]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/media/pci/cx23885/cx23888-ir.c
Merge tag 'for-linus-3.11-merge-window-part-2' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-bionic-kernel.git] / drivers / media / pci / cx23885 / cx23888-ir.c
1 /*
2 * Driver for the Conexant CX23885/7/8 PCIe bridge
3 *
4 * CX23888 Integrated Consumer Infrared Controller
5 *
6 * Copyright (C) 2009 Andy Walls <awalls@md.metrocast.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 */
23
24 #include <linux/kfifo.h>
25 #include <linux/slab.h>
26
27 #include <media/v4l2-device.h>
28 #include <media/v4l2-chip-ident.h>
29 #include <media/rc-core.h>
30
31 #include "cx23885.h"
32 #include "cx23888-ir.h"
33
34 static unsigned int ir_888_debug;
35 module_param(ir_888_debug, int, 0644);
36 MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
37
38 #define CX23888_IR_REG_BASE 0x170000
39 /*
40 * These CX23888 register offsets have a straightforward one to one mapping
41 * to the CX23885 register offsets of 0x200 through 0x218
42 */
43 #define CX23888_IR_CNTRL_REG 0x170000
44 #define CNTRL_WIN_3_3 0x00000000
45 #define CNTRL_WIN_4_3 0x00000001
46 #define CNTRL_WIN_3_4 0x00000002
47 #define CNTRL_WIN_4_4 0x00000003
48 #define CNTRL_WIN 0x00000003
49 #define CNTRL_EDG_NONE 0x00000000
50 #define CNTRL_EDG_FALL 0x00000004
51 #define CNTRL_EDG_RISE 0x00000008
52 #define CNTRL_EDG_BOTH 0x0000000C
53 #define CNTRL_EDG 0x0000000C
54 #define CNTRL_DMD 0x00000010
55 #define CNTRL_MOD 0x00000020
56 #define CNTRL_RFE 0x00000040
57 #define CNTRL_TFE 0x00000080
58 #define CNTRL_RXE 0x00000100
59 #define CNTRL_TXE 0x00000200
60 #define CNTRL_RIC 0x00000400
61 #define CNTRL_TIC 0x00000800
62 #define CNTRL_CPL 0x00001000
63 #define CNTRL_LBM 0x00002000
64 #define CNTRL_R 0x00004000
65 /* CX23888 specific control flag */
66 #define CNTRL_IVO 0x00008000
67
68 #define CX23888_IR_TXCLK_REG 0x170004
69 #define TXCLK_TCD 0x0000FFFF
70
71 #define CX23888_IR_RXCLK_REG 0x170008
72 #define RXCLK_RCD 0x0000FFFF
73
74 #define CX23888_IR_CDUTY_REG 0x17000C
75 #define CDUTY_CDC 0x0000000F
76
77 #define CX23888_IR_STATS_REG 0x170010
78 #define STATS_RTO 0x00000001
79 #define STATS_ROR 0x00000002
80 #define STATS_RBY 0x00000004
81 #define STATS_TBY 0x00000008
82 #define STATS_RSR 0x00000010
83 #define STATS_TSR 0x00000020
84
85 #define CX23888_IR_IRQEN_REG 0x170014
86 #define IRQEN_RTE 0x00000001
87 #define IRQEN_ROE 0x00000002
88 #define IRQEN_RSE 0x00000010
89 #define IRQEN_TSE 0x00000020
90
91 #define CX23888_IR_FILTR_REG 0x170018
92 #define FILTR_LPF 0x0000FFFF
93
94 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
95 #define CX23888_IR_FIFO_REG 0x170040
96 #define FIFO_RXTX 0x0000FFFF
97 #define FIFO_RXTX_LVL 0x00010000
98 #define FIFO_RXTX_RTO 0x0001FFFF
99 #define FIFO_RX_NDV 0x00020000
100 #define FIFO_RX_DEPTH 8
101 #define FIFO_TX_DEPTH 8
102
103 /* CX23888 unique registers */
104 #define CX23888_IR_SEEDP_REG 0x17001C
105 #define CX23888_IR_TIMOL_REG 0x170020
106 #define CX23888_IR_WAKE0_REG 0x170024
107 #define CX23888_IR_WAKE1_REG 0x170028
108 #define CX23888_IR_WAKE2_REG 0x17002C
109 #define CX23888_IR_MASK0_REG 0x170030
110 #define CX23888_IR_MASK1_REG 0x170034
111 #define CX23888_IR_MAKS2_REG 0x170038
112 #define CX23888_IR_DPIPG_REG 0x17003C
113 #define CX23888_IR_LEARN_REG 0x170044
114
115 #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
116 #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
117
118 /*
119 * We use this union internally for convenience, but callers to tx_write
120 * and rx_read will be expecting records of type struct ir_raw_event.
