583
2584 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2585 audio_pll_locked ? "locked" : "not locked",
2586 audio_sample_packet_detect ? "detected" : "not detected",
2587 audio_mute ? "muted" : "enabled");
2588 if (audio_pll_locked && audio_sample_packet_detect) {
2589 v4l2_info(sd, "Audio format: %s\n",
2590 (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2591 }
2592 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2593 (hdmi_read(sd, 0x5c) << 8) +
2594 (hdmi_read(sd, 0x5d) & 0xf0));
2595 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2596 (hdmi_read(sd, 0x5e) << 8) +
2597 hdmi_read(sd, 0x5f));
2598 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2599
2600 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2601 v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2602
2603 adv76xx_log_infoframes(sd);
2604 }
2605
2606 return 0;
2607 }
2608
2609 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2610 struct v4l2_fh *fh,
2611 struct v4l2_event_subscription *sub)
2612 {
2613 switch (sub->type) {
2614 case V4L2_EVENT_SOURCE_CHANGE:
2615 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2616 case V4L2_EVENT_CTRL:
2617 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2618 default:
2619 return -EINVAL;
2620 }
2621 }
2622
2623 static int adv76xx_registered(struct v4l2_subdev *sd)
2624 {
2625 struct adv76xx_state *state = to_state(sd);
2626 struct i2c_client *client = v4l2_get_subdevdata(sd);
2627 int err;
2628
2629 err = cec_register_adapter(state->cec_adap, &client->dev);
2630 if (err)
2631 cec_delete_adapter(state->cec_adap);
2632 return err;
2633 }
2634
2635 static void adv76xx_unregistered(struct v4l2_subdev *sd)
2636 {
2637 struct adv76xx_state *state = to_state(sd);
2638
2639 cec_unregister_adapter(state->cec_adap);
2640 }
2641
2642 /* ----------------------------------------------------------------------- */
2643
2644 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2645 .s_ctrl = adv76xx_s_ctrl,
2646 .g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2647 };
2648
2649 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2650 .log_status = adv76xx_log_status,
2651 .interrupt_service_routine = adv76xx_isr,
2652 .subscribe_event = adv76xx_subscribe_event,
2653 .unsubscribe_event = v4l2_event_subdev_unsubscribe,
2654 #ifdef CONFIG_VIDEO_ADV_DEBUG
2655 .g_register = adv76xx_g_register,
2656 .s_register = adv76xx_s_register,
2657 #endif
2658 };
2659
2660 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2661 .s_routing = adv76xx_s_routing,
2662 .g_input_status = adv76xx_g_input_status,
2663 .s_dv_timings = adv76xx_s_dv_timings,
2664 .g_dv_timings = adv76xx_g_dv_timings,
2665 .query_dv_timings = adv76xx_query_dv_timings,
2666 };
2667
2668 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2669 .enum_mbus_code = adv76xx_enum_mbus_code,
2670 .get_selection = adv76xx_get_selection,
2671 .get_fmt = adv76xx_get_format,
2672 .set_fmt = adv76xx_set_format,
2673 .get_edid = adv76xx_get_edid,
2674 .set_edid = adv76xx_set_edid,
2675 .dv_timings_cap = adv76xx_dv_timings_cap,
2676 .enum_dv_timings = adv76xx_enum_dv_timings,
2677 };
2678
2679 static const struct v4l2_subdev_ops adv76xx_ops = {
2680 .core = &adv76xx_core_ops,
2681 .video = &adv76xx_video_ops,
2682 .pad = &adv76xx_pad_ops,
2683 };
2684
2685 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2686 .registered = adv76xx_registered,
2687 .unregistered = adv76xx_unregistered,
2688 };
2689
2690 /* -------------------------- custom ctrls ---------------------------------- */
2691
2692 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2693 .ops = &adv76xx_ctrl_ops,
2694 .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2695 .name = "Analog Sampling Phase",
2696 .type = V4L2_CTRL_TYPE_INTEGER,
2697 .min = 0,
2698 .max = 0x1f,
2699 .step = 1,
2700 .def = 0,
2701 };
2702
2703 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2704 .ops = &adv76xx_ctrl_ops,
2705 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2706 .name = "Free Running Color, Manual",
2707 .type = V4L2_CTRL_TYPE_BOOLEAN,
2708 .min = false,
2709 .max = true,
2710 .step = 1,
2711 .def = false,
2712 };
2713
2714 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2715 .ops = &adv76xx_ctrl_ops,
2716 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2717 .name = "Free Running Color",
2718 .type = V4L2_CTRL_TYPE_INTEGER,
2719 .min = 0x0,
2720 .max = 0xffffff,
2721 .step = 0x1,
2722 .def = 0x0,
2723 };
2724
2725 /* ----------------------------------------------------------------------- */
2726
2727 struct adv76xx_register_map {
2728 const char *name;
