]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/media/rc/rc-main.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / drivers / media / rc / rc-main.c
1 /* rc-main.c - Remote Controller core module
2 *
3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <media/rc-core.h>
18 #include <linux/atomic.h>
19 #include <linux/spinlock.h>
20 #include <linux/delay.h>
21 #include <linux/input.h>
22 #include <linux/leds.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/device.h>
26 #include <linux/module.h>
27 #include "rc-core-priv.h"
28
29 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
30 #define IR_TAB_MIN_SIZE 256
31 #define IR_TAB_MAX_SIZE 8192
32 #define RC_DEV_MAX 256
33
34 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
35 #define IR_KEYPRESS_TIMEOUT 250
36
37 /* Used to keep track of known keymaps */
38 static LIST_HEAD(rc_map_list);
39 static DEFINE_SPINLOCK(rc_map_lock);
40 static struct led_trigger *led_feedback;
41
42 /* Used to keep track of rc devices */
43 static DEFINE_IDA(rc_ida);
44
45 static struct rc_map_list *seek_rc_map(const char *name)
46 {
47 struct rc_map_list *map = NULL;
48
49 spin_lock(&rc_map_lock);
50 list_for_each_entry(map, &rc_map_list, list) {
51 if (!strcmp(name, map->map.name)) {
52 spin_unlock(&rc_map_lock);
53 return map;
54 }
55 }
56 spin_unlock(&rc_map_lock);
57
58 return NULL;
59 }
60
61 struct rc_map *rc_map_get(const char *name)
62 {
63
64 struct rc_map_list *map;
65
66 map = seek_rc_map(name);
67 #ifdef CONFIG_MODULES
68 if (!map) {
69 int rc = request_module("%s", name);
70 if (rc < 0) {
71 pr_err("Couldn't load IR keymap %s\n", name);
72 return NULL;
73 }
74 msleep(20); /* Give some time for IR to register */
75
76 map = seek_rc_map(name);
77 }
78 #endif
79 if (!map) {
80 pr_err("IR keymap %s not found\n", name);
81 return NULL;
82 }
83
84 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
85
86 return &map->map;
87 }
88 EXPORT_SYMBOL_GPL(rc_map_get);
89
90 int rc_map_register(struct rc_map_list *map)
91 {
92 spin_lock(&rc_map_lock);
93 list_add_tail(&map->list, &rc_map_list);
94 spin_unlock(&rc_map_lock);
95 return 0;
96 }
97 EXPORT_SYMBOL_GPL(rc_map_register);
98
99 void rc_map_unregister(struct rc_map_list *map)
100 {
101 spin_lock(&rc_map_lock);
102 list_del(&map->list);
103 spin_unlock(&rc_map_lock);
104 }
105 EXPORT_SYMBOL_GPL(rc_map_unregister);
106
107
108 static struct rc_map_table empty[] = {
109 { 0x2a, KEY_COFFEE },
110 };
111
112 static struct rc_map_list empty_map = {
113 .map = {
114 .scan = empty,
115 .size = ARRAY_SIZE(empty),
116 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */
117 .name = RC_MAP_EMPTY,
118 }
119 };
120
121 /**
122 * ir_create_table() - initializes a scancode table
123 * @rc_map: the rc_map to initialize
124 * @name: name to assign to the table
125 * @rc_type: ir type to assign to the new table
126 * @size: initial size of the table
127 * @return: zero on success or a negative error code
128 *
129 * This routine will initialize the rc_map and will allocate
130 * memory to hold at least the specified number of elements.
131 */
132 static int ir_create_table(struct rc_map *rc_map,
133 const char *name, u64 rc_type, size_t size)
134 {
135 rc_map->name = kstrdup(name, GFP_KERNEL);
136 if (!rc_map->name)
137 return -ENOMEM;
138 rc_map->rc_type = rc_type;
139 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
140 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
141 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
142 if (!rc_map->scan) {
143 kfree(rc_map->name);
144 rc_map->name = NULL;
145 return -ENOMEM;
146 }
147
148 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
149 rc_map->size, rc_map->alloc);
150 return 0;
151 }
152
153 /**
154 * ir_free_table() - frees memory allocated by a scancode table
155 * @rc_map: the table whose mappings need to be freed
156 *
157 * This routine will free memory alloctaed for key mappings used by given
158 * scancode table.
159 */
160 static void ir_free_table(struct rc_map *rc_map)
161 {
162 rc_map->size = 0;
163 kfree(rc_map->name);
164 rc_map->name = NULL;
165 kfree(rc_map->scan);
166 rc_map->scan = NULL;
167 }
168
169 /**
170 * ir_resize_table() - resizes a scancode table if necessary
171 * @rc_map: the rc_map to resize
172 * @gfp_flags: gfp flags to use when allocating memory
173 * @return: zero on success or a negative error code
174 *
175 * This routine will shrink the rc_map if it has lots of
176 * unused entries and grow it if it is full.
177 */
178 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
179 {
180 unsigned int oldalloc = rc_map->alloc;
181 unsigned int newalloc = oldalloc;
182 struct rc_map_table *oldscan = rc_map->scan;
183 struct rc_map_table *newscan;
184
185 if (rc_map->size == rc_map->len) {
186 /* All entries in use -> grow keytable */
187 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
188 return -ENOMEM;
189
190 newalloc *= 2;
191 IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
192 }
193
194 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
195 /* Less than 1/3 of entries in use -> shrink keytable */
196 newalloc /= 2;
197 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
198 }
199
200 if (newalloc == oldalloc)
201 return 0;
202
203 newscan = kmalloc(newalloc, gfp_flags);
204 if (!newscan) {
205 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
206 return -ENOMEM;
207 }
208
209 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
210 rc_map->scan = newscan;
211 rc_map->alloc = newalloc;
212 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
213 kfree(oldscan);
214 return 0;
215 }
216
217 /**
218 * ir_update_mapping() - set a keycode in the scancode->keycode table
219 * @dev: the struct rc_dev device descriptor
220 * @rc_map: scancode table to be adjusted
221 * @index: index of the mapping that needs to be updated
222 * @keycode: the desired keycode
223 * @return: previous keycode assigned to the mapping
224 *
225 * This routine is used to update scancode->keycode mapping at given
226 * position.
227 */
228 static unsigned int ir_update_mapping(struct rc_dev *dev,
229 struct rc_map *rc_map,
230 unsigned int index,
231 unsigned int new_keycode)
232 {
233 int old_keycode = rc_map->scan[index].keycode;
234 int i;
235
236 /* Did the user wish to remove the mapping? */
237 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
238 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
239 index, rc_map->scan[index].scancode);
240 rc_map->len--;
241 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
242 (rc_map->len - index) * sizeof(struct rc_map_table));
243 } else {
244 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
245 index,
246 old_keycode == KEY_RESERVED ? "New" : "Replacing",
247 rc_map->scan[index].scancode, new_keycode);
248 rc_map->scan[index].keycode = new_keycode;
249 __set_bit(new_keycode, dev->input_dev->keybit);
250 }
251
252 if (old_keycode != KEY_RESERVED) {
253 /* A previous mapping was updated... */
254 __clear_bit(old_keycode, dev->input_dev->keybit);
255 /* ... but another scancode might use the same keycode */
256 for (i = 0; i < rc_map->len; i++) {
257 if (rc_map->scan[i].keycode == old_keycode) {
258 __set_bit(old_keycode, dev->input_dev->keybit);
259 break;
260 }
261 }
262
263 /* Possibly shrink the keytable, failure is not a problem */
264 ir_resize_table(rc_map, GFP_ATOMIC);
265 }
266
267 return old_keycode;
268 }
269
270 /**
271 * ir_establish_scancode() - set a keycode in the scancode->keycode table
272 * @dev: the struct rc_dev device descriptor
273 * @rc_map: scancode table to be searched
274 * @scancode: the desired scancode
275 * @resize: controls whether we allowed to resize the table to
276 * accommodate not yet present scancodes
277 * @return: index of the mapping containing scancode in question
278 * or -1U in case of failure.
