]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/media/i2c/cx25840/cx25840-ir.c
Merge branch 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / drivers / media / i2c / cx25840 / cx25840-ir.c
1 /*
2 * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
3 *
4 * Integrated Consumer Infrared Controller
5 *
6 * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 */
23
24 #include <linux/slab.h>
25 #include <linux/kfifo.h>
26 #include <linux/module.h>
27 #include <media/drv-intf/cx25840.h>
28 #include <media/rc-core.h>
29
30 #include "cx25840-core.h"
31
32 static unsigned int ir_debug;
33 module_param(ir_debug, int, 0644);
34 MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages");
35
36 #define CX25840_IR_REG_BASE 0x200
37
38 #define CX25840_IR_CNTRL_REG 0x200
39 #define CNTRL_WIN_3_3 0x00000000
40 #define CNTRL_WIN_4_3 0x00000001
41 #define CNTRL_WIN_3_4 0x00000002
42 #define CNTRL_WIN_4_4 0x00000003
43 #define CNTRL_WIN 0x00000003
44 #define CNTRL_EDG_NONE 0x00000000
45 #define CNTRL_EDG_FALL 0x00000004
46 #define CNTRL_EDG_RISE 0x00000008
47 #define CNTRL_EDG_BOTH 0x0000000C
48 #define CNTRL_EDG 0x0000000C
49 #define CNTRL_DMD 0x00000010
50 #define CNTRL_MOD 0x00000020
51 #define CNTRL_RFE 0x00000040
52 #define CNTRL_TFE 0x00000080
53 #define CNTRL_RXE 0x00000100
54 #define CNTRL_TXE 0x00000200
55 #define CNTRL_RIC 0x00000400
56 #define CNTRL_TIC 0x00000800
57 #define CNTRL_CPL 0x00001000
58 #define CNTRL_LBM 0x00002000
59 #define CNTRL_R 0x00004000
60
61 #define CX25840_IR_TXCLK_REG 0x204
62 #define TXCLK_TCD 0x0000FFFF
63
64 #define CX25840_IR_RXCLK_REG 0x208
65 #define RXCLK_RCD 0x0000FFFF
66
67 #define CX25840_IR_CDUTY_REG 0x20C
68 #define CDUTY_CDC 0x0000000F
69
70 #define CX25840_IR_STATS_REG 0x210
71 #define STATS_RTO 0x00000001
72 #define STATS_ROR 0x00000002
73 #define STATS_RBY 0x00000004
74 #define STATS_TBY 0x00000008
75 #define STATS_RSR 0x00000010
76 #define STATS_TSR 0x00000020
77
78 #define CX25840_IR_IRQEN_REG 0x214
79 #define IRQEN_RTE 0x00000001
80 #define IRQEN_ROE 0x00000002
81 #define IRQEN_RSE 0x00000010
82 #define IRQEN_TSE 0x00000020
83 #define IRQEN_MSK 0x00000033
84
85 #define CX25840_IR_FILTR_REG 0x218
86 #define FILTR_LPF 0x0000FFFF
87
88 #define CX25840_IR_FIFO_REG 0x23C
89 #define FIFO_RXTX 0x0000FFFF
90 #define FIFO_RXTX_LVL 0x00010000
91 #define FIFO_RXTX_RTO 0x0001FFFF
92 #define FIFO_RX_NDV 0x00020000
93 #define FIFO_RX_DEPTH 8
94 #define FIFO_TX_DEPTH 8
95
96 #define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
97 #define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2)
98
99 /*
100 * We use this union internally for convenience, but callers to tx_write
101 * and rx_read will be expecting records of type struct ir_raw_event.
102 * Always ensure the size of this union is dictated by struct ir_raw_event.
103 */
104 union cx25840_ir_fifo_rec {
105 u32 hw_fifo_data;
106 struct ir_raw_event ir_core_data;
107 };
108
109 #define CX25840_IR_RX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
110 #define CX25840_IR_TX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
111
112 struct cx25840_ir_state {
113 struct i2c_client *c;
114
115 struct v4l2_subdev_ir_parameters rx_params;
116 struct mutex rx_params_lock; /* protects Rx parameter settings cache */
117 atomic_t rxclk_divider;
118 atomic_t rx_invert;
119
120 struct kfifo rx_kfifo;
121 spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */
122
123 struct v4l2_subdev_ir_parameters tx_params;
124 struct mutex tx_params_lock; /* protects Tx parameter settings cache */
125 atomic_t txclk_divider;
126 };
127
128 static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd)
129 {
130 struct cx25840_state *state = to_state(sd);
131 return state ? state->ir_state : NULL;
132 }
133
134
135 /*
136 * Rx and Tx Clock Divider register computations
137 *
138 * Note the largest clock divider value of 0xffff corresponds to:
139 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
140 * which fits in 21 bits, so we'll use unsigned int for time arguments.