2729 u8 default_addr;
2730 };
2731
2732 static const struct adv76xx_register_map adv76xx_default_addresses[] = {
2733 [ADV76XX_PAGE_IO] = { "main", 0x4c },
2734 [ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
2735 [ADV76XX_PAGE_CEC] = { "cec", 0x40 },
2736 [ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
2737 [ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
2738 [ADV7604_PAGE_DPP] = { "dpp", 0x3c },
2739 [ADV76XX_PAGE_AFE] = { "afe", 0x26 },
2740 [ADV76XX_PAGE_REP] = { "rep", 0x32 },
2741 [ADV76XX_PAGE_EDID] = { "edid", 0x36 },
2742 [ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
2743 [ADV76XX_PAGE_TEST] = { "test", 0x30 },
2744 [ADV76XX_PAGE_CP] = { "cp", 0x22 },
2745 [ADV7604_PAGE_VDP] = { "vdp", 0x24 },
2746 };
2747
2748 static int adv76xx_core_init(struct v4l2_subdev *sd)
2749 {
2750 struct adv76xx_state *state = to_state(sd);
2751 const struct adv76xx_chip_info *info = state->info;
2752 struct adv76xx_platform_data *pdata = &state->pdata;
2753
2754 hdmi_write(sd, 0x48,
2755 (pdata->disable_pwrdnb ? 0x80 : 0) |
2756 (pdata->disable_cable_det_rst ? 0x40 : 0));
2757
2758 disable_input(sd);
2759
2760 if (pdata->default_input >= 0 &&
2761 pdata->default_input < state->source_pad) {
2762 state->selected_input = pdata->default_input;
2763 select_input(sd);
2764 enable_input(sd);
2765 }
2766
2767 /* power */
2768 io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */
2769 io_write(sd, 0x0b, 0x44); /* Power down ESDP block */
2770 cp_write(sd, 0xcf, 0x01); /* Power down macrovision */
2771
2772 /* video format */
2773 io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2774 io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2775 pdata->insert_av_codes << 2 |
2776 pdata->replicate_av_codes << 1);
2777 adv76xx_setup_format(state);
2778
2779 cp_write(sd, 0x69, 0x30); /* Enable CP CSC */
2780
2781 /* VS, HS polarities */
2782 io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2783 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2784
2785 /* Adjust drive strength */
2786 io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2787 pdata->dr_str_clk << 2 |
2788 pdata->dr_str_sync);
2789
2790 cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2791 cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2792 cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold -
2793 ADI recommended setting [REF_01, c. 2.3.3] */
2794 cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold -
2795 ADI recommended setting [REF_01, c. 2.3.3] */
2796 cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2797 for digital formats */
2798
2799 /* HDMI audio */
2800 hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2801 hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2802 hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2803
2804 /* TODO from platform data */
2805 afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */
2806
2807 if (adv76xx_has_afe(state)) {
2808 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2809 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2810 }
2811
2812 /* interrupts */
2813 io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2814 io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2815 io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2816 io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2817 info->setup_irqs(sd);
2818
2819 return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2820 }
2821
2822 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2823 {
2824 io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2825 }
2826
2827 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2828 {
2829 io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2830 }
2831
2832 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2833 {
2834 io_write(sd, 0x41, 0xd0); /* disable INT2 */
2835 }
2836
2837 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2838 {
2839 unsigned int i;
2840
2841 for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
2842 if (state->i2c_clients[i])
2843 i2c_unregister_device(state->i2c_clients[i]);
2844 }
2845 }
2846
2847 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2848 unsigned int page)
2849 {
2850 struct i2c_client *client = v4l2_get_subdevdata(sd);
2851 struct adv76xx_state *state = to_state(sd);
2852 struct adv76xx_platform_data *pdata = &state->pdata;
2853 unsigned int io_reg = 0xf2 + page;
2854 struct i2c_client *new_client;
2855
2856 if (pdata && pdata->i2c_addresses[page])
2857 new_client = i2c_new_dummy(client->adapter,
2858 pdata->i2c_addresses[page]);
2859 else