279 *
280 * This routine is used to locate given scancode in rc_map.
281 * If scancode is not yet present the routine will allocate a new slot
282 * for it.
283 */
284 static unsigned int ir_establish_scancode(struct rc_dev *dev,
285 struct rc_map *rc_map,
286 unsigned int scancode,
287 bool resize)
288 {
289 unsigned int i;
290
291 /*
292 * Unfortunately, some hardware-based IR decoders don't provide
293 * all bits for the complete IR code. In general, they provide only
294 * the command part of the IR code. Yet, as it is possible to replace
295 * the provided IR with another one, it is needed to allow loading
296 * IR tables from other remotes. So, we support specifying a mask to
297 * indicate the valid bits of the scancodes.
298 */
299 if (dev->scancode_mask)
300 scancode &= dev->scancode_mask;
301
302 /* First check if we already have a mapping for this ir command */
303 for (i = 0; i < rc_map->len; i++) {
304 if (rc_map->scan[i].scancode == scancode)
305 return i;
306
307 /* Keytable is sorted from lowest to highest scancode */
308 if (rc_map->scan[i].scancode >= scancode)
309 break;
310 }
311
312 /* No previous mapping found, we might need to grow the table */
313 if (rc_map->size == rc_map->len) {
314 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
315 return -1U;
316 }
317
318 /* i is the proper index to insert our new keycode */
319 if (i < rc_map->len)
320 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
321 (rc_map->len - i) * sizeof(struct rc_map_table));
322 rc_map->scan[i].scancode = scancode;
323 rc_map->scan[i].keycode = KEY_RESERVED;
324 rc_map->len++;
325
326 return i;
327 }
328
329 /**
330 * ir_setkeycode() - set a keycode in the scancode->keycode table
331 * @idev: the struct input_dev device descriptor
332 * @scancode: the desired scancode
333 * @keycode: result
334 * @return: -EINVAL if the keycode could not be inserted, otherwise zero.
335 *
336 * This routine is used to handle evdev EVIOCSKEY ioctl.
337 */
338 static int ir_setkeycode(struct input_dev *idev,
339 const struct input_keymap_entry *ke,
340 unsigned int *old_keycode)
341 {
342 struct rc_dev *rdev = input_get_drvdata(idev);
343 struct rc_map *rc_map = &rdev->rc_map;
344 unsigned int index;
345 unsigned int scancode;
346 int retval = 0;
347 unsigned long flags;
348
349 spin_lock_irqsave(&rc_map->lock, flags);
350
351 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
352 index = ke->index;
353 if (index >= rc_map->len) {
354 retval = -EINVAL;
355 goto out;
356 }
357 } else {
358 retval = input_scancode_to_scalar(ke, &scancode);
359 if (retval)
360 goto out;
361
362 index = ir_establish_scancode(rdev, rc_map, scancode, true);
363 if (index >= rc_map->len) {
364 retval = -ENOMEM;
365 goto out;
366 }
367 }
368
369 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
370
371 out:
372 spin_unlock_irqrestore(&rc_map->lock, flags);
373 return retval;
374 }
375
376 /**
377 * ir_setkeytable() - sets several entries in the scancode->keycode table
378 * @dev: the struct rc_dev device descriptor
379 * @to: the struct rc_map to copy entries to
380 * @from: the struct rc_map to copy entries from
381 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
382 *
383 * This routine is used to handle table initialization.
384 */
385 static int ir_setkeytable(struct rc_dev *dev,
386 const struct rc_map *from)
387 {
388 struct rc_map *rc_map = &dev->rc_map;
389 unsigned int i, index;
390 int rc;
391
392 rc = ir_create_table(rc_map, from->name,
393 from->rc_type, from->size);
394 if (rc)
395 return rc;
396
397 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
398 rc_map->size, rc_map->alloc);
399
400 for (i = 0; i < from->size; i++) {
401 index = ir_establish_scancode(dev, rc_map,
402 from->scan[i].scancode, false);
403 if (index >= rc_map->len) {
404 rc = -ENOMEM;
405 break;
406 }
407
408 ir_update_mapping(dev, rc_map, index,
409 from->scan[i].keycode);
410 }
411
412 if (rc)
413 ir_free_table(rc_map);
414
415 return rc;
416 }
417
418 /**
419 * ir_lookup_by_scancode() - locate mapping by scancode
420 * @rc_map: the struct rc_map to search
421 * @scancode: scancode to look for in the table
422 * @return: index in the table, -1U if not found
423 *
424 * This routine performs binary search in RC keykeymap table for
425 * given scancode.
426 */
427 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
428 unsigned int scancode)
429 {
430 int start = 0;
431 int end = rc_map->len - 1;
432 int mid;
433
434 while (start <= end) {
435 mid = (start + end) / 2;
436 if (rc_map->scan[mid].scancode < scancode)
437 start = mid + 1;
438 else if (rc_map->scan[mid].scancode > scancode)
439 end = mid - 1;
440 else
441 return mid;
442 }
443
444 return -1U;
445 }
446
447 /**
448 * ir_getkeycode() - get a keycode from the scancode->keycode table
449 * @idev: the struct input_dev device descriptor
450 * @scancode: the desired scancode
451 * @keycode: used to return the keycode, if found, or KEY_RESERVED
452 * @return: always returns zero.
453 *
454 * This routine is used to handle evdev EVIOCGKEY ioctl.
455 */
456 static int ir_getkeycode(struct input_dev *idev,
457 struct input_keymap_entry *ke)
458 {
459 struct rc_dev *rdev = input_get_drvdata(idev);
460 struct rc_map *rc_map = &rdev->rc_map;
461 struct rc_map_table *entry;
462 unsigned long flags;
463 unsigned int index;
464 unsigned int scancode;
465 int retval;
466
467 spin_lock_irqsave(&rc_map->lock, flags);
468
469 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
470 index = ke->index;
471 } else {
472 retval = input_scancode_to_scalar(ke, &scancode);
473 if (retval)
474 goto out;
475
476 index = ir_lookup_by_scancode(rc_map, scancode);
477 }
478
479 if (index < rc_map->len) {
480 entry = &rc_map->scan[index];
481
482 ke->index = index;
483 ke->keycode = entry->keycode;
484 ke->len = sizeof(entry->scancode);
485 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
486
487 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
488 /*
489 * We do not really know the valid range of scancodes
490 * so let's respond with KEY_RESERVED to anything we
491 * do not have mapping for [yet].
