]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/media/usb/uvc/uvc_video.c
max17042_battery: Fix build errors caused by missing REGMAP_I2C config
[mirror_ubuntu-jammy-kernel.git] / drivers / media / usb / uvc / uvc_video.c
1 /*
2 * uvc_video.c -- USB Video Class driver - Video handling
3 *
4 * Copyright (C) 2005-2010
5 * Laurent Pinchart (laurent.pinchart@ideasonboard.com)
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/usb.h>
19 #include <linux/videodev2.h>
20 #include <linux/vmalloc.h>
21 #include <linux/wait.h>
22 #include <linux/atomic.h>
23 #include <asm/unaligned.h>
24
25 #include <media/v4l2-common.h>
26
27 #include "uvcvideo.h"
28
29 /* ------------------------------------------------------------------------
30 * UVC Controls
31 */
32
33 static int __uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit,
34 __u8 intfnum, __u8 cs, void *data, __u16 size,
35 int timeout)
36 {
37 __u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
38 unsigned int pipe;
39
40 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
41 : usb_sndctrlpipe(dev->udev, 0);
42 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
43
44 return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
45 unit << 8 | intfnum, data, size, timeout);
46 }
47
48 static const char *uvc_query_name(__u8 query)
49 {
50 switch (query) {
51 case UVC_SET_CUR:
52 return "SET_CUR";
53 case UVC_GET_CUR:
54 return "GET_CUR";
55 case UVC_GET_MIN:
56 return "GET_MIN";
57 case UVC_GET_MAX:
58 return "GET_MAX";
59 case UVC_GET_RES:
60 return "GET_RES";
61 case UVC_GET_LEN:
62 return "GET_LEN";
63 case UVC_GET_INFO:
64 return "GET_INFO";
65 case UVC_GET_DEF:
66 return "GET_DEF";
67 default:
68 return "<invalid>";
69 }
70 }
71
72 int uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit,
73 __u8 intfnum, __u8 cs, void *data, __u16 size)
74 {
75 int ret;
76
77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
78 UVC_CTRL_CONTROL_TIMEOUT);
79 if (ret != size) {
80 uvc_printk(KERN_ERR, "Failed to query (%s) UVC control %u on "
81 "unit %u: %d (exp. %u).\n", uvc_query_name(query), cs,
82 unit, ret, size);
83 return -EIO;
84 }
85
86 return 0;
87 }
88
89 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
90 struct uvc_streaming_control *ctrl)
91 {
92 struct uvc_format *format = NULL;
93 struct uvc_frame *frame = NULL;
94 unsigned int i;
95
96 for (i = 0; i < stream->nformats; ++i) {
97 if (stream->format[i].index == ctrl->bFormatIndex) {
98 format = &stream->format[i];
99 break;
100 }
101 }
102
103 if (format == NULL)
104 return;
105
106 for (i = 0; i < format->nframes; ++i) {
107 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) {
108 frame = &format->frame[i];
109 break;
110 }
111 }
112
113 if (frame == NULL)
114 return;
115
116 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
117 (ctrl->dwMaxVideoFrameSize == 0 &&
118 stream->dev->uvc_version < 0x0110))
119 ctrl->dwMaxVideoFrameSize =
120 frame->dwMaxVideoFrameBufferSize;
121
122 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
123 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
124 stream->intf->num_altsetting > 1) {
125 u32 interval;
126 u32 bandwidth;
127
128 interval = (ctrl->dwFrameInterval > 100000)
129 ? ctrl->dwFrameInterval
130 : frame->dwFrameInterval[0];
131
132 /* Compute a bandwidth estimation by multiplying the frame
133 * size by the number of video frames per second, divide the
134 * result by the number of USB frames (or micro-frames for
135 * high-speed devices) per second and add the UVC header size
136 * (assumed to be 12 bytes long).
137 */
138 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
139 bandwidth *= 10000000 / interval + 1;
140 bandwidth /= 1000;
141 if (stream->dev->udev->speed == USB_SPEED_HIGH)
142 bandwidth /= 8;
143 bandwidth += 12;
144
145 /* The bandwidth estimate is too low for many cameras. Don't use
146 * maximum packet sizes lower than 1024 bytes to try and work
147 * around the problem. According to measurements done on two
148 * different camera models, the value is high enough to get most
149 * resolutions working while not preventing two simultaneous
150 * VGA streams at 15 fps.
151 */
152 bandwidth = max_t(u32, bandwidth, 1024);
153
154 ctrl->dwMaxPayloadTransferSize = bandwidth;
155 }
156 }
157
158 static int uvc_get_video_ctrl(struct uvc_streaming *stream,
159 struct uvc_streaming_control *ctrl, int probe, __u8 query)
160 {
161 __u8 *data;
162 __u16 size;
163 int ret;
164
165 size = stream->dev->uvc_version >= 0x0110 ? 34 : 26;
166 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
167 query == UVC_GET_DEF)
168 return -EIO;
169
170 data = kmalloc(size, GFP_KERNEL);
171 if (data == NULL)
172 return -ENOMEM;
173
174 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
175 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
176 size, uvc_timeout_param);
177
178 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
179 /* Some cameras, mostly based on Bison Electronics chipsets,
180 * answer a GET_MIN or GET_MAX request with the wCompQuality
181 * field only.
182 */
183 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
184 "compliance - GET_MIN/MAX(PROBE) incorrectly "
185 "supported. Enabling workaround.\n");
186 memset(ctrl, 0, sizeof *ctrl);
187 ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
188 ret = 0;
189 goto out;
190 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
191 /* Many cameras don't support the GET_DEF request on their
192 * video probe control. Warn once and return, the caller will
193 * fall back to GET_CUR.
194 */
195 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
196 "compliance - GET_DEF(PROBE) not supported. "
197 "Enabling workaround.\n");
198 ret = -EIO;
199 goto out;
200 } else if (ret != size) {
201 uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : "
202 "%d (exp. %u).\n", query, probe ? "probe" : "commit",
203 ret, size);
204 ret = -EIO;
205 goto out;
206 }
207
208 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
209 ctrl->bFormatIndex = data[2];
210 ctrl->bFrameIndex = data[3];
211 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
212 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
213 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
214 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
215 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
216 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
217 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
218 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
219
220 if (size == 34) {
221 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
222 ctrl->bmFramingInfo = data[30];
223 ctrl->bPreferedVersion = data[31];
224 ctrl->bMinVersion = data[32];
225 ctrl->bMaxVersion = data[33];
226 } else {
227 ctrl->dwClockFrequency = stream->dev->clock_frequency;
228 ctrl->bmFramingInfo = 0;
229 ctrl->bPreferedVersion = 0;
230 ctrl->bMinVersion = 0;
231 ctrl->bMaxVersion = 0;
232 }
233
234 /* Some broken devices return null or wrong dwMaxVideoFrameSize and
235 * dwMaxPayloadTransferSize fields. Try to get the value from the
236 * format and frame descriptors.
237 */
238 uvc_fixup_video_ctrl(stream, ctrl);
239 ret = 0;
240
241 out:
242 kfree(data);
243 return ret;
244 }
245
246 static int uvc_set_video_ctrl(struct uvc_streaming *stream,
247 struct uvc_streaming_control *ctrl, int probe)
248 {
249 __u8 *data;
250 __u16 size;
251 int ret;
252
253 size = stream->dev->uvc_version >= 0x0110 ? 34 : 26;
254 data = kzalloc(size, GFP_KERNEL);
255 if (data == NULL)
256 return -ENOMEM;
257
258 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
259 data[2] = ctrl->bFormatIndex;
260 data[3] = ctrl->bFrameIndex;
261 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
262 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
263 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
264 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
265 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
266 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
267 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
268 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]);
269
270 if (size == 34) {
271 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
272 data[30] = ctrl->bmFramingInfo;
273 data[31] = ctrl->bPreferedVersion;
274 data[32] = ctrl->bMinVersion;
275 data[33] = ctrl->bMaxVersion;
276 }
277
278 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
279 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
280 size, uvc_timeout_param);
281 if (ret != size) {
282 uvc_printk(KERN_ERR, "Failed to set UVC %s control : "
283 "%d (exp. %u).\n", probe ? "probe" : "commit",
284 ret, size);
285 ret = -EIO;
286 }
287
288 kfree(data);
289 return ret;
290 }
291
292 int uvc_probe_video(struct uvc_streaming *stream,
293 struct uvc_streaming_control *probe)
294 {
295 struct uvc_streaming_control probe_min, probe_max;
296 __u16 bandwidth;
297 unsigned int i;
298 int ret;
299
300 /* Perform probing. The device should adjust the requested values
301 * according to its capabilities. However, some devices, namely the
302 * first generation UVC Logitech webcams, don't implement the Video
303 * Probe control properly, and just return the needed bandwidth. For
304 * that reason, if the needed bandwidth exceeds the maximum available
305 * bandwidth, try to lower the quality.
306 */
307 ret = uvc_set_video_ctrl(stream, probe, 1);
308 if (ret < 0)
309 goto done;
310
311 /* Get the minimum and maximum values for compression settings. */
312 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
313 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
314 if (ret < 0)
315 goto done;
316 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
317 if (ret < 0)
318 goto done;
319
320 probe->wCompQuality = probe_max.wCompQuality;
321 }
322
323 for (i = 0; i < 2; ++i) {
324 ret = uvc_set_video_ctrl(stream, probe, 1);
325 if (ret < 0)
326 goto done;
327 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
328 if (ret < 0)
329 goto done;
330
331 if (stream->intf->num_altsetting == 1)
332 break;
333
334 bandwidth = probe->dwMaxPayloadTransferSize;
335 if (bandwidth <= stream->maxpsize)
336 break;
337
338 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
339 ret = -ENOSPC;
340 goto done;
341 }
342
343 /* TODO: negotiate compression parameters */
344 probe->wKeyFrameRate = probe_min.wKeyFrameRate;
345 probe->wPFrameRate = probe_min.wPFrameRate;
346 probe->wCompQuality = probe_max.wCompQuality;
347 probe->wCompWindowSize = probe_min.wCompWindowSize;
348 }
349
350 done:
351 return ret;
352 }
353
354 static int uvc_commit_video(struct uvc_streaming *stream,
355 struct uvc_streaming_control *probe)
356 {
357 return uvc_set_video_ctrl(stream, probe, 0);
358 }
359
360 /* -----------------------------------------------------------------------------
361 * Clocks and timestamps
362 */
363
364 static void
365 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
366 const __u8 *data, int len)
367 {
368 struct uvc_clock_sample *sample;
369 unsigned int header_size;
370 bool has_pts = false;
371 bool has_scr = false;
372 unsigned long flags;
373 struct timespec ts;
374 u16 host_sof;
375 u16 dev_sof;
376
377 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
378 case UVC_STREAM_PTS | UVC_STREAM_SCR:
379 header_size = 12;
380 has_pts = true;
381 has_scr = true;
382 break;
383 case UVC_STREAM_PTS:
384 header_size = 6;
385 has_pts = true;
386 break;
387 case UVC_STREAM_SCR:
388 header_size = 8;
389 has_scr = true;
390 break;
391 default:
392 header_size = 2;
393 break;
394 }
395
396 /* Check for invalid headers. */
397 if (len < header_size)
398 return;
399
400 /* Extract the timestamps:
401 *
402 * - store the frame PTS in the buffer structure
403 * - if the SCR field is present, retrieve the host SOF counter and
404 * kernel timestamps and store them with the SCR STC and SOF fields
405 * in the ring buffer
406 */
407 if (has_pts && buf != NULL)
408 buf->pts = get_unaligned_le32(&data[2]);
409
410 if (!has_scr)
411 return;
412
413 /* To limit the amount of data, drop SCRs with an SOF identical to the
414 * previous one.
415 */
416 dev_sof = get_unaligned_le16(&data[header_size - 2]);
417 if (dev_sof == stream->clock.last_sof)
418 return;
419
420 stream->clock.last_sof = dev_sof;
421
422 host_sof = usb_get_current_frame_number(stream->dev->udev);
423 ktime_get_ts(&ts);
424
425 /* The UVC specification allows device implementations that can't obtain
426 * the USB frame number to keep their own frame counters as long as they
427 * match the size and frequency of the frame number associated with USB
428 * SOF tokens. The SOF values sent by such devices differ from the USB
429 * SOF tokens by a fixed offset that needs to be estimated and accounted
430 * for to make timestamp recovery as accurate as possible.
431 *
432 * The offset is estimated the first time a device SOF value is received
433 * as the difference between the host and device SOF values. As the two
434 * SOF values can differ slightly due to transmission delays, consider
435 * that the offset is null if the difference is not higher than 10 ms
436 * (negative differences can not happen and are thus considered as an
437 * offset). The video commit control wDelay field should be used to
438 * compute a dynamic threshold instead of using a fixed 10 ms value, but
439 * devices don't report reliable wDelay values.
440 *
441 * See uvc_video_clock_host_sof() for an explanation regarding why only
442 * the 8 LSBs of the delta are kept.
443 */
444 if (stream->clock.sof_offset == (u16)-1) {
445 u16 delta_sof = (host_sof - dev_sof) & 255;
446 if (delta_sof >= 10)
447 stream->clock.sof_offset = delta_sof;
448 else
449 stream->clock.sof_offset = 0;
450 }
451
452 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047;
453
454 spin_lock_irqsave(&stream->clock.lock, flags);
455
456 sample = &stream->clock.samples[stream->clock.head];
457 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]);
458 sample->dev_sof = dev_sof;
459 sample->host_sof = host_sof;
460 sample->host_ts = ts;
461
462 /* Update the sliding window head and count. */
463 stream->clock.head = (stream->clock.head + 1) % stream->clock.size;
464
465 if (stream->clock.count < stream->clock.size)
466 stream->clock.count++;
467
468 spin_unlock_irqrestore(&stream->clock.lock, flags);
469 }
470
471 static void uvc_video_clock_reset(struct uvc_streaming *stream)
472 {
473 struct uvc_clock *clock = &stream->clock;
474
475 clock->head = 0;
476 clock->count = 0;
477 clock->last_sof = -1;
478 clock->sof_offset = -1;
479 }
480
481 static int uvc_video_clock_init(struct uvc_streaming *stream)
482 {
483 struct uvc_clock *clock = &stream->clock;
484
485 spin_lock_init(&clock->lock);
486 clock->size = 32;
487
488 clock->samples = kmalloc(clock->size * sizeof(*clock->samples),
489 GFP_KERNEL);
490 if (clock->samples == NULL)
491 return -ENOMEM;
492
493 uvc_video_clock_reset(stream);
494
495 return 0;
496 }
497
498 static void uvc_video_clock_cleanup(struct uvc_streaming *stream)
499 {
500 kfree(stream->clock.samples);
501 stream->clock.samples = NULL;
502 }
503
504 /*
505 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
506 *
507 * Host SOF counters reported by usb_get_current_frame_number() usually don't
508 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
509 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
510 * controller and its configuration.
511 *
512 * We thus need to recover the SOF value corresponding to the host frame number.
513 * As the device and host frame numbers are sampled in a short interval, the
514 * difference between their values should be equal to a small delta plus an
515 * integer multiple of 256 caused by the host frame number limited precision.
516 *
517 * To obtain the recovered host SOF value, compute the small delta by masking
518 * the high bits of the host frame counter and device SOF difference and add it
519 * to the device SOF value.
520 */
521 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
522 {
523 /* The delta value can be negative. */
524 s8 delta_sof;
525
526 delta_sof = (sample->host_sof - sample->dev_sof) & 255;
527
528 return (sample->dev_sof + delta_sof) & 2047;
529 }
530
531 /*
532 * uvc_video_clock_update - Update the buffer timestamp
533 *
534 * This function converts the buffer PTS timestamp to the host clock domain by
535 * going through the USB SOF clock domain and stores the result in the V4L2
536 * buffer timestamp field.
537 *
538 * The relationship between the device clock and the host clock isn't known.
539 * However, the device and the host share the common USB SOF clock which can be
540 * used to recover that relationship.
541 *
542 * The relationship between the device clock and the USB SOF clock is considered
543 * to be linear over the clock samples sliding window and is given by
544 *
545 * SOF = m * PTS + p
546 *
547 * Several methods to compute the slope (m) and intercept (p) can be used. As
548 * the clock drift should be small compared to the sliding window size, we
549 * assume that the line that goes through the points at both ends of the window
550 * is a good approximation. Naming those points P1 and P2, we get
551 *
552 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
553 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
554 *
555 * or
556 *
557 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1)
558 *
559 * to avoid loosing precision in the division. Similarly, the host timestamp is
560 * computed with
561 *
562 * TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2)
563 *
564 * SOF values are coded on 11 bits by USB. We extend their precision with 16
565 * decimal bits, leading to a 11.16 coding.
566 *
567 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
568 * be normalized using the nominal device clock frequency reported through the
569 * UVC descriptors.
570 *
571 * Both the PTS/STC and SOF counters roll over, after a fixed but device
572 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
573 * sliding window size is smaller than the rollover period, differences computed
574 * on unsigned integers will produce the correct result. However, the p term in
575 * the linear relations will be miscomputed.
576 *
577 * To fix the issue, we subtract a constant from the PTS and STC values to bring
578 * PTS to half the 32 bit STC range. The sliding window STC values then fit into
579 * the 32 bit range without any rollover.
580 *
581 * Similarly, we add 2048 to the device SOF values to make sure that the SOF
582 * computed by (1) will never be smaller than 0. This offset is then compensated
583 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
584 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
585 * lower than 4096, and the host SOF counters can have rolled over to 2048. This
586 * case is handled by subtracting 2048 from the SOF value if it exceeds the host
587 * SOF value at the end of the sliding window.
588 *
589 * Finally we subtract a constant from the host timestamps to bring the first
590 * timestamp of the sliding window to 1s.
591 */
592 void uvc_video_clock_update(struct uvc_streaming *stream,
593 struct v4l2_buffer *v4l2_buf,
594 struct uvc_buffer *buf)
595 {
596 struct uvc_clock *clock = &stream->clock;
597 struct uvc_clock_sample *first;
598 struct uvc_clock_sample *last;
599 unsigned long flags;
600 struct timespec ts;
601 u32 delta_stc;
602 u32 y1, y2;
603 u32 x1, x2;
604 u32 mean;
605 u32 sof;
606 u32 div;
607 u32 rem;
608 u64 y;
609
610 spin_lock_irqsave(&clock->lock, flags);
611
612 if (clock->count < clock->size)
613 goto done;
614
615 first = &clock->samples[clock->head];
616 last = &clock->samples[(clock->head - 1) % clock->size];
617
618 /* First step, PTS to SOF conversion. */
619 delta_stc = buf->pts - (1UL << 31);
620 x1 = first->dev_stc - delta_stc;
621 x2 = last->dev_stc - delta_stc;
622 if (x1 == x2)
623 goto done;
624
625 y1 = (first->dev_sof + 2048) << 16;
626 y2 = (last->dev_sof + 2048) << 16;
627 if (y2 < y1)
628 y2 += 2048 << 16;
629
630 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
631 - (u64)y2 * (u64)x1;
632 y = div_u64(y, x2 - x1);
633
634 sof = y;
635
636 uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu "
637 "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n",
638 stream->dev->name, buf->pts,
639 y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
640 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
641 x1, x2, y1, y2, clock->sof_offset);
642
643 /* Second step, SOF to host clock conversion. */
644 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
645 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
646 if (x2 < x1)
647 x2 += 2048 << 16;
648 if (x1 == x2)
649 goto done;
650
651 ts = timespec_sub(last->host_ts, first->host_ts);
652 y1 = NSEC_PER_SEC;
653 y2 = (ts.tv_sec + 1) * NSEC_PER_SEC + ts.tv_nsec;
654
655 /* Interpolated and host SOF timestamps can wrap around at slightly
656 * different times. Handle this by adding or removing 2048 to or from
657 * the computed SOF value to keep it close to the SOF samples mean
658 * value.
659 */
660 mean = (x1 + x2) / 2;
661 if (mean - (1024 << 16) > sof)
662 sof += 2048 << 16;
663 else if (sof > mean + (1024 << 16))
664 sof -= 2048 << 16;
665
666 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
667 - (u64)y2 * (u64)x1;
668 y = div_u64(y, x2 - x1);
669
670 div = div_u64_rem(y, NSEC_PER_SEC, &rem);
671 ts.tv_sec = first->host_ts.tv_sec - 1 + div;
672 ts.tv_nsec = first->host_ts.tv_nsec + rem;
673 if (ts.tv_nsec >= NSEC_PER_SEC) {
674 ts.tv_sec++;
675 ts.tv_nsec -= NSEC_PER_SEC;
676 }
677
678 uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %lu.%06lu "
679 "buf ts %lu.%06lu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n",
680 stream->dev->name,
681 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
682 y, ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC,
683 v4l2_buf->timestamp.tv_sec,
684 (unsigned long)v4l2_buf->timestamp.tv_usec,
685 x1, first->host_sof, first->dev_sof,
686 x2, last->host_sof, last->dev_sof, y1, y2);
687
688 /* Update the V4L2 buffer. */
689 v4l2_buf->timestamp.tv_sec = ts.tv_sec;
690 v4l2_buf->timestamp.tv_usec = ts.tv_nsec / NSEC_PER_USEC;
691
692 done:
693 spin_unlock_irqrestore(&stream->clock.lock, flags);
694 }
695
696 /* ------------------------------------------------------------------------
697 * Stream statistics
698 */
699
700 static void uvc_video_stats_decode(struct uvc_streaming *stream,
701 const __u8 *data, int len)
702 {
703 unsigned int header_size;
704 bool has_pts = false;
705 bool has_scr = false;
706 u16 uninitialized_var(scr_sof);
707 u32 uninitialized_var(scr_stc);
708 u32 uninitialized_var(pts);
709
710 if (stream->stats.stream.nb_frames == 0 &&
711 stream->stats.frame.nb_packets == 0)
712 ktime_get_ts(&stream->stats.stream.start_ts);
713
714 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
715 case UVC_STREAM_PTS | UVC_STREAM_SCR:
716 header_size = 12;
717 has_pts = true;
718 has_scr = true;
719 break;
720 case UVC_STREAM_PTS:
721 header_size = 6;
722 has_pts = true;
723 break;
724 case UVC_STREAM_SCR:
725 header_size = 8;
726 has_scr = true;
727 break;
728 default:
729 header_size = 2;
730 break;
731 }
732
733 /* Check for invalid headers. */
734 if (len < header_size || data[0] < header_size) {
735 stream->stats.frame.nb_invalid++;
736 return;
737 }
738
739 /* Extract the timestamps. */
740 if (has_pts)
741 pts = get_unaligned_le32(&data[2]);
742
743 if (has_scr) {
744 scr_stc = get_unaligned_le32(&data[header_size - 6]);
745 scr_sof = get_unaligned_le16(&data[header_size - 2]);
746 }
747
748 /* Is PTS constant through the whole frame ? */
749 if (has_pts && stream->stats.frame.nb_pts) {
750 if (stream->stats.frame.pts != pts) {
751 stream->stats.frame.nb_pts_diffs++;
752 stream->stats.frame.last_pts_diff =
753 stream->stats.frame.nb_packets;
754 }
755 }
756
757 if (has_pts) {
758 stream->stats.frame.nb_pts++;
759 stream->stats.frame.pts = pts;
760 }
761
762 /* Do all frames have a PTS in their first non-empty packet, or before
763 * their first empty packet ?
764 */
765 if (stream->stats.frame.size == 0) {
766 if (len > header_size)
767 stream->stats.frame.has_initial_pts = has_pts;
768 if (len == header_size && has_pts)
769 stream->stats.frame.has_early_pts = true;
770 }
771
772 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
773 if (has_scr && stream->stats.frame.nb_scr) {
774 if (stream->stats.frame.scr_stc != scr_stc)
775 stream->stats.frame.nb_scr_diffs++;
776 }
777
778 if (has_scr) {
779 /* Expand the SOF counter to 32 bits and store its value. */
780 if (stream->stats.stream.nb_frames > 0 ||
781 stream->stats.frame.nb_scr > 0)
782 stream->stats.stream.scr_sof_count +=
783 (scr_sof - stream->stats.stream.scr_sof) % 2048;
784 stream->stats.stream.scr_sof = scr_sof;
785
786 stream->stats.frame.nb_scr++;
787 stream->stats.frame.scr_stc = scr_stc;
788 stream->stats.frame.scr_sof = scr_sof;
789
790 if (scr_sof < stream->stats.stream.min_sof)
791 stream->stats.stream.min_sof = scr_sof;
792 if (scr_sof > stream->stats.stream.max_sof)
793 stream->stats.stream.max_sof = scr_sof;
794 }
795
796 /* Record the first non-empty packet number. */
797 if (stream->stats.frame.size == 0 && len > header_size)
798 stream->stats.frame.first_data = stream->stats.frame.nb_packets;
799
800 /* Update the frame size. */
801 stream->stats.frame.size += len - header_size;
802
803 /* Update the packets counters. */
804 stream->stats.frame.nb_packets++;
805 if (len > header_size)
806 stream->stats.frame.nb_empty++;
807
808 if (data[1] & UVC_STREAM_ERR)
809 stream->stats.frame.nb_errors++;
810 }
811
812 static void uvc_video_stats_update(struct uvc_streaming *stream)
813 {
814 struct uvc_stats_frame *frame = &stream->stats.frame;
815
816 uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, "
817 "%u/%u/%u pts (%searly %sinitial), %u/%u scr, "
818 "last pts/stc/sof %u/%u/%u\n",
819 stream->sequence, frame->first_data,
820 frame->nb_packets - frame->nb_empty, frame->nb_packets,
821 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
822 frame->has_early_pts ? "" : "!",
823 frame->has_initial_pts ? "" : "!",
824 frame->nb_scr_diffs, frame->nb_scr,
825 frame->pts, frame->scr_stc, frame->scr_sof);
826
827 stream->stats.stream.nb_frames++;
828 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
829 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
830 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
831 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
832
833 if (frame->has_early_pts)
834 stream->stats.stream.nb_pts_early++;
835 if (frame->has_initial_pts)
836 stream->stats.stream.nb_pts_initial++;
837 if (frame->last_pts_diff <= frame->first_data)
838 stream->stats.stream.nb_pts_constant++;
839 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
840 stream->stats.stream.nb_scr_count_ok++;
841 if (frame->nb_scr_diffs + 1 == frame->nb_scr)
842 stream->stats.stream.nb_scr_diffs_ok++;
843
844 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
845 }
846
847 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
848 size_t size)
849 {
850 unsigned int scr_sof_freq;
851 unsigned int duration;
852 struct timespec ts;
853 size_t count = 0;
854
855 ts.tv_sec = stream->stats.stream.stop_ts.tv_sec
856 - stream->stats.stream.start_ts.tv_sec;
857 ts.tv_nsec = stream->stats.stream.stop_ts.tv_nsec
858 - stream->stats.stream.start_ts.tv_nsec;
859 if (ts.tv_nsec < 0) {
860 ts.tv_sec--;
861 ts.tv_nsec += 1000000000;
862 }
863
864 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
865 * frequency this will not overflow before more than 1h.
866 */
867 duration = ts.tv_sec * 1000 + ts.tv_nsec / 1000000;
868 if (duration != 0)
869 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
870 / duration;
871 else
872 scr_sof_freq = 0;
873
874 count += scnprintf(buf + count, size - count,
875 "frames: %u\npackets: %u\nempty: %u\n"
876 "errors: %u\ninvalid: %u\n",
877 stream->stats.stream.nb_frames,
878 stream->stats.stream.nb_packets,
879 stream->stats.stream.nb_empty,
880 stream->stats.stream.nb_errors,
881 stream->stats.stream.nb_invalid);
882 count += scnprintf(buf + count, size - count,
883 "pts: %u early, %u initial, %u ok\n",
884 stream->stats.stream.nb_pts_early,
885 stream->stats.stream.nb_pts_initial,
886 stream->stats.stream.nb_pts_constant);
887 count += scnprintf(buf + count, size - count,
888 "scr: %u count ok, %u diff ok\n",
889 stream->stats.stream.nb_scr_count_ok,
890 stream->stats.stream.nb_scr_diffs_ok);
891 count += scnprintf(buf + count, size - count,
892 "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
893 stream->stats.stream.min_sof,
894 stream->stats.stream.max_sof,
895 scr_sof_freq / 1000, scr_sof_freq % 1000);
896
897 return count;
898 }
899
900 static void uvc_video_stats_start(struct uvc_streaming *stream)
901 {
902 memset(&stream->stats, 0, sizeof(stream->stats));
903 stream->stats.stream.min_sof = 2048;
904 }
905
906 static void uvc_video_stats_stop(struct uvc_streaming *stream)
907 {
908 ktime_get_ts(&stream->stats.stream.stop_ts);
909 }
910
911 /* ------------------------------------------------------------------------
912 * Video codecs
913 */
914
915 /* Video payload decoding is handled by uvc_video_decode_start(),
916 * uvc_video_decode_data() and uvc_video_decode_end().
917 *
918 * uvc_video_decode_start is called with URB data at the start of a bulk or
919 * isochronous payload. It processes header data and returns the header size
920 * in bytes if successful. If an error occurs, it returns a negative error
921 * code. The following error codes have special meanings.
922 *
923 * - EAGAIN informs the caller that the current video buffer should be marked
924 * as done, and that the function should be called again with the same data
925 * and a new video buffer. This is used when end of frame conditions can be
926 * reliably detected at the beginning of the next frame only.
927 *
928 * If an error other than -EAGAIN is returned, the caller will drop the current
929 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
930 * made until the next payload. -ENODATA can be used to drop the current
931 * payload if no other error code is appropriate.
932 *
933 * uvc_video_decode_data is called for every URB with URB data. It copies the
934 * data to the video buffer.
935 *
936 * uvc_video_decode_end is called with header data at the end of a bulk or
937 * isochronous payload. It performs any additional header data processing and
938 * returns 0 or a negative error code if an error occurred. As header data have
939 * already been processed by uvc_video_decode_start, this functions isn't
940 * required to perform sanity checks a second time.
941 *
942 * For isochronous transfers where a payload is always transferred in a single
943 * URB, the three functions will be called in a row.
944 *
945 * To let the decoder process header data and update its internal state even
946 * when no video buffer is available, uvc_video_decode_start must be prepared
947 * to be called with a NULL buf parameter. uvc_video_decode_data and
948 * uvc_video_decode_end will never be called with a NULL buffer.
949 */
950 static int uvc_video_decode_start(struct uvc_streaming *stream,
951 struct uvc_buffer *buf, const __u8 *data, int len)
952 {
953 __u8 fid;
954
955 /* Sanity checks:
956 * - packet must be at least 2 bytes long
957 * - bHeaderLength value must be at least 2 bytes (see above)
958 * - bHeaderLength value can't be larger than the packet size.
959 */
960 if (len < 2 || data[0] < 2 || data[0] > len) {
961 stream->stats.frame.nb_invalid++;
962 return -EINVAL;
963 }
964
965 fid = data[1] & UVC_STREAM_FID;
966
967 /* Increase the sequence number regardless of any buffer states, so
968 * that discontinuous sequence numbers always indicate lost frames.
969 */
970 if (stream->last_fid != fid) {
971 stream->sequence++;
972 if (stream->sequence)
973 uvc_video_stats_update(stream);
974 }
975
976 uvc_video_clock_decode(stream, buf, data, len);
977 uvc_video_stats_decode(stream, data, len);
978
979 /* Store the payload FID bit and return immediately when the buffer is
980 * NULL.
981 */
982 if (buf == NULL) {
983 stream->last_fid = fid;
984 return -ENODATA;
985 }
986
987 /* Mark the buffer as bad if the error bit is set. */
988 if (data[1] & UVC_STREAM_ERR) {
989 uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit "
990 "set).\n");
991 buf->error = 1;
992 }
993
994 /* Synchronize to the input stream by waiting for the FID bit to be
995 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE.
996 * stream->last_fid is initialized to -1, so the first isochronous
997 * frame will always be in sync.
998 *
999 * If the device doesn't toggle the FID bit, invert stream->last_fid
1000 * when the EOF bit is set to force synchronisation on the next packet.
1001 */
1002 if (buf->state != UVC_BUF_STATE_ACTIVE) {
1003 struct timespec ts;
1004
1005 if (fid == stream->last_fid) {
1006 uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of "
1007 "sync).\n");
1008 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
1009 (data[1] & UVC_STREAM_EOF))
1010 stream->last_fid ^= UVC_STREAM_FID;
1011 return -ENODATA;
1012 }
1013
1014 if (uvc_clock_param == CLOCK_MONOTONIC)
1015 ktime_get_ts(&ts);
1016 else
1017 ktime_get_real_ts(&ts);
1018
1019 buf->buf.v4l2_buf.sequence = stream->sequence;
1020 buf->buf.v4l2_buf.timestamp.tv_sec = ts.tv_sec;
1021 buf->buf.v4l2_buf.timestamp.tv_usec =
1022 ts.tv_nsec / NSEC_PER_USEC;
1023
1024 /* TODO: Handle PTS and SCR. */
1025 buf->state = UVC_BUF_STATE_ACTIVE;
1026 }
1027
1028 /* Mark the buffer as done if we're at the beginning of a new frame.
1029 * End of frame detection is better implemented by checking the EOF
1030 * bit (FID bit toggling is delayed by one frame compared to the EOF
1031 * bit), but some devices don't set the bit at end of frame (and the
1032 * last payload can be lost anyway). We thus must check if the FID has
1033 * been toggled.
1034 *
1035 * stream->last_fid is initialized to -1, so the first isochronous
1036 * frame will never trigger an end of frame detection.
1037 *
1038 * Empty buffers (bytesused == 0) don't trigger end of frame detection
1039 * as it doesn't make sense to return an empty buffer. This also
1040 * avoids detecting end of frame conditions at FID toggling if the
1041 * previous payload had the EOF bit set.
1042 */
1043 if (fid != stream->last_fid && buf->bytesused != 0) {
1044 uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit "
1045 "toggled).\n");
1046 buf->state = UVC_BUF_STATE_READY;
1047 return -EAGAIN;
1048 }
1049
1050 stream->last_fid = fid;
1051
1052 return data[0];
1053 }
1054
1055 static void uvc_video_decode_data(struct uvc_streaming *stream,
1056 struct uvc_buffer *buf, const __u8 *data, int len)
1057 {
1058 unsigned int maxlen, nbytes;
1059 void *mem;
1060
1061 if (len <= 0)
1062 return;
1063
1064 /* Copy the video data to the buffer. */
1065 maxlen = buf->length - buf->bytesused;
1066 mem = buf->mem + buf->bytesused;
1067 nbytes = min((unsigned int)len, maxlen);
1068 memcpy(mem, data, nbytes);
1069 buf->bytesused += nbytes;
1070
1071 /* Complete the current frame if the buffer size was exceeded. */
1072 if (len > maxlen) {
1073 uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n");
1074 buf->state = UVC_BUF_STATE_READY;
1075 }
1076 }
1077
1078 static void uvc_video_decode_end(struct uvc_streaming *stream,
1079 struct uvc_buffer *buf, const __u8 *data, int len)
1080 {
1081 /* Mark the buffer as done if the EOF marker is set. */
1082 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
1083 uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n");
1084 if (data[0] == len)
1085 uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n");
1086 buf->state = UVC_BUF_STATE_READY;
1087 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
1088 stream->last_fid ^= UVC_STREAM_FID;
1089 }
1090 }
1091
1092 /* Video payload encoding is handled by uvc_video_encode_header() and
1093 * uvc_video_encode_data(). Only bulk transfers are currently supported.
1094 *
1095 * uvc_video_encode_header is called at the start of a payload. It adds header
1096 * data to the transfer buffer and returns the header size. As the only known
1097 * UVC output device transfers a whole frame in a single payload, the EOF bit
1098 * is always set in the header.
1099 *
1100 * uvc_video_encode_data is called for every URB and copies the data from the
1101 * video buffer to the transfer buffer.
1102 */
1103 static int uvc_video_encode_header(struct uvc_streaming *stream,
1104 struct uvc_buffer *buf, __u8 *data, int len)
1105 {
1106 data[0] = 2; /* Header length */
1107 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
1108 | (stream->last_fid & UVC_STREAM_FID);
1109 return 2;
1110 }
1111
1112 static int uvc_video_encode_data(struct uvc_streaming *stream,
1113 struct uvc_buffer *buf, __u8 *data, int len)
1114 {
1115 struct uvc_video_queue *queue = &stream->queue;
1116 unsigned int nbytes;
1117 void *mem;
1118
1119 /* Copy video data to the URB buffer. */
1120 mem = buf->mem + queue->buf_used;
1121 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
1122 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
1123 nbytes);
1124 memcpy(data, mem, nbytes);
1125
1126 queue->buf_used += nbytes;
1127
1128 return nbytes;
1129 }
1130
1131 /* ------------------------------------------------------------------------
1132 * URB handling
1133 */
1134
1135 /*
1136 * Completion handler for video URBs.
1137 */
1138 static void uvc_video_decode_isoc(struct urb *urb, struct uvc_streaming *stream,
1139 struct uvc_buffer *buf)
1140 {
1141 u8 *mem;
1142 int ret, i;
1143
1144 for (i = 0; i < urb->number_of_packets; ++i) {
1145 if (urb->iso_frame_desc[i].status < 0) {
1146 uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame "
1147 "lost (%d).\n", urb->iso_frame_desc[i].status);
1148 /* Mark the buffer as faulty. */
1149 if (buf != NULL)
1150 buf->error = 1;
1151 continue;
1152 }
1153
1154 /* Decode the payload header. */
1155 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
1156 do {
1157 ret = uvc_video_decode_start(stream, buf, mem,
1158 urb->iso_frame_desc[i].actual_length);
1159 if (ret == -EAGAIN)
1160 buf = uvc_queue_next_buffer(&stream->queue,
1161 buf);
1162 } while (ret == -EAGAIN);
1163
1164 if (ret < 0)
1165 continue;
1166
1167 /* Decode the payload data. */
1168 uvc_video_decode_data(stream, buf, mem + ret,
1169 urb->iso_frame_desc[i].actual_length - ret);
1170
1171 /* Process the header again. */
1172 uvc_video_decode_end(stream, buf, mem,
1173 urb->iso_frame_desc[i].actual_length);
1174
1175 if (buf->state == UVC_BUF_STATE_READY) {
1176 if (buf->length != buf->bytesused &&
1177 !(stream->cur_format->flags &
1178 UVC_FMT_FLAG_COMPRESSED))
1179 buf->error = 1;
1180
1181 buf = uvc_queue_next_buffer(&stream->queue, buf);
1182 }
1183 }
1184 }
1185
1186 static void uvc_video_decode_bulk(struct urb *urb, struct uvc_streaming *stream,
1187 struct uvc_buffer *buf)
1188 {
1189 u8 *mem;
1190 int len, ret;
1191
1192 /*
1193 * Ignore ZLPs if they're not part of a frame, otherwise process them
1194 * to trigger the end of payload detection.
1195 */
1196 if (urb->actual_length == 0 && stream->bulk.header_size == 0)
1197 return;
1198
1199 mem = urb->transfer_buffer;
1200 len = urb->actual_length;
1201 stream->bulk.payload_size += len;
1202
1203 /* If the URB is the first of its payload, decode and save the
1204 * header.
1205 */
1206 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
1207 do {
1208 ret = uvc_video_decode_start(stream, buf, mem, len);
1209 if (ret == -EAGAIN)
1210 buf = uvc_queue_next_buffer(&stream->queue,
1211 buf);
1212 } while (ret == -EAGAIN);
1213
1214 /* If an error occurred skip the rest of the payload. */
1215 if (ret < 0 || buf == NULL) {
1216 stream->bulk.skip_payload = 1;
1217 } else {
1218 memcpy(stream->bulk.header, mem, ret);
1219 stream->bulk.header_size = ret;
1220
1221 mem += ret;
1222 len -= ret;
1223 }
1224 }
1225
1226 /* The buffer queue might have been cancelled while a bulk transfer
1227 * was in progress, so we can reach here with buf equal to NULL. Make
1228 * sure buf is never dereferenced if NULL.
1229 */
1230
1231 /* Process video data. */
1232 if (!stream->bulk.skip_payload && buf != NULL)
1233 uvc_video_decode_data(stream, buf, mem, len);
1234
1235 /* Detect the payload end by a URB smaller than the maximum size (or
1236 * a payload size equal to the maximum) and process the header again.
1237 */
1238 if (urb->actual_length < urb->transfer_buffer_length ||
1239 stream->bulk.payload_size >= stream->bulk.max_payload_size) {
1240 if (!stream->bulk.skip_payload && buf != NULL) {
1241 uvc_video_decode_end(stream, buf, stream->bulk.header,
1242 stream->bulk.payload_size);
1243 if (buf->state == UVC_BUF_STATE_READY)
1244 buf = uvc_queue_next_buffer(&stream->queue,
1245 buf);
1246 }
1247
1248 stream->bulk.header_size = 0;
1249 stream->bulk.skip_payload = 0;
1250 stream->bulk.payload_size = 0;
1251 }
1252 }
1253
1254 static void uvc_video_encode_bulk(struct urb *urb, struct uvc_streaming *stream,
1255 struct uvc_buffer *buf)
1256 {
1257 u8 *mem = urb->transfer_buffer;
1258 int len = stream->urb_size, ret;
1259
1260 if (buf == NULL) {
1261 urb->transfer_buffer_length = 0;
1262 return;
1263 }
1264
1265 /* If the URB is the first of its payload, add the header. */
1266 if (stream->bulk.header_size == 0) {
1267 ret = uvc_video_encode_header(stream, buf, mem, len);
1268 stream->bulk.header_size = ret;
1269 stream->bulk.payload_size += ret;
1270 mem += ret;
1271 len -= ret;
1272 }
1273
1274 /* Process video data. */
1275 ret = uvc_video_encode_data(stream, buf, mem, len);
1276
1277 stream->bulk.payload_size += ret;
1278 len -= ret;
1279
1280 if (buf->bytesused == stream->queue.buf_used ||
1281 stream->bulk.payload_size == stream->bulk.max_payload_size) {
1282 if (buf->bytesused == stream->queue.buf_used) {
1283 stream->queue.buf_used = 0;
1284 buf->state = UVC_BUF_STATE_READY;
1285 buf->buf.v4l2_buf.sequence = ++stream->sequence;
1286 uvc_queue_next_buffer(&stream->queue, buf);
1287 stream->last_fid ^= UVC_STREAM_FID;
1288 }
1289
1290 stream->bulk.header_size = 0;
1291 stream->bulk.payload_size = 0;
1292 }
1293
1294 urb->transfer_buffer_length = stream->urb_size - len;
1295 }
1296
1297 static void uvc_video_complete(struct urb *urb)
1298 {
1299 struct uvc_streaming *stream = urb->context;
1300 struct uvc_video_queue *queue = &stream->queue;
1301 struct uvc_buffer *buf = NULL;
1302 unsigned long flags;
1303 int ret;
1304
1305 switch (urb->status) {
1306 case 0:
1307 break;
1308
1309 default:
1310 uvc_printk(KERN_WARNING, "Non-zero status (%d) in video "
1311 "completion handler.\n", urb->status);
1312
1313 case -ENOENT: /* usb_kill_urb() called. */
1314 if (stream->frozen)
1315 return;
1316
1317 case -ECONNRESET: /* usb_unlink_urb() called. */
1318 case -ESHUTDOWN: /* The endpoint is being disabled. */
1319 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
1320 return;
1321 }
1322
1323 spin_lock_irqsave(&queue->irqlock, flags);
1324 if (!list_empty(&queue->irqqueue))
1325 buf = list_first_entry(&queue->irqqueue, struct uvc_buffer,
1326 queue);
1327 spin_unlock_irqrestore(&queue->irqlock, flags);
1328
1329 stream->decode(urb, stream, buf);
1330
1331 if ((ret = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
1332 uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n",
1333 ret);
1334 }
1335 }
1336
1337 /*
1338 * Free transfer buffers.
1339 */
1340 static void uvc_free_urb_buffers(struct uvc_streaming *stream)
1341 {
1342 unsigned int i;
1343
1344 for (i = 0; i < UVC_URBS; ++i) {
1345 if (stream->urb_buffer[i]) {
1346 #ifndef CONFIG_DMA_NONCOHERENT
1347 usb_free_coherent(stream->dev->udev, stream->urb_size,
1348 stream->urb_buffer[i], stream->urb_dma[i]);
1349 #else
1350 kfree(stream->urb_buffer[i]);
1351 #endif
1352 stream->urb_buffer[i] = NULL;
1353 }
1354 }
1355
1356 stream->urb_size = 0;
1357 }
1358
1359 /*
1360 * Allocate transfer buffers. This function can be called with buffers
1361 * already allocated when resuming from suspend, in which case it will
1362 * return without touching the buffers.
1363 *
1364 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1365 * system is too low on memory try successively smaller numbers of packets
1366 * until allocation succeeds.
1367 *
1368 * Return the number of allocated packets on success or 0 when out of memory.
1369 */
1370 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
1371 unsigned int size, unsigned int psize, gfp_t gfp_flags)
1372 {
1373 unsigned int npackets;
1374 unsigned int i;
1375
1376 /* Buffers are already allocated, bail out. */
1377 if (stream->urb_size)
1378 return stream->urb_size / psize;
1379
1380 /* Compute the number of packets. Bulk endpoints might transfer UVC
1381 * payloads across multiple URBs.
1382 */
1383 npackets = DIV_ROUND_UP(size, psize);
1384 if (npackets > UVC_MAX_PACKETS)
1385 npackets = UVC_MAX_PACKETS;
1386
1387 /* Retry allocations until one succeed. */
1388 for (; npackets > 1; npackets /= 2) {
1389 for (i = 0; i < UVC_URBS; ++i) {
1390 stream->urb_size = psize * npackets;
1391 #ifndef CONFIG_DMA_NONCOHERENT
1392 stream->urb_buffer[i] = usb_alloc_coherent(
1393 stream->dev->udev, stream->urb_size,
1394 gfp_flags | __GFP_NOWARN, &stream->urb_dma[i]);
1395 #else
1396 stream->urb_buffer[i] =
1397 kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN);
1398 #endif
1399 if (!stream->urb_buffer[i]) {
1400 uvc_free_urb_buffers(stream);
1401 break;
1402 }
1403 }
1404
1405 if (i == UVC_URBS) {
1406 uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers "
1407 "of %ux%u bytes each.\n", UVC_URBS, npackets,
1408 psize);
1409 return npackets;
1410 }
1411 }
1412
1413 uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes "
1414 "per packet).\n", psize);
1415 return 0;
1416 }
1417
1418 /*
1419 * Uninitialize isochronous/bulk URBs and free transfer buffers.
1420 */
1421 static void uvc_uninit_video(struct uvc_streaming *stream, int free_buffers)
1422 {
1423 struct urb *urb;
1424 unsigned int i;
1425
1426 uvc_video_stats_stop(stream);
1427
1428 for (i = 0; i < UVC_URBS; ++i) {
1429 urb = stream->urb[i];
1430 if (urb == NULL)
1431 continue;
1432
1433 usb_kill_urb(urb);
1434 usb_free_urb(urb);
1435 stream->urb[i] = NULL;
1436 }
1437
1438 if (free_buffers)
1439 uvc_free_urb_buffers(stream);
1440 }
1441
1442 /*
1443 * Compute the maximum number of bytes per interval for an endpoint.
1444 */
1445 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev,
1446 struct usb_host_endpoint *ep)
1447 {
1448 u16 psize;
1449
1450 switch (dev->speed) {
1451 case USB_SPEED_SUPER:
1452 return ep->ss_ep_comp.wBytesPerInterval;
1453 case USB_SPEED_HIGH:
1454 psize = usb_endpoint_maxp(&ep->desc);
1455 return (psize & 0x07ff) * (1 + ((psize >> 11) & 3));
1456 default:
1457 psize = usb_endpoint_maxp(&ep->desc);
1458 return psize & 0x07ff;
1459 }
1460 }
1461
1462 /*
1463 * Initialize isochronous URBs and allocate transfer buffers. The packet size
1464 * is given by the endpoint.
1465 */
1466 static int uvc_init_video_isoc(struct uvc_streaming *stream,
1467 struct usb_host_endpoint *ep, gfp_t gfp_flags)
1468 {
1469 struct urb *urb;
1470 unsigned int npackets, i, j;
1471 u16 psize;
1472 u32 size;
1473
1474 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1475 size = stream->ctrl.dwMaxVideoFrameSize;
1476
1477 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1478 if (npackets == 0)
1479 return -ENOMEM;
1480
1481 size = npackets * psize;
1482
1483 for (i = 0; i < UVC_URBS; ++i) {
1484 urb = usb_alloc_urb(npackets, gfp_flags);
1485 if (urb == NULL) {
1486 uvc_uninit_video(stream, 1);
1487 return -ENOMEM;
1488 }
1489
1490 urb->dev = stream->dev->udev;
1491 urb->context = stream;
1492 urb->pipe = usb_rcvisocpipe(stream->dev->udev,
1493 ep->desc.bEndpointAddress);
1494 #ifndef CONFIG_DMA_NONCOHERENT
1495 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
1496 urb->transfer_dma = stream->urb_dma[i];
1497 #else
1498 urb->transfer_flags = URB_ISO_ASAP;
1499 #endif
1500 urb->interval = ep->desc.bInterval;
1501 urb->transfer_buffer = stream->urb_buffer[i];
1502 urb->complete = uvc_video_complete;
1503 urb->number_of_packets = npackets;
1504 urb->transfer_buffer_length = size;
1505
1506 for (j = 0; j < npackets; ++j) {
1507 urb->iso_frame_desc[j].offset = j * psize;
1508 urb->iso_frame_desc[j].length = psize;
1509 }
1510
1511 stream->urb[i] = urb;
1512 }
1513
1514 return 0;
1515 }
1516
1517 /*
1518 * Initialize bulk URBs and allocate transfer buffers. The packet size is
1519 * given by the endpoint.
1520 */
1521 static int uvc_init_video_bulk(struct uvc_streaming *stream,
1522 struct usb_host_endpoint *ep, gfp_t gfp_flags)
1523 {
1524 struct urb *urb;
1525 unsigned int npackets, pipe, i;
1526 u16 psize;
1527 u32 size;
1528
1529 psize = usb_endpoint_maxp(&ep->desc) & 0x7ff;
1530 size = stream->ctrl.dwMaxPayloadTransferSize;
1531 stream->bulk.max_payload_size = size;
1532
1533 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1534 if (npackets == 0)
1535 return -ENOMEM;
1536
1537 size = npackets * psize;
1538
1539 if (usb_endpoint_dir_in(&ep->desc))
1540 pipe = usb_rcvbulkpipe(stream->dev->udev,
1541 ep->desc.bEndpointAddress);
1542 else
1543 pipe = usb_sndbulkpipe(stream->dev->udev,
1544 ep->desc.bEndpointAddress);
1545
1546 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1547 size = 0;
1548
1549 for (i = 0; i < UVC_URBS; ++i) {
1550 urb = usb_alloc_urb(0, gfp_flags);
1551 if (urb == NULL) {
1552 uvc_uninit_video(stream, 1);
1553 return -ENOMEM;
1554 }
1555
1556 usb_fill_bulk_urb(urb, stream->dev->udev, pipe,
1557 stream->urb_buffer[i], size, uvc_video_complete,
1558 stream);
1559 #ifndef CONFIG_DMA_NONCOHERENT
1560 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1561 urb->transfer_dma = stream->urb_dma[i];
1562 #endif
1563
1564 stream->urb[i] = urb;
1565 }
1566
1567 return 0;
1568 }
1569
1570 /*
1571 * Initialize isochronous/bulk URBs and allocate transfer buffers.
1572 */
1573 static int uvc_init_video(struct uvc_streaming *stream, gfp_t gfp_flags)
1574 {
1575 struct usb_interface *intf = stream->intf;
1576 struct usb_host_endpoint *ep;
1577 unsigned int i;
1578 int ret;
1579
1580 stream->sequence = -1;
1581 stream->last_fid = -1;
1582 stream->bulk.header_size = 0;
1583 stream->bulk.skip_payload = 0;
1584 stream->bulk.payload_size = 0;
1585
1586 uvc_video_stats_start(stream);
1587
1588 if (intf->num_altsetting > 1) {
1589 struct usb_host_endpoint *best_ep = NULL;
1590 unsigned int best_psize = UINT_MAX;
1591 unsigned int bandwidth;
1592 unsigned int uninitialized_var(altsetting);
1593 int intfnum = stream->intfnum;
1594
1595 /* Isochronous endpoint, select the alternate setting. */
1596 bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
1597
1598 if (bandwidth == 0) {
1599 uvc_trace(UVC_TRACE_VIDEO, "Device requested null "
1600 "bandwidth, defaulting to lowest.\n");
1601 bandwidth = 1;
1602 } else {
1603 uvc_trace(UVC_TRACE_VIDEO, "Device requested %u "
1604 "B/frame bandwidth.\n", bandwidth);
1605 }
1606
1607 for (i = 0; i < intf->num_altsetting; ++i) {
1608 struct usb_host_interface *alts;
1609 unsigned int psize;
1610
1611 alts = &intf->altsetting[i];
1612 ep = uvc_find_endpoint(alts,
1613 stream->header.bEndpointAddress);
1614 if (ep == NULL)
1615 continue;
1616
1617 /* Check if the bandwidth is high enough. */
1618 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1619 if (psize >= bandwidth && psize <= best_psize) {
1620 altsetting = alts->desc.bAlternateSetting;
1621 best_psize = psize;
1622 best_ep = ep;
1623 }
1624 }
1625
1626 if (best_ep == NULL) {
1627 uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting "
1628 "for requested bandwidth.\n");
1629 return -EIO;
1630 }
1631
1632 uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u "
1633 "(%u B/frame bandwidth).\n", altsetting, best_psize);
1634
1635 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
1636 if (ret < 0)
1637 return ret;
1638
1639 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
1640 } else {
1641 /* Bulk endpoint, proceed to URB initialization. */
1642 ep = uvc_find_endpoint(&intf->altsetting[0],
1643 stream->header.bEndpointAddress);
1644 if (ep == NULL)
1645 return -EIO;
1646
1647 ret = uvc_init_video_bulk(stream, ep, gfp_flags);
1648 }
1649
1650 if (ret < 0)
1651 return ret;
1652
1653 /* Submit the URBs. */
1654 for (i = 0; i < UVC_URBS; ++i) {
1655 ret = usb_submit_urb(stream->urb[i], gfp_flags);
1656 if (ret < 0) {
1657 uvc_printk(KERN_ERR, "Failed to submit URB %u "
1658 "(%d).\n", i, ret);
1659 uvc_uninit_video(stream, 1);
1660 return ret;
1661 }
1662 }
1663
1664 return 0;
1665 }
1666
1667 /* --------------------------------------------------------------------------
1668 * Suspend/resume
1669 */
1670
1671 /*
1672 * Stop streaming without disabling the video queue.
1673 *
1674 * To let userspace applications resume without trouble, we must not touch the
1675 * video buffers in any way. We mark the device as frozen to make sure the URB
1676 * completion handler won't try to cancel the queue when we kill the URBs.
1677 */
1678 int uvc_video_suspend(struct uvc_streaming *stream)
1679 {
1680 if (!uvc_queue_streaming(&stream->queue))
1681 return 0;
1682
1683 stream->frozen = 1;
1684 uvc_uninit_video(stream, 0);
1685 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1686 return 0;
1687 }
1688
1689 /*
1690 * Reconfigure the video interface and restart streaming if it was enabled
1691 * before suspend.
1692 *
1693 * If an error occurs, disable the video queue. This will wake all pending
1694 * buffers, making sure userspace applications are notified of the problem
1695 * instead of waiting forever.
1696 */
1697 int uvc_video_resume(struct uvc_streaming *stream, int reset)
1698 {
1699 int ret;
1700
1701 /* If the bus has been reset on resume, set the alternate setting to 0.
1702 * This should be the default value, but some devices crash or otherwise
1703 * misbehave if they don't receive a SET_INTERFACE request before any
1704 * other video control request.
1705 */
1706 if (reset)
1707 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1708
1709 stream->frozen = 0;
1710
1711 uvc_video_clock_reset(stream);
1712
1713 ret = uvc_commit_video(stream, &stream->ctrl);
1714 if (ret < 0) {
1715 uvc_queue_enable(&stream->queue, 0);
1716 return ret;
1717 }
1718
1719 if (!uvc_queue_streaming(&stream->queue))
1720 return 0;
1721
1722 ret = uvc_init_video(stream, GFP_NOIO);
1723 if (ret < 0)
1724 uvc_queue_enable(&stream->queue, 0);
1725
1726 return ret;
1727 }
1728
1729 /* ------------------------------------------------------------------------
1730 * Video device
1731 */
1732
1733 /*
1734 * Initialize the UVC video device by switching to alternate setting 0 and
1735 * retrieve the default format.
1736 *
1737 * Some cameras (namely the Fuji Finepix) set the format and frame
1738 * indexes to zero. The UVC standard doesn't clearly make this a spec
1739 * violation, so try to silently fix the values if possible.
1740 *
1741 * This function is called before registering the device with V4L.
1742 */
1743 int uvc_video_init(struct uvc_streaming *stream)
1744 {
1745 struct uvc_streaming_control *probe = &stream->ctrl;
1746 struct uvc_format *format = NULL;
1747 struct uvc_frame *frame = NULL;
1748 unsigned int i;
1749 int ret;
1750
1751 if (stream->nformats == 0) {
1752 uvc_printk(KERN_INFO, "No supported video formats found.\n");
1753 return -EINVAL;
1754 }
1755
1756 atomic_set(&stream->active, 0);
1757
1758 /* Initialize the video buffers queue. */
1759 ret = uvc_queue_init(&stream->queue, stream->type, !uvc_no_drop_param);
1760 if (ret)
1761 return ret;
1762
1763 /* Alternate setting 0 should be the default, yet the XBox Live Vision
1764 * Cam (and possibly other devices) crash or otherwise misbehave if
1765 * they don't receive a SET_INTERFACE request before any other video
1766 * control request.
1767 */
1768 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1769
1770 /* Set the streaming probe control with default streaming parameters
1771 * retrieved from the device. Webcams that don't suport GET_DEF
1772 * requests on the probe control will just keep their current streaming
1773 * parameters.
1774 */
1775 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
1776 uvc_set_video_ctrl(stream, probe, 1);
1777
1778 /* Initialize the streaming parameters with the probe control current
1779 * value. This makes sure SET_CUR requests on the streaming commit
1780 * control will always use values retrieved from a successful GET_CUR
1781 * request on the probe control, as required by the UVC specification.
1782 */
1783 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
1784 if (ret < 0)
1785 return ret;
1786
1787 /* Check if the default format descriptor exists. Use the first
1788 * available format otherwise.
1789 */
1790 for (i = stream->nformats; i > 0; --i) {
1791 format = &stream->format[i-1];
1792 if (format->index == probe->bFormatIndex)
1793 break;
1794 }
1795
1796 if (format->nframes == 0) {
1797 uvc_printk(KERN_INFO, "No frame descriptor found for the "
1798 "default format.\n");
1799 return -EINVAL;
1800 }
1801
1802 /* Zero bFrameIndex might be correct. Stream-based formats (including
1803 * MPEG-2 TS and DV) do not support frames but have a dummy frame
1804 * descriptor with bFrameIndex set to zero. If the default frame
1805 * descriptor is not found, use the first available frame.
1806 */
1807 for (i = format->nframes; i > 0; --i) {
1808 frame = &format->frame[i-1];
1809 if (frame->bFrameIndex == probe->bFrameIndex)
1810 break;
1811 }
1812
1813 probe->bFormatIndex = format->index;
1814 probe->bFrameIndex = frame->bFrameIndex;
1815
1816 stream->def_format = format;
1817 stream->cur_format = format;
1818 stream->cur_frame = frame;
1819
1820 /* Select the video decoding function */
1821 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
1822 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
1823 stream->decode = uvc_video_decode_isight;
1824 else if (stream->intf->num_altsetting > 1)
1825 stream->decode = uvc_video_decode_isoc;
1826 else
1827 stream->decode = uvc_video_decode_bulk;
1828 } else {
1829 if (stream->intf->num_altsetting == 1)
1830 stream->decode = uvc_video_encode_bulk;
1831 else {
1832 uvc_printk(KERN_INFO, "Isochronous endpoints are not "
1833 "supported for video output devices.\n");
1834 return -EINVAL;
1835 }
1836 }
1837
1838 return 0;
1839 }
1840
1841 /*
1842 * Enable or disable the video stream.
1843 */
1844 int uvc_video_enable(struct uvc_streaming *stream, int enable)
1845 {
1846 int ret;
1847
1848 if (!enable) {
1849 uvc_uninit_video(stream, 1);
1850 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1851 uvc_queue_enable(&stream->queue, 0);
1852 uvc_video_clock_cleanup(stream);
1853 return 0;
1854 }
1855
1856 ret = uvc_video_clock_init(stream);
1857 if (ret < 0)
1858 return ret;
1859
1860 ret = uvc_queue_enable(&stream->queue, 1);
1861 if (ret < 0)
1862 goto error_queue;
1863
1864 /* Commit the streaming parameters. */
1865 ret = uvc_commit_video(stream, &stream->ctrl);
1866 if (ret < 0)
1867 goto error_commit;
1868
1869 ret = uvc_init_video(stream, GFP_KERNEL);
1870 if (ret < 0)
1871 goto error_video;
1872
1873 return 0;
1874
1875 error_video:
1876 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1877 error_commit:
1878 uvc_queue_enable(&stream->queue, 0);
1879 error_queue:
1880 uvc_video_clock_cleanup(stream);
1881
1882 return ret;
1883 }