]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/media/v4l2-core/v4l2-fwnode.c
spi: Fix double "when"
[mirror_ubuntu-hirsute-kernel.git] / drivers / media / v4l2-core / v4l2-fwnode.c
1 /*
2 * V4L2 fwnode binding parsing library
3 *
4 * The origins of the V4L2 fwnode library are in V4L2 OF library that
5 * formerly was located in v4l2-of.c.
6 *
7 * Copyright (c) 2016 Intel Corporation.
8 * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
9 *
10 * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
11 * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
12 *
13 * Copyright (C) 2012 Renesas Electronics Corp.
14 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of version 2 of the GNU General Public License as
18 * published by the Free Software Foundation.
19 */
20 #include <linux/acpi.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/property.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 #include <linux/types.h>
29
30 #include <media/v4l2-async.h>
31 #include <media/v4l2-fwnode.h>
32 #include <media/v4l2-subdev.h>
33
34 enum v4l2_fwnode_bus_type {
35 V4L2_FWNODE_BUS_TYPE_GUESS = 0,
36 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
37 V4L2_FWNODE_BUS_TYPE_CSI1,
38 V4L2_FWNODE_BUS_TYPE_CCP2,
39 NR_OF_V4L2_FWNODE_BUS_TYPE,
40 };
41
42 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
43 struct v4l2_fwnode_endpoint *vep)
44 {
45 struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2;
46 bool have_clk_lane = false;
47 unsigned int flags = 0, lanes_used = 0;
48 unsigned int i;
49 u32 v;
50 int rval;
51
52 rval = fwnode_property_read_u32_array(fwnode, "data-lanes", NULL, 0);
53 if (rval > 0) {
54 u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];
55
56 bus->num_data_lanes =
57 min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval);
58
59 fwnode_property_read_u32_array(fwnode, "data-lanes", array,
60 bus->num_data_lanes);
61
62 for (i = 0; i < bus->num_data_lanes; i++) {
63 if (lanes_used & BIT(array[i]))
64 pr_warn("duplicated lane %u in data-lanes\n",
65 array[i]);
66 lanes_used |= BIT(array[i]);
67
68 bus->data_lanes[i] = array[i];
69 }
70
71 rval = fwnode_property_read_u32_array(fwnode,
72 "lane-polarities", NULL,
73 0);
74 if (rval > 0) {
75 if (rval != 1 + bus->num_data_lanes /* clock+data */) {
76 pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
77 1 + bus->num_data_lanes, rval);
78 return -EINVAL;
79 }
80
81 fwnode_property_read_u32_array(fwnode,
82 "lane-polarities", array,
83 1 + bus->num_data_lanes);
84
85 for (i = 0; i < 1 + bus->num_data_lanes; i++)
86 bus->lane_polarities[i] = array[i];
87 }
88
89 }
90
91 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
92 if (lanes_used & BIT(v))
93 pr_warn("duplicated lane %u in clock-lanes\n", v);
94 lanes_used |= BIT(v);
95
96 bus->clock_lane = v;
97 have_clk_lane = true;
98 }
99
100 if (fwnode_property_present(fwnode, "clock-noncontinuous"))
101 flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
102 else if (have_clk_lane || bus->num_data_lanes > 0)
103 flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
104
105 bus->flags = flags;
106 vep->bus_type = V4L2_MBUS_CSI2;
107
108 return 0;
109 }
110
111 static void v4l2_fwnode_endpoint_parse_parallel_bus(
112 struct fwnode_handle *fwnode, struct v4l2_fwnode_endpoint *vep)
113 {
114 struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
115 unsigned int flags = 0;
116 u32 v;
117
118 if (!fwnode_property_read_u32(fwnode, "hsync-active", &v))
119 flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
120 V4L2_MBUS_HSYNC_ACTIVE_LOW;
121
122 if (!fwnode_property_read_u32(fwnode, "vsync-active", &v))
123 flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
124 V4L2_MBUS_VSYNC_ACTIVE_LOW;
125
126 if (!fwnode_property_read_u32(fwnode, "field-even-active", &v))
127 flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
128 V4L2_MBUS_FIELD_EVEN_LOW;
129 if (flags)