492 */
493 ke->index = index;
494 ke->keycode = KEY_RESERVED;
495 } else {
496 retval = -EINVAL;
497 goto out;
498 }
499
500 retval = 0;
501
502 out:
503 spin_unlock_irqrestore(&rc_map->lock, flags);
504 return retval;
505 }
506
507 /**
508 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
509 * @dev: the struct rc_dev descriptor of the device
510 * @scancode: the scancode to look for
511 * @return: the corresponding keycode, or KEY_RESERVED
512 *
513 * This routine is used by drivers which need to convert a scancode to a
514 * keycode. Normally it should not be used since drivers should have no
515 * interest in keycodes.
516 */
517 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
518 {
519 struct rc_map *rc_map = &dev->rc_map;
520 unsigned int keycode;
521 unsigned int index;
522 unsigned long flags;
523
524 spin_lock_irqsave(&rc_map->lock, flags);
525
526 index = ir_lookup_by_scancode(rc_map, scancode);
527 keycode = index < rc_map->len ?
528 rc_map->scan[index].keycode : KEY_RESERVED;
529
530 spin_unlock_irqrestore(&rc_map->lock, flags);
531
532 if (keycode != KEY_RESERVED)
533 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
534 dev->input_name, scancode, keycode);
535
536 return keycode;
537 }
538 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
539
540 /**
541 * ir_do_keyup() - internal function to signal the release of a keypress
542 * @dev: the struct rc_dev descriptor of the device
543 * @sync: whether or not to call input_sync
544 *
545 * This function is used internally to release a keypress, it must be
546 * called with keylock held.
547 */
548 static void ir_do_keyup(struct rc_dev *dev, bool sync)
549 {
550 if (!dev->keypressed)
551 return;
552
553 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
554 input_report_key(dev->input_dev, dev->last_keycode, 0);
555 led_trigger_event(led_feedback, LED_OFF);
556 if (sync)
557 input_sync(dev->input_dev);
558 dev->keypressed = false;
559 }
560
561 /**
562 * rc_keyup() - signals the release of a keypress
563 * @dev: the struct rc_dev descriptor of the device
564 *
565 * This routine is used to signal that a key has been released on the
566 * remote control.
567 */
568 void rc_keyup(struct rc_dev *dev)
569 {
570 unsigned long flags;
571
572 spin_lock_irqsave(&dev->keylock, flags);
573 ir_do_keyup(dev, true);
574 spin_unlock_irqrestore(&dev->keylock, flags);
575 }
576 EXPORT_SYMBOL_GPL(rc_keyup);
577
578 /**
579 * ir_timer_keyup() - generates a keyup event after a timeout
580 * @cookie: a pointer to the struct rc_dev for the device
581 *
582 * This routine will generate a keyup event some time after a keydown event
583 * is generated when no further activity has been detected.
584 */
585 static void ir_timer_keyup(unsigned long cookie)
586 {
587 struct rc_dev *dev = (struct rc_dev *)cookie;
588 unsigned long flags;
589
590 /*
591 * ir->keyup_jiffies is used to prevent a race condition if a
592 * hardware interrupt occurs at this point and the keyup timer
593 * event is moved further into the future as a result.
594 *
595 * The timer will then be reactivated and this function called
596 * again in the future. We need to exit gracefully in that case
597 * to allow the input subsystem to do its auto-repeat magic or
598 * a keyup event might follow immediately after the keydown.
599 */
600 spin_lock_irqsave(&dev->keylock, flags);
601 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
602 ir_do_keyup(dev, true);
603 spin_unlock_irqrestore(&dev->keylock, flags);
604 }
605
606 /**
607 * rc_repeat() - signals that a key is still pressed
608 * @dev: the struct rc_dev descriptor of the device
609 *
610 * This routine is used by IR decoders when a repeat message which does
611 * not include the necessary bits to reproduce the scancode has been
612 * received.
613 */
614 void rc_repeat(struct rc_dev *dev)
615 {
616 unsigned long flags;
617
618 spin_lock_irqsave(&dev->keylock, flags);
619
620 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
621 input_sync(dev->input_dev);
622
623 if (!dev->keypressed)
624 goto out;
625
626 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
627 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
628
629 out:
630 spin_unlock_irqrestore(&dev->keylock, flags);
631 }
632 EXPORT_SYMBOL_GPL(rc_repeat);
633
634 /**
635 * ir_do_keydown() - internal function to process a keypress
636 * @dev: the struct rc_dev descriptor of the device
637 * @protocol: the protocol of the keypress
638 * @scancode: the scancode of the keypress
639 * @keycode: the keycode of the keypress
640 * @toggle: the toggle value of the keypress
641 *
642 * This function is used internally to register a keypress, it must be
643 * called with keylock held.
644 */
645 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
646 u32 scancode, u32 keycode, u8 toggle)
647 {
648 bool new_event = (!dev->keypressed ||
649 dev->last_protocol != protocol ||
650 dev->last_scancode != scancode ||
651 dev->last_toggle != toggle);
652
653 if (new_event && dev->keypressed)
654 ir_do_keyup(dev, false);
655
656 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
657
658 if (new_event && keycode != KEY_RESERVED) {
659 /* Register a keypress */
660 dev->keypressed = true;
661 dev->last_protocol = protocol;
662 dev->last_scancode = scancode;
663 dev->last_toggle = toggle;
664 dev->last_keycode = keycode;
665
666 IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
667 dev->input_name, keycode, protocol, scancode);
668 input_report_key(dev->input_dev, keycode, 1);
669
670 led_trigger_event(led_feedback, LED_FULL);
671 }
672
673 input_sync(dev->input_dev);
674 }
675
676 /**
677 * rc_keydown() - generates input event for a key press
678 * @dev: the struct rc_dev descriptor of the device
679 * @protocol: the protocol for the keypress
680 * @scancode: the scancode for the keypress
681 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
682 * support toggle values, this should be set to zero)
683 *
684 * This routine is used to signal that a key has been pressed on the
685 * remote control.
686 */
687 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
688 {
689 unsigned long flags;
690 u32 keycode = rc_g_keycode_from_table(dev, scancode);
691
692 spin_lock_irqsave(&dev->keylock, flags);
693 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
694
695 if (dev->keypressed) {
696 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
697 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
698 }
699 spin_unlock_irqrestore(&dev->keylock, flags);
700 }
701 EXPORT_SYMBOL_GPL(rc_keydown);
702
703 /**
704 * rc_keydown_notimeout() - generates input event for a key press without
705 * an automatic keyup event at a later time
706 * @dev: the struct rc_dev descriptor of the device
707 * @protocol: the protocol for the keypress
708 * @scancode: the scancode for the keypress
709 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
710 * support toggle values, this should be set to zero)
711 *
712 * This routine is used to signal that a key has been pressed on the
713 * remote control. The driver must manually call rc_keyup() at a later stage.