141 */
142 static inline u16 count_to_clock_divider(unsigned int d)
143 {
144 if (d > RXCLK_RCD + 1)
145 d = RXCLK_RCD;
146 else if (d < 2)
147 d = 1;
148 else
149 d--;
150 return (u16) d;
151 }
152
153 static inline u16 ns_to_clock_divider(unsigned int ns)
154 {
155 return count_to_clock_divider(
156 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
157 }
158
159 static inline unsigned int clock_divider_to_ns(unsigned int divider)
160 {
161 /* Period of the Rx or Tx clock in ns */
162 return DIV_ROUND_CLOSEST((divider + 1) * 1000,
163 CX25840_IR_REFCLK_FREQ / 1000000);
164 }
165
166 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
167 {
168 return count_to_clock_divider(
169 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16));
170 }
171
172 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
173 {
174 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16);
175 }
176
177 static inline u16 freq_to_clock_divider(unsigned int freq,
178 unsigned int rollovers)
179 {
180 return count_to_clock_divider(
181 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers));
182 }
183
184 static inline unsigned int clock_divider_to_freq(unsigned int divider,
185 unsigned int rollovers)
186 {
187 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ,
188 (divider + 1) * rollovers);
189 }
190
191 /*
192 * Low Pass Filter register calculations
193 *
194 * Note the largest count value of 0xffff corresponds to:
195 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
196 * which fits in 21 bits, so we'll use unsigned int for time arguments.
197 */
198 static inline u16 count_to_lpf_count(unsigned int d)
199 {
200 if (d > FILTR_LPF)
201 d = FILTR_LPF;
202 else if (d < 4)
203 d = 0;
204 return (u16) d;
205 }
206
207 static inline u16 ns_to_lpf_count(unsigned int ns)
208 {
209 return count_to_lpf_count(
210 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
211 }
212
213 static inline unsigned int lpf_count_to_ns(unsigned int count)
214 {
215 /* Duration of the Low Pass Filter rejection window in ns */
216 return DIV_ROUND_CLOSEST(count * 1000,
217 CX25840_IR_REFCLK_FREQ / 1000000);
218 }
219
220 static inline unsigned int lpf_count_to_us(unsigned int count)
221 {
222 /* Duration of the Low Pass Filter rejection window in us */
223 return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000);
224 }
225
226 /*
227 * FIFO register pulse width count computations
228 */
229 static u32 clock_divider_to_resolution(u16 divider)
230 {
231 /*
232 * Resolution is the duration of 1 tick of the readable portion of
233 * of the pulse width counter as read from the FIFO. The two lsb's are
234 * not readable, hence the << 2. This function returns ns.
235 */
236 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
237 CX25840_IR_REFCLK_FREQ / 1000000);
238 }
239
240 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
241 {
242 u64 n;
243 u32 rem;
244
245 /*
246 * The 2 lsb's of the pulse width timer count are not readable, hence
247 * the (count << 2) | 0x3
248 */
249 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
250 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
251 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
252 n++;
253 return n;
254 }
255
256 #if 0
257 /* Keep as we will need this for Transmit functionality */
258 static u16 ns_to_pulse_width_count(u32 ns, u16 divider)
259 {
260 u64 n;
261 u32 d;
262 u32 rem;
263
264 /*
265 * The 2 lsb's of the pulse width timer count are not accessible, hence
266 * the (1 << 2)
267 */
268 n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */
269 d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */
270 rem = do_div(n, d);
271 if (rem >= d / 2)
272 n++;
273
274 if (n > FIFO_RXTX)
275 n = FIFO_RXTX;
276 else if (n == 0)
277 n = 1;
278 return (u16) n;
279 }
280
281 #endif
282 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
283 {
284 u64 n;
285 u32 rem;
286
287 /*
288 * The 2 lsb's of the pulse width timer count are not readable, hence
289 * the (count << 2) | 0x3
290 */
291 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
292 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
293 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
294 n++;
295 return (unsigned int) n;
296 }
297
298 /*
299 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
300 *
301 * The total pulse clock count is an 18 bit pulse width timer count as the most
302 * significant part and (up to) 16 bit clock divider count as a modulus.
303 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
304 * width timer count's least significant bit.
