]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/media/platform/ti-vpe/vpe.c
e44299008a7b52d61ba7b68bbed548ec0a9d4cd8
[mirror_ubuntu-focal-kernel.git] / drivers / media / platform / ti-vpe / vpe.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver
4 *
5 * Copyright (c) 2013 Texas Instruments Inc.
6 * David Griego, <dagriego@biglakesoftware.com>
7 * Dale Farnsworth, <dale@farnsworth.org>
8 * Archit Taneja, <archit@ti.com>
9 *
10 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
11 * Pawel Osciak, <pawel@osciak.com>
12 * Marek Szyprowski, <m.szyprowski@samsung.com>
13 *
14 * Based on the virtual v4l2-mem2mem example device
15 */
16
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/fs.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/ioctl.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/videodev2.h>
31 #include <linux/log2.h>
32 #include <linux/sizes.h>
33
34 #include <media/v4l2-common.h>
35 #include <media/v4l2-ctrls.h>
36 #include <media/v4l2-device.h>
37 #include <media/v4l2-event.h>
38 #include <media/v4l2-ioctl.h>
39 #include <media/v4l2-mem2mem.h>
40 #include <media/videobuf2-v4l2.h>
41 #include <media/videobuf2-dma-contig.h>
42
43 #include "vpdma.h"
44 #include "vpdma_priv.h"
45 #include "vpe_regs.h"
46 #include "sc.h"
47 #include "csc.h"
48
49 #define VPE_MODULE_NAME "vpe"
50
51 /* minimum and maximum frame sizes */
52 #define MIN_W 32
53 #define MIN_H 32
54 #define MAX_W 2048
55 #define MAX_H 1184
56
57 /* required alignments */
58 #define S_ALIGN 0 /* multiple of 1 */
59 #define H_ALIGN 1 /* multiple of 2 */
60
61 /* flags that indicate a format can be used for capture/output */
62 #define VPE_FMT_TYPE_CAPTURE (1 << 0)
63 #define VPE_FMT_TYPE_OUTPUT (1 << 1)
64
65 /* used as plane indices */
66 #define VPE_MAX_PLANES 2
67 #define VPE_LUMA 0
68 #define VPE_CHROMA 1
69
70 /* per m2m context info */
71 #define VPE_MAX_SRC_BUFS 3 /* need 3 src fields to de-interlace */
72
73 #define VPE_DEF_BUFS_PER_JOB 1 /* default one buffer per batch job */
74
75 /*
76 * each VPE context can need up to 3 config descriptors, 7 input descriptors,
77 * 3 output descriptors, and 10 control descriptors
78 */
79 #define VPE_DESC_LIST_SIZE (10 * VPDMA_DTD_DESC_SIZE + \
80 13 * VPDMA_CFD_CTD_DESC_SIZE)
81
82 #define vpe_dbg(vpedev, fmt, arg...) \
83 dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg)
84 #define vpe_err(vpedev, fmt, arg...) \
85 dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg)
86
87 struct vpe_us_coeffs {
88 unsigned short anchor_fid0_c0;
89 unsigned short anchor_fid0_c1;
90 unsigned short anchor_fid0_c2;
91 unsigned short anchor_fid0_c3;
92 unsigned short interp_fid0_c0;
93 unsigned short interp_fid0_c1;
94 unsigned short interp_fid0_c2;
95 unsigned short interp_fid0_c3;
96 unsigned short anchor_fid1_c0;
97 unsigned short anchor_fid1_c1;
98 unsigned short anchor_fid1_c2;
99 unsigned short anchor_fid1_c3;
100 unsigned short interp_fid1_c0;
101 unsigned short interp_fid1_c1;
102 unsigned short interp_fid1_c2;
103 unsigned short interp_fid1_c3;
104 };
105
106 /*
107 * Default upsampler coefficients
108 */
109 static const struct vpe_us_coeffs us_coeffs[] = {
110 {
111 /* Coefficients for progressive input */
112 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
113 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
114 },
115 {
116 /* Coefficients for Top Field Interlaced input */
117 0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3,
118 /* Coefficients for Bottom Field Interlaced input */
119 0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9,
120 },
121 };
122
123 /*
124 * the following registers are for configuring some of the parameters of the
125 * motion and edge detection blocks inside DEI, these generally remain the same,
126 * these could be passed later via userspace if some one needs to tweak these.
127 */
128 struct vpe_dei_regs {
129 unsigned long mdt_spacial_freq_thr_reg; /* VPE_DEI_REG2 */
130 unsigned long edi_config_reg; /* VPE_DEI_REG3 */
131 unsigned long edi_lut_reg0; /* VPE_DEI_REG4 */
132 unsigned long edi_lut_reg1; /* VPE_DEI_REG5 */
133 unsigned long edi_lut_reg2; /* VPE_DEI_REG6 */
134 unsigned long edi_lut_reg3; /* VPE_DEI_REG7 */
135 };
136
137 /*
138 * default expert DEI register values, unlikely to be modified.
139 */
140 static const struct vpe_dei_regs dei_regs = {
141 .mdt_spacial_freq_thr_reg = 0x020C0804u,
142 .edi_config_reg = 0x0118100Cu,
143 .edi_lut_reg0 = 0x08040200u,
144 .edi_lut_reg1 = 0x1010100Cu,
145 .edi_lut_reg2 = 0x10101010u,
146 .edi_lut_reg3 = 0x10101010u,
147 };
148
149 /*
150 * The port_data structure contains per-port data.
151 */
152 struct vpe_port_data {
153 enum vpdma_channel channel; /* VPDMA channel */
154 u8 vb_index; /* input frame f, f-1, f-2 index */
155 u8 vb_part; /* plane index for co-panar formats */
156 };
157
158 /*
159 * Define indices into the port_data tables
160 */
161 #define VPE_PORT_LUMA1_IN 0
162 #define VPE_PORT_CHROMA1_IN 1
163 #define VPE_PORT_LUMA2_IN 2
164 #define VPE_PORT_CHROMA2_IN 3
165 #define VPE_PORT_LUMA3_IN 4
166 #define VPE_PORT_CHROMA3_IN 5
167 #define VPE_PORT_MV_IN 6
168 #define VPE_PORT_MV_OUT 7
169 #define VPE_PORT_LUMA_OUT 8
170 #define VPE_PORT_CHROMA_OUT 9
171 #define VPE_PORT_RGB_OUT 10
172
173 static const struct vpe_port_data port_data[11] = {
174 [VPE_PORT_LUMA1_IN] = {
175 .channel = VPE_CHAN_LUMA1_IN,
176 .vb_index = 0,
177 .vb_part = VPE_LUMA,
178 },
179 [VPE_PORT_CHROMA1_IN] = {
180 .channel = VPE_CHAN_CHROMA1_IN,
181 .vb_index = 0,
182 .vb_part = VPE_CHROMA,
183 },
184 [VPE_PORT_LUMA2_IN] = {
185 .channel = VPE_CHAN_LUMA2_IN,
186 .vb_index = 1,
187 .vb_part = VPE_LUMA,
188 },
189 [VPE_PORT_CHROMA2_IN] = {
190 .channel = VPE_CHAN_CHROMA2_IN,
191 .vb_index = 1,
192 .vb_part = VPE_CHROMA,
193 },
194 [VPE_PORT_LUMA3_IN] = {
195 .channel = VPE_CHAN_LUMA3_IN,
196 .vb_index = 2,
197 .vb_part = VPE_LUMA,
198 },
199 [VPE_PORT_CHROMA3_IN] = {
200 .channel = VPE_CHAN_CHROMA3_IN,
201 .vb_index = 2,
202 .vb_part = VPE_CHROMA,
203 },
204 [VPE_PORT_MV_IN] = {
205 .channel = VPE_CHAN_MV_IN,
206 },
207 [VPE_PORT_MV_OUT] = {
208 .channel = VPE_CHAN_MV_OUT,
209 },
210 [VPE_PORT_LUMA_OUT] = {
211 .channel = VPE_CHAN_LUMA_OUT,
212 .vb_part = VPE_LUMA,
213 },
214 [VPE_PORT_CHROMA_OUT] = {
215 .channel = VPE_CHAN_CHROMA_OUT,
216 .vb_part = VPE_CHROMA,
217 },
218 [VPE_PORT_RGB_OUT] = {
219 .channel = VPE_CHAN_RGB_OUT,
220 .vb_part = VPE_LUMA,
221 },
222 };
223
224
225 /* driver info for each of the supported video formats */
226 struct vpe_fmt {
227 u32 fourcc; /* standard format identifier */
228 u8 types; /* CAPTURE and/or OUTPUT */
229 u8 coplanar; /* set for unpacked Luma and Chroma */
230 /* vpdma format info for each plane */
231 struct vpdma_data_format const *vpdma_fmt[VPE_MAX_PLANES];
232 };
233
234 static struct vpe_fmt vpe_formats[] = {
235 {
236 .fourcc = V4L2_PIX_FMT_NV16,
237 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
238 .coplanar = 1,
239 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y444],
240 &vpdma_yuv_fmts[VPDMA_DATA_FMT_C444],
241 },
242 },
243 {
244 .fourcc = V4L2_PIX_FMT_NV12,
245 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
246 .coplanar = 1,
247 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420],
248 &vpdma_yuv_fmts[VPDMA_DATA_FMT_C420],
249 },
250 },
251 {
252 .fourcc = V4L2_PIX_FMT_YUYV,
253 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
254 .coplanar = 0,
255 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_YCB422],
256 },
257 },
258 {
259 .fourcc = V4L2_PIX_FMT_UYVY,
260 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
261 .coplanar = 0,
262 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_CBY422],
263 },
264 },
265 {
266 .fourcc = V4L2_PIX_FMT_RGB24,
267 .types = VPE_FMT_TYPE_CAPTURE,
268 .coplanar = 0,
269 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB24],
270 },
271 },
272 {
273 .fourcc = V4L2_PIX_FMT_RGB32,
274 .types = VPE_FMT_TYPE_CAPTURE,
275 .coplanar = 0,
276 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ARGB32],
277 },
278 },
279 {
280 .fourcc = V4L2_PIX_FMT_BGR24,
281 .types = VPE_FMT_TYPE_CAPTURE,
282 .coplanar = 0,
283 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_BGR24],
284 },
285 },
286 {
287 .fourcc = V4L2_PIX_FMT_BGR32,
288 .types = VPE_FMT_TYPE_CAPTURE,
289 .coplanar = 0,
290 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ABGR32],
291 },
292 },
293 {
294 .fourcc = V4L2_PIX_FMT_RGB565,
295 .types = VPE_FMT_TYPE_CAPTURE,
296 .coplanar = 0,
297 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB565],
298 },
299 },
300 {
301 .fourcc = V4L2_PIX_FMT_RGB555,
302 .types = VPE_FMT_TYPE_CAPTURE,
303 .coplanar = 0,
304 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGBA16_5551],
305 },
306 },
307 };
308
309 /*
310 * per-queue, driver-specific private data.
311 * there is one source queue and one destination queue for each m2m context.
