]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/media/platform/marvell-ccic/mcam-core.c
Merge tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-focal-kernel.git] / drivers / media / platform / marvell-ccic / mcam-core.c
1 /*
2 * The Marvell camera core. This device appears in a number of settings,
3 * so it needs platform-specific support outside of the core.
4 *
5 * Copyright 2011 Jonathan Corbet corbet@lwn.net
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/spinlock.h>
14 #include <linux/slab.h>
15 #include <linux/device.h>
16 #include <linux/wait.h>
17 #include <linux/list.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/delay.h>
20 #include <linux/vmalloc.h>
21 #include <linux/io.h>
22 #include <linux/clk.h>
23 #include <linux/videodev2.h>
24 #include <media/v4l2-device.h>
25 #include <media/v4l2-ioctl.h>
26 #include <media/v4l2-ctrls.h>
27 #include <media/v4l2-event.h>
28 #include <media/ov7670.h>
29 #include <media/videobuf2-vmalloc.h>
30 #include <media/videobuf2-dma-contig.h>
31 #include <media/videobuf2-dma-sg.h>
32
33 #include "mcam-core.h"
34
35 #ifdef MCAM_MODE_VMALLOC
36 /*
37 * Internal DMA buffer management. Since the controller cannot do S/G I/O,
38 * we must have physically contiguous buffers to bring frames into.
39 * These parameters control how many buffers we use, whether we
40 * allocate them at load time (better chance of success, but nails down
41 * memory) or when somebody tries to use the camera (riskier), and,
42 * for load-time allocation, how big they should be.
43 *
44 * The controller can cycle through three buffers. We could use
45 * more by flipping pointers around, but it probably makes little
46 * sense.
47 */
48
49 static bool alloc_bufs_at_read;
50 module_param(alloc_bufs_at_read, bool, 0444);
51 MODULE_PARM_DESC(alloc_bufs_at_read,
52 "Non-zero value causes DMA buffers to be allocated when the "
53 "video capture device is read, rather than at module load "
54 "time. This saves memory, but decreases the chances of "
55 "successfully getting those buffers. This parameter is "
56 "only used in the vmalloc buffer mode");
57
58 static int n_dma_bufs = 3;
59 module_param(n_dma_bufs, uint, 0644);
60 MODULE_PARM_DESC(n_dma_bufs,
61 "The number of DMA buffers to allocate. Can be either two "
62 "(saves memory, makes timing tighter) or three.");
63
64 static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2; /* Worst case */
65 module_param(dma_buf_size, uint, 0444);
66 MODULE_PARM_DESC(dma_buf_size,
67 "The size of the allocated DMA buffers. If actual operating "
68 "parameters require larger buffers, an attempt to reallocate "
69 "will be made.");
70 #else /* MCAM_MODE_VMALLOC */
71 static const bool alloc_bufs_at_read;
72 static const int n_dma_bufs = 3; /* Used by S/G_PARM */
73 #endif /* MCAM_MODE_VMALLOC */
74
75 static bool flip;
76 module_param(flip, bool, 0444);
77 MODULE_PARM_DESC(flip,
78 "If set, the sensor will be instructed to flip the image "
79 "vertically.");
80
81 static int buffer_mode = -1;
82 module_param(buffer_mode, int, 0444);
83 MODULE_PARM_DESC(buffer_mode,
84 "Set the buffer mode to be used; default is to go with what "
85 "the platform driver asks for. Set to 0 for vmalloc, 1 for "
86 "DMA contiguous.");
87
88 /*
89 * Status flags. Always manipulated with bit operations.
90 */
91 #define CF_BUF0_VALID 0 /* Buffers valid - first three */
92 #define CF_BUF1_VALID 1
93 #define CF_BUF2_VALID 2
94 #define CF_DMA_ACTIVE 3 /* A frame is incoming */
95 #define CF_CONFIG_NEEDED 4 /* Must configure hardware */
96 #define CF_SINGLE_BUFFER 5 /* Running with a single buffer */
97 #define CF_SG_RESTART 6 /* SG restart needed */
98 #define CF_FRAME_SOF0 7 /* Frame 0 started */
99 #define CF_FRAME_SOF1 8
100 #define CF_FRAME_SOF2 9
101
102 #define sensor_call(cam, o, f, args...) \
103 v4l2_subdev_call(cam->sensor, o, f, ##args)
104
105 static struct mcam_format_struct {
106 __u8 *desc;
107 __u32 pixelformat;
108 int bpp; /* Bytes per pixel */
109 bool planar;
110 u32 mbus_code;
111 } mcam_formats[] = {
112 {
113 .desc = "YUYV 4:2:2",
114 .pixelformat = V4L2_PIX_FMT_YUYV,
115 .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
116 .bpp = 2,
117 .planar = false,
118 },
119 {
120 .desc = "YVYU 4:2:2",
121 .pixelformat = V4L2_PIX_FMT_YVYU,
122 .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
123 .bpp = 2,
124 .planar = false,
125 },
126 {
127 .desc = "YUV 4:2:0 PLANAR",
128 .pixelformat = V4L2_PIX_FMT_YUV420,
129 .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
130 .bpp = 1,
131 .planar = true,
132 },
133 {
134 .desc = "YVU 4:2:0 PLANAR",
135 .pixelformat = V4L2_PIX_FMT_YVU420,
136 .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
137 .bpp = 1,
138 .planar = true,
139 },
140 {
141 .desc = "XRGB 444",
142 .pixelformat = V4L2_PIX_FMT_XRGB444,
143 .mbus_code = MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE,
144 .bpp = 2,
145 .planar = false,
146 },
147 {
148 .desc = "RGB 565",
149 .pixelformat = V4L2_PIX_FMT_RGB565,
150 .mbus_code = MEDIA_BUS_FMT_RGB565_2X8_LE,
151 .bpp = 2,
152 .planar = false,
153 },
154 {
155 .desc = "Raw RGB Bayer",
156 .pixelformat = V4L2_PIX_FMT_SBGGR8,
157 .mbus_code = MEDIA_BUS_FMT_SBGGR8_1X8,
158 .bpp = 1,
159 .planar = false,
160 },
161 };
162 #define N_MCAM_FMTS ARRAY_SIZE(mcam_formats)
163
164 static struct mcam_format_struct *mcam_find_format(u32 pixelformat)
165 {
166 unsigned i;
167
168 for (i = 0; i < N_MCAM_FMTS; i++)
169 if (mcam_formats[i].pixelformat == pixelformat)
170 return mcam_formats + i;
171 /* Not found? Then return the first format. */
172 return mcam_formats;
173 }
174
175 /*
176 * The default format we use until somebody says otherwise.
177 */
178 static const struct v4l2_pix_format mcam_def_pix_format = {
179 .width = VGA_WIDTH,
180 .height = VGA_HEIGHT,
181 .pixelformat = V4L2_PIX_FMT_YUYV,
182 .field = V4L2_FIELD_NONE,
183 .bytesperline = VGA_WIDTH*2,
184 .sizeimage = VGA_WIDTH*VGA_HEIGHT*2,
185 .colorspace = V4L2_COLORSPACE_SRGB,
186 };
187
188 static const u32 mcam_def_mbus_code = MEDIA_BUS_FMT_YUYV8_2X8;
189
190
191 /*
192 * The two-word DMA descriptor format used by the Armada 610 and like. There
193 * Is a three-word format as well (set C1_DESC_3WORD) where the third
194 * word is a pointer to the next descriptor, but we don't use it. Two-word
195 * descriptors have to be contiguous in memory.
196 */
197 struct mcam_dma_desc {
198 u32 dma_addr;
199 u32 segment_len;
200 };
201
202 /*
203 * Our buffer type for working with videobuf2. Note that the vb2
204 * developers have decreed that struct vb2_buffer must be at the
205 * beginning of this structure.
206 */
207 struct mcam_vb_buffer {
208 struct vb2_buffer vb_buf;
209 struct list_head queue;
210 struct mcam_dma_desc *dma_desc; /* Descriptor virtual address */
211 dma_addr_t dma_desc_pa; /* Descriptor physical address */
212 int dma_desc_nent; /* Number of mapped descriptors */
213 };
214
215 static inline struct mcam_vb_buffer *vb_to_mvb(struct vb2_buffer *vb)
216 {
217 return container_of(vb, struct mcam_vb_buffer, vb_buf);
218 }
219
220 /*
221 * Hand a completed buffer back to user space.
222 */
223 static void mcam_buffer_done(struct mcam_camera *cam, int frame,
224 struct vb2_buffer *vbuf)
225 {
226 vbuf->v4l2_buf.bytesused = cam->pix_format.sizeimage;
227 vbuf->v4l2_buf.sequence = cam->buf_seq[frame];
228 vbuf->v4l2_buf.field = V4L2_FIELD_NONE;
229 v4l2_get_timestamp(&vbuf->v4l2_buf.timestamp);
230 vb2_set_plane_payload(vbuf, 0, cam->pix_format.sizeimage);
231 vb2_buffer_done(vbuf, VB2_BUF_STATE_DONE);
232 }
233
234
235
236 /*
237 * Debugging and related.