121 * Always ensure the size of this union is dictated by struct ir_raw_event.
122 */
123 union cx23888_ir_fifo_rec {
124 u32 hw_fifo_data;
125 struct ir_raw_event ir_core_data;
126 };
127
128 #define CX23888_IR_RX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
129 #define CX23888_IR_TX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
130
131 struct cx23888_ir_state {
132 struct v4l2_subdev sd;
133 struct cx23885_dev *dev;
134 u32 id;
135 u32 rev;
136
137 struct v4l2_subdev_ir_parameters rx_params;
138 struct mutex rx_params_lock;
139 atomic_t rxclk_divider;
140 atomic_t rx_invert;
141
142 struct kfifo rx_kfifo;
143 spinlock_t rx_kfifo_lock;
144
145 struct v4l2_subdev_ir_parameters tx_params;
146 struct mutex tx_params_lock;
147 atomic_t txclk_divider;
148 };
149
150 static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
151 {
152 return v4l2_get_subdevdata(sd);
153 }
154
155 /*
156 * IR register block read and write functions
157 */
158 static
159 inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
160 {
161 cx_write(addr, value);
162 return 0;
163 }
164
165 static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
166 {
167 return cx_read(addr);
168 }
169
170 static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
171 u32 and_mask, u32 or_value)
172 {
173 cx_andor(addr, ~and_mask, or_value);
174 return 0;
175 }
176
177 /*
178 * Rx and Tx Clock Divider register computations
179 *
180 * Note the largest clock divider value of 0xffff corresponds to:
181 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
182 * which fits in 21 bits, so we'll use unsigned int for time arguments.
183 */
184 static inline u16 count_to_clock_divider(unsigned int d)
185 {
186 if (d > RXCLK_RCD + 1)
187 d = RXCLK_RCD;
188 else if (d < 2)
189 d = 1;
190 else
191 d--;
192 return (u16) d;
193 }
194
195 static inline u16 ns_to_clock_divider(unsigned int ns)
196 {
197 return count_to_clock_divider(
198 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
199 }
200
201 static inline unsigned int clock_divider_to_ns(unsigned int divider)
202 {
203 /* Period of the Rx or Tx clock in ns */
204 return DIV_ROUND_CLOSEST((divider + 1) * 1000,
205 CX23888_IR_REFCLK_FREQ / 1000000);
206 }
207
208 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
209 {
210 return count_to_clock_divider(
211 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
212 }
213
214 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
215 {
216 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
217 }
218
219 static inline u16 freq_to_clock_divider(unsigned int freq,
220 unsigned int rollovers)
221 {
222 return count_to_clock_divider(
223 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
224 }
225
226 static inline unsigned int clock_divider_to_freq(unsigned int divider,
227 unsigned int rollovers)
228 {
229 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
230 (divider + 1) * rollovers);
231 }
232
233 /*
234 * Low Pass Filter register calculations
235 *
236 * Note the largest count value of 0xffff corresponds to:
237 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
238 * which fits in 21 bits, so we'll use unsigned int for time arguments.
239 */
240 static inline u16 count_to_lpf_count(unsigned int d)
241 {
242 if (d > FILTR_LPF)
243 d = FILTR_LPF;
244 else if (d < 4)
245 d = 0;
246 return (u16) d;
247 }
248
249 static inline u16 ns_to_lpf_count(unsigned int ns)
250 {
251 return count_to_lpf_count(
252 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
253 }
254
255 static inline unsigned int lpf_count_to_ns(unsigned int count)
256 {
257 /* Duration of the Low Pass Filter rejection window in ns */
258 return DIV_ROUND_CLOSEST(count * 1000,
259 CX23888_IR_REFCLK_FREQ / 1000000);
260 }
261
262 static inline unsigned int lpf_count_to_us(unsigned int count)
263 {
264 /* Duration of the Low Pass Filter rejection window in us */
265 return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
266 }
267
268 /*
269 * FIFO register pulse width count compuations
270 */
271 static u32 clock_divider_to_resolution(u16 divider)
272 {
273 /*
274 * Resolution is the duration of 1 tick of the readable portion of
275 * of the pulse width counter as read from the FIFO. The two lsb's are
276 * not readable, hence the << 2. This function returns ns.