312 */
313 struct vpe_q_data {
314 unsigned int width; /* frame width */
315 unsigned int height; /* frame height */
316 unsigned int nplanes; /* Current number of planes */
317 unsigned int bytesperline[VPE_MAX_PLANES]; /* bytes per line in memory */
318 enum v4l2_colorspace colorspace;
319 enum v4l2_field field; /* supported field value */
320 unsigned int flags;
321 unsigned int sizeimage[VPE_MAX_PLANES]; /* image size in memory */
322 struct v4l2_rect c_rect; /* crop/compose rectangle */
323 struct vpe_fmt *fmt; /* format info */
324 };
325
326 /* vpe_q_data flag bits */
327 #define Q_DATA_FRAME_1D BIT(0)
328 #define Q_DATA_MODE_TILED BIT(1)
329 #define Q_DATA_INTERLACED_ALTERNATE BIT(2)
330 #define Q_DATA_INTERLACED_SEQ_TB BIT(3)
331
332 #define Q_IS_INTERLACED (Q_DATA_INTERLACED_ALTERNATE | \
333 Q_DATA_INTERLACED_SEQ_TB)
334
335 enum {
336 Q_DATA_SRC = 0,
337 Q_DATA_DST = 1,
338 };
339
340 /* find our format description corresponding to the passed v4l2_format */
341 static struct vpe_fmt *__find_format(u32 fourcc)
342 {
343 struct vpe_fmt *fmt;
344 unsigned int k;
345
346 for (k = 0; k < ARRAY_SIZE(vpe_formats); k++) {
347 fmt = &vpe_formats[k];
348 if (fmt->fourcc == fourcc)
349 return fmt;
350 }
351
352 return NULL;
353 }
354
355 static struct vpe_fmt *find_format(struct v4l2_format *f)
356 {
357 return __find_format(f->fmt.pix.pixelformat);
358 }
359
360 /*
361 * there is one vpe_dev structure in the driver, it is shared by
362 * all instances.
363 */
364 struct vpe_dev {
365 struct v4l2_device v4l2_dev;
366 struct video_device vfd;
367 struct v4l2_m2m_dev *m2m_dev;
368
369 atomic_t num_instances; /* count of driver instances */
370 dma_addr_t loaded_mmrs; /* shadow mmrs in device */
371 struct mutex dev_mutex;
372 spinlock_t lock;
373
374 int irq;
375 void __iomem *base;
376 struct resource *res;
377
378 struct vpdma_data vpdma_data;
379 struct vpdma_data *vpdma; /* vpdma data handle */
380 struct sc_data *sc; /* scaler data handle */
381 struct csc_data *csc; /* csc data handle */
382 };
383
384 /*
385 * There is one vpe_ctx structure for each m2m context.
386 */
387 struct vpe_ctx {
388 struct v4l2_fh fh;
389 struct vpe_dev *dev;
390 struct v4l2_ctrl_handler hdl;
391
392 unsigned int field; /* current field */
393 unsigned int sequence; /* current frame/field seq */
394 unsigned int aborting; /* abort after next irq */
395
396 unsigned int bufs_per_job; /* input buffers per batch */
397 unsigned int bufs_completed; /* bufs done in this batch */
398
399 struct vpe_q_data q_data[2]; /* src & dst queue data */
400 struct vb2_v4l2_buffer *src_vbs[VPE_MAX_SRC_BUFS];
401 struct vb2_v4l2_buffer *dst_vb;
402
403 dma_addr_t mv_buf_dma[2]; /* dma addrs of motion vector in/out bufs */
404 void *mv_buf[2]; /* virtual addrs of motion vector bufs */
405 size_t mv_buf_size; /* current motion vector buffer size */
406 struct vpdma_buf mmr_adb; /* shadow reg addr/data block */
407 struct vpdma_buf sc_coeff_h; /* h coeff buffer */
408 struct vpdma_buf sc_coeff_v; /* v coeff buffer */
409 struct vpdma_desc_list desc_list; /* DMA descriptor list */
410
411 bool deinterlacing; /* using de-interlacer */
412 bool load_mmrs; /* have new shadow reg values */
413
414 unsigned int src_mv_buf_selector;
415 };
416
417
418 /*
419 * M2M devices get 2 queues.
420 * Return the queue given the type.
421 */
422 static struct vpe_q_data *get_q_data(struct vpe_ctx *ctx,
423 enum v4l2_buf_type type)
424 {
425 switch (type) {
426 case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
427 case V4L2_BUF_TYPE_VIDEO_OUTPUT:
428 return &ctx->q_data[Q_DATA_SRC];
429 case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
430 case V4L2_BUF_TYPE_VIDEO_CAPTURE:
431 return &ctx->q_data[Q_DATA_DST];
432 default:
433 return NULL;
434 }
435 return NULL;
436 }
437
438 static u32 read_reg(struct vpe_dev *dev, int offset)
439 {
440 return ioread32(dev->base + offset);
441 }
442
443 static void write_reg(struct vpe_dev *dev, int offset, u32 value)
444 {
445 iowrite32(value, dev->base + offset);
446 }
447
448 /* register field read/write helpers */
449 static int get_field(u32 value, u32 mask, int shift)
450 {
451 return (value & (mask << shift)) >> shift;
452 }
453
454 static int read_field_reg(struct vpe_dev *dev, int offset, u32 mask, int shift)
455 {
456 return get_field(read_reg(dev, offset), mask, shift);
457 }
458
459 static void write_field(u32 *valp, u32 field, u32 mask, int shift)
460 {
461 u32 val = *valp;
462
463 val &= ~(mask << shift);
464 val |= (field & mask) << shift;
465 *valp = val;
466 }
467
468 static void write_field_reg(struct vpe_dev *dev, int offset, u32 field,
469 u32 mask, int shift)
470 {
471 u32 val = read_reg(dev, offset);
472
473 write_field(&val, field, mask, shift);
474
475 write_reg(dev, offset, val);
476 }
477
478 /*
479 * DMA address/data block for the shadow registers
480 */
481 struct vpe_mmr_adb {
482 struct vpdma_adb_hdr out_fmt_hdr;
483 u32 out_fmt_reg[1];
484 u32 out_fmt_pad[3];
485 struct vpdma_adb_hdr us1_hdr;
486 u32 us1_regs[8];
487 struct vpdma_adb_hdr us2_hdr;
488 u32 us2_regs[8];
489 struct vpdma_adb_hdr us3_hdr;
490 u32 us3_regs[8];
491 struct vpdma_adb_hdr dei_hdr;
492 u32 dei_regs[8];
493 struct vpdma_adb_hdr sc_hdr0;
494 u32 sc_regs0[7];
495 u32 sc_pad0[1];
496 struct vpdma_adb_hdr sc_hdr8;
497 u32 sc_regs8[6];
498 u32 sc_pad8[2];
499 struct vpdma_adb_hdr sc_hdr17;
500 u32 sc_regs17[9];
501 u32 sc_pad17[3];
502 struct vpdma_adb_hdr csc_hdr;
503 u32 csc_regs[6];
504 u32 csc_pad[2];
505 };
506
507 #define GET_OFFSET_TOP(ctx, obj, reg) \
508 ((obj)->res->start - ctx->dev->res->start + reg)
509
510 #define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a) \
511 VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a)
512 /*
513 * Set the headers for all of the address/data block structures.
514 */
515 static void init_adb_hdrs(struct vpe_ctx *ctx)
516 {
517 VPE_SET_MMR_ADB_HDR(ctx, out_fmt_hdr, out_fmt_reg, VPE_CLK_FORMAT_SELECT);
518 VPE_SET_MMR_ADB_HDR(ctx, us1_hdr, us1_regs, VPE_US1_R0);
519 VPE_SET_MMR_ADB_HDR(ctx, us2_hdr, us2_regs, VPE_US2_R0);
520 VPE_SET_MMR_ADB_HDR(ctx, us3_hdr, us3_regs, VPE_US3_R0);
521 VPE_SET_MMR_ADB_HDR(ctx, dei_hdr, dei_regs, VPE_DEI_FRAME_SIZE);
522 VPE_SET_MMR_ADB_HDR(ctx, sc_hdr0, sc_regs0,
523 GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC0));
524 VPE_SET_MMR_ADB_HDR(ctx, sc_hdr8, sc_regs8,
525 GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC8));
526 VPE_SET_MMR_ADB_HDR(ctx, sc_hdr17, sc_regs17,
527 GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC17));
528 VPE_SET_MMR_ADB_HDR(ctx, csc_hdr, csc_regs,
529 GET_OFFSET_TOP(ctx, ctx->dev->csc, CSC_CSC00));
530 };
531
532 /*
533 * Allocate or re-allocate the motion vector DMA buffers
534 * There are two buffers, one for input and one for output.
535 * However, the roles are reversed after each field is processed.
536 * In other words, after each field is processed, the previous
537 * output (dst) MV buffer becomes the new input (src) MV buffer.
538 */
539 static int realloc_mv_buffers(struct vpe_ctx *ctx, size_t size)
540 {
541 struct device *dev = ctx->dev->v4l2_dev.dev;
542
543 if (ctx->mv_buf_size == size)
544 return 0;
545
546 if (ctx->mv_buf[0])
547 dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[0],
548 ctx->mv_buf_dma[0]);
549
550 if (ctx->mv_buf[1])
551 dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[1],
552 ctx->mv_buf_dma[1]);
553
554 if (size == 0)
555 return 0;
556
557 ctx->mv_buf[0] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[0],
558 GFP_KERNEL);
559 if (!ctx->mv_buf[0]) {
560 vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
561 return -ENOMEM;
562 }
563
564 ctx->mv_buf[1] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[1],
565 GFP_KERNEL);
566 if (!ctx->mv_buf[1]) {
567 vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
568 dma_free_coherent(dev, size, ctx->mv_buf[0],
569 ctx->mv_buf_dma[0]);
570
571 return -ENOMEM;
572 }
573
574 ctx->mv_buf_size = size;
575 ctx->src_mv_buf_selector = 0;
576
577 return 0;
578 }
579
580 static void free_mv_buffers(struct vpe_ctx *ctx)
581 {
582 realloc_mv_buffers(ctx, 0);
583 }
584
585 /*
586 * While de-interlacing, we keep the two most recent input buffers
587 * around. This function frees those two buffers when we have
588 * finished processing the current stream.
589 */
590 static void free_vbs(struct vpe_ctx *ctx)
591 {
592 struct vpe_dev *dev = ctx->dev;
593 unsigned long flags;
594
595 if (ctx->src_vbs[2] == NULL)
596 return;
597
598 spin_lock_irqsave(&dev->lock, flags);
599 if (ctx->src_vbs[2]) {
600 v4l2_m2m_buf_done(ctx->src_vbs[2], VB2_BUF_STATE_DONE);
601 if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
602 v4l2_m2m_buf_done(ctx->src_vbs[1], VB2_BUF_STATE_DONE);
603 ctx->src_vbs[2] = NULL;
604 ctx->src_vbs[1] = NULL;
605 }
606 spin_unlock_irqrestore(&dev->lock, flags);
607 }
608
609 /*
610 * Enable or disable the VPE clocks
611 */
612 static void vpe_set_clock_enable(struct vpe_dev *dev, bool on)
613 {
614 u32 val = 0;
615
616 if (on)
617 val = VPE_DATA_PATH_CLK_ENABLE | VPE_VPEDMA_CLK_ENABLE;
618 write_reg(dev, VPE_CLK_ENABLE, val);
619 }
620
621 static void vpe_top_reset(struct vpe_dev *dev)
622 {
623
624 write_field_reg(dev, VPE_CLK_RESET, 1, VPE_DATA_PATH_CLK_RESET_MASK,
625 VPE_DATA_PATH_CLK_RESET_SHIFT);
626
627 usleep_range(100, 150);
628
629 write_field_reg(dev, VPE_CLK_RESET, 0, VPE_DATA_PATH_CLK_RESET_MASK,
630 VPE_DATA_PATH_CLK_RESET_SHIFT);
631 }
632
633 static void vpe_top_vpdma_reset(struct vpe_dev *dev)
634 {
635 write_field_reg(dev, VPE_CLK_RESET, 1, VPE_VPDMA_CLK_RESET_MASK,
636 VPE_VPDMA_CLK_RESET_SHIFT);
637
638 usleep_range(100, 150);
639
640 write_field_reg(dev, VPE_CLK_RESET, 0, VPE_VPDMA_CLK_RESET_MASK,
641 VPE_VPDMA_CLK_RESET_SHIFT);
642 }
643
644 /*
645 * Load the correct of upsampler coefficients into the shadow MMRs
646 */
647 static void set_us_coefficients(struct vpe_ctx *ctx)
648 {
649 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
650 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
651 u32 *us1_reg = &mmr_adb->us1_regs[0];
652 u32 *us2_reg = &mmr_adb->us2_regs[0];
653 u32 *us3_reg = &mmr_adb->us3_regs[0];
654 const unsigned short *cp, *end_cp;
655
656 cp = &us_coeffs[0].anchor_fid0_c0;
657
658 if (s_q_data->flags & Q_IS_INTERLACED) /* interlaced */
659 cp += sizeof(us_coeffs[0]) / sizeof(*cp);
660
661 end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp);
662
663 while (cp < end_cp) {
664 write_field(us1_reg, *cp++, VPE_US_C0_MASK, VPE_US_C0_SHIFT);
665 write_field(us1_reg, *cp++, VPE_US_C1_MASK, VPE_US_C1_SHIFT);
666 *us2_reg++ = *us1_reg;
667 *us3_reg++ = *us1_reg++;
668 }
669 ctx->load_mmrs = true;
670 }
671
672 /*
673 * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs.