714 */
715 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
716 u32 scancode, u8 toggle)
717 {
718 unsigned long flags;
719 u32 keycode = rc_g_keycode_from_table(dev, scancode);
720
721 spin_lock_irqsave(&dev->keylock, flags);
722 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
723 spin_unlock_irqrestore(&dev->keylock, flags);
724 }
725 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
726
727 /**
728 * rc_validate_filter() - checks that the scancode and mask are valid and
729 * provides sensible defaults
730 * @dev: the struct rc_dev descriptor of the device
731 * @filter: the scancode and mask
732 * @return: 0 or -EINVAL if the filter is not valid
733 */
734 static int rc_validate_filter(struct rc_dev *dev,
735 struct rc_scancode_filter *filter)
736 {
737 static u32 masks[] = {
738 [RC_TYPE_RC5] = 0x1f7f,
739 [RC_TYPE_RC5X_20] = 0x1f7f3f,
740 [RC_TYPE_RC5_SZ] = 0x2fff,
741 [RC_TYPE_SONY12] = 0x1f007f,
742 [RC_TYPE_SONY15] = 0xff007f,
743 [RC_TYPE_SONY20] = 0x1fff7f,
744 [RC_TYPE_JVC] = 0xffff,
745 [RC_TYPE_NEC] = 0xffff,
746 [RC_TYPE_NECX] = 0xffffff,
747 [RC_TYPE_NEC32] = 0xffffffff,
748 [RC_TYPE_SANYO] = 0x1fffff,
749 [RC_TYPE_RC6_0] = 0xffff,
750 [RC_TYPE_RC6_6A_20] = 0xfffff,
751 [RC_TYPE_RC6_6A_24] = 0xffffff,
752 [RC_TYPE_RC6_6A_32] = 0xffffffff,
753 [RC_TYPE_RC6_MCE] = 0xffff7fff,
754 [RC_TYPE_SHARP] = 0x1fff,
755 };
756 u32 s = filter->data;
757 enum rc_type protocol = dev->wakeup_protocol;
758
759 switch (protocol) {
760 case RC_TYPE_NECX:
761 if ((((s >> 16) ^ ~(s >> 8)) & 0xff) == 0)
762 return -EINVAL;
763 break;
764 case RC_TYPE_NEC32:
765 if ((((s >> 24) ^ ~(s >> 16)) & 0xff) == 0)
766 return -EINVAL;
767 break;
768 case RC_TYPE_RC6_MCE:
769 if ((s & 0xffff0000) != 0x800f0000)
770 return -EINVAL;
771 break;
772 case RC_TYPE_RC6_6A_32:
773 if ((s & 0xffff0000) == 0x800f0000)
774 return -EINVAL;
775 break;
776 default:
777 break;
778 }
779
780 filter->data &= masks[protocol];
781 filter->mask &= masks[protocol];
782
783 /*
784 * If we have to raw encode the IR for wakeup, we cannot have a mask
785 */
786 if (dev->encode_wakeup &&
787 filter->mask != 0 && filter->mask != masks[protocol])
788 return -EINVAL;
789
790 return 0;
791 }
792
793 int rc_open(struct rc_dev *rdev)
794 {
795 int rval = 0;
796
797 if (!rdev)
798 return -EINVAL;
799
800 mutex_lock(&rdev->lock);
801
802 if (!rdev->users++ && rdev->open != NULL)
803 rval = rdev->open(rdev);
804
805 if (rval)
806 rdev->users--;
807
808 mutex_unlock(&rdev->lock);
809
810 return rval;
811 }
812 EXPORT_SYMBOL_GPL(rc_open);
813
814 static int ir_open(struct input_dev *idev)
815 {
816 struct rc_dev *rdev = input_get_drvdata(idev);
817
818 return rc_open(rdev);
819 }
820
821 void rc_close(struct rc_dev *rdev)
822 {
823 if (rdev) {
824 mutex_lock(&rdev->lock);
825
826 if (!--rdev->users && rdev->close != NULL)
827 rdev->close(rdev);
828
829 mutex_unlock(&rdev->lock);
830 }
831 }
832 EXPORT_SYMBOL_GPL(rc_close);
833
834 static void ir_close(struct input_dev *idev)
835 {
836 struct rc_dev *rdev = input_get_drvdata(idev);
837 rc_close(rdev);
838 }
839
840 /* class for /sys/class/rc */
841 static char *rc_devnode(struct device *dev, umode_t *mode)
842 {
843 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
844 }
845
846 static struct class rc_class = {
847 .name = "rc",
848 .devnode = rc_devnode,
849 };
850
851 /*
852 * These are the protocol textual descriptions that are
853 * used by the sysfs protocols file. Note that the order
854 * of the entries is relevant.
855 */
856 static const struct {
857 u64 type;
858 const char *name;
859 const char *module_name;
860 } proto_names[] = {
861 { RC_BIT_NONE, "none", NULL },
862 { RC_BIT_OTHER, "other", NULL },
863 { RC_BIT_UNKNOWN, "unknown", NULL },
864 { RC_BIT_RC5 |
865 RC_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" },
866 { RC_BIT_NEC |
867 RC_BIT_NECX |
868 RC_BIT_NEC32, "nec", "ir-nec-decoder" },
869 { RC_BIT_RC6_0 |
870 RC_BIT_RC6_6A_20 |
871 RC_BIT_RC6_6A_24 |
872 RC_BIT_RC6_6A_32 |
873 RC_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
874 { RC_BIT_JVC, "jvc", "ir-jvc-decoder" },
875 { RC_BIT_SONY12 |
876 RC_BIT_SONY15 |
877 RC_BIT_SONY20, "sony", "ir-sony-decoder" },
878 { RC_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
879 { RC_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
880 { RC_BIT_SHARP, "sharp", "ir-sharp-decoder" },
881 { RC_BIT_MCE_KBD, "mce_kbd", "ir-mce_kbd-decoder" },
882 { RC_BIT_XMP, "xmp", "ir-xmp-decoder" },
883 { RC_BIT_CEC, "cec", NULL },
884 };
885
886 /**
887 * struct rc_filter_attribute - Device attribute relating to a filter type.
888 * @attr: Device attribute.
889 * @type: Filter type.
890 * @mask: false for filter value, true for filter mask.
891 */
892 struct rc_filter_attribute {
893 struct device_attribute attr;
894 enum rc_filter_type type;
895 bool mask;
896 };
897 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
898
899 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
900 struct rc_filter_attribute dev_attr_##_name = { \
901 .attr = __ATTR(_name, _mode, _show, _store), \
902 .type = (_type), \
903 .mask = (_mask), \
904 }
905
906 static bool lirc_is_present(void)
907 {
908 #if defined(CONFIG_LIRC_MODULE)
909 struct module *lirc;
910
911 mutex_lock(&module_mutex);
912 lirc = find_module("lirc_dev");
913 mutex_unlock(&module_mutex);
914
915 return lirc ? true : false;
916 #elif defined(CONFIG_LIRC)
917 return true;
918 #else
919 return false;
920 #endif
921 }
922
923 /**
924 * show_protocols() - shows the current IR protocol(s)
925 * @device: the device descriptor
926 * @mattr: the device attribute struct
927 * @buf: a pointer to the output buffer
928 *
929 * This routine is a callback routine for input read the IR protocol type(s).
930 * it is trigged by reading /sys/class/rc/rc?/protocols.
931 * It returns the protocol names of supported protocols.
932 * Enabled protocols are printed in brackets.
933 *
934 * dev->lock is taken to guard against races between device
935 * registration, store_protocols and show_protocols.