238 */
239 #define cam_err(cam, fmt, arg...) \
240 dev_err((cam)->dev, fmt, ##arg);
241 #define cam_warn(cam, fmt, arg...) \
242 dev_warn((cam)->dev, fmt, ##arg);
243 #define cam_dbg(cam, fmt, arg...) \
244 dev_dbg((cam)->dev, fmt, ##arg);
245
246
247 /*
248 * Flag manipulation helpers
249 */
250 static void mcam_reset_buffers(struct mcam_camera *cam)
251 {
252 int i;
253
254 cam->next_buf = -1;
255 for (i = 0; i < cam->nbufs; i++) {
256 clear_bit(i, &cam->flags);
257 clear_bit(CF_FRAME_SOF0 + i, &cam->flags);
258 }
259 }
260
261 static inline int mcam_needs_config(struct mcam_camera *cam)
262 {
263 return test_bit(CF_CONFIG_NEEDED, &cam->flags);
264 }
265
266 static void mcam_set_config_needed(struct mcam_camera *cam, int needed)
267 {
268 if (needed)
269 set_bit(CF_CONFIG_NEEDED, &cam->flags);
270 else
271 clear_bit(CF_CONFIG_NEEDED, &cam->flags);
272 }
273
274 /* ------------------------------------------------------------------- */
275 /*
276 * Make the controller start grabbing images. Everything must
277 * be set up before doing this.
278 */
279 static void mcam_ctlr_start(struct mcam_camera *cam)
280 {
281 /* set_bit performs a read, so no other barrier should be
282 needed here */
283 mcam_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
284 }
285
286 static void mcam_ctlr_stop(struct mcam_camera *cam)
287 {
288 mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
289 }
290
291 static void mcam_enable_mipi(struct mcam_camera *mcam)
292 {
293 /* Using MIPI mode and enable MIPI */
294 cam_dbg(mcam, "camera: DPHY3=0x%x, DPHY5=0x%x, DPHY6=0x%x\n",
295 mcam->dphy[0], mcam->dphy[1], mcam->dphy[2]);
296 mcam_reg_write(mcam, REG_CSI2_DPHY3, mcam->dphy[0]);
297 mcam_reg_write(mcam, REG_CSI2_DPHY5, mcam->dphy[1]);
298 mcam_reg_write(mcam, REG_CSI2_DPHY6, mcam->dphy[2]);
299
300 if (!mcam->mipi_enabled) {
301 if (mcam->lane > 4 || mcam->lane <= 0) {
302 cam_warn(mcam, "lane number error\n");
303 mcam->lane = 1; /* set the default value */
304 }
305 /*
306 * 0x41 actives 1 lane
307 * 0x43 actives 2 lanes
308 * 0x45 actives 3 lanes (never happen)
309 * 0x47 actives 4 lanes
310 */
311 mcam_reg_write(mcam, REG_CSI2_CTRL0,
312 CSI2_C0_MIPI_EN | CSI2_C0_ACT_LANE(mcam->lane));
313 mcam_reg_write(mcam, REG_CLKCTRL,
314 (mcam->mclk_src << 29) | mcam->mclk_div);
315
316 mcam->mipi_enabled = true;
317 }
318 }
319
320 static void mcam_disable_mipi(struct mcam_camera *mcam)
321 {
322 /* Using Parallel mode or disable MIPI */
323 mcam_reg_write(mcam, REG_CSI2_CTRL0, 0x0);
324 mcam_reg_write(mcam, REG_CSI2_DPHY3, 0x0);
325 mcam_reg_write(mcam, REG_CSI2_DPHY5, 0x0);
326 mcam_reg_write(mcam, REG_CSI2_DPHY6, 0x0);
327 mcam->mipi_enabled = false;
328 }
329
330 static bool mcam_fmt_is_planar(__u32 pfmt)
331 {
332 struct mcam_format_struct *f;
333
334 f = mcam_find_format(pfmt);
335 return f->planar;
336 }
337
338 static void mcam_write_yuv_bases(struct mcam_camera *cam,
339 unsigned frame, dma_addr_t base)
340 {
341 struct v4l2_pix_format *fmt = &cam->pix_format;
342 u32 pixel_count = fmt->width * fmt->height;
343 dma_addr_t y, u = 0, v = 0;
344
345 y = base;
346
347 switch (fmt->pixelformat) {
348 case V4L2_PIX_FMT_YUV420:
349 u = y + pixel_count;
350 v = u + pixel_count / 4;
351 break;
352 case V4L2_PIX_FMT_YVU420:
353 v = y + pixel_count;
354 u = v + pixel_count / 4;
355 break;
356 default:
357 break;
358 }
359
360 mcam_reg_write(cam, REG_Y0BAR + frame * 4, y);
361 if (mcam_fmt_is_planar(fmt->pixelformat)) {
362 mcam_reg_write(cam, REG_U0BAR + frame * 4, u);
363 mcam_reg_write(cam, REG_V0BAR + frame * 4, v);
364 }
365 }
366
367 /* ------------------------------------------------------------------- */
368
369 #ifdef MCAM_MODE_VMALLOC
370 /*
371 * Code specific to the vmalloc buffer mode.
372 */
373
374 /*
375 * Allocate in-kernel DMA buffers for vmalloc mode.
376 */
377 static int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
378 {
379 int i;
380
381 mcam_set_config_needed(cam, 1);
382 if (loadtime)
383 cam->dma_buf_size = dma_buf_size;
384 else
385 cam->dma_buf_size = cam->pix_format.sizeimage;
386 if (n_dma_bufs > 3)
387 n_dma_bufs = 3;
388
389 cam->nbufs = 0;
390 for (i = 0; i < n_dma_bufs; i++) {
391 cam->dma_bufs[i] = dma_alloc_coherent(cam->dev,
392 cam->dma_buf_size, cam->dma_handles + i,
393 GFP_KERNEL);
394 if (cam->dma_bufs[i] == NULL) {
395 cam_warn(cam, "Failed to allocate DMA buffer\n");
396 break;
397 }
398 (cam->nbufs)++;
399 }
400
401 switch (cam->nbufs) {
402 case 1:
403 dma_free_coherent(cam->dev, cam->dma_buf_size,
404 cam->dma_bufs[0], cam->dma_handles[0]);
405 cam->nbufs = 0;
406 case 0:
407 cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
408 return -ENOMEM;
409
410 case 2:
411 if (n_dma_bufs > 2)
412 cam_warn(cam, "Will limp along with only 2 buffers\n");
413 break;
414 }
415 return 0;
416 }
417
418 static void mcam_free_dma_bufs(struct mcam_camera *cam)
419 {
420 int i;
421
422 for (i = 0; i < cam->nbufs; i++) {
423 dma_free_coherent(cam->dev, cam->dma_buf_size,
424 cam->dma_bufs[i], cam->dma_handles[i]);
425 cam->dma_bufs[i] = NULL;
426 }
427 cam->nbufs = 0;
428 }
429
430
431 /*
432 * Set up DMA buffers when operating in vmalloc mode
433 */
434 static void mcam_ctlr_dma_vmalloc(struct mcam_camera *cam)
435 {
436 /*
437 * Store the first two YUV buffers. Then either
438 * set the third if it exists, or tell the controller
439 * to just use two.
440 */
441 mcam_write_yuv_bases(cam, 0, cam->dma_handles[0]);
442 mcam_write_yuv_bases(cam, 1, cam->dma_handles[1]);
443 if (cam->nbufs > 2) {
444 mcam_write_yuv_bases(cam, 2, cam->dma_handles[2]);
445 mcam_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
446 } else
447 mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
448 if (cam->chip_id == MCAM_CAFE)
449 mcam_reg_write(cam, REG_UBAR, 0); /* 32 bits only */
450 }
451
452 /*
453 * Copy data out to user space in the vmalloc case
454 */
455 static void mcam_frame_tasklet(unsigned long data)
456 {
457 struct mcam_camera *cam = (struct mcam_camera *) data;
458 int i;
459 unsigned long flags;
460 struct mcam_vb_buffer *buf;
461
462 spin_lock_irqsave(&cam->dev_lock, flags);
463 for (i = 0; i < cam->nbufs; i++) {
464 int bufno = cam->next_buf;
465
466 if (cam->state != S_STREAMING || bufno < 0)
467 break; /* I/O got stopped */
468 if (++(cam->next_buf) >= cam->nbufs)
469 cam->next_buf = 0;
470 if (!test_bit(bufno, &cam->flags))
471 continue;
472 if (list_empty(&cam->buffers)) {
473 cam->frame_state.singles++;
474 break; /* Leave it valid, hope for better later */
475 }
476 cam->frame_state.delivered++;
477 clear_bit(bufno, &cam->flags);
478 buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
479 queue);
480 list_del_init(&buf->queue);
481 /*
482 * Drop the lock during the big copy. This *should* be safe...