674 */
675 static void set_cfg_modes(struct vpe_ctx *ctx)
676 {
677 struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
678 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
679 u32 *us1_reg0 = &mmr_adb->us1_regs[0];
680 u32 *us2_reg0 = &mmr_adb->us2_regs[0];
681 u32 *us3_reg0 = &mmr_adb->us3_regs[0];
682 int cfg_mode = 1;
683
684 /*
685 * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing.
686 * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing.
687 */
688
689 if (fmt->fourcc == V4L2_PIX_FMT_NV12)
690 cfg_mode = 0;
691
692 write_field(us1_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
693 write_field(us2_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
694 write_field(us3_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
695
696 ctx->load_mmrs = true;
697 }
698
699 static void set_line_modes(struct vpe_ctx *ctx)
700 {
701 struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
702 int line_mode = 1;
703
704 if (fmt->fourcc == V4L2_PIX_FMT_NV12)
705 line_mode = 0; /* double lines to line buffer */
706
707 /* regs for now */
708 vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA1_IN);
709 vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA2_IN);
710 vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA3_IN);
711
712 /* frame start for input luma */
713 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
714 VPE_CHAN_LUMA1_IN);
715 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
716 VPE_CHAN_LUMA2_IN);
717 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
718 VPE_CHAN_LUMA3_IN);
719
720 /* frame start for input chroma */
721 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
722 VPE_CHAN_CHROMA1_IN);
723 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
724 VPE_CHAN_CHROMA2_IN);
725 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
726 VPE_CHAN_CHROMA3_IN);
727
728 /* frame start for MV in client */
729 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
730 VPE_CHAN_MV_IN);
731 }
732
733 /*
734 * Set the shadow registers that are modified when the source
735 * format changes.
736 */
737 static void set_src_registers(struct vpe_ctx *ctx)
738 {
739 set_us_coefficients(ctx);
740 }
741
742 /*
743 * Set the shadow registers that are modified when the destination
744 * format changes.
745 */
746 static void set_dst_registers(struct vpe_ctx *ctx)
747 {
748 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
749 enum v4l2_colorspace clrspc = ctx->q_data[Q_DATA_DST].colorspace;
750 struct vpe_fmt *fmt = ctx->q_data[Q_DATA_DST].fmt;
751 u32 val = 0;
752
753 if (clrspc == V4L2_COLORSPACE_SRGB) {
754 val |= VPE_RGB_OUT_SELECT;
755 vpdma_set_bg_color(ctx->dev->vpdma,
756 (struct vpdma_data_format *)fmt->vpdma_fmt[0], 0xff);
757 } else if (fmt->fourcc == V4L2_PIX_FMT_NV16)
758 val |= VPE_COLOR_SEPARATE_422;
759
760 /*
761 * the source of CHR_DS and CSC is always the scaler, irrespective of
762 * whether it's used or not
763 */
764 val |= VPE_DS_SRC_DEI_SCALER | VPE_CSC_SRC_DEI_SCALER;
765
766 if (fmt->fourcc != V4L2_PIX_FMT_NV12)
767 val |= VPE_DS_BYPASS;
768
769 mmr_adb->out_fmt_reg[0] = val;
770
771 ctx->load_mmrs = true;
772 }
773
774 /*
775 * Set the de-interlacer shadow register values
776 */
777 static void set_dei_regs(struct vpe_ctx *ctx)
778 {
779 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
780 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
781 unsigned int src_h = s_q_data->c_rect.height;
782 unsigned int src_w = s_q_data->c_rect.width;
783 u32 *dei_mmr0 = &mmr_adb->dei_regs[0];
784 bool deinterlace = true;
785 u32 val = 0;
786
787 /*
788 * according to TRM, we should set DEI in progressive bypass mode when
789 * the input content is progressive, however, DEI is bypassed correctly
790 * for both progressive and interlace content in interlace bypass mode.
791 * It has been recommended not to use progressive bypass mode.
792 */
793 if (!(s_q_data->flags & Q_IS_INTERLACED) || !ctx->deinterlacing) {
794 deinterlace = false;
795 val = VPE_DEI_INTERLACE_BYPASS;
796 }
797
798 src_h = deinterlace ? src_h * 2 : src_h;
799
800 val |= (src_h << VPE_DEI_HEIGHT_SHIFT) |
801 (src_w << VPE_DEI_WIDTH_SHIFT) |
802 VPE_DEI_FIELD_FLUSH;
803
804 *dei_mmr0 = val;
805
806 ctx->load_mmrs = true;
807 }
808
809 static void set_dei_shadow_registers(struct vpe_ctx *ctx)
810 {
811 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
812 u32 *dei_mmr = &mmr_adb->dei_regs[0];
813 const struct vpe_dei_regs *cur = &dei_regs;
814
815 dei_mmr[2] = cur->mdt_spacial_freq_thr_reg;
816 dei_mmr[3] = cur->edi_config_reg;
817 dei_mmr[4] = cur->edi_lut_reg0;
818 dei_mmr[5] = cur->edi_lut_reg1;
819 dei_mmr[6] = cur->edi_lut_reg2;
820 dei_mmr[7] = cur->edi_lut_reg3;
821
822 ctx->load_mmrs = true;
823 }
824
825 static void config_edi_input_mode(struct vpe_ctx *ctx, int mode)
826 {
827 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
828 u32 *edi_config_reg = &mmr_adb->dei_regs[3];
829
830 if (mode & 0x2)
831 write_field(edi_config_reg, 1, 1, 2); /* EDI_ENABLE_3D */
832
833 if (mode & 0x3)
834 write_field(edi_config_reg, 1, 1, 3); /* EDI_CHROMA_3D */
835
836 write_field(edi_config_reg, mode, VPE_EDI_INP_MODE_MASK,
837 VPE_EDI_INP_MODE_SHIFT);
838
839 ctx->load_mmrs = true;
840 }
841
842 /*
843 * Set the shadow registers whose values are modified when either the
844 * source or destination format is changed.
845 */
846 static int set_srcdst_params(struct vpe_ctx *ctx)
847 {
848 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
849 struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
850 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
851 unsigned int src_w = s_q_data->c_rect.width;
852 unsigned int src_h = s_q_data->c_rect.height;
853 unsigned int dst_w = d_q_data->c_rect.width;
854 unsigned int dst_h = d_q_data->c_rect.height;
855 size_t mv_buf_size;
856 int ret;
857
858 ctx->sequence = 0;
859 ctx->field = V4L2_FIELD_TOP;
860
861 if ((s_q_data->flags & Q_IS_INTERLACED) &&
862 !(d_q_data->flags & Q_IS_INTERLACED)) {
863 int bytes_per_line;
864 const struct vpdma_data_format *mv =
865 &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
866
867 /*
868 * we make sure that the source image has a 16 byte aligned
869 * stride, we need to do the same for the motion vector buffer
870 * by aligning it's stride to the next 16 byte boundary. this
871 * extra space will not be used by the de-interlacer, but will
872 * ensure that vpdma operates correctly
873 */
874 bytes_per_line = ALIGN((s_q_data->width * mv->depth) >> 3,
875 VPDMA_STRIDE_ALIGN);
876 mv_buf_size = bytes_per_line * s_q_data->height;
877
878 ctx->deinterlacing = true;
879 src_h <<= 1;
880 } else {
881 ctx->deinterlacing = false;
882 mv_buf_size = 0;
883 }
884
885 free_vbs(ctx);
886 ctx->src_vbs[2] = ctx->src_vbs[1] = ctx->src_vbs[0] = NULL;
887
888 ret = realloc_mv_buffers(ctx, mv_buf_size);
889 if (ret)
890 return ret;
891
892 set_cfg_modes(ctx);
893 set_dei_regs(ctx);
894
895 csc_set_coeff(ctx->dev->csc, &mmr_adb->csc_regs[0],
896 s_q_data->colorspace, d_q_data->colorspace);
897
898 sc_set_hs_coeffs(ctx->dev->sc, ctx->sc_coeff_h.addr, src_w, dst_w);
899 sc_set_vs_coeffs(ctx->dev->sc, ctx->sc_coeff_v.addr, src_h, dst_h);
900
901 sc_config_scaler(ctx->dev->sc, &mmr_adb->sc_regs0[0],
902 &mmr_adb->sc_regs8[0], &mmr_adb->sc_regs17[0],
903 src_w, src_h, dst_w, dst_h);
904
905 return 0;
906 }
907
908 /*
909 * Return the vpe_ctx structure for a given struct file
910 */
911 static struct vpe_ctx *file2ctx(struct file *file)
912 {
913 return container_of(file->private_data, struct vpe_ctx, fh);
914 }
915
916 /*
917 * mem2mem callbacks
918 */
919
920 /*
921 * job_ready() - check whether an instance is ready to be scheduled to run
922 */
923 static int job_ready(void *priv)
924 {
925 struct vpe_ctx *ctx = priv;
926
927 /*
928 * This check is needed as this might be called directly from driver
929 * When called by m2m framework, this will always satisfy, but when
930 * called from vpe_irq, this might fail. (src stream with zero buffers)
931 */
932 if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) <= 0 ||
933 v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) <= 0)
934 return 0;
935
936 return 1;
937 }
938
939 static void job_abort(void *priv)
940 {
941 struct vpe_ctx *ctx = priv;
942
943 /* Will cancel the transaction in the next interrupt handler */
944 ctx->aborting = 1;
945 }
946
947 static void vpe_dump_regs(struct vpe_dev *dev)
948 {
949 #define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r))
950
951 vpe_dbg(dev, "VPE Registers:\n");
952
953 DUMPREG(PID);
954 DUMPREG(SYSCONFIG);
955 DUMPREG(INT0_STATUS0_RAW);
956 DUMPREG(INT0_STATUS0);
957 DUMPREG(INT0_ENABLE0);
958 DUMPREG(INT0_STATUS1_RAW);
959 DUMPREG(INT0_STATUS1);
960 DUMPREG(INT0_ENABLE1);
961 DUMPREG(CLK_ENABLE);
962 DUMPREG(CLK_RESET);
963 DUMPREG(CLK_FORMAT_SELECT);
964 DUMPREG(CLK_RANGE_MAP);
965 DUMPREG(US1_R0);
966 DUMPREG(US1_R1);
967 DUMPREG(US1_R2);
968 DUMPREG(US1_R3);
969 DUMPREG(US1_R4);
970 DUMPREG(US1_R5);
971 DUMPREG(US1_R6);
972 DUMPREG(US1_R7);
973 DUMPREG(US2_R0);
974 DUMPREG(US2_R1);
975 DUMPREG(US2_R2);
976 DUMPREG(US2_R3);
977 DUMPREG(US2_R4);
978 DUMPREG(US2_R5);
979 DUMPREG(US2_R6);
980 DUMPREG(US2_R7);
981 DUMPREG(US3_R0);
982 DUMPREG(US3_R1);
983 DUMPREG(US3_R2);
984 DUMPREG(US3_R3);
985 DUMPREG(US3_R4);
986 DUMPREG(US3_R5);
987 DUMPREG(US3_R6);
988 DUMPREG(US3_R7);
989 DUMPREG(DEI_FRAME_SIZE);
990 DUMPREG(MDT_BYPASS);
991 DUMPREG(MDT_SF_THRESHOLD);
992 DUMPREG(EDI_CONFIG);
993 DUMPREG(DEI_EDI_LUT_R0);
994 DUMPREG(DEI_EDI_LUT_R1);
995 DUMPREG(DEI_EDI_LUT_R2);
996 DUMPREG(DEI_EDI_LUT_R3);
997 DUMPREG(DEI_FMD_WINDOW_R0);
998 DUMPREG(DEI_FMD_WINDOW_R1);
999 DUMPREG(DEI_FMD_CONTROL_R0);
1000 DUMPREG(DEI_FMD_CONTROL_R1);
1001 DUMPREG(DEI_FMD_STATUS_R0);
1002 DUMPREG(DEI_FMD_STATUS_R1);
1003 DUMPREG(DEI_FMD_STATUS_R2);
1004 #undef DUMPREG
1005
1006 sc_dump_regs(dev->sc);
1007 csc_dump_regs(dev->csc);
1008 }
1009
1010 static void add_out_dtd(struct vpe_ctx *ctx, int port)
1011 {
1012 struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_DST];
1013 const struct vpe_port_data *p_data = &port_data[port];
1014 struct vb2_buffer *vb = &ctx->dst_vb->vb2_buf;
1015 struct vpe_fmt *fmt = q_data->fmt;
1016 const struct vpdma_data_format *vpdma_fmt;
1017 int mv_buf_selector = !ctx->src_mv_buf_selector;
1018 dma_addr_t dma_addr;
1019 u32 flags = 0;
1020 u32 offset = 0;
1021 u32 stride;
1022
1023 if (port == VPE_PORT_MV_OUT) {
1024 vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1025 dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1026 q_data = &ctx->q_data[Q_DATA_SRC];
1027 stride = ALIGN((q_data->width * vpdma_fmt->depth) >> 3,
1028 VPDMA_STRIDE_ALIGN);
1029 } else {
1030 /* to incorporate interleaved formats */
1031 int plane = fmt->coplanar ? p_data->vb_part : 0;
1032
1033 vpdma_fmt = fmt->vpdma_fmt[plane];
1034 /*
1035 * If we are using a single plane buffer and
1036 * we need to set a separate vpdma chroma channel.
