]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/media/tuners/xc4000.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / media / tuners / xc4000.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for Xceive XC4000 "QAM/8VSB single chip tuner"
4 *
5 * Copyright (c) 2007 Xceive Corporation
6 * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
7 * Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
8 * Copyright (c) 2009 Davide Ferri <d.ferri@zero11.it>
9 * Copyright (c) 2010 Istvan Varga <istvan_v@mailbox.hu>
10 */
11
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/videodev2.h>
15 #include <linux/delay.h>
16 #include <linux/dvb/frontend.h>
17 #include <linux/i2c.h>
18 #include <linux/mutex.h>
19 #include <asm/unaligned.h>
20
21 #include <media/dvb_frontend.h>
22
23 #include "xc4000.h"
24 #include "tuner-i2c.h"
25 #include "tuner-xc2028-types.h"
26
27 static int debug;
28 module_param(debug, int, 0644);
29 MODULE_PARM_DESC(debug, "Debugging level (0 to 2, default: 0 (off)).");
30
31 static int no_poweroff;
32 module_param(no_poweroff, int, 0644);
33 MODULE_PARM_DESC(no_poweroff, "Power management (1: disabled, 2: enabled, 0 (default): use device-specific default mode).");
34
35 static int audio_std;
36 module_param(audio_std, int, 0644);
37 MODULE_PARM_DESC(audio_std, "Audio standard. XC4000 audio decoder explicitly needs to know what audio standard is needed for some video standards with audio A2 or NICAM. The valid settings are a sum of:\n"
38 " 1: use NICAM/B or A2/B instead of NICAM/A or A2/A\n"
39 " 2: use A2 instead of NICAM or BTSC\n"
40 " 4: use SECAM/K3 instead of K1\n"
41 " 8: use PAL-D/K audio for SECAM-D/K\n"
42 "16: use FM radio input 1 instead of input 2\n"
43 "32: use mono audio (the lower three bits are ignored)");
44
45 static char firmware_name[30];
46 module_param_string(firmware_name, firmware_name, sizeof(firmware_name), 0);
47 MODULE_PARM_DESC(firmware_name, "Firmware file name. Allows overriding the default firmware name.");
48
49 static DEFINE_MUTEX(xc4000_list_mutex);
50 static LIST_HEAD(hybrid_tuner_instance_list);
51
52 #define dprintk(level, fmt, arg...) if (debug >= level) \
53 printk(KERN_INFO "%s: " fmt, "xc4000", ## arg)
54
55 /* struct for storing firmware table */
56 struct firmware_description {
57 unsigned int type;
58 v4l2_std_id id;
59 __u16 int_freq;
60 unsigned char *ptr;
61 unsigned int size;
62 };
63
64 struct firmware_properties {
65 unsigned int type;
66 v4l2_std_id id;
67 v4l2_std_id std_req;
68 __u16 int_freq;
69 unsigned int scode_table;
70 int scode_nr;
71 };
72
73 struct xc4000_priv {
74 struct tuner_i2c_props i2c_props;
75 struct list_head hybrid_tuner_instance_list;
76 struct firmware_description *firm;
77 int firm_size;
78 u32 if_khz;
79 u32 freq_hz, freq_offset;
80 u32 bandwidth;
81 u8 video_standard;
82 u8 rf_mode;
83 u8 default_pm;
84 u8 dvb_amplitude;
85 u8 set_smoothedcvbs;
86 u8 ignore_i2c_write_errors;
87 __u16 firm_version;
88 struct firmware_properties cur_fw;
89 __u16 hwmodel;
90 __u16 hwvers;
91 struct mutex lock;
92 };
93
94 #define XC4000_AUDIO_STD_B 1
95 #define XC4000_AUDIO_STD_A2 2
96 #define XC4000_AUDIO_STD_K3 4
97 #define XC4000_AUDIO_STD_L 8
98 #define XC4000_AUDIO_STD_INPUT1 16
99 #define XC4000_AUDIO_STD_MONO 32
100
101 #define XC4000_DEFAULT_FIRMWARE "dvb-fe-xc4000-1.4.fw"
102 #define XC4000_DEFAULT_FIRMWARE_NEW "dvb-fe-xc4000-1.4.1.fw"
103
104 /* Misc Defines */
105 #define MAX_TV_STANDARD 24
106 #define XC_MAX_I2C_WRITE_LENGTH 64
107 #define XC_POWERED_DOWN 0x80000000U
108
109 /* Signal Types */
110 #define XC_RF_MODE_AIR 0
111 #define XC_RF_MODE_CABLE 1
112
113 /* Product id */
114 #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
115 #define XC_PRODUCT_ID_XC4000 0x0FA0
116 #define XC_PRODUCT_ID_XC4100 0x1004
117
118 /* Registers (Write-only) */
119 #define XREG_INIT 0x00
120 #define XREG_VIDEO_MODE 0x01
121 #define XREG_AUDIO_MODE 0x02
122 #define XREG_RF_FREQ 0x03
123 #define XREG_D_CODE 0x04
124 #define XREG_DIRECTSITTING_MODE 0x05
125 #define XREG_SEEK_MODE 0x06
126 #define XREG_POWER_DOWN 0x08
127 #define XREG_SIGNALSOURCE 0x0A
128 #define XREG_SMOOTHEDCVBS 0x0E
129 #define XREG_AMPLITUDE 0x10
130
131 /* Registers (Read-only) */
132 #define XREG_ADC_ENV 0x00
133 #define XREG_QUALITY 0x01
134 #define XREG_FRAME_LINES 0x02
135 #define XREG_HSYNC_FREQ 0x03
136 #define XREG_LOCK 0x04
137 #define XREG_FREQ_ERROR 0x05
138 #define XREG_SNR 0x06
139 #define XREG_VERSION 0x07
140 #define XREG_PRODUCT_ID 0x08
141 #define XREG_SIGNAL_LEVEL 0x0A
142 #define XREG_NOISE_LEVEL 0x0B
143
144 /*
145 Basic firmware description. This will remain with
146 the driver for documentation purposes.
147
148 This represents an I2C firmware file encoded as a
149 string of unsigned char. Format is as follows:
150
151 char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
152 char[1 ]=len0_LSB -> length of first write transaction
153 char[2 ]=data0 -> first byte to be sent
154 char[3 ]=data1
155 char[4 ]=data2
156 char[ ]=...
157 char[M ]=dataN -> last byte to be sent
158 char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
159 char[M+2]=len1_LSB -> length of second write transaction
160 char[M+3]=data0
161 char[M+4]=data1
162 ...
163 etc.
164
165 The [len] value should be interpreted as follows:
166
167 len= len_MSB _ len_LSB
168 len=1111_1111_1111_1111 : End of I2C_SEQUENCE
169 len=0000_0000_0000_0000 : Reset command: Do hardware reset
170 len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
171 len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
172
173 For the RESET and WAIT commands, the two following bytes will contain
174 immediately the length of the following transaction.