483 */
484 spin_unlock_irqrestore(&cam->dev_lock, flags);
485 memcpy(vb2_plane_vaddr(&buf->vb_buf, 0), cam->dma_bufs[bufno],
486 cam->pix_format.sizeimage);
487 mcam_buffer_done(cam, bufno, &buf->vb_buf);
488 spin_lock_irqsave(&cam->dev_lock, flags);
489 }
490 spin_unlock_irqrestore(&cam->dev_lock, flags);
491 }
492
493
494 /*
495 * Make sure our allocated buffers are up to the task.
496 */
497 static int mcam_check_dma_buffers(struct mcam_camera *cam)
498 {
499 if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
500 mcam_free_dma_bufs(cam);
501 if (cam->nbufs == 0)
502 return mcam_alloc_dma_bufs(cam, 0);
503 return 0;
504 }
505
506 static void mcam_vmalloc_done(struct mcam_camera *cam, int frame)
507 {
508 tasklet_schedule(&cam->s_tasklet);
509 }
510
511 #else /* MCAM_MODE_VMALLOC */
512
513 static inline int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
514 {
515 return 0;
516 }
517
518 static inline void mcam_free_dma_bufs(struct mcam_camera *cam)
519 {
520 return;
521 }
522
523 static inline int mcam_check_dma_buffers(struct mcam_camera *cam)
524 {
525 return 0;
526 }
527
528
529
530 #endif /* MCAM_MODE_VMALLOC */
531
532
533 #ifdef MCAM_MODE_DMA_CONTIG
534 /* ---------------------------------------------------------------------- */
535 /*
536 * DMA-contiguous code.
537 */
538
539 /*
540 * Set up a contiguous buffer for the given frame. Here also is where
541 * the underrun strategy is set: if there is no buffer available, reuse
542 * the buffer from the other BAR and set the CF_SINGLE_BUFFER flag to
543 * keep the interrupt handler from giving that buffer back to user
544 * space. In this way, we always have a buffer to DMA to and don't
545 * have to try to play games stopping and restarting the controller.
546 */
547 static void mcam_set_contig_buffer(struct mcam_camera *cam, int frame)
548 {
549 struct mcam_vb_buffer *buf;
550 dma_addr_t dma_handle;
551 struct vb2_buffer *vb;
552
553 /*
554 * If there are no available buffers, go into single mode
555 */
556 if (list_empty(&cam->buffers)) {
557 buf = cam->vb_bufs[frame ^ 0x1];
558 set_bit(CF_SINGLE_BUFFER, &cam->flags);
559 cam->frame_state.singles++;
560 } else {
561 /*
562 * OK, we have a buffer we can use.
563 */
564 buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
565 queue);
566 list_del_init(&buf->queue);
567 clear_bit(CF_SINGLE_BUFFER, &cam->flags);
568 }
569
570 cam->vb_bufs[frame] = buf;
571 vb = &buf->vb_buf;
572
573 dma_handle = vb2_dma_contig_plane_dma_addr(vb, 0);
574 mcam_write_yuv_bases(cam, frame, dma_handle);
575 }
576
577 /*
578 * Initial B_DMA_contig setup.
579 */
580 static void mcam_ctlr_dma_contig(struct mcam_camera *cam)
581 {
582 mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
583 cam->nbufs = 2;
584 mcam_set_contig_buffer(cam, 0);
585 mcam_set_contig_buffer(cam, 1);
586 }
587
588 /*
589 * Frame completion handling.
590 */
591 static void mcam_dma_contig_done(struct mcam_camera *cam, int frame)
592 {
593 struct mcam_vb_buffer *buf = cam->vb_bufs[frame];
594
595 if (!test_bit(CF_SINGLE_BUFFER, &cam->flags)) {
596 cam->frame_state.delivered++;
597 cam->vb_bufs[frame] = NULL;
598 mcam_buffer_done(cam, frame, &buf->vb_buf);
599 }
600 mcam_set_contig_buffer(cam, frame);
601 }
602
603 #endif /* MCAM_MODE_DMA_CONTIG */
604
605 #ifdef MCAM_MODE_DMA_SG
606 /* ---------------------------------------------------------------------- */
607 /*
608 * Scatter/gather-specific code.
609 */
610
611 /*
612 * Set up the next buffer for S/G I/O; caller should be sure that
613 * the controller is stopped and a buffer is available.
614 */
615 static void mcam_sg_next_buffer(struct mcam_camera *cam)
616 {
617 struct mcam_vb_buffer *buf;
618
619 buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer, queue);
620 list_del_init(&buf->queue);
621 /*
622 * Very Bad Not Good Things happen if you don't clear
623 * C1_DESC_ENA before making any descriptor changes.
624 */
625 mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_ENA);
626 mcam_reg_write(cam, REG_DMA_DESC_Y, buf->dma_desc_pa);
627 mcam_reg_write(cam, REG_DESC_LEN_Y,
628 buf->dma_desc_nent*sizeof(struct mcam_dma_desc));
629 mcam_reg_write(cam, REG_DESC_LEN_U, 0);
630 mcam_reg_write(cam, REG_DESC_LEN_V, 0);
631 mcam_reg_set_bit(cam, REG_CTRL1, C1_DESC_ENA);
632 cam->vb_bufs[0] = buf;
633 }
634
635 /*
636 * Initial B_DMA_sg setup
637 */
638 static void mcam_ctlr_dma_sg(struct mcam_camera *cam)
639 {
640 /*
641 * The list-empty condition can hit us at resume time
642 * if the buffer list was empty when the system was suspended.
643 */
644 if (list_empty(&cam->buffers)) {
645 set_bit(CF_SG_RESTART, &cam->flags);
646 return;
647 }
648
649 mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_3WORD);
650 mcam_sg_next_buffer(cam);
651 cam->nbufs = 3;
652 }
653
654
655 /*
656 * Frame completion with S/G is trickier. We can't muck with
657 * a descriptor chain on the fly, since the controller buffers it
658 * internally. So we have to actually stop and restart; Marvell
659 * says this is the way to do it.
660 *
661 * Of course, stopping is easier said than done; experience shows
662 * that the controller can start a frame *after* C0_ENABLE has been
663 * cleared. So when running in S/G mode, the controller is "stopped"
664 * on receipt of the start-of-frame interrupt. That means we can
665 * safely change the DMA descriptor array here and restart things
666 * (assuming there's another buffer waiting to go).
667 */
668 static void mcam_dma_sg_done(struct mcam_camera *cam, int frame)
669 {
670 struct mcam_vb_buffer *buf = cam->vb_bufs[0];
671
672 /*
673 * If we're no longer supposed to be streaming, don't do anything.
674 */
675 if (cam->state != S_STREAMING)
676 return;
677 /*
678 * If we have another buffer available, put it in and
679 * restart the engine.
680 */
681 if (!list_empty(&cam->buffers)) {
682 mcam_sg_next_buffer(cam);
683 mcam_ctlr_start(cam);
684 /*
685 * Otherwise set CF_SG_RESTART and the controller will
686 * be restarted once another buffer shows up.
687 */
688 } else {
689 set_bit(CF_SG_RESTART, &cam->flags);
690 cam->frame_state.singles++;
691 cam->vb_bufs[0] = NULL;
692 }
693 /*
694 * Now we can give the completed frame back to user space.
695 */
696 cam->frame_state.delivered++;
697 mcam_buffer_done(cam, frame, &buf->vb_buf);
698 }
699
700
701 /*
702 * Scatter/gather mode requires stopping the controller between
703 * frames so we can put in a new DMA descriptor array. If no new
704 * buffer exists at frame completion, the controller is left stopped;
705 * this function is charged with gettig things going again.
706 */
707 static void mcam_sg_restart(struct mcam_camera *cam)
708 {
709 mcam_ctlr_dma_sg(cam);
710 mcam_ctlr_start(cam);
711 clear_bit(CF_SG_RESTART, &cam->flags);
712 }
713
714 #else /* MCAM_MODE_DMA_SG */
715
716 static inline void mcam_sg_restart(struct mcam_camera *cam)
717 {
718 return;
719 }
720
721 #endif /* MCAM_MODE_DMA_SG */
722
723 /* ---------------------------------------------------------------------- */
724 /*
725 * Buffer-mode-independent controller code.
726 */
727
728 /*
729 * Image format setup
730 */
731 static void mcam_ctlr_image(struct mcam_camera *cam)
732 {
733 struct v4l2_pix_format *fmt = &cam->pix_format;
734 u32 widthy = 0, widthuv = 0, imgsz_h, imgsz_w;
735
736 cam_dbg(cam, "camera: bytesperline = %d; height = %d\n",
737 fmt->bytesperline, fmt->sizeimage / fmt->bytesperline);
738 imgsz_h = (fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK;
739 imgsz_w = (fmt->width * 2) & IMGSZ_H_MASK;
740
741 switch (fmt->pixelformat) {
742 case V4L2_PIX_FMT_YUYV:
743 case V4L2_PIX_FMT_YVYU:
744 widthy = fmt->width * 2;
745 widthuv = 0;
746 break;
747 case V4L2_PIX_FMT_YUV420:
748 case V4L2_PIX_FMT_YVU420:
749 widthy = fmt->width;
750 widthuv = fmt->width / 2;
751 break;
752 default:
753 widthy = fmt->bytesperline;
754 widthuv = 0;
755 break;
756 }
757
758 mcam_reg_write_mask(cam, REG_IMGPITCH, widthuv << 16 | widthy,
759 IMGP_YP_MASK | IMGP_UVP_MASK);
760 mcam_reg_write(cam, REG_IMGSIZE, imgsz_h | imgsz_w);
761 mcam_reg_write(cam, REG_IMGOFFSET, 0x0);
762
763 /*
764 * Tell the controller about the image format we are using.