1037 */
1038 if (q_data->nplanes == 1 && plane) {
1039 dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
1040 /* Compute required offset */
1041 offset = q_data->bytesperline[0] * q_data->height;
1042 } else {
1043 dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1044 /* Use address as is, no offset */
1045 offset = 0;
1046 }
1047 if (!dma_addr) {
1048 vpe_err(ctx->dev,
1049 "acquiring output buffer(%d) dma_addr failed\n",
1050 port);
1051 return;
1052 }
1053 /* Apply the offset */
1054 dma_addr += offset;
1055 stride = q_data->bytesperline[VPE_LUMA];
1056 }
1057
1058 if (q_data->flags & Q_DATA_FRAME_1D)
1059 flags |= VPDMA_DATA_FRAME_1D;
1060 if (q_data->flags & Q_DATA_MODE_TILED)
1061 flags |= VPDMA_DATA_MODE_TILED;
1062
1063 vpdma_set_max_size(ctx->dev->vpdma, VPDMA_MAX_SIZE1,
1064 MAX_W, MAX_H);
1065
1066 vpdma_add_out_dtd(&ctx->desc_list, q_data->width,
1067 stride, &q_data->c_rect,
1068 vpdma_fmt, dma_addr, MAX_OUT_WIDTH_REG1,
1069 MAX_OUT_HEIGHT_REG1, p_data->channel, flags);
1070 }
1071
1072 static void add_in_dtd(struct vpe_ctx *ctx, int port)
1073 {
1074 struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_SRC];
1075 const struct vpe_port_data *p_data = &port_data[port];
1076 struct vb2_buffer *vb = &ctx->src_vbs[p_data->vb_index]->vb2_buf;
1077 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1078 struct vpe_fmt *fmt = q_data->fmt;
1079 const struct vpdma_data_format *vpdma_fmt;
1080 int mv_buf_selector = ctx->src_mv_buf_selector;
1081 int field = vbuf->field == V4L2_FIELD_BOTTOM;
1082 int frame_width, frame_height;
1083 dma_addr_t dma_addr;
1084 u32 flags = 0;
1085 u32 offset = 0;
1086 u32 stride;
1087
1088 if (port == VPE_PORT_MV_IN) {
1089 vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1090 dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1091 stride = ALIGN((q_data->width * vpdma_fmt->depth) >> 3,
1092 VPDMA_STRIDE_ALIGN);
1093 } else {
1094 /* to incorporate interleaved formats */
1095 int plane = fmt->coplanar ? p_data->vb_part : 0;
1096
1097 vpdma_fmt = fmt->vpdma_fmt[plane];
1098 /*
1099 * If we are using a single plane buffer and
1100 * we need to set a separate vpdma chroma channel.
1101 */
1102 if (q_data->nplanes == 1 && plane) {
1103 dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
1104 /* Compute required offset */
1105 offset = q_data->bytesperline[0] * q_data->height;
1106 } else {
1107 dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1108 /* Use address as is, no offset */
1109 offset = 0;
1110 }
1111 if (!dma_addr) {
1112 vpe_err(ctx->dev,
1113 "acquiring output buffer(%d) dma_addr failed\n",
1114 port);
1115 return;
1116 }
1117 /* Apply the offset */
1118 dma_addr += offset;
1119 stride = q_data->bytesperline[VPE_LUMA];
1120
1121 if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB) {
1122 /*
1123 * Use top or bottom field from same vb alternately
1124 * f,f-1,f-2 = TBT when seq is even
1125 * f,f-1,f-2 = BTB when seq is odd
1126 */
1127 field = (p_data->vb_index + (ctx->sequence % 2)) % 2;
1128
1129 if (field) {
1130 /*
1131 * bottom field of a SEQ_TB buffer
1132 * Skip the top field data by
1133 */
1134 int height = q_data->height / 2;
1135 int bpp = fmt->fourcc == V4L2_PIX_FMT_NV12 ?
1136 1 : (vpdma_fmt->depth >> 3);
1137 if (plane)
1138 height /= 2;
1139 dma_addr += q_data->width * height * bpp;
1140 }
1141 }
1142 }
1143
1144 if (q_data->flags & Q_DATA_FRAME_1D)
1145 flags |= VPDMA_DATA_FRAME_1D;
1146 if (q_data->flags & Q_DATA_MODE_TILED)
1147 flags |= VPDMA_DATA_MODE_TILED;
1148
1149 frame_width = q_data->c_rect.width;
1150 frame_height = q_data->c_rect.height;
1151
1152 if (p_data->vb_part && fmt->fourcc == V4L2_PIX_FMT_NV12)
1153 frame_height /= 2;
1154
1155 vpdma_add_in_dtd(&ctx->desc_list, q_data->width, stride,
1156 &q_data->c_rect, vpdma_fmt, dma_addr,
1157 p_data->channel, field, flags, frame_width,
1158 frame_height, 0, 0);
1159 }
1160
1161 /*
1162 * Enable the expected IRQ sources
1163 */
1164 static void enable_irqs(struct vpe_ctx *ctx)
1165 {
1166 write_reg(ctx->dev, VPE_INT0_ENABLE0_SET, VPE_INT0_LIST0_COMPLETE);
1167 write_reg(ctx->dev, VPE_INT0_ENABLE1_SET, VPE_DEI_ERROR_INT |
1168 VPE_DS1_UV_ERROR_INT);
1169
1170 vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, true);
1171 }
1172
1173 static void disable_irqs(struct vpe_ctx *ctx)
1174 {
1175 write_reg(ctx->dev, VPE_INT0_ENABLE0_CLR, 0xffffffff);
1176 write_reg(ctx->dev, VPE_INT0_ENABLE1_CLR, 0xffffffff);
1177
1178 vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, false);
1179 }
1180
1181 /* device_run() - prepares and starts the device
1182 *
1183 * This function is only called when both the source and destination
1184 * buffers are in place.
1185 */
1186 static void device_run(void *priv)
1187 {
1188 struct vpe_ctx *ctx = priv;
1189 struct sc_data *sc = ctx->dev->sc;
1190 struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
1191 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
1192
1193 if (ctx->deinterlacing && s_q_data->flags & Q_DATA_INTERLACED_SEQ_TB &&
1194 ctx->sequence % 2 == 0) {
1195 /* When using SEQ_TB buffers, When using it first time,
1196 * No need to remove the buffer as the next field is present
1197 * in the same buffer. (so that job_ready won't fail)
1198 * It will be removed when using bottom field
1199 */
1200 ctx->src_vbs[0] = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx);
1201 WARN_ON(ctx->src_vbs[0] == NULL);
1202 } else {
1203 ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1204 WARN_ON(ctx->src_vbs[0] == NULL);
1205 }
1206
1207 ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1208 WARN_ON(ctx->dst_vb == NULL);
1209
1210 if (ctx->deinterlacing) {
1211
1212 if (ctx->src_vbs[2] == NULL) {
1213 ctx->src_vbs[2] = ctx->src_vbs[0];
1214 WARN_ON(ctx->src_vbs[2] == NULL);
1215 ctx->src_vbs[1] = ctx->src_vbs[0];
1216 WARN_ON(ctx->src_vbs[1] == NULL);
1217 }
1218
1219 /*
1220 * we have output the first 2 frames through line average, we
1221 * now switch to EDI de-interlacer
1222 */
1223 if (ctx->sequence == 2)
1224 config_edi_input_mode(ctx, 0x3); /* EDI (Y + UV) */
1225 }
1226
1227 /* config descriptors */
1228 if (ctx->dev->loaded_mmrs != ctx->mmr_adb.dma_addr || ctx->load_mmrs) {
1229 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->mmr_adb);
1230 vpdma_add_cfd_adb(&ctx->desc_list, CFD_MMR_CLIENT, &ctx->mmr_adb);
1231
1232 set_line_modes(ctx);
1233
1234 ctx->dev->loaded_mmrs = ctx->mmr_adb.dma_addr;
1235 ctx->load_mmrs = false;
1236 }
1237
1238 if (sc->loaded_coeff_h != ctx->sc_coeff_h.dma_addr ||
1239 sc->load_coeff_h) {
1240 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_h);
1241 vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1242 &ctx->sc_coeff_h, 0);
1243
1244 sc->loaded_coeff_h = ctx->sc_coeff_h.dma_addr;
1245 sc->load_coeff_h = false;
1246 }
1247
1248 if (sc->loaded_coeff_v != ctx->sc_coeff_v.dma_addr ||
1249 sc->load_coeff_v) {
1250 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_v);
1251 vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1252 &ctx->sc_coeff_v, SC_COEF_SRAM_SIZE >> 4);
1253
1254 sc->loaded_coeff_v = ctx->sc_coeff_v.dma_addr;
1255 sc->load_coeff_v = false;
1256 }
1257
1258 /* output data descriptors */
1259 if (ctx->deinterlacing)
1260 add_out_dtd(ctx, VPE_PORT_MV_OUT);
1261
1262 if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
1263 add_out_dtd(ctx, VPE_PORT_RGB_OUT);
1264 } else {
1265 add_out_dtd(ctx, VPE_PORT_LUMA_OUT);
1266 if (d_q_data->fmt->coplanar)
1267 add_out_dtd(ctx, VPE_PORT_CHROMA_OUT);
1268 }
1269
1270 /* input data descriptors */
1271 if (ctx->deinterlacing) {
1272 add_in_dtd(ctx, VPE_PORT_LUMA3_IN);
1273 add_in_dtd(ctx, VPE_PORT_CHROMA3_IN);
1274
1275 add_in_dtd(ctx, VPE_PORT_LUMA2_IN);
1276 add_in_dtd(ctx, VPE_PORT_CHROMA2_IN);
1277 }
1278
1279 add_in_dtd(ctx, VPE_PORT_LUMA1_IN);
1280 add_in_dtd(ctx, VPE_PORT_CHROMA1_IN);
1281
1282 if (ctx->deinterlacing)
1283 add_in_dtd(ctx, VPE_PORT_MV_IN);
1284
1285 /* sync on channel control descriptors for input ports */
1286 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA1_IN);
1287 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA1_IN);
1288
1289 if (ctx->deinterlacing) {
1290 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1291 VPE_CHAN_LUMA2_IN);
1292 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1293 VPE_CHAN_CHROMA2_IN);
1294
1295 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1296 VPE_CHAN_LUMA3_IN);
1297 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1298 VPE_CHAN_CHROMA3_IN);
1299
1300 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_IN);
1301 }
1302
1303 /* sync on channel control descriptors for output ports */
1304 if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
1305 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1306 VPE_CHAN_RGB_OUT);
1307 } else {
1308 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1309 VPE_CHAN_LUMA_OUT);
1310 if (d_q_data->fmt->coplanar)