175 */
176
177 struct XC_TV_STANDARD {
178 const char *Name;
179 u16 audio_mode;
180 u16 video_mode;
181 u16 int_freq;
182 };
183
184 /* Tuner standards */
185 #define XC4000_MN_NTSC_PAL_BTSC 0
186 #define XC4000_MN_NTSC_PAL_A2 1
187 #define XC4000_MN_NTSC_PAL_EIAJ 2
188 #define XC4000_MN_NTSC_PAL_Mono 3
189 #define XC4000_BG_PAL_A2 4
190 #define XC4000_BG_PAL_NICAM 5
191 #define XC4000_BG_PAL_MONO 6
192 #define XC4000_I_PAL_NICAM 7
193 #define XC4000_I_PAL_NICAM_MONO 8
194 #define XC4000_DK_PAL_A2 9
195 #define XC4000_DK_PAL_NICAM 10
196 #define XC4000_DK_PAL_MONO 11
197 #define XC4000_DK_SECAM_A2DK1 12
198 #define XC4000_DK_SECAM_A2LDK3 13
199 #define XC4000_DK_SECAM_A2MONO 14
200 #define XC4000_DK_SECAM_NICAM 15
201 #define XC4000_L_SECAM_NICAM 16
202 #define XC4000_LC_SECAM_NICAM 17
203 #define XC4000_DTV6 18
204 #define XC4000_DTV8 19
205 #define XC4000_DTV7_8 20
206 #define XC4000_DTV7 21
207 #define XC4000_FM_Radio_INPUT2 22
208 #define XC4000_FM_Radio_INPUT1 23
209
210 static struct XC_TV_STANDARD xc4000_standard[MAX_TV_STANDARD] = {
211 {"M/N-NTSC/PAL-BTSC", 0x0000, 0x80A0, 4500},
212 {"M/N-NTSC/PAL-A2", 0x0000, 0x80A0, 4600},
213 {"M/N-NTSC/PAL-EIAJ", 0x0040, 0x80A0, 4500},
214 {"M/N-NTSC/PAL-Mono", 0x0078, 0x80A0, 4500},
215 {"B/G-PAL-A2", 0x0000, 0x8159, 5640},
216 {"B/G-PAL-NICAM", 0x0004, 0x8159, 5740},
217 {"B/G-PAL-MONO", 0x0078, 0x8159, 5500},
218 {"I-PAL-NICAM", 0x0080, 0x8049, 6240},
219 {"I-PAL-NICAM-MONO", 0x0078, 0x8049, 6000},
220 {"D/K-PAL-A2", 0x0000, 0x8049, 6380},
221 {"D/K-PAL-NICAM", 0x0080, 0x8049, 6200},
222 {"D/K-PAL-MONO", 0x0078, 0x8049, 6500},
223 {"D/K-SECAM-A2 DK1", 0x0000, 0x8049, 6340},
224 {"D/K-SECAM-A2 L/DK3", 0x0000, 0x8049, 6000},
225 {"D/K-SECAM-A2 MONO", 0x0078, 0x8049, 6500},
226 {"D/K-SECAM-NICAM", 0x0080, 0x8049, 6200},
227 {"L-SECAM-NICAM", 0x8080, 0x0009, 6200},
228 {"L'-SECAM-NICAM", 0x8080, 0x4009, 6200},
229 {"DTV6", 0x00C0, 0x8002, 0},
230 {"DTV8", 0x00C0, 0x800B, 0},
231 {"DTV7/8", 0x00C0, 0x801B, 0},
232 {"DTV7", 0x00C0, 0x8007, 0},
233 {"FM Radio-INPUT2", 0x0008, 0x9800, 10700},
234 {"FM Radio-INPUT1", 0x0008, 0x9000, 10700}
235 };
236
237 static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val);
238 static int xc4000_tuner_reset(struct dvb_frontend *fe);
239 static void xc_debug_dump(struct xc4000_priv *priv);
240
241 static int xc_send_i2c_data(struct xc4000_priv *priv, u8 *buf, int len)
242 {
243 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
244 .flags = 0, .buf = buf, .len = len };
245 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
246 if (priv->ignore_i2c_write_errors == 0) {
247 printk(KERN_ERR "xc4000: I2C write failed (len=%i)\n",
248 len);
249 if (len == 4) {
250 printk(KERN_ERR "bytes %*ph\n", 4, buf);
251 }
252 return -EREMOTEIO;
253 }
254 }
255 return 0;
256 }
257
258 static int xc4000_tuner_reset(struct dvb_frontend *fe)
259 {
260 struct xc4000_priv *priv = fe->tuner_priv;
261 int ret;
262
263 dprintk(1, "%s()\n", __func__);
264
265 if (fe->callback) {
266 ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
267 fe->dvb->priv :
268 priv->i2c_props.adap->algo_data,
269 DVB_FRONTEND_COMPONENT_TUNER,
270 XC4000_TUNER_RESET, 0);
271 if (ret) {
272 printk(KERN_ERR "xc4000: reset failed\n");
273 return -EREMOTEIO;
274 }
275 } else {
276 printk(KERN_ERR "xc4000: no tuner reset callback function, fatal\n");
277 return -EINVAL;
278 }
279 return 0;
280 }
281
282 static int xc_write_reg(struct xc4000_priv *priv, u16 regAddr, u16 i2cData)
283 {
284 u8 buf[4];
285 int result;
286
287 buf[0] = (regAddr >> 8) & 0xFF;
288 buf[1] = regAddr & 0xFF;
289 buf[2] = (i2cData >> 8) & 0xFF;
290 buf[3] = i2cData & 0xFF;
291 result = xc_send_i2c_data(priv, buf, 4);
292
293 return result;
294 }
295
296 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
297 {
298 struct xc4000_priv *priv = fe->tuner_priv;
299
300 int i, nbytes_to_send, result;
301 unsigned int len, pos, index;
302 u8 buf[XC_MAX_I2C_WRITE_LENGTH];
303
304 index = 0;
305 while ((i2c_sequence[index] != 0xFF) ||
306 (i2c_sequence[index + 1] != 0xFF)) {
307 len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
308 if (len == 0x0000) {
309 /* RESET command */
310 /* NOTE: this is ignored, as the reset callback was */
311 /* already called by check_firmware() */
312 index += 2;
313 } else if (len & 0x8000) {
314 /* WAIT command */
315 msleep(len & 0x7FFF);
316 index += 2;
317 } else {
318 /* Send i2c data whilst ensuring individual transactions
319 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
320 */
321 index += 2;
322 buf[0] = i2c_sequence[index];
323 buf[1] = i2c_sequence[index + 1];
324 pos = 2;
325 while (pos < len) {
326 if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
327 nbytes_to_send =
328 XC_MAX_I2C_WRITE_LENGTH;
329 else
330 nbytes_to_send = (len - pos + 2);
331 for (i = 2; i < nbytes_to_send; i++) {
332 buf[i] = i2c_sequence[index + pos +
333 i - 2];
334 }
335 result = xc_send_i2c_data(priv, buf,
336 nbytes_to_send);
337
338 if (result != 0)
339 return result;
340
341 pos += nbytes_to_send - 2;
342 }
343 index += len;
344 }
345 }
346 return 0;
347 }
348
349 static int xc_set_tv_standard(struct xc4000_priv *priv,
350 u16 video_mode, u16 audio_mode)
351 {
352 int ret;
353 dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, video_mode, audio_mode);
354 dprintk(1, "%s() Standard = %s\n",
355 __func__,
356 xc4000_standard[priv->video_standard].Name);
357
358 /* Don't complain when the request fails because of i2c stretching */
359 priv->ignore_i2c_write_errors = 1;
360
361 ret = xc_write_reg(priv, XREG_VIDEO_MODE, video_mode);
362 if (ret == 0)
363 ret = xc_write_reg(priv, XREG_AUDIO_MODE, audio_mode);
364
365 priv->ignore_i2c_write_errors = 0;
366
367 return ret;
368 }
369
370 static int xc_set_signal_source(struct xc4000_priv *priv, u16 rf_mode)
371 {
372 dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
373 rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
374
375 if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
376 rf_mode = XC_RF_MODE_CABLE;
377 printk(KERN_ERR
378 "%s(), Invalid mode, defaulting to CABLE",
379 __func__);
380 }
381 return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
382 }
383
384 static const struct dvb_tuner_ops xc4000_tuner_ops;
