]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/media/platform/omap3isp/isp.c
media: v4l2-async: Clean v4l2_async_notifier_add_fwnode_remote_subdev
[mirror_ubuntu-hirsute-kernel.git] / drivers / media / platform / omap3isp / isp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * isp.c
4 *
5 * TI OMAP3 ISP - Core
6 *
7 * Copyright (C) 2006-2010 Nokia Corporation
8 * Copyright (C) 2007-2009 Texas Instruments, Inc.
9 *
10 * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
11 * Sakari Ailus <sakari.ailus@iki.fi>
12 *
13 * Contributors:
14 * Laurent Pinchart <laurent.pinchart@ideasonboard.com>
15 * Sakari Ailus <sakari.ailus@iki.fi>
16 * David Cohen <dacohen@gmail.com>
17 * Stanimir Varbanov <svarbanov@mm-sol.com>
18 * Vimarsh Zutshi <vimarsh.zutshi@gmail.com>
19 * Tuukka Toivonen <tuukkat76@gmail.com>
20 * Sergio Aguirre <saaguirre@ti.com>
21 * Antti Koskipaa <akoskipa@gmail.com>
22 * Ivan T. Ivanov <iivanov@mm-sol.com>
23 * RaniSuneela <r-m@ti.com>
24 * Atanas Filipov <afilipov@mm-sol.com>
25 * Gjorgji Rosikopulos <grosikopulos@mm-sol.com>
26 * Hiroshi DOYU <hiroshi.doyu@nokia.com>
27 * Nayden Kanchev <nkanchev@mm-sol.com>
28 * Phil Carmody <ext-phil.2.carmody@nokia.com>
29 * Artem Bityutskiy <artem.bityutskiy@nokia.com>
30 * Dominic Curran <dcurran@ti.com>
31 * Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi>
32 * Pallavi Kulkarni <p-kulkarni@ti.com>
33 * Vaibhav Hiremath <hvaibhav@ti.com>
34 * Mohit Jalori <mjalori@ti.com>
35 * Sameer Venkatraman <sameerv@ti.com>
36 * Senthilvadivu Guruswamy <svadivu@ti.com>
37 * Thara Gopinath <thara@ti.com>
38 * Toni Leinonen <toni.leinonen@nokia.com>
39 * Troy Laramy <t-laramy@ti.com>
40 */
41
42 #include <linux/clk.h>
43 #include <linux/clkdev.h>
44 #include <linux/delay.h>
45 #include <linux/device.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/i2c.h>
48 #include <linux/interrupt.h>
49 #include <linux/mfd/syscon.h>
50 #include <linux/module.h>
51 #include <linux/omap-iommu.h>
52 #include <linux/platform_device.h>
53 #include <linux/property.h>
54 #include <linux/regulator/consumer.h>
55 #include <linux/slab.h>
56 #include <linux/sched.h>
57 #include <linux/vmalloc.h>
58
59 #ifdef CONFIG_ARM_DMA_USE_IOMMU
60 #include <asm/dma-iommu.h>
61 #endif
62
63 #include <media/v4l2-common.h>
64 #include <media/v4l2-fwnode.h>
65 #include <media/v4l2-device.h>
66 #include <media/v4l2-mc.h>
67
68 #include "isp.h"
69 #include "ispreg.h"
70 #include "ispccdc.h"
71 #include "isppreview.h"
72 #include "ispresizer.h"
73 #include "ispcsi2.h"
74 #include "ispccp2.h"
75 #include "isph3a.h"
76 #include "isphist.h"
77
78 static unsigned int autoidle;
79 module_param(autoidle, int, 0444);
80 MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support");
81
82 static void isp_save_ctx(struct isp_device *isp);
83
84 static void isp_restore_ctx(struct isp_device *isp);
85
86 static const struct isp_res_mapping isp_res_maps[] = {
87 {
88 .isp_rev = ISP_REVISION_2_0,
89 .offset = {
90 /* first MMIO area */
91 0x0000, /* base, len 0x0070 */
92 0x0400, /* ccp2, len 0x01f0 */
93 0x0600, /* ccdc, len 0x00a8 */
94 0x0a00, /* hist, len 0x0048 */
95 0x0c00, /* h3a, len 0x0060 */
96 0x0e00, /* preview, len 0x00a0 */
97 0x1000, /* resizer, len 0x00ac */
98 0x1200, /* sbl, len 0x00fc */
99 /* second MMIO area */
100 0x0000, /* csi2a, len 0x0170 */
101 0x0170, /* csiphy2, len 0x000c */
102 },
103 .phy_type = ISP_PHY_TYPE_3430,
104 },
105 {
106 .isp_rev = ISP_REVISION_15_0,
107 .offset = {
108 /* first MMIO area */
109 0x0000, /* base, len 0x0070 */
110 0x0400, /* ccp2, len 0x01f0 */
111 0x0600, /* ccdc, len 0x00a8 */
112 0x0a00, /* hist, len 0x0048 */
113 0x0c00, /* h3a, len 0x0060 */
114 0x0e00, /* preview, len 0x00a0 */
115 0x1000, /* resizer, len 0x00ac */
116 0x1200, /* sbl, len 0x00fc */
117 /* second MMIO area */
118 0x0000, /* csi2a, len 0x0170 (1st area) */
119 0x0170, /* csiphy2, len 0x000c */
120 0x01c0, /* csi2a, len 0x0040 (2nd area) */
121 0x0400, /* csi2c, len 0x0170 (1st area) */
122 0x0570, /* csiphy1, len 0x000c */
123 0x05c0, /* csi2c, len 0x0040 (2nd area) */
124 },
125 .phy_type = ISP_PHY_TYPE_3630,
126 },
127 };
128
129 /* Structure for saving/restoring ISP module registers */
130 static struct isp_reg isp_reg_list[] = {
131 {OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0},
132 {OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0},
133 {OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0},
134 {0, ISP_TOK_TERM, 0}
135 };
136
137 /*
138 * omap3isp_flush - Post pending L3 bus writes by doing a register readback
139 * @isp: OMAP3 ISP device
140 *
141 * In order to force posting of pending writes, we need to write and
142 * readback the same register, in this case the revision register.
143 *
144 * See this link for reference:
145 * https://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html
146 */
147 void omap3isp_flush(struct isp_device *isp)
148 {
149 isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
150 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
151 }
152
153 /* -----------------------------------------------------------------------------
154 * XCLK
155 */
156
157 #define to_isp_xclk(_hw) container_of(_hw, struct isp_xclk, hw)
158
159 static void isp_xclk_update(struct isp_xclk *xclk, u32 divider)
160 {
161 switch (xclk->id) {
162 case ISP_XCLK_A:
163 isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
164 ISPTCTRL_CTRL_DIVA_MASK,
165 divider << ISPTCTRL_CTRL_DIVA_SHIFT);
166 break;
167 case ISP_XCLK_B:
168 isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
169 ISPTCTRL_CTRL_DIVB_MASK,
170 divider << ISPTCTRL_CTRL_DIVB_SHIFT);
171 break;
172 }
173 }
174
175 static int isp_xclk_prepare(struct clk_hw *hw)
176 {
177 struct isp_xclk *xclk = to_isp_xclk(hw);
178
179 omap3isp_get(xclk->isp);
180
181 return 0;
182 }
183
184 static void isp_xclk_unprepare(struct clk_hw *hw)
185 {
186 struct isp_xclk *xclk = to_isp_xclk(hw);
187
188 omap3isp_put(xclk->isp);
189 }
190
191 static int isp_xclk_enable(struct clk_hw *hw)
192 {
193 struct isp_xclk *xclk = to_isp_xclk(hw);
194 unsigned long flags;
195
196 spin_lock_irqsave(&xclk->lock, flags);
197 isp_xclk_update(xclk, xclk->divider);
198 xclk->enabled = true;
199 spin_unlock_irqrestore(&xclk->lock, flags);
200
201 return 0;
202 }
203
204 static void isp_xclk_disable(struct clk_hw *hw)
205 {
206 struct isp_xclk *xclk = to_isp_xclk(hw);
207 unsigned long flags;
208
209 spin_lock_irqsave(&xclk->lock, flags);
210 isp_xclk_update(xclk, 0);
211 xclk->enabled = false;
212 spin_unlock_irqrestore(&xclk->lock, flags);
213 }
214
215 static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw,
216 unsigned long parent_rate)
217 {
218 struct isp_xclk *xclk = to_isp_xclk(hw);
219
220 return parent_rate / xclk->divider;
221 }
222
223 static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate)
224 {
225 u32 divider;
226
227 if (*rate >= parent_rate) {
228 *rate = parent_rate;
229 return ISPTCTRL_CTRL_DIV_BYPASS;
230 }
231
232 if (*rate == 0)
233 *rate = 1;
234
235 divider = DIV_ROUND_CLOSEST(parent_rate, *rate);
236 if (divider >= ISPTCTRL_CTRL_DIV_BYPASS)
237 divider = ISPTCTRL_CTRL_DIV_BYPASS - 1;
238
239 *rate = parent_rate / divider;
240 return divider;
241 }
242
243 static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate,
244 unsigned long *parent_rate)
245 {
246 isp_xclk_calc_divider(&rate, *parent_rate);
247 return rate;
248 }
249
250 static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate,
251 unsigned long parent_rate)
252 {
253 struct isp_xclk *xclk = to_isp_xclk(hw);
254 unsigned long flags;
255 u32 divider;
256
257 divider = isp_xclk_calc_divider(&rate, parent_rate);
258
259 spin_lock_irqsave(&xclk->lock, flags);
260
261 xclk->divider = divider;
262 if (xclk->enabled)
263 isp_xclk_update(xclk, divider);
264
265 spin_unlock_irqrestore(&xclk->lock, flags);
266
267 dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n",
268 __func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider);
269 return 0;
270 }
271
272 static const struct clk_ops isp_xclk_ops = {
273 .prepare = isp_xclk_prepare,
274 .unprepare = isp_xclk_unprepare,
275 .enable = isp_xclk_enable,
276 .disable = isp_xclk_disable,
277 .recalc_rate = isp_xclk_recalc_rate,
278 .round_rate = isp_xclk_round_rate,
279 .set_rate = isp_xclk_set_rate,
280 };
281
282 static const char *isp_xclk_parent_name = "cam_mclk";
283
284 static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data)
285 {
286 unsigned int idx = clkspec->args[0];
287 struct isp_device *isp = data;
288
289 if (idx >= ARRAY_SIZE(isp->xclks))
290 return ERR_PTR(-ENOENT);
291
292 return isp->xclks[idx].clk;
293 }
294
295 static int isp_xclk_init(struct isp_device *isp)
296 {
297 struct device_node *np = isp->dev->of_node;
298 struct clk_init_data init = {};
299 unsigned int i;
300
301 for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i)
302 isp->xclks[i].clk = ERR_PTR(-EINVAL);
303
304 for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
305 struct isp_xclk *xclk = &isp->xclks[i];
306
307 xclk->isp = isp;
308 xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B;
309 xclk->divider = 1;
310 spin_lock_init(&xclk->lock);
311
312 init.name = i == 0 ? "cam_xclka" : "cam_xclkb";
313 init.ops = &isp_xclk_ops;
314 init.parent_names = &isp_xclk_parent_name;
315 init.num_parents = 1;
316
317 xclk->hw.init = &init;
318 /*
319 * The first argument is NULL in order to avoid circular
320 * reference, as this driver takes reference on the
321 * sensor subdevice modules and the sensors would take
322 * reference on this module through clk_get().