130 vep->bus_type = V4L2_MBUS_PARALLEL;
131 else
132 vep->bus_type = V4L2_MBUS_BT656;
133
134 if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v))
135 flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
136 V4L2_MBUS_PCLK_SAMPLE_FALLING;
137
138 if (!fwnode_property_read_u32(fwnode, "data-active", &v))
139 flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
140 V4L2_MBUS_DATA_ACTIVE_LOW;
141
142 if (fwnode_property_present(fwnode, "slave-mode"))
143 flags |= V4L2_MBUS_SLAVE;
144 else
145 flags |= V4L2_MBUS_MASTER;
146
147 if (!fwnode_property_read_u32(fwnode, "bus-width", &v))
148 bus->bus_width = v;
149
150 if (!fwnode_property_read_u32(fwnode, "data-shift", &v))
151 bus->data_shift = v;
152
153 if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v))
154 flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
155 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
156
157 bus->flags = flags;
158
159 }
160
161 static void
162 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
163 struct v4l2_fwnode_endpoint *vep,
164 u32 bus_type)
165 {
166 struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1;
167 u32 v;
168
169 if (!fwnode_property_read_u32(fwnode, "clock-inv", &v))
170 bus->clock_inv = v;
171
172 if (!fwnode_property_read_u32(fwnode, "strobe", &v))
173 bus->strobe = v;
174
175 if (!fwnode_property_read_u32(fwnode, "data-lanes", &v))
176 bus->data_lane = v;
177
178 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v))
179 bus->clock_lane = v;
180
181 if (bus_type == V4L2_FWNODE_BUS_TYPE_CCP2)
182 vep->bus_type = V4L2_MBUS_CCP2;
183 else
184 vep->bus_type = V4L2_MBUS_CSI1;
185 }
186
187 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
188 struct v4l2_fwnode_endpoint *vep)
189 {
190 u32 bus_type = 0;
191 int rval;
192
193 fwnode_graph_parse_endpoint(fwnode, &vep->base);
194
195 /* Zero fields from bus_type to until the end */
196 memset(&vep->bus_type, 0, sizeof(*vep) -
197 offsetof(typeof(*vep), bus_type));
198
199 fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
200
201 switch (bus_type) {
202 case V4L2_FWNODE_BUS_TYPE_GUESS:
203 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep);
204 if (rval)
205 return rval;
206 /*
207 * Parse the parallel video bus properties only if none
208 * of the MIPI CSI-2 specific properties were found.
209 */
210 if (vep->bus.mipi_csi2.flags == 0)
211 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep);
212
213 return 0;
214 case V4L2_FWNODE_BUS_TYPE_CCP2:
215 case V4L2_FWNODE_BUS_TYPE_CSI1:
216 v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, bus_type);
217
218 return 0;
219 default:
220 pr_warn("unsupported bus type %u\n", bus_type);
221 return -EINVAL;
222 }
223 }
224 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
225
226 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
227 {
228 if (IS_ERR_OR_NULL(vep))
229 return;
230
231 kfree(vep->link_frequencies);
232 kfree(vep);
233 }
234 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
235
236 struct v4l2_fwnode_endpoint *v4l2_fwnode_endpoint_alloc_parse(
237 struct fwnode_handle *fwnode)
238 {
239 struct v4l2_fwnode_endpoint *vep;
240 int rval;
241
242 vep = kzalloc(sizeof(*vep), GFP_KERNEL);
243 if (!vep)
244 return ERR_PTR(-ENOMEM);
245
246 rval = v4l2_fwnode_endpoint_parse(fwnode, vep);
247 if (rval < 0)
248 goto out_err;
249
250 rval = fwnode_property_read_u64_array(fwnode, "link-frequencies",
251 NULL, 0);
252 if (rval > 0) {
253 vep->link_frequencies =
254 kmalloc_array(rval, sizeof(*vep->link_frequencies),
255 GFP_KERNEL);
256 if (!vep->link_frequencies) {
257 rval = -ENOMEM;
258 goto out_err;
259 }
260
261 vep->nr_of_link_frequencies = rval;
262
263 rval = fwnode_property_read_u64_array(
264 fwnode, "link-frequencies", vep->link_frequencies,
265 vep->nr_of_link_frequencies);
266 if (rval < 0)
267 goto out_err;
268 }
269
270 return vep;
271
272 out_err:
273 v4l2_fwnode_endpoint_free(vep);
