]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/media/radio/wl128x/fmdrv_common.c
HID: usbhid: Add HID_QUIRK_NOGET for Aten CS-1758 KVM switch
[mirror_ubuntu-artful-kernel.git] / drivers / media / radio / wl128x / fmdrv_common.c
1 /*
2 * FM Driver for Connectivity chip of Texas Instruments.
3 *
4 * This sub-module of FM driver is common for FM RX and TX
5 * functionality. This module is responsible for:
6 * 1) Forming group of Channel-8 commands to perform particular
7 * functionality (eg., frequency set require more than
8 * one Channel-8 command to be sent to the chip).
9 * 2) Sending each Channel-8 command to the chip and reading
10 * response back over Shared Transport.
11 * 3) Managing TX and RX Queues and Tasklets.
12 * 4) Handling FM Interrupt packet and taking appropriate action.
13 * 5) Loading FM firmware to the chip (common, FM TX, and FM RX
14 * firmware files based on mode selection)
15 *
16 * Copyright (C) 2011 Texas Instruments
17 * Author: Raja Mani <raja_mani@ti.com>
18 * Author: Manjunatha Halli <manjunatha_halli@ti.com>
19 *
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License version 2 as
22 * published by the Free Software Foundation.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/firmware.h>
37 #include <linux/delay.h>
38 #include "fmdrv.h"
39 #include "fmdrv_v4l2.h"
40 #include "fmdrv_common.h"
41 #include <linux/ti_wilink_st.h>
42 #include "fmdrv_rx.h"
43 #include "fmdrv_tx.h"
44
45 /* Region info */
46 static struct region_info region_configs[] = {
47 /* Europe/US */
48 {
49 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
50 .bot_freq = 87500, /* 87.5 MHz */
51 .top_freq = 108000, /* 108 MHz */
52 .fm_band = 0,
53 },
54 /* Japan */
55 {
56 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
57 .bot_freq = 76000, /* 76 MHz */
58 .top_freq = 90000, /* 90 MHz */
59 .fm_band = 1,
60 },
61 };
62
63 /* Band selection */
64 static u8 default_radio_region; /* Europe/US */
65 module_param(default_radio_region, byte, 0);
66 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
67
68 /* RDS buffer blocks */
69 static u32 default_rds_buf = 300;
70 module_param(default_rds_buf, uint, 0444);
71 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
72
73 /* Radio Nr */
74 static u32 radio_nr = -1;
75 module_param(radio_nr, int, 0444);
76 MODULE_PARM_DESC(radio_nr, "Radio Nr");
77
78 /* FM irq handlers forward declaration */
79 static void fm_irq_send_flag_getcmd(struct fmdev *);
80 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
81 static void fm_irq_handle_hw_malfunction(struct fmdev *);
82 static void fm_irq_handle_rds_start(struct fmdev *);
83 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
84 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
85 static void fm_irq_handle_rds_finish(struct fmdev *);
86 static void fm_irq_handle_tune_op_ended(struct fmdev *);
87 static void fm_irq_handle_power_enb(struct fmdev *);
88 static void fm_irq_handle_low_rssi_start(struct fmdev *);
89 static void fm_irq_afjump_set_pi(struct fmdev *);
90 static void fm_irq_handle_set_pi_resp(struct fmdev *);
91 static void fm_irq_afjump_set_pimask(struct fmdev *);
92 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
93 static void fm_irq_afjump_setfreq(struct fmdev *);
94 static void fm_irq_handle_setfreq_resp(struct fmdev *);
95 static void fm_irq_afjump_enableint(struct fmdev *);
96 static void fm_irq_afjump_enableint_resp(struct fmdev *);
97 static void fm_irq_start_afjump(struct fmdev *);
98 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
99 static void fm_irq_afjump_rd_freq(struct fmdev *);
100 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
101 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
102 static void fm_irq_send_intmsk_cmd(struct fmdev *);
103 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
104
105 /*
106 * When FM common module receives interrupt packet, following handlers
107 * will be executed one after another to service the interrupt(s)
108 */
109 enum fmc_irq_handler_index {
110 FM_SEND_FLAG_GETCMD_IDX,
111 FM_HANDLE_FLAG_GETCMD_RESP_IDX,
112
113 /* HW malfunction irq handler */
114 FM_HW_MAL_FUNC_IDX,
115
116 /* RDS threshold reached irq handler */
117 FM_RDS_START_IDX,
118 FM_RDS_SEND_RDS_GETCMD_IDX,
119 FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
120 FM_RDS_FINISH_IDX,
121
122 /* Tune operation ended irq handler */
123 FM_HW_TUNE_OP_ENDED_IDX,
124
125 /* TX power enable irq handler */
126 FM_HW_POWER_ENB_IDX,
127
128 /* Low RSSI irq handler */
129 FM_LOW_RSSI_START_IDX,
130 FM_AF_JUMP_SETPI_IDX,
131 FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
132 FM_AF_JUMP_SETPI_MASK_IDX,
133 FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
134 FM_AF_JUMP_SET_AF_FREQ_IDX,
135 FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
136 FM_AF_JUMP_ENABLE_INT_IDX,
137 FM_AF_JUMP_ENABLE_INT_RESP_IDX,
138 FM_AF_JUMP_START_AFJUMP_IDX,
139 FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
140 FM_AF_JUMP_RD_FREQ_IDX,
141 FM_AF_JUMP_RD_FREQ_RESP_IDX,
142 FM_LOW_RSSI_FINISH_IDX,
143
144 /* Interrupt process post action */
145 FM_SEND_INTMSK_CMD_IDX,
146 FM_HANDLE_INTMSK_CMD_RESP_IDX,
147 };
148
149 /* FM interrupt handler table */
150 static int_handler_prototype int_handler_table[] = {
151 fm_irq_send_flag_getcmd,
152 fm_irq_handle_flag_getcmd_resp,
153 fm_irq_handle_hw_malfunction,
154 fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
155 fm_irq_send_rdsdata_getcmd,
156 fm_irq_handle_rdsdata_getcmd_resp,
157 fm_irq_handle_rds_finish,