385
386 static int xc_set_rf_frequency(struct xc4000_priv *priv, u32 freq_hz)
387 {
388 u16 freq_code;
389
390 dprintk(1, "%s(%u)\n", __func__, freq_hz);
391
392 if ((freq_hz > xc4000_tuner_ops.info.frequency_max_hz) ||
393 (freq_hz < xc4000_tuner_ops.info.frequency_min_hz))
394 return -EINVAL;
395
396 freq_code = (u16)(freq_hz / 15625);
397
398 /* WAS: Starting in firmware version 1.1.44, Xceive recommends using the
399 FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
400 only be used for fast scanning for channel lock) */
401 /* WAS: XREG_FINERFREQ */
402 return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
403 }
404
405 static int xc_get_adc_envelope(struct xc4000_priv *priv, u16 *adc_envelope)
406 {
407 return xc4000_readreg(priv, XREG_ADC_ENV, adc_envelope);
408 }
409
410 static int xc_get_frequency_error(struct xc4000_priv *priv, u32 *freq_error_hz)
411 {
412 int result;
413 u16 regData;
414 u32 tmp;
415
416 result = xc4000_readreg(priv, XREG_FREQ_ERROR, &regData);
417 if (result != 0)
418 return result;
419
420 tmp = (u32)regData & 0xFFFFU;
421 tmp = (tmp < 0x8000U ? tmp : 0x10000U - tmp);
422 (*freq_error_hz) = tmp * 15625;
423 return result;
424 }
425
426 static int xc_get_lock_status(struct xc4000_priv *priv, u16 *lock_status)
427 {
428 return xc4000_readreg(priv, XREG_LOCK, lock_status);
429 }
430
431 static int xc_get_version(struct xc4000_priv *priv,
432 u8 *hw_majorversion, u8 *hw_minorversion,
433 u8 *fw_majorversion, u8 *fw_minorversion)
434 {
435 u16 data;
436 int result;
437
438 result = xc4000_readreg(priv, XREG_VERSION, &data);
439 if (result != 0)
440 return result;
441
442 (*hw_majorversion) = (data >> 12) & 0x0F;
443 (*hw_minorversion) = (data >> 8) & 0x0F;
444 (*fw_majorversion) = (data >> 4) & 0x0F;
445 (*fw_minorversion) = data & 0x0F;
446
447 return 0;
448 }
449
450 static int xc_get_hsync_freq(struct xc4000_priv *priv, u32 *hsync_freq_hz)
451 {
452 u16 regData;
453 int result;
454
455 result = xc4000_readreg(priv, XREG_HSYNC_FREQ, &regData);
456 if (result != 0)
457 return result;
458
459 (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
460 return result;
461 }
462
463 static int xc_get_frame_lines(struct xc4000_priv *priv, u16 *frame_lines)
464 {
465 return xc4000_readreg(priv, XREG_FRAME_LINES, frame_lines);
466 }
467
468 static int xc_get_quality(struct xc4000_priv *priv, u16 *quality)
469 {
470 return xc4000_readreg(priv, XREG_QUALITY, quality);
471 }
472
473 static int xc_get_signal_level(struct xc4000_priv *priv, u16 *signal)
474 {
475 return xc4000_readreg(priv, XREG_SIGNAL_LEVEL, signal);
476 }
477
478 static int xc_get_noise_level(struct xc4000_priv *priv, u16 *noise)
479 {
480 return xc4000_readreg(priv, XREG_NOISE_LEVEL, noise);
481 }
482
483 static u16 xc_wait_for_lock(struct xc4000_priv *priv)
484 {
485 u16 lock_state = 0;
486 int watchdog_count = 40;
487
488 while ((lock_state == 0) && (watchdog_count > 0)) {
489 xc_get_lock_status(priv, &lock_state);
490 if (lock_state != 1) {
491 msleep(5);
492 watchdog_count--;
493 }
494 }
495 return lock_state;
496 }
497
498 static int xc_tune_channel(struct xc4000_priv *priv, u32 freq_hz)
499 {
500 int found = 1;
501 int result;
502
503 dprintk(1, "%s(%u)\n", __func__, freq_hz);
504
505 /* Don't complain when the request fails because of i2c stretching */
506 priv->ignore_i2c_write_errors = 1;
507 result = xc_set_rf_frequency(priv, freq_hz);
508 priv->ignore_i2c_write_errors = 0;
509
510 if (result != 0)
511 return 0;
512
513 /* wait for lock only in analog TV mode */
514 if ((priv->cur_fw.type & (FM | DTV6 | DTV7 | DTV78 | DTV8)) == 0) {
515 if (xc_wait_for_lock(priv) != 1)
516 found = 0;
517 }
518
519 /* Wait for stats to stabilize.
520 * Frame Lines needs two frame times after initial lock
521 * before it is valid.
522 */
523 msleep(debug ? 100 : 10);
524
525 if (debug)
526 xc_debug_dump(priv);
527
528 return found;
529 }
530
531 static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val)
532 {
533 u8 buf[2] = { reg >> 8, reg & 0xff };
534 u8 bval[2] = { 0, 0 };
535 struct i2c_msg msg[2] = {
536 { .addr = priv->i2c_props.addr,
537 .flags = 0, .buf = &buf[0], .len = 2 },
538 { .addr = priv->i2c_props.addr,
539 .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
540 };
541
542 if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
543 printk(KERN_ERR "xc4000: I2C read failed\n");
544 return -EREMOTEIO;
545 }
546
547 *val = (bval[0] << 8) | bval[1];
548 return 0;
549 }
550
551 #define dump_firm_type(t) dump_firm_type_and_int_freq(t, 0)
552 static void dump_firm_type_and_int_freq(unsigned int type, u16 int_freq)
553 {
554 if (type & BASE)
555 printk(KERN_CONT "BASE ");
556 if (type & INIT1)
557 printk(KERN_CONT "INIT1 ");
558 if (type & F8MHZ)
559 printk(KERN_CONT "F8MHZ ");
560 if (type & MTS)
561 printk(KERN_CONT "MTS ");
562 if (type & D2620)
563 printk(KERN_CONT "D2620 ");
564 if (type & D2633)
565 printk(KERN_CONT "D2633 ");
566 if (type & DTV6)
567 printk(KERN_CONT "DTV6 ");
568 if (type & QAM)
569 printk(KERN_CONT "QAM ");
570 if (type & DTV7)
571 printk(KERN_CONT "DTV7 ");
572 if (type & DTV78)
573 printk(KERN_CONT "DTV78 ");
574 if (type & DTV8)
575 printk(KERN_CONT "DTV8 ");
576 if (type & FM)
577 printk(KERN_CONT "FM ");
578 if (type & INPUT1)
579 printk(KERN_CONT "INPUT1 ");
580 if (type & LCD)
581 printk(KERN_CONT "LCD ");
582 if (type & NOGD)
583 printk(KERN_CONT "NOGD ");
584 if (type & MONO)
585 printk(KERN_CONT "MONO ");
586 if (type & ATSC)
587 printk(KERN_CONT "ATSC ");
588 if (type & IF)
589 printk(KERN_CONT "IF ");
590 if (type & LG60)
591 printk(KERN_CONT "LG60 ");
592 if (type & ATI638)
593 printk(KERN_CONT "ATI638 ");
594 if (type & OREN538)
595 printk(KERN_CONT "OREN538 ");
596 if (type & OREN36)
597 printk(KERN_CONT "OREN36 ");
598 if (type & TOYOTA388)
599 printk(KERN_CONT "TOYOTA388 ");
600 if (type & TOYOTA794)
601 printk(KERN_CONT "TOYOTA794 ");
602 if (type & DIBCOM52)
603 printk(KERN_CONT "DIBCOM52 ");
604 if (type & ZARLINK456)
605 printk(KERN_CONT "ZARLINK456 ");
606 if (type & CHINA)
607 printk(KERN_CONT "CHINA ");
608 if (type & F6MHZ)
609 printk(KERN_CONT "F6MHZ ");
610 if (type & INPUT2)
611 printk(KERN_CONT "INPUT2 ");
612 if (type & SCODE)
613 printk(KERN_CONT "SCODE ");
614 if (type & HAS_IF)