274 return ERR_PTR(rval);
275 }
276 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
277
278 int v4l2_fwnode_parse_link(struct fwnode_handle *__fwnode,
279 struct v4l2_fwnode_link *link)
280 {
281 const char *port_prop = is_of_node(__fwnode) ? "reg" : "port";
282 struct fwnode_handle *fwnode;
283
284 memset(link, 0, sizeof(*link));
285
286 fwnode = fwnode_get_parent(__fwnode);
287 fwnode_property_read_u32(fwnode, port_prop, &link->local_port);
288 fwnode = fwnode_get_next_parent(fwnode);
289 if (is_of_node(fwnode) &&
290 of_node_cmp(to_of_node(fwnode)->name, "ports") == 0)
291 fwnode = fwnode_get_next_parent(fwnode);
292 link->local_node = fwnode;
293
294 fwnode = fwnode_graph_get_remote_endpoint(__fwnode);
295 if (!fwnode) {
296 fwnode_handle_put(fwnode);
297 return -ENOLINK;
298 }
299
300 fwnode = fwnode_get_parent(fwnode);
301 fwnode_property_read_u32(fwnode, port_prop, &link->remote_port);
302 fwnode = fwnode_get_next_parent(fwnode);
303 if (is_of_node(fwnode) &&
304 of_node_cmp(to_of_node(fwnode)->name, "ports") == 0)
305 fwnode = fwnode_get_next_parent(fwnode);
306 link->remote_node = fwnode;
307
308 return 0;
309 }
310 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
311
312 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
313 {
314 fwnode_handle_put(link->local_node);
315 fwnode_handle_put(link->remote_node);
316 }
317 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
318
319 static int v4l2_async_notifier_realloc(struct v4l2_async_notifier *notifier,
320 unsigned int max_subdevs)
321 {
322 struct v4l2_async_subdev **subdevs;
323
324 if (max_subdevs <= notifier->max_subdevs)
325 return 0;
326
327 subdevs = kvmalloc_array(
328 max_subdevs, sizeof(*notifier->subdevs),
329 GFP_KERNEL | __GFP_ZERO);
330 if (!subdevs)
331 return -ENOMEM;
332
333 if (notifier->subdevs) {
334 memcpy(subdevs, notifier->subdevs,
335 sizeof(*subdevs) * notifier->num_subdevs);
336
337 kvfree(notifier->subdevs);
338 }
339
340 notifier->subdevs = subdevs;
341 notifier->max_subdevs = max_subdevs;
342
343 return 0;
344 }
345
346 static int v4l2_async_notifier_fwnode_parse_endpoint(
347 struct device *dev, struct v4l2_async_notifier *notifier,
348 struct fwnode_handle *endpoint, unsigned int asd_struct_size,
349 int (*parse_endpoint)(struct device *dev,
350 struct v4l2_fwnode_endpoint *vep,
351 struct v4l2_async_subdev *asd))
352 {
353 struct v4l2_async_subdev *asd;
354 struct v4l2_fwnode_endpoint *vep;
355 int ret = 0;
356
357 asd = kzalloc(asd_struct_size, GFP_KERNEL);
358 if (!asd)
359 return -ENOMEM;
360
361 asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
362 asd->match.fwnode.fwnode =
363 fwnode_graph_get_remote_port_parent(endpoint);
364 if (!asd->match.fwnode.fwnode) {
365 dev_warn(dev, "bad remote port parent\n");
366 ret = -EINVAL;
367 goto out_err;
368 }
369
370 vep = v4l2_fwnode_endpoint_alloc_parse(endpoint);
371 if (IS_ERR(vep)) {
372 ret = PTR_ERR(vep);
373 dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
374 ret);
375 goto out_err;
376 }
377
378 ret = parse_endpoint ? parse_endpoint(dev, vep, asd) : 0;
379 if (ret == -ENOTCONN)
380 dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep->base.port,
381 vep->base.id);
382 else if (ret < 0)
383 dev_warn(dev,
384 "driver could not parse port@%u/endpoint@%u (%d)\n",
385 vep->base.port, vep->base.id, ret);
386 v4l2_fwnode_endpoint_free(vep);
387 if (ret < 0)
388 goto out_err;
389
390 notifier->subdevs[notifier->num_subdevs] = asd;
391 notifier->num_subdevs++;
392
393 return 0;
394
395 out_err:
396 fwnode_handle_put(asd->match.fwnode.fwnode);
397 kfree(asd);
398
399 return ret == -ENOTCONN ? 0 : ret;
400 }
401
402 static int __v4l2_async_notifier_parse_fwnode_endpoints(
403 struct device *dev, struct v4l2_async_notifier *notifier,
404 size_t asd_struct_size, unsigned int port, bool has_port,
405 int (*parse_endpoint)(struct device *dev,