158 fm_irq_handle_tune_op_ended,
159 fm_irq_handle_power_enb, /* TX power enable irq handler */
160 fm_irq_handle_low_rssi_start,
161 fm_irq_afjump_set_pi,
162 fm_irq_handle_set_pi_resp,
163 fm_irq_afjump_set_pimask,
164 fm_irq_handle_set_pimask_resp,
165 fm_irq_afjump_setfreq,
166 fm_irq_handle_setfreq_resp,
167 fm_irq_afjump_enableint,
168 fm_irq_afjump_enableint_resp,
169 fm_irq_start_afjump,
170 fm_irq_handle_start_afjump_resp,
171 fm_irq_afjump_rd_freq,
172 fm_irq_afjump_rd_freq_resp,
173 fm_irq_handle_low_rssi_finish,
174 fm_irq_send_intmsk_cmd, /* Interrupt process post action */
175 fm_irq_handle_intmsk_cmd_resp
176 };
177
178 static long (*g_st_write) (struct sk_buff *skb);
179 static struct completion wait_for_fmdrv_reg_comp;
180
181 static inline void fm_irq_call(struct fmdev *fmdev)
182 {
183 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
184 }
185
186 /* Continue next function in interrupt handler table */
187 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
188 {
189 fmdev->irq_info.stage = stage;
190 fm_irq_call(fmdev);
191 }
192
193 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
194 {
195 fmdev->irq_info.stage = stage;
196 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
197 }
198
199 #ifdef FM_DUMP_TXRX_PKT
200 /* To dump outgoing FM Channel-8 packets */
201 inline void dump_tx_skb_data(struct sk_buff *skb)
202 {
203 int len, len_org;
204 u8 index;
205 struct fm_cmd_msg_hdr *cmd_hdr;
206
207 cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
208 printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
209 fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
210 cmd_hdr->len, cmd_hdr->op,
211 cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
212
213 len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
214 if (len_org > 0) {
215 printk(KERN_CONT "\n data(%d): ", cmd_hdr->dlen);
216 len = min(len_org, 14);
217 for (index = 0; index < len; index++)
218 printk(KERN_CONT "%x ",
219 skb->data[FM_CMD_MSG_HDR_SIZE + index]);
220 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
221 }
222 printk(KERN_CONT "\n");
223 }
224
225 /* To dump incoming FM Channel-8 packets */
226 inline void dump_rx_skb_data(struct sk_buff *skb)
227 {
228 int len, len_org;
229 u8 index;
230 struct fm_event_msg_hdr *evt_hdr;
231
232 evt_hdr = (struct fm_event_msg_hdr *)skb->data;
233 printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
234 evt_hdr->hdr, evt_hdr->len,
235 evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
236 (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
237
238 len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
239 if (len_org > 0) {
240 printk(KERN_CONT "\n data(%d): ", evt_hdr->dlen);
241 len = min(len_org, 14);
242 for (index = 0; index < len; index++)
243 printk(KERN_CONT "%x ",
244 skb->data[FM_EVT_MSG_HDR_SIZE + index]);
245 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
246 }
247 printk(KERN_CONT "\n");
248 }
249 #endif
250
251 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
252 {
253 fmdev->rx.region = region_configs[region_to_set];
254 }
255
256 /*
257 * FM common sub-module will schedule this tasklet whenever it receives
258 * FM packet from ST driver.
259 */
260 static void recv_tasklet(unsigned long arg)
261 {
262 struct fmdev *fmdev;
263 struct fm_irq *irq_info;
264 struct fm_event_msg_hdr *evt_hdr;
265 struct sk_buff *skb;
266 u8 num_fm_hci_cmds;
267 unsigned long flags;
268
269 fmdev = (struct fmdev *)arg;
270 irq_info = &fmdev->irq_info;
271 /* Process all packets in the RX queue */
272 while ((skb = skb_dequeue(&fmdev->rx_q))) {
273 if (skb->len < sizeof(struct fm_event_msg_hdr)) {
274 fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
275 skb,
276 skb->len, sizeof(struct fm_event_msg_hdr));
277 kfree_skb(skb);
278 continue;
279 }
280
281 evt_hdr = (void *)skb->data;
282 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
283
284 /* FM interrupt packet? */
285 if (evt_hdr->op == FM_INTERRUPT) {
286 /* FM interrupt handler started already? */
287 if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
288 set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
289 if (irq_info->stage != 0) {
290 fmerr("Inval stage resetting to zero\n");
291 irq_info->stage = 0;
292 }
293
294 /*
295 * Execute first function in interrupt handler
296 * table.
297 */
298 irq_info->handlers[irq_info->stage](fmdev);
299 } else {
300 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
301 }
302 kfree_skb(skb);
303 }
304 /* Anyone waiting for this with completion handler? */
305 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
306
307 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
308 fmdev->resp_skb = skb;
309 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
310 complete(fmdev->resp_comp);
311
312 fmdev->resp_comp = NULL;
313 atomic_set(&fmdev->tx_cnt, 1);
314 }
315 /* Is this for interrupt handler? */
316 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
317 if (fmdev->resp_skb != NULL)
318 fmerr("Response SKB ptr not NULL\n");
319
320 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
321 fmdev->resp_skb = skb;
322 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
323
324 /* Execute interrupt handler where state index points */
325 irq_info->handlers[irq_info->stage](fmdev);
326
327 kfree_skb(skb);
328 atomic_set(&fmdev->tx_cnt, 1);
329 } else {
330 fmerr("Nobody claimed SKB(%p),purging\n", skb);
331 }
332
333 /*
334 * Check flow control field. If Num_FM_HCI_Commands field is
335 * not zero, schedule FM TX tasklet.