323 */
324 xclk->clk = clk_register(NULL, &xclk->hw);
325 if (IS_ERR(xclk->clk))
326 return PTR_ERR(xclk->clk);
327 }
328
329 if (np)
330 of_clk_add_provider(np, isp_xclk_src_get, isp);
331
332 return 0;
333 }
334
335 static void isp_xclk_cleanup(struct isp_device *isp)
336 {
337 struct device_node *np = isp->dev->of_node;
338 unsigned int i;
339
340 if (np)
341 of_clk_del_provider(np);
342
343 for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
344 struct isp_xclk *xclk = &isp->xclks[i];
345
346 if (!IS_ERR(xclk->clk))
347 clk_unregister(xclk->clk);
348 }
349 }
350
351 /* -----------------------------------------------------------------------------
352 * Interrupts
353 */
354
355 /*
356 * isp_enable_interrupts - Enable ISP interrupts.
357 * @isp: OMAP3 ISP device
358 */
359 static void isp_enable_interrupts(struct isp_device *isp)
360 {
361 static const u32 irq = IRQ0ENABLE_CSIA_IRQ
362 | IRQ0ENABLE_CSIB_IRQ
363 | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ
364 | IRQ0ENABLE_CCDC_LSC_DONE_IRQ
365 | IRQ0ENABLE_CCDC_VD0_IRQ
366 | IRQ0ENABLE_CCDC_VD1_IRQ
367 | IRQ0ENABLE_HS_VS_IRQ
368 | IRQ0ENABLE_HIST_DONE_IRQ
369 | IRQ0ENABLE_H3A_AWB_DONE_IRQ
370 | IRQ0ENABLE_H3A_AF_DONE_IRQ
371 | IRQ0ENABLE_PRV_DONE_IRQ
372 | IRQ0ENABLE_RSZ_DONE_IRQ;
373
374 isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
375 isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
376 }
377
378 /*
379 * isp_disable_interrupts - Disable ISP interrupts.
380 * @isp: OMAP3 ISP device
381 */
382 static void isp_disable_interrupts(struct isp_device *isp)
383 {
384 isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
385 }
386
387 /*
388 * isp_core_init - ISP core settings
389 * @isp: OMAP3 ISP device
390 * @idle: Consider idle state.
391 *
392 * Set the power settings for the ISP and SBL bus and configure the HS/VS
393 * interrupt source.
394 *
395 * We need to configure the HS/VS interrupt source before interrupts get
396 * enabled, as the sensor might be free-running and the ISP default setting
397 * (HS edge) would put an unnecessary burden on the CPU.
398 */
399 static void isp_core_init(struct isp_device *isp, int idle)
400 {
401 isp_reg_writel(isp,
402 ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY :
403 ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) <<
404 ISP_SYSCONFIG_MIDLEMODE_SHIFT) |
405 ((isp->revision == ISP_REVISION_15_0) ?
406 ISP_SYSCONFIG_AUTOIDLE : 0),
407 OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
408
409 isp_reg_writel(isp,
410 (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) |
411 ISPCTRL_SYNC_DETECT_VSRISE,
412 OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
413 }
414
415 /*
416 * Configure the bridge and lane shifter. Valid inputs are
417 *
418 * CCDC_INPUT_PARALLEL: Parallel interface
419 * CCDC_INPUT_CSI2A: CSI2a receiver
420 * CCDC_INPUT_CCP2B: CCP2b receiver
421 * CCDC_INPUT_CSI2C: CSI2c receiver
422 *
423 * The bridge and lane shifter are configured according to the selected input
424 * and the ISP platform data.
425 */
426 void omap3isp_configure_bridge(struct isp_device *isp,
427 enum ccdc_input_entity input,
428 const struct isp_parallel_cfg *parcfg,
429 unsigned int shift, unsigned int bridge)
430 {
431 u32 ispctrl_val;
432
433 ispctrl_val = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
434 ispctrl_val &= ~ISPCTRL_SHIFT_MASK;
435 ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV;
436 ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK;
437 ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK;
438 ispctrl_val |= bridge;
439
440 switch (input) {
441 case CCDC_INPUT_PARALLEL:
442 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL;
443 ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT;
444 shift += parcfg->data_lane_shift;
445 break;
446
447 case CCDC_INPUT_CSI2A:
448 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA;
449 break;
450
451 case CCDC_INPUT_CCP2B:
452 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB;
453 break;
454
455 case CCDC_INPUT_CSI2C:
456 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC;
457 break;
458
459 default:
460 return;
461 }
462
463 ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK;
464
465 isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
466 }
467
468 void omap3isp_hist_dma_done(struct isp_device *isp)
469 {
470 if (omap3isp_ccdc_busy(&isp->isp_ccdc) ||
471 omap3isp_stat_pcr_busy(&isp->isp_hist)) {
472 /* Histogram cannot be enabled in this frame anymore */
473 atomic_set(&isp->isp_hist.buf_err, 1);
474 dev_dbg(isp->dev,
475 "hist: Out of synchronization with CCDC. Ignoring next buffer.\n");
476 }
477 }
478
479 static inline void isp_isr_dbg(struct isp_device *isp, u32 irqstatus)
480 {
481 static const char *name[] = {
482 "CSIA_IRQ",
483 "res1",
484 "res2",
485 "CSIB_LCM_IRQ",
486 "CSIB_IRQ",
487 "res5",
488 "res6",
489 "res7",
490 "CCDC_VD0_IRQ",
491 "CCDC_VD1_IRQ",
492 "CCDC_VD2_IRQ",
493 "CCDC_ERR_IRQ",
494 "H3A_AF_DONE_IRQ",
495 "H3A_AWB_DONE_IRQ",
496 "res14",
497 "res15",
498 "HIST_DONE_IRQ",
499 "CCDC_LSC_DONE",
500 "CCDC_LSC_PREFETCH_COMPLETED",
501 "CCDC_LSC_PREFETCH_ERROR",
502 "PRV_DONE_IRQ",
503 "CBUFF_IRQ",
504 "res22",
505 "res23",
506 "RSZ_DONE_IRQ",
507 "OVF_IRQ",
508 "res26",
509 "res27",
510 "MMU_ERR_IRQ",
511 "OCP_ERR_IRQ",
512 "SEC_ERR_IRQ",
513 "HS_VS_IRQ",
514 };
515 int i;
516
517 dev_dbg(isp->dev, "ISP IRQ: ");
518
519 for (i = 0; i < ARRAY_SIZE(name); i++) {
520 if ((1 << i) & irqstatus)
521 printk(KERN_CONT "%s ", name[i]);
522 }
523 printk(KERN_CONT "\n");
524 }
525
526 static void isp_isr_sbl(struct isp_device *isp)
527 {
528 struct device *dev = isp->dev;
529 struct isp_pipeline *pipe;
530 u32 sbl_pcr;
531
532 /*
533 * Handle shared buffer logic overflows for video buffers.
534 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored.
535 */
536 sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
537 isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
538 sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF;
539
540 if (sbl_pcr)
541 dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr);
542
543 if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) {
544 pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity);
545 if (pipe != NULL)
546 pipe->error = true;
547 }
548
549 if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) {
550 pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity);
551 if (pipe != NULL)
552 pipe->error = true;
553 }
554
555 if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) {
556 pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity);
557 if (pipe != NULL)
558 pipe->error = true;
559 }
560
561 if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) {
562 pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity);
563 if (pipe != NULL)
564 pipe->error = true;
565 }
566
567 if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF
568 | ISPSBL_PCR_RSZ2_WBL_OVF
569 | ISPSBL_PCR_RSZ3_WBL_OVF
570 | ISPSBL_PCR_RSZ4_WBL_OVF)) {
571 pipe = to_isp_pipeline(&isp->isp_res.subdev.entity);
572 if (pipe != NULL)
573 pipe->error = true;
574 }
575
576 if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF)
577 omap3isp_stat_sbl_overflow(&isp->isp_af);
578
579 if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF)
580 omap3isp_stat_sbl_overflow(&isp->isp_aewb);
581 }
582
583 /*
584 * isp_isr - Interrupt Service Routine for Camera ISP module.
585 * @irq: Not used currently.
586 * @_isp: Pointer to the OMAP3 ISP device
587 *
588 * Handles the corresponding callback if plugged in.
