]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/media/usb/gspca/ov534.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[mirror_ubuntu-artful-kernel.git] / drivers / media / usb / gspca / ov534.c
1 /*
2 * ov534-ov7xxx gspca driver
3 *
4 * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
5 * Copyright (C) 2008 Jim Paris <jim@jtan.com>
6 * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
7 *
8 * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
9 * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
10 * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
11 *
12 * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
13 * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
14 * added by Max Thrun <bear24rw@gmail.com>
15 * PS3 Eye camera - FPS range extended by Joseph Howse
16 * <josephhowse@nummist.com> http://nummist.com
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #define MODULE_NAME "ov534"
36
37 #include "gspca.h"
38
39 #include <linux/fixp-arith.h>
40 #include <media/v4l2-ctrls.h>
41
42 #define OV534_REG_ADDRESS 0xf1 /* sensor address */
43 #define OV534_REG_SUBADDR 0xf2
44 #define OV534_REG_WRITE 0xf3
45 #define OV534_REG_READ 0xf4
46 #define OV534_REG_OPERATION 0xf5
47 #define OV534_REG_STATUS 0xf6
48
49 #define OV534_OP_WRITE_3 0x37
50 #define OV534_OP_WRITE_2 0x33
51 #define OV534_OP_READ_2 0xf9
52
53 #define CTRL_TIMEOUT 500
54 #define DEFAULT_FRAME_RATE 30
55
56 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
57 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
58 MODULE_LICENSE("GPL");
59
60 /* specific webcam descriptor */
61 struct sd {
62 struct gspca_dev gspca_dev; /* !! must be the first item */
63
64 struct v4l2_ctrl_handler ctrl_handler;
65 struct v4l2_ctrl *hue;
66 struct v4l2_ctrl *saturation;
67 struct v4l2_ctrl *brightness;
68 struct v4l2_ctrl *contrast;
69 struct { /* gain control cluster */
70 struct v4l2_ctrl *autogain;
71 struct v4l2_ctrl *gain;
72 };
73 struct v4l2_ctrl *autowhitebalance;
74 struct { /* exposure control cluster */
75 struct v4l2_ctrl *autoexposure;
76 struct v4l2_ctrl *exposure;
77 };
78 struct v4l2_ctrl *sharpness;
79 struct v4l2_ctrl *hflip;
80 struct v4l2_ctrl *vflip;
81 struct v4l2_ctrl *plfreq;
82
83 __u32 last_pts;
84 u16 last_fid;
85 u8 frame_rate;
86
87 u8 sensor;
88 };
89 enum sensors {
90 SENSOR_OV767x,
91 SENSOR_OV772x,
92 NSENSORS
93 };
94
95 static int sd_start(struct gspca_dev *gspca_dev);
96 static void sd_stopN(struct gspca_dev *gspca_dev);
97
98
99 static const struct v4l2_pix_format ov772x_mode[] = {
100 {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
101 .bytesperline = 320 * 2,
102 .sizeimage = 320 * 240 * 2,
103 .colorspace = V4L2_COLORSPACE_SRGB,
104 .priv = 1},
105 {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
106 .bytesperline = 640 * 2,
107 .sizeimage = 640 * 480 * 2,
108 .colorspace = V4L2_COLORSPACE_SRGB,
109 .priv = 0},
110 };
111 static const struct v4l2_pix_format ov767x_mode[] = {
112 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
113 .bytesperline = 320,
114 .sizeimage = 320 * 240 * 3 / 8 + 590,
115 .colorspace = V4L2_COLORSPACE_JPEG},
116 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
117 .bytesperline = 640,
118 .sizeimage = 640 * 480 * 3 / 8 + 590,
119 .colorspace = V4L2_COLORSPACE_JPEG},
120 };
121
122 static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30};
123 static const u8 vga_rates[] = {60, 50, 40, 30, 15};
124
125 static const struct framerates ov772x_framerates[] = {
126 { /* 320x240 */
127 .rates = qvga_rates,
128 .nrates = ARRAY_SIZE(qvga_rates),
129 },
130 { /* 640x480 */
131 .rates = vga_rates,
132 .nrates = ARRAY_SIZE(vga_rates),
133 },
134 };
135
136 struct reg_array {
137 const u8 (*val)[2];
138 int len;
139 };
140
141 static const u8 bridge_init_767x[][2] = {
142 /* comments from the ms-win file apollo7670.set */
143 /* str1 */
144 {0xf1, 0x42},
145 {0x88, 0xf8},
146 {0x89, 0xff},
147 {0x76, 0x03},
148 {0x92, 0x03},
149 {0x95, 0x10},
150 {0xe2, 0x00},
151 {0xe7, 0x3e},
152 {0x8d, 0x1c},
153 {0x8e, 0x00},
154 {0x8f, 0x00},
155 {0x1f, 0x00},
156 {0xc3, 0xf9},
157 {0x89, 0xff},
158 {0x88, 0xf8},
159 {0x76, 0x03},
160 {0x92, 0x01},
161 {0x93, 0x18},
162 {0x1c, 0x00},
163 {0x1d, 0x48},
164 {0x1d, 0x00},
165 {0x1d, 0xff},
166 {0x1d, 0x02},
167 {0x1d, 0x58},
168 {0x1d, 0x00},
169 {0x1c, 0x0a},
170 {0x1d, 0x0a},
171 {0x1d, 0x0e},
172 {0xc0, 0x50}, /* HSize 640 */
173 {0xc1, 0x3c}, /* VSize 480 */
174 {0x34, 0x05}, /* enable Audio Suspend mode */
175 {0xc2, 0x0c}, /* Input YUV */
176 {0xc3, 0xf9}, /* enable PRE */
177 {0x34, 0x05}, /* enable Audio Suspend mode */
178 {0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */
179 {0x31, 0xf9}, /* enable 1.8V Suspend */
180 {0x35, 0x02}, /* turn on JPEG */
181 {0xd9, 0x10},
182 {0x25, 0x42}, /* GPIO[8]:Input */
183 {0x94, 0x11}, /* If the default setting is loaded when
184 * system boots up, this flag is closed here */
185 };
186 static const u8 sensor_init_767x[][2] = {
187 {0x12, 0x80},
188 {0x11, 0x03},
189 {0x3a, 0x04},
190 {0x12, 0x00},
191 {0x17, 0x13},
192 {0x18, 0x01},
193 {0x32, 0xb6},
194 {0x19, 0x02},
195 {0x1a, 0x7a},
196 {0x03, 0x0a},
197 {0x0c, 0x00},
198 {0x3e, 0x00},
199 {0x70, 0x3a},
200 {0x71, 0x35},
201 {0x72, 0x11},
202 {0x73, 0xf0},
203 {0xa2, 0x02},
204 {0x7a, 0x2a}, /* set Gamma=1.6 below */
205 {0x7b, 0x12},
206 {0x7c, 0x1d},
207 {0x7d, 0x2d},
208 {0x7e, 0x45},
209 {0x7f, 0x50},
210 {0x80, 0x59},
211 {0x81, 0x62},
212 {0x82, 0x6b},
213 {0x83, 0x73},
214 {0x84, 0x7b},
215 {0x85, 0x8a},
216 {0x86, 0x98},
217 {0x87, 0xb2},
218 {0x88, 0xca},
219 {0x89, 0xe0},
220 {0x13, 0xe0},
221 {0x00, 0x00},
222 {0x10, 0x00},
223 {0x0d, 0x40},
224 {0x14, 0x38}, /* gain max 16x */
225 {0xa5, 0x05},
226 {0xab, 0x07},
227 {0x24, 0x95},
228 {0x25, 0x33},
229 {0x26, 0xe3},
230 {0x9f, 0x78},
231 {0xa0, 0x68},
232 {0xa1, 0x03},
233 {0xa6, 0xd8},
234 {0xa7, 0xd8},
235 {0xa8, 0xf0},
236 {0xa9, 0x90},
237 {0xaa, 0x94},
238 {0x13, 0xe5},
239 {0x0e, 0x61},
240 {0x0f, 0x4b},
241 {0x16, 0x02},
242 {0x21, 0x02},
243 {0x22, 0x91},
244 {0x29, 0x07},
245 {0x33, 0x0b},
246 {0x35, 0x0b},
247 {0x37, 0x1d},
248 {0x38, 0x71},
249 {0x39, 0x2a},
250 {0x3c, 0x78},
251 {0x4d, 0x40},
252 {0x4e, 0x20},
253 {0x69, 0x00},
254 {0x6b, 0x4a},
255 {0x74, 0x10},
256 {0x8d, 0x4f},
257 {0x8e, 0x00},
258 {0x8f, 0x00},
259 {0x90, 0x00},
260 {0x91, 0x00},
261 {0x96, 0x00},
262 {0x9a, 0x80},
263 {0xb0, 0x84},
264 {0xb1, 0x0c},
265 {0xb2, 0x0e},
266 {0xb3, 0x82},
267 {0xb8, 0x0a},
268 {0x43, 0x0a},
269 {0x44, 0xf0},
270 {0x45, 0x34},
271 {0x46, 0x58},
272 {0x47, 0x28},
273 {0x48, 0x3a},
274 {0x59, 0x88},
275 {0x5a, 0x88},
276 {0x5b, 0x44},
277 {0x5c, 0x67},
278 {0x5d, 0x49},
279 {0x5e, 0x0e},
280 {0x6c, 0x0a},
281 {0x6d, 0x55},
282 {0x6e, 0x11},
283 {0x6f, 0x9f},
284 {0x6a, 0x40},
285 {0x01, 0x40},
286 {0x02, 0x40},
287 {0x13, 0xe7},
288 {0x4f, 0x80},
289 {0x50, 0x80},
290 {0x51, 0x00},
291 {0x52, 0x22},
292 {0x53, 0x5e},
293 {0x54, 0x80},
294 {0x58, 0x9e},
295 {0x41, 0x08},
296 {0x3f, 0x00},
297 {0x75, 0x04},
298 {0x76, 0xe1},
299 {0x4c, 0x00},
300 {0x77, 0x01},
301 {0x3d, 0xc2},
302 {0x4b, 0x09},
303 {0xc9, 0x60},
304 {0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */
305 {0x56, 0x40},
306 {0x34, 0x11},
307 {0x3b, 0xc2},
308 {0xa4, 0x8a}, /* Night mode trigger point */
309 {0x96, 0x00},
310 {0x97, 0x30},
311 {0x98, 0x20},
312 {0x99, 0x20},
313 {0x9a, 0x84},
314 {0x9b, 0x29},
315 {0x9c, 0x03},
316 {0x9d, 0x4c},
317 {0x9e, 0x3f},
318 {0x78, 0x04},
319 {0x79, 0x01},
320 {0xc8, 0xf0},
321 {0x79, 0x0f},
322 {0xc8, 0x00},
323 {0x79, 0x10},
324 {0xc8, 0x7e},
325 {0x79, 0x0a},
326 {0xc8, 0x80},
327 {0x79, 0x0b},
328 {0xc8, 0x01},
329 {0x79, 0x0c},
330 {0xc8, 0x0f},
331 {0x79, 0x0d},
332 {0xc8, 0x20},
333 {0x79, 0x09},
334 {0xc8, 0x80},
335 {0x79, 0x02},
336 {0xc8, 0xc0},
337 {0x79, 0x03},
338 {0xc8, 0x20},
339 {0x79, 0x26},
340 };
341 static const u8 bridge_start_vga_767x[][2] = {
342 /* str59 JPG */
343 {0x94, 0xaa},
344 {0xf1, 0x42},
345 {0xe5, 0x04},
346 {0xc0, 0x50},
347 {0xc1, 0x3c},
348 {0xc2, 0x0c},
349 {0x35, 0x02}, /* turn on JPEG */
350 {0xd9, 0x10},
351 {0xda, 0x00}, /* for higher clock rate(30fps) */
352 {0x34, 0x05}, /* enable Audio Suspend mode */
353 {0xc3, 0xf9}, /* enable PRE */
354 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
355 {0x8d, 0x1c}, /* output YUV */
356 /* {0x34, 0x05}, * enable Audio Suspend mode (?) */
357 {0x50, 0x00}, /* H/V divider=0 */
358 {0x51, 0xa0}, /* input H=640/4 */
359 {0x52, 0x3c}, /* input V=480/4 */
360 {0x53, 0x00}, /* offset X=0 */
361 {0x54, 0x00}, /* offset Y=0 */
362 {0x55, 0x00}, /* H/V size[8]=0 */
363 {0x57, 0x00}, /* H-size[9]=0 */
364 {0x5c, 0x00}, /* output size[9:8]=0 */
365 {0x5a, 0xa0}, /* output H=640/4 */
366 {0x5b, 0x78}, /* output V=480/4 */
367 {0x1c, 0x0a},
368 {0x1d, 0x0a},
369 {0x94, 0x11},
370 };
371 static const u8 sensor_start_vga_767x[][2] = {
372 {0x11, 0x01},
373 {0x1e, 0x04},
374 {0x19, 0x02},
375 {0x1a, 0x7a},
376 };
377 static const u8 bridge_start_qvga_767x[][2] = {
378 /* str86 JPG */
379 {0x94, 0xaa},
380 {0xf1, 0x42},
381 {0xe5, 0x04},
382 {0xc0, 0x80},
383 {0xc1, 0x60},
384 {0xc2, 0x0c},
385 {0x35, 0x02}, /* turn on JPEG */
386 {0xd9, 0x10},
387 {0xc0, 0x50}, /* CIF HSize 640 */
388 {0xc1, 0x3c}, /* CIF VSize 480 */
389 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
390 {0x8d, 0x1c}, /* output YUV */
391 {0x34, 0x05}, /* enable Audio Suspend mode */
392 {0xc2, 0x4c}, /* output YUV and Enable DCW */
393 {0xc3, 0xf9}, /* enable PRE */
394 {0x1c, 0x00}, /* indirect addressing */
395 {0x1d, 0x48}, /* output YUV422 */
396 {0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */
397 {0x51, 0xa0}, /* DCW input H=640/4 */
398 {0x52, 0x78}, /* DCW input V=480/4 */
399 {0x53, 0x00}, /* offset X=0 */
400 {0x54, 0x00}, /* offset Y=0 */
401 {0x55, 0x00}, /* H/V size[8]=0 */
402 {0x57, 0x00}, /* H-size[9]=0 */
403 {0x5c, 0x00}, /* DCW output size[9:8]=0 */
404 {0x5a, 0x50}, /* DCW output H=320/4 */
405 {0x5b, 0x3c}, /* DCW output V=240/4 */
406 {0x1c, 0x0a},
407 {0x1d, 0x0a},
408 {0x94, 0x11},
409 };
410 static const u8 sensor_start_qvga_767x[][2] = {
411 {0x11, 0x01},
412 {0x1e, 0x04},
413 {0x19, 0x02},
414 {0x1a, 0x7a},
415 };
416
417 static const u8 bridge_init_772x[][2] = {
418 { 0xc2, 0x0c },
419 { 0x88, 0xf8 },
420 { 0xc3, 0x69 },
421 { 0x89, 0xff },
422 { 0x76, 0x03 },
423 { 0x92, 0x01 },
424 { 0x93, 0x18 },
425 { 0x94, 0x10 },
426 { 0x95, 0x10 },
427 { 0xe2, 0x00 },
428 { 0xe7, 0x3e },
429
430 { 0x96, 0x00 },
431
432 { 0x97, 0x20 },
433 { 0x97, 0x20 },
434 { 0x97, 0x20 },
435 { 0x97, 0x0a },
436 { 0x97, 0x3f },
437 { 0x97, 0x4a },
438 { 0x97, 0x20 },
439 { 0x97, 0x15 },
440 { 0x97, 0x0b },
441
442 { 0x8e, 0x40 },
443 { 0x1f, 0x81 },
444 { 0x34, 0x05 },
445 { 0xe3, 0x04 },
446 { 0x88, 0x00 },
447 { 0x89, 0x00 },
448 { 0x76, 0x00 },
449 { 0xe7, 0x2e },
450 { 0x31, 0xf9 },
451 { 0x25, 0x42 },
452 { 0x21, 0xf0 },
453
454 { 0x1c, 0x00 },
455 { 0x1d, 0x40 },
456 { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */
457 { 0x1d, 0x00 }, /* payload size */
458
459 { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */
460 { 0x1d, 0x58 }, /* frame size */
461 { 0x1d, 0x00 }, /* frame size */
462
463 { 0x1c, 0x0a },
464 { 0x1d, 0x08 }, /* turn on UVC header */
465 { 0x1d, 0x0e }, /* .. */
466
467 { 0x8d, 0x1c },
468 { 0x8e, 0x80 },
469 { 0xe5, 0x04 },
470
471 { 0xc0, 0x50 },
472 { 0xc1, 0x3c },
473 { 0xc2, 0x0c },
474 };
475 static const u8 sensor_init_772x[][2] = {
476 { 0x12, 0x80 },
477 { 0x11, 0x01 },
478 /*fixme: better have a delay?*/
479 { 0x11, 0x01 },
480 { 0x11, 0x01 },
481 { 0x11, 0x01 },
482 { 0x11, 0x01 },
483 { 0x11, 0x01 },
484 { 0x11, 0x01 },
485 { 0x11, 0x01 },
486 { 0x11, 0x01 },
487 { 0x11, 0x01 },
488 { 0x11, 0x01 },
489
490 { 0x3d, 0x03 },
491 { 0x17, 0x26 },
492 { 0x18, 0xa0 },
493 { 0x19, 0x07 },
494 { 0x1a, 0xf0 },
495 { 0x32, 0x00 },
496 { 0x29, 0xa0 },
497 { 0x2c, 0xf0 },
498 { 0x65, 0x20 },
499 { 0x11, 0x01 },
500 { 0x42, 0x7f },
501 { 0x63, 0xaa }, /* AWB - was e0 */
502 { 0x64, 0xff },
503 { 0x66, 0x00 },
504 { 0x13, 0xf0 }, /* com8 */
505 { 0x0d, 0x41 },
506 { 0x0f, 0xc5 },
507 { 0x14, 0x11 },
508
509 { 0x22, 0x7f },
510 { 0x23, 0x03 },
511 { 0x24, 0x40 },
512 { 0x25, 0x30 },
513 { 0x26, 0xa1 },
514 { 0x2a, 0x00 },
515 { 0x2b, 0x00 },
516 { 0x6b, 0xaa },
517 { 0x13, 0xff }, /* AWB */
518
519 { 0x90, 0x05 },
520 { 0x91, 0x01 },
521 { 0x92, 0x03 },
522 { 0x93, 0x00 },
523 { 0x94, 0x60 },
524 { 0x95, 0x3c },
525 { 0x96, 0x24 },
526 { 0x97, 0x1e },
527 { 0x98, 0x62 },
528 { 0x99, 0x80 },
529 { 0x9a, 0x1e },
530 { 0x9b, 0x08 },
531 { 0x9c, 0x20 },
532 { 0x9e, 0x81 },
533
534 { 0xa6, 0x07 },
535 { 0x7e, 0x0c },
536 { 0x7f, 0x16 },
537 { 0x80, 0x2a },
538 { 0x81, 0x4e },
539 { 0x82, 0x61 },
540 { 0x83, 0x6f },
541 { 0x84, 0x7b },
542 { 0x85, 0x86 },
543 { 0x86, 0x8e },
544 { 0x87, 0x97 },
545 { 0x88, 0xa4 },
546 { 0x89, 0xaf },
547 { 0x8a, 0xc5 },
548 { 0x8b, 0xd7 },
549 { 0x8c, 0xe8 },
550 { 0x8d, 0x20 },
551
552 { 0x0c, 0x90 },
553
554 { 0x2b, 0x00 },
555 { 0x22, 0x7f },
556 { 0x23, 0x03 },
557 { 0x11, 0x01 },
558 { 0x0c, 0xd0 },
559 { 0x64, 0xff },
560 { 0x0d, 0x41 },
561
562 { 0x14, 0x41 },
563 { 0x0e, 0xcd },
564 { 0xac, 0xbf },
565 { 0x8e, 0x00 }, /* De-noise threshold */
566 { 0x0c, 0xd0 }
567 };
568 static const u8 bridge_start_vga_772x[][2] = {
569 {0x1c, 0x00},
570 {0x1d, 0x40},
571 {0x1d, 0x02},
572 {0x1d, 0x00},
573 {0x1d, 0x02},
574 {0x1d, 0x58},
575 {0x1d, 0x00},
576 {0xc0, 0x50},
577 {0xc1, 0x3c},
578 };
579 static const u8 sensor_start_vga_772x[][2] = {
580 {0x12, 0x00},
581 {0x17, 0x26},
582 {0x18, 0xa0},
583 {0x19, 0x07},
584 {0x1a, 0xf0},
585 {0x29, 0xa0},
586 {0x2c, 0xf0},
587 {0x65, 0x20},
588 };
589 static const u8 bridge_start_qvga_772x[][2] = {
590 {0x1c, 0x00},
591 {0x1d, 0x40},
592 {0x1d, 0x02},
593 {0x1d, 0x00},
594 {0x1d, 0x01},
595 {0x1d, 0x4b},
596 {0x1d, 0x00},
597 {0xc0, 0x28},
598 {0xc1, 0x1e},
599 };
600 static const u8 sensor_start_qvga_772x[][2] = {
601 {0x12, 0x40},
602 {0x17, 0x3f},
603 {0x18, 0x50},
604 {0x19, 0x03},
605 {0x1a, 0x78},
606 {0x29, 0x50},
607 {0x2c, 0x78},
608 {0x65, 0x2f},
609 };
610
611 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
612 {
613 struct usb_device *udev = gspca_dev->dev;
614 int ret;
615
616 if (gspca_dev->usb_err < 0)
617 return;
618
619 PDEBUG(D_USBO, "SET 01 0000 %04x %02x", reg, val);
620 gspca_dev->usb_buf[0] = val;
621 ret = usb_control_msg(udev,
622 usb_sndctrlpipe(udev, 0),
623 0x01,
624 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
625 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
626 if (ret < 0) {
627 pr_err("write failed %d\n", ret);
628 gspca_dev->usb_err = ret;
629 }
630 }
631
632 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
633 {
634 struct usb_device *udev = gspca_dev->dev;
635 int ret;
636
637 if (gspca_dev->usb_err < 0)
638 return 0;
639 ret = usb_control_msg(udev,
640 usb_rcvctrlpipe(udev, 0),
641 0x01,
642 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
643 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
644 PDEBUG(D_USBI, "GET 01 0000 %04x %02x", reg, gspca_dev->usb_buf[0]);
645 if (ret < 0) {
646 pr_err("read failed %d\n", ret);
647 gspca_dev->usb_err = ret;
648 }
649 return gspca_dev->usb_buf[0];
650 }
651
652 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
653 * (direction and output)? */
654 static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
655 {
656 u8 data;
657
658 PDEBUG(D_CONF, "led status: %d", status);
659
660 data = ov534_reg_read(gspca_dev, 0x21);
661 data |= 0x80;
662 ov534_reg_write(gspca_dev, 0x21, data);
663
664 data = ov534_reg_read(gspca_dev, 0x23);
665 if (status)
666 data |= 0x80;
667 else
668 data &= ~0x80;
669
670 ov534_reg_write(gspca_dev, 0x23, data);
671
672 if (!status) {
673 data = ov534_reg_read(gspca_dev, 0x21);
674 data &= ~0x80;
675 ov534_reg_write(gspca_dev, 0x21, data);
676 }
677 }
678
679 static int sccb_check_status(struct gspca_dev *gspca_dev)
680 {
681 u8 data;
682 int i;
683
684 for (i = 0; i < 5; i++) {
685 msleep(10);
686 data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
687
688 switch (data) {
689 case 0x00:
690 return 1;
691 case 0x04:
692 return 0;
693 case 0x03:
694 break;
695 default:
696 PERR("sccb status 0x%02x, attempt %d/5",
697 data, i + 1);
698 }
699 }
700 return 0;
701 }
702
703 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
704 {
705 PDEBUG(D_USBO, "sccb write: %02x %02x", reg, val);
706 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
707 ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
708 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
709
710 if (!sccb_check_status(gspca_dev)) {
711 pr_err("sccb_reg_write failed\n");
712 gspca_dev->usb_err = -EIO;
713 }
714 }
715
716 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
717 {
718 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
719 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
720 if (!sccb_check_status(gspca_dev))
721 pr_err("sccb_reg_read failed 1\n");
722
723 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
724 if (!sccb_check_status(gspca_dev))
725 pr_err("sccb_reg_read failed 2\n");
726
727 return ov534_reg_read(gspca_dev, OV534_REG_READ);
728 }
729
730 /* output a bridge sequence (reg - val) */
731 static void reg_w_array(struct gspca_dev *gspca_dev,
732 const u8 (*data)[2], int len)
733 {
734 while (--len >= 0) {
735 ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
736 data++;
737 }
738 }
739
740 /* output a sensor sequence (reg - val) */
741 static void sccb_w_array(struct gspca_dev *gspca_dev,
742 const u8 (*data)[2], int len)
743 {
744 while (--len >= 0) {
745 if ((*data)[0] != 0xff) {
746 sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
747 } else {
748 sccb_reg_read(gspca_dev, (*data)[1]);
749 sccb_reg_write(gspca_dev, 0xff, 0x00);
750 }
751 data++;
752 }
753 }
754
755 /* ov772x specific controls */
756 static void set_frame_rate(struct gspca_dev *gspca_dev)
757 {
758 struct sd *sd = (struct sd *) gspca_dev;
759 int i;
760 struct rate_s {
761 u8 fps;
762 u8 r11;
763 u8 r0d;
764 u8 re5;
765 };
766 const struct rate_s *r;
767 static const struct rate_s rate_0[] = { /* 640x480 */
768 {60, 0x01, 0xc1, 0x04},
769 {50, 0x01, 0x41, 0x02},
770 {40, 0x02, 0xc1, 0x04},
771 {30, 0x04, 0x81, 0x02},
772 {15, 0x03, 0x41, 0x04},
773 };
774 static const struct rate_s rate_1[] = { /* 320x240 */
775 /* {205, 0x01, 0xc1, 0x02}, * 205 FPS: video is partly corrupt */
776 {187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */
777 {150, 0x01, 0xc1, 0x04},
778 {137, 0x02, 0xc1, 0x02},
779 {125, 0x02, 0x81, 0x02},
780 {100, 0x02, 0xc1, 0x04},
781 {75, 0x03, 0xc1, 0x04},
782 {60, 0x04, 0xc1, 0x04},
783 {50, 0x02, 0x41, 0x04},
784 {37, 0x03, 0x41, 0x04},
785 {30, 0x04, 0x41, 0x04},
786 };
787
788 if (sd->sensor != SENSOR_OV772x)
789 return;
790 if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
791 r = rate_0;
792 i = ARRAY_SIZE(rate_0);
793 } else {
794 r = rate_1;
795 i = ARRAY_SIZE(rate_1);
796 }
797 while (--i > 0) {
798 if (sd->frame_rate >= r->fps)
799 break;
800 r++;
801 }
802
803 sccb_reg_write(gspca_dev, 0x11, r->r11);
804 sccb_reg_write(gspca_dev, 0x0d, r->r0d);
805 ov534_reg_write(gspca_dev, 0xe5, r->re5);
806
807 PDEBUG(D_PROBE, "frame_rate: %d", r->fps);
808 }
809
810 static void sethue(struct gspca_dev *gspca_dev, s32 val)
811 {
812 struct sd *sd = (struct sd *) gspca_dev;
813
814 if (sd->sensor == SENSOR_OV767x) {
815 /* TBD */
816 } else {
817 s16 huesin;
818 s16 huecos;
819
820 /* According to the datasheet the registers expect HUESIN and
821 * HUECOS to be the result of the trigonometric functions,
822 * scaled by 0x80.
823 *
824 * The 0x7fff here represents the maximum absolute value
825 * returned byt fixp_sin and fixp_cos, so the scaling will
826 * consider the result like in the interval [-1.0, 1.0].
827 */
828 huesin = fixp_sin16(val) * 0x80 / 0x7fff;
829 huecos = fixp_cos16(val) * 0x80 / 0x7fff;
830
831 if (huesin < 0) {
832 sccb_reg_write(gspca_dev, 0xab,
833 sccb_reg_read(gspca_dev, 0xab) | 0x2);
834 huesin = -huesin;
835 } else {
836 sccb_reg_write(gspca_dev, 0xab,
837 sccb_reg_read(gspca_dev, 0xab) & ~0x2);
838
839 }
840 sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
841 sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
842 }
843 }
844
845 static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
846 {
847 struct sd *sd = (struct sd *) gspca_dev;
848
849 if (sd->sensor == SENSOR_OV767x) {
850 int i;
851 static u8 color_tb[][6] = {
852 {0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
853 {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
854 {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
855 {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
856 {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
857 {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
858 {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
859 };
860
861 for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
862 sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
863 } else {
864 sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
865 sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
866 }
867 }
868
869 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
870 {
871 struct sd *sd = (struct sd *) gspca_dev;
872
873 if (sd->sensor == SENSOR_OV767x) {
874 if (val < 0)
875 val = 0x80 - val;
876 sccb_reg_write(gspca_dev, 0x55, val); /* bright */
877 } else {
878 sccb_reg_write(gspca_dev, 0x9b, val);
879 }
880 }
881
882 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
883 {
884 struct sd *sd = (struct sd *) gspca_dev;
885
886 if (sd->sensor == SENSOR_OV767x)
887 sccb_reg_write(gspca_dev, 0x56, val); /* contras */
888 else
889 sccb_reg_write(gspca_dev, 0x9c, val);
890 }
891
892 static void setgain(struct gspca_dev *gspca_dev, s32 val)
893 {
894 switch (val & 0x30) {
895 case 0x00:
896 val &= 0x0f;
897 break;
898 case 0x10:
899 val &= 0x0f;
900 val |= 0x30;
901 break;
902 case 0x20:
903 val &= 0x0f;
904 val |= 0x70;
905 break;
906 default:
907 /* case 0x30: */
908 val &= 0x0f;
909 val |= 0xf0;
910 break;
911 }
912 sccb_reg_write(gspca_dev, 0x00, val);
913 }
914
915 static s32 getgain(struct gspca_dev *gspca_dev)
916 {
917 return sccb_reg_read(gspca_dev, 0x00);
918 }
919
920 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
921 {
922 struct sd *sd = (struct sd *) gspca_dev;
923
924 if (sd->sensor == SENSOR_OV767x) {
925
926 /* set only aec[9:2] */
927 sccb_reg_write(gspca_dev, 0x10, val); /* aech */
928 } else {
929
930 /* 'val' is one byte and represents half of the exposure value
931 * we are going to set into registers, a two bytes value:
932 *
933 * MSB: ((u16) val << 1) >> 8 == val >> 7
934 * LSB: ((u16) val << 1) & 0xff == val << 1
935 */
936 sccb_reg_write(gspca_dev, 0x08, val >> 7);
937 sccb_reg_write(gspca_dev, 0x10, val << 1);
938 }
939 }
940
941 static s32 getexposure(struct gspca_dev *gspca_dev)
942 {
943 struct sd *sd = (struct sd *) gspca_dev;
944
945 if (sd->sensor == SENSOR_OV767x) {
946 /* get only aec[9:2] */
947 return sccb_reg_read(gspca_dev, 0x10); /* aech */
948 } else {
949 u8 hi = sccb_reg_read(gspca_dev, 0x08);
950 u8 lo = sccb_reg_read(gspca_dev, 0x10);
951 return (hi << 8 | lo) >> 1;
952 }
953 }
954
955 static void setagc(struct gspca_dev *gspca_dev, s32 val)
956 {
957 if (val) {
958 sccb_reg_write(gspca_dev, 0x13,
959 sccb_reg_read(gspca_dev, 0x13) | 0x04);
960 sccb_reg_write(gspca_dev, 0x64,
961 sccb_reg_read(gspca_dev, 0x64) | 0x03);
962 } else {
963 sccb_reg_write(gspca_dev, 0x13,
964 sccb_reg_read(gspca_dev, 0x13) & ~0x04);
965 sccb_reg_write(gspca_dev, 0x64,
966 sccb_reg_read(gspca_dev, 0x64) & ~0x03);
967 }
968 }
969
970 static void setawb(struct gspca_dev *gspca_dev, s32 val)
971 {
972 struct sd *sd = (struct sd *) gspca_dev;
973
974 if (val) {
975 sccb_reg_write(gspca_dev, 0x13,
976 sccb_reg_read(gspca_dev, 0x13) | 0x02);
977 if (sd->sensor == SENSOR_OV772x)
978 sccb_reg_write(gspca_dev, 0x63,
979 sccb_reg_read(gspca_dev, 0x63) | 0xc0);
980 } else {
981 sccb_reg_write(gspca_dev, 0x13,
982 sccb_reg_read(gspca_dev, 0x13) & ~0x02);
983 if (sd->sensor == SENSOR_OV772x)
984 sccb_reg_write(gspca_dev, 0x63,
985 sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
986 }
987 }
988
989 static void setaec(struct gspca_dev *gspca_dev, s32 val)
990 {
991 struct sd *sd = (struct sd *) gspca_dev;
992 u8 data;
993
994 data = sd->sensor == SENSOR_OV767x ?
995 0x05 : /* agc + aec */
996 0x01; /* agc */
997 switch (val) {
998 case V4L2_EXPOSURE_AUTO:
999 sccb_reg_write(gspca_dev, 0x13,
1000 sccb_reg_read(gspca_dev, 0x13) | data);
1001 break;
1002 case V4L2_EXPOSURE_MANUAL:
1003 sccb_reg_write(gspca_dev, 0x13,
1004 sccb_reg_read(gspca_dev, 0x13) & ~data);
1005 break;
1006 }
1007 }
1008
1009 static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
1010 {
1011 sccb_reg_write(gspca_dev, 0x91, val); /* Auto de-noise threshold */
1012 sccb_reg_write(gspca_dev, 0x8e, val); /* De-noise threshold */
1013 }
1014
1015 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
1016 {
1017 struct sd *sd = (struct sd *) gspca_dev;
1018 u8 val;
1019
1020 if (sd->sensor == SENSOR_OV767x) {
1021 val = sccb_reg_read(gspca_dev, 0x1e); /* mvfp */
1022 val &= ~0x30;
1023 if (hflip)
1024 val |= 0x20;
1025 if (vflip)
1026 val |= 0x10;
1027 sccb_reg_write(gspca_dev, 0x1e, val);
1028 } else {
1029 val = sccb_reg_read(gspca_dev, 0x0c);
1030 val &= ~0xc0;
1031 if (hflip == 0)
1032 val |= 0x40;
1033 if (vflip == 0)
1034 val |= 0x80;
1035 sccb_reg_write(gspca_dev, 0x0c, val);
1036 }
1037 }
1038
1039 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
1040 {
1041 struct sd *sd = (struct sd *) gspca_dev;
1042
1043 val = val ? 0x9e : 0x00;
1044 if (sd->sensor == SENSOR_OV767x) {
1045 sccb_reg_write(gspca_dev, 0x2a, 0x00);
1046 if (val)
1047 val = 0x9d; /* insert dummy to 25fps for 50Hz */
1048 }
1049 sccb_reg_write(gspca_dev, 0x2b, val);
1050 }
1051
1052
1053 /* this function is called at probe time */
1054 static int sd_config(struct gspca_dev *gspca_dev,
1055 const struct usb_device_id *id)
1056 {
1057 struct sd *sd = (struct sd *) gspca_dev;
1058 struct cam *cam;
1059
1060 cam = &gspca_dev->cam;
1061
1062 cam->cam_mode = ov772x_mode;
1063 cam->nmodes = ARRAY_SIZE(ov772x_mode);
1064
1065 sd->frame_rate = DEFAULT_FRAME_RATE;
1066
1067 return 0;
1068 }
1069
1070 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1071 {
1072 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1073 struct gspca_dev *gspca_dev = &sd->gspca_dev;
1074
1075 switch (ctrl->id) {
1076 case V4L2_CID_AUTOGAIN:
1077 gspca_dev->usb_err = 0;
1078 if (ctrl->val && sd->gain && gspca_dev->streaming)
1079 sd->gain->val = getgain(gspca_dev);
1080 return gspca_dev->usb_err;
1081
1082 case V4L2_CID_EXPOSURE_AUTO:
1083 gspca_dev->usb_err = 0;
1084 if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
1085 gspca_dev->streaming)
1086 sd->exposure->val = getexposure(gspca_dev);
1087 return gspca_dev->usb_err;
1088 }
1089 return -EINVAL;
1090 }
1091
1092 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
1093 {
1094 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1095 struct gspca_dev *gspca_dev = &sd->gspca_dev;
1096
1097 gspca_dev->usb_err = 0;
1098 if (!gspca_dev->streaming)
1099 return 0;
1100
1101 switch (ctrl->id) {
1102 case V4L2_CID_HUE:
1103 sethue(gspca_dev, ctrl->val);
1104 break;
1105 case V4L2_CID_SATURATION:
1106 setsaturation(gspca_dev, ctrl->val);
1107 break;
1108 case V4L2_CID_BRIGHTNESS:
1109 setbrightness(gspca_dev, ctrl->val);
1110 break;
1111 case V4L2_CID_CONTRAST:
1112 setcontrast(gspca_dev, ctrl->val);
1113 break;
1114 case V4L2_CID_AUTOGAIN:
1115 /* case V4L2_CID_GAIN: */
1116 setagc(gspca_dev, ctrl->val);
1117 if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
1118 setgain(gspca_dev, sd->gain->val);
1119 break;
1120 case V4L2_CID_AUTO_WHITE_BALANCE:
1121 setawb(gspca_dev, ctrl->val);
1122 break;
1123 case V4L2_CID_EXPOSURE_AUTO:
1124 /* case V4L2_CID_EXPOSURE: */
1125 setaec(gspca_dev, ctrl->val);
1126 if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
1127 sd->exposure)
1128 setexposure(gspca_dev, sd->exposure->val);
1129 break;
1130 case V4L2_CID_SHARPNESS:
1131 setsharpness(gspca_dev, ctrl->val);
1132 break;
1133 case V4L2_CID_HFLIP:
1134 sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
1135 break;
1136 case V4L2_CID_VFLIP:
1137 sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
1138 break;
1139 case V4L2_CID_POWER_LINE_FREQUENCY:
1140 setlightfreq(gspca_dev, ctrl->val);
1141 break;
1142 }
1143 return gspca_dev->usb_err;
1144 }
1145
1146 static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
1147 .g_volatile_ctrl = ov534_g_volatile_ctrl,
1148 .s_ctrl = ov534_s_ctrl,
1149 };
1150
1151 static int sd_init_controls(struct gspca_dev *gspca_dev)
1152 {
1153 struct sd *sd = (struct sd *) gspca_dev;
1154 struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
1155 /* parameters with different values between the supported sensors */
1156 int saturation_min;
1157 int saturation_max;
1158 int saturation_def;
1159 int brightness_min;
1160 int brightness_max;
1161 int brightness_def;
1162 int contrast_max;
1163 int contrast_def;
1164 int exposure_min;
1165 int exposure_max;
1166 int exposure_def;
1167 int hflip_def;
1168
1169 if (sd->sensor == SENSOR_OV767x) {
1170 saturation_min = 0,
1171 saturation_max = 6,
1172 saturation_def = 3,
1173 brightness_min = -127;
1174 brightness_max = 127;
1175 brightness_def = 0;
1176 contrast_max = 0x80;
1177 contrast_def = 0x40;
1178 exposure_min = 0x08;
1179 exposure_max = 0x60;
1180 exposure_def = 0x13;
1181 hflip_def = 1;
1182 } else {
1183 saturation_min = 0,
1184 saturation_max = 255,
1185 saturation_def = 64,
1186 brightness_min = 0;
1187 brightness_max = 255;
1188 brightness_def = 0;
1189 contrast_max = 255;
1190 contrast_def = 32;
1191 exposure_min = 0;
1192 exposure_max = 255;
1193 exposure_def = 120;
1194 hflip_def = 0;
1195 }
1196
1197 gspca_dev->vdev.ctrl_handler = hdl;
1198
1199 v4l2_ctrl_handler_init(hdl, 13);
1200
1201 if (sd->sensor == SENSOR_OV772x)
1202 sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1203 V4L2_CID_HUE, -90, 90, 1, 0);
1204
1205 sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1206 V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
1207 saturation_def);
1208 sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1209 V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
1210 brightness_def);
1211 sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1212 V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
1213
1214 if (sd->sensor == SENSOR_OV772x) {
1215 sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1216 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1217 sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1218 V4L2_CID_GAIN, 0, 63, 1, 20);
1219 }
1220
1221 sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1222 V4L2_CID_EXPOSURE_AUTO,
1223 V4L2_EXPOSURE_MANUAL, 0,
1224 V4L2_EXPOSURE_AUTO);
1225 sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1226 V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
1227 exposure_def);
1228
1229 sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1230 V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
1231
1232 if (sd->sensor == SENSOR_OV772x)
1233 sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1234 V4L2_CID_SHARPNESS, 0, 63, 1, 0);
1235
1236 sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1237 V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
1238 sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1239 V4L2_CID_VFLIP, 0, 1, 1, 0);
1240 sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1241 V4L2_CID_POWER_LINE_FREQUENCY,
1242 V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
1243 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1244
1245 if (hdl->error) {
1246 pr_err("Could not initialize controls\n");
1247 return hdl->error;
1248 }
1249
1250 if (sd->sensor == SENSOR_OV772x)
1251 v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
1252
1253 v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
1254 true);
1255
1256 return 0;
1257 }
1258
1259 /* this function is called at probe and resume time */
1260 static int sd_init(struct gspca_dev *gspca_dev)
1261 {
1262 struct sd *sd = (struct sd *) gspca_dev;
1263 u16 sensor_id;
1264 static const struct reg_array bridge_init[NSENSORS] = {
1265 [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1266 [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1267 };
1268 static const struct reg_array sensor_init[NSENSORS] = {
1269 [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1270 [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1271 };
1272
1273 /* reset bridge */
1274 ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1275 ov534_reg_write(gspca_dev, 0xe0, 0x08);
1276 msleep(100);
1277
1278 /* initialize the sensor address */
1279 ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1280
1281 /* reset sensor */
1282 sccb_reg_write(gspca_dev, 0x12, 0x80);
1283 msleep(10);
1284
1285 /* probe the sensor */
1286 sccb_reg_read(gspca_dev, 0x0a);
1287 sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1288 sccb_reg_read(gspca_dev, 0x0b);
1289 sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1290 PDEBUG(D_PROBE, "Sensor ID: %04x", sensor_id);
1291
1292 if ((sensor_id & 0xfff0) == 0x7670) {
1293 sd->sensor = SENSOR_OV767x;
1294 gspca_dev->cam.cam_mode = ov767x_mode;
1295 gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1296 } else {
1297 sd->sensor = SENSOR_OV772x;
1298 gspca_dev->cam.bulk = 1;
1299 gspca_dev->cam.bulk_size = 16384;
1300 gspca_dev->cam.bulk_nurbs = 2;
1301 gspca_dev->cam.mode_framerates = ov772x_framerates;
1302 }
1303
1304 /* initialize */
1305 reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1306 bridge_init[sd->sensor].len);
1307 ov534_set_led(gspca_dev, 1);
1308 sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1309 sensor_init[sd->sensor].len);
1310
1311 sd_stopN(gspca_dev);
1312 /* set_frame_rate(gspca_dev); */
1313
1314 return gspca_dev->usb_err;
1315 }
1316
1317 static int sd_start(struct gspca_dev *gspca_dev)
1318 {
1319 struct sd *sd = (struct sd *) gspca_dev;
1320 int mode;
1321 static const struct reg_array bridge_start[NSENSORS][2] = {
1322 [SENSOR_OV767x] = {{bridge_start_qvga_767x,
1323 ARRAY_SIZE(bridge_start_qvga_767x)},
1324 {bridge_start_vga_767x,
1325 ARRAY_SIZE(bridge_start_vga_767x)}},
1326 [SENSOR_OV772x] = {{bridge_start_qvga_772x,
1327 ARRAY_SIZE(bridge_start_qvga_772x)},
1328 {bridge_start_vga_772x,
1329 ARRAY_SIZE(bridge_start_vga_772x)}},
1330 };
1331 static const struct reg_array sensor_start[NSENSORS][2] = {
1332 [SENSOR_OV767x] = {{sensor_start_qvga_767x,
1333 ARRAY_SIZE(sensor_start_qvga_767x)},
1334 {sensor_start_vga_767x,
1335 ARRAY_SIZE(sensor_start_vga_767x)}},
1336 [SENSOR_OV772x] = {{sensor_start_qvga_772x,
1337 ARRAY_SIZE(sensor_start_qvga_772x)},
1338 {sensor_start_vga_772x,
1339 ARRAY_SIZE(sensor_start_vga_772x)}},
1340 };
1341
1342 /* (from ms-win trace) */
1343 if (sd->sensor == SENSOR_OV767x)
1344 sccb_reg_write(gspca_dev, 0x1e, 0x04);
1345 /* black sun enable ? */
1346
1347 mode = gspca_dev->curr_mode; /* 0: 320x240, 1: 640x480 */
1348 reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1349 bridge_start[sd->sensor][mode].len);
1350 sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1351 sensor_start[sd->sensor][mode].len);
1352
1353 set_frame_rate(gspca_dev);
1354
1355 if (sd->hue)
1356 sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
1357 setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
1358 if (sd->autogain)
1359 setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
1360 setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
1361 setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
1362 if (sd->gain)
1363 setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
1364 setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
1365 setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
1366 setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
1367 if (sd->sharpness)
1368 setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
1369 sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
1370 v4l2_ctrl_g_ctrl(sd->vflip));
1371 setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
1372
1373 ov534_set_led(gspca_dev, 1);
1374 ov534_reg_write(gspca_dev, 0xe0, 0x00);
1375 return gspca_dev->usb_err;
1376 }
1377
1378 static void sd_stopN(struct gspca_dev *gspca_dev)
1379 {
1380 ov534_reg_write(gspca_dev, 0xe0, 0x09);
1381 ov534_set_led(gspca_dev, 0);
1382 }
1383
1384 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1385 #define UVC_STREAM_EOH (1 << 7)
1386 #define UVC_STREAM_ERR (1 << 6)
1387 #define UVC_STREAM_STI (1 << 5)
1388 #define UVC_STREAM_RES (1 << 4)
1389 #define UVC_STREAM_SCR (1 << 3)
1390 #define UVC_STREAM_PTS (1 << 2)
1391 #define UVC_STREAM_EOF (1 << 1)
1392 #define UVC_STREAM_FID (1 << 0)
1393
1394 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1395 u8 *data, int len)
1396 {
1397 struct sd *sd = (struct sd *) gspca_dev;
1398 __u32 this_pts;
1399 u16 this_fid;
1400 int remaining_len = len;
1401 int payload_len;
1402
1403 payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1404 do {
1405 len = min(remaining_len, payload_len);
1406
1407 /* Payloads are prefixed with a UVC-style header. We
1408 consider a frame to start when the FID toggles, or the PTS
1409 changes. A frame ends when EOF is set, and we've received
1410 the correct number of bytes. */
1411
1412 /* Verify UVC header. Header length is always 12 */
1413 if (data[0] != 12 || len < 12) {
1414 PDEBUG(D_PACK, "bad header");
1415 goto discard;
1416 }
1417
1418 /* Check errors */
1419 if (data[1] & UVC_STREAM_ERR) {
1420 PDEBUG(D_PACK, "payload error");
1421 goto discard;
1422 }
1423
1424 /* Extract PTS and FID */
1425 if (!(data[1] & UVC_STREAM_PTS)) {
1426 PDEBUG(D_PACK, "PTS not present");
1427 goto discard;
1428 }
1429 this_pts = (data[5] << 24) | (data[4] << 16)
1430 | (data[3] << 8) | data[2];
1431 this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1432
1433 /* If PTS or FID has changed, start a new frame. */
1434 if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1435 if (gspca_dev->last_packet_type == INTER_PACKET)
1436 gspca_frame_add(gspca_dev, LAST_PACKET,
1437 NULL, 0);
1438 sd->last_pts = this_pts;
1439 sd->last_fid = this_fid;
1440 gspca_frame_add(gspca_dev, FIRST_PACKET,
1441 data + 12, len - 12);
1442 /* If this packet is marked as EOF, end the frame */
1443 } else if (data[1] & UVC_STREAM_EOF) {
1444 sd->last_pts = 0;
1445 if (gspca_dev->pixfmt.pixelformat == V4L2_PIX_FMT_YUYV
1446 && gspca_dev->image_len + len - 12 !=
1447 gspca_dev->pixfmt.width *
1448 gspca_dev->pixfmt.height * 2) {
1449 PDEBUG(D_PACK, "wrong sized frame");
1450 goto discard;
1451 }
1452 gspca_frame_add(gspca_dev, LAST_PACKET,
1453 data + 12, len - 12);
1454 } else {
1455
1456 /* Add the data from this payload */
1457 gspca_frame_add(gspca_dev, INTER_PACKET,
1458 data + 12, len - 12);
1459 }
1460
1461 /* Done this payload */
1462 goto scan_next;
1463
1464 discard:
1465 /* Discard data until a new frame starts. */
1466 gspca_dev->last_packet_type = DISCARD_PACKET;
1467
1468 scan_next:
1469 remaining_len -= len;
1470 data += len;
1471 } while (remaining_len > 0);
1472 }
1473
1474 /* get stream parameters (framerate) */
1475 static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1476 struct v4l2_streamparm *parm)
1477 {
1478 struct v4l2_captureparm *cp = &parm->parm.capture;
1479 struct v4l2_fract *tpf = &cp->timeperframe;
1480 struct sd *sd = (struct sd *) gspca_dev;
1481
1482 cp->capability |= V4L2_CAP_TIMEPERFRAME;
1483 tpf->numerator = 1;
1484 tpf->denominator = sd->frame_rate;
1485 }
1486
1487 /* set stream parameters (framerate) */
1488 static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1489 struct v4l2_streamparm *parm)
1490 {
1491 struct v4l2_captureparm *cp = &parm->parm.capture;
1492 struct v4l2_fract *tpf = &cp->timeperframe;
1493 struct sd *sd = (struct sd *) gspca_dev;
1494
1495 if (tpf->numerator == 0 || tpf->denominator == 0)
1496 sd->frame_rate = DEFAULT_FRAME_RATE;
1497 else
1498 sd->frame_rate = tpf->denominator / tpf->numerator;
1499
1500 if (gspca_dev->streaming)
1501 set_frame_rate(gspca_dev);
1502
1503 /* Return the actual framerate */
1504 tpf->numerator = 1;
1505 tpf->denominator = sd->frame_rate;
1506 }
1507
1508 /* sub-driver description */
1509 static const struct sd_desc sd_desc = {
1510 .name = MODULE_NAME,
1511 .config = sd_config,
1512 .init = sd_init,
1513 .init_controls = sd_init_controls,
1514 .start = sd_start,
1515 .stopN = sd_stopN,
1516 .pkt_scan = sd_pkt_scan,
1517 .get_streamparm = sd_get_streamparm,
1518 .set_streamparm = sd_set_streamparm,
1519 };
1520
1521 /* -- module initialisation -- */
1522 static const struct usb_device_id device_table[] = {
1523 {USB_DEVICE(0x1415, 0x2000)},
1524 {USB_DEVICE(0x06f8, 0x3002)},
1525 {}
1526 };
1527
1528 MODULE_DEVICE_TABLE(usb, device_table);
1529
1530 /* -- device connect -- */
1531 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1532 {
1533 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1534 THIS_MODULE);
1535 }
1536
1537 static struct usb_driver sd_driver = {
1538 .name = MODULE_NAME,
1539 .id_table = device_table,
1540 .probe = sd_probe,
1541 .disconnect = gspca_disconnect,
1542 #ifdef CONFIG_PM
1543 .suspend = gspca_suspend,
1544 .resume = gspca_resume,
1545 .reset_resume = gspca_resume,
1546 #endif
1547 };
1548
1549 module_usb_driver(sd_driver);