2860 new_client = i2c_new_secondary_device(client,
2861 adv76xx_default_addresses[page].name,
2862 adv76xx_default_addresses[page].default_addr);
2863
2864 if (new_client)
2865 io_write(sd, io_reg, new_client->addr << 1);
2866
2867 return new_client;
2868 }
2869
2870 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2871 /* reset ADI recommended settings for HDMI: */
2872 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2873 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2874 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2875 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2876 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2877 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2878 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2879 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2880 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2881 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2882 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2883 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2884 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2885
2886 /* set ADI recommended settings for digitizer */
2887 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2888 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2889 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2890 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2891 { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2892 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2893
2894 { ADV76XX_REG_SEQ_TERM, 0 },
2895 };
2896
2897 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2898 /* set ADI recommended settings for HDMI: */
2899 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2900 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2901 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2902 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2903 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2904 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2905 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2906 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2907 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2908 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2909 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2910 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2911
2912 /* reset ADI recommended settings for digitizer */
2913 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2914 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2915 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2916
2917 { ADV76XX_REG_SEQ_TERM, 0 },
2918 };
2919
2920 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2921 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2922 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2923 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2924 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2925 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2926 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2927 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2928 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2929 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2930 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2931 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2932 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2933
2934 { ADV76XX_REG_SEQ_TERM, 0 },
2935 };
2936
2937 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2938 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2939 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2940 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2941 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2942 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2943 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2944 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2945 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2946 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2947 { ADV76XX_REG_SEQ_TERM, 0 },
2948 };
2949
2950 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2951 [ADV7604] = {
2952 .type = ADV7604,
2953 .has_afe = true,
2954 .max_port = ADV7604_PAD_VGA_COMP,
2955 .num_dv_ports = 4,
2956 .edid_enable_reg = 0x77,
2957 .edid_status_reg = 0x7d,
2958 .lcf_reg = 0xb3,
2959 .tdms_lock_mask = 0xe0,
2960 .cable_det_mask = 0x1e,
2961 .fmt_change_digital_mask = 0xc1,
2962 .cp_csc = 0xfc,
2963 .formats = adv7604_formats,
2964 .nformats = ARRAY_SIZE(adv7604_formats),
2965 .set_termination = adv7604_set_termination,
