]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/media/usb/gspca/ov519.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-artful-kernel.git] / drivers / media / usb / gspca / ov519.c
1 /**
2 * OV519 driver
3 *
4 * Copyright (C) 2008-2011 Jean-François Moine <moinejf@free.fr>
5 * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
6 *
7 * This module is adapted from the ov51x-jpeg package, which itself
8 * was adapted from the ov511 driver.
9 *
10 * Original copyright for the ov511 driver is:
11 *
12 * Copyright (c) 1999-2006 Mark W. McClelland
13 * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14 * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15 * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16 * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17 * Changes by Claudio Matsuoka <claudio@conectiva.com>
18 *
19 * ov51x-jpeg original copyright is:
20 *
21 * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22 * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2 of the License, or
27 * any later version.
28 *
29 * This program is distributed in the hope that it will be useful,
30 * but WITHOUT ANY WARRANTY; without even the implied warranty of
31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 * GNU General Public License for more details.
33 *
34 */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #define MODULE_NAME "ov519"
39
40 #include <linux/input.h>
41 #include "gspca.h"
42
43 /* The jpeg_hdr is used by w996Xcf only */
44 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
45 #define CONEX_CAM
46 #include "jpeg.h"
47
48 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
49 MODULE_DESCRIPTION("OV519 USB Camera Driver");
50 MODULE_LICENSE("GPL");
51
52 /* global parameters */
53 static int frame_rate;
54
55 /* Number of times to retry a failed I2C transaction. Increase this if you
56 * are getting "Failed to read sensor ID..." */
57 static int i2c_detect_tries = 10;
58
59 /* ov519 device descriptor */
60 struct sd {
61 struct gspca_dev gspca_dev; /* !! must be the first item */
62
63 struct v4l2_ctrl *jpegqual;
64 struct v4l2_ctrl *freq;
65 struct { /* h/vflip control cluster */
66 struct v4l2_ctrl *hflip;
67 struct v4l2_ctrl *vflip;
68 };
69 struct { /* autobrightness/brightness control cluster */
70 struct v4l2_ctrl *autobright;
71 struct v4l2_ctrl *brightness;
72 };
73
74 u8 revision;
75
76 u8 packet_nr;
77
78 char bridge;
79 #define BRIDGE_OV511 0
80 #define BRIDGE_OV511PLUS 1
81 #define BRIDGE_OV518 2
82 #define BRIDGE_OV518PLUS 3
83 #define BRIDGE_OV519 4 /* = ov530 */
84 #define BRIDGE_OVFX2 5
85 #define BRIDGE_W9968CF 6
86 #define BRIDGE_MASK 7
87
88 char invert_led;
89 #define BRIDGE_INVERT_LED 8
90
91 char snapshot_pressed;
92 char snapshot_needs_reset;
93
94 /* Determined by sensor type */
95 u8 sif;
96
97 #define QUALITY_MIN 50
98 #define QUALITY_MAX 70
99 #define QUALITY_DEF 50
100
101 u8 stopped; /* Streaming is temporarily paused */
102 u8 first_frame;
103
104 u8 frame_rate; /* current Framerate */
105 u8 clockdiv; /* clockdiv override */
106
107 s8 sensor; /* Type of image sensor chip (SEN_*) */
108
109 u8 sensor_addr;
110 u16 sensor_width;
111 u16 sensor_height;
112 s16 sensor_reg_cache[256];
113
114 u8 jpeg_hdr[JPEG_HDR_SZ];
115 };
116 enum sensors {
117 SEN_OV2610,
118 SEN_OV2610AE,
119 SEN_OV3610,
120 SEN_OV6620,
121 SEN_OV6630,
122 SEN_OV66308AF,
123 SEN_OV7610,
124 SEN_OV7620,
125 SEN_OV7620AE,
126 SEN_OV7640,
127 SEN_OV7648,
128 SEN_OV7660,
129 SEN_OV7670,
130 SEN_OV76BE,
131 SEN_OV8610,
132 SEN_OV9600,
133 };
134
135 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
136 the ov sensors which is already present here. When we have the time we
137 really should move the sensor drivers to v4l2 sub drivers. */
138 #include "w996Xcf.c"
139
140 /* table of the disabled controls */
141 struct ctrl_valid {
142 unsigned int has_brightness:1;
143 unsigned int has_contrast:1;
144 unsigned int has_exposure:1;
145 unsigned int has_autogain:1;
146 unsigned int has_sat:1;
147 unsigned int has_hvflip:1;
148 unsigned int has_autobright:1;
149 unsigned int has_freq:1;
150 };
151
152 static const struct ctrl_valid valid_controls[] = {
153 [SEN_OV2610] = {
154 .has_exposure = 1,
155 .has_autogain = 1,
156 },
157 [SEN_OV2610AE] = {
158 .has_exposure = 1,
159 .has_autogain = 1,
160 },
161 [SEN_OV3610] = {
162 /* No controls */
163 },
164 [SEN_OV6620] = {
165 .has_brightness = 1,
166 .has_contrast = 1,
167 .has_sat = 1,
168 .has_autobright = 1,
169 .has_freq = 1,
170 },
171 [SEN_OV6630] = {
172 .has_brightness = 1,
173 .has_contrast = 1,
174 .has_sat = 1,
175 .has_autobright = 1,
176 .has_freq = 1,
177 },
178 [SEN_OV66308AF] = {
179 .has_brightness = 1,
180 .has_contrast = 1,
181 .has_sat = 1,
182 .has_autobright = 1,
183 .has_freq = 1,
184 },
185 [SEN_OV7610] = {
186 .has_brightness = 1,
187 .has_contrast = 1,
188 .has_sat = 1,
189 .has_autobright = 1,
190 .has_freq = 1,
191 },
192 [SEN_OV7620] = {
193 .has_brightness = 1,
194 .has_contrast = 1,
195 .has_sat = 1,
196 .has_autobright = 1,
197 .has_freq = 1,
198 },
199 [SEN_OV7620AE] = {
200 .has_brightness = 1,
201 .has_contrast = 1,
202 .has_sat = 1,
203 .has_autobright = 1,
204 .has_freq = 1,
205 },
206 [SEN_OV7640] = {
207 .has_brightness = 1,
208 .has_sat = 1,
209 .has_freq = 1,
210 },
211 [SEN_OV7648] = {
212 .has_brightness = 1,
213 .has_sat = 1,
214 .has_freq = 1,
215 },
216 [SEN_OV7660] = {
217 .has_brightness = 1,
218 .has_contrast = 1,
219 .has_sat = 1,
220 .has_hvflip = 1,
221 .has_freq = 1,
222 },
223 [SEN_OV7670] = {
224 .has_brightness = 1,
225 .has_contrast = 1,
226 .has_hvflip = 1,
227 .has_freq = 1,
228 },
229 [SEN_OV76BE] = {
230 .has_brightness = 1,
231 .has_contrast = 1,
232 .has_sat = 1,
233 .has_autobright = 1,
234 .has_freq = 1,
235 },
236 [SEN_OV8610] = {
237 .has_brightness = 1,
238 .has_contrast = 1,
239 .has_sat = 1,
240 .has_autobright = 1,
241 },
242 [SEN_OV9600] = {
243 .has_exposure = 1,
244 .has_autogain = 1,
245 },
246 };
247
248 static const struct v4l2_pix_format ov519_vga_mode[] = {
249 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
250 .bytesperline = 320,
251 .sizeimage = 320 * 240 * 3 / 8 + 590,
252 .colorspace = V4L2_COLORSPACE_JPEG,
253 .priv = 1},
254 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
255 .bytesperline = 640,
256 .sizeimage = 640 * 480 * 3 / 8 + 590,
257 .colorspace = V4L2_COLORSPACE_JPEG,
258 .priv = 0},
259 };
260 static const struct v4l2_pix_format ov519_sif_mode[] = {
261 {160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
262 .bytesperline = 160,
263 .sizeimage = 160 * 120 * 3 / 8 + 590,
264 .colorspace = V4L2_COLORSPACE_JPEG,
265 .priv = 3},
266 {176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
267 .bytesperline = 176,
268 .sizeimage = 176 * 144 * 3 / 8 + 590,
269 .colorspace = V4L2_COLORSPACE_JPEG,
270 .priv = 1},
271 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
272 .bytesperline = 320,
273 .sizeimage = 320 * 240 * 3 / 8 + 590,
274 .colorspace = V4L2_COLORSPACE_JPEG,
275 .priv = 2},
276 {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
277 .bytesperline = 352,
278 .sizeimage = 352 * 288 * 3 / 8 + 590,
279 .colorspace = V4L2_COLORSPACE_JPEG,
280 .priv = 0},
281 };
282
283 /* Note some of the sizeimage values for the ov511 / ov518 may seem
284 larger then necessary, however they need to be this big as the ov511 /
285 ov518 always fills the entire isoc frame, using 0 padding bytes when
286 it doesn't have any data. So with low framerates the amount of data
287 transferred can become quite large (libv4l will remove all the 0 padding
288 in userspace). */
289 static const struct v4l2_pix_format ov518_vga_mode[] = {
290 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
291 .bytesperline = 320,
292 .sizeimage = 320 * 240 * 3,
293 .colorspace = V4L2_COLORSPACE_JPEG,
294 .priv = 1},
295 {640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
296 .bytesperline = 640,
297 .sizeimage = 640 * 480 * 2,
298 .colorspace = V4L2_COLORSPACE_JPEG,
299 .priv = 0},
300 };
301 static const struct v4l2_pix_format ov518_sif_mode[] = {
302 {160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
303 .bytesperline = 160,
304 .sizeimage = 70000,
305 .colorspace = V4L2_COLORSPACE_JPEG,
306 .priv = 3},
307 {176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
308 .bytesperline = 176,
309 .sizeimage = 70000,
310 .colorspace = V4L2_COLORSPACE_JPEG,
311 .priv = 1},
312 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
313 .bytesperline = 320,
314 .sizeimage = 320 * 240 * 3,
315 .colorspace = V4L2_COLORSPACE_JPEG,
316 .priv = 2},
317 {352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
318 .bytesperline = 352,
319 .sizeimage = 352 * 288 * 3,
320 .colorspace = V4L2_COLORSPACE_JPEG,
321 .priv = 0},
322 };
323
324 static const struct v4l2_pix_format ov511_vga_mode[] = {
325 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
326 .bytesperline = 320,
327 .sizeimage = 320 * 240 * 3,
328 .colorspace = V4L2_COLORSPACE_JPEG,
329 .priv = 1},
330 {640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
331 .bytesperline = 640,
332 .sizeimage = 640 * 480 * 2,
333 .colorspace = V4L2_COLORSPACE_JPEG,
334 .priv = 0},
335 };
336 static const struct v4l2_pix_format ov511_sif_mode[] = {
337 {160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
338 .bytesperline = 160,
339 .sizeimage = 70000,
340 .colorspace = V4L2_COLORSPACE_JPEG,
341 .priv = 3},
342 {176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
343 .bytesperline = 176,
344 .sizeimage = 70000,
345 .colorspace = V4L2_COLORSPACE_JPEG,
346 .priv = 1},
347 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
348 .bytesperline = 320,
349 .sizeimage = 320 * 240 * 3,
350 .colorspace = V4L2_COLORSPACE_JPEG,
351 .priv = 2},
352 {352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
353 .bytesperline = 352,
354 .sizeimage = 352 * 288 * 3,
355 .colorspace = V4L2_COLORSPACE_JPEG,
356 .priv = 0},
357 };
358
359 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
360 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
361 .bytesperline = 800,
362 .sizeimage = 800 * 600,
363 .colorspace = V4L2_COLORSPACE_SRGB,
364 .priv = 1},
365 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
366 .bytesperline = 1600,
367 .sizeimage = 1600 * 1200,
368 .colorspace = V4L2_COLORSPACE_SRGB},
369 };
370 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
371 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
372 .bytesperline = 640,
373 .sizeimage = 640 * 480,
374 .colorspace = V4L2_COLORSPACE_SRGB,
375 .priv = 1},
376 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
377 .bytesperline = 800,
378 .sizeimage = 800 * 600,
379 .colorspace = V4L2_COLORSPACE_SRGB,
380 .priv = 1},
381 {1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
382 .bytesperline = 1024,
383 .sizeimage = 1024 * 768,
384 .colorspace = V4L2_COLORSPACE_SRGB,
385 .priv = 1},
386 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
387 .bytesperline = 1600,
388 .sizeimage = 1600 * 1200,
389 .colorspace = V4L2_COLORSPACE_SRGB,
390 .priv = 0},
391 {2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
392 .bytesperline = 2048,
393 .sizeimage = 2048 * 1536,
394 .colorspace = V4L2_COLORSPACE_SRGB,
395 .priv = 0},
396 };
397 static const struct v4l2_pix_format ovfx2_ov9600_mode[] = {
398 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
399 .bytesperline = 640,
400 .sizeimage = 640 * 480,
401 .colorspace = V4L2_COLORSPACE_SRGB,
402 .priv = 1},
403 {1280, 1024, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
404 .bytesperline = 1280,
405 .sizeimage = 1280 * 1024,
406 .colorspace = V4L2_COLORSPACE_SRGB},
407 };
408
409 /* Registers common to OV511 / OV518 */
410 #define R51x_FIFO_PSIZE 0x30 /* 2 bytes wide w/ OV518(+) */
411 #define R51x_SYS_RESET 0x50
412 /* Reset type flags */
413 #define OV511_RESET_OMNICE 0x08
414 #define R51x_SYS_INIT 0x53
415 #define R51x_SYS_SNAP 0x52
416 #define R51x_SYS_CUST_ID 0x5f
417 #define R51x_COMP_LUT_BEGIN 0x80
418
419 /* OV511 Camera interface register numbers */
420 #define R511_CAM_DELAY 0x10
421 #define R511_CAM_EDGE 0x11
422 #define R511_CAM_PXCNT 0x12
423 #define R511_CAM_LNCNT 0x13
424 #define R511_CAM_PXDIV 0x14
425 #define R511_CAM_LNDIV 0x15
426 #define R511_CAM_UV_EN 0x16
427 #define R511_CAM_LINE_MODE 0x17
428 #define R511_CAM_OPTS 0x18
429
430 #define R511_SNAP_FRAME 0x19
431 #define R511_SNAP_PXCNT 0x1a
432 #define R511_SNAP_LNCNT 0x1b
433 #define R511_SNAP_PXDIV 0x1c
434 #define R511_SNAP_LNDIV 0x1d
435 #define R511_SNAP_UV_EN 0x1e
436 #define R511_SNAP_OPTS 0x1f
437
438 #define R511_DRAM_FLOW_CTL 0x20
439 #define R511_FIFO_OPTS 0x31
440 #define R511_I2C_CTL 0x40
441 #define R511_SYS_LED_CTL 0x55 /* OV511+ only */
442 #define R511_COMP_EN 0x78
443 #define R511_COMP_LUT_EN 0x79
444
445 /* OV518 Camera interface register numbers */
446 #define R518_GPIO_OUT 0x56 /* OV518(+) only */
447 #define R518_GPIO_CTL 0x57 /* OV518(+) only */
448
449 /* OV519 Camera interface register numbers */
450 #define OV519_R10_H_SIZE 0x10
451 #define OV519_R11_V_SIZE 0x11
452 #define OV519_R12_X_OFFSETL 0x12
453 #define OV519_R13_X_OFFSETH 0x13
454 #define OV519_R14_Y_OFFSETL 0x14
455 #define OV519_R15_Y_OFFSETH 0x15
456 #define OV519_R16_DIVIDER 0x16
457 #define OV519_R20_DFR 0x20
458 #define OV519_R25_FORMAT 0x25
459
460 /* OV519 System Controller register numbers */
461 #define OV519_R51_RESET1 0x51
462 #define OV519_R54_EN_CLK1 0x54
463 #define OV519_R57_SNAPSHOT 0x57
464
465 #define OV519_GPIO_DATA_OUT0 0x71
466 #define OV519_GPIO_IO_CTRL0 0x72
467
468 /*#define OV511_ENDPOINT_ADDRESS 1 * Isoc endpoint number */
469
470 /*
471 * The FX2 chip does not give us a zero length read at end of frame.
472 * It does, however, give a short read at the end of a frame, if
473 * necessary, rather than run two frames together.
474 *
475 * By choosing the right bulk transfer size, we are guaranteed to always
476 * get a short read for the last read of each frame. Frame sizes are
477 * always a composite number (width * height, or a multiple) so if we
478 * choose a prime number, we are guaranteed that the last read of a
479 * frame will be short.
480 *
481 * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
482 * otherwise EOVERFLOW "babbling" errors occur. I have not been able
483 * to figure out why. [PMiller]
484 *
485 * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
486 *
487 * It isn't enough to know the number of bytes per frame, in case we
488 * have data dropouts or buffer overruns (even though the FX2 double
489 * buffers, there are some pretty strict real time constraints for
490 * isochronous transfer for larger frame sizes).
491 */
492 /*jfm: this value does not work for 800x600 - see isoc_init */
493 #define OVFX2_BULK_SIZE (13 * 4096)
494
495 /* I2C registers */
496 #define R51x_I2C_W_SID 0x41
497 #define R51x_I2C_SADDR_3 0x42
498 #define R51x_I2C_SADDR_2 0x43
499 #define R51x_I2C_R_SID 0x44
500 #define R51x_I2C_DATA 0x45
501 #define R518_I2C_CTL 0x47 /* OV518(+) only */
502 #define OVFX2_I2C_ADDR 0x00
503
504 /* I2C ADDRESSES */
505 #define OV7xx0_SID 0x42
506 #define OV_HIRES_SID 0x60 /* OV9xxx / OV2xxx / OV3xxx */
507 #define OV8xx0_SID 0xa0
508 #define OV6xx0_SID 0xc0
509
510 /* OV7610 registers */
511 #define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */
512 #define OV7610_REG_BLUE 0x01 /* blue channel balance */
513 #define OV7610_REG_RED 0x02 /* red channel balance */
514 #define OV7610_REG_SAT 0x03 /* saturation */
515 #define OV8610_REG_HUE 0x04 /* 04 reserved */
516 #define OV7610_REG_CNT 0x05 /* Y contrast */
517 #define OV7610_REG_BRT 0x06 /* Y brightness */
518 #define OV7610_REG_COM_C 0x14 /* misc common regs */
519 #define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */
520 #define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */
521 #define OV7610_REG_COM_I 0x29 /* misc settings */
522
523 /* OV7660 and OV7670 registers */
524 #define OV7670_R00_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
525 #define OV7670_R01_BLUE 0x01 /* blue gain */
526 #define OV7670_R02_RED 0x02 /* red gain */
527 #define OV7670_R03_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
528 #define OV7670_R04_COM1 0x04 /* Control 1 */
529 /*#define OV7670_R07_AECHH 0x07 * AEC MS 5 bits */
530 #define OV7670_R0C_COM3 0x0c /* Control 3 */
531 #define OV7670_R0D_COM4 0x0d /* Control 4 */
532 #define OV7670_R0E_COM5 0x0e /* All "reserved" */
533 #define OV7670_R0F_COM6 0x0f /* Control 6 */
534 #define OV7670_R10_AECH 0x10 /* More bits of AEC value */
535 #define OV7670_R11_CLKRC 0x11 /* Clock control */
536 #define OV7670_R12_COM7 0x12 /* Control 7 */
537 #define OV7670_COM7_FMT_VGA 0x00
538 /*#define OV7670_COM7_YUV 0x00 * YUV */
539 #define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */
540 #define OV7670_COM7_FMT_MASK 0x38
541 #define OV7670_COM7_RESET 0x80 /* Register reset */
542 #define OV7670_R13_COM8 0x13 /* Control 8 */
543 #define OV7670_COM8_AEC 0x01 /* Auto exposure enable */
544 #define OV7670_COM8_AWB 0x02 /* White balance enable */
545 #define OV7670_COM8_AGC 0x04 /* Auto gain enable */
546 #define OV7670_COM8_BFILT 0x20 /* Band filter enable */
547 #define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */
548 #define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
549 #define OV7670_R14_COM9 0x14 /* Control 9 - gain ceiling */
550 #define OV7670_R15_COM10 0x15 /* Control 10 */
551 #define OV7670_R17_HSTART 0x17 /* Horiz start high bits */
552 #define OV7670_R18_HSTOP 0x18 /* Horiz stop high bits */
553 #define OV7670_R19_VSTART 0x19 /* Vert start high bits */
554 #define OV7670_R1A_VSTOP 0x1a /* Vert stop high bits */
555 #define OV7670_R1E_MVFP 0x1e /* Mirror / vflip */
556 #define OV7670_MVFP_VFLIP 0x10 /* vertical flip */
557 #define OV7670_MVFP_MIRROR 0x20 /* Mirror image */
558 #define OV7670_R24_AEW 0x24 /* AGC upper limit */
559 #define OV7670_R25_AEB 0x25 /* AGC lower limit */
560 #define OV7670_R26_VPT 0x26 /* AGC/AEC fast mode op region */
561 #define OV7670_R32_HREF 0x32 /* HREF pieces */
562 #define OV7670_R3A_TSLB 0x3a /* lots of stuff */
563 #define OV7670_R3B_COM11 0x3b /* Control 11 */
564 #define OV7670_COM11_EXP 0x02
565 #define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
566 #define OV7670_R3C_COM12 0x3c /* Control 12 */
567 #define OV7670_R3D_COM13 0x3d /* Control 13 */
568 #define OV7670_COM13_GAMMA 0x80 /* Gamma enable */
569 #define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */
570 #define OV7670_R3E_COM14 0x3e /* Control 14 */
571 #define OV7670_R3F_EDGE 0x3f /* Edge enhancement factor */
572 #define OV7670_R40_COM15 0x40 /* Control 15 */
573 /*#define OV7670_COM15_R00FF 0xc0 * 00 to FF */
574 #define OV7670_R41_COM16 0x41 /* Control 16 */
575 #define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */
576 /* end of ov7660 common registers */
577 #define OV7670_R55_BRIGHT 0x55 /* Brightness */
578 #define OV7670_R56_CONTRAS 0x56 /* Contrast control */
579 #define OV7670_R69_GFIX 0x69 /* Fix gain control */
580 /*#define OV7670_R8C_RGB444 0x8c * RGB 444 control */
581 #define OV7670_R9F_HAECC1 0x9f /* Hist AEC/AGC control 1 */
582 #define OV7670_RA0_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
583 #define OV7670_RA5_BD50MAX 0xa5 /* 50hz banding step limit */
584 #define OV7670_RA6_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
585 #define OV7670_RA7_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
586 #define OV7670_RA8_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
587 #define OV7670_RA9_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
588 #define OV7670_RAA_HAECC7 0xaa /* Hist AEC/AGC control 7 */
589 #define OV7670_RAB_BD60MAX 0xab /* 60hz banding step limit */
590
591 struct ov_regvals {
592 u8 reg;
593 u8 val;
594 };
595 struct ov_i2c_regvals {
596 u8 reg;
597 u8 val;
598 };
599
600 /* Settings for OV2610 camera chip */
601 static const struct ov_i2c_regvals norm_2610[] = {
602 { 0x12, 0x80 }, /* reset */
603 };
604
605 static const struct ov_i2c_regvals norm_2610ae[] = {
606 {0x12, 0x80}, /* reset */
607 {0x13, 0xcd},
608 {0x09, 0x01},
609 {0x0d, 0x00},
610 {0x11, 0x80},
611 {0x12, 0x20}, /* 1600x1200 */
612 {0x33, 0x0c},
613 {0x35, 0x90},
614 {0x36, 0x37},
615 /* ms-win traces */
616 {0x11, 0x83}, /* clock / 3 ? */
617 {0x2d, 0x00}, /* 60 Hz filter */
618 {0x24, 0xb0}, /* normal colors */
619 {0x25, 0x90},
620 {0x10, 0x43},
621 };
622
623 static const struct ov_i2c_regvals norm_3620b[] = {
624 /*
625 * From the datasheet: "Note that after writing to register COMH
626 * (0x12) to change the sensor mode, registers related to the
627 * sensor’s cropping window will be reset back to their default
628 * values."