615 printk(KERN_CONT "HAS_IF_%d ", int_freq);
616 }
617
618 static int seek_firmware(struct dvb_frontend *fe, unsigned int type,
619 v4l2_std_id *id)
620 {
621 struct xc4000_priv *priv = fe->tuner_priv;
622 int i, best_i = -1;
623 unsigned int best_nr_diffs = 255U;
624
625 if (!priv->firm) {
626 printk(KERN_ERR "Error! firmware not loaded\n");
627 return -EINVAL;
628 }
629
630 if (((type & ~SCODE) == 0) && (*id == 0))
631 *id = V4L2_STD_PAL;
632
633 /* Seek for generic video standard match */
634 for (i = 0; i < priv->firm_size; i++) {
635 v4l2_std_id id_diff_mask =
636 (priv->firm[i].id ^ (*id)) & (*id);
637 unsigned int type_diff_mask =
638 (priv->firm[i].type ^ type)
639 & (BASE_TYPES | DTV_TYPES | LCD | NOGD | MONO | SCODE);
640 unsigned int nr_diffs;
641
642 if (type_diff_mask
643 & (BASE | INIT1 | FM | DTV6 | DTV7 | DTV78 | DTV8 | SCODE))
644 continue;
645
646 nr_diffs = hweight64(id_diff_mask) + hweight32(type_diff_mask);
647 if (!nr_diffs) /* Supports all the requested standards */
648 goto found;
649
650 if (nr_diffs < best_nr_diffs) {
651 best_nr_diffs = nr_diffs;
652 best_i = i;
653 }
654 }
655
656 /* FIXME: Would make sense to seek for type "hint" match ? */
657 if (best_i < 0) {
658 i = -ENOENT;
659 goto ret;
660 }
661
662 if (best_nr_diffs > 0U) {
663 printk(KERN_WARNING
664 "Selecting best matching firmware (%u bits differ) for type=(%x), id %016llx:\n",
665 best_nr_diffs, type, (unsigned long long)*id);
666 i = best_i;
667 }
668
669 found:
670 *id = priv->firm[i].id;
671
672 ret:
673 if (debug) {
674 printk(KERN_DEBUG "%s firmware for type=",
675 (i < 0) ? "Can't find" : "Found");
676 dump_firm_type(type);
677 printk(KERN_DEBUG "(%x), id %016llx.\n", type, (unsigned long long)*id);
678 }
679 return i;
680 }
681
682 static int load_firmware(struct dvb_frontend *fe, unsigned int type,
683 v4l2_std_id *id)
684 {
685 struct xc4000_priv *priv = fe->tuner_priv;
686 int pos, rc;
687 unsigned char *p;
688
689 pos = seek_firmware(fe, type, id);
690 if (pos < 0)
691 return pos;
692
693 p = priv->firm[pos].ptr;
694
695 /* Don't complain when the request fails because of i2c stretching */
696 priv->ignore_i2c_write_errors = 1;
697
698 rc = xc_load_i2c_sequence(fe, p);
699
700 priv->ignore_i2c_write_errors = 0;
701
702 return rc;
703 }
704
705 static int xc4000_fwupload(struct dvb_frontend *fe)
706 {
707 struct xc4000_priv *priv = fe->tuner_priv;
708 const struct firmware *fw = NULL;
709 const unsigned char *p, *endp;
710 int rc = 0;
711 int n, n_array;
712 char name[33];
713 const char *fname;
714
715 if (firmware_name[0] != '\0') {
716 fname = firmware_name;
717
718 dprintk(1, "Reading custom firmware %s\n", fname);
719 rc = request_firmware(&fw, fname,
720 priv->i2c_props.adap->dev.parent);
721 } else {
722 fname = XC4000_DEFAULT_FIRMWARE_NEW;
723 dprintk(1, "Trying to read firmware %s\n", fname);
724 rc = request_firmware(&fw, fname,
725 priv->i2c_props.adap->dev.parent);
726 if (rc == -ENOENT) {
727 fname = XC4000_DEFAULT_FIRMWARE;
728 dprintk(1, "Trying to read firmware %s\n", fname);
729 rc = request_firmware(&fw, fname,
730 priv->i2c_props.adap->dev.parent);
731 }
732 }
733
734 if (rc < 0) {
735 if (rc == -ENOENT)
736 printk(KERN_ERR "Error: firmware %s not found.\n", fname);
737 else
738 printk(KERN_ERR "Error %d while requesting firmware %s\n",
739 rc, fname);
740
741 return rc;
742 }
743 dprintk(1, "Loading Firmware: %s\n", fname);
744
745 p = fw->data;
746 endp = p + fw->size;
747
748 if (fw->size < sizeof(name) - 1 + 2 + 2) {
749 printk(KERN_ERR "Error: firmware file %s has invalid size!\n",
750 fname);
751 goto corrupt;
752 }
753
754 memcpy(name, p, sizeof(name) - 1);
755 name[sizeof(name) - 1] = '\0';
756 p += sizeof(name) - 1;
757
758 priv->firm_version = get_unaligned_le16(p);
759 p += 2;
760
761 n_array = get_unaligned_le16(p);
762 p += 2;
763
764 dprintk(1, "Loading %d firmware images from %s, type: %s, ver %d.%d\n",
765 n_array, fname, name,
766 priv->firm_version >> 8, priv->firm_version & 0xff);
767
768 priv->firm = kcalloc(n_array, sizeof(*priv->firm), GFP_KERNEL);
769 if (priv->firm == NULL) {
770 printk(KERN_ERR "Not enough memory to load firmware file.\n");
771 rc = -ENOMEM;
772 goto done;
773 }
774 priv->firm_size = n_array;
775
776 n = -1;
777 while (p < endp) {
778 __u32 type, size;
779 v4l2_std_id id;
780 __u16 int_freq = 0;
781
782 n++;
783 if (n >= n_array) {
784 printk(KERN_ERR "More firmware images in file than were expected!\n");
785 goto corrupt;
786 }
787
788 /* Checks if there's enough bytes to read */
789 if (endp - p < sizeof(type) + sizeof(id) + sizeof(size))
790 goto header;
791
792 type = get_unaligned_le32(p);
793 p += sizeof(type);
794
795 id = get_unaligned_le64(p);
796 p += sizeof(id);
797
798 if (type & HAS_IF) {
799 int_freq = get_unaligned_le16(p);
800 p += sizeof(int_freq);
801 if (endp - p < sizeof(size))
802 goto header;
803 }
804
805 size = get_unaligned_le32(p);
806 p += sizeof(size);
807
808 if (!size || size > endp - p) {
809 printk(KERN_ERR "Firmware type (%x), id %llx is corrupted (size=%zd, expected %d)\n",
810 type, (unsigned long long)id,
811 endp - p, size);
812 goto corrupt;
813 }
814
815 priv->firm[n].ptr = kzalloc(size, GFP_KERNEL);
816 if (priv->firm[n].ptr == NULL) {
817 printk(KERN_ERR "Not enough memory to load firmware file.\n");
818 rc = -ENOMEM;
819 goto done;
820 }
821
822 if (debug) {
823 printk(KERN_DEBUG "Reading firmware type ");
824 dump_firm_type_and_int_freq(type, int_freq);
825 printk(KERN_DEBUG "(%x), id %llx, size=%d.\n",
826 type, (unsigned long long)id, size);
827 }
828
829 memcpy(priv->firm[n].ptr, p, size);
830 priv->firm[n].type = type;
831 priv->firm[n].id = id;
832 priv->firm[n].size = size;
833 priv->firm[n].int_freq = int_freq;
834
835 p += size;
836 }
837
838 if (n + 1 != priv->firm_size) {
839 printk(KERN_ERR "Firmware file is incomplete!\n");
840 goto corrupt;
841 }
842
843 goto done;
844
845 header:
846 printk(KERN_ERR "Firmware header is incomplete!\n");
847 corrupt:
848 rc = -EINVAL;
849 printk(KERN_ERR "Error: firmware file is corrupted!\n");
850
851 done:
852 release_firmware(fw);
853 if (rc == 0)
854 dprintk(1, "Firmware files loaded.\n");
855
856 return rc;
857 }
858
859 static int load_scode(struct dvb_frontend *fe, unsigned int type,