305 */
306 static u64 ns_to_pulse_clocks(u32 ns)
307 {
308 u64 clocks;
309 u32 rem;
310 clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
311 rem = do_div(clocks, 1000); /* /1000 = cycles */
312 if (rem >= 1000 / 2)
313 clocks++;
314 return clocks;
315 }
316
317 static u16 pulse_clocks_to_clock_divider(u64 count)
318 {
319 do_div(count, (FIFO_RXTX << 2) | 0x3);
320
321 /* net result needs to be rounded down and decremented by 1 */
322 if (count > RXCLK_RCD + 1)
323 count = RXCLK_RCD;
324 else if (count < 2)
325 count = 1;
326 else
327 count--;
328 return (u16) count;
329 }
330
331 /*
332 * IR Control Register helpers
333 */
334 enum tx_fifo_watermark {
335 TX_FIFO_HALF_EMPTY = 0,
336 TX_FIFO_EMPTY = CNTRL_TIC,
337 };
338
339 enum rx_fifo_watermark {
340 RX_FIFO_HALF_FULL = 0,
341 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
342 };
343
344 static inline void control_tx_irq_watermark(struct i2c_client *c,
345 enum tx_fifo_watermark level)
346 {
347 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level);
348 }
349
350 static inline void control_rx_irq_watermark(struct i2c_client *c,
351 enum rx_fifo_watermark level)
352 {
353 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level);
354 }
355
356 static inline void control_tx_enable(struct i2c_client *c, bool enable)
357 {
358 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
359 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
360 }
361
362 static inline void control_rx_enable(struct i2c_client *c, bool enable)
363 {
364 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
365 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
366 }
367
368 static inline void control_tx_modulation_enable(struct i2c_client *c,
369 bool enable)
370 {
371 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD,
372 enable ? CNTRL_MOD : 0);
373 }
374
375 static inline void control_rx_demodulation_enable(struct i2c_client *c,
376 bool enable)
377 {
378 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD,
379 enable ? CNTRL_DMD : 0);
380 }
381
382 static inline void control_rx_s_edge_detection(struct i2c_client *c,
383 u32 edge_types)
384 {
385 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
386 edge_types & CNTRL_EDG_BOTH);
387 }
388
389 static void control_rx_s_carrier_window(struct i2c_client *c,
390 unsigned int carrier,
391 unsigned int *carrier_range_low,
392 unsigned int *carrier_range_high)
393 {
394 u32 v;
395 unsigned int c16 = carrier * 16;
396
397 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
398 v = CNTRL_WIN_3_4;
399 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
400 } else {
401 v = CNTRL_WIN_3_3;
402 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
403 }
404
405 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
406 v |= CNTRL_WIN_4_3;
407 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
408 } else {
409 v |= CNTRL_WIN_3_3;
410 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
411 }
412 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v);
413 }
414
415 static inline void control_tx_polarity_invert(struct i2c_client *c,
416 bool invert)
417 {
418 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL,
419 invert ? CNTRL_CPL : 0);
420 }
421
422 /*
423 * IR Rx & Tx Clock Register helpers
424 */
425 static unsigned int txclk_tx_s_carrier(struct i2c_client *c,
426 unsigned int freq,
427 u16 *divider)
428 {
429 *divider = carrier_freq_to_clock_divider(freq);
430 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
431 return clock_divider_to_carrier_freq(*divider);
432 }
433
434 static unsigned int rxclk_rx_s_carrier(struct i2c_client *c,
435 unsigned int freq,
436 u16 *divider)
437 {
438 *divider = carrier_freq_to_clock_divider(freq);
439 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
440 return clock_divider_to_carrier_freq(*divider);
441 }
442
443 static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns,
444 u16 *divider)
445 {
446 u64 pulse_clocks;
447
448 if (ns > IR_MAX_DURATION)
449 ns = IR_MAX_DURATION;
450 pulse_clocks = ns_to_pulse_clocks(ns);
451 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
452 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
453 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
454 }
455
456 static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
457 u16 *divider)
458 {
459 u64 pulse_clocks;
460
461 if (ns > IR_MAX_DURATION)
462 ns = IR_MAX_DURATION;
463 pulse_clocks = ns_to_pulse_clocks(ns);
464 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
465 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
466 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
467 }
468
469 /*
470 * IR Tx Carrier Duty Cycle register helpers
471 */
472 static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c,
473 unsigned int duty_cycle)
474 {
475 u32 n;
476 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
477 if (n != 0)
478 n--;
479 if (n > 15)
480 n = 15;
481 cx25840_write4(c, CX25840_IR_CDUTY_REG, n);
482 return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
483 }
484
485 /*
486 * IR Filter Register helpers
487 */
488 static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns)
489 {
490 u32 count = ns_to_lpf_count(min_width_ns);
491 cx25840_write4(c, CX25840_IR_FILTR_REG, count);
492 return lpf_count_to_ns(count);
493 }
494
495 /*
496 * IR IRQ Enable Register helpers
497 */
498 static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask)
499 {
500 struct cx25840_state *state = to_state(sd);
501
502 if (is_cx23885(state) || is_cx23887(state))
503 mask ^= IRQEN_MSK;
504 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
505 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG,