936 */
937 static ssize_t show_protocols(struct device *device,
938 struct device_attribute *mattr, char *buf)
939 {
940 struct rc_dev *dev = to_rc_dev(device);
941 u64 allowed, enabled;
942 char *tmp = buf;
943 int i;
944
945 /* Device is being removed */
946 if (!dev)
947 return -EINVAL;
948
949 if (!atomic_read(&dev->initialized))
950 return -ERESTARTSYS;
951
952 mutex_lock(&dev->lock);
953
954 enabled = dev->enabled_protocols;
955 allowed = dev->allowed_protocols;
956 if (dev->raw && !allowed)
957 allowed = ir_raw_get_allowed_protocols();
958
959 mutex_unlock(&dev->lock);
960
961 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
962 __func__, (long long)allowed, (long long)enabled);
963
964 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
965 if (allowed & enabled & proto_names[i].type)
966 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
967 else if (allowed & proto_names[i].type)
968 tmp += sprintf(tmp, "%s ", proto_names[i].name);
969
970 if (allowed & proto_names[i].type)
971 allowed &= ~proto_names[i].type;
972 }
973
974 if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
975 tmp += sprintf(tmp, "[lirc] ");
976
977 if (tmp != buf)
978 tmp--;
979 *tmp = '\n';
980
981 return tmp + 1 - buf;
982 }
983
984 /**
985 * parse_protocol_change() - parses a protocol change request
986 * @protocols: pointer to the bitmask of current protocols
987 * @buf: pointer to the buffer with a list of changes
988 *
989 * Writing "+proto" will add a protocol to the protocol mask.
990 * Writing "-proto" will remove a protocol from protocol mask.
991 * Writing "proto" will enable only "proto".
992 * Writing "none" will disable all protocols.
993 * Returns the number of changes performed or a negative error code.
994 */
995 static int parse_protocol_change(u64 *protocols, const char *buf)
996 {
997 const char *tmp;
998 unsigned count = 0;
999 bool enable, disable;
1000 u64 mask;
1001 int i;
1002
1003 while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1004 if (!*tmp)
1005 break;
1006
1007 if (*tmp == '+') {
1008 enable = true;
1009 disable = false;
1010 tmp++;
1011 } else if (*tmp == '-') {
1012 enable = false;
1013 disable = true;
1014 tmp++;
1015 } else {
1016 enable = false;
1017 disable = false;
1018 }
1019
1020 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1021 if (!strcasecmp(tmp, proto_names[i].name)) {
1022 mask = proto_names[i].type;
1023 break;
1024 }
1025 }
1026
1027 if (i == ARRAY_SIZE(proto_names)) {
1028 if (!strcasecmp(tmp, "lirc"))
1029 mask = 0;
1030 else {
1031 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
1032 return -EINVAL;
1033 }
1034 }
1035
1036 count++;
1037
1038 if (enable)
1039 *protocols |= mask;
1040 else if (disable)
1041 *protocols &= ~mask;
1042 else
1043 *protocols = mask;
1044 }
1045
1046 if (!count) {
1047 IR_dprintk(1, "Protocol not specified\n");
1048 return -EINVAL;
1049 }
1050
1051 return count;
1052 }
1053
1054 static void ir_raw_load_modules(u64 *protocols)
1055 {
1056 u64 available;
1057 int i, ret;
1058
1059 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1060 if (proto_names[i].type == RC_BIT_NONE ||
1061 proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
1062 continue;
1063
1064 available = ir_raw_get_allowed_protocols();
1065 if (!(*protocols & proto_names[i].type & ~available))
1066 continue;
1067
1068 if (!proto_names[i].module_name) {
1069 pr_err("Can't enable IR protocol %s\n",
1070 proto_names[i].name);
1071 *protocols &= ~proto_names[i].type;
1072 continue;
1073 }
1074
1075 ret = request_module("%s", proto_names[i].module_name);
1076 if (ret < 0) {
1077 pr_err("Couldn't load IR protocol module %s\n",
1078 proto_names[i].module_name);
1079 *protocols &= ~proto_names[i].type;
1080 continue;
1081 }
1082 msleep(20);
1083 available = ir_raw_get_allowed_protocols();
1084 if (!(*protocols & proto_names[i].type & ~available))
1085 continue;
1086
1087 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1088 proto_names[i].module_name,
1089 proto_names[i].name);
1090 *protocols &= ~proto_names[i].type;
1091 }
1092 }
1093
1094 /**
1095 * store_protocols() - changes the current/wakeup IR protocol(s)
1096 * @device: the device descriptor
1097 * @mattr: the device attribute struct
1098 * @buf: a pointer to the input buffer
1099 * @len: length of the input buffer
1100 *
1101 * This routine is for changing the IR protocol type.
1102 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1103 * See parse_protocol_change() for the valid commands.
1104 * Returns @len on success or a negative error code.
1105 *
1106 * dev->lock is taken to guard against races between device
1107 * registration, store_protocols and show_protocols.
1108 */
1109 static ssize_t store_protocols(struct device *device,
1110 struct device_attribute *mattr,
1111 const char *buf, size_t len)
1112 {
1113 struct rc_dev *dev = to_rc_dev(device);
1114 u64 *current_protocols;
1115 struct rc_scancode_filter *filter;
1116 u64 old_protocols, new_protocols;
1117 ssize_t rc;
1118
1119 /* Device is being removed */
1120 if (!dev)
1121 return -EINVAL;
1122
1123 if (!atomic_read(&dev->initialized))
1124 return -ERESTARTSYS;
1125
1126 IR_dprintk(1, "Normal protocol change requested\n");
1127 current_protocols = &dev->enabled_protocols;
1128 filter = &dev->scancode_filter;
1129
1130 if (!dev->change_protocol) {
1131 IR_dprintk(1, "Protocol switching not supported\n");
1132 return -EINVAL;
1133 }
1134
1135 mutex_lock(&dev->lock);
1136
1137 old_protocols = *current_protocols;
1138 new_protocols = old_protocols;
1139 rc = parse_protocol_change(&new_protocols, buf);
1140 if (rc < 0)
1141 goto out;
1142
1143 rc = dev->change_protocol(dev, &new_protocols);
1144 if (rc < 0) {
1145 IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1146 (long long)new_protocols);
1147 goto out;
1148 }
1149
1150 if (dev->driver_type == RC_DRIVER_IR_RAW)
1151 ir_raw_load_modules(&new_protocols);
1152
1153 if (new_protocols != old_protocols) {
1154 *current_protocols = new_protocols;
1155 IR_dprintk(1, "Protocols changed to 0x%llx\n",
1156 (long long)new_protocols);
1157 }
1158
1159 /*
1160 * If a protocol change was attempted the filter may need updating, even
1161 * if the actual protocol mask hasn't changed (since the driver may have
1162 * cleared the filter).
1163 * Try setting the same filter with the new protocol (if any).
1164 * Fall back to clearing the filter.
1165 */
1166 if (dev->s_filter && filter->mask) {
1167 if (new_protocols)
1168 rc = dev->s_filter(dev, filter);
1169 else
1170 rc = -1;
1171
1172 if (rc < 0) {
1173 filter->data = 0;
1174 filter->mask = 0;
1175 dev->s_filter(dev, filter);
1176 }
1177 }
1178
1179 rc = len;
1180
1181 out:
1182 mutex_unlock(&dev->lock);
1183 return rc;
1184 }
1185
1186 /**
1187 * show_filter() - shows the current scancode filter value or mask
1188 * @device: the device descriptor
1189 * @attr: the device attribute struct
1190 * @buf: a pointer to the output buffer
1191 *
1192 * This routine is a callback routine to read a scancode filter value or mask.
1193 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1194 * It prints the current scancode filter value or mask of the appropriate filter
1195 * type in hexadecimal into @buf and returns the size of the buffer.
1196 *
1197 * Bits of the filter value corresponding to set bits in the filter mask are
1198 * compared against input scancodes and non-matching scancodes are discarded.