336 */
337 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
338 if (!skb_queue_empty(&fmdev->tx_q))
339 tasklet_schedule(&fmdev->tx_task);
340 }
341 }
342
343 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
344 static void send_tasklet(unsigned long arg)
345 {
346 struct fmdev *fmdev;
347 struct sk_buff *skb;
348 int len;
349
350 fmdev = (struct fmdev *)arg;
351
352 if (!atomic_read(&fmdev->tx_cnt))
353 return;
354
355 /* Check, is there any timeout happened to last transmitted packet */
356 if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
357 fmerr("TX timeout occurred\n");
358 atomic_set(&fmdev->tx_cnt, 1);
359 }
360
361 /* Send queued FM TX packets */
362 skb = skb_dequeue(&fmdev->tx_q);
363 if (!skb)
364 return;
365
366 atomic_dec(&fmdev->tx_cnt);
367 fmdev->pre_op = fm_cb(skb)->fm_op;
368
369 if (fmdev->resp_comp != NULL)
370 fmerr("Response completion handler is not NULL\n");
371
372 fmdev->resp_comp = fm_cb(skb)->completion;
373
374 /* Write FM packet to ST driver */
375 len = g_st_write(skb);
376 if (len < 0) {
377 kfree_skb(skb);
378 fmdev->resp_comp = NULL;
379 fmerr("TX tasklet failed to send skb(%p)\n", skb);
380 atomic_set(&fmdev->tx_cnt, 1);
381 } else {
382 fmdev->last_tx_jiffies = jiffies;
383 }
384 }
385
386 /*
387 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
388 * transmission
389 */
390 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
391 int payload_len, struct completion *wait_completion)
392 {
393 struct sk_buff *skb;
394 struct fm_cmd_msg_hdr *hdr;
395 int size;
396
397 if (fm_op >= FM_INTERRUPT) {
398 fmerr("Invalid fm opcode - %d\n", fm_op);
399 return -EINVAL;
400 }
401 if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
402 fmerr("Payload data is NULL during fw download\n");
403 return -EINVAL;
404 }
405 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
406 size =
407 FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
408 else
409 size = payload_len;
410
411 skb = alloc_skb(size, GFP_ATOMIC);
412 if (!skb) {
413 fmerr("No memory to create new SKB\n");
414 return -ENOMEM;
415 }
416 /*
417 * Don't fill FM header info for the commands which come from
418 * FM firmware file.
419 */
420 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
421 test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
422 /* Fill command header info */
423 hdr = (struct fm_cmd_msg_hdr *)skb_put(skb, FM_CMD_MSG_HDR_SIZE);
424 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */
425
426 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
427 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
428
429 /* FM opcode */
430 hdr->op = fm_op;
431
432 /* read/write type */
433 hdr->rd_wr = type;
434 hdr->dlen = payload_len;
435 fm_cb(skb)->fm_op = fm_op;
436
437 /*
438 * If firmware download has finished and the command is
439 * not a read command then payload is != NULL - a write
440 * command with u16 payload - convert to be16
441 */
442 if (payload != NULL)
443 *(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
444
445 } else if (payload != NULL) {
446 fm_cb(skb)->fm_op = *((u8 *)payload + 2);
447 }
448 if (payload != NULL)
449 memcpy(skb_put(skb, payload_len), payload, payload_len);
450
451 fm_cb(skb)->completion = wait_completion;
452 skb_queue_tail(&fmdev->tx_q, skb);
453 tasklet_schedule(&fmdev->tx_task);
454
455 return 0;
456 }
457
458 /* Sends FM Channel-8 command to the chip and waits for the response */
459 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
460 unsigned int payload_len, void *response, int *response_len)
461 {
462 struct sk_buff *skb;
463 struct fm_event_msg_hdr *evt_hdr;
464 unsigned long flags;
465 int ret;
466
467 init_completion(&fmdev->maintask_comp);
468 ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
469 &fmdev->maintask_comp);
470 if (ret)
471 return ret;
472
473 if (!wait_for_completion_timeout(&fmdev->maintask_comp,
474 FM_DRV_TX_TIMEOUT)) {
475 fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
476 jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
477 return -ETIMEDOUT;
478 }
479 if (!fmdev->resp_skb) {
480 fmerr("Response SKB is missing\n");
481 return -EFAULT;
482 }
483 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
484 skb = fmdev->resp_skb;
485 fmdev->resp_skb = NULL;
486 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
487
488 evt_hdr = (void *)skb->data;
489 if (evt_hdr->status != 0) {
490 fmerr("Received event pkt status(%d) is not zero\n",
491 evt_hdr->status);
492 kfree_skb(skb);
493 return -EIO;
494 }
495 /* Send response data to caller */
496 if (response != NULL && response_len != NULL && evt_hdr->dlen) {
497 /* Skip header info and copy only response data */
498 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
499 memcpy(response, skb->data, evt_hdr->dlen);
500 *response_len = evt_hdr->dlen;
501 } else if (response_len != NULL && evt_hdr->dlen == 0) {
502 *response_len = 0;
503 }
504 kfree_skb(skb);
505
506 return 0;
507 }
508
509 /* --- Helper functions used in FM interrupt handlers ---*/
510 static inline int check_cmdresp_status(struct fmdev *fmdev,
511 struct sk_buff **skb)
512 {
513 struct fm_event_msg_hdr *fm_evt_hdr;
514 unsigned long flags;
515
516 del_timer(&fmdev->irq_info.timer);
517
518 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
519 *skb = fmdev->resp_skb;
520 fmdev->resp_skb = NULL;
521 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
522
523 fm_evt_hdr = (void *)(*skb)->data;
524 if (fm_evt_hdr->status != 0) {
525 fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
526 fm_evt_hdr->op);
527
528 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
529 return -1;
530 }
531
532 return 0;
533 }
534
535 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
536 {
537 struct sk_buff *skb;
538
539 if (!check_cmdresp_status(fmdev, &skb))
540 fm_irq_call_stage(fmdev, stage);
541 }
542
543 /*
544 * Interrupt process timeout handler.
545 * One of the irq handler did not get proper response from the chip. So take
546 * recovery action here. FM interrupts are disabled in the beginning of
547 * interrupt process. Therefore reset stage index to re-enable default
548 * interrupts. So that next interrupt will be processed as usual.
