]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/media/tuners/mt2060.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-bionic-kernel.git] / drivers / media / tuners / mt2060.c
1 /*
2 * Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
3 *
4 * Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 *
15 * GNU General Public License for more details.
16 */
17
18 /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
19
20 #include <linux/module.h>
21 #include <linux/delay.h>
22 #include <linux/dvb/frontend.h>
23 #include <linux/i2c.h>
24 #include <linux/slab.h>
25
26 #include "dvb_frontend.h"
27
28 #include "mt2060.h"
29 #include "mt2060_priv.h"
30
31 static int debug;
32 module_param(debug, int, 0644);
33 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
34
35 #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
36
37 // Reads a single register
38 static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
39 {
40 struct i2c_msg msg[2] = {
41 { .addr = priv->cfg->i2c_address, .flags = 0, .buf = &reg, .len = 1 },
42 { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
43 };
44
45 if (i2c_transfer(priv->i2c, msg, 2) != 2) {
46 printk(KERN_WARNING "mt2060 I2C read failed\n");
47 return -EREMOTEIO;
48 }
49 return 0;
50 }
51
52 // Writes a single register
53 static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
54 {
55 u8 buf[2] = { reg, val };
56 struct i2c_msg msg = {
57 .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2
58 };
59
60 if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
61 printk(KERN_WARNING "mt2060 I2C write failed\n");
62 return -EREMOTEIO;
63 }
64 return 0;
65 }
66
67 // Writes a set of consecutive registers
68 static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
69 {
70 int rem, val_len;
71 u8 xfer_buf[16];
72 struct i2c_msg msg = {
73 .addr = priv->cfg->i2c_address, .flags = 0, .buf = xfer_buf
74 };
75
76 for (rem = len - 1; rem > 0; rem -= priv->i2c_max_regs) {
77 val_len = min_t(int, rem, priv->i2c_max_regs);
78 msg.len = 1 + val_len;
79 xfer_buf[0] = buf[0] + len - 1 - rem;
80 memcpy(&xfer_buf[1], &buf[1 + len - 1 - rem], val_len);
81
82 if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
83 printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n", val_len);
84 return -EREMOTEIO;
85 }
86 }
87
88 return 0;
89 }
90
91 // Initialisation sequences
92 // LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
93 static u8 mt2060_config1[] = {
94 REG_LO1C1,
95 0x3F, 0x74, 0x00, 0x08, 0x93
96 };
97
98 // FMCG=2, GP2=0, GP1=0
99 static u8 mt2060_config2[] = {
100 REG_MISC_CTRL,
101 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
102 };
103
104 // VGAG=3, V1CSE=1
105
106 #ifdef MT2060_SPURCHECK
107 /* The function below calculates the frequency offset between the output frequency if2
108 and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
109 static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
110 {
111 int I,J;
112 int dia,diamin,diff;
113 diamin=1000000;
114 for (I = 1; I < 10; I++) {
115 J = ((2*I*lo1)/lo2+1)/2;
116 diff = I*(int)lo1-J*(int)lo2;
117 if (diff < 0) diff=-diff;
118 dia = (diff-(int)if2);
119 if (dia < 0) dia=-dia;
120 if (diamin > dia) diamin=dia;
121 }
122 return diamin;
123 }
124
125 #define BANDWIDTH 4000 // kHz
126
127 /* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
128 static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
129 {
130 u32 Spur,Sp1,Sp2;
131 int I,J;
132 I=0;
133 J=1000;
134
135 Spur=mt2060_spurcalc(lo1,lo2,if2);
136 if (Spur < BANDWIDTH) {
137 /* Potential spurs detected */
138 dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
139 (int)lo1,(int)lo2);
140 I=1000;
141 Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
142 Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
143
144 if (Sp1 < Sp2) {
145 J=-J; I=-I; Spur=Sp2;
146 } else
147 Spur=Sp1;
148
149 while (Spur < BANDWIDTH) {
150 I += J;
151 Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
152 }
153 dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
154 (int)(lo1+I),(int)(lo2+I));
155 }
156 return I;
157 }
158 #endif
159
160 #define IF2 36150 // IF2 frequency = 36.150 MHz
161 #define FREF 16000 // Quartz oscillator 16 MHz
162
163 static int mt2060_set_params(struct dvb_frontend *fe)
164 {
165 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
166 struct mt2060_priv *priv;
167 int i=0;
168 u32 freq;
169 u8 lnaband;