406 struct v4l2_fwnode_endpoint *vep,
407 struct v4l2_async_subdev *asd))
408 {
409 struct fwnode_handle *fwnode;
410 unsigned int max_subdevs = notifier->max_subdevs;
411 int ret;
412
413 if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
414 return -EINVAL;
415
416 for (fwnode = NULL; (fwnode = fwnode_graph_get_next_endpoint(
417 dev_fwnode(dev), fwnode)); ) {
418 struct fwnode_handle *dev_fwnode;
419 bool is_available;
420
421 dev_fwnode = fwnode_graph_get_port_parent(fwnode);
422 is_available = fwnode_device_is_available(dev_fwnode);
423 fwnode_handle_put(dev_fwnode);
424 if (!is_available)
425 continue;
426
427 if (has_port) {
428 struct fwnode_endpoint ep;
429
430 ret = fwnode_graph_parse_endpoint(fwnode, &ep);
431 if (ret) {
432 fwnode_handle_put(fwnode);
433 return ret;
434 }
435
436 if (ep.port != port)
437 continue;
438 }
439 max_subdevs++;
440 }
441
442 /* No subdevs to add? Return here. */
443 if (max_subdevs == notifier->max_subdevs)
444 return 0;
445
446 ret = v4l2_async_notifier_realloc(notifier, max_subdevs);
447 if (ret)
448 return ret;
449
450 for (fwnode = NULL; (fwnode = fwnode_graph_get_next_endpoint(
451 dev_fwnode(dev), fwnode)); ) {
452 struct fwnode_handle *dev_fwnode;
453 bool is_available;
454
455 dev_fwnode = fwnode_graph_get_port_parent(fwnode);
456 is_available = fwnode_device_is_available(dev_fwnode);
457 fwnode_handle_put(dev_fwnode);
458 if (!is_available)
459 continue;
460
461 if (WARN_ON(notifier->num_subdevs >= notifier->max_subdevs)) {
462 ret = -EINVAL;
463 break;
464 }
465
466 if (has_port) {
467 struct fwnode_endpoint ep;
468
469 ret = fwnode_graph_parse_endpoint(fwnode, &ep);
470 if (ret)
471 break;
472
473 if (ep.port != port)
474 continue;
475 }
476
477 ret = v4l2_async_notifier_fwnode_parse_endpoint(
478 dev, notifier, fwnode, asd_struct_size, parse_endpoint);
479 if (ret < 0)
480 break;
481 }
482
483 fwnode_handle_put(fwnode);
484
485 return ret;
486 }
487
488 int v4l2_async_notifier_parse_fwnode_endpoints(
489 struct device *dev, struct v4l2_async_notifier *notifier,
490 size_t asd_struct_size,
491 int (*parse_endpoint)(struct device *dev,
492 struct v4l2_fwnode_endpoint *vep,
493 struct v4l2_async_subdev *asd))
494 {
495 return __v4l2_async_notifier_parse_fwnode_endpoints(
496 dev, notifier, asd_struct_size, 0, false, parse_endpoint);
497 }
498 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints);
499
500 int v4l2_async_notifier_parse_fwnode_endpoints_by_port(
501 struct device *dev, struct v4l2_async_notifier *notifier,
502 size_t asd_struct_size, unsigned int port,
503 int (*parse_endpoint)(struct device *dev,
504 struct v4l2_fwnode_endpoint *vep,
505 struct v4l2_async_subdev *asd))
506 {
507 return __v4l2_async_notifier_parse_fwnode_endpoints(
508 dev, notifier, asd_struct_size, port, true, parse_endpoint);
509 }
510 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints_by_port);
511
512 /*
513 * v4l2_fwnode_reference_parse - parse references for async sub-devices
514 * @dev: the device node the properties of which are parsed for references
515 * @notifier: the async notifier where the async subdevs will be added
516 * @prop: the name of the property
517 *
518 * Return: 0 on success
519 * -ENOENT if no entries were found
520 * -ENOMEM if memory allocation failed
521 * -EINVAL if property parsing failed
522 */
523 static int v4l2_fwnode_reference_parse(
524 struct device *dev, struct v4l2_async_notifier *notifier,
525 const char *prop)
526 {
527 struct fwnode_reference_args args;
528 unsigned int index;
529 int ret;
530
531 for (index = 0;
532 !(ret = fwnode_property_get_reference_args(
533 dev_fwnode(dev), prop, NULL, 0, index, &args));
534 index++)
535 fwnode_handle_put(args.fwnode);
536
537 if (!index)
538 return -ENOENT;
539
540 /*
541 * Note that right now both -ENODATA and -ENOENT may signal
542 * out-of-bounds access. Return the error in cases other than that.