589 */
590 static irqreturn_t isp_isr(int irq, void *_isp)
591 {
592 static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ |
593 IRQ0STATUS_CCDC_LSC_DONE_IRQ |
594 IRQ0STATUS_CCDC_VD0_IRQ |
595 IRQ0STATUS_CCDC_VD1_IRQ |
596 IRQ0STATUS_HS_VS_IRQ;
597 struct isp_device *isp = _isp;
598 u32 irqstatus;
599
600 irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
601 isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
602
603 isp_isr_sbl(isp);
604
605 if (irqstatus & IRQ0STATUS_CSIA_IRQ)
606 omap3isp_csi2_isr(&isp->isp_csi2a);
607
608 if (irqstatus & IRQ0STATUS_CSIB_IRQ)
609 omap3isp_ccp2_isr(&isp->isp_ccp2);
610
611 if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) {
612 if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW)
613 omap3isp_preview_isr_frame_sync(&isp->isp_prev);
614 if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER)
615 omap3isp_resizer_isr_frame_sync(&isp->isp_res);
616 omap3isp_stat_isr_frame_sync(&isp->isp_aewb);
617 omap3isp_stat_isr_frame_sync(&isp->isp_af);
618 omap3isp_stat_isr_frame_sync(&isp->isp_hist);
619 }
620
621 if (irqstatus & ccdc_events)
622 omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events);
623
624 if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) {
625 if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER)
626 omap3isp_resizer_isr_frame_sync(&isp->isp_res);
627 omap3isp_preview_isr(&isp->isp_prev);
628 }
629
630 if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ)
631 omap3isp_resizer_isr(&isp->isp_res);
632
633 if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ)
634 omap3isp_stat_isr(&isp->isp_aewb);
635
636 if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ)
637 omap3isp_stat_isr(&isp->isp_af);
638
639 if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ)
640 omap3isp_stat_isr(&isp->isp_hist);
641
642 omap3isp_flush(isp);
643
644 #if defined(DEBUG) && defined(ISP_ISR_DEBUG)
645 isp_isr_dbg(isp, irqstatus);
646 #endif
647
648 return IRQ_HANDLED;
649 }
650
651 static const struct media_device_ops isp_media_ops = {
652 .link_notify = v4l2_pipeline_link_notify,
653 };
654
655 /* -----------------------------------------------------------------------------
656 * Pipeline stream management
657 */
658
659 /*
660 * isp_pipeline_enable - Enable streaming on a pipeline
661 * @pipe: ISP pipeline
662 * @mode: Stream mode (single shot or continuous)
663 *
664 * Walk the entities chain starting at the pipeline output video node and start
665 * all modules in the chain in the given mode.
666 *
667 * Return 0 if successful, or the return value of the failed video::s_stream
668 * operation otherwise.
669 */
670 static int isp_pipeline_enable(struct isp_pipeline *pipe,
671 enum isp_pipeline_stream_state mode)
672 {
673 struct isp_device *isp = pipe->output->isp;
674 struct media_entity *entity;
675 struct media_pad *pad;
676 struct v4l2_subdev *subdev;
677 unsigned long flags;
678 int ret;
679
680 /* Refuse to start streaming if an entity included in the pipeline has
681 * crashed. This check must be performed before the loop below to avoid
682 * starting entities if the pipeline won't start anyway (those entities
683 * would then likely fail to stop, making the problem worse).
684 */
685 if (media_entity_enum_intersects(&pipe->ent_enum, &isp->crashed))
686 return -EIO;
687
688 spin_lock_irqsave(&pipe->lock, flags);
689 pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT);
690 spin_unlock_irqrestore(&pipe->lock, flags);
691
692 pipe->do_propagation = false;
693
694 entity = &pipe->output->video.entity;
695 while (1) {
696 pad = &entity->pads[0];
697 if (!(pad->flags & MEDIA_PAD_FL_SINK))
698 break;
699
700 pad = media_entity_remote_pad(pad);
701 if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
702 break;
703
704 entity = pad->entity;
705 subdev = media_entity_to_v4l2_subdev(entity);
706
707 ret = v4l2_subdev_call(subdev, video, s_stream, mode);
708 if (ret < 0 && ret != -ENOIOCTLCMD)
709 return ret;
710
711 if (subdev == &isp->isp_ccdc.subdev) {
712 v4l2_subdev_call(&isp->isp_aewb.subdev, video,
713 s_stream, mode);
714 v4l2_subdev_call(&isp->isp_af.subdev, video,
715 s_stream, mode);
716 v4l2_subdev_call(&isp->isp_hist.subdev, video,
717 s_stream, mode);
718 pipe->do_propagation = true;
719 }
720
721 /* Stop at the first external sub-device. */
722 if (subdev->dev != isp->dev)
723 break;
724 }
725
726 return 0;
727 }
728
729 static int isp_pipeline_wait_resizer(struct isp_device *isp)
730 {
731 return omap3isp_resizer_busy(&isp->isp_res);
732 }
733
734 static int isp_pipeline_wait_preview(struct isp_device *isp)
735 {
736 return omap3isp_preview_busy(&isp->isp_prev);
737 }
738
739 static int isp_pipeline_wait_ccdc(struct isp_device *isp)
740 {
741 return omap3isp_stat_busy(&isp->isp_af)
742 || omap3isp_stat_busy(&isp->isp_aewb)
743 || omap3isp_stat_busy(&isp->isp_hist)
744 || omap3isp_ccdc_busy(&isp->isp_ccdc);
745 }
746
747 #define ISP_STOP_TIMEOUT msecs_to_jiffies(1000)
748
749 static int isp_pipeline_wait(struct isp_device *isp,
750 int(*busy)(struct isp_device *isp))
751 {
752 unsigned long timeout = jiffies + ISP_STOP_TIMEOUT;
753
754 while (!time_after(jiffies, timeout)) {
755 if (!busy(isp))
756 return 0;
757 }
758
759 return 1;
760 }
761
762 /*
763 * isp_pipeline_disable - Disable streaming on a pipeline
764 * @pipe: ISP pipeline
765 *
766 * Walk the entities chain starting at the pipeline output video node and stop
767 * all modules in the chain. Wait synchronously for the modules to be stopped if
768 * necessary.
769 *
770 * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module
771 * can't be stopped (in which case a software reset of the ISP is probably
772 * necessary).
773 */
774 static int isp_pipeline_disable(struct isp_pipeline *pipe)
775 {
776 struct isp_device *isp = pipe->output->isp;
777 struct media_entity *entity;
778 struct media_pad *pad;
779 struct v4l2_subdev *subdev;
780 int failure = 0;
781 int ret;
782
783 /*
784 * We need to stop all the modules after CCDC first or they'll
785 * never stop since they may not get a full frame from CCDC.
786 */
787 entity = &pipe->output->video.entity;
788 while (1) {
789 pad = &entity->pads[0];
790 if (!(pad->flags & MEDIA_PAD_FL_SINK))
791 break;
792
793 pad = media_entity_remote_pad(pad);
794 if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
795 break;
796
797 entity = pad->entity;
798 subdev = media_entity_to_v4l2_subdev(entity);
799
800 if (subdev == &isp->isp_ccdc.subdev) {
801 v4l2_subdev_call(&isp->isp_aewb.subdev,
802 video, s_stream, 0);
803 v4l2_subdev_call(&isp->isp_af.subdev,
804 video, s_stream, 0);
805 v4l2_subdev_call(&isp->isp_hist.subdev,
806 video, s_stream, 0);
807 }
808
809 ret = v4l2_subdev_call(subdev, video, s_stream, 0);
810
811 /* Stop at the first external sub-device. */
812 if (subdev->dev != isp->dev)
813 break;
814
815 if (subdev == &isp->isp_res.subdev)
816 ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer);
817 else if (subdev == &isp->isp_prev.subdev)
818 ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview);
819 else if (subdev == &isp->isp_ccdc.subdev)
820 ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc);
821
822 /* Handle stop failures. An entity that fails to stop can
823 * usually just be restarted. Flag the stop failure nonetheless
824 * to trigger an ISP reset the next time the device is released,
825 * just in case.
826 *
827 * The preview engine is a special case. A failure to stop can
828 * mean a hardware crash. When that happens the preview engine
829 * won't respond to read/write operations on the L4 bus anymore,
830 * resulting in a bus fault and a kernel oops next time it gets
831 * accessed. Mark it as crashed to prevent pipelines including
832 * it from being started.
833 */
834 if (ret) {
835 dev_info(isp->dev, "Unable to stop %s\n", subdev->name);
836 isp->stop_failure = true;
837 if (subdev == &isp->isp_prev.subdev)
838 media_entity_enum_set(&isp->crashed,
839 &subdev->entity);
840 failure = -ETIMEDOUT;
841 }
842 }
843
844 return failure;
845 }
846
847 /*
848 * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline
849 * @pipe: ISP pipeline
850 * @state: Stream state (stopped, single shot or continuous)
851 *
852 * Set the pipeline to the given stream state. Pipelines can be started in
853 * single-shot or continuous mode.
854 *
855 * Return 0 if successful, or the return value of the failed video::s_stream
856 * operation otherwise. The pipeline state is not updated when the operation
857 * fails, except when stopping the pipeline.
858 */
859 int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe,
860 enum isp_pipeline_stream_state state)
861 {
862 int ret;
863
864 if (state == ISP_PIPELINE_STREAM_STOPPED)
865 ret = isp_pipeline_disable(pipe);
866 else
867 ret = isp_pipeline_enable(pipe, state);
868
869 if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED)
870 pipe->stream_state = state;
871
872 return ret;
873 }
874
875 /*
876 * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline
877 * @pipe: ISP pipeline
878 *
879 * Cancelling a stream mark all buffers on all video nodes in the pipeline as
880 * erroneous and makes sure no new buffer can be queued. This function is called
881 * when a fatal error that prevents any further operation on the pipeline
882 * occurs.
883 */
884 void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe)
885 {
886 if (pipe->input)
887 omap3isp_video_cancel_stream(pipe->input);
888 if (pipe->output)
889 omap3isp_video_cancel_stream(pipe->output);
890 }
891
892 /*
893 * isp_pipeline_resume - Resume streaming on a pipeline
894 * @pipe: ISP pipeline
895 *
896 * Resume video output and input and re-enable pipeline.
897 */
898 static void isp_pipeline_resume(struct isp_pipeline *pipe)
899 {
900 int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT;
901
902 omap3isp_video_resume(pipe->output, !singleshot);
903 if (singleshot)
904 omap3isp_video_resume(pipe->input, 0);
905 isp_pipeline_enable(pipe, pipe->stream_state);
906 }
907
908 /*
909 * isp_pipeline_suspend - Suspend streaming on a pipeline
910 * @pipe: ISP pipeline
911 *
912 * Suspend pipeline.
913 */
914 static void isp_pipeline_suspend(struct isp_pipeline *pipe)
915 {
916 isp_pipeline_disable(pipe);
917 }
918
919 /*
920 * isp_pipeline_is_last - Verify if entity has an enabled link to the output
921 * video node
922 * @me: ISP module's media entity
923 *
924 * Returns 1 if the entity has an enabled link to the output video node or 0
925 * otherwise. It's true only while pipeline can have no more than one output
926 * node.