549 */
550 static void int_timeout_handler(unsigned long data)
551 {
552 struct fmdev *fmdev;
553 struct fm_irq *fmirq;
554
555 fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
556 fmdev = (struct fmdev *)data;
557 fmirq = &fmdev->irq_info;
558 fmirq->retry++;
559
560 if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
561 /* Stop recovery action (interrupt reenable process) and
562 * reset stage index & retry count values */
563 fmirq->stage = 0;
564 fmirq->retry = 0;
565 fmerr("Recovery action failed duringirq processing, max retry reached\n");
566 return;
567 }
568 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
569 }
570
571 /* --------- FM interrupt handlers ------------*/
572 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
573 {
574 u16 flag;
575
576 /* Send FLAG_GET command , to know the source of interrupt */
577 if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
578 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
579 }
580
581 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
582 {
583 struct sk_buff *skb;
584 struct fm_event_msg_hdr *fm_evt_hdr;
585
586 if (check_cmdresp_status(fmdev, &skb))
587 return;
588
589 fm_evt_hdr = (void *)skb->data;
590
591 /* Skip header info and copy only response data */
592 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
593 memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
594
595 fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
596 fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
597
598 /* Continue next function in interrupt handler table */
599 fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
600 }
601
602 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
603 {
604 if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
605 fmerr("irq: HW MAL int received - do nothing\n");
606
607 /* Continue next function in interrupt handler table */
608 fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
609 }
610
611 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
612 {
613 if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
614 fmdbg("irq: rds threshold reached\n");
615 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
616 } else {
617 /* Continue next function in interrupt handler table */
618 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
619 }
620
621 fm_irq_call(fmdev);
622 }
623
624 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
625 {
626 /* Send the command to read RDS data from the chip */
627 if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
628 (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
629 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
630 }
631
632 /* Keeps track of current RX channel AF (Alternate Frequency) */
633 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
634 {
635 struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
636 u8 reg_idx = fmdev->rx.region.fm_band;
637 u8 index;
638 u32 freq;
639
640 /* First AF indicates the number of AF follows. Reset the list */
641 if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
642 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
643 fmdev->rx.stat_info.afcache_size = 0;
644 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
645 return;
646 }
647
648 if (af < FM_RDS_MIN_AF)
649 return;
650 if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
651 return;
652 if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
653 return;
654
655 freq = fmdev->rx.region.bot_freq + (af * 100);
656 if (freq == fmdev->rx.freq) {
657 fmdbg("Current freq(%d) is matching with received AF(%d)\n",
658 fmdev->rx.freq, freq);
659 return;
660 }
661 /* Do check in AF cache */
662 for (index = 0; index < stat_info->afcache_size; index++) {
663 if (stat_info->af_cache[index] == freq)
664 break;
665 }
666 /* Reached the limit of the list - ignore the next AF */
667 if (index == stat_info->af_list_max) {
668 fmdbg("AF cache is full\n");
669 return;
670 }
671 /*
672 * If we reached the end of the list then this AF is not
673 * in the list - add it.
674 */
675 if (index == stat_info->afcache_size) {
676 fmdbg("Storing AF %d to cache index %d\n", freq, index);
677 stat_info->af_cache[index] = freq;
678 stat_info->afcache_size++;
679 }
680 }
681
682 /*
683 * Converts RDS buffer data from big endian format
684 * to little endian format.
685 */
686 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
687 struct fm_rdsdata_format *rds_format)
688 {
689 u8 index = 0;
690 u8 *rds_buff;
691
692 /*
693 * Since in Orca the 2 RDS Data bytes are in little endian and
694 * in Dolphin they are in big endian, the parsing of the RDS data
695 * is chip dependent
696 */
697 if (fmdev->asci_id != 0x6350) {
698 rds_buff = &rds_format->data.groupdatabuff.buff[0];
699 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
700 swap(rds_buff[index], rds_buff[index + 1]);
701 index += 2;
702 }
703 }
704 }
705
706 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
707 {
708 struct sk_buff *skb;
709 struct fm_rdsdata_format rds_fmt;
710 struct fm_rds *rds = &fmdev->rx.rds;
711 unsigned long group_idx, flags;
712 u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
713 u8 type, blk_idx;
714 u16 cur_picode;
715 u32 rds_len;
716
717 if (check_cmdresp_status(fmdev, &skb))
718 return;
719
720 /* Skip header info */
721 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
722 rds_data = skb->data;
723 rds_len = skb->len;
724
725 /* Parse the RDS data */
726 while (rds_len >= FM_RDS_BLK_SIZE) {
727 meta_data = rds_data[2];
728 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
729 type = (meta_data & 0x07);
730
731 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
732 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
733 fmdbg("Block index:%d(%s)\n", blk_idx,
734 (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
735
736 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
737 break;
738
739 if (blk_idx > FM_RDS_BLK_IDX_D) {
740 fmdbg("Block sequence mismatch\n");
741 rds->last_blk_idx = -1;
742 break;
743 }
744
745 /* Skip checkword (control) byte and copy only data byte */
746 memcpy(&rds_fmt.data.groupdatabuff.
747 buff[blk_idx * (FM_RDS_BLK_SIZE - 1)],
748 rds_data, (FM_RDS_BLK_SIZE - 1));
749
750 rds->last_blk_idx = blk_idx;
751
752 /* If completed a whole group then handle it */
753 if (blk_idx == FM_RDS_BLK_IDX_D) {
754 fmdbg("Good block received\n");
755 fm_rdsparse_swapbytes(fmdev, &rds_fmt);
756
757 /*
758 * Extract PI code and store in local cache.
759 * We need this during AF switch processing.
760 */
761 cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
762 if (fmdev->rx.stat_info.picode != cur_picode)
763 fmdev->rx.stat_info.picode = cur_picode;
764
765 fmdbg("picode:%d\n", cur_picode);
766
767 group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
768 fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
769 (group_idx % 2) ? "B" : "A");
770
771 group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
772 if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
773 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
774 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
775 }
776 }
777 rds_len -= FM_RDS_BLK_SIZE;
778 rds_data += FM_RDS_BLK_SIZE;
779 }
780
781 /* Copy raw rds data to internal rds buffer */
782 rds_data = skb->data;
783 rds_len = skb->len;
784
785 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
786 while (rds_len > 0) {
787 /*
788 * Fill RDS buffer as per V4L2 specification.