506 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
507 }
508
509 static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask)
510 {
511 struct cx25840_state *state = to_state(sd);
512
513 if (is_cx23885(state) || is_cx23887(state))
514 mask ^= IRQEN_MSK;
515 mask &= IRQEN_TSE;
516 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask);
517 }
518
519 /*
520 * V4L2 Subdevice IR Ops
521 */
522 int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled)
523 {
524 struct cx25840_state *state = to_state(sd);
525 struct cx25840_ir_state *ir_state = to_ir_state(sd);
526 struct i2c_client *c = NULL;
527 unsigned long flags;
528
529 union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
530 unsigned int i, j, k;
531 u32 events, v;
532 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
533 u32 cntrl, irqen, stats;
534
535 *handled = false;
536 if (ir_state == NULL)
537 return -ENODEV;
538
539 c = ir_state->c;
540
541 /* Only support the IR controller for the CX2388[57] AV Core for now */
542 if (!(is_cx23885(state) || is_cx23887(state)))
543 return -ENODEV;
544
545 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
546 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
547 if (is_cx23885(state) || is_cx23887(state))
548 irqen ^= IRQEN_MSK;
549 stats = cx25840_read4(c, CX25840_IR_STATS_REG);
550
551 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
552 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
553 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
554 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
555
556 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
557 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
558 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
559 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
560
561 v4l2_dbg(2, ir_debug, sd, "IR IRQ Status: %s %s %s %s %s %s\n",
562 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
563 rto ? "rto" : " ", ror ? "ror" : " ",
564 stats & STATS_TBY ? "tby" : " ",
565 stats & STATS_RBY ? "rby" : " ");
566
567 v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n",
568 tse ? "tse" : " ", rse ? "rse" : " ",
569 rte ? "rte" : " ", roe ? "roe" : " ");
570
571 /*
572 * Transmitter interrupt service
573 */
574 if (tse && tsr) {
575 /*
576 * TODO:
577 * Check the watermark threshold setting
578 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
579 * Push the data to the hardware FIFO.
580 * If there was nothing more to send in the tx_kfifo, disable
581 * the TSR IRQ and notify the v4l2_device.
582 * If there was something in the tx_kfifo, check the tx_kfifo
583 * level and notify the v4l2_device, if it is low.
584 */
585 /* For now, inhibit TSR interrupt until Tx is implemented */
586 irqenable_tx(sd, 0);
587 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
588 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
589 *handled = true;
590 }
591
592 /*
593 * Receiver interrupt service
594 */
595 kror = 0;
596 if ((rse && rsr) || (rte && rto)) {
597 /*
598 * Receive data on RSR to clear the STATS_RSR.
599 * Receive data on RTO, since we may not have yet hit the RSR
600 * watermark when we receive the RTO.
601 */
602 for (i = 0, v = FIFO_RX_NDV;
603 (v & FIFO_RX_NDV) && !kror; i = 0) {
604 for (j = 0;
605 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
606 v = cx25840_read4(c, CX25840_IR_FIFO_REG);
607 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
608 i++;
609 }
610 if (i == 0)
611 break;
612 j = i * sizeof(union cx25840_ir_fifo_rec);
613 k = kfifo_in_locked(&ir_state->rx_kfifo,
614 (unsigned char *) rx_data, j,
615 &ir_state->rx_kfifo_lock);
616 if (k != j)
617 kror++; /* rx_kfifo over run */
618 }
619 *handled = true;
620 }
621
622 events = 0;
623 v = 0;
624 if (kror) {
625 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
626 v4l2_err(sd, "IR receiver software FIFO overrun\n");
627 }
628 if (roe && ror) {
629 /*
630 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
631 * the Rx FIFO Over Run status (STATS_ROR)
632 */
633 v |= CNTRL_RFE;
634 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
635 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
636 }
637 if (rte && rto) {
638 /*
639 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
640 * the Rx Pulse Width Timer Time Out (STATS_RTO)
641 */
642 v |= CNTRL_RXE;
643 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
644 }
645 if (v) {
646 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
647 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v);
648 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl);
649 *handled = true;
650 }
651 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
652 if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2)
653 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
654 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
655
656 if (events)
657 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
658 return 0;
659 }
660
661 /* Receiver */
662 static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
663 ssize_t *num)
664 {
665 struct cx25840_ir_state *ir_state = to_ir_state(sd);
666 bool invert;
667 u16 divider;
668 unsigned int i, n;
669 union cx25840_ir_fifo_rec *p;
670 unsigned u, v, w;
671
672 if (ir_state == NULL)
673 return -ENODEV;
674
675 invert = (bool) atomic_read(&ir_state->rx_invert);
676 divider = (u16) atomic_read(&ir_state->rxclk_divider);
677
678 n = count / sizeof(union cx25840_ir_fifo_rec)
679 * sizeof(union cx25840_ir_fifo_rec);
680 if (n == 0) {
681 *num = 0;
682 return 0;
683 }
684
685 n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
686 &ir_state->rx_kfifo_lock);
687