927 */
928 static int isp_pipeline_is_last(struct media_entity *me)
929 {
930 struct isp_pipeline *pipe;
931 struct media_pad *pad;
932
933 if (!me->pipe)
934 return 0;
935 pipe = to_isp_pipeline(me);
936 if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED)
937 return 0;
938 pad = media_entity_remote_pad(&pipe->output->pad);
939 return pad->entity == me;
940 }
941
942 /*
943 * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module
944 * @me: ISP module's media entity
945 *
946 * Suspend the whole pipeline if module's entity has an enabled link to the
947 * output video node. It works only while pipeline can have no more than one
948 * output node.
949 */
950 static void isp_suspend_module_pipeline(struct media_entity *me)
951 {
952 if (isp_pipeline_is_last(me))
953 isp_pipeline_suspend(to_isp_pipeline(me));
954 }
955
956 /*
957 * isp_resume_module_pipeline - Resume pipeline to which belongs the module
958 * @me: ISP module's media entity
959 *
960 * Resume the whole pipeline if module's entity has an enabled link to the
961 * output video node. It works only while pipeline can have no more than one
962 * output node.
963 */
964 static void isp_resume_module_pipeline(struct media_entity *me)
965 {
966 if (isp_pipeline_is_last(me))
967 isp_pipeline_resume(to_isp_pipeline(me));
968 }
969
970 /*
971 * isp_suspend_modules - Suspend ISP submodules.
972 * @isp: OMAP3 ISP device
973 *
974 * Returns 0 if suspend left in idle state all the submodules properly,
975 * or returns 1 if a general Reset is required to suspend the submodules.
976 */
977 static int __maybe_unused isp_suspend_modules(struct isp_device *isp)
978 {
979 unsigned long timeout;
980
981 omap3isp_stat_suspend(&isp->isp_aewb);
982 omap3isp_stat_suspend(&isp->isp_af);
983 omap3isp_stat_suspend(&isp->isp_hist);
984 isp_suspend_module_pipeline(&isp->isp_res.subdev.entity);
985 isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity);
986 isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity);
987 isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity);
988 isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity);
989
990 timeout = jiffies + ISP_STOP_TIMEOUT;
991 while (omap3isp_stat_busy(&isp->isp_af)
992 || omap3isp_stat_busy(&isp->isp_aewb)
993 || omap3isp_stat_busy(&isp->isp_hist)
994 || omap3isp_preview_busy(&isp->isp_prev)
995 || omap3isp_resizer_busy(&isp->isp_res)
996 || omap3isp_ccdc_busy(&isp->isp_ccdc)) {
997 if (time_after(jiffies, timeout)) {
998 dev_info(isp->dev, "can't stop modules.\n");
999 return 1;
1000 }
1001 msleep(1);
1002 }
1003
1004 return 0;
1005 }
1006
1007 /*
1008 * isp_resume_modules - Resume ISP submodules.
1009 * @isp: OMAP3 ISP device
1010 */
1011 static void __maybe_unused isp_resume_modules(struct isp_device *isp)
1012 {
1013 omap3isp_stat_resume(&isp->isp_aewb);
1014 omap3isp_stat_resume(&isp->isp_af);
1015 omap3isp_stat_resume(&isp->isp_hist);
1016 isp_resume_module_pipeline(&isp->isp_res.subdev.entity);
1017 isp_resume_module_pipeline(&isp->isp_prev.subdev.entity);
1018 isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity);
1019 isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity);
1020 isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity);
1021 }
1022
1023 /*
1024 * isp_reset - Reset ISP with a timeout wait for idle.
1025 * @isp: OMAP3 ISP device
1026 */
1027 static int isp_reset(struct isp_device *isp)
1028 {
1029 unsigned long timeout = 0;
1030
1031 isp_reg_writel(isp,
1032 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG)
1033 | ISP_SYSCONFIG_SOFTRESET,
1034 OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
1035 while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN,
1036 ISP_SYSSTATUS) & 0x1)) {
1037 if (timeout++ > 10000) {
1038 dev_alert(isp->dev, "cannot reset ISP\n");
1039 return -ETIMEDOUT;
1040 }
1041 udelay(1);
1042 }
1043
1044 isp->stop_failure = false;
1045 media_entity_enum_zero(&isp->crashed);
1046 return 0;
1047 }
1048
1049 /*
1050 * isp_save_context - Saves the values of the ISP module registers.
1051 * @isp: OMAP3 ISP device
1052 * @reg_list: Structure containing pairs of register address and value to
1053 * modify on OMAP.
1054 */
1055 static void
1056 isp_save_context(struct isp_device *isp, struct isp_reg *reg_list)
1057 {
1058 struct isp_reg *next = reg_list;
1059
1060 for (; next->reg != ISP_TOK_TERM; next++)
1061 next->val = isp_reg_readl(isp, next->mmio_range, next->reg);
1062 }
1063
1064 /*
1065 * isp_restore_context - Restores the values of the ISP module registers.
1066 * @isp: OMAP3 ISP device
1067 * @reg_list: Structure containing pairs of register address and value to
1068 * modify on OMAP.
1069 */
1070 static void
1071 isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list)
1072 {
1073 struct isp_reg *next = reg_list;
1074
1075 for (; next->reg != ISP_TOK_TERM; next++)
1076 isp_reg_writel(isp, next->val, next->mmio_range, next->reg);
1077 }
1078
1079 /*
1080 * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1081 * @isp: OMAP3 ISP device
1082 *
1083 * Routine for saving the context of each module in the ISP.
1084 * CCDC, HIST, H3A, PREV, RESZ and MMU.
1085 */
1086 static void isp_save_ctx(struct isp_device *isp)
1087 {
1088 isp_save_context(isp, isp_reg_list);
1089 omap_iommu_save_ctx(isp->dev);
1090 }
1091
1092 /*
1093 * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1094 * @isp: OMAP3 ISP device
1095 *
1096 * Routine for restoring the context of each module in the ISP.
1097 * CCDC, HIST, H3A, PREV, RESZ and MMU.
1098 */
1099 static void isp_restore_ctx(struct isp_device *isp)
1100 {
1101 isp_restore_context(isp, isp_reg_list);
1102 omap_iommu_restore_ctx(isp->dev);
1103 omap3isp_ccdc_restore_context(isp);
1104 omap3isp_preview_restore_context(isp);
1105 }
1106
1107 /* -----------------------------------------------------------------------------
1108 * SBL resources management
1109 */
1110 #define OMAP3_ISP_SBL_READ (OMAP3_ISP_SBL_CSI1_READ | \
1111 OMAP3_ISP_SBL_CCDC_LSC_READ | \
1112 OMAP3_ISP_SBL_PREVIEW_READ | \
1113 OMAP3_ISP_SBL_RESIZER_READ)
1114 #define OMAP3_ISP_SBL_WRITE (OMAP3_ISP_SBL_CSI1_WRITE | \
1115 OMAP3_ISP_SBL_CSI2A_WRITE | \
1116 OMAP3_ISP_SBL_CSI2C_WRITE | \
1117 OMAP3_ISP_SBL_CCDC_WRITE | \
1118 OMAP3_ISP_SBL_PREVIEW_WRITE)
1119
1120 void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res)
1121 {
1122 u32 sbl = 0;
1123
1124 isp->sbl_resources |= res;
1125
1126 if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)
1127 sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1128
1129 if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)
1130 sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1131
1132 if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)
1133 sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1134
1135 if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)
1136 sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1137
1138 if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE)
1139 sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1140
1141 if (isp->sbl_resources & OMAP3_ISP_SBL_READ)
1142 sbl |= ISPCTRL_SBL_RD_RAM_EN;
1143
1144 isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1145 }
1146
1147 void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res)
1148 {
1149 u32 sbl = 0;
1150
1151 isp->sbl_resources &= ~res;
1152
1153 if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ))
1154 sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1155
1156 if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ))
1157 sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1158
1159 if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE))
1160 sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1161
1162 if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE))
1163 sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1164
1165 if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE))
1166 sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1167
1168 if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ))
1169 sbl |= ISPCTRL_SBL_RD_RAM_EN;
1170
1171 isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1172 }
1173
1174 /*
1175 * isp_module_sync_idle - Helper to sync module with its idle state
1176 * @me: ISP submodule's media entity
1177 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1178 * @stopping: flag which tells module wants to stop
1179 *
1180 * This function checks if ISP submodule needs to wait for next interrupt. If
1181 * yes, makes the caller to sleep while waiting for such event.
1182 */
1183 int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait,
1184 atomic_t *stopping)
1185 {
1186 struct isp_pipeline *pipe = to_isp_pipeline(me);
1187
1188 if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED ||
1189 (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT &&
1190 !isp_pipeline_ready(pipe)))
1191 return 0;
1192
1193 /*
1194 * atomic_set() doesn't include memory barrier on ARM platform for SMP
1195 * scenario. We'll call it here to avoid race conditions.
1196 */
1197 atomic_set(stopping, 1);
1198 smp_mb();
1199
1200 /*
1201 * If module is the last one, it's writing to memory. In this case,
1202 * it's necessary to check if the module is already paused due to
1203 * DMA queue underrun or if it has to wait for next interrupt to be
1204 * idle.
1205 * If it isn't the last one, the function won't sleep but *stopping
1206 * will still be set to warn next submodule caller's interrupt the
1207 * module wants to be idle.
1208 */
1209 if (isp_pipeline_is_last(me)) {
1210 struct isp_video *video = pipe->output;
1211 unsigned long flags;
1212 spin_lock_irqsave(&video->irqlock, flags);
1213 if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) {
1214 spin_unlock_irqrestore(&video->irqlock, flags);
1215 atomic_set(stopping, 0);
1216 smp_mb();
1217 return 0;
1218 }
1219 spin_unlock_irqrestore(&video->irqlock, flags);
1220 if (!wait_event_timeout(*wait, !atomic_read(stopping),
1221 msecs_to_jiffies(1000))) {
1222 atomic_set(stopping, 0);
1223 smp_mb();
1224 return -ETIMEDOUT;
1225 }
1226 }
1227
1228 return 0;
1229 }
1230
1231 /*
1232 * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping
1233 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1234 * @stopping: flag which tells module wants to stop
1235 *
1236 * This function checks if ISP submodule was stopping. In case of yes, it
1237 * notices the caller by setting stopping to 0 and waking up the wait queue.
1238 * Returns 1 if it was stopping or 0 otherwise.