629 *
630 * "wait 4096 external clock ... to make sure the sensor is
631 * stable and ready to access registers" i.e. 160us at 24MHz
632 */
633 { 0x12, 0x80 }, /* COMH reset */
634 { 0x12, 0x00 }, /* QXGA, master */
635
636 /*
637 * 11 CLKRC "Clock Rate Control"
638 * [7] internal frequency doublers: on
639 * [6] video port mode: master
640 * [5:0] clock divider: 1
641 */
642 { 0x11, 0x80 },
643
644 /*
645 * 13 COMI "Common Control I"
646 * = 192 (0xC0) 11000000
647 * COMI[7] "AEC speed selection"
648 * = 1 (0x01) 1....... "Faster AEC correction"
649 * COMI[6] "AEC speed step selection"
650 * = 1 (0x01) .1...... "Big steps, fast"
651 * COMI[5] "Banding filter on off"
652 * = 0 (0x00) ..0..... "Off"
653 * COMI[4] "Banding filter option"
654 * = 0 (0x00) ...0.... "Main clock is 48 MHz and
655 * the PLL is ON"
656 * COMI[3] "Reserved"
657 * = 0 (0x00) ....0...
658 * COMI[2] "AGC auto manual control selection"
659 * = 0 (0x00) .....0.. "Manual"
660 * COMI[1] "AWB auto manual control selection"
661 * = 0 (0x00) ......0. "Manual"
662 * COMI[0] "Exposure control"
663 * = 0 (0x00) .......0 "Manual"
664 */
665 { 0x13, 0xc0 },
666
667 /*
668 * 09 COMC "Common Control C"
669 * = 8 (0x08) 00001000
670 * COMC[7:5] "Reserved"
671 * = 0 (0x00) 000.....
672 * COMC[4] "Sleep Mode Enable"
673 * = 0 (0x00) ...0.... "Normal mode"
674 * COMC[3:2] "Sensor sampling reset timing selection"
675 * = 2 (0x02) ....10.. "Longer reset time"
676 * COMC[1:0] "Output drive current select"
677 * = 0 (0x00) ......00 "Weakest"
678 */
679 { 0x09, 0x08 },
680
681 /*
682 * 0C COMD "Common Control D"
683 * = 8 (0x08) 00001000
684 * COMD[7] "Reserved"
685 * = 0 (0x00) 0.......
686 * COMD[6] "Swap MSB and LSB at the output port"
687 * = 0 (0x00) .0...... "False"
688 * COMD[5:3] "Reserved"
689 * = 1 (0x01) ..001...
690 * COMD[2] "Output Average On Off"
691 * = 0 (0x00) .....0.. "Output Normal"
692 * COMD[1] "Sensor precharge voltage selection"
693 * = 0 (0x00) ......0. "Selects internal
694 * reference precharge
695 * voltage"
696 * COMD[0] "Snapshot option"
697 * = 0 (0x00) .......0 "Enable live video output
698 * after snapshot sequence"
699 */
700 { 0x0c, 0x08 },
701
702 /*
703 * 0D COME "Common Control E"
704 * = 161 (0xA1) 10100001
705 * COME[7] "Output average option"
706 * = 1 (0x01) 1....... "Output average of 4 pixels"
707 * COME[6] "Anti-blooming control"
708 * = 0 (0x00) .0...... "Off"
709 * COME[5:3] "Reserved"
710 * = 4 (0x04) ..100...
711 * COME[2] "Clock output power down pin status"
712 * = 0 (0x00) .....0.. "Tri-state data output pin
713 * on power down"
714 * COME[1] "Data output pin status selection at power down"
715 * = 0 (0x00) ......0. "Tri-state VSYNC, PCLK,
716 * HREF, and CHSYNC pins on
717 * power down"
718 * COME[0] "Auto zero circuit select"
719 * = 1 (0x01) .......1 "On"
720 */
721 { 0x0d, 0xa1 },
722
723 /*
724 * 0E COMF "Common Control F"
725 * = 112 (0x70) 01110000
726 * COMF[7] "System clock selection"
727 * = 0 (0x00) 0....... "Use 24 MHz system clock"
728 * COMF[6:4] "Reserved"
729 * = 7 (0x07) .111....
730 * COMF[3] "Manual auto negative offset canceling selection"
731 * = 0 (0x00) ....0... "Auto detect negative
732 * offset and cancel it"
733 * COMF[2:0] "Reserved"
734 * = 0 (0x00) .....000
735 */
736 { 0x0e, 0x70 },
737
738 /*
739 * 0F COMG "Common Control G"
740 * = 66 (0x42) 01000010
741 * COMG[7] "Optical black output selection"
742 * = 0 (0x00) 0....... "Disable"
743 * COMG[6] "Black level calibrate selection"
744 * = 1 (0x01) .1...... "Use optical black pixels
745 * to calibrate"
746 * COMG[5:4] "Reserved"
747 * = 0 (0x00) ..00....
748 * COMG[3] "Channel offset adjustment"
749 * = 0 (0x00) ....0... "Disable offset adjustment"
750 * COMG[2] "ADC black level calibration option"
751 * = 0 (0x00) .....0.. "Use B/G line and G/R
752 * line to calibrate each
753 * channel's black level"
754 * COMG[1] "Reserved"
755 * = 1 (0x01) ......1.
756 * COMG[0] "ADC black level calibration enable"
757 * = 0 (0x00) .......0 "Disable"
758 */
759 { 0x0f, 0x42 },
760
761 /*
762 * 14 COMJ "Common Control J"
763 * = 198 (0xC6) 11000110
764 * COMJ[7:6] "AGC gain ceiling"
765 * = 3 (0x03) 11...... "8x"
766 * COMJ[5:4] "Reserved"
767 * = 0 (0x00) ..00....
768 * COMJ[3] "Auto banding filter"
769 * = 0 (0x00) ....0... "Banding filter is always
770 * on off depending on
771 * COMI[5] setting"
772 * COMJ[2] "VSYNC drop option"
773 * = 1 (0x01) .....1.. "SYNC is dropped if frame
774 * data is dropped"
775 * COMJ[1] "Frame data drop"
776 * = 1 (0x01) ......1. "Drop frame data if
777 * exposure is not within
778 * tolerance. In AEC mode,
779 * data is normally dropped
780 * when data is out of
781 * range."
782 * COMJ[0] "Reserved"
783 * = 0 (0x00) .......0
784 */
785 { 0x14, 0xc6 },
786
787 /*
788 * 15 COMK "Common Control K"
789 * = 2 (0x02) 00000010
790 * COMK[7] "CHSYNC pin output swap"
791 * = 0 (0x00) 0....... "CHSYNC"
792 * COMK[6] "HREF pin output swap"
793 * = 0 (0x00) .0...... "HREF"
794 * COMK[5] "PCLK output selection"
795 * = 0 (0x00) ..0..... "PCLK always output"
796 * COMK[4] "PCLK edge selection"
797 * = 0 (0x00) ...0.... "Data valid on falling edge"
798 * COMK[3] "HREF output polarity"
799 * = 0 (0x00) ....0... "positive"
800 * COMK[2] "Reserved"
801 * = 0 (0x00) .....0..
802 * COMK[1] "VSYNC polarity"
803 * = 1 (0x01) ......1. "negative"
804 * COMK[0] "HSYNC polarity"
805 * = 0 (0x00) .......0 "positive"
806 */
807 { 0x15, 0x02 },
808
809 /*
810 * 33 CHLF "Current Control"
811 * = 9 (0x09) 00001001
812 * CHLF[7:6] "Sensor current control"
813 * = 0 (0x00) 00......
814 * CHLF[5] "Sensor current range control"
815 * = 0 (0x00) ..0..... "normal range"
816 * CHLF[4] "Sensor current"
817 * = 0 (0x00) ...0.... "normal current"
818 * CHLF[3] "Sensor buffer current control"
819 * = 1 (0x01) ....1... "half current"
820 * CHLF[2] "Column buffer current control"
821 * = 0 (0x00) .....0.. "normal current"
822 * CHLF[1] "Analog DSP current control"
823 * = 0 (0x00) ......0. "normal current"
824 * CHLF[1] "ADC current control"
825 * = 0 (0x00) ......0. "normal current"
826 */
827 { 0x33, 0x09 },
828
829 /*
830 * 34 VBLM "Blooming Control"
831 * = 80 (0x50) 01010000
832 * VBLM[7] "Hard soft reset switch"
833 * = 0 (0x00) 0....... "Hard reset"
834 * VBLM[6:4] "Blooming voltage selection"
835 * = 5 (0x05) .101....
836 * VBLM[3:0] "Sensor current control"
837 * = 0 (0x00) ....0000
838 */
839 { 0x34, 0x50 },
840
841 /*
842 * 36 VCHG "Sensor Precharge Voltage Control"
843 * = 0 (0x00) 00000000
844 * VCHG[7] "Reserved"
845 * = 0 (0x00) 0.......
846 * VCHG[6:4] "Sensor precharge voltage control"
847 * = 0 (0x00) .000....
848 * VCHG[3:0] "Sensor array common reference"
849 * = 0 (0x00) ....0000
850 */
851 { 0x36, 0x00 },
852
853 /*
854 * 37 ADC "ADC Reference Control"
855 * = 4 (0x04) 00000100
856 * ADC[7:4] "Reserved"
857 * = 0 (0x00) 0000....
858 * ADC[3] "ADC input signal range"
859 * = 0 (0x00) ....0... "Input signal 1.0x"
860 * ADC[2:0] "ADC range control"
861 * = 4 (0x04) .....100
862 */
863 { 0x37, 0x04 },
864
865 /*
866 * 38 ACOM "Analog Common Ground"
867 * = 82 (0x52) 01010010
868 * ACOM[7] "Analog gain control"
869 * = 0 (0x00) 0....... "Gain 1x"
870 * ACOM[6] "Analog black level calibration"
871 * = 1 (0x01) .1...... "On"
872 * ACOM[5:0] "Reserved"
873 * = 18 (0x12) ..010010
874 */
875 { 0x38, 0x52 },
876
877 /*
878 * 3A FREFA "Internal Reference Adjustment"
879 * = 0 (0x00) 00000000
880 * FREFA[7:0] "Range"
881 * = 0 (0x00) 00000000
882 */
883 { 0x3a, 0x00 },
884
885 /*
886 * 3C FVOPT "Internal Reference Adjustment"
887 * = 31 (0x1F) 00011111
888 * FVOPT[7:0] "Range"
889 * = 31 (0x1F) 00011111
890 */
891 { 0x3c, 0x1f },
892
893 /*
894 * 44 Undocumented = 0 (0x00) 00000000
895 * 44[7:0] "It's a secret"
896 * = 0 (0x00) 00000000
897 */
898 { 0x44, 0x00 },
899
900 /*
901 * 40 Undocumented = 0 (0x00) 00000000
902 * 40[7:0] "It's a secret"
903 * = 0 (0x00) 00000000
904 */
905 { 0x40, 0x00 },
906
907 /*
908 * 41 Undocumented = 0 (0x00) 00000000
909 * 41[7:0] "It's a secret"
910 * = 0 (0x00) 00000000
911 */
912 { 0x41, 0x00 },
913
914 /*
915 * 42 Undocumented = 0 (0x00) 00000000
916 * 42[7:0] "It's a secret"
917 * = 0 (0x00) 00000000
918 */
919 { 0x42, 0x00 },
920
921 /*
922 * 43 Undocumented = 0 (0x00) 00000000
923 * 43[7:0] "It's a secret"
924 * = 0 (0x00) 00000000
925 */
926 { 0x43, 0x00 },
927
928 /*
929 * 45 Undocumented = 128 (0x80) 10000000
930 * 45[7:0] "It's a secret"
931 * = 128 (0x80) 10000000
932 */
933 { 0x45, 0x80 },
934
935 /*
936 * 48 Undocumented = 192 (0xC0) 11000000
937 * 48[7:0] "It's a secret"
938 * = 192 (0xC0) 11000000
939 */
940 { 0x48, 0xc0 },
941
942 /*
943 * 49 Undocumented = 25 (0x19) 00011001
944 * 49[7:0] "It's a secret"
945 * = 25 (0x19) 00011001
946 */
947 { 0x49, 0x19 },
948
949 /*
950 * 4B Undocumented = 128 (0x80) 10000000
951 * 4B[7:0] "It's a secret"
952 * = 128 (0x80) 10000000
953 */
954 { 0x4b, 0x80 },
955
956 /*
957 * 4D Undocumented = 196 (0xC4) 11000100
958 * 4D[7:0] "It's a secret"
959 * = 196 (0xC4) 11000100
960 */
961 { 0x4d, 0xc4 },
962
963 /*
964 * 35 VREF "Reference Voltage Control"
965 * = 76 (0x4c) 01001100
966 * VREF[7:5] "Column high reference control"
967 * = 2 (0x02) 010..... "higher voltage"
968 * VREF[4:2] "Column low reference control"
969 * = 3 (0x03) ...011.. "Highest voltage"
970 * VREF[1:0] "Reserved"
971 * = 0 (0x00) ......00
972 */
973 { 0x35, 0x4c },
974
975 /*
976 * 3D Undocumented = 0 (0x00) 00000000
977 * 3D[7:0] "It's a secret"
978 * = 0 (0x00) 00000000
979 */
980 { 0x3d, 0x00 },
981
982 /*
983 * 3E Undocumented = 0 (0x00) 00000000
984 * 3E[7:0] "It's a secret"
985 * = 0 (0x00) 00000000
986 */
987 { 0x3e, 0x00 },
988
989 /*
990 * 3B FREFB "Internal Reference Adjustment"
991 * = 24 (0x18) 00011000
992 * FREFB[7:0] "Range"
993 * = 24 (0x18) 00011000
994 */
995 { 0x3b, 0x18 },
996
997 /*
998 * 33 CHLF "Current Control"
999 * = 25 (0x19) 00011001
1000 * CHLF[7:6] "Sensor current control"
1001 * = 0 (0x00) 00......
1002 * CHLF[5] "Sensor current range control"
1003 * = 0 (0x00) ..0..... "normal range"
1004 * CHLF[4] "Sensor current"
1005 * = 1 (0x01) ...1.... "double current"
1006 * CHLF[3] "Sensor buffer current control"
1007 * = 1 (0x01) ....1... "half current"
1008 * CHLF[2] "Column buffer current control"
1009 * = 0 (0x00) .....0.. "normal current"
1010 * CHLF[1] "Analog DSP current control"
1011 * = 0 (0x00) ......0. "normal current"
1012 * CHLF[1] "ADC current control"
1013 * = 0 (0x00) ......0. "normal current"
1014 */
1015 { 0x33, 0x19 },
1016
1017 /*
1018 * 34 VBLM "Blooming Control"
1019 * = 90 (0x5A) 01011010
1020 * VBLM[7] "Hard soft reset switch"
1021 * = 0 (0x00) 0....... "Hard reset"
1022 * VBLM[6:4] "Blooming voltage selection"
1023 * = 5 (0x05) .101....
1024 * VBLM[3:0] "Sensor current control"
1025 * = 10 (0x0A) ....1010
1026 */
1027 { 0x34, 0x5a },
1028
1029 /*
1030 * 3B FREFB "Internal Reference Adjustment"
1031 * = 0 (0x00) 00000000
1032 * FREFB[7:0] "Range"
1033 * = 0 (0x00) 00000000
1034 */
1035 { 0x3b, 0x00 },
1036
1037 /*
1038 * 33 CHLF "Current Control"
1039 * = 9 (0x09) 00001001
1040 * CHLF[7:6] "Sensor current control"
1041 * = 0 (0x00) 00......
1042 * CHLF[5] "Sensor current range control"
1043 * = 0 (0x00) ..0..... "normal range"
1044 * CHLF[4] "Sensor current"
1045 * = 0 (0x00) ...0.... "normal current"
1046 * CHLF[3] "Sensor buffer current control"
1047 * = 1 (0x01) ....1... "half current"
1048 * CHLF[2] "Column buffer current control"
1049 * = 0 (0x00) .....0.. "normal current"
1050 * CHLF[1] "Analog DSP current control"
1051 * = 0 (0x00) ......0. "normal current"
1052 * CHLF[1] "ADC current control"
1053 * = 0 (0x00) ......0. "normal current"
1054 */
1055 { 0x33, 0x09 },
1056
1057 /*
1058 * 34 VBLM "Blooming Control"
1059 * = 80 (0x50) 01010000
1060 * VBLM[7] "Hard soft reset switch"
1061 * = 0 (0x00) 0....... "Hard reset"
1062 * VBLM[6:4] "Blooming voltage selection"
1063 * = 5 (0x05) .101....
1064 * VBLM[3:0] "Sensor current control"
1065 * = 0 (0x00) ....0000
1066 */
1067 { 0x34, 0x50 },
1068
1069 /*
1070 * 12 COMH "Common Control H"
1071 * = 64 (0x40) 01000000
1072 * COMH[7] "SRST"
1073 * = 0 (0x00) 0....... "No-op"
1074 * COMH[6:4] "Resolution selection"
1075 * = 4 (0x04) .100.... "XGA"
1076 * COMH[3] "Master slave selection"
1077 * = 0 (0x00) ....0... "Master mode"
1078 * COMH[2] "Internal B/R channel option"
1079 * = 0 (0x00) .....0.. "B/R use same channel"
1080 * COMH[1] "Color bar test pattern"
1081 * = 0 (0x00) ......0. "Off"
1082 * COMH[0] "Reserved"
1083 * = 0 (0x00) .......0
1084 */
1085 { 0x12, 0x40 },
1086
1087 /*
1088 * 17 HREFST "Horizontal window start"
1089 * = 31 (0x1F) 00011111
1090 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1091 * = 31 (0x1F) 00011111
1092 */
1093 { 0x17, 0x1f },
1094
1095 /*
1096 * 18 HREFEND "Horizontal window end"
1097 * = 95 (0x5F) 01011111
1098 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1099 * = 95 (0x5F) 01011111
1100 */
1101 { 0x18, 0x5f },
1102
1103 /*
1104 * 19 VSTRT "Vertical window start"
1105 * = 0 (0x00) 00000000
1106 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1107 * = 0 (0x00) 00000000
1108 */
1109 { 0x19, 0x00 },
1110
1111 /*
1112 * 1A VEND "Vertical window end"
1113 * = 96 (0x60) 01100000
1114 * VEND[7:0] "Vertical Window End, 8 MSBs"
1115 * = 96 (0x60) 01100000
1116 */
1117 { 0x1a, 0x60 },
1118
1119 /*
1120 * 32 COMM "Common Control M"
1121 * = 18 (0x12) 00010010
1122 * COMM[7:6] "Pixel clock divide option"
1123 * = 0 (0x00) 00...... "/1"
1124 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1125 * = 2 (0x02) ..010...
1126 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1127 * = 2 (0x02) .....010
1128 */
1129 { 0x32, 0x12 },
1130
1131 /*
1132 * 03 COMA "Common Control A"
1133 * = 74 (0x4A) 01001010
1134 * COMA[7:4] "AWB Update Threshold"
1135 * = 4 (0x04) 0100....
1136 * COMA[3:2] "Vertical window end line control 2 LSBs"
1137 * = 2 (0x02) ....10..
1138 * COMA[1:0] "Vertical window start line control 2 LSBs"
1139 * = 2 (0x02) ......10
1140 */
1141 { 0x03, 0x4a },
1142
1143 /*
1144 * 11 CLKRC "Clock Rate Control"
1145 * = 128 (0x80) 10000000
1146 * CLKRC[7] "Internal frequency doublers on off seclection"
1147 * = 1 (0x01) 1....... "On"
1148 * CLKRC[6] "Digital video master slave selection"
1149 * = 0 (0x00) .0...... "Master mode, sensor
1150 * provides PCLK"
1151 * CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1152 * = 0 (0x00) ..000000
1153 */
1154 { 0x11, 0x80 },
1155
1156 /*
1157 * 12 COMH "Common Control H"
1158 * = 0 (0x00) 00000000
1159 * COMH[7] "SRST"
1160 * = 0 (0x00) 0....... "No-op"
1161 * COMH[6:4] "Resolution selection"
1162 * = 0 (0x00) .000.... "QXGA"
1163 * COMH[3] "Master slave selection"
1164 * = 0 (0x00) ....0... "Master mode"
1165 * COMH[2] "Internal B/R channel option"
1166 * = 0 (0x00) .....0.. "B/R use same channel"
1167 * COMH[1] "Color bar test pattern"
1168 * = 0 (0x00) ......0. "Off"
1169 * COMH[0] "Reserved"
1170 * = 0 (0x00) .......0
1171 */
1172 { 0x12, 0x00 },
1173
1174 /*
1175 * 12 COMH "Common Control H"
1176 * = 64 (0x40) 01000000
1177 * COMH[7] "SRST"
1178 * = 0 (0x00) 0....... "No-op"
1179 * COMH[6:4] "Resolution selection"
1180 * = 4 (0x04) .100.... "XGA"
1181 * COMH[3] "Master slave selection"
1182 * = 0 (0x00) ....0... "Master mode"
1183 * COMH[2] "Internal B/R channel option"
1184 * = 0 (0x00) .....0.. "B/R use same channel"
1185 * COMH[1] "Color bar test pattern"
1186 * = 0 (0x00) ......0. "Off"
1187 * COMH[0] "Reserved"
1188 * = 0 (0x00) .......0
1189 */
1190 { 0x12, 0x40 },
1191
1192 /*
1193 * 17 HREFST "Horizontal window start"
1194 * = 31 (0x1F) 00011111
1195 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1196 * = 31 (0x1F) 00011111
1197 */
1198 { 0x17, 0x1f },
1199
1200 /*
1201 * 18 HREFEND "Horizontal window end"
1202 * = 95 (0x5F) 01011111
1203 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1204 * = 95 (0x5F) 01011111
1205 */
1206 { 0x18, 0x5f },
1207
1208 /*
1209 * 19 VSTRT "Vertical window start"
1210 * = 0 (0x00) 00000000
1211 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1212 * = 0 (0x00) 00000000
1213 */
1214 { 0x19, 0x00 },
1215
1216 /*
1217 * 1A VEND "Vertical window end"
1218 * = 96 (0x60) 01100000
1219 * VEND[7:0] "Vertical Window End, 8 MSBs"
1220 * = 96 (0x60) 01100000
1221 */
1222 { 0x1a, 0x60 },
1223
1224 /*
1225 * 32 COMM "Common Control M"
1226 * = 18 (0x12) 00010010
1227 * COMM[7:6] "Pixel clock divide option"
1228 * = 0 (0x00) 00...... "/1"
1229 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1230 * = 2 (0x02) ..010...
1231 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1232 * = 2 (0x02) .....010
1233 */
1234 { 0x32, 0x12 },
1235
1236 /*
1237 * 03 COMA "Common Control A"
1238 * = 74 (0x4A) 01001010
1239 * COMA[7:4] "AWB Update Threshold"
1240 * = 4 (0x04) 0100....
1241 * COMA[3:2] "Vertical window end line control 2 LSBs"
1242 * = 2 (0x02) ....10..