1199 *
1200 * dev->lock is taken to guard against races between device registration,
1201 * store_filter and show_filter.
1202 */
1203 static ssize_t show_filter(struct device *device,
1204 struct device_attribute *attr,
1205 char *buf)
1206 {
1207 struct rc_dev *dev = to_rc_dev(device);
1208 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1209 struct rc_scancode_filter *filter;
1210 u32 val;
1211
1212 /* Device is being removed */
1213 if (!dev)
1214 return -EINVAL;
1215
1216 if (!atomic_read(&dev->initialized))
1217 return -ERESTARTSYS;
1218
1219 mutex_lock(&dev->lock);
1220
1221 if (fattr->type == RC_FILTER_NORMAL)
1222 filter = &dev->scancode_filter;
1223 else
1224 filter = &dev->scancode_wakeup_filter;
1225
1226 if (fattr->mask)
1227 val = filter->mask;
1228 else
1229 val = filter->data;
1230 mutex_unlock(&dev->lock);
1231
1232 return sprintf(buf, "%#x\n", val);
1233 }
1234
1235 /**
1236 * store_filter() - changes the scancode filter value
1237 * @device: the device descriptor
1238 * @attr: the device attribute struct
1239 * @buf: a pointer to the input buffer
1240 * @len: length of the input buffer
1241 *
1242 * This routine is for changing a scancode filter value or mask.
1243 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1244 * Returns -EINVAL if an invalid filter value for the current protocol was
1245 * specified or if scancode filtering is not supported by the driver, otherwise
1246 * returns @len.
1247 *
1248 * Bits of the filter value corresponding to set bits in the filter mask are
1249 * compared against input scancodes and non-matching scancodes are discarded.
1250 *
1251 * dev->lock is taken to guard against races between device registration,
1252 * store_filter and show_filter.
1253 */
1254 static ssize_t store_filter(struct device *device,
1255 struct device_attribute *attr,
1256 const char *buf, size_t len)
1257 {
1258 struct rc_dev *dev = to_rc_dev(device);
1259 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1260 struct rc_scancode_filter new_filter, *filter;
1261 int ret;
1262 unsigned long val;
1263 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1264
1265 /* Device is being removed */
1266 if (!dev)
1267 return -EINVAL;
1268
1269 if (!atomic_read(&dev->initialized))
1270 return -ERESTARTSYS;
1271
1272 ret = kstrtoul(buf, 0, &val);
1273 if (ret < 0)
1274 return ret;
1275
1276 if (fattr->type == RC_FILTER_NORMAL) {
1277 set_filter = dev->s_filter;
1278 filter = &dev->scancode_filter;
1279 } else {
1280 set_filter = dev->s_wakeup_filter;
1281 filter = &dev->scancode_wakeup_filter;
1282 }
1283
1284 if (!set_filter)
1285 return -EINVAL;
1286
1287 mutex_lock(&dev->lock);
1288
1289 new_filter = *filter;
1290 if (fattr->mask)
1291 new_filter.mask = val;
1292 else
1293 new_filter.data = val;
1294
1295 if (fattr->type == RC_FILTER_WAKEUP) {
1296 /*
1297 * Refuse to set a filter unless a protocol is enabled
1298 * and the filter is valid for that protocol
1299 */
1300 if (dev->wakeup_protocol != RC_TYPE_UNKNOWN)
1301 ret = rc_validate_filter(dev, &new_filter);
1302 else
1303 ret = -EINVAL;
1304
1305 if (ret != 0)
1306 goto unlock;
1307 }
1308
1309 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1310 val) {
1311 /* refuse to set a filter unless a protocol is enabled */
1312 ret = -EINVAL;
1313 goto unlock;
1314 }
1315
1316 ret = set_filter(dev, &new_filter);
1317 if (ret < 0)
1318 goto unlock;
1319
1320 *filter = new_filter;
1321
1322 unlock:
1323 mutex_unlock(&dev->lock);
1324 return (ret < 0) ? ret : len;
1325 }
1326
1327 /*
1328 * This is the list of all variants of all protocols, which is used by
1329 * the wakeup_protocols sysfs entry. In the protocols sysfs entry some
1330 * some protocols are grouped together (e.g. nec = nec + necx + nec32).
1331 *
1332 * For wakeup we need to know the exact protocol variant so the hardware
1333 * can be programmed exactly what to expect.
1334 */
1335 static const char * const proto_variant_names[] = {
1336 [RC_TYPE_UNKNOWN] = "unknown",
1337 [RC_TYPE_OTHER] = "other",
1338 [RC_TYPE_RC5] = "rc-5",
1339 [RC_TYPE_RC5X_20] = "rc-5x-20",
1340 [RC_TYPE_RC5_SZ] = "rc-5-sz",
1341 [RC_TYPE_JVC] = "jvc",
1342 [RC_TYPE_SONY12] = "sony-12",
1343 [RC_TYPE_SONY15] = "sony-15",
1344 [RC_TYPE_SONY20] = "sony-20",
1345 [RC_TYPE_NEC] = "nec",
1346 [RC_TYPE_NECX] = "nec-x",
1347 [RC_TYPE_NEC32] = "nec-32",
1348 [RC_TYPE_SANYO] = "sanyo",
1349 [RC_TYPE_MCE_KBD] = "mce_kbd",
1350 [RC_TYPE_RC6_0] = "rc-6-0",
1351 [RC_TYPE_RC6_6A_20] = "rc-6-6a-20",
1352 [RC_TYPE_RC6_6A_24] = "rc-6-6a-24",
1353 [RC_TYPE_RC6_6A_32] = "rc-6-6a-32",
1354 [RC_TYPE_RC6_MCE] = "rc-6-mce",
1355 [RC_TYPE_SHARP] = "sharp",
1356 [RC_TYPE_XMP] = "xmp",
1357 [RC_TYPE_CEC] = "cec",
1358 };
1359
1360 /**
1361 * show_wakeup_protocols() - shows the wakeup IR protocol
1362 * @device: the device descriptor
1363 * @mattr: the device attribute struct
1364 * @buf: a pointer to the output buffer
1365 *
1366 * This routine is a callback routine for input read the IR protocol type(s).
1367 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1368 * It returns the protocol names of supported protocols.
1369 * The enabled protocols are printed in brackets.
1370 *
1371 * dev->lock is taken to guard against races between device
1372 * registration, store_protocols and show_protocols.
1373 */
1374 static ssize_t show_wakeup_protocols(struct device *device,
1375 struct device_attribute *mattr,
1376 char *buf)
1377 {
1378 struct rc_dev *dev = to_rc_dev(device);
1379 u64 allowed;
1380 enum rc_type enabled;
1381 char *tmp = buf;
1382 int i;
1383
1384 /* Device is being removed */
1385 if (!dev)
1386 return -EINVAL;
1387
1388 if (!atomic_read(&dev->initialized))
1389 return -ERESTARTSYS;
1390
1391 mutex_lock(&dev->lock);
1392
1393 allowed = dev->allowed_wakeup_protocols;
1394 enabled = dev->wakeup_protocol;
1395
1396 mutex_unlock(&dev->lock);
1397
1398 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
1399 __func__, (long long)allowed, enabled);
1400
1401 for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
1402 if (allowed & (1ULL << i)) {
1403 if (i == enabled)
1404 tmp += sprintf(tmp, "[%s] ",
1405 proto_variant_names[i]);
1406 else
1407 tmp += sprintf(tmp, "%s ",
1408 proto_variant_names[i]);
1409 }
1410 }
1411
1412 if (tmp != buf)
1413 tmp--;
1414 *tmp = '\n';
1415
1416 return tmp + 1 - buf;
1417 }
1418
1419 /**
1420 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1421 * @device: the device descriptor
1422 * @mattr: the device attribute struct
1423 * @buf: a pointer to the input buffer
1424 * @len: length of the input buffer
1425 *
1426 * This routine is for changing the IR protocol type.