1239 */
1240 int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait,
1241 atomic_t *stopping)
1242 {
1243 if (atomic_cmpxchg(stopping, 1, 0)) {
1244 wake_up(wait);
1245 return 1;
1246 }
1247
1248 return 0;
1249 }
1250
1251 /* --------------------------------------------------------------------------
1252 * Clock management
1253 */
1254
1255 #define ISPCTRL_CLKS_MASK (ISPCTRL_H3A_CLK_EN | \
1256 ISPCTRL_HIST_CLK_EN | \
1257 ISPCTRL_RSZ_CLK_EN | \
1258 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \
1259 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN))
1260
1261 static void __isp_subclk_update(struct isp_device *isp)
1262 {
1263 u32 clk = 0;
1264
1265 /* AEWB and AF share the same clock. */
1266 if (isp->subclk_resources &
1267 (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF))
1268 clk |= ISPCTRL_H3A_CLK_EN;
1269
1270 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST)
1271 clk |= ISPCTRL_HIST_CLK_EN;
1272
1273 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER)
1274 clk |= ISPCTRL_RSZ_CLK_EN;
1275
1276 /* NOTE: For CCDC & Preview submodules, we need to affect internal
1277 * RAM as well.
1278 */
1279 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC)
1280 clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN;
1281
1282 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW)
1283 clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN;
1284
1285 isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL,
1286 ISPCTRL_CLKS_MASK, clk);
1287 }
1288
1289 void omap3isp_subclk_enable(struct isp_device *isp,
1290 enum isp_subclk_resource res)
1291 {
1292 isp->subclk_resources |= res;
1293
1294 __isp_subclk_update(isp);
1295 }
1296
1297 void omap3isp_subclk_disable(struct isp_device *isp,
1298 enum isp_subclk_resource res)
1299 {
1300 isp->subclk_resources &= ~res;
1301
1302 __isp_subclk_update(isp);
1303 }
1304
1305 /*
1306 * isp_enable_clocks - Enable ISP clocks
1307 * @isp: OMAP3 ISP device
1308 *
1309 * Return 0 if successful, or clk_prepare_enable return value if any of them
1310 * fails.
1311 */
1312 static int isp_enable_clocks(struct isp_device *isp)
1313 {
1314 int r;
1315 unsigned long rate;
1316
1317 r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]);
1318 if (r) {
1319 dev_err(isp->dev, "failed to enable cam_ick clock\n");
1320 goto out_clk_enable_ick;
1321 }
1322 r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ);
1323 if (r) {
1324 dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n");
1325 goto out_clk_enable_mclk;
1326 }
1327 r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]);
1328 if (r) {
1329 dev_err(isp->dev, "failed to enable cam_mclk clock\n");
1330 goto out_clk_enable_mclk;
1331 }
1332 rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]);
1333 if (rate != CM_CAM_MCLK_HZ)
1334 dev_warn(isp->dev, "unexpected cam_mclk rate:\n"
1335 " expected : %d\n"
1336 " actual : %ld\n", CM_CAM_MCLK_HZ, rate);
1337 r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]);
1338 if (r) {
1339 dev_err(isp->dev, "failed to enable csi2_fck clock\n");
1340 goto out_clk_enable_csi2_fclk;
1341 }
1342 return 0;
1343
1344 out_clk_enable_csi2_fclk:
1345 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1346 out_clk_enable_mclk:
1347 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1348 out_clk_enable_ick:
1349 return r;
1350 }
1351
1352 /*
1353 * isp_disable_clocks - Disable ISP clocks
1354 * @isp: OMAP3 ISP device
1355 */
1356 static void isp_disable_clocks(struct isp_device *isp)
1357 {
1358 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1359 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1360 clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]);
1361 }
1362
1363 static const char *isp_clocks[] = {
1364 "cam_ick",
1365 "cam_mclk",
1366 "csi2_96m_fck",
1367 "l3_ick",
1368 };
1369
1370 static int isp_get_clocks(struct isp_device *isp)
1371 {
1372 struct clk *clk;
1373 unsigned int i;
1374
1375 for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) {
1376 clk = devm_clk_get(isp->dev, isp_clocks[i]);
1377 if (IS_ERR(clk)) {
1378 dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]);
1379 return PTR_ERR(clk);
1380 }
1381
1382 isp->clock[i] = clk;
1383 }
1384
1385 return 0;
1386 }
1387
1388 /*
1389 * omap3isp_get - Acquire the ISP resource.
1390 *
1391 * Initializes the clocks for the first acquire.
1392 *
1393 * Increment the reference count on the ISP. If the first reference is taken,
1394 * enable clocks and power-up all submodules.
1395 *
1396 * Return a pointer to the ISP device structure, or NULL if an error occurred.
1397 */
1398 static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq)
1399 {
1400 struct isp_device *__isp = isp;
1401
1402 if (isp == NULL)
1403 return NULL;
1404
1405 mutex_lock(&isp->isp_mutex);
1406 if (isp->ref_count > 0)
1407 goto out;
1408
1409 if (isp_enable_clocks(isp) < 0) {
1410 __isp = NULL;
1411 goto out;
1412 }
1413
1414 /* We don't want to restore context before saving it! */
1415 if (isp->has_context)
1416 isp_restore_ctx(isp);
1417
1418 if (irq)
1419 isp_enable_interrupts(isp);
1420
1421 out:
1422 if (__isp != NULL)
1423 isp->ref_count++;
1424 mutex_unlock(&isp->isp_mutex);
1425
1426 return __isp;
1427 }
1428
1429 struct isp_device *omap3isp_get(struct isp_device *isp)
1430 {
1431 return __omap3isp_get(isp, true);
1432 }
1433
1434 /*
1435 * omap3isp_put - Release the ISP
1436 *
1437 * Decrement the reference count on the ISP. If the last reference is released,
1438 * power-down all submodules, disable clocks and free temporary buffers.
1439 */
1440 static void __omap3isp_put(struct isp_device *isp, bool save_ctx)
1441 {
1442 if (isp == NULL)
1443 return;
1444
1445 mutex_lock(&isp->isp_mutex);
1446 BUG_ON(isp->ref_count == 0);
1447 if (--isp->ref_count == 0) {
1448 isp_disable_interrupts(isp);
1449 if (save_ctx) {
1450 isp_save_ctx(isp);
1451 isp->has_context = 1;
1452 }
1453 /* Reset the ISP if an entity has failed to stop. This is the
1454 * only way to recover from such conditions.
1455 */
1456 if (!media_entity_enum_empty(&isp->crashed) ||
1457 isp->stop_failure)
1458 isp_reset(isp);
1459 isp_disable_clocks(isp);
1460 }
1461 mutex_unlock(&isp->isp_mutex);
1462 }
1463
1464 void omap3isp_put(struct isp_device *isp)
1465 {
1466 __omap3isp_put(isp, true);
1467 }
1468
1469 /* --------------------------------------------------------------------------
1470 * Platform device driver
1471 */
1472
1473 /*
1474 * omap3isp_print_status - Prints the values of the ISP Control Module registers
1475 * @isp: OMAP3 ISP device
1476 */
1477 #define ISP_PRINT_REGISTER(isp, name)\
1478 dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \
1479 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name))
1480 #define SBL_PRINT_REGISTER(isp, name)\
1481 dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \
1482 isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name))
1483
1484 void omap3isp_print_status(struct isp_device *isp)
1485 {
1486 dev_dbg(isp->dev, "-------------ISP Register dump--------------\n");
1487
1488 ISP_PRINT_REGISTER(isp, SYSCONFIG);
1489 ISP_PRINT_REGISTER(isp, SYSSTATUS);
1490 ISP_PRINT_REGISTER(isp, IRQ0ENABLE);
1491 ISP_PRINT_REGISTER(isp, IRQ0STATUS);
1492 ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH);
1493 ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY);
1494 ISP_PRINT_REGISTER(isp, CTRL);
1495 ISP_PRINT_REGISTER(isp, TCTRL_CTRL);
1496 ISP_PRINT_REGISTER(isp, TCTRL_FRAME);
1497 ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY);
1498 ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY);
1499 ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY);
1500 ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH);
1501 ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH);
1502 ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH);
1503
1504 SBL_PRINT_REGISTER(isp, PCR);
1505 SBL_PRINT_REGISTER(isp, SDR_REQ_EXP);
1506
1507 dev_dbg(isp->dev, "--------------------------------------------\n");
1508 }
1509
1510 #ifdef CONFIG_PM
1511
1512 /*
1513 * Power management support.
1514 *
1515 * As the ISP can't properly handle an input video stream interruption on a non
1516 * frame boundary, the ISP pipelines need to be stopped before sensors get
1517 * suspended. However, as suspending the sensors can require a running clock,
1518 * which can be provided by the ISP, the ISP can't be completely suspended
1519 * before the sensor.
1520 *
1521 * To solve this problem power management support is split into prepare/complete
1522 * and suspend/resume operations. The pipelines are stopped in prepare() and the
1523 * ISP clocks get disabled in suspend(). Similarly, the clocks are re-enabled in
1524 * resume(), and the the pipelines are restarted in complete().
1525 *
1526 * TODO: PM dependencies between the ISP and sensors are not modelled explicitly
1527 * yet.