860 v4l2_std_id *id, __u16 int_freq, int scode)
861 {
862 struct xc4000_priv *priv = fe->tuner_priv;
863 int pos, rc;
864 unsigned char *p;
865 u8 scode_buf[13];
866 u8 indirect_mode[5];
867
868 dprintk(1, "%s called int_freq=%d\n", __func__, int_freq);
869
870 if (!int_freq) {
871 pos = seek_firmware(fe, type, id);
872 if (pos < 0)
873 return pos;
874 } else {
875 for (pos = 0; pos < priv->firm_size; pos++) {
876 if ((priv->firm[pos].int_freq == int_freq) &&
877 (priv->firm[pos].type & HAS_IF))
878 break;
879 }
880 if (pos == priv->firm_size)
881 return -ENOENT;
882 }
883
884 p = priv->firm[pos].ptr;
885
886 if (priv->firm[pos].size != 12 * 16 || scode >= 16)
887 return -EINVAL;
888 p += 12 * scode;
889
890 if (debug) {
891 tuner_info("Loading SCODE for type=");
892 dump_firm_type_and_int_freq(priv->firm[pos].type,
893 priv->firm[pos].int_freq);
894 printk(KERN_CONT "(%x), id %016llx.\n", priv->firm[pos].type,
895 (unsigned long long)*id);
896 }
897
898 scode_buf[0] = 0x00;
899 memcpy(&scode_buf[1], p, 12);
900
901 /* Enter direct-mode */
902 rc = xc_write_reg(priv, XREG_DIRECTSITTING_MODE, 0);
903 if (rc < 0) {
904 printk(KERN_ERR "failed to put device into direct mode!\n");
905 return -EIO;
906 }
907
908 rc = xc_send_i2c_data(priv, scode_buf, 13);
909 if (rc != 0) {
910 /* Even if the send failed, make sure we set back to indirect
911 mode */
912 printk(KERN_ERR "Failed to set scode %d\n", rc);
913 }
914
915 /* Switch back to indirect-mode */
916 memset(indirect_mode, 0, sizeof(indirect_mode));
917 indirect_mode[4] = 0x88;
918 xc_send_i2c_data(priv, indirect_mode, sizeof(indirect_mode));
919 msleep(10);
920
921 return 0;
922 }
923
924 static int check_firmware(struct dvb_frontend *fe, unsigned int type,
925 v4l2_std_id std, __u16 int_freq)
926 {
927 struct xc4000_priv *priv = fe->tuner_priv;
928 struct firmware_properties new_fw;
929 int rc = 0, is_retry = 0;
930 u16 hwmodel;
931 v4l2_std_id std0;
932 u8 hw_major = 0, hw_minor = 0, fw_major = 0, fw_minor = 0;
933
934 dprintk(1, "%s called\n", __func__);
935
936 if (!priv->firm) {
937 rc = xc4000_fwupload(fe);
938 if (rc < 0)
939 return rc;
940 }
941
942 retry:
943 new_fw.type = type;
944 new_fw.id = std;
945 new_fw.std_req = std;
946 new_fw.scode_table = SCODE;
947 new_fw.scode_nr = 0;
948 new_fw.int_freq = int_freq;
949
950 dprintk(1, "checking firmware, user requested type=");
951 if (debug) {
952 dump_firm_type(new_fw.type);
953 printk(KERN_CONT "(%x), id %016llx, ", new_fw.type,
954 (unsigned long long)new_fw.std_req);
955 if (!int_freq)
956 printk(KERN_CONT "scode_tbl ");
957 else
958 printk(KERN_CONT "int_freq %d, ", new_fw.int_freq);
959 printk(KERN_CONT "scode_nr %d\n", new_fw.scode_nr);
960 }
961
962 /* No need to reload base firmware if it matches */
963 if (priv->cur_fw.type & BASE) {
964 dprintk(1, "BASE firmware not changed.\n");
965 goto skip_base;
966 }
967
968 /* Updating BASE - forget about all currently loaded firmware */
969 memset(&priv->cur_fw, 0, sizeof(priv->cur_fw));
970
971 /* Reset is needed before loading firmware */
972 rc = xc4000_tuner_reset(fe);
973 if (rc < 0)
974 goto fail;
975
976 /* BASE firmwares are all std0 */
977 std0 = 0;
978 rc = load_firmware(fe, BASE, &std0);
979 if (rc < 0) {
980 printk(KERN_ERR "Error %d while loading base firmware\n", rc);
981 goto fail;
982 }
983
984 /* Load INIT1, if needed */
985 dprintk(1, "Load init1 firmware, if exists\n");
986
987 rc = load_firmware(fe, BASE | INIT1, &std0);
988 if (rc == -ENOENT)
989 rc = load_firmware(fe, BASE | INIT1, &std0);
990 if (rc < 0 && rc != -ENOENT) {
991 tuner_err("Error %d while loading init1 firmware\n",
992 rc);
993 goto fail;
994 }
995
996 skip_base:
997 /*
998 * No need to reload standard specific firmware if base firmware
999 * was not reloaded and requested video standards have not changed.
1000 */
1001 if (priv->cur_fw.type == (BASE | new_fw.type) &&
1002 priv->cur_fw.std_req == std) {
1003 dprintk(1, "Std-specific firmware already loaded.\n");
1004 goto skip_std_specific;
1005 }
1006
1007 /* Reloading std-specific firmware forces a SCODE update */
1008 priv->cur_fw.scode_table = 0;
1009
1010 /* Load the standard firmware */
1011 rc = load_firmware(fe, new_fw.type, &new_fw.id);
1012
1013 if (rc < 0)
1014 goto fail;
1015
1016 skip_std_specific:
1017 if (priv->cur_fw.scode_table == new_fw.scode_table &&
1018 priv->cur_fw.scode_nr == new_fw.scode_nr) {
1019 dprintk(1, "SCODE firmware already loaded.\n");
1020 goto check_device;
1021 }
1022
1023 /* Load SCODE firmware, if exists */
1024 rc = load_scode(fe, new_fw.type | new_fw.scode_table, &new_fw.id,
1025 new_fw.int_freq, new_fw.scode_nr);
1026 if (rc != 0)
1027 dprintk(1, "load scode failed %d\n", rc);
1028
1029 check_device:
1030 if (xc4000_readreg(priv, XREG_PRODUCT_ID, &hwmodel) < 0) {
1031 printk(KERN_ERR "Unable to read tuner registers.\n");
1032 goto fail;
1033 }
1034
1035 if (xc_get_version(priv, &hw_major, &hw_minor, &fw_major,
1036 &fw_minor) != 0) {
1037 printk(KERN_ERR "Unable to read tuner registers.\n");
1038 goto fail;
1039 }
1040
1041 dprintk(1, "Device is Xceive %d version %d.%d, firmware version %d.%d\n",
1042 hwmodel, hw_major, hw_minor, fw_major, fw_minor);
1043
1044 /* Check firmware version against what we downloaded. */
1045 if (priv->firm_version != ((fw_major << 8) | fw_minor)) {
1046 printk(KERN_WARNING
1047 "Incorrect readback of firmware version %d.%d.\n",
1048 fw_major, fw_minor);
1049 goto fail;
1050 }
1051
1052 /* Check that the tuner hardware model remains consistent over time. */
1053 if (priv->hwmodel == 0 &&
1054 (hwmodel == XC_PRODUCT_ID_XC4000 ||
1055 hwmodel == XC_PRODUCT_ID_XC4100)) {
1056 priv->hwmodel = hwmodel;
1057 priv->hwvers = (hw_major << 8) | hw_minor;
1058 } else if (priv->hwmodel == 0 || priv->hwmodel != hwmodel ||
1059 priv->hwvers != ((hw_major << 8) | hw_minor)) {
1060 printk(KERN_WARNING
1061 "Read invalid device hardware information - tuner hung?\n");
1062 goto fail;
1063 }
1064
1065 priv->cur_fw = new_fw;
1066
1067 /*
1068 * By setting BASE in cur_fw.type only after successfully loading all
1069 * firmwares, we can:
1070 * 1. Identify that BASE firmware with type=0 has been loaded;
1071 * 2. Tell whether BASE firmware was just changed the next time through.