543 */
544 if (ret != -ENOENT && ret != -ENODATA)
545 return ret;
546
547 ret = v4l2_async_notifier_realloc(notifier,
548 notifier->num_subdevs + index);
549 if (ret)
550 return ret;
551
552 for (index = 0; !fwnode_property_get_reference_args(
553 dev_fwnode(dev), prop, NULL, 0, index, &args);
554 index++) {
555 struct v4l2_async_subdev *asd;
556
557 if (WARN_ON(notifier->num_subdevs >= notifier->max_subdevs)) {
558 ret = -EINVAL;
559 goto error;
560 }
561
562 asd = kzalloc(sizeof(*asd), GFP_KERNEL);
563 if (!asd) {
564 ret = -ENOMEM;
565 goto error;
566 }
567
568 notifier->subdevs[notifier->num_subdevs] = asd;
569 asd->match.fwnode.fwnode = args.fwnode;
570 asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
571 notifier->num_subdevs++;
572 }
573
574 return 0;
575
576 error:
577 fwnode_handle_put(args.fwnode);
578 return ret;
579 }
580
581 /*
582 * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
583 * arguments
584 * @fwnode: fwnode to read @prop from
585 * @notifier: notifier for @dev
586 * @prop: the name of the property
587 * @index: the index of the reference to get
588 * @props: the array of integer property names
589 * @nprops: the number of integer property names in @nprops
590 *
591 * First find an fwnode referred to by the reference at @index in @prop.
592 *
593 * Then under that fwnode, @nprops times, for each property in @props,
594 * iteratively follow child nodes starting from fwnode such that they have the
595 * property in @props array at the index of the child node distance from the
596 * root node and the value of that property matching with the integer argument
597 * of the reference, at the same index.
598 *
599 * The child fwnode reched at the end of the iteration is then returned to the
600 * caller.
601 *
602 * The core reason for this is that you cannot refer to just any node in ACPI.
603 * So to refer to an endpoint (easy in DT) you need to refer to a device, then
604 * provide a list of (property name, property value) tuples where each tuple
605 * uniquely identifies a child node. The first tuple identifies a child directly
606 * underneath the device fwnode, the next tuple identifies a child node
607 * underneath the fwnode identified by the previous tuple, etc. until you
608 * reached the fwnode you need.