1427 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1428 * Returns @len on success or a negative error code.
1429 *
1430 * dev->lock is taken to guard against races between device
1431 * registration, store_protocols and show_protocols.
1432 */
1433 static ssize_t store_wakeup_protocols(struct device *device,
1434 struct device_attribute *mattr,
1435 const char *buf, size_t len)
1436 {
1437 struct rc_dev *dev = to_rc_dev(device);
1438 enum rc_type protocol;
1439 ssize_t rc;
1440 u64 allowed;
1441 int i;
1442
1443 /* Device is being removed */
1444 if (!dev)
1445 return -EINVAL;
1446
1447 if (!atomic_read(&dev->initialized))
1448 return -ERESTARTSYS;
1449
1450 mutex_lock(&dev->lock);
1451
1452 allowed = dev->allowed_wakeup_protocols;
1453
1454 if (sysfs_streq(buf, "none")) {
1455 protocol = RC_TYPE_UNKNOWN;
1456 } else {
1457 for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
1458 if ((allowed & (1ULL << i)) &&
1459 sysfs_streq(buf, proto_variant_names[i])) {
1460 protocol = i;
1461 break;
1462 }
1463 }
1464
1465 if (i == ARRAY_SIZE(proto_variant_names)) {
1466 rc = -EINVAL;
1467 goto out;
1468 }
1469
1470 if (dev->encode_wakeup) {
1471 u64 mask = 1ULL << protocol;
1472
1473 ir_raw_load_modules(&mask);
1474 if (!mask) {
1475 rc = -EINVAL;
1476 goto out;
1477 }
1478 }
1479 }
1480
1481 if (dev->wakeup_protocol != protocol) {
1482 dev->wakeup_protocol = protocol;
1483 IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);
1484
1485 if (protocol == RC_TYPE_RC6_MCE)
1486 dev->scancode_wakeup_filter.data = 0x800f0000;
1487 else
1488 dev->scancode_wakeup_filter.data = 0;
1489 dev->scancode_wakeup_filter.mask = 0;
1490
1491 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1492 if (rc == 0)
1493 rc = len;
1494 } else {
1495 rc = len;
1496 }
1497
1498 out:
1499 mutex_unlock(&dev->lock);
1500 return rc;
1501 }
1502
1503 static void rc_dev_release(struct device *device)
1504 {
1505 struct rc_dev *dev = to_rc_dev(device);
1506
1507 kfree(dev);
1508 }
1509
1510 #define ADD_HOTPLUG_VAR(fmt, val...) \
1511 do { \
1512 int err = add_uevent_var(env, fmt, val); \
1513 if (err) \
1514 return err; \
1515 } while (0)
1516
1517 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1518 {
1519 struct rc_dev *dev = to_rc_dev(device);
1520
1521 if (dev->rc_map.name)
1522 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1523 if (dev->driver_name)
1524 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1525
1526 return 0;
1527 }
1528
1529 /*
1530 * Static device attribute struct with the sysfs attributes for IR's
1531 */
1532 static DEVICE_ATTR(protocols, 0644, show_protocols, store_protocols);
1533 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1534 store_wakeup_protocols);
1535 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1536 show_filter, store_filter, RC_FILTER_NORMAL, false);
1537 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1538 show_filter, store_filter, RC_FILTER_NORMAL, true);
1539 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1540 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1541 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1542 show_filter, store_filter, RC_FILTER_WAKEUP, true);
1543
1544 static struct attribute *rc_dev_protocol_attrs[] = {
1545 &dev_attr_protocols.attr,
1546 NULL,
1547 };
1548
1549 static struct attribute_group rc_dev_protocol_attr_grp = {
1550 .attrs = rc_dev_protocol_attrs,
1551 };
1552
1553 static struct attribute *rc_dev_filter_attrs[] = {
1554 &dev_attr_filter.attr.attr,
1555 &dev_attr_filter_mask.attr.attr,
1556 NULL,
1557 };
1558
1559 static struct attribute_group rc_dev_filter_attr_grp = {
1560 .attrs = rc_dev_filter_attrs,
1561 };
1562
1563 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1564 &dev_attr_wakeup_filter.attr.attr,
1565 &dev_attr_wakeup_filter_mask.attr.attr,
1566 &dev_attr_wakeup_protocols.attr,
1567 NULL,
1568 };
1569
1570 static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1571 .attrs = rc_dev_wakeup_filter_attrs,
1572 };
1573
1574 static struct device_type rc_dev_type = {
1575 .release = rc_dev_release,
1576 .uevent = rc_dev_uevent,
1577 };
1578
1579 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1580 {
1581 struct rc_dev *dev;
1582
1583 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1584 if (!dev)
1585 return NULL;
1586
1587 if (type != RC_DRIVER_IR_RAW_TX) {
1588 dev->input_dev = input_allocate_device();
1589 if (!dev->input_dev) {
1590 kfree(dev);
1591 return NULL;
1592 }
1593
1594 dev->input_dev->getkeycode = ir_getkeycode;
1595 dev->input_dev->setkeycode = ir_setkeycode;
1596 input_set_drvdata(dev->input_dev, dev);
1597
1598 setup_timer(&dev->timer_keyup, ir_timer_keyup,
1599 (unsigned long)dev);
1600
1601 spin_lock_init(&dev->rc_map.lock);
1602 spin_lock_init(&dev->keylock);
1603 }
1604 mutex_init(&dev->lock);
1605
1606 dev->dev.type = &rc_dev_type;
1607 dev->dev.class = &rc_class;
1608 device_initialize(&dev->dev);
1609
1610 dev->driver_type = type;
1611
1612 __module_get(THIS_MODULE);
1613 return dev;
1614 }
1615 EXPORT_SYMBOL_GPL(rc_allocate_device);
1616
1617 void rc_free_device(struct rc_dev *dev)
1618 {
1619 if (!dev)
1620 return;
1621
1622 input_free_device(dev->input_dev);
1623
1624 put_device(&dev->dev);
1625
1626 /* kfree(dev) will be called by the callback function
1627 rc_dev_release() */
1628
1629 module_put(THIS_MODULE);
1630 }
1631 EXPORT_SYMBOL_GPL(rc_free_device);
1632
1633 static void devm_rc_alloc_release(struct device *dev, void *res)
1634 {
1635 rc_free_device(*(struct rc_dev **)res);
1636 }
1637
1638 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1639 enum rc_driver_type type)
1640 {
1641 struct rc_dev **dr, *rc;
1642
1643 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1644 if (!dr)
1645 return NULL;
1646
1647 rc = rc_allocate_device(type);
1648 if (!rc) {
1649 devres_free(dr);
1650 return NULL;
1651 }
1652
1653 rc->dev.parent = dev;
1654 rc->managed_alloc = true;
1655 *dr = rc;
1656 devres_add(dev, dr);
1657
1658 return rc;
1659 }
1660 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1661
1662 static int rc_setup_rx_device(struct rc_dev *dev)
1663 {
1664 int rc;
1665 struct rc_map *rc_map;
1666 u64 rc_type;
1667
1668 if (!dev->map_name)
1669 return -EINVAL;
1670
1671 rc_map = rc_map_get(dev->map_name);
1672 if (!rc_map)
1673 rc_map = rc_map_get(RC_MAP_EMPTY);
1674 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1675 return -EINVAL;
1676
1677 rc = ir_setkeytable(dev, rc_map);
1678 if (rc)
1679 return rc;
1680
1681 rc_type = BIT_ULL(rc_map->rc_type);
1682
1683 if (dev->change_protocol) {
1684 rc = dev->change_protocol(dev, &rc_type);
1685 if (rc < 0)
1686 goto out_table;
1687 dev->enabled_protocols = rc_type;
1688 }
1689
1690 if (dev->driver_type == RC_DRIVER_IR_RAW)
1691 ir_raw_load_modules(&rc_type);
1692
1693 set_bit(EV_KEY, dev->input_dev->evbit);
1694 set_bit(EV_REP, dev->input_dev->evbit);
1695 set_bit(EV_MSC, dev->input_dev->evbit);
1696 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1697 if (dev->open)
1698 dev->input_dev->open = ir_open;
1699 if (dev->close)
1700 dev->input_dev->close = ir_close;
1701
1702 /*
1703 * Default delay of 250ms is too short for some protocols, especially
1704 * since the timeout is currently set to 250ms. Increase it to 500ms,
1705 * to avoid wrong repetition of the keycodes. Note that this must be
1706 * set after the call to input_register_device().