1311 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1312 VPE_CHAN_CHROMA_OUT);
1313 }
1314
1315 if (ctx->deinterlacing)
1316 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_OUT);
1317
1318 enable_irqs(ctx);
1319
1320 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->desc_list.buf);
1321 vpdma_submit_descs(ctx->dev->vpdma, &ctx->desc_list, 0);
1322 }
1323
1324 static void dei_error(struct vpe_ctx *ctx)
1325 {
1326 dev_warn(ctx->dev->v4l2_dev.dev,
1327 "received DEI error interrupt\n");
1328 }
1329
1330 static void ds1_uv_error(struct vpe_ctx *ctx)
1331 {
1332 dev_warn(ctx->dev->v4l2_dev.dev,
1333 "received downsampler error interrupt\n");
1334 }
1335
1336 static irqreturn_t vpe_irq(int irq_vpe, void *data)
1337 {
1338 struct vpe_dev *dev = (struct vpe_dev *)data;
1339 struct vpe_ctx *ctx;
1340 struct vpe_q_data *d_q_data;
1341 struct vb2_v4l2_buffer *s_vb, *d_vb;
1342 unsigned long flags;
1343 u32 irqst0, irqst1;
1344 bool list_complete = false;
1345
1346 irqst0 = read_reg(dev, VPE_INT0_STATUS0);
1347 if (irqst0) {
1348 write_reg(dev, VPE_INT0_STATUS0_CLR, irqst0);
1349 vpe_dbg(dev, "INT0_STATUS0 = 0x%08x\n", irqst0);
1350 }
1351
1352 irqst1 = read_reg(dev, VPE_INT0_STATUS1);
1353 if (irqst1) {
1354 write_reg(dev, VPE_INT0_STATUS1_CLR, irqst1);
1355 vpe_dbg(dev, "INT0_STATUS1 = 0x%08x\n", irqst1);
1356 }
1357
1358 ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
1359 if (!ctx) {
1360 vpe_err(dev, "instance released before end of transaction\n");
1361 goto handled;
1362 }
1363
1364 if (irqst1) {
1365 if (irqst1 & VPE_DEI_ERROR_INT) {
1366 irqst1 &= ~VPE_DEI_ERROR_INT;
1367 dei_error(ctx);
1368 }
1369 if (irqst1 & VPE_DS1_UV_ERROR_INT) {
1370 irqst1 &= ~VPE_DS1_UV_ERROR_INT;
1371 ds1_uv_error(ctx);
1372 }
1373 }
1374
1375 if (irqst0) {
1376 if (irqst0 & VPE_INT0_LIST0_COMPLETE)
1377 vpdma_clear_list_stat(ctx->dev->vpdma, 0, 0);
1378
1379 irqst0 &= ~(VPE_INT0_LIST0_COMPLETE);
1380 list_complete = true;
1381 }
1382
1383 if (irqst0 | irqst1) {
1384 dev_warn(dev->v4l2_dev.dev, "Unexpected interrupt: INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n",
1385 irqst0, irqst1);
1386 }
1387
1388 /*
1389 * Setup next operation only when list complete IRQ occurs
1390 * otherwise, skip the following code
1391 */
1392 if (!list_complete)
1393 goto handled;
1394
1395 disable_irqs(ctx);
1396
1397 vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
1398 vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
1399 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
1400 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
1401
1402 vpdma_reset_desc_list(&ctx->desc_list);
1403
1404 /* the previous dst mv buffer becomes the next src mv buffer */
1405 ctx->src_mv_buf_selector = !ctx->src_mv_buf_selector;
1406
1407 if (ctx->aborting)
1408 goto finished;
1409
1410 s_vb = ctx->src_vbs[0];
1411 d_vb = ctx->dst_vb;
1412
1413 d_vb->flags = s_vb->flags;
1414 d_vb->vb2_buf.timestamp = s_vb->vb2_buf.timestamp;
1415
1416 if (s_vb->flags & V4L2_BUF_FLAG_TIMECODE)
1417 d_vb->timecode = s_vb->timecode;
1418
1419 d_vb->sequence = ctx->sequence;
1420 s_vb->sequence = ctx->sequence;
1421
1422 d_q_data = &ctx->q_data[Q_DATA_DST];
1423 if (d_q_data->flags & Q_IS_INTERLACED) {
1424 d_vb->field = ctx->field;
1425 if (ctx->field == V4L2_FIELD_BOTTOM) {
1426 ctx->sequence++;
1427 ctx->field = V4L2_FIELD_TOP;
1428 } else {
1429 WARN_ON(ctx->field != V4L2_FIELD_TOP);
1430 ctx->field = V4L2_FIELD_BOTTOM;
1431 }
1432 } else {
1433 d_vb->field = V4L2_FIELD_NONE;
1434 ctx->sequence++;
1435 }
1436
1437 if (ctx->deinterlacing) {
1438 /*
1439 * Allow source buffer to be dequeued only if it won't be used
1440 * in the next iteration. All vbs are initialized to first
1441 * buffer and we are shifting buffers every iteration, for the
1442 * first two iterations, no buffer will be dequeued.
1443 * This ensures that driver will keep (n-2)th (n-1)th and (n)th
1444 * field when deinterlacing is enabled
1445 */
1446 if (ctx->src_vbs[2] != ctx->src_vbs[1])
1447 s_vb = ctx->src_vbs[2];
1448 else
1449 s_vb = NULL;
1450 }
1451
1452 spin_lock_irqsave(&dev->lock, flags);
1453
1454 if (s_vb)
1455 v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE);
1456
1457 v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE);
1458
1459 spin_unlock_irqrestore(&dev->lock, flags);
1460
1461 if (ctx->deinterlacing) {
1462 ctx->src_vbs[2] = ctx->src_vbs[1];
1463 ctx->src_vbs[1] = ctx->src_vbs[0];
1464 }
1465
1466 /*
1467 * Since the vb2_buf_done has already been called fir therse
1468 * buffer we can now NULL them out so that we won't try
1469 * to clean out stray pointer later on.
1470 */
1471 ctx->src_vbs[0] = NULL;
1472 ctx->dst_vb = NULL;
1473
1474 ctx->bufs_completed++;
1475 if (ctx->bufs_completed < ctx->bufs_per_job && job_ready(ctx)) {
1476 device_run(ctx);
1477 goto handled;
1478 }
1479
1480 finished:
1481 vpe_dbg(ctx->dev, "finishing transaction\n");
1482 ctx->bufs_completed = 0;
1483 v4l2_m2m_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx);
1484 handled:
1485 return IRQ_HANDLED;
1486 }
1487
1488 /*
1489 * video ioctls
1490 */
1491 static int vpe_querycap(struct file *file, void *priv,
1492 struct v4l2_capability *cap)
1493 {
1494 strscpy(cap->driver, VPE_MODULE_NAME, sizeof(cap->driver));
1495 strscpy(cap->card, VPE_MODULE_NAME, sizeof(cap->card));
1496 snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
1497 VPE_MODULE_NAME);
1498 return 0;
1499 }
1500
1501 static int __enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1502 {
1503 int i, index;
1504 struct vpe_fmt *fmt = NULL;
1505
1506 index = 0;
1507 for (i = 0; i < ARRAY_SIZE(vpe_formats); ++i) {
1508 if (vpe_formats[i].types & type) {
1509 if (index == f->index) {
1510 fmt = &vpe_formats[i];
1511 break;
1512 }
1513 index++;
1514 }
1515 }
1516
1517 if (!fmt)
1518 return -EINVAL;
1519
1520 f->pixelformat = fmt->fourcc;
1521 return 0;
1522 }
1523
1524 static int vpe_enum_fmt(struct file *file, void *priv,
1525 struct v4l2_fmtdesc *f)
1526 {
1527 if (V4L2_TYPE_IS_OUTPUT(f->type))
1528 return __enum_fmt(f, VPE_FMT_TYPE_OUTPUT);
1529
1530 return __enum_fmt(f, VPE_FMT_TYPE_CAPTURE);
1531 }
1532
1533 static int vpe_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1534 {
1535 struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1536 struct vpe_ctx *ctx = file2ctx(file);
1537 struct vb2_queue *vq;
1538 struct vpe_q_data *q_data;
1539 int i;
1540
1541 vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1542 if (!vq)
1543 return -EINVAL;
1544
1545 q_data = get_q_data(ctx, f->type);
1546
1547 pix->width = q_data->width;
1548 pix->height = q_data->height;
1549 pix->pixelformat = q_data->fmt->fourcc;
1550 pix->field = q_data->field;
1551
1552 if (V4L2_TYPE_IS_OUTPUT(f->type)) {
1553 pix->colorspace = q_data->colorspace;
1554 } else {
1555 struct vpe_q_data *s_q_data;
1556
1557 /* get colorspace from the source queue */
1558 s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
1559
1560 pix->colorspace = s_q_data->colorspace;
1561 }
1562
1563 pix->num_planes = q_data->nplanes;
1564
1565 for (i = 0; i < pix->num_planes; i++) {
1566 pix->plane_fmt[i].bytesperline = q_data->bytesperline[i];
1567 pix->plane_fmt[i].sizeimage = q_data->sizeimage[i];
1568 }
1569
1570 return 0;
1571 }
1572
1573 static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
1574 struct vpe_fmt *fmt, int type)
1575 {
1576 struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1577 struct v4l2_plane_pix_format *plane_fmt;
1578 unsigned int w_align;
1579 int i, depth, depth_bytes, height;
1580 unsigned int stride = 0;
1581
1582 if (!fmt || !(fmt->types & type)) {
1583 vpe_dbg(ctx->dev, "Fourcc format (0x%08x) invalid.\n",
1584 pix->pixelformat);
1585 fmt = __find_format(V4L2_PIX_FMT_YUYV);
1586 }
1587
1588 if (pix->field != V4L2_FIELD_NONE && pix->field != V4L2_FIELD_ALTERNATE
1589 && pix->field != V4L2_FIELD_SEQ_TB)
1590 pix->field = V4L2_FIELD_NONE;
1591
1592 depth = fmt->vpdma_fmt[VPE_LUMA]->depth;
1593
1594 /*
1595 * the line stride should 16 byte aligned for VPDMA to work, based on
1596 * the bytes per pixel, figure out how much the width should be aligned
1597 * to make sure line stride is 16 byte aligned
1598 */
1599 depth_bytes = depth >> 3;
1600
1601 if (depth_bytes == 3) {
1602 /*
1603 * if bpp is 3(as in some RGB formats), the pixel width doesn't
1604 * really help in ensuring line stride is 16 byte aligned
1605 */
1606 w_align = 4;
1607 } else {
1608 /*
1609 * for the remainder bpp(4, 2 and 1), the pixel width alignment
1610 * can ensure a line stride alignment of 16 bytes. For example,
1611 * if bpp is 2, then the line stride can be 16 byte aligned if
1612 * the width is 8 byte aligned
1613 */
1614
1615 /*
1616 * HACK: using order_base_2() here causes lots of asm output
1617 * errors with smatch, on i386:
1618 * ./arch/x86/include/asm/bitops.h:457:22:
1619 * warning: asm output is not an lvalue
1620 * Perhaps some gcc optimization is doing the wrong thing
1621 * there.