688 n /= sizeof(union cx25840_ir_fifo_rec);
689 *num = n * sizeof(union cx25840_ir_fifo_rec);
690
691 for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
692
693 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
694 /* Assume RTO was because of no IR light input */
695 u = 0;
696 w = 1;
697 } else {
698 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
699 if (invert)
700 u = u ? 0 : 1;
701 w = 0;
702 }
703
704 v = (unsigned) pulse_width_count_to_ns(
705 (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
706 if (v > IR_MAX_DURATION)
707 v = IR_MAX_DURATION;
708
709 init_ir_raw_event(&p->ir_core_data);
710 p->ir_core_data.pulse = u;
711 p->ir_core_data.duration = v;
712 p->ir_core_data.timeout = w;
713
714 v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns %s %s\n",
715 v, u ? "mark" : "space", w ? "(timed out)" : "");
716 if (w)
717 v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
718 }
719 return 0;
720 }
721
722 static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd,
723 struct v4l2_subdev_ir_parameters *p)
724 {
725 struct cx25840_ir_state *ir_state = to_ir_state(sd);
726
727 if (ir_state == NULL)
728 return -ENODEV;
729
730 mutex_lock(&ir_state->rx_params_lock);
731 memcpy(p, &ir_state->rx_params,
732 sizeof(struct v4l2_subdev_ir_parameters));
733 mutex_unlock(&ir_state->rx_params_lock);
734 return 0;
735 }
736
737 static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd)
738 {
739 struct cx25840_ir_state *ir_state = to_ir_state(sd);
740 struct i2c_client *c;
741
742 if (ir_state == NULL)
743 return -ENODEV;
744
745 c = ir_state->c;
746 mutex_lock(&ir_state->rx_params_lock);
747
748 /* Disable or slow down all IR Rx circuits and counters */
749 irqenable_rx(sd, 0);
750 control_rx_enable(c, false);
751 control_rx_demodulation_enable(c, false);
752 control_rx_s_edge_detection(c, CNTRL_EDG_NONE);
753 filter_rx_s_min_width(c, 0);
754 cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD);
755
756 ir_state->rx_params.shutdown = true;
757
758 mutex_unlock(&ir_state->rx_params_lock);
759 return 0;
760 }
761
762 static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
763 struct v4l2_subdev_ir_parameters *p)
764 {
765 struct cx25840_ir_state *ir_state = to_ir_state(sd);
766 struct i2c_client *c;
767 struct v4l2_subdev_ir_parameters *o;
768 u16 rxclk_divider;
769
770 if (ir_state == NULL)
771 return -ENODEV;
772
773 if (p->shutdown)
774 return cx25840_ir_rx_shutdown(sd);
775
776 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
777 return -ENOSYS;
778
779 c = ir_state->c;
780 o = &ir_state->rx_params;
781
782 mutex_lock(&ir_state->rx_params_lock);
783
784 o->shutdown = p->shutdown;
785
786 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
787 o->mode = p->mode;
788
789 p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
790 o->bytes_per_data_element = p->bytes_per_data_element;
791
792 /* Before we tweak the hardware, we have to disable the receiver */
793 irqenable_rx(sd, 0);
794 control_rx_enable(c, false);
795
796 control_rx_demodulation_enable(c, p->modulation);
797 o->modulation = p->modulation;
798
799 if (p->modulation) {
800 p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
801 &rxclk_divider);
802
803 o->carrier_freq = p->carrier_freq;
804
805 p->duty_cycle = 50;
806 o->duty_cycle = p->duty_cycle;
807
808 control_rx_s_carrier_window(c, p->carrier_freq,
809 &p->carrier_range_lower,
810 &p->carrier_range_upper);
811 o->carrier_range_lower = p->carrier_range_lower;
812 o->carrier_range_upper = p->carrier_range_upper;
813
814 p->max_pulse_width =
815 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
816 } else {
817 p->max_pulse_width =
818 rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
819 &rxclk_divider);
820 }
821 o->max_pulse_width = p->max_pulse_width;
822 atomic_set(&ir_state->rxclk_divider, rxclk_divider);
823
824 p->noise_filter_min_width =
825 filter_rx_s_min_width(c, p->noise_filter_min_width);
826 o->noise_filter_min_width = p->noise_filter_min_width;
827
828 p->resolution = clock_divider_to_resolution(rxclk_divider);
829 o->resolution = p->resolution;
830
831 /* FIXME - make this dependent on resolution for better performance */
832 control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);
833
834 control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);
835
836 o->invert_level = p->invert_level;
837 atomic_set(&ir_state->rx_invert, p->invert_level);
838
839 o->interrupt_enable = p->interrupt_enable;
840 o->enable = p->enable;
841 if (p->enable) {
842 unsigned long flags;
843
844 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
845 kfifo_reset(&ir_state->rx_kfifo);
846 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
847 if (p->interrupt_enable)
848 irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
849 control_rx_enable(c, p->enable);
850 }
851
852 mutex_unlock(&ir_state->rx_params_lock);
853 return 0;
854 }
855
856 /* Transmitter */
857 static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
858 ssize_t *num)
859 {
860 struct cx25840_ir_state *ir_state = to_ir_state(sd);
861
862 if (ir_state == NULL)
863 return -ENODEV;
864
865 #if 0
866 /*
867 * FIXME - the code below is an incomplete and untested sketch of what
868 * may need to be done. The critical part is to get 4 (or 8) pulses
869 * from the tx_kfifo, or converted from ns to the proper units from the
870 * input, and push them off to the hardware Tx FIFO right away, if the
871 * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in
872 * a less critical timeframe. Also watch out for overruning the
873 * tx_kfifo - don't let it happen and let the caller know not all his
874 * pulses were written.