609 *
610 * An example with a graph, as defined in Documentation/acpi/dsd/graph.txt:
611 *
612 * Scope (\_SB.PCI0.I2C2)
613 * {
614 * Device (CAM0)
615 * {
616 * Name (_DSD, Package () {
617 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
618 * Package () {
619 * Package () {
620 * "compatible",
621 * Package () { "nokia,smia" }
622 * },
623 * },
624 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
625 * Package () {
626 * Package () { "port0", "PRT0" },
627 * }
628 * })
629 * Name (PRT0, Package() {
630 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
631 * Package () {
632 * Package () { "port", 0 },
633 * },
634 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
635 * Package () {
636 * Package () { "endpoint0", "EP00" },
637 * }
638 * })
639 * Name (EP00, Package() {
640 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
641 * Package () {
642 * Package () { "endpoint", 0 },
643 * Package () {
644 * "remote-endpoint",
645 * Package() {
646 * \_SB.PCI0.ISP, 4, 0
647 * }
648 * },
649 * }
650 * })
651 * }
652 * }
653 *
654 * Scope (\_SB.PCI0)
655 * {
656 * Device (ISP)
657 * {
658 * Name (_DSD, Package () {
659 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
660 * Package () {
661 * Package () { "port4", "PRT4" },
662 * }
663 * })
664 *
665 * Name (PRT4, Package() {
666 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
667 * Package () {
668 * Package () { "port", 4 },
669 * },
670 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
671 * Package () {
672 * Package () { "endpoint0", "EP40" },
673 * }
674 * })
675 *
676 * Name (EP40, Package() {
677 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
678 * Package () {
679 * Package () { "endpoint", 0 },
680 * Package () {
681 * "remote-endpoint",
682 * Package () {
683 * \_SB.PCI0.I2C2.CAM0,
684 * 0, 0
685 * }
686 * },
687 * }
688 * })
689 * }
690 * }
691 *
692 * From the EP40 node under ISP device, you could parse the graph remote
693 * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
694 *
695 * @fwnode: fwnode referring to EP40 under ISP.
696 * @prop: "remote-endpoint"
697 * @index: 0
698 * @props: "port", "endpoint"
699 * @nprops: 2
700 *
701 * And you'd get back fwnode referring to EP00 under CAM0.
702 *
703 * The same works the other way around: if you use EP00 under CAM0 as the
704 * fwnode, you'll get fwnode referring to EP40 under ISP.
705 *
706 * The same example in DT syntax would look like this:
707 *
708 * cam: cam0 {
709 * compatible = "nokia,smia";
710 *
711 * port {
712 * port = <0>;
713 * endpoint {
714 * endpoint = <0>;
715 * remote-endpoint = <&isp 4 0>;
716 * };
717 * };
718 * };
719 *
720 * isp: isp {
721 * ports {
722 * port@4 {
723 * port = <4>;
724 * endpoint {
725 * endpoint = <0>;
726 * remote-endpoint = <&cam 0 0>;
727 * };
728 * };
729 * };
730 * };
731 *
732 * Return: 0 on success
733 * -ENOENT if no entries (or the property itself) were found
734 * -EINVAL if property parsing otherwise failed
735 * -ENOMEM if memory allocation failed
736 */
737 static struct fwnode_handle *v4l2_fwnode_reference_get_int_prop(
738 struct fwnode_handle *fwnode, const char *prop, unsigned int index,
739 const char * const *props, unsigned int nprops)
740 {
741 struct fwnode_reference_args fwnode_args;
742 unsigned int *args = fwnode_args.args;
743 struct fwnode_handle *child;
744 int ret;
745
746 /*
747 * Obtain remote fwnode as well as the integer arguments.
748 *
749 * Note that right now both -ENODATA and -ENOENT may signal
750 * out-of-bounds access. Return -ENOENT in that case.
751 */
752 ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
753 index, &fwnode_args);
754 if (ret)
755 return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
756
757 /*
758 * Find a node in the tree under the referred fwnode corresponding to
759 * the integer arguments.
760 */
761 fwnode = fwnode_args.fwnode;
762 while (nprops--) {
763 u32 val;
764
765 /* Loop over all child nodes under fwnode. */
766 fwnode_for_each_child_node(fwnode, child) {
767 if (fwnode_property_read_u32(child, *props, &val))
768 continue;
769
770 /* Found property, see if its value matches. */
771 if (val == *args)
772 break;
773 }
774
775 fwnode_handle_put(fwnode);
776
777 /* No property found; return an error here. */
778 if (!child) {
779 fwnode = ERR_PTR(-ENOENT);
780 break;
781 }
782
783 props++;
784 args++;
785 fwnode = child;
786 }
787
788 return fwnode;
789 }
790
791 /*
792 * v4l2_fwnode_reference_parse_int_props - parse references for async
793 * sub-devices
794 * @dev: struct device pointer
795 * @notifier: notifier for @dev
796 * @prop: the name of the property
797 * @props: the array of integer property names
798 * @nprops: the number of integer properties
799 *
800 * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
801 * property @prop with integer arguments with child nodes matching in properties
802 * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
803 * accordingly.