2966 .setup_irqs = adv7604_setup_irqs,
2967 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
2968 .read_cable_det = adv7604_read_cable_det,
2969 .recommended_settings = {
2970 [0] = adv7604_recommended_settings_afe,
2971 [1] = adv7604_recommended_settings_hdmi,
2972 },
2973 .num_recommended_settings = {
2974 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
2975 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
2976 },
2977 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
2978 BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2979 BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2980 BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
2981 BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
2982 BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2983 BIT(ADV7604_PAGE_VDP),
2984 .linewidth_mask = 0xfff,
2985 .field0_height_mask = 0xfff,
2986 .field1_height_mask = 0xfff,
2987 .hfrontporch_mask = 0x3ff,
2988 .hsync_mask = 0x3ff,
2989 .hbackporch_mask = 0x3ff,
2990 .field0_vfrontporch_mask = 0x1fff,
2991 .field0_vsync_mask = 0x1fff,
2992 .field0_vbackporch_mask = 0x1fff,
2993 .field1_vfrontporch_mask = 0x1fff,
2994 .field1_vsync_mask = 0x1fff,
2995 .field1_vbackporch_mask = 0x1fff,
2996 },
2997 [ADV7611] = {
2998 .type = ADV7611,
2999 .has_afe = false,
3000 .max_port = ADV76XX_PAD_HDMI_PORT_A,
3001 .num_dv_ports = 1,
3002 .edid_enable_reg = 0x74,
3003 .edid_status_reg = 0x76,
3004 .lcf_reg = 0xa3,
3005 .tdms_lock_mask = 0x43,
3006 .cable_det_mask = 0x01,
3007 .fmt_change_digital_mask = 0x03,
3008 .cp_csc = 0xf4,
3009 .formats = adv7611_formats,
3010 .nformats = ARRAY_SIZE(adv7611_formats),
3011 .set_termination = adv7611_set_termination,
3012 .setup_irqs = adv7611_setup_irqs,
3013 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3014 .read_cable_det = adv7611_read_cable_det,
3015 .recommended_settings = {
3016 [1] = adv7611_recommended_settings_hdmi,
3017 },
3018 .num_recommended_settings = {
3019 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
3020 },
3021 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3022 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3023 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) |
3024 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3025 .linewidth_mask = 0x1fff,
3026 .field0_height_mask = 0x1fff,
3027 .field1_height_mask = 0x1fff,
3028 .hfrontporch_mask = 0x1fff,
3029 .hsync_mask = 0x1fff,
3030 .hbackporch_mask = 0x1fff,
3031 .field0_vfrontporch_mask = 0x3fff,
3032 .field0_vsync_mask = 0x3fff,
3033 .field0_vbackporch_mask = 0x3fff,
3034 .field1_vfrontporch_mask = 0x3fff,
3035 .field1_vsync_mask = 0x3fff,
3036 .field1_vbackporch_mask = 0x3fff,
3037 },
3038 [ADV7612] = {
3039 .type = ADV7612,
3040 .has_afe = false,
3041 .max_port = ADV76XX_PAD_HDMI_PORT_A, /* B not supported */
3042 .num_dv_ports = 1, /* normally 2 */
3043 .edid_enable_reg = 0x74,
3044 .edid_status_reg = 0x76,
3045 .lcf_reg = 0xa3,
3046 .tdms_lock_mask = 0x43,
3047 .cable_det_mask = 0x01,
3048 .fmt_change_digital_mask = 0x03,
3049 .cp_csc = 0xf4,
3050 .formats = adv7612_formats,
3051 .nformats = ARRAY_SIZE(adv7612_formats),
3052 .set_termination = adv7611_set_termination,
3053 .setup_irqs = adv7612_setup_irqs,
3054 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3055 .read_cable_det = adv7612_read_cable_det,
3056 .recommended_settings = {
3057 [1] = adv7612_recommended_settings_hdmi,
3058 },
3059 .num_recommended_settings = {
3060 [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3061 },
3062 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3063 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3064 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) |
3065 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3066 .linewidth_mask = 0x1fff,
3067 .field0_height_mask = 0x1fff,
3068 .field1_height_mask = 0x1fff,
3069 .hfrontporch_mask = 0x1fff,
3070 .hsync_mask = 0x1fff,
3071 .hbackporch_mask = 0x1fff,
3072 .field0_vfrontporch_mask = 0x3fff,
3073 .field0_vsync_mask = 0x3fff,
3074 .field0_vbackporch_mask = 0x3fff,
3075 .field1_vfrontporch_mask = 0x3fff,
3076 .field1_vsync_mask = 0x3fff,
3077 .field1_vbackporch_mask = 0x3fff,
3078 },
3079 };
3080
3081 static const struct i2c_device_id adv76xx_i2c_id[] = {
3082 { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3083 { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3084 { "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3085 { }
3086 };
3087 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3088