1707 */
1708 dev->input_dev->rep[REP_DELAY] = 500;
1709
1710 /*
1711 * As a repeat event on protocols like RC-5 and NEC take as long as
1712 * 110/114ms, using 33ms as a repeat period is not the right thing
1713 * to do.
1714 */
1715 dev->input_dev->rep[REP_PERIOD] = 125;
1716
1717 dev->input_dev->dev.parent = &dev->dev;
1718 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1719 dev->input_dev->phys = dev->input_phys;
1720 dev->input_dev->name = dev->input_name;
1721
1722 /* rc_open will be called here */
1723 rc = input_register_device(dev->input_dev);
1724 if (rc)
1725 goto out_table;
1726
1727 return 0;
1728
1729 out_table:
1730 ir_free_table(&dev->rc_map);
1731
1732 return rc;
1733 }
1734
1735 static void rc_free_rx_device(struct rc_dev *dev)
1736 {
1737 if (!dev || dev->driver_type == RC_DRIVER_IR_RAW_TX)
1738 return;
1739
1740 ir_free_table(&dev->rc_map);
1741
1742 input_unregister_device(dev->input_dev);
1743 dev->input_dev = NULL;
1744 }
1745
1746 int rc_register_device(struct rc_dev *dev)
1747 {
1748 static bool raw_init; /* 'false' default value, raw decoders loaded? */
1749 const char *path;
1750 int attr = 0;
1751 int minor;
1752 int rc;
1753
1754 if (!dev)
1755 return -EINVAL;
1756
1757 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1758 if (minor < 0)
1759 return minor;
1760
1761 dev->minor = minor;
1762 dev_set_name(&dev->dev, "rc%u", dev->minor);
1763 dev_set_drvdata(&dev->dev, dev);
1764 atomic_set(&dev->initialized, 0);
1765
1766 dev->dev.groups = dev->sysfs_groups;
1767 if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1768 dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1769 if (dev->s_filter)
1770 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1771 if (dev->s_wakeup_filter)
1772 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1773 dev->sysfs_groups[attr++] = NULL;
1774
1775 rc = device_add(&dev->dev);
1776 if (rc)
1777 goto out_unlock;
1778
1779 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1780 dev_info(&dev->dev, "%s as %s\n",
1781 dev->input_name ?: "Unspecified device", path ?: "N/A");
1782 kfree(path);
1783
1784 if (dev->driver_type == RC_DRIVER_IR_RAW ||
1785 dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1786 if (!raw_init) {
1787 request_module_nowait("ir-lirc-codec");
1788 raw_init = true;
1789 }
1790 rc = ir_raw_event_register(dev);
1791 if (rc < 0)
1792 goto out_dev;
1793 }
1794
1795 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1796 rc = rc_setup_rx_device(dev);
1797 if (rc)
1798 goto out_raw;
1799 }
1800
1801 /* Allow the RC sysfs nodes to be accessible */
1802 atomic_set(&dev->initialized, 1);
1803
1804 IR_dprintk(1, "Registered rc%u (driver: %s)\n",
1805 dev->minor,
1806 dev->driver_name ? dev->driver_name : "unknown");
1807
1808 return 0;
1809
1810 out_raw:
1811 ir_raw_event_unregister(dev);
1812 out_dev:
1813 device_del(&dev->dev);
1814 out_unlock:
1815 ida_simple_remove(&rc_ida, minor);
1816 return rc;
1817 }
1818 EXPORT_SYMBOL_GPL(rc_register_device);
1819
1820 static void devm_rc_release(struct device *dev, void *res)
1821 {
1822 rc_unregister_device(*(struct rc_dev **)res);
1823 }
1824
1825 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1826 {
1827 struct rc_dev **dr;
1828 int ret;
1829
1830 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1831 if (!dr)
1832 return -ENOMEM;
1833
1834 ret = rc_register_device(dev);
1835 if (ret) {
1836 devres_free(dr);
1837 return ret;
1838 }
1839
1840 *dr = dev;
1841 devres_add(parent, dr);
1842
1843 return 0;
1844 }
1845 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1846
1847 void rc_unregister_device(struct rc_dev *dev)
1848 {
1849 if (!dev)
1850 return;
1851
1852 del_timer_sync(&dev->timer_keyup);
1853
1854 if (dev->driver_type == RC_DRIVER_IR_RAW)
1855 ir_raw_event_unregister(dev);
1856
1857 rc_free_rx_device(dev);
1858
1859 device_del(&dev->dev);
1860
1861 ida_simple_remove(&rc_ida, dev->minor);
1862
1863 if (!dev->managed_alloc)
1864 rc_free_device(dev);
1865 }
1866
1867 EXPORT_SYMBOL_GPL(rc_unregister_device);
1868
1869 /*
1870 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1871 */
1872
1873 static int __init rc_core_init(void)
1874 {
1875 int rc = class_register(&rc_class);
1876 if (rc) {
1877 pr_err("rc_core: unable to register rc class\n");
1878 return rc;
1879 }
1880
1881 led_trigger_register_simple("rc-feedback", &led_feedback);
1882 rc_map_register(&empty_map);
1883
1884 return 0;
1885 }
1886
1887 static void __exit rc_core_exit(void)
1888 {
1889 class_unregister(&rc_class);
1890 led_trigger_unregister_simple(led_feedback);
1891 rc_map_unregister(&empty_map);
1892 }
1893
1894 subsys_initcall(rc_core_init);
1895 module_exit(rc_core_exit);
1896
1897 int rc_core_debug; /* ir_debug level (0,1,2) */
1898 EXPORT_SYMBOL_GPL(rc_core_debug);
1899 module_param_named(debug, rc_core_debug, int, 0644);
1900
1901 MODULE_AUTHOR("Mauro Carvalho Chehab");
1902 MODULE_LICENSE("GPL");