1072 */
1073 priv->cur_fw.type |= BASE;
1074
1075 return 0;
1076
1077 fail:
1078 memset(&priv->cur_fw, 0, sizeof(priv->cur_fw));
1079 if (!is_retry) {
1080 msleep(50);
1081 is_retry = 1;
1082 dprintk(1, "Retrying firmware load\n");
1083 goto retry;
1084 }
1085
1086 if (rc == -ENOENT)
1087 rc = -EINVAL;
1088 return rc;
1089 }
1090
1091 static void xc_debug_dump(struct xc4000_priv *priv)
1092 {
1093 u16 adc_envelope;
1094 u32 freq_error_hz = 0;
1095 u16 lock_status;
1096 u32 hsync_freq_hz = 0;
1097 u16 frame_lines;
1098 u16 quality;
1099 u16 signal = 0;
1100 u16 noise = 0;
1101 u8 hw_majorversion = 0, hw_minorversion = 0;
1102 u8 fw_majorversion = 0, fw_minorversion = 0;
1103
1104 xc_get_adc_envelope(priv, &adc_envelope);
1105 dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
1106
1107 xc_get_frequency_error(priv, &freq_error_hz);
1108 dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
1109
1110 xc_get_lock_status(priv, &lock_status);
1111 dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
1112 lock_status);
1113
1114 xc_get_version(priv, &hw_majorversion, &hw_minorversion,
1115 &fw_majorversion, &fw_minorversion);
1116 dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
1117 hw_majorversion, hw_minorversion,
1118 fw_majorversion, fw_minorversion);
1119
1120 if (priv->video_standard < XC4000_DTV6) {
1121 xc_get_hsync_freq(priv, &hsync_freq_hz);
1122 dprintk(1, "*** Horizontal sync frequency = %d Hz\n",
1123 hsync_freq_hz);
1124
1125 xc_get_frame_lines(priv, &frame_lines);
1126 dprintk(1, "*** Frame lines = %d\n", frame_lines);
1127 }
1128
1129 xc_get_quality(priv, &quality);
1130 dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
1131
1132 xc_get_signal_level(priv, &signal);
1133 dprintk(1, "*** Signal level = -%ddB (%d)\n", signal >> 8, signal);
1134
1135 xc_get_noise_level(priv, &noise);
1136 dprintk(1, "*** Noise level = %ddB (%d)\n", noise >> 8, noise);
1137 }
1138
1139 static int xc4000_set_params(struct dvb_frontend *fe)
1140 {
1141 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1142 u32 delsys = c->delivery_system;
1143 u32 bw = c->bandwidth_hz;
1144 struct xc4000_priv *priv = fe->tuner_priv;
1145 unsigned int type;
1146 int ret = -EREMOTEIO;
1147
1148 dprintk(1, "%s() frequency=%d (Hz)\n", __func__, c->frequency);
1149
1150 mutex_lock(&priv->lock);
1151
1152 switch (delsys) {
1153 case SYS_ATSC:
1154 dprintk(1, "%s() VSB modulation\n", __func__);
1155 priv->rf_mode = XC_RF_MODE_AIR;
1156 priv->freq_offset = 1750000;
1157 priv->video_standard = XC4000_DTV6;
1158 type = DTV6;
1159 break;
1160 case SYS_DVBC_ANNEX_B:
1161 dprintk(1, "%s() QAM modulation\n", __func__);
1162 priv->rf_mode = XC_RF_MODE_CABLE;
1163 priv->freq_offset = 1750000;
1164 priv->video_standard = XC4000_DTV6;
1165 type = DTV6;
1166 break;
1167 case SYS_DVBT:
1168 case SYS_DVBT2:
1169 dprintk(1, "%s() OFDM\n", __func__);
1170 if (bw == 0) {
1171 if (c->frequency < 400000000) {
1172 priv->freq_offset = 2250000;
1173 } else {
1174 priv->freq_offset = 2750000;
1175 }
1176 priv->video_standard = XC4000_DTV7_8;
1177 type = DTV78;
1178 } else if (bw <= 6000000) {
1179 priv->video_standard = XC4000_DTV6;
1180 priv->freq_offset = 1750000;
1181 type = DTV6;
1182 } else if (bw <= 7000000) {
1183 priv->video_standard = XC4000_DTV7;
1184 priv->freq_offset = 2250000;
1185 type = DTV7;
1186 } else {
1187 priv->video_standard = XC4000_DTV8;
1188 priv->freq_offset = 2750000;
1189 type = DTV8;
1190 }
1191 priv->rf_mode = XC_RF_MODE_AIR;
1192 break;
1193 default:
1194 printk(KERN_ERR "xc4000 delivery system not supported!\n");
1195 ret = -EINVAL;
1196 goto fail;
1197 }
1198
1199 priv->freq_hz = c->frequency - priv->freq_offset;
1200
1201 dprintk(1, "%s() frequency=%d (compensated)\n",
1202 __func__, priv->freq_hz);
1203
1204 /* Make sure the correct firmware type is loaded */
1205 if (check_firmware(fe, type, 0, priv->if_khz) != 0)
1206 goto fail;
1207
1208 priv->bandwidth = c->bandwidth_hz;
1209
1210 ret = xc_set_signal_source(priv, priv->rf_mode);
1211 if (ret != 0) {
1212 printk(KERN_ERR "xc4000: xc_set_signal_source(%d) failed\n",
1213 priv->rf_mode);
1214 goto fail;
1215 } else {
1216 u16 video_mode, audio_mode;
1217 video_mode = xc4000_standard[priv->video_standard].video_mode;
1218 audio_mode = xc4000_standard[priv->video_standard].audio_mode;
1219 if (type == DTV6 && priv->firm_version != 0x0102)
1220 video_mode |= 0x0001;
1221 ret = xc_set_tv_standard(priv, video_mode, audio_mode);
1222 if (ret != 0) {
1223 printk(KERN_ERR "xc4000: xc_set_tv_standard failed\n");
1224 /* DJH - do not return when it fails... */
1225 /* goto fail; */
1226 }
1227 }
1228
1229 if (xc_write_reg(priv, XREG_D_CODE, 0) == 0)
1230 ret = 0;
1231 if (priv->dvb_amplitude != 0) {
1232 if (xc_write_reg(priv, XREG_AMPLITUDE,
1233 (priv->firm_version != 0x0102 ||
1234 priv->dvb_amplitude != 134 ?
1235 priv->dvb_amplitude : 132)) != 0)
1236 ret = -EREMOTEIO;
1237 }
1238 if (priv->set_smoothedcvbs != 0) {
1239 if (xc_write_reg(priv, XREG_SMOOTHEDCVBS, 1) != 0)
1240 ret = -EREMOTEIO;
1241 }
1242 if (ret != 0) {
1243 printk(KERN_ERR "xc4000: setting registers failed\n");
1244 /* goto fail; */
1245 }
1246
1247 xc_tune_channel(priv, priv->freq_hz);
1248
1249 ret = 0;
1250
1251 fail:
1252 mutex_unlock(&priv->lock);
1253
1254 return ret;
1255 }
1256
1257 static int xc4000_set_analog_params(struct dvb_frontend *fe,
1258 struct analog_parameters *params)
1259 {
1260 struct xc4000_priv *priv = fe->tuner_priv;
1261 unsigned int type = 0;
1262 int ret = -EREMOTEIO;
1263
1264 if (params->mode == V4L2_TUNER_RADIO) {
1265 dprintk(1, "%s() frequency=%d (in units of 62.5Hz)\n",
1266 __func__, params->frequency);
1267
1268 mutex_lock(&priv->lock);
1269
1270 params->std = 0;
1271 priv->freq_hz = params->frequency * 125L / 2;
1272
1273 if (audio_std & XC4000_AUDIO_STD_INPUT1) {
1274 priv->video_standard = XC4000_FM_Radio_INPUT1;
1275 type = FM | INPUT1;
1276 } else {
1277 priv->video_standard = XC4000_FM_Radio_INPUT2;
1278 type = FM | INPUT2;
1279 }
1280
1281 goto tune_channel;
1282 }
1283
1284 dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
1285 __func__, params->frequency);
1286
1287 mutex_lock(&priv->lock);
1288
1289 /* params->frequency is in units of 62.5khz */
1290 priv->freq_hz = params->frequency * 62500;
1291