875 */
876 u32 *ns_pulse = (u32 *) buf;
877 unsigned int n;
878 u32 fifo_pulse[FIFO_TX_DEPTH];
879 u32 mark;
880
881 /* Compute how much we can fit in the tx kfifo */
882 n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo);
883 n = min(n, (unsigned int) count);
884 n /= sizeof(u32);
885
886 /* FIXME - turn on Tx Fifo service interrupt
887 * check hardware fifo level, and other stuff
888 */
889 for (i = 0; i < n; ) {
890 for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) {
891 mark = ns_pulse[i] & LEVEL_MASK;
892 fifo_pulse[j] = ns_to_pulse_width_count(
893 ns_pulse[i] &
894 ~LEVEL_MASK,
895 ir_state->txclk_divider);
896 if (mark)
897 fifo_pulse[j] &= FIFO_RXTX_LVL;
898 i++;
899 }
900 kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse,
901 j * sizeof(u32));
902 }
903 *num = n * sizeof(u32);
904 #else
905 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
906 irqenable_tx(sd, IRQEN_TSE);
907 *num = count;
908 #endif
909 return 0;
910 }
911
912 static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd,
913 struct v4l2_subdev_ir_parameters *p)
914 {
915 struct cx25840_ir_state *ir_state = to_ir_state(sd);
916
917 if (ir_state == NULL)
918 return -ENODEV;
919
920 mutex_lock(&ir_state->tx_params_lock);
921 memcpy(p, &ir_state->tx_params,
922 sizeof(struct v4l2_subdev_ir_parameters));
923 mutex_unlock(&ir_state->tx_params_lock);
924 return 0;
925 }
926
927 static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd)
928 {
929 struct cx25840_ir_state *ir_state = to_ir_state(sd);
930 struct i2c_client *c;
931
932 if (ir_state == NULL)
933 return -ENODEV;
934
935 c = ir_state->c;
936 mutex_lock(&ir_state->tx_params_lock);
937
938 /* Disable or slow down all IR Tx circuits and counters */
939 irqenable_tx(sd, 0);
940 control_tx_enable(c, false);
941 control_tx_modulation_enable(c, false);
942 cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD);
943
944 ir_state->tx_params.shutdown = true;
945
946 mutex_unlock(&ir_state->tx_params_lock);
947 return 0;
948 }
949
950 static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
951 struct v4l2_subdev_ir_parameters *p)
952 {
953 struct cx25840_ir_state *ir_state = to_ir_state(sd);
954 struct i2c_client *c;
955 struct v4l2_subdev_ir_parameters *o;
956 u16 txclk_divider;
957
958 if (ir_state == NULL)
959 return -ENODEV;
960
961 if (p->shutdown)
962 return cx25840_ir_tx_shutdown(sd);
963
964 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
965 return -ENOSYS;
966
967 c = ir_state->c;
968 o = &ir_state->tx_params;
969 mutex_lock(&ir_state->tx_params_lock);
970
971 o->shutdown = p->shutdown;
972
973 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
974 o->mode = p->mode;
975
976 p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
977 o->bytes_per_data_element = p->bytes_per_data_element;
978
979 /* Before we tweak the hardware, we have to disable the transmitter */
980 irqenable_tx(sd, 0);
981 control_tx_enable(c, false);
982
983 control_tx_modulation_enable(c, p->modulation);
984 o->modulation = p->modulation;
985
986 if (p->modulation) {
987 p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
988 &txclk_divider);
989 o->carrier_freq = p->carrier_freq;
990
991 p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
992 o->duty_cycle = p->duty_cycle;
993
994 p->max_pulse_width =
995 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
996 } else {
997 p->max_pulse_width =
998 txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
999 &txclk_divider);
1000 }
1001 o->max_pulse_width = p->max_pulse_width;
1002 atomic_set(&ir_state->txclk_divider, txclk_divider);
1003
1004 p->resolution = clock_divider_to_resolution(txclk_divider);
1005 o->resolution = p->resolution;
1006
1007 /* FIXME - make this dependent on resolution for better performance */
1008 control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);
1009
1010 control_tx_polarity_invert(c, p->invert_carrier_sense);
1011 o->invert_carrier_sense = p->invert_carrier_sense;
1012
1013 /*
1014 * FIXME: we don't have hardware help for IO pin level inversion
1015 * here like we have on the CX23888.