1243 * COMA[1:0] "Vertical window start line control 2 LSBs"
1244 * = 2 (0x02) ......10
1245 */
1246 { 0x03, 0x4a },
1247
1248 /*
1249 * 02 RED "Red Gain Control"
1250 * = 175 (0xAF) 10101111
1251 * RED[7] "Action"
1252 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1253 * RED[6:0] "Value"
1254 * = 47 (0x2F) .0101111
1255 */
1256 { 0x02, 0xaf },
1257
1258 /*
1259 * 2D ADDVSL "VSYNC Pulse Width"
1260 * = 210 (0xD2) 11010010
1261 * ADDVSL[7:0] "VSYNC pulse width, LSB"
1262 * = 210 (0xD2) 11010010
1263 */
1264 { 0x2d, 0xd2 },
1265
1266 /*
1267 * 00 GAIN = 24 (0x18) 00011000
1268 * GAIN[7:6] "Reserved"
1269 * = 0 (0x00) 00......
1270 * GAIN[5] "Double"
1271 * = 0 (0x00) ..0..... "False"
1272 * GAIN[4] "Double"
1273 * = 1 (0x01) ...1.... "True"
1274 * GAIN[3:0] "Range"
1275 * = 8 (0x08) ....1000
1276 */
1277 { 0x00, 0x18 },
1278
1279 /*
1280 * 01 BLUE "Blue Gain Control"
1281 * = 240 (0xF0) 11110000
1282 * BLUE[7] "Action"
1283 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1284 * BLUE[6:0] "Value"
1285 * = 112 (0x70) .1110000
1286 */
1287 { 0x01, 0xf0 },
1288
1289 /*
1290 * 10 AEC "Automatic Exposure Control"
1291 * = 10 (0x0A) 00001010
1292 * AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1293 * = 10 (0x0A) 00001010
1294 */
1295 { 0x10, 0x0a },
1296
1297 { 0xe1, 0x67 },
1298 { 0xe3, 0x03 },
1299 { 0xe4, 0x26 },
1300 { 0xe5, 0x3e },
1301 { 0xf8, 0x01 },
1302 { 0xff, 0x01 },
1303 };
1304
1305 static const struct ov_i2c_regvals norm_6x20[] = {
1306 { 0x12, 0x80 }, /* reset */
1307 { 0x11, 0x01 },
1308 { 0x03, 0x60 },
1309 { 0x05, 0x7f }, /* For when autoadjust is off */
1310 { 0x07, 0xa8 },
1311 /* The ratio of 0x0c and 0x0d controls the white point */
1312 { 0x0c, 0x24 },
1313 { 0x0d, 0x24 },
1314 { 0x0f, 0x15 }, /* COMS */
1315 { 0x10, 0x75 }, /* AEC Exposure time */
1316 { 0x12, 0x24 }, /* Enable AGC */
1317 { 0x14, 0x04 },
1318 /* 0x16: 0x06 helps frame stability with moving objects */
1319 { 0x16, 0x06 },
1320 /* { 0x20, 0x30 }, * Aperture correction enable */
1321 { 0x26, 0xb2 }, /* BLC enable */
1322 /* 0x28: 0x05 Selects RGB format if RGB on */
1323 { 0x28, 0x05 },
1324 { 0x2a, 0x04 }, /* Disable framerate adjust */
1325 /* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */
1326 { 0x2d, 0x85 },
1327 { 0x33, 0xa0 }, /* Color Processing Parameter */
1328 { 0x34, 0xd2 }, /* Max A/D range */
1329 { 0x38, 0x8b },
1330 { 0x39, 0x40 },
1331
1332 { 0x3c, 0x39 }, /* Enable AEC mode changing */
1333 { 0x3c, 0x3c }, /* Change AEC mode */
1334 { 0x3c, 0x24 }, /* Disable AEC mode changing */
1335
1336 { 0x3d, 0x80 },
1337 /* These next two registers (0x4a, 0x4b) are undocumented.
1338 * They control the color balance */
1339 { 0x4a, 0x80 },
1340 { 0x4b, 0x80 },
1341 { 0x4d, 0xd2 }, /* This reduces noise a bit */
1342 { 0x4e, 0xc1 },
1343 { 0x4f, 0x04 },
1344 /* Do 50-53 have any effect? */
1345 /* Toggle 0x12[2] off and on here? */
1346 };
1347
1348 static const struct ov_i2c_regvals norm_6x30[] = {
1349 { 0x12, 0x80 }, /* Reset */
1350 { 0x00, 0x1f }, /* Gain */
1351 { 0x01, 0x99 }, /* Blue gain */
1352 { 0x02, 0x7c }, /* Red gain */
1353 { 0x03, 0xc0 }, /* Saturation */
1354 { 0x05, 0x0a }, /* Contrast */
1355 { 0x06, 0x95 }, /* Brightness */
1356 { 0x07, 0x2d }, /* Sharpness */
1357 { 0x0c, 0x20 },
1358 { 0x0d, 0x20 },
1359 { 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1360 { 0x0f, 0x05 },
1361 { 0x10, 0x9a },
1362 { 0x11, 0x00 }, /* Pixel clock = fastest */
1363 { 0x12, 0x24 }, /* Enable AGC and AWB */
1364 { 0x13, 0x21 },
1365 { 0x14, 0x80 },
1366 { 0x15, 0x01 },
1367 { 0x16, 0x03 },
1368 { 0x17, 0x38 },
1369 { 0x18, 0xea },
1370 { 0x19, 0x04 },
1371 { 0x1a, 0x93 },
1372 { 0x1b, 0x00 },
1373 { 0x1e, 0xc4 },
1374 { 0x1f, 0x04 },
1375 { 0x20, 0x20 },
1376 { 0x21, 0x10 },
1377 { 0x22, 0x88 },
1378 { 0x23, 0xc0 }, /* Crystal circuit power level */
1379 { 0x25, 0x9a }, /* Increase AEC black ratio */
1380 { 0x26, 0xb2 }, /* BLC enable */
1381 { 0x27, 0xa2 },
1382 { 0x28, 0x00 },
1383 { 0x29, 0x00 },
1384 { 0x2a, 0x84 }, /* 60 Hz power */
1385 { 0x2b, 0xa8 }, /* 60 Hz power */
1386 { 0x2c, 0xa0 },
1387 { 0x2d, 0x95 }, /* Enable auto-brightness */
1388 { 0x2e, 0x88 },
1389 { 0x33, 0x26 },
1390 { 0x34, 0x03 },
1391 { 0x36, 0x8f },
1392 { 0x37, 0x80 },
1393 { 0x38, 0x83 },
1394 { 0x39, 0x80 },
1395 { 0x3a, 0x0f },
1396 { 0x3b, 0x3c },
1397 { 0x3c, 0x1a },
1398 { 0x3d, 0x80 },
1399 { 0x3e, 0x80 },
1400 { 0x3f, 0x0e },
1401 { 0x40, 0x00 }, /* White bal */
1402 { 0x41, 0x00 }, /* White bal */
1403 { 0x42, 0x80 },
1404 { 0x43, 0x3f }, /* White bal */
1405 { 0x44, 0x80 },
1406 { 0x45, 0x20 },
1407 { 0x46, 0x20 },
1408 { 0x47, 0x80 },
1409 { 0x48, 0x7f },
1410 { 0x49, 0x00 },
1411 { 0x4a, 0x00 },
1412 { 0x4b, 0x80 },
1413 { 0x4c, 0xd0 },
1414 { 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1415 { 0x4e, 0x40 },
1416 { 0x4f, 0x07 }, /* UV avg., col. killer: max */
1417 { 0x50, 0xff },
1418 { 0x54, 0x23 }, /* Max AGC gain: 18dB */
1419 { 0x55, 0xff },
1420 { 0x56, 0x12 },
1421 { 0x57, 0x81 },
1422 { 0x58, 0x75 },
1423 { 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1424 { 0x5a, 0x2c },
1425 { 0x5b, 0x0f }, /* AWB chrominance levels */
1426 { 0x5c, 0x10 },
1427 { 0x3d, 0x80 },
1428 { 0x27, 0xa6 },
1429 { 0x12, 0x20 }, /* Toggle AWB */
1430 { 0x12, 0x24 },
1431 };
1432
1433 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1434 *
1435 * Register 0x0f in the 7610 has the following effects:
1436 *
1437 * 0x85 (AEC method 1): Best overall, good contrast range
1438 * 0x45 (AEC method 2): Very overexposed
1439 * 0xa5 (spec sheet default): Ok, but the black level is
1440 * shifted resulting in loss of contrast
1441 * 0x05 (old driver setting): very overexposed, too much
1442 * contrast
1443 */
1444 static const struct ov_i2c_regvals norm_7610[] = {
1445 { 0x10, 0xff },
1446 { 0x16, 0x06 },
1447 { 0x28, 0x24 },
1448 { 0x2b, 0xac },
1449 { 0x12, 0x00 },
1450 { 0x38, 0x81 },
1451 { 0x28, 0x24 }, /* 0c */
1452 { 0x0f, 0x85 }, /* lg's setting */
1453 { 0x15, 0x01 },
1454 { 0x20, 0x1c },
1455 { 0x23, 0x2a },
1456 { 0x24, 0x10 },
1457 { 0x25, 0x8a },
1458 { 0x26, 0xa2 },
1459 { 0x27, 0xc2 },
1460 { 0x2a, 0x04 },
1461 { 0x2c, 0xfe },
1462 { 0x2d, 0x93 },
1463 { 0x30, 0x71 },
1464 { 0x31, 0x60 },
1465 { 0x32, 0x26 },
1466 { 0x33, 0x20 },
1467 { 0x34, 0x48 },
1468 { 0x12, 0x24 },
1469 { 0x11, 0x01 },
1470 { 0x0c, 0x24 },
1471 { 0x0d, 0x24 },
1472 };
1473
1474 static const struct ov_i2c_regvals norm_7620[] = {
1475 { 0x12, 0x80 }, /* reset */
1476 { 0x00, 0x00 }, /* gain */
1477 { 0x01, 0x80 }, /* blue gain */
1478 { 0x02, 0x80 }, /* red gain */
1479 { 0x03, 0xc0 }, /* OV7670_R03_VREF */
1480 { 0x06, 0x60 },
1481 { 0x07, 0x00 },
1482 { 0x0c, 0x24 },
1483 { 0x0c, 0x24 },
1484 { 0x0d, 0x24 },
1485 { 0x11, 0x01 },
1486 { 0x12, 0x24 },
1487 { 0x13, 0x01 },
1488 { 0x14, 0x84 },
1489 { 0x15, 0x01 },
1490 { 0x16, 0x03 },
1491 { 0x17, 0x2f },
1492 { 0x18, 0xcf },
1493 { 0x19, 0x06 },
1494 { 0x1a, 0xf5 },
1495 { 0x1b, 0x00 },
1496 { 0x20, 0x18 },
1497 { 0x21, 0x80 },
1498 { 0x22, 0x80 },
1499 { 0x23, 0x00 },
1500 { 0x26, 0xa2 },
1501 { 0x27, 0xea },
1502 { 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1503 { 0x29, 0x00 },
1504 { 0x2a, 0x10 },
1505 { 0x2b, 0x00 },
1506 { 0x2c, 0x88 },
1507 { 0x2d, 0x91 },
1508 { 0x2e, 0x80 },
1509 { 0x2f, 0x44 },
1510 { 0x60, 0x27 },
1511 { 0x61, 0x02 },
1512 { 0x62, 0x5f },
1513 { 0x63, 0xd5 },
1514 { 0x64, 0x57 },
1515 { 0x65, 0x83 },
1516 { 0x66, 0x55 },
1517 { 0x67, 0x92 },
1518 { 0x68, 0xcf },
1519 { 0x69, 0x76 },
1520 { 0x6a, 0x22 },
1521 { 0x6b, 0x00 },
1522 { 0x6c, 0x02 },
1523 { 0x6d, 0x44 },
1524 { 0x6e, 0x80 },
1525 { 0x6f, 0x1d },
1526 { 0x70, 0x8b },
1527 { 0x71, 0x00 },
1528 { 0x72, 0x14 },
1529 { 0x73, 0x54 },
1530 { 0x74, 0x00 },
1531 { 0x75, 0x8e },
1532 { 0x76, 0x00 },
1533 { 0x77, 0xff },
1534 { 0x78, 0x80 },
1535 { 0x79, 0x80 },
1536 { 0x7a, 0x80 },
1537 { 0x7b, 0xe2 },
1538 { 0x7c, 0x00 },
1539 };
1540
1541 /* 7640 and 7648. The defaults should be OK for most registers. */
1542 static const struct ov_i2c_regvals norm_7640[] = {
1543 { 0x12, 0x80 },
1544 { 0x12, 0x14 },
1545 };
1546
1547 static const struct ov_regvals init_519_ov7660[] = {
1548 { 0x5d, 0x03 }, /* Turn off suspend mode */
1549 { 0x53, 0x9b }, /* 0x9f enables the (unused) microcontroller */
1550 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
1551 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
1552 { 0xa3, 0x18 },
1553 { 0xa4, 0x04 },
1554 { 0xa5, 0x28 },
1555 { 0x37, 0x00 }, /* SetUsbInit */
1556 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
1557 /* Enable both fields, YUV Input, disable defect comp (why?) */
1558 { 0x20, 0x0c }, /* 0x0d does U <-> V swap */
1559 { 0x21, 0x38 },
1560 { 0x22, 0x1d },
1561 { 0x17, 0x50 }, /* undocumented */
1562 { 0x37, 0x00 }, /* undocumented */
1563 { 0x40, 0xff }, /* I2C timeout counter */
1564 { 0x46, 0x00 }, /* I2C clock prescaler */
1565 };
1566 static const struct ov_i2c_regvals norm_7660[] = {
1567 {OV7670_R12_COM7, OV7670_COM7_RESET},
1568 {OV7670_R11_CLKRC, 0x81},
1569 {0x92, 0x00}, /* DM_LNL */
1570 {0x93, 0x00}, /* DM_LNH */
1571 {0x9d, 0x4c}, /* BD50ST */
1572 {0x9e, 0x3f}, /* BD60ST */
1573 {OV7670_R3B_COM11, 0x02},
1574 {OV7670_R13_COM8, 0xf5},
1575 {OV7670_R10_AECH, 0x00},
1576 {OV7670_R00_GAIN, 0x00},
1577 {OV7670_R01_BLUE, 0x7c},
1578 {OV7670_R02_RED, 0x9d},
1579 {OV7670_R12_COM7, 0x00},
1580 {OV7670_R04_COM1, 00},
1581 {OV7670_R18_HSTOP, 0x01},
1582 {OV7670_R17_HSTART, 0x13},
1583 {OV7670_R32_HREF, 0x92},
1584 {OV7670_R19_VSTART, 0x02},
1585 {OV7670_R1A_VSTOP, 0x7a},
1586 {OV7670_R03_VREF, 0x00},
1587 {OV7670_R0E_COM5, 0x04},
1588 {OV7670_R0F_COM6, 0x62},
1589 {OV7670_R15_COM10, 0x00},
1590 {0x16, 0x02}, /* RSVD */
1591 {0x1b, 0x00}, /* PSHFT */
1592 {OV7670_R1E_MVFP, 0x01},
1593 {0x29, 0x3c}, /* RSVD */
1594 {0x33, 0x00}, /* CHLF */
1595 {0x34, 0x07}, /* ARBLM */
1596 {0x35, 0x84}, /* RSVD */
1597 {0x36, 0x00}, /* RSVD */
1598 {0x37, 0x04}, /* ADC */
1599 {0x39, 0x43}, /* OFON */
1600 {OV7670_R3A_TSLB, 0x00},
1601 {OV7670_R3C_COM12, 0x6c},
1602 {OV7670_R3D_COM13, 0x98},
1603 {OV7670_R3F_EDGE, 0x23},
1604 {OV7670_R40_COM15, 0xc1},
1605 {OV7670_R41_COM16, 0x22},
1606 {0x6b, 0x0a}, /* DBLV */
1607 {0xa1, 0x08}, /* RSVD */
1608 {0x69, 0x80}, /* HV */
1609 {0x43, 0xf0}, /* RSVD.. */
1610 {0x44, 0x10},
1611 {0x45, 0x78},
1612 {0x46, 0xa8},
1613 {0x47, 0x60},
1614 {0x48, 0x80},
1615 {0x59, 0xba},
1616 {0x5a, 0x9a},
1617 {0x5b, 0x22},
1618 {0x5c, 0xb9},
1619 {0x5d, 0x9b},
1620 {0x5e, 0x10},
1621 {0x5f, 0xe0},
1622 {0x60, 0x85},
1623 {0x61, 0x60},
1624 {0x9f, 0x9d}, /* RSVD */
1625 {0xa0, 0xa0}, /* DSPC2 */
1626 {0x4f, 0x60}, /* matrix */
1627 {0x50, 0x64},
1628 {0x51, 0x04},
1629 {0x52, 0x18},
1630 {0x53, 0x3c},
1631 {0x54, 0x54},
1632 {0x55, 0x40},
1633 {0x56, 0x40},
1634 {0x57, 0x40},
1635 {0x58, 0x0d}, /* matrix sign */
1636 {0x8b, 0xcc}, /* RSVD */
1637 {0x8c, 0xcc},
1638 {0x8d, 0xcf},
1639 {0x6c, 0x40}, /* gamma curve */
1640 {0x6d, 0xe0},
1641 {0x6e, 0xa0},
1642 {0x6f, 0x80},
1643 {0x70, 0x70},
1644 {0x71, 0x80},
1645 {0x72, 0x60},
1646 {0x73, 0x60},
1647 {0x74, 0x50},
1648 {0x75, 0x40},
1649 {0x76, 0x38},
1650 {0x77, 0x3c},
1651 {0x78, 0x32},
1652 {0x79, 0x1a},
1653 {0x7a, 0x28},
1654 {0x7b, 0x24},
1655 {0x7c, 0x04}, /* gamma curve */
1656 {0x7d, 0x12},
1657 {0x7e, 0x26},
1658 {0x7f, 0x46},
1659 {0x80, 0x54},
1660 {0x81, 0x64},
1661 {0x82, 0x70},
1662 {0x83, 0x7c},
1663 {0x84, 0x86},
1664 {0x85, 0x8e},
1665 {0x86, 0x9c},
1666 {0x87, 0xab},
1667 {0x88, 0xc4},
1668 {0x89, 0xd1},
1669 {0x8a, 0xe5},
1670 {OV7670_R14_COM9, 0x1e},
1671 {OV7670_R24_AEW, 0x80},
1672 {OV7670_R25_AEB, 0x72},
1673 {OV7670_R26_VPT, 0xb3},
1674 {0x62, 0x80}, /* LCC1 */
1675 {0x63, 0x80}, /* LCC2 */
1676 {0x64, 0x06}, /* LCC3 */
1677 {0x65, 0x00}, /* LCC4 */
1678 {0x66, 0x01}, /* LCC5 */
1679 {0x94, 0x0e}, /* RSVD.. */
1680 {0x95, 0x14},
1681 {OV7670_R13_COM8, OV7670_COM8_FASTAEC
1682 | OV7670_COM8_AECSTEP
1683 | OV7670_COM8_BFILT
1684 | 0x10
1685 | OV7670_COM8_AGC
1686 | OV7670_COM8_AWB
1687 | OV7670_COM8_AEC},
1688 {0xa1, 0xc8}
1689 };
1690 static const struct ov_i2c_regvals norm_9600[] = {
1691 {0x12, 0x80},
1692 {0x0c, 0x28},
1693 {0x11, 0x80},
1694 {0x13, 0xb5},
1695 {0x14, 0x3e},
1696 {0x1b, 0x04},
1697 {0x24, 0xb0},
1698 {0x25, 0x90},
1699 {0x26, 0x94},
1700 {0x35, 0x90},
1701 {0x37, 0x07},
1702 {0x38, 0x08},
1703 {0x01, 0x8e},
1704 {0x02, 0x85}
1705 };
1706
1707 /* 7670. Defaults taken from OmniVision provided data,
1708 * as provided by Jonathan Corbet of OLPC */
1709 static const struct ov_i2c_regvals norm_7670[] = {
1710 { OV7670_R12_COM7, OV7670_COM7_RESET },
1711 { OV7670_R3A_TSLB, 0x04 }, /* OV */
1712 { OV7670_R12_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1713 { OV7670_R11_CLKRC, 0x01 },
1714 /*
1715 * Set the hardware window. These values from OV don't entirely
1716 * make sense - hstop is less than hstart. But they work...
1717 */
1718 { OV7670_R17_HSTART, 0x13 },
1719 { OV7670_R18_HSTOP, 0x01 },
1720 { OV7670_R32_HREF, 0xb6 },
1721 { OV7670_R19_VSTART, 0x02 },
1722 { OV7670_R1A_VSTOP, 0x7a },
1723 { OV7670_R03_VREF, 0x0a },
1724
1725 { OV7670_R0C_COM3, 0x00 },
1726 { OV7670_R3E_COM14, 0x00 },
1727 /* Mystery scaling numbers */
1728 { 0x70, 0x3a },
1729 { 0x71, 0x35 },
1730 { 0x72, 0x11 },
1731 { 0x73, 0xf0 },
1732 { 0xa2, 0x02 },
1733 /* { OV7670_R15_COM10, 0x0 }, */
1734
1735 /* Gamma curve values */
1736 { 0x7a, 0x20 },
1737 { 0x7b, 0x10 },
1738 { 0x7c, 0x1e },
1739 { 0x7d, 0x35 },
1740 { 0x7e, 0x5a },
1741 { 0x7f, 0x69 },
1742 { 0x80, 0x76 },
1743 { 0x81, 0x80 },
1744 { 0x82, 0x88 },
1745 { 0x83, 0x8f },
1746 { 0x84, 0x96 },
1747 { 0x85, 0xa3 },
1748 { 0x86, 0xaf },
1749 { 0x87, 0xc4 },
1750 { 0x88, 0xd7 },
1751 { 0x89, 0xe8 },
1752
1753 /* AGC and AEC parameters. Note we start by disabling those features,
1754 then turn them only after tweaking the values. */
1755 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1756 | OV7670_COM8_AECSTEP
1757 | OV7670_COM8_BFILT },
1758 { OV7670_R00_GAIN, 0x00 },
1759 { OV7670_R10_AECH, 0x00 },
1760 { OV7670_R0D_COM4, 0x40 }, /* magic reserved bit */
1761 { OV7670_R14_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1762 { OV7670_RA5_BD50MAX, 0x05 },
1763 { OV7670_RAB_BD60MAX, 0x07 },
1764 { OV7670_R24_AEW, 0x95 },
1765 { OV7670_R25_AEB, 0x33 },
1766 { OV7670_R26_VPT, 0xe3 },
1767 { OV7670_R9F_HAECC1, 0x78 },
1768 { OV7670_RA0_HAECC2, 0x68 },
1769 { 0xa1, 0x03 }, /* magic */
1770 { OV7670_RA6_HAECC3, 0xd8 },
1771 { OV7670_RA7_HAECC4, 0xd8 },
1772 { OV7670_RA8_HAECC5, 0xf0 },
1773 { OV7670_RA9_HAECC6, 0x90 },
1774 { OV7670_RAA_HAECC7, 0x94 },
1775 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1776 | OV7670_COM8_AECSTEP
1777 | OV7670_COM8_BFILT
1778 | OV7670_COM8_AGC
1779 | OV7670_COM8_AEC },
1780
1781 /* Almost all of these are magic "reserved" values. */
1782 { OV7670_R0E_COM5, 0x61 },
1783 { OV7670_R0F_COM6, 0x4b },
1784 { 0x16, 0x02 },
1785 { OV7670_R1E_MVFP, 0x07 },
1786 { 0x21, 0x02 },
1787 { 0x22, 0x91 },
1788 { 0x29, 0x07 },
1789 { 0x33, 0x0b },
1790 { 0x35, 0x0b },
1791 { 0x37, 0x1d },
1792 { 0x38, 0x71 },
1793 { 0x39, 0x2a },
1794 { OV7670_R3C_COM12, 0x78 },
1795 { 0x4d, 0x40 },
1796 { 0x4e, 0x20 },
1797 { OV7670_R69_GFIX, 0x00 },
1798 { 0x6b, 0x4a },
1799 { 0x74, 0x10 },
1800 { 0x8d, 0x4f },
1801 { 0x8e, 0x00 },
1802 { 0x8f, 0x00 },
1803 { 0x90, 0x00 },
1804 { 0x91, 0x00 },
1805 { 0x96, 0x00 },
1806 { 0x9a, 0x00 },
1807 { 0xb0, 0x84 },
1808 { 0xb1, 0x0c },
1809 { 0xb2, 0x0e },
1810 { 0xb3, 0x82 },
1811 { 0xb8, 0x0a },
1812
1813 /* More reserved magic, some of which tweaks white balance */
1814 { 0x43, 0x0a },
1815 { 0x44, 0xf0 },
1816 { 0x45, 0x34 },
1817 { 0x46, 0x58 },
1818 { 0x47, 0x28 },
1819 { 0x48, 0x3a },
1820 { 0x59, 0x88 },
1821 { 0x5a, 0x88 },
1822 { 0x5b, 0x44 },
1823 { 0x5c, 0x67 },
1824 { 0x5d, 0x49 },
1825 { 0x5e, 0x0e },
1826 { 0x6c, 0x0a },
1827 { 0x6d, 0x55 },
1828 { 0x6e, 0x11 },
1829 { 0x6f, 0x9f }, /* "9e for advance AWB" */
1830 { 0x6a, 0x40 },
1831 { OV7670_R01_BLUE, 0x40 },
1832 { OV7670_R02_RED, 0x60 },
1833 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1834 | OV7670_COM8_AECSTEP
1835 | OV7670_COM8_BFILT
1836 | OV7670_COM8_AGC
1837 | OV7670_COM8_AEC
1838 | OV7670_COM8_AWB },
1839
1840 /* Matrix coefficients */
1841 { 0x4f, 0x80 },
1842 { 0x50, 0x80 },
1843 { 0x51, 0x00 },
1844 { 0x52, 0x22 },
1845 { 0x53, 0x5e },
1846 { 0x54, 0x80 },
1847 { 0x58, 0x9e },
1848
1849 { OV7670_R41_COM16, OV7670_COM16_AWBGAIN },
1850 { OV7670_R3F_EDGE, 0x00 },
1851 { 0x75, 0x05 },
1852 { 0x76, 0xe1 },
1853 { 0x4c, 0x00 },
1854 { 0x77, 0x01 },
1855 { OV7670_R3D_COM13, OV7670_COM13_GAMMA
1856 | OV7670_COM13_UVSAT
1857 | 2}, /* was 3 */
1858 { 0x4b, 0x09 },
1859 { 0xc9, 0x60 },
1860 { OV7670_R41_COM16, 0x38 },
1861 { 0x56, 0x40 },
1862
1863 { 0x34, 0x11 },
1864 { OV7670_R3B_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
1865 { 0xa4, 0x88 },
1866 { 0x96, 0x00 },
1867 { 0x97, 0x30 },
1868 { 0x98, 0x20 },
1869 { 0x99, 0x30 },
1870 { 0x9a, 0x84 },
1871 { 0x9b, 0x29 },
1872 { 0x9c, 0x03 },
1873 { 0x9d, 0x4c },
1874 { 0x9e, 0x3f },
1875 { 0x78, 0x04 },
1876
1877 /* Extra-weird stuff. Some sort of multiplexor register */
1878 { 0x79, 0x01 },
1879 { 0xc8, 0xf0 },
1880 { 0x79, 0x0f },
1881 { 0xc8, 0x00 },
1882 { 0x79, 0x10 },
1883 { 0xc8, 0x7e },
1884 { 0x79, 0x0a },
1885 { 0xc8, 0x80 },
1886 { 0x79, 0x0b },
1887 { 0xc8, 0x01 },
1888 { 0x79, 0x0c },
1889 { 0xc8, 0x0f },
1890 { 0x79, 0x0d },
1891 { 0xc8, 0x20 },
1892 { 0x79, 0x09 },
1893 { 0xc8, 0x80 },
1894 { 0x79, 0x02 },
1895 { 0xc8, 0xc0 },
1896 { 0x79, 0x03 },
1897 { 0xc8, 0x40 },
1898 { 0x79, 0x05 },
1899 { 0xc8, 0x30 },
1900 { 0x79, 0x26 },
1901 };
1902
1903 static const struct ov_i2c_regvals norm_8610[] = {
1904 { 0x12, 0x80 },
1905 { 0x00, 0x00 },
1906 { 0x01, 0x80 },
1907 { 0x02, 0x80 },
1908 { 0x03, 0xc0 },
1909 { 0x04, 0x30 },
1910 { 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
1911 { 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
1912 { 0x0a, 0x86 },
1913 { 0x0b, 0xb0 },
1914 { 0x0c, 0x20 },
1915 { 0x0d, 0x20 },
1916 { 0x11, 0x01 },
1917 { 0x12, 0x25 },
1918 { 0x13, 0x01 },
1919 { 0x14, 0x04 },
1920 { 0x15, 0x01 }, /* Lin and Win think different about UV order */
1921 { 0x16, 0x03 },
1922 { 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
1923 { 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
1924 { 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
1925 { 0x1a, 0xf5 },
1926 { 0x1b, 0x00 },
1927 { 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
1928 { 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
1929 { 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
1930 { 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
1931 { 0x26, 0xa2 },
1932 { 0x27, 0xea },
1933 { 0x28, 0x00 },
1934 { 0x29, 0x00 },
1935 { 0x2a, 0x80 },
1936 { 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
1937 { 0x2c, 0xac },
1938 { 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
1939 { 0x2e, 0x80 },
1940 { 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
1941 { 0x4c, 0x00 },
1942 { 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
1943 { 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
1944 { 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
1945 { 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
1946 { 0x63, 0xff },
1947 { 0x64, 0x53 }, /* new windrv 090403 says 0x57,
1948 * maybe thats wrong */
1949 { 0x65, 0x00 },
1950 { 0x66, 0x55 },
1951 { 0x67, 0xb0 },
1952 { 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
1953 { 0x69, 0x02 },
1954 { 0x6a, 0x22 },
1955 { 0x6b, 0x00 },
1956 { 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
1957 * deleting bit7 colors the first images red */
1958 { 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
1959 { 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
1960 { 0x6f, 0x01 },
1961 { 0x70, 0x8b },
1962 { 0x71, 0x00 },
1963 { 0x72, 0x14 },
1964 { 0x73, 0x54 },
1965 { 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
1966 { 0x75, 0x0e },
1967 { 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
1968 { 0x77, 0xff },
1969 { 0x78, 0x80 },
1970 { 0x79, 0x80 },
1971 { 0x7a, 0x80 },
1972 { 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
1973 { 0x7c, 0x00 },
1974 { 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
1975 { 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
1976 { 0x7f, 0xfb },
1977 { 0x80, 0x28 },
1978 { 0x81, 0x00 },
1979 { 0x82, 0x23 },
1980 { 0x83, 0x0b },
1981 { 0x84, 0x00 },
1982 { 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
1983 { 0x86, 0xc9 },
1984 { 0x87, 0x00 },
1985 { 0x88, 0x00 },
1986 { 0x89, 0x01 },
1987 { 0x12, 0x20 },
1988 { 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
1989 };
1990
1991 static unsigned char ov7670_abs_to_sm(unsigned char v)
1992 {
1993 if (v > 127)
1994 return v & 0x7f;
1995 return (128 - v) | 0x80;
1996 }
1997
1998 /* Write a OV519 register */
1999 static void reg_w(struct sd *sd, u16 index, u16 value)
2000 {
2001 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2002 int ret, req = 0;
2003
2004 if (sd->gspca_dev.usb_err < 0)
2005 return;
2006
2007 /* Avoid things going to fast for the bridge with a xhci host */
2008 udelay(150);
2009
2010 switch (sd->bridge) {
2011 case BRIDGE_OV511:
2012 case BRIDGE_OV511PLUS:
2013 req = 2;
2014 break;
2015 case BRIDGE_OVFX2:
2016 req = 0x0a;
2017 /* fall through */
2018 case BRIDGE_W9968CF:
2019 PDEBUG(D_USBO, "SET %02x %04x %04x",
2020 req, value, index);
2021 ret = usb_control_msg(sd->gspca_dev.dev,
2022 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2023 req,
2024 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2025 value, index, NULL, 0, 500);
2026 goto leave;
2027 default:
2028 req = 1;
2029 }
2030
2031 PDEBUG(D_USBO, "SET %02x 0000 %04x %02x",
2032 req, index, value);
2033 sd->gspca_dev.usb_buf[0] = value;
2034 ret = usb_control_msg(sd->gspca_dev.dev,
2035 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2036 req,
2037 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2038 0, index,
2039 sd->gspca_dev.usb_buf, 1, 500);
2040 leave:
2041 if (ret < 0) {
2042 PERR("reg_w %02x failed %d\n", index, ret);
2043 sd->gspca_dev.usb_err = ret;
2044 return;
2045 }
2046 }
2047
2048 /* Read from a OV519 register, note not valid for the w9968cf!! */
2049 /* returns: negative is error, pos or zero is data */
2050 static int reg_r(struct sd *sd, u16 index)
2051 {
2052 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2053 int ret;
2054 int req;
2055
2056 if (sd->gspca_dev.usb_err < 0)
2057 return -1;
2058
2059 switch (sd->bridge) {
2060 case BRIDGE_OV511:
2061 case BRIDGE_OV511PLUS:
2062 req = 3;
2063 break;
2064 case BRIDGE_OVFX2:
2065 req = 0x0b;
2066 break;
2067 default:
2068 req = 1;
2069 }
2070
2071 /* Avoid things going to fast for the bridge with a xhci host */
2072 udelay(150);
2073 ret = usb_control_msg(sd->gspca_dev.dev,
2074 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2075 req,
2076 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2077 0, index, sd->gspca_dev.usb_buf, 1, 500);
2078
2079 if (ret >= 0) {
2080 ret = sd->gspca_dev.usb_buf[0];
2081 PDEBUG(D_USBI, "GET %02x 0000 %04x %02x",
2082 req, index, ret);
2083 } else {
2084 PERR("reg_r %02x failed %d\n", index, ret);
2085 sd->gspca_dev.usb_err = ret;
2086 }
2087
2088 return ret;
2089 }
2090
2091 /* Read 8 values from a OV519 register */
2092 static int reg_r8(struct sd *sd,
2093 u16 index)
2094 {
2095 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2096 int ret;
2097
2098 if (sd->gspca_dev.usb_err < 0)
2099 return -1;
2100
2101 /* Avoid things going to fast for the bridge with a xhci host */
2102 udelay(150);
2103 ret = usb_control_msg(sd->gspca_dev.dev,
2104 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2105 1, /* REQ_IO */
2106 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2107 0, index, sd->gspca_dev.usb_buf, 8, 500);
2108
2109 if (ret >= 0) {
2110 ret = sd->gspca_dev.usb_buf[0];
2111 } else {
2112 PERR("reg_r8 %02x failed %d\n", index, ret);
2113 sd->gspca_dev.usb_err = ret;
2114 }
2115
2116 return ret;
2117 }
2118
2119 /*
2120 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
2121 * the same position as 1's in "mask" are cleared and set to "value". Bits
2122 * that are in the same position as 0's in "mask" are preserved, regardless
2123 * of their respective state in "value".
2124 */
2125 static void reg_w_mask(struct sd *sd,
2126 u16 index,
2127 u8 value,
2128 u8 mask)
2129 {
2130 int ret;
2131 u8 oldval;
2132
2133 if (mask != 0xff) {
2134 value &= mask; /* Enforce mask on value */
2135 ret = reg_r(sd, index);
2136 if (ret < 0)
2137 return;
2138
2139 oldval = ret & ~mask; /* Clear the masked bits */
2140 value |= oldval; /* Set the desired bits */
2141 }
2142 reg_w(sd, index, value);
2143 }
2144
2145 /*
2146 * Writes multiple (n) byte value to a single register. Only valid with certain
2147 * registers (0x30 and 0xc4 - 0xce).
2148 */
2149 static void ov518_reg_w32(struct sd *sd, u16 index, u32 value, int n)
2150 {
2151 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2152 int ret;
2153
2154 if (sd->gspca_dev.usb_err < 0)
2155 return;
2156
2157 *((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2158
2159 /* Avoid things going to fast for the bridge with a xhci host */
2160 udelay(150);
2161 ret = usb_control_msg(sd->gspca_dev.dev,
2162 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2163 1 /* REG_IO */,
2164 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2165 0, index,
2166 sd->gspca_dev.usb_buf, n, 500);
2167 if (ret < 0) {
2168 PERR("reg_w32 %02x failed %d\n", index, ret);
2169 sd->gspca_dev.usb_err = ret;
2170 }
2171 }
2172
2173 static void ov511_i2c_w(struct sd *sd, u8 reg, u8 value)
2174 {
2175 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2176 int rc, retries;
2177
2178 PDEBUG(D_USBO, "ov511_i2c_w %02x %02x", reg, value);
2179
2180 /* Three byte write cycle */
2181 for (retries = 6; ; ) {
2182 /* Select camera register */
2183 reg_w(sd, R51x_I2C_SADDR_3, reg);
2184
2185 /* Write "value" to I2C data port of OV511 */
2186 reg_w(sd, R51x_I2C_DATA, value);
2187
2188 /* Initiate 3-byte write cycle */
2189 reg_w(sd, R511_I2C_CTL, 0x01);
2190
2191 do {
2192 rc = reg_r(sd, R511_I2C_CTL);
2193 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2194
2195 if (rc < 0)
2196 return;
2197
2198 if ((rc & 2) == 0) /* Ack? */
2199 break;
2200 if (--retries < 0) {
2201 PDEBUG(D_USBO, "i2c write retries exhausted");
2202 return;
2203 }
2204 }
2205 }
2206
2207 static int ov511_i2c_r(struct sd *sd, u8 reg)
2208 {
2209 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2210 int rc, value, retries;
2211
2212 /* Two byte write cycle */
2213 for (retries = 6; ; ) {
2214 /* Select camera register */
2215 reg_w(sd, R51x_I2C_SADDR_2, reg);
2216
2217 /* Initiate 2-byte write cycle */
2218 reg_w(sd, R511_I2C_CTL, 0x03);
2219
2220 do {
2221 rc = reg_r(sd, R511_I2C_CTL);
2222 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2223
2224 if (rc < 0)
2225 return rc;
2226
2227 if ((rc & 2) == 0) /* Ack? */
2228 break;
2229
2230 /* I2C abort */
2231 reg_w(sd, R511_I2C_CTL, 0x10);
2232
2233 if (--retries < 0) {
2234 PDEBUG(D_USBI, "i2c write retries exhausted");
2235 return -1;
2236 }
2237 }
2238
2239 /* Two byte read cycle */
2240 for (retries = 6; ; ) {
2241 /* Initiate 2-byte read cycle */
2242 reg_w(sd, R511_I2C_CTL, 0x05);
2243
2244 do {
2245 rc = reg_r(sd, R511_I2C_CTL);
2246 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2247
2248 if (rc < 0)
2249 return rc;
2250
2251 if ((rc & 2) == 0) /* Ack? */
2252 break;
2253
2254 /* I2C abort */
2255 reg_w(sd, R511_I2C_CTL, 0x10);
2256
2257 if (--retries < 0) {
2258 PDEBUG(D_USBI, "i2c read retries exhausted");
2259 return -1;
2260 }
2261 }
2262
2263 value = reg_r(sd, R51x_I2C_DATA);
2264
2265 PDEBUG(D_USBI, "ov511_i2c_r %02x %02x", reg, value);
2266
2267 /* This is needed to make i2c_w() work */
2268 reg_w(sd, R511_I2C_CTL, 0x05);
2269
2270 return value;
2271 }
2272
2273 /*
2274 * The OV518 I2C I/O procedure is different, hence, this function.
2275 * This is normally only called from i2c_w(). Note that this function
2276 * always succeeds regardless of whether the sensor is present and working.
2277 */
2278 static void ov518_i2c_w(struct sd *sd,
2279 u8 reg,
2280 u8 value)
2281 {
2282 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2283
2284 PDEBUG(D_USBO, "ov518_i2c_w %02x %02x", reg, value);
2285
2286 /* Select camera register */
2287 reg_w(sd, R51x_I2C_SADDR_3, reg);
2288
2289 /* Write "value" to I2C data port of OV511 */
2290 reg_w(sd, R51x_I2C_DATA, value);
2291
2292 /* Initiate 3-byte write cycle */
2293 reg_w(sd, R518_I2C_CTL, 0x01);
2294
2295 /* wait for write complete */
2296 msleep(4);
2297 reg_r8(sd, R518_I2C_CTL);
2298 }
2299
2300 /*
2301 * returns: negative is error, pos or zero is data
2302 *
2303 * The OV518 I2C I/O procedure is different, hence, this function.
2304 * This is normally only called from i2c_r(). Note that this function
2305 * always succeeds regardless of whether the sensor is present and working.
2306 */
2307 static int ov518_i2c_r(struct sd *sd, u8 reg)
2308 {
2309 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2310 int value;
2311
2312 /* Select camera register */
2313 reg_w(sd, R51x_I2C_SADDR_2, reg);
2314
2315 /* Initiate 2-byte write cycle */
2316 reg_w(sd, R518_I2C_CTL, 0x03);
2317 reg_r8(sd, R518_I2C_CTL);
2318
2319 /* Initiate 2-byte read cycle */
2320 reg_w(sd, R518_I2C_CTL, 0x05);
2321 reg_r8(sd, R518_I2C_CTL);
2322
2323 value = reg_r(sd, R51x_I2C_DATA);
2324 PDEBUG(D_USBI, "ov518_i2c_r %02x %02x", reg, value);
2325 return value;
2326 }
2327
2328 static void ovfx2_i2c_w(struct sd *sd, u8 reg, u8 value)
2329 {
2330 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2331 int ret;
2332
2333 if (sd->gspca_dev.usb_err < 0)
2334 return;
2335
2336 ret = usb_control_msg(sd->gspca_dev.dev,
2337 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2338 0x02,
2339 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2340 (u16) value, (u16) reg, NULL, 0, 500);
2341
2342 if (ret < 0) {
2343 PERR("ovfx2_i2c_w %02x failed %d\n", reg, ret);
2344 sd->gspca_dev.usb_err = ret;
2345 }
2346
2347 PDEBUG(D_USBO, "ovfx2_i2c_w %02x %02x", reg, value);
2348 }
2349
2350 static int ovfx2_i2c_r(struct sd *sd, u8 reg)
2351 {
2352 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2353 int ret;
2354
2355 if (sd->gspca_dev.usb_err < 0)
2356 return -1;
2357
2358 ret = usb_control_msg(sd->gspca_dev.dev,
2359 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2360 0x03,
2361 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2362 0, (u16) reg, sd->gspca_dev.usb_buf, 1, 500);
2363
2364 if (ret >= 0) {
2365 ret = sd->gspca_dev.usb_buf[0];
2366 PDEBUG(D_USBI, "ovfx2_i2c_r %02x %02x", reg, ret);
2367 } else {
2368 PERR("ovfx2_i2c_r %02x failed %d\n", reg, ret);
2369 sd->gspca_dev.usb_err = ret;
2370 }
2371
2372 return ret;
2373 }
2374
2375 static void i2c_w(struct sd *sd, u8 reg, u8 value)
2376 {
2377 if (sd->sensor_reg_cache[reg] == value)
2378 return;
2379
2380 switch (sd->bridge) {
2381 case BRIDGE_OV511:
2382 case BRIDGE_OV511PLUS:
2383 ov511_i2c_w(sd, reg, value);
2384 break;
2385 case BRIDGE_OV518:
2386 case BRIDGE_OV518PLUS:
2387 case BRIDGE_OV519:
2388 ov518_i2c_w(sd, reg, value);
2389 break;
2390 case BRIDGE_OVFX2:
2391 ovfx2_i2c_w(sd, reg, value);
2392 break;
2393 case BRIDGE_W9968CF:
2394 w9968cf_i2c_w(sd, reg, value);
2395 break;
2396 }
2397
2398 if (sd->gspca_dev.usb_err >= 0) {
2399 /* Up on sensor reset empty the register cache */
2400 if (reg == 0x12 && (value & 0x80))
2401 memset(sd->sensor_reg_cache, -1,
2402 sizeof(sd->sensor_reg_cache));
2403 else
2404 sd->sensor_reg_cache[reg] = value;
2405 }
2406 }
2407
2408 static int i2c_r(struct sd *sd, u8 reg)
2409 {
2410 int ret = -1;
2411
2412 if (sd->sensor_reg_cache[reg] != -1)
2413 return sd->sensor_reg_cache[reg];
2414
2415 switch (sd->bridge) {
2416 case BRIDGE_OV511:
2417 case BRIDGE_OV511PLUS:
2418 ret = ov511_i2c_r(sd, reg);
2419 break;
2420 case BRIDGE_OV518:
2421 case BRIDGE_OV518PLUS:
2422 case BRIDGE_OV519:
2423 ret = ov518_i2c_r(sd, reg);
2424 break;
2425 case BRIDGE_OVFX2:
2426 ret = ovfx2_i2c_r(sd, reg);
2427 break;
2428 case BRIDGE_W9968CF:
2429 ret = w9968cf_i2c_r(sd, reg);
2430 break;
2431 }
2432
2433 if (ret >= 0)
2434 sd->sensor_reg_cache[reg] = ret;
2435
2436 return ret;
2437 }
2438
2439 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2440 * the same position as 1's in "mask" are cleared and set to "value". Bits
2441 * that are in the same position as 0's in "mask" are preserved, regardless
2442 * of their respective state in "value".
2443 */
2444 static void i2c_w_mask(struct sd *sd,
2445 u8 reg,
2446 u8 value,
2447 u8 mask)
2448 {
2449 int rc;
2450 u8 oldval;
2451
2452 value &= mask; /* Enforce mask on value */
2453 rc = i2c_r(sd, reg);
2454 if (rc < 0)
2455 return;
2456 oldval = rc & ~mask; /* Clear the masked bits */
2457 value |= oldval; /* Set the desired bits */
2458 i2c_w(sd, reg, value);
2459 }
2460
2461 /* Temporarily stops OV511 from functioning. Must do this before changing
2462 * registers while the camera is streaming */
2463 static inline void ov51x_stop(struct sd *sd)
2464 {
2465 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2466
2467 PDEBUG(D_STREAM, "stopping");
2468 sd->stopped = 1;
2469 switch (sd->bridge) {
2470 case BRIDGE_OV511:
2471 case BRIDGE_OV511PLUS:
2472 reg_w(sd, R51x_SYS_RESET, 0x3d);
2473 break;
2474 case BRIDGE_OV518:
2475 case BRIDGE_OV518PLUS:
2476 reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2477 break;
2478 case BRIDGE_OV519:
2479 reg_w(sd, OV519_R51_RESET1, 0x0f);
2480 reg_w(sd, OV519_R51_RESET1, 0x00);
2481 reg_w(sd, 0x22, 0x00); /* FRAR */
2482 break;
2483 case BRIDGE_OVFX2:
2484 reg_w_mask(sd, 0x0f, 0x00, 0x02);
2485 break;
2486 case BRIDGE_W9968CF:
2487 reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2488 break;
2489 }
2490 }
2491
2492 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2493 * actually stopped (for performance). */
2494 static inline void ov51x_restart(struct sd *sd)
2495 {
2496 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2497
2498 PDEBUG(D_STREAM, "restarting");
2499 if (!sd->stopped)
2500 return;
2501 sd->stopped = 0;
2502
2503 /* Reinitialize the stream */
2504 switch (sd->bridge) {
2505 case BRIDGE_OV511:
2506 case BRIDGE_OV511PLUS:
2507 reg_w(sd, R51x_SYS_RESET, 0x00);
2508 break;
2509 case BRIDGE_OV518:
2510 case BRIDGE_OV518PLUS:
2511 reg_w(sd, 0x2f, 0x80);
2512 reg_w(sd, R51x_SYS_RESET, 0x00);
2513 break;
2514 case BRIDGE_OV519:
2515 reg_w(sd, OV519_R51_RESET1, 0x0f);
2516 reg_w(sd, OV519_R51_RESET1, 0x00);
2517 reg_w(sd, 0x22, 0x1d); /* FRAR */
2518 break;
2519 case BRIDGE_OVFX2:
2520 reg_w_mask(sd, 0x0f, 0x02, 0x02);
2521 break;
2522 case BRIDGE_W9968CF:
2523 reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2524 break;
2525 }
2526 }
2527
2528 static void ov51x_set_slave_ids(struct sd *sd, u8 slave);
2529
2530 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2531 * is synchronized. Returns <0 on failure.
2532 */
2533 static int init_ov_sensor(struct sd *sd, u8 slave)
2534 {
2535 int i;
2536 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2537
2538 ov51x_set_slave_ids(sd, slave);
2539
2540 /* Reset the sensor */
2541 i2c_w(sd, 0x12, 0x80);
2542
2543 /* Wait for it to initialize */
2544 msleep(150);
2545
2546 for (i = 0; i < i2c_detect_tries; i++) {
2547 if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2548 i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2549 PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
2550 return 0;
2551 }
2552
2553 /* Reset the sensor */
2554 i2c_w(sd, 0x12, 0x80);
2555
2556 /* Wait for it to initialize */
2557 msleep(150);
2558
2559 /* Dummy read to sync I2C */
2560 if (i2c_r(sd, 0x00) < 0)
2561 return -1;
2562 }
2563 return -1;
2564 }
2565
2566 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2567 * and the read slave will be set to (slave + 1).
2568 * This should not be called from outside the i2c I/O functions.
2569 * Sets I2C read and write slave IDs. Returns <0 for error
2570 */
2571 static void ov51x_set_slave_ids(struct sd *sd,
2572 u8 slave)
2573 {
2574 switch (sd->bridge) {
2575 case BRIDGE_OVFX2:
2576 reg_w(sd, OVFX2_I2C_ADDR, slave);
2577 return;
2578 case BRIDGE_W9968CF:
2579 sd->sensor_addr = slave;
2580 return;
2581 }
2582
2583 reg_w(sd, R51x_I2C_W_SID, slave);
2584 reg_w(sd, R51x_I2C_R_SID, slave + 1);
2585 }
2586
2587 static void write_regvals(struct sd *sd,
2588 const struct ov_regvals *regvals,
2589 int n)
2590 {
2591 while (--n >= 0) {
2592 reg_w(sd, regvals->reg, regvals->val);
2593 regvals++;
2594 }
2595 }
2596
2597 static void write_i2c_regvals(struct sd *sd,
2598 const struct ov_i2c_regvals *regvals,
2599 int n)
2600 {
2601 while (--n >= 0) {
2602 i2c_w(sd, regvals->reg, regvals->val);
2603 regvals++;
2604 }
2605 }
2606
2607 /****************************************************************************
2608 *
2609 * OV511 and sensor configuration
2610 *
2611 ***************************************************************************/
2612
2613 /* This initializes the OV2x10 / OV3610 / OV3620 / OV9600 */
2614 static void ov_hires_configure(struct sd *sd)
2615 {
2616 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2617 int high, low;
2618
2619 if (sd->bridge != BRIDGE_OVFX2) {
2620 PERR("error hires sensors only supported with ovfx2\n");
2621 return;
2622 }
2623
2624 PDEBUG(D_PROBE, "starting ov hires configuration");
2625
2626 /* Detect sensor (sub)type */
2627 high = i2c_r(sd, 0x0a);
2628 low = i2c_r(sd, 0x0b);
2629 /* info("%x, %x", high, low); */
2630 switch (high) {
2631 case 0x96:
2632 switch (low) {
2633 case 0x40:
2634 PDEBUG(D_PROBE, "Sensor is a OV2610");
2635 sd->sensor = SEN_OV2610;
2636 return;
2637 case 0x41:
2638 PDEBUG(D_PROBE, "Sensor is a OV2610AE");
2639 sd->sensor = SEN_OV2610AE;
2640 return;
2641 case 0xb1:
2642 PDEBUG(D_PROBE, "Sensor is a OV9600");
2643 sd->sensor = SEN_OV9600;
2644 return;
2645 }
2646 break;
2647 case 0x36:
2648 if ((low & 0x0f) == 0x00) {
2649 PDEBUG(D_PROBE, "Sensor is a OV3610");
2650 sd->sensor = SEN_OV3610;
2651 return;
2652 }
2653 break;
2654 }
2655 PERR("Error unknown sensor type: %02x%02x\n", high, low);
2656 }
2657
2658 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2659 * the same register settings as the OV8610, since they are very similar.
2660 */
2661 static void ov8xx0_configure(struct sd *sd)
2662 {
2663 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2664 int rc;
2665
2666 PDEBUG(D_PROBE, "starting ov8xx0 configuration");
2667
2668 /* Detect sensor (sub)type */
2669 rc = i2c_r(sd, OV7610_REG_COM_I);
2670 if (rc < 0) {
2671 PERR("Error detecting sensor type");
2672 return;
2673 }
2674 if ((rc & 3) == 1)
2675 sd->sensor = SEN_OV8610;
2676 else
2677 PERR("Unknown image sensor version: %d\n", rc & 3);
2678 }
2679
2680 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2681 * the same register settings as the OV7610, since they are very similar.
2682 */
2683 static void ov7xx0_configure(struct sd *sd)
2684 {
2685 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2686 int rc, high, low;
2687
2688 PDEBUG(D_PROBE, "starting OV7xx0 configuration");
2689
2690 /* Detect sensor (sub)type */
2691 rc = i2c_r(sd, OV7610_REG_COM_I);
2692
2693 /* add OV7670 here
2694 * it appears to be wrongly detected as a 7610 by default */
2695 if (rc < 0) {
2696 PERR("Error detecting sensor type\n");
2697 return;
2698 }
2699 if ((rc & 3) == 3) {
2700 /* quick hack to make OV7670s work */
2701 high = i2c_r(sd, 0x0a);
2702 low = i2c_r(sd, 0x0b);
2703 /* info("%x, %x", high, low); */
2704 if (high == 0x76 && (low & 0xf0) == 0x70) {
2705 PDEBUG(D_PROBE, "Sensor is an OV76%02x", low);
2706 sd->sensor = SEN_OV7670;
2707 } else {
2708 PDEBUG(D_PROBE, "Sensor is an OV7610");
2709 sd->sensor = SEN_OV7610;
2710 }
2711 } else if ((rc & 3) == 1) {
2712 /* I don't know what's different about the 76BE yet. */
2713 if (i2c_r(sd, 0x15) & 1) {
2714 PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2715 sd->sensor = SEN_OV7620AE;
2716 } else {
2717 PDEBUG(D_PROBE, "Sensor is an OV76BE");
2718 sd->sensor = SEN_OV76BE;
2719 }
2720 } else if ((rc & 3) == 0) {
2721 /* try to read product id registers */
2722 high = i2c_r(sd, 0x0a);
2723 if (high < 0) {
2724 PERR("Error detecting camera chip PID\n");
2725 return;
2726 }
2727 low = i2c_r(sd, 0x0b);
2728 if (low < 0) {
2729 PERR("Error detecting camera chip VER\n");
2730 return;
2731 }
2732 if (high == 0x76) {
2733 switch (low) {
2734 case 0x30:
2735 PERR("Sensor is an OV7630/OV7635\n");
2736 PERR("7630 is not supported by this driver\n");
2737 return;
2738 case 0x40:
2739 PDEBUG(D_PROBE, "Sensor is an OV7645");
2740 sd->sensor = SEN_OV7640; /* FIXME */
2741 break;
2742 case 0x45:
2743 PDEBUG(D_PROBE, "Sensor is an OV7645B");
2744 sd->sensor = SEN_OV7640; /* FIXME */
2745 break;
2746 case 0x48:
2747 PDEBUG(D_PROBE, "Sensor is an OV7648");
2748 sd->sensor = SEN_OV7648;
2749 break;
2750 case 0x60:
2751 PDEBUG(D_PROBE, "Sensor is a OV7660");
2752 sd->sensor = SEN_OV7660;
2753 break;
2754 default:
2755 PERR("Unknown sensor: 0x76%02x\n", low);
2756 return;
2757 }
2758 } else {
2759 PDEBUG(D_PROBE, "Sensor is an OV7620");
2760 sd->sensor = SEN_OV7620;
2761 }
2762 } else {
2763 PERR("Unknown image sensor version: %d\n", rc & 3);
2764 }
2765 }
2766
2767 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2768 static void ov6xx0_configure(struct sd *sd)
2769 {
2770 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2771 int rc;
2772
2773 PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2774
2775 /* Detect sensor (sub)type */
2776 rc = i2c_r(sd, OV7610_REG_COM_I);
2777 if (rc < 0) {
2778 PERR("Error detecting sensor type\n");
2779 return;
2780 }
2781
2782 /* Ugh. The first two bits are the version bits, but
2783 * the entire register value must be used. I guess OVT
2784 * underestimated how many variants they would make. */
2785 switch (rc) {
2786 case 0x00:
2787 sd->sensor = SEN_OV6630;
2788 pr_warn("WARNING: Sensor is an OV66308. Your camera may have been misdetected in previous driver versions.\n");
2789 break;
2790 case 0x01:
2791 sd->sensor = SEN_OV6620;
2792 PDEBUG(D_PROBE, "Sensor is an OV6620");
2793 break;
2794 case 0x02:
2795 sd->sensor = SEN_OV6630;
2796 PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2797 break;
2798 case 0x03:
2799 sd->sensor = SEN_OV66308AF;
2800 PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2801 break;
2802 case 0x90:
2803 sd->sensor = SEN_OV6630;
2804 pr_warn("WARNING: Sensor is an OV66307. Your camera may have been misdetected in previous driver versions.\n");
2805 break;
2806 default:
2807 PERR("FATAL: Unknown sensor version: 0x%02x\n", rc);
2808 return;
2809 }
2810
2811 /* Set sensor-specific vars */
2812 sd->sif = 1;
2813 }
2814
2815 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2816 static void ov51x_led_control(struct sd *sd, int on)
2817 {
2818 if (sd->invert_led)
2819 on = !on;
2820
2821 switch (sd->bridge) {
2822 /* OV511 has no LED control */
2823 case BRIDGE_OV511PLUS:
2824 reg_w(sd, R511_SYS_LED_CTL, on);
2825 break;
2826 case BRIDGE_OV518:
2827 case BRIDGE_OV518PLUS:
2828 reg_w_mask(sd, R518_GPIO_OUT, 0x02 * on, 0x02);
2829 break;
2830 case BRIDGE_OV519:
2831 reg_w_mask(sd, OV519_GPIO_DATA_OUT0, on, 1);
2832 break;
2833 }
2834 }
2835
2836 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2837 {
2838 struct sd *sd = (struct sd *) gspca_dev;
2839
2840 if (!sd->snapshot_needs_reset)
2841 return;
2842
2843 /* Note it is important that we clear sd->snapshot_needs_reset,
2844 before actually clearing the snapshot state in the bridge
2845 otherwise we might race with the pkt_scan interrupt handler */
2846 sd->snapshot_needs_reset = 0;
2847
2848 switch (sd->bridge) {
2849 case BRIDGE_OV511:
2850 case BRIDGE_OV511PLUS:
2851 reg_w(sd, R51x_SYS_SNAP, 0x02);
2852 reg_w(sd, R51x_SYS_SNAP, 0x00);
2853 break;
2854 case BRIDGE_OV518:
2855 case BRIDGE_OV518PLUS:
2856 reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2857 reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2858 break;
2859 case BRIDGE_OV519:
2860 reg_w(sd, R51x_SYS_RESET, 0x40);
2861 reg_w(sd, R51x_SYS_RESET, 0x00);
2862 break;
2863 }
2864 }
2865
2866 static void ov51x_upload_quan_tables(struct sd *sd)
2867 {
2868 const unsigned char yQuanTable511[] = {
2869 0, 1, 1, 2, 2, 3, 3, 4,
2870 1, 1, 1, 2, 2, 3, 4, 4,
2871 1, 1, 2, 2, 3, 4, 4, 4,
2872 2, 2, 2, 3, 4, 4, 4, 4,
2873 2, 2, 3, 4, 4, 5, 5, 5,
2874 3, 3, 4, 4, 5, 5, 5, 5,
2875 3, 4, 4, 4, 5, 5, 5, 5,
2876 4, 4, 4, 4, 5, 5, 5, 5
2877 };
2878
2879 const unsigned char uvQuanTable511[] = {
2880 0, 2, 2, 3, 4, 4, 4, 4,
2881 2, 2, 2, 4, 4, 4, 4, 4,
2882 2, 2, 3, 4, 4, 4, 4, 4,
2883 3, 4, 4, 4, 4, 4, 4, 4,
2884 4, 4, 4, 4, 4, 4, 4, 4,
2885 4, 4, 4, 4, 4, 4, 4, 4,
2886 4, 4, 4, 4, 4, 4, 4, 4,
2887 4, 4, 4, 4, 4, 4, 4, 4
2888 };
2889
2890 /* OV518 quantization tables are 8x4 (instead of 8x8) */
2891 const unsigned char yQuanTable518[] = {
2892 5, 4, 5, 6, 6, 7, 7, 7,
2893 5, 5, 5, 5, 6, 7, 7, 7,
2894 6, 6, 6, 6, 7, 7, 7, 8,
2895 7, 7, 6, 7, 7, 7, 8, 8
2896 };
2897 const unsigned char uvQuanTable518[] = {
2898 6, 6, 6, 7, 7, 7, 7, 7,
2899 6, 6, 6, 7, 7, 7, 7, 7,
2900 6, 6, 6, 7, 7, 7, 7, 8,
2901 7, 7, 7, 7, 7, 7, 8, 8
2902 };
2903
2904 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2905 const unsigned char *pYTable, *pUVTable;
2906 unsigned char val0, val1;
2907 int i, size, reg = R51x_COMP_LUT_BEGIN;
2908
2909 PDEBUG(D_PROBE, "Uploading quantization tables");
2910
2911 if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
2912 pYTable = yQuanTable511;
2913 pUVTable = uvQuanTable511;
2914 size = 32;
2915 } else {
2916 pYTable = yQuanTable518;
2917 pUVTable = uvQuanTable518;
2918 size = 16;
2919 }
2920
2921 for (i = 0; i < size; i++) {
2922 val0 = *pYTable++;
2923 val1 = *pYTable++;
2924 val0 &= 0x0f;
2925 val1 &= 0x0f;
2926 val0 |= val1 << 4;
2927 reg_w(sd, reg, val0);
2928
2929 val0 = *pUVTable++;
2930 val1 = *pUVTable++;
2931 val0 &= 0x0f;
2932 val1 &= 0x0f;
2933 val0 |= val1 << 4;
2934 reg_w(sd, reg + size, val0);
2935
2936 reg++;
2937 }
2938 }
2939
2940 /* This initializes the OV511/OV511+ and the sensor */
2941 static void ov511_configure(struct gspca_dev *gspca_dev)
2942 {
2943 struct sd *sd = (struct sd *) gspca_dev;
2944
2945 /* For 511 and 511+ */
2946 const struct ov_regvals init_511[] = {
2947 { R51x_SYS_RESET, 0x7f },
2948 { R51x_SYS_INIT, 0x01 },
2949 { R51x_SYS_RESET, 0x7f },
2950 { R51x_SYS_INIT, 0x01 },
2951 { R51x_SYS_RESET, 0x3f },
2952 { R51x_SYS_INIT, 0x01 },
2953 { R51x_SYS_RESET, 0x3d },
2954 };
2955
2956 const struct ov_regvals norm_511[] = {
2957 { R511_DRAM_FLOW_CTL, 0x01 },
2958 { R51x_SYS_SNAP, 0x00 },
2959 { R51x_SYS_SNAP, 0x02 },
2960 { R51x_SYS_SNAP, 0x00 },
2961 { R511_FIFO_OPTS, 0x1f },
2962 { R511_COMP_EN, 0x00 },
2963 { R511_COMP_LUT_EN, 0x03 },
2964 };
2965
2966 const struct ov_regvals norm_511_p[] = {
2967 { R511_DRAM_FLOW_CTL, 0xff },
2968 { R51x_SYS_SNAP, 0x00 },
2969 { R51x_SYS_SNAP, 0x02 },
2970 { R51x_SYS_SNAP, 0x00 },
2971 { R511_FIFO_OPTS, 0xff },
2972 { R511_COMP_EN, 0x00 },
2973 { R511_COMP_LUT_EN, 0x03 },
2974 };
2975
2976 const struct ov_regvals compress_511[] = {
2977 { 0x70, 0x1f },
2978 { 0x71, 0x05 },
2979 { 0x72, 0x06 },
2980 { 0x73, 0x06 },
2981 { 0x74, 0x14 },
2982 { 0x75, 0x03 },
2983 { 0x76, 0x04 },
2984 { 0x77, 0x04 },
2985 };
2986
2987 PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
2988
2989 write_regvals(sd, init_511, ARRAY_SIZE(init_511));
2990
2991 switch (sd->bridge) {
2992 case BRIDGE_OV511:
2993 write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
2994 break;
2995 case BRIDGE_OV511PLUS:
2996 write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
2997 break;
2998 }
2999
3000 /* Init compression */
3001 write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
3002
3003 ov51x_upload_quan_tables(sd);
3004 }
3005
3006 /* This initializes the OV518/OV518+ and the sensor */
3007 static void ov518_configure(struct gspca_dev *gspca_dev)
3008 {
3009 struct sd *sd = (struct sd *) gspca_dev;
3010
3011 /* For 518 and 518+ */
3012 const struct ov_regvals init_518[] = {
3013 { R51x_SYS_RESET, 0x40 },
3014 { R51x_SYS_INIT, 0xe1 },
3015 { R51x_SYS_RESET, 0x3e },
3016 { R51x_SYS_INIT, 0xe1 },
3017 { R51x_SYS_RESET, 0x00 },
3018 { R51x_SYS_INIT, 0xe1 },
3019 { 0x46, 0x00 },
3020 { 0x5d, 0x03 },
3021 };
3022
3023 const struct ov_regvals norm_518[] = {
3024 { R51x_SYS_SNAP, 0x02 }, /* Reset */
3025 { R51x_SYS_SNAP, 0x01 }, /* Enable */
3026 { 0x31, 0x0f },
3027 { 0x5d, 0x03 },
3028 { 0x24, 0x9f },
3029 { 0x25, 0x90 },
3030 { 0x20, 0x00 },
3031 { 0x51, 0x04 },
3032 { 0x71, 0x19 },
3033 { 0x2f, 0x80 },
3034 };
3035
3036 const struct ov_regvals norm_518_p[] = {
3037 { R51x_SYS_SNAP, 0x02 }, /* Reset */
3038 { R51x_SYS_SNAP, 0x01 }, /* Enable */
3039 { 0x31, 0x0f },
3040 { 0x5d, 0x03 },
3041 { 0x24, 0x9f },
3042 { 0x25, 0x90 },
3043 { 0x20, 0x60 },
3044 { 0x51, 0x02 },
3045 { 0x71, 0x19 },
3046 { 0x40, 0xff },
3047 { 0x41, 0x42 },
3048 { 0x46, 0x00 },
3049 { 0x33, 0x04 },
3050 { 0x21, 0x19 },
3051 { 0x3f, 0x10 },
3052 { 0x2f, 0x80 },
3053 };
3054
3055 /* First 5 bits of custom ID reg are a revision ID on OV518 */
3056 sd->revision = reg_r(sd, R51x_SYS_CUST_ID) & 0x1f;
3057 PDEBUG(D_PROBE, "Device revision %d", sd->revision);
3058
3059 write_regvals(sd, init_518, ARRAY_SIZE(init_518));
3060
3061 /* Set LED GPIO pin to output mode */
3062 reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
3063
3064 switch (sd->bridge) {
3065 case BRIDGE_OV518:
3066 write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
3067 break;
3068 case BRIDGE_OV518PLUS:
3069 write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
3070 break;
3071 }
3072
3073 ov51x_upload_quan_tables(sd);
3074
3075 reg_w(sd, 0x2f, 0x80);
3076 }
3077
3078 static void ov519_configure(struct sd *sd)
3079 {
3080 static const struct ov_regvals init_519[] = {
3081 { 0x5a, 0x6d }, /* EnableSystem */
3082 { 0x53, 0x9b }, /* don't enable the microcontroller */
3083 { OV519_R54_EN_CLK1, 0xff }, /* set bit2 to enable jpeg */
3084 { 0x5d, 0x03 },
3085 { 0x49, 0x01 },
3086 { 0x48, 0x00 },
3087 /* Set LED pin to output mode. Bit 4 must be cleared or sensor
3088 * detection will fail. This deserves further investigation. */
3089 { OV519_GPIO_IO_CTRL0, 0xee },
3090 { OV519_R51_RESET1, 0x0f },
3091 { OV519_R51_RESET1, 0x00 },
3092 { 0x22, 0x00 },
3093 /* windows reads 0x55 at this point*/
3094 };
3095
3096 write_regvals(sd, init_519, ARRAY_SIZE(init_519));
3097 }
3098
3099 static void ovfx2_configure(struct sd *sd)
3100 {
3101 static const struct ov_regvals init_fx2[] = {
3102 { 0x00, 0x60 },
3103 { 0x02, 0x01 },
3104 { 0x0f, 0x1d },
3105 { 0xe9, 0x82 },
3106 { 0xea, 0xc7 },
3107 { 0xeb, 0x10 },
3108 { 0xec, 0xf6 },
3109 };
3110
3111 sd->stopped = 1;
3112
3113 write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3114 }
3115
3116 /* set the mode */
3117 /* This function works for ov7660 only */
3118 static void ov519_set_mode(struct sd *sd)
3119 {
3120 static const struct ov_regvals bridge_ov7660[2][10] = {
3121 {{0x10, 0x14}, {0x11, 0x1e}, {0x12, 0x00}, {0x13, 0x00},
3122 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3123 {0x25, 0x01}, {0x26, 0x00}},
3124 {{0x10, 0x28}, {0x11, 0x3c}, {0x12, 0x00}, {0x13, 0x00},
3125 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3126 {0x25, 0x03}, {0x26, 0x00}}
3127 };
3128 static const struct ov_i2c_regvals sensor_ov7660[2][3] = {
3129 {{0x12, 0x00}, {0x24, 0x00}, {0x0c, 0x0c}},
3130 {{0x12, 0x00}, {0x04, 0x00}, {0x0c, 0x00}}
3131 };
3132 static const struct ov_i2c_regvals sensor_ov7660_2[] = {
3133 {OV7670_R17_HSTART, 0x13},
3134 {OV7670_R18_HSTOP, 0x01},
3135 {OV7670_R32_HREF, 0x92},
3136 {OV7670_R19_VSTART, 0x02},
3137 {OV7670_R1A_VSTOP, 0x7a},
3138 {OV7670_R03_VREF, 0x00},
3139 /* {0x33, 0x00}, */
3140 /* {0x34, 0x07}, */
3141 /* {0x36, 0x00}, */
3142 /* {0x6b, 0x0a}, */
3143 };
3144
3145 write_regvals(sd, bridge_ov7660[sd->gspca_dev.curr_mode],
3146 ARRAY_SIZE(bridge_ov7660[0]));
3147 write_i2c_regvals(sd, sensor_ov7660[sd->gspca_dev.curr_mode],
3148 ARRAY_SIZE(sensor_ov7660[0]));
3149 write_i2c_regvals(sd, sensor_ov7660_2,
3150 ARRAY_SIZE(sensor_ov7660_2));
3151 }
3152
3153 /* set the frame rate */
3154 /* This function works for sensors ov7640, ov7648 ov7660 and ov7670 only */
3155 static void ov519_set_fr(struct sd *sd)
3156 {
3157 int fr;
3158 u8 clock;
3159 /* frame rate table with indices:
3160 * - mode = 0: 320x240, 1: 640x480
3161 * - fr rate = 0: 30, 1: 25, 2: 20, 3: 15, 4: 10, 5: 5
3162 * - reg = 0: bridge a4, 1: bridge 23, 2: sensor 11 (clock)
3163 */
3164 static const u8 fr_tb[2][6][3] = {
3165 {{0x04, 0xff, 0x00},
3166 {0x04, 0x1f, 0x00},
3167 {0x04, 0x1b, 0x00},
3168 {0x04, 0x15, 0x00},
3169 {0x04, 0x09, 0x00},
3170 {0x04, 0x01, 0x00}},
3171 {{0x0c, 0xff, 0x00},
3172 {0x0c, 0x1f, 0x00},
3173 {0x0c, 0x1b, 0x00},
3174 {0x04, 0xff, 0x01},
3175 {0x04, 0x1f, 0x01},
3176 {0x04, 0x1b, 0x01}},
3177 };
3178
3179 if (frame_rate > 0)
3180 sd->frame_rate = frame_rate;
3181 if (sd->frame_rate >= 30)
3182 fr = 0;
3183 else if (sd->frame_rate >= 25)
3184 fr = 1;
3185 else if (sd->frame_rate >= 20)
3186 fr = 2;
3187 else if (sd->frame_rate >= 15)
3188 fr = 3;
3189 else if (sd->frame_rate >= 10)
3190 fr = 4;
3191 else
3192 fr = 5;
3193 reg_w(sd, 0xa4, fr_tb[sd->gspca_dev.curr_mode][fr][0]);
3194 reg_w(sd, 0x23, fr_tb[sd->gspca_dev.curr_mode][fr][1]);
3195 clock = fr_tb[sd->gspca_dev.curr_mode][fr][2];
3196 if (sd->sensor == SEN_OV7660)
3197 clock |= 0x80; /* enable double clock */
3198 ov518_i2c_w(sd, OV7670_R11_CLKRC, clock);
3199 }
3200
3201 static void setautogain(struct gspca_dev *gspca_dev, s32 val)
3202 {
3203 struct sd *sd = (struct sd *) gspca_dev;
3204
3205 i2c_w_mask(sd, 0x13, val ? 0x05 : 0x00, 0x05);
3206 }
3207
3208 /* this function is called at probe time */
3209 static int sd_config(struct gspca_dev *gspca_dev,
3210 const struct usb_device_id *id)
3211 {
3212 struct sd *sd = (struct sd *) gspca_dev;
3213 struct cam *cam = &gspca_dev->cam;
3214
3215 sd->bridge = id->driver_info & BRIDGE_MASK;
3216 sd->invert_led = (id->driver_info & BRIDGE_INVERT_LED) != 0;
3217
3218 switch (sd->bridge) {
3219 case BRIDGE_OV511:
3220 case BRIDGE_OV511PLUS:
3221 cam->cam_mode = ov511_vga_mode;
3222 cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3223 break;
3224 case BRIDGE_OV518:
3225 case BRIDGE_OV518PLUS:
3226 cam->cam_mode = ov518_vga_mode;
3227 cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3228 break;
3229 case BRIDGE_OV519:
3230 cam->cam_mode = ov519_vga_mode;
3231 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3232 break;
3233 case BRIDGE_OVFX2:
3234 cam->cam_mode = ov519_vga_mode;
3235 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3236 cam->bulk_size = OVFX2_BULK_SIZE;
3237 cam->bulk_nurbs = MAX_NURBS;
3238 cam->bulk = 1;
3239 break;
3240 case BRIDGE_W9968CF:
3241 cam->cam_mode = w9968cf_vga_mode;
3242 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3243 break;
3244 }
3245
3246 sd->frame_rate = 15;
3247
3248 return 0;
3249 }
3250
3251 /* this function is called at probe and resume time */
3252 static int sd_init(struct gspca_dev *gspca_dev)
3253 {
3254 struct sd *sd = (struct sd *) gspca_dev;
3255 struct cam *cam = &gspca_dev->cam;
3256
3257 switch (sd->bridge) {
3258 case BRIDGE_OV511:
3259 case BRIDGE_OV511PLUS:
3260 ov511_configure(gspca_dev);
3261 break;
3262 case BRIDGE_OV518:
3263 case BRIDGE_OV518PLUS:
3264 ov518_configure(gspca_dev);
3265 break;
3266 case BRIDGE_OV519:
3267 ov519_configure(sd);
3268 break;
3269 case BRIDGE_OVFX2:
3270 ovfx2_configure(sd);
3271 break;
3272 case BRIDGE_W9968CF:
3273 w9968cf_configure(sd);
3274 break;
3275 }
3276
3277 /* The OV519 must be more aggressive about sensor detection since
3278 * I2C write will never fail if the sensor is not present. We have
3279 * to try to initialize the sensor to detect its presence */
3280 sd->sensor = -1;
3281
3282 /* Test for 76xx */
3283 if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3284 ov7xx0_configure(sd);
3285
3286 /* Test for 6xx0 */
3287 } else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3288 ov6xx0_configure(sd);
3289
3290 /* Test for 8xx0 */
3291 } else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3292 ov8xx0_configure(sd);
3293
3294 /* Test for 3xxx / 2xxx */
3295 } else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3296 ov_hires_configure(sd);
3297 } else {
3298 PERR("Can't determine sensor slave IDs\n");
3299 goto error;
3300 }
3301
3302 if (sd->sensor < 0)
3303 goto error;
3304
3305 ov51x_led_control(sd, 0); /* turn LED off */
3306
3307 switch (sd->bridge) {
3308 case BRIDGE_OV511:
3309 case BRIDGE_OV511PLUS:
3310 if (sd->sif) {
3311 cam->cam_mode = ov511_sif_mode;
3312 cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3313 }
3314 break;
3315 case BRIDGE_OV518:
3316 case BRIDGE_OV518PLUS:
3317 if (sd->sif) {
3318 cam->cam_mode = ov518_sif_mode;
3319 cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3320 }
3321 break;
3322 case BRIDGE_OV519:
3323 if (sd->sif) {
3324 cam->cam_mode = ov519_sif_mode;
3325 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3326 }
3327 break;
3328 case BRIDGE_OVFX2:
3329 switch (sd->sensor) {
3330 case SEN_OV2610:
3331 case SEN_OV2610AE:
3332 cam->cam_mode = ovfx2_ov2610_mode;
3333 cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3334 break;
3335 case SEN_OV3610:
3336 cam->cam_mode = ovfx2_ov3610_mode;
3337 cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3338 break;
3339 case SEN_OV9600:
3340 cam->cam_mode = ovfx2_ov9600_mode;
3341 cam->nmodes = ARRAY_SIZE(ovfx2_ov9600_mode);
3342 break;
3343 default:
3344 if (sd->sif) {
3345 cam->cam_mode = ov519_sif_mode;
3346 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3347 }
3348 break;
3349 }
3350 break;
3351 case BRIDGE_W9968CF:
3352 if (sd->sif)
3353 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode) - 1;
3354
3355 /* w9968cf needs initialisation once the sensor is known */
3356 w9968cf_init(sd);
3357 break;
3358 }
3359
3360 /* initialize the sensor */
3361 switch (sd->sensor) {
3362 case SEN_OV2610:
3363 write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610));
3364
3365 /* Enable autogain, autoexpo, awb, bandfilter */
3366 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3367 break;
3368 case SEN_OV2610AE:
3369 write_i2c_regvals(sd, norm_2610ae, ARRAY_SIZE(norm_2610ae));
3370
3371 /* enable autoexpo */
3372 i2c_w_mask(sd, 0x13, 0x05, 0x05);
3373 break;
3374 case SEN_OV3610:
3375 write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b));
3376
3377 /* Enable autogain, autoexpo, awb, bandfilter */
3378 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3379 break;
3380 case SEN_OV6620:
3381 write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20));
3382 break;
3383 case SEN_OV6630:
3384 case SEN_OV66308AF:
3385 write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30));
3386 break;
3387 default:
3388 /* case SEN_OV7610: */
3389 /* case SEN_OV76BE: */
3390 write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610));
3391 i2c_w_mask(sd, 0x0e, 0x00, 0x40);
3392 break;
3393 case SEN_OV7620:
3394 case SEN_OV7620AE:
3395 write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620));
3396 break;
3397 case SEN_OV7640:
3398 case SEN_OV7648:
3399 write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640));
3400 break;
3401 case SEN_OV7660:
3402 i2c_w(sd, OV7670_R12_COM7, OV7670_COM7_RESET);
3403 msleep(14);
3404 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
3405 write_regvals(sd, init_519_ov7660,
3406 ARRAY_SIZE(init_519_ov7660));
3407 write_i2c_regvals(sd, norm_7660, ARRAY_SIZE(norm_7660));
3408 sd->gspca_dev.curr_mode = 1; /* 640x480 */
3409 ov519_set_mode(sd);
3410 ov519_set_fr(sd);
3411 sd_reset_snapshot(gspca_dev);
3412 ov51x_restart(sd);
3413 ov51x_stop(sd); /* not in win traces */
3414 ov51x_led_control(sd, 0);
3415 break;
3416 case SEN_OV7670:
3417 write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670));
3418 break;
3419 case SEN_OV8610:
3420 write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610));
3421 break;
3422 case SEN_OV9600:
3423 write_i2c_regvals(sd, norm_9600, ARRAY_SIZE(norm_9600));
3424
3425 /* enable autoexpo */
3426 /* i2c_w_mask(sd, 0x13, 0x05, 0x05); */
3427 break;
3428 }
3429 return gspca_dev->usb_err;
3430 error:
3431 PERR("OV519 Config failed");
3432 return -EINVAL;
3433 }
3434
3435 /* function called at start time before URB creation */
3436 static int sd_isoc_init(struct gspca_dev *gspca_dev)
3437 {
3438 struct sd *sd = (struct sd *) gspca_dev;
3439
3440 switch (sd->bridge) {
3441 case BRIDGE_OVFX2:
3442 if (gspca_dev->pixfmt.width != 800)
3443 gspca_dev->cam.bulk_size = OVFX2_BULK_SIZE;
3444 else
3445 gspca_dev->cam.bulk_size = 7 * 4096;
3446 break;
3447 }
3448 return 0;
3449 }
3450
3451 /* Set up the OV511/OV511+ with the given image parameters.
3452 *
3453 * Do not put any sensor-specific code in here (including I2C I/O functions)
3454 */
3455 static void ov511_mode_init_regs(struct sd *sd)
3456 {
3457 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3458 int hsegs, vsegs, packet_size, fps, needed;
3459 int interlaced = 0;
3460 struct usb_host_interface *alt;
3461 struct usb_interface *intf;
3462
3463 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3464 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3465 if (!alt) {
3466 PERR("Couldn't get altsetting\n");
3467 sd->gspca_dev.usb_err = -EIO;
3468 return;
3469 }
3470
3471 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3472 reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3473
3474 reg_w(sd, R511_CAM_UV_EN, 0x01);
3475 reg_w(sd, R511_SNAP_UV_EN, 0x01);
3476 reg_w(sd, R511_SNAP_OPTS, 0x03);
3477
3478 /* Here I'm assuming that snapshot size == image size.
3479 * I hope that's always true. --claudio
3480 */
3481 hsegs = (sd->gspca_dev.pixfmt.width >> 3) - 1;
3482 vsegs = (sd->gspca_dev.pixfmt.height >> 3) - 1;
3483
3484 reg_w(sd, R511_CAM_PXCNT, hsegs);
3485 reg_w(sd, R511_CAM_LNCNT, vsegs);
3486 reg_w(sd, R511_CAM_PXDIV, 0x00);
3487 reg_w(sd, R511_CAM_LNDIV, 0x00);
3488
3489 /* YUV420, low pass filter on */
3490 reg_w(sd, R511_CAM_OPTS, 0x03);
3491
3492 /* Snapshot additions */
3493 reg_w(sd, R511_SNAP_PXCNT, hsegs);
3494 reg_w(sd, R511_SNAP_LNCNT, vsegs);
3495 reg_w(sd, R511_SNAP_PXDIV, 0x00);
3496 reg_w(sd, R511_SNAP_LNDIV, 0x00);
3497
3498 /******** Set the framerate ********/
3499 if (frame_rate > 0)
3500 sd->frame_rate = frame_rate;
3501
3502 switch (sd->sensor) {
3503 case SEN_OV6620:
3504 /* No framerate control, doesn't like higher rates yet */
3505 sd->clockdiv = 3;
3506 break;
3507
3508 /* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3509 for more sensors we need to do this for them too */
3510 case SEN_OV7620:
3511 case SEN_OV7620AE:
3512 case SEN_OV7640:
3513 case SEN_OV7648:
3514 case SEN_OV76BE:
3515 if (sd->gspca_dev.pixfmt.width == 320)
3516 interlaced = 1;
3517 /* Fall through */
3518 case SEN_OV6630:
3519 case SEN_OV7610:
3520 case SEN_OV7670:
3521 switch (sd->frame_rate) {
3522 case 30:
3523 case 25:
3524 /* Not enough bandwidth to do 640x480 @ 30 fps */
3525 if (sd->gspca_dev.pixfmt.width != 640) {
3526 sd->clockdiv = 0;
3527 break;
3528 }
3529 /* Fall through for 640x480 case */
3530 default:
3531 /* case 20: */
3532 /* case 15: */
3533 sd->clockdiv = 1;
3534 break;
3535 case 10:
3536 sd->clockdiv = 2;
3537 break;
3538 case 5:
3539 sd->clockdiv = 5;
3540 break;
3541 }
3542 if (interlaced) {
3543 sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3544 /* Higher then 10 does not work */
3545 if (sd->clockdiv > 10)
3546 sd->clockdiv = 10;
3547 }
3548 break;
3549
3550 case SEN_OV8610:
3551 /* No framerate control ?? */
3552 sd->clockdiv = 0;
3553 break;
3554 }
3555
3556 /* Check if we have enough bandwidth to disable compression */
3557 fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3558 needed = fps * sd->gspca_dev.pixfmt.width *
3559 sd->gspca_dev.pixfmt.height * 3 / 2;
3560 /* 1000 isoc packets/sec */
3561 if (needed > 1000 * packet_size) {
3562 /* Enable Y and UV quantization and compression */
3563 reg_w(sd, R511_COMP_EN, 0x07);
3564 reg_w(sd, R511_COMP_LUT_EN, 0x03);
3565 } else {
3566 reg_w(sd, R511_COMP_EN, 0x06);
3567 reg_w(sd, R511_COMP_LUT_EN, 0x00);
3568 }
3569
3570 reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3571 reg_w(sd, R51x_SYS_RESET, 0);
3572 }
3573
3574 /* Sets up the OV518/OV518+ with the given image parameters
3575 *
3576 * OV518 needs a completely different approach, until we can figure out what
3577 * the individual registers do. Also, only 15 FPS is supported now.
3578 *
3579 * Do not put any sensor-specific code in here (including I2C I/O functions)
3580 */
3581 static void ov518_mode_init_regs(struct sd *sd)
3582 {
3583 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3584 int hsegs, vsegs, packet_size;
3585 struct usb_host_interface *alt;
3586 struct usb_interface *intf;
3587
3588 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3589 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3590 if (!alt) {
3591 PERR("Couldn't get altsetting\n");
3592 sd->gspca_dev.usb_err = -EIO;
3593 return;
3594 }
3595
3596 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3597 ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3598
3599 /******** Set the mode ********/
3600 reg_w(sd, 0x2b, 0);
3601 reg_w(sd, 0x2c, 0);
3602 reg_w(sd, 0x2d, 0);
3603 reg_w(sd, 0x2e, 0);
3604 reg_w(sd, 0x3b, 0);
3605 reg_w(sd, 0x3c, 0);
3606 reg_w(sd, 0x3d, 0);
3607 reg_w(sd, 0x3e, 0);
3608
3609 if (sd->bridge == BRIDGE_OV518) {
3610 /* Set 8-bit (YVYU) input format */
3611 reg_w_mask(sd, 0x20, 0x08, 0x08);
3612
3613 /* Set 12-bit (4:2:0) output format */
3614 reg_w_mask(sd, 0x28, 0x80, 0xf0);
3615 reg_w_mask(sd, 0x38, 0x80, 0xf0);
3616 } else {
3617 reg_w(sd, 0x28, 0x80);
3618 reg_w(sd, 0x38, 0x80);
3619 }
3620
3621 hsegs = sd->gspca_dev.pixfmt.width / 16;
3622 vsegs = sd->gspca_dev.pixfmt.height / 4;
3623
3624 reg_w(sd, 0x29, hsegs);
3625 reg_w(sd, 0x2a, vsegs);
3626
3627 reg_w(sd, 0x39, hsegs);
3628 reg_w(sd, 0x3a, vsegs);
3629
3630 /* Windows driver does this here; who knows why */
3631 reg_w(sd, 0x2f, 0x80);
3632
3633 /******** Set the framerate ********/
3634 if (sd->bridge == BRIDGE_OV518PLUS && sd->revision == 0 &&
3635 sd->sensor == SEN_OV7620AE)
3636 sd->clockdiv = 0;
3637 else
3638 sd->clockdiv = 1;
3639
3640 /* Mode independent, but framerate dependent, regs */
3641 /* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3642 reg_w(sd, 0x51, 0x04);
3643 reg_w(sd, 0x22, 0x18);
3644 reg_w(sd, 0x23, 0xff);
3645
3646 if (sd->bridge == BRIDGE_OV518PLUS) {
3647 switch (sd->sensor) {
3648 case SEN_OV7620AE:
3649 /*
3650 * HdG: 640x480 needs special handling on device
3651 * revision 2, we check for device revison > 0 to
3652 * avoid regressions, as we don't know the correct
3653 * thing todo for revision 1.
3654 *
3655 * Also this likely means we don't need to
3656 * differentiate between the OV7620 and OV7620AE,
3657 * earlier testing hitting this same problem likely
3658 * happened to be with revision < 2 cams using an
3659 * OV7620 and revision 2 cams using an OV7620AE.
3660 */
3661 if (sd->revision > 0 &&
3662 sd->gspca_dev.pixfmt.width == 640) {
3663 reg_w(sd, 0x20, 0x60);
3664 reg_w(sd, 0x21, 0x1f);
3665 } else {
3666 reg_w(sd, 0x20, 0x00);
3667 reg_w(sd, 0x21, 0x19);
3668 }
3669 break;
3670 case SEN_OV7620:
3671 reg_w(sd, 0x20, 0x00);
3672 reg_w(sd, 0x21, 0x19);
3673 break;
3674 default:
3675 reg_w(sd, 0x21, 0x19);
3676 }
3677 } else
3678 reg_w(sd, 0x71, 0x17); /* Compression-related? */
3679
3680 /* FIXME: Sensor-specific */
3681 /* Bit 5 is what matters here. Of course, it is "reserved" */
3682 i2c_w(sd, 0x54, 0x23);
3683
3684 reg_w(sd, 0x2f, 0x80);
3685
3686 if (sd->bridge == BRIDGE_OV518PLUS) {
3687 reg_w(sd, 0x24, 0x94);
3688 reg_w(sd, 0x25, 0x90);
3689 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3690 ov518_reg_w32(sd, 0xc6, 540, 2); /* 21ch */
3691 ov518_reg_w32(sd, 0xc7, 540, 2); /* 21ch */
3692 ov518_reg_w32(sd, 0xc8, 108, 2); /* 6ch */
3693 ov518_reg_w32(sd, 0xca, 131098, 3); /* 2001ah */
3694 ov518_reg_w32(sd, 0xcb, 532, 2); /* 214h */
3695 ov518_reg_w32(sd, 0xcc, 2400, 2); /* 960h */
3696 ov518_reg_w32(sd, 0xcd, 32, 2); /* 20h */
3697 ov518_reg_w32(sd, 0xce, 608, 2); /* 260h */
3698 } else {
3699 reg_w(sd, 0x24, 0x9f);
3700 reg_w(sd, 0x25, 0x90);
3701 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3702 ov518_reg_w32(sd, 0xc6, 381, 2); /* 17dh */
3703 ov518_reg_w32(sd, 0xc7, 381, 2); /* 17dh */
3704 ov518_reg_w32(sd, 0xc8, 128, 2); /* 80h */
3705 ov518_reg_w32(sd, 0xca, 183331, 3); /* 2cc23h */
3706 ov518_reg_w32(sd, 0xcb, 746, 2); /* 2eah */
3707 ov518_reg_w32(sd, 0xcc, 1750, 2); /* 6d6h */
3708 ov518_reg_w32(sd, 0xcd, 45, 2); /* 2dh */
3709 ov518_reg_w32(sd, 0xce, 851, 2); /* 353h */
3710 }
3711
3712 reg_w(sd, 0x2f, 0x80);
3713 }
3714
3715 /* Sets up the OV519 with the given image parameters
3716 *
3717 * OV519 needs a completely different approach, until we can figure out what
3718 * the individual registers do.
3719 *
3720 * Do not put any sensor-specific code in here (including I2C I/O functions)
3721 */
3722 static void ov519_mode_init_regs(struct sd *sd)
3723 {
3724 static const struct ov_regvals mode_init_519_ov7670[] = {
3725 { 0x5d, 0x03 }, /* Turn off suspend mode */
3726 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3727 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3728 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3729 { 0xa3, 0x18 },
3730 { 0xa4, 0x04 },
3731 { 0xa5, 0x28 },
3732 { 0x37, 0x00 }, /* SetUsbInit */
3733 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3734 /* Enable both fields, YUV Input, disable defect comp (why?) */
3735 { 0x20, 0x0c },
3736 { 0x21, 0x38 },
3737 { 0x22, 0x1d },
3738 { 0x17, 0x50 }, /* undocumented */
3739 { 0x37, 0x00 }, /* undocumented */
3740 { 0x40, 0xff }, /* I2C timeout counter */
3741 { 0x46, 0x00 }, /* I2C clock prescaler */
3742 { 0x59, 0x04 }, /* new from windrv 090403 */
3743 { 0xff, 0x00 }, /* undocumented */
3744 /* windows reads 0x55 at this point, why? */
3745 };
3746
3747 static const struct ov_regvals mode_init_519[] = {
3748 { 0x5d, 0x03 }, /* Turn off suspend mode */
3749 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3750 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3751 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3752 { 0xa3, 0x18 },
3753 { 0xa4, 0x04 },
3754 { 0xa5, 0x28 },
3755 { 0x37, 0x00 }, /* SetUsbInit */
3756 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3757 /* Enable both fields, YUV Input, disable defect comp (why?) */
3758 { 0x22, 0x1d },
3759 { 0x17, 0x50 }, /* undocumented */
3760 { 0x37, 0x00 }, /* undocumented */
3761 { 0x40, 0xff }, /* I2C timeout counter */
3762 { 0x46, 0x00 }, /* I2C clock prescaler */
3763 { 0x59, 0x04 }, /* new from windrv 090403 */
3764 { 0xff, 0x00 }, /* undocumented */
3765 /* windows reads 0x55 at this point, why? */
3766 };
3767
3768 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3769
3770 /******** Set the mode ********/
3771 switch (sd->sensor) {
3772 default:
3773 write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519));
3774 if (sd->sensor == SEN_OV7640 ||
3775 sd->sensor == SEN_OV7648) {
3776 /* Select 8-bit input mode */
3777 reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3778 }
3779 break;
3780 case SEN_OV7660:
3781 return; /* done by ov519_set_mode/fr() */
3782 case SEN_OV7670:
3783 write_regvals(sd, mode_init_519_ov7670,
3784 ARRAY_SIZE(mode_init_519_ov7670));
3785 break;
3786 }
3787
3788 reg_w(sd, OV519_R10_H_SIZE, sd->gspca_dev.pixfmt.width >> 4);
3789 reg_w(sd, OV519_R11_V_SIZE, sd->gspca_dev.pixfmt.height >> 3);
3790 if (sd->sensor == SEN_OV7670 &&
3791 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3792 reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3793 else if (sd->sensor == SEN_OV7648 &&
3794 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3795 reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3796 else
3797 reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3798 reg_w(sd, OV519_R13_X_OFFSETH, 0x00);
3799 reg_w(sd, OV519_R14_Y_OFFSETL, 0x00);
3800 reg_w(sd, OV519_R15_Y_OFFSETH, 0x00);
3801 reg_w(sd, OV519_R16_DIVIDER, 0x00);
3802 reg_w(sd, OV519_R25_FORMAT, 0x03); /* YUV422 */
3803 reg_w(sd, 0x26, 0x00); /* Undocumented */
3804
3805 /******** Set the framerate ********/
3806 if (frame_rate > 0)
3807 sd->frame_rate = frame_rate;
3808
3809 /* FIXME: These are only valid at the max resolution. */
3810 sd->clockdiv = 0;
3811 switch (sd->sensor) {
3812 case SEN_OV7640:
3813 case SEN_OV7648:
3814 switch (sd->frame_rate) {
3815 default:
3816 /* case 30: */
3817 reg_w(sd, 0xa4, 0x0c);
3818 reg_w(sd, 0x23, 0xff);
3819 break;
3820 case 25:
3821 reg_w(sd, 0xa4, 0x0c);
3822 reg_w(sd, 0x23, 0x1f);
3823 break;
3824 case 20:
3825 reg_w(sd, 0xa4, 0x0c);
3826 reg_w(sd, 0x23, 0x1b);
3827 break;
3828 case 15:
3829 reg_w(sd, 0xa4, 0x04);
3830 reg_w(sd, 0x23, 0xff);
3831 sd->clockdiv = 1;
3832 break;
3833 case 10:
3834 reg_w(sd, 0xa4, 0x04);
3835 reg_w(sd, 0x23, 0x1f);
3836 sd->clockdiv = 1;
3837 break;
3838 case 5:
3839 reg_w(sd, 0xa4, 0x04);
3840 reg_w(sd, 0x23, 0x1b);
3841 sd->clockdiv = 1;
3842 break;
3843 }
3844 break;
3845 case SEN_OV8610:
3846 switch (sd->frame_rate) {
3847 default: /* 15 fps */
3848 /* case 15: */
3849 reg_w(sd, 0xa4, 0x06);
3850 reg_w(sd, 0x23, 0xff);
3851 break;
3852 case 10:
3853 reg_w(sd, 0xa4, 0x06);
3854 reg_w(sd, 0x23, 0x1f);
3855 break;
3856 case 5:
3857 reg_w(sd, 0xa4, 0x06);
3858 reg_w(sd, 0x23, 0x1b);
3859 break;
3860 }
3861 break;
3862 case SEN_OV7670: /* guesses, based on 7640 */
3863 PDEBUG(D_STREAM, "Setting framerate to %d fps",
3864 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3865 reg_w(sd, 0xa4, 0x10);
3866 switch (sd->frame_rate) {
3867 case 30:
3868 reg_w(sd, 0x23, 0xff);
3869 break;
3870 case 20:
3871 reg_w(sd, 0x23, 0x1b);
3872 break;
3873 default:
3874 /* case 15: */
3875 reg_w(sd, 0x23, 0xff);
3876 sd->clockdiv = 1;
3877 break;
3878 }
3879 break;
3880 }
3881 }
3882
3883 static void mode_init_ov_sensor_regs(struct sd *sd)
3884 {
3885 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3886 int qvga, xstart, xend, ystart, yend;
3887 u8 v;
3888
3889 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
3890
3891 /******** Mode (VGA/QVGA) and sensor specific regs ********/
3892 switch (sd->sensor) {
3893 case SEN_OV2610:
3894 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3895 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3896 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3897 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3898 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3899 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3900 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3901 return;
3902 case SEN_OV2610AE: {
3903 u8 v;
3904
3905 /* frame rates:
3906 * 10fps / 5 fps for 1600x1200
3907 * 40fps / 20fps for 800x600
3908 */
3909 v = 80;
3910 if (qvga) {
3911 if (sd->frame_rate < 25)
3912 v = 0x81;
3913 } else {
3914 if (sd->frame_rate < 10)
3915 v = 0x81;
3916 }
3917 i2c_w(sd, 0x11, v);
3918 i2c_w(sd, 0x12, qvga ? 0x60 : 0x20);
3919 return;
3920 }
3921 case SEN_OV3610:
3922 if (qvga) {
3923 xstart = (1040 - gspca_dev->pixfmt.width) / 2 +
3924 (0x1f << 4);
3925 ystart = (776 - gspca_dev->pixfmt.height) / 2;
3926 } else {
3927 xstart = (2076 - gspca_dev->pixfmt.width) / 2 +
3928 (0x10 << 4);
3929 ystart = (1544 - gspca_dev->pixfmt.height) / 2;
3930 }
3931 xend = xstart + gspca_dev->pixfmt.width;
3932 yend = ystart + gspca_dev->pixfmt.height;
3933 /* Writing to the COMH register resets the other windowing regs
3934 to their default values, so we must do this first. */
3935 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
3936 i2c_w_mask(sd, 0x32,
3937 (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
3938 0x3f);
3939 i2c_w_mask(sd, 0x03,
3940 (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
3941 0x0f);
3942 i2c_w(sd, 0x17, xstart >> 4);
3943 i2c_w(sd, 0x18, xend >> 4);
3944 i2c_w(sd, 0x19, ystart >> 3);
3945 i2c_w(sd, 0x1a, yend >> 3);
3946 return;
3947 case SEN_OV8610:
3948 /* For OV8610 qvga means qsvga */
3949 i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3950 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3951 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3952 i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
3953 i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
3954 break;
3955 case SEN_OV7610:
3956 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3957 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3958 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3959 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3960 break;
3961 case SEN_OV7620:
3962 case SEN_OV7620AE:
3963 case SEN_OV76BE:
3964 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3965 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3966 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3967 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3968 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3969 i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
3970 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3971 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3972 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3973 if (sd->sensor == SEN_OV76BE)
3974 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3975 break;
3976 case SEN_OV7640:
3977 case SEN_OV7648:
3978 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3979 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3980 /* Setting this undocumented bit in qvga mode removes a very
3981 annoying vertical shaking of the image */
3982 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3983 /* Unknown */
3984 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3985 /* Allow higher automatic gain (to allow higher framerates) */
3986 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3987 i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
3988 break;
3989 case SEN_OV7670:
3990 /* set COM7_FMT_VGA or COM7_FMT_QVGA
3991 * do we need to set anything else?
3992 * HSTART etc are set in set_ov_sensor_window itself */
3993 i2c_w_mask(sd, OV7670_R12_COM7,
3994 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
3995 OV7670_COM7_FMT_MASK);
3996 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3997 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_AWB,
3998 OV7670_COM8_AWB);
3999 if (qvga) { /* QVGA from ov7670.c by
4000 * Jonathan Corbet */
4001 xstart = 164;
4002 xend = 28;
4003 ystart = 14;
4004 yend = 494;
4005 } else { /* VGA */
4006 xstart = 158;
4007 xend = 14;
4008 ystart = 10;
4009 yend = 490;
4010 }
4011 /* OV7670 hardware window registers are split across
4012 * multiple locations */
4013 i2c_w(sd, OV7670_R17_HSTART, xstart >> 3);
4014 i2c_w(sd, OV7670_R18_HSTOP, xend >> 3);
4015 v = i2c_r(sd, OV7670_R32_HREF);
4016 v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
4017 msleep(10); /* need to sleep between read and write to
4018 * same reg! */
4019 i2c_w(sd, OV7670_R32_HREF, v);
4020
4021 i2c_w(sd, OV7670_R19_VSTART, ystart >> 2);
4022 i2c_w(sd, OV7670_R1A_VSTOP, yend >> 2);
4023 v = i2c_r(sd, OV7670_R03_VREF);
4024 v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
4025 msleep(10); /* need to sleep between read and write to
4026 * same reg! */
4027 i2c_w(sd, OV7670_R03_VREF, v);
4028 break;
4029 case SEN_OV6620:
4030 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4031 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4032 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4033 break;
4034 case SEN_OV6630:
4035 case SEN_OV66308AF:
4036 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4037 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4038 break;
4039 case SEN_OV9600: {
4040 const struct ov_i2c_regvals *vals;
4041 static const struct ov_i2c_regvals sxga_15[] = {
4042 {0x11, 0x80}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4043 };
4044 static const struct ov_i2c_regvals sxga_7_5[] = {
4045 {0x11, 0x81}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4046 };
4047 static const struct ov_i2c_regvals vga_30[] = {
4048 {0x11, 0x81}, {0x14, 0x7e}, {0x24, 0x70}, {0x25, 0x60}
4049 };
4050 static const struct ov_i2c_regvals vga_15[] = {
4051 {0x11, 0x83}, {0x14, 0x3e}, {0x24, 0x80}, {0x25, 0x70}
4052 };
4053
4054 /* frame rates:
4055 * 15fps / 7.5 fps for 1280x1024
4056 * 30fps / 15fps for 640x480
4057 */
4058 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0x40);
4059 if (qvga)
4060 vals = sd->frame_rate < 30 ? vga_15 : vga_30;
4061 else
4062 vals = sd->frame_rate < 15 ? sxga_7_5 : sxga_15;
4063 write_i2c_regvals(sd, vals, ARRAY_SIZE(sxga_15));
4064 return;
4065 }
4066 default:
4067 return;
4068 }
4069
4070 /******** Clock programming ********/
4071 i2c_w(sd, 0x11, sd->clockdiv);
4072 }
4073
4074 /* this function works for bridge ov519 and sensors ov7660 and ov7670 only */
4075 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
4076 {
4077 struct sd *sd = (struct sd *) gspca_dev;
4078
4079 if (sd->gspca_dev.streaming)
4080 reg_w(sd, OV519_R51_RESET1, 0x0f); /* block stream */
4081 i2c_w_mask(sd, OV7670_R1E_MVFP,
4082 OV7670_MVFP_MIRROR * hflip | OV7670_MVFP_VFLIP * vflip,
4083 OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
4084 if (sd->gspca_dev.streaming)
4085 reg_w(sd, OV519_R51_RESET1, 0x00); /* restart stream */
4086 }
4087
4088 static void set_ov_sensor_window(struct sd *sd)
4089 {
4090 struct gspca_dev *gspca_dev;
4091 int qvga, crop;
4092 int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
4093
4094 /* mode setup is fully handled in mode_init_ov_sensor_regs for these */
4095 switch (sd->sensor) {
4096 case SEN_OV2610:
4097 case SEN_OV2610AE:
4098 case SEN_OV3610:
4099 case SEN_OV7670:
4100 case SEN_OV9600:
4101 mode_init_ov_sensor_regs(sd);
4102 return;
4103 case SEN_OV7660:
4104 ov519_set_mode(sd);
4105 ov519_set_fr(sd);
4106 return;
4107 }
4108
4109 gspca_dev = &sd->gspca_dev;
4110 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
4111 crop = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 2;
4112
4113 /* The different sensor ICs handle setting up of window differently.
4114 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
4115 switch (sd->sensor) {
4116 case SEN_OV8610:
4117 hwsbase = 0x1e;
4118 hwebase = 0x1e;
4119 vwsbase = 0x02;
4120 vwebase = 0x02;
4121 break;
4122 case SEN_OV7610:
4123 case SEN_OV76BE:
4124 hwsbase = 0x38;
4125 hwebase = 0x3a;
4126 vwsbase = vwebase = 0x05;
4127 break;
4128 case SEN_OV6620:
4129 case SEN_OV6630:
4130 case SEN_OV66308AF:
4131 hwsbase = 0x38;
4132 hwebase = 0x3a;
4133 vwsbase = 0x05;
4134 vwebase = 0x06;
4135 if (sd->sensor == SEN_OV66308AF && qvga)
4136 /* HDG: this fixes U and V getting swapped */
4137 hwsbase++;
4138 if (crop) {
4139 hwsbase += 8;
4140 hwebase += 8;
4141 vwsbase += 11;
4142 vwebase += 11;
4143 }
4144 break;
4145 case SEN_OV7620:
4146 case SEN_OV7620AE:
4147 hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */
4148 hwebase = 0x2f;
4149 vwsbase = vwebase = 0x05;
4150 break;
4151 case SEN_OV7640:
4152 case SEN_OV7648:
4153 hwsbase = 0x1a;
4154 hwebase = 0x1a;
4155 vwsbase = vwebase = 0x03;
4156 break;
4157 default:
4158 return;
4159 }
4160
4161 switch (sd->sensor) {
4162 case SEN_OV6620:
4163 case SEN_OV6630:
4164 case SEN_OV66308AF:
4165 if (qvga) { /* QCIF */
4166 hwscale = 0;
4167 vwscale = 0;
4168 } else { /* CIF */
4169 hwscale = 1;
4170 vwscale = 1; /* The datasheet says 0;
4171 * it's wrong */
4172 }
4173 break;
4174 case SEN_OV8610:
4175 if (qvga) { /* QSVGA */
4176 hwscale = 1;
4177 vwscale = 1;
4178 } else { /* SVGA */
4179 hwscale = 2;
4180 vwscale = 2;
4181 }
4182 break;
4183 default: /* SEN_OV7xx0 */
4184 if (qvga) { /* QVGA */
4185 hwscale = 1;
4186 vwscale = 0;
4187 } else { /* VGA */
4188 hwscale = 2;
4189 vwscale = 1;
4190 }
4191 }
4192
4193 mode_init_ov_sensor_regs(sd);
4194
4195 i2c_w(sd, 0x17, hwsbase);
4196 i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
4197 i2c_w(sd, 0x19, vwsbase);
4198 i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
4199 }
4200
4201 /* -- start the camera -- */
4202 static int sd_start(struct gspca_dev *gspca_dev)
4203 {
4204 struct sd *sd = (struct sd *) gspca_dev;
4205
4206 /* Default for most bridges, allow bridge_mode_init_regs to override */
4207 sd->sensor_width = sd->gspca_dev.pixfmt.width;
4208 sd->sensor_height = sd->gspca_dev.pixfmt.height;
4209
4210 switch (sd->bridge) {
4211 case BRIDGE_OV511:
4212 case BRIDGE_OV511PLUS:
4213 ov511_mode_init_regs(sd);
4214 break;
4215 case BRIDGE_OV518:
4216 case BRIDGE_OV518PLUS:
4217 ov518_mode_init_regs(sd);
4218 break;
4219 case BRIDGE_OV519:
4220 ov519_mode_init_regs(sd);
4221 break;
4222 /* case BRIDGE_OVFX2: nothing to do */
4223 case BRIDGE_W9968CF:
4224 w9968cf_mode_init_regs(sd);
4225 break;
4226 }
4227
4228 set_ov_sensor_window(sd);
4229
4230 /* Force clear snapshot state in case the snapshot button was
4231 pressed while we weren't streaming */
4232 sd->snapshot_needs_reset = 1;
4233 sd_reset_snapshot(gspca_dev);
4234
4235 sd->first_frame = 3;
4236
4237 ov51x_restart(sd);
4238 ov51x_led_control(sd, 1);
4239 return gspca_dev->usb_err;
4240 }
4241
4242 static void sd_stopN(struct gspca_dev *gspca_dev)
4243 {
4244 struct sd *sd = (struct sd *) gspca_dev;
4245
4246 ov51x_stop(sd);
4247 ov51x_led_control(sd, 0);
4248 }
4249
4250 static void sd_stop0(struct gspca_dev *gspca_dev)
4251 {
4252 struct sd *sd = (struct sd *) gspca_dev;
4253
4254 if (!sd->gspca_dev.present)
4255 return;
4256 if (sd->bridge == BRIDGE_W9968CF)
4257 w9968cf_stop0(sd);
4258
4259 #if IS_ENABLED(CONFIG_INPUT)
4260 /* If the last button state is pressed, release it now! */
4261 if (sd->snapshot_pressed) {
4262 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
4263 input_sync(gspca_dev->input_dev);
4264 sd->snapshot_pressed = 0;
4265 }
4266 #endif
4267 if (sd->bridge == BRIDGE_OV519)
4268 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
4269 }
4270
4271 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
4272 {
4273 struct sd *sd = (struct sd *) gspca_dev;
4274
4275 if (sd->snapshot_pressed != state) {
4276 #if IS_ENABLED(CONFIG_INPUT)
4277 input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4278 input_sync(gspca_dev->input_dev);
4279 #endif
4280 if (state)
4281 sd->snapshot_needs_reset = 1;
4282
4283 sd->snapshot_pressed = state;
4284 } else {
4285 /* On the ov511 / ov519 we need to reset the button state
4286 multiple times, as resetting does not work as long as the
4287 button stays pressed */
4288 switch (sd->bridge) {
4289 case BRIDGE_OV511:
4290 case BRIDGE_OV511PLUS:
4291 case BRIDGE_OV519:
4292 if (state)
4293 sd->snapshot_needs_reset = 1;
4294 break;
4295 }
4296 }
4297 }
4298
4299 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4300 u8 *in, /* isoc packet */
4301 int len) /* iso packet length */
4302 {
4303 struct sd *sd = (struct sd *) gspca_dev;
4304
4305 /* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4306 * byte non-zero. The EOF packet has image width/height in the
4307 * 10th and 11th bytes. The 9th byte is given as follows:
4308 *
4309 * bit 7: EOF
4310 * 6: compression enabled
4311 * 5: 422/420/400 modes
4312 * 4: 422/420/400 modes
4313 * 3: 1
4314 * 2: snapshot button on
4315 * 1: snapshot frame
4316 * 0: even/odd field
4317 */
4318 if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4319 (in[8] & 0x08)) {
4320 ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4321 if (in[8] & 0x80) {
4322 /* Frame end */
4323 if ((in[9] + 1) * 8 != gspca_dev->pixfmt.width ||
4324 (in[10] + 1) * 8 != gspca_dev->pixfmt.height) {
4325 PERR("Invalid frame size, got: %dx%d, requested: %dx%d\n",
4326 (in[9] + 1) * 8, (in[10] + 1) * 8,
4327 gspca_dev->pixfmt.width,
4328 gspca_dev->pixfmt.height);
4329 gspca_dev->last_packet_type = DISCARD_PACKET;
4330 return;
4331 }
4332 /* Add 11 byte footer to frame, might be useful */
4333 gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4334 return;
4335 } else {
4336 /* Frame start */
4337 gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4338 sd->packet_nr = 0;
4339 }
4340 }
4341
4342 /* Ignore the packet number */
4343 len--;
4344
4345 /* intermediate packet */
4346 gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4347 }
4348
4349 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4350 u8 *data, /* isoc packet */
4351 int len) /* iso packet length */
4352 {
4353 struct sd *sd = (struct sd *) gspca_dev;
4354
4355 /* A false positive here is likely, until OVT gives me
4356 * the definitive SOF/EOF format */
4357 if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4358 ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4359 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4360 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4361 sd->packet_nr = 0;
4362 }
4363
4364 if (gspca_dev->last_packet_type == DISCARD_PACKET)
4365 return;
4366
4367 /* Does this device use packet numbers ? */
4368 if (len & 7) {
4369 len--;
4370 if (sd->packet_nr == data[len])
4371 sd->packet_nr++;
4372 /* The last few packets of the frame (which are all 0's
4373 except that they may contain part of the footer), are
4374 numbered 0 */
4375 else if (sd->packet_nr == 0 || data[len]) {
4376 PERR("Invalid packet nr: %d (expect: %d)",
4377 (int)data[len], (int)sd->packet_nr);
4378 gspca_dev->last_packet_type = DISCARD_PACKET;
4379 return;
4380 }
4381 }
4382
4383 /* intermediate packet */
4384 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4385 }
4386
4387 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4388 u8 *data, /* isoc packet */
4389 int len) /* iso packet length */
4390 {
4391 /* Header of ov519 is 16 bytes:
4392 * Byte Value Description
4393 * 0 0xff magic
4394 * 1 0xff magic
4395 * 2 0xff magic
4396 * 3 0xXX 0x50 = SOF, 0x51 = EOF
4397 * 9 0xXX 0x01 initial frame without data,
4398 * 0x00 standard frame with image
4399 * 14 Lo in EOF: length of image data / 8
4400 * 15 Hi
4401 */
4402
4403 if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4404 switch (data[3]) {
4405 case 0x50: /* start of frame */
4406 /* Don't check the button state here, as the state
4407 usually (always ?) changes at EOF and checking it
4408 here leads to unnecessary snapshot state resets. */
4409 #define HDRSZ 16
4410 data += HDRSZ;
4411 len -= HDRSZ;
4412 #undef HDRSZ
4413 if (data[0] == 0xff || data[1] == 0xd8)
4414 gspca_frame_add(gspca_dev, FIRST_PACKET,
4415 data, len);
4416 else
4417 gspca_dev->last_packet_type = DISCARD_PACKET;
4418 return;
4419 case 0x51: /* end of frame */
4420 ov51x_handle_button(gspca_dev, data[11] & 1);
4421 if (data[9] != 0)
4422 gspca_dev->last_packet_type = DISCARD_PACKET;
4423 gspca_frame_add(gspca_dev, LAST_PACKET,
4424 NULL, 0);
4425 return;
4426 }
4427 }
4428
4429 /* intermediate packet */
4430 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4431 }
4432
4433 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4434 u8 *data, /* isoc packet */
4435 int len) /* iso packet length */
4436 {
4437 struct sd *sd = (struct sd *) gspca_dev;
4438
4439 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4440
4441 /* A short read signals EOF */
4442 if (len < gspca_dev->cam.bulk_size) {
4443 /* If the frame is short, and it is one of the first ones
4444 the sensor and bridge are still syncing, so drop it. */
4445 if (sd->first_frame) {
4446 sd->first_frame--;
4447 if (gspca_dev->image_len <
4448 sd->gspca_dev.pixfmt.width *
4449 sd->gspca_dev.pixfmt.height)
4450 gspca_dev->last_packet_type = DISCARD_PACKET;
4451 }
4452 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4453 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4454 }
4455 }
4456
4457 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4458 u8 *data, /* isoc packet */
4459 int len) /* iso packet length */
4460 {
4461 struct sd *sd = (struct sd *) gspca_dev;
4462
4463 switch (sd->bridge) {
4464 case BRIDGE_OV511:
4465 case BRIDGE_OV511PLUS:
4466 ov511_pkt_scan(gspca_dev, data, len);
4467 break;
4468 case BRIDGE_OV518:
4469 case BRIDGE_OV518PLUS:
4470 ov518_pkt_scan(gspca_dev, data, len);
4471 break;
4472 case BRIDGE_OV519:
4473 ov519_pkt_scan(gspca_dev, data, len);
4474 break;
4475 case BRIDGE_OVFX2:
4476 ovfx2_pkt_scan(gspca_dev, data, len);
4477 break;
4478 case BRIDGE_W9968CF:
4479 w9968cf_pkt_scan(gspca_dev, data, len);
4480 break;
4481 }
4482 }
4483
4484 /* -- management routines -- */
4485
4486 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
4487 {
4488 struct sd *sd = (struct sd *) gspca_dev;
4489 static const struct ov_i2c_regvals brit_7660[][7] = {
4490 {{0x0f, 0x6a}, {0x24, 0x40}, {0x25, 0x2b}, {0x26, 0x90},
4491 {0x27, 0xe0}, {0x28, 0xe0}, {0x2c, 0xe0}},
4492 {{0x0f, 0x6a}, {0x24, 0x50}, {0x25, 0x40}, {0x26, 0xa1},
4493 {0x27, 0xc0}, {0x28, 0xc0}, {0x2c, 0xc0}},
4494 {{0x0f, 0x6a}, {0x24, 0x68}, {0x25, 0x58}, {0x26, 0xc2},
4495 {0x27, 0xa0}, {0x28, 0xa0}, {0x2c, 0xa0}},
4496 {{0x0f, 0x6a}, {0x24, 0x70}, {0x25, 0x68}, {0x26, 0xd3},
4497 {0x27, 0x80}, {0x28, 0x80}, {0x2c, 0x80}},
4498 {{0x0f, 0x6a}, {0x24, 0x80}, {0x25, 0x70}, {0x26, 0xd3},
4499 {0x27, 0x20}, {0x28, 0x20}, {0x2c, 0x20}},
4500 {{0x0f, 0x6a}, {0x24, 0x88}, {0x25, 0x78}, {0x26, 0xd3},
4501 {0x27, 0x40}, {0x28, 0x40}, {0x2c, 0x40}},
4502 {{0x0f, 0x6a}, {0x24, 0x90}, {0x25, 0x80}, {0x26, 0xd4},
4503 {0x27, 0x60}, {0x28, 0x60}, {0x2c, 0x60}}
4504 };
4505
4506 switch (sd->sensor) {
4507 case SEN_OV8610:
4508 case SEN_OV7610:
4509 case SEN_OV76BE:
4510 case SEN_OV6620:
4511 case SEN_OV6630:
4512 case SEN_OV66308AF:
4513 case SEN_OV7640:
4514 case SEN_OV7648:
4515 i2c_w(sd, OV7610_REG_BRT, val);
4516 break;
4517 case SEN_OV7620:
4518 case SEN_OV7620AE:
4519 i2c_w(sd, OV7610_REG_BRT, val);
4520 break;
4521 case SEN_OV7660:
4522 write_i2c_regvals(sd, brit_7660[val],
4523 ARRAY_SIZE(brit_7660[0]));
4524 break;
4525 case SEN_OV7670:
4526 /*win trace
4527 * i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_AEC); */
4528 i2c_w(sd, OV7670_R55_BRIGHT, ov7670_abs_to_sm(val));
4529 break;
4530 }
4531 }
4532
4533 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
4534 {
4535 struct sd *sd = (struct sd *) gspca_dev;
4536 static const struct ov_i2c_regvals contrast_7660[][31] = {
4537 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0xa0},
4538 {0x70, 0x58}, {0x71, 0x38}, {0x72, 0x30}, {0x73, 0x30},
4539 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x24}, {0x77, 0x24},
4540 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x34},
4541 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x65},
4542 {0x80, 0x70}, {0x81, 0x77}, {0x82, 0x7d}, {0x83, 0x83},
4543 {0x84, 0x88}, {0x85, 0x8d}, {0x86, 0x96}, {0x87, 0x9f},
4544 {0x88, 0xb0}, {0x89, 0xc4}, {0x8a, 0xd9}},
4545 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0x94},
4546 {0x70, 0x58}, {0x71, 0x40}, {0x72, 0x30}, {0x73, 0x30},
4547 {0x74, 0x30}, {0x75, 0x30}, {0x76, 0x2c}, {0x77, 0x24},
4548 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x31},
4549 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x62},
4550 {0x80, 0x6d}, {0x81, 0x75}, {0x82, 0x7b}, {0x83, 0x81},
4551 {0x84, 0x87}, {0x85, 0x8d}, {0x86, 0x98}, {0x87, 0xa1},
4552 {0x88, 0xb2}, {0x89, 0xc6}, {0x8a, 0xdb}},
4553 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x84},
4554 {0x70, 0x58}, {0x71, 0x48}, {0x72, 0x40}, {0x73, 0x40},
4555 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x28}, {0x77, 0x24},
4556 {0x78, 0x26}, {0x79, 0x28}, {0x7a, 0x28}, {0x7b, 0x34},
4557 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x5d},
4558 {0x80, 0x68}, {0x81, 0x71}, {0x82, 0x79}, {0x83, 0x81},
4559 {0x84, 0x86}, {0x85, 0x8b}, {0x86, 0x95}, {0x87, 0x9e},
4560 {0x88, 0xb1}, {0x89, 0xc5}, {0x8a, 0xd9}},
4561 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x70},
4562 {0x70, 0x58}, {0x71, 0x58}, {0x72, 0x48}, {0x73, 0x48},
4563 {0x74, 0x38}, {0x75, 0x40}, {0x76, 0x34}, {0x77, 0x34},
4564 {0x78, 0x2e}, {0x79, 0x28}, {0x7a, 0x24}, {0x7b, 0x22},
4565 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x58},
4566 {0x80, 0x63}, {0x81, 0x6e}, {0x82, 0x77}, {0x83, 0x80},
4567 {0x84, 0x87}, {0x85, 0x8f}, {0x86, 0x9c}, {0x87, 0xa9},
4568 {0x88, 0xc0}, {0x89, 0xd4}, {0x8a, 0xe6}},
4569 {{0x6c, 0xa0}, {0x6d, 0xf0}, {0x6e, 0x90}, {0x6f, 0x80},
4570 {0x70, 0x70}, {0x71, 0x80}, {0x72, 0x60}, {0x73, 0x60},
4571 {0x74, 0x58}, {0x75, 0x60}, {0x76, 0x4c}, {0x77, 0x38},
4572 {0x78, 0x38}, {0x79, 0x2a}, {0x7a, 0x20}, {0x7b, 0x0e},
4573 {0x7c, 0x0a}, {0x7d, 0x14}, {0x7e, 0x26}, {0x7f, 0x46},
4574 {0x80, 0x54}, {0x81, 0x64}, {0x82, 0x70}, {0x83, 0x7c},
4575 {0x84, 0x87}, {0x85, 0x93}, {0x86, 0xa6}, {0x87, 0xb4},
4576 {0x88, 0xd0}, {0x89, 0xe5}, {0x8a, 0xf5}},
4577 {{0x6c, 0x60}, {0x6d, 0x80}, {0x6e, 0x60}, {0x6f, 0x80},
4578 {0x70, 0x80}, {0x71, 0x80}, {0x72, 0x88}, {0x73, 0x30},
4579 {0x74, 0x70}, {0x75, 0x68}, {0x76, 0x64}, {0x77, 0x50},
4580 {0x78, 0x3c}, {0x79, 0x22}, {0x7a, 0x10}, {0x7b, 0x08},
4581 {0x7c, 0x06}, {0x7d, 0x0e}, {0x7e, 0x1a}, {0x7f, 0x3a},
4582 {0x80, 0x4a}, {0x81, 0x5a}, {0x82, 0x6b}, {0x83, 0x7b},
4583 {0x84, 0x89}, {0x85, 0x96}, {0x86, 0xaf}, {0x87, 0xc3},
4584 {0x88, 0xe1}, {0x89, 0xf2}, {0x8a, 0xfa}},
4585 {{0x6c, 0x20}, {0x6d, 0x40}, {0x6e, 0x20}, {0x6f, 0x60},
4586 {0x70, 0x88}, {0x71, 0xc8}, {0x72, 0xc0}, {0x73, 0xb8},
4587 {0x74, 0xa8}, {0x75, 0xb8}, {0x76, 0x80}, {0x77, 0x5c},
4588 {0x78, 0x26}, {0x79, 0x10}, {0x7a, 0x08}, {0x7b, 0x04},
4589 {0x7c, 0x02}, {0x7d, 0x06}, {0x7e, 0x0a}, {0x7f, 0x22},
4590 {0x80, 0x33}, {0x81, 0x4c}, {0x82, 0x64}, {0x83, 0x7b},
4591 {0x84, 0x90}, {0x85, 0xa7}, {0x86, 0xc7}, {0x87, 0xde},
4592 {0x88, 0xf1}, {0x89, 0xf9}, {0x8a, 0xfd}},
4593 };
4594
4595 switch (sd->sensor) {
4596 case SEN_OV7610:
4597 case SEN_OV6620:
4598 i2c_w(sd, OV7610_REG_CNT, val);
4599 break;
4600 case SEN_OV6630:
4601 case SEN_OV66308AF:
4602 i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4603 break;
4604 case SEN_OV8610: {
4605 static const u8 ctab[] = {
4606 0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4607 };
4608
4609 /* Use Y gamma control instead. Bit 0 enables it. */
4610 i2c_w(sd, 0x64, ctab[val >> 5]);
4611 break;
4612 }
4613 case SEN_OV7620:
4614 case SEN_OV7620AE: {
4615 static const u8 ctab[] = {
4616 0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4617 0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4618 };
4619
4620 /* Use Y gamma control instead. Bit 0 enables it. */
4621 i2c_w(sd, 0x64, ctab[val >> 4]);
4622 break;
4623 }
4624 case SEN_OV7660:
4625 write_i2c_regvals(sd, contrast_7660[val],
4626 ARRAY_SIZE(contrast_7660[0]));
4627 break;
4628 case SEN_OV7670:
4629 /* check that this isn't just the same as ov7610 */
4630 i2c_w(sd, OV7670_R56_CONTRAS, val >> 1);
4631 break;
4632 }
4633 }
4634
4635 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
4636 {
4637 struct sd *sd = (struct sd *) gspca_dev;
4638
4639 i2c_w(sd, 0x10, val);
4640 }
4641
4642 static void setcolors(struct gspca_dev *gspca_dev, s32 val)
4643 {
4644 struct sd *sd = (struct sd *) gspca_dev;
4645 static const struct ov_i2c_regvals colors_7660[][6] = {
4646 {{0x4f, 0x28}, {0x50, 0x2a}, {0x51, 0x02}, {0x52, 0x0a},
4647 {0x53, 0x19}, {0x54, 0x23}},
4648 {{0x4f, 0x47}, {0x50, 0x4a}, {0x51, 0x03}, {0x52, 0x11},
4649 {0x53, 0x2c}, {0x54, 0x3e}},
4650 {{0x4f, 0x66}, {0x50, 0x6b}, {0x51, 0x05}, {0x52, 0x19},
4651 {0x53, 0x40}, {0x54, 0x59}},
4652 {{0x4f, 0x84}, {0x50, 0x8b}, {0x51, 0x06}, {0x52, 0x20},
4653 {0x53, 0x53}, {0x54, 0x73}},
4654 {{0x4f, 0xa3}, {0x50, 0xab}, {0x51, 0x08}, {0x52, 0x28},
4655 {0x53, 0x66}, {0x54, 0x8e}},
4656 };
4657
4658 switch (sd->sensor) {
4659 case SEN_OV8610:
4660 case SEN_OV7610:
4661 case SEN_OV76BE:
4662 case SEN_OV6620:
4663 case SEN_OV6630:
4664 case SEN_OV66308AF:
4665 i2c_w(sd, OV7610_REG_SAT, val);
4666 break;
4667 case SEN_OV7620:
4668 case SEN_OV7620AE:
4669 /* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4670 /* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4671 if (rc < 0)
4672 goto out; */
4673 i2c_w(sd, OV7610_REG_SAT, val);
4674 break;
4675 case SEN_OV7640:
4676 case SEN_OV7648:
4677 i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4678 break;
4679 case SEN_OV7660:
4680 write_i2c_regvals(sd, colors_7660[val],
4681 ARRAY_SIZE(colors_7660[0]));
4682 break;
4683 case SEN_OV7670:
4684 /* supported later once I work out how to do it
4685 * transparently fail now! */
4686 /* set REG_COM13 values for UV sat auto mode */
4687 break;
4688 }
4689 }
4690
4691 static void setautobright(struct gspca_dev *gspca_dev, s32 val)
4692 {
4693 struct sd *sd = (struct sd *) gspca_dev;
4694
4695 i2c_w_mask(sd, 0x2d, val ? 0x10 : 0x00, 0x10);
4696 }
4697
4698 static void setfreq_i(struct sd *sd, s32 val)
4699 {
4700 if (sd->sensor == SEN_OV7660
4701 || sd->sensor == SEN_OV7670) {
4702 switch (val) {
4703 case 0: /* Banding filter disabled */
4704 i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_BFILT);
4705 break;
4706 case 1: /* 50 hz */
4707 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4708 OV7670_COM8_BFILT);
4709 i2c_w_mask(sd, OV7670_R3B_COM11, 0x08, 0x18);
4710 break;
4711 case 2: /* 60 hz */
4712 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4713 OV7670_COM8_BFILT);
4714 i2c_w_mask(sd, OV7670_R3B_COM11, 0x00, 0x18);
4715 break;
4716 case 3: /* Auto hz - ov7670 only */
4717 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4718 OV7670_COM8_BFILT);
4719 i2c_w_mask(sd, OV7670_R3B_COM11, OV7670_COM11_HZAUTO,
4720 0x18);
4721 break;
4722 }
4723 } else {
4724 switch (val) {
4725 case 0: /* Banding filter disabled */
4726 i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4727 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4728 break;
4729 case 1: /* 50 hz (filter on and framerate adj) */
4730 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4731 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4732 /* 20 fps -> 16.667 fps */
4733 if (sd->sensor == SEN_OV6620 ||
4734 sd->sensor == SEN_OV6630 ||
4735 sd->sensor == SEN_OV66308AF)
4736 i2c_w(sd, 0x2b, 0x5e);
4737 else
4738 i2c_w(sd, 0x2b, 0xac);
4739 break;
4740 case 2: /* 60 hz (filter on, ...) */
4741 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4742 if (sd->sensor == SEN_OV6620 ||
4743 sd->sensor == SEN_OV6630 ||
4744 sd->sensor == SEN_OV66308AF) {
4745 /* 20 fps -> 15 fps */
4746 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4747 i2c_w(sd, 0x2b, 0xa8);
4748 } else {
4749 /* no framerate adj. */
4750 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4751 }
4752 break;
4753 }
4754 }
4755 }
4756
4757 static void setfreq(struct gspca_dev *gspca_dev, s32 val)
4758 {
4759 struct sd *sd = (struct sd *) gspca_dev;
4760
4761 setfreq_i(sd, val);
4762
4763 /* Ugly but necessary */
4764 if (sd->bridge == BRIDGE_W9968CF)
4765 w9968cf_set_crop_window(sd);
4766 }
4767
4768 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4769 struct v4l2_jpegcompression *jcomp)
4770 {
4771 struct sd *sd = (struct sd *) gspca_dev;
4772
4773 if (sd->bridge != BRIDGE_W9968CF)
4774 return -ENOTTY;
4775
4776 memset(jcomp, 0, sizeof *jcomp);
4777 jcomp->quality = v4l2_ctrl_g_ctrl(sd->jpegqual);
4778 jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4779 V4L2_JPEG_MARKER_DRI;
4780 return 0;
4781 }
4782
4783 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4784 const struct v4l2_jpegcompression *jcomp)
4785 {
4786 struct sd *sd = (struct sd *) gspca_dev;
4787
4788 if (sd->bridge != BRIDGE_W9968CF)
4789 return -ENOTTY;
4790
4791 v4l2_ctrl_s_ctrl(sd->jpegqual, jcomp->quality);
4792 return 0;
4793 }
4794
4795 static int sd_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
4796 {
4797 struct gspca_dev *gspca_dev =
4798 container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4799 struct sd *sd = (struct sd *)gspca_dev;
4800
4801 gspca_dev->usb_err = 0;
4802
4803 switch (ctrl->id) {
4804 case V4L2_CID_AUTOGAIN:
4805 gspca_dev->exposure->val = i2c_r(sd, 0x10);
4806 break;
4807 }
4808 return 0;
4809 }
4810
4811 static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
4812 {
4813 struct gspca_dev *gspca_dev =
4814 container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4815 struct sd *sd = (struct sd *)gspca_dev;
4816
4817 gspca_dev->usb_err = 0;
4818
4819 if (!gspca_dev->streaming)
4820 return 0;
4821
4822 switch (ctrl->id) {
4823 case V4L2_CID_BRIGHTNESS:
4824 setbrightness(gspca_dev, ctrl->val);
4825 break;
4826 case V4L2_CID_CONTRAST:
4827 setcontrast(gspca_dev, ctrl->val);
4828 break;
4829 case V4L2_CID_POWER_LINE_FREQUENCY:
4830 setfreq(gspca_dev, ctrl->val);
4831 break;
4832 case V4L2_CID_AUTOBRIGHTNESS:
4833 if (ctrl->is_new)
4834 setautobright(gspca_dev, ctrl->val);
4835 if (!ctrl->val && sd->brightness->is_new)
4836 setbrightness(gspca_dev, sd->brightness->val);
4837 break;
4838 case V4L2_CID_SATURATION:
4839 setcolors(gspca_dev, ctrl->val);
4840 break;
4841 case V4L2_CID_HFLIP:
4842 sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
4843 break;
4844 case V4L2_CID_AUTOGAIN:
4845 if (ctrl->is_new)
4846 setautogain(gspca_dev, ctrl->val);
4847 if (!ctrl->val && gspca_dev->exposure->is_new)
4848 setexposure(gspca_dev, gspca_dev->exposure->val);
4849 break;
4850 case V4L2_CID_JPEG_COMPRESSION_QUALITY:
4851 return -EBUSY; /* Should never happen, as we grab the ctrl */
4852 }
4853 return gspca_dev->usb_err;
4854 }
4855
4856 static const struct v4l2_ctrl_ops sd_ctrl_ops = {
4857 .g_volatile_ctrl = sd_g_volatile_ctrl,
4858 .s_ctrl = sd_s_ctrl,
4859 };
4860
4861 static int sd_init_controls(struct gspca_dev *gspca_dev)
4862 {
4863 struct sd *sd = (struct sd *)gspca_dev;
4864 struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;
4865
4866 gspca_dev->vdev.ctrl_handler = hdl;
4867 v4l2_ctrl_handler_init(hdl, 10);
4868 if (valid_controls[sd->sensor].has_brightness)
4869 sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4870 V4L2_CID_BRIGHTNESS, 0,
4871 sd->sensor == SEN_OV7660 ? 6 : 255, 1,
4872 sd->sensor == SEN_OV7660 ? 3 : 127);
4873 if (valid_controls[sd->sensor].has_contrast) {
4874 if (sd->sensor == SEN_OV7660)
4875 v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4876 V4L2_CID_CONTRAST, 0, 6, 1, 3);
4877 else
4878 v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4879 V4L2_CID_CONTRAST, 0, 255, 1,
4880 (sd->sensor == SEN_OV6630 ||
4881 sd->sensor == SEN_OV66308AF) ? 200 : 127);
4882 }
4883 if (valid_controls[sd->sensor].has_sat)
4884 v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4885 V4L2_CID_SATURATION, 0,
4886 sd->sensor == SEN_OV7660 ? 4 : 255, 1,
4887 sd->sensor == SEN_OV7660 ? 2 : 127);
4888 if (valid_controls[sd->sensor].has_exposure)
4889 gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4890 V4L2_CID_EXPOSURE, 0, 255, 1, 127);
4891 if (valid_controls[sd->sensor].has_hvflip) {
4892 sd->hflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4893 V4L2_CID_HFLIP, 0, 1, 1, 0);
4894 sd->vflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4895 V4L2_CID_VFLIP, 0, 1, 1, 0);
4896 }
4897 if (valid_controls[sd->sensor].has_autobright)
4898 sd->autobright = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4899 V4L2_CID_AUTOBRIGHTNESS, 0, 1, 1, 1);
4900 if (valid_controls[sd->sensor].has_autogain)
4901 gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4902 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
4903 if (valid_controls[sd->sensor].has_freq) {
4904 if (sd->sensor == SEN_OV7670)
4905 sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4906 V4L2_CID_POWER_LINE_FREQUENCY,
4907 V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
4908 V4L2_CID_POWER_LINE_FREQUENCY_AUTO);
4909 else
4910 sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4911 V4L2_CID_POWER_LINE_FREQUENCY,
4912 V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0, 0);
4913 }
4914 if (sd->bridge == BRIDGE_W9968CF)
4915 sd->jpegqual = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4916 V4L2_CID_JPEG_COMPRESSION_QUALITY,
4917 QUALITY_MIN, QUALITY_MAX, 1, QUALITY_DEF);
4918
4919 if (hdl->error) {
4920 PERR("Could not initialize controls\n");
4921 return hdl->error;
4922 }
4923 if (gspca_dev->autogain)
4924 v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, true);
4925 if (sd->autobright)
4926 v4l2_ctrl_auto_cluster(2, &sd->autobright, 0, false);
4927 if (sd->hflip)
4928 v4l2_ctrl_cluster(2, &sd->hflip);
4929 return 0;
4930 }
4931
4932 /* sub-driver description */
4933 static const struct sd_desc sd_desc = {
4934 .name = MODULE_NAME,
4935 .config = sd_config,
4936 .init = sd_init,
4937 .init_controls = sd_init_controls,
4938 .isoc_init = sd_isoc_init,
4939 .start = sd_start,
4940 .stopN = sd_stopN,
4941 .stop0 = sd_stop0,
4942 .pkt_scan = sd_pkt_scan,
4943 .dq_callback = sd_reset_snapshot,
4944 .get_jcomp = sd_get_jcomp,
4945 .set_jcomp = sd_set_jcomp,
4946 #if IS_ENABLED(CONFIG_INPUT)
4947 .other_input = 1,
4948 #endif
4949 };
4950
4951 /* -- module initialisation -- */
4952 static const struct usb_device_id device_table[] = {
4953 {USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4954 {USB_DEVICE(0x041e, 0x4052),
4955 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4956 {USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
4957 {USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
4958 {USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4959 {USB_DEVICE(0x041e, 0x4064), .driver_info = BRIDGE_OV519 },
4960 {USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4961 {USB_DEVICE(0x041e, 0x4068), .driver_info = BRIDGE_OV519 },
4962 {USB_DEVICE(0x045e, 0x028c),
4963 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4964 {USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
4965 {USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 },
4966 {USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4967 {USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
4968 {USB_DEVICE(0x05a9, 0x0519),
4969 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4970 {USB_DEVICE(0x05a9, 0x0530),
4971 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4972 {USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
4973 {USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
4974 {USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
4975 {USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
4976 {USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
4977 {USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
4978 {USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
4979 {USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
4980 {USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
4981 {USB_DEVICE(0x8020, 0xef04), .driver_info = BRIDGE_OVFX2 },
4982 {}
4983 };
4984
4985 MODULE_DEVICE_TABLE(usb, device_table);
4986
4987 /* -- device connect -- */
4988 static int sd_probe(struct usb_interface *intf,
4989 const struct usb_device_id *id)
4990 {
4991 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
4992 THIS_MODULE);
4993 }
4994
4995 static struct usb_driver sd_driver = {
4996 .name = MODULE_NAME,
4997 .id_table = device_table,
4998 .probe = sd_probe,
4999 .disconnect = gspca_disconnect,
5000 #ifdef CONFIG_PM
5001 .suspend = gspca_suspend,
5002 .resume = gspca_resume,
5003 .reset_resume = gspca_resume,
5004 #endif
5005 };
5006
5007 module_usb_driver(sd_driver);
5008
5009 module_param(frame_rate, int, 0644);
5010 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");