1292 params->std &= V4L2_STD_ALL;
1293 /* if std is not defined, choose one */
1294 if (!params->std)
1295 params->std = V4L2_STD_PAL_BG;
1296
1297 if (audio_std & XC4000_AUDIO_STD_MONO)
1298 type = MONO;
1299
1300 if (params->std & V4L2_STD_MN) {
1301 params->std = V4L2_STD_MN;
1302 if (audio_std & XC4000_AUDIO_STD_MONO) {
1303 priv->video_standard = XC4000_MN_NTSC_PAL_Mono;
1304 } else if (audio_std & XC4000_AUDIO_STD_A2) {
1305 params->std |= V4L2_STD_A2;
1306 priv->video_standard = XC4000_MN_NTSC_PAL_A2;
1307 } else {
1308 params->std |= V4L2_STD_BTSC;
1309 priv->video_standard = XC4000_MN_NTSC_PAL_BTSC;
1310 }
1311 goto tune_channel;
1312 }
1313
1314 if (params->std & V4L2_STD_PAL_BG) {
1315 params->std = V4L2_STD_PAL_BG;
1316 if (audio_std & XC4000_AUDIO_STD_MONO) {
1317 priv->video_standard = XC4000_BG_PAL_MONO;
1318 } else if (!(audio_std & XC4000_AUDIO_STD_A2)) {
1319 if (!(audio_std & XC4000_AUDIO_STD_B)) {
1320 params->std |= V4L2_STD_NICAM_A;
1321 priv->video_standard = XC4000_BG_PAL_NICAM;
1322 } else {
1323 params->std |= V4L2_STD_NICAM_B;
1324 priv->video_standard = XC4000_BG_PAL_NICAM;
1325 }
1326 } else {
1327 if (!(audio_std & XC4000_AUDIO_STD_B)) {
1328 params->std |= V4L2_STD_A2_A;
1329 priv->video_standard = XC4000_BG_PAL_A2;
1330 } else {
1331 params->std |= V4L2_STD_A2_B;
1332 priv->video_standard = XC4000_BG_PAL_A2;
1333 }
1334 }
1335 goto tune_channel;
1336 }
1337
1338 if (params->std & V4L2_STD_PAL_I) {
1339 /* default to NICAM audio standard */
1340 params->std = V4L2_STD_PAL_I | V4L2_STD_NICAM;
1341 if (audio_std & XC4000_AUDIO_STD_MONO)
1342 priv->video_standard = XC4000_I_PAL_NICAM_MONO;
1343 else
1344 priv->video_standard = XC4000_I_PAL_NICAM;
1345 goto tune_channel;
1346 }
1347
1348 if (params->std & V4L2_STD_PAL_DK) {
1349 params->std = V4L2_STD_PAL_DK;
1350 if (audio_std & XC4000_AUDIO_STD_MONO) {
1351 priv->video_standard = XC4000_DK_PAL_MONO;
1352 } else if (audio_std & XC4000_AUDIO_STD_A2) {
1353 params->std |= V4L2_STD_A2;
1354 priv->video_standard = XC4000_DK_PAL_A2;
1355 } else {
1356 params->std |= V4L2_STD_NICAM;
1357 priv->video_standard = XC4000_DK_PAL_NICAM;
1358 }
1359 goto tune_channel;
1360 }
1361
1362 if (params->std & V4L2_STD_SECAM_DK) {
1363 /* default to A2 audio standard */
1364 params->std = V4L2_STD_SECAM_DK | V4L2_STD_A2;
1365 if (audio_std & XC4000_AUDIO_STD_L) {
1366 type = 0;
1367 priv->video_standard = XC4000_DK_SECAM_NICAM;
1368 } else if (audio_std & XC4000_AUDIO_STD_MONO) {
1369 priv->video_standard = XC4000_DK_SECAM_A2MONO;
1370 } else if (audio_std & XC4000_AUDIO_STD_K3) {
1371 params->std |= V4L2_STD_SECAM_K3;
1372 priv->video_standard = XC4000_DK_SECAM_A2LDK3;
1373 } else {
1374 priv->video_standard = XC4000_DK_SECAM_A2DK1;
1375 }
1376 goto tune_channel;
1377 }
1378
1379 if (params->std & V4L2_STD_SECAM_L) {
1380 /* default to NICAM audio standard */
1381 type = 0;
1382 params->std = V4L2_STD_SECAM_L | V4L2_STD_NICAM;
1383 priv->video_standard = XC4000_L_SECAM_NICAM;
1384 goto tune_channel;
1385 }
1386
1387 if (params->std & V4L2_STD_SECAM_LC) {
1388 /* default to NICAM audio standard */
1389 type = 0;
1390 params->std = V4L2_STD_SECAM_LC | V4L2_STD_NICAM;
1391 priv->video_standard = XC4000_LC_SECAM_NICAM;
1392 goto tune_channel;
1393 }
1394
1395 tune_channel:
1396 /* FIXME: it could be air. */
1397 priv->rf_mode = XC_RF_MODE_CABLE;
1398
1399 if (check_firmware(fe, type, params->std,
1400 xc4000_standard[priv->video_standard].int_freq) != 0)
1401 goto fail;
1402
1403 ret = xc_set_signal_source(priv, priv->rf_mode);
1404 if (ret != 0) {
1405 printk(KERN_ERR
1406 "xc4000: xc_set_signal_source(%d) failed\n",
1407 priv->rf_mode);
1408 goto fail;
1409 } else {
1410 u16 video_mode, audio_mode;
1411 video_mode = xc4000_standard[priv->video_standard].video_mode;
1412 audio_mode = xc4000_standard[priv->video_standard].audio_mode;
1413 if (priv->video_standard < XC4000_BG_PAL_A2) {
1414 if (type & NOGD)
1415 video_mode &= 0xFF7F;
1416 } else if (priv->video_standard < XC4000_I_PAL_NICAM) {
1417 if (priv->firm_version == 0x0102)
1418 video_mode &= 0xFEFF;
1419 if (audio_std & XC4000_AUDIO_STD_B)
1420 video_mode |= 0x0080;
1421 }
1422 ret = xc_set_tv_standard(priv, video_mode, audio_mode);
1423 if (ret != 0) {
1424 printk(KERN_ERR "xc4000: xc_set_tv_standard failed\n");
1425 goto fail;
1426 }
1427 }
1428
1429 if (xc_write_reg(priv, XREG_D_CODE, 0) == 0)
1430 ret = 0;
1431 if (xc_write_reg(priv, XREG_AMPLITUDE, 1) != 0)
1432 ret = -EREMOTEIO;
1433 if (priv->set_smoothedcvbs != 0) {
1434 if (xc_write_reg(priv, XREG_SMOOTHEDCVBS, 1) != 0)
1435 ret = -EREMOTEIO;
1436 }
1437 if (ret != 0) {
1438 printk(KERN_ERR "xc4000: setting registers failed\n");
1439 goto fail;
1440 }
1441
1442 xc_tune_channel(priv, priv->freq_hz);
1443
1444 ret = 0;
1445
1446 fail:
1447 mutex_unlock(&priv->lock);
1448
1449 return ret;
1450 }
1451
1452 static int xc4000_get_signal(struct dvb_frontend *fe, u16 *strength)
1453 {
1454 struct xc4000_priv *priv = fe->tuner_priv;
1455 u16 value = 0;
1456 int rc;
1457
1458 mutex_lock(&priv->lock);
1459 rc = xc4000_readreg(priv, XREG_SIGNAL_LEVEL, &value);
1460 mutex_unlock(&priv->lock);
1461
1462 if (rc < 0)
1463 goto ret;
1464
1465 /* Information from real testing of DVB-T and radio part,
1466 coefficient for one dB is 0xff.
1467 */
1468 tuner_dbg("Signal strength: -%ddB (%05d)\n", value >> 8, value);
1469
1470 /* all known digital modes */
1471 if ((priv->video_standard == XC4000_DTV6) ||
1472 (priv->video_standard == XC4000_DTV7) ||
1473 (priv->video_standard == XC4000_DTV7_8) ||
1474 (priv->video_standard == XC4000_DTV8))
1475 goto digital;
1476
1477 /* Analog mode has NOISE LEVEL important, signal
1478 depends only on gain of antenna and amplifiers,
1479 but it doesn't tell anything about real quality
1480 of reception.
1481 */
1482 mutex_lock(&priv->lock);
1483 rc = xc4000_readreg(priv, XREG_NOISE_LEVEL, &value);
1484 mutex_unlock(&priv->lock);
1485
1486 tuner_dbg("Noise level: %ddB (%05d)\n", value >> 8, value);
1487
1488 /* highest noise level: 32dB */
1489 if (value >= 0x2000) {
1490 value = 0;
1491 } else {
1492 value = (~value << 3) & 0xffff;
1493 }
1494
1495 goto ret;
1496
1497 /* Digital mode has SIGNAL LEVEL important and real
1498 noise level is stored in demodulator registers.