804 *
805 * While it is technically possible to use this function on DT, it is only
806 * meaningful on ACPI. On Device tree you can refer to any node in the tree but
807 * on ACPI the references are limited to devices.
808 *
809 * Return: 0 on success
810 * -ENOENT if no entries (or the property itself) were found
811 * -EINVAL if property parsing otherwisefailed
812 * -ENOMEM if memory allocation failed
813 */
814 static int v4l2_fwnode_reference_parse_int_props(
815 struct device *dev, struct v4l2_async_notifier *notifier,
816 const char *prop, const char * const *props, unsigned int nprops)
817 {
818 struct fwnode_handle *fwnode;
819 unsigned int index;
820 int ret;
821
822 for (index = 0; !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(
823 dev_fwnode(dev), prop, index, props,
824 nprops))); index++)
825 fwnode_handle_put(fwnode);
826
827 /*
828 * Note that right now both -ENODATA and -ENOENT may signal
829 * out-of-bounds access. Return the error in cases other than that.
830 */
831 if (PTR_ERR(fwnode) != -ENOENT && PTR_ERR(fwnode) != -ENODATA)
832 return PTR_ERR(fwnode);
833
834 ret = v4l2_async_notifier_realloc(notifier,
835 notifier->num_subdevs + index);
836 if (ret)
837 return -ENOMEM;
838
839 for (index = 0; !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(
840 dev_fwnode(dev), prop, index, props,
841 nprops))); index++) {
842 struct v4l2_async_subdev *asd;
843
844 if (WARN_ON(notifier->num_subdevs >= notifier->max_subdevs)) {
845 ret = -EINVAL;
846 goto error;
847 }
848
849 asd = kzalloc(sizeof(struct v4l2_async_subdev), GFP_KERNEL);
850 if (!asd) {
851 ret = -ENOMEM;
852 goto error;
853 }
854
855 notifier->subdevs[notifier->num_subdevs] = asd;
856 asd->match.fwnode.fwnode = fwnode;
857 asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
858 notifier->num_subdevs++;
859 }
860
861 return PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
862
863 error:
864 fwnode_handle_put(fwnode);
865 return ret;
866 }
867
868 int v4l2_async_notifier_parse_fwnode_sensor_common(
869 struct device *dev, struct v4l2_async_notifier *notifier)
870 {
871 static const char * const led_props[] = { "led" };
872 static const struct {
873 const char *name;
874 const char * const *props;
875 unsigned int nprops;
876 } props[] = {
877 { "flash-leds", led_props, ARRAY_SIZE(led_props) },
878 { "lens-focus", NULL, 0 },
879 };
880 unsigned int i;
881
882 for (i = 0; i < ARRAY_SIZE(props); i++) {
883 int ret;
884
885 if (props[i].props && is_acpi_node(dev_fwnode(dev)))
886 ret = v4l2_fwnode_reference_parse_int_props(
887 dev, notifier, props[i].name,
888 props[i].props, props[i].nprops);
889 else
890 ret = v4l2_fwnode_reference_parse(
891 dev, notifier, props[i].name);
892 if (ret && ret != -ENOENT) {
893 dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
894 props[i].name, ret);
895 return ret;
896 }
897 }
898
899 return 0;
900 }
901 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_sensor_common);
902
903 int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd)
904 {
905 struct v4l2_async_notifier *notifier;
906 int ret;
907
908 if (WARN_ON(!sd->dev))
909 return -ENODEV;
910
911 notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
912 if (!notifier)
913 return -ENOMEM;
914
915 ret = v4l2_async_notifier_parse_fwnode_sensor_common(sd->dev,
916 notifier);
917 if (ret < 0)
918 goto out_cleanup;
919
920 ret = v4l2_async_subdev_notifier_register(sd, notifier);
921 if (ret < 0)
922 goto out_cleanup;
923
924 ret = v4l2_async_register_subdev(sd);
925 if (ret < 0)
926 goto out_unregister;
927
928 sd->subdev_notifier = notifier;
929
930 return 0;
931
932 out_unregister:
933 v4l2_async_notifier_unregister(notifier);
934
935 out_cleanup:
936 v4l2_async_notifier_cleanup(notifier);
937 kfree(notifier);
938
939 return ret;
940 }
941 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor_common);
942
943 MODULE_LICENSE("GPL");
944 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
945 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
946 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");