1528 */
1529 static int isp_pm_prepare(struct device *dev)
1530 {
1531 struct isp_device *isp = dev_get_drvdata(dev);
1532 int reset;
1533
1534 WARN_ON(mutex_is_locked(&isp->isp_mutex));
1535
1536 if (isp->ref_count == 0)
1537 return 0;
1538
1539 reset = isp_suspend_modules(isp);
1540 isp_disable_interrupts(isp);
1541 isp_save_ctx(isp);
1542 if (reset)
1543 isp_reset(isp);
1544
1545 return 0;
1546 }
1547
1548 static int isp_pm_suspend(struct device *dev)
1549 {
1550 struct isp_device *isp = dev_get_drvdata(dev);
1551
1552 WARN_ON(mutex_is_locked(&isp->isp_mutex));
1553
1554 if (isp->ref_count)
1555 isp_disable_clocks(isp);
1556
1557 return 0;
1558 }
1559
1560 static int isp_pm_resume(struct device *dev)
1561 {
1562 struct isp_device *isp = dev_get_drvdata(dev);
1563
1564 if (isp->ref_count == 0)
1565 return 0;
1566
1567 return isp_enable_clocks(isp);
1568 }
1569
1570 static void isp_pm_complete(struct device *dev)
1571 {
1572 struct isp_device *isp = dev_get_drvdata(dev);
1573
1574 if (isp->ref_count == 0)
1575 return;
1576
1577 isp_restore_ctx(isp);
1578 isp_enable_interrupts(isp);
1579 isp_resume_modules(isp);
1580 }
1581
1582 #else
1583
1584 #define isp_pm_prepare NULL
1585 #define isp_pm_suspend NULL
1586 #define isp_pm_resume NULL
1587 #define isp_pm_complete NULL
1588
1589 #endif /* CONFIG_PM */
1590
1591 static void isp_unregister_entities(struct isp_device *isp)
1592 {
1593 media_device_unregister(&isp->media_dev);
1594
1595 omap3isp_csi2_unregister_entities(&isp->isp_csi2a);
1596 omap3isp_ccp2_unregister_entities(&isp->isp_ccp2);
1597 omap3isp_ccdc_unregister_entities(&isp->isp_ccdc);
1598 omap3isp_preview_unregister_entities(&isp->isp_prev);
1599 omap3isp_resizer_unregister_entities(&isp->isp_res);
1600 omap3isp_stat_unregister_entities(&isp->isp_aewb);
1601 omap3isp_stat_unregister_entities(&isp->isp_af);
1602 omap3isp_stat_unregister_entities(&isp->isp_hist);
1603
1604 v4l2_device_unregister(&isp->v4l2_dev);
1605 media_device_cleanup(&isp->media_dev);
1606 }
1607
1608 static int isp_link_entity(
1609 struct isp_device *isp, struct media_entity *entity,
1610 enum isp_interface_type interface)
1611 {
1612 struct media_entity *input;
1613 unsigned int flags;
1614 unsigned int pad;
1615 unsigned int i;
1616
1617 /* Connect the sensor to the correct interface module.
1618 * Parallel sensors are connected directly to the CCDC, while
1619 * serial sensors are connected to the CSI2a, CCP2b or CSI2c
1620 * receiver through CSIPHY1 or CSIPHY2.
1621 */
1622 switch (interface) {
1623 case ISP_INTERFACE_PARALLEL:
1624 input = &isp->isp_ccdc.subdev.entity;
1625 pad = CCDC_PAD_SINK;
1626 flags = 0;
1627 break;
1628
1629 case ISP_INTERFACE_CSI2A_PHY2:
1630 input = &isp->isp_csi2a.subdev.entity;
1631 pad = CSI2_PAD_SINK;
1632 flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1633 break;
1634
1635 case ISP_INTERFACE_CCP2B_PHY1:
1636 case ISP_INTERFACE_CCP2B_PHY2:
1637 input = &isp->isp_ccp2.subdev.entity;
1638 pad = CCP2_PAD_SINK;
1639 flags = 0;
1640 break;
1641
1642 case ISP_INTERFACE_CSI2C_PHY1:
1643 input = &isp->isp_csi2c.subdev.entity;
1644 pad = CSI2_PAD_SINK;
1645 flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1646 break;
1647
1648 default:
1649 dev_err(isp->dev, "%s: invalid interface type %u\n", __func__,
1650 interface);
1651 return -EINVAL;
1652 }
1653
1654 /*
1655 * Not all interfaces are available on all revisions of the
1656 * ISP. The sub-devices of those interfaces aren't initialised
1657 * in such a case. Check this by ensuring the num_pads is
1658 * non-zero.
1659 */
1660 if (!input->num_pads) {
1661 dev_err(isp->dev, "%s: invalid input %u\n", entity->name,
1662 interface);
1663 return -EINVAL;
1664 }
1665
1666 for (i = 0; i < entity->num_pads; i++) {
1667 if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE)
1668 break;
1669 }
1670 if (i == entity->num_pads) {
1671 dev_err(isp->dev, "%s: no source pad in external entity %s\n",
1672 __func__, entity->name);
1673 return -EINVAL;
1674 }
1675
1676 return media_create_pad_link(entity, i, input, pad, flags);
1677 }
1678
1679 static int isp_register_entities(struct isp_device *isp)
1680 {
1681 int ret;
1682
1683 isp->media_dev.dev = isp->dev;
1684 strscpy(isp->media_dev.model, "TI OMAP3 ISP",
1685 sizeof(isp->media_dev.model));
1686 isp->media_dev.hw_revision = isp->revision;
1687 isp->media_dev.ops = &isp_media_ops;
1688 media_device_init(&isp->media_dev);
1689
1690 isp->v4l2_dev.mdev = &isp->media_dev;
1691 ret = v4l2_device_register(isp->dev, &isp->v4l2_dev);
1692 if (ret < 0) {
1693 dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n",
1694 __func__, ret);
1695 goto done;
1696 }
1697
1698 /* Register internal entities */
1699 ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev);
1700 if (ret < 0)
1701 goto done;
1702
1703 ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev);
1704 if (ret < 0)
1705 goto done;
1706
1707 ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev);
1708 if (ret < 0)
1709 goto done;
1710
1711 ret = omap3isp_preview_register_entities(&isp->isp_prev,
1712 &isp->v4l2_dev);
1713 if (ret < 0)
1714 goto done;
1715
1716 ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev);
1717 if (ret < 0)
1718 goto done;
1719
1720 ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev);
1721 if (ret < 0)
1722 goto done;
1723
1724 ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev);
1725 if (ret < 0)
1726 goto done;
1727
1728 ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev);
1729 if (ret < 0)
1730 goto done;
1731
1732 done:
1733 if (ret < 0)
1734 isp_unregister_entities(isp);
1735
1736 return ret;
1737 }
1738
1739 /*
1740 * isp_create_links() - Create links for internal and external ISP entities
1741 * @isp : Pointer to ISP device
1742 *
1743 * This function creates all links between ISP internal and external entities.
1744 *
1745 * Return: A negative error code on failure or zero on success. Possible error
1746 * codes are those returned by media_create_pad_link().
1747 */
1748 static int isp_create_links(struct isp_device *isp)
1749 {
1750 int ret;
1751
1752 /* Create links between entities and video nodes. */
1753 ret = media_create_pad_link(
1754 &isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1755 &isp->isp_csi2a.video_out.video.entity, 0, 0);
1756 if (ret < 0)
1757 return ret;
1758
1759 ret = media_create_pad_link(
1760 &isp->isp_ccp2.video_in.video.entity, 0,
1761 &isp->isp_ccp2.subdev.entity, CCP2_PAD_SINK, 0);
1762 if (ret < 0)
1763 return ret;
1764
1765 ret = media_create_pad_link(
1766 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1767 &isp->isp_ccdc.video_out.video.entity, 0, 0);
1768 if (ret < 0)
1769 return ret;
1770
1771 ret = media_create_pad_link(
1772 &isp->isp_prev.video_in.video.entity, 0,
1773 &isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1774 if (ret < 0)
1775 return ret;
1776
1777 ret = media_create_pad_link(
1778 &isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1779 &isp->isp_prev.video_out.video.entity, 0, 0);
1780 if (ret < 0)
1781 return ret;
1782
1783 ret = media_create_pad_link(
1784 &isp->isp_res.video_in.video.entity, 0,
1785 &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1786 if (ret < 0)
1787 return ret;
1788
1789 ret = media_create_pad_link(
1790 &isp->isp_res.subdev.entity, RESZ_PAD_SOURCE,
1791 &isp->isp_res.video_out.video.entity, 0, 0);
1792
1793 if (ret < 0)
1794 return ret;
1795
1796 /* Create links between entities. */
1797 ret = media_create_pad_link(
1798 &isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1799 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1800 if (ret < 0)
1801 return ret;
1802
1803 ret = media_create_pad_link(
1804 &isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE,
1805 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1806 if (ret < 0)
1807 return ret;
1808
1809 ret = media_create_pad_link(
1810 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1811 &isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1812 if (ret < 0)
1813 return ret;
1814
1815 ret = media_create_pad_link(
1816 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1817 &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1818 if (ret < 0)
1819 return ret;
1820
1821 ret = media_create_pad_link(
1822 &isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1823 &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1824 if (ret < 0)
1825 return ret;
1826
1827 ret = media_create_pad_link(
1828 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1829 &isp->isp_aewb.subdev.entity, 0,
1830 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1831 if (ret < 0)
1832 return ret;
1833
1834 ret = media_create_pad_link(
1835 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1836 &isp->isp_af.subdev.entity, 0,
1837 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1838 if (ret < 0)
1839 return ret;
1840
1841 ret = media_create_pad_link(
1842 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
1843 &isp->isp_hist.subdev.entity, 0,
1844 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
1845 if (ret < 0)
1846 return ret;
1847
1848 return 0;
1849 }
1850
1851 static void isp_cleanup_modules(struct isp_device *isp)
1852 {
1853 omap3isp_h3a_aewb_cleanup(isp);
1854 omap3isp_h3a_af_cleanup(isp);
1855 omap3isp_hist_cleanup(isp);
1856 omap3isp_resizer_cleanup(isp);
1857 omap3isp_preview_cleanup(isp);
1858 omap3isp_ccdc_cleanup(isp);
1859 omap3isp_ccp2_cleanup(isp);
1860 omap3isp_csi2_cleanup(isp);
1861 omap3isp_csiphy_cleanup(isp);
1862 }
1863
1864 static int isp_initialize_modules(struct isp_device *isp)
1865 {
1866 int ret;
1867
1868 ret = omap3isp_csiphy_init(isp);
1869 if (ret < 0) {
1870 dev_err(isp->dev, "CSI PHY initialization failed\n");
1871 return ret;
1872 }
1873
1874 ret = omap3isp_csi2_init(isp);
1875 if (ret < 0) {
1876 dev_err(isp->dev, "CSI2 initialization failed\n");
1877 goto error_csi2;
1878 }
1879
1880 ret = omap3isp_ccp2_init(isp);
1881 if (ret < 0) {
1882 if (ret != -EPROBE_DEFER)
1883 dev_err(isp->dev, "CCP2 initialization failed\n");
1884 goto error_ccp2;
1885 }
1886
1887 ret = omap3isp_ccdc_init(isp);
1888 if (ret < 0) {
1889 dev_err(isp->dev, "CCDC initialization failed\n");
1890 goto error_ccdc;
1891 }
1892
1893 ret = omap3isp_preview_init(isp);
1894 if (ret < 0) {
1895 dev_err(isp->dev, "Preview initialization failed\n");
1896 goto error_preview;
1897 }
1898
1899 ret = omap3isp_resizer_init(isp);
1900 if (ret < 0) {
1901 dev_err(isp->dev, "Resizer initialization failed\n");
1902 goto error_resizer;
1903 }
1904
1905 ret = omap3isp_hist_init(isp);
1906 if (ret < 0) {
1907 dev_err(isp->dev, "Histogram initialization failed\n");
1908 goto error_hist;
1909 }
1910
1911 ret = omap3isp_h3a_aewb_init(isp);
1912 if (ret < 0) {
1913 dev_err(isp->dev, "H3A AEWB initialization failed\n");
1914 goto error_h3a_aewb;
1915 }
1916
1917 ret = omap3isp_h3a_af_init(isp);
1918 if (ret < 0) {
1919 dev_err(isp->dev, "H3A AF initialization failed\n");
1920 goto error_h3a_af;
1921 }
1922
1923 return 0;
1924
1925 error_h3a_af:
1926 omap3isp_h3a_aewb_cleanup(isp);
1927 error_h3a_aewb:
1928 omap3isp_hist_cleanup(isp);
1929 error_hist:
1930 omap3isp_resizer_cleanup(isp);
1931 error_resizer:
1932 omap3isp_preview_cleanup(isp);
1933 error_preview:
1934 omap3isp_ccdc_cleanup(isp);
1935 error_ccdc:
1936 omap3isp_ccp2_cleanup(isp);
1937 error_ccp2:
1938 omap3isp_csi2_cleanup(isp);
1939 error_csi2:
1940 omap3isp_csiphy_cleanup(isp);
1941
1942 return ret;
1943 }
1944
1945 static void isp_detach_iommu(struct isp_device *isp)
1946 {
1947 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1948 arm_iommu_detach_device(isp->dev);
1949 arm_iommu_release_mapping(isp->mapping);
1950 isp->mapping = NULL;
1951 #endif
1952 }
1953
1954 static int isp_attach_iommu(struct isp_device *isp)
1955 {
1956 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1957 struct dma_iommu_mapping *mapping;
1958 int ret;
1959
1960 /*
1961 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
1962 * VAs. This will allocate a corresponding IOMMU domain.