1499 */
1500 digital:
1501 /* best signal: -50dB */
1502 if (value <= 0x3200) {
1503 value = 0xffff;
1504 /* minimum: -114dB - should be 0x7200 but real zero is 0x713A */
1505 } else if (value >= 0x713A) {
1506 value = 0;
1507 } else {
1508 value = ~(value - 0x3200) << 2;
1509 }
1510
1511 ret:
1512 *strength = value;
1513
1514 return rc;
1515 }
1516
1517 static int xc4000_get_frequency(struct dvb_frontend *fe, u32 *freq)
1518 {
1519 struct xc4000_priv *priv = fe->tuner_priv;
1520
1521 *freq = priv->freq_hz + priv->freq_offset;
1522
1523 if (debug) {
1524 mutex_lock(&priv->lock);
1525 if ((priv->cur_fw.type
1526 & (BASE | FM | DTV6 | DTV7 | DTV78 | DTV8)) == BASE) {
1527 u16 snr = 0;
1528 if (xc4000_readreg(priv, XREG_SNR, &snr) == 0) {
1529 mutex_unlock(&priv->lock);
1530 dprintk(1, "%s() freq = %u, SNR = %d\n",
1531 __func__, *freq, snr);
1532 return 0;
1533 }
1534 }
1535 mutex_unlock(&priv->lock);
1536 }
1537
1538 dprintk(1, "%s()\n", __func__);
1539
1540 return 0;
1541 }
1542
1543 static int xc4000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
1544 {
1545 struct xc4000_priv *priv = fe->tuner_priv;
1546 dprintk(1, "%s()\n", __func__);
1547
1548 *bw = priv->bandwidth;
1549 return 0;
1550 }
1551
1552 static int xc4000_get_status(struct dvb_frontend *fe, u32 *status)
1553 {
1554 struct xc4000_priv *priv = fe->tuner_priv;
1555 u16 lock_status = 0;
1556
1557 mutex_lock(&priv->lock);
1558
1559 if (priv->cur_fw.type & BASE)
1560 xc_get_lock_status(priv, &lock_status);
1561
1562 *status = (lock_status == 1 ?
1563 TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO : 0);
1564 if (priv->cur_fw.type & (DTV6 | DTV7 | DTV78 | DTV8))
1565 *status &= (~TUNER_STATUS_STEREO);
1566
1567 mutex_unlock(&priv->lock);
1568
1569 dprintk(2, "%s() lock_status = %d\n", __func__, lock_status);
1570
1571 return 0;
1572 }
1573
1574 static int xc4000_sleep(struct dvb_frontend *fe)
1575 {
1576 struct xc4000_priv *priv = fe->tuner_priv;
1577 int ret = 0;
1578
1579 dprintk(1, "%s()\n", __func__);
1580
1581 mutex_lock(&priv->lock);
1582
1583 /* Avoid firmware reload on slow devices */
1584 if ((no_poweroff == 2 ||
1585 (no_poweroff == 0 && priv->default_pm != 0)) &&
1586 (priv->cur_fw.type & BASE) != 0) {
1587 /* force reset and firmware reload */
1588 priv->cur_fw.type = XC_POWERED_DOWN;
1589
1590 if (xc_write_reg(priv, XREG_POWER_DOWN, 0) != 0) {
1591 printk(KERN_ERR
1592 "xc4000: %s() unable to shutdown tuner\n",
1593 __func__);
1594 ret = -EREMOTEIO;
1595 }
1596 msleep(20);
1597 }
1598
1599 mutex_unlock(&priv->lock);
1600
1601 return ret;
1602 }
1603
1604 static int xc4000_init(struct dvb_frontend *fe)
1605 {
1606 dprintk(1, "%s()\n", __func__);
1607
1608 return 0;
1609 }
1610
1611 static void xc4000_release(struct dvb_frontend *fe)
1612 {
1613 struct xc4000_priv *priv = fe->tuner_priv;
1614
1615 dprintk(1, "%s()\n", __func__);
1616
1617 mutex_lock(&xc4000_list_mutex);
1618
1619 if (priv)
1620 hybrid_tuner_release_state(priv);
1621
1622 mutex_unlock(&xc4000_list_mutex);
1623
1624 fe->tuner_priv = NULL;
1625 }
1626
1627 static const struct dvb_tuner_ops xc4000_tuner_ops = {
1628 .info = {
1629 .name = "Xceive XC4000",
1630 .frequency_min_hz = 1 * MHz,
1631 .frequency_max_hz = 1023 * MHz,
1632 .frequency_step_hz = 50 * kHz,
1633 },
1634
1635 .release = xc4000_release,
1636 .init = xc4000_init,
1637 .sleep = xc4000_sleep,
1638
1639 .set_params = xc4000_set_params,
1640 .set_analog_params = xc4000_set_analog_params,
1641 .get_frequency = xc4000_get_frequency,
1642 .get_rf_strength = xc4000_get_signal,
1643 .get_bandwidth = xc4000_get_bandwidth,
1644 .get_status = xc4000_get_status
1645 };
1646
1647 struct dvb_frontend *xc4000_attach(struct dvb_frontend *fe,
1648 struct i2c_adapter *i2c,
1649 struct xc4000_config *cfg)
1650 {
1651 struct xc4000_priv *priv = NULL;
1652 int instance;
1653 u16 id = 0;
1654
1655 dprintk(1, "%s(%d-%04x)\n", __func__,
1656 i2c ? i2c_adapter_id(i2c) : -1,
1657 cfg ? cfg->i2c_address : -1);
1658
1659 mutex_lock(&xc4000_list_mutex);
1660
1661 instance = hybrid_tuner_request_state(struct xc4000_priv, priv,
1662 hybrid_tuner_instance_list,
1663 i2c, cfg->i2c_address, "xc4000");
1664 switch (instance) {
1665 case 0:
1666 goto fail;
1667 case 1:
1668 /* new tuner instance */
1669 priv->bandwidth = 6000000;
1670 /* set default configuration */
1671 priv->if_khz = 4560;
1672 priv->default_pm = 0;
1673 priv->dvb_amplitude = 134;
1674 priv->set_smoothedcvbs = 1;
1675 mutex_init(&priv->lock);
1676 fe->tuner_priv = priv;
1677 break;
1678 default:
1679 /* existing tuner instance */
1680 fe->tuner_priv = priv;
1681 break;
1682 }
1683
1684 if (cfg->if_khz != 0) {
1685 /* copy configuration if provided by the caller */
1686 priv->if_khz = cfg->if_khz;
1687 priv->default_pm = cfg->default_pm;
1688 priv->dvb_amplitude = cfg->dvb_amplitude;
1689 priv->set_smoothedcvbs = cfg->set_smoothedcvbs;
1690 }
1691
1692 /* Check if firmware has been loaded. It is possible that another
1693 instance of the driver has loaded the firmware.
1694 */
1695
1696 if (instance == 1) {
1697 if (xc4000_readreg(priv, XREG_PRODUCT_ID, &id) != 0)
1698 goto fail;
1699 } else {
1700 id = ((priv->cur_fw.type & BASE) != 0 ?
1701 priv->hwmodel : XC_PRODUCT_ID_FW_NOT_LOADED);
1702 }
1703
1704 switch (id) {
1705 case XC_PRODUCT_ID_XC4000:
1706 case XC_PRODUCT_ID_XC4100:
1707 printk(KERN_INFO
1708 "xc4000: Successfully identified at address 0x%02x\n",
1709 cfg->i2c_address);
1710 printk(KERN_INFO
1711 "xc4000: Firmware has been loaded previously\n");
1712 break;
1713 case XC_PRODUCT_ID_FW_NOT_LOADED:
1714 printk(KERN_INFO
1715 "xc4000: Successfully identified at address 0x%02x\n",
1716 cfg->i2c_address);
1717 printk(KERN_INFO
1718 "xc4000: Firmware has not been loaded previously\n");
1719 break;
1720 default:
1721 printk(KERN_ERR
1722 "xc4000: Device not found at addr 0x%02x (0x%x)\n",
1723 cfg->i2c_address, id);
1724 goto fail;
1725 }
1726
1727 mutex_unlock(&xc4000_list_mutex);
1728
1729 memcpy(&fe->ops.tuner_ops, &xc4000_tuner_ops,
1730 sizeof(struct dvb_tuner_ops));
1731
1732 if (instance == 1) {
1733 int ret;
1734 mutex_lock(&priv->lock);
1735 ret = xc4000_fwupload(fe);
1736 mutex_unlock(&priv->lock);
1737 if (ret != 0)
1738 goto fail2;
1739 }
1740
1741 return fe;
1742 fail:
1743 mutex_unlock(&xc4000_list_mutex);
1744 fail2:
1745 xc4000_release(fe);
1746 return NULL;
1747 }
1748 EXPORT_SYMBOL(xc4000_attach);
1749
1750 MODULE_AUTHOR("Steven Toth, Davide Ferri");
1751 MODULE_DESCRIPTION("Xceive xc4000 silicon tuner driver");
1752 MODULE_LICENSE("GPL");
1753 MODULE_FIRMWARE(XC4000_DEFAULT_FIRMWARE_NEW);
1754 MODULE_FIRMWARE(XC4000_DEFAULT_FIRMWARE);