3089 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3090 { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3091 { .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3092 { }
3093 };
3094 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3095
3096 static int adv76xx_parse_dt(struct adv76xx_state *state)
3097 {
3098 struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
3099 struct device_node *endpoint;
3100 struct device_node *np;
3101 unsigned int flags;
3102 int ret;
3103 u32 v;
3104
3105 np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3106
3107 /* Parse the endpoint. */
3108 endpoint = of_graph_get_next_endpoint(np, NULL);
3109 if (!endpoint)
3110 return -EINVAL;
3111
3112 ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3113 of_node_put(endpoint);
3114 if (ret)
3115 return ret;
3116
3117 if (!of_property_read_u32(np, "default-input", &v))
3118 state->pdata.default_input = v;
3119 else
3120 state->pdata.default_input = -1;
3121
3122 flags = bus_cfg.bus.parallel.flags;
3123
3124 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3125 state->pdata.inv_hs_pol = 1;
3126
3127 if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3128 state->pdata.inv_vs_pol = 1;
3129
3130 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3131 state->pdata.inv_llc_pol = 1;
3132
3133 if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3134 state->pdata.insert_av_codes = 1;
3135
3136 /* Disable the interrupt for now as no DT-based board uses it. */
3137 state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
3138
3139 /* Hardcode the remaining platform data fields. */
3140 state->pdata.disable_pwrdnb = 0;
3141 state->pdata.disable_cable_det_rst = 0;
3142 state->pdata.blank_data = 1;
3143 state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3144 state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3145 state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3146 state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3147 state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3148
3149 return 0;
3150 }
3151
3152 static const struct regmap_config adv76xx_regmap_cnf[] = {
3153 {
3154 .name = "io",
3155 .reg_bits = 8,
3156 .val_bits = 8,
3157
3158 .max_register = 0xff,
3159 .cache_type = REGCACHE_NONE,
3160 },
3161 {
3162 .name = "avlink",
3163 .reg_bits = 8,
3164 .val_bits = 8,
3165
3166 .max_register = 0xff,
3167 .cache_type = REGCACHE_NONE,
3168 },
3169 {
3170 .name = "cec",
3171 .reg_bits = 8,
3172 .val_bits = 8,
3173
3174 .max_register = 0xff,
3175 .cache_type = REGCACHE_NONE,
3176 },
3177 {
3178 .name = "infoframe",
3179 .reg_bits = 8,
3180 .val_bits = 8,
3181
3182 .max_register = 0xff,
3183 .cache_type = REGCACHE_NONE,
3184 },
3185 {
3186 .name = "esdp",
3187 .reg_bits = 8,
3188 .val_bits = 8,
3189
3190 .max_register = 0xff,
3191 .cache_type = REGCACHE_NONE,
3192 },
3193 {
3194 .name = "epp",
3195 .reg_bits = 8,
3196 .val_bits = 8,
3197
3198 .max_register = 0xff,
3199 .cache_type = REGCACHE_NONE,
3200 },
3201 {
3202 .name = "afe",
3203 .reg_bits = 8,
3204 .val_bits = 8,
3205
3206 .max_register = 0xff,
3207 .cache_type = REGCACHE_NONE,
3208 },
3209 {
3210 .name = "rep",
3211 .reg_bits = 8,
3212 .val_bits = 8,
3213
3214 .max_register = 0xff,
3215 .cache_type = REGCACHE_NONE,
3216 },
3217 {
3218 .name = "edid",
3219 .reg_bits = 8,
3220 .val_bits = 8,
3221
3222 .max_register = 0xff,
3223 .cache_type = REGCACHE_NONE,
3224 },
3225
3226 {
3227 .name = "hdmi",
3228 .reg_bits = 8,
3229 .val_bits = 8,
3230
3231 .max_register = 0xff,
3232 .cache_type = REGCACHE_NONE,
3233 },
3234 {
3235 .name = "test",
3236 .reg_bits = 8,
3237 .val_bits = 8,
3238
3239 .max_register = 0xff,
3240 .cache_type = REGCACHE_NONE,
3241 },
3242 {
3243 .name = "cp",
3244 .reg_bits = 8,
3245 .val_bits = 8,
3246
3247 .max_register = 0xff,
3248 .cache_type = REGCACHE_NONE,
3249 },
3250 {
3251 .name = "vdp",
3252 .reg_bits = 8,
3253 .val_bits = 8,
3254
3255 .max_register = 0xff,
3256 .cache_type = REGCACHE_NONE,
3257 },
3258 };
3259
3260 static int configure_regmap(struct adv76xx_state *state, int region)
3261 {
3262 int err;
3263
3264 if (!state->i2c_clients[region])
3265 return -ENODEV;
3266
3267 state->regmap[region] =
3268 devm_regmap_init_i2c(state->i2c_clients[region],
3269 &adv76xx_regmap_cnf[region]);
3270
3271 if (IS_ERR(state->regmap[region])) {
3272 err = PTR_ERR(state->regmap[region]);
3273 v4l_err(state->i2c_clients[region],
3274 "Error initializing regmap %d with error %d\n",
3275 region, err);
3276 return -EINVAL;
3277 }
3278
3279 return 0;
3280 }
3281
3282 static int configure_regmaps(struct adv76xx_state *state)
3283 {
3284 int i, err;
3285