789 * Store control byte
790 */
791 type = (rds_data[2] & 0x07);
792 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
793 tmpbuf[2] = blk_idx; /* Offset name */
794 tmpbuf[2] |= blk_idx << 3; /* Received offset */
795
796 /* Store data byte */
797 tmpbuf[0] = rds_data[0];
798 tmpbuf[1] = rds_data[1];
799
800 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
801 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
802
803 /* Check for overflow & start over */
804 if (rds->wr_idx == rds->rd_idx) {
805 fmdbg("RDS buffer overflow\n");
806 rds->wr_idx = 0;
807 rds->rd_idx = 0;
808 break;
809 }
810 rds_len -= FM_RDS_BLK_SIZE;
811 rds_data += FM_RDS_BLK_SIZE;
812 }
813 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
814
815 /* Wakeup read queue */
816 if (rds->wr_idx != rds->rd_idx)
817 wake_up_interruptible(&rds->read_queue);
818
819 fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
820 }
821
822 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
823 {
824 fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
825 }
826
827 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
828 {
829 if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
830 irq_info.mask) {
831 fmdbg("irq: tune ended/bandlimit reached\n");
832 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
833 fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
834 } else {
835 complete(&fmdev->maintask_comp);
836 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
837 }
838 } else
839 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
840
841 fm_irq_call(fmdev);
842 }
843
844 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
845 {
846 if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
847 fmdbg("irq: Power Enabled/Disabled\n");
848 complete(&fmdev->maintask_comp);
849 }
850
851 fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
852 }
853
854 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
855 {
856 if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
857 (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
858 (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
859 (fmdev->rx.stat_info.afcache_size != 0)) {
860 fmdbg("irq: rssi level has fallen below threshold level\n");
861
862 /* Disable further low RSSI interrupts */
863 fmdev->irq_info.mask &= ~FM_LEV_EVENT;
864
865 fmdev->rx.afjump_idx = 0;
866 fmdev->rx.freq_before_jump = fmdev->rx.freq;
867 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
868 } else {
869 /* Continue next function in interrupt handler table */
870 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
871 }
872
873 fm_irq_call(fmdev);
874 }
875
876 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
877 {
878 u16 payload;
879
880 /* Set PI code - must be updated if the AF list is not empty */
881 payload = fmdev->rx.stat_info.picode;
882 if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
883 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
884 }
885
886 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
887 {
888 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
889 }
890
891 /*
892 * Set PI mask.
893 * 0xFFFF = Enable PI code matching
894 * 0x0000 = Disable PI code matching
895 */
896 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
897 {
898 u16 payload;
899
900 payload = 0x0000;
901 if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
902 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
903 }
904
905 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
906 {
907 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
908 }
909
910 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
911 {
912 u16 frq_index;
913 u16 payload;
914
915 fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
916 frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
917 fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
918
919 payload = frq_index;
920 if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
921 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
922 }
923
924 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
925 {
926 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
927 }
928
929 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
930 {
931 u16 payload;
932
933 /* Enable FR (tuning operation ended) interrupt */
934 payload = FM_FR_EVENT;
935 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
936 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
937 }
938
939 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
940 {
941 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
942 }
943
944 static void fm_irq_start_afjump(struct fmdev *fmdev)
945 {
946 u16 payload;
947
948 payload = FM_TUNER_AF_JUMP_MODE;
949 if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
950 sizeof(payload), NULL))
951 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
952 }
953
954 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
955 {
956 struct sk_buff *skb;
957
958 if (check_cmdresp_status(fmdev, &skb))
959 return;
960
961 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
962 set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
963 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
964 }
965
966 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
967 {
968 u16 payload;
969
970 if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
971 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
972 }
973
974 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
975 {
976 struct sk_buff *skb;
977 u16 read_freq;
978 u32 curr_freq, jumped_freq;
979
980 if (check_cmdresp_status(fmdev, &skb))
981 return;
982
983 /* Skip header info and copy only response data */
984 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
985 memcpy(&read_freq, skb->data, sizeof(read_freq));
986 read_freq = be16_to_cpu((__force __be16)read_freq);
987 curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
988
989 jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
990
991 /* If the frequency was changed the jump succeeded */
992 if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
993 fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
994 fmdev->rx.freq = curr_freq;
995 fm_rx_reset_rds_cache(fmdev);
996
997 /* AF feature is on, enable low level RSSI interrupt */
998 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
999 fmdev->irq_info.mask |= FM_LEV_EVENT;
1000
1001 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1002 } else { /* jump to the next freq in the AF list */
1003 fmdev->rx.afjump_idx++;
1004
1005 /* If we reached the end of the list - stop searching */
1006 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1007 fmdbg("AF switch processing failed\n");
1008 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1009 } else { /* AF List is not over - try next one */
1010
1011 fmdbg("Trying next freq in AF cache\n");
1012 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1013 }
1014 }
1015 fm_irq_call(fmdev);
1016 }
1017
1018 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1019 {
1020 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1021 }
1022
1023 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1024 {
1025 u16 payload;
1026
1027 /* Re-enable FM interrupts */
1028 payload = fmdev->irq_info.mask;
1029
1030 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1031 sizeof(payload), NULL))
1032 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1033 }
1034
1035 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1036 {
1037 struct sk_buff *skb;
1038
1039 if (check_cmdresp_status(fmdev, &skb))
1040 return;
1041 /*
1042 * This is last function in interrupt table to be executed.
1043 * So, reset stage index to 0.