1016 * Act on this with some mix of logical inversion of data levels,
1017 * carrier polarity, and carrier duty cycle.
1018 */
1019 o->invert_level = p->invert_level;
1020
1021 o->interrupt_enable = p->interrupt_enable;
1022 o->enable = p->enable;
1023 if (p->enable) {
1024 /* reset tx_fifo here */
1025 if (p->interrupt_enable)
1026 irqenable_tx(sd, IRQEN_TSE);
1027 control_tx_enable(c, p->enable);
1028 }
1029
1030 mutex_unlock(&ir_state->tx_params_lock);
1031 return 0;
1032 }
1033
1034
1035 /*
1036 * V4L2 Subdevice Core Ops support
1037 */
1038 int cx25840_ir_log_status(struct v4l2_subdev *sd)
1039 {
1040 struct cx25840_state *state = to_state(sd);
1041 struct i2c_client *c = state->c;
1042 char *s;
1043 int i, j;
1044 u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr;
1045
1046 /* The CX23888 chip doesn't have an IR controller on the A/V core */
1047 if (is_cx23888(state))
1048 return 0;
1049
1050 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
1051 txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD;
1052 rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD;
1053 cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC;
1054 stats = cx25840_read4(c, CX25840_IR_STATS_REG);
1055 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
1056 if (is_cx23885(state) || is_cx23887(state))
1057 irqen ^= IRQEN_MSK;
1058 filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF;
1059
1060 v4l2_info(sd, "IR Receiver:\n");
1061 v4l2_info(sd, "\tEnabled: %s\n",
1062 cntrl & CNTRL_RXE ? "yes" : "no");
1063 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
1064 cntrl & CNTRL_DMD ? "enabled" : "disabled");
1065 v4l2_info(sd, "\tFIFO: %s\n",
1066 cntrl & CNTRL_RFE ? "enabled" : "disabled");
1067 switch (cntrl & CNTRL_EDG) {
1068 case CNTRL_EDG_NONE:
1069 s = "disabled";
1070 break;
1071 case CNTRL_EDG_FALL:
1072 s = "falling edge";
1073 break;
1074 case CNTRL_EDG_RISE:
1075 s = "rising edge";
1076 break;
1077 case CNTRL_EDG_BOTH:
1078 s = "rising & falling edges";
1079 break;
1080 default:
1081 s = "??? edge";
1082 break;
1083 }
1084 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
1085 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
1086 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
1087 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1088 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
1089 v4l2_info(sd, "\tLoopback mode: %s\n",
1090 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1091 if (cntrl & CNTRL_DMD) {
1092 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
1093 clock_divider_to_carrier_freq(rxclk));
1094 switch (cntrl & CNTRL_WIN) {
1095 case CNTRL_WIN_3_3:
1096 i = 3;
1097 j = 3;
1098 break;
1099 case CNTRL_WIN_4_3:
1100 i = 4;
1101 j = 3;
1102 break;
1103 case CNTRL_WIN_3_4:
1104 i = 3;
1105 j = 4;
1106 break;
1107 case CNTRL_WIN_4_4:
1108 i = 4;
1109 j = 4;
1110 break;
1111 default:
1112 i = 0;
1113 j = 0;
1114 break;
1115 }
1116 v4l2_info(sd, "\tNext carrier edge window: 16 clocks -%1d/+%1d, %u to %u Hz\n",
1117 i, j,
1118 clock_divider_to_freq(rxclk, 16 + j),
1119 clock_divider_to_freq(rxclk, 16 - i));
1120 }
1121 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n",
1122 pulse_width_count_to_us(FIFO_RXTX, rxclk),
1123 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1124 v4l2_info(sd, "\tLow pass filter: %s\n",
1125 filtr ? "enabled" : "disabled");
1126 if (filtr)
1127 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, %u ns\n",
1128 lpf_count_to_us(filtr),
1129 lpf_count_to_ns(filtr));
1130 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1131 stats & STATS_RTO ? "yes" : "no");
1132 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1133 irqen & IRQEN_RTE ? "enabled" : "disabled");
1134 v4l2_info(sd, "\tFIFO overrun: %s\n",
1135 stats & STATS_ROR ? "yes" : "no");
1136 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1137 irqen & IRQEN_ROE ? "enabled" : "disabled");
1138 v4l2_info(sd, "\tBusy: %s\n",
1139 stats & STATS_RBY ? "yes" : "no");
1140 v4l2_info(sd, "\tFIFO service requested: %s\n",
1141 stats & STATS_RSR ? "yes" : "no");
1142 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1143 irqen & IRQEN_RSE ? "enabled" : "disabled");
1144
1145 v4l2_info(sd, "IR Transmitter:\n");
1146 v4l2_info(sd, "\tEnabled: %s\n",
1147 cntrl & CNTRL_TXE ? "yes" : "no");