170 u32 f_lo1,f_lo2;
171 u32 div1,num1,div2,num2;
172 u8 b[8];
173 u32 if1;
174
175 priv = fe->tuner_priv;
176
177 if1 = priv->if1_freq;
178 b[0] = REG_LO1B1;
179 b[1] = 0xFF;
180
181 if (fe->ops.i2c_gate_ctrl)
182 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
183
184 mt2060_writeregs(priv,b,2);
185
186 freq = c->frequency / 1000; /* Hz -> kHz */
187
188 f_lo1 = freq + if1 * 1000;
189 f_lo1 = (f_lo1 / 250) * 250;
190 f_lo2 = f_lo1 - freq - IF2;
191 // From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
192 f_lo2 = ((f_lo2 + 25) / 50) * 50;
193 priv->frequency = (f_lo1 - f_lo2 - IF2) * 1000,
194
195 #ifdef MT2060_SPURCHECK
196 // LO-related spurs detection and correction
197 num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
198 f_lo1 += num1;
199 f_lo2 += num1;
200 #endif
201 //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
202 num1 = f_lo1 / (FREF / 64);
203 div1 = num1 / 64;
204 num1 &= 0x3f;
205
206 // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
207 num2 = f_lo2 * 64 / (FREF / 128);
208 div2 = num2 / 8192;
209 num2 &= 0x1fff;
210
211 if (freq <= 95000) lnaband = 0xB0; else
212 if (freq <= 180000) lnaband = 0xA0; else
213 if (freq <= 260000) lnaband = 0x90; else
214 if (freq <= 335000) lnaband = 0x80; else
215 if (freq <= 425000) lnaband = 0x70; else
216 if (freq <= 480000) lnaband = 0x60; else
217 if (freq <= 570000) lnaband = 0x50; else
218 if (freq <= 645000) lnaband = 0x40; else
219 if (freq <= 730000) lnaband = 0x30; else
220 if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
221
222 b[0] = REG_LO1C1;
223 b[1] = lnaband | ((num1 >>2) & 0x0F);
224 b[2] = div1;
225 b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
226 b[4] = num2 >> 4;
227 b[5] = ((num2 >>12) & 1) | (div2 << 1);
228
229 dprintk("IF1: %dMHz",(int)if1);
230 dprintk("PLL freq=%dkHz f_lo1=%dkHz f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
231 dprintk("PLL div1=%d num1=%d div2=%d num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
232 dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
233
234 mt2060_writeregs(priv,b,6);
235
236 //Waits for pll lock or timeout
237 i = 0;
238 do {
239 mt2060_readreg(priv,REG_LO_STATUS,b);
240 if ((b[0] & 0x88)==0x88)
241 break;
242 msleep(4);
243 i++;
244 } while (i<10);
245
246 if (fe->ops.i2c_gate_ctrl)
247 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
248
249 return 0;
250 }
251
252 static void mt2060_calibrate(struct mt2060_priv *priv)
253 {
254 u8 b = 0;
255 int i = 0;
256
257 if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
258 return;
259 if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
260 return;
261
262 /* initialize the clock output */
263 mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
264
265 do {
266 b |= (1 << 6); // FM1SS;
267 mt2060_writereg(priv, REG_LO2C1,b);
268 msleep(20);
269
270 if (i == 0) {
271 b |= (1 << 7); // FM1CA;
272 mt2060_writereg(priv, REG_LO2C1,b);
273 b &= ~(1 << 7); // FM1CA;
274 msleep(20);
275 }
276
277 b &= ~(1 << 6); // FM1SS
278 mt2060_writereg(priv, REG_LO2C1,b);
279
280 msleep(20);
281 i++;
282 } while (i < 9);
283
284 i = 0;
285 while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
286 msleep(20);
287
288 if (i <= 10) {
289 mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
290 dprintk("calibration was successful: %d", (int)priv->fmfreq);
291 } else
292 dprintk("FMCAL timed out");
293 }
294
295 static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
296 {
297 struct mt2060_priv *priv = fe->tuner_priv;
298 *frequency = priv->frequency;
299 return 0;
300 }
301
302 static int mt2060_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
303 {
304 *frequency = IF2 * 1000;
305 return 0;
306 }
307
308 static int mt2060_init(struct dvb_frontend *fe)
309 {
310 struct mt2060_priv *priv = fe->tuner_priv;
311 int ret;
312
313 if (fe->ops.i2c_gate_ctrl)
314 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
315
316 if (priv->sleep) {
317 ret = mt2060_writereg(priv, REG_MISC_CTRL, 0x20);
318 if (ret)
319 goto err_i2c_gate_ctrl;
320 }
321
322 ret = mt2060_writereg(priv, REG_VGAG,
323 (priv->cfg->clock_out << 6) | 0x33);
324
325 err_i2c_gate_ctrl:
326 if (fe->ops.i2c_gate_ctrl)
327 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
328
329 return ret;
330 }
331
332 static int mt2060_sleep(struct dvb_frontend *fe)
333 {
334 struct mt2060_priv *priv = fe->tuner_priv;
335 int ret;
336