1044 */
1045 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1046
1047 /* Start processing any pending interrupt */
1048 if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1049 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1050 else
1051 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1052 }
1053
1054 /* Returns availability of RDS data in internel buffer */
1055 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1056 struct poll_table_struct *pts)
1057 {
1058 poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1059 if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1060 return 0;
1061
1062 return -EAGAIN;
1063 }
1064
1065 /* Copies RDS data from internal buffer to user buffer */
1066 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1067 u8 __user *buf, size_t count)
1068 {
1069 u32 block_count;
1070 u8 tmpbuf[FM_RDS_BLK_SIZE];
1071 unsigned long flags;
1072 int ret;
1073
1074 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1075 if (file->f_flags & O_NONBLOCK)
1076 return -EWOULDBLOCK;
1077
1078 ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1079 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1080 if (ret)
1081 return -EINTR;
1082 }
1083
1084 /* Calculate block count from byte count */
1085 count /= FM_RDS_BLK_SIZE;
1086 block_count = 0;
1087 ret = 0;
1088
1089 while (block_count < count) {
1090 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1091
1092 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1093 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1094 break;
1095 }
1096 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1097 FM_RDS_BLK_SIZE);
1098 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1099 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1100 fmdev->rx.rds.rd_idx = 0;
1101
1102 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1103
1104 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1105 break;
1106
1107 block_count++;
1108 buf += FM_RDS_BLK_SIZE;
1109 ret += FM_RDS_BLK_SIZE;
1110 }
1111 return ret;
1112 }
1113
1114 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1115 {
1116 switch (fmdev->curr_fmmode) {
1117 case FM_MODE_RX:
1118 return fm_rx_set_freq(fmdev, freq_to_set);
1119
1120 case FM_MODE_TX:
1121 return fm_tx_set_freq(fmdev, freq_to_set);
1122
1123 default:
1124 return -EINVAL;
1125 }
1126 }
1127
1128 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1129 {
1130 if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1131 fmerr("RX frequency is not set\n");
1132 return -EPERM;
1133 }
1134 if (cur_tuned_frq == NULL) {
1135 fmerr("Invalid memory\n");
1136 return -ENOMEM;
1137 }
1138
1139 switch (fmdev->curr_fmmode) {
1140 case FM_MODE_RX:
1141 *cur_tuned_frq = fmdev->rx.freq;
1142 return 0;
1143
1144 case FM_MODE_TX:
1145 *cur_tuned_frq = 0; /* TODO : Change this later */
1146 return 0;
1147
1148 default:
1149 return -EINVAL;
1150 }
1151
1152 }
1153
1154 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1155 {
1156 switch (fmdev->curr_fmmode) {
1157 case FM_MODE_RX:
1158 return fm_rx_set_region(fmdev, region_to_set);
1159
1160 case FM_MODE_TX:
1161 return fm_tx_set_region(fmdev, region_to_set);
1162
1163 default:
1164 return -EINVAL;
1165 }
1166 }
1167
1168 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1169 {
1170 switch (fmdev->curr_fmmode) {
1171 case FM_MODE_RX:
1172 return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1173
1174 case FM_MODE_TX:
1175 return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1176
1177 default:
1178 return -EINVAL;
1179 }
1180 }
1181
1182 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1183 {
1184 switch (fmdev->curr_fmmode) {
1185 case FM_MODE_RX:
1186 return fm_rx_set_stereo_mono(fmdev, mode);
1187
1188 case FM_MODE_TX:
1189 return fm_tx_set_stereo_mono(fmdev, mode);
1190
1191 default:
1192 return -EINVAL;
1193 }
1194 }
1195
1196 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1197 {
1198 switch (fmdev->curr_fmmode) {
1199 case FM_MODE_RX:
1200 return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1201
1202 case FM_MODE_TX:
1203 return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1204
1205 default:
1206 return -EINVAL;
1207 }
1208 }
1209
1210 /* Sends power off command to the chip */
1211 static int fm_power_down(struct fmdev *fmdev)
1212 {
1213 u16 payload;
1214 int ret;
1215
1216 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1217 fmerr("FM core is not ready\n");
1218 return -EPERM;
1219 }
1220 if (fmdev->curr_fmmode == FM_MODE_OFF) {
1221 fmdbg("FM chip is already in OFF state\n");
1222 return 0;
1223 }
1224
1225 payload = 0x0;
1226 ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1227 sizeof(payload), NULL, NULL);
1228 if (ret < 0)
1229 return ret;
1230
1231 return fmc_release(fmdev);
1232 }
1233
1234 /* Reads init command from FM firmware file and loads to the chip */
1235 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1236 {
1237 const struct firmware *fw_entry;
1238 struct bts_header *fw_header;
1239 struct bts_action *action;
1240 struct bts_action_delay *delay;
1241 u8 *fw_data;
1242 int ret, fw_len, cmd_cnt;
1243
1244 cmd_cnt = 0;
1245 set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1246
1247 ret = request_firmware(&fw_entry, fw_name,
1248 &fmdev->radio_dev->dev);
1249 if (ret < 0) {
1250 fmerr("Unable to read firmware(%s) content\n", fw_name);
1251 return ret;
1252 }
1253 fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1254
1255 fw_data = (void *)fw_entry->data;
1256 fw_len = fw_entry->size;
1257
1258 fw_header = (struct bts_header *)fw_data;
1259 if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1260 fmerr("%s not a legal TI firmware file\n", fw_name);
1261 ret = -EINVAL;
1262 goto rel_fw;
1263 }
1264 fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1265
1266 /* Skip file header info , we already verified it */
1267 fw_data += sizeof(struct bts_header);
1268 fw_len -= sizeof(struct bts_header);
1269
1270 while (fw_data && fw_len > 0) {
1271 action = (struct bts_action *)fw_data;
1272
1273 switch (action->type) {
1274 case ACTION_SEND_COMMAND: /* Send */
1275 if (fmc_send_cmd(fmdev, 0, 0, action->data,
1276 action->size, NULL, NULL))
1277 goto rel_fw;
1278
1279 cmd_cnt++;
1280 break;
1281
1282 case ACTION_DELAY: /* Delay */
1283 delay = (struct bts_action_delay *)action->data;
1284 mdelay(delay->msec);
1285 break;
1286 }
1287
1288 fw_data += (sizeof(struct bts_action) + (action->size));
1289 fw_len -= (sizeof(struct bts_action) + (action->size));
1290 }
1291 fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1292 rel_fw:
1293 release_firmware(fw_entry);
1294 clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1295
1296 return ret;
1297 }
1298
1299 /* Loads default RX configuration to the chip */
1300 static int load_default_rx_configuration(struct fmdev *fmdev)
1301 {
1302 int ret;
1303
1304 ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1305 if (ret < 0)
1306 return ret;
1307
1308 return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1309 }
1310
1311 /* Does FM power on sequence */
1312 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1313 {
1314 u16 payload;
1315 __be16 asic_id, asic_ver;
1316 int resp_len, ret;
1317 u8 fw_name[50];
1318
1319 if (mode >= FM_MODE_ENTRY_MAX) {
1320 fmerr("Invalid firmware download option\n");
1321 return -EINVAL;
1322 }
1323
1324 /*
1325 * Initialize FM common module. FM GPIO toggling is
1326 * taken care in Shared Transport driver.