277 */
278 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
279 CX23888_IR_REFCLK_FREQ / 1000000);
280 }
281
282 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
283 {
284 u64 n;
285 u32 rem;
286
287 /*
288 * The 2 lsb's of the pulse width timer count are not readable, hence
289 * the (count << 2) | 0x3
290 */
291 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
292 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
293 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
294 n++;
295 return n;
296 }
297
298 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
299 {
300 u64 n;
301 u32 rem;
302
303 /*
304 * The 2 lsb's of the pulse width timer count are not readable, hence
305 * the (count << 2) | 0x3
306 */
307 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
308 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
309 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
310 n++;
311 return (unsigned int) n;
312 }
313
314 /*
315 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
316 *
317 * The total pulse clock count is an 18 bit pulse width timer count as the most
318 * significant part and (up to) 16 bit clock divider count as a modulus.
319 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
320 * width timer count's least significant bit.
321 */
322 static u64 ns_to_pulse_clocks(u32 ns)
323 {
324 u64 clocks;
325 u32 rem;
326 clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
327 rem = do_div(clocks, 1000); /* /1000 = cycles */
328 if (rem >= 1000 / 2)
329 clocks++;
330 return clocks;
331 }
332
333 static u16 pulse_clocks_to_clock_divider(u64 count)
334 {
335 do_div(count, (FIFO_RXTX << 2) | 0x3);
336
337 /* net result needs to be rounded down and decremented by 1 */
338 if (count > RXCLK_RCD + 1)
339 count = RXCLK_RCD;
340 else if (count < 2)
341 count = 1;
342 else
343 count--;
344 return (u16) count;
345 }
346
347 /*
348 * IR Control Register helpers
349 */
350 enum tx_fifo_watermark {
351 TX_FIFO_HALF_EMPTY = 0,
352 TX_FIFO_EMPTY = CNTRL_TIC,
353 };
354
355 enum rx_fifo_watermark {
356 RX_FIFO_HALF_FULL = 0,
357 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
358 };
359
360 static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
361 enum tx_fifo_watermark level)
362 {
363 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
364 }
365
366 static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
367 enum rx_fifo_watermark level)
368 {
369 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
370 }
371
372 static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
373 {
374 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
375 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
376 }
377
378 static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
379 {
380 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
381 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
382 }
383
384 static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
385 bool enable)
386 {
387 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
388 enable ? CNTRL_MOD : 0);
389 }
390
391 static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
392 bool enable)
393 {
394 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
395 enable ? CNTRL_DMD : 0);
396 }
397
398 static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
399 u32 edge_types)
400 {
401 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
402 edge_types & CNTRL_EDG_BOTH);
403 }
404
405 static void control_rx_s_carrier_window(struct cx23885_dev *dev,
406 unsigned int carrier,
407 unsigned int *carrier_range_low,
408 unsigned int *carrier_range_high)
409 {
410 u32 v;
411 unsigned int c16 = carrier * 16;
412
413 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
414 v = CNTRL_WIN_3_4;
415 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
416 } else {
417 v = CNTRL_WIN_3_3;
418 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
419 }
420
421 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
422 v |= CNTRL_WIN_4_3;
423 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
424 } else {
425 v |= CNTRL_WIN_3_3;
426 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
427 }
428 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
429 }
430
431 static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
432 bool invert)
433 {
434 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
435 invert ? CNTRL_CPL : 0);
436 }
437
438 static inline void control_tx_level_invert(struct cx23885_dev *dev,
439 bool invert)
440 {
441 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
442 invert ? CNTRL_IVO : 0);
443 }
444
445 /*
446 * IR Rx & Tx Clock Register helpers
447 */
448 static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
449 unsigned int freq,
450 u16 *divider)
451 {
452 *divider = carrier_freq_to_clock_divider(freq);
453 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
454 return clock_divider_to_carrier_freq(*divider);
455 }
456
457 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
458 unsigned int freq,
459 u16 *divider)
460 {