3286 for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3287 err = configure_regmap(state, i);
3288 if (err && (err != -ENODEV))
3289 return err;
3290 }
3291 return 0;
3292 }
3293
3294 static void adv76xx_reset(struct adv76xx_state *state)
3295 {
3296 if (state->reset_gpio) {
3297 /* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3298 gpiod_set_value_cansleep(state->reset_gpio, 0);
3299 usleep_range(5000, 10000);
3300 gpiod_set_value_cansleep(state->reset_gpio, 1);
3301 /* It is recommended to wait 5 ms after the low pulse before */
3302 /* an I2C write is performed to the ADV76XX. */
3303 usleep_range(5000, 10000);
3304 }
3305 }
3306
3307 static int adv76xx_probe(struct i2c_client *client,
3308 const struct i2c_device_id *id)
3309 {
3310 static const struct v4l2_dv_timings cea640x480 =
3311 V4L2_DV_BT_CEA_640X480P59_94;
3312 struct adv76xx_state *state;
3313 struct v4l2_ctrl_handler *hdl;
3314 struct v4l2_ctrl *ctrl;
3315 struct v4l2_subdev *sd;
3316 unsigned int i;
3317 unsigned int val, val2;
3318 int err;
3319
3320 /* Check if the adapter supports the needed features */
3321 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3322 return -EIO;
3323 v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3324 client->addr << 1);
3325
3326 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3327 if (!state)
3328 return -ENOMEM;
3329
3330 state->i2c_clients[ADV76XX_PAGE_IO] = client;
3331
3332 /* initialize variables */
3333 state->restart_stdi_once = true;
3334 state->selected_input = ~0;
3335
3336 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3337 const struct of_device_id *oid;
3338
3339 oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3340 state->info = oid->data;
3341
3342 err = adv76xx_parse_dt(state);
3343 if (err < 0) {
3344 v4l_err(client, "DT parsing error\n");
3345 return err;
3346 }
3347 } else if (client->dev.platform_data) {
3348 struct adv76xx_platform_data *pdata = client->dev.platform_data;
3349
3350 state->info = (const struct adv76xx_chip_info *)id->driver_data;
3351 state->pdata = *pdata;
3352 } else {
3353 v4l_err(client, "No platform data!\n");
3354 return -ENODEV;
3355 }
3356
3357 /* Request GPIOs. */
3358 for (i = 0; i < state->info->num_dv_ports; ++i) {
3359 state->hpd_gpio[i] =
3360 devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3361 GPIOD_OUT_LOW);
3362 if (IS_ERR(state->hpd_gpio[i]))
3363 return PTR_ERR(state->hpd_gpio[i]);
3364
3365 if (state->hpd_gpio[i])
3366 v4l_info(client, "Handling HPD %u GPIO\n", i);
3367 }
3368 state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3369 GPIOD_OUT_HIGH);
3370 if (IS_ERR(state->reset_gpio))
3371 return PTR_ERR(state->reset_gpio);
3372
3373 adv76xx_reset(state);
3374
3375 state->timings = cea640x480;
3376 state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3377
3378 sd = &state->sd;
3379 v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3380 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3381 id->name, i2c_adapter_id(client->adapter),
3382 client->addr);
3383 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3384 sd->internal_ops = &adv76xx_int_ops;
3385
3386 /* Configure IO Regmap region */
3387 err = configure_regmap(state, ADV76XX_PAGE_IO);
3388
3389 if (err) {
3390 v4l2_err(sd, "Error configuring IO regmap region\n");
3391 return -ENODEV;
3392 }
3393
3394 /*
3395 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3396 * identifies the revision, while on ADV7611 it identifies the model as
3397 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3398 */
3399 switch (state->info->type) {
3400 case ADV7604:
3401 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3402 if (err) {
3403 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3404 return -ENODEV;
3405 }
3406 if (val != 0x68) {
3407 v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3408 client->addr << 1);
3409 return -ENODEV;
3410 }
3411 break;
3412 case ADV7611:
3413 case ADV7612:
3414 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3415 0xea,
3416 &val);
3417 if (err) {
3418 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3419 return -ENODEV;
3420 }
3421 val2 = val << 8;
3422 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3423 0xeb,
3424 &val);
3425 if (err) {
3426 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3427 return -ENODEV;
3428 }
3429 val |= val2;
3430 if ((state->info->type == ADV7611 && val != 0x2051) ||
3431 (state->info->type == ADV7612 && val != 0x2041)) {
3432 v4l2_err(sd, "not an adv761x on address 0x%x\n",
3433 client->addr << 1);
3434 return -ENODEV;
3435 }
3436 break;
3437 }
3438
3439 /* control handlers */