1327 */
1328 ret = fmc_prepare(fmdev);
1329 if (ret < 0) {
1330 fmerr("Unable to prepare FM Common\n");
1331 return ret;
1332 }
1333
1334 payload = FM_ENABLE;
1335 if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1336 sizeof(payload), NULL, NULL))
1337 goto rel;
1338
1339 /* Allow the chip to settle down in Channel-8 mode */
1340 msleep(20);
1341
1342 if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1343 sizeof(asic_id), &asic_id, &resp_len))
1344 goto rel;
1345
1346 if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1347 sizeof(asic_ver), &asic_ver, &resp_len))
1348 goto rel;
1349
1350 fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1351 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1352
1353 sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1354 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1355
1356 ret = fm_download_firmware(fmdev, fw_name);
1357 if (ret < 0) {
1358 fmdbg("Failed to download firmware file %s\n", fw_name);
1359 goto rel;
1360 }
1361 sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1362 FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1363 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1364
1365 ret = fm_download_firmware(fmdev, fw_name);
1366 if (ret < 0) {
1367 fmdbg("Failed to download firmware file %s\n", fw_name);
1368 goto rel;
1369 } else
1370 return ret;
1371 rel:
1372 return fmc_release(fmdev);
1373 }
1374
1375 /* Set FM Modes(TX, RX, OFF) */
1376 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1377 {
1378 int ret = 0;
1379
1380 if (fm_mode >= FM_MODE_ENTRY_MAX) {
1381 fmerr("Invalid FM mode\n");
1382 return -EINVAL;
1383 }
1384 if (fmdev->curr_fmmode == fm_mode) {
1385 fmdbg("Already fm is in mode(%d)\n", fm_mode);
1386 return ret;
1387 }
1388
1389 switch (fm_mode) {
1390 case FM_MODE_OFF: /* OFF Mode */
1391 ret = fm_power_down(fmdev);
1392 if (ret < 0) {
1393 fmerr("Failed to set OFF mode\n");
1394 return ret;
1395 }
1396 break;
1397
1398 case FM_MODE_TX: /* TX Mode */
1399 case FM_MODE_RX: /* RX Mode */
1400 /* Power down before switching to TX or RX mode */
1401 if (fmdev->curr_fmmode != FM_MODE_OFF) {
1402 ret = fm_power_down(fmdev);
1403 if (ret < 0) {
1404 fmerr("Failed to set OFF mode\n");
1405 return ret;
1406 }
1407 msleep(30);
1408 }
1409 ret = fm_power_up(fmdev, fm_mode);
1410 if (ret < 0) {
1411 fmerr("Failed to load firmware\n");
1412 return ret;
1413 }
1414 }
1415 fmdev->curr_fmmode = fm_mode;
1416
1417 /* Set default configuration */
1418 if (fmdev->curr_fmmode == FM_MODE_RX) {
1419 fmdbg("Loading default rx configuration..\n");
1420 ret = load_default_rx_configuration(fmdev);
1421 if (ret < 0)
1422 fmerr("Failed to load default values\n");
1423 }
1424
1425 return ret;
1426 }
1427
1428 /* Returns current FM mode (TX, RX, OFF) */
1429 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1430 {
1431 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1432 fmerr("FM core is not ready\n");
1433 return -EPERM;
1434 }
1435 if (fmmode == NULL) {
1436 fmerr("Invalid memory\n");
1437 return -ENOMEM;
1438 }
1439
1440 *fmmode = fmdev->curr_fmmode;
1441 return 0;
1442 }
1443
1444 /* Called by ST layer when FM packet is available */
1445 static long fm_st_receive(void *arg, struct sk_buff *skb)
1446 {
1447 struct fmdev *fmdev;
1448
1449 fmdev = (struct fmdev *)arg;
1450
1451 if (skb == NULL) {
1452 fmerr("Invalid SKB received from ST\n");
1453 return -EFAULT;
1454 }
1455
1456 if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1457 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1458 return -EINVAL;
1459 }
1460
1461 memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1462 skb_queue_tail(&fmdev->rx_q, skb);
1463 tasklet_schedule(&fmdev->rx_task);
1464
1465 return 0;
1466 }
1467
1468 /*
1469 * Called by ST layer to indicate protocol registration completion
1470 * status.
1471 */
1472 static void fm_st_reg_comp_cb(void *arg, int data)
1473 {
1474 struct fmdev *fmdev;
1475
1476 fmdev = (struct fmdev *)arg;
1477 fmdev->streg_cbdata = data;
1478 complete(&wait_for_fmdrv_reg_comp);
1479 }
1480
1481 /*
1482 * This function will be called from FM V4L2 open function.
1483 * Register with ST driver and initialize driver data.