461 *divider = carrier_freq_to_clock_divider(freq);
462 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
463 return clock_divider_to_carrier_freq(*divider);
464 }
465
466 static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
467 u16 *divider)
468 {
469 u64 pulse_clocks;
470
471 if (ns > IR_MAX_DURATION)
472 ns = IR_MAX_DURATION;
473 pulse_clocks = ns_to_pulse_clocks(ns);
474 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
475 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
476 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
477 }
478
479 static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
480 u16 *divider)
481 {
482 u64 pulse_clocks;
483
484 if (ns > IR_MAX_DURATION)
485 ns = IR_MAX_DURATION;
486 pulse_clocks = ns_to_pulse_clocks(ns);
487 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
488 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
489 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
490 }
491
492 /*
493 * IR Tx Carrier Duty Cycle register helpers
494 */
495 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
496 unsigned int duty_cycle)
497 {
498 u32 n;
499 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
500 if (n != 0)
501 n--;
502 if (n > 15)
503 n = 15;
504 cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
505 return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
506 }
507
508 /*
509 * IR Filter Register helpers
510 */
511 static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
512 {
513 u32 count = ns_to_lpf_count(min_width_ns);
514 cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
515 return lpf_count_to_ns(count);
516 }
517
518 /*
519 * IR IRQ Enable Register helpers
520 */
521 static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
522 {
523 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
524 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
525 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
526 }
527
528 static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
529 {
530 mask &= IRQEN_TSE;
531 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
532 }
533
534 /*
535 * V4L2 Subdevice IR Ops
536 */
537 static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
538 bool *handled)
539 {
540 struct cx23888_ir_state *state = to_state(sd);
541 struct cx23885_dev *dev = state->dev;
542 unsigned long flags;
543
544 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
545 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
546 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
547
548 union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
549 unsigned int i, j, k;
550 u32 events, v;
551 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
552
553 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
554 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
555 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
556 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
557
558 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
559 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
560 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
561 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
562
563 *handled = false;
564 v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n",
565 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
566 rto ? "rto" : " ", ror ? "ror" : " ",
567 stats & STATS_TBY ? "tby" : " ",
568 stats & STATS_RBY ? "rby" : " ");
569
570 v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
571 tse ? "tse" : " ", rse ? "rse" : " ",
572 rte ? "rte" : " ", roe ? "roe" : " ");
573
574 /*
575 * Transmitter interrupt service
576 */
577 if (tse && tsr) {
578 /*
579 * TODO:
580 * Check the watermark threshold setting
581 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
582 * Push the data to the hardware FIFO.
583 * If there was nothing more to send in the tx_kfifo, disable
584 * the TSR IRQ and notify the v4l2_device.
585 * If there was something in the tx_kfifo, check the tx_kfifo
586 * level and notify the v4l2_device, if it is low.
587 */
588 /* For now, inhibit TSR interrupt until Tx is implemented */
589 irqenable_tx(dev, 0);
590 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
591 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
592 *handled = true;
593 }
594
595 /*
596 * Receiver interrupt service
597 */
598 kror = 0;
599 if ((rse && rsr) || (rte && rto)) {
600 /*
601 * Receive data on RSR to clear the STATS_RSR.
602 * Receive data on RTO, since we may not have yet hit the RSR
603 * watermark when we receive the RTO.
604 */
605 for (i = 0, v = FIFO_RX_NDV;
606 (v & FIFO_RX_NDV) && !kror; i = 0) {
607 for (j = 0;
608 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
609 v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
610 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
611 i++;
612 }
613 if (i == 0)
614 break;
615 j = i * sizeof(union cx23888_ir_fifo_rec);
616 k = kfifo_in_locked(&state->rx_kfifo,
617 (unsigned char *) rx_data, j,
618 &state->rx_kfifo_lock);
619 if (k != j)
620 kror++; /* rx_kfifo over run */
621 }