3440 hdl = &state->hdl;
3441 v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3442
3443 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3444 V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3445 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3446 V4L2_CID_CONTRAST, 0, 255, 1, 128);
3447 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3448 V4L2_CID_SATURATION, 0, 255, 1, 128);
3449 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3450 V4L2_CID_HUE, 0, 128, 1, 0);
3451 ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3452 V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3453 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3454 if (ctrl)
3455 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3456
3457 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3458 V4L2_CID_DV_RX_POWER_PRESENT, 0,
3459 (1 << state->info->num_dv_ports) - 1, 0, 0);
3460 state->rgb_quantization_range_ctrl =
3461 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3462 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3463 0, V4L2_DV_RGB_RANGE_AUTO);
3464
3465 /* custom controls */
3466 if (adv76xx_has_afe(state))
3467 state->analog_sampling_phase_ctrl =
3468 v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3469 state->free_run_color_manual_ctrl =
3470 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3471 state->free_run_color_ctrl =
3472 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3473
3474 sd->ctrl_handler = hdl;
3475 if (hdl->error) {
3476 err = hdl->error;
3477 goto err_hdl;
3478 }
3479 if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3480 err = -ENODEV;
3481 goto err_hdl;
3482 }
3483
3484 for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3485 if (!(BIT(i) & state->info->page_mask))
3486 continue;
3487
3488 state->i2c_clients[i] = adv76xx_dummy_client(sd, i);
3489 if (!state->i2c_clients[i]) {
3490 err = -EINVAL;
3491 v4l2_err(sd, "failed to create i2c client %u\n", i);
3492 goto err_i2c;
3493 }
3494 }
3495
3496 INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3497 adv76xx_delayed_work_enable_hotplug);
3498
3499 state->source_pad = state->info->num_dv_ports
3500 + (state->info->has_afe ? 2 : 0);
3501 for (i = 0; i < state->source_pad; ++i)
3502 state->pads[i].flags = MEDIA_PAD_FL_SINK;
3503 state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3504 sd->entity.function = MEDIA_ENT_F_DV_DECODER;
3505
3506 err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3507 state->pads);
3508 if (err)
3509 goto err_work_queues;
3510
3511 /* Configure regmaps */
3512 err = configure_regmaps(state);
3513 if (err)
3514 goto err_entity;
3515
3516 err = adv76xx_core_init(sd);
3517 if (err)
3518 goto err_entity;
3519
3520 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3521 state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3522 state, dev_name(&client->dev),
3523 CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3524 err = PTR_ERR_OR_ZERO(state->cec_adap);
3525 if (err)
3526 goto err_entity;
3527 #endif
3528
3529 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3530 client->addr << 1, client->adapter->name);
3531
3532 err = v4l2_async_register_subdev(sd);
3533 if (err)
3534 goto err_entity;
3535
3536 return 0;
3537
3538 err_entity:
3539 media_entity_cleanup(&sd->entity);
3540 err_work_queues:
3541 cancel_delayed_work(&state->delayed_work_enable_hotplug);
3542 err_i2c:
3543 adv76xx_unregister_clients(state);
3544 err_hdl:
3545 v4l2_ctrl_handler_free(hdl);
3546 return err;
3547 }
3548
3549 /* ----------------------------------------------------------------------- */
3550
3551 static int adv76xx_remove(struct i2c_client *client)
3552 {
3553 struct v4l2_subdev *sd = i2c_get_clientdata(client);
3554 struct adv76xx_state *state = to_state(sd);
3555
3556 /* disable interrupts */
3557 io_write(sd, 0x40, 0);
3558 io_write(sd, 0x41, 0);
3559 io_write(sd, 0x46, 0);
3560 io_write(sd, 0x6e, 0);
3561 io_write(sd, 0x73, 0);
3562
3563 cancel_delayed_work(&state->delayed_work_enable_hotplug);
3564 v4l2_async_unregister_subdev(sd);
3565 media_entity_cleanup(&sd->entity);
3566 adv76xx_unregister_clients(to_state(sd));
3567 v4l2_ctrl_handler_free(sd->ctrl_handler);
3568 return 0;
3569 }
3570
3571 /* ----------------------------------------------------------------------- */
3572
3573 static struct i2c_driver adv76xx_driver = {
3574 .driver = {
3575 .name = "adv7604",
3576 .of_match_table = of_match_ptr(adv76xx_of_id),
3577 },
3578 .probe = adv76xx_probe,
3579 .remove = adv76xx_remove,
3580 .id_table = adv76xx_i2c_id,
3581 };
3582
3583 module_i2c_driver(adv76xx_driver);