1148 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1149 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1150 v4l2_info(sd, "\tFIFO: %s\n",
1151 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1152 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1153 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1154 v4l2_info(sd, "\tCarrier polarity: %s\n",
1155 cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1156 : "space:noburst mark:burst");
1157 if (cntrl & CNTRL_MOD) {
1158 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1159 clock_divider_to_carrier_freq(txclk));
1160 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1161 cduty + 1);
1162 }
1163 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n",
1164 pulse_width_count_to_us(FIFO_RXTX, txclk),
1165 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1166 v4l2_info(sd, "\tBusy: %s\n",
1167 stats & STATS_TBY ? "yes" : "no");
1168 v4l2_info(sd, "\tFIFO service requested: %s\n",
1169 stats & STATS_TSR ? "yes" : "no");
1170 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1171 irqen & IRQEN_TSE ? "enabled" : "disabled");
1172
1173 return 0;
1174 }
1175
1176
1177 const struct v4l2_subdev_ir_ops cx25840_ir_ops = {
1178 .rx_read = cx25840_ir_rx_read,
1179 .rx_g_parameters = cx25840_ir_rx_g_parameters,
1180 .rx_s_parameters = cx25840_ir_rx_s_parameters,
1181
1182 .tx_write = cx25840_ir_tx_write,
1183 .tx_g_parameters = cx25840_ir_tx_g_parameters,
1184 .tx_s_parameters = cx25840_ir_tx_s_parameters,
1185 };
1186
1187
1188 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1189 .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1190 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1191
1192 .enable = false,
1193 .interrupt_enable = false,
1194 .shutdown = true,
1195
1196 .modulation = true,
1197 .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */
1198
1199 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1200 /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1201 .noise_filter_min_width = 333333, /* ns */
1202 .carrier_range_lower = 35000,
1203 .carrier_range_upper = 37000,
1204 .invert_level = false,
1205 };
1206
1207 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1208 .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1209 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1210
1211 .enable = false,
1212 .interrupt_enable = false,
1213 .shutdown = true,
1214
1215 .modulation = true,
1216 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1217 .duty_cycle = 25, /* 25 % - RC-5 carrier */
1218 .invert_level = false,
1219 .invert_carrier_sense = false,
1220 };
1221
1222 int cx25840_ir_probe(struct v4l2_subdev *sd)
1223 {
1224 struct cx25840_state *state = to_state(sd);
1225 struct cx25840_ir_state *ir_state;
1226 struct v4l2_subdev_ir_parameters default_params;
1227
1228 /* Only init the IR controller for the CX2388[57] AV Core for now */
1229 if (!(is_cx23885(state) || is_cx23887(state)))
1230 return 0;
1231
1232 ir_state = devm_kzalloc(&state->c->dev, sizeof(*ir_state), GFP_KERNEL);
1233 if (ir_state == NULL)
1234 return -ENOMEM;
1235
1236 spin_lock_init(&ir_state->rx_kfifo_lock);
1237 if (kfifo_alloc(&ir_state->rx_kfifo,
1238 CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1239 return -ENOMEM;
1240
1241 ir_state->c = state->c;
1242 state->ir_state = ir_state;
1243
1244 /* Ensure no interrupts arrive yet */
1245 if (is_cx23885(state) || is_cx23887(state))
1246 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK);
1247 else
1248 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0);
1249
1250 mutex_init(&ir_state->rx_params_lock);
1251 default_params = default_rx_params;
1252 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1253
1254 mutex_init(&ir_state->tx_params_lock);
1255 default_params = default_tx_params;
1256 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1257
1258 return 0;
1259 }
1260
1261 int cx25840_ir_remove(struct v4l2_subdev *sd)
1262 {
1263 struct cx25840_state *state = to_state(sd);
1264 struct cx25840_ir_state *ir_state = to_ir_state(sd);
1265
1266 if (ir_state == NULL)
1267 return -ENODEV;
1268
1269 cx25840_ir_rx_shutdown(sd);
1270 cx25840_ir_tx_shutdown(sd);
1271
1272 kfifo_free(&ir_state->rx_kfifo);
1273 state->ir_state = NULL;
1274 return 0;
1275 }