1622 * Let's get rid of them by doing the calculus on two steps
1623 */
1624 w_align = roundup_pow_of_two(VPDMA_DESC_ALIGN / depth_bytes);
1625 w_align = ilog2(w_align);
1626 }
1627
1628 v4l_bound_align_image(&pix->width, MIN_W, MAX_W, w_align,
1629 &pix->height, MIN_H, MAX_H, H_ALIGN,
1630 S_ALIGN);
1631
1632 if (!pix->num_planes)
1633 pix->num_planes = fmt->coplanar ? 2 : 1;
1634 else if (pix->num_planes > 1 && !fmt->coplanar)
1635 pix->num_planes = 1;
1636
1637 pix->pixelformat = fmt->fourcc;
1638
1639 /*
1640 * For the actual image parameters, we need to consider the field
1641 * height of the image for SEQ_TB buffers.
1642 */
1643 if (pix->field == V4L2_FIELD_SEQ_TB)
1644 height = pix->height / 2;
1645 else
1646 height = pix->height;
1647
1648 if (!pix->colorspace) {
1649 if (fmt->fourcc == V4L2_PIX_FMT_RGB24 ||
1650 fmt->fourcc == V4L2_PIX_FMT_BGR24 ||
1651 fmt->fourcc == V4L2_PIX_FMT_RGB32 ||
1652 fmt->fourcc == V4L2_PIX_FMT_BGR32) {
1653 pix->colorspace = V4L2_COLORSPACE_SRGB;
1654 } else {
1655 if (height > 1280) /* HD */
1656 pix->colorspace = V4L2_COLORSPACE_REC709;
1657 else /* SD */
1658 pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1659 }
1660 }
1661
1662 memset(pix->reserved, 0, sizeof(pix->reserved));
1663 for (i = 0; i < pix->num_planes; i++) {
1664 plane_fmt = &pix->plane_fmt[i];
1665 depth = fmt->vpdma_fmt[i]->depth;
1666
1667 stride = (pix->width * fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
1668 if (stride > plane_fmt->bytesperline)
1669 plane_fmt->bytesperline = stride;
1670
1671 plane_fmt->bytesperline = ALIGN(plane_fmt->bytesperline,
1672 VPDMA_STRIDE_ALIGN);
1673
1674 if (i == VPE_LUMA) {
1675 plane_fmt->sizeimage = pix->height *
1676 plane_fmt->bytesperline;
1677
1678 if (pix->num_planes == 1 && fmt->coplanar)
1679 plane_fmt->sizeimage += pix->height *
1680 plane_fmt->bytesperline *
1681 fmt->vpdma_fmt[VPE_CHROMA]->depth >> 3;
1682
1683 } else { /* i == VIP_CHROMA */
1684 plane_fmt->sizeimage = (pix->height *
1685 plane_fmt->bytesperline *
1686 depth) >> 3;
1687 }
1688 memset(plane_fmt->reserved, 0, sizeof(plane_fmt->reserved));
1689 }
1690
1691 return 0;
1692 }
1693
1694 static int vpe_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1695 {
1696 struct vpe_ctx *ctx = file2ctx(file);
1697 struct vpe_fmt *fmt = find_format(f);
1698
1699 if (V4L2_TYPE_IS_OUTPUT(f->type))
1700 return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_OUTPUT);
1701 else
1702 return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_CAPTURE);
1703 }
1704
1705 static int __vpe_s_fmt(struct vpe_ctx *ctx, struct v4l2_format *f)
1706 {
1707 struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1708 struct v4l2_plane_pix_format *plane_fmt;
1709 struct vpe_q_data *q_data;
1710 struct vb2_queue *vq;
1711 int i;
1712
1713 vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1714 if (!vq)
1715 return -EINVAL;
1716
1717 if (vb2_is_busy(vq)) {
1718 vpe_err(ctx->dev, "queue busy\n");
1719 return -EBUSY;
1720 }
1721
1722 q_data = get_q_data(ctx, f->type);
1723 if (!q_data)
1724 return -EINVAL;
1725
1726 q_data->fmt = find_format(f);
1727 q_data->width = pix->width;
1728 q_data->height = pix->height;
1729 q_data->colorspace = pix->colorspace;
1730 q_data->field = pix->field;
1731 q_data->nplanes = pix->num_planes;
1732
1733 for (i = 0; i < pix->num_planes; i++) {
1734 plane_fmt = &pix->plane_fmt[i];
1735
1736 q_data->bytesperline[i] = plane_fmt->bytesperline;
1737 q_data->sizeimage[i] = plane_fmt->sizeimage;
1738 }
1739
1740 q_data->c_rect.left = 0;
1741 q_data->c_rect.top = 0;
1742 q_data->c_rect.width = q_data->width;
1743 q_data->c_rect.height = q_data->height;
1744
1745 if (q_data->field == V4L2_FIELD_ALTERNATE)
1746 q_data->flags |= Q_DATA_INTERLACED_ALTERNATE;
1747 else if (q_data->field == V4L2_FIELD_SEQ_TB)
1748 q_data->flags |= Q_DATA_INTERLACED_SEQ_TB;
1749 else
1750 q_data->flags &= ~Q_IS_INTERLACED;
1751
1752 /* the crop height is halved for the case of SEQ_TB buffers */
1753 if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB)
1754 q_data->c_rect.height /= 2;
1755
1756 vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
1757 f->type, q_data->width, q_data->height, q_data->fmt->fourcc,
1758 q_data->bytesperline[VPE_LUMA]);
1759 if (q_data->nplanes == 2)
1760 vpe_dbg(ctx->dev, " bpl_uv %d\n",
1761 q_data->bytesperline[VPE_CHROMA]);
1762
1763 return 0;
1764 }
1765
1766 static int vpe_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1767 {
1768 int ret;
1769 struct vpe_ctx *ctx = file2ctx(file);
1770
1771 ret = vpe_try_fmt(file, priv, f);
1772 if (ret)
1773 return ret;
1774
1775 ret = __vpe_s_fmt(ctx, f);
1776 if (ret)
1777 return ret;
1778
1779 if (V4L2_TYPE_IS_OUTPUT(f->type))
1780 set_src_registers(ctx);
1781 else
1782 set_dst_registers(ctx);
1783
1784 return set_srcdst_params(ctx);
1785 }
1786
1787 static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s)
1788 {
1789 struct vpe_q_data *q_data;
1790 int height;
1791
1792 if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1793 (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1794 return -EINVAL;
1795
1796 q_data = get_q_data(ctx, s->type);
1797 if (!q_data)
1798 return -EINVAL;
1799
1800 switch (s->target) {
1801 case V4L2_SEL_TGT_COMPOSE:
1802 /*
1803 * COMPOSE target is only valid for capture buffer type, return
1804 * error for output buffer type
1805 */
1806 if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1807 return -EINVAL;
1808 break;
1809 case V4L2_SEL_TGT_CROP:
1810 /*
1811 * CROP target is only valid for output buffer type, return
1812 * error for capture buffer type
1813 */
1814 if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1815 return -EINVAL;
1816 break;
1817 /*
1818 * bound and default crop/compose targets are invalid targets to
1819 * try/set
1820 */
1821 default:
1822 return -EINVAL;
1823 }
1824
1825 /*
1826 * For SEQ_TB buffers, crop height should be less than the height of
1827 * the field height, not the buffer height
1828 */
1829 if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB)
1830 height = q_data->height / 2;
1831 else
1832 height = q_data->height;
1833
1834 if (s->r.top < 0 || s->r.left < 0) {
1835 vpe_err(ctx->dev, "negative values for top and left\n");
1836 s->r.top = s->r.left = 0;
1837 }
1838
1839 v4l_bound_align_image(&s->r.width, MIN_W, q_data->width, 1,
1840 &s->r.height, MIN_H, height, H_ALIGN, S_ALIGN);
1841
1842 /* adjust left/top if cropping rectangle is out of bounds */
1843 if (s->r.left + s->r.width > q_data->width)
1844 s->r.left = q_data->width - s->r.width;
1845 if (s->r.top + s->r.height > q_data->height)
1846 s->r.top = q_data->height - s->r.height;
1847
1848 return 0;
1849 }
1850
1851 static int vpe_g_selection(struct file *file, void *fh,
1852 struct v4l2_selection *s)
1853 {
1854 struct vpe_ctx *ctx = file2ctx(file);
1855 struct vpe_q_data *q_data;
1856 bool use_c_rect = false;
1857
1858 if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1859 (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1860 return -EINVAL;
1861
1862 q_data = get_q_data(ctx, s->type);
1863 if (!q_data)
1864 return -EINVAL;
1865
1866 switch (s->target) {
1867 case V4L2_SEL_TGT_COMPOSE_DEFAULT:
1868 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
1869 if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1870 return -EINVAL;
1871 break;
1872 case V4L2_SEL_TGT_CROP_BOUNDS:
1873 case V4L2_SEL_TGT_CROP_DEFAULT:
1874 if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1875 return -EINVAL;
1876 break;
1877 case V4L2_SEL_TGT_COMPOSE:
1878 if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1879 return -EINVAL;
1880 use_c_rect = true;
1881 break;
1882 case V4L2_SEL_TGT_CROP:
1883 if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1884 return -EINVAL;
1885 use_c_rect = true;
1886 break;
1887 default:
1888 return -EINVAL;
1889 }
1890
1891 if (use_c_rect) {
1892 /*
1893 * for CROP/COMPOSE target type, return c_rect params from the
1894 * respective buffer type
1895 */
1896 s->r = q_data->c_rect;
1897 } else {
1898 /*
1899 * for DEFAULT/BOUNDS target type, return width and height from
1900 * S_FMT of the respective buffer type
1901 */
1902 s->r.left = 0;
1903 s->r.top = 0;
1904 s->r.width = q_data->width;
1905 s->r.height = q_data->height;
1906 }
1907
1908 return 0;
1909 }
1910
1911
1912 static int vpe_s_selection(struct file *file, void *fh,
1913 struct v4l2_selection *s)
1914 {
1915 struct vpe_ctx *ctx = file2ctx(file);
1916 struct vpe_q_data *q_data;
1917 struct v4l2_selection sel = *s;
1918 int ret;
1919
1920 ret = __vpe_try_selection(ctx, &sel);
1921 if (ret)
1922 return ret;
1923
1924 q_data = get_q_data(ctx, sel.type);
1925 if (!q_data)
1926 return -EINVAL;
1927
1928 if ((q_data->c_rect.left == sel.r.left) &&
1929 (q_data->c_rect.top == sel.r.top) &&
1930 (q_data->c_rect.width == sel.r.width) &&
1931 (q_data->c_rect.height == sel.r.height)) {
1932 vpe_dbg(ctx->dev,
1933 "requested crop/compose values are already set\n");
1934 return 0;
1935 }
1936
1937 q_data->c_rect = sel.r;
1938
1939 return set_srcdst_params(ctx);
1940 }
1941
1942 /*
1943 * defines number of buffers/frames a context can process with VPE before
1944 * switching to a different context. default value is 1 buffer per context
1945 */
1946 #define V4L2_CID_VPE_BUFS_PER_JOB (V4L2_CID_USER_TI_VPE_BASE + 0)
1947
1948 static int vpe_s_ctrl(struct v4l2_ctrl *ctrl)
1949 {
1950 struct vpe_ctx *ctx =
1951 container_of(ctrl->handler, struct vpe_ctx, hdl);
1952
1953 switch (ctrl->id) {
1954 case V4L2_CID_VPE_BUFS_PER_JOB:
1955 ctx->bufs_per_job = ctrl->val;
1956 break;
1957
1958 default:
1959 vpe_err(ctx->dev, "Invalid control\n");
1960 return -EINVAL;
1961 }
1962
1963 return 0;
1964 }
1965
1966 static const struct v4l2_ctrl_ops vpe_ctrl_ops = {
1967 .s_ctrl = vpe_s_ctrl,
1968 };
1969
1970 static const struct v4l2_ioctl_ops vpe_ioctl_ops = {
1971 .vidioc_querycap = vpe_querycap,
1972
1973 .vidioc_enum_fmt_vid_cap = vpe_enum_fmt,
1974 .vidioc_g_fmt_vid_cap_mplane = vpe_g_fmt,
1975 .vidioc_try_fmt_vid_cap_mplane = vpe_try_fmt,
1976 .vidioc_s_fmt_vid_cap_mplane = vpe_s_fmt,
1977
1978 .vidioc_enum_fmt_vid_out = vpe_enum_fmt,
1979 .vidioc_g_fmt_vid_out_mplane = vpe_g_fmt,
1980 .vidioc_try_fmt_vid_out_mplane = vpe_try_fmt,
1981 .vidioc_s_fmt_vid_out_mplane = vpe_s_fmt,
1982
1983 .vidioc_g_selection = vpe_g_selection,
1984 .vidioc_s_selection = vpe_s_selection,
1985
1986 .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs,
1987 .vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
1988 .vidioc_qbuf = v4l2_m2m_ioctl_qbuf,
1989 .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
1990 .vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
1991 .vidioc_streamon = v4l2_m2m_ioctl_streamon,
1992 .vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
1993
1994 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1995 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1996 };
1997
1998 /*
1999 * Queue operations
2000 */
2001 static int vpe_queue_setup(struct vb2_queue *vq,
2002 unsigned int *nbuffers, unsigned int *nplanes,
2003 unsigned int sizes[], struct device *alloc_devs[])
2004 {
2005 int i;
2006 struct vpe_ctx *ctx = vb2_get_drv_priv(vq);
2007 struct vpe_q_data *q_data;
2008
2009 q_data = get_q_data(ctx, vq->type);
2010
2011 *nplanes = q_data->nplanes;
2012
2013 for (i = 0; i < *nplanes; i++)
2014 sizes[i] = q_data->sizeimage[i];
2015
2016 vpe_dbg(ctx->dev, "get %d buffer(s) of size %d", *nbuffers,
2017 sizes[VPE_LUMA]);
2018 if (q_data->nplanes == 2)
2019 vpe_dbg(ctx->dev, " and %d\n", sizes[VPE_CHROMA]);
2020
2021 return 0;
2022 }
2023
2024 static int vpe_buf_prepare(struct vb2_buffer *vb)
2025 {
2026 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
2027 struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
2028 struct vpe_q_data *q_data;
2029 int i, num_planes;
2030
2031 vpe_dbg(ctx->dev, "type: %d\n", vb->vb2_queue->type);
2032
2033 q_data = get_q_data(ctx, vb->vb2_queue->type);
2034 num_planes = q_data->nplanes;
2035
2036 if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
2037 if (!(q_data->flags & Q_IS_INTERLACED)) {
2038 vbuf->field = V4L2_FIELD_NONE;
2039 } else {
2040 if (vbuf->field != V4L2_FIELD_TOP &&
2041 vbuf->field != V4L2_FIELD_BOTTOM &&
2042 vbuf->field != V4L2_FIELD_SEQ_TB)
2043 return -EINVAL;
2044 }
2045 }
2046
2047 for (i = 0; i < num_planes; i++) {
2048 if (vb2_plane_size(vb, i) < q_data->sizeimage[i]) {
2049 vpe_err(ctx->dev,
2050 "data will not fit into plane (%lu < %lu)\n",
2051 vb2_plane_size(vb, i),
2052 (long) q_data->sizeimage[i]);
2053 return -EINVAL;
2054 }
2055 }
2056
2057 for (i = 0; i < num_planes; i++)
2058 vb2_set_plane_payload(vb, i, q_data->sizeimage[i]);
2059
2060 return 0;
2061 }
2062
2063 static void vpe_buf_queue(struct vb2_buffer *vb)
2064 {
2065 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
2066 struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
2067
2068 v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
2069 }
2070
2071 static int check_srcdst_sizes(struct vpe_ctx *ctx)
2072 {
2073 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
2074 struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
2075 unsigned int src_w = s_q_data->c_rect.width;
2076 unsigned int src_h = s_q_data->c_rect.height;
2077 unsigned int dst_w = d_q_data->c_rect.width;
2078 unsigned int dst_h = d_q_data->c_rect.height;
2079
2080 if (src_w == dst_w && src_h == dst_h)
2081 return 0;
2082
2083 if (src_h <= SC_MAX_PIXEL_HEIGHT &&
2084 src_w <= SC_MAX_PIXEL_WIDTH &&
2085 dst_h <= SC_MAX_PIXEL_HEIGHT &&
2086 dst_w <= SC_MAX_PIXEL_WIDTH)
2087 return 0;
2088
2089 return -1;
2090 }
2091
2092 static void vpe_return_all_buffers(struct vpe_ctx *ctx, struct vb2_queue *q,
2093 enum vb2_buffer_state state)
2094 {
2095 struct vb2_v4l2_buffer *vb;
2096 unsigned long flags;
2097
2098 for (;;) {
2099 if (V4L2_TYPE_IS_OUTPUT(q->type))
2100 vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
2101 else
2102 vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
2103 if (!vb)
2104 break;
2105 spin_lock_irqsave(&ctx->dev->lock, flags);
2106 v4l2_m2m_buf_done(vb, state);
2107 spin_unlock_irqrestore(&ctx->dev->lock, flags);
2108 }
2109
2110 /*
2111 * Cleanup the in-transit vb2 buffers that have been
2112 * removed from their respective queue already but for
2113 * which procecessing has not been completed yet.
2114 */
2115 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
2116 spin_lock_irqsave(&ctx->dev->lock, flags);
2117
2118 if (ctx->src_vbs[2])
2119 v4l2_m2m_buf_done(ctx->src_vbs[2], state);
2120
2121 if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
2122 v4l2_m2m_buf_done(ctx->src_vbs[1], state);
2123
2124 if (ctx->src_vbs[0] &&
2125 (ctx->src_vbs[0] != ctx->src_vbs[1]) &&
2126 (ctx->src_vbs[0] != ctx->src_vbs[2]))
2127 v4l2_m2m_buf_done(ctx->src_vbs[0], state);
2128
2129 ctx->src_vbs[2] = NULL;
2130 ctx->src_vbs[1] = NULL;
2131 ctx->src_vbs[0] = NULL;
2132
2133 spin_unlock_irqrestore(&ctx->dev->lock, flags);
2134 } else {
2135 if (ctx->dst_vb) {
2136 spin_lock_irqsave(&ctx->dev->lock, flags);
2137
2138 v4l2_m2m_buf_done(ctx->dst_vb, state);
2139 ctx->dst_vb = NULL;
2140 spin_unlock_irqrestore(&ctx->dev->lock, flags);
2141 }
2142 }
2143 }
2144
2145 static int vpe_start_streaming(struct vb2_queue *q, unsigned int count)
2146 {
2147 struct vpe_ctx *ctx = vb2_get_drv_priv(q);
2148
2149 /* Check any of the size exceed maximum scaling sizes */
2150 if (check_srcdst_sizes(ctx)) {
2151 vpe_err(ctx->dev,
2152 "Conversion setup failed, check source and destination parameters\n"
2153 );
2154 vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_QUEUED);
2155 return -EINVAL;
2156 }
2157
2158 if (ctx->deinterlacing)
2159 config_edi_input_mode(ctx, 0x0);
2160
2161 if (ctx->sequence != 0)
2162 set_srcdst_params(ctx);
2163
2164 return 0;
2165 }
2166
2167 static void vpe_stop_streaming(struct vb2_queue *q)
2168 {
2169 struct vpe_ctx *ctx = vb2_get_drv_priv(q);
2170
2171 vpe_dump_regs(ctx->dev);
2172 vpdma_dump_regs(ctx->dev->vpdma);
2173
2174 vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_ERROR);
2175 }
2176
2177 static const struct vb2_ops vpe_qops = {
2178 .queue_setup = vpe_queue_setup,
2179 .buf_prepare = vpe_buf_prepare,
2180 .buf_queue = vpe_buf_queue,
2181 .wait_prepare = vb2_ops_wait_prepare,
2182 .wait_finish = vb2_ops_wait_finish,
2183 .start_streaming = vpe_start_streaming,
2184 .stop_streaming = vpe_stop_streaming,
2185 };
2186
2187 static int queue_init(void *priv, struct vb2_queue *src_vq,
2188 struct vb2_queue *dst_vq)
2189 {
2190 struct vpe_ctx *ctx = priv;
2191 struct vpe_dev *dev = ctx->dev;
2192 int ret;
2193
2194 memset(src_vq, 0, sizeof(*src_vq));
2195 src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2196 src_vq->io_modes = VB2_MMAP | VB2_DMABUF;
2197 src_vq->drv_priv = ctx;
2198 src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
2199 src_vq->ops = &vpe_qops;
2200 src_vq->mem_ops = &vb2_dma_contig_memops;
2201 src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2202 src_vq->lock = &dev->dev_mutex;
2203 src_vq->dev = dev->v4l2_dev.dev;
2204
2205 ret = vb2_queue_init(src_vq);
2206 if (ret)
2207 return ret;
2208
2209 memset(dst_vq, 0, sizeof(*dst_vq));
2210 dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2211 dst_vq->io_modes = VB2_MMAP | VB2_DMABUF;
2212 dst_vq->drv_priv = ctx;
2213 dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
2214 dst_vq->ops = &vpe_qops;
2215 dst_vq->mem_ops = &vb2_dma_contig_memops;
2216 dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2217 dst_vq->lock = &dev->dev_mutex;
2218 dst_vq->dev = dev->v4l2_dev.dev;
2219
2220 return vb2_queue_init(dst_vq);
2221 }
2222
2223 static const struct v4l2_ctrl_config vpe_bufs_per_job = {
2224 .ops = &vpe_ctrl_ops,
2225 .id = V4L2_CID_VPE_BUFS_PER_JOB,
2226 .name = "Buffers Per Transaction",
2227 .type = V4L2_CTRL_TYPE_INTEGER,
2228 .def = VPE_DEF_BUFS_PER_JOB,
2229 .min = 1,
2230 .max = VIDEO_MAX_FRAME,
2231 .step = 1,
2232 };
2233
2234 /*
2235 * File operations
2236 */
2237 static int vpe_open(struct file *file)
2238 {
2239 struct vpe_dev *dev = video_drvdata(file);
2240 struct vpe_q_data *s_q_data;
2241 struct v4l2_ctrl_handler *hdl;
2242 struct vpe_ctx *ctx;
2243 int ret;
2244
2245 vpe_dbg(dev, "vpe_open\n");
2246
2247 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2248 if (!ctx)
2249 return -ENOMEM;
2250
2251 ctx->dev = dev;
2252
2253 if (mutex_lock_interruptible(&dev->dev_mutex)) {
2254 ret = -ERESTARTSYS;
2255 goto free_ctx;
2256 }
2257
2258 ret = vpdma_create_desc_list(&ctx->desc_list, VPE_DESC_LIST_SIZE,
2259 VPDMA_LIST_TYPE_NORMAL);
2260 if (ret != 0)
2261 goto unlock;
2262
2263 ret = vpdma_alloc_desc_buf(&ctx->mmr_adb, sizeof(struct vpe_mmr_adb));
2264 if (ret != 0)
2265 goto free_desc_list;
2266
2267 ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_h, SC_COEF_SRAM_SIZE);
2268 if (ret != 0)
2269 goto free_mmr_adb;
2270
2271 ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE);
2272 if (ret != 0)
2273 goto free_sc_h;
2274
2275 init_adb_hdrs(ctx);
2276
2277 v4l2_fh_init(&ctx->fh, video_devdata(file));
2278 file->private_data = &ctx->fh;
2279
2280 hdl = &ctx->hdl;
2281 v4l2_ctrl_handler_init(hdl, 1);
2282 v4l2_ctrl_new_custom(hdl, &vpe_bufs_per_job, NULL);
2283 if (hdl->error) {
2284 ret = hdl->error;
2285 goto exit_fh;
2286 }
2287 ctx->fh.ctrl_handler = hdl;
2288 v4l2_ctrl_handler_setup(hdl);
2289
2290 s_q_data = &ctx->q_data[Q_DATA_SRC];
2291 s_q_data->fmt = &vpe_formats[2];
2292 s_q_data->width = 1920;
2293 s_q_data->height = 1080;
2294 s_q_data->nplanes = 1;
2295 s_q_data->bytesperline[VPE_LUMA] = (s_q_data->width *
2296 s_q_data->fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
2297 s_q_data->sizeimage[VPE_LUMA] = (s_q_data->bytesperline[VPE_LUMA] *
2298 s_q_data->height);
2299 s_q_data->colorspace = V4L2_COLORSPACE_REC709;
2300 s_q_data->field = V4L2_FIELD_NONE;
2301 s_q_data->c_rect.left = 0;
2302 s_q_data->c_rect.top = 0;
2303 s_q_data->c_rect.width = s_q_data->width;
2304 s_q_data->c_rect.height = s_q_data->height;
2305 s_q_data->flags = 0;
2306
2307 ctx->q_data[Q_DATA_DST] = *s_q_data;
2308
2309 set_dei_shadow_registers(ctx);
2310 set_src_registers(ctx);
2311 set_dst_registers(ctx);
2312 ret = set_srcdst_params(ctx);
2313 if (ret)
2314 goto exit_fh;
2315
2316 ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &queue_init);
2317
2318 if (IS_ERR(ctx->fh.m2m_ctx)) {
2319 ret = PTR_ERR(ctx->fh.m2m_ctx);
2320 goto exit_fh;
2321 }
2322
2323 v4l2_fh_add(&ctx->fh);
2324
2325 /*
2326 * for now, just report the creation of the first instance, we can later
2327 * optimize the driver to enable or disable clocks when the first
2328 * instance is created or the last instance released
2329 */
2330 if (atomic_inc_return(&dev->num_instances) == 1)
2331 vpe_dbg(dev, "first instance created\n");
2332
2333 ctx->bufs_per_job = VPE_DEF_BUFS_PER_JOB;
2334
2335 ctx->load_mmrs = true;
2336
2337 vpe_dbg(dev, "created instance %p, m2m_ctx: %p\n",
2338 ctx, ctx->fh.m2m_ctx);
2339
2340 mutex_unlock(&dev->dev_mutex);
2341
2342 return 0;
2343 exit_fh:
2344 v4l2_ctrl_handler_free(hdl);
2345 v4l2_fh_exit(&ctx->fh);
2346 vpdma_free_desc_buf(&ctx->sc_coeff_v);
2347 free_sc_h:
2348 vpdma_free_desc_buf(&ctx->sc_coeff_h);
2349 free_mmr_adb:
2350 vpdma_free_desc_buf(&ctx->mmr_adb);
2351 free_desc_list:
2352 vpdma_free_desc_list(&ctx->desc_list);
2353 unlock:
2354 mutex_unlock(&dev->dev_mutex);
2355 free_ctx:
2356 kfree(ctx);
2357 return ret;
2358 }
2359
2360 static int vpe_release(struct file *file)
2361 {
2362 struct vpe_dev *dev = video_drvdata(file);
2363 struct vpe_ctx *ctx = file2ctx(file);
2364
2365 vpe_dbg(dev, "releasing instance %p\n", ctx);
2366
2367 mutex_lock(&dev->dev_mutex);
2368 free_mv_buffers(ctx);
2369 vpdma_free_desc_list(&ctx->desc_list);
2370 vpdma_free_desc_buf(&ctx->mmr_adb);
2371
2372 vpdma_free_desc_buf(&ctx->sc_coeff_v);
2373 vpdma_free_desc_buf(&ctx->sc_coeff_h);
2374
2375 v4l2_fh_del(&ctx->fh);
2376 v4l2_fh_exit(&ctx->fh);
2377 v4l2_ctrl_handler_free(&ctx->hdl);
2378 v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2379
2380 kfree(ctx);
2381
2382 /*
2383 * for now, just report the release of the last instance, we can later
2384 * optimize the driver to enable or disable clocks when the first
2385 * instance is created or the last instance released
2386 */
2387 if (atomic_dec_return(&dev->num_instances) == 0)
2388 vpe_dbg(dev, "last instance released\n");
2389
2390 mutex_unlock(&dev->dev_mutex);
2391
2392 return 0;
2393 }
2394
2395 static const struct v4l2_file_operations vpe_fops = {
2396 .owner = THIS_MODULE,
2397 .open = vpe_open,
2398 .release = vpe_release,
2399 .poll = v4l2_m2m_fop_poll,
2400 .unlocked_ioctl = video_ioctl2,
2401 .mmap = v4l2_m2m_fop_mmap,
2402 };
2403
2404 static const struct video_device vpe_videodev = {
2405 .name = VPE_MODULE_NAME,
2406 .fops = &vpe_fops,
2407 .ioctl_ops = &vpe_ioctl_ops,
2408 .minor = -1,
2409 .release = video_device_release_empty,
2410 .vfl_dir = VFL_DIR_M2M,
2411 .device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
2412 };
2413
2414 static const struct v4l2_m2m_ops m2m_ops = {
2415 .device_run = device_run,
2416 .job_ready = job_ready,
2417 .job_abort = job_abort,
2418 };
2419
2420 static int vpe_runtime_get(struct platform_device *pdev)
2421 {
2422 int r;
2423
2424 dev_dbg(&pdev->dev, "vpe_runtime_get\n");
2425
2426 r = pm_runtime_get_sync(&pdev->dev);
2427 WARN_ON(r < 0);
2428 return r < 0 ? r : 0;
2429 }
2430
2431 static void vpe_runtime_put(struct platform_device *pdev)
2432 {
2433
2434 int r;
2435
2436 dev_dbg(&pdev->dev, "vpe_runtime_put\n");
2437
2438 r = pm_runtime_put_sync(&pdev->dev);
2439 WARN_ON(r < 0 && r != -ENOSYS);
2440 }
2441
2442 static void vpe_fw_cb(struct platform_device *pdev)
2443 {
2444 struct vpe_dev *dev = platform_get_drvdata(pdev);
2445 struct video_device *vfd;
2446 int ret;
2447
2448 vfd = &dev->vfd;
2449 *vfd = vpe_videodev;
2450 vfd->lock = &dev->dev_mutex;
2451 vfd->v4l2_dev = &dev->v4l2_dev;
2452
2453 ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
2454 if (ret) {
2455 vpe_err(dev, "Failed to register video device\n");
2456
2457 vpe_set_clock_enable(dev, 0);
2458 vpe_runtime_put(pdev);
2459 pm_runtime_disable(&pdev->dev);
2460 v4l2_m2m_release(dev->m2m_dev);
2461 v4l2_device_unregister(&dev->v4l2_dev);
2462
2463 return;
2464 }
2465
2466 video_set_drvdata(vfd, dev);
2467 dev_info(dev->v4l2_dev.dev, "Device registered as /dev/video%d\n",
2468 vfd->num);
2469 }
2470
2471 static int vpe_probe(struct platform_device *pdev)
2472 {
2473 struct vpe_dev *dev;
2474 int ret, irq, func;
2475
2476 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
2477 if (!dev)
2478 return -ENOMEM;
2479
2480 spin_lock_init(&dev->lock);
2481
2482 ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
2483 if (ret)
2484 return ret;
2485
2486 atomic_set(&dev->num_instances, 0);
2487 mutex_init(&dev->dev_mutex);
2488
2489 dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2490 "vpe_top");
2491 /*
2492 * HACK: we get resource info from device tree in the form of a list of
2493 * VPE sub blocks, the driver currently uses only the base of vpe_top
2494 * for register access, the driver should be changed later to access
2495 * registers based on the sub block base addresses
2496 */
2497 dev->base = devm_ioremap(&pdev->dev, dev->res->start, SZ_32K);
2498 if (!dev->base) {
2499 ret = -ENOMEM;
2500 goto v4l2_dev_unreg;
2501 }
2502
2503 irq = platform_get_irq(pdev, 0);
2504 ret = devm_request_irq(&pdev->dev, irq, vpe_irq, 0, VPE_MODULE_NAME,
2505 dev);
2506 if (ret)
2507 goto v4l2_dev_unreg;
2508
2509 platform_set_drvdata(pdev, dev);
2510
2511 dev->m2m_dev = v4l2_m2m_init(&m2m_ops);
2512 if (IS_ERR(dev->m2m_dev)) {
2513 vpe_err(dev, "Failed to init mem2mem device\n");
2514 ret = PTR_ERR(dev->m2m_dev);
2515 goto v4l2_dev_unreg;
2516 }
2517
2518 pm_runtime_enable(&pdev->dev);
2519
2520 ret = vpe_runtime_get(pdev);
2521 if (ret)
2522 goto rel_m2m;
2523
2524 /* Perform clk enable followed by reset */
2525 vpe_set_clock_enable(dev, 1);
2526
2527 vpe_top_reset(dev);
2528
2529 func = read_field_reg(dev, VPE_PID, VPE_PID_FUNC_MASK,
2530 VPE_PID_FUNC_SHIFT);
2531 vpe_dbg(dev, "VPE PID function %x\n", func);
2532
2533 vpe_top_vpdma_reset(dev);
2534
2535 dev->sc = sc_create(pdev, "sc");
2536 if (IS_ERR(dev->sc)) {
2537 ret = PTR_ERR(dev->sc);
2538 goto runtime_put;
2539 }
2540
2541 dev->csc = csc_create(pdev, "csc");
2542 if (IS_ERR(dev->csc)) {
2543 ret = PTR_ERR(dev->csc);
2544 goto runtime_put;
2545 }
2546
2547 dev->vpdma = &dev->vpdma_data;
2548 ret = vpdma_create(pdev, dev->vpdma, vpe_fw_cb);
2549 if (ret)
2550 goto runtime_put;
2551
2552 return 0;
2553
2554 runtime_put:
2555 vpe_runtime_put(pdev);
2556 rel_m2m:
2557 pm_runtime_disable(&pdev->dev);
2558 v4l2_m2m_release(dev->m2m_dev);
2559 v4l2_dev_unreg:
2560 v4l2_device_unregister(&dev->v4l2_dev);
2561
2562 return ret;
2563 }
2564
2565 static int vpe_remove(struct platform_device *pdev)
2566 {
2567 struct vpe_dev *dev = platform_get_drvdata(pdev);
2568
2569 v4l2_info(&dev->v4l2_dev, "Removing " VPE_MODULE_NAME);
2570
2571 v4l2_m2m_release(dev->m2m_dev);
2572 video_unregister_device(&dev->vfd);
2573 v4l2_device_unregister(&dev->v4l2_dev);
2574
2575 vpe_set_clock_enable(dev, 0);
2576 vpe_runtime_put(pdev);
2577 pm_runtime_disable(&pdev->dev);
2578
2579 return 0;
2580 }
2581
2582 #if defined(CONFIG_OF)
2583 static const struct of_device_id vpe_of_match[] = {
2584 {
2585 .compatible = "ti,vpe",
2586 },
2587 {},
2588 };
2589 MODULE_DEVICE_TABLE(of, vpe_of_match);
2590 #endif
2591
2592 static struct platform_driver vpe_pdrv = {
2593 .probe = vpe_probe,
2594 .remove = vpe_remove,
2595 .driver = {
2596 .name = VPE_MODULE_NAME,
2597 .of_match_table = of_match_ptr(vpe_of_match),
2598 },
2599 };
2600
2601 module_platform_driver(vpe_pdrv);
2602
2603 MODULE_DESCRIPTION("TI VPE driver");
2604 MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>");
2605 MODULE_LICENSE("GPL");