622 *handled = true;
623 }
624
625 events = 0;
626 v = 0;
627 if (kror) {
628 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
629 v4l2_err(sd, "IR receiver software FIFO overrun\n");
630 }
631 if (roe && ror) {
632 /*
633 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
634 * the Rx FIFO Over Run status (STATS_ROR)
635 */
636 v |= CNTRL_RFE;
637 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
638 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
639 }
640 if (rte && rto) {
641 /*
642 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
643 * the Rx Pulse Width Timer Time Out (STATS_RTO)
644 */
645 v |= CNTRL_RXE;
646 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
647 }
648 if (v) {
649 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
650 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
651 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
652 *handled = true;
653 }
654
655 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
656 if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
657 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
658 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
659
660 if (events)
661 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
662 return 0;
663 }
664
665 /* Receiver */
666 static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
667 ssize_t *num)
668 {
669 struct cx23888_ir_state *state = to_state(sd);
670 bool invert = (bool) atomic_read(&state->rx_invert);
671 u16 divider = (u16) atomic_read(&state->rxclk_divider);
672
673 unsigned int i, n;
674 union cx23888_ir_fifo_rec *p;
675 unsigned u, v, w;
676
677 n = count / sizeof(union cx23888_ir_fifo_rec)
678 * sizeof(union cx23888_ir_fifo_rec);
679 if (n == 0) {
680 *num = 0;
681 return 0;
682 }
683
684 n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
685
686 n /= sizeof(union cx23888_ir_fifo_rec);
687 *num = n * sizeof(union cx23888_ir_fifo_rec);
688
689 for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
690
691 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
692 /* Assume RTO was because of no IR light input */
693 u = 0;
694 w = 1;
695 } else {
696 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
697 if (invert)
698 u = u ? 0 : 1;
699 w = 0;
700 }
701
702 v = (unsigned) pulse_width_count_to_ns(
703 (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
704 if (v > IR_MAX_DURATION)
705 v = IR_MAX_DURATION;
706
707 init_ir_raw_event(&p->ir_core_data);
708 p->ir_core_data.pulse = u;
709 p->ir_core_data.duration = v;
710 p->ir_core_data.timeout = w;
711
712 v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s %s\n",
713 v, u ? "mark" : "space", w ? "(timed out)" : "");
714 if (w)
715 v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
716 }
717 return 0;
718 }
719
720 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
721 struct v4l2_subdev_ir_parameters *p)
722 {
723 struct cx23888_ir_state *state = to_state(sd);
724 mutex_lock(&state->rx_params_lock);
725 memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
726 mutex_unlock(&state->rx_params_lock);
727 return 0;
728 }
729
730 static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
731 {
732 struct cx23888_ir_state *state = to_state(sd);
733 struct cx23885_dev *dev = state->dev;
734
735 mutex_lock(&state->rx_params_lock);
736
737 /* Disable or slow down all IR Rx circuits and counters */
738 irqenable_rx(dev, 0);
739 control_rx_enable(dev, false);
740 control_rx_demodulation_enable(dev, false);
741 control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
742 filter_rx_s_min_width(dev, 0);
743 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
744
745 state->rx_params.shutdown = true;
746
747 mutex_unlock(&state->rx_params_lock);
748 return 0;
749 }
750
751 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
752 struct v4l2_subdev_ir_parameters *p)
753 {
754 struct cx23888_ir_state *state = to_state(sd);
755 struct cx23885_dev *dev = state->dev;
756 struct v4l2_subdev_ir_parameters *o = &state->rx_params;
757 u16 rxclk_divider;
758
759 if (p->shutdown)
760 return cx23888_ir_rx_shutdown(sd);
761
762 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
763 return -ENOSYS;
764
765 mutex_lock(&state->rx_params_lock);
766
767 o->shutdown = p->shutdown;
768
769 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
770
771 o->bytes_per_data_element = p->bytes_per_data_element
772 = sizeof(union cx23888_ir_fifo_rec);
773
774 /* Before we tweak the hardware, we have to disable the receiver */
775 irqenable_rx(dev, 0);
776 control_rx_enable(dev, false);
777
778 control_rx_demodulation_enable(dev, p->modulation);
779 o->modulation = p->modulation;
780
781 if (p->modulation) {
782 p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
783 &rxclk_divider);
784
785 o->carrier_freq = p->carrier_freq;
786
787 o->duty_cycle = p->duty_cycle = 50;
788
789 control_rx_s_carrier_window(dev, p->carrier_freq,
790 &p->carrier_range_lower,
791 &p->carrier_range_upper);
792 o->carrier_range_lower = p->carrier_range_lower;
793 o->carrier_range_upper = p->carrier_range_upper;
794
795 p->max_pulse_width =
796 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
797 } else {
798 p->max_pulse_width =
799 rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
800 &rxclk_divider);
801 }
802 o->max_pulse_width = p->max_pulse_width;
803 atomic_set(&state->rxclk_divider, rxclk_divider);
804
805 p->noise_filter_min_width =
806 filter_rx_s_min_width(dev, p->noise_filter_min_width);
807 o->noise_filter_min_width = p->noise_filter_min_width;
808
809 p->resolution = clock_divider_to_resolution(rxclk_divider);
810 o->resolution = p->resolution;
811
812 /* FIXME - make this dependent on resolution for better performance */
813 control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
814
815 control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
816
817 o->invert_level = p->invert_level;
818 atomic_set(&state->rx_invert, p->invert_level);
819
820 o->interrupt_enable = p->interrupt_enable;
821 o->enable = p->enable;
822 if (p->enable) {
823 unsigned long flags;
824
825 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
826 kfifo_reset(&state->rx_kfifo);
827 /* reset tx_fifo too if there is one... */
828 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
829 if (p->interrupt_enable)
830 irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
831 control_rx_enable(dev, p->enable);
832 }
833
834 mutex_unlock(&state->rx_params_lock);
835 return 0;
836 }
837
838 /* Transmitter */
839 static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
840 ssize_t *num)
841 {
842 struct cx23888_ir_state *state = to_state(sd);
843 struct cx23885_dev *dev = state->dev;
844 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
845 irqenable_tx(dev, IRQEN_TSE);
846 *num = count;
847 return 0;
848 }
849
850 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
851 struct v4l2_subdev_ir_parameters *p)
852 {
853 struct cx23888_ir_state *state = to_state(sd);
854 mutex_lock(&state->tx_params_lock);
855 memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
856 mutex_unlock(&state->tx_params_lock);
857 return 0;
858 }
859
860 static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
861 {
862 struct cx23888_ir_state *state = to_state(sd);
863 struct cx23885_dev *dev = state->dev;
864
865 mutex_lock(&state->tx_params_lock);
866
867 /* Disable or slow down all IR Tx circuits and counters */
868 irqenable_tx(dev, 0);
869 control_tx_enable(dev, false);
870 control_tx_modulation_enable(dev, false);
871 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
872
873 state->tx_params.shutdown = true;
874
875 mutex_unlock(&state->tx_params_lock);
876 return 0;
877 }
878
879 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
880 struct v4l2_subdev_ir_parameters *p)
881 {
882 struct cx23888_ir_state *state = to_state(sd);
883 struct cx23885_dev *dev = state->dev;
884 struct v4l2_subdev_ir_parameters *o = &state->tx_params;
885 u16 txclk_divider;
886
887 if (p->shutdown)
888 return cx23888_ir_tx_shutdown(sd);
889
890 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
891 return -ENOSYS;
892
893 mutex_lock(&state->tx_params_lock);
894
895 o->shutdown = p->shutdown;
896
897 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
898
899 o->bytes_per_data_element = p->bytes_per_data_element
900 = sizeof(union cx23888_ir_fifo_rec);
901
902 /* Before we tweak the hardware, we have to disable the transmitter */
903 irqenable_tx(dev, 0);
904 control_tx_enable(dev, false);
905
906 control_tx_modulation_enable(dev, p->modulation);
907 o->modulation = p->modulation;
908
909 if (p->modulation) {
910 p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
911 &txclk_divider);
912 o->carrier_freq = p->carrier_freq;
913
914 p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
915 o->duty_cycle = p->duty_cycle;
916
917 p->max_pulse_width =
918 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
919 } else {
920 p->max_pulse_width =
921 txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
922 &txclk_divider);
923 }
924 o->max_pulse_width = p->max_pulse_width;
925 atomic_set(&state->txclk_divider, txclk_divider);
926
927 p->resolution = clock_divider_to_resolution(txclk_divider);
928 o->resolution = p->resolution;
929
930 /* FIXME - make this dependent on resolution for better performance */
931 control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
932
933 control_tx_polarity_invert(dev, p->invert_carrier_sense);
934 o->invert_carrier_sense = p->invert_carrier_sense;
935
936 control_tx_level_invert(dev, p->invert_level);
937 o->invert_level = p->invert_level;
938
939 o->interrupt_enable = p->interrupt_enable;
940 o->enable = p->enable;
941 if (p->enable) {
942 if (p->interrupt_enable)
943 irqenable_tx(dev, IRQEN_TSE);
944 control_tx_enable(dev, p->enable);
945 }
946
947 mutex_unlock(&state->tx_params_lock);
948 return 0;
949 }
950
951
952 /*
953 * V4L2 Subdevice Core Ops
954 */
955 static int cx23888_ir_log_status(struct v4l2_subdev *sd)
956 {
957 struct cx23888_ir_state *state = to_state(sd);
958 struct cx23885_dev *dev = state->dev;
959 char *s;
960 int i, j;
961
962 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
963 u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
964 u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
965 u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
966 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
967 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
968 u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
969
970 v4l2_info(sd, "IR Receiver:\n");
971 v4l2_info(sd, "\tEnabled: %s\n",
972 cntrl & CNTRL_RXE ? "yes" : "no");
973 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
974 cntrl & CNTRL_DMD ? "enabled" : "disabled");
975 v4l2_info(sd, "\tFIFO: %s\n",
976 cntrl & CNTRL_RFE ? "enabled" : "disabled");
977 switch (cntrl & CNTRL_EDG) {
978 case CNTRL_EDG_NONE:
979 s = "disabled";
980 break;
981 case CNTRL_EDG_FALL:
982 s = "falling edge";
983 break;
984 case CNTRL_EDG_RISE:
985 s = "rising edge";
986 break;
987 case CNTRL_EDG_BOTH:
988 s = "rising & falling edges";
989 break;
990 default:
991 s = "??? edge";
992 break;
993 }
994 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
995 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
996 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
997 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
998 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
999 v4l2_info(sd, "\tLoopback mode: %s\n",
1000 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1001 if (cntrl & CNTRL_DMD) {
1002 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
1003 clock_divider_to_carrier_freq(rxclk));
1004 switch (cntrl & CNTRL_WIN) {
1005 case CNTRL_WIN_3_3:
1006 i = 3;
1007 j = 3;
1008 break;
1009 case CNTRL_WIN_4_3:
1010 i = 4;
1011 j = 3;
1012 break;
1013 case CNTRL_WIN_3_4:
1014 i = 3;
1015 j = 4;
1016 break;
1017 case CNTRL_WIN_4_4:
1018 i = 4;
1019 j = 4;
1020 break;
1021 default:
1022 i = 0;
1023 j = 0;
1024 break;
1025 }
1026 v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
1027 "-%1d/+%1d, %u to %u Hz\n", i, j,
1028 clock_divider_to_freq(rxclk, 16 + j),
1029 clock_divider_to_freq(rxclk, 16 - i));
1030 }
1031 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n",
1032 pulse_width_count_to_us(FIFO_RXTX, rxclk),
1033 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1034 v4l2_info(sd, "\tLow pass filter: %s\n",
1035 filtr ? "enabled" : "disabled");
1036 if (filtr)
1037 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
1038 "%u ns\n",
1039 lpf_count_to_us(filtr),
1040 lpf_count_to_ns(filtr));
1041 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1042 stats & STATS_RTO ? "yes" : "no");
1043 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1044 irqen & IRQEN_RTE ? "enabled" : "disabled");
1045 v4l2_info(sd, "\tFIFO overrun: %s\n",
1046 stats & STATS_ROR ? "yes" : "no");
1047 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1048 irqen & IRQEN_ROE ? "enabled" : "disabled");
1049 v4l2_info(sd, "\tBusy: %s\n",
1050 stats & STATS_RBY ? "yes" : "no");
1051 v4l2_info(sd, "\tFIFO service requested: %s\n",
1052 stats & STATS_RSR ? "yes" : "no");
1053 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1054 irqen & IRQEN_RSE ? "enabled" : "disabled");
1055
1056 v4l2_info(sd, "IR Transmitter:\n");
1057 v4l2_info(sd, "\tEnabled: %s\n",
1058 cntrl & CNTRL_TXE ? "yes" : "no");
1059 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1060 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1061 v4l2_info(sd, "\tFIFO: %s\n",
1062 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1063 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1064 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1065 v4l2_info(sd, "\tOutput pin level inversion %s\n",
1066 cntrl & CNTRL_IVO ? "yes" : "no");
1067 v4l2_info(sd, "\tCarrier polarity: %s\n",
1068 cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1069 : "space:noburst mark:burst");
1070 if (cntrl & CNTRL_MOD) {
1071 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1072 clock_divider_to_carrier_freq(txclk));
1073 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1074 cduty + 1);
1075 }
1076 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n",
1077 pulse_width_count_to_us(FIFO_RXTX, txclk),
1078 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1079 v4l2_info(sd, "\tBusy: %s\n",
1080 stats & STATS_TBY ? "yes" : "no");
1081 v4l2_info(sd, "\tFIFO service requested: %s\n",
1082 stats & STATS_TSR ? "yes" : "no");
1083 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1084 irqen & IRQEN_TSE ? "enabled" : "disabled");
1085
1086 return 0;
1087 }
1088
1089 static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match *match)
1090 {
1091 return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 2;
1092 }
1093
1094 static int cx23888_ir_g_chip_ident(struct v4l2_subdev *sd,
1095 struct v4l2_dbg_chip_ident *chip)
1096 {
1097 struct cx23888_ir_state *state = to_state(sd);
1098
1099 if (cx23888_ir_dbg_match(&chip->match)) {
1100 chip->ident = state->id;
1101 chip->revision = state->rev;
1102 }
1103 return 0;
1104 }
1105
1106 #ifdef CONFIG_VIDEO_ADV_DEBUG