1484 */
1485 int fmc_prepare(struct fmdev *fmdev)
1486 {
1487 static struct st_proto_s fm_st_proto;
1488 int ret;
1489
1490 if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1491 fmdbg("FM Core is already up\n");
1492 return 0;
1493 }
1494
1495 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1496 fm_st_proto.recv = fm_st_receive;
1497 fm_st_proto.match_packet = NULL;
1498 fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1499 fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1500 fm_st_proto.priv_data = fmdev;
1501 fm_st_proto.chnl_id = 0x08;
1502 fm_st_proto.max_frame_size = 0xff;
1503 fm_st_proto.hdr_len = 1;
1504 fm_st_proto.offset_len_in_hdr = 0;
1505 fm_st_proto.len_size = 1;
1506 fm_st_proto.reserve = 1;
1507
1508 ret = st_register(&fm_st_proto);
1509 if (ret == -EINPROGRESS) {
1510 init_completion(&wait_for_fmdrv_reg_comp);
1511 fmdev->streg_cbdata = -EINPROGRESS;
1512 fmdbg("%s waiting for ST reg completion signal\n", __func__);
1513
1514 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1515 FM_ST_REG_TIMEOUT)) {
1516 fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
1517 jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1518 return -ETIMEDOUT;
1519 }
1520 if (fmdev->streg_cbdata != 0) {
1521 fmerr("ST reg comp CB called with error status %d\n",
1522 fmdev->streg_cbdata);
1523 return -EAGAIN;
1524 }
1525
1526 ret = 0;
1527 } else if (ret == -1) {
1528 fmerr("st_register failed %d\n", ret);
1529 return -EAGAIN;
1530 }
1531
1532 if (fm_st_proto.write != NULL) {
1533 g_st_write = fm_st_proto.write;
1534 } else {
1535 fmerr("Failed to get ST write func pointer\n");
1536 ret = st_unregister(&fm_st_proto);
1537 if (ret < 0)
1538 fmerr("st_unregister failed %d\n", ret);
1539 return -EAGAIN;
1540 }
1541
1542 spin_lock_init(&fmdev->rds_buff_lock);
1543 spin_lock_init(&fmdev->resp_skb_lock);
1544
1545 /* Initialize TX queue and TX tasklet */
1546 skb_queue_head_init(&fmdev->tx_q);
1547 tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev);
1548
1549 /* Initialize RX Queue and RX tasklet */
1550 skb_queue_head_init(&fmdev->rx_q);
1551 tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev);
1552
1553 fmdev->irq_info.stage = 0;
1554 atomic_set(&fmdev->tx_cnt, 1);
1555 fmdev->resp_comp = NULL;
1556
1557 init_timer(&fmdev->irq_info.timer);
1558 fmdev->irq_info.timer.function = &int_timeout_handler;
1559 fmdev->irq_info.timer.data = (unsigned long)fmdev;
1560 /*TODO: add FM_STIC_EVENT later */
1561 fmdev->irq_info.mask = FM_MAL_EVENT;
1562
1563 /* Region info */
1564 fmdev->rx.region = region_configs[default_radio_region];
1565
1566 fmdev->rx.mute_mode = FM_MUTE_OFF;
1567 fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1568 fmdev->rx.rds.flag = FM_RDS_DISABLE;
1569 fmdev->rx.freq = FM_UNDEFINED_FREQ;
1570 fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1571 fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1572 fmdev->irq_info.retry = 0;
1573
1574 fm_rx_reset_rds_cache(fmdev);
1575 init_waitqueue_head(&fmdev->rx.rds.read_queue);
1576
1577 fm_rx_reset_station_info(fmdev);
1578 set_bit(FM_CORE_READY, &fmdev->flag);
1579
1580 return ret;
1581 }
1582
1583 /*
1584 * This function will be called from FM V4L2 release function.
1585 * Unregister from ST driver.
1586 */
1587 int fmc_release(struct fmdev *fmdev)
1588 {
1589 static struct st_proto_s fm_st_proto;
1590 int ret;
1591
1592 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1593 fmdbg("FM Core is already down\n");
1594 return 0;
1595 }
1596 /* Service pending read */
1597 wake_up_interruptible(&fmdev->rx.rds.read_queue);
1598
1599 tasklet_kill(&fmdev->tx_task);
1600 tasklet_kill(&fmdev->rx_task);
1601
1602 skb_queue_purge(&fmdev->tx_q);
1603 skb_queue_purge(&fmdev->rx_q);
1604
1605 fmdev->resp_comp = NULL;
1606 fmdev->rx.freq = 0;
1607
1608 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1609 fm_st_proto.chnl_id = 0x08;
1610
1611 ret = st_unregister(&fm_st_proto);
1612
1613 if (ret < 0)
1614 fmerr("Failed to de-register FM from ST %d\n", ret);
1615 else
1616 fmdbg("Successfully unregistered from ST\n");
1617
1618 clear_bit(FM_CORE_READY, &fmdev->flag);
1619 return ret;
1620 }
1621
1622 /*
1623 * Module init function. Ask FM V4L module to register video device.
1624 * Allocate memory for FM driver context and RX RDS buffer.
1625 */
1626 static int __init fm_drv_init(void)
1627 {
1628 struct fmdev *fmdev = NULL;
1629 int ret = -ENOMEM;
1630
1631 fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1632
1633 fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1634 if (NULL == fmdev) {
1635 fmerr("Can't allocate operation structure memory\n");
1636 return ret;
1637 }
1638 fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1639 fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1640 if (NULL == fmdev->rx.rds.buff) {
1641 fmerr("Can't allocate rds ring buffer\n");
1642 goto rel_dev;
1643 }
1644
1645 ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1646 if (ret < 0)
1647 goto rel_rdsbuf;
1648
1649 fmdev->irq_info.handlers = int_handler_table;
1650 fmdev->curr_fmmode = FM_MODE_OFF;
1651 fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1652 fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1653 return ret;
1654
1655 rel_rdsbuf:
1656 kfree(fmdev->rx.rds.buff);
1657 rel_dev:
1658 kfree(fmdev);
1659
1660 return ret;
1661 }
1662
1663 /* Module exit function. Ask FM V4L module to unregister video device */
1664 static void __exit fm_drv_exit(void)
1665 {
1666 struct fmdev *fmdev = NULL;
1667
1668 fmdev = fm_v4l2_deinit_video_device();
1669 if (fmdev != NULL) {
1670 kfree(fmdev->rx.rds.buff);
1671 kfree(fmdev);
1672 }
1673 }
1674
1675 module_init(fm_drv_init);
1676 module_exit(fm_drv_exit);
1677
1678 /* ------------- Module Info ------------- */
1679 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1680 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1681 MODULE_VERSION(FM_DRV_VERSION);
1682 MODULE_LICENSE("GPL");