1963 */
1964 mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G);
1965 if (IS_ERR(mapping)) {
1966 dev_err(isp->dev, "failed to create ARM IOMMU mapping\n");
1967 return PTR_ERR(mapping);
1968 }
1969
1970 isp->mapping = mapping;
1971
1972 /* Attach the ARM VA mapping to the device. */
1973 ret = arm_iommu_attach_device(isp->dev, mapping);
1974 if (ret < 0) {
1975 dev_err(isp->dev, "failed to attach device to VA mapping\n");
1976 goto error;
1977 }
1978
1979 return 0;
1980
1981 error:
1982 arm_iommu_release_mapping(isp->mapping);
1983 isp->mapping = NULL;
1984 return ret;
1985 #else
1986 return -ENODEV;
1987 #endif
1988 }
1989
1990 /*
1991 * isp_remove - Remove ISP platform device
1992 * @pdev: Pointer to ISP platform device
1993 *
1994 * Always returns 0.
1995 */
1996 static int isp_remove(struct platform_device *pdev)
1997 {
1998 struct isp_device *isp = platform_get_drvdata(pdev);
1999
2000 v4l2_async_notifier_unregister(&isp->notifier);
2001 isp_unregister_entities(isp);
2002 isp_cleanup_modules(isp);
2003 isp_xclk_cleanup(isp);
2004
2005 __omap3isp_get(isp, false);
2006 isp_detach_iommu(isp);
2007 __omap3isp_put(isp, false);
2008
2009 media_entity_enum_cleanup(&isp->crashed);
2010 v4l2_async_notifier_cleanup(&isp->notifier);
2011
2012 kfree(isp);
2013
2014 return 0;
2015 }
2016
2017 enum isp_of_phy {
2018 ISP_OF_PHY_PARALLEL = 0,
2019 ISP_OF_PHY_CSIPHY1,
2020 ISP_OF_PHY_CSIPHY2,
2021 };
2022
2023 static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async)
2024 {
2025 struct isp_device *isp = container_of(async, struct isp_device,
2026 notifier);
2027 struct v4l2_device *v4l2_dev = &isp->v4l2_dev;
2028 struct v4l2_subdev *sd;
2029 int ret;
2030
2031 ret = media_entity_enum_init(&isp->crashed, &isp->media_dev);
2032 if (ret)
2033 return ret;
2034
2035 list_for_each_entry(sd, &v4l2_dev->subdevs, list) {
2036 if (sd->notifier != &isp->notifier)
2037 continue;
2038
2039 ret = isp_link_entity(isp, &sd->entity,
2040 v4l2_subdev_to_bus_cfg(sd)->interface);
2041 if (ret < 0)
2042 return ret;
2043 }
2044
2045 ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
2046 if (ret < 0)
2047 return ret;
2048
2049 return media_device_register(&isp->media_dev);
2050 }
2051
2052 static void isp_parse_of_parallel_endpoint(struct device *dev,
2053 struct v4l2_fwnode_endpoint *vep,
2054 struct isp_bus_cfg *buscfg)
2055 {
2056 buscfg->interface = ISP_INTERFACE_PARALLEL;
2057 buscfg->bus.parallel.data_lane_shift = vep->bus.parallel.data_shift;
2058 buscfg->bus.parallel.clk_pol =
2059 !!(vep->bus.parallel.flags & V4L2_MBUS_PCLK_SAMPLE_FALLING);
2060 buscfg->bus.parallel.hs_pol =
2061 !!(vep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW);
2062 buscfg->bus.parallel.vs_pol =
2063 !!(vep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW);
2064 buscfg->bus.parallel.fld_pol =
2065 !!(vep->bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW);
2066 buscfg->bus.parallel.data_pol =
2067 !!(vep->bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW);
2068 buscfg->bus.parallel.bt656 = vep->bus_type == V4L2_MBUS_BT656;
2069 }
2070
2071 static void isp_parse_of_csi2_endpoint(struct device *dev,
2072 struct v4l2_fwnode_endpoint *vep,
2073 struct isp_bus_cfg *buscfg)
2074 {
2075 unsigned int i;
2076
2077 buscfg->bus.csi2.lanecfg.clk.pos = vep->bus.mipi_csi2.clock_lane;
2078 buscfg->bus.csi2.lanecfg.clk.pol =
2079 vep->bus.mipi_csi2.lane_polarities[0];
2080 dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2081 buscfg->bus.csi2.lanecfg.clk.pol,
2082 buscfg->bus.csi2.lanecfg.clk.pos);
2083
2084 buscfg->bus.csi2.num_data_lanes = vep->bus.mipi_csi2.num_data_lanes;
2085
2086 for (i = 0; i < buscfg->bus.csi2.num_data_lanes; i++) {
2087 buscfg->bus.csi2.lanecfg.data[i].pos =
2088 vep->bus.mipi_csi2.data_lanes[i];
2089 buscfg->bus.csi2.lanecfg.data[i].pol =
2090 vep->bus.mipi_csi2.lane_polarities[i + 1];
2091 dev_dbg(dev,
2092 "data lane %u polarity %u, pos %u\n", i,
2093 buscfg->bus.csi2.lanecfg.data[i].pol,
2094 buscfg->bus.csi2.lanecfg.data[i].pos);
2095 }
2096 /*
2097 * FIXME: now we assume the CRC is always there. Implement a way to
2098 * obtain this information from the sensor. Frame descriptors, perhaps?
2099 */
2100 buscfg->bus.csi2.crc = 1;
2101 }
2102
2103 static void isp_parse_of_csi1_endpoint(struct device *dev,
2104 struct v4l2_fwnode_endpoint *vep,
2105 struct isp_bus_cfg *buscfg)
2106 {
2107 buscfg->bus.ccp2.lanecfg.clk.pos = vep->bus.mipi_csi1.clock_lane;
2108 buscfg->bus.ccp2.lanecfg.clk.pol = vep->bus.mipi_csi1.lane_polarity[0];
2109 dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2110 buscfg->bus.ccp2.lanecfg.clk.pol,
2111 buscfg->bus.ccp2.lanecfg.clk.pos);
2112
2113 buscfg->bus.ccp2.lanecfg.data[0].pos = vep->bus.mipi_csi1.data_lane;
2114 buscfg->bus.ccp2.lanecfg.data[0].pol =
2115 vep->bus.mipi_csi1.lane_polarity[1];
2116
2117 dev_dbg(dev, "data lane polarity %u, pos %u\n",
2118 buscfg->bus.ccp2.lanecfg.data[0].pol,
2119 buscfg->bus.ccp2.lanecfg.data[0].pos);
2120
2121 buscfg->bus.ccp2.strobe_clk_pol = vep->bus.mipi_csi1.clock_inv;
2122 buscfg->bus.ccp2.phy_layer = vep->bus.mipi_csi1.strobe;
2123 buscfg->bus.ccp2.ccp2_mode = vep->bus_type == V4L2_MBUS_CCP2;
2124 buscfg->bus.ccp2.vp_clk_pol = 1;
2125
2126 buscfg->bus.ccp2.crc = 1;
2127 }
2128
2129 static struct {
2130 u32 phy;
2131 u32 csi2_if;
2132 u32 csi1_if;
2133 } isp_bus_interfaces[2] = {
2134 { ISP_OF_PHY_CSIPHY1,
2135 ISP_INTERFACE_CSI2C_PHY1, ISP_INTERFACE_CCP2B_PHY1 },
2136 { ISP_OF_PHY_CSIPHY2,
2137 ISP_INTERFACE_CSI2A_PHY2, ISP_INTERFACE_CCP2B_PHY2 },
2138 };
2139
2140 static int isp_parse_of_endpoints(struct isp_device *isp)
2141 {
2142 struct fwnode_handle *ep;
2143 struct isp_async_subdev *isd = NULL;
2144 struct v4l2_async_subdev *asd;
2145 unsigned int i;
2146
2147 ep = fwnode_graph_get_endpoint_by_id(
2148 dev_fwnode(isp->dev), ISP_OF_PHY_PARALLEL, 0,
2149 FWNODE_GRAPH_ENDPOINT_NEXT);
2150
2151 if (ep) {
2152 struct v4l2_fwnode_endpoint vep = {
2153 .bus_type = V4L2_MBUS_PARALLEL
2154 };
2155 int ret;
2156
2157 dev_dbg(isp->dev, "parsing parallel interface\n");
2158
2159 ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2160
2161 if (!ret) {
2162 asd = v4l2_async_notifier_add_fwnode_remote_subdev(
2163 &isp->notifier, ep, sizeof(*isd));
2164 if (!IS_ERR(asd)) {
2165 isd = container_of(asd, struct isp_async_subdev, asd);
2166 isp_parse_of_parallel_endpoint(isp->dev, &vep, &isd->bus);
2167 }
2168 }
2169
2170 fwnode_handle_put(ep);
2171 }
2172
2173 for (i = 0; i < ARRAY_SIZE(isp_bus_interfaces); i++) {
2174 struct v4l2_fwnode_endpoint vep = {
2175 .bus_type = V4L2_MBUS_CSI2_DPHY
2176 };
2177 int ret;
2178
2179 ep = fwnode_graph_get_endpoint_by_id(
2180 dev_fwnode(isp->dev), isp_bus_interfaces[i].phy, 0,
2181 FWNODE_GRAPH_ENDPOINT_NEXT);
2182
2183 if (!ep)
2184 continue;
2185
2186 dev_dbg(isp->dev, "parsing serial interface %u, node %pOF\n", i,
2187 to_of_node(ep));
2188
2189 ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2190 if (ret == -ENXIO) {
2191 vep = (struct v4l2_fwnode_endpoint)
2192 { .bus_type = V4L2_MBUS_CSI1 };
2193 ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2194
2195 if (ret == -ENXIO) {
2196 vep = (struct v4l2_fwnode_endpoint)
2197 { .bus_type = V4L2_MBUS_CCP2 };
2198 ret = v4l2_fwnode_endpoint_parse(ep, &vep);
2199 }
2200 }
2201
2202 if (!ret) {
2203 asd = v4l2_async_notifier_add_fwnode_remote_subdev(
2204 &isp->notifier, ep, sizeof(*isd));
2205
2206 if (!IS_ERR(asd)) {
2207 isd = container_of(asd, struct isp_async_subdev, asd);
2208
2209 switch (vep.bus_type) {
2210 case V4L2_MBUS_CSI2_DPHY:
2211 isd->bus.interface =
2212 isp_bus_interfaces[i].csi2_if;
2213 isp_parse_of_csi2_endpoint(isp->dev, &vep, &isd->bus);
2214 break;
2215 case V4L2_MBUS_CSI1:
2216 case V4L2_MBUS_CCP2:
2217 isd->bus.interface =
2218 isp_bus_interfaces[i].csi1_if;
2219 isp_parse_of_csi1_endpoint(isp->dev, &vep,
2220 &isd->bus);
2221 break;
2222 default:
2223 break;
2224 }
2225 }
2226 }
2227
2228 fwnode_handle_put(ep);
2229 }
2230
2231 return 0;
2232 }
2233
2234 static const struct v4l2_async_notifier_operations isp_subdev_notifier_ops = {
2235 .complete = isp_subdev_notifier_complete,
2236 };
2237
2238 /*
2239 * isp_probe - Probe ISP platform device
2240 * @pdev: Pointer to ISP platform device
2241 *
2242 * Returns 0 if successful,
2243 * -ENOMEM if no memory available,
2244 * -ENODEV if no platform device resources found
2245 * or no space for remapping registers,
2246 * -EINVAL if couldn't install ISR,
2247 * or clk_get return error value.