1107 static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1108 struct v4l2_dbg_register *reg)
1109 {
1110 struct cx23888_ir_state *state = to_state(sd);
1111 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1112
1113 if (!cx23888_ir_dbg_match(&reg->match))
1114 return -EINVAL;
1115 if ((addr & 0x3) != 0)
1116 return -EINVAL;
1117 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1118 return -EINVAL;
1119 if (!capable(CAP_SYS_ADMIN))
1120 return -EPERM;
1121 reg->size = 4;
1122 reg->val = cx23888_ir_read4(state->dev, addr);
1123 return 0;
1124 }
1125
1126 static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1127 const struct v4l2_dbg_register *reg)
1128 {
1129 struct cx23888_ir_state *state = to_state(sd);
1130 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1131
1132 if (!cx23888_ir_dbg_match(&reg->match))
1133 return -EINVAL;
1134 if ((addr & 0x3) != 0)
1135 return -EINVAL;
1136 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1137 return -EINVAL;
1138 if (!capable(CAP_SYS_ADMIN))
1139 return -EPERM;
1140 cx23888_ir_write4(state->dev, addr, reg->val);
1141 return 0;
1142 }
1143 #endif
1144
1145 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1146 .g_chip_ident = cx23888_ir_g_chip_ident,
1147 .log_status = cx23888_ir_log_status,
1148 #ifdef CONFIG_VIDEO_ADV_DEBUG
1149 .g_register = cx23888_ir_g_register,
1150 .s_register = cx23888_ir_s_register,
1151 #endif
1152 .interrupt_service_routine = cx23888_ir_irq_handler,
1153 };
1154
1155 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1156 .rx_read = cx23888_ir_rx_read,
1157 .rx_g_parameters = cx23888_ir_rx_g_parameters,
1158 .rx_s_parameters = cx23888_ir_rx_s_parameters,
1159
1160 .tx_write = cx23888_ir_tx_write,
1161 .tx_g_parameters = cx23888_ir_tx_g_parameters,
1162 .tx_s_parameters = cx23888_ir_tx_s_parameters,
1163 };
1164
1165 static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1166 .core = &cx23888_ir_core_ops,
1167 .ir = &cx23888_ir_ir_ops,
1168 };
1169
1170 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1171 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1172 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1173
1174 .enable = false,
1175 .interrupt_enable = false,
1176 .shutdown = true,
1177
1178 .modulation = true,
1179 .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1180
1181 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1182 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1183 .noise_filter_min_width = 333333, /* ns */
1184 .carrier_range_lower = 35000,
1185 .carrier_range_upper = 37000,
1186 .invert_level = false,
1187 };
1188
1189 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1190 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1191 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1192
1193 .enable = false,
1194 .interrupt_enable = false,
1195 .shutdown = true,
1196
1197 .modulation = true,
1198 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1199 .duty_cycle = 25, /* 25 % - RC-5 carrier */
1200 .invert_level = false,
1201 .invert_carrier_sense = false,
1202 };
1203
1204 int cx23888_ir_probe(struct cx23885_dev *dev)
1205 {
1206 struct cx23888_ir_state *state;
1207 struct v4l2_subdev *sd;
1208 struct v4l2_subdev_ir_parameters default_params;
1209 int ret;
1210
1211 state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1212 if (state == NULL)
1213 return -ENOMEM;
1214
1215 spin_lock_init(&state->rx_kfifo_lock);
1216 if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1217 return -ENOMEM;
1218
1219 state->dev = dev;
1220 state->id = V4L2_IDENT_CX23888_IR;
1221 state->rev = 0;
1222 sd = &state->sd;
1223
1224 v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1225 v4l2_set_subdevdata(sd, state);
1226 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1227 snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1228 sd->grp_id = CX23885_HW_888_IR;
1229
1230 ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1231 if (ret == 0) {
1232 /*
1233 * Ensure no interrupts arrive from '888 specific conditions,
1234 * since we ignore them in this driver to have commonality with
1235 * similar IR controller cores.
1236 */
1237 cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1238
1239 mutex_init(&state->rx_params_lock);
1240 default_params = default_rx_params;
1241 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1242
1243 mutex_init(&state->tx_params_lock);
1244 default_params = default_tx_params;
1245 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1246 } else {
1247 kfifo_free(&state->rx_kfifo);
1248 }
1249 return ret;
1250 }
1251
1252 int cx23888_ir_remove(struct cx23885_dev *dev)
1253 {
1254 struct v4l2_subdev *sd;
1255 struct cx23888_ir_state *state;
1256
1257 sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1258 if (sd == NULL)
1259 return -ENODEV;
1260
1261 cx23888_ir_rx_shutdown(sd);
1262 cx23888_ir_tx_shutdown(sd);
1263
1264 state = to_state(sd);
1265 v4l2_device_unregister_subdev(sd);
1266 kfifo_free(&state->rx_kfifo);
1267 kfree(state);
1268 /* Nothing more to free() as state held the actual v4l2_subdev object */
1269 return 0;
1270 }