765 */
766 switch (fmt->pixelformat) {
767 case V4L2_PIX_FMT_YUV420:
768 case V4L2_PIX_FMT_YVU420:
769 mcam_reg_write_mask(cam, REG_CTRL0,
770 C0_DF_YUV | C0_YUV_420PL | C0_YUVE_VYUY, C0_DF_MASK);
771 break;
772 case V4L2_PIX_FMT_YUYV:
773 mcam_reg_write_mask(cam, REG_CTRL0,
774 C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_NOSWAP, C0_DF_MASK);
775 break;
776 case V4L2_PIX_FMT_YVYU:
777 mcam_reg_write_mask(cam, REG_CTRL0,
778 C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_SWAP24, C0_DF_MASK);
779 break;
780 case V4L2_PIX_FMT_XRGB444:
781 mcam_reg_write_mask(cam, REG_CTRL0,
782 C0_DF_RGB | C0_RGBF_444 | C0_RGB4_XBGR, C0_DF_MASK);
783 break;
784 case V4L2_PIX_FMT_RGB565:
785 mcam_reg_write_mask(cam, REG_CTRL0,
786 C0_DF_RGB | C0_RGBF_565 | C0_RGB5_BGGR, C0_DF_MASK);
787 break;
788 case V4L2_PIX_FMT_SBGGR8:
789 mcam_reg_write_mask(cam, REG_CTRL0,
790 C0_DF_RGB | C0_RGB5_GRBG, C0_DF_MASK);
791 break;
792 default:
793 cam_err(cam, "camera: unknown format: %#x\n", fmt->pixelformat);
794 break;
795 }
796
797 /*
798 * Make sure it knows we want to use hsync/vsync.
799 */
800 mcam_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC, C0_SIFM_MASK);
801 /*
802 * This field controls the generation of EOF(DVP only)
803 */
804 if (cam->bus_type != V4L2_MBUS_CSI2)
805 mcam_reg_set_bit(cam, REG_CTRL0,
806 C0_EOF_VSYNC | C0_VEDGE_CTRL);
807 }
808
809
810 /*
811 * Configure the controller for operation; caller holds the
812 * device mutex.
813 */
814 static int mcam_ctlr_configure(struct mcam_camera *cam)
815 {
816 unsigned long flags;
817
818 spin_lock_irqsave(&cam->dev_lock, flags);
819 clear_bit(CF_SG_RESTART, &cam->flags);
820 cam->dma_setup(cam);
821 mcam_ctlr_image(cam);
822 mcam_set_config_needed(cam, 0);
823 spin_unlock_irqrestore(&cam->dev_lock, flags);
824 return 0;
825 }
826
827 static void mcam_ctlr_irq_enable(struct mcam_camera *cam)
828 {
829 /*
830 * Clear any pending interrupts, since we do not
831 * expect to have I/O active prior to enabling.
832 */
833 mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
834 mcam_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
835 }
836
837 static void mcam_ctlr_irq_disable(struct mcam_camera *cam)
838 {
839 mcam_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
840 }
841
842
843
844 static void mcam_ctlr_init(struct mcam_camera *cam)
845 {
846 unsigned long flags;
847
848 spin_lock_irqsave(&cam->dev_lock, flags);
849 /*
850 * Make sure it's not powered down.
851 */
852 mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
853 /*
854 * Turn off the enable bit. It sure should be off anyway,
855 * but it's good to be sure.
856 */
857 mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
858 /*
859 * Clock the sensor appropriately. Controller clock should
860 * be 48MHz, sensor "typical" value is half that.
861 */
862 mcam_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
863 spin_unlock_irqrestore(&cam->dev_lock, flags);
864 }
865
866
867 /*
868 * Stop the controller, and don't return until we're really sure that no
869 * further DMA is going on.
870 */
871 static void mcam_ctlr_stop_dma(struct mcam_camera *cam)
872 {
873 unsigned long flags;
874
875 /*
876 * Theory: stop the camera controller (whether it is operating
877 * or not). Delay briefly just in case we race with the SOF
878 * interrupt, then wait until no DMA is active.
879 */
880 spin_lock_irqsave(&cam->dev_lock, flags);
881 clear_bit(CF_SG_RESTART, &cam->flags);
882 mcam_ctlr_stop(cam);
883 cam->state = S_IDLE;
884 spin_unlock_irqrestore(&cam->dev_lock, flags);
885 /*
886 * This is a brutally long sleep, but experience shows that
887 * it can take the controller a while to get the message that
888 * it needs to stop grabbing frames. In particular, we can
889 * sometimes (on mmp) get a frame at the end WITHOUT the
890 * start-of-frame indication.
891 */
892 msleep(150);
893 if (test_bit(CF_DMA_ACTIVE, &cam->flags))
894 cam_err(cam, "Timeout waiting for DMA to end\n");
895 /* This would be bad news - what now? */
896 spin_lock_irqsave(&cam->dev_lock, flags);
897 mcam_ctlr_irq_disable(cam);
898 spin_unlock_irqrestore(&cam->dev_lock, flags);
899 }
900
901 /*
902 * Power up and down.
903 */
904 static int mcam_ctlr_power_up(struct mcam_camera *cam)
905 {
906 unsigned long flags;
907 int ret;
908
909 spin_lock_irqsave(&cam->dev_lock, flags);
910 ret = cam->plat_power_up(cam);
911 if (ret) {
912 spin_unlock_irqrestore(&cam->dev_lock, flags);
913 return ret;
914 }
915 mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
916 spin_unlock_irqrestore(&cam->dev_lock, flags);
917 msleep(5); /* Just to be sure */
918 return 0;
919 }
920
921 static void mcam_ctlr_power_down(struct mcam_camera *cam)
922 {
923 unsigned long flags;
924
925 spin_lock_irqsave(&cam->dev_lock, flags);
926 /*
927 * School of hard knocks department: be sure we do any register
928 * twiddling on the controller *before* calling the platform
929 * power down routine.
930 */
931 mcam_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
932 cam->plat_power_down(cam);
933 spin_unlock_irqrestore(&cam->dev_lock, flags);
934 }
935
936 /* -------------------------------------------------------------------- */
937 /*
938 * Communications with the sensor.
939 */
940
941 static int __mcam_cam_reset(struct mcam_camera *cam)
942 {
943 return sensor_call(cam, core, reset, 0);
944 }
945
946 /*
947 * We have found the sensor on the i2c. Let's try to have a
948 * conversation.
949 */
950 static int mcam_cam_init(struct mcam_camera *cam)
951 {
952 int ret;
953
954 if (cam->state != S_NOTREADY)
955 cam_warn(cam, "Cam init with device in funky state %d",
956 cam->state);
957 ret = __mcam_cam_reset(cam);
958 /* Get/set parameters? */
959 cam->state = S_IDLE;
960 mcam_ctlr_power_down(cam);
961 return ret;
962 }
963
964 /*
965 * Configure the sensor to match the parameters we have. Caller should
966 * hold s_mutex
967 */
968 static int mcam_cam_set_flip(struct mcam_camera *cam)
969 {
970 struct v4l2_control ctrl;
971
972 memset(&ctrl, 0, sizeof(ctrl));
973 ctrl.id = V4L2_CID_VFLIP;
974 ctrl.value = flip;
975 return sensor_call(cam, core, s_ctrl, &ctrl);
976 }
977
978
979 static int mcam_cam_configure(struct mcam_camera *cam)
980 {
981 struct v4l2_subdev_format format = {
982 .which = V4L2_SUBDEV_FORMAT_ACTIVE,
983 };
984 int ret;
985
986 v4l2_fill_mbus_format(&format.format, &cam->pix_format, cam->mbus_code);
987 ret = sensor_call(cam, core, init, 0);
988 if (ret == 0)
989 ret = sensor_call(cam, pad, set_fmt, NULL, &format);
990 /*
991 * OV7670 does weird things if flip is set *before* format...
992 */
993 ret += mcam_cam_set_flip(cam);
994 return ret;
995 }
996
997 /*
998 * Get everything ready, and start grabbing frames.
999 */
1000 static int mcam_read_setup(struct mcam_camera *cam)
1001 {
1002 int ret;
1003 unsigned long flags;
1004
1005 /*
1006 * Configuration. If we still don't have DMA buffers,
1007 * make one last, desperate attempt.
1008 */
1009 if (cam->buffer_mode == B_vmalloc && cam->nbufs == 0 &&
1010 mcam_alloc_dma_bufs(cam, 0))
1011 return -ENOMEM;
1012
1013 if (mcam_needs_config(cam)) {
1014 mcam_cam_configure(cam);
1015 ret = mcam_ctlr_configure(cam);
1016 if (ret)
1017 return ret;
1018 }
1019
1020 /*
1021 * Turn it loose.
1022 */
1023 spin_lock_irqsave(&cam->dev_lock, flags);
1024 clear_bit(CF_DMA_ACTIVE, &cam->flags);
1025 mcam_reset_buffers(cam);
1026 /*
1027 * Update CSI2_DPHY value
1028 */
1029 if (cam->calc_dphy)
1030 cam->calc_dphy(cam);
1031 cam_dbg(cam, "camera: DPHY sets: dphy3=0x%x, dphy5=0x%x, dphy6=0x%x\n",
1032 cam->dphy[0], cam->dphy[1], cam->dphy[2]);
1033 if (cam->bus_type == V4L2_MBUS_CSI2)
1034 mcam_enable_mipi(cam);
1035 else
1036 mcam_disable_mipi(cam);
1037 mcam_ctlr_irq_enable(cam);
1038 cam->state = S_STREAMING;
1039 if (!test_bit(CF_SG_RESTART, &cam->flags))
1040 mcam_ctlr_start(cam);
1041 spin_unlock_irqrestore(&cam->dev_lock, flags);
1042 return 0;
1043 }
1044
1045 /* ----------------------------------------------------------------------- */
1046 /*
1047 * Videobuf2 interface code.
1048 */
1049
1050 static int mcam_vb_queue_setup(struct vb2_queue *vq,
1051 const struct v4l2_format *fmt, unsigned int *nbufs,
1052 unsigned int *num_planes, unsigned int sizes[],
1053 void *alloc_ctxs[])
1054 {
1055 struct mcam_camera *cam = vb2_get_drv_priv(vq);
1056 int minbufs = (cam->buffer_mode == B_DMA_contig) ? 3 : 2;
1057
1058 if (fmt && fmt->fmt.pix.sizeimage < cam->pix_format.sizeimage)
1059 return -EINVAL;
1060 sizes[0] = fmt ? fmt->fmt.pix.sizeimage : cam->pix_format.sizeimage;
1061 *num_planes = 1; /* Someday we have to support planar formats... */
1062 if (*nbufs < minbufs)
1063 *nbufs = minbufs;
1064 if (cam->buffer_mode == B_DMA_contig)
1065 alloc_ctxs[0] = cam->vb_alloc_ctx;
1066 else if (cam->buffer_mode == B_DMA_sg)
1067 alloc_ctxs[0] = cam->vb_alloc_ctx_sg;
1068 return 0;
1069 }
1070
1071
1072 static void mcam_vb_buf_queue(struct vb2_buffer *vb)
1073 {
1074 struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
1075 struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1076 unsigned long flags;
1077 int start;
1078
1079 spin_lock_irqsave(&cam->dev_lock, flags);
1080 start = (cam->state == S_BUFWAIT) && !list_empty(&cam->buffers);
1081 list_add(&mvb->queue, &cam->buffers);
1082 if (cam->state == S_STREAMING && test_bit(CF_SG_RESTART, &cam->flags))
1083 mcam_sg_restart(cam);
1084 spin_unlock_irqrestore(&cam->dev_lock, flags);
1085 if (start)
1086 mcam_read_setup(cam);
1087 }
1088
1089 static void mcam_vb_requeue_bufs(struct vb2_queue *vq,
1090 enum vb2_buffer_state state)
1091 {
1092 struct mcam_camera *cam = vb2_get_drv_priv(vq);
1093 struct mcam_vb_buffer *buf, *node;
1094 unsigned long flags;
1095 unsigned i;
1096
1097 spin_lock_irqsave(&cam->dev_lock, flags);
1098 list_for_each_entry_safe(buf, node, &cam->buffers, queue) {
1099 vb2_buffer_done(&buf->vb_buf, state);
1100 list_del(&buf->queue);
1101 }
1102 for (i = 0; i < MAX_DMA_BUFS; i++) {
1103 buf = cam->vb_bufs[i];
1104
1105 if (buf) {
1106 vb2_buffer_done(&buf->vb_buf, state);
1107 cam->vb_bufs[i] = NULL;
1108 }
1109 }
1110 spin_unlock_irqrestore(&cam->dev_lock, flags);
1111 }
1112
1113 /*
1114 * These need to be called with the mutex held from vb2
1115 */
1116 static int mcam_vb_start_streaming(struct vb2_queue *vq, unsigned int count)
1117 {
1118 struct mcam_camera *cam = vb2_get_drv_priv(vq);
1119 unsigned int frame;
1120 int ret;
1121
1122 if (cam->state != S_IDLE) {
1123 mcam_vb_requeue_bufs(vq, VB2_BUF_STATE_QUEUED);
1124 return -EINVAL;
1125 }
1126 cam->frame_state.frames = 0;
1127 cam->frame_state.singles = 0;
1128 cam->frame_state.delivered = 0;
1129 cam->sequence = 0;
1130 /*
1131 * Videobuf2 sneakily hoards all the buffers and won't
1132 * give them to us until *after* streaming starts. But
1133 * we can't actually start streaming until we have a
1134 * destination. So go into a wait state and hope they
1135 * give us buffers soon.
1136 */
1137 if (cam->buffer_mode != B_vmalloc && list_empty(&cam->buffers)) {
1138 cam->state = S_BUFWAIT;
1139 return 0;
1140 }
1141
1142 /*
1143 * Ensure clear the left over frame flags
1144 * before every really start streaming
1145 */
1146 for (frame = 0; frame < cam->nbufs; frame++)
1147 clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1148
1149 ret = mcam_read_setup(cam);
1150 if (ret)
1151 mcam_vb_requeue_bufs(vq, VB2_BUF_STATE_QUEUED);
1152 return ret;
1153 }
1154
1155 static void mcam_vb_stop_streaming(struct vb2_queue *vq)
1156 {
1157 struct mcam_camera *cam = vb2_get_drv_priv(vq);
1158
1159 cam_dbg(cam, "stop_streaming: %d frames, %d singles, %d delivered\n",
1160 cam->frame_state.frames, cam->frame_state.singles,
1161 cam->frame_state.delivered);
1162 if (cam->state == S_BUFWAIT) {
1163 /* They never gave us buffers */
1164 cam->state = S_IDLE;
1165 return;
1166 }
1167 if (cam->state != S_STREAMING)
1168 return;
1169 mcam_ctlr_stop_dma(cam);
1170 /*
1171 * Reset the CCIC PHY after stopping streaming,
1172 * otherwise, the CCIC may be unstable.
1173 */
1174 if (cam->ctlr_reset)
1175 cam->ctlr_reset(cam);
1176 /*
1177 * VB2 reclaims the buffers, so we need to forget
1178 * about them.
1179 */
1180 mcam_vb_requeue_bufs(vq, VB2_BUF_STATE_ERROR);
1181 }
1182
1183
1184 static const struct vb2_ops mcam_vb2_ops = {
1185 .queue_setup = mcam_vb_queue_setup,
1186 .buf_queue = mcam_vb_buf_queue,
1187 .start_streaming = mcam_vb_start_streaming,
1188 .stop_streaming = mcam_vb_stop_streaming,
1189 .wait_prepare = vb2_ops_wait_prepare,
1190 .wait_finish = vb2_ops_wait_finish,
1191 };
1192
1193
1194 #ifdef MCAM_MODE_DMA_SG
1195 /*
1196 * Scatter/gather mode uses all of the above functions plus a
1197 * few extras to deal with DMA mapping.
1198 */
1199 static int mcam_vb_sg_buf_init(struct vb2_buffer *vb)
1200 {
1201 struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
1202 struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1203 int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;
1204
1205 mvb->dma_desc = dma_alloc_coherent(cam->dev,
1206 ndesc * sizeof(struct mcam_dma_desc),
1207 &mvb->dma_desc_pa, GFP_KERNEL);
1208 if (mvb->dma_desc == NULL) {
1209 cam_err(cam, "Unable to get DMA descriptor array\n");
1210 return -ENOMEM;
1211 }
1212 return 0;
1213 }
1214
1215 static int mcam_vb_sg_buf_prepare(struct vb2_buffer *vb)
1216 {
1217 struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
1218 struct sg_table *sg_table = vb2_dma_sg_plane_desc(vb, 0);
1219 struct mcam_dma_desc *desc = mvb->dma_desc;
1220 struct scatterlist *sg;
1221 int i;
1222
1223 for_each_sg(sg_table->sgl, sg, sg_table->nents, i) {
1224 desc->dma_addr = sg_dma_address(sg);
1225 desc->segment_len = sg_dma_len(sg);
1226 desc++;
1227 }
1228 return 0;
1229 }
1230
1231 static void mcam_vb_sg_buf_cleanup(struct vb2_buffer *vb)
1232 {
1233 struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1234 struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
1235 int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;
1236
1237 dma_free_coherent(cam->dev, ndesc * sizeof(struct mcam_dma_desc),
1238 mvb->dma_desc, mvb->dma_desc_pa);
1239 }
1240
1241
1242 static const struct vb2_ops mcam_vb2_sg_ops = {
1243 .queue_setup = mcam_vb_queue_setup,
1244 .buf_init = mcam_vb_sg_buf_init,
1245 .buf_prepare = mcam_vb_sg_buf_prepare,
1246 .buf_queue = mcam_vb_buf_queue,
1247 .buf_cleanup = mcam_vb_sg_buf_cleanup,
1248 .start_streaming = mcam_vb_start_streaming,
1249 .stop_streaming = mcam_vb_stop_streaming,
1250 .wait_prepare = vb2_ops_wait_prepare,
1251 .wait_finish = vb2_ops_wait_finish,
1252 };
1253
1254 #endif /* MCAM_MODE_DMA_SG */
1255
1256 static int mcam_setup_vb2(struct mcam_camera *cam)
1257 {
1258 struct vb2_queue *vq = &cam->vb_queue;
1259
1260 memset(vq, 0, sizeof(*vq));
1261 vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1262 vq->drv_priv = cam;
1263 vq->lock = &cam->s_mutex;
1264 vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
1265 vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF | VB2_READ;
1266 vq->buf_struct_size = sizeof(struct mcam_vb_buffer);
1267 INIT_LIST_HEAD(&cam->buffers);
1268 switch (cam->buffer_mode) {
1269 case B_DMA_contig:
1270 #ifdef MCAM_MODE_DMA_CONTIG
1271 vq->ops = &mcam_vb2_ops;
1272 vq->mem_ops = &vb2_dma_contig_memops;
1273 cam->dma_setup = mcam_ctlr_dma_contig;
1274 cam->frame_complete = mcam_dma_contig_done;
1275 cam->vb_alloc_ctx = vb2_dma_contig_init_ctx(cam->dev);
1276 if (IS_ERR(cam->vb_alloc_ctx))
1277 return PTR_ERR(cam->vb_alloc_ctx);
1278 #endif
1279 break;
1280 case B_DMA_sg:
1281 #ifdef MCAM_MODE_DMA_SG
1282 vq->ops = &mcam_vb2_sg_ops;
1283 vq->mem_ops = &vb2_dma_sg_memops;
1284 cam->dma_setup = mcam_ctlr_dma_sg;
1285 cam->frame_complete = mcam_dma_sg_done;
1286 cam->vb_alloc_ctx_sg = vb2_dma_sg_init_ctx(cam->dev);
1287 if (IS_ERR(cam->vb_alloc_ctx_sg))
1288 return PTR_ERR(cam->vb_alloc_ctx_sg);
1289 #endif
1290 break;
1291 case B_vmalloc:
1292 #ifdef MCAM_MODE_VMALLOC
1293 tasklet_init(&cam->s_tasklet, mcam_frame_tasklet,
1294 (unsigned long) cam);
1295 vq->ops = &mcam_vb2_ops;
1296 vq->mem_ops = &vb2_vmalloc_memops;
1297 cam->dma_setup = mcam_ctlr_dma_vmalloc;
1298 cam->frame_complete = mcam_vmalloc_done;
1299 #endif
1300 break;
1301 }
1302 return vb2_queue_init(vq);
1303 }
1304
1305 static void mcam_cleanup_vb2(struct mcam_camera *cam)
1306 {
1307 #ifdef MCAM_MODE_DMA_CONTIG
1308 if (cam->buffer_mode == B_DMA_contig)
1309 vb2_dma_contig_cleanup_ctx(cam->vb_alloc_ctx);
1310 #endif
1311 #ifdef MCAM_MODE_DMA_SG
1312 if (cam->buffer_mode == B_DMA_sg)
1313 vb2_dma_sg_cleanup_ctx(cam->vb_alloc_ctx_sg);
1314 #endif
1315 }
1316
1317
1318 /* ---------------------------------------------------------------------- */
1319 /*
1320 * The long list of V4L2 ioctl() operations.
1321 */
1322
1323 static int mcam_vidioc_querycap(struct file *file, void *priv,
1324 struct v4l2_capability *cap)
1325 {
1326 struct mcam_camera *cam = video_drvdata(file);
1327
1328 strcpy(cap->driver, "marvell_ccic");
1329 strcpy(cap->card, "marvell_ccic");
1330 strlcpy(cap->bus_info, cam->bus_info, sizeof(cap->bus_info));
1331 cap->device_caps = V4L2_CAP_VIDEO_CAPTURE |
1332 V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
1333 cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
1334 return 0;
1335 }
1336
1337
1338 static int mcam_vidioc_enum_fmt_vid_cap(struct file *filp,
1339 void *priv, struct v4l2_fmtdesc *fmt)
1340 {
1341 if (fmt->index >= N_MCAM_FMTS)
1342 return -EINVAL;
1343 strlcpy(fmt->description, mcam_formats[fmt->index].desc,
1344 sizeof(fmt->description));
1345 fmt->pixelformat = mcam_formats[fmt->index].pixelformat;
1346 return 0;
1347 }
1348
1349 static int mcam_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
1350 struct v4l2_format *fmt)
1351 {
1352 struct mcam_camera *cam = video_drvdata(filp);
1353 struct mcam_format_struct *f;
1354 struct v4l2_pix_format *pix = &fmt->fmt.pix;
1355 struct v4l2_subdev_pad_config pad_cfg;
1356 struct v4l2_subdev_format format = {
1357 .which = V4L2_SUBDEV_FORMAT_TRY,
1358 };
1359 int ret;
1360
1361 f = mcam_find_format(pix->pixelformat);
1362 pix->pixelformat = f->pixelformat;
1363 v4l2_fill_mbus_format(&format.format, pix, f->mbus_code);
1364 ret = sensor_call(cam, pad, set_fmt, &pad_cfg, &format);
1365 v4l2_fill_pix_format(pix, &format.format);
1366 pix->bytesperline = pix->width * f->bpp;
1367 switch (f->pixelformat) {
1368 case V4L2_PIX_FMT_YUV420:
1369 case V4L2_PIX_FMT_YVU420:
1370 pix->sizeimage = pix->height * pix->bytesperline * 3 / 2;
1371 break;
1372 default:
1373 pix->sizeimage = pix->height * pix->bytesperline;
1374 break;
1375 }
1376 pix->colorspace = V4L2_COLORSPACE_SRGB;
1377 return ret;
1378 }
1379
1380 static int mcam_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
1381 struct v4l2_format *fmt)
1382 {
1383 struct mcam_camera *cam = video_drvdata(filp);
1384 struct mcam_format_struct *f;
1385 int ret;
1386
1387 /*
1388 * Can't do anything if the device is not idle
1389 * Also can't if there are streaming buffers in place.
1390 */
1391 if (cam->state != S_IDLE || vb2_is_busy(&cam->vb_queue))
1392 return -EBUSY;
1393
1394 f = mcam_find_format(fmt->fmt.pix.pixelformat);
1395
1396 /*
1397 * See if the formatting works in principle.
1398 */
1399 ret = mcam_vidioc_try_fmt_vid_cap(filp, priv, fmt);
1400 if (ret)
1401 return ret;
1402 /*
1403 * Now we start to change things for real, so let's do it
1404 * under lock.
1405 */
1406 cam->pix_format = fmt->fmt.pix;
1407 cam->mbus_code = f->mbus_code;
1408
1409 /*
1410 * Make sure we have appropriate DMA buffers.
1411 */
1412 if (cam->buffer_mode == B_vmalloc) {
1413 ret = mcam_check_dma_buffers(cam);
1414 if (ret)
1415 goto out;
1416 }
1417 mcam_set_config_needed(cam, 1);
1418 out:
1419 return ret;
1420 }
1421
1422 /*
1423 * Return our stored notion of how the camera is/should be configured.
1424 * The V4l2 spec wants us to be smarter, and actually get this from
1425 * the camera (and not mess with it at open time). Someday.
1426 */
1427 static int mcam_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
1428 struct v4l2_format *f)
1429 {
1430 struct mcam_camera *cam = video_drvdata(filp);
1431
1432 f->fmt.pix = cam->pix_format;
1433 return 0;
1434 }
1435
1436 /*
1437 * We only have one input - the sensor - so minimize the nonsense here.
1438 */
1439 static int mcam_vidioc_enum_input(struct file *filp, void *priv,
1440 struct v4l2_input *input)
1441 {
1442 if (input->index != 0)
1443 return -EINVAL;
1444
1445 input->type = V4L2_INPUT_TYPE_CAMERA;
1446 strcpy(input->name, "Camera");
1447 return 0;
1448 }
1449
1450 static int mcam_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
1451 {
1452 *i = 0;
1453 return 0;
1454 }
1455
1456 static int mcam_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
1457 {
1458 if (i != 0)
1459 return -EINVAL;
1460 return 0;
1461 }
1462
1463 /*
1464 * G/S_PARM. Most of this is done by the sensor, but we are
1465 * the level which controls the number of read buffers.
1466 */
1467 static int mcam_vidioc_g_parm(struct file *filp, void *priv,
1468 struct v4l2_streamparm *parms)
1469 {
1470 struct mcam_camera *cam = video_drvdata(filp);
1471 int ret;
1472
1473 ret = sensor_call(cam, video, g_parm, parms);
1474 parms->parm.capture.readbuffers = n_dma_bufs;
1475 return ret;
1476 }
1477
1478 static int mcam_vidioc_s_parm(struct file *filp, void *priv,
1479 struct v4l2_streamparm *parms)
1480 {
1481 struct mcam_camera *cam = video_drvdata(filp);
1482 int ret;
1483
1484 ret = sensor_call(cam, video, s_parm, parms);
1485 parms->parm.capture.readbuffers = n_dma_bufs;
1486 return ret;
1487 }
1488
1489 static int mcam_vidioc_enum_framesizes(struct file *filp, void *priv,
1490 struct v4l2_frmsizeenum *sizes)
1491 {
1492 struct mcam_camera *cam = video_drvdata(filp);
1493 struct mcam_format_struct *f;
1494 struct v4l2_subdev_frame_size_enum fse = {
1495 .index = sizes->index,
1496 .which = V4L2_SUBDEV_FORMAT_ACTIVE,
1497 };
1498 int ret;
1499
1500 f = mcam_find_format(sizes->pixel_format);
1501 if (f->pixelformat != sizes->pixel_format)
1502 return -EINVAL;
1503 fse.code = f->mbus_code;
1504 ret = sensor_call(cam, pad, enum_frame_size, NULL, &fse);
1505 if (ret)
1506 return ret;
1507 if (fse.min_width == fse.max_width &&
1508 fse.min_height == fse.max_height) {
1509 sizes->type = V4L2_FRMSIZE_TYPE_DISCRETE;
1510 sizes->discrete.width = fse.min_width;
1511 sizes->discrete.height = fse.min_height;
1512 return 0;
1513 }
1514 sizes->type = V4L2_FRMSIZE_TYPE_CONTINUOUS;
1515 sizes->stepwise.min_width = fse.min_width;
1516 sizes->stepwise.max_width = fse.max_width;
1517 sizes->stepwise.min_height = fse.min_height;
1518 sizes->stepwise.max_height = fse.max_height;
1519 sizes->stepwise.step_width = 1;
1520 sizes->stepwise.step_height = 1;
1521 return 0;
1522 }
1523
1524 static int mcam_vidioc_enum_frameintervals(struct file *filp, void *priv,
1525 struct v4l2_frmivalenum *interval)
1526 {
1527 struct mcam_camera *cam = video_drvdata(filp);
1528 struct mcam_format_struct *f;
1529 struct v4l2_subdev_frame_interval_enum fie = {
1530 .index = interval->index,
1531 .width = interval->width,
1532 .height = interval->height,
1533 .which = V4L2_SUBDEV_FORMAT_ACTIVE,
1534 };
1535 int ret;
1536
1537 f = mcam_find_format(interval->pixel_format);
1538 if (f->pixelformat != interval->pixel_format)
1539 return -EINVAL;
1540 fie.code = f->mbus_code;
1541 ret = sensor_call(cam, pad, enum_frame_interval, NULL, &fie);
1542 if (ret)
1543 return ret;
1544 interval->type = V4L2_FRMIVAL_TYPE_DISCRETE;
1545 interval->discrete = fie.interval;
1546 return 0;
1547 }
1548
1549 #ifdef CONFIG_VIDEO_ADV_DEBUG
1550 static int mcam_vidioc_g_register(struct file *file, void *priv,
1551 struct v4l2_dbg_register *reg)
1552 {
1553 struct mcam_camera *cam = video_drvdata(file);
1554
1555 if (reg->reg > cam->regs_size - 4)
1556 return -EINVAL;
1557 reg->val = mcam_reg_read(cam, reg->reg);
1558 reg->size = 4;
1559 return 0;
1560 }
1561
1562 static int mcam_vidioc_s_register(struct file *file, void *priv,
1563 const struct v4l2_dbg_register *reg)
1564 {
1565 struct mcam_camera *cam = video_drvdata(file);
1566
1567 if (reg->reg > cam->regs_size - 4)
1568 return -EINVAL;
1569 mcam_reg_write(cam, reg->reg, reg->val);
1570 return 0;
1571 }
1572 #endif
1573
1574 static const struct v4l2_ioctl_ops mcam_v4l_ioctl_ops = {
1575 .vidioc_querycap = mcam_vidioc_querycap,
1576 .vidioc_enum_fmt_vid_cap = mcam_vidioc_enum_fmt_vid_cap,
1577 .vidioc_try_fmt_vid_cap = mcam_vidioc_try_fmt_vid_cap,
1578 .vidioc_s_fmt_vid_cap = mcam_vidioc_s_fmt_vid_cap,
1579 .vidioc_g_fmt_vid_cap = mcam_vidioc_g_fmt_vid_cap,
1580 .vidioc_enum_input = mcam_vidioc_enum_input,
1581 .vidioc_g_input = mcam_vidioc_g_input,
1582 .vidioc_s_input = mcam_vidioc_s_input,
1583 .vidioc_reqbufs = vb2_ioctl_reqbufs,
1584 .vidioc_create_bufs = vb2_ioctl_create_bufs,
1585 .vidioc_querybuf = vb2_ioctl_querybuf,
1586 .vidioc_qbuf = vb2_ioctl_qbuf,
1587 .vidioc_dqbuf = vb2_ioctl_dqbuf,
1588 .vidioc_expbuf = vb2_ioctl_expbuf,
1589 .vidioc_streamon = vb2_ioctl_streamon,
1590 .vidioc_streamoff = vb2_ioctl_streamoff,
1591 .vidioc_g_parm = mcam_vidioc_g_parm,
1592 .vidioc_s_parm = mcam_vidioc_s_parm,
1593 .vidioc_enum_framesizes = mcam_vidioc_enum_framesizes,
1594 .vidioc_enum_frameintervals = mcam_vidioc_enum_frameintervals,
1595 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1596 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1597 #ifdef CONFIG_VIDEO_ADV_DEBUG
1598 .vidioc_g_register = mcam_vidioc_g_register,
1599 .vidioc_s_register = mcam_vidioc_s_register,
1600 #endif
1601 };
1602
1603 /* ---------------------------------------------------------------------- */
1604 /*
1605 * Our various file operations.
1606 */
1607 static int mcam_v4l_open(struct file *filp)
1608 {
1609 struct mcam_camera *cam = video_drvdata(filp);
1610 int ret;
1611
1612 mutex_lock(&cam->s_mutex);
1613 ret = v4l2_fh_open(filp);
1614 if (ret)
1615 goto out;
1616 if (v4l2_fh_is_singular_file(filp)) {
1617 ret = mcam_ctlr_power_up(cam);
1618 if (ret)
1619 goto out;
1620 __mcam_cam_reset(cam);
1621 mcam_set_config_needed(cam, 1);
1622 }
1623 out:
1624 mutex_unlock(&cam->s_mutex);
1625 if (ret)
1626 v4l2_fh_release(filp);
1627 return ret;
1628 }
1629
1630
1631 static int mcam_v4l_release(struct file *filp)
1632 {
1633 struct mcam_camera *cam = video_drvdata(filp);
1634 bool last_open;
1635
1636 mutex_lock(&cam->s_mutex);
1637 last_open = v4l2_fh_is_singular_file(filp);
1638 _vb2_fop_release(filp, NULL);
1639 if (last_open) {
1640 mcam_disable_mipi(cam);
1641 mcam_ctlr_power_down(cam);
1642 if (cam->buffer_mode == B_vmalloc && alloc_bufs_at_read)
1643 mcam_free_dma_bufs(cam);
1644 }
1645
1646 mutex_unlock(&cam->s_mutex);
1647 return 0;
1648 }
1649
1650 static const struct v4l2_file_operations mcam_v4l_fops = {
1651 .owner = THIS_MODULE,
1652 .open = mcam_v4l_open,
1653 .release = mcam_v4l_release,
1654 .read = vb2_fop_read,
1655 .poll = vb2_fop_poll,
1656 .mmap = vb2_fop_mmap,
1657 .unlocked_ioctl = video_ioctl2,
1658 };
1659
1660
1661 /*
1662 * This template device holds all of those v4l2 methods; we
1663 * clone it for specific real devices.
1664 */
1665 static struct video_device mcam_v4l_template = {
1666 .name = "mcam",
1667 .fops = &mcam_v4l_fops,
1668 .ioctl_ops = &mcam_v4l_ioctl_ops,
1669 .release = video_device_release_empty,
1670 };
1671
1672 /* ---------------------------------------------------------------------- */
1673 /*
1674 * Interrupt handler stuff
1675 */
1676 static void mcam_frame_complete(struct mcam_camera *cam, int frame)
1677 {
1678 /*
1679 * Basic frame housekeeping.
1680 */
1681 set_bit(frame, &cam->flags);
1682 clear_bit(CF_DMA_ACTIVE, &cam->flags);
1683 cam->next_buf = frame;
1684 cam->buf_seq[frame] = cam->sequence++;
1685 cam->frame_state.frames++;
1686 /*
1687 * "This should never happen"
1688 */
1689 if (cam->state != S_STREAMING)
1690 return;
1691 /*
1692 * Process the frame and set up the next one.
1693 */
1694 cam->frame_complete(cam, frame);
1695 }
1696
1697
1698 /*
1699 * The interrupt handler; this needs to be called from the
1700 * platform irq handler with the lock held.
1701 */
1702 int mccic_irq(struct mcam_camera *cam, unsigned int irqs)
1703 {
1704 unsigned int frame, handled = 0;
1705
1706 mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
1707 /*
1708 * Handle any frame completions. There really should
1709 * not be more than one of these, or we have fallen
1710 * far behind.
1711 *
1712 * When running in S/G mode, the frame number lacks any
1713 * real meaning - there's only one descriptor array - but
1714 * the controller still picks a different one to signal
1715 * each time.
1716 */
1717 for (frame = 0; frame < cam->nbufs; frame++)
1718 if (irqs & (IRQ_EOF0 << frame) &&
1719 test_bit(CF_FRAME_SOF0 + frame, &cam->flags)) {
1720 mcam_frame_complete(cam, frame);
1721 handled = 1;
1722 clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1723 if (cam->buffer_mode == B_DMA_sg)
1724 break;
1725 }
1726 /*
1727 * If a frame starts, note that we have DMA active. This
1728 * code assumes that we won't get multiple frame interrupts
1729 * at once; may want to rethink that.
1730 */
1731 for (frame = 0; frame < cam->nbufs; frame++) {
1732 if (irqs & (IRQ_SOF0 << frame)) {
1733 set_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1734 handled = IRQ_HANDLED;
1735 }
1736 }
1737
1738 if (handled == IRQ_HANDLED) {
1739 set_bit(CF_DMA_ACTIVE, &cam->flags);
1740 if (cam->buffer_mode == B_DMA_sg)
1741 mcam_ctlr_stop(cam);
1742 }
1743 return handled;
1744 }
1745
1746 /* ---------------------------------------------------------------------- */
1747 /*
1748 * Registration and such.
1749 */
1750 static struct ov7670_config sensor_cfg = {
1751 /*
1752 * Exclude QCIF mode, because it only captures a tiny portion
1753 * of the sensor FOV
1754 */
1755 .min_width = 320,
1756 .min_height = 240,
1757 };
1758
1759
1760 int mccic_register(struct mcam_camera *cam)
1761 {
1762 struct i2c_board_info ov7670_info = {
1763 .type = "ov7670",
1764 .addr = 0x42 >> 1,
1765 .platform_data = &sensor_cfg,
1766 };
1767 int ret;
1768
1769 /*
1770 * Validate the requested buffer mode.
1771 */
1772 if (buffer_mode >= 0)
1773 cam->buffer_mode = buffer_mode;
1774 if (cam->buffer_mode == B_DMA_sg &&
1775 cam->chip_id == MCAM_CAFE) {
1776 printk(KERN_ERR "marvell-cam: Cafe can't do S/G I/O, "
1777 "attempting vmalloc mode instead\n");
1778 cam->buffer_mode = B_vmalloc;
1779 }
1780 if (!mcam_buffer_mode_supported(cam->buffer_mode)) {
1781 printk(KERN_ERR "marvell-cam: buffer mode %d unsupported\n",
1782 cam->buffer_mode);
1783 return -EINVAL;
1784 }
1785 /*
1786 * Register with V4L
1787 */
1788 ret = v4l2_device_register(cam->dev, &cam->v4l2_dev);
1789 if (ret)
1790 return ret;
1791
1792 mutex_init(&cam->s_mutex);
1793 cam->state = S_NOTREADY;
1794 mcam_set_config_needed(cam, 1);
1795 cam->pix_format = mcam_def_pix_format;
1796 cam->mbus_code = mcam_def_mbus_code;
1797 mcam_ctlr_init(cam);
1798
1799 /*
1800 * Get the v4l2 setup done.
1801 */
1802 ret = v4l2_ctrl_handler_init(&cam->ctrl_handler, 10);
1803 if (ret)
1804 goto out_unregister;
1805 cam->v4l2_dev.ctrl_handler = &cam->ctrl_handler;
1806
1807 /*
1808 * Try to find the sensor.
1809 */
1810 sensor_cfg.clock_speed = cam->clock_speed;
1811 sensor_cfg.use_smbus = cam->use_smbus;
1812 cam->sensor_addr = ov7670_info.addr;
1813 cam->sensor = v4l2_i2c_new_subdev_board(&cam->v4l2_dev,
1814 cam->i2c_adapter, &ov7670_info, NULL);
1815 if (cam->sensor == NULL) {
1816 ret = -ENODEV;
1817 goto out_unregister;
1818 }
1819
1820 ret = mcam_cam_init(cam);
1821 if (ret)
1822 goto out_unregister;
1823
1824 ret = mcam_setup_vb2(cam);
1825 if (ret)
1826 goto out_unregister;
1827
1828 mutex_lock(&cam->s_mutex);
1829 cam->vdev = mcam_v4l_template;
1830 cam->vdev.v4l2_dev = &cam->v4l2_dev;
1831 cam->vdev.lock = &cam->s_mutex;
1832 cam->vdev.queue = &cam->vb_queue;
1833 video_set_drvdata(&cam->vdev, cam);
1834 ret = video_register_device(&cam->vdev, VFL_TYPE_GRABBER, -1);
1835 if (ret) {
1836 mutex_unlock(&cam->s_mutex);
1837 goto out_unregister;
1838 }
1839
1840 /*
1841 * If so requested, try to get our DMA buffers now.
1842 */
1843 if (cam->buffer_mode == B_vmalloc && !alloc_bufs_at_read) {
1844 if (mcam_alloc_dma_bufs(cam, 1))
1845 cam_warn(cam, "Unable to alloc DMA buffers at load"
1846 " will try again later.");
1847 }
1848
1849 mutex_unlock(&cam->s_mutex);
1850 return 0;
1851
1852 out_unregister:
1853 v4l2_ctrl_handler_free(&cam->ctrl_handler);
1854 v4l2_device_unregister(&cam->v4l2_dev);
1855 return ret;
1856 }
1857
1858
1859 void mccic_shutdown(struct mcam_camera *cam)
1860 {
1861 /*
1862 * If we have no users (and we really, really should have no
1863 * users) the device will already be powered down. Trying to
1864 * take it down again will wedge the machine, which is frowned
1865 * upon.
1866 */
1867 if (!list_empty(&cam->vdev.fh_list)) {
1868 cam_warn(cam, "Removing a device with users!\n");
1869 mcam_ctlr_power_down(cam);
1870 }
1871 mcam_cleanup_vb2(cam);
1872 if (cam->buffer_mode == B_vmalloc)
1873 mcam_free_dma_bufs(cam);
1874 video_unregister_device(&cam->vdev);
1875 v4l2_ctrl_handler_free(&cam->ctrl_handler);
1876 v4l2_device_unregister(&cam->v4l2_dev);
1877 }
1878
1879 /*
1880 * Power management
1881 */
1882 #ifdef CONFIG_PM
1883
1884 void mccic_suspend(struct mcam_camera *cam)
1885 {
1886 mutex_lock(&cam->s_mutex);
1887 if (!list_empty(&cam->vdev.fh_list)) {
1888 enum mcam_state cstate = cam->state;
1889
1890 mcam_ctlr_stop_dma(cam);
1891 mcam_ctlr_power_down(cam);
1892 cam->state = cstate;
1893 }
1894 mutex_unlock(&cam->s_mutex);
1895 }
1896
1897 int mccic_resume(struct mcam_camera *cam)
1898 {
1899 int ret = 0;
1900
1901 mutex_lock(&cam->s_mutex);
1902 if (!list_empty(&cam->vdev.fh_list)) {
1903 ret = mcam_ctlr_power_up(cam);
1904 if (ret) {
1905 mutex_unlock(&cam->s_mutex);
1906 return ret;
1907 }
1908 __mcam_cam_reset(cam);
1909 } else {
1910 mcam_ctlr_power_down(cam);
1911 }
1912 mutex_unlock(&cam->s_mutex);
1913
1914 set_bit(CF_CONFIG_NEEDED, &cam->flags);
1915 if (cam->state == S_STREAMING) {
1916 /*
1917 * If there was a buffer in the DMA engine at suspend
1918 * time, put it back on the queue or we'll forget about it.
1919 */
1920 if (cam->buffer_mode == B_DMA_sg && cam->vb_bufs[0])
1921 list_add(&cam->vb_bufs[0]->queue, &cam->buffers);
1922 ret = mcam_read_setup(cam);
1923 }
1924 return ret;
1925 }
1926 #endif /* CONFIG_PM */