2248 */
2249 static int isp_probe(struct platform_device *pdev)
2250 {
2251 struct isp_device *isp;
2252 struct resource *mem;
2253 int ret;
2254 int i, m;
2255
2256 isp = kzalloc(sizeof(*isp), GFP_KERNEL);
2257 if (!isp) {
2258 dev_err(&pdev->dev, "could not allocate memory\n");
2259 return -ENOMEM;
2260 }
2261
2262 ret = fwnode_property_read_u32(of_fwnode_handle(pdev->dev.of_node),
2263 "ti,phy-type", &isp->phy_type);
2264 if (ret)
2265 goto error_release_isp;
2266
2267 isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2268 "syscon");
2269 if (IS_ERR(isp->syscon)) {
2270 ret = PTR_ERR(isp->syscon);
2271 goto error_release_isp;
2272 }
2273
2274 ret = of_property_read_u32_index(pdev->dev.of_node,
2275 "syscon", 1, &isp->syscon_offset);
2276 if (ret)
2277 goto error_release_isp;
2278
2279 isp->autoidle = autoidle;
2280
2281 mutex_init(&isp->isp_mutex);
2282 spin_lock_init(&isp->stat_lock);
2283 v4l2_async_notifier_init(&isp->notifier);
2284 isp->dev = &pdev->dev;
2285
2286 ret = isp_parse_of_endpoints(isp);
2287 if (ret < 0)
2288 goto error;
2289
2290 isp->ref_count = 0;
2291
2292 ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32));
2293 if (ret)
2294 goto error;
2295
2296 platform_set_drvdata(pdev, isp);
2297
2298 /* Regulators */
2299 isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1");
2300 isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2");
2301
2302 /* Clocks
2303 *
2304 * The ISP clock tree is revision-dependent. We thus need to enable ICLK
2305 * manually to read the revision before calling __omap3isp_get().
2306 *
2307 * Start by mapping the ISP MMIO area, which is in two pieces.
2308 * The ISP IOMMU is in between. Map both now, and fill in the
2309 * ISP revision specific portions a little later in the
2310 * function.
2311 */
2312 for (i = 0; i < 2; i++) {
2313 unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0;
2314
2315 mem = platform_get_resource(pdev, IORESOURCE_MEM, i);
2316 isp->mmio_base[map_idx] =
2317 devm_ioremap_resource(isp->dev, mem);
2318 if (IS_ERR(isp->mmio_base[map_idx])) {
2319 ret = PTR_ERR(isp->mmio_base[map_idx]);
2320 goto error;
2321 }
2322 }
2323
2324 ret = isp_get_clocks(isp);
2325 if (ret < 0)
2326 goto error;
2327
2328 ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]);
2329 if (ret < 0)
2330 goto error;
2331
2332 isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
2333 dev_info(isp->dev, "Revision %d.%d found\n",
2334 (isp->revision & 0xf0) >> 4, isp->revision & 0x0f);
2335
2336 clk_disable(isp->clock[ISP_CLK_CAM_ICK]);
2337
2338 if (__omap3isp_get(isp, false) == NULL) {
2339 ret = -ENODEV;
2340 goto error;
2341 }
2342
2343 ret = isp_reset(isp);
2344 if (ret < 0)
2345 goto error_isp;
2346
2347 ret = isp_xclk_init(isp);
2348 if (ret < 0)
2349 goto error_isp;
2350
2351 /* Memory resources */
2352 for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++)
2353 if (isp->revision == isp_res_maps[m].isp_rev)
2354 break;
2355
2356 if (m == ARRAY_SIZE(isp_res_maps)) {
2357 dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n",
2358 (isp->revision & 0xf0) >> 4, isp->revision & 0xf);
2359 ret = -ENODEV;
2360 goto error_isp;
2361 }
2362
2363 for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++)
2364 isp->mmio_base[i] =
2365 isp->mmio_base[0] + isp_res_maps[m].offset[i];
2366
2367 for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++)
2368 isp->mmio_base[i] =
2369 isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1]
2370 + isp_res_maps[m].offset[i];
2371
2372 isp->mmio_hist_base_phys =
2373 mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST];
2374
2375 /* IOMMU */
2376 ret = isp_attach_iommu(isp);
2377 if (ret < 0) {
2378 dev_err(&pdev->dev, "unable to attach to IOMMU\n");
2379 goto error_isp;
2380 }
2381
2382 /* Interrupt */
2383 ret = platform_get_irq(pdev, 0);
2384 if (ret <= 0) {
2385 ret = -ENODEV;
2386 goto error_iommu;
2387 }
2388 isp->irq_num = ret;
2389
2390 if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED,
2391 "OMAP3 ISP", isp)) {
2392 dev_err(isp->dev, "Unable to request IRQ\n");
2393 ret = -EINVAL;
2394 goto error_iommu;
2395 }
2396
2397 /* Entities */
2398 ret = isp_initialize_modules(isp);
2399 if (ret < 0)
2400 goto error_iommu;
2401
2402 ret = isp_register_entities(isp);
2403 if (ret < 0)
2404 goto error_modules;
2405
2406 ret = isp_create_links(isp);
2407 if (ret < 0)
2408 goto error_register_entities;
2409
2410 isp->notifier.ops = &isp_subdev_notifier_ops;
2411
2412 ret = v4l2_async_notifier_register(&isp->v4l2_dev, &isp->notifier);
2413 if (ret)
2414 goto error_register_entities;
2415
2416 isp_core_init(isp, 1);
2417 omap3isp_put(isp);
2418
2419 return 0;
2420
2421 error_register_entities:
2422 isp_unregister_entities(isp);
2423 error_modules:
2424 isp_cleanup_modules(isp);
2425 error_iommu:
2426 isp_detach_iommu(isp);
2427 error_isp:
2428 isp_xclk_cleanup(isp);
2429 __omap3isp_put(isp, false);
2430 error:
2431 v4l2_async_notifier_cleanup(&isp->notifier);
2432 mutex_destroy(&isp->isp_mutex);
2433 error_release_isp:
2434 kfree(isp);
2435
2436 return ret;
2437 }
2438
2439 static const struct dev_pm_ops omap3isp_pm_ops = {
2440 .prepare = isp_pm_prepare,
2441 .suspend = isp_pm_suspend,
2442 .resume = isp_pm_resume,
2443 .complete = isp_pm_complete,
2444 };
2445
2446 static const struct platform_device_id omap3isp_id_table[] = {
2447 { "omap3isp", 0 },
2448 { },
2449 };
2450 MODULE_DEVICE_TABLE(platform, omap3isp_id_table);
2451
2452 static const struct of_device_id omap3isp_of_table[] = {
2453 { .compatible = "ti,omap3-isp" },
2454 { },
2455 };
2456 MODULE_DEVICE_TABLE(of, omap3isp_of_table);
2457
2458 static struct platform_driver omap3isp_driver = {
2459 .probe = isp_probe,
2460 .remove = isp_remove,
2461 .id_table = omap3isp_id_table,
2462 .driver = {
2463 .name = "omap3isp",
2464 .pm = &omap3isp_pm_ops,
2465 .of_match_table = omap3isp_of_table,
2466 },
2467 };
2468
2469 module_platform_driver(omap3isp_driver);
2470
2471 MODULE_AUTHOR("Nokia Corporation");
2472 MODULE_DESCRIPTION("TI OMAP3 ISP driver");
2473 MODULE_LICENSE("GPL");
2474 MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION);