]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/media/usb/gspca/ov534.c
Merge tag 'media/v4.11-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-artful-kernel.git] / drivers / media / usb / gspca / ov534.c
1 /*
2 * ov534-ov7xxx gspca driver
3 *
4 * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
5 * Copyright (C) 2008 Jim Paris <jim@jtan.com>
6 * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
7 *
8 * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
9 * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
10 * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
11 *
12 * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
13 * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
14 * added by Max Thrun <bear24rw@gmail.com>
15 * PS3 Eye camera - FPS range extended by Joseph Howse
16 * <josephhowse@nummist.com> http://nummist.com
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #define MODULE_NAME "ov534"
32
33 #include "gspca.h"
34
35 #include <linux/fixp-arith.h>
36 #include <media/v4l2-ctrls.h>
37
38 #define OV534_REG_ADDRESS 0xf1 /* sensor address */
39 #define OV534_REG_SUBADDR 0xf2
40 #define OV534_REG_WRITE 0xf3
41 #define OV534_REG_READ 0xf4
42 #define OV534_REG_OPERATION 0xf5
43 #define OV534_REG_STATUS 0xf6
44
45 #define OV534_OP_WRITE_3 0x37
46 #define OV534_OP_WRITE_2 0x33
47 #define OV534_OP_READ_2 0xf9
48
49 #define CTRL_TIMEOUT 500
50 #define DEFAULT_FRAME_RATE 30
51
52 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
53 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
54 MODULE_LICENSE("GPL");
55
56 /* specific webcam descriptor */
57 struct sd {
58 struct gspca_dev gspca_dev; /* !! must be the first item */
59
60 struct v4l2_ctrl_handler ctrl_handler;
61 struct v4l2_ctrl *hue;
62 struct v4l2_ctrl *saturation;
63 struct v4l2_ctrl *brightness;
64 struct v4l2_ctrl *contrast;
65 struct { /* gain control cluster */
66 struct v4l2_ctrl *autogain;
67 struct v4l2_ctrl *gain;
68 };
69 struct v4l2_ctrl *autowhitebalance;
70 struct { /* exposure control cluster */
71 struct v4l2_ctrl *autoexposure;
72 struct v4l2_ctrl *exposure;
73 };
74 struct v4l2_ctrl *sharpness;
75 struct v4l2_ctrl *hflip;
76 struct v4l2_ctrl *vflip;
77 struct v4l2_ctrl *plfreq;
78
79 __u32 last_pts;
80 u16 last_fid;
81 u8 frame_rate;
82
83 u8 sensor;
84 };
85 enum sensors {
86 SENSOR_OV767x,
87 SENSOR_OV772x,
88 NSENSORS
89 };
90
91 static int sd_start(struct gspca_dev *gspca_dev);
92 static void sd_stopN(struct gspca_dev *gspca_dev);
93
94
95 static const struct v4l2_pix_format ov772x_mode[] = {
96 {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
97 .bytesperline = 320 * 2,
98 .sizeimage = 320 * 240 * 2,
99 .colorspace = V4L2_COLORSPACE_SRGB,
100 .priv = 1},
101 {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
102 .bytesperline = 640 * 2,
103 .sizeimage = 640 * 480 * 2,
104 .colorspace = V4L2_COLORSPACE_SRGB,
105 .priv = 0},
106 };
107 static const struct v4l2_pix_format ov767x_mode[] = {
108 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
109 .bytesperline = 320,
110 .sizeimage = 320 * 240 * 3 / 8 + 590,
111 .colorspace = V4L2_COLORSPACE_JPEG},
112 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
113 .bytesperline = 640,
114 .sizeimage = 640 * 480 * 3 / 8 + 590,
115 .colorspace = V4L2_COLORSPACE_JPEG},
116 };
117
118 static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30};
119 static const u8 vga_rates[] = {60, 50, 40, 30, 15};
120
121 static const struct framerates ov772x_framerates[] = {
122 { /* 320x240 */
123 .rates = qvga_rates,
124 .nrates = ARRAY_SIZE(qvga_rates),
125 },
126 { /* 640x480 */
127 .rates = vga_rates,
128 .nrates = ARRAY_SIZE(vga_rates),
129 },
130 };
131
132 struct reg_array {
133 const u8 (*val)[2];
134 int len;
135 };
136
137 static const u8 bridge_init_767x[][2] = {
138 /* comments from the ms-win file apollo7670.set */
139 /* str1 */
140 {0xf1, 0x42},
141 {0x88, 0xf8},
142 {0x89, 0xff},
143 {0x76, 0x03},
144 {0x92, 0x03},
145 {0x95, 0x10},
146 {0xe2, 0x00},
147 {0xe7, 0x3e},
148 {0x8d, 0x1c},
149 {0x8e, 0x00},
150 {0x8f, 0x00},
151 {0x1f, 0x00},
152 {0xc3, 0xf9},
153 {0x89, 0xff},
154 {0x88, 0xf8},
155 {0x76, 0x03},
156 {0x92, 0x01},
157 {0x93, 0x18},
158 {0x1c, 0x00},
159 {0x1d, 0x48},
160 {0x1d, 0x00},
161 {0x1d, 0xff},
162 {0x1d, 0x02},
163 {0x1d, 0x58},
164 {0x1d, 0x00},
165 {0x1c, 0x0a},
166 {0x1d, 0x0a},
167 {0x1d, 0x0e},
168 {0xc0, 0x50}, /* HSize 640 */
169 {0xc1, 0x3c}, /* VSize 480 */
170 {0x34, 0x05}, /* enable Audio Suspend mode */
171 {0xc2, 0x0c}, /* Input YUV */
172 {0xc3, 0xf9}, /* enable PRE */
173 {0x34, 0x05}, /* enable Audio Suspend mode */
174 {0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */
175 {0x31, 0xf9}, /* enable 1.8V Suspend */
176 {0x35, 0x02}, /* turn on JPEG */
177 {0xd9, 0x10},
178 {0x25, 0x42}, /* GPIO[8]:Input */
179 {0x94, 0x11}, /* If the default setting is loaded when
180 * system boots up, this flag is closed here */
181 };
182 static const u8 sensor_init_767x[][2] = {
183 {0x12, 0x80},
184 {0x11, 0x03},
185 {0x3a, 0x04},
186 {0x12, 0x00},
187 {0x17, 0x13},
188 {0x18, 0x01},
189 {0x32, 0xb6},
190 {0x19, 0x02},
191 {0x1a, 0x7a},
192 {0x03, 0x0a},
193 {0x0c, 0x00},
194 {0x3e, 0x00},
195 {0x70, 0x3a},
196 {0x71, 0x35},
197 {0x72, 0x11},
198 {0x73, 0xf0},
199 {0xa2, 0x02},
200 {0x7a, 0x2a}, /* set Gamma=1.6 below */
201 {0x7b, 0x12},
202 {0x7c, 0x1d},
203 {0x7d, 0x2d},
204 {0x7e, 0x45},
205 {0x7f, 0x50},
206 {0x80, 0x59},
207 {0x81, 0x62},
208 {0x82, 0x6b},
209 {0x83, 0x73},
210 {0x84, 0x7b},
211 {0x85, 0x8a},
212 {0x86, 0x98},
213 {0x87, 0xb2},
214 {0x88, 0xca},
215 {0x89, 0xe0},
216 {0x13, 0xe0},
217 {0x00, 0x00},
218 {0x10, 0x00},
219 {0x0d, 0x40},
220 {0x14, 0x38}, /* gain max 16x */
221 {0xa5, 0x05},
222 {0xab, 0x07},
223 {0x24, 0x95},
224 {0x25, 0x33},
225 {0x26, 0xe3},
226 {0x9f, 0x78},
227 {0xa0, 0x68},
228 {0xa1, 0x03},
229 {0xa6, 0xd8},
230 {0xa7, 0xd8},
231 {0xa8, 0xf0},
232 {0xa9, 0x90},
233 {0xaa, 0x94},
234 {0x13, 0xe5},
235 {0x0e, 0x61},
236 {0x0f, 0x4b},
237 {0x16, 0x02},
238 {0x21, 0x02},
239 {0x22, 0x91},
240 {0x29, 0x07},
241 {0x33, 0x0b},
242 {0x35, 0x0b},
243 {0x37, 0x1d},
244 {0x38, 0x71},
245 {0x39, 0x2a},
246 {0x3c, 0x78},
247 {0x4d, 0x40},
248 {0x4e, 0x20},
249 {0x69, 0x00},
250 {0x6b, 0x4a},
251 {0x74, 0x10},
252 {0x8d, 0x4f},
253 {0x8e, 0x00},
254 {0x8f, 0x00},
255 {0x90, 0x00},
256 {0x91, 0x00},
257 {0x96, 0x00},
258 {0x9a, 0x80},
259 {0xb0, 0x84},
260 {0xb1, 0x0c},
261 {0xb2, 0x0e},
262 {0xb3, 0x82},
263 {0xb8, 0x0a},
264 {0x43, 0x0a},
265 {0x44, 0xf0},
266 {0x45, 0x34},
267 {0x46, 0x58},
268 {0x47, 0x28},
269 {0x48, 0x3a},
270 {0x59, 0x88},
271 {0x5a, 0x88},
272 {0x5b, 0x44},
273 {0x5c, 0x67},
274 {0x5d, 0x49},
275 {0x5e, 0x0e},
276 {0x6c, 0x0a},
277 {0x6d, 0x55},
278 {0x6e, 0x11},
279 {0x6f, 0x9f},
280 {0x6a, 0x40},
281 {0x01, 0x40},
282 {0x02, 0x40},
283 {0x13, 0xe7},
284 {0x4f, 0x80},
285 {0x50, 0x80},
286 {0x51, 0x00},
287 {0x52, 0x22},
288 {0x53, 0x5e},
289 {0x54, 0x80},
290 {0x58, 0x9e},
291 {0x41, 0x08},
292 {0x3f, 0x00},
293 {0x75, 0x04},
294 {0x76, 0xe1},
295 {0x4c, 0x00},
296 {0x77, 0x01},
297 {0x3d, 0xc2},
298 {0x4b, 0x09},
299 {0xc9, 0x60},
300 {0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */
301 {0x56, 0x40},
302 {0x34, 0x11},
303 {0x3b, 0xc2},
304 {0xa4, 0x8a}, /* Night mode trigger point */
305 {0x96, 0x00},
306 {0x97, 0x30},
307 {0x98, 0x20},
308 {0x99, 0x20},
309 {0x9a, 0x84},
310 {0x9b, 0x29},
311 {0x9c, 0x03},
312 {0x9d, 0x4c},
313 {0x9e, 0x3f},
314 {0x78, 0x04},
315 {0x79, 0x01},
316 {0xc8, 0xf0},
317 {0x79, 0x0f},
318 {0xc8, 0x00},
319 {0x79, 0x10},
320 {0xc8, 0x7e},
321 {0x79, 0x0a},
322 {0xc8, 0x80},
323 {0x79, 0x0b},
324 {0xc8, 0x01},
325 {0x79, 0x0c},
326 {0xc8, 0x0f},
327 {0x79, 0x0d},
328 {0xc8, 0x20},
329 {0x79, 0x09},
330 {0xc8, 0x80},
331 {0x79, 0x02},
332 {0xc8, 0xc0},
333 {0x79, 0x03},
334 {0xc8, 0x20},
335 {0x79, 0x26},
336 };
337 static const u8 bridge_start_vga_767x[][2] = {
338 /* str59 JPG */
339 {0x94, 0xaa},
340 {0xf1, 0x42},
341 {0xe5, 0x04},
342 {0xc0, 0x50},
343 {0xc1, 0x3c},
344 {0xc2, 0x0c},
345 {0x35, 0x02}, /* turn on JPEG */
346 {0xd9, 0x10},
347 {0xda, 0x00}, /* for higher clock rate(30fps) */
348 {0x34, 0x05}, /* enable Audio Suspend mode */
349 {0xc3, 0xf9}, /* enable PRE */
350 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
351 {0x8d, 0x1c}, /* output YUV */
352 /* {0x34, 0x05}, * enable Audio Suspend mode (?) */
353 {0x50, 0x00}, /* H/V divider=0 */
354 {0x51, 0xa0}, /* input H=640/4 */
355 {0x52, 0x3c}, /* input V=480/4 */
356 {0x53, 0x00}, /* offset X=0 */
357 {0x54, 0x00}, /* offset Y=0 */
358 {0x55, 0x00}, /* H/V size[8]=0 */
359 {0x57, 0x00}, /* H-size[9]=0 */
360 {0x5c, 0x00}, /* output size[9:8]=0 */
361 {0x5a, 0xa0}, /* output H=640/4 */
362 {0x5b, 0x78}, /* output V=480/4 */
363 {0x1c, 0x0a},
364 {0x1d, 0x0a},
365 {0x94, 0x11},
366 };
367 static const u8 sensor_start_vga_767x[][2] = {
368 {0x11, 0x01},
369 {0x1e, 0x04},
370 {0x19, 0x02},
371 {0x1a, 0x7a},
372 };
373 static const u8 bridge_start_qvga_767x[][2] = {
374 /* str86 JPG */
375 {0x94, 0xaa},
376 {0xf1, 0x42},
377 {0xe5, 0x04},
378 {0xc0, 0x80},
379 {0xc1, 0x60},
380 {0xc2, 0x0c},
381 {0x35, 0x02}, /* turn on JPEG */
382 {0xd9, 0x10},
383 {0xc0, 0x50}, /* CIF HSize 640 */
384 {0xc1, 0x3c}, /* CIF VSize 480 */
385 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
386 {0x8d, 0x1c}, /* output YUV */
387 {0x34, 0x05}, /* enable Audio Suspend mode */
388 {0xc2, 0x4c}, /* output YUV and Enable DCW */
389 {0xc3, 0xf9}, /* enable PRE */
390 {0x1c, 0x00}, /* indirect addressing */
391 {0x1d, 0x48}, /* output YUV422 */
392 {0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */
393 {0x51, 0xa0}, /* DCW input H=640/4 */
394 {0x52, 0x78}, /* DCW input V=480/4 */
395 {0x53, 0x00}, /* offset X=0 */
396 {0x54, 0x00}, /* offset Y=0 */
397 {0x55, 0x00}, /* H/V size[8]=0 */
398 {0x57, 0x00}, /* H-size[9]=0 */
399 {0x5c, 0x00}, /* DCW output size[9:8]=0 */
400 {0x5a, 0x50}, /* DCW output H=320/4 */
401 {0x5b, 0x3c}, /* DCW output V=240/4 */
402 {0x1c, 0x0a},
403 {0x1d, 0x0a},
404 {0x94, 0x11},
405 };
406 static const u8 sensor_start_qvga_767x[][2] = {
407 {0x11, 0x01},
408 {0x1e, 0x04},
409 {0x19, 0x02},
410 {0x1a, 0x7a},
411 };
412
413 static const u8 bridge_init_772x[][2] = {
414 { 0xc2, 0x0c },
415 { 0x88, 0xf8 },
416 { 0xc3, 0x69 },
417 { 0x89, 0xff },
418 { 0x76, 0x03 },
419 { 0x92, 0x01 },
420 { 0x93, 0x18 },
421 { 0x94, 0x10 },
422 { 0x95, 0x10 },
423 { 0xe2, 0x00 },
424 { 0xe7, 0x3e },
425
426 { 0x96, 0x00 },
427
428 { 0x97, 0x20 },
429 { 0x97, 0x20 },
430 { 0x97, 0x20 },
431 { 0x97, 0x0a },
432 { 0x97, 0x3f },
433 { 0x97, 0x4a },
434 { 0x97, 0x20 },
435 { 0x97, 0x15 },
436 { 0x97, 0x0b },
437
438 { 0x8e, 0x40 },
439 { 0x1f, 0x81 },
440 { 0x34, 0x05 },
441 { 0xe3, 0x04 },
442 { 0x88, 0x00 },
443 { 0x89, 0x00 },
444 { 0x76, 0x00 },
445 { 0xe7, 0x2e },
446 { 0x31, 0xf9 },
447 { 0x25, 0x42 },
448 { 0x21, 0xf0 },
449
450 { 0x1c, 0x00 },
451 { 0x1d, 0x40 },
452 { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */
453 { 0x1d, 0x00 }, /* payload size */
454
455 { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */
456 { 0x1d, 0x58 }, /* frame size */
457 { 0x1d, 0x00 }, /* frame size */
458
459 { 0x1c, 0x0a },
460 { 0x1d, 0x08 }, /* turn on UVC header */
461 { 0x1d, 0x0e }, /* .. */
462
463 { 0x8d, 0x1c },
464 { 0x8e, 0x80 },
465 { 0xe5, 0x04 },
466
467 { 0xc0, 0x50 },
468 { 0xc1, 0x3c },
469 { 0xc2, 0x0c },
470 };
471 static const u8 sensor_init_772x[][2] = {
472 { 0x12, 0x80 },
473 { 0x11, 0x01 },
474 /*fixme: better have a delay?*/
475 { 0x11, 0x01 },
476 { 0x11, 0x01 },
477 { 0x11, 0x01 },
478 { 0x11, 0x01 },
479 { 0x11, 0x01 },
480 { 0x11, 0x01 },
481 { 0x11, 0x01 },
482 { 0x11, 0x01 },
483 { 0x11, 0x01 },
484 { 0x11, 0x01 },
485
486 { 0x3d, 0x03 },
487 { 0x17, 0x26 },
488 { 0x18, 0xa0 },
489 { 0x19, 0x07 },
490 { 0x1a, 0xf0 },
491 { 0x32, 0x00 },
492 { 0x29, 0xa0 },
493 { 0x2c, 0xf0 },
494 { 0x65, 0x20 },
495 { 0x11, 0x01 },
496 { 0x42, 0x7f },
497 { 0x63, 0xaa }, /* AWB - was e0 */
498 { 0x64, 0xff },
499 { 0x66, 0x00 },
500 { 0x13, 0xf0 }, /* com8 */
501 { 0x0d, 0x41 },
502 { 0x0f, 0xc5 },
503 { 0x14, 0x11 },
504
505 { 0x22, 0x7f },
506 { 0x23, 0x03 },
507 { 0x24, 0x40 },
508 { 0x25, 0x30 },
509 { 0x26, 0xa1 },
510 { 0x2a, 0x00 },
511 { 0x2b, 0x00 },
512 { 0x6b, 0xaa },
513 { 0x13, 0xff }, /* AWB */
514
515 { 0x90, 0x05 },
516 { 0x91, 0x01 },
517 { 0x92, 0x03 },
518 { 0x93, 0x00 },
519 { 0x94, 0x60 },
520 { 0x95, 0x3c },
521 { 0x96, 0x24 },
522 { 0x97, 0x1e },
523 { 0x98, 0x62 },
524 { 0x99, 0x80 },
525 { 0x9a, 0x1e },
526 { 0x9b, 0x08 },
527 { 0x9c, 0x20 },
528 { 0x9e, 0x81 },
529
530 { 0xa6, 0x07 },
531 { 0x7e, 0x0c },
532 { 0x7f, 0x16 },
533 { 0x80, 0x2a },
534 { 0x81, 0x4e },
535 { 0x82, 0x61 },
536 { 0x83, 0x6f },
537 { 0x84, 0x7b },
538 { 0x85, 0x86 },
539 { 0x86, 0x8e },
540 { 0x87, 0x97 },
541 { 0x88, 0xa4 },
542 { 0x89, 0xaf },
543 { 0x8a, 0xc5 },
544 { 0x8b, 0xd7 },
545 { 0x8c, 0xe8 },
546 { 0x8d, 0x20 },
547
548 { 0x0c, 0x90 },
549
550 { 0x2b, 0x00 },
551 { 0x22, 0x7f },
552 { 0x23, 0x03 },
553 { 0x11, 0x01 },
554 { 0x0c, 0xd0 },
555 { 0x64, 0xff },
556 { 0x0d, 0x41 },
557
558 { 0x14, 0x41 },
559 { 0x0e, 0xcd },
560 { 0xac, 0xbf },
561 { 0x8e, 0x00 }, /* De-noise threshold */
562 { 0x0c, 0xd0 }
563 };
564 static const u8 bridge_start_vga_772x[][2] = {
565 {0x1c, 0x00},
566 {0x1d, 0x40},
567 {0x1d, 0x02},
568 {0x1d, 0x00},
569 {0x1d, 0x02},
570 {0x1d, 0x58},
571 {0x1d, 0x00},
572 {0xc0, 0x50},
573 {0xc1, 0x3c},
574 };
575 static const u8 sensor_start_vga_772x[][2] = {
576 {0x12, 0x00},
577 {0x17, 0x26},
578 {0x18, 0xa0},
579 {0x19, 0x07},
580 {0x1a, 0xf0},
581 {0x29, 0xa0},
582 {0x2c, 0xf0},
583 {0x65, 0x20},
584 };
585 static const u8 bridge_start_qvga_772x[][2] = {
586 {0x1c, 0x00},
587 {0x1d, 0x40},
588 {0x1d, 0x02},
589 {0x1d, 0x00},
590 {0x1d, 0x01},
591 {0x1d, 0x4b},
592 {0x1d, 0x00},
593 {0xc0, 0x28},
594 {0xc1, 0x1e},
595 };
596 static const u8 sensor_start_qvga_772x[][2] = {
597 {0x12, 0x40},
598 {0x17, 0x3f},
599 {0x18, 0x50},
600 {0x19, 0x03},
601 {0x1a, 0x78},
602 {0x29, 0x50},
603 {0x2c, 0x78},
604 {0x65, 0x2f},
605 };
606
607 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
608 {
609 struct usb_device *udev = gspca_dev->dev;
610 int ret;
611
612 if (gspca_dev->usb_err < 0)
613 return;
614
615 PDEBUG(D_USBO, "SET 01 0000 %04x %02x", reg, val);
616 gspca_dev->usb_buf[0] = val;
617 ret = usb_control_msg(udev,
618 usb_sndctrlpipe(udev, 0),
619 0x01,
620 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
621 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
622 if (ret < 0) {
623 pr_err("write failed %d\n", ret);
624 gspca_dev->usb_err = ret;
625 }
626 }
627
628 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
629 {
630 struct usb_device *udev = gspca_dev->dev;
631 int ret;
632
633 if (gspca_dev->usb_err < 0)
634 return 0;
635 ret = usb_control_msg(udev,
636 usb_rcvctrlpipe(udev, 0),
637 0x01,
638 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
639 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
640 PDEBUG(D_USBI, "GET 01 0000 %04x %02x", reg, gspca_dev->usb_buf[0]);
641 if (ret < 0) {
642 pr_err("read failed %d\n", ret);
643 gspca_dev->usb_err = ret;
644 }
645 return gspca_dev->usb_buf[0];
646 }
647
648 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
649 * (direction and output)? */
650 static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
651 {
652 u8 data;
653
654 PDEBUG(D_CONF, "led status: %d", status);
655
656 data = ov534_reg_read(gspca_dev, 0x21);
657 data |= 0x80;
658 ov534_reg_write(gspca_dev, 0x21, data);
659
660 data = ov534_reg_read(gspca_dev, 0x23);
661 if (status)
662 data |= 0x80;
663 else
664 data &= ~0x80;
665
666 ov534_reg_write(gspca_dev, 0x23, data);
667
668 if (!status) {
669 data = ov534_reg_read(gspca_dev, 0x21);
670 data &= ~0x80;
671 ov534_reg_write(gspca_dev, 0x21, data);
672 }
673 }
674
675 static int sccb_check_status(struct gspca_dev *gspca_dev)
676 {
677 u8 data;
678 int i;
679
680 for (i = 0; i < 5; i++) {
681 msleep(10);
682 data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
683
684 switch (data) {
685 case 0x00:
686 return 1;
687 case 0x04:
688 return 0;
689 case 0x03:
690 break;
691 default:
692 PERR("sccb status 0x%02x, attempt %d/5",
693 data, i + 1);
694 }
695 }
696 return 0;
697 }
698
699 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
700 {
701 PDEBUG(D_USBO, "sccb write: %02x %02x", reg, val);
702 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
703 ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
704 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
705
706 if (!sccb_check_status(gspca_dev)) {
707 pr_err("sccb_reg_write failed\n");
708 gspca_dev->usb_err = -EIO;
709 }
710 }
711
712 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
713 {
714 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
715 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
716 if (!sccb_check_status(gspca_dev))
717 pr_err("sccb_reg_read failed 1\n");
718
719 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
720 if (!sccb_check_status(gspca_dev))
721 pr_err("sccb_reg_read failed 2\n");
722
723 return ov534_reg_read(gspca_dev, OV534_REG_READ);
724 }
725
726 /* output a bridge sequence (reg - val) */
727 static void reg_w_array(struct gspca_dev *gspca_dev,
728 const u8 (*data)[2], int len)
729 {
730 while (--len >= 0) {
731 ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
732 data++;
733 }
734 }
735
736 /* output a sensor sequence (reg - val) */
737 static void sccb_w_array(struct gspca_dev *gspca_dev,
738 const u8 (*data)[2], int len)
739 {
740 while (--len >= 0) {
741 if ((*data)[0] != 0xff) {
742 sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
743 } else {
744 sccb_reg_read(gspca_dev, (*data)[1]);
745 sccb_reg_write(gspca_dev, 0xff, 0x00);
746 }
747 data++;
748 }
749 }
750
751 /* ov772x specific controls */
752 static void set_frame_rate(struct gspca_dev *gspca_dev)
753 {
754 struct sd *sd = (struct sd *) gspca_dev;
755 int i;
756 struct rate_s {
757 u8 fps;
758 u8 r11;
759 u8 r0d;
760 u8 re5;
761 };
762 const struct rate_s *r;
763 static const struct rate_s rate_0[] = { /* 640x480 */
764 {60, 0x01, 0xc1, 0x04},
765 {50, 0x01, 0x41, 0x02},
766 {40, 0x02, 0xc1, 0x04},
767 {30, 0x04, 0x81, 0x02},
768 {15, 0x03, 0x41, 0x04},
769 };
770 static const struct rate_s rate_1[] = { /* 320x240 */
771 /* {205, 0x01, 0xc1, 0x02}, * 205 FPS: video is partly corrupt */
772 {187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */
773 {150, 0x01, 0xc1, 0x04},
774 {137, 0x02, 0xc1, 0x02},
775 {125, 0x02, 0x81, 0x02},
776 {100, 0x02, 0xc1, 0x04},
777 {75, 0x03, 0xc1, 0x04},
778 {60, 0x04, 0xc1, 0x04},
779 {50, 0x02, 0x41, 0x04},
780 {37, 0x03, 0x41, 0x04},
781 {30, 0x04, 0x41, 0x04},
782 };
783
784 if (sd->sensor != SENSOR_OV772x)
785 return;
786 if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
787 r = rate_0;
788 i = ARRAY_SIZE(rate_0);
789 } else {
790 r = rate_1;
791 i = ARRAY_SIZE(rate_1);
792 }
793 while (--i > 0) {
794 if (sd->frame_rate >= r->fps)
795 break;
796 r++;
797 }
798
799 sccb_reg_write(gspca_dev, 0x11, r->r11);
800 sccb_reg_write(gspca_dev, 0x0d, r->r0d);
801 ov534_reg_write(gspca_dev, 0xe5, r->re5);
802
803 PDEBUG(D_PROBE, "frame_rate: %d", r->fps);
804 }
805
806 static void sethue(struct gspca_dev *gspca_dev, s32 val)
807 {
808 struct sd *sd = (struct sd *) gspca_dev;
809
810 if (sd->sensor == SENSOR_OV767x) {
811 /* TBD */
812 } else {
813 s16 huesin;
814 s16 huecos;
815
816 /* According to the datasheet the registers expect HUESIN and
817 * HUECOS to be the result of the trigonometric functions,
818 * scaled by 0x80.
819 *
820 * The 0x7fff here represents the maximum absolute value
821 * returned byt fixp_sin and fixp_cos, so the scaling will
822 * consider the result like in the interval [-1.0, 1.0].
823 */
824 huesin = fixp_sin16(val) * 0x80 / 0x7fff;
825 huecos = fixp_cos16(val) * 0x80 / 0x7fff;
826
827 if (huesin < 0) {
828 sccb_reg_write(gspca_dev, 0xab,
829 sccb_reg_read(gspca_dev, 0xab) | 0x2);
830 huesin = -huesin;
831 } else {
832 sccb_reg_write(gspca_dev, 0xab,
833 sccb_reg_read(gspca_dev, 0xab) & ~0x2);
834
835 }
836 sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
837 sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
838 }
839 }
840
841 static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
842 {
843 struct sd *sd = (struct sd *) gspca_dev;
844
845 if (sd->sensor == SENSOR_OV767x) {
846 int i;
847 static u8 color_tb[][6] = {
848 {0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
849 {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
850 {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
851 {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
852 {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
853 {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
854 {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
855 };
856
857 for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
858 sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
859 } else {
860 sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
861 sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
862 }
863 }
864
865 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
866 {
867 struct sd *sd = (struct sd *) gspca_dev;
868
869 if (sd->sensor == SENSOR_OV767x) {
870 if (val < 0)
871 val = 0x80 - val;
872 sccb_reg_write(gspca_dev, 0x55, val); /* bright */
873 } else {
874 sccb_reg_write(gspca_dev, 0x9b, val);
875 }
876 }
877
878 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
879 {
880 struct sd *sd = (struct sd *) gspca_dev;
881
882 if (sd->sensor == SENSOR_OV767x)
883 sccb_reg_write(gspca_dev, 0x56, val); /* contras */
884 else
885 sccb_reg_write(gspca_dev, 0x9c, val);
886 }
887
888 static void setgain(struct gspca_dev *gspca_dev, s32 val)
889 {
890 switch (val & 0x30) {
891 case 0x00:
892 val &= 0x0f;
893 break;
894 case 0x10:
895 val &= 0x0f;
896 val |= 0x30;
897 break;
898 case 0x20:
899 val &= 0x0f;
900 val |= 0x70;
901 break;
902 default:
903 /* case 0x30: */
904 val &= 0x0f;
905 val |= 0xf0;
906 break;
907 }
908 sccb_reg_write(gspca_dev, 0x00, val);
909 }
910
911 static s32 getgain(struct gspca_dev *gspca_dev)
912 {
913 return sccb_reg_read(gspca_dev, 0x00);
914 }
915
916 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
917 {
918 struct sd *sd = (struct sd *) gspca_dev;
919
920 if (sd->sensor == SENSOR_OV767x) {
921
922 /* set only aec[9:2] */
923 sccb_reg_write(gspca_dev, 0x10, val); /* aech */
924 } else {
925
926 /* 'val' is one byte and represents half of the exposure value
927 * we are going to set into registers, a two bytes value:
928 *
929 * MSB: ((u16) val << 1) >> 8 == val >> 7
930 * LSB: ((u16) val << 1) & 0xff == val << 1
931 */
932 sccb_reg_write(gspca_dev, 0x08, val >> 7);
933 sccb_reg_write(gspca_dev, 0x10, val << 1);
934 }
935 }
936
937 static s32 getexposure(struct gspca_dev *gspca_dev)
938 {
939 struct sd *sd = (struct sd *) gspca_dev;
940
941 if (sd->sensor == SENSOR_OV767x) {
942 /* get only aec[9:2] */
943 return sccb_reg_read(gspca_dev, 0x10); /* aech */
944 } else {
945 u8 hi = sccb_reg_read(gspca_dev, 0x08);
946 u8 lo = sccb_reg_read(gspca_dev, 0x10);
947 return (hi << 8 | lo) >> 1;
948 }
949 }
950
951 static void setagc(struct gspca_dev *gspca_dev, s32 val)
952 {
953 if (val) {
954 sccb_reg_write(gspca_dev, 0x13,
955 sccb_reg_read(gspca_dev, 0x13) | 0x04);
956 sccb_reg_write(gspca_dev, 0x64,
957 sccb_reg_read(gspca_dev, 0x64) | 0x03);
958 } else {
959 sccb_reg_write(gspca_dev, 0x13,
960 sccb_reg_read(gspca_dev, 0x13) & ~0x04);
961 sccb_reg_write(gspca_dev, 0x64,
962 sccb_reg_read(gspca_dev, 0x64) & ~0x03);
963 }
964 }
965
966 static void setawb(struct gspca_dev *gspca_dev, s32 val)
967 {
968 struct sd *sd = (struct sd *) gspca_dev;
969
970 if (val) {
971 sccb_reg_write(gspca_dev, 0x13,
972 sccb_reg_read(gspca_dev, 0x13) | 0x02);
973 if (sd->sensor == SENSOR_OV772x)
974 sccb_reg_write(gspca_dev, 0x63,
975 sccb_reg_read(gspca_dev, 0x63) | 0xc0);
976 } else {
977 sccb_reg_write(gspca_dev, 0x13,
978 sccb_reg_read(gspca_dev, 0x13) & ~0x02);
979 if (sd->sensor == SENSOR_OV772x)
980 sccb_reg_write(gspca_dev, 0x63,
981 sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
982 }
983 }
984
985 static void setaec(struct gspca_dev *gspca_dev, s32 val)
986 {
987 struct sd *sd = (struct sd *) gspca_dev;
988 u8 data;
989
990 data = sd->sensor == SENSOR_OV767x ?
991 0x05 : /* agc + aec */
992 0x01; /* agc */
993 switch (val) {
994 case V4L2_EXPOSURE_AUTO:
995 sccb_reg_write(gspca_dev, 0x13,
996 sccb_reg_read(gspca_dev, 0x13) | data);
997 break;
998 case V4L2_EXPOSURE_MANUAL:
999 sccb_reg_write(gspca_dev, 0x13,
1000 sccb_reg_read(gspca_dev, 0x13) & ~data);
1001 break;
1002 }
1003 }
1004
1005 static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
1006 {
1007 sccb_reg_write(gspca_dev, 0x91, val); /* Auto de-noise threshold */
1008 sccb_reg_write(gspca_dev, 0x8e, val); /* De-noise threshold */
1009 }
1010
1011 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
1012 {
1013 struct sd *sd = (struct sd *) gspca_dev;
1014 u8 val;
1015
1016 if (sd->sensor == SENSOR_OV767x) {
1017 val = sccb_reg_read(gspca_dev, 0x1e); /* mvfp */
1018 val &= ~0x30;
1019 if (hflip)
1020 val |= 0x20;
1021 if (vflip)
1022 val |= 0x10;
1023 sccb_reg_write(gspca_dev, 0x1e, val);
1024 } else {
1025 val = sccb_reg_read(gspca_dev, 0x0c);
1026 val &= ~0xc0;
1027 if (hflip == 0)
1028 val |= 0x40;
1029 if (vflip == 0)
1030 val |= 0x80;
1031 sccb_reg_write(gspca_dev, 0x0c, val);
1032 }
1033 }
1034
1035 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
1036 {
1037 struct sd *sd = (struct sd *) gspca_dev;
1038
1039 val = val ? 0x9e : 0x00;
1040 if (sd->sensor == SENSOR_OV767x) {
1041 sccb_reg_write(gspca_dev, 0x2a, 0x00);
1042 if (val)
1043 val = 0x9d; /* insert dummy to 25fps for 50Hz */
1044 }
1045 sccb_reg_write(gspca_dev, 0x2b, val);
1046 }
1047
1048
1049 /* this function is called at probe time */
1050 static int sd_config(struct gspca_dev *gspca_dev,
1051 const struct usb_device_id *id)
1052 {
1053 struct sd *sd = (struct sd *) gspca_dev;
1054 struct cam *cam;
1055
1056 cam = &gspca_dev->cam;
1057
1058 cam->cam_mode = ov772x_mode;
1059 cam->nmodes = ARRAY_SIZE(ov772x_mode);
1060
1061 sd->frame_rate = DEFAULT_FRAME_RATE;
1062
1063 return 0;
1064 }
1065
1066 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1067 {
1068 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1069 struct gspca_dev *gspca_dev = &sd->gspca_dev;
1070
1071 switch (ctrl->id) {
1072 case V4L2_CID_AUTOGAIN:
1073 gspca_dev->usb_err = 0;
1074 if (ctrl->val && sd->gain && gspca_dev->streaming)
1075 sd->gain->val = getgain(gspca_dev);
1076 return gspca_dev->usb_err;
1077
1078 case V4L2_CID_EXPOSURE_AUTO:
1079 gspca_dev->usb_err = 0;
1080 if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
1081 gspca_dev->streaming)
1082 sd->exposure->val = getexposure(gspca_dev);
1083 return gspca_dev->usb_err;
1084 }
1085 return -EINVAL;
1086 }
1087
1088 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
1089 {
1090 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1091 struct gspca_dev *gspca_dev = &sd->gspca_dev;
1092
1093 gspca_dev->usb_err = 0;
1094 if (!gspca_dev->streaming)
1095 return 0;
1096
1097 switch (ctrl->id) {
1098 case V4L2_CID_HUE:
1099 sethue(gspca_dev, ctrl->val);
1100 break;
1101 case V4L2_CID_SATURATION:
1102 setsaturation(gspca_dev, ctrl->val);
1103 break;
1104 case V4L2_CID_BRIGHTNESS:
1105 setbrightness(gspca_dev, ctrl->val);
1106 break;
1107 case V4L2_CID_CONTRAST:
1108 setcontrast(gspca_dev, ctrl->val);
1109 break;
1110 case V4L2_CID_AUTOGAIN:
1111 /* case V4L2_CID_GAIN: */
1112 setagc(gspca_dev, ctrl->val);
1113 if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
1114 setgain(gspca_dev, sd->gain->val);
1115 break;
1116 case V4L2_CID_AUTO_WHITE_BALANCE:
1117 setawb(gspca_dev, ctrl->val);
1118 break;
1119 case V4L2_CID_EXPOSURE_AUTO:
1120 /* case V4L2_CID_EXPOSURE: */
1121 setaec(gspca_dev, ctrl->val);
1122 if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
1123 sd->exposure)
1124 setexposure(gspca_dev, sd->exposure->val);
1125 break;
1126 case V4L2_CID_SHARPNESS:
1127 setsharpness(gspca_dev, ctrl->val);
1128 break;
1129 case V4L2_CID_HFLIP:
1130 sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
1131 break;
1132 case V4L2_CID_VFLIP:
1133 sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
1134 break;
1135 case V4L2_CID_POWER_LINE_FREQUENCY:
1136 setlightfreq(gspca_dev, ctrl->val);
1137 break;
1138 }
1139 return gspca_dev->usb_err;
1140 }
1141
1142 static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
1143 .g_volatile_ctrl = ov534_g_volatile_ctrl,
1144 .s_ctrl = ov534_s_ctrl,
1145 };
1146
1147 static int sd_init_controls(struct gspca_dev *gspca_dev)
1148 {
1149 struct sd *sd = (struct sd *) gspca_dev;
1150 struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
1151 /* parameters with different values between the supported sensors */
1152 int saturation_min;
1153 int saturation_max;
1154 int saturation_def;
1155 int brightness_min;
1156 int brightness_max;
1157 int brightness_def;
1158 int contrast_max;
1159 int contrast_def;
1160 int exposure_min;
1161 int exposure_max;
1162 int exposure_def;
1163 int hflip_def;
1164
1165 if (sd->sensor == SENSOR_OV767x) {
1166 saturation_min = 0,
1167 saturation_max = 6,
1168 saturation_def = 3,
1169 brightness_min = -127;
1170 brightness_max = 127;
1171 brightness_def = 0;
1172 contrast_max = 0x80;
1173 contrast_def = 0x40;
1174 exposure_min = 0x08;
1175 exposure_max = 0x60;
1176 exposure_def = 0x13;
1177 hflip_def = 1;
1178 } else {
1179 saturation_min = 0,
1180 saturation_max = 255,
1181 saturation_def = 64,
1182 brightness_min = 0;
1183 brightness_max = 255;
1184 brightness_def = 0;
1185 contrast_max = 255;
1186 contrast_def = 32;
1187 exposure_min = 0;
1188 exposure_max = 255;
1189 exposure_def = 120;
1190 hflip_def = 0;
1191 }
1192
1193 gspca_dev->vdev.ctrl_handler = hdl;
1194
1195 v4l2_ctrl_handler_init(hdl, 13);
1196
1197 if (sd->sensor == SENSOR_OV772x)
1198 sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1199 V4L2_CID_HUE, -90, 90, 1, 0);
1200
1201 sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1202 V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
1203 saturation_def);
1204 sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1205 V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
1206 brightness_def);
1207 sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1208 V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
1209
1210 if (sd->sensor == SENSOR_OV772x) {
1211 sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1212 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1213 sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1214 V4L2_CID_GAIN, 0, 63, 1, 20);
1215 }
1216
1217 sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1218 V4L2_CID_EXPOSURE_AUTO,
1219 V4L2_EXPOSURE_MANUAL, 0,
1220 V4L2_EXPOSURE_AUTO);
1221 sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1222 V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
1223 exposure_def);
1224
1225 sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1226 V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
1227
1228 if (sd->sensor == SENSOR_OV772x)
1229 sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1230 V4L2_CID_SHARPNESS, 0, 63, 1, 0);
1231
1232 sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1233 V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
1234 sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1235 V4L2_CID_VFLIP, 0, 1, 1, 0);
1236 sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1237 V4L2_CID_POWER_LINE_FREQUENCY,
1238 V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
1239 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1240
1241 if (hdl->error) {
1242 pr_err("Could not initialize controls\n");
1243 return hdl->error;
1244 }
1245
1246 if (sd->sensor == SENSOR_OV772x)
1247 v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
1248
1249 v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
1250 true);
1251
1252 return 0;
1253 }
1254
1255 /* this function is called at probe and resume time */
1256 static int sd_init(struct gspca_dev *gspca_dev)
1257 {
1258 struct sd *sd = (struct sd *) gspca_dev;
1259 u16 sensor_id;
1260 static const struct reg_array bridge_init[NSENSORS] = {
1261 [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1262 [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1263 };
1264 static const struct reg_array sensor_init[NSENSORS] = {
1265 [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1266 [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1267 };
1268
1269 /* reset bridge */
1270 ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1271 ov534_reg_write(gspca_dev, 0xe0, 0x08);
1272 msleep(100);
1273
1274 /* initialize the sensor address */
1275 ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1276
1277 /* reset sensor */
1278 sccb_reg_write(gspca_dev, 0x12, 0x80);
1279 msleep(10);
1280
1281 /* probe the sensor */
1282 sccb_reg_read(gspca_dev, 0x0a);
1283 sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1284 sccb_reg_read(gspca_dev, 0x0b);
1285 sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1286 PDEBUG(D_PROBE, "Sensor ID: %04x", sensor_id);
1287
1288 if ((sensor_id & 0xfff0) == 0x7670) {
1289 sd->sensor = SENSOR_OV767x;
1290 gspca_dev->cam.cam_mode = ov767x_mode;
1291 gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1292 } else {
1293 sd->sensor = SENSOR_OV772x;
1294 gspca_dev->cam.bulk = 1;
1295 gspca_dev->cam.bulk_size = 16384;
1296 gspca_dev->cam.bulk_nurbs = 2;
1297 gspca_dev->cam.mode_framerates = ov772x_framerates;
1298 }
1299
1300 /* initialize */
1301 reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1302 bridge_init[sd->sensor].len);
1303 ov534_set_led(gspca_dev, 1);
1304 sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1305 sensor_init[sd->sensor].len);
1306
1307 sd_stopN(gspca_dev);
1308 /* set_frame_rate(gspca_dev); */
1309
1310 return gspca_dev->usb_err;
1311 }
1312
1313 static int sd_start(struct gspca_dev *gspca_dev)
1314 {
1315 struct sd *sd = (struct sd *) gspca_dev;
1316 int mode;
1317 static const struct reg_array bridge_start[NSENSORS][2] = {
1318 [SENSOR_OV767x] = {{bridge_start_qvga_767x,
1319 ARRAY_SIZE(bridge_start_qvga_767x)},
1320 {bridge_start_vga_767x,
1321 ARRAY_SIZE(bridge_start_vga_767x)}},
1322 [SENSOR_OV772x] = {{bridge_start_qvga_772x,
1323 ARRAY_SIZE(bridge_start_qvga_772x)},
1324 {bridge_start_vga_772x,
1325 ARRAY_SIZE(bridge_start_vga_772x)}},
1326 };
1327 static const struct reg_array sensor_start[NSENSORS][2] = {
1328 [SENSOR_OV767x] = {{sensor_start_qvga_767x,
1329 ARRAY_SIZE(sensor_start_qvga_767x)},
1330 {sensor_start_vga_767x,
1331 ARRAY_SIZE(sensor_start_vga_767x)}},
1332 [SENSOR_OV772x] = {{sensor_start_qvga_772x,
1333 ARRAY_SIZE(sensor_start_qvga_772x)},
1334 {sensor_start_vga_772x,
1335 ARRAY_SIZE(sensor_start_vga_772x)}},
1336 };
1337
1338 /* (from ms-win trace) */
1339 if (sd->sensor == SENSOR_OV767x)
1340 sccb_reg_write(gspca_dev, 0x1e, 0x04);
1341 /* black sun enable ? */
1342
1343 mode = gspca_dev->curr_mode; /* 0: 320x240, 1: 640x480 */
1344 reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1345 bridge_start[sd->sensor][mode].len);
1346 sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1347 sensor_start[sd->sensor][mode].len);
1348
1349 set_frame_rate(gspca_dev);
1350
1351 if (sd->hue)
1352 sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
1353 setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
1354 if (sd->autogain)
1355 setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
1356 setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
1357 setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
1358 if (sd->gain)
1359 setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
1360 setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
1361 setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
1362 setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
1363 if (sd->sharpness)
1364 setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
1365 sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
1366 v4l2_ctrl_g_ctrl(sd->vflip));
1367 setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
1368
1369 ov534_set_led(gspca_dev, 1);
1370 ov534_reg_write(gspca_dev, 0xe0, 0x00);
1371 return gspca_dev->usb_err;
1372 }
1373
1374 static void sd_stopN(struct gspca_dev *gspca_dev)
1375 {
1376 ov534_reg_write(gspca_dev, 0xe0, 0x09);
1377 ov534_set_led(gspca_dev, 0);
1378 }
1379
1380 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1381 #define UVC_STREAM_EOH (1 << 7)
1382 #define UVC_STREAM_ERR (1 << 6)
1383 #define UVC_STREAM_STI (1 << 5)
1384 #define UVC_STREAM_RES (1 << 4)
1385 #define UVC_STREAM_SCR (1 << 3)
1386 #define UVC_STREAM_PTS (1 << 2)
1387 #define UVC_STREAM_EOF (1 << 1)
1388 #define UVC_STREAM_FID (1 << 0)
1389
1390 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1391 u8 *data, int len)
1392 {
1393 struct sd *sd = (struct sd *) gspca_dev;
1394 __u32 this_pts;
1395 u16 this_fid;
1396 int remaining_len = len;
1397 int payload_len;
1398
1399 payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1400 do {
1401 len = min(remaining_len, payload_len);
1402
1403 /* Payloads are prefixed with a UVC-style header. We
1404 consider a frame to start when the FID toggles, or the PTS
1405 changes. A frame ends when EOF is set, and we've received
1406 the correct number of bytes. */
1407
1408 /* Verify UVC header. Header length is always 12 */
1409 if (data[0] != 12 || len < 12) {
1410 PDEBUG(D_PACK, "bad header");
1411 goto discard;
1412 }
1413
1414 /* Check errors */
1415 if (data[1] & UVC_STREAM_ERR) {
1416 PDEBUG(D_PACK, "payload error");
1417 goto discard;
1418 }
1419
1420 /* Extract PTS and FID */
1421 if (!(data[1] & UVC_STREAM_PTS)) {
1422 PDEBUG(D_PACK, "PTS not present");
1423 goto discard;
1424 }
1425 this_pts = (data[5] << 24) | (data[4] << 16)
1426 | (data[3] << 8) | data[2];
1427 this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1428
1429 /* If PTS or FID has changed, start a new frame. */
1430 if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1431 if (gspca_dev->last_packet_type == INTER_PACKET)
1432 gspca_frame_add(gspca_dev, LAST_PACKET,
1433 NULL, 0);
1434 sd->last_pts = this_pts;
1435 sd->last_fid = this_fid;
1436 gspca_frame_add(gspca_dev, FIRST_PACKET,
1437 data + 12, len - 12);
1438 /* If this packet is marked as EOF, end the frame */
1439 } else if (data[1] & UVC_STREAM_EOF) {
1440 sd->last_pts = 0;
1441 if (gspca_dev->pixfmt.pixelformat == V4L2_PIX_FMT_YUYV
1442 && gspca_dev->image_len + len - 12 !=
1443 gspca_dev->pixfmt.width *
1444 gspca_dev->pixfmt.height * 2) {
1445 PDEBUG(D_PACK, "wrong sized frame");
1446 goto discard;
1447 }
1448 gspca_frame_add(gspca_dev, LAST_PACKET,
1449 data + 12, len - 12);
1450 } else {
1451
1452 /* Add the data from this payload */
1453 gspca_frame_add(gspca_dev, INTER_PACKET,
1454 data + 12, len - 12);
1455 }
1456
1457 /* Done this payload */
1458 goto scan_next;
1459
1460 discard:
1461 /* Discard data until a new frame starts. */
1462 gspca_dev->last_packet_type = DISCARD_PACKET;
1463
1464 scan_next:
1465 remaining_len -= len;
1466 data += len;
1467 } while (remaining_len > 0);
1468 }
1469
1470 /* get stream parameters (framerate) */
1471 static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1472 struct v4l2_streamparm *parm)
1473 {
1474 struct v4l2_captureparm *cp = &parm->parm.capture;
1475 struct v4l2_fract *tpf = &cp->timeperframe;
1476 struct sd *sd = (struct sd *) gspca_dev;
1477
1478 cp->capability |= V4L2_CAP_TIMEPERFRAME;
1479 tpf->numerator = 1;
1480 tpf->denominator = sd->frame_rate;
1481 }
1482
1483 /* set stream parameters (framerate) */
1484 static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1485 struct v4l2_streamparm *parm)
1486 {
1487 struct v4l2_captureparm *cp = &parm->parm.capture;
1488 struct v4l2_fract *tpf = &cp->timeperframe;
1489 struct sd *sd = (struct sd *) gspca_dev;
1490
1491 if (tpf->numerator == 0 || tpf->denominator == 0)
1492 sd->frame_rate = DEFAULT_FRAME_RATE;
1493 else
1494 sd->frame_rate = tpf->denominator / tpf->numerator;
1495
1496 if (gspca_dev->streaming)
1497 set_frame_rate(gspca_dev);
1498
1499 /* Return the actual framerate */
1500 tpf->numerator = 1;
1501 tpf->denominator = sd->frame_rate;
1502 }
1503
1504 /* sub-driver description */
1505 static const struct sd_desc sd_desc = {
1506 .name = MODULE_NAME,
1507 .config = sd_config,
1508 .init = sd_init,
1509 .init_controls = sd_init_controls,
1510 .start = sd_start,
1511 .stopN = sd_stopN,
1512 .pkt_scan = sd_pkt_scan,
1513 .get_streamparm = sd_get_streamparm,
1514 .set_streamparm = sd_set_streamparm,
1515 };
1516
1517 /* -- module initialisation -- */
1518 static const struct usb_device_id device_table[] = {
1519 {USB_DEVICE(0x1415, 0x2000)},
1520 {USB_DEVICE(0x06f8, 0x3002)},
1521 {}
1522 };
1523
1524 MODULE_DEVICE_TABLE(usb, device_table);
1525
1526 /* -- device connect -- */
1527 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1528 {
1529 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1530 THIS_MODULE);
1531 }
1532
1533 static struct usb_driver sd_driver = {
1534 .name = MODULE_NAME,
1535 .id_table = device_table,
1536 .probe = sd_probe,
1537 .disconnect = gspca_disconnect,
1538 #ifdef CONFIG_PM
1539 .suspend = gspca_suspend,
1540 .resume = gspca_resume,
1541 .reset_resume = gspca_resume,
1542 #endif
1543 };
1544
1545 module_usb_driver(sd_driver);