337 if (fe->ops.i2c_gate_ctrl)
338 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
339
340 ret = mt2060_writereg(priv, REG_VGAG,
341 (priv->cfg->clock_out << 6) | 0x30);
342 if (ret)
343 goto err_i2c_gate_ctrl;
344
345 if (priv->sleep)
346 ret = mt2060_writereg(priv, REG_MISC_CTRL, 0xe8);
347
348 err_i2c_gate_ctrl:
349 if (fe->ops.i2c_gate_ctrl)
350 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
351
352 return ret;
353 }
354
355 static void mt2060_release(struct dvb_frontend *fe)
356 {
357 kfree(fe->tuner_priv);
358 fe->tuner_priv = NULL;
359 }
360
361 static const struct dvb_tuner_ops mt2060_tuner_ops = {
362 .info = {
363 .name = "Microtune MT2060",
364 .frequency_min = 48000000,
365 .frequency_max = 860000000,
366 .frequency_step = 50000,
367 },
368
369 .release = mt2060_release,
370
371 .init = mt2060_init,
372 .sleep = mt2060_sleep,
373
374 .set_params = mt2060_set_params,
375 .get_frequency = mt2060_get_frequency,
376 .get_if_frequency = mt2060_get_if_frequency,
377 };
378
379 /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
380 struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
381 {
382 struct mt2060_priv *priv = NULL;
383 u8 id = 0;
384
385 priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
386 if (priv == NULL)
387 return NULL;
388
389 priv->cfg = cfg;
390 priv->i2c = i2c;
391 priv->if1_freq = if1;
392 priv->i2c_max_regs = ~0;
393
394 if (fe->ops.i2c_gate_ctrl)
395 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
396
397 if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
398 kfree(priv);
399 return NULL;
400 }
401
402 if (id != PART_REV) {
403 kfree(priv);
404 return NULL;
405 }
406 printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
407 memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
408
409 fe->tuner_priv = priv;
410
411 mt2060_calibrate(priv);
412
413 if (fe->ops.i2c_gate_ctrl)
414 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
415
416 return fe;
417 }
418 EXPORT_SYMBOL(mt2060_attach);
419
420 static int mt2060_probe(struct i2c_client *client,
421 const struct i2c_device_id *id)
422 {
423 struct mt2060_platform_data *pdata = client->dev.platform_data;
424 struct dvb_frontend *fe;
425 struct mt2060_priv *dev;
426 int ret;
427 u8 chip_id;
428
429 dev_dbg(&client->dev, "\n");
430
431 if (!pdata) {
432 dev_err(&client->dev, "Cannot proceed without platform data\n");
433 ret = -EINVAL;
434 goto err;
435 }
436
437 dev = devm_kzalloc(&client->dev, sizeof(*dev), GFP_KERNEL);
438 if (!dev) {
439 ret = -ENOMEM;
440 goto err;
441 }
442
443 fe = pdata->dvb_frontend;
444 dev->config.i2c_address = client->addr;
445 dev->config.clock_out = pdata->clock_out;
446 dev->cfg = &dev->config;
447 dev->i2c = client->adapter;
448 dev->if1_freq = pdata->if1 ? pdata->if1 : 1220;
449 dev->client = client;
450 dev->i2c_max_regs = pdata->i2c_write_max ? pdata->i2c_write_max - 1 : ~0;
451 dev->sleep = true;
452
453 ret = mt2060_readreg(dev, REG_PART_REV, &chip_id);
454 if (ret) {
455 ret = -ENODEV;
456 goto err;
457 }
458
459 dev_dbg(&client->dev, "chip id=%02x\n", chip_id);
460
461 if (chip_id != PART_REV) {
462 ret = -ENODEV;
463 goto err;
464 }
465
466 /* Power on, calibrate, sleep */
467 ret = mt2060_writereg(dev, REG_MISC_CTRL, 0x20);
468 if (ret)
469 goto err;
470 mt2060_calibrate(dev);
471 ret = mt2060_writereg(dev, REG_MISC_CTRL, 0xe8);
472 if (ret)
473 goto err;
474
475 dev_info(&client->dev, "Microtune MT2060 successfully identified\n");
476 memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(fe->ops.tuner_ops));
477 fe->ops.tuner_ops.release = NULL;
478 fe->tuner_priv = dev;
479 i2c_set_clientdata(client, dev);
480
481 return 0;
482 err:
483 dev_dbg(&client->dev, "failed=%d\n", ret);
484 return ret;
485 }
486
487 static int mt2060_remove(struct i2c_client *client)
488 {
489 dev_dbg(&client->dev, "\n");
490
491 return 0;
492 }
493
494 static const struct i2c_device_id mt2060_id_table[] = {
495 {"mt2060", 0},
496 {}
497 };
498 MODULE_DEVICE_TABLE(i2c, mt2060_id_table);
499
500 static struct i2c_driver mt2060_driver = {
501 .driver = {
502 .name = "mt2060",
503 .suppress_bind_attrs = true,
504 },
505 .probe = mt2060_probe,
506 .remove = mt2060_remove,
507 .id_table = mt2060_id_table,
508 };
509
510 module_i2c_driver(mt2060_driver);
511
512 MODULE_AUTHOR("Olivier DANET");
513 MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
514 MODULE_LICENSE("GPL");